
Mag. phil. Matthias Rella, BSc

Bits and Pieces: A Generic Widget
Framework for Sensemaking on the Web

Master’s Thesis

Graz University of Technology

Knowledge Technologies Institute
Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Supervisor: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, March 2015

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

The term “sensemaking” refers to a universal concept being investigated
in various sciences specifically or interdisciplinary. Briefly spoken from the
perspective of the information sciences, sensemaking occurs when a person
has to deal with a huge, perhaps overwhelming, and heterogeneous amount
of information and make sense out of it. This process, which is probable
to happen in everyday life, and the sense being made as a product of this
process are subject to constant research, especially under the nowadays
threat of the information deluge. The World Wide Web is the media for
today’s huge and heterogeneous amount of information which pervades
our everyday’s life. Whether we need to do a deep search for scientific
literature, figure out which hotel to book when travelling or simply need
to keep track of our Web surfing, we engage in a kind of sensemaking on
the Web. However, common-purpose user interfaces capable of the dynamic
and heterogeneous nature of the information on the Web are missing. This
thesis enlightens the term sensemaking from various theoretical perspectives
and reviews existing user interface approaches. Then, it develops a novel
theoretical and technical framework approach for building user interfaces
for sensemaking on the Web, which is finally evaluated in a user study and
in expert interviews.

v

Kurzfassung

Der Begriff “Sensemaking” (zu Deutsch: aus etwas Sinn gewinnen) bezieht
sich auf ein universelles Konzept, welches in verschiedenen, auch interdiszi-
plinären Forschungsrichtungen untersucht wird. Aus Sicht der Informatik
handelt der Begriff vom Umgang mit einer großen, nahezu überwältigen-
den und heterogenen Menge an Information durch eine einzelne Person,
die daraus Sinn gewinnen will. Dieser Vorgang, der auch im täglichen
Leben stattfinden kann, und der gewonnene “Sinn” als sein Produkt sind
Gegenstand der aktuellen Forschung, insbesondere in Hinblick auf die im-
mer größer werdende Informationsflut der heutigen Zeit. Das World Wide
Web (WWW) ist das Medium dieser riesigen und heterogenen Informa-
tionsmengen, das unseren Alltag immer stärker durchdringt. Ob wir nach
wissenschaftlicher Literatur suchen, ob wir ein passendes Hotel für die Reise
finden wollen, oder ob wir einfach den Überblick über unser Surfverhalten
behalten möchten, betreiben wir eine Art von “Sensemaking” im WWW.
Benutzeroberflächen, die gängige Zwecke dieser Art erfüllen und dabei der
dynamischen und heterogenen Natur der Informationen im WWW gerecht
werden, gibt es jedoch nicht. Diese Arbeit erhellt den Begriff “Sensemak-
ing” aus Sicht verschiedener Theorien und bespricht existierende Ansätze
für entsprechende Benutzeroberflächen. Anschließend wird ein neuartiger
Ansatz vorgestellt, welcher in Form eines theoretischen wie technischen Rah-
menwerks die Implementierung von Benutzeroberflächen für das “Sense-
making” im WWW anleiten und ermöglichen soll. Schlussendlich wird der
Ansatz in einer Benutzerstudie und in Experteninterviews evaluiert.

vi

Acknowledgements

This master’s thesis is not the outcome of my only efforts. As it was written
in the course of my enployment at the Social Computing Group at the
Know-Center, Graz, I want to say “Thank You” to all my colleagues there:
Dieter Theiler, Dominik Kowald and Peter Kraker were always on my
side. Especially Sebastian Dennerlein and Emanuel Lacić supported me
generously throughout the evaluation of the thesis. Last but not least, I
want thank Christoph Trattner who gave me great advice in structuring and
writing this work.

It was also a pleasure to work with Mohammed Al-Smadi, Vladimir Tomberg
and Pjotr Savitski from Tallinn University, who provided me with essential
hints to the whole topic of “Sensemaking”.

Finally, I want to thank my family and my wife Conny for always supporting
me during my studies.

vii

Contents

Abstract v

1. Introduction 1
1.1. Contribution . 3

1.2. Outline . 4

2. Sensemaking Theory 5
2.1. Communication Sciences . 5

2.2. Human Computer Interaction 9

2.3. Qualities of Sensemaking . 14

3. Related Work 19
3.1. ScratchPad . 20

3.2. Coalesce . 22

3.3. CoSense . 24

3.4. Apolo . 29

3.5. Summary . 32

4. The Bits and Pieces Prototype 35
4.1. Approach . 35

4.1.1. The B&P design idea . 35

4.1.2. Functional Requirements 40

4.1.3. Non-Functional Requirements 41

4.2. Framework . 42

4.2.1. Web Browser Runtime System 43

4.2.2. Means of Semantic Interaction 47

4.2.3. Alternative Runtimes 49

4.2.4. User Interface Design and Workflow Overview 51

4.2.5. Framework Architecture 53

ix

Contents

4.3. Application . 62

4.3.1. Social Semantic Service 63

4.3.2. Type Hierarchy . 68

4.3.3. Timeline Data Module 68

4.3.4. Organize Data Module 70

4.3.5. Timeline Widget . 71

4.3.6. Venn Diagram Widget 79

5. Evaluation 85
5.1. Usability Study . 85

5.1.1. Results . 86

5.1.2. Discussion . 89

5.2. Expert Interviews . 90

5.2.1. Results . 91

5.2.2. Discussion . 95

6. Conclusion 97
6.1. Contribution . 99

6.2. Limitations . 100

6.3. Future Work . 100

A. Expert Interview Transcripts 105
A.1. Expert 1 . 105

A.2. Expert 2 . 109

Bibliography 117

x

List of Figures

2.1. The Sensemaking Metaphor . 6

2.2. Learning Loop Complex . 10

2.3. Notional Model . 13

3.1. ScatchPad design schema . 21

3.2. Coalesce user interface . 23

3.3. CoSense: Search strategies view 26

3.4. CoSense: timeline and workspace 27

3.5. Apolo user interface . 30

3.6. Apolo: detail view and rank-in-place feature 31

3.7. Comparison of related work . 33

4.1. Wireframe of the B&P user interface 36

4.2. Example widgets of the B&P user interface 37

4.3. JavaScript frameworks in use and how they interplay 46

4.4. JSON-LD example . 48

4.5. RDFa example . 48

4.6. B&P UI design and workflow 52

4.7. B&P framework architecture . 53

4.8. Example service call . 54

4.9. Framework data model . 55

4.10. Data module definition . 56

4.11. Data type specific initiation . 57

4.12. Data type specific sync . 57

4.13. Timing diagram of data flow between architectural layers . . 58

4.14. Dragging function . 60

4.15. Sequence diagram for switching episodes 61

4.16. Application data loading kickoff 62

4.17. Timeline and Organize Widget as mockup and as UI 64

xi

List of Figures

4.18. Demo workflow of the B&P prototype 65

4.19. Social Semantic Server and Artifact Actor Networks 66

4.20. Schema.org Timeline Widget 69

4.21. Application Data Model . 71

4.22. OrganizeData.createCircle . 72

4.23. CircleData . 73

4.24. Propublica Time-setter . 74

4.25. SIMILE Timeline Widget . 76

4.26. Chronoline . 76

4.27. CHAP Links Timeline . 77

4.28. Structure of TimelineView . 79

4.29. Structure of OrganizeView . 81

4.30. StealthContainer . 83

4.31. Dropping function . 83

4.32. Sequence diagram of dropping an entity 84

xii

1. Introduction

The evolution of this master thesis is a case of sensemaking itself. As every
eager student who is interested in a topic I started by searching for existing
literature on this topic. Luckily most recent publications can be found on
the Web in so-called online catalogues of well-known publishers like ACM,
Springer or IEEE or via search engines like Google Scholar or CiteSeer. Not
like two decades back when one had to spend days in libraries, dive through
rows of catalogues, pull journals and books from shelves and make copies
of articles, I had almost all the necessary information a few mouse click
away. Thanks to dedicated software tools like Zotero or Mendeley collecting
these resources has never been easier.

However, this technological support was both a blessing and a curse. Having
not much sense for sensemaking I grabbed every little piece of information
I could find, starting from the simple but broad question “What is sense-
making?”. Within no time I retrieved a whole bunch of papers more or
less related to the topic, the one treating it in the domain of information
visualization and interaction, the other stressing a sociological approach.
I even came across sensemaking in the course of decision making in com-
bat situations. Briefly spoken, the amount of information was vast and
diverse.

Luckily there were two external conditions which helped me prioritize the
resources a priori. On the one hand my interest was directed towards the
field of Human-Computer-Interaction (HCI) and on the other hand I already
was able make a raw guess to what extend I could cover the topic at all in the
frame of a master thesis. As some articles were little related to HCI and/or
too specific to their scientific domain I could filter those out immediately.
The rest I started to narrow down into groups. So step by step I distilled
some kind of structure from the given sea of information. Interestingly, the

1

1. Introduction

two groups I have had come up with at this point (“user interfaces” and
“theory”) helped me target my further research towards papers fitting these
groups.

However, I could be running into a complete wrong direction if I were not
keeping my eyes open for though ill-fitting but yet interesting information.
If these residues would grow into a considerable portion in my collection,
they would make me rethink my structure eventually. And in fact, this
kind of representational shift happened several times while I was making
sense of sensemaking. For instance there are approaches which are similar
to sensemaking but still different in certain respects, eg. the SER model
(Fischer et al., 1994) or Knowledge Discovery in Databases (Fayyad, 1996). As
these were not fitting into the “theory” group although having a theoretical
relation to sensemaking I created another group which I named “related”.
So I was not only building up structure but also refining it constantly.

Of course this sketchy picture of sensemaking is only the tip of it. There were
more groups, categories and other kinds of structure involved which I did
not create a digital representation for but merely kept in mind more or less
consciously. This is due to the volatile nature of these representations. It is
easier and less obtrusive to handle the whole process in short-term memory:
building a representation on top of given data, finding more data on top of
representations and eventually shifting them. However, there are two flaws
with this part of human memory which finally render it incapable of making
sense of vast and heterogeneous amounts of information. On the one hand
its capacity will reach its limits very soon when it comes to complex and big
data structures. On the other hand it is short-lived whereas sensemaking
is a long-term process in most cases. Therefore, inevitably humans have to
externalize representations, eg. take notes, during sensemaking. And that’s
what I did too apart from putting resources into groups. I just produced a
couple of text files on my computer where I recorded additional thoughts,
sketched outlines and collected quotes.

However, plain text is far from being the optimal medium for building
representations although culture has brought up a couple of common repre-
sentational codes. For instance, a hierarchical structure might be represented
by indentation or sectioning, equivalent pieces of information can be put

2

1.1. Contribution

into a bullet point list and cohesion is indicated by sentences and para-
graphs. But these codes are still subject to the one-dimensional space of text
and lack the possibility to represent complex information structures such as
graphs, tables and other kinds of drawings. Moreover it is hard to reference
and reuse individual textual representations for further sensemaking efforts
unless they are written to individual files. Finally plain text notes are most
likely not machine readable and hence make any further computer support
impossible. In fact they do nothing more than bringing the centuries-old
practice of note taking to digital text files with the usual advantages of
instantaneous editing, copying and sharing. But in the nowadays digitized
world, was that all then?

A new approach is needed, freed from any traditional burdens of the
pre-digital era but still grounded in universal qualities of sensemaking,
embracing technological advances of the last years and especially catching
up with the upcoming Web 3.0. In a lightweight and unobtrusive manner, it
has to support the aforementioned sensemaking process of finding represen-
tations on top of data, finding data on top of representations and shifting
them, making the externalization of representations a matter of only a few
clicks while still being machine readable in order to unleash the power of
Web 3.0 APIs for semantic content management and recommender systems.
So the research question raised by these considerations is:

How can software support sensemaking on the World Wide Web?

1.1. Contribution

In order to answer this question, this thesis will contribute the following:

• A theoretical framework for sensemaking in the context of HCI will
be developed.

• Upon this, the design of a generic widget framework for Web-based
sensemaking applications will be derived and implemented.

The software framework as well as the results of a user study have been
published in the proceedings of the European Conference on Technology-
Enhanced Learning (EC-TEL), which took place in Graz, September 2014:

3

1. Introduction

S. Dennerlein, M. Rella, V. Tomberg, D. Theiler, T. Treasure-Jones,
M. Kerr, T. Ley, M. Al-Smadi and C. Trattner (2014). Making
Sense of Bits and Pieces: A Sensemaking Tool for Informal
Workplace Learning. In: Open Learning and Teaching in Ed-
ucational Communities. Ed. by Christoph Rensing et al. Vol.
8719. Lecture Notes in Computer Science. Springer International
Publishing, pp. 391–397.

1.2. Outline

This thesis is structured as follows: The first part deals with theoretical
approaches to sensemaking from the perspectives of the communication sci-
ences and HCI and distills qualities of sensemaking. In the second chapter,
several existing user interfaces for sensemaking on the Web are evaluated
with respect to these qualities. Given the theoretical considerations and
the evaluation of the related work, “Bits and Pieces”, a novel framework
approach for Web-based sensemaking applications and its implementation
is presented. The last chapter evaluates the framework from a user per-
spective on the level of the user interface as well as from the viewpoint of
experts on the level of implementation, both with respect to the sensemaking
qualities.

4

2. Sensemaking Theory

Theoretical approaches to sensemaking can be found in various sciences,
ranging from HCI to military command. Additionally theories exist which
have many aspects in common with sensemaking without refering to sense-
making as such. For instance, the SER model (Seeding - Evolutionary Growth
- Reseeding) by Fischer et al. (1994) resembles the reciprocal interchange of
bottom-up and top-down processes, described later in this chapter. Whereas
Knowledge Discovery in Databases (Fayyad, 1996) is more about narrowing
down huge amounts of data and finding structures in them, which is similar
to the Notional Model of Pirolli and Card (2005) (2.2).

However, the two main approaches commonly cited in the HCI literature
are the Sensemaking Metaphor by Brenda Dervin from the communication
sciences and the Learning Loop Complex resp. the Notional Model by
Russell et al. (1993) and Pirolli and Card (2005) from HCI. These two are not
specific to any domain. Sensemaking in Organizations by Weick (1995) and
the “data/frame”-theory by Klein et al. (2007) have also been considered
for deeper inspection for this thesis. However, Weick (1995) is going too
far off the HCI field, and Klein et al. (2007) already take up many ideas
from Russell et al. (1993). Nevertheless, a short review of the latter two
approaches is given in the end of this chapter.

2.1. Communication Sciences

Brenda Dervin has been doing research on the topic of sensemaking for
over three decades. Coming from the Communication Sciences her work
has outspread to Information Sciences in general dealing with the question

5

2. Sensemaking Theory

of how people work with information. Due to its more philosophical im-
plications and due to the influence it had on the other sciences Dervin’s
“Sensemaking Methodology” shall be discussed first. Moreover Dervin’s
“Sensemaking Metaphor” provides an easy understanding of the matter for
the readers new to the topic.

Figure 2.1.: The Sensemaking Metaphor: An individual makes sense of an ordered and
chaotic world by moving through time and space and bridging gaps it
encounters.

The Sensemaking Metaphor (Dervin (1998), see fig. 2.1) enlightens the term
the following way: An individual moves through time and space, taking
one step after the other, and needs to bridge gaps it encounters on its strive
for a certain goal. The movement is specific to the individual’s situation, its
history, experience and horizon approaching the goal step by step through
continuous exploration. A gap corresponds to questions or confusions which
need to be answered by new ideas or thoughts. The outcome finally are
certain consequences, helps or functions.

While this metaphor intuitively makes sense its very foundations lie in
Dervin’s notion of information which has to be stressed for the right under-

6

2.1. Communication Sciences

standing of her approach. Dervin (1999) proposes to see information as a
tool of sensemaking rather than an entity of its own. The latter perspective
views information as something which describes an ordered reality and
thereby disregards humans totally. The problem with this view lies in the
question what that “something” is. Dervin (1999) outlines the history of
struggling with that question culminating in the solipsistic conclusion that
information “describes an ordered reality that varies from person to person”
(ibid. p. 37), which is tautologically based on the fact that “people see the
world differently because they differ” (ibid. p. 40). Further approaches to
resolve this philosophical dead end finally led to the view that information
does not describe an ordered reality but rather creates the order in a chaotic
reality. This view avoids the solipsism of different people’s different reality
by putting information as the means of order. However, it still cannot answer
what information is and again disregards humans.

Dervin’s notion goes one step behind this question and takes a constructivist
communication oriented perspective, “that information is made and unmade
in communication intrapersonal, interpersonl, social, organizational and
global” (ibid. p. 42f). Her focus lies on the creation of information in the
course of an individual’s sensemaking of the world: “Information is a tool
designed by human beings to make sense of a reality assumed to be both
chaotic and orderly” (ibid. p. 39). Hence, in her view, information itself is
not the thing that matters, it is the making of it.

That is how the Sensemaking Metaphor comes about: “[H]umans who are
themselves ordered and chaotic moving through a reality that is ordered
and chaotic. Humans make sense individually and collectively as they move:
from order to disorder, from disorder to order” (ibid. p. 41). The result as
well as the means of sensemaking is information: It underpins and guides
the movement of the individual as well as it lets the individual form bridges
over phenomenological gaps in reality. But information always keeps the
role of a means to an end, not the end itself. The end, the goal, is what the
individual wants to achieve in his or her daily life and work.

In this view, sensemaking is highly contextual, dynamic and grounded
in action and must not be reduced to mere solution finding. “The Sense-
Making metaphor must be understood as a highly abstract framework”
(ibid. p. 46) and can be applied to any kind of work of a certain degree of

7

2. Sensemaking Theory

complexity, be it in physical reality as well as in mental or virtual worlds,
ie. any world in which humans can move. Having this potential levels of
abstraction in mind one also has to be aware that movement is not merely
meant as a simple linear kind of getting forward. Movement ranges from
uncertain padding in the dark to running fast as an arrow. Similarly gaps
can be like small ditches or huge clefts, essentially inducing more or less
work to bridge them. Finally an outcome might appear as a neat solution or
as a subtle hint.

The Sensemaking Methodology is a systematic elaboration of this metaphor-
ical view and has been applied in various real-world information tasks. For
instance based on the methodology librarians were introduced to a new set
of questions to ask customers in order to help them in their sensemaking of
the right book to borrow: “What led you to ask this question? How do you
hope to be helped? If you could get the best possible answer, what would it
be like? What are you trying to do?” (ibid. p. 49). Questions like these shall
support the identification of the customer’s “movement”, “gaps”/“bridges”
and prior “outcomes”. Hence, the methodology could also be seen as an
action-oriented communication approach for knowledge exchange.

In summary, knowledge and sensemaking are related in such that “knowl-
edge is the sense made at a particular point in time-space by someone”
(Dervin, 1998, p. 36), ie. knowledge grounded in action. From this she
concludes that one has to be doing something in order to come up with
knowledge. However, again, “information and knowledge are rarely ends in
themselves; they are means to ends” (Dervin, 1998, p. 40). For information
systems this means to let the user do the action and instead of imposing
structure a priori: “By freeing our interface with the user from the system’s
obsession with information and knowledge, we leave users free to define
what is informing on their own terms.” (ibid.) This finally also means to re-
spect users’ individuality in sensemaking: “Collaborative work is necessary
to knowledge management, but it is not sufficient” (ibid. p. 41).

Based on this action-oriented, communicative approach to sensemaking the
next section narrows the topic down to the interaction between humans and
computers and takes it to a more information-technical level.

8

2.2. Human Computer Interaction

2.2. Human Computer Interaction

The following approach coming from the field of HCI looks at the sensemak-
ing process from a bottom-up perspective by investigating its cost structure
in terms of time/quality tradeoffs. The basic assumption is that the identifi-
cation of the costly points in sensemaking leads the way to best-practices for
HCI design. The two proponents of this approach are Russell et al. (1993)
and Pirolli and Card (2005).

Russell et al. (1993) centered their investigation of the cost structure around
a case study which dealt with the development of a training course on
printing and scanning devices. On top of the technical descriptions of
several devices from various companies the goal was to separate common
terms and functionality from specific ones in order to unify information and
hence making the course structure more concise. As a means of development
a hypermedia knowledge structuring tool was used.

Especially as each device was documented over several thousands of pages
using non-uniform terminology this case is interesting for the study of
sensemaking and its relation to information retrieval tasks. Russell et al.
(1993) define this relation as being “... best understood in their embedding
in a larger overall task structure. The larger task often involves sensemak-
ing, the process of encoding retrieved information to answer task-specific
questions” (Russell et al., 1993, p. 269).

The authors argue that this process is guided by the tradeoff between the
time a certain operation consumes (the cost) and the expected gain in quality
of information, by which they mean quality with regard to the reduction
of costs to approach the goal of the overall task. Furthermore, the resulting
cost structure of sensemaking leads the way to identify operations or parts
of operations which may profit from automation in the human-computer
interaction.

Learning Loop Complex

According to Russell et al. (1993) the operations involved in sensemaking
can be depicted by the so-called “Learning Loop Complex” (LLC, Fig. 2.2).

9

2. Sensemaking Theory

Figure 2.2.: The Learning Loop Complex (Russell et al., 1993, p. 271)

As defined above, the goal of sensemaking is to find appropriate encodings
(or “encodons” as they call it) of information which “answer task-specific
questions” and hence reduce the cost to achieve a certain task.

There are three core operations: generate, instantiate and shift represen-
tations. A representation in the sense of Russell et al. (1993) is a kind of
pre-stage of an encodon, a volatile structure imposed on the information at
hand which may be kept in the sensemaker’s memory or in some external
medium. The use of the latter grows with the size and complexity of the
task in order to relieve cognitive resources.

The Generation Loop involves the search for “good representations” by
qualifying how well (or better) the data fits with regard to the task’s goal
and with regard to existing instantiations of representations. After having
tried to cover more and more data (Data Coverage Loop) by instantiating
the found representation this loop may yield residues, ie. features of the
data which could not be covered well, which in turn drive the need to
shift the representation by generating new or adapted versions (Shift Loop).

10

2.2. Human Computer Interaction

Finally, when the appropriate representation, the encodon, is ready, it can
be integrated in the task structure to ease the further strive for the goal.

The LLC embraces a core characteristic of sensemaking: the iterative inter-
change between bottom-up and top-down processes. Data drive the bottom-
up search for representations in the Generation Loop, representations drive
the top-down search for data in the Data Coverage Loop. The Shift Loop
is the crucial part in the model of Russell et al. (1993): it connects the two
other operations and hence corresponds with the “iterative interchange”,
which is the anchor point in the general notion of sensemaking.

