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Abstract
The thesis deals with the problem of finding a timetable at the ‘Information Technologies
& Business Informatics’ department of the CAMPUS 02 University of Applied Sciences
in Graz. After a short review of the literature about timetabling problems the actual
problem is formalized and is compared with similar problems analyzed in other publi-
cations. Moreover it is discussed how a suitable objective function can be found which
takes into account the wishes of different stakeholders.

In the theoretical part of the thesis it is proved that the problem is NP-complete and
connections to well-known graph coloring problems are emphasized. A linear integer
programming formulation of the problem enables the application of general purpose
solvers to find exact solutions for the problem. However, experimental results show that
we cannot even hope to find a feasible timetable within acceptable running time. This
shows that the problem is also computationally hard in practice.

As a consequence, the thesis presents several efficient heuristics which also work in
practical applications. On the one hand construction and perturbation heuristics are sug-
gested. On the other hand, based on these heuristics a hybrid selection hyper-heuristic
using a genetic algorithm is presented.

All these heuristics are implemented and computational experiments show that it
is possible to find competitive results. Especially for the hyper-heuristics including
randomness seems to lead to good results.

Finally, the hyper-heuristic is generalized to a multi-objective formulation of the prob-
lem and it was again possible to obtain excellent results for this setting.
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Zusammenfassung
Die vorliegende Arbeit beschäftigt sich mit der automatisierten Stundenplanerstellung
für den Studiengang ‘Informationstechnologien & Wirtschaftsinformatik’ an der FH
CAMPUS 02 in Graz. Nach einer kurzen Literaturübersicht zum Thema Stundenplan-
erstellung wird das konkrete Problem formalisiert und mit bekannten Problemstellungen
verglichen. Außerdem erläutern wir die Problematik, eine geeignete Zielfunktion zu de-
finieren, die unterschiedliche Wünsche verschiedener Stakeholder berücksichtigt.

Im theoretischen Teil der Arbeit wird gezeigt, dass das vorliegende Stundenplanpro-
blem NP-vollständig ist. Außerdem werden Zusammenhänge zu klassischen Graphenfär-
bungsproblemen aufgezeigt, die als Teilprobleme bei der algorithmischen Stundenplan-
erstellung auftreten. Eine Modellierung als ganzzahliges lineares Optimierungsproblem
erlaubt den Einsatz von vorhandener Software zur Bestimmung von exakten Lösungen.
Die durchgeführten Experimente zeigen jedoch, dass damit in für praktische Anwen-
dungen akzeptabler Laufzeit keine zulässigen Lösungen erzielt werden können.

Aus diesem Grund werden in der Arbeit Heuristiken zur effizienten Berechnung von
Lösungen entwickelt, die es auch in der Praxis erlauben, gute Stundenpläne zu erzielen.
Einerseits werden konstruktive und perturbierende Heuristiken vorgestellt. Andererseits
wird auf diese Heuristiken aufbauend eine hybride Hyper-Heuristik entwickelt, welche
auf einem genetischen Algorithmus basiert.

Die vorgestellten Heuristiken wurden im Zuge der vorliegenden Arbeit implementiert
und die durchgeführten Experimente zeigen, dass dadurch kompetitive Ergebnisse erzielt
werden können. Weiters stellt sich heraus, dass eine geeignete Randomisierung bei der
Hyper-Heuristik einen wichtigen Einfluss auf die Qualität der Lösung hat.

Schließlich wird die entwickelte Hyper-Heuristik auch auf eine multikriterielle Formu-
lierung des Problems verallgemeinert und zeigt auch dafür hervorragende Ergebnisse für
praktische Testinstanzen.
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1. Introduction

1.1. Informal Problem Description
In this thesis, the timetabling problem at the ‘Information Technologies & Business
Informatics’ department of the CAMPUS 02 University of Applied Sciences in Graz is
formalized and optimization methods are used to calculate solutions. To achieve this, the
problem is modeled both as a general timetabling problem and as an integer program.
For these models algorithms are designed and implemented for evaluation.

Because the program for which the timetable is generated is a part-time studies pro-
gram a fixed set of weekends consisting of Friday evenings and Saturday mornings are
given for planning. In addition a week consisting of Monday to Thursday, called inten-
sive week, is given for each class to schedule the courses of the curriculum. On each of
the given days 9 fixed time periods, called hours, are available for scheduling. The main
constraints for planning are that at any given hour a class can only have one course
scheduled, and every lecturer can only teach one course at a time.

The program consists of 5 classes, where three of them correspond to a bachelor degree
program and two to a master degree program. The timetabling problem is only concerned
with the first 4 classes, because the second master’s class is planned independently.
Divided among these classes are about 40 courses (the exact number differs each term
by small changes in the curriculum) that have to be scheduled. For each of these courses
there is a given number of hours that need to be scheduled. Some of the courses also
contain an exam that needs a certain number of hours scheduled.

The task is to find a timetable for the classes and lecturers of the curriculum. In
the CAMPUS 02 timetabling problem all students of a class take the same courses and
the lecturers are already assigned to the courses. One lecturer can be assigned to teach
several courses. It is possible that several lecturers are assigned to one course, meaning
in practice that there are multiple groups of the course taught simultaneously. This
assignment of lecturers to courses is not part of the timetabling problem.

One major aspect of this timetabling problem is that for most courses it is not feasible
to plan them at single hours. It is necessary to assign several consecutive hours, called
blocks, to the same course.

A timetable has to fulfill several further constraints by employment law and wishes of
students and lecturers, given by the following list:

∙ For every day, there is only one consecutive block of hours assigned to each course.
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∙ The lengths (number of consecutive hours) of such blocks have lower and upper
bounds for each course.

∙ Courses have to be scheduled during a fixed time period, given by start and end
dates for each course.

∙ For classes there is no idle time during a day.

∙ On each day of the intensive week, courses have to be scheduled.

∙ Lecturers are not allowed to teach both the last hour on Friday and the first hour
on the following Saturday.

∙ Lecturers can define several days, called NoGo-days, on which they are not avail-
able for teaching.

Additionally, some courses contain exams in their curriculum. These exams are single
blocks of predefined length. For exams there are several further constraints:

∙ Exams should be scheduled during the beginning of a day.

∙ There is only one exam allowed during every weekend.

∙ No exams should be scheduled during the intensive week.

∙ There has to be one week between the last regular course and its exam.

Every timetable has to fulfill all these constraints and schedule all courses contained
in the curriculum completely. The problem is to find such feasible timetables and among
all of them one that is “good”. To achieve this, properties of good timetables are defined.
The following is a list of such properties from the staff of the CAMPUS 02 University
of Applied Sciences responsible for creating timetables:

∙ The number of free weekends should be maximized.

∙ In the timetables of each class, days should be either empty or fully scheduled.

∙ Hard courses should be scheduled in the early time slots.

∙ No idle times for lecturers.

Note that it is hard or even impossible to formally define what is meant by a good
timetable. In Section 2.2 we look at different approaches to allow optimization methods
to find “good” timetables using different objectives.

As part of the thesis we also provide software to solve this timetabling problem.
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1.2. Overview of the Thesis
In Section 1.3 a very general version of the timetabling problem is introduced and several
classical educational timetabling problems are shown to be special cases. The literature
about educational timetabling is reviewed in Section 1.4, to introduce the current state
of the art for different versions of educational timetabling problems. A summary of
heuristic methods to solve educational timetabling problems is given in Section 1.4.1.
Section 1.4.2 contains an overview of exact methods used to solve different timetabling
instances.

Section 2 deals with formalizing the CAMPUS 02 timetabling problem, informally
introduced in Section 1.1. In Section 2.1 the CAMPUS 02 timetabling problem is shown
to be a special case of the general timetabling problem from Section 1.3. A linear integer
programming formulation is given in Section 2.2.

The theoretical foundations of educational timetabling are introduced in Section 3.
The connection between timetabling and graph coloring and relevant extensions to clas-
sical graph coloring are the content of Section 3.1. In Section 3.2 the computational
complexity of educational timetabling problems is reviewed.

The main part of the thesis is Section 4. It contains the development of heuristics
for the CAMPUS 02 timetabling problem. Section 4.1 explains the basic building parts
used by the heuristic methods developed. In Section 4.2 these are combined to a com-
plete heuristic. Section 4.3 introduces hyper-heuristics for the CAMPUS 02 timetabling
problem. This includes an introduction to genetic algorithms and based on that the
development of a selection hyper-heuristic. This selection hyper-heuristic is also gener-
alized to a multi-objective formulation of the problem.

Section 5 summarizes the computational results for the CAMPUS 02 timetabling
problem using the methods introduced in this thesis. The results obtained by trying to
solve the problem using a general purpose integer programming solver are summarized in
Section 5.1. A summary of the results obtained by these heuristics is given in Section 5.2.

Section 6 contains a short conclusion of the results obtained by the methods in this
thesis. Based on that an outlook about further possible research directions is given.

1.3. The Timetabling Problem and its Variants in
Education

Burke et al. [27] define a generic timetabling problem. In the following we introduce this
general timetabling problem and define several well known variants of school and uni-
versity timetabling as special cases. The CAMPUS 02 timetabling problem, informally
explained in Section 1.1, is also a special case. We use the terminology introduced in
this section throughout the thesis.
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Definition 1.1 (General timetabling problem, Burke et al. [27]). A timetabling problem
is given by the following input:

∙ A finite set of times 𝑇 , which are available for scheduling.

∙ A finite set of resources 𝑅.

∙ A finite set of meetings 𝑀 , which are fixed collections of time slots and resource
slots.

∙ A finite set of constraints 𝐶.

A time slot is a variable that can be assigned with a time in 𝑇 and a resource slot is
a variable that can be assigned with a resource in 𝑅.

The problem asks to find an assignment of times and resources to the slots inside
meetings, such that all the constraints in 𝐶 are fulfilled. Additionally the constraints
can be split into hard and soft constraints, where hard constraints must be fulfilled and
soft constraints should be fulfilled as far as possible.

Note that in some practical examples such an assignment must not assign values to
all the time and resource slots.

Remark. As shown in many examples of timetabling problems, the resource slots are
often preassigned in all meetings and only the time slots have to be scheduled. The
resources can be used to model lecturers or classes.

The meetings often correspond to courses in practical timetabling problems. For
instance one meeting can contain a resource slot preassigned with a class, another re-
source slot preassigned with a lecturer and the time slots in this meeting correspond to
all lessons the teacher has to teach in this class.

The following is a list of constraints that are common among (almost all) timetabling
problems.

Completeness constraint Every (time or resource) slot has to be assigned by a value.

No-clash constraint A resource must not be assigned to resource slots in any pair of
meetings sharing a time slot assigned with the same time.

Availability constraint For each resource 𝑟 ∈ 𝑅 there are subsets 𝑇𝑟 ⊆ 𝑇 of time defined
at which the resource is available. This constraint is violated if in a meeting in
which the resource 𝑟 is assigned to a resource slot, a time slot exists with a time
𝑡 /∈ 𝑇𝑟 assigned.

Resource type constraint For a resource slot 𝑠 only a subset 𝑅𝑠 ⊆ 𝑅 of resources is
assignable.

No idle-time constraint For a resource 𝑟 ∈ 𝑅 and for given time periods (for instance
days) there should be no unplanned time units between blocks of times assigned
to meetings the resource is assigned to.
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Remark. If resource slots are not preassigned, they almost always have a resource type
constraint associated with them. For example such a slot could be reserved for a lecturer,
who is able to teach a course and only lecturers who can teach this course are feasible
assignments.

1.3.1. The Class-Teacher Timetabling Problem
Basic class-teacher timetabling (Gotlieb [33]) The basic class-teacher timetabling

problem is a timetabling problem where teachers and classes are resources and
every meeting consists of one preassigned teacher resource slot, one preassigned
class resource slot and one time slot. For all the time slots there are complete-
ness constraints. The no-clash constraints are added as hard-constraints for all
resources.

Remark. Instead of modeling courses by multiple meetings with one time slot, we could
also use one meeting for each pair of a class and a teacher, containing one time slot for
each meeting before. This version is sometimes better suited for generalizations.

This basic version of the problem has a strong connection to the edge-coloring problem
in a bipartite graph. More details about this and the consequences for computational
complexity are shown in Section 3.

To make this model applicable to practical timetabling problems there exist several
extensions to this basic formulation. We list some common possibilities based on Burke
et al. [27], Pillay [47] and Post et al. [53].

∙ Teachers are not always available.

∙ Time slots inside meetings can be forced to be assigned with contiguous times.

∙ Some meetings can include several class resource slots, meaning that a course is
taught for several classes at once.

∙ There can be a room assignment modeled by adding rooms as resources. This
is for instance necessary to model the use of some special rooms (e.g. computer
rooms) for some courses.

In Section 2.1 it is shown that the CAMPUS 02 timetabling problem is a special
version of the class-teacher timetabling problem.

Class-teacher timetabling problems are often also called school timetabling problems,
because this is the common setting in most elementary schools. The Third International
Timetabling Competation (ITC2011) was concerned with high school timetabling prob-
lems. An XML standard called XHSST for describing different practical high school
timetabling problems is introduced by Post et al. [53]. This standard allows the for-
mulation of very general timetabling problems. Solution approaches for class-teacher
timetabling cannot be used to tackle these general problems, but many practical bench-
mark instances from the ITC2011 can still be seen as generalizations of the class-teacher
timetabling problem.
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1.3.2. University Timetabling Problems
The university course timetabling problem takes into account that courses are not taught
for a single fixed class of students but are selected by students. There are two different
variants of this problem.

Post enrollment course timetabling The post enrollment timetabling problem consid-
ers the planning phase after students have registered for their fixed courses. It is
modeled as a special case of the general timetabling problem (Definition 1.1) by
defining the set of students as resources. These students are then preassigned to
resource slots in the meetings corresponding to courses they are enrolled to.

Curriculum based course timetabling The curriculum based course timetabling prob-
lem considers a fixed curriculum which consists of sets of courses that are not
allowed to be scheduled at the same time. This is an extension of class-teacher
timetabling because courses can be taught for multiple classes (called curricula
in this context). This can be handled in the setting of the general timetabling
problem (Definition 1.1) by having multiple resource slots, preassigned with each
of the classes a course is assigned to, in the meetings of each course.

These problems can be extended in several ways, similarly to the class-teacher
timetabling problem. In this setting, room assignment is often part of the problem,
where the room slots are not preassigned.

For the Second International Timetabling Competition (ITC2007) very general ver-
sions of these problems are introduced, to create standardized benchmark instances for
research on university timetabling. For the curriculum based course timetabling problem
Bonutti et al. [6] define a problem based on the timetabling problem at the University
of Udine. There are many benchmark instances available for this problem and a lot of
researchers work on this problem (see Section 1.4). It is known as the Udine problem in
literature.

Similarly for the post enrollment course timetabling problem Lewis et al. [38] define a
problem version, which is a generalization of the problem used for the First International
Timetabling Competation (ITC2002).

At universities exams are often scheduled independent from the course scheduling.
This problem is formalized as the University examination timetabling problem. The basic
structure of the university examination timetabling problem is similar to the university
course timetabling problem.

University examination timetabling The set of meetings consists of the exams to be
scheduled. Each meeting contains several time slots for assignment and contains
preassigned resource slots for students that need to take the exam. In addition
the meetings contain resource slots for rooms that are needed for the exam and
lecturers that are necessary for supervision.

13



The major difference to the course timetabling problem are the constraints. For
instance with courses it is often considered as good, if there is no idle time in between for
the students, where on the contrary blocks of exams are considered as bad by students.

At the Second International Timetabling Competition (ITC2007) a standardized ver-
sion of the university exam timetabling problem was proposed by McCollumn et al. [42].

1.4. Literature Review on Solution Methods for
Educational Timetabling

In the Operations Research literature there is no single standard timetabling problem
that is studied, but there are lots of different similar versions of practical timetabling
problems analyzed and solved in different publications. Most of these problems can be
classified as special versions of the general timetabling problem introduced in Section 1.3.
As mentioned in Section 1.3.2 for the ITC2007 very general standardized versions of the
university course timetabling problem and the university exam timetabling problem
are introduced. Many publications try to tackle these problems, because this allows
researchers to compare their results with previous results.

Because of this vast quantity of literature on educational timetabling it is not possible
to cover all the publications and research directions. We try to direct the reader to
survey articles showing the development and current state of the art on techniques and
theory relevant to this thesis.

Section 3.2 contains an overview of the computational complexity of educational
timetabling problems, showing that most variants of timetabling problems are NP-
complete. That is why a lot of research is done to develop heuristics for timetabling
problems. Section 1.4.1 reviews the current literature on this topic. In Section 1.4.2
different exact methods to solve timetabling problems with their respective objective
functions are shown.

To keep the review sections short we do not give formal definitions of all terms used.
Instead we refer the reader to the cited surveys and papers for full definitions and
explanations. If these terms are used in later sections to describe the approach used in
this thesis, they are defined as needed.

1.4.1. Heuristic Methods
The early literature about educational timetabling heuristics is summarized in Carter’s
survey from 1986 [14]. It is observable that the connection between timetabling and
graph coloring is already used in these heuristic methods. This connection is first men-
tioned by Welsh and Powell [60]. Papers from this period try to develop heuristics
for single practical timetabling problems. These heuristics are shown to produce good
timetables. The heuristics are specialized to these problems and are not tested for other
instances or different variants of the timetabling problem at other institutions. This
makes these heuristics not applicable to other university timetabling problems in prac-
tice.
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During the nineties researchers worked on developing more general timetabling heuris-
tics by applying meta-heuristics such as genetic algorithms, simulated annealing and
tabu search. Burke et al. [10] wrote a review of the state of the art on university
timetabling in 1997. This development is also described in a survey from Carter and
Laporte [43].

Because of the success in applying tailored heuristics and meta-heuristics to different
timetabling problems recent research tries to develop general methods to solve arbitrary
similar timetabling problems for different institutions. Meta-heuristics are a first attempt
to use more general algorithms that can be used for different types of similar timetabling
problems. But they were still adapted to the concrete problem instances. Current
research tries to develop methods that are suited to automatically generate heuristics
for new instances of educational timetabling problems and these methods are called
hyper-heuristics.

Hyper-Heuristics

The term hyper-heuristic is relatively new and was first used in 2000 in a paper by
Cowling et al. [18] for personnel scheduling. The survey article by Qu et al. [54] from 2009
summarizes the first applications of hyper-heuristics to university timetabling problems
in the 2000s. In 2010 Burke et al. [9] present a classification and definition of hyper-
heuristics, covering the previous initial work on the topic. They define a hyper-heuristic
as “a search method or learning mechanism for selecting or generating heuristics to
solve computational search problems”. The classification given in their paper is shown
in Figure 1.1. It is a classification according to two dimensions: (i) the nature of the
heuristics search space and (ii) the source of feedback. Burke et al. [11] present the state
of the art on hyper-heuristics in their survey article. They also include a survey on the
applications of hyper-heuristics to university timetabling problems. It is shown that by
these methods good results for different timetabling problems can be obtained using the
same algorithm.

Figure 1.1.: Classification of hyper-heuristics. Source: Burke et al. [9, p. 453].
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We want to note that most of the hyper-heuristics for educational timetabling can
be classified as selection heuristics according to Figure 1.1. There is some research on
heuristic generation of constructive heuristics for university timetabling, for instance
Asmuni et al. [2] and Pillay [48].

For class-teacher timetabling there are less publications using hyper-heuristics to solve
the problem. Reasons are that some of these problems are smaller and can therefore
be solved by exact methods. Another reason might be that there was less research on
these problem instances because no track for class-teacher timetabling existed for the
ITC2007. Pillay wrote a survey [50] in which the author notes that research in this
direction is missing. An investigation into applying different hyper-heuristics known
from university timetabling to the class-teacher timetabling problem is also published
in [50]. A constructive selection and a generation hyper-heuristic and a selection hyper-
heuristic using perturbation heuristics are applied to the problem. This is especially
interesting for the CAMPUS 02 timetabling problem, because it can be formulated as
a special instance of the class-teacher timetabling problem (see Section 2.1). Currently
we observe an increase in the research on class-teacher timetabling because the topic
of the ITC2011 was school timetabling [52]. New publications on this subject [1] often
use the constructive heuristic implemented in the KHE14 software from Kingston [34]
to generate an initial solution and then apply perturbation hyper-heuristics to calculate
better solutions.

