
Christian Poglitsch

Outdoor Localization using a Particle
Filter

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Software Development and Business Administration

submitted to

Graz University of Technology

Supervisor

Prof. Dr. Dieter Schmaltstieg

Institute for Computer Graphics and Vision

Graz, Austria, July 2015

Abstract

We propose an outdoor localization system using a particle filter. In our approach, a

textured and geo-registered model of the outdoor environment is used as a reference to

estimate the pose of a smartphone. The device’s position and the orientation, obtained

from a Global Positioning System (GPS) receiver and an inertial measurement unit (IMU),

are used as a first estimation of the true pose. Then, based on the sensor data, multiple

pose hypotheses are randomly distributed and used to produce renderings of the geo-

referenced virtual model. With vision-based methods, the rendered images are compared

to the image received from a smartphone, and the matching scores are used to update

the particle filter. The outcome of our system improves the camera pose estimate in real

time without user assistance. In contrast to previous methods, it is not necessary to move

around until a baseline is found or to rotate the smartphone. Experimental evaluation

shows that the method significantly improves real-virtual alignment in the augmented

camera image.

iii

Kurzfassung

In dieser Arbeit stellen wir eine Methode zur Lokalisation von mobilen Computern, wie

Smartphones oder Tablets, im Freien vor. Als Technik setzen wir einen Partikelfilter ein.

Unser Ansatz nutzt ein texturiertes und geographisch registriertes Model der Umgebung

als Referenz um die Lage eines Smartphones oder Tablets zu bestimmen. Als erste grobe

Schätzung der Position und der Orientierung des Computers dienen die vorhandenen Sen-

soren, wie Inertialsensor und GPS. Ausgehend von den Sensordaten werden zufallsgeneriert

Hypothesen über die Lage der Kamera erstellt und anhand des virtuellen Models Bilder

dieser Positionen erzeugt. Mittels Computer Vision Methoden werden die virtuell gener-

ierten Bilder mit dem importierten Bild des mobilen Gerätes verglichen und gewichtet. Das

Resultat unseres Ansatzes optimiert die Position und Orientierung des mobilen Gerätes

in Echtzeit ohne Unterstützung des Benutzers. Im Vergleich zu früheren Methoden ist es

nicht notwendig, dass der Benutzer die Kamera bewegt, bis eine Baseline vorhanden ist,

oder dass die Kamera um die eigene Achse gedreht werden muss. Testergebnisse zeigen

eine signifikante Verbesserung der Position und Orientierung in Echtzeit.

v

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

The text document uploaded to TUGRAZonline is identical to the presented master’s

thesis dissertation.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich

und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Master-

arbeit identisch.

Ort Datum Unterschrift

Acknowledgments

First and foremost I would like to thank Jonathan Ventura for the time he invested in

this project. His valuable input and comments helped me to design, program and write

about this very interesting topic.

Furthermore, I would like to thank Dieter Schmalstieg and Clemens Arth for their sup-

port and the opportunity to write a paper that hopefully gets accepted at the International

Symposium on Mixed and Augmented Reality (ISMAR) 2015.

ix

Contents

1 Introduction 1

2 Related Work 3

2.1 Localization . 4

2.2 Simultaneous Localization and Mapping (SLAM) 7

2.3 Contribution . 9

3 System overview 11

3.1 Sensor Data . 11

3.2 Virtual City Model . 13

4 Particle Filter 17

4.1 Particle Dimensions . 18

4.2 Motion Model . 18

4.3 Calculating Particle Weight . 19

5 Processing Pipeline 23

6 Experiments 27

6.1 Implementation Notes . 28

6.2 Image-based Results . 29

6.3 Localization Accuracy . 31

6.4 Comparison of Methods . 36

6.5 Performance . 37

6.6 Environment and Occlusion . 38

7 Conclusions and Future work 41

xi

xii

A List of Acronyms 43

Bibliography 45

List of Figures

3.1 Virtual city model . 14

3.2 Projective texture mapping used for the virtual city model 16

4.1 Illustration of computed particles . 18

4.2 Rendered and real world images used for sum of squared distances (SSD)

method . 21

4.3 Rendered and real world images used for gradient based SSD method 21

5.1 Processing pipeline . 25

6.1 Image-based results for seven of our testcases 30

6.2 Comparison of particle filter results . 36

6.3 Error measurement for most likely particle 37

6.4 Image-based results with different lighting condition 39

6.5 Image-based result for occlusion testcase . 39

xiii

List of Tables

3.1 Input data for virtual city model . 14

3.2 Input data from smartphone . 15

5.1 Required computation steps and their respective computation time for each

particle . 24

5.2 Required time for computing and presenting particle weights 24

6.1 Noise parameters for the initialization step 28

6.2 Noise parameters for the update steps . 29

6.3 Results for Universal Transverse Mercator (UTM) position of test image . . 32

6.4 Results for UTM position of test image . 33

6.5 UTM position of a video sequence . 34

6.6 Particle weights . 35

6.7 Performance measurement . 38

xv

1
Introduction

This work addresses the problem of image-based 3D localization. The task is to estimate

the camera pose given a query image. For Augmented Reality (AR) applications accurate

position and orientation information is crucial. Displaying virtual content in the real

environment requires knowledge of the exact pose of the display device.

Two items of information must be known to provide seamlessly augmented visuals over

the real world: (a) the current pose in the real world that needs to be augmented and (b)

the virtual object geometry and its accurate registration with the real world [38]. If these

conditions are fulfilled, the augmented reality experience becomes more convincing and

useful for the user, when virtual content respects and responds to the real environment.

Therefore, virtual content needs to be rendered seamlessly into real world imagery.

Outdoor AR applications today rely mostly on the built-in sensors to estimate the

pose of the camera. Self-localization in large environments is a vital task for accurately

registered information visualization in location-based AR [2]. Self-localization is the task

of autonomously determining the pose of a device with respect to a reference coordinate

system. For high-quality AR, the current camera pose with respect to the environment

must be estimated with full six degrees of freedom (6DoF) at real-time update rates.

Today’s smartphones estimate the pose by triangulation from satellites using GPS

and Wireless Local Area Network (WLAN) transmitters, along with a digital compass

and inertial orientation sensors like gyroscope or accelerometer. Accuracy is limited with

these approaches, e.g., civilian GPS exhibits an accuracy of 7.8 meters at a 95 % confidence

level1. To improve accuracy, augmentations like differential GPS can be used, but these

extensions are expensive and typically not part of consumer hardware. These sensors are

further limited by the availability of a signal, e.g., in urban environments, building walls

interfere with satellite visibility, WLAN transmission, and magnetometer measurements.

The lack of accuracy is a major problem, because the pose estimation is insufficient for

high quality AR [53]. Therefore, AR applications cannot rely solely on the sensors of

smart phones. As a consequence, alternative methods have to replace or assist the sensors

1http://www.gps.gov/

1

Reference:

Reitmayr, Gerhard and Langlotz, Tobias and Wagner, Daniel and Mulloni, Alessandro and Schall, G. and Schmalstieg, D. and Pan, Qi (2010)
Simultaneous Localization and Mapping for Augmented Reality

Reference:

Arth, Clemens and Klopschitz, M. and Reitmayr, Gerhard and Schmalstieg, D. (2011)
Real-time self-localization from panoramic images on mobile devices

Reference:

Ventura, J. and Hollerer, T. (2012)
Wide-area scene mapping for mobile visual tracking

http://www.gps.gov/

2 Chapter 1. Introduction

of the smart phones to estimate their pose.

A promising approach to assist self-localization with sensors is computer vision. Vision-

based methods provide high precision in estimating the camera pose and the ability to

run in real time on modern hardware [52]. To combine information and content of the

real and virtual worlds efficiently and effectively, they need some model of the real as

well as the virtual environment. The camera pose can be estimated relative to a virtual

model of the environment by matching features between the camera image and model.

Such techniques can provide a high level of positional accuracy, within 5-25 cm. There

is one main challenge to implementation of wide-area visual localization: how to achieve

accurate real-time localization on a smartphone or tablet.

In this work, we solve the outdoor localization problem with a particle filter, otherwise

known as Monte Carlo Localization [49]. In our approach, a textured and geo-referenced

model of the outdoor environment is used as a reference to estimate the pose of a smart-

phone. The GPS position and the orientation obtained by IMU are used as a first estima-

tion of the real pose. Using a motion model, multiple poses are calculated and rendered

in the virtual environment. The result is a collection of images and their corresponding

camera poses. With vision-based methods, the rendered images are compared to the im-

age or video received from the smartphone. In this process, every particle gets a weight

value. The weight of a particle can be thought of as the probability that the particle’s

state corresponds to the true state of the system [49]. The particle with the highest weight

represents the corrected 6DoF camera pose.

The outcome of our system estimates the camera pose in real time without user assis-

tance. In contrast to previous methods, it is not necessary to move around, until a baseline

is found [52], or to rotate the smart device [2]. Our approach works for images as well

as for video streams obtained from a smartphone or tablet. The result of our work can

be used in multiple applications, because an accurate camera pose estimation in real time

is crucial for location based AR applications in fields like tourist navigation, orientation,

infrastructure maintenance or computer games.

Reference:

Jonathan Ventura and Clemens Arth and Gerhard Reitmayr and Dieter Schmalstieg (2014)
Global Localization from Monocular SLAM on a Mobile Phone

Reference:

 ()

Reference:

 ()

Reference:

Jonathan Ventura and Clemens Arth and Gerhard Reitmayr and Dieter Schmalstieg (2014)
Global Localization from Monocular SLAM on a Mobile Phone

Reference:

Arth, Clemens and Klopschitz, M. and Reitmayr, Gerhard and Schmalstieg, D. (2011)
Real-time self-localization from panoramic images on mobile devices

2
Related Work

Contents

2.1 Localization . 4

2.2 SLAM . 7

2.3 Contribution . 9

The goal of this project is to design a sophisticated localization and tracking system

that works accurate in real time. The most common approach for global registration on a

smartphone is to rely on IMU and GPS to determine the device position and orientation.

Augmented reality applications often use the built-in sensors to determine the pose but

cannot rely on the accuracy and precision of the sensors. Therefore, it is not possible

to compute pixel-accurate graphical overlays, which provide spatial relationship between

virtual and real world.

The problem of computing the position and orientation of a camera with respect to a

virtual representation of the scene, which is referred to as image-based localization [28], has

received a lot of attention in the computer vision community. It has important applications

in location recognition [21, 27, 39, 44], autonomous robot navigation [1, 32, 41], AR and

Mixed Reality (MR) [14, 24, 54]. Accurate self-localization enables AR applications in

fields like tourist navigation, orientation, infrastructure maintenance or computer games.