The identification of residues means to pin down the parts of a representa-
tion which need improvement. Thus, the Shift Loop is the operation which
actually leads to gain in quality and hence to reduction of cost. Russell et al.
(1993) illustrate this by a short example of another case study:

“In one of our case studies, the sensemaker looks up data about
laptop computers in a collection of magazines and product sheets.
His goal is to make a purchasing recommendation meeting given
constraints. The data representation created by sensemakers
carrying out this task invariably includes tables giving properties
of competing laptops. Representation shifts are changes to the
table structure as the sensemaker decides which properties are
most relevant and retrievable and ultimately are able to help
solve the problem of determining the best choice.” (Russell et al.,
1993, p. 275)

As the Shift Loop is not the costly but the eventually cost-saving operation
it are the Generation and the Data Coverage Loop which impose big load
on the sensemaker. These involve information retrieval and data extraction,
which “is often the most time-consuming task in sensemaking” (Russell
et al., 1993, p. 273). For instance in the aforementioned printer case study,
all textual description of the devices spanned several thousand pages which
had to be read in several iterations in order to extract relevant data.

This is the phase where automation may reduce costs most effectively. On
the one hand, clustering algorithms can help in finding similarities and
in identifying broader concepts for instance. This can ease the pain of
finding representations which is foundational to identifying residues. The

11

2. Sensemaking Theory

representation shift then may consist in adapting the algorithm’s parameters
by the sensemaker or even by switching the algorithm itself. On the other
hand from a top-down perspective, the instantiated representations could
be used to compute recommendations to guide further data exploration.

These automation tools can only calculate the best solution given the current
data available at any time during the sensemaking process. They cannot
provide the ultimate, or global, solution to the sensemaking task, because it
is always up to the sensemaker to take sophisticated decisions when shifting
representations. This is the so-called “anytime principle”.

The Notional Model of the Analyst’s Process

Pirolli and Card (2005) take up Russell et al. (1993)’s approach by investi-
gating again the cost structure of sensemaking. In contrast to the former
the authors separate the actual sensemaking process from the information
retrieval on a meta-level. In their view, the overall development process
from the raw data to the goal consists of the information foraging loop in
the first place and the sensemaking loop in the second place. Consequently
this distinction empowers them to devide the analysis of the leverage points,
ie. the costly points of the process which could be eased.

The Notional Model of the analyst’s process depicted in Fig. 2.2 can be
seen as an derivative of Russell et al. (1993)’s LLC by giving names to the
succeeding stages (“shoebox”, “evidence file”, . . .). These notions, which
have been identified in a preliminary study of the work of business intelli-
gence analysts (Pirolli and Card, 1999), are framed by two scales: structure
and effort, ie. through the analyst’s effort data becomes structured. So the
model explicits implicit assumptions of the LLC for the case of intelligence
analytics. However, the identification of stages could be applied to other
domains as well. The point here is that the LLC is a general model of
sensemaking which can be taken down to concrete problem fields or even
specific problems. This can also be seen by the fact that the most important
property of the LLC is still prevalent in Pirolli and Card (2005)’s Notional
Model: its symmetry between top-down and bottom-up processes. Again
it is the reciprocal interchange of these processes which drives the overall
process.

12

2.2. Human Computer Interaction

Figure 2.3.: The Notional Model of the analyst’s process (Pirolli and Card, 2005)

It all starts with the raw data sources which are external in the sense that
they are not part of the information created through the process. Analysts
use “search and filter” technology to retrieve a “shoebox” of data relevant
for their task. As the metaphor suggests this is a mere subset without deeper
structuring. They only share a common measure of relevance which may be
adapted by the top-down process of finding more or other information, ie.
refining the relevance criteria.

The shoebox data serves as the foundation to “read and extract” the “evi-
dence file” which is a collection of approaches to the goal. With the evidence
at hand the shoebox can be searched for more or other relations in order to
skim previous indications. The evidence file then gives rise to “schemata”
which aid in representing complex structures. In turn, these schemata are
refined by looking back at the evidence. This stage of the overall process
is essential as it lies at the passage from the information foraging loop
to the sensemaking loop. Pirolli and Card (2005) put the interchange of
bottom-up and top-down processes at this stage by example: “Evidence may

13

2. Sensemaking Theory

be organized into small-scale stories about typical topics or in answer to
typical questions (eg., who, what, when, where, why, how) that are used to
organize raw evidence” (p. 3). The first example can be seen as a bottom-up
process where evidence is stitched together whereas the second example
imposes a question with a schematization in mind.

During the sensemaking loop “hypotheses” are “built” from schemata on
the one hand. On the other hand, given an hypothesis “support needs
to be searched” for it by looking into the schematic organization of the
information again. Finally, on top of the hypotheses a “story” has to be “told”
to others through a presentation or publication. In turn, these clients could
pose remarks on the presented theory which would induce “re-evaluation”
of the hypotheses.

Although this summary of the Notional Model might give the impression
that these stages are discrete, they are not. For instance, “schema-based ex-
pert skill can be used at all points in the process [. . .], for example in rapidly
skimming and rejecting information in the early stages” (Pirolli and Card,
2005, p. 3). Hence the borders between stages are blurred rendering the
whole process a continuum rather than a stepwise way of structuring. How-
ever, it is still worthy to distinguish between the stages and the two loops
because they help at naming the costly pain points which “structure user in-
formation behavior [. . .] and can often been altered (positively or negatively)
by compute or methodological innovations.” (ibid. p. 4). Therefore the task
of user interfaces for sensemaking is to hook supportive visualization or
tools into these leverage points where they are most effective.

2.3. Qualities of Sensemaking

There are many more theoretical approaches to sensemaking which can-
not be tackled in detail in this thesis. For instance, Klein et al. (2007)’s
data/frame-theory makes a similar point as Russell et al. (1993)’s Learning
Loop Complex: Data “are explained when they are fitted into a structure”
whereas a Frame denotes an “explanatory structure that defines entities”
(Klein et al., 2007, p. 118). It also lends from Dervin’s human-centered
action-oriented approach, when stating that “[s]ensemaking begins when

14

2.3. Qualities of Sensemaking

someone experiences a surprise [a gap, note from the author] or perceives an
inadequacy in the existing frame and the existing perception of relevant
data.” (ibid.)

Another perspective from the Organizational Sciences is also worth mention-
ing: Weick (1995) boils sensemaking down to seven properties: “1. Grounded
in identity construction, 2. Retrospective, 3. Enactive of sensible environ-
ments, 4. Social, 5. Ongoing, 6. Focused on and by extracted cues, 7. Driven
by plausibility rather than accuracy” (Weick, 1995, p. 17). Since the author
puts focus on sensemaking in organizations he stresses different aspects
than Russell et al. and Dervin. For instance, the Sensemaking Metaphor
assumes “forward movement” rather than attention being “directed back-
ward from a specific point in time” (Weick, 1995, p. 26). The social aspect
is also covered just implicitly by Dervin when subsuming “culture and
society” into the individual’s situation. However, the other properties can be
found with the approaches discussed in the latter two sections. For instance,
the idea of “extracted cues” can be aligned with Pirolli and Card (2005)’s
stepwise Notional Model.

Here Weick (1995)’s style of pinning sensemaking down to seven properties
shall be taken up in order to streamline the theoretic rationales of this
chapter. For the matter of distinction these pin-points are called “qualities
of sensemaking”. These qualities serve as a theory-grounded foundation
for the generic widget-framework for sensemaking presented in chapter 4.
These qualities of sensemaking are the following:

• Individuality: Sensemaking is an individual and indivisible process.
According to the Sensemaking Metaphor it’s an individual moving
through time and space, coming from a personal horizon of experi-
ences and always “self relating to self; self relating to another; self
relating to a collectivity” (Dervin, 1999, p. 41). Hence sensemaking
occurs if and only if there is one sensemaker.

• Context-sensitivity: How sensemaking works in reality highly de-
pends on the context. The Sensemaking Metaphor makes that clear
in saying that the individual’s current situation (consisting of time
and space, history, etc.) is the source for the next move. From an in-
formational point of view it’s the “data” in general that matters here.
Furthermore, Russell et al. (1993) defines sensemaking to be specific

15

2. Sensemaking Theory

to task and question. Therefore, sensemaking is always sensitive to its
context.

• Bipolarity: On a meta-level sensemaking runs between two poles: in-
formation foraging and information organization. As Pirolli and Card
(2005) state, in the beginning sensemaking is more concerned with
finding the right data and narrowing it down to more handy repre-
sentations. Later more and more organizational processes occur which
structure the data in itself instead of bringing new data in. Although
the other approaches do not come up with this point, it is especially
important for the application of the sensemaking paradigm to HCI,
ie. the design of computer-supported sensemaking systems. Hence,
bipolarity needs to be taken into account as a quality of sensemaking.

• Reciprocity: At its core sensemaking is driven by interchanging bottom-
up and top-down sub-processes, ie. finding representations on top of
data vs. finding data in the view of representations. The LLC consists
of these two processes and the “data/frame”-theory of Klein et al.
(2007) also makes reciprocity to its defining property. Dervin (1998)’s
Sensemaking Metaphor is also driven by the interchange of “move-
ment” and “bridging of gaps”. Movement works top-down, on top
of reality and information, whereas the bridging works bottom-up
by building a representation for the data in order to move on. There-
fore sensemaking definitely consists of the reciprocal interchange of
top-down and bottom-up processes.

• Continuity: Sensemaking is a continuous process, starting or stopping
at any point. There is no need for the data to be totally raw as well
as the result needs not reside on a certain level of abstraction. It
depends on the “task-specific question” and the coming about of
“representations” when sensemaking begins and ends (Russell et al.,
1993). However, representations might serve as input for another
sensemaking with no clear separation between the latter and the forth.
The Learning Loop Complex obviously visualizes that fact by the
circular dependency of its sub-processes. Hence, sensemaking has to
be considered as “ongoing” (Weick, 1995).

• Enactivity: Borrowing the term from Weick (1995) it states that sense-
making is grounded in action, ie. “not in how humans [. . .] see their
worlds but in how they ‘make’ their worlds” (Dervin, 1999, p. 40). It’s
a constructivist and enactive process, which means that sensemakers

16

2.3. Qualities of Sensemaking

“produce part of the environment they face” (Weick, 1995, p. 30). Ad-
ditionally Russell et al. (1993)’s and Pirolli and Card (2005)’s dynamic,
reciprocal approach of knowledge evolution suggests a big deal of
interactivity with the data. Finally the term “sensemaking” itself is a
verb, ie. something to be done. So enactivity plays an essential role in
sensemaking.

• Reification: During sensemaking representations are constantly reified
in order to serve as input for further sensemaking. Dervin (1999) says
that information is a “tool” for sensemaking. Hence, information
can be understood as representations which help in sensemaking
in the sense of Russell et al. (1993). Further representations might
reuse them as part of their structure and thereby reify them. This
leads to the evolution of structures (meta-data) on several levels of
abstraction (Pirolli and Card, 2005). Its the quality of reification (of any
representation) which gives sensemakers the freedom “to define what
is informing on their own terms” and hence plays a crucial part in it.

These seven qualities will serve as a measure of sensemaking for related
work on existing user interface designs as well as a guideline for the devel-
opment of this thesis’ generic widget-framework for sensemaking.

17

3. Related Work

A couple of desktop applications for sensemaking on the Web exist. This
section reviews the most elaborated ones which differ widely in their sense-
making support. Although more work in this field exists the selection was
made according to the following features: First, the approach needs to be
designed primarily for working with data from the Web. Second, the display
dimensions of the target device should match those of desktop computers.
Third, the work needs to address sensemaking explicitly instead of mere in-
formation collecting or visualizing. So the selection of approaches reviewed
here is the following:

• ScratchPad (Gotz, 2007): a browser plugin which enables users to
interactively collect Web resources (bookmarks, images, text fragments)
and which provides tools for adding notes, creating folders and linking
collected items individually.

• Coalesce (Ryder and Anderson, 2009): a Web application featuring
interactive and fine-grained information foraging tools together with
SenseMap for structuring items hierarchically.

• CoSense (Paul and Morris, 2009): a dedicated desktop application
for sensemaking adding collaborative features supporting various
interactive views and visualizations of the evolved information.

• Apolo (Horng et al., 2011): a dedicated desktop application which vi-
sualizes data of scientific publications through citation graphs fetched
from Google Scholar and enables users to arrange nodes interactively
to own needs. The tool provides mature filtering mechanisms and
implements a recommender engine guiding the sensemaking.

Each of these are evaluated in comparison to the qualities of sensemaking.
This systematic method of sensemaking assessment provides useful insights

19

3. Related Work

into respective advantages and disadvantages and has not been applied by
former approaches to sensemaking.

3.1. ScratchPad

The ScratchPad (Gotz, 2007) is designed as an extension to the sidebar of the
browser window. On the one hand this pad serves as a collection area: While
browsing the Web, users can create snapshots of the current Web site or
drag and drop fragments of it (images and text snippets). Irrespective of the
granularity, the collected items are displayed graphically in the ScratchPad.
On the other hand there are various tools for manipulating the collection
independent of the Web site’s content: For instance folders can be created
which help in organizing the collection, textual notes can be added “to
express insight created by the users themselves as the sensemaking task
evolves” (p. 1330) and related objects (website snapshots and/or fragments)
can be joined interactively by drawing links between them. Additionally
given these kinds of user-generated input the relevance of elements in the
ScratchPad to the currently browsed Web site is calculated. The results are
indicated either visually next to the elements or structurally in a table at the
bottom of the pad (fig. 3.1).

Cheng and Gotz (2008) even improved this relevance detection algorithm
as follow-up work to ScratchPad by incorporating context-based page unit
recommendations with the context consisting of the user-created structure
and notes. In addition to the relevance indication with the pad itself thus
relevant portions of a Web page are highlighted also. As these recommenda-
tions are based on the user-collected elements in the ScratchPad they are
likely to be specific to the user’s sensemaking task. As the authors proof
in a user study this extension enhances the user’s information foraging
significantly.

In the light of the qualities of sensemaking ScratchPad cuts a good figure.
First, individuality is fulfilled as the approach enables the user to build
up personal information collections and structures. Given that the built-
in relevance detection algorithm additionally tries to give personalized
recommendations potentially fitting the user’s specific task. Furthermore,

20

3.1. ScratchPad

Figure 3.1.: Schema of the ScratchPad design according to Gotz (2007). By extending the
browser window to the left it provides a collection/sensemaking area with a
table of information relevance scores below.

enactivity is enabled through dragging/dropping gestures which let page
units being added to the pad as well as relations between collected elements
being created. As the approach is implemented as a browser plugin it is
likely although not explicitly stated that the ScratchPad can be activated
and deactivated at any time while browsing which fulfills the quality of con-
tinuity. As for the reciprocity of sensemaking ScratchPad essentially allows
for building representations on top of collected data through its features for
folder and link creation on the one hand. On the other hand it more data
on top of the user-generated representations can be found by having the
representation always visible in the sidebar. Additionally recommendations
for page fragments also support the top-down aspect of reciprocity. The con-
stant interchange of these two processes and their mutual stimulation come
up to the reciprocal quality. Finally, ScratchPad self-evidently implements
the bipolarity of sensemaking as it strictly divides the information foraging
aspect from the organizing aspect of sensemaking by the sidebar-oriented
design of the user interface. While the browser window itself remains un-
changed in its usual functionality for information seeking, the sidebar pad
allows for the information structuring and representation building.

21

3. Related Work

However, reification is missing. Representation building is only possible on
one level of abstraction, ie. folders and links. For instance, folders themselves
cannot serve as objects of linking and links as such cannot be structured in
folders. Furthermore, clusters of interlinked elements cannot be reused as a
whole in further sensemaking tasks. Therefore, ScratchPad fails at reification
of its outcomes. There could also be more about context-sensitivity as for
instance exploiting features in the data such as location- and time-based
properties. Additionally, it is questionable whether folders and links as the
only forms of representation are sufficient for every kind of sensemaking
task. Neither Gotz (2007) nor Cheng and Gotz (2008) allot features for
extending the possibilities of building representations. Hence, there might
be contexts were ScratchPad renders inadequate.

Dragging and dropping are a good start in providing enactivity but Scratch-
Pad lacks other interactive features which might be expected from the
interface. For example, the authors don’t mention any way of viewing the
contents of an element instantly although there is the capability to modify
elements which is “roughly analogous to the functionality of traditional
bookmark organization tools which allow you to modify titles and contents
of bookmarked items” (p. 1330). Finally, it is unclear whether the state of
sensemaking is preserved when the user closes the browser and comes
back later for continuing the sensemaking process which would violate the
quality of continuity.

3.2. Coalesce

Similiar to ScratchPad Coalesce (Ryder and Anderson, 2009) is implemented
in a Web browser environment using the Google Web Toolkit. In contrast
to the former approach, Coalesce comes as an integrated Web application
without allotting space for native Web browsing. Instead data search and
retrieval is achieved via numerous Web search APIs. By integrating these
remote services Coalesce provides an HTML based presentation of the
fetched results in a dedicated search tab. This tab can be activated instead
of a snippet manipulation and another tab for viewing the full contents of
SenseMap.

22

3.2. Coalesce

Figure 3.2.: Coalesce user interface (Ryder and Anderson, 2009) providing various views
including the SenseMap, tabs for search, manipulation and overview, a working
area and a detailed view.

The SenseMap area to the left enables users to structure information portions
(text fragments from Web pages) in a tag-based hierarchy. This hierarchy
can be edited in-place. Tags can be created by the user manually or recom-
mended through kinds of Web services for content analysis in the so-called
“scratchpad” (right-hand side of the interface). Recommendations are based
on user-generated tags and the tagged information source itself. In the
bottom of the interface a detailed view of a singe information snippet is
provided (fig. 3.2).

Data items are stored as small XML documents in Google Base, a key/value
based online storage. The type of the value can be defined either as one of
the standard types provided by the storage engine or a custom one. For the
representation of the application data “SenseMap” and “Information Snip-
pet” have been invented as custom data types. The first stores hierarchical

23

3. Related Work

data, the latter portions of content from Web pages.

As the former approach, Coalesce effectively supports the construction
of individual information structure, thus accounting for the quality of
individuality. As for context-sensitivity, offers a limited set of views on the
data which enable users to adapt the application to own needs. Enactivity is
served by “fluid switching” between tabs and in-place context-menus for
manipulation operations. As users can “modify and save any aspect of the
hierarchy continuously as they proceed” (p. 291) continuity of sensemaking
is also satisfied. Having a set of views at hand users may easily proceed
their search while having a certain custom SenseMap on the screen which
enables one side of sensemaking reciprocity. On the other side Coalesce also
enables the parallel building of a representation (the tag hierarchy) based
on the retrieved data in view. As there is a search tab which needs to be
activated on demand the prototype also reflects the quality of bipolarity to a
certain extent.

However, as with ScratchPad, reification is not implemented in this prototype.
Google Base having a typed key/value data structure as described by Ryder
and Anderson (2009) cannot serve arbitrary reification of data to meta-data.
Coalesce defines two custom and fixed data types which can only describe
data on one single level of abstraction (information snippets with relation
to SenseMaps). Time- and location-based features of the data could also be
recognized with respect to context-sensitivity. Furthermore, Coalesce cannot
be considered very enactive since all views are text-based with the main user
input device being the keyboard. Concerning continuity the authors state that
the SenseMap is saved continuously which allows for ceasing and resuming
the sensemaking. However, it is unclear how the rest of the application is
treated in this aspect since they also need to be seen as substantial parts of
the sensemaking process. Finally, little is done for bipolarity as the search
tab only plays a minor role in the whole user interface.

3.3. CoSense

Based on a formative user study on collaborative Web search Paul and Mor-
ris (2009) developed CoSense for collaborative sensemaking. Since sense-

24

3.3. CoSense

making is concerned with a user’s individual interaction with information
collaboration only affects the sensemaking process with regard to this infor-
mation. The process as such with regard to its qualities does not change in
spite of the input of other people which merely adds to the data to make
sense of. Paul and Morris (2009) put it like this: “Sensemaking is an integral
part of the information seeking process; for groups, this sensemaking en-
compasses both the need to make sense of found information as well as the
need to make sense of the collaboration process, such as group members’
roles and task state.” (Paul and Morris, 2009, p. 1779).

Indeed, findings from the study even confirm some of the theoretical view-
points of sensemaking. First, the authors found out that users want a tool
for collaborative Web search make them aware of the actions of other users
as well as of the context of these actions. These requirements go in hand
with the action-based perspective from Dervin (1998) which considers ques-
tions like “How did it evolve?”, “What happened to it?” or “What were the
gaps? What are the bridges?” central for sensemaking. The second finding
highlights the importance of time-based cues for sensemaking as users want
to get a grasp of the chronology of a certain piece of information. Time also
plays a central role in the sensemaking metaphor of Dervin (1998) and is the
most prevalent feature used for giving structure to data. Finally persistence
of the sensemaking process and results has also been found essential by
having explicit means for noting these down, eg. as meta-comments.

These findings partly reflect qualities of sensemaking: Enactivity seems to be
encouraged by the need for action-awareness while context-awareness and
time-based structuring account for the quality of context-sensitivity. As users
found it important to note down outcomes of sensemaking instantly which
keeps them available for later continuity can also be seen granted by the study
of Paul and Morris (2009). Since the authors mention “meta-comments” as
a means of persisting results or aforementioned meta-information like
“group members’ roles and task state” which evolves with collaborative
sensemaking they also seem to indicate reification as a requirement.

CoSense is implemented as a dedicated desktop application particularly
addressing these findings. It works in junction with SearchTogether (Morris,
Lombardo, and Wigdor, 2010), a tool for collaborative Web search, where
users can browse and search the Web and comment and rate pages. There

25

3. Related Work

(a) Block diagram and tag clouds (b) Timeline of query history

Figure 3.3.: The search strategies view of CoSense (Paul and Morris, 2009) provides a
query- or URL-based view of a block diagram of total amounts and respective
tag clouds. Hovering/clicking on a keyword or URL shows the associated
queries or Web pages. The timeline of query history of each user visualizes the
evolution of the collaborative Web search.

are four views available: The search strategies view, timeline view, chat-
centric view and workspace view. As the name suggests the search strategies
view aims at supporting action-awareness. On the one hand it consists of a
block diagram visualizing the total amount of search queries issued by each
user of the group. On the other hand there are tag clouds of query keywords
of each user and of the group as a whole. The diagram and the tag clouds
can be switched to be based on visited website URLs. Additionally words in
the tag clouds are directly associated to the respective search queries or Web
pages which can be viewed instantly in a Web browser by clicking on them.
The search strategies view also provides a timeline of queries in order to
visualize the evolution of the group’s collaborative Web search (fig. 3.3).

The second tab of the application contains the timeline view which lists all
kinds of actions of the group chronologically, ie. search queries, Web page
visits, chat messages and comments, or a subset of them by applying filters.
Moreover Web page items can be clicked to bring up associated information,
ie. the context of the item, to the right of the timeline. This includes chat
messages in the sphere of the Web page visit, users who have visited the
page, comments and a preview of the page. Apart from mere browsing of
this contextual information users can also create and associate additional
comments to the Web page (fig. 3.4).

