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Abstract (English)

The motivation of this thesis is to teach humanoid robots to play board games. As our board game of
choice, we selected Nine Men’s Morris. The game has a simple setup, but due to the possible combinations
of the game tokens on the board, it has a high complexity level. The humanoid robot “Nao” has been
chosen as the robot to interact in the world on a common sized game board of Nine Men’s Morris, mounted
on a customized table for the robot. As the robot is too little to manipulate all objects on the table from
one side, it needs to walk around the board, which requires an accurate self-localization. In order to
support the localization, an augmented reality marker (AR marker) has been used. All vision tasks are
accomplished, only using images of the two internal cameras of the robot. The computation of a move in
the game requires the current game state. Therefore all game tokens on the board have to be recognized
and correctly classified. The best next states are saved in a database. After the robot has computed the next
move out of the state, it has to execute it. Hence it moves its torso to a position in front of the board, that
can reach the target three-dimensional token position with the fingers of one arbitrary arm. A grasp with
the fingers for a token always needs to be confirmed with a camera image, because the fingers of the robot
do not have touch sensors. In case a grasp fails for the first time, the robot has some repair procedures to
fix the task on its own, if it is possible. Otherwise human help is requested by the robot.

The complexity of the task to play a board game requires a modularization in smaller parts, whereas the
focus of this thesis lies on the image processing, the game logic and a framework for overall control. The
game-play framework is modularized in the following three categories:

• image processing: Recognition of the game board and all tokens, self-localization with the help
of an AR marker and visual support during walk procedures with one of the built-in cameras; Fus-
ing of game board observations and different sensor sources and calculation of efficient strategic
movements;

• mathematics: Computation of the next best step based on the current game state realized by a
precomputed database;

• kinematics: Computation of all joint angles and timed paths to successfully place and grasp a token.
Additionally a planner to walk around the board is required;

We faced some challenges that arose when different technologies were integrated. These had to be solved
in order to proceed. Even if some approaches of this work already existed, the complete integration of all
parts to play Nine Men’s Morris autonomously makes this work unique at this moment to the best of our
knowledge. In order to solve the task special methods have been adapted during the implementation, for
example the robust token classification, the visual odometry, efficient strategic walk and grasp planning
and a specific kinematics library for our humanoid robot. The kinematics library, as well as the walk and
grasp planner, which are used, were developed by Klöbl [28].
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Abstract (German)

Die Motivation dieser Arbeit liegt darin, menschenähnlichen Robotern einfache Brettspiele beizubringen.
Als Brettspiel wurde in dieser Arbeit das Spiel Mühle verwendet. Trotz seines einfachen Aufbaus besitzt
dieses Spiel, durch seine Vielzahl an möglichen Spielsteinkombinationen, einen hohen Komplexitätsgrad.
Als humanoider Roboter wurde “Nao” ausgewählt, um mit der Welt zu interagieren. Für diesen Roboter
wurde ein gewöhnliches Mühlefeld auf einen speziell für den Roboter angefertigten Tisch plaziert. Da
der Roboter zu klein ist um alle Spielsteinpositionen von einer Tischseite zu erreichen, muss er um das
Spielfeld herumgehen, was eine genaue Selbstlokalisierung vorraussetzt. Zur Unterstützung der Selbst-
lokalisierung wurde ein Augmented Reality marker (AR marker) verwendet. Alle visuellen Aufgaben,
wurden erfolgreich nur mit den zwei internen Kameras gelöst. Die Berechung des nächsten Spielzuges
erfordert den aktuellen Spielstatus. Dafür müssen alle Spielsteine auf dem Spielbrett erkannt und richtig
zugeordnet werden. Die besten möglichen Folgestellungen sind in einer Datenbank gespeichert. Nachdem
der Roboter aus der Spielstellung seinen Zug errechnet hat, nimmt er mit seinem Oberkörper eine Position
vor dem Spielbrett ein, in welcher einer von beiden Armen die dreidimensionale Zielposition greifen kann.
Der Roboter muss die Greifbewegung für einen Spielstein immer visuell mit dem aktuellen Kamerabild
bestätigen, da in den Fingern keine Berührungssensoren vorhanden sind. Sollte ein Griff beim ersten Mal
fehlschlagen, hat der Roboter Möglichkeiten seinen Fehler selbst zu korrigieren, sofern das möglich ist.
Ansonsten fordert der Roboter menschliche Hilfe an.

Aufgrund der Komplexität der gestellten Aufgabe teilt sich dieses Projekt in mehrere Einzelteile, wobei
in dieser Arbeit der Fokus auf der Bildverarbeitung, der Spiellogik und dem Framework liegt. Das Projekt
teilt sich in folgende Disziplinen auf:

• Bildverarbeitung: Erkennung des Spielfeldes inclusive aller Spielsteine, Selbstlokalisierung mit
Hilfe eines AR markers und visuelle Unterstützung bei Bewegungen mit der eingebauten Roboter-
kamera

• Mathematik: Berechnung der nächsten Züge aufgrund der aktuellen Spielsituation durch eine vor-
berechnete Datenbank; Fusionierung der Spielfeldbeobachtungen und Sensorquellen; Effiziente stra-
tegische Plannung

• Kinematik: Berechnung der Gelenkswinkel und Zeitintervalle der zum Plazieren und Greifen vor-
gegebenen Spielsteinposition; Zusätzlich werden Planner benötigt, welche Gehbewegungen um das
Spielfeld herum planen und eine Position zum erfolgreichen Greifen berechnen und ausführen

Bei der Integration verschiedener Technologien traten immer wieder unvorhergesehene Herausforderun-
gen auf. Diese mussten erst gelöst werden, bevor die Weiterentwicklung fortgesetzt werden konnte. Auch
wenn einzelne Ansätze dieser Arbeit bereits existieren, macht die komplette Integration aller Teilberei-
che, um autonom Mühle richtig zu spielen, diese Arbeit unseres Wissens nach bisher einzigartig. Um die
gesamte Aufgabe zu lösen wurden einige Methoden benötigt und adaptiert, wie zum Beispiel die robu-
ste Spielsteinklassifikation die visuelle Odometry, eine effiziente strategische Planung, sowie Planer zum
Greifen und Gehen und eine eigene Kinematikbibliothek. Die Herausforderungen zum Gehen und Greifen,
sowie die Kinematik wurden von Klöbl [28] erarbeitet und gelöst .
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Chapter 1
Introduction

Recently the number of autonomous robots has grown strongly, Although they are not obviously visible,
they are not restricted to a certain domain. Many people imagine an autonomous robot with two arms, two
legs and a head. This physical appearance is called a humanoid robot. The robot in a milking plant that
autonomously milks the cows in a stable, can be count as autonomous as a humanoid soccer robot or any
vacuum cleaner bot.

Personally I believe that autonomous robots will be very important in future households, warehouse man-
agement and other domains. I think there are many people who would appreciatively accept a humanoid
household robot, which makes their life more comfortable, like many other electronic tools in the kitchen
already do. In the science fiction movie ”I-Robot” of 2004 for instance, there are humanoid robots with
very advanced artificial intelligence to help humans in their everyday life. It will take some time until our
current robots are at the same state as the robots in science fiction movies are now - if it is even possible.

By now the data storage devices like hard disk drives and processing units are far too limited to store and
simulate a complex mind. Even a simple single mathematical challenge like the game ”connect-4” holds
too much possibilities to store every possible step. We would need 1000-times bigger hard disks just for
that task. So storage is still an issue, if we want to model complex efficient environments.

Someday it should be possible to buy a humanoid robot for a few hundred euros, which is able to play
some traditional board games at home with children or other human beings who like real board games. In
this master thesis I want to present my work on a humanoid robot that is capable of playing Nine Men’s
Morris autonomously. It is only a little contribution, but certainly one step to the future. At first I wanted
to develop everything on my own but soon I noticed that the variety of different domains in which I need
to create something is huge, so the project of playing Nine Men’s Morris with Nao was split in several
projects.

1.1 Motivation for the Project

”Why can’t a humanoid robot play a typical board game with me?”

This was my question and a desire of mine that was in my mind at the start of the project. Sometimes
I want to play a board game even if none of my friends are present. ”Why can’t a robot replace my play
mate, at least while a board game?” I would rather want to see my future children playing with a robot
in the real world than playing a game on the computer. I think it is important for the development of
children to navigate in a three-dimensional world to improve their imagination, their stereoscopic vision
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and movement. Personally I think this is a possibility to keep children away from playing computer games
for some time, similar to remote controlled vehicles.

The question of playing board games autonomously leads to many other questions that have to be an-
swered previously. Autonomous actions in the real world for a humanoid robot are very complex. Of
course there are solutions to individual tasks, but only a few cover a complete strategy to play a board
game. The present hardware technology is able to perform this task, but the intelligence of a robot still is a
challenge. Mankind is able to create artificial proteases and organs, but the human brain is still a mystery
for us. Many years ago I read a quote by Gaarder [19] that said, ”If the human brain was simple enough for
us to understand, we would still be so stupid that we couldn’t understand it.” This means that we are never
able to understand our own brain completely and we may only create an artificial intelligence that is inferior
to our own intelligence. Although I like this way of thinking, I believe it is limiting oneself. Nevertheless
I think autonomous robots are an important contribution to our civilization. They may be always inferior
to ourselves but in special tasks they really could support us. I am excited to see how intelligent humanoid
robots are accepted by mankind in future.

1.2 Goal

Due to the progress in technology, I want to show that it is already possible to play a typical board game
with a humanoid robot. The humanoid robot platform, Nao, was built by the French company Aldebaran.
It is used to play the board game Nine Men’s Morris in this project. For this approach the robot should be
totally autonomous. This means that the robot has no external sensor information about the board and does
not receive any human input for its actions. The robot recognizes the board, evaluates the next step and
proceeds with the plan or repairs it, if it is possible. This project is combined with a completely solved Nine
Men’s Morris database from another group of the university. The database requires approximately 100 GB
of free disk space. I am convinced that it will be possible in the future to use this kind of software on the
robot itself. Maybe the database can be even more compressed by not storing all possible combinations.
I think if the program is mature enough for simple and stable usage, it is ready for commercial purposes.
The robot could be equipped with different memory sticks, each storing the specific data, required for its
specific task, like the board game Nine Men’s Morris. These sticks could be swapped like game cassettes
in a traditional ”Nintendo GameBoy”. If the production of the robot and the demand is high enough, such
a robot should be affordable for every average household.

1.3 Project Overview

This section provides an overview, as well as a brief description of all chapters.
Chapter 2 introduces the used hardware, the robot and the notebook, the used sensors of the robot and the
environment consisting of the game board table, the tokens and the marker. Furthermore the used frame-
work and programming languages are explained briefly.
Chapter 3 gives an overview of related projects and different board games with humanoid robots. Localiza-
tion with a single camera, efficient segmentation, vision-based grasping and artificial gaming intelligence
are being discussed among other related topics.
In Chapter 4 the basic rules of the game, as well as the main concept and framework structure to solve the
task are explained.
The solution to the task is explained in Chapter 5, where vision tasks are focused strongly and the frame-
work structure is explained.
Chapter 6 contains the experimental results of different high level actions, such as grasp, place, walk and
the token classification.
In Chapter 7 the results of the experiments are discussed.

Our framework is open source and available for download at [8].

2



Chapter 1 Introduction

1.4 Definitions and Terms

In this section all terms, definitions and abbreviations for this specific project are explained briefly.

AR marker is the abbreviation for ”Augmented Reality” marker. It refers to a special known black and
white square in one plane. The complete pose of the camera or marker, can be estimated with the
known marker structure. Therefore it is used for localization and mounted in the middle of the game
board to be equally visible from each side. The used marker is shown in Figure 1.1.

Figure 1.1: The marker is situated in the middle of the game board. The non-symmetric pattern is essential
for a reliable orientation information. The thick black objects improve the recognition and the black-white
coloring enhances the contrast to a maximum. The x-y marker system is also shown. The z-axis is the
vertical axis coming out of the image.

Blue stripe is the colored tape on the border of the board, which is used for course localization (see
Figure 1.2).

Figure 1.2: The complete game board including the marker

Square is always related to the four lines that surround the marker of the game board in an equi-perpendic-
ular distance. The board is divided in three black, non-filled squares, as can be seen in Figure 1.3.
The inner square is defined by the four lines that are closest to the marker. The outer square is defined
by the most distant four lines and the middle square consists of the four lines in between.

Element is a point of an intersection on one of the lines of a square (see Figure 1.3). The element number
increases counter clockwise from zero to seven, which results in eight elements for each square.
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Figure 1.3: The game board from above with strategic positions, sectors and marker. The first value of each
position represents the square number, while the second one represents the element number.

Strategic positions are abstract positions of the game board. All of the 24 positions contain the occu-
pation to represent the game state. One position is addressed by a square and element or an index.
There are three squares and eight elements, while the index holds 24 entries.

Ideal positions are the positions of the game board, where all game tokens should be. Every intersection
of the lines on the board is an ideal position (see Figure 1.3).

Real positions are the estimated positions of the tokens centers, where they really are on the game board.
Due to different token sizes and imprecise placement, tokens never lie on their ideal position.

Sectors are specific two-dimensional areas around the game board, used for strategic decisions. Referring
to Figure 1.3, the bottom side is defined as sector ”0” or ”BOTTOM”, the right side as ”1” or
”RIGHT”, the top side as ”2” or ”TOP” and the left side as ”3” or ”LEFT”. The four sectors are
divided by two lines that intersect in the center of the marker and game board. The marker system is
shown in Figure 1.1. One line goes through the strategic elements 0 and 4 with 45◦ to the x-axis of
the marker and the second line goes through the strategic elements 2 and 6 with 45◦ to the y-axis of
the marker.

Point/Position refers to a two or three-dimensional position, for example (x,y,z).

Pose refers to a six-dimensional or seven-dimensional position, like a point with an orientation, for exam-
ple (x,y,z, φ,ψ,θ )

Mask is an area on the board that belongs to a position. Due to the fact that the masks are not overlapping
each other, all 24 masks can be visualized in one combined image, which can be seen in Figure 1.4.
Each white connected area represents one mask.

Visual odometry refers to a service that supports the localization with the help of camera images, if the
robot rotates.
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Figure 1.4: All masks are combined in one image. Each mask belongs to a strategic position and is divided
by a black border to other masks. Every pixel may be clearly classified to one mask. The black border is
used to cope with border conditions.

Blob originates from ”Binary Large OBject” and in this project it denotes a homogeneous circular shaped
area that differs from the background and represents a token.

Multi blobs are present if two or more blobs are so close to each other that they cannot be separated. They
melt to one blob that no longer has a circular shape. Multi blobs are more difficult to classify. Their
three-dimensional real position is also difficult to estimate.

Principal point offset refers to the pixel distance in a camera from the middle of the light-sensitive chip
to the optical axis.