There are two approaches to image-based localization. The first addresses localization

and requires knowledge of created map or 3D model [14, 20, 27, 42] in advance. Vision-

based localization is solved by (a) using a collection of images or (b) a 3D model as

reference. The second approach addresses the problem of SLAM, where the camera is

localized within an unknown scene. This approach is recording a virtual model of the

environment with methods like Structure from Motion (SfM) and is processing localization

at the same time.

In this project, we focus on localization, because our goal is a localization and track-

ing framework that works on a smartphone in real time with no user support. SLAM

3

Reference:

"Hyon Lim and Sudipta N. Sinha and Michael F. Cohen and Matthew Uyttendaele" ("2012")
"Real-time Image-based 6-DOF Localization in Large-Scale Environments"

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

4 Chapter 2. Related Work

approaches deliver promising results, but require the user to take a series of images, until

a reconstruction can be produced. Therefore, in this project, we will use the results from

SfM methods to improve user experience for AR applications.

2.1 Localization

The current state-of-the-art in image-based localization can mainly be divided into two

different approaches: (a) Image Retrieval (IR) techniques and (b) Brute Force (BF) nearest

neighbor matching methods [15]. As reference for the query image, a collection of geo-

referenced images or 3D models constructed with SfM is possible. IR-based methods first

identify a subset of images of the database that are most similar to the query image, using

efficient techniques such as the vocabulary tree [34]. The BF localization strategy, which

bypasses the image retrieval step by matching directly between the query features and the

entire point cloud, consistently leads to improved localization quality [43].

Many approaches exist for localization from a single image, in some cases only with

accuracy comparable to consumer GPS [6, 44, 48, 50, 51, 56, 57]. These systems typically

use large-scale mapping efforts with thousands of photos [47] or use a real-time tracking

and mapping approach, which is challenging to operate in a large space.

Arth et al. [2] propose a system for self-localization on smartphones using a GPS

position and panoramic view of the user’s environment. In order to run directly on mobile

devices, their approach requires only moderate computational and storage resources. It is

assumed that a 3D reconstruction of the environment is ready to be used for model-based

tracking. An issue is the limited Field of View (FOV) of mobile device cameras. This fact

makes it problematic to compute accurate localization, since, often, too few high-quality

interest points are contained in a single image. At startup, the user is required to explore

the environment through the camera’s viewfinder. It is, therefore, necessary to expect that

the user is standing still for a moment, while orienting the device. Their system requires

this behavior for initializing the tracking and assumes the user’s cooperation.

SfM approaches enable the creation of large scale 3D models of urban scenes. These

compact scene representations can be used for accurate image-based localization. Image-

based localization deals with the problem of how to precisely recover the 3D camera pose

from a query image within a known 3D world. One possible approach is to localize the

pose with respect to a 3D point cloud obtained by a SfM pipeline.

Real-time global localization using a 3D model of the environment requires a pre-

made point cloud [53] or edge [36] model of the environment, which could be registered

to a useful global reference frame, such as the floor plan of a building or a geographic

coordinate system such as a UTM zone [52]. There are several problems with directly

tracking the globally aligned point cloud. Typically, the point cloud needs to be stored on

the device to achieve real-time performance, which introduces problems in data transfer,

storage, and maintenance. In terms of the interface experience, the user may have to

physically search with the camera for some time until a proper viewpoint is found, from

Reference:

Donoser, M. and Schmalstieg, D. (2014)
Discriminative Feature-to-Point Matching in Image-Based Localization

Reference:

Nister, David and Stewenius, Henrik (2006)
Scalable Recognition with a Vocabulary Tree

Reference:

Sattler, T. and Leibe, B. and Kobbelt, L. (2011)
Fast image-based localization using direct 2D-to-3D matching

Reference:

 ()

Reference:

N. Snavely and S. Seitz and R. Szeliski (2006)
Photo tourism: exploring photo collections in 3D.

Reference:

Arth, Clemens and Klopschitz, M. and Reitmayr, Gerhard and Schmalstieg, D. (2011)
Real-time self-localization from panoramic images on mobile devices

Reference:

Ventura, J. and Hollerer, T. (2012)
Wide-area scene mapping for mobile visual tracking

Reference:

Reitmayr, Gerhard and Drummond, T.W. (2006)
Going out: robust model-based tracking for outdoor augmented reality

Reference:

Jonathan Ventura and Clemens Arth and Gerhard Reitmayr and Dieter Schmalstieg (2014)
Global Localization from Monocular SLAM on a Mobile Phone

2.1. Localization 5

which the system can localize. Another issue is that the global point cloud is made in an

offline process, and thus becomes outdated when the environment geometry, appearance

or illumination changes.

An important bottleneck is the computation of 2D-to-3D correspondences required

for pose estimation [42]. Despite the scalability of SfM approaches [20, 27, 42], real-time

image-based localization in large environments remains a challenging problem. As the

scene gets larger, recognizing unique landmarks becomes more challenging. This difficulty

may be overcome by using sophisticated image features [20, 27, 42] such as Scale-Invariant

Feature Transform (SIFT) [30], but these are too expensive to compute in real-time.

Reitmayr and Drummond [36] present an edge-based tracking system using textured

3D building models for the input query of a mobile phone. They make use of the video

image as well as gyroscope and measurements of gravity and magnetic field. This work

mainly addresses frame-to-frame tracking, but also includes an approach for re-localization

using a set of corner-like features extracted using the FAST corner detector [40]. The

features are compared using the SSD of the feature vectors, and the best match for each

feature is stored. Because the 3D models created from photographs do not exactly fit the

corresponding map points, the registration still contains errors of up to 0.25 meter between

points in the models and the map data. For future work, Reitmayr and Drummond suggest

to use GPS for an initial guess to limit the search range for possible locations.

In a follow-up work, Reitmayr and Drummond discuss the extension of their hybrid

tracking system with a GPS sensor to add initialization and robustness against failures of

the tracker [37]. The GPS-based measurements provide initial 2D position information at

start-up that allows the vision-based component to initialize correctly. To overcome the

inaccuracy in the GPS position, a local search in the neighborhood of the data provided

by the sensors is performed, in a manner similar to the approach by Coors et al. [9].

Our approach also uses renderings and their corresponding poses of a textured model;

however, in contrast to Reitmayr and Drummond, we use pixel-wise cost functions instead

of edge search, and our algorithm processes continuous particle filtering, rather than one-

shot localization. As result, our approach unifies localization and continuous tracking in

a single method.

Self-localization is a deeply investigated field in mobile robotics, and many effective

solutions have been proposed. In this context, Monte Carlo Localization (MCL) is one

of the most popular approaches, and represents a good trade-off between robustness and

accuracy. The basic underlying principle of this family of approaches is using a Particle

Filter for tracking a probability distribution of the possible robot poses [31]. The common

approach of algorithms proposed to solve position tracking is Kalman Filter localization

[26], while global positioning encloses common frameworks like Multi Hypotheses Local-

ization [22], Histogram Filters [5] and Particle Filters [18].

Klein and Murray [23] demonstrate a real-time, full-3D edge tracker based on a particle

filter. Since the early work of Harris [19] this task has often been accomplished by detecting

edges in the image. Using a Computer Aided Design (CAD) model of the object to be

Reference:

T. Sattler and B. Leibe and L. Kobbelt (2011)
Fast Image-Based Localization using Direct 2D-to-3D Matching.

Reference:

 ()

Reference:

 ()

Reference:

Lowe, DavidG. (2004)
Distinctive Image Features from Scale-Invariant Keypoints

Reference:

Reitmayr, Gerhard and Drummond, T.W. (2006)
Going out: robust model-based tracking for outdoor augmented reality

Reference:

Rosten, Edward and Drummond, Tom (2005)
Fusing points and lines for high performance tracking

Reference:

 ()

Reference:

 ()

Reference:

Marchetti, Luca and Grisetti, Giorgio and Iocchi, Luca (2007)
A Comparative Analysis of Particle Filter Based Localization Methods

Reference:

Leonard, J.J. and Durrant-Whyte, H.F. (1991)
Mobile robot localization by tracking geometric beacons

Reference:

Jensfelt, P. and Kristensen, S. (2001)
Active global localization for a mobile robot using multiple hypothesis tracking

Reference:

Burgard, W. and Fox, D. and Hennig, D. and Schmidt, T. (1996)
Position tracking with position probability grids

Reference:

Fox, Dieter and Burgard, Wolfram and Dellaert, Frank and Thrun, Sebastian (1999)
Monte Carlo Localization: Efficient Position Estimation for Mobile Robots

Reference:

G. Klein and D. Murray (2006)
Full-3D Edge Tracking with a Particle Filter

Reference:

Harris, Chris (1993)
Active Vision

6 Chapter 2. Related Work

tracked as reference, the camera pose which best aligns best to the rendered model is

determined. Edges are easy to detect in images, offer a large degree of invariance to pose

and illumination changes and have some resilience to difficult imaging conditions like noise

and blur. Therefore, this approach remains an active field of computer vision. However,

edge models lack detail in comparison to fully textured models as used in this work.

The primary disadvantage of edges as features to track is that edge images look similar.

Whereas a rich selection of description techniques exist for matching point features, edges

are often matched simply by image proximity to a prior. Without a valid prior pose

estimate, most edge-based systems will break and not recover tracking [23]. Unimodal

methods calculate one Gaussian posterior pose for each frame, which then provides a

single prior pose for next frame. If the estimate is sufficiently incorrect, tracking will

fail. Particle filters provide an alternative approach to propagating pose estimates. Prior

distributions are no longer limited to single Gaussian, but can adopt truly non-Gaussian,

multi-modal forms.

Klein and Murray show that it is possible to measure each particle’s likelihood directly

on the graphics card. Depending on model complexity, this can be done at rates in

excess of 10,000 pose hypotheses per second, and allows their system to track objects of a

complexity comparable to that supported by state-of-the-art unimodal systems.

Aubry et al. [4] demonstrate a technique that can reliably align images of architectural

sites, like drawings, paintings or historical photographs, to a 3D model of the site. It is a

challenging task to align images, as a query can be very different from the 3D model due

to rendering style, drawing errors, lighting or change of seasons. Furthermore, the space of

possible alignments of the input image to a large 3D model is huge. To align different query

inputs like drawings, paintings to a 3D model local feature matching based on interest

points, e.g., SIFT, often fails to find correspondings across paintings and photographs.

In their approach they summarize a 3D model as a collection of discriminative visual

elements. They define these elements to be mid-level patches with respect to a given

viewpoint. They describe their method as a combination of multi-view geometry and

part-based object recognition.