Besides the chat-centric view which brings up Web pages associated to

26

3.3. CoSense

(a) Integrated timeline (b) Workspace with “summary items”

Figure 3.4.: The timeline view integrates various kinds of actions in one place chronolog-
ically. The workspace allows for building tag-based structure and finalizing
sensemaking outcomes as textual notes (Paul and Morris, 2009).

a certain chat-message (as the inverse of the timeline functionality), the
workspace view aims at persisting sensemaking outcomes. Each Web page
visited during the collaborative Web search is listed together with associ-
ated comments and the users who visited it. Web sites without comments
are omitted. These “summary items” can be tagged and filtered by tags
instantly. Additionally individual comments can be hidden. These “richer
sensemaking features” and “means of organizing the workspace” allow for
“imposing structure on collections of links and comments” (Paul and Morris,
2009, p. 1776). The workspace also facilitates creation of arbitrary to-do
lists and textual notes in two dedicated text fields as well as the upload of
external files from the local computer (fig. 3.4).

From the standpoint of the qualities of sensemaking CoSense in junction
with SearchTogether hits a quite high score. First, individuality is ensured
by the various possibilities to view and add individual information such
as the user-based tag-cloud of search queries or Web page URLs as well as
comments. Above all user’s search data is constantly imported from Search-
Together. A big deal of CoSense features is explicitly pointed at providing
“context-awareness” which accounts for the quality of context-sensitivity: on a
low level by using time-based cues for presenting information such as in the
query history view of the search strategies tab or in the integrated timeline
view, on a high level by providing contexts of chat messages, comments

27

3. Related Work

and visits by peer users when viewing the preview of a Web page listed in
the timeline view. Since this view also shows other kinds of actions (com-
menting, querying, chatting etc.) in order to meet the “action-awareness”
distilled by the preliminary study it also supports sensemaking’s enactiv-
ity on a semantic level. On the level of the user interface this quality is
achieved by rendering items interactive in the search, the timeline and the
chat-centric view, ie. yielding instant access to associated information by
clicking on them. Additionally, the timeline can be filtered by the type
of items. Although stressing a collaborative approach CoSense also takes
into account continuity by addressing “sensemaking handoff” between peer
users. One user needs to continue sensemaking by taking up the outcomes
made persistent in the workspace view by another user. This feature would
also work in the individual case when a user has to continue the own sense-
making process. Furthermore, it seems that data generated throughout the
sensemaking session (eg. comments or chat messages) is saved continuously
in the background.

As for the reciprocity of sensemaking there are the four different views
which can be switched easily (in analogy to “shifting representations”).
Since CoSense is also made for making sense of other’s actions the timeline
and the chat-centric view provide means for data-driven representation
finding while the tag-clouds are representations which enable focussing
further data search, for instance for highly prominent queries of other users.
Additionally the tag-clouds allow for refining queries for SearchTogether
which in turn provides means of finding representation (comments, ratings)
on top of data. Having this tool working seamlessly with CoSense while
both still being separate also adheres to the quality of bipolarity. Finally,
there also are rudiment features for reification since the workspace view
provides taggable summary items which form a layer of abstraction on
top of the comments and Web pages being treated in the other views. As
tags are applied to these summary items they reify them and make the
workspace organizable.

Although CoSense tackles qualities of sensemaking to a broad extent there
still are some shortcomings. First, it is unclear whether the application can
be extended to present other kinds of contextual cues which would be
necessary for the possible complexity and specificity of a sensemaking task
which cannot be known in advance. There might be more and different views

28

3.4. Apolo

needed. Furthermore, the only means of interaction on the level of the user
interface is clicking on items although dragging and dropping would also be
a common way of interaction which is, however, not provisioned by CoSense.
A small drawback for the reciprocity is that views or features for top-down
and bottom-up processing cannot be visualized in parallel which hinders the
immediate reciprocal interchange of them. However, views can be switched
instantly by tabs in the top of the application. Concerning reification there
are only limited and pre-defined means for it in the workspace (summary
items and tags) although other reifications might be possible as for instance
tagging/rating of comments/users or having creation of outcomes (textual
notes) visualized in the timeline view.

3.4. Apolo

Apolo (Horng et al., 2011) is a highly interactive and visual Java-based
desktop application specifically made for sensemaking of networked data, ie.
scientific citation networks in its current implementation. The user interface
of Apolo consists of tree areas: one for the workspace where the citation
network is visualized as a graph, one for configuring this visualization and
one for filtering and grouping of nodes. Each node represents a scientific
publication with directed edges to other nodes depending on the direction
of the citation relationship (“cites” vs. “cited-by”) (fig. 3.4). The network
data is loaded from Google Scholar1 before runtime.

Users can arrange nodes spatially within the workspace while a force-
directed algorithm avoids mutual occlusion of nodes. Moving the mouse
over a node brings up a box with details about the publication such as the
full title, authors, publication year and citation count. The box also contains
optional operations: One allows for starring the publication, one for adding
annotations, one for toggling the visibility, one for toggling membership to
a group and the other for pinning and unpinning the node to the current
position on the workspace (fig. 3.6(a)). Pinning nodes releases them from the
custody of the force-directed layout algorithm and enables users to create
visually fixed clusters. Additionally, selected nodes can be “ranked in place”

1http://scholar.google.com (Visited: 2014-10-25)

29

http://scholar.google.com

3. Related Work

Figure 3.5.: The Apolo user interface with three areas: The configuration area (1) to adapt
parameters for the visualization of the citation graph below (4) which shows
publications as nodes and citations as directed edges. The filter (2) and grouping
area (3) show options for filtering of nodes and for managing coloured groups
of publications.

which arranges them vertically within the graph (fig. 3.6(b)). The workspace
also contains a search field for highlighting nodes which match the input
keyword.

The grouping area to the left of the workspace shows the user-generated
group labels and colours. From within the detail box, a publication can be set
to be a prototypical example of a group which makes the node appear in the
corresponding colour. A similarity algorithm automatically calculates which
of the other visible nodes are similar to the prototypical one and colours
these according to the degree of similarity. By changing the membership
in the detail box, the similarity is recalculated and the visualization re-
rendered instantly. On demand, users can load more publications into the
workspace which are similar (ie. relevant) to a certain group’s prototypes.
The grouping area also allows for filtering nodes by their membership to
groups. However, filters can also be applied on an application level, eg.,
whether a node is pinned, annotated or starred.

Looking at Apolo with respect to the qualities of sensemaking the prototype

30

3.4. Apolo

(a) Detail view of meta-data (b) Nodes ranked in place

Figure 3.6.: The detail view provides meta-data of a publication and several operations. A
set of nodes can be ranked in place and arranged vertically.

yields several positive features. As for the individuality of sensemaking
undoubtedly enables users to build up personal representations, “[. . .] that
even if two users’ landscapes included the same nodes, those landscapes
could be very different based on their goals and prior experience” (Horng et
al., 2011, p. 172). Concerning enactivity, “rich user interaction” plays a crucial
role in Apolo. There is the visual workspace of the citation graph which
can be edited intuitively by moving nodes around and pinning them on
demand. Mousing over a node immediately brings up a detail view together
with further possible actions. The filter options as well as the configuration
toolbar allow for instant adaption of the visualization. Furthermore, “[a]s a
node’s group membership can be ‘toggled’ easily, the user can experiment
with moving a node in and out of a group to see how the relevance of the
other nodes change” (Horng et al., 2011, p, 172).

Continuity is ensured as the positions of pinned nodes can be preserved
by saving the application and loaded again on resuming sensemaking.
Apolo’s fine-grained interaction features with the visualization also makes
continuous sensemaking possible. Noteworthy, the authors have put special
focus on “shifting representations” and thus account for reciprocity as a
representation such as a group membership can be changed easily which
leads to a different colouring of the nodes. It is also possible to retrieve
more relevant data on demand given the current representation (top-down,
by the similarity detection algorithm) as well as to build up representations
given data by moving publication nodes around (bottom-up). On demand
retrieval of data in contrast to organizing of data in the workspace can be

31

3. Related Work

seen as an implementation of the bipolar quality of sensemaking.

However, although Apolo reaches high scores on the individuality, enactivity
and reciprocity two important qualities are even missing. Since the prototype
seems to be confined to citation network data a priori it yields no effort
for supporting other kinds of data which might be specific to the user’s
context. Hence, Apolo lacks context-sensitivity completely. Consequently,
due to the limitation in data types there aren’t any means of creating meta-
and meta2-data, for instance, allowing for sensemaking upon groups as
such. Thus, reification is also missing. As for continuity it seems that the
application state is only preserved on explicitly saving it which might
hinder starting and stopping sensemaking at any point. Apolo also hardly
provisions any features for information foraging since data is selected and
loaded by relevance through the similarity algorithm. However, Apolo puts
comparably more focus on the organizing side of sensemaking’s “bipolarity”.
There only remains the possibility of browsing nodes’ meta-data by mousing
over them, which could be taken as an implementation of its other side.

3.5. Summary

This section reviewed four approaches for user interfaces for sensemaking
on the Web by depicting the functionality of each in detail and evaluating it
in the light of the qualities of sensemaking. Table 3.5 summarizes the results
on a scale of one to three.

CoSense (Paul and Morris, 2009) outperforms the other three user interfaces
significantly by implementing features that match all qualities of sense-
making to a certain extent, even reification which could not be found in
any of the other approaches. This due to their preliminary study which
directed the implementation towards context-sensitivity and enactivity. By
taking into account collaboration and sensemaking handoff CoSense puts
particular effort into continuity. Multiple views together with easy switching
between them mainly accounts for reciprocity and having SearchTogether
as a separate but coordinated search tool clearly supports the bipolarity of
sensemaking.

32

3.5. Summary

ScratchPad Coalesce CoSense Apolo
Individuality +++ +++ +++ +++

Context-sensitivity + ++
Enactivity + + ++ +++

Continuity + ++ +++ ++
Reciprocity +++ ++ ++ +++

Bipolarity +++ + +++ +
Reification +

Table 3.7.: Comparison of the reviewed user interfaces for sensemaking on the Web:
CoSense and Apolo (Horng et al., 2011)

ScratchPad (Gotz, 2007) leverages a browser based approach by working
in the sidebar of the window and hence scores highest in reciprocity and
bipolarity but little in the realm of the other qualities due to its limited set
of features. Coalesce (Ryder and Anderson, 2009) goes for a multi-view
implementation which gives it one point in context-sensitivity but leads to a
loss of reciprocity and bipolarity. It also saves the outcomes of sensemaking
continuously. Apolo Horng et al., 2011 is highly interactive and visual and
implements a similarity algorithm as a top-down processor of sensemaking
with instant recalculation on group membership change which directly
supports reciprocity but it confined to citation network data from Google
Scholar and provides no means for information foraging.

All prototypes come up to individuality since this quality is foundational to
sensemaking which is an individual process per se. Reciprocity is achieved
to a high degree as well, most probably because this quality is also at the
heart of sensemaking. Essentially, the Learning Loop Complex of Russell
et al. (1993) consists of the reciprocal interchange of bottom-up and top-
down processes. Bipolarity and continuity have been found as the third-most
implemented qualities since it is obvious that the information to make sense
of has to come from somewhere at first and since sensemaking is an activity
itself with hard to define starts and ends. The question when the goal is
reached lies in the eye of the sensemaker and cannot be designed a priori.
So all approaches take continuity into account. Enactivity scores only one
point less and hence shows that bringing action into sensemaking has also
been considered an important feature by the reviewed prototypes.

33

3. Related Work

However, context-sensitivity seems to be a complex feature hard to tackle.
This might be due to the broad range of possibilities what is considered as
context and how an application can be made sensitive for it. Apparently, a
multi-view approach as implemented in Coalesce and CoSense goes into
the right direction. The exact situation of the sensemaker, the types of data
he might be confronted with, cannot be known in advance. So, provisioning
various views on the data increases the probability that one serves the
sensemaker’s needs.

Reification might be the most abstract quality of sensemaking which renders
it hard for implementation. CoSense made a step in that direction by pro-
viding taggable summary items which allows for building of meta-structure
upon the representations found during preceding sensemaking. The other
approaches remain on one level of data, ie. confine themselves to a certain
set of data types and/or representations. Hence, users are limited in their
sensemaking by this set and can only evolve structure that is in the realm of
possibilities of it. Therefore, omitting reification inevitably leads to implicit
imposition of structure on the user’s sensemaking. However, sensemaking
is about the contrary. What is meant here by data and structure Dervin
(1998) refers to as information and knowledge when saying that “[. . .] in-
formation and knowledge are rarely ends in themselves; they are rather
means to ends. By freeing our interface with the user from the system’s
obsession with information and knowledge, we leave users free to define
what is informing on their own terms” (Dervin, 1998, p. 40). As reification is
about making an abstraction to a concrete thing it allows representations to
become input to the sensemaking as if they were data. Thereby users are
given the aforementioned freedom of definition.

The next section presents the design and implementation of the Bits and
Pieces prototype which tackles these shortcomings by leveraging a frame-
work approach founded on the qualities of sensemaking.

34

4. The Bits and Pieces Prototype

4.1. Approach

The sensemaking approach presented in this work is based on the user in-
terface design idea B&P introduced in the strand of the EU project Learning
Layers1. It has been developed and validated with healthcare professionals
in several co-design sessions (e.g., via participatory observation, interviews,
paper prototyping) and is particularly designed for sensemaking of one’s
own learning experiences (Tomberg et al., 2013). However, since the design
is primarily made for working with people’s everyday affairs, it relies upon
several implicit assumptions on sensemaking. This section tries to make
these assumptions explicit by applying the qualities of sensemaking distilled
in chapter 2.3 and elaborating a framework for sensemaking around the
design idea.

4.1.1. The B&P design idea

The user interface design idea is oriented towards the usual screen size of
desktop computers. The screen area is split into two equally sized parts, the
“browsing” and the “organizing” canvas, which are arranged vertically. The
upper canvas is reserved for widgets which enable users to browse their
digital artifacts along contextual cues (eg. time, location, topics) whereas the
lower canvas gives space to widgets for organizing these items semantically.
Since each canvas can only display one widget at once the user can switch
widgets horizontally. Widgets shall be able to visualize entities, ie. learning
“bits”, in their own way and provide interaction upon them. It shall be

1http://learning-layers.eu/ (Visited: 2014-11-18)

35

http://learning-layers.eu/

4. The Bits and Pieces Prototype

possible to drag bits in the upper canvas and drop them in the lower one.
Furthermore, entities need to be kept synchronized across widgets so that a
change made to a bit in one widget is also reflected in the others (fig. 4.1.1).
Finally, not visible in the wireframes, the state of the user’s sensemaking
is persisted in the background automatically without the need to save it
explicitly.

Figure 4.1.: The wireframe (by courtesy of Vladimir Tomberg) of the B&P user interface
with two canvases, one for browsing data, one for organizing them. The current
widget in either canvas can be switched by the arrow left and right.

The design does not confine the set of available widgets but comes with
some initial suggestions. So as for the browsing canvas there could be a
timeline, a geographical map and a browsable and filterable list, whereas
for the organizing canvas a Venn-diagram, a layered structure, a conceptual
matrix and a network graph are envisioned (fig. 4.2).

Finally, B&P should be capable of managing several “episodes” of sense-
making. An episode in the sense of B&P is sensemaking related to a specific
topic, idea or question. Technically speaking, it is a means of giving a
sensemaking session a name. An episode can have several versions, each

36

4.1. Approach

(a) Timeline & Venn-rings (b) Geographical map & layers

(c) Browsable list & conceptual matrix (d) Filterable list & network graph

Figure 4.2.: Example widgets of the B&P user interface (by courtesy of Vladimir Tomberg).

reflecting the state of sensemaking (ie. the arrangement of entities and the
configuration of widgets) at a certain point in time. The user can switch
between episodes and between versions of episodes instantly.

User Scenario

Stressing again the example from the beginning one might use the B&P
user interface in the following way: First, collected data is loaded into the
application via Web services and visualized by the current browsing widget,
eg. the timeline, which would display the bits chronologically by the creation
timestamp. However, the timeline might be unsuitable if the user already
knows the label of a needed bit. Instead, by switching the upper canvas to

37

4. The Bits and Pieces Prototype

the browsable list, which displays bits in alphabetical order, finding a bit by
name would be much easier.

Next, the user might find this bit related to another one which comes across
while browsing the list further. In order to make this relation explicit the
two bits are dragged and dropped to the lower canvas where the Venn
diagram widget is active. The user can arrange the two bits spatially and
draw a circle around them. The circle gets the label of the common category.
Having found this representation, the user can continue the search for more
bits which would fit into the same category.

However, if no more bits can be found, two things can be done: Either
the representation needs to be changed (either by relabelling the circle or
drawing new ones) or another widgets needs to be put in place, eg. the
network graph. In that case there would already be three nodes visualized:
the two bits and the category entity which was represented as a circle in
the former Venn diagram widget. The edges would be drawn between the
category entity and each bit - representing a “contains”-relationship. More
bits can be dropped into the lower canvas and connected to the graph.

So having various widgets available can help in finding bits and building
structure (representations) around them, ie. the B&P design idea seems
to support the sensemaking process. In order to prove this theoretical
assumption the next section reviews the design in the light of the qualities
of sensemaking.

Proving Sensemaking Support

The qualities of sensemaking have been derived as a theoretical requirements
for sensemaking applications in chapter 2.3. As they have been used in
chapter 3 for evaluation of the related work B&P also needs to undergo the
review of its design in the light of the qualities. This section will show that
B&P fulfills these theoretical requirements.

First, the split screen design feature where the upper part is reserved for
browsing and the lower part is reserved for organizing widgets apparently
reflects the bipolarity of sensemaking. In the beginning, the process is more
focussed on foraging for bits in the upper canvas, whereas towards the end

38

4.1. Approach

of sensemaking, it is mostly concerned with organizing them in the lower
canvas. In between the process is continuously progressing its focus, ie. the
user will more and more shift his attention from browsing to organizing.
Since both poles are equally important for the process, splitting the screen
into two equally sized parts is a feasible way of designing bipolarity.

Second, the division into two canvases also accounts for reciprocity of sense-
making. The organize canvas can be used to build up representations based
on the data in the browse canvas whereas the browsing can be guided by
representations present in the organize canvas. It is this reciprocity which
drives the overall sensemaking process between the two poles of foraging
and organizing. So bipolarity and reciprocity complete each other in the
B&P design idea.

Third, as B&P envisions various widgets for various sensemaking situations
and the ease of switching between them, it adheres to the quality of context-
sensitivity. Whether a tool for sensemaking is appropriate mainly depends
on the context, eg. the kind of data, the specific goal, the user’s personal
preferences, and so on. Furthermore, as the bits represent informal learning
experiences they can not be defined by a certain type or structure. On the
one hand they may vary in their intrinsic properties (textual notes, photos,
audio records, etc.), on the other hand in their extrinsic ones (creation
time, location, relation to other items etc.). By having the contents of both
canvases to be switchable over an extensible set of widgets dynamically
and independently the user can find the appropriate ones to visualize and
interact with the data at hand.

Fourth, according to sensemaking’s enactivity, the design idea enables users
to interact with each visible element. Generally, items can be dragged and
dropped from the upper to the lower canvas. Furthermore, the design
suggests a couple of specific widgets for each canvas each being interactive
respectively. On the one hand, for instance, the timeline widget for the
upper canvas can be panned and zoomed, on the other hand the lower
canvas may contain an organizing widget for drawing rings and arranging
items like in a Venn diagram.

Fifth, due to sensemaking’s quality of continuity users may cease sensemak-
ing as soon as they see their task-specific goal achieved (Russell et al., 1993)

39

4. The Bits and Pieces Prototype

or may come back later. B&P achieves that by persisting the sensemaking
state continuously in the background.

Sixth, reification is also reflected in the B&P design idea as illustrated in the
user scenario. When switching widgets, representations built in the one
widget might serve as entities (ie. data) in another. For instance, categories
may not only function as means of structuring bits but may be related to
each other on a higher level of abstraction. B&P achieves that by merely
enabling reification of representations instead of defining a higher ordering
structure explicitly.

Finally, the individuality of sensemaking is covered a priori as informal
learning experiences are personal per se. Furthermore, B&P allows for
building of own representations through widgets and even the individual
extension of the set of widgets.

The following list sums up the mapping of B&P design features to qualities
of sensemaking:

• two canvases (bipolarity, reciprocity)
• switching between widgets and extensibility of the set of widgets

(context-sensitivity, individuality)
• visualization and interaction of bits within and between widgets (en-

activity)
• continuous preservation of the sensemaking state (continuity)
• representations serving as entities in certain widgets (reification)

4.1.2. Functional Requirements

As B&P is targeted towards a generic framework there are only a few
functional requirements to mention. Most sensemaking functionality comes
from individual widgets which is out of scope of the framework. However,
as for design features which are related to the visualization, interaction and
continuous preservation it is necessary to list at least the following:

• Drag and drop: Every bit needs to be drag- and droppable in order
to bring bits from the upper to the lower canvas. Hence, browsing

40

4.1. Approach

widgets need a common interface to pass out entities as do organizing
widgets to receive entities.

• Bit visualization: Every bit needs to be visualized in a globally, across-
widget consistent form, ie. bits need to look the same in different
widgets for the sake of recognition.

• Continuous preservation: The framework needs to save the sensemak-
ing state continuously so that the user can cease sensemaking at any
point in time without worrying about its preservation. This includes
the state of the widgets as well as which widgets are currently visible.

• Data structure for episodes, versions, users and entities: These are data
types which are not specific to an application and hence need to be
implemented on the level of the framework.

4.1.3. Non-Functional Requirements

The non-functional requirements are of more interest for the generic frame-
work implementation because frameworks usually provide the means (the
frame) to develop functionality rather than functionality as such. In the
case of B&P it is a framework for sensemaking widgets which has to meet
the following non-functional requirements. These also match widely with
The Reactive Manifesto (2014) which states four properties reactive systems
comply to: responsive, resilient, elastic and message-driven.

• On account of the extensibility widgets need to be independent mod-
ules each tackling a specific aspect of data or functionality. Indepen-
dence maximizes the number of possible combinations of widgets
and thereby the adaptability to the specific sensemaking objection.
Furthermore independence of widgets makes switching between them
flawless. Independence of modules also entails resilience because indi-
vidual widget may fail while leaving the rest of the application run
unaffected.

• Interactivity requires responsiveness, ie. the application has to respond
to user input immediately without passing on time consuming loading
and processing times to the user’s experience. On the one hand this
implies that every visible bit needs to respond to any user action which
is executed upon it. On the other hand data loading and processing

41

4. The Bits and Pieces Prototype

logic needs to be decoupled from the visual frontend. This requirement
implies client-side elasticity since “the system stays responsive under
varying workload” (The Reactive Manifesto 2014).

• In order to support continuous preservation the application’s state
needs to be serializable at any point. This further implies that any
operation triggered upon the data has to be atomic in order to make
the application resilient on the level of data.