NaoQi is the framework running on the robot to control the hardware. There is a rough documentation on
how to use the NaoQi [4].

Game phase refers to the current progress in the game. The main game phases are explained in Sec-
tion 4.2.

Place is the term of the procedure to put a token from the storage on the board during the first game phase.

Take is the term of the procedure to grasp or remove a token completely out of the game.

Move is the term of a manipulation of a an already existing token on the board. It includes the grasp and
release on another valid position on the board.

Denavit-Hartenberg-Transformation is a mathematical standard procedure to describe kinematic chains
to handle coordinate transformation.

Potential field is a method that is used in path planning. The algorithm is only allowed to move from a
higher to a lower potential on a map, while obstacles are initialized with a very high potential.

RGB is the most common cuboid shaped color space. It combines every color by an additive combination
of the three basic colors red, green and blue.

HSV is the most common cylindrical shaped color space. Instead of using the three colors it splits the final
color in hue, saturation and value. Hue represents the color or wavelength. Saturation defines more
or less how pure the color is. The value corresponds to the brightness or intensity of energy.

YUV422 is similar to the HSV color space that encodes the brightness in an extra channel, the Y-channel.
YUV422 [44] is a special encoding that encodes 2×3 bits in 4 bits.

Median is the central value of a list of numbers. Most of the time the list gets sorted in ascending order
before extracting the central value. This procedure is used to find a good mean value ignoring
outliers.
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Transformation/tf refers to a coordinate transformation, where the coordinates of one system are converted
into another system. A transformation matrix can be established to easily transform points by a
multiplication. In the typical robotic domain this transformation matrix contains translations and
rotations only.

Homography is a projective transformation, which it is used for vision tasks. In this project the homoge-
neous matrices for the camera images are calculated to rectify them. The projective transformation
is only applied in the two-dimensional space.

SURF stands for ”Speeded Up Robust Features” [7] and is an scale and rotation invariant keypoint de-
scriptor with very good repeatability, distinctiveness and robustness.

ROS is the abbreviation of “Robot Operating System” and provides libraries and tools to help software
developers to create robot applications [36];

URDF model refers to ”Unified Robot Description Format”, which is an XML format for representing a
robot model [36].

Rviz is a stack of [36], used to visualize data. It handles camera images, transformations and many geo-
metric shaped objects to visualize an abstract world.

Quaternions are a complex number system to extend the complex numbers. They are used for three-
dimensional navigation as they always perform an known trajectory [43].

1.5 Presentation of the Problem

On start up the robot is sitting next to its Nine Men’s Morris game board, oriented towards the game board
as shown in Figure 1.5.

Whereas every human player would check, where the game board and its tokens are, the robot initializes
itself. Initialization for the robot means standing up and finding the marker. This first step is very important,
because it localizes the robot in the world. Afterwards the robot needs to know the token colors of both
Nine Men’s Morris players to correctly classify them during the game. Additionally the robot initializes
a blue color to find the blue stripe on the border of the board which helps to relocalize the board from a
distant position. There is a color calibration method to automatically detect the three colors. As the last
procedure of the initialization step, it sets the game board occupation. On a new game all game board
positions are initialized as empty. However there is an option to continue a game. In this case instead of a
free board the robot scans the whole board to retrieve the current game state.

Due to a small opening angle and a close distance to the board, only a few positions can be seen at a
time. Therefore the procedure of retrieving the game state is a complex function that includes head motion,
coordinate transformation, projection of three-dimensional points, rectification, matching and validation of
the observation.

After the initialization the robot and the human player place tokens one by one. Before the robot may
place a token, it has a lot of things to do. Firstly, it has to self-localize using the marker and acquire the
game state. Secondly, it can place or move and even take a token. It may only take a token, if it created
a mill which refers to three tokens in a line. The robot uses an internal database that always computes its
next best move to the current state. Before the new state is requested, the current state is validated to detect
probable cheats or game inconsistencies.

The execution of the move is the next task. The robot always selects the shortest way to go. The
selection of the arm corresponds to the shortest walking distance, because a movement to another table
side is extremely time exhaustive. While the robot walks to its new table side, the visual odometry supports
the rotation around the robot’s vertical axis by measuring the rotation angle.

When the robot arrived at its new table side and relocated itself, the target token position is refined if
it is a ”take” or ”move” action. A ”place” does only require the ideal position, which is always known
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Figure 1.5: The robot in its initial position next to the table. Any position like this around the table serves
well as initial position.

in the world model. Refining means to look directly at the token at close distance to minimize its real
token position error. Then the kinematic computes all angles of the robot to reach the target position
and the grasp-planner tries to find a valid ground position for the robot where it needs to be in order to
manipulate the token. If the token is not graspable while standing in the current position, the robot corrects
itself and manipulates the token. Afterwards it checks if the manipulation has succeeded by looking at the
target position. If the vision confirm that the manipulation has failed, there are different repair procedures,
depending on the manipulation mode. For instance if a ”place” has failed, then it is most obvious that the
token rolled away or tilted. In this case the robot has to search for the lost token and place it again. In
the worst case the token has fallen off the table and is unreachable for the robot, so that it needs human
assistance. In case the token manipulation worked as expected or was successfully repaired, the robot takes
a resting pose until the human player finished a turn. Nao takes its next turn when the human player touches
its front head. This was one turn of Nine Men’s Morris from the point of view of a humanoid robot.
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1.5.1 Challenges

Game state recognition is a challenging task as it requires the exact localization of the robot and the game
tokens. The task to calculate the token positions would be much easier with a global camera above the
game board, because the image would only be distorted minimally. However we chose not to use external
sensors, because they require a specific setup environment, which need to be calibrated. The idea to use
only internal sensors and a game board marker, which can be easily printed on every printer, qualifies each
Aldebaran Nao robot to play Nine Men’s Morris. The robot just needs the specific Nine Men’s Morris
gaming software and a printout of the game board, as well as a table of a specific size. Some tokens that
are graspable by the robot are also required, but they would also be needed if a global overhead camera
was used.

One goal was to provide a good reuseability of our framework, because it should be able contribute to
future implementations of gaming robots. This implies a slim and robust framework that is easy to install
and working on a majority of computers. The framework should be split into modules of different tasks, so
that each module can be replaced in case of improvements or adapted usage. In case any fixed sizes of our
project are different, the user can easily adjust the parameters in one file before starting the framework.

Another challenge are the inconsistencies of the game board tokens. What happens if there are more
than one token of different colors in a mask? Is this valid? What can we do?

Due to the decision to use internal sensors only to detect the Nine Men’s Morris game state, the localiza-
tion is restricted to the odometry and the internal RGB camera. The internal odometry of arms, head and
legs in relation to the robot itself is much more precise than the estimated pose of the robot in relation to the
external world. The latter is drifting away very fast from the real pose due to the accumulation of errors.
The odometry value of the angle around the own vertical robot axis is the most inaccurate value. One of the
reasons may be a missing gyrometer in the horizontal plane. Moreover it is also nearly impossible to make
small movements or rotations (for example a forward motion of 0.01m or a torso rotation of 3◦) related to
the world due to the building quality.

The built-in cameras have the property that they are very sensitive to light. If the illumination of the
environment is to low or there are shadows and noise on the top board side, it is challenging to distinguish
different kinds of colored tokens. Furthermore it is not possible to extract depth information from a single
camera, which requires special solutions while interacting in a three-dimensional environment.

Due to the the low point of view of the robot, tokens on the other side of the board are difficult to assign
to a specific strategic position. Even for a human the classification of such an image is not an easy task. A
misclassification could occur by occlusion of other tokens or by the robot itself or by perspective distortion.
Perspective distortion leads to tokens that are visible in more than one mask and have a greater extent than
expected. This results in an inaccurate estimation of the real token positions, which is required to grasp
tokens. Furthermore the camera yields distortions that have to be corrected before the classification step.

The tokens were created especially for the robot. This led to game token cubes of 25 mm side length.
However the height of the cubes evoke another issue in advanced game situations. For instance, if the inner
square of the game board is occupied by tokens and the robot changes the table side, it tries to find the
marker to relocate itself when it is approaching the table. The tokens on the inner square however occlude
the marker from the robot’s current position and view angle, and the marker cannot be found. Changing
board, token or marker size just leads to new challenges.
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Due to a small aperture angle of the camera and the close distance of the robot to the board, the token
cannot be seen completely. Every strategic position has to be updated and sometimes it is possible to
update more than one position at a time. So a special trajectory planner is required that reduces the steps
of moving the head around to a minimum. The efficient planning is also required for token manipulation
actions which should be also achieved by minimum effort of the robot.

Summarized challenges concerning the framework in the real world:

• self-Localization

• inaccuracy of the odometry and motion

• monocular vision

• camera calibration

• best size of marker, game board and tokens

• token segmentation on low illumination

• token classification

• token position estimation to grasp a token

• occlusion of tokens by other tokens and the robot itself

• grabbing tokens with three clumsy fingers

• efficient trajectory planning of interesting positions

• reduced stability on constant load - motors are overheating and lose stiffness, if joints are not relaxed

• limited network connection

• robust, simple, slim and modularized framework

All these challenges are discussed in Chapter 4.
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Chapter 2
Sensors, Techniques, Hardware and
Environment

2.1 The Robot

The humanoid robot Nao was developed by Aldebaran Robotics[2], a French company in Paris. The
currently used robot platform is the Nao v3 RoboCupT M version with two cameras mounted in the head
module. The robot itself is equipped with many sensors and activators to perceive and interact with its
environment. Additionally this retired soccer robot’s hands have been upgraded to play board games. An
overview of all its features can be seen in Figure 2.1.

Figure 2.1: Overview of Nao’s features from Nao Documentation 1.12.5 [4]
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Focused on our project the most important robot specifications are listed below:

• height: 57.3 cm

• weight: 4.8 kg

• CPU: x86 AMD Geode LX-800 operating at 500 Mhz, situated in the head module

• 256 MB SDRAM

• 2 GB flash memory

• degrees of freedom:

– Head: 2

– Arms: 5 in each arm

– Hip: 1

– Legs: 5 in each leg

– Hands: 1 in each hand

• 1 speaker in each ear

• 2 microphones

• network access by Ethernet or Wi-Fi (IEEE 802.11g)

• 4 force sensitive resistors on the bottom of each foot

• inertial unit consisting of a 2 way gyrometer and a 3 way accelerometer in the torso

• 1 bumper on the front of each foot

• 2 sonar emitters and 2 sonar receivers in a cone of 60◦ on the front chest

• 3 capacitive touch sensors on the top of the head module

• 8 RGB LEDs in each eye, 10 Blue LEDs in each ear, 1 RGB LED in the chest, 1 RGB LED in each
foot

• operating system: Embedded Linux 32 bit with updated NaoQi version 1.12.3

All sensors, but the sonar, were tested for usability. Although the sonar would have been interesting for
obstacle detection in the robots path it has not been used to the present day, because we assume that due
to the thin board the sonar is too inaccurate for a reliable measurement. We also tested the microphones to
use them for voice recognition, but the already implemented one does not work reliable and therefore was
not used in the project.

The main work of this project is focused on the head module of the robot. The head contains two RGB
cameras with a maximum resolution of 640x480 pixels or 30 frames per second. The 30 fps are only
achieved on a lower resolution and only if the image is requested local and in its native camera color space
YUV422. Both cameras are mounted in the front side of the head module. The bottom camera is located
in the area, where a mouth of a human face would be, while the top camera is located in the forehead as
visible in Figure 2.2.

Although there are two cameras in the head module, they are not usable for sterovision due to their non
overlapping assembly. No points are visible with both cameras at the same time without a head movement,
which would be required for stereo vision. Additionally the simultaneous use of both cameras is not
possible.

The exact assembly of both cameras can be seen in Figure 2.3. The two identical cameras have a vertical
field of view of 34.8◦ and a diagonal field of view of 58◦. In the initial position of the robot, the bottom
camera position in relation to the torso of the robot is 48.8 mm in front of the torso and 150.31 mm above
the torso origin with a side offset of 0 mm. It is orientated with 40◦ from the horizontal of the camera
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Figure 2.2: Camera module showing the two cameras

Figure 2.3: Head of Nao with the position and orientation of both cameras [3]. In this project the vertical
field of view and the inclination of the bottom camera is of major importance, as they are often used for
calculations.

origin to the ground. The roll (angle of x-axis) and yaw (angle of z-axis) is 0◦ at start and changes on head
motions, while the pitch (angle of y-axis) is 0◦ and can never be changed.

There are three capacitive touch buttons at the top of the head, as shown in Figure 2.4. In our project
these buttons were used to provide a simple user interface, for example the first time the front button is
touched, the robots starts the game. The next time one of the buttons is touched, the game mode may be
selected. The strategy is to keep the user input simple. The robot itself has no screen where the current
state could be shown, but there is a text to speech proxy which comments its actions and tells the user the
current functionality of the buttons. Furthermore the robot possesses 31 LEDs all over the body with 8
LEDs in each eye, able to emit red, green and blue color. The LEDs in the eyes are used to show that Nao
sees the marker on the game board and each ear glows, if a player color has been activated.
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Figure 2.4: Touch sensors on the head module.

Nao has two different network communication devices, that offer a wired and wireless connection. After
the robot has been connected with a RJ45 cable to the network with a DHCP server, it receives an IP. The
IP is required to connect to the robot and to use the NaoQi. The IP may be retrieved by one of the following
options:

• pinging Nao’s name. In our case this would be ”amy.local” (default is nao.local)

• looking in the table of the DHCP server

• pressing the chest button

• opening Aldebaran’s ”Choreograph” and obtaining the IP from the connection manager. This is
possible, because the robot registers when it is connected to the network

Some clients also support DNS which enables a connection with the robot name.

The wireless connection can be enabled by the web interface. The web interface requires an already
established wired connection and is reachable by its IP or name. In the category ”network” the desired
network can be chosen. Although the wireless connection is comfortable, because no cables are required,
the latency is remarkably higher and the bandwidth is lower than with a wired connection.

2.2 NaoQi, Python, C++ and the game engine

Nao has its own library, called NaoQi that offers a simple interface for higher commands in C++, Python
and Urbi. The motion module of the NaoQi provides high level functions for walking. These basic walking
procedures include

• walking forward and backward,

• rotating,

• strafing left and right, and

• walking simple curves.

At the beginning we tried to use C++ in ROS and the NaoQi, but as both are using different versions of
the boost library, it is not possible to use them together. It would be possible to use a version, where
both use the same boost library, but then one is restricted to a specific version. This was the reason why
we switched to Python for the interface with the robot. Hence Python does not use a boost library, we
separated the boost version of the NaoQi from our framework. Although Python offers the same interface
functions for the robot and sometimes even an easier access, it is sometimes slower than C++, depending
on the implementation. At first we though that the video stream transmission of the robot is bottlenecked
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by Python, but soon we realized that the bottleneck is based on the color space conversion on the robot and
the network connection.
The game engine framework also requires a specific boost library, which resulted in conflicts with our used
ROS boost version. Since Ubuntu 11.10 the boost library version is 1.4.6 or higher, which is required by the
game engine framework and therefore both frameworks are working together. We used Ubuntu, because of
the good compatibility to ROS.