State-of-the-art image-based localization uses 3D point clouds obtained from SfM tech-

niques to align query images. Sibbing et al. [46] explore how point cloud rendering tech-

niques can be used to create virtual views to extract features that match real image-based

features as closely as possible. These features are used to establish correspondences for

camera pose estimation. In their approach, they use a database to compute query images.

To estimate the camera pose, they find matches between 2D features and 3D points in the

model by using a 3-point-pose algorithm inside a Random Sample Consensus (RANSAC)

loop. To localize a query image, their database creates a sample of rendered views of the

point cloud. The computed viewpoints are similar enough to the real image to enable

feature matching. In our work, we use a similar approach where rendered images are

created as an input for our cost function. However, we use the whole image instead of

only feature observations. Additionally, our approach is not only a localization, but also

Reference:

G. Klein and D. Murray (2006)
Full-3D Edge Tracking with a Particle Filter

Reference:

Aubry, Mathieu and Russell, Bryan C. and Sivic, Josef (2014)
Painting-to-3D Model Alignment via Discriminative Visual Elements

Reference:

Sibbing, D. and Sattler, T. and Leibe, B. and Kobbelt, L. (2013)
SIFT-Realistic Rendering

2.2. SLAM 7

a camera tracking technique.

2.2 SLAM

SLAM has received much attention in the Augmented reality community in the last years.

The approach refers to a set of methods to solve the pose estimation and 3D reconstruction

problem simultaneously, while a system is moving through the environment [38].

Initial work by Davison et al. [11, 24] demonstrated that a system using a single

camera is able to build a 3D model of its environment while also tracking the camera pose.

While SLAM provides an inherent tracking solution, it does not provide any reference to

a known, global location. Therefore, information that is referenced to such a real location,

for example through a GPS position, cannot easily be rendered in a purely SLAM-based

system.

Visual SLAM systems use the camera itself to determine device position, by tracking

and mapping detectable features in the surrounding environment [52]. Davison et al.

[11, 12] were the first to propose monocular SLAM using a filtering approach. Klein

and Murray proposed a keyframe-based SLAM [24]. In this approach, keyframes are

sampled from the camera and processed in a background thread to produce a point cloud

reconstruction (the map). In general, monocular SLAM provides high accuracy camera

tracking in real-time, and is even capable of running on mobile phone platforms [25].

However, the camera pose is only given in a local reference system, defined with respect to

the first camera frame or an initialization target [10]. Lothe et al. register a SLAM map

captured from a moving vehicle to a polygonal 3D model, but require an initialization

provided by GPS or manual input [29].

The Parallel Tracking and Mapping (PTAM) system by Klein and Murray [24] and its

extension to multiple maps [7] is efficient enough to work on smartphones [25, 53]. In this

approach, the user moves a handheld camera around the scene, whereas the 3D map is

built from scratch and used for tracking and annotation. While it is a powerful approach

for small indoor scenes, this approach has limitations for larger outdoor scenes. The main

issue is that the system requires careful movement of the camera to ensure enough baseline

for 3D point triangulation, especially in the outdoor case.

A few previous works also use some combination of mapping and tracking with global

localization. Arth et al. use visual orientation tracking on a client and perform 6DoF

localization from the resulting panorama as a background task [2, 3]. At startup, the user

is required to explore the environment through the camera’s viewfinder.

SLAM [8, 55] systems are real-time, but their performance degrades in larger scenes,

where map maintenance becomes progressively expensive. These techniques are also frag-

ile, if the camera moves too quickly, which makes them less attractive for persistently

computing a precise camera pose over longer durations.

Newcombe et al. demonstrated in their work a real time camera tracking and recon-

struction framework based on detailed depth maps [33]. They use hundreds of images from

Reference:

Reitmayr, Gerhard and Langlotz, Tobias and Wagner, Daniel and Mulloni, Alessandro and Schall, G. and Schmalstieg, D. and Pan, Qi (2010)
Simultaneous Localization and Mapping for Augmented Reality

Reference:

 ()

Reference:

Jonathan Ventura and Clemens Arth and Gerhard Reitmayr and Dieter Schmalstieg (2014)
Global Localization from Monocular SLAM on a Mobile Phone

Reference:

 ()

Reference:

Klein, G. and Murray, D. (2007)
Parallel Tracking and Mapping for Small AR Workspaces

Reference:

Klein, G. and Murray, D. (2009)
Parallel Tracking and Mapping on a camera phone

Reference:

Cummins, Mark and Newman, Paul (2010)
Appearance-only SLAM at large scale with FAB-MAP 2.0

Reference:

Lothe, P. and Bourgeois, S. and Dekeyser, F. and Royer, E. and Dhome, M. (2009)
Towards geographical referencing of monocular SLAM reconstruction using 3D city models: Application to real-time accurate vision-based localization

Reference:

Klein, G. and Murray, D. (2007)
Parallel Tracking and Mapping for Small AR Workspaces

Reference:

Castle, R. and Klein, G. and Murray, D.W. (2008)
Video-rate localization in multiple maps for wearable augmented reality

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

Newcombe, Richard A. and Lovegrove, S.J. and Davison, A.J. (2011)
DTAM: Dense tracking and mapping in real-time

8 Chapter 2. Related Work

a video stream captured with a hand-held RGB color model (RGB) camera to produce

a set of surfaces. In their approach they immediately use the created model to track the

camera’s 6DoF pose by image alignment against the dense model. Their approach works

in real time on the graphics processing unit (GPU) and demonstrates that a dense model

provides reliable tracking under rapid motion.

SfM methods (alternatively referred as Monocular SLAM) primarily work with feature-

based models of the world. In a first step, feature-based methods observe a set of features

from a query image. In a second step, the camera position and scene geometry is computed

as a function of these feature observations only. Therefore, feature based-methods discard

all other information which is present in an image. Research show that using a feature-less

dense method provide a more complete, accurate and robust reconstructing and tracking.

Engel et al. demonstrate a feature-less monocular SLAM framework [16]. Their

approach locally tracks the motion of a camera to build a large-scale map of the

environment. Sensors like depth or stereo cameras have limited range at which their

measurements are realizable. Therefore, they are not as flexible as a SLAM approach.

Schoeps et al. use a direct monocular visual odometry system which runs in real-time on

a smartphone [45]. As a direct method, it tracks and maps on the images themselves

instead of extracting features from the images. Images are tracked using direct image

alignment, while geometry is represented as semi-dense depth map. Similar to Newcombe

et al., both papers use a semi-dense SLAM system to increase the robustness of the

camera pose estimates compared to sparse feature-based tracking systems.

In a nutshell, there are two different approaches to process SLAM:

• Panoramic SLAM

– This approach only provides rotation, and, as result, the user must stay in one

place

– Works instantly

– Localization success rate is strongly correlated to aperture angle

• Full 6DoF SLAM

– In this case, the user can move freely

– As disadvantage, a baseline is required, therefore, the user has to walk several

meters

Reference:

Engel, Jakob and Schops, Thomas and Cremers, Daniel (2014)
LSD-SLAM: Large-Scale Direct Monocular SLAM

Reference:

Schoeps, T. and Engel, J. and Cremers, D. (2014)
Semi-dense visual odometry for AR on a smartphone

2.3. Contribution 9

2.3 Contribution

The main question is: What do users expect from AR applications? Schmalstieg provides

a list of requirements for location based AR applications1:

• An application that works on smartphones, tablets or eyeglasses

• A localization in real time with 30Hz or less than 100ms latency

• The accuracy is expected around one cm and less than one degree

• The system works indoor and outdoor

State-of-the-Art computer vision based approaches are assisted by inertial sensor data

and provide prune search space with sensor priors:

• GPS: only search near position prior

• Compass: only search in approximate heading

• Accelerometer/Gravity: Only consider features with right orientation

Our outdoor localization system provides an accurate camera pose in real time with no

assistance from the user. Pruning the search space with sensor priors provides a first

estimation of the camera pose. The user is not required to stay in one position, to move

several meter to get a baseline or to rotate around a position. The current version of our

application works on a desktop computer and imports a recorded video stream and sensor

data from a smart device. Performance measurements indicate that a mobile version is

feasible.

As reference for our vision-based computations, our localization framework requires a

geo-registered 3D model with textures as reference model. For this project, a model of the

Hauptplatz in Graz, Austria, the Tummelplatz in Graz, Austria, and geo-referenced images

are provided2. In the test areas, we recorded multiple videos and their respective sensor

data with a smartphone. Tests are applied under different lighting conditions and with

more or less objects occluding the background to test the robustness of our approach. The

captured videos and its corresponding sensor data are transfered to a desktop computer

where our algorithm is executed. With our testcases, we demonstrate the localization and

tracking ability of our approach.

In our opinion, a framework which demonstrates the current state of the art in particle

filter based localizations is a valuable contribution to the current research in this field.

We can demonstrate that, given today’s hardware it is possible to compute the pose of

1UMIC Day 2014, https://www.umic.rwth-aachen.de/uploads/media/UMICDay2014_Schmalstieg.

pdf
2Christian Doppler Laboratory for Handheld Augmented Reality at Graz University of Technology,

https://handheldar.icg.tugraz.at/index_detailed.php

https://www.umic.rwth-aachen.de/uploads/media/UMICDay2014_Schmalstieg.pdf
https://www.umic.rwth-aachen.de/uploads/media/UMICDay2014_Schmalstieg.pdf
https://handheldar.icg.tugraz.at/index_detailed.php

10 Chapter 2. Related Work

a smartphone with a particle filter that uses hundreds of particles each second. Today’s

GPUs and CPUs are powerful enough to compute a brute force method. Another benefit

of our approach is that the approach requires no support from the user. The size of

our virtual reference model is about 3 MB. This is another advantage, because this is an

amount of data a consumer mobile phone can download easily from a server. Furthermore,

our approach requires little memory space, because our system only saves the parameters

required for the camera poses.

3
System overview

Contents

3.1 Sensor Data . 11

3.2 Virtual City Model . 13

Our outdoor localization system provides accurate localization in real time with no

assistance from the user. Pruning the search space with sensor data provides a first

estimation of the camera pose. The user is not required to rotate around a fixed position

or move several meters in order to get a baseline initialization. The current version of our

application works on a desktop computer, but was tested on video and sensor data from a

smartphone. Our desktop application performs the localization process in real time with

30Hz.

In our approach, a sophisticated system is designed to accomplish an accurate local-

ization process in real time. The framework imports a textured model of the environment

and data from a smartphone. These data include video stream and the corresponding

camera pose of each frame. The pose consists of position received from the GPS unit and

orientation obtained from the gyroscope. Our approach uses a particle filter where each

particle consists of a camera pose and an importance value describing the likelihood of

each particle.

3.1 Sensor Data

The system imports the input data and displays the video stream, the camera pose in the

virtual environment according to the data from the smartphone and the corrected results

from the particle filter.