• Finally, if widgets have to be independent modules there needs to be
a common means of message passing in order to enable communi-
cation with the framework and inter-widget coordination. However,
the type and structure of data can not be defined a priori and thus
a common data format either. Furthermore, any-time serializability
needs a dynamic and extensible data structure. Both issues can be
tackled by the use of a graph data structure as it does not impose any
pre-defined structure apart from nodes and links. Furthermore, graphs
can represent reification which is also a quality of sensemaking.

4.2. Framework

The implementation of the prototype is split into two parts. On account of
the generic requirements described above a framework for use case agnostic
features was developed. The framework is intended to ease the implemen-
tation of application specific widgets which can leverage the modularity,
responsiveness and serializability provided. The main part of this section
is concerned with the framework implementation. As an application two
widgets of the Bits and Pieces design idea have been developed on top of
this framework. The source code of the implementation can be found on
Github2.

2https://github.com/learning-layers/BitsAndPieces/archive/v2.0.0.zip (Vis-
ited: 2014-11-18)

42

https://github.com/learning-layers/BitsAndPieces/archive/v2.0.0.zip

4.2. Framework

4.2.1. Web Browser Runtime System

The framework relies on the runtime environment of Web browsers. The
decision to use the Web browser as the application platform has several
reasons. First, as the Bits and Pieces framework aims to facilitate sensemak-
ing on the Web, the Web browser itself renders the runtime enviroment for
this purpose. Second, HTML5

3 together with CSS3
4 provides a feature rich

framework for structuring, integrating and presenting multimedia content.
As a W3C Web standard it is implemented across various Web browsers.
Third, Web applications running natively in the Web browser relieve users
from awkward installation requirements. Furthermore as Web browsers are
pre-installed on nowadays operating systems users can start working with
the Web application right away.

JavaScript is the programming language commonly used for Web applica-
tion programming. On top of the browser’s runtime environment, it deals
with the aforementioned requirements out of the box. As for the common
interface for inter-module communication, the events API of the Document
Object Model (DOM)5 can be used to trigger and listen for application wide
events which allow to transmit data objects between modules. The same
mechanism enables interactivity as user initiated events (eg. a mouse click)
can be captured and processed further. Asynchronous outbound commu-
nication is provided by the ”Asynchronous JavaScript and XML (Ajax)”6

technique. The DOM tree, ie. the hierarchical HTML5 structure of the user
interface elements, offers fine-grained access to the presentation layer as
visual elements can be addressed and updated directly. Most importantly
JavaScript is a dynamic scripting language which needs no compilation of
its source code. Hence objects can be extended by additional properties at
runtime which is especially handy in the given case of unstructured data.

However, these are low-level features of the language which are delicate
to use in a productive environment. For instance, the manipulation of the
DOM tree, the handling of events and the invocation of Ajax calls requires

3http://www.w3.org/TR/html5/ (Visited: 2014-11-18)
4http://www.w3.org/Style/CSS/ (Visited: 2014-11-18)
5http://www.w3.org/DOM/ (Visited: 2014-11-18)
6http://www.w3.org/TR/XMLHttpRequest/ (Visited: 2014-11-18)

43

http://www.w3.org/TR/html5/
http://www.w3.org/Style/CSS/
http://www.w3.org/DOM/
http://www.w3.org/TR/XMLHttpRequest/

4. The Bits and Pieces Prototype

a considerable amount of code for relatively simple tasks. Due to slight
differences in the various browser implementations specific knowledge
and additional switches in the algorithms are necessary. Moreover, for
JavaScript objects there is no communication channel like the DOM events
and understandably the language does not ship with a graph database. For
these reasons, a couple of open-source JavaScript frameworks have been
used to ease the prototype development.

Backbone

Backbone7 consists of three classes which are relevant for the prototype. Web
developers can extend Backbone.Model which bundles logic for creation,
access, alteration and deletion of objects. Backbone.Collection is needed
for logic at the level of collections of models, for instance retrieval, addition
and removal of objects. Collection contain Models in an 1:n relationship.
Models can be bound to a Backbone.View, which cares for the presentation
in HTML5. A view also keeps a reference to the DOM element where it puts
model data to. All classes implement the Observer Pattern8, which allows
for event-driven communication between Backbone modules. For instance, a
view can listen to changes to a model and trigger the appropriate functions
to redraw the associated DOM element. A collection also fires events in
the case of any operations invoked on it, eg. when adding a new object.
Additionally Backbone.Model provides a generic API for synchronizing
data with external RESTful server applications. Backbone does not impose
any specific architecture but allows for implementation of a clean software
structure.

JQuery

JQuery9 provides a high-level API on top of JavaScript to simplify the
traversal of the DOM tree, the retrieval of specific DOM elements and thus
their manipulation. It also reduces the amount of code for the binding

7http://backbonejs.org/ (Visited: 2014-11-18)
8http://en.wikipedia.org/wiki/Observer_pattern (Visited: 2014-11-18)
9http://api.jquery.com/ (Visited: 2014-11-18)

44

http://backbonejs.org/
http://en.wikipedia.org/wiki/Observer_pattern
http://api.jquery.com/

4.2. Framework

and unbinding of event listeners to the DOM which is needed for inter-
widget communication. Sending AJAX calls and receiving responses is also
covered by the library by providing an exhaustive callback registration
interface. Furthermore JQuery’s modular structure allows for extending its
functionality via plugins, eg. to get common user interface concepts like
dialog boxes and drag and drop interactivity working with little effort.

VIE

VIE10 is the so-called semantic interaction framework which brings together
Backbone and the Semantic Web (Grünwald and Bergius, 2012) and enables
developers to build interactive Web applications on top of semantic data. As
the re-implementation of a graph database in JavaScript would neither be
feasible nor high-performing VIE offers a subject-centric view of the seman-
tic data based on JSON-LD (see 4.2.2). On top of Backbone it mimics a graph
database by implementing VIE.Entity , which is a type of Backbone.Model,
and VIE.Collection which is a type of Backbone.Collectionfor storing all
entities in a central place. Every property of an entity is a URI and any entity
can be retrieved from the collection by its identifying URI. Additionally, VIE
provides utility functions for handling namespaces and the type hierarchy
of its entities. For instance, an entity can be retrieved either by a URI or a
(Safe) Compact URI (CURIE11). Moreover, given a type hierarchy VIE can
localize an entity’s type URI within that hierarchy. The type system can
be parsed and imported from JSON files which use the same format12 as
Schema.org13. The library also supports interaction with RDFa-annotated
HTML content. Synchronization with various external data Web services is
enabled through service adapters. Adapters for Open Calais14 or Apache
Stanbol15 (Westenthaler and Grisel, 2012) are already shipped with the
official distribution of VIE.

10http://viejs.org/ (Visited: 2014-11-18)
11http://www.w3.org/TR/2009/CR-curie-20090116/ (Visited: 2014-11-18)
12http://schema.rdfs.org/all.json (Visited: 2014-11-18)
13http://schema.org/ (Visited: 2014-11-18)
14http://opencalais.com/ (Visited: 2014-11-18)
15https://stanbol.apache.org/ (Visited: 2014-11-18)

45

http://viejs.org/
http://www.w3.org/TR/2009/CR-curie-20090116/
http://schema.rdfs.org/all.json
http://schema.org/
http://opencalais.com/
https://stanbol.apache.org/

4. The Bits and Pieces Prototype

Figure 4.3.: JavaScript frameworks in use and how they interplay: VIE represents a graph
data structure via inter-referenced objects of VIE.Entity, which is an extension
of Backbone.Model. All objects are kept in VIE.Collection and can be connected
to a Backbone.View which leverages JQuery in order to render the browser
content.

Additional Utility Libraries

Apart from the aforementioned JavaScript libraries which are inherent parts
of the prototype, some additional libraries are used for utility purposes.
RequireJS16 simplifies dependency management of the software modules
and libraries and allows for Lazy Loading17, a design pattern for load-
ing JavaScript files just in time when they are needed by the application.
Js-Logger18 is used for logging and debugging needs. Finally, Twitter Boot-
strap19 complements JQuery in UI design issues.

16http://requirejs.org (Visited: 2014-11-20)
17https://en.wikipedia.org/wiki/Lazy_loading (Visited: 2014-11-20)
18https://github.com/jonnyreeves/js-logger (Visited: 2014-11-20)
19http://getbootstrap.com/ (Visited: 2014-11-20)

46

http://requirejs.org
https://en.wikipedia.org/wiki/Lazy_loading
https://github.com/jonnyreeves/js-logger
http://getbootstrap.com/

4.2. Framework

4.2.2. Means of Semantic Interaction

The prototype leverages two essential standards from the sphere of Linked
Data for the representation of semantic data based on Web technologies:
JSON-LD and RDFa. Recently, both specifications have been released as
official recommendations by the W3 Consortium (W3C).

JSON-LD

The VIE framework allows for flawless integration with external semantic
Web services through JSON-LD20, a W3C standard21 for the serialization of
Linked Data (Lanthaler, 2013). Building upon the JavaScript Object Notation
(JSON) it introduces additional concepts in order to map JSON objects
keys to URIs. For instance, the @context contains namespace mappings
and general type definitions. Additional keywords like @id, @type or @list
implement node identifiers, data type relations and ordered lists.

RDFa22, also a W3C standard23, allows for annotation of XML with RDF. It
enables Web developers to markup contents of the document with semantics
primarily to make the contents more machine-readable. For instance, contact
information on a Web page could be directly imported to the contact list
of the visitor. RDFa defines a set of attributes which denote the relation
between the documents elements and semantic entities. For instance, the
property attribute describes the URI (absolute or relative to the namespace)
of the predicate between a subject and the contained data.

Listings 4.4 and 4.5 give examples of both represenations and the triples
expressed in Turle24 notation.

20http://json-ld.org/ (Visited: 2014-11-20)
21http://www.w3.org/TR/json-ld/ (Visited: 2014-11-20)
22http://rdfa.info (Visited: 2014-11-20)
23http://www.w3.org/TR/rdfa-core/ (Visited: 2014-11-20)
24http://www.w3.org/TR/2012/WD-turtle-20120710/ (Visited: 2014-11-20)

47

http://json-ld.org/
http://www.w3.org/TR/json-ld/
http://rdfa.info
http://www.w3.org/TR/rdfa-core/
http://www.w3.org/TR/2012/WD-turtle-20120710/

4. The Bits and Pieces Prototype

{

"@context": {

"name": "http://xmlns.com/foaf/name",

"homepage": {

"@id": "http://xmlns.com/foaf/homepage",

"@type": "@id"

}

},

"homepage": "http://manu.sporny.org/",

"name": "Manu Sporny"

}

// N-Triples:

_:b0 <http://xmlns.com/foaf/homepage> <http://manu.sporny.org/> .

_:b0 <http://xmlns.com/foaf/name> "Manu Sporny" .

Listing 4.4.: Example of JSON-LD and respective triples: The @context object describes
the mapping of homepage and name to URIs.

<p vocab="http://xmlns.com/foaf/">

My name is

Manu Sporny

and my homepage is

my homepage

.

</p>

// N-Triples:

_:b0 <http://xmlns.com/foaf/homepage> <http://manu.sporny.org/> .

_:b0 <http://xmlns.com/foaf/name> "Manu Sporny" .

Listing 4.5.: Example of RDFa and respective triples: @property/value pairs can be ex-
pressed in RDFa within HTML5, here framed by the namespace declaration
vocab.

48

4.2. Framework

4.2.3. Alternative Runtimes

There exist alternative environments for building semantically enabled
applications, most of them running in the Java Runtime Environment (JRE).
The following provides an overview of pros and cons of such approaches:

Play

The Play Framework25 is a Java and Scala framework for building reactive
Web applications. Together with the Imperium plugin26 it can be extended to
process RDF data. The framework adheres to the MVC architectural pattern
allowing for templating HTML markup in views, processing user input in
controllers and representing the application logic in models. It merely runs
on the server-side while enabling the addition of client-side JavaScript code
as assets. Play is scalable in terms of workload and component development.
It comes with a RESTful interface and WebSockets by default and allows for
big data support.

Play is a good candidate for building Web applications which do not need
much processing power on the client side. Its velocity stems from an asyn-
chronous communication model and from the fact that it runs as a compiled
Java/Scala application on servers. Client merely serve as thin-clients in the
classical sense. However, for the implementation of interactive and rich
internet applications one needs to fallback to JavaScript snippets shipped as
assets. Since most of the B&P design idea is client-side oriented one would
need to re-implement a whole architecture for this relying merely on such
assets while the powerful server-side features of the Play framework remain
unused.

25https://www.playframework.com/ (Visited: 2014-11-23)
26https://github.com/mhgrove/Imperium (Visited: 2014-11-23)

49

https://www.playframework.com/
https://github.com/mhgrove/Imperium

4. The Bits and Pieces Prototype

ROLE

ROLE (Responsive Open Learning Environments)27 implements the concept
of Mash-Up Personal Learning Environments on top of a semantic model,
ie. the ROLE ontology. The semantic model relies on the concept of spaces.
Users can create spaces, where they can manage learning content and col-
laborate with other users. A space can host a bundle of Web widgets, has
a list of participants in the space and enables them to communicate and
collaborate. Moreover, for supporting complex applications, the widgets can
exchange information across browsers by using the inter-widget commu-
nication mechanisms developed within ROLE. Messages are composed of
URI/value pairs and hence allow for handling semantic data. The widget
framework is oriented to work on the client-side with the server function-
ing as a central point of the widget store, the identity provider and the
cross-browser XMPP communication.

In this respect, ROLE is a full-featured widget framework written in Java
and JavaScript facilitating individual development of widgets, inter-widget
communication and user collaboration. Integration and flawless invocation
of widgets from the widget store is one of its main targets. However, its
design is fixed to the notion of Personal Learning Environments, ie. widgets
serve as small information processing and user interaction units but cannot
be used for more ambitious application needs like the highly interactive
and multimedial canvases envisioned by the B&P design idea. Additionally,
there is no common data base for the widgets as every widget is an island
of its own data. The only means of matching data is through the exhaustive
communication mechanism which would be cumbersome to apply, for
instance, to the Learning Loop Complex in sensemaking.

Callimachus

Callimachus, a wiki-based data management framework, is specifically
made for Semantic Web applications. It comes with inherent RESTful APIs,
user account management, various authentication mechanisms and most

27http://www.role-project.eu/ (Visited: 2014-11-23)

50

http://www.role-project.eu/

4.2. Framework

notably with a full-featured user interface which makes building a se-
mantically enabled hyperlinked Web applications a matter of a few clicks.
Users with minimal knowledge on Semantic Technologies can stick together
an ontology with the integrated editor and create “Create”-, “Edit”- and
“View”-templates for RDF classes. Templates are marked up with RDFa
with support for variables (ie. parts of the template which need to adapt to
changes in the RDF data model), expressions and loops. “View”-templates
can be invoked and displayed on the result set of a SPARQL query. Addi-
tionally Callimachus supports a set of charts for visualizing the semantic
data of an application as well as XProc28 as a W3C standardized technology
for realizing Extract-Transform-Load-pipelines29.

Callimachus implements a full stack of Semantic Web technologies, includ-
ing a graph database, RDF/XML RESTful APIs, a SPARQL endpoint, an
ontology editor and RDFa templates. These enable users to easily build
Semantic Web applications in a “wiki”, ie. fast, way. However, Callimachus
itself is more an application than a framework. In order to add new kinds
of visualization or to implement highly interactive applications, one would
need to go beyond the scope of Callimachus. For instance, charts are merely
oriented at presenting semantic data in a visually appealing form. There is
no API for programming further means of user interaction on top of visual-
izations. The provided JavaScript API only allows for invoking functionality
which is reachable via Callimachus’ user menu anyway. Even if it were man-
ageable to implement individual visualizations one would still hassle with
setting up a way of communication between them. For instance, interactive
features as required by B&P functionally, like dragging and dropping of bits
between widgets, could not be implemented easily with Callimachus.

4.2.4. User Interface Design and Workflow Overview

The user interaction workflow is driven by two phases. In the first phase
the user collects data, ie. informal learning experiences, which might be
textual notes, pictures, Web links and other types of multimedial content,

28http://xproc.org (Visited: 2014-11-23)
29http://en.m.wikipedia.org/wiki/Extract,_transform,_load (Visited: 2014-11-

23)

51

http://xproc.org
http://en.m.wikipedia.org/wiki/Extract,_transform,_load

4. The Bits and Pieces Prototype

Figure 4.6.: B&P user interface design and workflow overview: The B&P user interface
carries on the initial design idea of two canvases which contain widgets (eg. a
timeline and a Venn diagram widgets). Widget implementations are part of the
presentation layer and react to user interaction events. The Service Layer stores
and retrieves application data to and from remote Web services. This external
data sources might by supplied by the user’s mobile collection services.

with the help of mobile applications in the field. These collection services
can be connected to other remote Web services which provide semantic
access to the data for the second phase. Here the user operates the B&P
user interface to make sense of the collection of learning bits. The data
undergo a transformation pipeline through the layered architecture of the
B&P framework: the Service, the Data and finally the Presentation layer.

Widgets of the Presentation Layer implement individual visualization and
interaction functionality. Bits are displayed uniformly across widgets in
order to ease recognition and to ensure consistent appearance when drag-
ging and dropping bits from the upper to the lower widget. A sidebar to
the right of the screen pops up on clicking on a bit. The sidebar contains
detail information and allows for changing various properties of the bit (eg.
the title). Double-clicking a bit opens another Web browser tab in order to
dereference its URI if possible.

52

4.2. Framework

Figure 4.7.: The B&P framework architecture: The service layer wraps remote data services
(eg. the Social Semantic Server) to the data layer, ie. its data modules, which
curate the entity collection. Views are bound to entities and propagate changes
in the data to the user frontend. Users may generate content via external
systems, eg. EVERNOTE, which can be fed back into the remote data service.

4.2.5. Framework Architecture

The B&P framework separates the concerns for remote services, data and
presentation in a three-layered architecture. The service layer wraps remote
Web services and prepares external data sets. The data layer curates the
collection of entities of the application. It keeps references between enti-
ties consistent to adaptable data integrity constraints and bundles data
loading and creation logic. The presentation layer consists of one or more
views which build up the user interface from the entities given, leveraging
Backbone’s declarative event handling mechanism.

Service Layer

In general, the service layer implements VIE’s service adapter interface
VIE.Able which provides extensions for loading, saving and analyzing

53

4. The Bits and Pieces Prototype

this.VIE.load({’service’ : ’entityDescsGet’})

.from(’sss’)

.execute()

.success(function(entities) {

LOG.debug("successfully loaded entities", entities);

})

.fail(function(errorMsg) {

LOG.debug("an error occurred", errorMsg);

});

Listing 4.8.: Example service call using JQuery Deferred Object: load initiates the Deferred
Object, ie. the Loadable which extends VIE.Able, parameterized for the specific
service call entityDescsGet. from configures the object to use the registered
service ’sss’. execute invokes this service, which transmits the actual server
request. success and fail execute their callback in the case of the respective
response type.

content. All extensions implement JQuery’s Deferred Object30, a design
pattern resembling the Builder Pattern31 for configuring the service call
with parameters and callback functions. Callbacks are executed as soon as a
service call, which is made asynchronously via AJAX, gets a response from
the remote server. Services need to be registered with the runtime instance
of VIE. Listing 4.8 gives an example.

Data Layer

The VIE framework provides the data layer with utility functionality for
dealing with semantic data. As all entities are of the type VIE.Entity and
kept in a single VIE.Collection (see fig. 4.7) they are subject to VIE’s
semantic interaction framework. The data layer is organized in modules
each handling an aspect of the application data. Modules may trigger data
operation on each other to the extend of their inter-dependency. For instance,
application specific data modules for a hierarchical data model can listen
to certain entities being added to the entity collection (see lst. 4.10) and

30http://api.jquery.com/category/deferred-object/ (Visited: 2014-11-25)
31https://en.wikipedia.org/wiki/Builder_pattern (Visited: 2014-11-25)

54

http://api.jquery.com/category/deferred-object/
https://en.wikipedia.org/wiki/Builder_pattern

4.2. Framework

Figure 4.9.: The data model of the framework as it implemented by the respective data
modules UserData, EpisodeData, VersionData and EntityData. For the data
type Widget there is no data module on the level of the framework because
widgets are application specific. Nevertheless, widget implementations have to
adhere to this data model.

trigger the loading of its child entities (see 4.11). Data modules need to be
initialized in the data layer’s core component AppData which can also be
used to initialize additional application specific data, eg. the initial widgets
to get the user start working with. Apart from this component and the data
modules the data layer consists of the Data Integrity Module (Data) which
subsumes common integrity functionality and CopyMachine for cloning
of entities. The framework also comes with a couple of predefined data
modules which are a requirement of B&P: UserData manages user data and
related episodes. EpisodeData and VersionData deal with the respective
data types and control for cloning of sensemaking states, ie. the arrangement
of entities and widget configuration. EntityData is a special data module for
common data logic of entities such as for tagging or authorship. However,
appropriate application-specific service calls have to be integrated to have
these modules synchronizing with external Web services.

Data modules may inherit from the Data Integrity Module in order to
impose integrity constraints on their data structure. For instance, having an
entity with a relationship to another type of entity may be reflected by the
integrity constraint <relation1, type, relation2>. Whenever an entity is
created or updated the data integrity module should check that the entity
has a property named relation1 with the reference to another entity of
type typeand vice-versa with relation2. If the constraint is violated it will
be fixed. If the entity is deleted, respective relationships of other entities to
the deleted one need to be removed also.

For these two purposes, setting up an integrity constraint and checking

55

4. The Bits and Pieces Prototype

var UserModule = Object.create(Data);

UserModule.init = function(VIE) {

this.VIE = VIE;

this.VIE.entities.on(’add’, this.filter, this);

this.setIntegrityCheck(

Voc.hasEpisode, Voc.Episode, Voc.belongsToUser);

this.setIntegrityCheck(

Voc.currentVersion, Voc.Version);

};

Listing 4.10.: Example definition of a data module and initiation of a user entity: First,
JavaScript’s Object.create() initiates UserModule with Data, the Data In-
tegrity Component, as its prototype. init gets VIE’s runtime instance and
sets up an event listener, which filters entities for user entities, and integrity
constraints to episode and version entities.

it upon an entity, data modules inherit two methods from Data Integrity
Module:

• setIntegrityCheck(relation1, type, relation2) (see lst. 4.10)
• checkIntegrity(entity) (see lst. 4.11)

The framework extends VIE.Entity so that it overwrites Backbone.Model’s
sync method, which is used by Backbone to create/read/update/delete
(CRUD) an entity to external data services. It can be used to implement
generic synchronization functionality which applies to all types of entities.
However, data modules might overwrite sync once more with data type
specific synchronization functionality (see lst. 4.12).