2.3 The Game Board

The white Nine Men’s Morris game board consists of three unfilled black squares connected with a line in
the middle of each side as may be seen in Figure 1.2.
At each intersection of two lines there is an ideal position. That results in eight ideal positions on each of
the three squares, 24 in total. The inner square sides have a minimal distance of 58.5 mm to the center.
This distance increases by additional 50 mm per square. Combined with the white border the square board
has a side length of 376 mm. The height of the upper game board surface from the ground is 227 mm. This
height has been chosen, because this way the robot is able sit next to the table with its feet below it. The
upper game board has a thickness of about 16 mm and is held by four cuboid pillars with a side length of
33 mm. On the 16 mm sides of the top element some colored duct tape was mounted. This colored tape is
used to help the robot in the relocation process, if the marker is out of range or not visible.

2.4 The Marker

In the center of the game board is a square AR marker with 70 mm side length, which is shown in Figure 1.1.
This marker may be configured and tracked with the AR ToolKit [5], which is available freely, for non-
commercial use under the General Public License. The thickness of the black border has to be 20 mm,
independent of the complete size of the marker. The shape of the inner pattern directly influences the
recognition rate. Easy patterns with thick and easy structures improve the recognition rate. The estimated
detection distance of an easy pattern directly scales with the size of the marker, which can be seen in
Table 2.1.
Recently ROS became very popular, so there is already a wrapper that provides a few functions of the AR
ToolKit for ROS. This wrapper is called ”ar pose” [16].

Pattern Size (inches) Usable Range (inches)
2.75 16
3.50 25
4.25 34
7.37 50

Table 2.1: Tracking range for different sized patterns [5]
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2.5 Game Tokens

Although the robot is able to grasp objects, there are restrictions due to its three fingers. In our case, the
common flat Nine Men’s Morris tokens of black and white color are replaced by colored modelling clay.
These colored tokens have the shape of cubes with the edge length of 25 mm. This size has been chosen
in order to achieve the best trade-off for grasping in relation to occlusion of the marker or other tokens.
Two of those tokens of different colors can be seen in Figure 2.5. The purple color is not used any more,
because the blue stripe on the border of the board is too similar. For detailed information about the cubes
and colors, see Section 5.8.

Figure 2.5: Two sample tokens of yellow and purple color. The yellow color has a unique range in the HSV
color space that is not occupied by any other objects on the game board. Ahead from the other colors, the
yellow color is detected best.

2.6 Hardware - Processing Notebook

The created ROS framework is not running on the robot itself. All the necessary computations are done on
a provided notebook. The sensor and activator information are then sent via LAN or WLAN. The notebook
itself is powered by an ”Intel Core 2 Duo” P8600 with 2.40 GHz and the main memory modules provide
3.9 GB of fast flash memory. Due to certain 32 bit libraries for the robot, ROS and the AR ToolKit a 32 bit
Ubuntu 11.10 was used, which is best compatible to both frameworks. The compiled project itself has a
size of approximately 150 MB (5 MB source only) and could also be copied to the robot which has a flash
memory module of 2GB. The complete gaming database has a estimated size of about 100 GB.

15



Chapter 3
Related Work - Research

The chapter deals with other work in related domains that inspired and influenced specific methods that
were developed or adapted for this framework. It is focused on other game playing robots, solutions for
localization with single cameras, artificial gaming intelligence, vision-based grasping and possibilities to
segment camera images or detect colors.

Localization using a single camera
Liemhetcharat et al. [30] worked on a localization method with the humanoid robot Nao, only using the
internal camera and the odometry. Due to a limited field of view, the robot is not able to see all objects
continuously. In order to localize, different observations in the world are made over time. The used world
model provides objects, even though they are currently not visible. A Monte-Carlo localization as proposed
in [40], to estimate the robot’s pose in the world, has been used. We decided to use an AR marker, which
offers an absolute position that is fused with an odometry update. Additionally we used the camera to
estimate torso rotations, which are also fused with the robot’s pose.

During movements, Nao’s camera images are blurred, depending on its motion speed. Hornung et al. [24]
proposed an approach of learning the influence of motion blur to improve localization. The robot learns a
trade off between velocity and localization accuracy. A very exact localization to grasp tokens is required,
because an offset of a few millimeters leads to a fail grasp. Hence we decided to use only camera images,
while the robot is steady and an AR marker to deal with accumulating odometry errors.

The work of Davison [14] deals with a robust localization method, only using a single camera. Further-
more the presented approach is running in real time with very sparse prior knowledge by a hand-waved
camera on a common desktop computer. Automatic reconstruction from motion of camera trajectories in
unknown scenes was already presented in [18], where offline algorithms were used to compute this task.
Online algorithms are far more challenging due to their short minimal available processing time. Davi-
son [14] used a camera with 30 frames per second, which implies a maximum available processing time of
33 ms. The framework is initialized in a resting position with a known object (A4 piece of paper). After-
wards the camera can move smoothly but rapidly and freely in a three-dimensional space. The goal is to
continuously estimate the camera’s position. This means that repeatability is very important, because the
framework should yield the same result after 10 seconds, as it does after 10 minutes. The deviation of an
estimated position to a position, which has not been seen for some time, due to camera motion, is called
motion drift. Real-time self-localization and mapping (SLAM) has a problem of motion drift which has
to be modeled and handled. Davison [14] combined an extended Kalman filter with various approaches
of [17] and [29] to reduce computational complexity to handle the propagation of first-order uncertainties.
The uncertainties itself were represented with a covariance matrix. The update of a full covariance matrix
takes time, which is a limited to 33 ms. The previous work of Chiuso et al. [12] already presented a real-
time, full-covariance Kalman filter-based approach to structure from motion. This approach only allows
slow camera motions and no re-acquiring of older frames, which leads to motion drift.
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Davison [14] added a motion model to their approach modeling a Gaussian profile. Assuming that accel-
erations occur, but very large accelerations are unlikely, gives the model additional robustness. They have
modeled the velocity of the camera, while other structure from motion models start again from scratch with
each image.
To avoid motion drift, long term landmarks are required. These landmarks are recognized again after a long
period of neglect. In [15] an approach for large image patches with strong salient features that could serve
as long term landmarks has been proposed. Three-dimensional depth information cannot be obtained by
one image, therefore the initialization of features is a difficult task. Consequently only a three-dimensional
ray is initialized that maps from the camera center through the image pixel. The feature point has to lie on
that ray. On this ray assumptions are made that resemble a one-dimensional particle distribution in a range
of 0.5 m to 5 m. After the camera has moved, all particles are projected back into the image, which offers
an elliptical search region for each particle. This results in a new probability estimation of all particles.
The new distribution forms a peak and represents a specific distance. Speed improvement is achieved by
eliminating the weakest particles.
A map that is created by these particles has to be managed properly, thus only reliable features shall be
kept. The most interesting features in a randomly chosen image window are detected with the interest op-
erator of Shi and Tomasi [37]. Bad or often occluded features have to be eliminated. A feature is deleted,
if it is not detected, while it should be visible. Often, appearances of similar clutter and landmarks lead to
complete failure on mismatches.
The computation of the framework was done on a 2.2 GHz Pentium processor and required approximately
25 of 33 available ms to process an image.
This approach inspired some designs and implementations of projections and feature detections, which
were used for the classification of the game tokens and the visual odometry.

Another approach of estimating the camera pose in an unknown scene in real time was proposed by Klein
and Murray [27]. In contrast to SLAM they presented a method called parallel tracking and mapping
(PTAM). This approach is designed to track a hand-held camera pose in a small AR workspace. They
split the tracking and mapping in two threads to take advantage of multi core processors. Whereas the
tracking thread finds keypoints and updates the camera pose for every frame at 30 Hz, the map is only
updated at keyframes, because the update of the map can take much longer than 33ms. To track keypoints
and estimate the camera pose, they use a zero-mean sum of squared differences (SSD) score to compare
gray levels of image patches. A three-dimensional reconstruction of a scene requires multiple observations
from different camera poses that demands camera translation. Due to this translation of a camera, a virtual
baseline is created that can be used for reconstruction. There are several reasons why this approach is
not well-suited for our project. First of all, the motion blur, which the images of the robot suffer during
translation. This makes the tracking of keypoints very unstable. Secondly, the approach was developed
to view a small workspace from the outside, but in our case the robot is placed inside the workspace and
most of the features lie on the outside. Due to the limited robustness against motion blur the keypoints (and
consequently the camera pose) cannot be tracked long enough to establish a baseline which is wide enough
to obtain a new keyframe.

Segmentation and color classification
Dahm et al. [13] discussed different color spaces for robot soccer. A chrominance color space transforma-
tion to facilitate the segmentation step was proposed. An adapted chrominance space as in [39] was used,
where a “blue channel” was added. The original space that has been used for face recognition, did not
comprise blue color values. The idea of the approach is to split the chrominance space in subspaces, where
each subspace represents exactly one color. This facilitates the detection of a color from a hyperplane to
simple threshold values. The approach has not been further examined since distinctive color values of the
game tokens in the HSV color space were chosen. The decision is further discussed in Section 5.8.

The work of Harahap et al. [20] deals variable illumination. Three different illumination normalization
methods, as a pre-processing step in tasks of robot soccer, were compared. According to [20],(1) histogram
equalization is widely used, because of its simplicity. Sometimes along with the histogram equalization,
(2) gamma intensity correction and (3) logarithmic transformations are used. Inspired by the idea of a con-
sistent illuminated image, histogram equalization was implemented and tested in the image preprocessing
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step. We expected a result, which was more invariant to illumination changes, but the normalization just
increased the contrast level. Therefore the normalization step was revoked (see Section 5.6.3).

A segmentation procedure usually contains thresholds somewhere to divide different colors. The work
of Bruce et al. [11] compares different color spaces and introduces an approach for a fast color segmenta-
tion. A specific color in the RGB color space with variations in the brightness is represented by a conical
body and cannot be modeled with simple thresholds. However, the HSV and YUV color spaces encode the
chrominance in two channels and the illumination in one channel. So a specific color can be found within
a threshold for the chrominance and nearly the complete illumination channel.
Common color thresholding, also considering illumination would require six thresholds that have to be
compared with the current pixel values, which lead to six comparisons per color and pixel. Bruce et al. [11]
propose an approach to segmented up to 32 colors by three binary ANDs only . Considering the following
example for a YUV color image, discretized to ten color levels, the orange color would be represented as:

YClass[ ] = {0,1,1,1,1,1,1,1,1,1} (3.1)
UClass[ ] = {0,0,0,0,0,0,0,1,1,1} (3.2)
VClass[ ] = {0,0,0,0,0,0,0,1,1,1} (3.3)

If a pixel with color values (1,8,9) is a member of the color class ”orange”, the expression of YClass[1]
AND UClass[8] AND VClass[9] is evaluated, which resolves to 1, true. Considering blue as a second
color, both colors can be evaluated with the same procedure.

YClass[ ] = {0,1,1,1,1,1,1,1,1,1} (3.4)
UClass[ ] = {1,1,1,0,0,0,0,0,0,0} (3.5)
VClass[ ] = {0,0,0,1,1,1,0,0,0,0} (3.6)

Both arrays can be combined into one, where each array element consists of a 32bit integer.

YClass[ ] = {00,11,11,11,11,11,11,11,11,11} (3.7)
UClass[ ] = {01,01,01,00,00,00,00,10,10,10} (3.8)
VClass[ ] = {00,00,00,01,01,01,00,10,10,10} (3.9)

The first bit now represents ”orange” and the second bit ”blue”. If again the same color values (1,8,9) are
evaluated, the result is 10. 10 indicates the color ”orange” but not ”blue”. ”Blue” would be 1 on the second
bit, like 01.
Subsumed, if the image is stored in such an array structure, up to 32 colors can be segmented easily with
three binary ANDs in contrast to a standard procedure with six comparisons for each color. This is a huge
difference in computation time, if more colors have to be segmented.
The approach of [11] was not used directly for the segmentation, because in our project only three colors
are tracked and therefore the speed increase to simple thresholds would be minimal. Additionally we would
need to convert our image structure to the one presented in this approach to make use of it. This conversion
also consumes processing time. However the classification method that compares images by binary ANDs
was influenced by this approach and is described in Section 5.6.6.

Vision-based grasping
The work of Höll and Pinz [22] deals with autonomous grasping of objects from a table. Hand-eye coor-
dination of the robot was focused, while many other challenges influenced their work. These influencing
factors include:

• limited processing power
All computations are executed on the 500 MHz processor of the robot. In contrast to our approach
they do not require a large database that would not fit on the memory module of the robot. The
processing power does not affect us, because we compute all tasks on a remote machine. However,
we need to transfer the images and joint values to our remote machine, which require a continuous
network connection.
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• inaccuracies in repositioning
Due to the limited production accuracy, executing small translations and rotation with the robot is
nearly impossible. Additionally, larger rotation estimations are imprecise, depending on the under-
ground.

• instability on longer operations
After continuously operation, the joints of the robot are overheating and the NaoQi automatically
reduces the stiffness to avoid motor damage. If the robot moves in that state, it may break down or
fall on the ground.

• self-occlusion
For a visual-servoing process it is essential to see the target and the hand. As soon as the robot is
next to the object that should be grasped, its own hand occludes the target most of the time. In our
project visual servoing was not used, because a free sight to the token and hand cannot be guaranteed.
Instead a failed grasp is being repaired.

• limited grasp-ability
The robot has three fingers that are controlled by one wire-rope. There are no touch sensors to know
when something is between the fingers.

• monocular vision
Stereo-vision is not possible, as both cameras cannot be used at the same time. Additionally no
overlapping region is available, which is required for matching the images to obtain stereo vision.
Therefore special solutions to interact in a three-dimensional space are demanded.

The board plane is estimated by projecting a plane in the hand of the robot that is parallel aligned. Addition-
ally the ground plane is calculated the same way it is done in our project, by computing the transformation
from one of the feet. The feet of the steady Nao are assumed to be parallel to the ground.
Höll and Pinz [22] use the transformations provided by the NaoQi and the knowledge about the orientation
to the table to project the finger tip of the robot’s thumb onto the table plane. Nao’s thumb is essential for
a successful grasp. The projected thumb is moved to a target position that lies in the center of the bottom
line with a little offset to the top side of the blob, depending on the arm position.
Until the projected thumb reaches the target destination, a visual servo control is used to move the arm.
Höll and Pinz [22] achieved good results with their autonomous grasp approach for all the challenges they
faced. They achieved a successful grasp rate of about 74 %, which achieves a better score than our ap-
proach.
In contrast to Höll and Pinz [22], our framework has a complete kinematics that plans a path to the target
destination. We believe our solution that only takes a few seconds for a grasp, is much faster than using a
visual servo control that has to wait for feedbacks from the vision. This was also an important factor for
us to improve the game experience, because the robot has to grasp quite often and the human player might
get bored while waiting.