In our framework, we import two types of items:

1. The rendering of the virtual environment requires a geo-referenced model of the

environment and geo-referenced panorama images for texturing the model. Our test

11

12 Chapter 3. System overview

areas are the Hauptplatz in Graz, Austria, shown in Figure 3.1 and the Tummelplatz

in Graz, Austria. Required memory for the geometric model and the panorama

images is about 3MB. The images used for texturing are handpicked in a way such

that the whole area around the user is textured, e.g., eight textures are used for the

virtual model of the Hauptplatz.

2. Data collected from the smartphone includes the video stream and corresponding

device poses for each frame. The device delivers intrinsic camera data for the focal

length f , center of projection along the x-axis (cx) and along the y-axis (cy). For

extrinsic parameters, the device delivers data for latitude and longitude from the

GPS unit in the WGS84 format and the attitude matrix A (equation 3.2) for yaw,

pitch and roll angles from the IMU as rotation matrix. We map the GPS position

to UTM coordinates.

In our system, we represent the device pose c using OpenGL’s gluLookAt format,

which consists of

• eye = (xeye, yeye, zeye)

• center = (xcenter, ycenter, zcenter)

• up = (xup, yup, zup)

These vectors represent the camera center, camera viewing target, and camera up

direction, respectively. This representation is redundant, since a camera pose has only

6DoF. However, as will become evident below, this representation is very suitable for our

purposes, since it allows us to concentrate sampling on a subspace of the 9DoF used in

this notation.

Our frameworks uses the UTM coordinate system, and it is necessary to pre-process

the input data and to project the data into UTM. For data capturing, we used an Apple

iPhone 4.

The attitude output from Apple iOS is: +X is north, +Y is west, +Z is up, whereas

UTM uses: +X is east, +Y is north, +Z is up.

Therefore, we need to apply 90 degree turn (equation 3.1) to Apple iOS attitude.

UTM conversion:

U =

0 −1 0

1 0 0

0 0 1

 (3.1)

The attitude A received from the smartphone:

A =

R11 R12 R13

R21 R32 R23

R31 R32 R33

 (3.2)

3.2. Virtual City Model 13

To get the center and up vector results we compute the up and center vector in iPhone

axes (equation 3.3) and world coordinates (equation 3.4):

upworld = A−1 ∗
(

1 0 0
)

(3.3)

centerworld = A−1 ∗
(

0 0 −1
)

upUTM = U ∗ upworld (3.4)

centerUTM = U ∗ centerworld

The current version of our application works on a desktop computer and is based

on OpenSceneGraph (OSG)1 and Open Source Computer Vision (OpenCV)2. OSG is

responsible for rendering the virtual environment which is processed on the GPU. To get

the importance of each particle, vision based methods are used to compare the rendered

image to the real world image for each frame. This is computed on the central processing

unit (CPU) using the OpenCV library.

3.2 Virtual City Model

For our vision-based localization approach, a virtual model of the environment is required.

To render the model, our framework imports a geo-referenced model obtained from a SfM

pipeline and geo-referenced panorama images for texturing the model. One of the test areas

is Hauptplatz in Graz, Austria, shown in Figure 3.1. The other test area is Tummelplatz

in Graz, Austria. Data is provided by the Christian Doppler Laboratory for Handheld

Augmented Reality, Graz University of Technology3. The provided data includes a geo-

referenced untextured model of the first district in Graz and geo-referenced images with

their respective camera pose. Images are recorded from a street side view. The 3D model

was constructed using large-scale SfM from panoramas and alignment with a LiDAR city

model.

1http://www.openscenegraph.org/
2http://opencv.org/
3Christian Doppler Laboratory for Handheld Augmented Reality at Graz University of Technology,

https://handheldar.icg.tugraz.at/index_detailed.php

http://www.openscenegraph.org/
http://opencv.org/
https://handheldar.icg.tugraz.at/index_detailed.php

14 Chapter 3. System overview

Figure 3.1: The system uses a solid geo-referenced model (left) and panorama images (middle)
as input. Using projective texture mapping, both input data are combined to a virtual model of
the environment (right).

To compute the virtual environment, our framework requires a geo-referenced model

and a set of i geo-referenced images to compute the virtual model (table 3.1). The format

of the imported data is as follow, where we denote f as the focal length of the camera, Iw
as the image width and Ih as the image height:

Untextured model [.ply format]
f Iw Ih
filenamei eye(x,y, z)i center(x,y, z)i up(x,y, z)i

Table 3.1: Input data to compute virtual city model. This includes an untextured geo referenced
model of the environment, parameters of the camera and geo referenced textures used for projection.

The imported virtual model is stored in the .ply format. For projective texture map-

ping, we use the OSG class osg::TexGen4.

To construct this class, a viewing matrix and a projection matrix is required. The

viewing matrix is computed by Open Graphics Library (OpenGL) function gluLookAt5

and uses eye, center and up as parameters (see Table 3.1). For the projection matrix, the

framework uses a symmetrical perspective projection provided by the OpenGL function

gluPerspective6. The field of view angle, in radian, in the y direction (fovy) parameter

used for gluPerspective is computed according to equation 3.5.

fovy = 2 ∗ tan(Ih/(2 ∗ f)) (3.5)

Next to the virtual model, data from a smartphone is imported (table 3.2). The sensor

data include position and orientation to calculate the viewing matrix. The parameters for

the projection matrix include the fovy parameter, which is set according to the camera

data and the aspect ratio according to the image size. zNear is set to 0.1 and zFar is set

to 100.

4http://trac.openscenegraph.org/documentation/OpenSceneGraphReferenceDocs/a00868.html
5https://www.opengl.org/sdk/docs/man2/xhtml/gluLookAt.xml
6https://www.opengl.org/sdk/docs/man2/xhtml/gluPerspective.xml

http://trac.openscenegraph.org/documentation/OpenSceneGraphReferenceDocs/a00868.html
https://www.opengl.org/sdk/docs/man2/xhtml/gluLookAt.xml
https://www.opengl.org/sdk/docs/man2/xhtml/gluPerspective.xml

3.2. Virtual City Model 15

Input data from smartphone include a set of images j and their respective camera

poses.

The format of the imported data is as follow:

focal Iw Ih
filenamej time indexj eye(x,y, z)j center(x,y, z)j up(x,y, z)j

Table 3.2: Input data from the smartphone includes images and information from GPS and
gyroscope to compute the pose and parameters of the camera. Our system supports the processing
of images or videos.

Our model uses geo-referenced images for projective texture mapping to provide a

reference model for the image queries of the particle filter. Our projection model works

very well for facades of buildings as seen in Figure 3.2, if the query image has a similar

pose compared to the geo-referenced input image. But the computed model has issues

caused by projecting textures, if the angle of the projection is too big. Further issues are

that our testcases are limited to the area around the position of the input images, e.g., if

the user is too close to the buildings, images lack details. But not only the images restrict

our possible testcases, the model itself has few polygons, which is an advantage regarding

performance, but a disadvantage in regard to details. As demonstrated in Figure 3.2

(right, top), the fountain is hard to recognize.

16 Chapter 3. System overview

Figure 3.2: Our projection model works very well for facades of buildings (left, top). None of
the used geo-referenced images is recorded close the a building, therefore, the image quality is
reduced near buildings (left, bottom). Other issues are the low polygon count, which makes it
hard to recognize the fountain (right, top) and problems caused by projective texture mapping
(right, bottom).

4
Particle Filter

Contents

4.1 Particle Dimensions . 18

4.2 Motion Model . 18

4.3 Calculating Particle Weight . 19

We use a particle filter to solve the localization problem. The algorithm processes the

live video stream and produces a corrected pose estimate in real-time.

A particle filter is a simulation-based method for tracking a system with partially

observable state. We briefly review particle filters in this section. The reader is referred

to Thrun et al. [49] for a more detailed review. A particle filter maintains a weighted

(and normalized) set of sampled states, St = {〈xit, wi
t〉 i = 1,, N}, called particles pit,

where xit is the state of the ith particle, and wi
t is its weight. The weight of a particle can

be thought of as the probability that the particle’s state corresponds to the true state of

the system. In our case, the state is the configuration of the viewing matrix using the

gluLookAt format described in section 3.1. The steps of one particle filter iteration are as

follows:

1. Each particle is propagated according to our propagation model

2. Their weights are computed by comparing rendered and real world frames

3. The top ranked particles are re-sampled to obtain a new set of equally weighted

particles, which approximates the new posterior distribution

Re-sampling causes more particles to be generated in areas of the state space that are

likely to correspond to the true state of the system. In our system, one particle filter

iteration is processed for every new frame when it arrives.

Each particle consists of a camera pose, shown in Figure 4.1, and the associated weight

describing the likelihood of each particle to be the correct pose of the camera. The state

17

Reference:

 ()

18 Chapter 4. Particle Filter

space has the nine dimensions, consisting of the components of the vectors eye, center

and up.

Figure 4.1: Each particle has a camera pose (left) and its weight. To set up the particle filter,
multiple particles are computed (middle, right).

4.1 Particle Dimensions

The initial sensor data from the smartphone are error-prone and, therefore, correction is

necessary. One approach to correct the position is to search in the local neighborhood

to estimate the real camera pose. To process this step, the particle filter requires a

distribution to propagate the particles and the quantity N of particles propagated for

each frame. One disadvantage of the particle filter algorithm is the poor performance, if

the dimensions of the observed state are high. In our case, we have nine dimensions. To

reach real time performance, we use a particular distribution model with the following

properties:

• We assume a constant altitude for value zeye, because the GPS reading is noisy and

the phone is typically held at roughly the same height off the ground at all times.

In comparison to the distance to the buildings, the variation in camera height is

negligible, so constant camera height was chosen to reduce the number of particles

needed.

• It is expected that the smartphone is not rolled, and, therefore, up barely changes.

• We further expect the user to look at the facade of the buildings and not to the

ground or sky; therefore, zcenter barely changes.

As result, the values of xeye, yeye, xcenter and ycenter have the most impact on the

algorithm.

4.2 Motion Model

In this discussion, we refer to the device pose delivered by the internal GPS/IMU sensors

as the ’sensor pose’.

4.3. Calculating Particle Weight 19

Each particle pit is formed by perturbing a prior pose by a sample from a statistical

motion model. Similar to the work of Klein and Murray [23], we sample these motions

from a Gaussian noise model. For the initial step, we propagate particles as follows:

pit,d = ci,d +N (0, σd) (4.1)

where pit is the particle, ci,d the d-th dimension of the sensor pose ci of the ith frame

and σd the standard deviation of the noise added for that dimension. For the following

re-sampling steps, c is replaced by the state of one of the most probable particles from the

previous iteration.

pi+t,d = pi−t,d +N (0, σd) (4.2)

where pi+t is a particle for the current frame, pi−t is a probable particle of the previous frame,

d the dimension and σd the standard deviation of the noise added for that dimension.