We know of no publications that generate perturbation heuristics using hyper-
heuristics for educational timetabling problems. But Burke et al. [8] show that good
local search heuristics for bin packing can be generated by hyper-heuristics. Research
on this subject for educational timetabling would be of interest, to further decrease the
need of human interaction in the timetabling process.

Multi-Objective Methods

It is already mentioned that the objective function of educational timetabling problems
is not clear. Most authors minimize a (weighted) sum of unsatisfied soft constraints. In
practice these soft-constraints correspond to wishes of different parties (students, lectur-
ers, other administration). Some research is dedicated to formulating the problem as a
multi-objective optimization problem, by splitting the objectives for different stakehold-
ers. Burke et al. [12] analyze the multi-objectivity of the exam timetabling problem of
the ITC2007 in this way, obtaining a bi-objective optimization problem with one objec-
tive for students and the other for administration. This shows that there is a need for
extensions to some early work of Burke et al. [7].

Zitzler proposed in his PhD-thesis [61] an evolutionary algorithm to solve multi-
objective optimization problems. Generalizations of this approach are often applied
to solve hard multi-objective optimization problems. An example of an application to
educational timetabling is Datta et al. [20].

In Silva et al. [56] applications of meta-heuristics to timetabling problems are reviewed.
It is mentioned that it is not practical to view all objectives of different stakeholders
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as different objective functions, because this would lead to too many objectives (every
lecturer, student, class, course has its own objective), and again some weighted average
for each class of stakeholders is often used as described in Burke et al. [12]. The devel-
opment of many objective optimization techniques to tackle this problem would be of
interest.

Current research in the field again tries to develop hyper-heuristics for multi-objective
methods to reduce the need for human interaction when applying methods to new similar
problems. Most of this research is conducted after 2010, where Maashi et al. [39, 40]
give two examples of creating a selecting hyper-heuristic, working with different multi
objective evolutionary algorithms as its meta-heuristics. We know of no application of
such techniques to educational timetabling.

1.4.2. Exact Methods
The drawback of heuristic methods shown above is that we cannot prove optimality of
solutions and also do not know of any bounds to the optimal solutions. This is why
even knowing that heuristics have shown to produce good results there is an interest in
developing exact methods for educational timetabling problems. Beginning with the first
publications on timetabling the problem was formulated as an integer linear program,
in most cases using binary variables. These problems are in general hard to solve but
using modern solvers and techniques on state of the art computers some educational
timetabling problems can be solved exactly.

The survey article on educational timetabling by Kristiansen et al. [36] contains a
review on the development of exact methods for the course timetabling problem in [36,
Section 3.3.5] and on exam timetabling in [36, Section 5.3.6]. Pillay [50] also reviews the
integer programming methods applied to school timetabling in [50, Section 3.7].

In literature there are different approaches using exact integer programming formula-
tions.

Some articles present new formulations of the problem as an integer program and
solve these directly using state of the art solvers. Often these formulations are just
for some specific problem or are improved versions that are easier to solve by general
purpose solvers. All these formulations have in common that they use 0-1-variables for
modeling. We know of only one interesting exception, where variables represent the
assignment of complete teaching schedules, from McClure and Wells [41].

Other articles include research on specialized cuts for the problems, studied to develop
tailored branch and cut methods like Santos et al. [55]. There is also research on column
generation for educational timetabling problems, for instance Papoutsis et al. [46].

Also lower bounds are derived, which can be used to improve the performance of
integer programming solvers, like Cacchiani et al. [13].

Another different approach is to partition the problem into multiple easier stages and
solve each of these exactly using integer programming, for instance Sørensen et al. [58].
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2. The CAMPUS 02 Timetabling
Problem

2.1. Definition based on the General Timetabling
Problem

The CAMPUS 02 timetabling problem is formalized as a general timetabling problem,
using the notation introduced in Defintion 1.1.

2.1.1. Input Parameters
The following parameters are given for each instance of the CAMPUS 02 timetabling
problem:

∙ 𝐷 the ordered set of days to schedule. We use the convention that for 𝑑 ∈ 𝐷
ord(𝑑) ∈ {1, . . . , |𝐷|} gives the ordered index of 𝑑.

∙ 𝐻 := {1, 2, . . . , 9} the set of hours available at each day.

∙ 𝐿 the set of lecturers.

∙ 𝐾 the set of classes.

∙ 𝐶 the set of courses.

∙ CK ⊆ 𝐶 × 𝐾 the curriculum.

∙ CL ⊆ 𝐶 × 𝐿 an assignment of lecturers to classes (some classes are split into
multiple groups that are taught simultaneously by multiple lecturers)

∙ DK ⊆ 𝐷 × 𝐾 an assignment of days to classes (days at which a class is available).
Courses taught for a class can only be scheduled on the days the class is available
according to this set.

∙ WE ⊆ 𝐷 × 𝐷 a set explaining which pairs of days correspond to weekends. Of
course it holds, that each day 𝑑 ∈ 𝐷 is only contained in a single weekend in WE .
The first entry in each tuple corresponds to the Friday, the second entry to the
Saturday.
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∙ W ⊆ DK the subset of days at which a class has its intensive week. These days
correspond to Monday to Thursday of one real week and it therefore always holds
that for every class 𝑘 ∈ 𝐾 there is either no intensive week or

|{𝑑 : (𝑑, 𝑘) ∈ W }| = 4.

Note that in the CAMPUS 02 timetabling problem all days in 𝐷 are either part
of some weekend or contained in the intensive week of some class.

∙ NOGO ⊆ 𝐷 × 𝐿 the NoGo-days of lecturers.

∙ CourseHours(𝑐) ∈ N0 for each course 𝑐 ∈ 𝐶 defines the number of hours to schedule
for 𝑐.

∙ ExamHours(𝑐) ∈ N0 for each course 𝑐 ∈ 𝐶 defines the number of hours to schedule
for the exam of 𝑐.

∙ 𝑙(𝑐) ∈ N for each course 𝑐 ∈ 𝐶 defines the lower block size for course 𝑐.

∙ 𝑢(𝑐) ∈ N for each course 𝑐 ∈ 𝐶 defines the upper block size for course 𝑐.
A block is the number of consecutive hours on a day at which a course is scheduled.

An example of a practical input at CAMPUS 02 University of Applied Sciences is
given in Appendix B.

2.1.2. Problem Definition
We define the corresponding timetabling problem using the general timetabling problem
from Definition 1.1 by setting

∙ the set of possible times for assignment to time slots, 𝑇 := {(𝑑, ℎ) : 𝑑 ∈ 𝐷, ℎ ∈ 𝐻},

∙ the resources assigned to meetings, which are in this case classes and lecturers,
𝑅 := 𝐾 ∪̇ 𝐿,

∙ 𝑀 := {𝑚(𝑐) : 𝑐 ∈ 𝐶} where 𝑚(𝑐) is the meeting for course 𝑐 defined by

𝑚(𝑐) := (𝑡𝑖, 𝑒𝑗, 𝑙, 𝑘) : 𝑖 = 1, . . . , CourseHours(c)
𝑗 = 1, . . . , ExamHours(c)
𝑙𝑛 = 𝑙′ ∀(𝑐, 𝑙′) ∈ CL
𝑘𝑛 = 𝑘′ ∀(𝑐, 𝑘′) ∈ CK},

with 𝑡𝑖, 𝑒𝑗 the unassigned time slots and 𝑙, 𝑘 the preassigned resource slots for the
course 𝑐.
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We refer to the 𝑡𝑖 with time slot and to the 𝑒𝑖 with exam time slot.
For the CAMPUS 02 timetabling problem, there is only one class slot 𝑘 in each
meeting, so |(𝑐, 𝑘′) : (𝑐, 𝑘′) ∈ CK | = 1 for all 𝑐 ∈ 𝐶.
In addition a set of times is called a block, if all the times are on the same day and
the corresponding hours are consecutive. That means for a day 𝑑 and a starting
hour 𝑡1 and end hour 𝑡2 the set

𝐵 = {(𝑑, 𝑡) : 𝑡1 ≤ 𝑡 ≤ 𝑡2}

is the corresponding block of times.
If the times in 𝐵 are assigned to the meeting 𝑚(𝑐) we say that the course 𝑐 is
scheduled at the block 𝐵.

In the following we state the constraints:

∙ Completeness constraints for all time slots 𝑡𝑖 and exam time slots 𝑒𝑖 in all meetings.
That means all the time slots need to be assigned with a time 𝑡 ∈ 𝑇 . This leads
to the fact that for each course 𝑐 ∈ 𝐶 exactly CourseHours(𝑐) hours of the course
are scheduled and ExamHours(𝑐) hours are scheduled for the exam.

∙ No-clash constraints for all resources in all meetings.
These constraints enforce that at any time 𝑡 ∈ 𝑇 only one course is scheduled for
each class and lecturer.

∙ Availability constraints for all classes 𝑘 ∈ 𝐾, where the availability sets are

𝑇𝑘 := {(𝑑, ℎ) ∈ 𝑇 : (𝑑, 𝑘) ∈ 𝐷𝐾, ℎ ∈ 𝐻}.

This enforces that courses for classes are only scheduled on days at which the class
is available.

∙ Availability constraints for lecturers 𝑙 ∈ 𝐿, where the availability sets are given by

𝑇𝑙 := {(𝑑, ℎ) ∈ 𝑇 : (𝑑, 𝑙) /∈ NOGO, ℎ ∈ 𝐻}.

Courses are only scheduled at times such that the assigned lecturers are available.

∙ Constraints to enforce blocking:
– At every day 𝑑 ∈ 𝐷 if course 𝑐 ∈ 𝐶 is scheduled, it has to be scheduled as

a single block of length 𝑙(𝑐) ≤ 𝑛 ≤ 𝑢(𝑐), meaning that in 𝑚(𝑐) the course
starts at hour ℎ ∈ 𝐻 and we set 𝑡𝑖𝑘

:= (𝑑, ℎ + 𝑘) for 𝑘 = 0, . . . , 𝑛 − 1 with
slot indices 𝑖𝑘.
We call such feasible blocks of time assigned to 𝑚(𝑐) the time blocks of course
𝑐.
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∙ No idle time constraints for all the classes 𝑘 ∈ 𝐾.

∙ Constraints for exams:
– The exam of a course starts at least one week after the last block of the

course. That means for every course 𝑐 ∈ 𝐶 in the meeting 𝑚(𝑐)

max
𝑡𝑖=(𝑑,ℎ)

ord(𝑑) ≤ 2 + min
𝑒𝑖=(𝑑,ℎ)

ord(𝑑).

– There are no exams on days during the week, meaning ∀𝑚(𝑐) ∈ 𝑀, (𝑑, 𝑘) ∈
𝑊, ℎ ∈ 𝐻 : 𝑒𝑖 ̸= (𝑑, ℎ).

– Exams have to be scheduled as one block of length ExamHours(𝑐) on a single
day 𝑑 starting at some hour ℎ ∈ 𝐻, meaning 𝑒𝑖𝑘

:= (𝑑, ℎ + 𝑘) for 𝑘 =
0, . . . , ExamHours(𝑐) − 1 with slot indices 𝑖𝑘.

– Exams have to start during the first 3 hours of each day.

∙ Lecturers are not allowed to teach the last time on Friday and the first time on
Saturday during each weekend.

∙ All days (𝑑, 𝑘) ∈ 𝑊 in the intensive week must be nearly fully planed, meaning
there are at least 8 hours planned at this day.

The list above contains all the hard constraints for the problem. Additional soft
constraints that should be fulfilled if possible are listed below:

∙ The number of weekends at which there are courses schedule should be minimized.

∙ If a day for a class (𝑑, 𝑘) ∈ 𝐷𝐾 is used for scheduling in a meeting 𝑚(𝑐) for a
course (𝑐, 𝑘) ∈ 𝐶𝐾 this day should be as full as possible for the class 𝑘.

∙ For a class 𝑘 the number of consecutive free weekends should not exceed two.

∙ On all days there should be no idle times for all lecturers.

∙ Hard lectures (defined by some hardness parameter) should start at early times.

∙ Exams should be planned on Fridays.

Remark. If we would additionally enforce that all courses are only taught by one single
lecturer, so |(𝑐, 𝑙′) : (𝑐, 𝑙′) ∈ CL| = 1 for fixed 𝑐, the problem would be an instance of the
class-teacher timetabling problem, with special constraints.

Based on this formal problem definition it is possible to define a timetable for the
CAMPUS 02 timetabling problem.
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Definition 2.1. We call an assignment of times to the time slots timetable, if all con-
straints, except the completeness constraints, are satisfied. If in addition all complete-
ness constraints are fulfilled the assignment is called complete timetable. Else it is called
partial timetable.

If the assignment does not satisfy other constraints than the completeness constraints,
it is called infeasible.

This definition includes the assignment, where only the preassigned time slots have
times assigned as a partial timetable.

If a time (𝑑, ℎ) ∈ 𝑇 is assigned to a meeting 𝑚(𝑐) of the course 𝑐 ∈ 𝐶 we say, that the
course 𝑐 is scheduled at (𝑑, ℎ). Because of the blocking constraints for courses, it is also
possible to refer to the block of course 𝑐 on day 𝑑, referring to the times (𝑑, ℎ) assigned
to 𝑚(𝑐). Because of the no idle time constraints for classes analogously one can refer to
the block of class 𝑘 on day 𝑑, which corresponds to the times

{(𝑑, ℎ) ∈ 𝑇 : ∃(𝑐, 𝑘) ∈ CK : (𝑑, ℎ) ∈ 𝑚(𝑐), 𝑘 ∈ 𝑚(𝑐)}.

Remark. Note that we write 𝑟 ∈ 𝑚, if the resource 𝑟 is assigned to a resource slot in the
meeting 𝑚 and 𝑡 ∈ 𝑚, if the time 𝑡 is assigned to a time slot in meeting 𝑚.

2.1.3. Objective Function
Which of the feasible timetables are considered as good is not that clear. This is a
problem quite common among educational timetabling problems. It is not clear how to
formally compare different timetables. The easiest and most used way is to assign an
objective value to each timetable using a weighted sum of unsatisfied soft constraints.
We also use this approach for the integer programming formulation and the heuristics.

For later reference, functions corresponding to the most important soft constraint
violations are defined.

Free weekends For each class 𝑘 the function freeWeekends : 𝐾 → N0 counts the number
of weekends, for which no time is assigned to a meeting containing the class 𝑘. It
is of course desirable to maximize this function for each class. Analogously we can
define a function usedWeekends : 𝐾 → N0 counting the number of weekends used
for scheduling.

Short days For each class 𝑘 the function shortDays : 𝐾 → N0 counts the number of
days, for which the block of times on that day, assigned to meetings containing
the class 𝑘, has a length smaller than 8. It is not considered good for students, to
have such short days in their timetable. This number should therefore be tried to
minimize for each class 𝑘.

Unused Hours For each class 𝑘 the functionunusedHours : 𝐾 → N0 counts for each
day at which a block of times is assigned to a meeting containing the class 𝑘 the
number of hours on this day that are not assigned to any meeting containing the
class 𝑘.
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Free Periods For each class 𝑘 the function freePeriods : 𝐾 → N0 counts the number of
free days between two days which are assigned to meetings of 𝑘, that exceed two
(one free weekend in between does not count). These long periods of no teaching
are considered bad for the students and should be minimized.

Days used For a lecturer 𝑙 ∈ 𝐿 the function daysUsed : 𝐿 → N0 counts the number of
days at which a meeting containing the lecturer is scheduled.

Idle Times For a lecturer 𝑙 ∈ 𝐿 the function idleTimes : 𝐿 → N0 counts the number of
hours not assigned to any meeting containing 𝑙, between two meetings with times
on the same day, containing the lecturer 𝑙. Such idle times should be minimized
for each lecturer.

Late meetings For a course 𝑐 ∈ 𝐶 the function lateMeetings : 𝐶 → N0 counts the
number of times (𝑑, ℎ) with ℎ > 6 assigned to 𝑚(𝑐). These late meetings should
be minimized for hard courses.

Saturday exams For a class 𝑘 ∈ 𝐾 the function saExams : 𝐾 → N0 counts the number
of exams that are scheduled on Saturdays for the class 𝑘.

Looking at the different soft constraints in more detail, it is observable that they
represent wishes and objectives of different (competing) parties. In the case of the
CAMPUS 02 timetabling problem, these parties are the resources (lecturers and classes)
and the courses. This leads to a multi-objective problem with objectives for each party.
Section 1.4.1 contains a review of the literature about methods to solve this kind of for-
mulation for similar problems. A hyper-heuristic to solve the multi-objective formulation
of the CAMPUS 02 timetabling problem is developed in Section 4.3.3.

2.2. Modeling as an Integer Program
The CAMPUS 02 timetabling problem from Section 2.1 is modeled as an integer linear
program (IP) using binary variables. This gives another formalization of the problem
and allows the solution of the problem using integer programming solvers. We follow an
approach similar to the ones reviewed in Section 1.4.2.

The model is based on the formulation in Section 2.1.

2.2.1. Variables
Binary variables are introduced for each possible time 𝑡 ∈ 𝑇 combined with every course
𝑐 ∈ 𝐶, that indicate if time 𝑡 is assigned to a time slot in meeting 𝑚(𝑐). These variables
are denoted by x𝑑,ℎ,𝑐 for 𝑡 = (𝑑, ℎ). If x𝑑,ℎ,𝑐 = 1 the time (𝑑, ℎ) is assigned to a time slot
in 𝑚(𝑐) and x𝑑,ℎ,𝑐 = 0 otherwise.

Analogously variables e𝑑,ℎ,𝑐 are defined to indicate, if a time 𝑡 = (𝑑, ℎ) is assigned to
an exam time slot in meeting 𝑚(𝑐). An assignment e𝑑,ℎ,𝑐 = 1 indicates that the time
(𝑑, ℎ) is assigned to an exam time slot in 𝑚(𝑐) and e𝑑,ℎ,𝑐 = 0 otherwise.
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These variables are sufficient to encode a complete solution of the problem. But
we need to introduce further variables to model the constraints and objectives of the
problem using linear (in)equalities and functions.

One major reason leading to more variables are the blocking constraints. These force
us to introduce additional variables for each time 𝑡 = (𝑑, ℎ) and each block element
(course or class) indicating the start of a block. These variables are denoted with s𝑑,ℎ,𝑐

for the time slots and es𝑑,ℎ,𝑐 for the exam time slots. The blocking constraints introduced
in the next section enforce that s𝑑,ℎ,𝑐 and es𝑑,ℎ,𝑐 are equal to 1 if and only if a block of
times is assigned to the time slots or exam time slots of 𝑚(𝑐) that starts at time (𝑑, ℎ)
and 0 otherwise.

Additional variables are defined as needed next to the corresponding constraints or
objectives.

2.2.2. Hard Constraints
Linear equations and inequalities are used to model the constraints of the problem. For
some of the constraints additional variables are needed. The set of constraints defined
in this Section gives a characterization of all timetables that form a feasible solution to
the problem.

∙ Completeness constraints for time slots and exam time slots.