The data layer synchronizes application data with the presentation layer
which needs to serve immediate response to the user despite time-consuming
asynchronous operations of the service layer. For instance, in the case of
loading entities the data layer may provide the presentation layer with
preliminary mockup data until the requested entities are passed in through
the service layer. In the case of the creation of an entity the data layer may
create a representation of it which exists merely on the client-side by giving

56

4.2. Framework

UserModule.filter = function(entity) {

if(entity.isof(Voc.User)) {

this.checkIntegrity(entity);

this.fetchEpisodes(entity);

this.fetchCurrentVersion(entity);

entity.sync = this.sync;

}};

Listing 4.11.: Data type specific initiation: filter is invoked on add-events on the entity
collection. If the new entity is of type Voc.User the integrity constraints are
checked and additional data (the user’s episodes and the current version the
user is working on) are loaded. Finally the entity’s sync method is overwritten
by the module’s one (see lst. 4.12).

UserModule.sync = function(method, entity, options) {

if(method !== ’update’) {

this.VIE.Entity.prototype.sync(method, entity, options);

return;

}

if(UserModule.hasCurrentVersionChanged(entity)) {

UserModule.saveCurrentVersion(entity, options);

}

// handle rest of changed attributes by generic sync

this.VIE.Entity.prototype.sync(method, entity, options);

},

Listing 4.12.: Data type specific sync method: If the user entity’s currentVersion attribute
changes, this sync method invokes specific functionality to save this attribute.
For changes to other attributes again the generic sync method is used.

57

4. The Bits and Pieces Prototype

Figure 4.13.: Data flows between layers for creating and changing an entity. Both flows are
initiated by the user, processed by the presentation layer and handed over to
the data layer. In the first flow the new entity is created as a blank node while
the service layer saves the entity to an external Web service asynchronously.
In the second flow changes made to the entity cannot be passed to the service
layer immediately because the URI is not yet available due to delayed response
from the prior Web service call. As soon as the URI is ready, the changes can
be saved.

it a blank node32 URI of the form :bN with N being a serial number. The
user may continue working with the temporary entity representation. As
soon as the service layer hands back the response of the server-side creation
of the entity containing its real URI the data layer can transmit any further
changes made meanwhile on the client-side representation. See fig. 4.13 for
a timing diagram of this data flow.

Presentation Layer

A view in the presentation layer has to keep track of changes of entities
which it is projecting to the visual HTML5 frontend of the user interface.
Alternatively a view may also listen to new entities added to the entity
collection and create new instances of subordinate views. Individual wid-
gets can implement meaningful visualization techniques and interaction
affordances on top of the semantics of a bit. The interface of the DOM
tree provides fine-granular access to respective DOM elements for either

32http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/#blank-nodes (Visited:
2014-11-25)

58

http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/#blank-nodes

4.2. Framework

manipulating its contents or listening for user events triggered upon it.
According to Backbone a view also handles user input and hence takes the
role of a controller to some extend. For instance, it is feasible to have a main
view which controls the instantiation of other views.

The presentation layer consists of the AppView which manages the space for
the two canvases as well as application-wide events. Essentially it triggers
re-rendering of widgets if the user switches versions since each version
might have different widgets activated. Each version will get its represen-
tation in the DOM tree but only the current version element with its child
widget elements is shown by toggling the CSS visibility property. Addi-
tionally, there are two other types of views which application specific view
implementations need to reuse: WidgetView and EntityView. WidgetView
functions as a facade33 between the AppView and application specific wid-
gets. It distinguishes between “browsing” and “organizing” widgets and
applies respective functionality. For instance, organizing widgets need to
handle dropped entities appropriately by the help of the JQuery UI plugin
Droppable34. For each widget available WidgetView has to provide a method
to create it.

On the other hand, EntityView provides common UI functionality of entities
and can be overwritten by type specific views. It provides an appropriate
image of an entity given a list of type-to-icon mappings and handles mouse
events triggered upon its containing DOM element. Browser-generated
click events are wrapped into the framework-specific “bnp:clickEntity”
event which contains a direct reference to entity object. Furthermore, using
the JQuery UI plugin Draggable35 EntityView makes the DOM element
draggable. In order to identify the entity object which belongs to the dragged
DOM element, the view also adds RDFa to its HTML markup (see fig. 4.14

and also 4.31).

Finally, EpisodeManagerView together with EpisodeView manages episodes
and versions. In the header above the upper canvas the label of the current
episode is displayed. A dropdown box enables the user to switch between
episodes and versions. According to the MVC pattern, views are updated

33https://en.wikipedia.org/wiki/Facade_pattern (Visited: 2014-11-25)
34http://jqueryui.com/droppable/ (Visited: 2014-11-25)
35http://jqueryui.com/draggable/ (Visited: 2014-11-25)

59

https://en.wikipedia.org/wiki/Facade_pattern
http://jqueryui.com/droppable/
http://jqueryui.com/draggable/

4. The Bits and Pieces Prototype

this.$el.draggable({

zIndex: 10000,

helper: "clone",

appendTo: "body",

});

Listing 4.14.: JQuery draggable: this.$el refers to the (JQuery wrapped) DOM element
of the EntityView. helper: \clone" instructs draggable to create a copy of
the DOM element which is moved along the mouse moving. By appendTo:

\body" the helper element becomes draggable over the whole page.

on changes in the model. Therefore switching first changes the property
Voc.currentVersion of the user entity which then triggers re-rendering of
the canvases by AppView (see fig. 4.15).

Operative Components

Apart from the layers there exist a few operative components which stick
the system parts together.

• index.html is the first file to load which contains initial instructions
for the initialization of B&P. Apart from CSS files it loads the external
library RequireJS together with its configuration component main.js.
The body of index.html only invokes RequireJS to start the application
from app.js.

• Main configures dependencies between the components leveraging
RequireJS. Based on this configuration RequireJS loads JavaScript files
in the right sequence avoiding dependency leaks.

• App is the applications entry point. It initializes loggers, checks for user
authentication, creates the runtime instance of VIE, loads the type sys-
tem from a Schema.org-file and invokes extender. Most importantly
App initializes the layers by creating and registering services, passing
the VIE instance to AppData.init() and finally rendering AppView.
Since data modules are event-driven, App also kicks off initial data
retrieval by creating/loading the entity which represents the user (see
lst. 4.16).

60

4.2. Framework

Figure 4.15.: Sequence diagram for switching episodes: The first sequence before the dashed
line shows the registration of a change:Voc.currentVersion-listener with the
callback showVersion. The other sequence demonstrates the interaction of
components (dark color) and entities (light color) when the user switches to
another episode by clicking on the its view.

• UserParams is initialized with the login data of the user and made
available throughout the whole system in order to give other compo-
nents a means of identification.

• Extender extends the instance of VIE which additional functional-
ity needed throughout B&P. Essentially it overwrites VIE.Entity’s
sync method to use certain generic Web services for creating/read-
ing/updating/deleting entities and adds a special listener function
onUrisReady which provides the retention of service calls for tempo-
rary entities with blank URIs. The function waits for these entities
to get real URIs and then executes a callback which might make the
service call.

Supportive Components

Finally there exist a couple of components which have mere supportive
function for the system.

61

4. The Bits and Pieces Prototype

var user = new VIE.Entity;

user.set(’@id’, UserParams.userId);

user.set(’@type’, Voc.User);

VIE.entities.addOrUpdate(user);

user.fetch();

Listing 4.16.: Kicking off application data loading: The data of the logged-in user, provided
by UserParams, is used to initialize the first VIE.Entity, which is of type
Voc.User. By adding it to the entities collection loading mechanisms of other
data modules will be triggered. Finally, the user’s additional properties are
fetched asynchronously.

• LoginFormView renders the login form when the user has not been
authenticated yet and invokes UserAuth which contains authenticating
Web service calls (outside of the service layer). User data then is
written to UserParams. For debugging purposes these components can
be bypassed completely. However, in that case UserParams needs to
be filled with appropriate user data manually.

• Voc contains variable mappings for URIs. Although URIs should no
change, it happens during development. Since URIs are used through-
out the whole system, Voc provides a central place for defining them.

• Tracker is an extension of Logger and is used to log user actions to
an external Web service.

4.3. Application

B&P comes with a couple of suggestions for widgets. Two of them, the
timeline and the Venn diagram, have been implemented with the framework
described in the previous section. The timeline is rendered in the upper
canvas and displays entities chronologically according to their creation
timestamp. The Venn diagram is a widget for the lower canvas and allows
for drawing circles and arranging entities spatially. Fig. 4.17 shows the
mockup drawings of the two widgets together with its realization as the
B&P user interface. Fig. 4.18 shows an example workflow using it.

62

4.3. Application

Since the application is under heavy development by the time writing this
thesis the interface has progressed and now contains additional functionality
like for searching, sharing and collaboration which is all wrapped up in the
sidebar component of the user interface. However, due to that functionality
going beyond the scope of this thesis, it is not covered here in detail,
although it is worth mentioning that the Bits and Pieces framework is still
in use and allows for application specific extensions with richer features
than those of the first prototype version presented here. Implementation of
widget switching has also been postponed because it would not yield much
relevance for the essential functionality of the framework although it would
be an important feature for sensemaking as such.

Two views have been added to the presentation layer, TimelineView and
OrganizeView, together with sub-views wrapping visualized entities. As
for the data layer, respective data modules have been implemented, ie.
TimelineData and OrganizeData, also with associated data modules for
contained entities. Finally, a service adapter for the Web services of the
Social Semantic Server has also found its way into the application.

4.3.1. Social Semantic Service

In the service layer, the prototype application wraps remote RESTful Web
services of the Social Semantic Server36 (SSS, Kowald et al., 2013), which
hosts the so-called Artifact-Actor-Network (AAN, Reinhardt, Moi, and
Varlemann, 2009). In AANs, users and digital artifacts can be interlinked
and used together with common features of social networks. Low Level
Services support sharing and subscribing processes of artifacts, provide
functionalities to annotate entities with metadata, to authenticate users and
to deal with digital artifacts such as texts or multimedia documents (e.g.
pictures and videos) involved in the AAN. High Level Services use given
semantic structures formed by Low Level Services. They exploit explicit and
implicit (social) relations to provide functions that support a personalized
reflection of AANs, to discuss about digital artifacts, to handle collaborative
work on digital artifacts and to allow for (re-) structuring of hierarchical and

36https://github.com/learning-layers/SocialSemanticServer (Visited: 2014-11-
25)

63

https://github.com/learning-layers/SocialSemanticServer

4. The Bits and Pieces Prototype

Figure 4.17.: The mockup of the timeline and the Venn diagram widget and how it is
realized.

64

4.3. Application

(a) Beginning of sensemaking: Timeline
shows two clusters of bits and one PDF
bit on a month-wide scale.

(b) Sidebar pops up on click on the PDF
bit showing detail information.

(c) Drag and drop of the PDF bit to the
lower canvas.

(d) On click on cluster show bits con-
tained. On click on the “<>” button . . .

(e) . . . zoom the timeline automatically to
show exactly the clustered bits. Drag and
drop two more bits.

(f) Draw circles, name them and place
bits inside.

Figure 4.18.: Demo workflow of the B&P prototype: The upper canvas contains the timeline,
the lower canvas the organize widget. The header contains the label of the
episode and a dropdown menu.

65

4. The Bits and Pieces Prototype

Figure 4.19.: Social Semantic Server and Artifact Actor Networks

ordered collections of digital artifacts (fig. 4.19). The SSS can also mediate
data from 3rd-party collection services, eg. Evernote. As for the application
SSS backs up all data storage and retrieval needs of B&P since it is also part
of the Learning Layers Project and developed in parallel with B&P.

The SSS is written in Java and is accessible via REST or WebSockets. To
increase interoperability, services receiving application input or delivering
results to the requesting application use JSON to encode and transmit data.
For the framework, REST and WebSocket JavaScript libraries are available
to be included in applications directly to minimize efforts of tying the
framework to custom applications.

The service adapter for B&P consists of SocialSemanticServer and Social-

SemanticServiceModel. The first implements the VIE.Able interface and
bundles logic for handling server request. The latter describes a subset of
SSS services in terms of parameter and result types as well as pre- and
postprocessing functions in a concise form. SocialSemanticService looks
up service descriptions, invokes preprocessing functions on the parameters,
transmits the service call to the SSS endpoint and postprocesses the result.

66

4.3. Application

A common preprocessing function is scrubParams which makes sure that
parameters are of the type (eg. array, scalar number) expected by the service.
A common postprocessing function is fixForVIE since by the time devel-
oping B&P SSS is not serving JSON-LD yet and according transformation
of the result data is necessary. The application utilizes the following SSS
services (excerpt from SSConns.js of SSSClientSide37):

• entityGet returns generic properties like label, author or creation
timestamp of a single entity by its URI.

• entityDescGet returns more detailed information for given entity URI
such as tags, user events or a thumbnail.

• entityDescsGet returns more detailed information for a set of given
entity URIs.

• entityUpdate updates or adds given properties for an entity URI.
• uEsGet returns user events for a given user URI, an entity URI and a

time range, ie. user events which were caused by a certain user, on a
certain entity within a certain time range.

• learnEpCreate creates an episode by its label and returns the URI.
• learnEpsGet returns all episodes for a given user URI.
• learnEpVersionsGet returns all versions with their entities and circles

for a given episode URI.
• learnEpVersionGet returns a single version with its entities and circles

given its URI.
• learnEpVersionCurrentGet returns the version URI which the user is

currently working on.
• learnEpVersionCurrentSet saves the version URI which the user is

currently working on.
• learnEpVersionGetTimelineState returns the state of the timeline of

a given version URI, ie. the setting of start and end timestamps of the
timeline.

• learnEpVersionSetTimelineState saves the start and end timestamps
of the timeline.

• learnEpVersionCreate creates a new version for a given episode URI
and returns the version’s URI.

37https://github.com/learning-layers/SocialSemanticServerClientSide (Vis-
ited: 2014-11-25)

67

https://github.com/learning-layers/SocialSemanticServerClientSide

4. The Bits and Pieces Prototype

• learnEpVersionAddCircle add a new circle (coordinates, size and
label) for a given episode URI.

• learnEpVersionUpdateCircle updates given attributes for a circle
URI.

• learnEpVersionRemoveCircle removes a circle by its URI.
• learnEpVersionAddEntity add a new orga-entity (an entity of type
OrgaEntity with coordinates and a resource entity URI) for a given
episode URI.

• learnEpVersionUpdateEntity updates given attributes for an orga-
entity URI.

• learnEpVersionRemoveEntity removes an orga-entity by its URI.

4.3.2. Type Hierarchy

Prior to the initialization of the application its type hierarchy is loaded into
VIE using its loadSchemaOrg utility method. Schema.org38 is an initiative of
several major search engines to standardize semantic markup for Web pages
which can be parsed by their crawlers. There exist schemata for domains of
events, organizations, persons, actions and many more. The whole ontology
can be loaded as RDF/Turtle, RDF/XML, RDF/NTriples, CSV or JSON39.
As VIE comes with a parser for the latter the application-specific type
hierarchy has been created in the same format. Fig. 4.20 provides an example
definition.

There exist types for OrganizingWidget, a widget with “organizing fea-
tures”, Organize, the Venn diagram widget, a generic entity type which is
the parent type of, for instance, evernoteResource or evernoteNote and a
userEvent type with a large body of subtypes.

4.3.3. Timeline Data Module

TimelineData manages data affairs concerning the timeline widget, ie. of
entities of the type Voc.Timeline which contain the current visible range

38http://schema.org/docs/schemas.html (Visited: 2014-11-26)
39http://schema.rdfs.org/all.json (Visited: 2014-11-26)

68

http://schema.org/docs/schemas.html
http://schema.rdfs.org/all.json

4.3. Application

Figure 4.20.: Timeline widget type hierarchy in Schema.org JSON format. http://eval.bp
is the namespace of the application.

of the timeline in terms of start and end timestamps as well as a reference
to the user entity the timeline belongs to. Finally, a timeline entity has a
reference to a version since widgets belong to a version in general. Hence,
TimelineData, by extending the Data Integrity Module Data, imposes the
following two constraints:

setIntegrityCheck(Voc.belongsToVersion,Voc.Version,Voc.hasWidget)

setIntegrityCheck(Voc.belongsToUser,Voc.User)

TimelineData does not manage the entities displayed in the timeline itself.
Instead this is delegated to UserData since the user events belong to user
entities. In general, the data module uses its version entity to invoke the two
SSS services learnEpVersionGetTimelineState and learnEpVersionSet-

TimelineState. Finally, the data module provides an interface for copying
its data structure in order to enable CopyMachine to clone a timeline entity.
In sum TimelineData consists of the following methods:

• init sets up the aforementioned integrity constraints and binds filter

69

4. The Bits and Pieces Prototype

to add-events on the entities collection.
• filter(entity) filters entities of type Voc.Timeline and applies the

integrity checks on them. Furthermore, it fetches the timeline state
calling fetchTimelineState and sets up an event handler function for
changes of the time range which calls UserData.fetchRange.

• sync(method, entity) overwrites the generic sync method of VIE.Entity
to call saveTimelineState if method is “update” and fetchTimeline-

State if method is “read”.
• saveTimelineState(entity) invokes the SSS service learnEpVersion-
SetTimelineState passing the start and end timestamps of the entity.

• fetchTimelineState(entity) invokes the SSS service learnEpVersion-
GetTimelineState and puts the result (start and end timestamps) on
the entity.

• copy(entity, overrideAttributes) creates a copy of the entity, op-
tionally overriding its attributes with overrideAttributes.

UserData has been extended to provide user events and associated enti-
ties. fetchRange calls the SSS service uEsGet for retrieval of user event
entities between given start and end timestamps. These entities have a
Voc.hasResource reference to a resource entity. For a bulk retrieval of their
properties, fetchRange passes their URIs on to the SSS service entityDescsGet.

Fig. 4.21 provides an overview of the whole data model of the application.

4.3.4. Organize Data Module

OrganizeData bundles data logic for entities of type Voc.Organize. As
TimelineData the data module sets up the integrity constraint that Voc.Orga-
nize entities must have the relationship Voc.belongsToVersion to an entity
of type Voc.Version and a relationship Voc.hasWidget vice-versa. Organize-
Data also implements a copy method for cloning of an organize entity’s data
structure. Finally, the data module handles the creation of orga-entities and
circles and adds them to the entities collection (see lst. 4.22). An orga-entity
is a wrapper around the actual resource entity which gets visualized on the
canvas. In addition to the referenced resource entity, an orga-entity carries
the coordinates for positioning within the canvas space.

70

4.3. Application

Figure 4.21.: The data model of the application: Data modules (dark blue) frame entities
(light blue) which they handle.

Actual create/update/delete operations on orga-entities and circles are
delegated to the data modules OrgaEntityData and CircleData. Both listen
for entities of the respective type being added to the entities collection and
overwrite their sync method with appropriate SSS service invocations (see
lst. 4.23).

4.3.5. Timeline Widget

The timeline provides a time-based visualization of entities and allows
for interactive configuration of its displayed time range by zooming and
panning. If more than one entity overlap in the timeline they are clustered
in order to clean up the browsing space. The number of entities contained is
rendered as the label of the cluster. Hence, depending on the zoom level of
the timeline it can provide a quick overview of the distribution of the entities
by letting them be clustered accordingly. Clicking on a cluster expands the
box to yield all contained entities in sequential order. Additionally the
browsing widget can be zoomed automatically to show all entities of a
cluster.

Sketched in the mockup but not realized in the implementation is the
possibility to view entities of various users at once. This feature might

71

4. The Bits and Pieces Prototype

OrganizeData.createCircle = function(organize, circle) {

circle.set({

’@type’: Voc.Circle

});

var version = organize.get(Voc.belongsToVersion);

circle.set(Voc.belongsToVersion, version.getSubject());

this.vie.entities.addOrUpdate(circle);

circle.save();

return circle;

};

Listing 4.22.: OrganizeData.createCircle: The method receives an organize entity represent-
ing the widget and a circle entity (with coordinates, size and label already
set by the presentation layer). The type and the relationship to the version of
the organize widget are set accordingly. Finally, the new entity is added to
the entities collection and saved. CircleData processes the entity further (lst.
4.23).

be added in a later stage of the prototype. Instead just the entities of the
currently logged in user are visualized. The timeline is read-only, ie. the
position of entities cannot be changed. The following list sums up the
functional requirements:

• Visualize entities chronologically according to the creation timestamp.
• Widen and narrow the time range (zoom in/out) by scrolling.
• Move the beginning and end of the time range by holding the mouse

button down.
• Cluster overlapping entities.
• Show contained entities on clicking the cluster.
• Allow for adapting the time range to show exactly the contained

entities.

There exist several external JavaScript libraries for timeline visualizations.
In order to assess the right one for the aforementioned requirements, sev-
eral open source candidates have been evaluated to their modularity and
adaptability primarily. Modularity means how reusable parts of the code

72

4.3. Application

CircleData.init = function(vie) {

this.vie = vie;

this.vie.entities.on(’add’, this.filter, this);

this.setIntegrityCheck(

Voc.belongsToVersion, Voc.VERSION, Voc.hasCircle);

};

CircleData.filter = function(model) {

if(model.isof(Voc.CIRCLE)){

this.checkIntegrity(model);

model.sync = this.sync;

}

};

CircleData.sync= function(method, model, options) {

if(method === ’create’) {

m.createCircle(model, options);

} else ...

};

CircleData.createCircle = function(model, options) {

var version = model.get(Voc.belongsToVersion);

var data = this.mapAttributes(model);

this.vie.save({

’service’ : ’learnEpVersionAddCircle’,

’data’ : _.extend(

data, {learnEpVersion : version.getSubject()}),

}).to(’sss’).execute().success(function(savedEntityUri) {

model.set(’@id’, savedEntityUri, options);

if(options.success) {

options.success(savedEntityUri);

}

});

};

Listing 4.23.: Excerpt of CircleData: On initialization the event handler filter for added
entities and an integrity constraint is set up. filter checks the constraint
and overwrites the circle entity’s sync method. sync calls createCircle

when method equals “create”. createCircle finally invokes the SSS service
learnEpVersionAddCircle passing the version URI to the parameter learn-
EpVersion.

73

4. The Bits and Pieces Prototype

Figure 4.24.: Propublica Time-setter

are without big changes. This includes that the library shall integrate well.
Adaptability means how easily the code can be extended/changed to fit
own needs. This includes setting own callbacks for user interaction and
changing the appearance.

Propublica Time-setter

Propublica Time-setter40 provides a bar with ticks for single events, coloured
by group. Events can be hidden/displayed by respective group selection.
There are two separate buttons for zooming in and zooming out in steps
(not smoothly). Double-click on timeline zooms in too. On click on a tick the
associated html is displayed below the timeline. Furthermore, there are two
buttons other buttons for iterating over the events in chronological order
(see fig. 4.24).

As for modularity, the timeline integrates view components which could
be reused. Utility functions which calculate intervals and bounds of the bar
for various scales could be reused also. Appearance fully customizable by
CSS. Data can be ingested in JSON format on initialization and at runtime.