For each frame, changes in the sensor data are measured. The most probable particles

pi−t are duplicated and modified with the sensor changes between the current and the

previous frame.

pt = pi−t + (c+i − c
−
i) (4.3)

where c−i is the sensor pose of the previous frame and c+i the sensor pose of the current

frame. The unmodified sensor pose is also added as a particle.

In summary, for maximum robustness, our particle re-sampling includes (a) the most

likely particles from the previous iteration (b) the most likely particles, modified with

changes between the current and last frame according to the sensors and (c) the unmodified

sensor pose.

4.3 Calculating Particle Weight

To compute the weight of a particle, we compare an image rendered at the particle’s pose

to the current image from the device camera.

We use two different weighting approaches in order to capture color, texture and edge

information. The first approach uses the sum of squared distances (SSD) measure to

calculate the pixelwise difference in color between a rendered image and a frame from the

smart device, shown in Figure 4.2. The second approach uses SSD to compare the image

gradient magnitudes, shown in Figure 4.3.

The image SSD method, as shown in Figure 4.2, compares the rendered image to the

image captured from the smart device, with a mask applied. We mask out the part of the

rendering corresponding to the sky (pixels not belonging to any scene geometry), specified

as a binary mask mj ∈ {0, 1}. We compute the SSD for each particle pi as follows:

eiI =

∑
j mj · ||Ij − Vi,j ||2∑

j mj
(4.4)

Reference:

G. Klein and D. Murray (2006)
Full-3D Edge Tracking with a Particle Filter

20 Chapter 4. Particle Filter

where eiI is the error, I is the camera image, and Vj is the rendered image for particle i.

The gradient magnitude SSD method, as shown in Figure 4.3, computes the average

difference between the gradient magnitudes of the rendered image and the masked gradient

magnitudes of the camera image as follows:

eiG =

∑
j m
′
j · (||GI

j || − ||GV
i,j ||)2∑

j m
′
j

(4.5)

where eiI is the error, GI contains the gradient magnitudes of the camera image, GV
i

contains the gradient magnitudes of the rendered image for particle i, and m′ is the

binary mask after applying a dilation operator. The dilation helps to avoid removing

important edges on the contours of the buildings. The gradients are computed using the

Sobel operator applied to the rendered and the real world image.

The results of these operations are two measures of the average error between the

rendered and the real world image. The error value for each method is normalized so that

N∑
i=0

eiI = 1,
N∑
i=0

eiG = 1 (4.6)

The weights are then calculated as

wi
I = exp(−eiI), wi

G = exp(−eiG) (4.7)

and normalized so that

N∑
i=0

wi
I = 1,

N∑
i=0

wi
G = 1 (4.8)

The final weight is calculated simply as the sum of the weights from the two methods:

wi = wi
I + wi

G (4.9)

The particle with the highest combined weight wi is considered the best estimate of

the device pose, i.e., the pose to be used for AR rendering.

Before computing the error functions and weights, all images under consideration are

downsampled. This helps to avoid or reduce artifacts caused by the differences between

the video stream from the smart device and the images used to create the 3D environment

model. Real world objects like people, cars, differences in the lighting condition or camera

artifacts can cause artifacts in the images. Another advantage of small images is the

improved performance, because the particle filter algorithm requires hundreds of images

to estimate the correct camera pose.

4.3. Calculating Particle Weight 21

Figure 4.2: The SSD method compares a rendered image to a masked image captured from the
real world video stream (right, bottom). In a first step, a masked image is created that discards
the sky from the virtual image (left, bottom). White pixels are not used for comparison. The real
world image (left, top) is combined with the mask, and the result (right, top) is compared to our
rendered image. The similarity between the masked, rendered image and the input camera image
contributes to the weight of the particle.

Figure 4.3: The gradient magnitude SSD method compares image gradients. A Sobel operator
is applied to the rendered image and the real world image (left). Pixels in the sky in the rendered
image (right) are masked out in both images. The similarity between the masked gradient images
(middle) contributes to the weight of each particle.

5
Processing Pipeline

This section discusses the processing pipeline and the required computation time for each

step. Our system is proposed to work at 30 Hz, therefore, it is necessary to identify the

computation time of every step.

The particle filter process can be divided into two separated parts. In our approach,

two threads are responsible for computing. In a main thread, images are rendered for each

particle. A working thread is executing the computation of the errors for both methods.

The first step is to render all particles for one frame and to compute their respective errors.

In a second step, it is necessary to compute the weight of each particle to get the most

likely result.

To measure the performance test are made with our reference system (Intel Core i7-

4770, 16 GB RAM and an AMD Radeon R9 280X), and the images for the particles have

a width of 100 pixels and a height of 56 pixels.

For the first step, our system renders the images required for initial and update step

on the GPU and computes the error of each particle according to equations 4.4 and 4.5

on the CPU.

Required computation time for the first step on our reference system is about one

millisecond for each particle (table 5.1). Although the CPU is responsible for image

based computation, rendering each particle requires more time, as shown in table 5.1.

Performance measurements show that computing eiG requires significantly more time than

computing eiI . The reason is that we use the CPU to execute the Sobel operator.

The second step for each frame is to compute the particle weight on the CPU according

to equation 4.7. The required computations times for this step with our reference computer

are shown in table 5.2. The step rendering viewports is not part of the particle filter

algorithm, but it is included in the framework to present the results.

Our reference system is able to compute nearly one thousand particles each second

with parallel execution, as shown in Figure 5.1. Our execution pipeline performs with

two parallel threads. The main thread is responsible for rendering and computing the

23

24 Chapter 5. Processing Pipeline

Process Time in ms

Main thread
Rendering particle ≈ 1.01
Copy texture from GPU to CPU memory ≈ 0.1

Working thread
Compute eiI ≈ 0.26
Compute eiG ≈ 0.61

Table 5.1: Several steps are necessary to execute the the particle filter algorithm. In our approach
two threads are responsible for computing. The main thread is responsible for rendering for each
particle. A working thread is executing the computation of the errors for both methods in a parallel
process.

Process Time in ms

Main thread
Update step ≈ 2.10
Rendering viewports ≈ 3.30

Table 5.2: In a final step the particles weights are computed and presented. The third process is
not part of the particle filter algorithm but it is included in the framework to present the results.
There are three viewports: The first view shows the rendering of the virtual scene with the pose
from the particle filter. The second viewport presents the scene with the pose received from the
smartphone, whereas the third viewport shows the video stream from the smartphone.

weights. A working thread is computing the Sobel operator required for image gradient

magnitudes, eiI and eiG according to equations 4.4 and 4.5 for each image.

Performance measurements show that the GPU load is approximately 66%, which

indicated that there is space left for performance improvements. The required memory is

about 100 MB.

To render the virtual model, we use projective texture mapping at runtime. For future

improvements we recommend to import a textured model, which will increase rendering

speed up to 10%, because currently the projective textures are computed at each frame.

25

Figure 5.1: Our execution pipeline performs with two parallel threads. The main thread is
responsible for rendering and computing the weights. A working thread is computing the error eiI
and eiG according to equations 4.4 and 4.5 for each image.

6
Experiments

Contents

6.1 Implementation Notes . 28

6.2 Image-based Results . 29

6.3 Localization Accuracy . 31

6.4 Comparison of Methods . 36

6.5 Performance . 37

6.6 Environment and Occlusion . 38

Our particle filter approach provides accurate localization in real time with no assis-

tance from the user. Pruning the search space with sensor information provides a first

estimation of the camera pose. The user is not required to rotate around a fixed position

or move several meters in order to get a baseline initialization.

In this chapter, we test the capabilities of our system in two different test areas. The

test areas for our particle filter system are the Hauptplatz and Tummelplatz in Graz,

Austria. Video, GPS and IMU data from a smartphone are recorded under weather and

environment conditions which differ from the provided panorama images used for our

virtual reference model. In our tests, the operator moved freely in the area, but avoided

pointing the camera toward the ground or the sky. Rolling of the camera (rotation around

the optical axis) was also avoided. In total, we recorded sixteen videos, where four videos

were discarded due to very bad sensor data. This is the case when the position is far more

than ten meters off the real position.

The hardware and software for recording data and processing our particle filter are as

follows:

For recording GPS, IMU data and the video stream we used an Apple iPhone 4. To

process the particle filter, we used a desktop computer with an Intel Core i7-4770, 16 GB

RAM and an AMD Radeon R9 280X. Furthermore, we used a laptop with an Intel Core

i5-3117U, 8 GM RAM and a NVidia Geforce 620M.

27

28 Chapter 6. Experiments

Dimension σd Approx. range

xeye, yeye 5.5 up to 9 meters
xcenter, ycenter 0.15 up to 9 degrees
zcenter, xup, yup, zup 0.085 up to 5 degrees

Table 6.1: Noise parameters for the initialization step

The current version of our application uses OSG for rendering and OpenCV for image

processing.

6.1 Implementation Notes

This section provides some details about the particle filter configuration for the initial step

and the update step. The initial step is responsible for an accurate localization. Therefore,

the noise parameters should be higher and the initial step requires more particles to

compute an accurate first estimation of the pose. The update steps compute with lower

noise parameters and less particles to provide real-time tracking. This approach works

well, if the initial step finds the correct pose.

For each particle, the rendered frame from the virtual environment is compared to the

image from the smartphone. Each frame is scaled to a width of 100 pixels, whereas the

height depends on the aspect ratio of the smartphone image and is, in the case of an Apple

iPhone 4, 56 pixels. Our system is initialized with one thousand particles. The chosen

noise parameters for the initial particle distribution governed by Equation 4.1 are given

in Table 6.1. The initial values are based on empirical data1.

This setup provides a lot of freedom for the dimensions xeye, yeye, xcenter, ycenter. In

our test cases, the user can walk and look around freely. The only restrictions are to

avoid rolling the smartphone and not to direct it towards the ground or into the air. The

restrictions help to reduce the dimensions of our particle filter system. As a result, fewer

particles are necessary, which reduces computation time.

In the subsequent update iterations, the three most probable particles p1t , p
2
t , p

3
t and

the sensor pose ci are used for re-sampling. The chosen noise parameters for the particle

motion model governed by Equation 4.2 are given in in Table 6.2. To reach a real-time

performance, only the initial step has more freedom in each dimension, because this step

is responsible for finding the correct camera pose.