∑︁
(𝑑,ℎ)∈𝐷×𝐻

x𝑑,ℎ,𝑐 = CourseHours(𝑐) ∀𝑐 ∈ 𝐶

∑︁
(𝑑,ℎ)∈𝐷×𝐻

e𝑑,ℎ,𝑐 = ExamHours(𝑐) ∀𝑐 ∈ 𝐶

∙ No-clash constraints for lecturers and classes.∑︁
𝑐 : (𝑐,𝑙)∈CL

(x𝑑,ℎ,𝑐 + e𝑑,ℎ,𝑐) ≤ 1 ∀𝑙 ∈ 𝐿, (𝑑, ℎ) ∈ 𝑇

∑︁
𝑐 : (𝑐,𝑘)∈CK

(x𝑑,ℎ,𝑐 + e𝑑,ℎ,𝑐) ≤ 1 ∀𝑘 ∈ 𝐾, (𝑑, ℎ) ∈ 𝑇

∙ Availability constraints for classes.

x𝑑,ℎ,𝑐 = 0 ∀(𝑑, 𝑘) /∈ DK , 𝑐 ∈ 𝐶 : (𝑐, 𝑘) ∈ CK , ℎ ∈ 𝐻

e𝑑,ℎ,𝑐 = 0 ∀(𝑑, 𝑘) /∈ DK , 𝑐 ∈ 𝐶 : (𝑐, 𝑘) ∈ CK , ℎ ∈ 𝐻

∙ Availability constraints for lecturers

x𝑑,ℎ,𝑐 = 0 ∀(𝑑, 𝑙) ∈ NOGO, ℎ ∈ 𝐻, 𝑐 ∈ 𝐶 : (𝑐, 𝑙) ∈ CL
e𝑑,ℎ,𝑐 = 0 ∀(𝑑, 𝑙) ∈ NOGO, ℎ ∈ 𝐻, 𝑐 ∈ 𝐶 : (𝑐, 𝑙) ∈ CL
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∙ Constraints that ensure exams are correctly scheduled:
– The exam for course 𝑐 has to start at least one week after the last time

assigned to a time slot of 𝑚(𝑐).∑︁
ℎ′∈𝐻,𝑑′∈𝐷 :

ord(𝑑′)≥ord(prev(𝑑))

x𝑑′,ℎ′,𝑐 ≤ CourseHours(𝑐)(1 − es𝑑,ℎ,𝑐) ∀𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷, ℎ ∈ 𝐻

– No exams are scheduled on days of the intensive week W .

e𝑑,ℎ,𝑐 = 0 ∀(𝑑, 𝑘) ∈ W , ℎ ∈ 𝐻, 𝑐 : (𝑐, 𝑘) ∈ CK

– For each class there is only one exam allowed during each weekend.∑︁
𝑐 : (𝑐,𝑘)∈CK

ℎ∈𝐻

(es𝑑1,ℎ,𝑐 + es𝑑2,ℎ,𝑐) ≤ 1 ∀(𝑑1, 𝑑2) ∈ WE , 𝑘 ∈ 𝐾

– Exams must start during the early hours of a day.

e𝑑,ℎ,𝑐 = 0 ∀𝑑 ∈ 𝐷, 𝑐 ∈ 𝐶, ℎ ∈ 𝐻 : ℎ > 3

∙ The intensive week has to be nearly fully scheduled.∑︁
ℎ∈𝐻

𝑐∈𝐶 : (𝑐,𝑘)∈CK

(x𝑑,ℎ,𝑐 + e𝑑,ℎ,𝑐) ≥ 8 ∀(𝑑, 𝑘) ∈ W

∙ Lecturers are not allowed to teach the last hour on Friday and the first hour on
the next Saturday.∑︁

𝑐 : (𝑐,𝑙)∈CL
(x𝑑1,last(𝐻),𝑐 + e𝑑2,first(𝐻),𝑐) ≤ 1 ∀𝑙 ∈ 𝐿, (𝑑1, 𝑑2) ∈ WE

∙ Blocking constraints:
– Blocking for single courses on each day.

To formulate this as a linear constraint we need to introduce variables s𝑑,ℎ,𝑐

for normal courses and es𝑑,ℎ,𝑐 for exams, that indicate starts of blocks.
There exists only one block for each course on each day and only one exam
block at all, which is enforced by the following constraints.∑︁

ℎ∈𝐻

s𝑑,ℎ,𝑐 ≤ 1 ∀𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷

∑︁
𝑑∈𝐷,ℎ∈𝐻

es𝑑,ℎ,𝑐 ≤ 1 ∀𝑐 ∈ 𝐶
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The following inequalities enforce the correct block lengths.⎛⎝ ∑︁
ℎ∈𝐻

s𝑑,ℎ,𝑐

⎞⎠ 𝑙(𝑐) ≤
∑︁
ℎ∈𝐻

x𝑑,ℎ,𝑐 ≤

⎛⎝ ∑︁
ℎ∈𝐻

s𝑑,ℎ,𝑐

⎞⎠ 𝑢(𝑐) ∀𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷

We need to enforce, that the variables s and es force the variables x and e
to build consecutive blocks on each day 𝑑, for each course 𝑐. The correctness
of the following constraints is based on Lemma 2.1.

x𝑑,ℎ,𝑐

⎧⎨⎩= s𝑑,ℎ,𝑐 if ℎ = 1
≤ s𝑑,ℎ,𝑐 + x𝑑,ℎ−1,𝑐 else

∀𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷, ℎ ∈ 𝐻

e𝑑,ℎ,𝑐

⎧⎨⎩= es𝑑,ℎ,𝑐 if ℎ = 1
≤ es𝑑,ℎ,𝑐 + e𝑑,ℎ−1,𝑐 else

∀𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷, ℎ ∈ 𝐻

– Additionally we need that the courses taught for one class on each day form a
block. This can be done analogously introducing block start variables ds𝑑,ℎ,𝑘

for each time (𝑑, ℎ) ∈ 𝑇 and class 𝑘 ∈ 𝐾. Using these we enforce blocking as
for courses.

∑︁
ℎ∈𝐻

ds𝑑,ℎ,𝑘 ≤ 1 ∀𝑘 ∈ 𝐶, 𝑑 ∈ 𝐷

∑︁
𝑐 : (𝑐,𝑘)∈CK

(x𝑑,ℎ,𝑐 + e𝑑,ℎ,𝑐) =

⎧⎪⎪⎨⎪⎪⎩
= ds𝑑,ℎ,𝑘 if ℎ = 1
≤ ds𝑑,ℎ,𝑘+∑︀

𝑐 : (𝑐,𝑘)∈CK (x𝑑,ℎ−1,𝑐 + e𝑑,ℎ−1,𝑐) else
∀𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷, ℎ ∈ 𝐻

The following lemma proves the correctness of the blocking constraints.

Lemma 2.1. Given some index set 𝐼 = {1, 2, . . . , 𝑛}, two vectors of variables x𝑖 and s𝑖

for 𝑖 ∈ 𝐼 the constraints

x𝑖

⎧⎨⎩= s𝑖 if 𝑖 = 1
≤ s𝑖 + x𝑖−1 else

∀𝑖 ∈ 𝐼

enforce s𝑖 = 1 whenever x𝑖 = 1 and x𝑖−1 = 0 for 𝑖 > 1, and x0 = s0.
It follows that whenever a new block starts in x, the corresponding index in s must be

set to 1. Now we can enforce a maximum of 𝑘 ∈ N blocks by the constraint
∑︁
𝑖∈𝐼

s𝑖 ≤ 𝑘.
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Proof. The case for 𝑖 = 1 is trivial.
If 𝑖 > 0, x𝑖 = 1 and x𝑖−1 = 0, then a new block starts and we have

1 = x𝑖 ≤ s𝑖 + x𝑖−1 = s𝑖.

2.2.3. Objective Function and Soft Constraints
As already mentioned it is not clear how to define objective functions for timetabling
problems. There are several wishes of different stakeholders, that are not hard con-
straints to the problem. It is shown how to count violations of these constraints using
linear functions to allow incorporating them into the objective function of a linear inte-
ger program. One can then use different combinations of weighted sums of these to solve
the problem with regard to different priorities. For some of these objectives it is again
necessary to introduce new variables to the problem and control them with additional
constraints.

∙ One important objective is to minimize the number of weekends used for each
class 𝑘 ∈ 𝐾. To formulate this as a linear constraint we introduce new variables
usedWeekend(𝑑1,𝑑2),𝑘 ∈ {0, 1} for each weekend (𝑑1, 𝑑2) ∈ WE . Using the follow-
ing constraints we can enforce that usedWeekend(𝑑1,𝑑2),𝑘 = 1 if a course of class 𝑘
is scheduled during weekend (𝑑1, 𝑑2).

∑︁
ℎ∈𝐻

(ds𝑑1ℎ,𝑘 + ds𝑑2,ℎ,𝑘) ≤ 2usedWeekend(𝑑1,𝑑2),𝑘 ∀(𝑑1, 𝑑2) ∈ WE , 𝑘 ∈ 𝐾

Using these variables we define linear functions for each class 𝑘 ∈ 𝐾 counting the
number of used weekends

usedWeekends(𝑘) :=
∑︁

(𝑑1,𝑑2)∈WE
usedWeekend(𝑑1,𝑑2),𝑘.

∙ We would like to minimize the number of unused time slots on days, that are used
for a class. This can be modeled by introducing variables unusedHours𝑑,𝑘 ∈ N0
which we want to force to 0 if there are no courses for class 𝑘 scheduled on day
𝑑 and to the number of unused hours on day 𝑑 else. We use the linear helper
functions

dayUsed(𝑑, 𝑘) :=
∑︁
ℎ∈𝐻

ds𝑑,ℎ,𝑘

usedHours(d, k) :=
∑︁
ℎ∈𝐻

𝑐 : (𝑐,𝑘)∈CK

x𝑑,ℎ,𝑐
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to define the necessary constraint.

unusedHours𝑑,𝑘 ≥ 9dayUsed(𝑑, 𝑘) − usedHours(𝑑, 𝑘) ∀(𝑑, 𝑘) ∈ DK

This allows unusedHours to take values larger or equal to the unused hours on
a used day for a class and minimizing with respect to this value will force the
variables to take the value needed. We want to point out that minimizing with
respect to usedWeekend, also implicitly enforces a minimization of unused hours.
This is why only one of these two options should be chosen, to keep the number
of variables in the problem smaller.

∙ Lecturers wish to have a minimum number of blocks to teach. The number of
blocks a lecturer teaches can be counted by introducing binary block start variables
ls𝑑,ℎ,𝑙 ∈ {0, 1} for each lecturer 𝑙 ∈ 𝐿. These can be forced to 1 for each block start
using the technique from Lemma 2.1.

∑︁
𝑐 : (𝑐,𝑙)∈CL

(x𝑑,ℎ,𝑐 + e𝑑,ℎ,𝑐) =

⎧⎪⎪⎨⎪⎪⎩
= ls𝑑,ℎ,𝑙 if ℎ = 1
≤ ls𝑑,ℎ,𝑘+∑︀

𝑐 : (𝑐,𝑙)∈CL(x𝑑,ℎ−1,𝑐 + e𝑑,ℎ−1,𝑐) else
∀𝑙 ∈ 𝐿, 𝑑 ∈ 𝐷, ℎ ∈ 𝐻

Now we can minimize with respect to these variables ls.
Remark. It is possible that some lecturers do not like to teach big blocks and prefer
to have multiple small ones. This can also be handled by maximizing with respect
to ls.

∙ Exams should start as early as possible. If an exam for a fixed course 𝑐 ∈ 𝐶 starts
after some hour ℎ0, that can be easily determined using the exam start variables
es.

examLate(𝑐) :=
∑︁

𝑑∈𝐷,ℎ>ℎ0

es𝑑,ℎ,𝑐

∙ For hard courses it is preferred, that they start early. To measure the number of
late starts for a course 𝑐 ∈ 𝐶 we again define a analogous function.

courseLate(𝑐) :=
∑︁

𝑑∈𝐷,ℎ>ℎ0

s𝑑,ℎ,𝑐

As shown in the literature review in Section 1.4, there exist different methods to define
the objective function used to solve the problem based on these objectives. The most
common approach is to use a weighted sum of these objectives and solve the problem
using some weights as its input. After evaluating the solution the user can then modify
these weights to improve some other aspects of the solution.
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3. Theoretical Foundations of
Educational Timetabling Problems

In this section the theoretical foundations of educational timetabling problems are intro-
duced. In Section 3.1 the connections between timetabling problems and graph coloring
problems are established. Section 3.2 contains an overview of computational complexity
results about educational timetabling problems.

3.1. Connection to the Graph Coloring Problem
The well known connections between graph coloring problems and timetabling problems
are described in this section. These will be used in later sections to obtain complexity
results (see Section 3.2) and to develop efficient heuristics based on known graph coloring
heuristics (see Section 4.1.1).

3.1.1. Basic Definitions and Results
We use the basic definitions and notations for graph theory as introduced in the standard
reference by Diestel [26].

There are two different connected types of coloring problems in graphs known as the
edge coloring and the vertex coloring problem.

Definition 3.1. Let 𝐺 = (𝑉, 𝐸) be a graph. A function 𝑐 : 𝐸 → N is called an edge
coloring of 𝐺, if for every vertex 𝑣 ∈ 𝑉 all edges adjacent to 𝑣 are assigned a different
value by 𝑐. We call these values colors.

The number of different colors used by an edge coloring is an interesting parameter
and denoted by value(𝑐). The chromatic index of 𝐺 is defined as the minimum number
of colors needed to obtain an edge coloring of 𝐺 and denoted by

𝜒′(𝐺) := min
𝑐 edge coloring of 𝐺

value(𝑐).

Definition 3.2. Let 𝐺 = (𝑉, 𝐸) be a graph. A function 𝑐 : 𝑉 → N is called a vertex
coloring of 𝐺, if for every edge {𝑣, 𝑤} ∈ 𝐸 it holds that 𝑐(𝑣) ̸= 𝑐(𝑤). Again the values
of 𝑐 are called colors. This means that vertices that are connected by an edge in 𝐺 must
be colored using different colors. Analogously the number of colors needed by a vertex
coloring is of interest and denoted by value(𝑐). If a coloring 𝑐 with value(𝑐) = 𝑛 ∈ N
exists we call the graph 𝑛-colorable and the minimum number of colors needed by a
vertex coloring is called the chromatic number and denoted by
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𝜒(𝐺) := min
𝑐 vertex coloring of 𝐺

value(𝑐).

The corresponding optimization problems ask for a given graph 𝐺 to find a coloring
with minimum number of colors.

The first connection between a timetabling problem and coloring is established for the
class-teacher timetabling problem and the edge coloring problem in a bipartite graph.

Theorem 3.1 (Csima [19], de Wera [21]). The basic class teacher timetabling problem
is equivalent to an edge coloring problem in a bipartite graph.

Proof. Define the bipartite graph 𝐺 = (𝑈 ∪̇ 𝑉, 𝐸) corresponding to a given class-teacher
timetabling problem. The set of teachers corresponds to the vertices in 𝑈 and the set of
classes corresponds to the vertices in 𝑉 . We add an edge between a vertex 𝑢 ∈ 𝑈 and
𝑣 ∈ 𝑉 for each meeting that the teacher 𝑢 has with the class 𝑣.

Now an edge coloring 𝑐 in this graph assigns to each edge a value such that for all
other edges adjacent to the same teacher and class this value is not used. Using this
value as the time of the meeting corresponding to the edge gives a assignment of the
time slots that satisfies the no-clash constraints for teachers and classes. So finding a
minimum edge coloring gives an assignment of times to the meetings, using a minimum
number of times.

Definition 3.3. Let 𝐺 = (𝑉, 𝐸) be a graph. The maximum degree in 𝐺 is denoted by

Δ(𝐺) := max
𝑣∈𝑉

deg(𝑣).

For bipartite graphs there is a well known connection between the maximum degree
and the chromatic index. If the referenced graph is clear, we just write Δ = Δ(𝐺).

Theorem 3.2 (König’s theorem [35]). Let 𝐺 be a bipartite graph. Then 𝜒′(𝐺) = Δ(𝐺).

In Section 3.2 the proof of Theorem 3.5 also includes a proof of Theorem 3.2 and
shows that an minimal edge coloring in a bipartite graph can be calculated in polynomial
time. In general graphs this problem is NP-complete, but an edge coloring with at most
Δ(𝐺) + 1 colors can be calculated in polynomial time [26, Theorem 5.3.2; Vizing 1964].

In the following we introduce the well known conflict graph for the post-enrollment
course timetabling problem. This concept is introduced because we define a similar
conflict graph for the CAMPUS 02 timetabling problem in Section 3.1.3.

For the basic post-enrollment course timetabling problem we define this conflict graph
and show how it can be used to obtain a connection between timetabling and coloring
in a graph.

Definition 3.4. The conflict graph 𝐺 = (𝑉, 𝐸) of a course timetabling problem has as
its vertex set the set of all pairs of courses with its needed time slots

𝑉 := {(𝑐, 𝑡𝑖) : 𝑐 ∈ 𝐶, 𝑡𝑖 ∈ 𝑚(𝑐)}.
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Because edges in this graph should show the severity of conflict if the time slots in
two adjacent vertices are assigned the same time we introduce weights 𝑤 : 𝐶 × 𝐶 → N0
between courses, defined by

𝑤(𝑐1, 𝑐2) :=

⎧⎨⎩∞ if 𝑐1 = 𝑐2

|{𝑠 student : 𝑠 ∈ 𝑚(𝑐1), 𝑠 ∈ 𝑚(𝑐2)}| else.

So for two different courses we count the number of students, that are enrolled in both
courses. Now the edge set is given by each pair of vertices such that the corresponding
courses have a positive weight

𝐸 := {{(𝑐, 𝑡𝑖), (𝑐′, 𝑡′
𝑖)} : 𝑤(𝑐, 𝑐′) > 0}

and the weight function between courses can be extended to the edges by setting

𝑤({(𝑐, 𝑡𝑖), (𝑐′, 𝑡′
𝑖)}) := 𝑤(𝑐, 𝑐′).

Remark. We can incorporate different conflicts (e.g. common lecturers) by adding addi-
tional edges with corresponding weights.

Now a vertex coloring can be interpreted as an assignment of times to the time slots
in the vertices without conflicts.

3.1.2. Extensions of the Graph Coloring Problem
As already mentioned in Section 1.3 the basic timetabling problems are often extended
by additional constraints in practice. This section is a review of methods, that allow
to incorporate these constraints to coloring problems, or analyze more general coloring
problems on graphs.

Neufeld and Tartar [45] show, that vertex coloring with preassigned vertices and pre-
vention of colors for selected vertices can be reduced to general vertex coloring.

Theorem 3.3 (Neufeld & Tartar [45]). Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑃 ⊆ 𝑉 a subset
of vertices with preassigned colors 𝑐 : 𝑃 → N. It is possible to extend 𝑐 to a coloring of
𝐺 using at most 𝑛 ∈ N colors, if and only if the graph 𝐺′ = (𝑉 ′, 𝐸 ′) with 𝑉 ′ = 𝑉 and
𝐸 ′ containing

∙ the edges 𝐸 of 𝐺,

∙ edges joining vertices preassigned to different colors, that is

{{𝑣, 𝑤} : 𝑣, 𝑤 ∈ 𝑃, 𝑐(𝑣) ̸= 𝑐(𝑤)},

∙ edges to neighbors of vertices preassigned to the same color (see Figure 3.1), that
is

{{𝑢, 𝑤} : 𝑢, 𝑣 ∈ 𝑃, 𝑐(𝑢) = 𝑐(𝑣), {𝑣, 𝑤} ∈ 𝐸},
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Figure 3.1.: Edges to neighbors of vertices preassigned to the same color are added.

is 𝑛-colorable.

Remark. Note that determining if an extension of the coloring as mentioned in The-
orem 3.3 exists is NP-hard, because the graph coloring problem is NP-complete. But
the theorem above shows that solving the graph coloring problem in the graph 𝐺′ is
sufficient for solving this problem.