Game intelligence
There has been an approach to play the board game Pylos with an autonomous robot by Aichholzer et al. [1].
Pylos is similar to Nine Men’s Morris, as it is also a game of full information for two players, which means
that all data is available for both players. A Katana robotics arm with six degrees of freedom was used,
while the recognition used a standard firewire camera that provided color images. The game strategy for
Pylos has been solved in order to have the optimal move for every game state, which is saved in a 30
GB database. Impossible moves of the opponent are detected by a crosscheck with the possible successor
states that are saved in the database. In our approach we used the same game engine framework, but with
a database for Nine Men’s Morris. This enables the robot to always make the optimal move.

Other related humanoid gaming robots
The team Sun et al. [38] managed to develop a humanoid life-size robot with a height of 160 cm that is able
to play ping-pong versus a human opponent. To achieve this, a robot, which is robust and flexible enough
for walking and playing table tennis was needed. Moreover fast control algorithms and real-time control
with efficient planning are required that also watch the stability of the robot, which is very challenging on
high-speed motions of the robot arm. In addition, a very accurate perception, which identifies the moving
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ball, predicts its motion and localizes the robot is required. In contrast to our robot, the vision consists of
two on-board cameras, but due to vibrations and a short baseline of 10 cm, it is not accurate enough. Thus
two additional cameras with a baseline of 110 cm are mounted above the ping-pong table. Whereas the
overhead cameras are responsible for the ball detection, the onboard cameras are in charge of the real-time
self-localization. The data of the overhead cameras are processed by an external computer and sent wireless
to the robot. We could not adapt anything of this approach, because their used hardware is totally different.

Tomlinson [41] from the Machine Intelligence and Pattern Analysis Laboratory at the Griffith University
researched on human robot interaction for board games. A framework for a Nao has been developed with
an artificial intelligence for a domino player. Visual recognition of the domino tokens and the computation
of the next move has been focused. The setup consists of a frame that holds the domino tokens in front of
Nao’s camera. The robot uses its arm and speech to indicate which token should be used next, but is does
not walk or grasps any tokens. A human has to execute the indicated move. In our approach we want to
be as autonomous as possible and we did not find any published work to this topic. Therefore this research
did not contribute to our work.

Recently we got information about a company [25] that developed a connect-4 playing Nao. There is
a short demonstration video on their website that shows Nao making a move. A big blue connect-4 game
frame in front of a white background is used for the setup. The robot is initialized in a distance from where
the whole game frame can be seen. Due to the fact that the frame size is known and completely visible,
the distance to that board can be calculated for simple localization. In the robot’s turn, it approaches the
frame, opens its hand and waits for the human to hand over a token. Then it moves its hand above the
frame slot, tracking the hand position with the camera. Nao adjusts the hand position by visual servoing
until it is sure that the token fits in the slot. Afterwards it moves back to see the whole board. We assume
that a board rectification for an abstract representation is applied. The fact that the complete game state can
be checked in one image, while seating with relaxed joints, enables the robot to know when the opponent
made a move.
In our project we have to grasp some token positions, where it is not possible to see the token to adjust
the hand position. In contrast to the connect-4 playing Nao, we need to grasp tokens. A successful grasp
requires a very precise positioning of the thumb, which is essential for the grasp. Due to self-occlusion
the important position is not visible. Additionally we have the a horizontal game field instead of a vertical
one. The whole game board cannot be seen in one image and it is far more distorted due to the perspective.
Furthermore Nao has to be upright to acquire the current game state or execute any other action. The time
slot when the human player has to make a move, is the only time to relax the robot. The relax is essential
for continuous operations, otherwise the motors are overheating and the robot loses stability. This is the
reason why we do not have an automatic recognition for the opponent move.

Influence of the robots appearance and behavior to humans
Due to the fact that Nao looks like a person, there has been a research to investigate, which conditions are
responsible to make it appear human. In [33] the influence of the appearance and behavior of robots, using
a machine-like robot and the Nao as shown in Figure 3.1, has been researched. The behavior of the robot
has a significant effect on the ability to deliver information. There has been a tests on 40 students that were
divided into four groups, where the robot tells something in two difference voices, in a text to speech and a
human recorded voice. The results of these tests stated that it is easier to listen to the human voice to deliver
information, independent of the context. Additional important factors to make a robot look like a human
are smooth and natural motions, speech recognition to support communication, a face where humans can
look at and a humanoid shaped body. Based on the reasearch of [33], we used Nao to enhance the game
experience of the human player to the robot. Thus a humanoid robot was used, instead of a robotics arm,
which does not trigger the same emotions of the human player.
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Figure 3.1: Machine-like and human-like robot [33]
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Chapter 4
Concept to solve the Task

This chapter discusses the concept of our developed framework to solve all challenges. The solution to the
challenges is described in detail in Chapter 5.

4.1 Overview

The basic idea is to play a board game with a humanoid robot. At the beginning of the project two questions
had to be asked:

• ”What do we want to achieve?”

• ”Which resources are available?”

From the early beginning on it was clear that we want to develop a framework for an autonomous
humanoid robot that is able to play a board game against a human. The human should think of the opponent
more as an entity than as an object, because while playing games, humans feel many emotions. For them, it
is more easy to gain an emotional state of playfulness, when they do not believe to play against a machine.
The influence of appearances and behaviors of machines have been researched in [33]. It should be possible
to adjust the difficulty to always have a competitive opponent. Furthermore it should be simple to expand
the framework that two robots can play against each other. This way, a new section at the Robocup [35]
could be created, where robots play against each other in peaceful board games. In future work it should
be possible to play a wider collection of games in addition to Nine Men’s Morris with this robot.

Concerning our resources we were limited by the only available humanoid robot, which fulfills all re-
quirements - Nao. This robot has a large repertoire of sensors, activators and degrees of freedom. Due to
the hand upgrade it is possible to grasp something with the robot. It is able to walk around, move its arms
and head. The built-in color cameras would serve for localization and recognition for its environment.

4.2 Basic Nine Men’s Morris Rules

Nine Men’s Morris is a strategy game for two players that has very simple rules. Several items are required
to play. This includes a game board as already shown in Figure 1.2 and nine game tokens of the same
color for each player, as shown in Figure 4.1. The game board’s 24 ideal locations, which are defined by
intersections, represent the valid positions for tokens in the game.

To win the game, the players have to create special structures to take away the opponent’s tokens. Every
player has to take away seven of the opponent’s tokens or trap them to win the game. The tokens are
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Figure 4.1: Final game tokens for both players

considered to be trapped, if no valid move is possible for any token on the start of that player’s turn. It is
a game of full information, because there are no hidden cards or any dices that would randomly influence
the game.

The players start by taking turns in placing all nine tokens on the board on empty positions. Every time
a player achieves to get three own tokens on one black line, a so called mill has been created. As the result
of creating a mill, the current player is qualified to remove a token of the opponent player on the board, for
the rest of the game. Tokens in a mill are save from opponent attacks.

If all tokens are placed the second game phase starts. The same player that started placing the first token,
starts moving a token. A valid move is on a line from an intersection to the next unoccupied intersection.
The strategy is to move the tokens in a way to create a mill to take away opponent tokens. If a player is
unable to make a move, the opponent player wins the game.

The third game phase starts, when one player has only three tokens left. Every player who has only three
tokens, can jump with a token to a free position everywhere on the board. By jumping, one can interfere in
the opponent’s plans or easily create a mill. Sometimes it happens that both players have three tokens. In
this case draw games are common, if both play perfectly.

4.3 Development Environment

The concept was implemented in C++ and Python, because these two are supported by ROS. Even if ROS
is not directly required for the robot, it offers tools that makes the development much easier.
Different boost versions of the NaoQi and ROS C++, are not compatible if used simultaneously. There is no
simple method to get them running with different boost libraries. Thus for the direct robot communication
only Python was used. By using Python, which does not uses a boost library, the different libraries run
in strictly separated files. This ensures the functionality of the framework, if one module is updated or
uses another boost library version. Each framework can use their own boost version. However, since the
game engine framework was included, which also requires a boost library, at least the boost version 1.46 is
required for our framework.
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The architecture of ROS consists of

• stacks,

• packages, and

• nodes.

Each stack can be seen as a module, which fulfills a higher level task, for example “connect to a camera
and visualize images”. Additionally each stack consists of packages that split the task in smaller subtasks.
Furthermore each package consists of nodes. These node split the complexity of the task again and each
node can handle one specific or a various number of simple tasks.

ROS offers easy communication strategies between nodes. Therefore a modularization is simple and
individual nodes may be replaced without compromising the remaining framework. There are three main
communication possibilities between nodes:

• Publisher-Subscriber: One node publishes information with a topic name. Any node that wants
to have the information subscribes to the topic name. The publisher needs to be created some time
(about 500 ms) before the first message is send to be registered in the ROS system, otherwise the
message will not be sent.

• Services: A service requires one node that has the function of a server and offers the service with
a service name. Another node (client) may call the service with some individual data and get a
response to its special request. This resembles a double sided handshake procedure in contrast to the
publisher-subscriber principle.

• Actions: Actions are similar to services, but usually they take longer. This is a possible option
for robot movements, where anything else may be computed in the meantime. Actions support
the possibility to request the current completion state of the given task. In our project no actions
were used. It was always necessary to wait for movements to be finished until further data can be
processed.

Conclusively ROS offers an easy way to transform between different coordinate systems. This is essen-
tial or at least very helpful for robot systems. If the robot has to grasp a token on the other board side, it
has to walk. While the token position, related to the board, stays the same the position changes in relation
to the robot.
A working transformation stream consists of broadcasters that update all required transformations. Each
broadcast command offers a transformation between two systems. All broadcasted transformations are
combined in a stream. The systems are arranged in a tree shaped structure. This structure implicitly in-
cludes that there are no circles allowed in the transformation stream. Otherwise all transformations in the
tree are not unique anymore and the transformation will fail. To use the transformation a listener is re-
quired to transform a point or pose. The listener is subscribed to two frames and saves the stream for some
seconds. If it is required, it is also possible to use an older transformation. Transformations are described
in detail in Section 5.3.4.

At the start we used an already existing ROS-stack for Nao [23] that is maintained by Hornung. This
stack contains a script to connect to the robot, a joystick controller to walk and move the head and a simple
URDF model. This was very useful for our first steps. In the continued development process, we used less
and less of it. At the end only the connection to the robot and the robot model are being used.

4.4 Basic Concept

For this project is was necessary to develop a framework that should cope with a large variety of challenges,
the robot faces, if it plays this game. I focused on vision tasks, localization tasks and the intelligence behind
the robot’s actions and the framework itself. The kinematics, walk and grasp planning was solved by Klöbl
[28]. The used game engine itself, represents the robots game intelligence was developed and provided by
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another group. The game engine consists of two parts. There is a framework that serves as an interface to
handle a variety of different board games and the game database itself. The database holds every state of
a Nine Men’s Morris game, so for each state the next best k-solutions can be requested. The game engine
framework was developed by Regenfelder [34], whereas the database of the game moves was developed
by Staber.

Many challenges have to be considered in the framework. There were different strategies developed in
order to solve them.

• self-Localization
The robot has to use the camera and a marker that is mounted on the game board to establish a
connection between its joints and the environment. The internal odometry is the source for all robot
joints.

• inaccuracy of the odometry and motion
The inaccuracies have to be compensated by a control loop that uses the camera image to correct
movements.

• monocular vision
Additional information of the environment, like the board height, has to be used to acquire three-
dimensional positions with a single camera. The trigonometric relation has to be derivated.

• camera calibration
A calibration target has to be manufactured to receive the camera parameters, using a calibration
toolbox or method.

• best size of marker, game board and tokens
Empirical tests have to be performed, to retrieve the best size for all environmental objects.

• token segmentation and illumination
Tests concerning the illumination and the best token color have to be made.

• token classification
A robust approach for different poses of the robot to classify tokens to a strategic position has to be
found.

• token position estimation, to grasp a token
A reliable three-dimensional position in the game board system has to be estimated, using the camera
pose.

• occlusion of tokens by other tokens and the robot itself
Occlusion during a grasp is not preventable, therefore the previously estimated position has to be
precise and a confirmation step and repair on a fail grasp are required.

• grasping tokens with three clumsy fingers
This is an advanced grasping task that we have to deal with, but was not focused in this work. The
most reliable position for a token has to be found to increase stability.

• efficient trajectory planning of interesting positions
The recognition of the game state requires multiple images. Between two images a movement is
executed, which has to be considered in the new image. A strategy is required to obtain the correct
new game state with as little images and movements as possible.

• reduced stability on constant load
Nao’s motors are overheating and they lose stiffness, if the joints are tense for a few minutes. The
reduced stiffness is a problem of the robot itself. The resting time of the robot between actions could
be increased to spare the motors.

• limited network connection
The network traffic has to be reduced to a minimum. All nodes, which access the robot or produce
traffic have to examined.
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4.5 Framework architecture and Features

The stack of our framework is divided into seven packages that handle all required tasks for this project.
The relation between the packages can be seen in Figure 4.2 and are described briefly in the following.

• The high level control uses behaviors, which handle database requests to offer high level functions
only, for example: ”move token”.

• The planners contain mid-level behaviors and planners, which use vision and motion tasks, for
example: ”calibrate color”.

• The game database comprises the game engine framework and database with a wrapper library that
offers its core functions for ROS, for example: ”get next game state”.

• The world model is the knowledge base, which stores game, robot and environment data.

• The helpers are a set of useful functions and definitions that are frequently used by more than one
package.

• The motion executes movements and checks sensor values, for example: ”set all angles”.

• The vision handles all tasks related to the camera, recognition and image analysis, for example: ”get
camera image”.

Our stack uses several standard stacks of the ROS framework, which can be found in Section 5.9. If
another package is required inside a package, a dependency with the name of the other package has to be
inserted in the manifest.xml file of the package.

In order to achieve all goals, there will be given an overview of the functionality of each package. While
the vision and motion are low level interfaces, the world model, planners and the game database are mid
level interfaces, based on these low level interfaces. The package high level control contains high level
functions based on the planners and world model. A model of the communication between the packages
and the robot itself can be seen in Figure 4.2.

Figure 4.2: Model of the communication between the packages of the framework and the robot

While all nodes each accomplish a simple task, they need to communicate to complete a higher, respec-
tively the complete task.
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If two nodes want to communicate with a service, the client needs to be sure that the service is available
before calling it. Otherwise the call may fail and the node returns an error or in the worst case, it terminates
itself. A service always consists of a service server and at least one service client. Each service client may
call the service to send a request and receive and answer. Every node that uses service clients is waiting at
startup until the service is available. This greatly increases the robustness of the whole framework, because
it does not matter which node is started first.