In the update step, additional particles are generated according to equation 4.3 and

modified with the motion detected by the inertial sensors. In total, for our testcases the

update step uses only 13 particles. As a result, the update frames require significantly

less computation than the first initialization frame. This enables real time tracking even

on slower computer systems. Our test videos have 450 frames each, so altogether 6850

1http://www.nstb.tc.faa.gov/reports/PAN86_0714.pdf

http://www.nstb.tc.faa.gov/reports/PAN86_0714.pdf

6.2. Image-based Results 29

Dimension σd Approx. range

xeye, yeye 0.36 up to 60 centimeters
xcenter, ycenter 0.01 up to 0.5 degrees
zcenter, xup, yup, zup 0.01 up to 0.5 degrees

Table 6.2: Noise parameters for the update steps

particles are evaluated for a 15 second long video at 30 Hz. To work in real time the device

has to compute approximately 450 particles each second.

The system configuration is based on our twelve test videos. To ensure that our system

works with untested videos, we recommend to apply supervised learning to configure the

parameters. Considering that the sensor pose and the real position according to the video

stream is available, supervised machine learning algorithms should be able to optimize our

parameters.

6.2 Image-based Results

We tested our system with twelve videos recorded in our test areas. Figure 6.1 shows

sampled frames from the test videos alongside renderings of the virtual environment,

comparing the best pose from the particle filter to the uncorrected sensor pose. As can be

clearly seen in these examples, our approach significantly improves the camera pose and

offers much better real-virtual alignment than the raw camera pose delivered by the GPS

and IMU sensors.

We also found that our system is robust to image artifacts like shadows and the presence

of objects that are not in the virtual environment, like cars or people. Examples of

occluding objects are shown in the first three rows of Figure 6.1, where occluding people,

street cars, and street carts are present in either the real image or the virtual image. Rows

four and five show examples of severe shadowing in the real image, which is correctly

handled by our system and does not affect the camera pose estimate.

In most cases, the rendering of the best particle closely matches the input camera

image. However, we found that, in some cases, the estimated camera pose exhibits an

error of up to the sensor pose. We found that, because the 3D model is textured with

projective texture mapping, the localization result is negatively affected, if the camera’s

viewing angle differs greatly from the viewing angle of the images used to make the 3D

model. Another issue is that the initial step does not guarantee to provide a good first

estimation of the pose due to random sampling. The update step relies on a accurate

result from the initial step. But, even with a bad initial start pose, results show that over

time, the particle filter tends to converge. The nature of the random sampling process

in the particle filter can also cause jittering in stationary scenes, for example, when two

particles have similar weights, but slightly different poses.

Especially in the context of AR, this jitter will result in frequency movement of virtual

30 Chapter 6. Experiments

Figure 6.1: The input data for a pose query is an image from the smartphone (left) and sensor
data from GPS and gyroscope. The device sensors are used as an initial guess (right). Our system
provides an improvement of the initially guessed camera pose (middle). Note the robustness to
issues such as occluding objects (first three rows) and shadows (fourth and fifth rows).

6.3. Localization Accuracy 31

objects in the view of a user and will impact the user experience. Using more particles

could reduce the jitter, but will not remove it entirely, as it is caused by the random

nature of the particle filtering process. However, it should be possible to combine the

localization method with some frame-to-frame tracking system that produces a smooth

camera trajectory.

Depending on the characteristics of the sensors and the environment conditions, the

particular noise parameters we chose might need to be increased or decreased. For example,

when near building walls, GPS will produce worse location estimates, because of restricted

satellite visibility and signal reflection. The magnetometer (used to produce a heading

estimate) also is affected by nearby metal structures. If the accuracy of the pose estimate

from the sensors decreases, the system might need to be modified to have a larger search

space (by increasing the standard deviations in the propagation model) and to use more

particles to represent the larger search space.

Although our system, as tested, is implemented on a desktop computer, we are confi-

dent that the approach could easily achieve real-time rates on mobile hardware. This is

because most of the computation consists of either rendering of textured models with low

polygon count, or simple image processing operations with small filter size. These kinds of

operations are perfectly suited for the GPU currently available on smartphones or tablets.

6.3 Localization Accuracy

Image-based results look promising, but the remaining question is if the good image-based

results are reflected in an accurate camera pose. This section investigates the accuracy of

our particle filter algorithm. To measure the accuracy, we use different testcases.

The first and simple test uses geo-referenced images provided by the Christian Doppler

Laboratory for Handheld Augmented Reality, Graz University of Technology. Other tests

use data imported from a smartphone, where the position is looked up on Google Maps2

and Bing Maps3.

In the first testcase, see table 6.3, we evaluate the accuracy of the UTM position with

one of our geo-referenced images. These images are exactly the same images used for

texturing our city model. To simulate a smartphone, the sensor data is modified with a

randomly generated noise factor. The results show that the particle filter algorithm finds

a position very close to the true position. This testcase has twenty frames where every

frame shows the same image. The required computation time on our desktop reference

system is about three seconds. To evaluate the accuracy of our approach, this testcase

uses one hundred particles for the update step.

One reason that the particle filter algorithm does not find the correct position is the

low polygon count of the model, e.g., the roof of the buildings are more flat in the model

2http://www.geoplaner.com/
3https://www.bing.com/maps/

http://www.geoplaner.com/
https://www.bing.com/maps/

32 Chapter 6. Experiments

Table 6.3: In this testcase, we evaluate the accuracy of our algorithm. The input query (left
image) is one of our geo-referenced images. To simulate a smartphone, the sensor data is modified
with a randomly generated noise factor. The image on the left is our query image, our randomly
generated noisy camera pose (right image) and the result of the particle filter (middle image).

compared to the real world. Another issue is that projective texture mapping projects

parts of the sky onto the roof.

In the next testcase, we evaluated the accuracy of a video stream from our smartphone

(table 6.4). For this test, we only used the first frame of the query video. For this testcase,

the update step uses 13 particles for each frame, and the test duration was ten seconds

on our desktop reference system. Results show how long it takes our algorithm to find

the correct position. In most cases, our algorithm finds a pose very close to the real pose

immediately or after a couple of frames. In rare cases, our algorithm is stuck near the

sensor position. The reason is that the variables for the update step are very restricted and

constant; therefore, it can happen that our algorithm is trapped near the initial position.

The results for the position of the whole video sequence is shown in table 6.5. In

this case, the particle filter starts with a bad position. About three seconds are required

to find a position close to the true position. It is noteworthy that the position is noisy,

although the video was captured without moving. Our algorithm considers changes in the

GPS position and the IMU according to equation 4.3. For the update steps it is necessary

to distribute new particles near the pose, because it might take time to find the correct

position. The disadvantage of this approach is that it causes jittering, which could be

6.3. Localization Accuracy 33

Table 6.4: Image-based results look promising. But in our approach, we use low detail polygon
model and low resolution images to compute the weight of each particle. In this test, we compared
the UTM position for x and y for one of our test videos. For the first test (row 1-3), we replaced
every frame of the test video with the first frame. The test shows how long it takes our algorithm to
find the correct position. Results show that the correct position is found immediately (first row).
Rare case where the particle filter algorithm requires several iterations until a good position is
found (second row). Rare case where the algorithm does not find the correct position (third row).
The variables for the update steps have less freedom; therefore, it can happen that our algorithm
is trapped near the initial position.

34 Chapter 6. Experiments

Table 6.5: The results for the position of the whole video sequence with a good initial guess (first
row) and a bad initial guess (second row). It is noteworthy that the position is noisy, although the
video was captured without moving.

prevented if the sensors suggest that there is no change.

Our approach considers the most likely position as the correct position. The most

probably particle has the highest combined weight according to equation 4.9. Table 6.6

shows the particle weights for one of our test videos. The initial step is computed with

1000 particles. Results show that there are few particles with high and few particles with

low weight. There is no significant difference between the weight of the particles. The

update steps have 13 particles, and results show that the most likely particle has a weight

only slightly above the average value for all particles. The particle weight for one of

our test videos show that the weight values are very noisy (bottom). This result reflects

the jittering effect visible in stationary scenes. Our results show that the jittering effect

decreases over time, until no better pose can be found.

A disadvantage of our algorithm is that there is no reference value that determines

a computed pose is correct. In our approach, a pre-determined number of particles is

computed without adapting the number of samples over time, because there is no break

condition. A reference value could be compared to the cost functions 4.4, 4.5 and the

computed weight value for each particle according to equation 4.7. This would enable

a break condition where the algorithm stops searching the state space for a more likely

camera pose. Currently, there is no break condition, because results show that the weight

6.3. Localization Accuracy 35

Table 6.6: The weight of particles according to our calculation (equation 4.7). The initial step is
computed with 1000 particles (left, top). Results show that there are few particles with high and
few particles with low weight. There is no significant difference between the weight of the particles.
The update steps (right, top) are computed with 13 particles for each frame.
The particle weight for one of our test videos with 420 frames show that the weight values are very
noisy (bottom). These result reflects the jittering effect visible in stationary scenes, where a more
probably pose is found in the next update step.

values are close together; therefore, it is hard to estimate if a position is correct.

Our results show that, due to the random nature of the approach, there is no guarantee

to find the correct position, because, without a reference value, the algorithm cannot

estimate if the most probable pose is the true pose. Furthermore, a reference value would

also improve performance. If the correct pose is found, the next update step would require

less particles.

36 Chapter 6. Experiments

6.4 Comparison of Methods

To compute the weight of each particle, we use two different vision-based cost functions,

as discussed in section 4.3. As shown in chapter 5, a second cost function requires little

additionally computation time. In this section, we discuss the benefit of a second method.

Figure 6.2 shows some failure cases for each method. The rendered images on the right have

a bad pose estimate; however, both particles have similarly high weight when compared

to the input image on the right using our cost functions. In future work we would like to

find ways to mitigate this problem.

Figure 6.2 shows the input query from the smartphone (first column), the result for

the particle with the highest combined weight (second column), the result for gradient

magnitude SSD (third column) and the result for SSD (fourth column).

Figure 6.2: To compute the final weight of a particle according to equation 4.9 we use two methods
(SSD and gradient magnitude SSD). The input query from the smartphone (first column). The
result for the particle with the highest combined weight (second column). The result for gradient
magnitude SSD (third column) and the result for SSD (fourth column).

SSD is less effective if a significant amount of sky is visible, causing the number of

pixels under consideration to decrease and leading to a high weight. Gradient magnitude

SSD work best when parts of the building and parts of the sky are visible. This is because

the highest gradients are at the contours of the buildings. The result of the combined

weight provides a very good result.

Both methods work with low resolution images. We use low resolution images to reduce

artifacts and to increase performance. Results show that an image width between 50 to

200 pixels and its corresponding camera dependent height deliver a good performance with

an accurate pose result.