Theorem 3.4 (Neufeld & Tartar [45]). Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑟 : 𝑉 → 2[𝑛] a
restriction function giving for each vertex 𝑣 ∈ 𝑉 a set of colors which are not allowed to
use for coloring 𝑣. The graph 𝐺 is 𝑛-colorable with a coloring satisfying the restrictions
given by 𝑟 if and only if the graph 𝐺′ = (𝑉 ′, 𝐸 ′) with vertex set

𝑉 ′ := 𝑉 ∪̇ {𝑣𝑖 : 𝑖 = 1, . . . , 𝑛}

and edge set 𝐸 ′ consisting of

∙ the edges 𝐸 of 𝐺,

∙ edges building a complete subgraph of the color vertices {{𝑣𝑖, 𝑣𝑗} : 𝑖, 𝑗 ∈ [𝑛], 𝑖 ̸= 𝑗},

∙ edges induced by the restriction function {{𝑤, 𝑣𝑖} : 𝑤 ∈ 𝑉, 𝑖 ∈ 𝑟(𝑤)},

is 𝑛-colorable.

Many other special constraints that lead to extensions of coloring are summarized
in [22]. This also includes the enforcement of simultaneity, meaning that some edges (or
vertices) are enforced to have the same color (regardless of feasibility of this decision).
This allows the modeling of multiple groups for a course.

Another very common constraint, that is problematic for graph coloring, is the need
for blocking of lectures. To cover these constraints a generalization of graph coloring,
called interval coloring, is studied.

Definition 3.5. Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑑 : 𝑉 → N a demand function. Then a
function 𝑐 : 𝑉 → 2N is called an interval coloring of 𝐺, if it assigns an interval of integers
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(subsets of consecutive numbers), to each vertex such that for each vertex 𝑣 ∈ 𝑉 the
length of the interval fulfills |𝑐(𝑣)| = 𝑑(𝑣) and for each edge {𝑢, 𝑣} ∈ 𝐸, 𝑐(𝑢) ∩ 𝑐(𝑣) = ∅
holds.

Analogously for a demand function 𝑑 : 𝐸 → N an interval edge coloring of 𝐺 is
defined as a function 𝑐 : 𝐸 → 2N, such that an interval of integers is assigned and for
every edge 𝑒 ∈ 𝐸 it holds that |𝑐(𝑒)| = 𝑑(𝑒) and for two adjacent edges 𝑒1, 𝑒2 ∈ 𝐸 we
have 𝑐(𝑒1) ∩ 𝑐(𝑒2) = ∅.

Remark. This still does not always cover the requirements on blocking, because often
blocks are restricted to be parts of days and a solution to the interval coloring problem
cannot always be aligned in such a way, that this holds for all blocks in the solution. Nev-
ertheless methods to solve these problems are of interest for applications to timetabling
problems.

In [62] Čangalović and Schreuder develop an algorithm to calculate the interval chro-
matic number of a graph and apply it to a timetabling problem. Kubale [37] analyzes
the interval chromatic number for several special graph classes and determines hardness
results. It is also analyzed how to include forbidden colors to the problem.

3.1.3. Graph Coloring and the CAMPUS 02 Timetabling Problem
As already mentioned the CAMPUS 02 timetabling problem can be formulated as a
class-teacher timetabling problem with some special constraints. One major problem in
using the bipartite graph formulation from Theorem 3.1 are the courses that are taught
by several teachers simultaneously.

One way to model this is to consider bipartite hypergraphs, and try to find colorings
of the hyperedges. We do not follow this approach in further detail. We try to apply
the concept of a conflict graph similar to the one in Definition 3.4, to obtain a vertex
coloring problem with connections to the CAMPUS 02 timetabling problem. In addition
to this blocking of lectures must be enforced for most courses. This is why the interval
coloring problem is defined (see Definition 3.5).

If the block sizes for each course would be a fixed partition of CourseHours, a conflict
graph could be defined, with these blocks as nodes and a variation of an interval coloring
of this graph would correspond directly to solutions to the problem. We performed
some experiments using this connection by generating a fixed arbitrary partition of
CourseHours in the beginning and then calculating solutions based on this partition.
This approach is discarded, because of the bad quality of the produced timetables.

Having this variability in the number and length of the final blocks for each course
it is not possible to define a static graph where interval colorings of the nodes directly
correspond to planned blocks. Nevertheless we can still look at a course conflict graph
with the courses as its nodes, that encodes conflicts between courses. The number of
time slots in the meetings of the courses can be introduced in this graph as node weights.
This graph encodes many of the conflicts between different courses in a structured way
and is useful in defining heuristics based on graph coloring heuristics.
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Definition 3.6 (event conflict graph). Given the CAMPUS 02 timetabling problem the
course conflict graph 𝐺 = (𝑉, 𝐸) is defined with vertex set 𝑉 := 𝐶 equivalent to the set
of courses and for every vertex 𝑐 ∈ 𝑉 the demand is set by 𝑑(𝑐) := CourseHours(𝑐) +
ExamHours(𝑐) to the number of time slots and exam time slots contained in 𝑚(𝑐).

Because courses are taught by lecturers and they need to obey the no-clash constraints
corresponding edges between each pair of vertices that correspond to courses taught by
the same lecturer are added, that is

𝐸𝐿 := {{𝑐1, 𝑐2} : 𝑙 ∈ 𝐿, 𝑙 ∈ 𝑚(𝑐1), 𝑙 ∈ 𝑚(𝑐2)}.

Analogously edges between courses taught in the same class are needed to model the
no-clash constraints for classes, that is

𝐸𝐶 := {{𝑐1, 𝑐2} : 𝑘 ∈ 𝐾, 𝑘 ∈ 𝑚(𝑐1), 𝑘 ∈ 𝑚(𝑐2)}.

The edge set is defined as 𝐸 := 𝐸𝐿 ∪̇ 𝐸𝐾 and degree functions for the subgraphs
containing only the edges 𝐸𝐿 or 𝐸𝐾 are denoted by deg𝐿 and deg𝐾 .

Solutions to the timetabling problem now correspond to the assignment of multiple in-
tervals to each node of the graph. Many additional restrictions (for instance for handling
exam blocks) need to be added to these interval assignments, for them to be equivalent
to the CAMPUS 02 timetabling problem. Still the important fact is, that the edges of
the event conflict graph correspond to conflicts between all the time slots in the meetings
of the courses represented by the nodes. This motivates the use of these vertex degrees
for course selection in constructive timetabling heuristics (see Section 4.1.1).

3.2. Complexity of the Timetabling Problem
In this section the computational complexity of the CAMPUS 02 timetabling prob-
lem is analyzed. As shown in Section 2.1 the problem is a generalization of a class-
teacher timetabling problem. The class-teacher timetabling problem is among the first
timetabling problems analyzed for its computational complexity. For the definitions of
complexity classes and the terminology used we refer the reader to the standard book of
Sipser [57]. A comprehensive list of NP-complete problems is contained in the standard
book of Garey and Johnson [31].

With no additional constraints, Theorem 3.1 shows, that the class-teacher timetabling
problem is equivalent to the edge coloring problem in a bipartite graph. For this special
case, it is known from Theorem 3.2, that the number of time slots needed is equal to
the maximum degree in the corresponding graph. A coloring using exactly Δ colors
and based on that a timetable can be calculated in polynomial time, as it is shown by
Theorem 3.5.

Theorem 3.5 (König [35]). An edge coloring of a bipartite graph 𝐺 = (𝑉1 ∪̇𝑉2, 𝐸) using
Δ(𝐺) colors can be calculated in polynomial time.
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Proof. The algorithm iteratively generates a coloring 𝑐 : 𝐸 → {1, 2, . . . , Δ} of the edges.
When coloring the edge 𝑒 = {𝑥, 𝑦} with 𝑥 ∈ 𝑉1, 𝑦 ∈ 𝑉2 it determines the free colors 𝐹 (𝑥)
and 𝐹 (𝑦) for the vertices, that is

𝐹 (𝑣) := {𝑐 ∈ {1, 2, . . . , Δ} : 𝑐(𝑒) ̸= 𝑐 ∀𝑒 ∈ 𝛿(𝑣)}.

𝐹 (𝑥), 𝐹 (𝑦) ̸= ∅ because 𝛿(𝑥), 𝛿(𝑦) ≤ Δ and 𝑒 has no color assigned.
If 𝐹 (𝑥) ∩ 𝐹 (𝑦) ̸= ∅ the edge 𝑒 is colored with an arbitrary color in 𝐹 (𝑥) ∩ 𝐹 (𝑦).
Else choose colors 𝑐𝑥 ∈ 𝐹 (𝑥) and 𝑐𝑦 ∈ 𝐹 (𝑦). Let 𝑃 be the maximal connected

component containing 𝑥 in the subgraph of 𝐺 with edge set

{𝑒 ∈ 𝐸 : 𝑐(𝑒) = 𝑐𝑥 or 𝑐(𝑒) = 𝑐𝑦}.

𝑃 is a path whose edges have alternating colors, starting in 𝑥 with an edge of color 𝑐𝑦.
Because this path starts in 𝑥, all vertices of 𝑃 in 𝑉2 are adjacent to an edge with color
𝑐𝑦, implying that 𝑦 is not part of 𝑃 . Because 𝑃 is a maximum path with alternating
colors, the coloring obtained by swapping 𝑐𝑥 and 𝑐𝑦 inside 𝑃 is still feasible in 𝐺.

After this swap 𝑐𝑦 is a free color in 𝑥 and 𝑦 and the edge 𝑒 can be colored with 𝑐𝑦.

This procedure has polynomial running time, because it needs to color 𝑚 edges and
in each step the sets 𝐹 (𝑥) and 𝐹 (𝑦) can be calculated using 𝑂(Δ) steps. If necessary
the path 𝑃 and the color swap within can be performed in 𝑂(𝑛) time. This implies a
worst case running time of 𝑂(𝑛𝑚).

Remark. Cole et al. [16] showed that there exists an algorithm with near-linear running
time 𝑂(𝑚 log(Δ)) to calculate an edge coloring with Δ colors in a bipartite graph. This
is currently the best running time known for this problem.

Even, Itai and Shamir [29] showed in 1975 that already a minor extension of the prob-
lem, which is very common in practical timetabling problems, leads to NP-hardness.
They show that availability constraints lead to NP-completeness of the problem. The
following theorem shows, that already a very simple restriction of the class-teacher
timetabling problem, with availability constraints only for the lecturers, is NP-complete.

Theorem 3.6 (Even et al. [29]). The basic class-teacher timetabling problem (see Sec-
tion 1.3.1) with additional availability constraints for lecturers is NP-complete, even in
the following restricted form.

∙ The set of times consists only of three times, that is |𝑇 | = 3.

∙ Classes are available at all times in 𝑇 .

∙ Every lecturer is assigned to exactly one or no meeting with any class.

∙ There are only the following two types of lecturers:
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2-lecturers are assigned to exactly two meetings with two different classes, where
each of these meetings contains exactly one unassigned time slot. For these
teachers there are availability constraints restricting them to only two of the
three times in 𝑇 .

3-lecturers are assigned to exactly three meetings with three different classes,
where each of these meetings contains exactly one unassigned time slot. These
teachers are available at all of the three times in 𝑇 .

The proof of the theorem is a technical reduction of 3SAT to this special timetabling
problem. To show that Theorem 3.6 is sharp with respect to problem restrictions, Even et
al. [29] prove, that the same problem, where all lecturers are 2-lecturers, is polynomially
solvable using a simple branching procedure.

It is easy to see that the problem shown to be NP-complete in Theorem 3.6 is a
special case of the CAMPUS 02 timetabling problem. The formal statement is given in
the following corollary.

Corollary 3.1. The problem deciding if a feasible solution to the CAMPUS 02 timetabling
problem exists is NP-complete.

Proof. The containment of the problem in the complexity class NP is obvious.
The NP-hardness of the problem follows by a reduction from the NP-complete problem

of Theorem 3.6 to the CAMPUS 02 timetabling problem. In the following we show how
to construct an instance of the CAMPUS 02 timetabling problem by specifying the input
parameters explained in Section 2.1.1 based on an arbitrary instance of the problem from
Theorem 3.6.

To keep the notation as simple and clear as possible the weekends and the constraints
corresponding to weekends in the CAMPUS 02 timetabling problem are ignored in this
reduction. This simplification can be achieved using the original problem formulation
by creating an additional day for each existing day and adding these pairs to the set of
weekends. If these new days are not added to the set of available days for classes DK
the new problem is equivalent to a problem without weekends.

The set of days corresponds to the times and is identified with it, that is 𝐷 := 𝑇 . To
enforce the fact that courses can only be planned on whole days and in this way the days
correspond to time slots we set the lower and upper block sizes to the number of hours
of a day, that is 𝑙 ≡ 𝑢 ≡ |𝐻|. The set of classes 𝐾 and lecturers 𝐿 are also equal to the
classes and lecturers of the given problem. Because there are no exams in the problem
we set ExamHours ≡ 0. Because classes are available at all times DK = 𝐷 × 𝐾.

Based on that it is now necessary to create courses in a way that the 2-lecturers and
3-lecturers of the problem are encoded.

For each lecturer 𝑙 ∈ 𝐿 that corresponds to a 2-lecturer, two courses 𝑐1 and 𝑐2 are
added to 𝐶 that correspond to the two meetings of the 2-lecturer with the two classes
𝑘1 and 𝑘2. Of course the lecturer is assigned to these courses, that is (𝑐1, 𝑙) ∈ CL
and (𝑐2, 𝑙) ∈ CL. Also the courses are added to the curriculum of the corresponding
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classes, that is (𝑐1, 𝑘1) ∈ CK and (𝑐2, 𝑘2) ∈ CK . Because each of these courses has to
be scheduled at exactly one day CourseHours(𝑐1) = CourseHours(𝑐2) = |𝐻|. Because a
2-lecturer is unavailable at one time 𝑡 ∈ 𝑇 the corresponding day is added to the set of
NoGo-Days for the lecturer, that is (𝑡, 𝑙) ∈ NOGO.

For each lecturer 𝑙 ∈ 𝐿 that corresponds to a 3-lecturer, three courses 𝑐1, 𝑐2 and 𝑐3
are added to 𝐶 corresponding to the three meetings of the classes 𝑘1, 𝑘2 and 𝑘3 with the
lecturer 𝑙. Again (𝑐1, 𝑙), (𝑐2, 𝑙), (𝑐3, 𝑙) are added to CL, (𝑐1, 𝑘1), (𝑐2, 𝑘2), (𝑐3, 𝑘3) are added
to CK and CourseHours(𝑐𝑖) = |𝐻| for 𝑖 = 1, 2, 3.

Based on this construction it is obvious that there is a bijection between solutions to
this instance of the CAMPUS 02 timetabling problem and solutions of the corresponding
instance of the problem in Theorem 3.6.

Remark. It is important to note that the reduction above shows only one reason for the
NP-hardness of the CAMPUS 02 timetabling problem. This should be easy to observe
because for the reduction for instance the blocking constraints of the problem are not
used.

In addition we look at several further complexity results, that show the borderline
between polynomial solvable special cases and NP-complete variations of educational
timetabling problems. This gives some intuition about which kind of constraints lead to
NP-hardness.

Another reason for hardness of timetabling problems is room assignment. As this
is not part of the CAMPUS 02 timetabling problem we do not include these results.
Carter and Tovey [15] analyze which cases of room assignment lead to NP-hardness and
for which formulations solutions can be found in polynomial time.

Preassignment of time slots is also very common among timetabling problems, as it
is also the case for the CAMPUS 02 timetabling problem. De Werra and Mahadev [24]
analyze in detail for which kind of graphs the problem with preassignments still stays
polynomially solvable.

One other aspect leading to NP-hardness, are lectures given to groups of classes. This
is analyzed by de Werra et al. [23] and they are able to show that, if one lecturer gives
lectures to at least three groups of classes, the class-teacher timetabling problem becomes
NP-complete.

The blocking constraints present in the problem are another quite obvious source of
NP-completeness. Ten Eikelder and Willemen [59] prove NP-completeness of the class
teacher timetabling problem, if only blocks of length two are enforced for some classes.
Because blocking is an essential part of the CAMPUS 02 timetabling problem and there
are two kinds of interconnected blocking constraints (blocks for courses and a single block
for each class on each day) blocking is one of the essential sources of the hardness of the
problem. Theorem 3.7 illustrate that already blocks of length 2 lead to NP-hardness.
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Theorem 3.7 (Ten Eikelder & Willemen [59]). The class-teacher timetabling problem
with only one class and teacher, but with blocking constraints for some pairs of time slots
and restrictions on the times used for time slots, is NP-complete.

When looking at more general types of school timetabling problems, like the one for-
mulated for the ITC2011, Cooper and Kingston [17] analyze many different independent
reasons for NP-completeness in these problems.
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4. Heuristics
In this section heuristics to solve the CAMPUS 02 timetabling problem defined in Section
2.1 are developed. Section 1.4.1 contains a review of the current state of the art on
educational timetabling heuristics. Methods that are shown to be efficient in literature
are combined and modified to suit the problem.

Low-level heuristics which are used as building parts of all the heuristics in this thesis
are developed in Section 4.1. These are classified into construction heuristics, that are
used to generate the timetable and perturbation methods, which can be used in im-
provement heuristics like local search. Section 4.2 then combines the low-level heuristics
into a heuristic for the CAMPUS 02 timetabling problem. In Section 4.3 the use of
hyper-heuristics, based on the low-level heuristics from Section 4.1, to create solutions
to the problem is explained. As already motivated in Section 1.4.1 the reason to develop
hyper-heuristics is that these are more flexible and lead to good solutions for different
kinds of inputs and also for modified problem versions.

Because the CAMPUS 02 timetabling problem has strong similarities to school time-
tabling problems, we mainly follow the approach of Pillay [49], who was among the
first to apply modern hyper-heuristic techniques developed for the university course
and the exam timetabling problem to school timetabling. In [49] generally applicable
hyper-heuristics are developed and we show that a similar approach is applicable to the
CAMPUS 02 timetabling problem in Section 4.3.2. As already mentioned in Section 2.1.3
the CAMPUS 02 timetabling problem is as multi-objective optimization problem. The
hyper-heuristic approach is generalized to a multi-objective version in Section 4.3.3.

All the heuristics in this section work on a given instance of the CAMPUS 02 time-
tabling problem and can obtain information about feasibility of assignments to time
slots. Section 4.4 explains how to store an instance of the problem and the current
solution, and how to retrieve the informations needed by the heuristics based on these
data structures efficiently. These data structures also handle the storage of solutions
and partial solutions.

An important restriction during the timetable construction is, that only feasible blocks
of time are assigned to the time slots. The data structures storing the instances allow the
system to obtain feasible block lengths for courses. This is no easy problem, because if a
block of certain length is planned, the number of unassigned time slots must still admit a
feasible partition into blocks fulfilling the lower and upper bounds. A first approach with
the partition of the time slots into fixed blocks at the beginning is discarded, because
this leads to infeasible or bad timetables in many cases.

39



4.1. Low-Level Heuristics
This section contains the building parts, called low-level heuristics, of all the developed
heuristics in this thesis. Heuristics for the problem consecutively use these low-level
heuristics as sub-methods. They are classified into two general types, depending on the
nature of their interaction with timetables. To clarify the terminology, we give definitions
of these two types, based on Burke et al. [9].

Construction heuristic A method working on a partial timetable that assigns times
to some unassigned time slot in a meeting of the problem. The result is again a
timetable, which can still be a partial.

Perturbation heuristic A method changing a given timetable by modifying the time
slot assignments in a way, such that the result is still a timetable. The slacks of
completeness constraints stay the same or increase by the application of a pertur-
bation heuristic.

The definition of perturbation heuristic is an extension to the one given in [9], where
perturbation heuristics are only allowed to work on complete timetables. This extension
is necessary, because we want to implement a hybrid heuristic which mixes construction
and perturbation heuristics.
Remark. Not all publications use the same terminology, especially with respect to per-
turbation heuristics. For instance in the work of Pillay [49], the heuristic Allocate(𝑎)
is classified as a perturbation heuristic, although it plans an event at a feasible time slot
in a partial timetable.