4.5.1 Package: high level control

The high level control offers the highest level functions of our framework combining behaviors and using
planners. This package also contains the main state machine that handles the execution procedure of the
robot. Additionally it sends requests to the game database to evaluate the next best step. The different high
level states the robot has to achieve in order to solve the task can be split up into:

wait: The robot waits until the opponent is ready to play or finishes their turn.

init: The init state initializes many procedures. It turns on the motion, finds the marker, locates the robot
in the world and initializes the player colors for the current light conditions.

get game state: Due to a low aperture angle and close distance to the board, it is not possible to receive an
image of the whole game board. In this state the robot looks at different positions on the game board
to combine all images to acquire one solution for the current game state. Each position is evaluated
on whether or not it is empty, occupied by player one, player two or if the position is unknown.

edit token: This step uses behaviors, the kinematics, walk and grasp planner for a token manipulation.
This is a challenging task for a robot with 25 degrees of freedom.

help: The help state is called, if something unexpected has happened and the robot needs human help to
decide what should be done next.

These higher level states should cope with a large variety of situations, happening during the game. Still
we assume to be under laboratory conditions, like the light should not change dramatically and the human
should not interfere too much in the robots actions. After a game has been started, the robot is able to play
a whole game with a human player with very restrictive support. This support is restricted to hand over or
take tokens out of the robot’s hand, because it does not know where to put them. A voice synthesizer is
used by the robot to inform the human player about the robot’s actions. For debugging, there is a large test
class to test single components of the framework.

4.5.2 Package: planners

The planners offer an advanced interface for mid-level functions. They call and evaluate vision and motion
tasks to provide combined functions. The planner package was developed in cooperation with Klöbl [28]
and is able to handle the following tasks to

• handle the complete color calibration.

• analyze the game board and return the current game state.

• look at ideal positions.

• find the marker.

• place/take/move tokens to/from given marker positions.

• execute a walk to the given marker destination, avoiding the table.

• check or wait for tokens in the hand, also including the movement to the check position.

• relax the entire robot.

• include the kinematics class of [28], which computes the angles of joints, which are required to reach
a specific position.
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4.5.3 Package: game database

The game database offers a service to communicate with the Nine Men’s Morris’ framework and database.
If a request is sent, it is converted into a specific string, required by the database. The database returns the
best next state to the current given state. The database should also be able to return the k-best states, but this
only exists in theory, because the computation of the database was not complete at the end of this project.
The k-best moves could then be used to adjust the game difficulty. We believe, it would be frustrating for
the human opponent, if the robot plays perfectly and wins every single game.

4.5.4 Package: world model

The world model also represents the knowledge base, including knowledge about the following to

• store the state of the motion, vision, camera, arm and all tactile sensors (bumpers, chest button and
head touch sensors) and the game.

• store probability and occupation of each token on the game board.

• hold ideal position to grasp a specific token in all systems, as well as dimensions of the table and the
ground.

• compute next interesting position to look at, as well as which arm to preferably use in this process.

• fuse all transformations and sensor sources.

• hold all joint values.

Additionally the world model has transformation scripts, which are of great importance. One of these
scripts also handles the self-localization of the robot. If the marker is not visible, the robots location is
updated with its internal odometry. The position is broadcasted as a transformation between the torso
and the marker. This is the most important transformation for the localization to obtain the robot pose
in relation to the marker. Every odometry produces inaccurate localization values. The robot’s rotation
around its vertical axis produces the most inaccurate value, because sometimes one of its legs slips on the
ground. This localization error has to be corrected, otherwise the robot bumps into the table. Therefore
we used the AR marker, which updates the robots absolute position, if it is visible. The robot can switch
between two cameras. If the camera is switched, the transformation to the marker also switches to ensure
that the pose of the torso is the same.

4.5.5 Package: helpers

The helper package is a package to simplify the framework usage and is intended to offer

• custom messages,

• services,

• error codes,

• task IDs,

• parameters,

• frequently used functions and

• an interface to the NaoQi for all packages of the stack.
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4.5.6 Package: motion

The motion is classified as a low level package for communication with the actuators of the robot and has
been developed and implemented by Klöbl [28]. It covers the following tasks to

• initialize the robot motion by moving all joints to an initial position.

• offer a lot of services to move all desired joints to a specific angle value.

• offer a relax function to lower the stiffness. This should be used, if the robot is idle for some time.

• offer a command line interface to control joints by reading or setting positions or angles for joints.

4.5.7 Package: vision

The focus of this thesis was especially on the solution of the vision tasks. The vision should be based on a
clean and robust implementation, which is capable to handle a range of tasks and inconsistencies in images.
The main challenges, that need to be solved in order to play Nine Men’s Morris, are summarized in the
following to

• subscribe to a video module to receive images.

• offer a service to assign a desired color to a player.

• detect a blob image of the previously initialized colors.

• allocate the detected blobs to strategic positions.

• estimate the real token position on the board, if a blob is found near an ideal position.

• publish the current board probabilities to the world model.

• offer a service to confirm a grasp or wait until a token is in the hand.

• offer a service to confirm a place or take.

• compute the horizontal offset of two images. This is used by the walk planner to compute the rotation
error and is similar to a simple visual odometry.

• detect an AR marker in the camera image and compute its transform to the camera.

• offer a service to calculate the distance to the blue stripe of the table.
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As mentioned in the concept in Chapter 4, the framework consists of several packages to modularize the
framework and solve the task. In this chapter each package and its features are discussed in detail. Due to
dependencies between the nodes of the packages, based on service servers and publishers, each node waits
until the other side is ready to send the required information. This is essential for a robust framework,
because nodes with service clients fail, if they call an inexistent service. The framework is designed to be
able to start nodes in any order, as it will synchronize them automatically. The overview of the dependencies
is shown in Figure 5.1

Figure 5.1: Dependencies of nodes, waiting for another node to offer their service server. The shaft of each
arrow represents the server and the tip represents the client. The top description refers to the node and the
bottom to the package name.

Although we took care of the dependencies between all required nodes, a“launch-file” has been created
that is able to start all required nodes for the whole framework, except the main executable for the state
machine (see Section 5.1) and the interface for the database (see Section 5.4. In the following sections,
each package has figure with a summarized overview of its core functions. These figures are divided in
smaller areas, which represent libraries, classes or nodes. Nodes include classes, libraries, provide services,
subscribers and are executable.
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5.1 High Level Control Package

The tasks of the package are shown in Figure 5.2. As the high level control is our highest abstraction layer
it has the main executable, which contains the main state machine. On execution the main node waits until
all other required nodes of the framework are started and executes the state machine to play a complete
game of Nine Men’s Morris. The states are visualized in a flow chart in Figure 5.3 and are explained
below. If everything worked as expected the robot will terminate the program itself, when it has lost or
won the game.

Figure 5.2: High level control tasks.

init

get game state

get next move

execute moves

wait for player

help

finished

Won

Lost

     regular transition
     event driven transition
     user driven transition
     error driven transition

Figure 5.3: Control flow of the overall state machine

1. init
The init state is executed only once during startup. The human player may now decide who starts and
if a new game should be started or an old game should be continued. Afterwards the color of both
players is initialized. If the player choses to continue an old game, the robot advances to the state
”get game state”. Otherwise it assumes an empty board and tells the player when the initialization
is finished. With a touch on the front touch sensor the robot continues to the state ”get next move”.

2. get game state
This state updates the complete game state, which is available in the world model afterwards.

3. get next move
Depending on which launch file has been started, the database differs. Usually the robot requests
the next game state from the database autonomously. However, the framework supports a database
simulator that enables the human player in a guided command line user interface to choose the next
steps.

4. execute moves
When the next moves are determined, an ”entire move” (see Section 5.2.1) service request for the
planner is built and executed. This step fulfills the complete move of a token including the possible
take. After the robot executed all move commands, it continues to the wait state.

31



Chapter 5 Solution to the Task

5. wait for player
After the tokens have been manipulated, the robot needs to wait for a human player to make a move.
The robot takes a resting position and waits until its front sensor is touched. Then the robot changes
the state, to acquire the game state.

6. help
In case something fails, the robot changes into the help state. It informs the human player by speech
and text. If the player helped the robot by moving it or correcting missing tokens to resolve conflicts,
a touch on the middle sensor advances the robot in the ”get game state” to begin the next move. In
case the player wants to terminate the program, a touch on the rear head button will terminate the
high level control loop.

5.2 Planner Package

The planner package is a collection of functions that combine low level functions to behaviors. Additionally
the whole kinematics, grasp and walk planning is calculated in this package. An overview of the tasks can
be seen in Figure 5.4.

Figure 5.4: Planner tasks

5.2.1 Motion Planner

The motion planner class is the core of the planner package. It offers the “entire move” service, which is
a large service that may start a variety of procedures. The service contains a vector of moves. Each move
has a type and a vector of double values. The type corresponds to the task ID that tells the motion planner
what it should do with the received data vectors. Due to the vector structure an “entire move” can contain
multiple moves that are executed consecutively.
The procedure to find the marker requires the time when the marker was last seen. Therefore the planner is
subscribed to the marker detection to receive those update times.
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Depending on the current move type, the service could execute one of the following tasks:

• starting the game state update procedure.

• starting the color calibration.

• finding the marker.

• executing a place, take and/or move.

A ”place” requires the player ID and the strategic index where to place the token. If these conditions
are valid the robot executes a number of tasks:

1. walking to the closest table side to the target position,

2. finding a torso position to place the token,

3. raising the arm and waiting for someone to hand over a token of the corresponding player ID’s color
to the robot,

4. closing the fingers,

5. placing the token on the ideal position,

6. retracting and relaxing the used arm,

7. checking if the token is on the expected position, and

8. repairing the place, if it is not on that position.

The ”move” type request differs from a ”place” preceded by a ”take”, because it requires two strategic
positions considering the shortest path and same arm without releasing the token. However, for the first
walk procedure only one position is considered in the path planning. Again the robot executes several
tasks:

1. walking to the closest table side to the target position, using the same hand to grasp and place,

2. updating the target real grasp position,

3. finding a graspable torso position,

4. grasping the token,

5. raising the hand to a visible position,

6. checking if the token is in the used hand,

7. relaxing the arm without opening the fingers,

8. walking to the second position,

9. finding a torso position to reach the ideal position,

10. moving the hand to the ideal position and opening the fingers, and

11. relaxing the arm.

A ”take”, could be assumed to be mostly the opposite of a ”place” which takes away one token of the
board instead of placing it. This is only partially true, because a take is much more complex, because the
robot cannot grasp an ideal position. It has to interact with its environment and modify the grasp position.
For a take procedure the robot is

1. following the same procedure as the ”move” until 6), then it is

2. opening the hand, waiting for someone to take its token, and

3. relaxing the arm again.
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The walk to the closest table side includes a prior marker localization to know on which side the robot
is currently situated. Afterwards the world model is required to compute the used arm to walk as little as
possible (see Section 5.3.3). Then the walk planner computes a trajectory around the board to reach the
target destination. Therefore the walk planners also use the visual odometry to support torso rotations.

The repair place method is called, if a placed failed. A flow chart is shown in Figure 5.5. The robot
requests a new game state. Usually the lost token should appear in the game state as a token of the player’s
color. If this is the case, the robot has found the missing token. In case the token has rolled in the area of
another token, it does not appear directly in the game state. The vision recognizes a conflict of more than
one tokens in a mask of arbitrary color and informs the world model (see Section 5.6.6). Thus the world
model is checked for conflicts, if a token is missing.

Figure 5.5: Procedure to repair a place action

5.2.2 Analyze Field

The analyze field function fulfills all actions to update the game state. A single update of the game state
starts by finding the marker for an exact localization. Afterwards all time stamps are reset, to make all
positions interesting again. The decision which position is interesting is evaluated on the time stamp. A
loop of the following events is triggered until the world model returns that all positions are updated:

• activate vision
This enables the vision to evaluate one image, which updates the board information in the visible
area.

• get info about update procedure
After the vision procedure, the board has been updated in the visible area. Now the next interesting
position is requested from the world model. If there are no interesting positions any more, the board
is up to date and analyze field is finished.

• move head to next position
If there is still an interesting position, the robot moves its head to the ideal position and the loop
starts again by activating the vision.

5.2.3 Color Calibration

This method is used to calibrate the initial color of the game tokens and the blue stripe on the board. For an
exact localization the marker has to be found. Afterwards the ideal positions for both players are required.
The position 1/0 for the first and 1/2 for the second player, has itself proven to be well-suited init positions.
When the robot is looking at the strategic position, the three-dimensional target point is projected into a
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pixel of the image plane. The used color is the median color in an area of the computed pixel. The strategic
positions can be seen in Figure 1.3. For the blue stripe detection the robot looks at its shoulder, which
contains the same color tape as the blue stripe on the board. Additionally some pseudo code for better
understanding can be found in Listing 5.1.

i f ( f i n d M a r k e r )
d o F o r A l l P l a y e r s
{

l o o k A t I n i t P o s i t i o n O f C u r r e n t P l a y e r
pos3D = g e t I d e a l P o s i t i o n O f C u r r e n t P l a y e r
pos2D = p r o j e c t I n t o T h e I m a g e ( pos3D )
i n i t C o l o r A t I m a g e P o i n t (2D)

}
l o o k A t S h o u l d e r
i n i t C o l o r A t F i x e d I m a g e P o i n t

Listing 5.1: ”Pseudo code for initial color calibration procedure”

5.2.4 Kinematics

The kinematics library was developed by Klöbl [28]. He implemented a complete Denavit Hartenberg
chain from each foot to each hand using his own written library to compute intersections of lines, planes
and spheres. The kinematics are used to calculate the joint angles for a given three-dimensional position.
For more details about the calculation, I refer to the work of [28].

5.2.5 Movement and Path

Every time a move is requested, a “movement” object is created and filled in a “path” object. Every “path”
may contain multiple “movements”, which are executed consecutively or simultaneously. If a “path” is
filled with all required “movements” it can be processed by an ”execute”. The architecture of [28] was
designed to cope with a variety of challenges.

5.2.6 Walk Planner

The walk planner is mainly used to plan a safe path around the game board. It uses a potential field
algorithm to create a path, as shown in Figure 5.6. The big black structure in the middle is the dilated game
board and the blue line is the planned path. The main challenge is to simplify the path to “movement”
commands for the robot. This is explained in detail in [28]. Based on the path around the table, it was
decided to not walk trajectories with the robot, due to the accuracy and limited working space. Therefore a
robot movement, at least for the long path around the table, consists only of straight moves and rotations.
A path from the left board side to the top board side, would at least contain two rotations about 90◦. One to
rotate from, and one to rotate to the board. Most of the time the rotation on the corner of the board consists
of two smaller rotations and a forward movement. The accuracy of the rotation is not sufficient enough to
walk around the table. Therefore after each rotation that exceeds 45◦ the visual odometry is called before
and after the rotation procedure to measure the rotation deviation and correct it.
Additionally the walk planner is responsible for a safe procedure to step away from the table and to the
table. The path planner will fail creating a path close to the table, because the robot is located to close to the
dilated board while seating next to it. This prevents plans with trajectories that are too close to obstacles.
The procedures to step from and to the table need to be very accurate, otherwise the robot touches the game
board.
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Figure 5.6: The blue line shows the path, where the robot should walk from sector ”LEFT” to sector ”TOP”.
The gray levels show the potential field. The darker the color, the more expensive is the position.