40http://propublica.github.io/timeline-setter/ (Visited: 2013-07-19)

74

http://propublica.github.io/timeline-setter/

4.3. Application

However, no parallel, simultaneous events or time spans are possible. Ad-
ditionally, it is not customizable where and when the detail view appears.
This behaviour is hard-coded. Also hard-coded is the user interaction, ie. it
is not possible to add one own’s interaction hooks. Finally, ticks yield too
little possibilities to visual entities appropriately.

Verite Timeline.js

Verite Timeline.js41 provides timelines which can be moved on mouse down
and zoomed via separate buttons. Events can be visualized with thumbnails
and in parallel for simultaneous ones. The library offers big support for
multimedia content (eg. image and video sources).

Although the appearance can be adapted by CSS overwriting, the whole
library is monolithic and highly depends on Verite’s Core JS. Data can not
be added or changed at runtime. Verite Timeline.js is made for a specific use-
case in mind, especially for visualization of events on news sites, which are
meant to be static and need not much interaction on the level of entities.

SIMILE Timeline Widget

SIMILE Timeline Widget42 consists of several bands of different scale of the
timeline. On each band discrete events and time spans can be visualized.
When one band is moved, the others move synchronously at the various
speed relative to their scale. Detail information can be obtained by hovering
the mouse over an entity, and the data can be filtered and highlighted on
demand.

The appearance of the widget can be adapted via overwriting CSS classes.
The programming structure of the timeline is also highly modular so that
individual components can reused quite easily. Data can be loaded on
initialization and at runtime dynamically. Developers claim the timeline
to work also with a big load of events. However, it was not flawless to get

41http://timeline.knightlab.com/ (Visited: 2013-07-19)
42http://simile-widgets.org/wiki/Timeline (Visited: 2013-07-19)

75

http://timeline.knightlab.com/
http://simile-widgets.org/wiki/Timeline

4. The Bits and Pieces Prototype

Figure 4.25.: SIMILE Timeline Widget

Figure 4.26.: Chronoline

the widget running since it is poorly documented. After all, despite its rich
features - also with respect to modularity - the SIMILE Timeline widget has
not been maintained since 2009 and hence yields the risk of having unfixed
bugs.

Chronoline

Chronoline43 timelines can be moved mouse down or on click on arrow
buttons left and right of the timeline. Events and time spans are rendered
as coloured bars, no thumbnail-based visualization of entities is possible.
The title of the event is displayed on moving the mouse of it.

Chronoline depends on the popular visualization library Raphael44 and

43http://stoicloofah.github.io/chronoline.js/ (Visited: 2013-07-19)
44http://raphaeljs.com/ (Visited: 2014-11-26)

76

http://stoicloofah.github.io/chronoline.js/
http://raphaeljs.com/

4.3. Application

Figure 4.27.: CHAP Links Timeline

probably provides rich possibilities of adaptation of the visual appearance
of the timeline. However, the code is monolithic and hard to reuse. Further-
more, Chronoline seems to be quite a young project with little community
and hence with a higher probability of containing bugs.

CHAP Links Timeline

CHAP Links Library45 is a collection of visualization charts, also containing
a timeline. It provides interactive control for movement by mouse down and
for zooming by scrolling, smoothly scaling from milliseconds up to centuries.
Events can be ingested as JSON data and may contain simultaneous events
as well as time spans. Events can even be separated in multiple lanes. Most
remarkably, the timeline also provides clustering of events as soon as their
bounding boxes overlap.

The appearance is highly customizable not only via CSS but also by injecting
custom DOM elements. The timeline also offers a well-documented and
rich API for controlling it programmatically. Additionally it comes with
an event listening system, which specific callbacks can be registered with

45http://almende.github.io/chap-links-library/ (Visited: 2014-11-26)

77

http://almende.github.io/chap-links-library/

4. The Bits and Pieces Prototype

in order to bind application functionality to user events happening on the
timeline (eg. when changing the time range). Although not needed by B&P,
the timeline also allows for editing of events direcly, either by moving or
deleting them. For CHAP Links Timeline outweighs the other libraries in
terms of adaptability, modularity and feature support, the TimelineView

wraps its functionality instead of implementing a timeline on its own.

TimelineView consists of UserView and ClusterHelper, which consists of
EntityView and ClusterView (see fig. 4.28). The view is bound to the
timeline entity, which holds runtime data of the timeline such as the
start/end timestamp of the current range, and to the user entity, which
holds user events. UserView renders the representation of the user entity
which Voc.belongsTo the timeline entity. ClusterHelper manages the trans-
formation of entities to visible representations on the timeline, either as a
EntityView, if an entity can be rendered as such, or as a ClusterView, if
more than one entities are too close to each other. TimelineView consists of
the following methods:

• initialize initializes an instance of ClusterHelper and binds event
listeners to

– changes of the set of entities in Voc.hasUserEvent of the user
entity to call changeEntitySet.

– changes of the start/end timestamps of the timeline entity in
order to call rearrangeVisibleArea.

• changeEntitySet checks for added and removed entities in Voc.has-

UserEvent. However, not the user events are to be visualized but the
resource entities they reference, ie. the actual learning bit. Added
resources are passed to addEntities and removed ones to remove-

EntityView of the ClusterHelper.
• addEntities calls ClusterHelper.addEntityView for each resource

entity. If the timeline has just been initialized so that the set of new
resource entities is the first ingest to the chart, the algorithm checks
for the chronologically last entity and calls browseTo for this one.

• browseTo browses the timeline to the given entity.
• render actually creates the timeline chart object of CHAP Links Time-

line and connects the timeline-specific event rangechange to the time-
line entity. That way any moves and zooms made to the timeline by

78

4.3. Application

Figure 4.28.: The architecture of TimelineView

the user are passed on to the timeline entity and ClusterHelper.re-

clusterByRangeChange is called to calculate clusters for the new vis-
ible range. render also creates the UserView for the user entity and
displays it next to the timeline. Finally, the user entity’s Voc.hasUser-

Event user event resources are ingested via addEntities.
• rearrangeVisibleArea reads changed values of the start/end times-

tamps of the timeline entity and passes them on to the timeline
chart. However, if the change has come from a user-initiated event on
the timeline chart, it is not propagated again to the chart. Cluster-
Helper.reclusterByRangeChange is called for the new visible range.

• expand is called on clicking the “<>”-button on a cluster. The resulting
zoomCluster event contains the respective ClusterView instance. The
timestamps of the first and the last entity of the cluster are used to set
the timeline chart range accordingly.

4.3.6. Venn Diagram Widget

The Venn diagram widget allows for arranging entities spatially by dragging
and dropping them within the canvas. Circles can be drawn around them
and the label of the circle can be changed. Circles can also be dragged and
dropped along with contained entities and moved within the canvas. Circles
may overlap and entities may be placed inside the intersections. When
moving one of such overlapping circles the other ones need to move too
in order to keep the arrangement of entities within the overlapping circles.
Functional requirements found here:

79

4. The Bits and Pieces Prototype

• Visualize entities spatially.
• Move entities spatially by dragging and dropping.
• Delete entities from the widget.
• Create and delete circles by double clicking into the canvas space.
• Change and move the label of the circle.
• Move circles spatially by dragging and dropping. Contained entities

need to move along with it. Overlapping circles with entities contained
in the intersections need to move also.

The view for the Venn diagram widget is called OrganizeView for the ex-
ternal visualization tool it is wrapping is named Organize.js. This tool
provides the Venn diagram features of spatial arrangement of entities and
circles and has been developed in the course of the Learning Layers Project.
For its implementation, there were at least two possibilities: either using
HTML5 Canvas or using SVG. Considering that with SVG, each SVG el-
ement is available within the DOM and therefore open to native event
handling, and taking into account that such event handling does not exist
in HTML Canvas, SVG was a natural choice.

There are several libraries available for easing the development of web
applications using SVG: SVGKit46, PERGOLA47, Raphael48, various JQuery
SVG plugins and SVG.js49. After analyzing these libraries, SVG.js was the
chosen one, since it is flexible, provides a rich set of library functions, has
a good documentation and meets the needs of the Venn diagram widget.
Along with this library, some plugins were also used:

• svg.draggable.js - for implementing the dragging and dropping func-
tionalities within the SVG canvas.

• svg.foreignobjects.js - for the inline text input on the SVG canvas,
which is necessary for entering the labels for each circle. In this case, a
HTML text area was used as SVG foreign object.

Organize.js also supports user-driven changes. Data is not merely provided
by the application but also by the user who may create, move, resize and

46https://github.com/SVGKit/SVGKit (Visited: 2014-11-26)
47http://www.dotuscomus.com/pergola/ (Visited: 2014-11-26)
48http://raphaeljs.com/ (Visited: 2014-11-26)
49http://www.svgjs.com/ (Visited: 2014-11-26)

80

https://github.com/SVGKit/SVGKit
http://www.dotuscomus.com/pergola/
http://raphaeljs.com/
http://www.svgjs.com/

4.3. Application

Figure 4.29.: The architecture of OrganizeView

delete circles or move and delete entities from the canvas. These changes are
propagated by the component through DOM events which are caught by the
wrapping view and then translated to further operations on the data layer.
For the translation, OrganizeView internally maps IDs of SVG elements
generated by Organize.js to entities, ie. OrgaEntitys and Circles. Addi-
tionally, the visualization of OrgaEntitys is managed by OrgaEntityView,
which contains an EntityView of the referenced resource entity (fig. 4.29).
OrgaEntityView renders this EntityView internally and wraps the result in
an SVG representation which is then passed on to Organize.js.

OrganizeView consists of the following methods:

• initialize binds the event handler function changeStuff for the
change-event to the version entity the organize entity belongs to.

• render calls loadOrganizeCanvas of Organize.js which initializes the
SVG canvas. Additionally, stealthContainer is created and appended
as a sibling node to the canvas. This container is hidden to the user and
contains the EntityViews of OrgaEntityViews. Events coming from
the SVG canvas (eg. ClickEntity can be translated to native click
events on these hidden EntityViews. Other parts of the application
can catch these events which would not be possible with the original
events from the SVG canvas (see fig. 4.30). Finally, entities and circles
are retrieved from the version entity and passed to addEntity and
addCircle respectively.

• changeStuff checks whether there are changes to the sets of Voc.has-
Entity or Voc.hasCircle. For each added orga-entity addEntity or

81

4. The Bits and Pieces Prototype

addCircle is called respectively to its type (OrgaEntity or Circle).
• addEntity (initial lower-case letter) adds an orga-entity to the view,

coordinates already provided, by creating an OrgaEntityView of it,
getting the SVG rendering and passing it to createAndDropSvgEntity

of Organize.js. Additionally, the EntityView wrapped by the Orga-

EntityView is rendered into stealthContainer.
• addCircle (initial lower-case letter) adds a circle entity to the view by

calling drawCircle of Organize.js. Both addEntity and addCircle

set up the mapping between entity and ID of the SVG element.
• AddCircle (initial upper-case letter) is bound to the AddCircle-event

of the SVG canvas which is triggered when the user creates a new
circle. It calls OrganizeData.createCircle with the generated data in
order to create the circle entity which is mapped to the ID of the SVG
element finally.

• ChangeCircle is bound to the ChangeCircle-event of the SVG canvas
which is triggered when the user makes changes to a circle by either
moving, resizing or relabelling it. The changed data is saved to the
respective circle entity.

• RemoveCircle is bound to the RemoveCircle-event of the SVG canvas
which is triggered when the user deletes a circle. It calls destroy of
the respective circle entity.

• ChangeEntity is bound to the ChangeEntity-event of the SVG canvas
which is triggered when the user moves an orga-entity. The changed
data is saved to the respective orga-entity.

• RemoveEntity is bound to the RemoveEntity-event of the SVG canvas
which is triggered when the user deletes an orga-entity. It calls destroy
of the respective orga-entity.

• ClickEntity is bound to the ClickEntity-event of the SVG canvas
which is triggered when the user clicks on an orga-entity. The event
is translated to a native click-event and triggered on the EntityView

contained in stealthContainer.

There is neither an event nor a method AddEntity (initial upper-case letter)
since entities can only be added via dragging and dropping an entity from
the upper widget. This case it handled by WidgetView (see lst. 4.31). Fig.
4.32 shows how the application components play together by example of
dropping an entity to the Venn diagram widget.

82

4.3. Application

render : function() {

...

this.stealthContainer = $("<div style=\"display:none\">");

this.$el.append(this.stealthContainer);

},

addEntity : function(entity) {

var view = new OrgaEntityView({model:entity});

this.stealthContainer.append(view.resourceView.$el);

var id = this.organize.createAndDropSvgEntity(view.getSvgData());

view.setSvgId(id);

...

}

Listing 4.30.: StealthContainer: The render method creates the hidden DOM element,
stores its reference in OrganizeView.stealthContainer and appends its to
the DOM element (this.$el) of OrganizeView. addEntity appends the DOM
element of the EntityView, ie. view.resourceView.$el, to the stealth-

Container from where events can be triggered and propagated through
the application.

organizeBody.droppable({

drop: function(event, ui) {

var id = ui.helper.attr(’about’);

var offset = $(this).offset();

var orgaEntity = {};

orgaEntity[Voc.x] = ui.offset.left - offset.left;

orgaEntity[Voc.y] = ui.offset.top - offset.top;

orgaEntity[Voc.hasResource] = id;

OrganizeData.createEntity(that.model, orgaEntity);

}

});

Listing 4.31.: JQuery droppable: organizeBody is the (JQuery wrapped) DOM element
containing the Organize Widget. drop : function() is called as soon as
the user drops the dragged element (see lst. 4.14). ui.helper contains a
clone of the dragged element which has been marked up with RDFa (the
attribute “about”) by EntityView. that.model is the organize widget entity,
orgaEntity is created with the coordinates of the dropping position and a
reference to the dragged resource entity.

83

4. The Bits and Pieces Prototype

Figure
4.

3
2.:Sequ

ence
d

iagram
of

d
rop

p
ing

an
entity

to
the

V
enn

d
iagram

.
C

om
p

onents
have

been
colou

red
by

the
architectu

rallayer
they

belong
to:yellow

-
p

resentation
layer,blu

e
-

d
ata

layer,green
-

service
layer.D

ark
blue

-
data

m
odules,light

blue
-

entities.

84

5. Evaluation

Bits and Pieces has been evaluated on two levels: on the level of the usabil-
ity of a first functional prototype including the timeline and the organize
widgets from the previous example, and on the level of the framework’s
technical implementation. The first was part of the co-design research ap-
proach (Tomberg et al., 2013) conducted in the course of the Learning Layers
EU-Project to investigate sensemaking in the context of informal learning.
It consisted of user tests with four representatives from the health care do-
main. The results of this study have also been published by Dennerlein et al.
(2014). The second evaluation tested the implementation of the qualities of
sensemaking, which were elaborated and leveraged throughout this thesis,
against the qualified view of two experienced Web development experts.

While the evaluation of the user interface revealed some flaws on the surface
level which partly can be traced back to the framework design, the results
of expert interviews yield an overall match of the theoretical foundation
and its implementation.

5.1. Usability Study

The four participants in the usability study were two diabetes specialist
nurses (DSN), one healthcare assistant (HCA) and one doctor (GP). The
main goal of the study was to investigate informal learning at the workplace.
Hence, the procedure consisted of two phases:

1. a two-week collection phase for gathering bits and pieces of infor-
mation (e.g. notes, Web links, pictures) related to a chosen realistic
learning need (e.g. find out about methods for reversing diabetes)
alongside the usual workday using Evernote

85

5. Evaluation

2. a supervised sensemaking phase using a prototype of B&P which
consisted of a timeline widget and an organize widget.

Both phases included a short training of the respective tool. Additionally to
the mobile Evernote App, the participants were introduced to sending notes
via email to their Evernote account due to their rather low technical affinity
and hardly available mobile devices. Then the task for the collection phase
was formulated the following: “Please, collect all learning experiences,
discoveries of knowledge gaps, interesting findings, unsolved solutions,
raised questions, noticed faults, learnings (human and/or material caused)
etc. alongside the normal workday in Evernote notes: i.e. picture, text,
video, audio, picture annotation (marking stuff in pictures) and scanning of
documents”.

The latter phase took place two week later. Its central part was a fifteen
minutes thinking-aloud usage of B&P. The participants’ task was to make
sense out of their own gathered bits: i.e. to first remember their informal
learning experiences based on the bits with the help of time-based cues
in the timeline widget and afterwards structure them semantically with
the help of the circles in the organize widget. The task was formulated the
following way: “We’d now like you to use the B&P tool to explore and
organize the material that you gathered during the collection phase. The
aim of this study is to give you the chance to use this tool in a realistic
context and to gather your feedback on the tool and its effectiveness”.
Hence, the second phase closed with a semi-structured interview asking
about the participants’ general attitude towards the prototype, its usability
and performance and the efficiency of the tool’s support for remembering
and sensemaking their past experiences. The thinking-aloud and interview
records were transcribed, paraphrased and categorized in an inductive,
iterative process (Mayring, 2000).

5.1.1. Results

On average, the participants gathered eleven information bits over a period
of two weeks (n=4; M=10.5; SD=2.52). The number of collected bits during
the collection phase was rather low due to the voluntary participation, the

86

5.1. Usability Study

workload the clinicians were facing during study time and problems with
the unfamiliarity in using Evernote which influenced the study participant’s
motivation and/or ability in recording their own traces of informal learning
experiences. The sensemaking phase worked out well except that the time
needed for acquainting the participants with B&P was slightly underesti-
mated. This resulted in more time spent on introducing B&P and a reduced
sensemaking time for some of the participants.

In general all four participants were positive about the B&P tool, i.e. the
study participants understood and appreciated the underlying idea and
purpose. While for the study each participant had to choose a real learning
need they currently faced, their motivation in using the tool appeared to
vary. For the GP it was important to gather evidence for her revalidation,
others saw it as an opportunity to pursue personal learning challenges or
collecting information with the main purpose to share with others. For the
latter, therefore, participants used Evernote mostly to gather todos for, eg.,
reading and saving documents, Web links, etc. B&P was observed as being
a responsive tool by three of the participants, although only easy to use by
two of them.

Timeline Widget

One participant’s thinking aloud protocol clearly indicated that the timeline
is working properly to prompt remembering informal learning experi-
ences:

“That’s the card sort photo, I remember that [. . .]. Just check I’ve
remembered all the things I thought about last time.”

However, although the idea was generally appreciated, most of the par-
ticipants wanted extra cues to increase the chance to find and remember
an informal learning experience, such as information on the involved per-
sons or institutions, location, content and relations to other events. This
confirms the design decision to go for a widget-based framework easing the
implementation of additional widgets with focus on required cues.

Furthermore, an application of the action-oriented approach to sensemaking
(Dervin, 1998) could also be found:

87

5. Evaluation

“[D]o I still need this? If I do need this, what am I going to do
with it?”

“What you really need, is to be able to go back to something
you’ve collected, go into it, read it and then to be able to have
a link where you could make your own notes and they would
then be saved there, so that when you brought them down, your
notes would be organised.”

Consequently, most participants requested to directly manipulate the title,
tags or importance of bits and attach a comment, reminder or deadline
favorably accessible via context menus. As for the narrowing down of
information, timeline anchors, searching functionality as well as filters
for quicker browsing and comparing of bits was desired. These feature
requests reflect the need for interactivity while sensemaking and support
the respective design decision.

Organize Widget

Overall, the interactive nature of sensemaking via the organizing and cat-
egorizing of bits into circles was valued by the healthcare professionals,
particularly the opportunity to break topics down further was appreciated.
In the same lines, the request to create circles within circles, to enable the
creation of subcategories, was formulated as well.

One participant was especially successful in her sensemaking effort as she
managed to meaningfully group her collected informal learning experiences
on diabetes treatment according to their influence on blood pressure:

“[P]eople’s blood sugar levels have gone down through exercise
as opposed to diet.”

So, skim reading in the sensemaking phase resulted in a first internal
representation of her learning, which led to the creation of a corresponding
external categorization in the circles “Results from diet” and “Results from
exercise” and their overlap representing results from both. It turned out
that people needed more time to actually grasp the content of collected bits,
understand their relevance and re-evaluate them. The lack of time for this in

88

5.1. Usability Study

the study design may have hindered their chance to engage in sensemaking.
It is likely that the involved representations would have been enriched with
more data, adapted and matured over time.

Finally, there was a strong demand of two participants to make the transition
of pieces of information from the timeline to the organize widget permanent,
i.e. the dragged bits disappear from the timeline. One participant puts it
this way:

“I’m thinking that because it’s still up on the timeline but I’ve
actually dragged it down into Concept One, [. . .] so I might come
back to that later and think “oh well it’s still on the timeline”, but
in actual fact I’ve actually already dragged it down into Concept
One.”

This feature request is in line with underlying theory assumptions that once
sense is made of a bit (ie. interaction happened on it), the user expects an
appropriate change of the representation.

5.1.2. Discussion

Although it was not the main goal of the study to investigate the feasibility
of the sensemaking qualities, some could be seen as approved by the users.
First, their thinking-aloud underpins the individuality of sensemaking. They
reviewed their gathered bits and tried to make sense out of them on their
own. Second, their strong request for more cues than the time-based one
proves the context-sensitivity of sensemaking. Concerning the enactivity sev-
eral indications exist which support its importance. Participants generally
appreciated the dragging and dropping of bits around in space and asked
for more interactive features several times such as timeline anchors for quick
and efficient navigation and direct commenting of bits.

As for the continuity and the reification quality, these could not be evaluated
in the short time available on the one hand, and due to lack of more widgets
allowing for other - reifying - structures. The bipolarity could not be validated
because there has only been tested the one interface with the two canvases.
Next, the participants consecutive switching between the browsing and the

89

5. Evaluation

organizing widget give at least a weak suggestion that sensemaking indeed
is a reciprocal process of interchanging bottom-up (circle formation due to
found bits) and top-down sub-processes (finding other bits to fit into the
circle). However, the amount of collected bits was too low at all to assess
that properly.

5.2. Expert Interviews

In order to assess whether the qualities of sensemaking are reflected in
the implementation of the framework two expert interviews have been
conducted. Both experts are graduates in the field of computer science and
have long-term experience in Web development technologies. Before the
interview, both experts were introduced to the qualities of sensemaking
and to the implementation of the framework. They were also given time to
investigate the source code on their own. Expert 1 has been working with us
on top of the B&P framework for four days before the interview. Though it
must be said explicitly, that the expert was not involved in the development
of the framework but participated in the work for future improvements.
Expert 2 has not been working with the Learning Layers project at all, not
to mention with B&P, before. Because of this, more time was assigned to
the interview of Expert 2 for code introduction, whereas Expert 1 had been
working with the code the days before already. So the interview with Expert
1 lasted approximately one hour while the one with Expert 2 took about
two hours.

At two distinct sessions both experts were asked to give their opinion on
the implementation of the qualities of sensemaking while looking at the
framework’s source code. Our hypotheses for each quality to be reflected in
the implementation were:

• Individuality: due to the user’s data per se.
• Context-sensitivity: due to extensibility of the widget set.
• Bipolarity: due to two canvases shown in parallel, one for information

foraging, one for information organizing.