Note that partial timetables (see Definition 2.1) generated by construction heuristics
always fulfill the no idle times constraints, that are part of the problem for all classes.
This is not the case for many other constructive solvers in the literature, but allows
us to enforce this constraint, while keeping the heuristics relatively easy to implement,
without the need for additional data structures to enforce these constraints later on in
construction. This allows us to solve larger problem instances, which is necessary for
the CAMPUS 02 timetabling problem.

Also note that the KHE14 algorithm [34], which does not use this approach, is not
able to calculate a solution to the CAMPUS 02 timetabling problem in our experiments,
because the no idle time constraints for all classes lead to a too high memory consump-
tion.

The following sections explain two types of construction heuristics and the perturba-
tion heuristics used by the algorithms throughout this thesis.

4.1.1. Course Plan Construction Heuristics
The first construction heuristic approach, which is similar to most construction heuristics
in the literature, starts by selecting a course using predefined rules and then assigning
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time slots of this course with feasible times. These heuristics are called course plan
heuristics in this thesis.

Algorithm 4.1 is a general template for such a course plan heuristic for the problem.
Every course plan heuristic starts by selecting a course 𝑐, for which there still exist
unassigned time slots, calling the selectCourse method, as shown in line 1. Line 2
then checks if the selected course contains an exam and if this is the case and the
corresponding exam time slots have no times assigned, the planExam method is called
to assign times to the exam time slots in 𝑚(𝑐). This is already a heuristic decision to
plan exams before the rest of the course. Else the block at line 3 executes the planBlock
method, which should assign times to some of the unassigned time slots of 𝑚(𝑐). We
call this method planBlock, because it is only allowed to assign a full feasible block of
time to the meeting 𝑚(𝑐).

The reason for the decision to plan exams before the rest of the course is, that there
are more and stronger constraints for the exam time slots compared to the other time
slots of a course.

It is important to note that this is only a template for course plan heuristics. To obtain
concrete low-level heuristics the behavior of the methods selectCourse, planExam and
planBlock must be specified.

Algorithm 4.1: General template for the course plan heuristics.
1 𝑐 := selectCourse()
2 if 𝑐 has an exam and it is not already planned then

success := planExam(𝑐)
3 else

success := planBlock(𝑐)
return success

In the following different possible implementations are explained to obtain a pool of
concrete construction heuristics.

We provide several different implementations of the planBlock method:

∙ Search all feasible blocks of time assignable to 𝑚(𝑐) at each day and assign one of
these blocks chosen at random to the meeting 𝑚(𝑐).

∙ Assign the last feasible block of times to 𝑚(𝑐), where last means the block of time
with the latest starting time.

∙ Assign the first feasible block of times to 𝑚(𝑐), where first means the block of time
with the earliest starting time.

∙ A specialized version of choosing the last feasible block of times, where for each
class only blocks during unused days are used, if it is not possible to find a block
of times on a used day (see Algorithm 4.2).
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At first all blocks of time that are feasible for assignment to the meeting 𝑚(𝑐) of
the current course are determined, such that the day of that block is not empty
in the timetable of class 𝑘 (line 1). If this set of blocks is empty, another search is
performed, including such empty days. Here the last 4 weekends are excluded in
the search (line 2). Line 3 checks if a feasible block of times was found in line 1 or
2, and if not the method returns with an error. In line 4 a random block of times
is assigned to 𝑚(𝑐), if a new day is started. Else in line 5 it is checked, if a block
of times exists, that fills a day completely for the class 𝑘, and if so this block is
assigned to 𝑚(𝑐). If no such block exists the last block found during the search is
taken.

Algorithm 4.2: Implementation of the planBlock method of Algorithm 4.1 using
already used days and weekends before starting new days as late as possible.

Input: course 𝑐
𝑘 := class assigned to the course 𝑐
newday := false

1 blockpool := feasible blocks for course 𝑐, such that there is already another block
planned at the day of the block for class 𝑘, sorted with respect to their start and
end.

2 if blockpool = ∅ then
blockpool := feasible blocks for course 𝑐 on Fridays and Saturdays excluding
the last 4 weekends, sorted with respect to their start and end. newday :=
true

3 if blockpool = ∅ then
return false

4 if newday then
Assign a random block out of blockpool to the time slots of 𝑚(𝑐).

5 else
if a block exists in blockpool that fills a day completely then

Assign the last of these blocks to the time slots of 𝑐.
else

Assign the last block in blockpool to the time slots of 𝑐.
return true

If the construction heuristic should also be used to plan exams, Algorithm 4.3 gives
an implementation of the planExam method. It assigns the last feasible block of times
to the exam time slots of the selected course. An alternative is to leave this method
unimplemented, if it is intended for this concrete heuristic to plan no exams. In this
case it will only work, if the exam of the selected course is already planned.

The implementation of the chooseCourse method is the part, which is analyzed by
most publications about constructive heuristics for educational timetabling. The reason
is, that this method corresponds to node selection in the graph coloring problem (see
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Algorithm 4.3: Implementation of the planExam method of Algorithm 4.1
Input: course 𝑐
blockpool := All feasible blocks to plan the exam of course 𝑐.
if blockpool = ∅ then

return false
Assign the last block in blockpool to the exam time slots of 𝑐.
return true
.

Section 3.1). This is, why we adapt heuristics shown to be efficient for graph coloring,
to implement this method. Most of the research about constructive heuristics for the
university course and exam timetabling problem only analyzes this choice, as for instance
shown by Azlan and Hussin [3]. The constructive heuristics used by Pillay [49] are also
only differentiated by the implementation of the chooseCourse method and we use the
same implementations based on graph coloring here.

Largest degree Choose a course with the largest number of time slots, for which the
completeness constraint is not satisfied by the current partial timetable.
This can be interpreted as a maximum degree heuristic in a graph, if each time slot
is seen as a vertex and connect the vertices corresponding to the same meeting.

Saturation degree Choose a course with the smallest saturation number among all
courses, for which the completeness constraint is not satisfied by the current partial
timetable. Here the saturation number is given by the quotient of the number of
times, for which it is still feasible to assign them to a time slot of the course
(ignoring idle times constraints) and the slack of the completeness constraint of
the course.

Lecturer degree Among all courses for which the completeness constraint is not satis-
fied by the current partial timetable, choose one where a lecturer assigned to its
resource slot has the maximum number of meetings.
This is equal to the degree 𝛿𝐿(𝑣) in the event conflict graph given by Definition 3.6.

Class degree Among all courses for which the completeness constraint is not satisfied
by the current partial timetable choose one where the class assigned to its resource
slot has the maximum number of meetings.
This is equal to the degree 𝛿𝐾(𝑣) in the event conflict graph given by Definition 3.6.

Random Choose a course for which the completeness constraint is not satisfied by the
current partial timetable at random.

To enforce that all exams are planned in advance, all these selection rules are used
only after the completeness constraints for all exam time slots are satisfied. Before that
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courses whose exams are not planned are chosen randomly. This again is an implemen-
tation of the heuristic to plan exams in the beginning.

The course selection rules for all the heuristics above, except for the saturation degree
heuristic, are not directly influenced by the current partial timetable (except for the
fact that completely planned courses are not selected any more). This means that these
heuristics do not need any additional calculations during the execution. The saturation
degree needs the calculation of the number of feasible time slots for each course, after
each change of the timetable.

In addition to these heuristics based on graph coloring a special construction heuristic
to plan exams is developed. It tries to place exams at the last possible free weekend,
with a preference for Fridays, because exams on Fridays are considered better than
exams on Saturdays according to the experts from CAMPUS 02 University of Applied
Sciences. The details of the implementation are explained in Algorithm 4.4. It consists
of a selectCourse method that randomly selects a course that still has unassigned exam
time slots. Then the planExam method plans the exam for the course in the following
way. The heuristic iterates over each weekend (fr , sa) in line 1. Then it checks if it
is possible to plan the exam on sa (line 2) and fr (line 3), and if so adds these days
to corresponding pools for selection. In line 4 the algorithm checks if a feasible Friday
exists and if not assign the set of feasible Saturdays for selection. The heuristic then
plans the exam at the last possible day in the selected set (the set of feasible Fridays if
any exist; line 5).

Algorithm 4.4: Heuristic for planning exams at good positions as late as possible
implementing Algorithm 4.1.

Function selectCourse()
return Random course 𝑐, where exam slots are still unassigned.

Function planExam(c)
exampoolsa := ∅
exampool := ∅

1 foreach Friday fr do
sa := Saturday next to fr .

2 if it is feasible to plan the exam of 𝑐 at sa then
exampoolsa.append(block on sa)

3 if it is feasible to plan the exam of 𝑐 at fr then
exampool.append(block on fr)

4 if exampool = ∅ then
exampool := exampoolsa

5 Assign the first ExamHours(𝑐) times of the last day in exampool to the exam
time slots in 𝑚(𝑐).

/* The planBlock method is not implemented here because it is never
called in this type of heuristic. */
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4.1.2. Time Fill Construction Heuristics
The second generic kind of construction heuristic is given by Algorithm 4.5 and this
kind of construction heuristic is called time fill heuristic. In line 1 it first selects a
class and a consecutive block of times (𝑘, 𝑏), for which the class is free, by calling the
selectBlock method. Line 2 then calls the planBlock method for the pair (𝑘, 𝑏). The
implementations of this method try to assign (at least parts) of the block 𝑏 to a meeting
𝑚(𝑐) of a course 𝑐 : (𝑐, 𝑘) ∈ CK .

This approach is not that common in publications applying hyper heuristics to edu-
cational timetabling. One reason might be, that when using this template, one cannot
use similarities of the timetabling problem with graph coloring, in a straight forward
manner, to derive heuristics. When developing the specialized heuristic for the CAM-
PUS 02 timetabling problem, we observe that this kind of heuristics is very valuable in
the construction of good timetables. The approach is partially motivated by imitating
heuristics currently applied by human experts, generating the timetables manually.

Pimmer and Raidl [51] published a concrete heuristic for high-school timetabling fol-
lowing a similar approach, with the difference that they try to fill a selected block of
time for all classes simultaneously. They also note that this kind of approach is not very
common in construction heuristics for educational timetabling. We know of no work
that uses heuristics of this kind combined with course plan construction heuristics in a
hyper-heuristic to solve educational timetabling problems.

We believe different time fill heuristics in addition to course plan construction heuris-
tics, to be efficient for many practical timetabling problems. Algorithm 4.5 needs the
implementation of the methods selectBlock and planBlock to obtain a concrete con-
structive heuristic. Additionally it contains a list of times called badtimes, which consist
of blocks of time for which the heuristic could not find time slots for assignment before.
This can be used in the concrete heuristic implementations to stop choosing blocks of
time again, that already failed.

Algorithm 4.5: General template for construction heuristics choosing time slots
first (time fill heuristic)
1 (𝑘, 𝑏) := selectBlock()
2 if not planBlock(𝑘, 𝑏) then
3 badtimes.append((𝑘, 𝑏))

return false
else

return true

The time fill heuristics (Algorithm 4.5) are especially useful to plan courses at times
in a way, that leads to good timetables with respect to different objectives. For instance
one can fill up half full days or select specific days, like the days of the intensive week, for
planning courses. We developed several construction heuristics based on the objectives
and the structure of the CAMPUS 02 timetabling problem, using this template.

45



Fill intensive week A heuristic for filling up random free blocks of time during the
intensive week of classes using the planBlock implementation of Algorithm 4.6.

Fill exam days Filling up days with exams planned in the first hours of that day using
the planBlock implementation of Algorithm 4.6.

Fill small blocks Filling up small empty blocks on days in the class timetable. The
details of this method are shown in Algorithm 4.7.
The selectBlock method determines for each class 𝑘 all blocks of time, at which
the class if free, that have length smaller or equal a given bound for small blocks.
One of these pairs of class and block (𝑘, 𝑏) is then selected at random.
In the planBlock method courses of the class 𝑘 are searched, to which the block
of time can be assigned (line 1). One of these courses is chosen at random and the
block of time is assigned to its meeting (line 2).

A common problem in many time fill heuristics is, to decide how to fill the free blocks
of time. If the blocks are big (for instance complete days) it is often not possible to
fill them completely. One has to decide, when to look for a course, such that the block
of time can be assigned completely to the course meeting, and when to only assign a
subblock of the times to a course meeting and leave some times of the block unassigned.
Algorithm 4.6 is a heuristic that decides based on the number of times (hours) in the
block, if we should only fill it completely (for small blocks) or also consider partial
assignments (for big blocks). If partial assignment is considered, this implementation
ensures that the left over times are not too small blocks of time, for future assignments
to be feasible for this rest. This is especially important in the practical test instances
from CAMPUS 02 University of Applied Sciences, because there exist very few courses
that allow assignment of blocks of times of length one or two.

To achieve this Algorithm 4.6 starts with the check, if the considered block is small
(line 1). For small blocks line 2 determines all courses to which this block of times can
be completely assigned. One of these courses is then randomly chosen and the block of
times assigned to 𝑚(𝑐) (line 3). In the case of a large block (line 4) all possible courses
and the number 𝑡 of hours starting from the beginning of the block 𝐵, that can be
assigned to these courses are determined (line 5). One of these pairs (𝑐, 𝑡) is then chosen
at random and the sub block of the first 𝑡 times in 𝐵 is assigned to 𝑚(𝑐) (lines 6 and 7).
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Algorithm 4.6: Implementation of the planBlock method to fill selected blocks
of time completely or partially according to a block size heuristic.

Input: Block of times 𝑏, class 𝑘
Initialization: smallbound gives a bound on the lengths of blocks which have to

be completely filled by planBlock. Experiments showed that a
value of 3 gives a good performance for the test cases.

1 if |𝑏| ≤ smallbound then
/* Handle small blocks of time. */

2 coursepool := {𝑐 ∈ 𝐶 : (𝑐, 𝑘) ∈ CK , 𝑏 can be assigned to 𝑐}
if coursepool = ∅ then

return false
3 Assign 𝑏 to the feasible empty time slots of a random course 𝑐 ∈ coursepool.

return true
4 else

/* Handle big blocks of time. */
5 coursepool := {(𝑐, 𝑡) ∈ 𝐶 × N : (𝑐, 𝑘) ∈ CK , 𝑡 consecutive times

from the beginning of 𝑏 can be assigned to time slots in 𝑐}

if coursepool = ∅ then
return false

6 Choose (𝑐, 𝑡) ∈ coursepool at random.
7 Assign the first 𝑡 times of 𝑏 to the feasible empty time slots of 𝑐.

return true.
Algorithm 4.7: Time fill heuristic to fill up small empty blocks of time in class
timetables (implementation of Algorithm 4.5).

Initialization: smallbound gives a bound on the lengths of blocks which are
considered small and should be completely assigned to a single
course by this heuristic. Experiments showed that a value of 3
gives a good performance for the test cases.

Function selectBlock()

smallblocks := {(𝑘, 𝑏) ∈ 𝐾 × 2𝑇 : |𝑏| ≤ smallbound,

𝑏 is an empty block of times in the timetable of 𝑘}

return random element (𝑘, 𝑏) ∈ smallblocks
/* Get a class 𝑘 and a block of times 𝑏 */
Function planBlock(k, b)

1 coursepool := {𝑐 ∈ 𝐶 : 𝑏 can be assigned to time slots in 𝑐}
if coursepool = ∅ then

return false
2 Assign 𝑏 to the feasible empty time slots of a random course 𝑐 ∈ coursepool.

return true
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4.1.3. Perturbation Heuristics
There are several easy to implement perturbation heuristics common in literature, which
can be applied to the problem. The main difference to most other timetabling prob-
lems, making their implementation more complicated for the CAMPUS 02 timetabling
problem, are the very strict blocking constraints, which prohibit the change of times
assigned to single time slots. We can only change the time slots corresponding to the
assignment of a block of time or assign feasible blocks of time, to still obtain a feasible
timetable. Additionally the no idle time constraints of each class are kept satisfied.
When explaining the perturbation heuristics below, we will in each case point out how
to achieve this.

For some of the perturbation heuristics the notion of the block graph for the current
timetable and a fixed resource is useful. To define this graph it is helpful to look at the
timetable given by the subset of meetings to which some fixed resource is assigned.

Definition 4.1. A resource timetable 𝒯𝑟 for the resource 𝑟 is defined as the subset of
meetings 𝑚(𝑐), in which the resource is assigned to a resource slot, that is

𝒯𝑟 := {𝑚(𝑐) : 𝑟 ∈ 𝑚(𝑐)}.

Based on the resource timetable the block graph for a resource can be defined. In
addition to simplify the terminology a pair (𝑐, 𝑏) ∈ 𝐶 × 2𝑇 is called a block of course 𝑐,
if 𝑏 is a block of times that is assigned to the meeting 𝑚(𝑐).

Definition 4.2. Given a resource 𝑟 and its corresponding timetable 𝒯𝑟, the digraph
𝐺𝑟 = (𝑉, 𝐴) is called block graph of 𝑟, if the vertices are given by all blocks of time
assigned to the meetings in 𝒯𝑟,

𝑉 := {(𝑐, 𝑏) : 𝑏 block of time in 𝑚(𝑐), 𝑟 ∈ 𝑚(𝑐)}

and two such vertices are connected by an arc, if a block can be moved to the position
of the other block,

𝐴 = {((𝑐1, 𝑏1), (𝑐2, 𝑏2)) : |𝑏1| = |𝑏2|,
𝑏2 is a feasible assignment for the time slots assigned with 𝑏2 in 𝑚(𝑐2)}.

The following is a list of common perturbation heuristics, adapted to the CAMPUS
02 timetabling problem:

Swap For a class 𝑘 ∈ 𝐾 take two vertices (𝑐1, 𝑏1), (𝑐2, 𝑏2) in 𝐺𝑘, that are connected by
arcs in both directions in 𝐺𝑘, and swap the assigned blocks of time 𝑏1, 𝑏2 in the
meetings 𝑚(𝑐1) and 𝑚(𝑐2).

Move For a class 𝑘 ∈ 𝐾 take a block (𝑐, 𝑏) planned as the last block on its day in 𝒯𝑘,
and assign to 𝑚(𝑐) a feasible block of time other than 𝑏.
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Deallocate For a class 𝑘 ∈ 𝐾 and a block (𝑐, 𝑏) planned as the last block of the day in
𝒯𝑘 and unassign the corresponding time slots in 𝑚(𝑐).

For all these simple perturbations there are different block selections to achieve differ-
ent objectives. The following lists some of these possible concrete implementations and
which objective is to improved by its application.

∙ Swap
– Search for a block of times assigned to important courses, and consist of late

times and check if it can be swapped with a block of another course, that is
less important. Swap pairs of such blocks if they exist, else do nothing. This
heuristic aims to improve the quality of the timetable with regard to didactic
course placement.

– Try to swap two courses in a way, such that a lecturer has to teach on less
days, or the idle times of the lecturer are reduced.

∙ Move
– Search free blocks of time in class timetables that should be filled and blocks

at bad positions (for instance single blocks at days) and try to move these to
the free blocks.

– Check in lecturer timetables, if we can move some blocks to days at which
the lecturer already teaches.

∙ Deallocate
– Deallocate blocks that have many other positions valid for scheduling.
– Deallocate blocks positioned at bad times for classes.
– Deallocate blocks positioned at bad times for the lecturers.

Additionally to these simple perturbation heuristics we introduce a perturbation heuris-
tic trying to move blocks using other same size blocks in between, which was motivated
by some results using only construction heuristics. In these results there are sometimes
days with only a single block (𝑐, 𝑏) in the class timetables 𝒯𝑘. Such blocks are called bad
blocks. The heuristic tries to assign different feasible blocks of time 𝑏′ instead of 𝑏 to the
corresponding time slots in 𝑚(𝑐), such that these newly assigned times where previously
free times during a partially filled day in 𝒯𝑘. This of course leads to a better timetable
because the number of free days for the class increases and for another day more hours
are assigned in the class timetable.