5.2.7 Grasp Planner

The grasp planner is used to grasp a specific position on the board, while fulfilling some requirements. The
requirements are:

• finding a torso position from which the point is graspable.

• grasping the token from above.

• moving the arm to the position without touching the game board or any other token.

The kinematics only can return a solution, if there is one. If the position is graspable, the kinematics almost
instantly returns a valid solution. If it is not, the robot is moved virtually in front of the board, asking the
kinematics for valid solution. If a valid solution is found, the robot moves to the graspable position and
grasps the token afterwards. On the downside the iterative approach can take a lot of time, depending on
the resolution of the evaluated area. Therefore Klöbl [28] precomputed all valid positions for the specific
board height with a high resolution. The precomputation for one arm takes approximately 1.5 hours for
a resolution with 1 pixel per mm. The precomputed map finds a torso position, where the target token
position is graspable. The new position is far away from impossible torso positions, to ensure that the point
is graspable. Even if the robot is not exactly on the computed torso position.
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5.2.8 Movement Behaviors

This class comprises some movement behaviors for the planner package. It has been implemented to handle
frequently used movements in a very simple way. Usually one must keep to the following procedure to
move a joint:

1. Transform target pose into torso space, if not already.

2. Retrieve joint angles from the kinematics.

3. Add a “movement” to a “path”.

4. Execute the “path“.

All, except the first step is done by this behavior class, as all behaviors require the target pose in torso
space coordinates. The torso is the root of all robot joints.

This class offers the following movement behaviors:

• look at target torso position with desired cam

• set torso height and pitch

• move head around both angles

• relax entire robot

These functions are all very useful and frequently used by the other classes of the planner package.

5.2.9 Look At

”LookAt” is a class that simplifies the head motion. It is mainly used by other classes of this package. One
of the core functions is to call the ”lookAtStratPos” function with a given strategic board position. The
strategic point is transformed into the ”base link“ system (see Section 5.3.4) and the movement behaviors
are called to move the head to this torso position.

Although the ”lookAtStratPos“ function is useful, the most important and intelligent function of this
class hides behind the function ”findMarker”. Due to the complexity to find the marker, a flow chart with
the procedure is shown in Figure 5.7. The challenge is that just a positive detection yields a feedback,
while the absence of the marker can only be handled using timeouts. So the basic strategy is to check if the
marker is visible in the current head position. If it is not, the robot moves the head to the last known marker
position, that the marker should be in the middle of the image. The robot waits for some time at each spot
for a positive marker feedback. If the robot walked around the table and the walk has finished as expected,
the marker should be where it is expected. Sometimes the walk is too inaccurate that the marker cannot be
found in the image again in the relocalization step. Then the robot tries to find the marker somewhere in
front of its baseline. Therefore the front hemisphere is divided into four parts. The robot makes a quick
head move, focusing a rectangle path. This results in a short flare of the marker, if it is there. The exact
marker position is still unknown but the quadrant is. As result the robot divides the one quadrant in smaller
subparts, looking and waiting at every subpart for the marker detection to give a feedback.
For an exact localization it is important to detect the marker without active motion, as images take some
time to be transmitted. If the robot moves, the image is delayed and the localization inaccurate. This
inaccuracy may lead to a fail interaction with the board. Especially after a walk, there is only very little
tolerance when the robot takes its seating position next to the board. In case the marker still could not
be detected, the robot assumes that it is too far away or the marker is occluded and cannot be detected.
Therefore the robot also calculated the distance to the blue stripe on the border of the game board, while it
was scanning the front hemisphere. Now the robot walks the minimal distance to the blue stripe minus its
own size in order not to bump into the board. The strategy is to get a little bit closer to the game board to
have a better angle from the camera to the marker. If the blue stripe detection failed or is disabled, the robot
does not know what to do, because it has lost its localization and asks for human help. A human touch on
the middle head button of the robot continues the program after a ”help” incident.
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Figure 5.7: Procedure to find the marker

5.3 World Model Package

The world model and knowledge base are base represented by the ROS package ”nao world model”. It
contains knowledge about the robot, the world and the game situation. Often information is evaluated,
fused, or saved in special structures for efficient further use. Every node may request information of the
world model, using a service call.
Depending on the task, the world model is split and processed by several classes.
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Figure 5.8: World model tasks

5.3.1 World Model Class

This class is responsible to hold the states of the following publishers:

nao vision status: gives information about the vision state, for example is it busy, idle or uninitialized?

nao motion status: gives information about the robot movement.

nao arm status: gives information about the used hand.

nao cam status: gives information about the current camera usage.

nao tactile status: gives information about sensor engagement. This includes the three touch sensors on
the head, the chest button, the two bumpers and the force sensors on the bottom of the feet.

The state may be retrieved by a service called ”world state”, which contains all states. Additionally the
world model is responsible for the basic setup, for example the table, ground and an occupancy grid for
path planning. Whereas in the initialization the world model calls a service offered by the environment
server to set the table and ground objects, the occupancy grid is published periodically by the topic ”map”
and is also available by a service called ”world map”.

5.3.2 Game Board Representation

The game board is being represented internally as a vector of 24 elements for all strategic positions. The
first eight elements are the outer square, the next eight elements are responsible for the middle square and
the last eight elements represent the inner square. Each strategic position can be accessed by a square and
element or index. The same elements of all squares are always collinear. The intersections of all lines on
the board, which correspond to the strategic positions are shown in Figure 1.3. The first value represents
the square, the second value the element. For instance, if we consider the Nine Men’s Morris board from
the last mentioned figure, then the bottom left position of the outer square would be (0,0). The bottom right
would be (0,2). The same position on the inner square would be (2,2). This way each of the 24 positions is
represented. The strategic positions could have one of the following occupations:

0: The position is empty.

1: The position is occupied by player 1.

2: The position is occupied by player 2.

3: The position has too little support to say anything about it. The occupation is unknown.
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5.3.3 Game Board Class

The base specifications of the game board were already described in 2.3. In this section the practical
implementation of the game board class is described. The game board class ”GameBoard.cpp” can be
found in ”nao world model/src”. It serves as the brain of the board as it holds

• the board occupation and real positions of all tokens.

• the ideal positions on the board.

• the current sector of the robot in relation to the board.

• interesting positions, if an ”update game state“ is requested.

Therefore it offers the service ”game board task” for other nodes to provide the recently mentioned infor-
mation. The first parameter of the service request is the ”task id” that defines which subfunction is called.
If the service is running, a status is returned.

The service offers different tasks which can be called with a request of the correct task id.

task id == 0: getIdealPositions: In the game board all ideal positions are defined. If any node wants to
know these positions, the game board offers a service that returns the ideal positions in any requested
coordinate system. The desired coordinate system is defined in the service request. After the service
response has been constructed, a vector with 24 points is returned together with a status flag. In the
case that an invalid system name is requested, the service returns an empty vector with a negative
status flag.

task id == 1: isWalkRequired: This service is called, if a token should be grasped or released. It tells the
demanding node to which table side the robot has to move to grasp the requested token. For this
request the strategic element number, from 0 to 7, and the arm index(0, 1 or 2) are required. The
square is not required, because the specific element in all squares is graspable from the same table
side. An arm index of 0 means that both arms are free for use, whereas an arm index of 1 tells
the algorithm that the left arm has to be used. We define that nine positions have to be graspable
from each side, which are three positions in each square on each board side. The three positions on
the corners of each side are reachable from two different sectors. The current sector is calculated
by the angle around the vertical game board axis (z-axis) that is obtained of the transformation of
the torso in the marker system. With the current sector, the element and arm index, the minimal
required movement can be calculated. The arm index holds the information to use a specific arm in
case a token is already grasped by a specific hand. The positions in the middle of each board side
that correspond to an odd element value, are always considered to be graspable with both hands but
only from one sector. If a an odd element has to be grasped, the sector is already determined and
the arm does not matter. Tokens on corner positions are also graspable with both hands but different
torso positions and sectors. In case there are no further arm restrictions, the sector with the minimal
walking distance is chosen. Algorithm 1 shows an example of the decision making process for all
sectors and elements. The formula in this algorithm maps every even element value to two possible
sectors. The sector with the lower costs is chosen, if there is no arm restriction. The corresponding
arm is also known after the sector with the lower costs has been chosen. Finally the sector where the
robot should move and the arm which should be used, are returned by this algorithm.

task id == 2: updateGameState: This service call requests the most interesting position to look at in the
marker coordinate system and a number how many positions still need to be updated. Until this
update value reaches ”0”, the board is not updated. The most interesting position is defined by
the oldest time stamp. So all strategic points are examined and the position of the oldest point is
processed further. The strategic point is transformed into offset values from the marker. If the head
is moved to another position, all time stamps of the ideal positions that are visible, are updated by
the vision. If the last update time of all strategic positions is below a threshold, the game state counts
as updated.
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Algorithm 1: calculate best destination sector and arm
input : ele ... element number [0-7],

a ... arm index [both(0), left(1), right(2)],
sec f rom ... sector of the robot [0-3]

output: a ... arm index [both, left, right],
secto ... sector to go [0-3]

if odd(ele) then1
secto =

ele−1
22

else3
sec[1] = ele

24
sec[2] =

( ele
2 −1

)
%45

secto = min((sec1− sec f rom)%4,(sec2− sec f rom)%4)6
if sec1 == secto then7

atmp = 18
else9

atmp = 210
end11
if a! = atmp then12

secto = sec[atmp%2+1]13
else14

a = atmp15
end16

end17

task id == 3: getGameState: It is only recommended to call this service after the update value of the call
”updateGameState” returned ”0”, because only then all positions have been updated and the updated
game state may be retrieved. The current game state is returned as a vector of integers with 24
elements that contain the occupation. Additionally to the strategic occupation the three-dimensional
positions in marker coordinates are returned. If this task is requested before the vision has updated
the board information the first time, a warning is produced or the service will fail.

task id == 4: getRobotSector: This task returns the current sector of the robot in relation to the marker.

task id == 5: getConflictToken: This task returns the index of the conflicted token and a three-dimen-
sional position for that index in the marker system. This task is used to repair a failed place.

The game board requires periodically updated ”board information“ and therefore it is subscribed to the
topic ”boardInfo”. This message is published by the vision. It contains updated information of the visible
token positions. Furthermore the ”boardInfo” has a status flag that is ”0” if the ”token information“ is valid
or negative otherwise. Only a valid ”board information“ updates the world model. Occasionally it contains
one additional token position. In case of a place failure this ”conflict token” contains a three-dimensional
position and strategic index. This serves as a fast check and repair mechanism, which is discussed in
Section 5.2.1 of the planner, whereas the conflict tokens are described in Section 5.6.6.

Additionally the game board uses the transformation stream that also is running in the world model and
is described in detail in 5.3.4. The transformations are required to transform the defined marker points into
points of the world, camera or any other system.
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5.3.4 Transformations and Localization

Usually robots consist of multiple modules. Hands, arms, legs, movable platforms, laser scanners or cam-
eras. These components do not know each other. The sensors (for example: cameras) offer and the actuators
(for example: motors) require their information only in their local coordinate systems. Therefore the data
has to be transformed between the coordinate systems, which makes the data management and analysis
much easier. For example, a grasp position is always given in coordinates relative to the torso.

In contrast to a projective transformation, the coordinate transformation, which is required to transform
robot frames only, consists of a maximum of three translations and three rotations in a three-dimensional
space. Each translation and rotation can be defined by one parameter. A sample translation matrix for all
directions in three-dimensional space in homogeneous coordinates looks like Equation 5.1. The translation
in all three directions are located in the last column of the matrix.

T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 (5.1)

Whereas three rotation matrices, shown in Equation 5.2, are each responsible for one rotation around an
axis. φ denotes the angle around the x-axis, ψ the angle round the y-axis and θ the angle around the z-axis.

Rx =


1 0 0 0
0 cosφ −sinφ 0
0 sinφ cosφ 0
0 0 0 1

 ,Ry =


cosψ 0 −sinψ 0

0 1 0 0
sinψ 0 cosψ 0

0 0 0 1

 ,Rz =


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1


(5.2)

Those four transformation matrices can be combined into one matrix by a simple matrix multiplication
in the correct order, like P = Rz ·Ry ·Rx · T . The order is important, because matrix multiplications are
not commutative. A point can be simply transformed into the other system by a multiplication with the
transformation matrix, for example x

′
= P · x. The same applies to a system with an orientation.

It not necessary to transform all data manually, because ROS offers a transformation service called ”tf”.
In order to use the tf-service, the some transformations have to be provided. The tf-stream is similar to
the publisher-subscriber communication with additional functions. There are several nodes that broadcast
transformations to the tf-stream. One transformation contains the relation between two systems, their
names and a time stamp. The transformation relation contains three parameters for translation and three or
four angles for rotation (see Section 5.3.4 for Quaternions). More provided transformations automatically
build a tree shaped structure, if the system names (frame id) fit together. Every ROS node is able to create
a tf-listener to use all transformations that are available in the tree. Static transformations do not change
their relation over time in contrast to other transformations that need to be updated periodically. Once
the tf-stream is provided with the correct transformation between two systems, any pose between any two
systems of the transformation tree can be transformed. For instance one transformation from system A to
B and one from B to C is published. Then a point can be immediately be transformed from the A in the C
system.

We decided to have all movable joints of the robot in the tf, because it is easier to work in each joints
base coordinate system. We visualized the tf-tree with all systems that are used in the project in Figure 5.9.
However the arm and leg systems are summarized due to the amount of links. These systems are shown in
a sub-tf-tree in Figure 5.10. Note that the origin or root of the tree is the world that serves as parent for the
marker ”(odom combined)“ and the torso ”(base link)“ frame.
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Figure 5.9: The transformation tree of all coordinate systems in the project with summarized arms and legs.

Figure 5.10: The transformation tree of the robot containing legs, arms, head and cameras in relation to
torso.