90

5.2. Expert Interviews

• Reciprocity: due to the reciprocal influence of the canvases on each
other, finding representations in the lower canvas on top of data in
the upper one, and finding more data on top of representations in the
lower canvas.

• Continuity: due to continuous preservation of the sensemaking state
into an anytime serializable data structure.

• Enactivity: due to responsiveness and interactivity hooks on each bit.
• Reification: due to having structures as well as bits stored as entities

in the base collection.

Detail questions were interposed where needed to clarify standpoints. With
the permission of the interviewees, the interviews have been recorded,
transcribed, irrelevant talking removed and finally paraphrased. The para-
phrased transcripts can be found in the appendix A.

5.2.1. Results

The overall picture of the resulting judgement by the two experts is clearly
positive in most points. Some bigger caveats were uttered in the course
of context-sensitivity and reciprocity, mostly due to the early state of the
prototype and lacking features. The statements in detail:

Individuality

Both experts confirm that individuality is more a matter of the data used
rather than an implementation feature, for instance Expert 1:

“From the standpoint of the user, the individuality should be
there, because you are dealing with the persons individual data
that has been collected.” (l. 36-37)

91

5. Evaluation

Context-sensitivity

In the view of Expert 1, context-sensitivity is “limited to the time-frame”
because “there are no other possibilities to organize the data” (l. 40-43) but
admits that this “is due to early version of the prototype of the framework
and due to not having enough resources to implement other contexts”
(l. 47-49). On arguing for context-sensitivity being implemented by the
extensibility of the set of widgets, Expert 1 certifies that “the codebase is
more or less ready to provide other widgets” (l. 46). On the other hand,
Expert 2 is sceptic about the hard-coding of widget creation in WidgetView

(l. 282). Explaining that this is because the design feature for switching
widgets left/right was not implemented yet, he concludes that “in this
initial prototype that’s ok” (l. 292). So due to lacking widgets, the experts
can only affirm our hypothesis in relation to the framework’s prototypical
state.

Bipolarity

This quality is clearly approved by both experts. Expert 2:

“You have the timeline. [. . .] The user can find a bit. So that’s
true, you got information foraging. And you can really organize
the bits, place them in circles, so I think it’s also covered. And
both canvases can be used in the application at the same time.
Yeah, I think that’s ok.” (l. 380-387)

Expert 1 additionally points out that if widgets “would be placed in the
same spaces on the screen” (l. 130) depending on whether they are of
“browsable type” or “organizing type” that this distinction would help the
user to understand the two roles of the canvases, hence the two poles of
sensemaking.

Reciprocity

Expert 1 says that “both approaches could be applied” (l. 96), referring
to bottom-up and top-down processes although he adds that this is a

92

5.2. Expert Interviews

hard question unless “a fuller functional prototype with some additional
functionalities” would be developed “[s]o that it would become more clear”
(l. 97-99). So he sees the foundation for reciprocity being realized.

Expert 2 identifies the feature of dragging and dropping bits from the
upper to the lower canvas as an implementation of reciprocity (l. 319)
which indirectly matches our intention because this feature at least enables
the building of representations upon given data. Additionally Expert 2

highlights the extensibility of the widget set as the foundation to a later-to-
come switching feature of widgets which allows for finding better matching
widgets (representations) (l. 324-325). These statements partly confirm our
hypothesis.

Continuity

Expert 1 confirms that by continuously saving the state of the sensemaking
continuity “is fully covered by the prototype” (l. 79). From a framework
perspective he also attests the same saying for the future implementation of
other widgets: “I mean it’s one of the basic logics of the framework.” (l. 88).
Expert 2 investigated deeper whether developers are forced to implement
the data saving interface in data modules (l. 296) which is not the case on
a code-level. However, stressing that VIE’s graph-like database allows for
serializability of any kind of data which, together with the asychronous
service layer, the expert confirms continuity:

Interviewer: “So do you think that continuity is represented in
this?”
Expert: “My answer would be yes. But could you just show me
the code where you save the state? [. . .] [reading code] Ok that’s
actually clear. And the continuity is pretty clear.” (l. 308-313)

These statements affirm our hypothesis.

93

5. Evaluation

Enactivity

Throughout the interviews the terms “enactivity” and “interactivity” have
been used synonymously for easing the understanding. Here, Expert 1

stresses that the framework does not allow for bit-specific interactivity,
“[f]or example, if one bit is a video the framework doesn’t allow you to
play that video in some embedded element” (l. 53-54). So he would expect
future improvements in that direction. Furthermore, it has been argued
that EntityView “is making every bit interactive” (l. 240), including their
dragging and dropping. Expert 1 appreciates that:

“[. . .] it’s some single entry point for interaction with the entity,
and any places it’s put, because the bit is being rendered inside
the DOM too. So it makes perfect sense and should be a good
solution.” (l. 75-77)

Expert 2 highlights positively that other plugins could be used also to extend
interactivity (l. 247). While these statements prove the interactivity hooks
of bits, we missed to assess the framework’s responsiveness in term of this
sensemaking quality unfortunately.

Reification

Expert 1 affirms the question whether the reification of structures could
be possible with the framework, eg. letting episodes appear as entities in
widgets, but reminds of his statement concerning interactivity at the same
time:

“Judging by the logic of the framework that should be doable
without too much work. And it should be working. [. . .] this is
an entity but in addition it’s an episode entity. [. . .] it’s acting as
if it was an entity, but when we again go back to the interactivity,
[. . .] it should show you that there are some multiple things
connected to it and somehow visualizes that to the user in some
nice way.” (l. 115-120)

94

5.2. Expert Interviews

So his only concerns are that in his mind a “bit” should be a simple thing
whereas reification makes it become complex stuff. However, he admits
that the framework could go beyond that notion. Perhaps due to our short-
handed description at l. 163-167, Expert 2 did not get the idea of this
quality right as l. 350-354 suggest. It might be that his understanding
was more focused on take-up of sensemaking, working upon a previous
sensemaking state, instead of reifying representations into data for another
sensemaking process. However, the foundation for allowing reification, ie.
having everything - structures as well as bits - stored as entities, is finally
approved useful for preservation (l. 378). After all, our hypothesis can be
seen as granted by the experts.

5.2.2. Discussion

The expert interviews draw a quite positive picture of the implementation
of the sensemaking qualities. For most qualities they confirm our respective
hypothesis. Individuality is seen implemented by leveraging the user’s
personal data collected via Evernote. The two canvases are also understood
as reflecting the bipolarity of sensemaking. While continuity could not be
tested well by the usability study, it was finally approved by the experts as a
foundational feature of the framework by the division of the data from the
service layer. Implementation of enactivity was approved as dragging and
dropping is realized in the scope of the entity as the “single entry point for
interaction”. Reification, being an abstract but nonetheless essential quality
of sensemaking, was certified by the experts in the principle design of the
framework though concrete widgets would be needed. For the same reason,
the experts could not clearly affirm context-sensitivity since this quality
relies upon a heterogeneous set of widgets serving various contexts which
could not be implemented at the current state of B&P. Likewise, reciprocity,
which was hard to understand for the experts, only got a weak kind of
confirmation, mainly due to sparse widget functionality which obviously
made it difficult to apply and visualize this quality of sensemaking.

However, if more widgets could have been implemented as well as the
feature of instant switching of widgets left/right, as it is envisioned by
the framework design, the expert might have found context-sensitivity and

95

5. Evaluation

reciprocity better represented. On a code-level at least Expert 1 pointed out
that the framework has the foundation for fixing these issues.

After all, these results indicate that B&P is going into the right direction
for supporting sensemaking effectively. As for context-sensitivity and reci-
procity future improvements must include the implementation of more
widgets and the switching of them. These features were also missed by the
users in the usability study (5.1.2). More widgets would also give more in-
sight into the feasibility of the framework in terms of reification. More detail
information on an entity, especially bit-specific, should also be provided by
the framework as Expert 1 suggested. Again, this request is also in line with
that from the users who asked for more direct interaction with bits.

96

6. Conclusion

The thesis’ research question was how software can support sensemaking
on the Web. In order to answer this question, this thesis takes a strict theory-
driven approach. First, theory on sensemaking from the perspectives of
Dervin, Russell et al. (1993) and Pirolli and Card (2005) has been summa-
rized in order to frame the field. Dervin’s Sensemaking Metaphor helps
in understanding an individual’s sensemaking of the world as a matter of
communication, whereas the approach of Russell, Pirolli and colleagues
views the topic in the terms of human-computer and human-information
interaction. Within this field, seven “qualities of sensemaking” have been
named as landmarks: Individuality, context-sensitivity, bipolarity, reciprocity,
continuity, enactivity and reification.

Referring to the introductory example from the beginning, their essential
role for sensemaking can be explained as follows: For the sensemaking
of “sensemaking” (1) I was working on my own (individually), collecting
literature from Web catalogues, making notes in my text files. (2) My way
of sensemaking highly depended on the context of my data, ie. publications
from various scientific fields, and on the context of my goal, ie. writing
a thesis. Hence I was looking for papers based on authors, categorizing
them, creating sample outlines. (3) My whole sensemaking began with mere
literature search and ended with a structure of publications fitting my need,
ie. it spanned between the two poles of information foraging and information
organization. (4) Throughout this process I was creating rough categories,
trying to find more data which might fit and eventually refining these
categories, so the data influence my structure building, and the structures
influence my data search reciprocally. (5) The whole process took several
weeks, continuously taking down and up my sensemaking in-between several
times. (6) There weren’t hardly any longer periods of time where I found
myself merely thinking about the topic. Instead I was actively scratching one

97

6. Conclusion

itch after the other, searching, categorizing, writing things up. (7) Finally
I did put my categories of publications on sensemaking in the outline of
the chapters on theory and related work, more or less reifying categories to
subsections.

These seven qualities allowed for systematic evaluation of existing user
interfaces for sensemaking on the Web. Four approaches, CoSense (Paul
and Morris, 2009), ScratchPad (Gotz, 2007), Coalesce (Ryder and Anderson,
2009) and Apolo (Horng et al., 2011), were reviewed by looking into their
functionality in detail and sheding light on them from the perspective of the
qualities. There, individuality and reciprocity scored the highest, whereas
context-sensitivity and reification seemed to be the most under-represented
ones. Hence, the thesis’ approach was especially focused on the two latter
qualities to implement.

Given this review, non-functional requirements and user interface design
features for the novel widget framework approach - Bits and Pieces (B&P)
- were deduced from the seven qualities. Individuality is represented by
leveraging the user’s own data. Context-sensitivity is enabled by an exten-
sible set of widgets, each possibly serving the requirements of a specific
context. Bipolarity is reflected by the two types of canvases, one for each
pole of sensemaking. Reciprocity comes by presenting the two canvases on
top of each other, almost literally allowing for the reciprocal interchange
of top-down and bottom-up sub-processes. Continuity is maintained by
continuous preservation of the sensemaking state in the background. Enac-
tivity demands the user interface to be responsive and to make every entity
interactive. Reification is made possible by leveraging an openly structured
graph database which allows for representation of data and meta-data in
RDF. The B&P design idea was also developed in the strand of the EU
project Learning Layers1 and validated with representatives from the health
care sector.

The main part of the thesis was to describe the implementation of the
framework in detail. It is implemented in JavaScript on top of cutting-
edge Web technologies such as HTML5, JSON-LD and RDFa and relies on
Backbone, VIE and JQuery as Web frameworks. The software architecture
is organized into three layers: the presentation, the data and the service

1http://learning-layers.eu (Visited: 2014-11-18)

98

http://learning-layers.eu

6.1. Contribution

layer. The presentation layer consists of view components for rendering and
visualizing content as entities, widgets or user interface control elements.
The data layer covers data logic and is organized in modules for various
aspects of the user data (eg. user events, circles, versions, etc.). Data modules
are backed up by services in the service layer. In the case of the current
implementation this layer makes heavy use of services of the Social Semantic
Server (Kowald et al., 2013). Furthermore, two widgets have been developed
on top of the framework: The first visualizes entities by their creation
timestamp along a timeline, the other enables the user to create circles and
place entities spatially inside them as in a Venn diagram.

Finally, a user study based on this prototypical application of the B&P was
depicted in the last chapter and the results were discussed with respect
to the qualities of sensemaking. Additionally, two Web technology experts
were interviewed for their standpoint on the implementation of the qualities
on the level of source code and architectural design. While the user study
revealed that Bits and Pieces is able to support sensemaking of one’s own
learning experiences collected on the Web on a user interface level, the
expert interviews confirmed that the qualities of sensemaking are well
reflected in the framework implementation.

These two sets of positive results underpin the feasibility of the theory-
driven approach and the feasibility of B&P as a framework for sensemaking
on the Web. Hence as the final outcome of this thesis and as an answer
to the research question drawn in the beginning, it can be stated that a
software tool can claim to support sensemaking if it implements Bits and
Pieces’ seven qualities of sensemaking.

6.1. Contribution

With the elaboration of the proposed seven qualities of sensemaking, this
master’s thesis provides a theoretical framework for sensemaking in the
context of HCI and for the development of respective user interfaces. Based
on these qualities, it derived, designed and implemented a generic widget
framework easing the creation of context-specific applications for sensemak-
ing on the Web.

99

6. Conclusion

6.2. Limitations

The proposed software framework B&P does not solve the question which
user interface is best suited for sensemaking on the Web. This is mainly due
to the context-specific quality of sensemaking. Instead, the framework just
allows the implementation of specific widgets while giving examples as the
timeline and the Venn diagram widget. This might be seen as a limitation
or as a strength.

Furthermore, the framework could only be tested on a small scale with
the two aforementioned example widgets. However, as one of the experts
pointed out, more widgets would be needed to assess the feasibility of the
approach in full extent.

This thesis does not cover one aspect of sensemaking which might also play
an essential role: the social aspect (Weick, 1995). Sensemakers also influ-
ence each other by sharing certain artifacts. B&P does not contain sharing
functionality specifically. This could be implemented as another service
in the service layer which merely adds more base data to the application,
though originating from others. However, it remains unclear to which extent
such a sharing feature would influence the whole individual sensemaking
process.

6.3. Future Work

Apart from the extension of the widget set together with the switching
feature, specific functionality for certain types of bits will be added on
a global level, eg. providing for video playing, document rendering etc.,
instead of the mere meta-data overview currently displayed in the sidebar.

Another global user interface feature to be taken into consideration is a
generic filtering function which enables the user to filter bits from the
canvases independently from the widget implementation. For instance,
one could hide all bits which do not contain PDF documents irrespective
whether the bits are visualized in a timeline, a Venn diagram or any other
kind of widget.

100

6.3. Future Work

On the level of code, there is a considerable amount of repetitive pattern in
the data modules, eg. the declaration of the filter method as a callback for a
specific entity type being added to the base collection. It might be feasible
to model the application domain using an ontology language and compile
it to JavaScript data modules.

Finally, the service layer could be extended to support the smart invocation
of Web APIs which implement Hydra (Lanthaler, 2013), the vocabulary for
interoperable and hypermedia-driven Web APIs2. No more API-specific
wrapping into the service layer would be needed then and B&P could be
even better engaged for sensemaking on the Web.

2http://www.hydra-cg.com (Visited: 2015-01-15)

101

http://www.hydra-cg.com

Appendix

103

Appendix A.

Expert Interview Transcripts

A.1. Expert 1

Sensemaking is a kind of process of sorting out bits and pieces in order to achieve a1

certain kind of goal. The data you are dealing with is huge and heterogeneous. You need2

to interact with the data and find structure. Then you’re going to try to find data which3

fits into that structure. It’s a kind of interchange of bottom-up and top-down processes.4

Bottom-up is finding structure based on data, and top-down is find data which fits into5

the structure. There may be data which do not fit into the structure, residues so to say.6

Then it might be needed that you change your structure. So you evolve the structure7

more and more by interchanging this top-down and bottom-up process. That clear?8

Yeah.9

Now I have come up with a couple of qualities of sensemaking. These are the indi-10

viduality: So sensemaking is a personal process. It’s always your own goal you try to11

achieve, it’s specific to you. Context-sensitivity is specific to the situation, to the goal.12

Enactivity, or interactivity: Sensemaking is grounded in action, which means that you13

have to interact with the data, you have to do something with it. The continuity quality14

is that sensemaking can start and stop any point, so as soon as you found that you have15

reached the goal. Or you might come back to sensemaking and proceed from that point,16

or start from one else’s sensemaking for instance, or start with a predefined structure.17

Ok.18

Reciprocity is what I’ve mentioned already, interchange of top-down and bottom-up19

processes.20

Mhm.21

Reification is meant that the output of a sensemaking’s structure can again serve as22

input to sensemaking. So you find for instance the structure of category, and in the23

later step you might use that category as a kind of data. So in another sensemaking24

105

Appendix A. Expert Interview Transcripts

session, you might find meta-categories. So the category then is reified, it is made to a25

thing.26

Ok.27

Bipolarity means that sensemaking is between these two poles of information foraging28

and information organizing. The one end is more concerned with searching for infor-29

mation, and by doing that you start finding structure, and continuously it grows and30

more and more into the organizing pole of the sensemaking.31

Ok.32

Fine, so let’s start with the individuality. So the general question is: Does the frame-33

work in it’s current implementation come up to this quality of sensemaking of individ-34

uality.35

I suppose yes. From the standpoint of the user, the individuality should be there, because36

you are dealing with the persons individual data that has been collected.37

Ok. So for the context-sensitivity. Do you think that the framework serves context-38

sensitivity in the term of that it can be adaptable to context?39

If you try to use the context-sensitivity based on the timeline representation of the Bits40

and Pieces then it has context-sensitivity, time-frame context-sensitivity and as there are41

no other possibilities to organize the data, then this context-sensitivity is limited to the42

time-frame. So it has limited context-sensitivity.43

So from a framework perspective, could one implement more tools which provide more44

context-sensitivity in your sense?45

Well, why not, the codebase is more or less ready to provide other widgets with other46

structure of data or other context widgets, so yes. It should be doable. I’d say, that context-47

sensitivity is limited is due to early version of the prototype of the framework and due to48

not having enough resources to implement other contexts. So this is the first step to do49

something and it makes sense.50

Ok, fine. For the enactivity, or interactivity: In your opinion, does the framework sup-51

port the implementation of an interactive application?52

Well, to some extent. For example, if one bit is a video the framework doesn’t allow you53

to play that video in some embedded element, or just have the preview of the file. So the54

only interaction of the moment is getting some limited amount of information about this55

bit. And well, you could define interaction as dragging it into the organize canvas. That’s56

also an interaction at some point of view. You could be interactive but the ease of data57

representation might be improved, it could be a bit more bit specifics. It might not be a58

limitation of the prototype itself even but might be a feature. But that would probably59

benefit the user, it would be great to get a quick preview of the bits somehow, just to60

understand what you are dealing with. The timeline widget is kind of limited to the time61

106

A.1. Expert 1

ranges, so when you are looking at some information that was collected two months ago,62

you might not remember the specific context.63

Mhm. In your mind, how hard would it be to implement a bit-specific representation64

on top of the framework?65

Well, it would take some time plus as the framework is consuming a service, it depends on66

the services also. The service should be providing the tools for the framework to get its job67

done. So where the tools are provided it shouldn’t be too hard or too time-consuming to68

provide some additional information in some nice way based on the type of the bits and69

pieces there.70

Ok, concerning the drag and dropping you also mentioned. In the EntityView, we’ve71

got the draggable [method] which is called after rendering the entity, so effectively72

everywhere I render this EntityView it will be draggable. Do you think this is a feasible73

approach in order to support the interactivity in any point of the application?74

Sure, well it’s some single entry point for interaction with the entity, and any places it’s75

put, because the bit is being rendered inside the DOM too. So it makes perfect sense and76

should be a good solution.77

Ok, as for continuity, so that one can start and stop sensemaking at any point.78

I think this one is fully covered by the prototype, in regard to this organize canvas.79

Everytime I do something, its state is being saved to the database. In addition there are80

possibilities of creating multiple versions, so I can save some states, start a new one, do81

some additional sensemaking and go back to some of the previous state and see what I was82

doing. So I guess it’s even providing more than just a simple continuity. It’s even providing83

some versioning.84

Ok, and now again from a framework perspective, if one implements another widget85

based on the framework, do you think the continuous preservation of the state could86

also be used in this new kind of widget?87

Sure, I mean it’s one of the basic logics of the framework. And this logic is enforced by the88

framework. I suppose yes, it should be.89

Ok. For the reciprocity. Interchanging of bottom-up and top-down sub-processes. Do90

you find it represented in the implementation of the framework?91

I suppose by bottom-up you think that the pieces are being browsed and look at and some92

decisions are made based on that, then there the organize canvas is used somehow to93

group something and make some logical conclusion based on top of that and then that one,94

the result of it can also be applied to those initial bits and pieces to re-organize the logic95

of the canvas. Then I suppose both approaches could be applied, but that is really a hard96

question to answer. So in order for it to be easier to answer, a fuller functional prototype97

with some additional functionalities might have to be extended. So that it would become98

more clear.99

107

Appendix A. Expert Interview Transcripts

Fine, then we come to next abstract quality. It’s the reification, so the output of sense-100

making could serve as the input to sensemaking itself. Do you find that represented in101

the implementation?102

I mean it depends on which standpoint you take, so for example there is this information103

and the sensemaking is done with it, then there should be the possibility to save the results104

of your sensemaking and then reuse it within the process of some other sensemaking. I’d105

say to some extend this prototype offers that. Unfortunately it’s impossible to apply the106

result of one sensemaking process to another. So you cannot create bits from the result107

of the canvas and reuse it on another canvas. Maybe that would be just a super-result.108

[laughs] But I’m not sure whether that makes sense for the system.109

It might. That’s what reification is about. But could you imagine that for instance the110

episode which represent some kind of the result of a sensemaking could be displayed111

in the timeline? As an episode entity. And you could use these episode entities, drag112

and drop them, and organize them. So in a kind of meta-episode. Or a super-result as113

you put it. Could you imagine that the framework could support that?114

P: Judging by the logic of the framework that should be doable without too much work.115

And it should be working. Again if we’re talking about entities, this is an entity but in116

addition it’s an episode entity. And it’s again draggable, droppable, it’s acting as if it was117

an entity, but when we again go back to the interactivity, instead of just showing you one118

thing it should show you that there are some multiple things connected to it and somehow119

visualizes that to the user in some nice way.120

Yes, there would be another widget needed to visualize the episode and its connected121

stuff. And for the bipolarity, which is the sensemaking ranging from information for-122

aging, up to organizing. Do you think the framework represents this bipolarity?123