To achieve this, some class 𝑘 ∈ 𝐾 a bad block (𝑐, 𝑏) in 𝒯𝑘 is selected and free blocks
of time 𝑏′ of same length are searched, that is |𝑏′| = |𝑏|, which are added as special
nodes to the graph 𝐺𝑘, connecting other blocks to it if it is feasible to assign 𝑏′ to
their corresponding meeting. Now the algorithm searches for paths from the vertex
corresponding to (𝑐, 𝑏) to one of these new vertices. Moves of the blocks along this path
are executed to obtain the desired result.
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This method is explained in detail in Algorithm 4.8. At first (line 1) a block of times
assigned to a course is selected, that should be moved. Other selection criteria are
possible here, to optimize for different objectives. Then, starting with line 2, free blocks
of time in 𝒯𝑘 are determined, as possible new placements for a block of same length.
These blocks of time are called good blocks. Here one can also add special selection
criteria to optimize for different objectives. Starting with line 3 the good blocks are
added to the block graph 𝐺𝑘. A path 𝑃 from the selected block to a good block is
searched in this graph using depth first (line 3). Then the blocks are are moved along
this path (line 4).

Figure 4.1 illustrates the improvement method of this algorithm with a concrete ex-
ample. The arrows show the path along which the blocks are moved.
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Algorithm 4.8: Perturbation heuristic moving blocks along paths in an extension
of 𝐺𝑘.

Input: Class 𝑘 ∈ 𝐾
1 Select a block (𝑐, 𝑏) in 𝒯𝑘 which is the only block on its day in 𝒯𝑘 and

|𝑏| < |𝐻| − 1.
goodblocks := ∅

2 foreach day 𝑑 in 𝒯𝑘 do
if ∃ |𝑏| free time slots after the last block in 𝒯𝑘 on 𝑑 then

Add block of size |𝑏| corresponding to these times to goodblocks.

3 Add special vertices (∅, 𝑏) to 𝐺𝑘 corresponding to each block 𝑏 ∈ goodblocks.
Connect these vertices by adding the arcs

{((𝑐, 𝑏), (∅, 𝑏′)) : |𝑏| = |𝑏′|, 𝑏′ is a feasible assignment for the time slots in 𝑚(𝑐)}.

4 Find a path 𝑃 from (𝑐, 𝑏) to a vertex (∅, 𝑏′).
5 foreach ((𝑐1, 𝑏1), (𝑐2, 𝑏2)) ∈ 𝑃 do

Assign 𝑏2 to the meeting 𝑚(𝑐1).

(a) An extract of the timetable to which the heuristic is applied and the path
along which the block is moved by the heuristic.

(b) The result obtained after an application of the improvement heuristic.

Figure 4.1.: This is an example visualizing the perturbation heuristic moving blocks
along paths.
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4.2. A Heuristic for the CAMPUS 02 Timetabling
Problem

In this section the low-level heuristics from Section 4.1 are combined to a heuristic for the
CAMPUS 02 timetabling problem. This heuristic was developed in an iterative process,
based on the real test data from the CAMPUS 02 University of Applied Sciences. It is a
hybrid heuristic, as it uses construction heuristics from Section 4.1.1 and Section 4.1.2,
and perturbation heuristics from Section 4.1.3. We call this heuristic the C02-heuristic.

Algorithm 4.9 is a selection order of the low-level heuristics from Section 4.1. The
following enumeration explains how the low-level heuristics are selected, where the num-
bers refer to the corresponding line numbers in the algorithm. The enumeration also
contains the motivation for these selections, based on the structure of the CAMPUS 02
timetabling problem.

1. Full assignment of the times during the intensive weeks to meetings of the corre-
sponding class is a hard constraint of the problem. Satisfaction of this constraint
cannot be guaranteed during construction of the timetable, as it is the case for the
no idle times constraints or the no clash constraints.
By using a time fill heuristic to assign these times to feasible meetings in the
beginning, it is possible to fulfill these constraints. Such a time fill heuristic runs
until the intensive week is filled for each class or no progress is made for multiple
iterations.

2. Because all times assigned to time slots are constrained to be earlier than the times
assigned to the exam time slots, it simplifies the construction, if exams are already
fixed. Additionally exam time slots are also restricted to be assigned to the early
times during each day, which makes it hard to plan them late in the construction
process. This is the reason why exams are planned in advance in this second step,
because else course time slots take away the feasible times for exam time slots,
producing an infeasible timetable.
This is achieved by calling the exam planning heuristic explained in Algorithm 4.4,
until all exams are planned.

3. In a next step, days already containing exams in their class timetables 𝒯𝑘 are
filled, because full days are considered good in the objective function. Some of
these days are after most other exams and therefore admit only a limited set of
courses to assign their times. This is why we fill them before applying the general
construction techniques.
This is again achieved using a time fill heuristic, where the selectBlock method
is implemented to choose only blocks on days, whose first hours are assigned to
exam time slots.
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4. This part is the main construction algorithm. It consists of two different low-level
heuristics that are applied alternately.
The main construction heuristic is an implementation of Algorithm 4.1 where Sat-
uration degree is used for course selection and Algorithm 4.2 as the implemen-
tation of planBlock. This heuristic is executed 50 times, after which we switch to
the second heuristic in this step.
The second heuristic used in this construction step is a time fill heuristic, to fill
small blocks of time completely on nearly full days in the class timetables 𝒯𝑘. This
is achieved by executing Algorithm 4.7 ten times, after which we switch back to
the main construction heuristic above.
This process is iterated until a complete timetable is found, or we observe too
many iterations with no progress.

5. After looking at solutions produced by steps 1-5, we observed that some produced
solutions had bad objective values because of single blocks on some days in 𝒯𝑘.
These blocks can often be moved away manually, by an approach similar to Algo-
rithm 4.8. This motivated the development of this heuristic and the heuristic is
applied to each complete timetable found by the steps 1-5.

Because in several low-level heuristics applied in Algorithm 4.9 choices are picked
randomly, several runs of the heuristic are performed and the best solution, with respect
to the objective function used, found among these executions is taken. It is known
from graph coloring heuristics and other timetabling heuristics, that randomization can
help to obtain better solutions. A similar behavior is observed for the CAMPUS 02
timetabling problem, as is discussed in more detail in Section 5.2.
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Algorithm 4.9: C02-heuristic for the CAMPUS 02 timetabling problem.
1 while we can fill empty blocks in an intensive week do

/* Fill the intensive week to fulfill the corresponding
constraint. */

Apply the fill heuristic selecting an empty block of time during the intensive
week and apply Algorithm 4.6.

2 while not all exam time slots are assigned do
/* Plan all exams randomly as late as possible. */
Randomly plan exam using Algorithm 4.4.

3 while it is possible fill up days in 𝒯𝑘 with exam blocks do
/* Fill up days which already contain exam blocks. */
Apply the fill heuristic selecting an empty block on a day with an exam and
apply Algorithm 4.6.

4 while all completeness constraints are not fulfilled do
for 𝑖 := 1 to 50 do

/* Basic timetable construction. */
Apply Algorithm 4.2 with Saturation degree course selection.

for 𝑖 := 1 to 10 do
/* Fill up small blocks. */
Apply Algorithm 4.7.

if no progress then
return false

5 repeat
/* Move single blocks to incomplete days. */
Apply Algorithm 4.8.

until no change in last iteration;
return true
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4.3. A Hyper-Heuristic Approach
The literature review on heuristic methods for educational timetabling (see Section 1.4.1)
suggests, that hyper-heuristic methods should be able to automatically generate good
heuristics for arbitrary instances of the CAMPUS 02 timetabling problem, given a set
of low-level heuristics. Pillay [49] applied several of the current state of the art hyper-
heuristic techniques to school timetabling problems and achieved good results for several
benchmark instances. This motivates the question, if a similar approach is able to
produce competitive results for the CAMPUS 02 timetabling problem.

Hyper-heuristics are methods to generate new good heuristics for a problem. Burke et
al. [9] define a hyper-heuristic as “a search method or learning mechanism for selecting
or generating heuristics to solve computational search problems”.

Because the hyper-heuristics developed in this thesis are based on genetic algorithms
Section 4.3.1 contains an introduction to this topic. In Section 4.3.2 we combine the con-
struction and perturbation selection hyper-heuristic of [49] into a hybrid hyper-heuristic,
that allows the application of perturbation heuristics during the construction phase on
partial timetables. This is a suggested extension of the hybrid heuristic in [49], which
only applied perturbation heuristics after the construction of a complete timetable. The
developed hyper-heuristic searches for a selection order of low-level heuristics using ge-
netic algorithms.

As mentioned in Section 2.1 the timetabling problem is actually a multi-objective
optimization problem. Different low-level heuristics (see Section 4.1) are implemented to
improve different objectives of this problem. Section 4.3.3 extends the hyper-heuristic of
Section 4.3.2 by using multi-objective optimization to obtain different selection strategies
depending on the importance of the different objectives.

4.3.1. Introduction to Genetic Algorithms
The introduction to evolutionary algorithms given in this section is based on the books
of Mitchell [44] and Bäck et al. [4].

Every genetic algorithm is composed of the following basic compounds.

Individual A representation of the objects in the search space of the optimization prob-
lem.

Fitness function A function that evaluates an individual and returns the corresponding
objective function. The value obtained by this function is called fitness of the
individual.

Initial population Description of the initialization of a first set of individuals.

Selection method A method to choose the individuals of the population used as the
next generation.
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Genetic operators Descriptions of how to perform mutation and crossover of individ-
uals.

Offspring After applying genetic operators to some subset of the population new indi-
viduals are generated in an iteration of the algorithm. These individuals are called
offspring.

Algorithm 4.10 shows the generic form of a genetic algorithm. It starts by generating
the initial population of individuals and evaluating their fitness using the fitness function.
Then iteratively until some stopping criterion (e.g. a fixed number of iterations) is
reached, the following steps are performed after each other:

1. For a subset of pairs of individuals the crossover operator is applied to generate a
set of individuals called the offspring.

2. On another subset of individuals the mutation operator is applied to generate
further individuals added to the offspring.

3. Now the fitness of all new individuals is evaluated.

4. A subset of individuals is selected to form the new generation (population for the
next iteration).

Algorithm 4.10: Generic form of a genetic algorithm.
1 Generate the initial population.
2 Evaluate the fitness of the elements in the population
3 while A stopping criterion is not reached do
4 Perform crossover between the elements of the population.
5 Perform mutation on the elements of the population.
6 Evaluate the fitness of the new elements in the population.
7 Select the a subset of all new and old individuals for the next generation of

the population.

A concrete version of a genetic algorithm is the (𝜇+𝜆) genetic algorithm. Because this
version is used in the following sections we explain it in more detail (see Algorithm 4.11).

The algorithm starts as every genetic algorithm by initializing the initial population of
𝜇 individuals and evaluating the fitness function of its individuals (lines 1 and 2). It gen-
erates n generations of populations, where n is a fixed parameter (line 3). To construct
the next generation based on the current population the offspring of the population is
generated (line 4). The algorithm generates an offspring containing 𝜆 individuals, where
with probability 𝑝cx a new individual is generated by applying the crossover operation
between two random individuals of the population and taking the first child (line 5).
With probability 𝑝mut the child is generated by applying the mutation operation to a
random element of the population. In the other case (with probability 1 − (𝑝cx + 𝑝mut))
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the child for the offspring is generated by cloning a random element of the population
(line 7). After offspring generation the fitness function of the individuals in the offspring
is evaluated (line 8). Then the selection function is executed to select 𝜇 elements of the
offspring and the current population as the next generation.

Algorithm 4.11: The (𝜇 + 𝜆) genetic algorithm.
1 pop := initial population.
2 Evaluate the fitness function of the individuals in pop.
3 for 𝑖 := 1 to n do
4 /* An offspring of 𝜆 individuals is generated using the

following method: */
offspring := ∅
for 𝑗 := 1 to 𝜆 do

𝑝 := random([0, 1])
if 𝑝 ∈ [0, 𝑝cx) then

5 Add the first child of the crossover operator between two random
individuals of pop to offspring.

else if 𝑝 ∈ [𝑝cx , 𝑝mut) then
6 Add the result of the mutation of a random individual of pop to

offspring.
else

7 Add a random individual of pop to offspring.

8 Evaluate the fitness function of the individuals of offspring.
9 Apply the selection function to select 𝜇 elements of offspring ∪ pop for the

next generation and assign it to pop.

A common selection method used in genetic algorithms is tournament selection, which
is used in the heuristic presented in Section 4.3.2.

Tournament selection A fixed number (the tournament size) of individuals is selected
from the population at random and among them the individual with the best
fitness is selected.

4.3.2. A Hybrid Selection Hyper-Heuristic based on Genetic
Algorithms

This section explains the implementation of a hybrid selection hyper-heuristic for school
timetabling, extending the work of Pillay [49], using a genetic algorithm. The basics
about genetic algorithms and their implementation are already explained in Section 4.3.1.
The genetic algorithms in this thesis are implemented using the DEAP framework [30].

To define a genetic algorithm the individuals of the population are defined. An in-
dividual has to correspond to a selection of low-level heuristics. We encode such an
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individual using a string, where each symbol corresponds to a unique low-level heuristic
from Section 4.1. These strings correspond to a full hybrid heuristic, if they are exe-
cuted by running the heuristics corresponding to the symbols in the string after each
other. After each step we check, if a complete timetable is obtained. Among all complete
timetables found during the execution, the individual with the best objective value is
chosen. The exams are planned in advance using the heuristic given by Algorithm 4.4.
Algorithm 4.12 contains a detailed implementation of the individual execution.

Algorithm 4.12: Execution of an individual of the hybrid selection hyper-
heuristic.

Initialization: best assigned to null value to store best result. Apply a fixed
seed to the random number generator.

Input: individual string 𝑠
Execute the exam planning heuristic given by Algorithm 4.4, until all exams are
planned.
for 𝑥 ∈ 𝑠 do

Execute the low-level heuristic corresponding to 𝑥.
if current timetable is complete then

if objective value of current timetable is better than objective value of best
then

best := current timetable.
return best and corresponding objective value

Because we mix construction and perturbation heuristics the choice for the length
of the individual string is not obvious and is considered as a parameter. We took the
number of low-level heuristic executions by the C02-heuristic (see Section 4.2) as a
reference point and increased this value. A string length of 1500 leads to good results in
the experiments for the practical test data. In addition it is possible to supply a special
empty heuristic, which does not change the current timetable, to the hyper-heuristic, to
allow the method itself to choose to use less iterations.

One important problem faced in this approach is, that many of the low-level heuristics
use random decisions. This could lead to completely different fitness values for evalua-
tions of the same individual. To get rid of these inconsistencies we set a fixed seed for the
random number generator, before evaluation of the fitness function (Algorithm 4.12).

The initial population is generated, as recommended for most genetic algorithms, by
generating random individuals. This is easy in this case, because it is only necessary to
generate random strings of fixed length. The size of the initial population is a parameter
of the algorithm.

As selection strategy tournament selection is used. Several different tournament sizes
were tested as parameters of the genetic algorithm. Details of these results are listed
in Section 5.2.3, which deals with the computational results obtained with the multi-
objective hyper-heuristic.

As the mutation operator each entry of the string is changed with a probability 𝑝 to
a random low-level heuristic. The value 𝑝 = 0.01 shows good results and is used for

58



mutation. For the crossover operation a standard two point crossover of the two strings
corresponding to the individuals is executed.

The (𝜇+𝜆) evolution strategy [5] is used (see Section 4.3.1, Algorithm 4.11 for details)
to evolve the generations of selection heuristics. The number of generations produced is
also an important parameter of the evolutionary algorithm.

Besides the genetic programming parameters, the major choice for a selection hyper-
heuristic is the set of low-level heuristics given given to the algorithm. We tested the
algorithm using two different subsets of low-level heuristics.

The first selection hyper-heuristic tested, selects only from the heuristics used by the
C02-heuristic (Section 4.2) and a heuristic performing no change:

∙ Intensive week time fill heuristic.

∙ Specialized random exam heuristic (see Algorithm 4.4).

∙ Exam day fill heuristic.

∙ Construction heuristic based on saturation degree course selection and with
Algorithm 4.2 for the planBlock method.

∙ Small block filling heuristic.

∙ Do nothing.

We refer to this set of heuristics with H1.

In a second test we allowed the selection hyper-heuristic to additionally choose from
the following more general set of low-level heuristics:

∙ Basic construction heuristics with the planBlock method given by Algorithm 4.2
and course selection among:

– Largest degree
– Saturation degree
– Lecturer degree
– Class degree
– Random

∙ Intensive week fill heuristic.

∙ Small block filling heuristic.

∙ Path improvement perturbation.

∙ Do nothing.

This set of heuristics is refered to by H2. It should allow evaluation of different course
chosal methods, based on graph coloring.
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4.3.3. Multi-Objective Optimization using Hyper-Heuristics and
Genetic Algorithms

Because of the multi-objective nature of educational timetabling problems it is of special
interest to apply multi-objective optimization to the problem. There are several genetic
algorithms to tackle multi-objective optimization problems.

According to the literature review hyper-heuristic methods for multi-objective opti-
mization in educational timetabling are not as well studied. Especially, we know of no
work applying hyper-heuristics to develop heuristics for a multi-objective formulation of
the school timetabling problem.

In the following we explain the motivation to apply a similar hybrid selection hyper-
heuristic to a multi-objective formulation of the CAMPUS 02 timetabling problem.

From the results obtained with the selection hyper-heuristic from Section 4.3.2 (see
Section 5.2) we conjecture, that the main advantage of applying genetic programming
with hyper-heuristics is, that the genetic algorithm learns ‘good random decisions’ inside
the low-level heuristics. We claim that a genetic algorithm can also do this for multiple
objectives.

The aim when solving a multi-objective optimization problem is, to find Pareto-
optimal solutions. We use the concepts as introduced by Ehrgott [28] and refer the
reader to his book for further details about multi-objective optimization.

Definition 4.3. Let 𝑋 denote the set of all feasible solutions and 𝑓 : 𝑋 → R𝑛 the
multiple objective functions. A feasible point 𝑥* ∈ 𝑋 is called Pareto-optimal, if there
exists no other point 𝑥 ∈ 𝑋 such that 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥*) for all 𝑖 = 1, . . . 𝑛 and 𝑓𝑖(𝑥) < 𝑓𝑖(𝑥*)
for some 𝑖 ∈ {1, . . . , 𝑛}.

If for two points 𝑥, 𝑦 ∈ 𝑋 it holds that 𝑓𝑖(𝑦) ≤ 𝑓𝑖(𝑥) for all 𝑖 = 1, . . . 𝑛 and 𝑓𝑖(𝑦) < 𝑓𝑖(𝑥)
for some 𝑖 ∈ {1, . . . , 𝑛} the point 𝑥 dominates 𝑦.

To define a multi-objective hyper-heuristic a multi-objective fitness value has to be
assigned to each individual. Here it is not possible to take the ‘’best” value among all
feasible solutions generated in the execution as in Section 4.3.2. The most natural choice
is to take the objectives of the last feasible solution generated during the execution of
the individual, because this encodes the most information about the current individual.

In literature the NSGA-II [25] algorithm is known to perform well for multi-objective
optimization problems. It uses a specialized multi-objective selection method to choose
the individuals of the next generation. Additionally it also specifies a method to se-
lect individuals of the population for crossover and mutation, based on multi-objective
principles, which is a generalization of tournament selection.

In the algorithm the individuals of the population are sorted into multiple fronts,
with respect to Pareto-optimaltity. The individuals, which are dominated by no other
individual of the population are assigned to front 1. Individuals which are only dom-
inated by the individuals in front 1 are assigned to front 2. This process is contiued
iterativly, and the index of the front, an individual is part of, is called the rank of the
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individual. The algorithm uses the rank of an individual in the current population as
the major selection criterion. In addition to this rank individuals are also assigned a
so called crowding distance, which is used to compare individuals on the same front.
This is necessary, because in general there are many individuals on the same front. The
crowding distance measures the closeness of an individual to its neighbors. We want
this crowding distance to be large on average. The crowding distance is, in principle,
the euclidean distance between the objective values of the two closest neighbors in the
space of objective values, among the individuals with same rank. This way individuals
on the border of a front are assigned infinite crowding distance.