43



Chapter 5 Solution to the Task

In fact a tree must not contain circles to avoid that transformations are not unique any more. This also
leads to a challenge in this project, because there are three sources that estimate the torso position. (1) The
odometry measures motion differences, but is greatly influenced by the underground, obstacles or bumps
on the path. (2) The transformation of the marker detection is more accurate than the odometry, but not
available, if the marker is not in the image or it is too far away. (3) The visual odometry can only manipulate
the torso rotation around the vertical z-axis of the robot. Due to uncertainties and drawbacks in all systems,
none of them is reliable. The camera provides information about its relative position to the marker, if it
is visible. In case the marker is not visible, the robot is still able to move around. Then the odometry
information of the robot itself has to be used. Some experiments showed that the position in relation to
the marker, gained from the marker detection of the camera, is often more accurate than from odometry,
regarding the x-y position. This is based on the fact that the odometry accumulates errors in contrast to the
marker detection, which calculates the absolute position each time.

In experiments, an issue with the marker was discovered, when the inner square is occupied by tokens
and the robot is not standing next to the table. In this case the view angle and the tokens are so high
that the marker is occluded by the tokens and therefore it cannot be found any more. The solution was to
mount the marker on a wooden plate in the size of 70x70x12mm to improve the detection, as explained
in Section 5.6.2. The drawback of this modification is that the inner tokens are now a little bit trickier to
grasp.

Until now the ideal game board positions were at the same height as the marker itself. A new system
”game board” is introduced as a ”child” of the marker system that is called ”odom combined”. The relation
of these systems is a static transformation of the height of the marker above the upper table side. Due to a
node, which is already implemented bye ROS, called ”planning scene”, the names ”odom combined” and
”base link” are fixed. All combined transformations automatically lead to a localization of the robot in the
world.

In Figure 5.11 the basic systems that are required for localization, are shown on the left and the corre-
sponding camera image on the right. The red line always represents the x-axis, the green line the y-axis and
the blue one stands for the z-axis. The forward movement of the robot is always in the direction of its x-axis
in the robot coordinate system, whereas the visual line of the camera is the z-axis in its coordinate system.
This is a very important fact, if a transformation lookup between the torso and the camera is requested.
In this case it is challenging to imagine the retrieved rotations. Nevertheless transformations facilitate the
handling of tasks with multiple systems.

There are currently three Python scripts that are updating the transformation stream of ROS periodically.

1. nao tf.py

2. ar single

3. robot state publisher

The first script ”nao tf.py“ is responsible for the transformations between the robot and its environment.
The second script only publishes the marker to camera transformation, as it is based on the ”ar pose“
package and the third publishes all joints of the robot. As already shown in Figure 5.9, the transformation
relations are color coded to visualize their source node that is updating the transformation. The second
tf-tree in Figure 5.10 only shows robot joints published by the ”robot state publisher“.

The most important transformations, concerning the localization, are listed below.

• world - odom combined
In this static transformation the marker is always at the same location in relation to ”world“. This
is an offset considered from ”world“ of the x-axis of 40 cm and 23 cm of the z-axis and a rotation
around the z-axis by −π

2 .

• odom combined - game board
For this static transformation, the ”game board“ has the same x-y-position as ”odom combined“ but
is 12 mm lower.
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(a) Coordinate system representation

(b) Internal camera view

Figure 5.11: Figure 5.11a represents the most important axes of the coordinate systems used for the local-
ization. Figure 5.11b shows the camera view to the marker. The small red squares represent ideal positions
on the game board.

• world - base link
This transformation is the most complex transformation in this project. It is responsible for the
localization of the robot in its environment. Usually it is updated by the odometry of the NaoQi.
Sometimes the robot is moved by the human without restarting the NaoQi, so the position of the
robot is changed. Although this should be updated in the NaoQi, it is not possible to update the
position in the NaoQi by external sources. As a result, we create our own coordinate systems which
allow a sudden change of the robot pose. The NaoQi provides only an absolute positions, even though
only the lastest pose changes are required. Therefore the difference from the last to the current pose
is calculated. If there is a change, we add this to our last position. Like all odometry systems, this
leads to an accumulation error and needs to be corrected. At this point the marker is involved. If
the robot requires a more exact localization, it requests a marker update. So the robot is looking
for a marker. If a marker is found, it publishes its transformation from the marker to the active
camera. However the active camera has a different system name ”(nao cam tf2)“, because otherwise
the odometry and marker create a circle relation, which is strictly prohibited. The marker to camera
relation is transformed into the ”base link“ system. As a matter of fact this position is absolute and
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overwrites the last ”base link“ position. As long as the marker update is enabled the right green eye
LEDs are activated to visualize the update procedure. Afterwards the green eye LEDs vanish and the
left red eye LEDs are active again to show odometry update.

Additionally there is a service to correct the robots rotation (yaw) externally. This is required for
a walk around the board. Sometimes the odometry error is higher than 10◦ of a 90◦ rotation. This
is not acceptable, because it leads to a false position of the robot. Therefore a visual odometry has
been implemented to correct the rotation deviation, which is explained in Section 5.6.8. The visual
odometry measures the difference of the expected rotation and the real rotation. If the deviation is
too high the robot corrects it by rotating around the difference angle. This correction angle has to be
ignored in the localization of the world model, because the robot already assumes to be orientated
correctly.

• base link - base link real
The ”base link real“ system is used for better grasp positions. It is a fusion of the marker detection
and the odometry. While the ”base link“ contains the pure marker transformation, if it is visible, the
”base link real“ gets its height and pitch from the odometry.

The periodic transformation updates are required by the visualization tool ”rviz” and other implemented
nodes (see Section 5.9), like the game board or head motion that use transformations. The other transfor-
mations that contain all joints of the robot are mainly required for kinematics and motion planning. These
transformations are computed from the URDF model, created by Klöbl [28]. Additionally some objects,
like the table and a ground, are simulated. The robot joints and the table are required to define constraints,
to tell the robot the forbidden zones, where there would be a collision with one of its body parts and the
table.

Euler Angles and Quaternions

ROS stores and computes all rotations of the transformations in quaternions, which require four angles/pa-
rameters. The tf also offers easy methods to transform between Euler angles and quaternions.

The following section is based on the work of Bartz [6]. Quaternions were invented by the Irish math-
ematician William Rowan Hamilton. He searched for for an extension of complex numbers in the three-
dimensional space. Therefore he had to define a forth-dimension to multiply the complex numbers. How-
ever, it was inconvenient to use quaternions until Josiah Willard Gibbs defined that quaternions have to
consist of a scalar and vector part, which led to a serious simplification.
Similar to the rules of the complex numbers the square of each of the three imaginary numbers results in
minus one. In contrast to normal complex numbers, the multiplication of the imaginary parts is not com-
mutative. This resembles the multiplication of rotation matrices, which is also not commutative.
Advantages of quaternions versus Euler angles are:

• Concatenations of rotations in quaternions are more efficient as no 3× 3 matrices have to be mul-
tiplied. Instead of 27 multiplications and 18 additions, only 8 multiplications and 4 divisions are
required.

• It is not intuitive to retrieve all Euler angles to a destination, as the sequence of the rotations not
commutative.

• The major reason why quaternions are used, is the so called ”gimbal lock”, which happens on a
specific rotation with Euler angles. This happens if one plane is rotated in another plane, leading to a
loss of a degree of freedom. If another point should be reached the coordinate system now performs
a random trajectory. In the quaternion system the destination point can always be directly reached.

• One cannot conclude the basic rotation out of an Euler rotation matrix.
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Disadvantages of quaternions:

• Quaternions are not basic mathematics and therefore rather unknown to the public.

• The matrix representation of Euler rotations can additionally be used for translations, scaling and
projections.

• Only rotations can be computed with quaternions, which requires a conversion for coordinate trans-
formation.

More detailed information can be found in [13].

5.3.5 NaoTactile Class

The class ”NaoTactile“ is responsible to manage the robot’s sensors, speech and LEDs using library func-
tions of the NaoQi. These functions require one subscriber and publisher.
The subscriber receives messages, which contain a status and a string. If the status is zero the LED that
corresponds to the string is switched off. The status one switches the corresponding LED on. Any other
status is treated as text to speech output that synthesizes the string.
The publisher is responsible for all head buttons, the chest button and bumpers. These functions are trig-
gered by events and result in a published sensor status change. Additionally this node watches the force
sensors on the feet, but in contrast to the other sensors that are triggered by events, the sensor values need
to be requested periodically, since there is no working event function. A change in the sensor values that is
greater a threshold, results in a status change and is published too.

5.4 Database Package

The database package contains the game engine framework of Regenfelder [34], which communicates with
the Nine Men’s Morris database of Staber. The database provides the game intelligence for the robot, as
it contains the next best k-moves for all states. The final database has an expected size of about 100 GB.
For current flash memory this too large, as the robot currently has only an equipped memory stick of 2
GB. Thus we decided to use an external notebook that was connected by a network cable to compute the
required data. It is also more convenient during the development process to have a remote access to the
robot. Figure 5.12 gives an overview of the tasks of the database framework.

Figure 5.12: Database tasks
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The ”DatabaseCommunicator”-library serves as an interface between the game engine framework and a
ROS service for our framework. On a new request the service takes the current game state and returns the
next move. As the database uses another representation of the game board, all required information has to
be converted. A request to the database requires a string with 27 elements. This string consists of

• 24 elements to represent the current state,

• 1 element for the current player ID, and

• 2 elements to represent the game phase.

The 24 elements of the database represent the strategic positions from top left to bottom right, line by
line in contrast to our square and element representation. Therefore a conversion of the game state has to
be applied. The description of the meanings of all elements can be found in Table 5.1.

Element description Nao Database
Empty position 0 ’O’
Player 1 token 1 ’B’
Player 2 token 2 ’W’
Player 1 turn 1 ’A’
Player 2 turn 2 ’B’

Table 5.1: Conversion table of game state elements

Additionally the game phase is required to get the next game state, as described in Section 4.2, the
movement type of the tokens changes with the game phase. It could not be recovered from the game
state only. In the first game phase, the tokens have to be placed. Hence the encoding from ’00’ to ’08’
corresponds the number of placed tokens. The game phase encoding is shown in Table 5.2.

Game phase String encoding
Initial placement ’00’ to ’08’

Move phase ’09’
Jump phase ’10’

Table 5.2: Game phase encoding

The robot is always the current player, except for the cheat detection, which should be applied to moves
of the opponent. The question whether the robot is player one or two depends on the initialization. After
the conversion and a request to the database, a string with the next best game state is returned. This string is
converted back to a ”Nao game state” for more efficient processing. The old and the new state are analyzed
and the differences are saved. With these differences move commands are created for the robot. These
move commands consist of an edit option that contains the encoded actions (Table 5.3) and an index vector
with three elements. There are only four possible edit options as no ”take“ is possible without placing or
moving a token.

Integer encoding
Edit type decimal binary

Place 1 001
Move 2 010

Place & Take 5 101
Move & Take 6 110

Table 5.3: Edit option encoding
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Depending on the edit option, the three index elements are processed consecutively and contain

1. the token position to place or move from,

2. the token position to move to, and

3. the token position where to take away an opponent token.

So the service of the database library returns

• the edit option,

• a vector with indices to manipulate,

• an value with the maximum number of steps until the game is over, and

• the classification (win, lose or draw game).

5.4.1 Database Simulator

If the database is used, it tells the robot, what it should do next. Sometimes the user want to tell Nao to
place or grasp a specific position or walk around the board. Hence we implemented a simulator, which
allows a human to fulfill the task of the database by choosing Nao’s next moves. The user decides the
position, where a token should be placed or removed. Thus, the user is able to remove up to two tokens
and place one per step. The move commands are automatically created by the game state difference. For
example, by removing and placing a token of the robots color, the robot interprets the change as a move
command of one of its tokens to another position. The user is informed about invalid entries.

5.4.2 Cheat Detection

A simple cheat detection was also implemented that can be enabled at startup. Until the move phase, the
number of tokens of each player is verified with the game phase, considering lost tokens due to a mill. In
the move phase additionally invalid moves that move more than one position also considering a token loss,
are exposed.
In future version all inconsistencies in the game state should be found, using prior knowledge (game phase
and prior game states).

5.5 Helper Package

Originally this package was created, because messages and services were required by multiple packages.
These package should not include themselves mutually or should not have a dependency at all. Now it
comprises a collection of very useful functions and definitions. Figure 5.13 shows a summary of its core
functions.

Figure 5.13: Helper tasks
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5.5.1 Interface: NaoQi - ROS

Aldebaran states that the programming language C++, Python and Urbi are supported. We chose Python
as communication language to the robot. In contrast to C++, Python does not require a boost library which
makes this approach more robust against updates. Additionally Python seemed to be most used language
for programming Nao.
The communication with the robot requires some libraries, also called NaoQi, that is available at the
Aldebaran-Robotics website [2], with a valid user account. The NaoQi version 1.12.3 for a Linux with
32 bit was used. A 64 bit Linux was not used, because the drivers for the marker detection are also only
available for 32 bit at this very moment. As a first step an environment variable ”PYTHONPATH” needs
to be set. The set variable should include the libraries of ROS and the NaoQi.

$PYTHONPATH = ”/pathToRos/ros/electric/ros/core/roslib/src:/pathToNaoQi/naoqi-sdk-1.12.3-linux32/lib”

This variable is required to import the NaoQi in a Python script. Afterwards a package and a Python
script to access the NaoQi and ROS, can be created. The first lines should look similar to the example code
in Listing 5.2.

t r y :
from n a o q i i m p o r t ALProxy

e x c e p t I m p o r t E r r o r :
p r i n t ( ” s e t your p y t h o n p a t h ! ” )
e x i t ( 1 )

i m p o r t r o s p y

Listing 5.2: ”Example code to import the NaoQi library and Python for
ROS.”

ALProxy is a helper to retrieve nearly all libraries to access the robot. Only ALBroker for the sensors
needs to be imported the same way as ALProxy. The access to another proxy with the help of ALProxy
requires the name of the requested proxy, the IP address and the port of the robot. It is also possible to run
a local simulation. Therefore the local IP address (127.0.0.1) is required. Aldebaran did not provide all
modules for simulation, for example the proxies for the LEDs and speech.

In the line below there is a sample that shows how to retrieve the motion proxy of the robot, which is
used to control every movement of the robot:

m o t i o n p r o x y = ALProxy ( ” ALMotion ” , r o b o t i p , r o b o t p o r t )

A complete list of methods for each proxy can be found in the documentation on the CD that comes
with the robot, online [4] or on the robot itself. By entering the IP address in a browser, all modules that
are loaded and active can be seen. Sensor values and their subscribers are also visible in the interface.
Additionally it offers some simple preferences of the robot to control the spoken language, the volume
level and other basic preferences.