Sure, this bipolarity is there, so you can search for the information, browse the information124

then you organize it to these episodes and then you can search again some more. So the125

current prototype is serving that purpose.126

There is also this ”browsable widget type” and this ”organizing widget type” we’ve127

been talking about. Does it make sense that other widgets inherit one of these types,128

in order to run into one of these two polarities?129

Yes, well, and if they would be placed in the same spaces on the screen, then that would130

surely provide an information to the user that this upper end of the screen is for getting131

the data, and the bottom end of the screen is for managing the data.132

Ok, fine.133

108

A.2. Expert 2

A.2. Expert 2

Sensemaking deals with large amounts of information, which is unstructured. Here134

we deal with bits and pieces the user collected through Evernote. Users want to find135

a representation for aspects of their data, which depends on the goal. The goal needs136

not be pre-defined, it’s maybe just an idea. Users try to find a representation for the137

data and given this representation they try to find more data which fits into that repre-138

sentation. Data which does not fit the representation are the residues. These lead to a139

representational shift. The user adapts the representation, looks for a new representa-140

tion. Sensemaking works in a loop of a bottom-up process which is going from the data141

to a representation, and a top-down process, getting from a representation to the data.142

Finally a good representation fulfills a goal. Sensemaking also is an interactive process,143

so you must do something.144

Ok.145

Sensemaking is a ongoing process. There is no defined start or end. The input to the146

sensemaking process can be any kind of data, it need not be the absolute raw data. It147

could be something more advanced. as soon as the goal is reached, the user might stop148

immediatly. he maybe has found some structure and somehow can use it. These are the149

qualities of sensemaking I’ve developed in the thesis 1. Individuality: Sensemaking is150

a personal process. You mostly do it for yourself. There is no collaboration per se.151

You are specifically avoiding influence coming from other people. You want to make sense152

alone.153

Other people might be also doing sensemaking and then they’re sharing. It’s not so154

inherent to sensemaking itself, the social aspect. 2. Context-sensitivity: Sensemaking is155

specific to the sensemaker’s situation, to his goal, to the kind of data he’s dealing with,156

to the kind of device which is used.157

You are targeting no specific context.158

3. Enactivity: You have to be active, you have to do something while sensemaking. It159

is not a passive process, merely thinking. 4. Continuity. It never starts or stops. It is an160

ongoing process, it might stop at any point, it might start at any point. 5. Reciprocity: It’s161

the interchanging of the bottom-up and top-down processes, finding the representation162

from the data and finding data on top of a representation. 6. Reification: a representation163

might serve as the input for the sensemaking process. So it might become data. For164

instance, if you tag something and then in a later phase you use the tags themselves to165

do more sensemaking, group the tags or something. So in sensemaking what is data and166

what is representation is not so crucially devided. 7. Bipolarity: There are two phases in167

sensemaking: First, information foraging which is narrowing down the data and second168

the organizing phase where you more start with adding structure, relating the data. But169

both phases are kind of a continuum, so there is no hard border line between those two.170

The information foraging grows into the organizing. It’s overlapping.171

109

Appendix A. Expert Interview Transcripts

Probably they exist one to each other in the same time.172

So what I then try to do, is to put these qualities into the software design of the frame-173

work. So we have the two canvases, they shall reflect the bipolarity of sensemaking. The174

second design feature is the widget-based extensibility which shall reflect the context-175

sensitivity and also the reciprocity. These two parts can be switched, so you can have176

another widget here which enables you to structure the data in a graph or something177

instead of these rings.178

You can use the same canvas also but for other bits for which you want to define some179

other common context.180

Yes. And this set of widgets is extensible.181

How has a widget to be implemented? How extensible is it?182

It has to be implemented in JavaScript and anything you can use in JavaScript, be183

it HTML or SVG. The communication between these two widgets is going over this184

framework and has to be implemented by the widget. As for context-sensitivity one185

can implement a widget which fits the own context, or apply a widget which fits your186

context. For instance, you could have a map, with the geographical coordinates. It de-187

pends on the context of the data. By having this set of widgets extensible and switchable188

this context-sensitivity should be fulfilled. Reciprocity should also be reflected by these189

widgets because you ...190

You’re adding always something from the top widget to the bottom widget or you’re191

moving some bit out of the bottom widget.192

Yes, you build up a representation given the bits in the upper one or find new bits given193

the representations but ...194

But you can also manipulate the bits in the lower canvas and change the way they relate195

each other. So if for instance you move this bit from the circle to another circle.196

Yes, you have this representation, and you find - because you have the representation197

- that this bit doesn’t fit here, so you are working top-down. But by switching those198

widgets, you’re also changing the representation in a top-down process. So in this way199

the reciprocity is also represented. The term representation is quite broad: A circle200

is a representation and the whole widget itself is also a representation of data. So201

reciprocity accounts also when you decide - given a representation, ie. a widget - to202

switch to another widget. As for interactivity the idea is to have everything interactive.203

Every bit here can be clicked and moved. You can do something with the bits. What you204

can do depends on the widget itself. For instance on the timeline you cannot move a bit205

around because it is fixed to its creation timestamp. But the framework enables widgets to206

make the bits interactive. However, a built-in feature you can drag and drop bits between207

those two widgets. As for the continuity, the framework is continuously preserving the208

state of the application in the background. So when you’re drawing circles, you might close209

110

A.2. Expert 2

the browser and when you re-open it again, the circle will be there and you do not have to210

save or reload anything.211

Ok.212

As for the individuality which is due the data that it is an individual process. Here it213

are the collected learning experiences. So I would say individuality is part of the frame-214

work but not as explicit as other features. Reification is also a matter of data, reflected215

in the data structure, that you can have a representation serve as input for the further216

sensemaking process. Due the reification, a graph database is used which enables you to217

build up a relation between two entities arbitrarily. The data is not pre-structured. Any-218

thing can be represented in a graph and so a representation, a part of the graph, might219

serve as the object of another relation in that graph. That’s how reification should be220

fulfilled. So now for the non-functional requirements: This extensibility here demands221

that the widgets must be independent modules. They can be exchanged at any time.222

The responsiveness is needed by the interactivity, meaning that the application has to223

respond immediately to user input. Otherwise the user wouldn’t get the experience of224

interacting with the data.225

The user gets easily frustrated.226

So something like processing and loading times to server is put into the background227

and kept away from the user’s experience. And for this continuity thing it is important228

that the application state is serializable at any point. What ever you do it must result229

in a concise state of the data which can be saved to the server. For this a graph based230

infrastructure is the most convenient, as you can put anything into a graph. You add231

another triple. For instance, if the user moves a bit it is saved immediately. But as232

sensemaking is not confined to moving something, it could be any action. So it has to233

be serializable at any point. I think then a graph is the easiest way to fulfill that.234

Probably. It can come up to a solution, why not. But will there be a graph database in the235

background?236

Yes, on the client-side there is a kind of a graph database. It is not a real graph database.237

It’s a semantic interaction framework which the prototype is built upon. So in the next238

section I would ask you for these qualities and show you how they are reflected in the239

code and you can tell me your opinion. So let’s look into the code. As for the interac-240

tivity, this EntityView is making every bit interactive. Whatever you can do with a bit241

you can code in this EntityView, or in the subclasses of it, UserEventView, OrgaEnti-242

tyView.243

Ok, drag and drop from one canvas to another, is it also in the EntityView?244

It is implemented through the JQuery Draggable plugin. So the EntityView is making245

this HTML element draggable.246

You can extend it, the kind of manipulation, by using other plugins.247

111

Appendix A. Expert Interview Transcripts

Yes, you can use whatever you need to extend the enactivity.248

Ok, and you have click events, ok.249

And every bit can handle the click-event and by default displays the detail view. And250

defer is for opening the URI of the bit.251

This is then the double-click?252

Yes. What I wanted to show here is this draggable [method]. Draggable is just calling253

the JQuery Draggable.254

Ok, you’re calling within the view the JQuery Draggable plugin. That’s ok.255

This makes every entity which extends the EntityView draggable. So for instance this256

UserEventView extends the EntityView.257

Ok.258

Of course on the widget-level there can be more interactivity, but this is out of scope259

of the framework. The WidgetView here has the droppable [method]. Here it sets the260

JQuery droppable for the organize element. It is kind of the glue between the frame-261

work and the organize widget.262

Ok.263

As for individuality, that’s in the data, it is a kind of emergent property of the widgets264

you use.265

Actually the user is using his own data. And you are individually specifying for which266

user the data is loaded.267

Yes. As for the context-sensitivity, the widgets need to be independent so that one can268

extend the set of widgets. This is actually done by having these modules.269

Where do you define that the lower canvas should hold the circle widget?270

There is this AppView, which handles the overall structure of the application. It listens271

for a model of the type ”version” being added to the entity collection. Then is calls this272

filter function in the context of this ...273

How do you define which widget to show in the bottom canvas?274

Well, switching is not implemented. At the moment it is just possible to have two275

widgets.276

If as a developer I create another widget. How do I add it? How do I define that it should277

be displayed instead of the circle widget?278

112

A.2. Expert 2

In your data structure, on the server side. There you define the data for your new wid-279

get and its parameters. And link this widget object to the version where is should be280

displayed.281

Is a version a class where you hard code the widget names?282

Yes it’s hard coded now. We have this WidgetView which determines which view it cre-283

ates by the type of the entity, eg. timeline or organize widget type. If you have another284

widget you would have to add it here. But this organize widget type is an abstract type.285

You can have another widget whose type inherits from it. So the widget view will check286

for that and then will call createOrganize. One would need to add another check which287

kind of organize widget should now be rendered. In this implementation we have only288

one widget so, I didn’t elaborate too much on that. So the createOrganize just creates289

the Organize view widget which is the circle drawing widget. Perhaps here in the part290

one would make a more educated selection which view should be rendered.291

I was only concerned if it is possible. But in the code it is possible. In this initial prototype292

that’s ok.293

Ok, as for the continuity which said that everything is serializable at any point.294

For this you call the services and the data modules have to implement this saving.295

Do you force the modules? What happens if you do not implement it?296

It does not enforce anything. It might be that you don’t want to save anything to the297

server. It might be that you want to keep it on the client side. But that would harm the298

continuity feature. If the user stops sensemaking he might lose the state. Continuity299

is more implemented in the architecture of the whole. That we have the separation300

between the data layer and the service layer. The service layer wraps the asynchronous301

communication. The developer does not have to hassle with the asynchronous stuff, he302

just saves the model, saves the data to the service layer and the service layer handles303

that. And as soon as the entity is saved and updated by the server the data module is304

informed. By having this kind of graph based structure developers also can easily store305

stuff there because it is key-value based. This also accounts for the serializability of306

the data. Of course a service has to be implemented anyway. The data cannot be saved307

magically somehow. So do you think that continuity is represented in this?308

My answer would be yes. But could you just show me the code where you save the state?309

The service layer is organized so that when you save something you put it into the save310

method which wraps all the save services. Here it checks what kind of entity it is and311

then looks for the right Social Semantic Service to call.312

[reading code] Ok that’s actually clear. And the continuity is pretty clear.313

113

Appendix A. Expert Interview Transcripts

Then it executes what is defined in ”success”. We have this method chaining here. And314

this is the jQuery Deferred Pattern. And here in the fetchWidgets method we get an315

array of widgets and these widgets are added to the base collection of entities.316

Ok.317

Ok, now for the reciprocity.318

You got it covered I think with drag and dropping? So you can drag and drop a bit in the319

lower canvas?320

Perhaps, yes, I would also say that drag and dropping accounts for the reciprocity. Of321

course that switching between widgets would also be needed. it’s not implemented but322

...323

But still the part of code where you showed me the organize view is created. If we extend324

it, put there another view, that would also support reciprocity.325

Yes, that would enable it. So what would be needed is that switching features, that you326

can have several widgets there. But I think it would not be too hard to implement it327

into this framework as you just have to extend this AppView and the WidgetView part328

where they decide which widget to show.329

Mhm.330

The reification is having representation serve as the input to the sensemaking which I331

thought is represented by the graph database. Everything is an entity and so for instance332

the timeline widget also has a representation as an entity in the base collection.333

Wouldn’t it also be a feature that you are sharing your own results of the sensemaking334

process to other people? Isn’t that also reification?335

Well if the other people work upon that results. If they treat this outcome as a whole.336

I could also have these episodes - each episode has versions and widgets - but the337

episode could also serve as an entity. I don’t know whether it would make sense to338

have for instance episode bits represented in the timeline. That you can make sense339

upon your episodes or upon your versions.340

Then are continuity and reification related? So you actually have some outcome of the341

sensemaking process when you stopped. And at a later point of time you started again342

and work on it, so the previous outcome is now serving as a input afterwards.343

Yes, surely. But the reification is on a structural data level and the continuity is more on344

a time-based level. Both rely on the data being serializable.345

Ok.346

Of course one would have to implement a widget for that which can represent these347

outcomes, and you can deal with these outcomes. But this should be possible in your348

opinion?349

114

A.2. Expert 2

I think yes. I mean you could export it, the data structure of an outcome. It’s actually stored350

in Social Semantic Server and you fetch it again. Or in the case when you have several351

widgets, let’s say you have a circle and graph widget, that’s actually in the same data on352

the Social Semantic Server, so you’re manipulating about the same data. Is such a scenario353

possible?354

Yes, that’s possible, it would mean for instance you have the circle widget and then355

I take the data and represent in a graph widget where instead of circles I have links356

between stuff which was in the same circle. But this is not what is meant by reification.357

It is more that you are reusing the structure found, working on that structure, as a kind358

of a higher level of data then.359

Think with the saving and loading functionality you got it covered with that.360

What do you think about that everything is an entity?361

I’m a little bit concerned about it. It is ok at one point. You get more flexibility maybe,362

that’s ok.363

As soon as an object becomes complex, that is that is has more than one value, then it364

should become an entity. A tag for instance has a user relation and a timestamp. Then365

it should be an entity.366

What are the pros for making a tag an entity? Do you need it in the framework to be an367

entity?368

That’s application specific, whether I need a tag to be an entity. From the framework369

perspective everything possible should be an entity.370

Does it really make sense to make the whole interface of entities?371

It depends, what you would like to do. This sidebar itself has not much data in it. So372

there should not be an entity for the sidebar. Not everything needs to be an entity of373

course, only things which have data in it. For instance the OrganizeWidget is an entity374

because it has got this ”hasCircles”, ”hasEntities”. Somewhere there must be stored375

which circles and which entities are there in this widget. It is a kind of storage space376

for the widget data.377

Maybe we say it like that. Things that need their state to be preserved, should be entities.378

Ok, bipolarity. Do you find bipolarity represented?379

I have to recall ... information foraging. You have the timeline.380

Just for searching bits, narrowing down.381

Ah, you’re remembering it’s somewhere in between here, so you go there.382

For instance.383

115

Appendix A. Expert Interview Transcripts

Ok, that’s covered.384

the user can find a bit. So that’s true, you got information foraging. And you can really385

organize the bits, place them in circles, so I think it’s also covered. And both canvases can386

be used in the application at the same time. Yeah, I think that’s ok.387

Ok. So I think we are gone through everything. Thank you for your time.388

No problem.389

116

Bibliography

Cheng, Wen-Huang and David Gotz (2008). “Context-based page unit rec-
ommendation for web-based sensemaking tasks.” In: Proceedingsc of the
13th international conference on Intelligent user interfaces - IUI ’09. New
York, New York, USA: ACM Press, p. 107. isbn: 9781605581682. doi:
10.1145/1502650.1502668. url: http://dl.acm.org/citation.cfm?
id=1502650.1502668 (cit. on pp. 20, 22).

Dennerlein, Sebastian et al. (2014). “Making Sense of Bits and Pieces: A
Sensemaking Tool for Informal Workplace Learning.” English. In: Open
Learning and Teaching in Educational Communities. Ed. by Christoph Rens-
ing et al. Vol. 8719. Lecture Notes in Computer Science. Springer Inter-
national Publishing, pp. 391–397. isbn: 978-3-319-11199-5. doi: 10.1007/
978-3-319-11200-8_31. url: http://dx.doi.org/10.1007/978-3-319-
11200-8_31 (cit. on p. 85).

Dervin, Brenda (1998). “Sense-making theory and practice: an overview of
user interests in knowledge seeking and use.” In: Journal of knowledge
management 2.2, pp. 36–46 (cit. on pp. 6, 8, 16, 25, 34, 87).

Dervin, Brenda (1999). “Chaos, order and sense-making: A proposed theory
for information design.” In: Information design, pp. 35–57 (cit. on pp. 7,
15–17).

Fayyad, Usama M. (1996). “Data mining and knowledge discovery: making
sense out of data.” In: IEEE Expert 11.5, pp. 20–25 (cit. on pp. 2, 5).

Fischer, Gerhard et al. (1994). “Seeding, Evolutionary Growth and Reseeding:
Supporting the Incremental Development of Design Environments.” In:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’94. Boston, Massachusetts, USA: ACM, pp. 292–298. isbn:
0-89791-650-6. doi: 10.1145/191666.191770. url: http://doi.acm.org/
10.1145/191666.191770 (cit. on pp. 2, 5).

117

http://dx.doi.org/10.1145/1502650.1502668
http://dl.acm.org/citation.cfm?id=1502650.1502668
http://dl.acm.org/citation.cfm?id=1502650.1502668
http://dx.doi.org/10.1007/978-3-319-11200-8_31
http://dx.doi.org/10.1007/978-3-319-11200-8_31
http://dx.doi.org/10.1007/978-3-319-11200-8_31
http://dx.doi.org/10.1007/978-3-319-11200-8_31
http://dx.doi.org/10.1145/191666.191770
http://doi.acm.org/10.1145/191666.191770
http://doi.acm.org/10.1145/191666.191770

Bibliography

Gotz, David (2007). “The ScratchPad.” In: Proceedings of the 16th interna-
tional conference on World Wide Web - WWW ’07. New York, New York,
USA: ACM Press, p. 1329. isbn: 9781595936547. doi: 10.1145/1242572.
1242834. url: http://dl.acm.org/citation.cfm?id=1242572.1242834
(cit. on pp. 19–22, 33, 98).

Grünwald, Szabolcs and Henri Bergius (2012). “Decoupling Content Man-
agement.” In: developer track, WWW2012 Conference, Lyon (cit. on p. 45).

Horng, Duen et al. (2011). “Apolo: Making Sense of Large Network Data by
Combining Rich User Interaction and Machine Learning.” In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pp. 167–
176. isbn: 9781450302678 (cit. on pp. 19, 29, 31, 33, 98).

Klein, Gary et al. (2007). “A data-frame theory of sensemaking.” In: Expertise
out of context: Proceedings of the sixth international conference on naturalistic
decision making. Mahwah, NJ: Lawrence Erlbaum Associates, pp. 15–17

(cit. on pp. 5, 14, 16).
Kowald, Dominik et al. (2013). “The Social Semantic Server.” In: I-SEMANTICS

(Posters & Demos). Ed. by Steffen Lohmann, pp. 50–54 (cit. on pp. 63, 99).
Lanthaler, Markus (2013). “Creating 3rd Generation Web APIs with JSON-

LD and Hydra.” In: Proceedings of the 22nd International World Wide Web
Conference, Rio de Janeiro. ACM Press, pp. 35–37 (cit. on pp. 47, 101).

Mayring, Philipp (2000). “Qualitative content analysis.” In: Forum: Qualitative
social research 1.2 (cit. on p. 86).

Morris, Meredith Ringel, Jarrod Lombardo, and Daniel Wigdor (2010). “We-
Search : Supporting Collaborative Search and Sensemaking on a Tabletop
Display.” In: Proceedings of the 2010 ACM conference on Computer supported
cooperative work. ACM, pp. 401–410. isbn: 9781605587950 (cit. on p. 25).

Paul, Sharoda A. and Meredith Ringel Morris (2009). “CoSense.” In: Pro-
ceedings of the 27th international conference on Human factors in computing
systems - CHI 09. New York, New York, USA: ACM Press, p. 1771. isbn:
9781605582467. doi: 10.1145/1518701.1518974. url: http://dl.acm.
org/citation.cfm?id=1518701.1518974 (cit. on pp. 19, 24–27, 32, 98).

Pirolli, Peter and Stuart Card (1999). “Information foraging.” In: Psychological
review 106.4, p. 643 (cit. on p. 12).

Pirolli, Peter and Stuart Card (2005). “The sensemaking process and lever-
age points for analyst technology as identified through cognitive task
analysis.” In: Proceedings of International Conference on Intelligence Analysis.
Vol. 5. Mitre McLean, VA, pp. 2–4 (cit. on pp. 5, 9, 12–17, 97).

118

http://dx.doi.org/10.1145/1242572.1242834
http://dx.doi.org/10.1145/1242572.1242834
http://dl.acm.org/citation.cfm?id=1242572.1242834
http://dx.doi.org/10.1145/1518701.1518974
http://dl.acm.org/citation.cfm?id=1518701.1518974
http://dl.acm.org/citation.cfm?id=1518701.1518974

Bibliography

Reinhardt, Wolfgang, Matthias Moi, and Tobias Varlemann (2009). “Artefact-
Actor-Networks as tie between social networks and artefact networks.”
In: Collaborative Computing: Networking, Applications and Worksharing,
2009. CollaborateCom 2009. 5th International Conference on. IEEE, pp. 1–10

(cit. on p. 63).
Russell, Daniel M. et al. (1993). “The cost structure of sensemaking.” In:

Proceedings of the SIGCHI conference on Human factors in computing systems,
pp. 269–276. isbn: 0897915755. doi: 10.1145/169059.169209 (cit. on
pp. 5, 9–12, 14–17, 33, 39, 97).

Ryder, Brendan and Terry Anderson (2009). “’Coalesce’.” In: Proceedings of the
21st Annual Conference of the Australian Computer-Human Interaction Special
Interest Group on Design: Open 24/7 - OZCHI ’09. New York, New York,
USA: ACM Press, p. 289. isbn: 9781605588544. doi: 10.1145/1738826.
1738877. url: http://dl.acm.org/citation.cfm?id=1738826.1738877
(cit. on pp. 19, 22–24, 33, 98).

The Reactive Manifesto (2014). url: http://www.reactivemanifesto.org/
(visited on 11/22/2014) (cit. on pp. 41, 42).

Tomberg, Vladimir et al. (2013). “A Sensemaking Interface for Doctors’
Learning at Work: A Co-Design Study Using a Paper Prototype.” In:
ECTEL meets ECSCW 2013: Workshop on Collaborative Technologies for
Working and Learning, pp. 54–58 (cit. on pp. 35, 85).

Weick, Karl E (1995). Sensemaking in organizations. Vol. 3. Sage (cit. on pp. 5,
15–17, 100).

Westenthaler, Rupert and Olivier Grisel (2012). “Automated linking data
with Apache Stanbol.” In: developer track, WWW2012 Conference, Lyon
(cit. on p. 45).

119

http://dx.doi.org/10.1145/169059.169209
http://dx.doi.org/10.1145/1738826.1738877
http://dx.doi.org/10.1145/1738826.1738877
http://dl.acm.org/citation.cfm?id=1738826.1738877
http://www.reactivemanifesto.org/