For details on how to calculate the rank and crowding distance we refer the reader to
the orginal publication of NSGA-II [25].

Based on these definitions the NSGA-II algorithm is explained, as shown in Algo-
rithm 4.13. It starts by initializing the initial population (line 1). To generate the
next generation of the population the Algorithm starts by selecting parts of the current
population as parents for the offspring using binary tournament selection, based on the
rank and crowding distance defined above (line 2), where greater crowding distance is
chosen if the rank is the same. For those parents the crossover operation is performed
with probability 𝑝cx , and mutation is also performed (lines 3 and 4). The new individ-
uals are then evaluated (line 5). In the method selNSGA2 the population and offspring
are again sorted into fronts to calculate the rank and the crowding distances, including
the offspring. The new population is then selected based on these ranks and crowding
distances.

Algorithm 4.13: Overview of the NSGA-II algorithm.
Initialization: best assigned to null value to store best result. Apply a fixed

seed to the random number generator.
Input: individual string 𝑠

1 pop := initialize population.
for 𝑗 := 1 to n do

2 offspring :=selectTournamentDCD(pop)
3 Build pairs of individuals in offspring and perform crossover with probability

𝑝cx .
4 Perform mutation on the new individuals.
5 Evaluate new individuals in offspring.
6 pop :=selectNSGA2(pop ∪ offspring)
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4.4. Data Structures for Instances of the CAMPUS 02
Timetabling Problem

The basic idea of the data structure to store timetables is, that synchronized versions
of the current timetable are stored for each resource (class or lecturer). The reason
is, that most of the constraints (like the no clash constraints) are about resources and
satisfaction of them can be answered when knowing the resource and the corresponding
timetable efficiently.

Because the set of times 𝑇 of the problem is partitioned into days 𝑑 ∈ 𝐷, containing
a constant small set of hours 𝐻, this partition into days is used to efficiently store the
resource timetables. For each resource a dictionary indexed by days 𝑑 is kept, in which
we store all the blocks of time 𝑏, where all times in 𝑏 are on the day 𝑑 and the associated
course 𝑐, such that 𝑏 ⊆ 𝑚(𝑐). This allows for easy checks of no clash constraints, no idle
time constraints and other blocking constraints.

Additionally we store for each course 𝑐 the corresponding blocks of time assigned to
𝑚(𝑐). This information is kept synchronized.

This structure allows for efficient feasibility checks for most of the constraints. This
is necessary, because in most of the heuristics from Section 4.1 sets containing all blocks
of time, that are feasible for assignment to a given meeting, are generated.
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5. Computational Results
This section summarizes the computational results obtained using the methods intro-
duced in this thesis for practical problem instances of the CAMPUS 02 timetabling
problem. To allow the comparison of the methods two representative practical data sets
are chosen and the results obtained by applying the different methods to these instances
are discussed and compared in the following. One of the chosen instances corresponds to
a summer term and the other to a winter term. Section B contains the complete input
for the ‘winter term 2015/16’ instance used.

To allow the comparison of different solutions the values of usedWeekends, unusedHours
and freePeriods are shown for all classes. Because optimizing these values is essential for
obtaining good timetables the sum of these objectives over all classes is an important
objective function which is used to compare results of different methods and is shown in
Equation 5.1.

∑︁
𝑘∈𝐾

(usedWeekends(𝑘) + unusedHours(𝑘) + freePeriods(𝑘)) (5.1)

Because this objective only incorporates wishes of classes Equation 5.2 sums the num-
ber of days at which all lecturers have to teach, to evaluate the quality of the solution
from the perspective of lecturers. This objective is used in addition to Equation 5.1
for the multi-objective approach. It is also evaluated for all solutions discussed in this
section.

∑︁
𝑙∈𝐿

daysUsed(𝑙) (5.2)

All experiments in this section were conducted using a Lenovo ThinkPad T440s with
an Intel Core i7-4600 CPU and 12 GB of RAM.

5.1. Results using General Purpose Integer
Programming Solvers

The integer programming model from Section 2.2 is implemented using AMPL (see
Appendix A.2). Experiments using practical data sets like the one presented in Ap-
pendix B were performed using the general purpose integer programming solver IBM
ILOG CPLEX version 12.6.1.0.

63



During the experiments it was not possible to solve any practical instance of the
CAMPUS 02 timetabling problem to optimality. Feasible integer solutions are found by
CPLEX after more than one hour, with the running time depending on the objective
function used. Because of that only the sum of usedWeekends was minimized. These
first feasible solutions are of no practical use, because of very bad objective values for
all important objectives of the problem. Table 5.1 shows some of the objectives of such
solution.

This motivates the study of heuristic methods to obtain good feasible solutions for
the problem.

Input data summer term 2014
Solution method CPLEX
Running time ∼ 90 min
Objective (Eq.5.1) 253
Lecturer Objective (Eq. 5.2) 457

Objectives
Class usedWeekends unusedHours freePeriods
2. term BSc 18 32 0
4. term BSc 17 45 1
6. term BSc 17 58 0
2. term MSc 17 48 0

Input data winter term 2015/16
Solution method CPLEX
Running time ∼ 105 min
Objective (Eq.5.1) 363
Lecturer Objective (Eq. 5.2) 447

Objectives
Class usedWeekends unusedHours freePeriods
1. term BSc 17 62 0
3. term BSc 17 74 0
5. term BSc 17 100 0
1. term MSc 17 59 0

Table 5.1.: Different objective values of the first integer solution found by CPLEX for
the problem in Appendix B

5.2. Results obtained by the Heuristics
In this section we discuss the results of the heuristics presented in Section 4.

For all implemented heuristics the results obtained for two representative practical
test cases (‘summer term 2014’ and ‘winter term 2014/15’) are analyzed.
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5.2.1. Results from the C02-Heuristic
At first the results obtained with the C02-heuristic for the CAMPUS 02 timetabling
problem are summarized. The heuristic often produces good results, depending on the
random decisions made during the construction process. In the table below different
objective values of runs of the heuristic are shown. For these results the heuristic was
executed several times and the solution with the minimum value of the class objective
function given in Equation 5.1 is chosen.

We choose this objective, because it is very important for timetables to be acceptable.
Table 5.2 and Table 5.3 show statistics of solutions obtained by this method with 10

and 100 runs.

Input data summer term 2014
Heuristic C02-heuristic (see Section 4.2)
# of runs 10
Running time 2 min 57 s
Objective (Eq.5.1) 91
Lecturer Objective (Eq. 5.2) 432

Objectives
Class usedWeekends unusedHours freePeriods
2. term BSc 16 15 1
4. term BSc 14 6 5
6. term BSc 13 0 2
2. term MSc 12 6 1

Input data winter term 2015/16 (see Appendix B)
Heuristic C02-heuristic (see Section 4.2)
# of runs 10
Running time 2 min 37 s
Objective (Eq.5.1) 105
Lecturer Objective (Eq. 5.2) 406

Objectives
Class usedWeekends unusedHours freePeriods
1. term BSc 15 18 0
3. term BSc 16 13 0
5. term BSc 15 7 2
1. term MSc 16 3 0

Table 5.2.: Statistics for solutions of the C02-heuristic from Section 4.2 using 10 runs.
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Input data summer term 2014
Heuristic C02-heuristic (see Section 4.2)
# of runs 100
Running time 42 min 56 s
Objective (Eq.5.1) 77
Lecturer Objective (Eq. 5.2) 428

Objectives
Class usedWeekends unusedHours freePeriods
2. term BSc 15 6 1
4. term BSc 14 5 3
6. term BSc 12 0 2
2. term MSc 13 6 0

Input data winter term 2015/16 (see Appendix B)
Heuristic C02-heuristic (see Section 4.2)
# of runs 100
Running time 43 min 51 s
Objective (Eq.5.1) 96
Lecturer Objective (Eq. 5.2) 398

Objectives
Class usedWeekends unusedHours freePeriods
1. term BSc 16 10 0
3. term BSc 15 14 0
5. term BSc 13 5 0
1. term MSc 16 7 0

Table 5.3.: Statistics for solutions of the C02-heuristic from Section 4.2 using 100 runs.

It is observable that the timetables obtained after 100 runs of the heuristic are con-
siderably better. This supports the claim from Section 4.2, that randomization is an
efficient tool for tackling timetabling problems. It is important to note that many of
the runs of the heuristic do not lead to feasible solutions. This would be a problem for
purely deterministic heuristics, because some inputs would then lead to no solutions.
Randomization is again the tool to get more stable behavior for different inputs. In
Table 5.4 the number of runs leading to feasible timetables among the 100 executions,
for the two test instances shown, are summarized.
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Input data # of runs leading to feasible solu-
tions

summer term 2014 94
winter term 2015/16 40

Table 5.4.: Number of runs leading to feasible solutions among 100 runs of the C02-
heuristic of Section 4.2.

The results indicate, that the constraints for the input data of ‘summer term 2014’ are
easier to satisfy, than for the ‘winter term 2015/16’ test case. This is expected because
for the ‘winter term 2015/16’ there are less times available for planning for each class
and this leads to less feasible times to schedule the courses.

Another important aspect of the C02-heuristic from Section 4.2 is the application of
the improvement heuristic (Algorithm 4.8) after the completion of a feasible timetable.
Table 5.5 shows the average improvement of the objective (Equation 5.1) obtained, for
all feasible solutions among the 100 runs of the C02-heuristic. These results support the
claim that perturbation heuristics are important to obtain good timetables.

Input data (a) (b) (c)
summer term 2014 6.76 88 77
winter term 2015/16 12.75 105 96

Table 5.5.: Improvement of the objective in Equation 5.1 from Algorithm 4.8 among 100
runs of the C02-heuristic. Column (a): Average improvement of the objective
given by Equation 5.1 among all runs. Column (b): Minimum objective value
(Equation 5.1) obtained among the 100 runs before applying the improvement
heuristic. Column (c): Minimum objective value (Equation 5.1) obtained
among the 100 runs after applying the improvement heuristic.

Comparing the running times and results of the C02-heuristic with the results obtained
with integer programming (see Section 5.1), we support the general believe that heuristic
methods are favourable to solve hard timetabling problems.

5.2.2. Results from the Selection Hyper-Heuristic
In this section we summerize the results obtained using the hybrid selection hyper-
heuristic from Section 4.3.2. We can support the claim of Pillay [49], that hyper-heuristic
methods perform well for school timetabling problems, for the case of the CAMPUS 02
timetabling problem. One still has to point out that it is necessary to implement data
structures suitable to handle the special constraints of the problem. Also the low-level
heuristics were modified to better suit the CAMPUS 02 timetabling problem.
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At first the results obtained using the heuristic set H1 are discussed. Experiments
show that the following parameters lead to good performance of the algorithm:

∙ Individual string length of 1500.

∙ Number of generations: 10.

∙ Population size 𝜇 = 20.

∙ 𝜆 = 10.

∙ 𝑝cx = 0.6.

∙ 𝑝mut = 0.2.

∙ A probability of 0.01 to mutate each character in the indiviual, for the mutation
function.

Table 5.7 and 5.8 illustrate the progress in typical runs of the genetic algorithm for
the input shown in Appendix B and the ‘summer term 2014’ test case. The solutions
obtained using the best individuals are summarized in Table 5.9.

Table 5.6 shows a comparison between the results obtained with the C02-heuristic and
the results of this hyper-heuristic method. This indicates that the genetic algorithm is
a way to optimize good random decisions. This way good solutions can be calculated
more quickly.

summer term 2014 winter term 2014/15
method objective running

time
objective running

time
C02-heuristic (10 runs) 91 2 min 57 s 105 2 min 37 s
C02-heuristic (100 runs) 77 42 min 56 s 96 43 min 51 s
Selection hyper-heuristic (H1) 78 12 min 52 s 100 13 min 11 s

Table 5.6.: Comparison of the results obtained with the C02-heuristic and the selection
hyper-heuristic using heuristic set H1. The objectives are calculated using
Equation 5.1.

68



Generation avg. fitness std. deviation min. fitness max. fitness
0 112.4 5.24 106 119
1 105.6 2.80 100 107
2 104.2 3.43 100 107
3 106.0 8.92 100 123
4 101.4 2.80 100 107
5 100.0 0.00 100 100
6 100.0 0.00 100 100
7 100.0 0.00 100 100
8 100.0 0.00 100 100
9 100.0 0.00 100 100

10 100.0 0.00 100 100

Table 5.7.: Progress during genetic algorithm for hyper-heuristic from Section 4.3.2 with
heuristic set H1 for the input from Appendix B. The individuals have a length
of 1500.

Generation avg. fitness std. deviation min. fitness max. fitness
0 200079.0 399960.50 93 infeasible
1 95.8 5.27 88 104
2 88.2 1.17 86 89
3 86.2 4.26 78 89
4 84.8 4.26 78 89
5 82.4 5.39 78 89
6 78.0 0.00 78 78
7 78.0 0.00 78 78
8 78.0 0.00 78 78
9 78.0 0.00 78 78

10 78.0 0.00 78 78

Table 5.8.: Progress during genetic algorithm for hyper-heuristic from Section 4.3.2 with
heuristic set H1 for the input ‘summer term 2014’. The individuals have a
length of 1500.
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Input data summer term 2014
Heuristic Best individual from selection hyper-heuristic using

heuristic set H1.
Running time 12 min 52 s
Objective (Eq.5.1) 78
Lecturer Objective (Eq. 5.2) 412

Objectives
Class usedWeekends unusedHours freePeriods
2. term BSc 16 10 1
4. term BSc 14 3 2
6. term BSc 13 0 2
2. term MSc 12 4 1

Input data winter term 2015/16 (see Appendix B)
Heuristic Best individual from selection hyper-heuristic using

heuristic set H1.
Running time 13 min 11 s
Objective (Eq.5.1) 100
Lecturer Objective (Eq. 5.2) 408

Objectives
Class usedWeekends unusedHours freePeriods
1. term BSc 16 19 0
3. term BSc 16 14 0
5. term BSc 14 0 0
1. term MSc 15 6 0

Table 5.9.: Statistics for solutions obtained using the best individual from a hyper-
heuristic using heuristic set H1.

It is of interest to look at the distribution of the low-level heuristics in these best
individuals. Table 5.10 shows the distribution for the two individuals, that lead to the
solutions shown in Table 5.9. We observe that the low-level heuristics are relatively
equally distributed. This suggests the hypothesis, that the genetic algorithm is mainly
minimizing with respect to ‘good random choices’ inside the low-level heuristics, because
the seed is fixed for each fitness evaluation. To validate this hypothesis we performed
100 runs of these best individuals. We observe that the selection of heuristics is good
in a sense, that most of the evaluations lead to feasible solutons. This is not the case
for the C02-heuristic from Section 4.2. The average and minimum objective value are
shown in Table 5.11. But overall the hypothesis can be confirmed, because most of the
results do not come close to the excellent objective value obtained by the fixed random
choices, found by the genetic algorithm.
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Input
data

H1 H2 H3 H4 H5 H6

summer
term 2014

17.5% 17.0% 16.1% 16.1% 16.5% 16.7%

winter
term
2014/15

15,7% 17,1% 17,4% 18,3% 14,9% 16,6%

Table 5.10.: Distribution of the heuristics from the set H1 in the individuals producing
the results from Table 5.9.

Input data avg. fitness min. fitness # feasible
summer
term 2014

96.7 81 100

winter term
2014/15

113.0 92 87

Table 5.11.: Average and minimum fitness among 100 runs of the heuristics from the set
H1 in the individuals producing the results from Table 5.11.

Using the selection hyper-heuristic with heuristic set H2, similar behavior can be
observed.

Tables 5.12 and 5.13 show how the heuristic set H2 performs for the same test cases
as used for the set H1 above. Comparing with Tables 5.7 and 5.8 the similar behavior
is obvious. But it is notable that the convergence is slower, because of the larger set of
heuristics.

This behavior suggests, that when applying hyper-heuristics one should remove obvi-
ously inferior heuristics manually. If it is not possible to do these decisions in advance
it is recommended to try running the algorithm with different subsets of the low-level
heuristics, because working with too many heuristics slows down the genetic program-
ming algorithm.
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Generation avg. fitness std. deviation min. fitness max. fitness
0 550055.3 497432.64 114 infeasbile
1 150106.0 357026.89 114 infeasbile
2 118.3 6.71 114 137
3 113.7 2.17 109 117
4 111.3 2.49 109 114
5 110.0 2.00 109 114
6 109.8 1.79 109 114
7 109.0 0.00 109 109
8 109.0 0.00 109 109
9 109.0 0.00 109 109

10 109.0 0.00 109 109

Table 5.12.: Progress during genetic algorithm for hyper-heuristic from Section 4.3.2
with heuristic set H2 for the input from Appendix B. The individuals have
a length of 1500.

Generation avg. fitness std. deviation min. fitness max. fitness
0 50092.7 217923.69 82 infeasible
1 90.5 7.45 82 105
2 86.9 5.77 82 95
3 82.5 5.18 72 95
4 81.0 5.18 72 91
5 81.0 3.00 72 82
6 80.5 3.57 72 82
7 79.5 4.33 72 82
8 77.0 5.00 72 82
9 74.5 4.33 72 82

10 72.0 0.00 72 72

Table 5.13.: Progress during genetic algorithm for hyper-heuristic from Section 4.3.2
with heuristic set H2 for the input ‘summer term 2014’. The individuals
have a length of 1500.
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Input data summer term 2014
Heuristic Best individual from selection hyper-heuristic using

heuristic set H2.
Running time 10 min 50 s
Objective (Eq.5.1) 72
Lecturer Objective (Eq. 5.2) 394

Objectives
Class usedWeekends unusedHours freePeriods
2. term BSc 16 8 0
4. term BSc 15 0 1
6. term BSc 12 0 4
2. term MSc 13 2 1

Input data winter term 2015/16 (see Appendix B)
Heuristic Best individual from selection hyper-heuristic using

heuristic set H2.
Running time 15 min 11 s
Objective (Eq.5.1) 109
Lecturer Objective (Eq. 5.2) 384

Objectives
Class usedWeekends unusedHours freePeriods
1. term BSc 16 19 0
3. term BSc 15 19 1
5. term BSc 15 0 3
1. term MSc 17 4 0

Table 5.14.: Statistics for solutions obtained using the best individual from a hyper-
heuristic using heuristic set H2.

Input
data

H1 H2 H3 H4 H5 H6 H7 H8 H9

summer
term
2014

10.9% 11.1% 12.3% 11.3% 10.1% 10.6% 11.5% 9.7% 12.5%

winter
term
2014/15

11.1% 11.3% 10.5% 10.8% 10.9% 10.8% 11.5% 12.1% 10.9%

Table 5.15.: Distribution of the heuristics from the set H2 in the individuals producing
the results from Table 5.14.
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5.2.3. Results from the Multi-Objective Hyper-Heuristic
Because the problem is already very hard in the single objective case, only one additional
objective is added to the problem. We follow the approach of Burke et al. [7], using
weighted sums of objectives of different parties. For the classes we again use the objective
given by Equation 5.1. Another objective, minimizing the number of days lecturers have
to teach is added to the problem. This additonal objective is given by Equation 5.2.

Because the results for single objective hyper-heuristics suggest, that the main factor
of improvement in the genetic algorithm is not the selection of the low-level heuristics,
but the optimization of the random choices inside these heuristics, we again use the
heuristic set H1 for the multi-objective hyper-heuristic.

Figure 5.1 visualizes the non-dominated solutions obtained in a run of the hyper-
heuristic. The pictures suggest the common form of a Pareto-front but it is obvious that
the calculations were not sufficient to really reconstruct the full set of Pareto-optimal
solutions. For these evaluations the following parameters were used, which showed to
be efficient among several experiments.