Figure 6.3 shows a testcase where our algorithm fails to find the correct pose. According

to equations 4.4 and 4.5, the average pixel-wise error for both of our cost functions is

computed. For both testcases, the most likely pose is computed. Results show that

the error for both cost functions is smaller for the more likely camera pose. Results

indicate that not enough particles are distributed to find the correct pose. In the current

6.5. Performance 37

configuration, only the initial step has a lot of freedom to distribute the particles according

to our motion model. For future improvements, we suggest to compute multiple update

steps with more freedom and more particles to provide a better accuracy of our algorithm.

Figure 6.3: The left image is the query from a smartphone. The image in the middle shows a
case where the initial steps provides a bad result. Compared to a good result (right image), the
error for both cost functions is higher. This indicates that not enough particles are distributed to
find the correct pose.

6.5 Performance

AR applications are expected to work in real time. Therefore, we tested our approach

with different computer systems as shown in table 6.7. The results show that a current

desktop computer (first row) can process the video faster than required.

All of our test videos work with 13 particles for each frame, and our desktop reference

system is powerful enough to compute this configuration in real time. With seven particles

the laptop computer system (second row) works very fast. The problem is that with a low

number of particles, testcases with fast motion fail. 25 particles provide slightly better

results at much higher costs. Results indicate that a smartphone version is feasible.

Despite the computation time required, computational resources needed for our particle

filter algorithm are low. The input data require is about 3 MB for the virtual model and the

geo-referenced textures for an area of approximately 100x100 meters. This is an amount

of data a smartphone can download easily. Required memory for the program is about

100 MB.

The advantage of the particle filter algorithm is that the number of particles can be

changed easily. Therefore, it is possible to adjust the number of particles depending on the

used computer system. Our system uses a fixed number of samples during the estimations

process which can be very inefficient. One possible solution is to use Kullback-Leibler

distance (KLD) sampling. This approach adjusts the number of samples based on the

likelihood of observations [17]. In their adaption, a small number of samples is chosen,

if the density of the state space is focused on a small part, whereas, if the uncertainty is

high, a large number of samples is chosen.

Reference:

Fox, Dieter (2001)
KLD-Sampling: Adaptive Particle Filters.

38 Chapter 6. Experiments

Frames per Second (FPS) # particles System

70.1 7 Intel Core i7-4770
AMD Radeon R9 280X

50.5 13

37.8 25

33.3 7 Intel Core i5-3117U
NVidia Geforce 620M

25.4 13

20.7 25

Table 6.7: AR applications are expected to work in real time. Therefore, we tested our approach
with different computer systems. For every test, the computer system has to perform the video
sequence as fast as possible. The results show that a current desktop computer (first row) can
perform the video faster than required. All of our test videos work with 13 particles for each frame.
With seven particles, the slow laptop computer system (second row) works very fast, but with a
low number of particles testcases with fast motion fail. 25 particles provide slightly better results
at much higher costs.

6.6 Environment and Occlusion

A major problem for AR applications is that the real world environment is changing

rapidly and dynamically. Therefore, it is necessary for AR to handle dynamic changes in

the scene. Our localization approach uses the smartphone sensors as initial data. This is

an advantage for difficult cases, where vision-based approach can easily fail. Objects in

the foreground occluding the background or different lighting conditions are considered

hard tasks. In this section, we discuss the behavior of our approach under these difficult

conditions.

For a testcase with lighting conditions significantly different than in our geo-referenced

image, we captured a video at early night. The results demonstrates robustness to lighting

conditions not similar to the input data (Figure 6.4). The sensors from the smartphone

determine the search space for the particle filter. The most likely pose within this search

space provides a very good result for this testcase.

In most of our testcases, only small parts of the background are occluded. Major

parts of the facades and roofs of the buildings are directly comparable between the images

and the virtual model. Figure 6.5 shows an example where objects in the foreground are

occluding parts of the virtual model. The query image occludes parts of the background

and is far off the correct position. The result demonstrates robustness of our approach

when objects are occluding the background.

6.6. Environment and Occlusion 39

Figure 6.4: Result for video captured early night. The results demonstrates robustness to lighting
conditions not similar to the input data. The input data for a pose query is an image from the
smartphone (left) and sensor data from GPS and gyroscope. The device sensors are used as an
initial guess (right). Our system provides an improvement of the initially guessed camera pose
(middle).

Figure 6.5: In this example, objects in the foreground are occluding parts of the virtual model.
The result demonstrates robustness of our approach when objects are occluding the background.
The input data for a pose query is an image from the smartphone (left) and sensor data from GPS
and gyroscope. The device sensors are used as an initial guess (right). Our system provides an
improvement of the initially guessed camera pose (middle).

7
Conclusions and Future work

Our work has demonstrated an accurate outdoor localization system that runs in real

time. The outcome of our system improves the camera pose without user assistance. In

contrast to previous methods, it is not necessary to move until a baseline is found or to

rotate the smartphone. The particle filter provides robustness to device motion, even when

exposed to rapid, unpredictable accelerations. Furthermore, the particle filter is flexible

in its ability to adapt to different computation environments and different desired levels

of performance, accuracy and robustness, by simply adjusting the number of particles and

propagation model used.

Another interesting property of our system is that both localization and continuous

tracking are achieved with the same method. In addition, we do not make any use of slow-

to-compute feature descriptors or large descriptor databases and, instead, only require a

simple textured model of the target environment.

A disadvantage of the proposed system is slightly jitter in stationary scenes. This

condition occurs when two particles with a slightly different pose have a similar weight.

A possible remedy would be to increase the image resolution used when the particle filter

converges, to increase the precision of the pose estimate. Another issue is that it is not

guaranteed that the initial step finds an accurate first estimation of the pose.

Our results are promising, and a mobile version of the application may be feasible in

the near future. Achieving this requires further improvements to the performance of our

application. While our current implementation runs the vision algorithms on the CPU,

these algorithms can be easily be moved to the GPU. We believe a smart device could

be capable of computing approximately 400 particles per second needed for our system to

work at 30 Hz.

One avenue of future work is to improve the particle propagation model. A more accu-

rate distribution function could provide even further performance and accuracy, because

fewer particles would be necessary. For example, a pedestrian motion model could be

used [35]. Another improvement would be view-dependent rendering [13] to increase the

accuracy of the image-based rendering and the range of the localization.

41

Reference:

 ()

Reference:

 ()

42 Chapter 7. Conclusions and Future work

Our work hints the possibility that image-based localization based on sparse descrip-

tors may in the long run be replaced by dense GPU-based methods. In particular, the

increasing availability of high-quality urban models created with structure-from-motion

methods, supported by large geo-data providers such as Google or Microsoft, can be lever-

aged in GPU-based “tracking by synthesis” approaches such as the one explored in this

project. The performance of such an approach is largely independent of the image res-

olution used and can incorporate many effects such as occlusion and shading, which are

difficult to consider in conventional image matching data structures.

In our opinion, the particle filter approach presents an interesting alternative to ex-

isting image-based localization approaches and demonstrates that this method can work

in practice. We believe that the proposed method is of interest to researchers working

on the image-based localization problem and that it could lead to simple but powerful

localization pipelines.

A
List of Acronyms

AR Augmented Reality . 1

6DoF six degrees of freedom. .1

SLAM Simultaneous Localization and Mapping . xi

OSG OpenSceneGraph . 13

OpenGL Open Graphics Library . 14

GPS Global Positioning System . iii

WLAN Wireless Local Area Network . 1

SfM Structure from Motion . 3

SIFT Scale-Invariant Feature Transform . 5

FOV Field of View . 4

UTM Universal Transverse Mercator . xv

MCL Monte Carlo Localization . 5

IR Image Retrieval . 4

CAD Computer Aided Design . 5

BF Brute Force . 4

SSD sum of squared distances . xiii

PTAM Parallel Tracking and Mapping. .7

OpenCV Open Source Computer Vision . 13

GPU graphics processing unit. .8

CPU central processing unit . 13

fovy field of view angle, in radian, in the y direction . 14

IMU inertial measurement unit . iii

43

44 Chapter A. List of Acronyms

MR Mixed Reality . 3

FPS Frames per Second. .38

RANSAC Random Sample Consensus . 6

RGB RGB color model . 8

KLD Kullback-Leibler distance . 37

ISMAR International Symposium on Mixed and Augmented Reality. ix

BIBLIOGRAPHY 45

Bibliography

[1] Achtelik, M., Achtelik, M., Weiss, S., and Siegwart, R. (2011). Onboard imu and

monocular vision based control for mavs in unknown in- and outdoor environments.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages

3056–3063. (page 3)

[2] Arth, C., Klopschitz, M., Reitmayr, G., and Schmalstieg, D. (2011). Real-time self-

localization from panoramic images on mobile devices. In Mixed and Augmented Reality

(ISMAR), 2011 10th IEEE International Symposium on, pages 37–46. (page 1, 2, 4, 7)

[3] Arth, C., Mulloni, A., and Schmalstieg, D. (2012). Exploiting sensors on mobile

phones to improve wide-area localization. In Pattern Recognition (ICPR), 2012 21st

International Conference on, pages 2152–2156. (page 7)

[4] Aubry, M., Russell, B. C., and Sivic, J. (2014). Painting-to-3d model alignment via

discriminative visual elements. ACM Trans. Graph., 33(2):14:1–14:14. (page 6)

[5] Burgard, W., Fox, D., Hennig, D., and Schmidt, T. (1996). Position tracking with

position probability grids. In Advanced Mobile Robot, 1996., Proceedings of the First

Euromicro Workshop on, pages 2–9. (page 5)

[6] Cao, S. and Snavely, N. (2014). Graph-based discriminative learning for location

recognition. International Journal of Computer Vision, pages 1–16. (page 4)

[7] Castle, R., Klein, G., and Murray, D. (2008). Video-rate localization in multiple maps

for wearable augmented reality. In Wearable Computers, 2008. ISWC 2008. 12th IEEE

International Symposium on, pages 15–22. (page 7)

[8] Castle, R. O., Klein, G., and Murray, D. W. (2011). Wide-area augmented reality

using camera tracking and mapping in multiple regions. Comput. Vis. Image Underst.,

115(6):854–867. (page 7)

[9] Coors, V., Huch, T., and Kretschmer, U. (2000). Matching buildings: pose estimation

in an urban environment. In Augmented Reality, 2000. (ISAR 2000). Proceedings. IEEE

and ACM International Symposium on, pages 89–92. (page 5)

[10] Cummins, M. and Newman, P. (2010). Appearance-only slam at large scale with

fab-map 2.0. The International Journal of Robotics Research. (page 7)

[11] Davison, A. (2003). Real-time simultaneous localisation and mapping with a single

camera. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference

on, pages 1403–1410 vol.2. (page 7)

[12] Davison, A., Mayol, W., and Murray, D. (2003). Real-time localization and mapping

with wearable active vision. In Mixed and Augmented Reality, 2003. Proceedings. The

Second IEEE and ACM International Symposium on, pages 18–27. (page 7)

46

[13] Debevec, P. E., Yu, Y., and Borshukov, G. (1998). Efficient View-Dependent Image-

Based Rendering with Projective Texture-Mapping. Rendering Techniques, pages 105–

116. (page 41)

[14] Dong, Z., Zhang, G., Jia, J., and Bao, H. (2009). Keyframe-based real-time camera

tracking. In Computer Vision, 2009 IEEE 12th International Conference on, pages

1538–1545. (page 3)

[15] Donoser, M. and Schmalstieg, D. (2014). Discriminative feature-to-point matching in

image-based localization. In Computer Vision and Pattern Recognition (CVPR), 2014

IEEE Conference on, pages 516–523. (page 4)

[16] Engel, J., Schops, T., and Cremers, D. (2014). LSD-SLAM: Large-Scale Direct

Monocular SLAM. In European Conference on Computer Vision, Zurich, Switzerland.