∙ Number of generations: 10

∙ Population size: 12

∙ 𝑝cx = 0.6

To obtain more details of the Pareto-optimal solutions calculations with larger pop-
ulations and multiple initial populations could be performed. The long running times
suggest, that the CAMPUS 02 timetabling problem is too hard to allow the complete
calculation of the Pareto-front using these heuristic techniques.
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(a) Input data: ‘summer term 2014’
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(b) Input data: ‘winter term 2015/16’

Figure 5.1.: Non-dominated objective values from runs of the multi-objective hyper-
heuristic.
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This type of algorithm is still useful, because it allows a system to display multiple
solutions, balancing the different objectives, to the user.

Ideally one could optimize with respect to each stakeholder, but this leads to too
many objectives, which cannot be handled by current state of the art genetic algorithms.
Further research is needed to confirm the performance of multi-objective hyper-heuristics
for other educational timetabling problems.
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6. Summary and further Research
Directions

The results obtained using the heuristics of Section 4 and analyzed in Section 5.2 confirm
several claims about timetabling problems from the literature.

The C02-heuristic from Section 4.2 allows the fast computation of good timetables.
The development of such specialized heuristics is known to perform well for practical
timetabling problems in the literature.

Using a section hyper-heuristic based on genetic programming, we confirm that these
methods are able to generate competitive heuristics. This can also be confirmed for a
hybrid approach, which is a generalization of the methods shown by Pillay [49]. Based on
the distribution of the selected basic heuristics we conjecture that the important factor
optimized in the genetic algorithm are good random choices in the basic heuristics.
This conjecture should be analyzed in more detail using different variants of timetabling
problems.

For the multi-objective generalization of the selection hyper-heuristic we are able to
obtain several solutions of similar quality with better performances for different objec-
tives. But it is not possible to really obtain a good representation of the Pareto-front
because of the size of the problem.

Based on these observations it would be of interest to extend the methods used in
this theses to the general school timetabling problem introduced for the ITC2011. This
would allow to evaluate the methods using many different benchmark instances. Many
of these instances are also of smaller size, which would allow further evaluation of the
multi-objective hyper-heuristic.

As already mentioned by Pillay [49], there are no publications known, that analyze
constructive perturbation hyper-heuristics for educational timetabling problems. As
these methods are known to show good results for other combinatorial optimization
problems, this should also be evaluated.

Research results about many-objective optimization heuristics would be of special
interest for educational timetabling problems, because of the natural existence of many
objectives in these problems.
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A. Software
As part of the thesis a software system is developed to automatically solve the
timetabling problem of the Campus 02 University of Applied Sciences (see Section 2.1).
To allow a structured input of the problem instances and storage of the corresponding
solutions, a database is used. The details of the database architecture are explained
in Appendix A.1. For experiments with general purpose solvers an AMPL [32] model
of the integer programming formulation in Section 2.2 is used. This model is given in
Appendix A.2. The details about the implementation of the heuristics (see Section 4)
using the Python programming language are explained in Appendix A.3.

Additionally a small GUI interface accessing the database is developed using PHP to
allow data input and visualization of the solutions.

A.1. Database
Figure A.1 shows the ER-model of the database used to store instances of the CAMPUS
02 timetabling problem and solutions generated by the algorithms.

Figure A.1.: ER-model of the database.
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A.2. Exact Modeling of the Integer Program using
AMPL

set D ordered ; # days
set H ordered default {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} ; # hours per day
set L ; # l e c t u r e r s
set C; # courses
set K; # c l a s s e s
set CK within {C, K} ;
set CL within {C, L} ;
set DK within {D, K} ;

set WEEKENDS within {d1 in D, d2 in D: ord ( d2 ) = ord ( d1 )+1};
set WEEK within DK;

param CourseHours{C} ;
param LowBlock{C} ;
param UpBlock{C} ;
param ExamHours{C} ;

param Cost{D,H,C} default 1 ;

var x{D,H,C} , binary ; # course t imes
var s {D,H,C} , binary ; # course s t a r t t imes
var e{D,H,C} , binary ; # exam times
var es {D,H,C} , binary ; # exam s t a r t t imes

var day_s{K, D, H} , binary ; # s t a r t o f b l o c k s each day f o r each c l a s s

var usedWeekend{WEEKENDS, K} binary ;

minimize UsedWeekends :
sum{( sa , so ) in WEEKENDS, k in K} usedWeekend [ sa , so , k ] ;

subject to Lecturer { l in L , d in D, h in H} :
sum{( c , l ) in CL} ( x [ d , h , c ] + e [ d , h , c ] ) <= 1 ;

subject to Class {k in K, d in D, h in H} :
sum{( c , k ) in CK} ( x [ d , h , c ] + e [ d , h , c ] ) <= 1 ;

subject to CourseComplete{c in C} :
sum{d in D, h in H} x [ d , h , c ] = CourseHours [ c ] ;

subject to ExamComplete{c in C} :
sum{d in D, h in H} e [ d , h , c ] = ExamHours [ c ] ;

# i f we have b l o c k on day i t has to be i n s i d e bounds
subject to BlockLenLow{c in C, d in D} :

sum{h in H} s [ d , h , c ] * LowBlock [ c ] <= sum{h in H} x [ d , h , c ] ;
# i f we have b l o c k on day i t has to be i n s i d e bounds
subject to BlockLenUp{c in C, d in D} :
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sum{h in H} x [ d , h , c ] <= sum{h in H} s [ d , h , c ] * UpBlock [ c ] ;

subject to BlockStar t s {c in C, d in D} :
sum{h in H} s [ d , h , c ] <= 1 ;

subject to BlockAdj0{c in C, d in D} :
x [ d , f i r s t (H) , c ] = s [ d , f i r s t (H) , c ] ;

subject to BlockAdj{c in C, d in D, h in H: ord (h) > 1} :
x [ d , h , c ] <= s [ d , h , c ] + x [ d , prev (h ) , c ] ;

subject to OneExam{c in C} :
sum{d in D, h in H} es [ d , h , c ] <= 1 ;

subject to ExamBlock0{c in C, d in D} :
e [ d , f i r s t (H) , c ] = es [ d , f i r s t (H) , c ] ;

subject to ExamBlock{c in C, d in D, h in H: ord (h , H) > 1} :
e [ d , h , c ] <= es [ d , h , c ] + e [ d , prev (h ) , c ] ;

subject to ExamAfterLecture{c in C, d in D, h in H} :
s [ d , h , c ] <= sum{h1 in H, d1 in D: ord ( d1 , D) > ord (d , D)} es [ d1 , h1 , c ] ;

subject to OneExamDay{(d , k ) in DK} :
sum{h in H, ( c , k ) in CK} es [ d , h , c ] <= 1 ;

subject to LectureNights {( f r , sa ) in WEEKENDS, l in L} :
sum{( c , l ) in CL} ( x [ f r , l a s t (H) , c ] + e [ f r , l a s t (H) , c ]

+ x [ sa , f i r s t (H) , c ] + e [ sa , f i r s t (H) , c ] ) <= 1 ;

subject to EnsureUsedWeekends {( sa , so ) in WEEKENDS, k in K} :
sum{h in H} ( day_s [ k , sa , h ] + day_s [ k , so , h ] )

<= 2*usedWeekend [ sa , so , k ] ;

subject to OnlyOnDK{k in K, (d , k ) in ({D,K} d i f f DK) ,
( c , k ) in CK, h in H} :

x [ d , h , c ] = 0 ;
subject to OnlyOnDKExams{k in K, (d , k ) in ({D,K} d i f f DK) ,

( c , k ) in CK, h in H} :
e [ d , h , c ] = 0 ;

# only 1 f u l l b l o c k each day
subject to DayBlockStarts {k in K, d in D} :

sum{h in H} day_s [ k , d , h ] <= 1 ;

subject to DayBlockAdj0{k in K, d in D} :
sum{( c , k ) in CK} ( x [ d , f i r s t (H) , c ] + e [ d , f i r s t (H) , c ] )

= day_s [ k , d , f i r s t (H) ] ;

subject to DayBlockAdj{k in K, d in D, h in H: ord (h , H) > 1} :
sum{( c , k ) in CK} ( x [ d , h , c ] + e [ d , h , c ] ) <= day_s [ k , d , h ]

+ sum{( c , k ) in CK} ( x [ d , prev (h ) , c ] + e [ d , prev (h ) , c ] ) ;

84



subject to WeekFull {(d , k ) in WEEK} :
sum{h in H, ( c , k ) in CK} ( x [ d , h , c ] + e [ d , h , c ] ) >= 8 ;

A.3. Heuristic Framework
The heuristics are implemented using the Python programming language, version 2. For
access to the databse the SQLAlchemy SQL toolkit and Object Relationship Mapper is
used. The genetic algorithms are implemented using the DEAP framework [30].

All the low-level heuristics implement a fixed interface containing a step method,
such that they can be easily exchanged. The generic algorithms for classic construction
(Algorithm 4.1) and for time fill algorithms are implemented and concrete versions are
generated using the Mixin concept in Python. This allows an easy adaption of the
implementation to new similar problems and the extension with additional low-level
heuristics. Also different meta-heuristics could be added easily.

The low-level heuristics are included in implementations of the C02-heuristic, the
selection hyper-heuristic and the multi-objective selection heuristic.
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B. A concrete Input Example for the
CAMPUS 02 Timetabling Problem

In this appendix a concrete example of a practical input to the problem as needed by
the problem definition in Section 2.1 is given. It is used for reference, in the content of
the thesis. This instance of the problem is also referred to with ‘winter term 2015/16’.

∙ Set of days usable for planning

𝐷 := {2015-09-18, 2015-09-19, 2015-09-21, 2015-09-22, 2015-09-23, 2015-09-24,

2015-09-25, 2015-09-26, 2015-10-02, 2015-10-03, 2015-10-05, 2015-10-06,

2015-10-07, 2015-10-08, 2015-10-09, 2015-10-10, 2015-10-12, 2015-10-13,

2015-10-14, 2015-10-15, 2015-10-16, 2015-10-17, 2015-10-30, 2015-10-31,

2015-11-06, 2015-11-07, 2015-11-13, 2015-11-14, 2015-11-16, 2015-11-17,

2015-11-18, 2015-11-19, 2015-11-20, 2015-11-21, 2015-11-27, 2015-11-28,

2015-12-04, 2015-12-05, 2015-12-11, 2015-12-12, 2016-01-08, 2016-01-09,

2016-01-15, 2016-01-16, 2016-01-22, 2016-01-23, 2016-01-29, 2016-01-30,

2016-02-05, 2016-02-06}.

∙ Set of classes

𝐾 := {1. term BSc, 2. term BSc, 3. term BSc, 1. term MSc}.

∙ The lecturers

Lecturer Courses NoGo-days

L#61 GML, PJM
L#62 MA1, WST
L#63 AKIT1, BA1, BPJ1, DLM/WEW,

GMG, WIA
L#64 BPJ1, DG1, DG2, PM1, BSc 2015-10-02, 2015-10-03
L#65 DLM/WEW, IEG, SSY 2015-10-02, 2015-10-03
L#67 IFM/OR, MA1 2015-09-18, 2015-10-02, 2015-10-03,

2015-10-09, 2015-11-14, 2016-01-08,
2016-01-09, 2016-01-22, 2016-01-23
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L#69 NT2 2015-09-18, 2015-09-19, 2015-09-25,
2015-09-26, 2015-10-02, 2015-10-03,
2015-10-30, 2015-10-31, 2015-12-11,
2015-12-12, 2016-01-08, 2016-01-09

L#70 NT2 2016-01-29, 2016-01-30
L#71 INF
L#73 PJM
L#76 IFM/OR
L#77 CON 2015-09-18, 2015-09-25, 2015-11-13,

2015-12-04, 2015-12-11, 2016-01-15,
2016-01-16, 2016-01-29, 2016-01-30,
2016-02-05, 2016-02-06

L#78 GML
L#79 PCT/SWD
L#81 KRY 2015-09-18, 2015-09-19, 2015-09-21,

2015-09-22, 2015-09-23, 2015-09-24,
2015-09-25, 2015-09-26, 2015-10-30,
2015-10-31, 2015-11-20, 2015-11-21

L#83 DG1, DG2
L#85 GEN, NCD 2015-09-21, 2015-10-02, 2015-10-06,

2015-11-17, 2015-11-27, 2016-01-23,
2016-02-05

L#86 BE2 2015-10-12, 2015-10-13, 2015-10-15,
2015-10-17, 2015-11-14, 2015-11-19,
2015-11-28, 2015-12-12

L#87 CM1, KOM, PRT
L#90 IEG
L#93 PR1, SWE 2015-09-18, 2015-09-19, 2015-11-06,

2015-11-07, 2015-12-04, 2015-12-05,
2016-01-22, 2016-01-23

L#95 NCD 2015-10-12, 2015-10-13, 2015-10-15,
2015-10-17, 2015-11-14, 2015-11-19,
2015-11-28, 2015-12-12

L#101 SWE 2015-10-12, 2015-10-13, 2015-10-14,
2015-10-15, 2015-10-16, 2015-10-17,
2015-10-30, 2015-10-31

L#129 PR1
L#130 WEB
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L#131 BUB, IFM/OR
L#132 BUB
L#133 KOM, PRT
L#134 KOM
L#136 DB1 2015-10-02, 2015-10-03, 2015-10-05,

2015-10-30, 2015-10-31
L#137 BPJ1, PM1 2015-09-25, 2015-09-26, 2015-10-14,

2015-10-15
L#138 BE2, GEN 2015-09-21, 2015-09-22, 2015-09-23,

2015-09-24, 2015-10-02, 2015-10-05,
2015-10-06, 2015-10-07, 2015-10-08,
2015-10-12, 2015-10-13, 2015-10-14,
2015-10-15, 2015-10-16, 2015-11-16,
2015-11-17, 2015-11-18, 2015-11-19,
2015-12-12, 2016-01-23, 2016-02-05

L#139 PRT
L#140 IDM
L#141 PCT/SWD, QMG
L#142 DLM/WEW
L#143 ESE
L#144 BPJ1
L#145 SIM 2015-09-18, 2015-09-19, 2015-09-21,

2015-09-22, 2015-09-23, 2015-09-24,
2015-09-25, 2015-09-26, 2015-10-02,
2015-10-03, 2015-10-05, 2015-10-06,
2015-10-07, 2015-10-08, 2015-10-09,
2015-10-10, 2015-10-12, 2015-10-13,
2015-10-14, 2015-10-15, 2015-10-16,
2015-12-04, 2016-01-08

L#146 SQA 2015-10-12, 2015-11-16, 2015-11-21
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∙ The curriculum

Course 𝑐 Class CourseHours(𝑐) ExamHours(𝑐) 𝑙(𝑐) 𝑢(𝑐)

AKIT1 1. term
MSc

26 2 2 4

BPJ1 1. term
MSc

15 0 2 9

CM1 1. term
MSc

26 0 8 9

ESE 1. term
MSc

25 3 3 4

GML 1. term
MSc

23 4 3 4

IEG 1. term
MSc

30 4 3 4

IFM/OR 1. term
MSc

18 2 3 4

NCD 1. term
MSc

23 5 3 6

SIM 1. term
MSc

26 2 2 4

SQA 1. term
MSc

27 2 3 4

BUB 1. term BSc 26 2 4 6
GMG 1. term BSc 25 2 3 4
INF 1. term BSc 29 2 2 5
KOM 1. term BSc 17 0 8 9
MA1 1. term BSc 27 2 3 4
PJM 1. term BSc 27 2 9 9
PR1 1. term BSc 39 3 3 5
WEB 1. term BSc 28 2 2 4
BSc 1. term BSc 23 2 2 4
BPJ1 3. term BSc 6 0 2 4
CON 3. term BSc 29 2 2 4
DB1 3. term BSc 44 2 2 4
DG1 3. term BSc 23 2 2 4
GEN 3. term BSc 25 2 3 6
NT2 3. term BSc 27 2 2 5
PM1 3. term BSc 23 2 2 4
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PRT 3. term BSc 17 0 8 9
SWE 3. term BSc 27 1 2 4
WST 3. term BSc 13 2 2 4
BA1 5. term BSc 13 0 2 9
BE2 5. term BSc 26 2 3 6
DG2 5. term BSc 23 2 2 4
DLM/WEW 5. term BSc 25 2 2 4
IDM 5. term BSc 27 2 2 4
KRY 5. term BSc 27 2 2 4
PCT/SWD 5. term BSc 26 2 2 4
QMG 5. term BSc 26 2 2 4
SSY 5. term BSc 23 3 3 4
WIA 5. term BSc 15 0 2 3

∙ Intensive weeks

Class Intensive week

1. term BSc 2015-09-21, 2015-09-22, 2015-09-23, 2015-09-24
3. term BSc 2015-10-05, 2015-10-06, 2015-10-07, 2015-10-08
5. term BSc 2015-10-12, 2015-10-13, 2015-10-14, 2015-10-15
1. term MSc 2015-11-16, 2015-11-17, 2015-11-18, 2015-11-19
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∙ Preassigned time slots

Course Fixed time slots

BUB (2015-09-23, 6), (2015-09-23, 7), (2015-09-23, 8), (2015-09-23, 9), (2015-10-
02, 4), (2015-10-02, 5), (2015-10-02, 6), (2015-10-02, 7), (2015-10-02, 8),
(2015-10-02, 9), (2015-10-09, 4), (2015-10-09, 5), (2015-10-09, 6), (2015-10-
09, 7), (2015-10-09, 8), (2015-10-09, 9), (2015-11-27, 1), (2015-11-27, 2),
(2015-11-27, 3), (2015-11-27, 4), (2015-11-27, 5), (2015-12-04, 1), (2015-12-
04, 2), (2015-12-04, 3), (2015-12-04, 4), (2015-12-04, 5)

CM1 (2015-10-16, 1), (2015-10-16, 2), (2015-10-16, 3), (2015-10-16, 4), (2015-10-
16, 5), (2015-10-16, 6), (2015-10-16, 7), (2015-10-16, 8), (2015-10-16, 9),
(2015-10-17, 1), (2015-10-17, 2), (2015-10-17, 3), (2015-10-17, 4), (2015-10-
17, 5), (2015-10-17, 6), (2015-10-17, 7), (2015-10-17, 8), (2015-10-17, 9),
(2015-11-21, 1), (2015-11-21, 2), (2015-11-21, 3), (2015-11-21, 4), (2015-11-
21, 5), (2015-11-21, 6), (2015-11-21, 7), (2015-11-21, 8)

PRT (2015-11-13, 1), (2015-11-13, 2), (2015-11-13, 3), (2015-11-13, 4), (2015-11-
13, 5), (2015-11-13, 6), (2015-11-13, 7), (2015-11-13, 8), (2015-11-13, 9),
(2015-11-14, 1), (2015-11-14, 2), (2015-11-14, 3), (2015-11-14, 4), (2015-11-
14, 5), (2015-11-14, 6), (2015-11-14, 7), (2015-11-14, 8)
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C. A Solution obtained with the
Selection Hyper-Heuristic

This appendix shows a solution obtained by the selection hyper-heuristic from Sec-
tion 4.3.2. This solution is already referenced in Section 5.2. The following table again
summarizes several important properties of this solution. The class timetables of this
solution are shown in Figures C.1, C.2, C.3 and C.4.

Input data winter term 2015/16 (see Appendix B)
Heuristic Best individual from selection hyper-heuristic using

heuristic set H1.
Running time 13:10,73
Objective (Eq.5.1) 100
Lecturer Objective (Eq. 5.2) 408

Objectives
Class usedWeekends unusedHours freePeriods
1. term BSc 16 19 0
3. term BSc 16 14 0
5. term BSc 14 0 0
1. term MSc 15 6 0
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Figure C.1.: Timetable for class ‘1. term BSc’.
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Figure C.2.: Timetable for class ‘3. term BSc’.
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Figure C.3.: Timetable for class ‘3. term BSc’.
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Figure C.4.: Timetable for class ‘1. term MSc’.
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