(page 8)

[17] Fox, D. (2001). Kld-sampling: Adaptive particle filters. In Dietterich, T. G., Becker,

S., and Ghahramani, Z., editors, NIPS, pages 713–720. MIT Press. (page 37)

[18] Fox, D., Burgard, W., Dellaert, F., and Thrun, S. (1999). Monte carlo localization:

Efficient position estimation for mobile robots. In Proceedings of the Sixteenth National

Conference on Artificial Intelligence and the Eleventh Innovative Applications of Ar-

tificial Intelligence Conference Innovative Applications of Artificial Intelligence, AAAI

’99/IAAI ’99, pages 343–349, Menlo Park, CA, USA. American Association for Artificial

Intelligence. (page 5)

[19] Harris, C. (1993). Active vision. chapter Tracking with Rigid Models, pages 59–73.

MIT Press, Cambridge, MA, USA. (page 5)

[20] Irschara, A., Zach, C., Frahm, J., and Bischof, H. (2009a). From structure-from-

motion point clouds to fast location recognition. In Proceedings of Computer Vision

and Pattern Recognition (CVPR). (page 3, 5)

[21] Irschara, A., Zach, C., Frahm, J.-M., and Bischof, H. (2009b). From structure-from-

motion point clouds to fast location recognition. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 2599–2606. (page 3)

[22] Jensfelt, P. and Kristensen, S. (2001). Active global localization for a mobile robot

using multiple hypothesis tracking. Robotics and Automation, IEEE Transactions on,

17(5):748–760. (page 5)

[23] Klein, G. and Murray, D. (2006). Full-3d edge tracking with a particle filter. In

British Machine Vision Conference Proc 17th. (page 5, 6, 19)

BIBLIOGRAPHY 47

[24] Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small ar

workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM

International Symposium on, pages 225–234. (page 3, 7)

[25] Klein, G. and Murray, D. (2009). Parallel tracking and mapping on a camera phone. In

Mixed and Augmented Reality, 2009. ISMAR 2009. 8th IEEE International Symposium

on, pages 83–86. (page 7)

[26] Leonard, J. and Durrant-Whyte, H. (1991). Mobile robot localization by tracking

geometric beacons. Robotics and Automation, IEEE Transactions on, 7(3):376–382.

(page 5)

[27] Li, Y., Snavely, N., and Huttenlocher, D. P. (2010). Location recognition using

prioritized feature matching. In Daniilidis, K., Maragos, P., and Paragios, N., editors,

ECCV (2), volume 6312 of Lecture Notes in Computer Science, pages 791–804. Springer.

(page 3, 5)

[28] Lim, H., Sinha, S. N., Cohen, M. F., and Uyttendaele, M. (2012). Real-time image-

based 6-dof localization in large-scale environments. In IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition (CVPR 2012). (page 3)

[29] Lothe, P., Bourgeois, S., Dekeyser, F., Royer, E., and Dhome, M. (2009). Towards

geographical referencing of monocular slam reconstruction using 3d city models: Appli-

cation to real-time accurate vision-based localization. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 2882–2889. (page 7)

[30] Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. Interna-

tional Journal of Computer Vision, 60(2):91–110. (page 5)

[31] Marchetti, L., Grisetti, G., and Iocchi, L. (2007). A comparative analysis of particle

filter based localization methods. In Lakemeyer, G., Sklar, E., Sorrenti, D., and Taka-

hashi, T., editors, RoboCup 2006: Robot Soccer World Cup X, volume 4434 of Lecture

Notes in Computer Science, pages 442–449. Springer Berlin Heidelberg. (page 5)

[32] Meier, L., Tanskanen, P., Fraundorfer, F., and Pollefeys, M. (2011). Pixhawk: A sys-

tem for autonomous flight using onboard computer vision. In Robotics and Automation

(ICRA), 2011 IEEE International Conference on, pages 2992–2997. (page 3)

[33] Newcombe, R. A., Lovegrove, S., and Davison, A. (2011). Dtam: Dense tracking and

mapping in real-time. In Computer Vision (ICCV), 2011 IEEE International Confer-

ence on, pages 2320–2327. (page 7)

[34] Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition - Volume 2, CVPR ’06, pages 2161–2168, Washington, DC, USA.

IEEE Computer Society. (page 4)

48

[35] Quigley, M., Stavens, D., Coates, A., and Thrun, S. (2010). Sub-meter indoor localiza-

tion in unmodified environments with inexpensive sensors. In IROS, pages 2039–2046.

IEEE. (page 41)

[36] Reitmayr, G. and Drummond, T. (2006). Going out: robust model-based tracking

for outdoor augmented reality. In Mixed and Augmented Reality, 2006. ISMAR 2006.

IEEE/ACM International Symposium on, pages 109–118. (page 4, 5)

[37] Reitmayr, G. and Drummond, T. (2007). Initialisation for visual tracking in urban

environments. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and

ACM International Symposium on, pages 161–172. (page 5)

[38] Reitmayr, G., Langlotz, T., Wagner, D., Mulloni, A., Schall, G., Schmalstieg, D.,

and Pan, Q. (2010). Simultaneous localization and mapping for augmented reality.

In Ubiquitous Virtual Reality (ISUVR), 2010 International Symposium on, pages 5–8.

(page 1, 7)

[39] Robertsone, D. and Cipolla, R. (2004). An image-based system for urban navigation.

In Proc. BMVC, pages 84.1–84.10. doi:10.5244/C.18.84. (page 3)

[40] Rosten, E. and Drummond, T. (2005). Fusing points and lines for high performance

tracking. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference

on, volume 2, pages 1508–1515 Vol. 2. (page 5)

[41] Royer, E., Lhuillier, M., Dhome, M., and Lavest, J.-M. (2007). Monocular vision

for mobile robot localization and autonomous navigation. Int. J. Comput. Vision,

74(3):237–260. (page 3)

[42] Sattler, T., Leibe, B., and Kobbelt, L. (2011a). Fast image-based localization using

direct 2d-to-3d matching. In Proceedings of International Conference on Computer

Vision (ICCV). (page 3, 5)

[43] Sattler, T., Leibe, B., and Kobbelt, L. (2011b). Fast image-based localization us-

ing direct 2d-to-3d matching. In Computer Vision (ICCV), 2011 IEEE International

Conference on, pages 667–674. (page 4)

[44] Schindler, G., Brown, M., and Szeliski, R. (2007). City-scale location recognition.

In Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on,

pages 1–7. (page 3, 4)

[45] Schoeps, T., Engel, J., and Cremers, D. (2014). Semi-dense visual odometry for ar

on a smartphone. In Mixed and Augmented Reality (ISMAR), 2014 IEEE International

Symposium on, pages 145–150. (page 8)

[46] Sibbing, D., Sattler, T., Leibe, B., and Kobbelt, L. (2013). Sift-realistic rendering.

In 3D Vision - 3DV 2013, 2013 International Conference on, pages 56–63. (page 6)

BIBLIOGRAPHY 49

[47] Snavely, N., Seitz, S., and Szeliski, R. (2006). Photo tourism: exploring photo collec-

tions in 3d. ACM Transactions on Graphics (TOG), 25(3):835-846. (page 4)

[48] Takacs, G., Xiong, Y., Grzeszczuk, R., Chandrasekhar, V., chao Chen, W., Pulli, K.,

Gelfand, N., Bismpigiannis, T., and Girod, B. (2008). Outdoors augmented reality on

mobile phone using loxel-based visual feature organization. In In Proceeding of ACM

international conference on Multimedia Information Retrieval, pages 427–434. (page 4)

[49] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic robotics. MIT press.

(page 2, 17)

[50] Torii, A., Sivic, J., and Pajdla, T. (2011). Visual localization by linear combination

of image descriptors. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE

International Conference on, pages 102–109. (page 4)

[51] Vaca-Castano, G., Zamir, A., and Shah, M. (2012). City scale geo-spatial trajectory

estimation of a moving camera. In Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference on, pages 1186–1193. (page 4)

[52] Ventura, J., Arth, C., Reitmayr, G., and Schmalstieg, D. (2014). Global localization

from monocular slam on a mobile phone. IEEE Transactions on Visualization and

Computer Graphics, 20(4):531–539. (page 2, 4, 7)

[53] Ventura, J. and Hollerer, T. (2012). Wide-area scene mapping for mobile visual track-

ing. In Mixed and Augmented Reality (ISMAR), 2012 IEEE International Symposium

on, pages 3–12. (page 1, 4, 7)

[54] Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., and Schmalstieg, D. (2010).

Real-time detection and tracking for augmented reality on mobile phones. Visualization

and Computer Graphics, IEEE Transactions on, 16(3):355–368. (page 3)

[55] Williams, B., Klein, G., and Reid, I. (2007). Real-time slam relocalisation. In Com-

puter Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1–8.

(page 7)

[56] Zamir, A. and Shah, M. (2010). Accurate image localization based on google maps

street view. In Computer Vision - ECCV 2010, volume 6314, pages 255–268. Springer

Berlin Heidelberg. (page 4)

[57] Zhang, W. and Kosecka, J. (2006). Image based localization in urban environments. In

3D Data Processing, Visualization, and Transmission, Third International Symposium

on, pages 33–40. (page 4)

	Introduction
	Related Work
	Localization
	SLAM
	Contribution

	System overview
	Sensor Data
	Virtual City Model

	Particle Filter
	Particle Dimensions
	Motion Model
	Calculating Particle Weight

	Processing Pipeline
	Experiments
	Implementation Notes
	Image-based Results
	Localization Accuracy
	Comparison of Methods
	Performance
	Environment and Occlusion

	Conclusions and Future work
	List of Acronyms
	Bibliography