In the framework the connection script, called ”naoqi nao node.py”, can be found in the source di-
rectory of the helper package. This script offers some functions to easily retrieve proxies. The motion
script ”nao motion control.py” is the interface to movement commands. The vision script ”nao cam.py”
subscribes to the cameras, the world model scripts ”nao tf.py” handles the transformations and local-
ization and ”robot state.py” checks the joints. Furthermore there is another script in the world model
”nao get data.py”, which checks the touch and force sensors and also offers an interface to control the
LEDs and speech. All these scripts use the connection script to obtain their proxies.
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5.5.2 Definitions

The helper package is the place for framework definitions. Currently the definitions contain:

• all defined message types

• all defined service types

• error codes
An error code is an integer value that consists of the package name, the node name and the error
code itself. This is very helpful for debugging, because the developer knows instantly where the
error occurred. Every time a function returns a negative value, something went wrong. A return
value of zero states that everything is fine.

• task ID’s
Task ids are required by services to distinct tasks.

• parameters
Definitions of adjustable parameters are defined, for instance board size, camera resolution, arm and
player index and sectors.

5.5.3 Helper Functions

The package offers useful functions, for example a transformation helper that contains an updated listener
and has a method for an easy transformation. Additionally conversion methods and often used functions are
implemented in this package, for example ”sub2ind”, ”vec2point and ”str2int”. They are used to convert
strings, integers, vectors, points and others. Furthermore there is an output helper that formats the console
output. Instead of the ROS time, the output helper logs the package thats posts a message. The complete
color range is also available to color messages for a better visualization. Moreover all outputs of every
node of our framework can be set in one central configuration file for different debug levels.

5.6 Vision Package

The vision package deals with all tasks that include the camera image. The results of the vision are listed
below as it offers

• a structure that contains information about every of the 24 strategic positions. This information
comprises the discrete occupation, the real positions, if they are occupied and time stamps of the last
update. Additionally the structure contains a 25th token that is only set, if there is a conflict on the
board. This so called conflict token, has the same information as any other token plus an index to the
corresponding strategic position. The index is important, because usually the position of the vector
element is implicitly the index of the token. The conflict token marks a mask or strategic position,
where two tokens of arbitrary color are present.

• a rotation angle for the vertical torso rotation, computed by the visual odometry.

• a confirmation, if a token is in a desired mask.

The vision only requires the camera image, the camera height and inclination to the world to achieve these
tasks.

The submodules and their duties are shown in 5.14
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Figure 5.14: Vision tasks

5.6.1 Camera Module - Image acquisition

The major ROS node for the vision is the node called ”nao cam.py” in ”nao vision/scripts”. This node is
responsible to get the current image from the NaoQi. Nearly all vision nodes depend on this node implicitly,
because the image is their primary input. The core of the ”nao cam.py” node is the generic video module
subscriber to one of the cameras with 10 frames per second. It receives the last image of the camera with a
resolution of 320x240 in RGB color space and publishes an image about every 100 ms as long as the robot
is stationary. An example code to connect to the camera is shown in Listing 5.3.

GVM name = ” nao cam ”
r e s o l u t i o n = kQVGA #320 x240
c o l o r s p a c e = kRGBColorSpace
f p s = 10
c a m s t a t e = 1 # bo t tom camera = 1 , t o p c a m e r a = 0
# r e q u i r e s p r e v i o u s l y i m p o r t e d ALProxy
cameraProxy = s e l f . g e t P r o x y ( ” ALVideoDevice ” )
GVM name = cameraProxy . s u b s c r i b e ( GVM name , r e s o l u t i o n , c o l o r s p a c e , f p s )
cameraProxy . s e t P a r a m ( kCameraSelec t ID , c a m s t a t e )
image = cameraProxy . get ImageRemote ( s e l f . GVM name )
cameraProxy . u n s u b s c r i b e ( s e l f . GVM name )

Listing 5.3: ”Example code to get an image from the Nao camera”

During motion the images are blurred and therefore no precise localization of the robot and the tokens
is possible. However, the images are published continuously, because the marker detection node needs an
updated image to recognize when the marker is lost. A special feature of this node is to swap the camera.
Although due to hardware limitations, it is not possible to use both cameras simultaneously, the robot may
require the top camera for localization. Therefore the node offers a service to switch the camera.

The bottom camera is mainly used during game play. It offers a well-suited angle to see the game board
in front of the robot, while the top camera is better suited in walk procedures around the table. During
walks, the bottom camera only sees the white table, while the top camera in the horizontal, is able to
observe distant objects. Hence the top camera image yields much more interesting features in the images,
which is important for localization.

If the camera state changes, the camera is switched and the frame id in the header is updated with the
new camera frame id. The frame id is important for ROS to organize different coordinate systems. This
is very important for the transformation and for the visualization in rviz to arrange the camera’s position
in the scene depending on its frame id. In this case the frame id is ”CameraBottom frame” for the bottom
camera or ”CameraTop frame” for the top camera. In addition the transformation for the new camera has
to be updated by the transformation script ”nao tf.py” in the world model.
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5.6.2 AR ToolKit

As an exact localization was required, a marker was used that can be detected by the AR ToolKit [5] using
the internal camera. According to the work of Zhang et al. [45], where different markers were compared
and evaluated, the AR ToolKit yielded the best trade-off in recognition time, deviations and projective
distortions. Furthermore a free and non-commercial version of the framework is available online. The
AR ToolKit developed by Kato and Billinghurst [26] is a software library for augmented reality. It is
used to track a real world marker to estimate the pose of the camera in real-time. Therefore only a single
calibrated camera is necessary in combination with a known square marker pattern. The estimated camera
pose (position and orientation) is required for self-localization of the robot. Another reason to use this
framework is an already existing wrapper for ROS, which was very useful to integrate the detection in our
framework.

Due to the inaccurate odometry of the robot while turning, it would be a challenging task to move the
robot around the table without any visual sensor to correct and support the robot. If the robot walks around
the table, it waits before approaching to the board again. At first it tries to relocate the marker. After
the walk with rotations, the odometry estimation of the robots position is somewhat inaccurate. Due to
the absolute transformation, the AR ToolKit is much more accurate. This accuracy is required to safely
approach to the game board.

The camera pose to the marker is most accurate, if it is watched frontally with a perpendicular angle from
the camera center to the center of the plane of the marker. If the view point angle is reduced, the transfor-
mation becomes more inaccurate, until the complete detection vanishes. According to the documentation
of the AR ToolKit, the marker detection for a marker with a side length of 70 mm is not guaranteed over
40.7 cm in a perpendicular view angle. A perpendicular view angle is not possible due to the position of
the marker and the robot that is situated on the side of the table, as shown in Figure 5.15 and 5.16. In this
Figure, the robot has an angle of about 60◦ with a distance to the marker of about 40 cm. Assuming the
robot moved backwards, all conditions are impairing. The inclination angle to the marker increases, so
does the distance. Additionally the view to the marker, caused by the altered inclination angle, could also
be occluded by game tokens.

Due to the severe occlusion by game tokens, the marker has been raised by 12 mm. We did not raise the
marker to the same height of the tokens to completely eliminate occlusion, because two new issues would
occur. Firstly the inclination angle is increased with the height of the marker. Secondly, if the marker has
the same height as the tokens, the robot cannot place a token in the inner square any more, because its
fingers are too thick and the marker would block them. This height is a trade-off. The robot may not see
the marker from behind, but when it steps closer to the board the marker becomes visible again.

Each used marker pattern has to be saved as a template once. There is already an executable, called
”mk patt”, in the ”bin” directory of the AR ToolKit, which creates template patterns for markers using a
camera. The correct transformation to the marker can be obtained, after the size of the marker has been
adjusted in the vision package.
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(a) Rviz representation (b) Robot view with rviz overlay

Figure 5.15: The robot’s position where the picture of Figure 5.15b was taken, can be seen in the world
model in Figure 5.15a, which has been visualized in rviz with the robot model from [23]. Both figures
show the detected marker in Nao’s world. The external view of this scene is shown in Figure 5.16.

Figure 5.16: This image was taken by an external camera and shows the robot pose in relation to the marker,
which corresponds to the setup in Figure 5.15.
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5.6.3 Image Preprocessing

Different illumination conditions result in different token colors on the game board. The marker is, due
to its vast contrast (black-white), more invariant to illumination. This contrast is achievable through the
binary entity of the marker. Of course, the marker is neither visible in total darkness nor in direct sunlight,
but under normal conditions, for example daylight.

The colored tokens are not that invariant to light. During the day, the color of the tokens differs. This
challenge is solved by an initial calibration at game start, which enables the robot to recognize the currently
available colors. This also offers the possibility to use every desired color, however they should be different
from another. The color detection is achieved in the HSV color space, because it is more invariant to light
conditions, due to having an extra channel to adjust the illumination level. In the RGB color space a slightly
different illumination change already results in another token color and therefore it is more difficult to detect
a specific color than in the HSV color space. As mentioned in Section 3, a color in the HSV color space
can be found within simple thresholds. In the RGB color space a color is located in a conical area, which is
more difficult to model. Although the NaoQi is able to already transmit the images in the HSV color space,
the native image format is YUV422. In both cases the camera images have to be converted. I experienced
that the conversion to HSV is much slower than a conversion to RGB. Hence the image is requested in the
RGB color space. Moreover both color spaces are used by the vision. The image in the HSV color space is
used to segment the colors, while the image in the RGB color space is used to visualize the images.

Better results with a fixed tolerance than with variable approaches were achieved, because although the
lighting conditions change, they never change completely. With variable tolerances, we sometimes had
too far extended or too restricted thresholds. In these two cases, either environment was recognized to be
tokens or tokens were not recognized at all. As we implemented an approach for variable thresholds, we
noticed that an approach with fixed thresholds is more robust and therefore more reliable for this task.

We wanted to remove the illumination effect and enhance the colors. It was expected that a better contrast
would support the segmentation step of the tokens. Therefore a histogram equalization for colored images
was implemented. The normalization was successful, the contrast increased but also the level of detail. As
a side effect shiny regions were now classified as white and tokens with strong edges or cracks consisted
of multiple colors. Independent to the illumination, we always had an image with high-contrast, but also
modified color values. This results was not satisfying as we wanted to enhance the colors and decrease
the level of detail. In the next step we tested the normalization in combination with a Gaussian blur. The
Gaussian blur reduced the level of detail before and after the normalization, but the image still contained
volatile color values. So we disabled the normalization and just used the Gaussian blur, which worked
much better.

A color search in the blurred image in the HSV color space is made to find the colored tokens. The
desired color is taken from the calibration tokens at the beginning of the game. Therefore the median color
value over a small pixel area in a circle of 5x5 pixels is taken for the given image position. This image
position corresponds to an ideal position that is occupied by a token from player one. The color on that
position is assigned to player one. As a matter of fact,two players are required for this game. The robot
has to move its head and the calibration process has to be started again, assigning the found color on the
second position to player two. From now on, both players are regarded to be initialized and their color may
be tracked. Using this procedure to select the color offers the possibility to use any desired color. Two
different color tokens are required at startup and the tokens may be tracked the whole game. Additionally
a third color, a blue color, is also tracked. The color for calibration is mounted on the robot’s shoulder
and is initialized the same way. It is used to track the blue stripe on the side of the board. So it is not
recommended to use blue tokens, even if it would be possible. More information regarding the game token
color can be found in Section 5.8.

Good lighting conditions improve the marker detection, because it can be tracked more exactly and
therefore the token positions are fitting better to their real positions. Consistent lighting conditions are
well-suited for the token detection, because the color values only change marginally. After the Gaussian
blur with a kernel size of eleven and the conversion of the RGB image to the HSV color space has been
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applied, the color detection starts. There is an optimized OpenCV [32] function that does exactly what is
required in this step. The function ”inRange” returns a binary image for a given color image with a lower
and an upper threshold. The threshold is equivalent to the previously initialized color, minus or plus a
fixed tolerance. All color values in this tolerance return a value unequal to zero (non-black). This binary
one-dimensional image may also contain ”false” detected pixels. In this case ”false” means that pixels do
not belong to a token of the requested color.

In the next step, we try to filter single non-black pixels that are created by image noise. On each position
in the binary image the number of non-black neighbors are counted in a 5x5 neighborhood excluding the
center dot. If there are at least 9 non-black pixels, the center pixel remains white. Otherwise it is classified
as noise and assigned to a black pixel. This is important, because the next procedure is a morphological
close, which would enhance small false-detected structures, but also completes not fully recognized tokens.

Afterwards we receive a binary mask that contains the tokens as blobs. This mask often contains some
minor artifacts, like single white pixels or a tattered border. Therefore a morphological ”close” is applied
to the binary image, which removes most of the artifacts. Now the image preprocessing is complete. The
result of the image preprocessing step can be seen in Figure 5.17. In this figure both blob images and the
currently hardly visible blue stripe are drawn inside the current camera image for better visualization and
verification. The next step it is required to identify which blob belongs to which strategic position. This is
calculated in the vision class that classifies all tokens and is discussed in Section 5.6.6.

Figure 5.17: Final color detection, colored and automatically drawn in a camera image

In addition to the blob detection, this class offers a service to check, if there is a token in the hand. For
this task four information sources are required:

• The player ID of the token to recognize (own or opponent token).

• The hand status (open or closed hand).

• The used arm (left or right).

• The current image.

The first three sources are received together with the service request. The current image is globally available
for read access in this class. At first the blob image of the requested player is generated. This blob image is
compared to one of four masks, where one mask corresponds to the arm and hand status. The four masks
are manually premanufactured for the specific arm pose and hand status. If a certain amount of common
pixels are found in both images, it is most likely that a token is in the hand. The masks in the form of Nao’s
fingers are important, because it may be possible that the board with the game tokens is in the background.
Without the masks the robot could recognize a token in the hand, even though there is none. This results of
tokens on the board that are visible in the background between its fingers. The background region behind
the three fingers is larger than the region of the fingers, which would also lead to colored pixels of the
desired player. A detection procedure is visualized in Figure 5.18.
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Figure 5.18: Images for the detection for tokens in the hands. The top left image shows the open right hand.
Top right shows the same with an overlain mask, which is used to check, if there is a token. Bottom left
shows the hand with a token. Bottom right shows the yellow token that has been detected in the teal area.
The teal area shows the overlap of the mask and the token. The yellow area is not rated, because it could
also be background information.

Another function is responsible for the blue stripe detection. This function is called, if the robot is
searching for the marker. In case the marker is not found, blue stripe information is available. This function
detects the nearest blue color in front of the robot, corresponding to the lowest row of a blue point in the
image. Then the distance to the blue object is estimated, using the row in the camera image and the current
camera height and roll. The estimation of the blue stripe distance is explained in Section 5.6.4. If the
marker detection failed, the robot walks the estimated distance, minus its size, towards the blue stripe.
Now that the robot should be closer to the board, it should be possible for the robot to detect the marker
again. The blue stripe on the border of the board can be seen in Figure 1.2

5.6.4 Estimation of Distances and 3D Points

A grasp procedure requires a real token position, in contrast to a place that only requires the ideal token
position. In the first approach the real position was estimated, using the camera pose and the center of
the target blob in the image plane. The blob center has been projected to a three-dimensional position on
the game board, considering the aperture angles of the camera. This approach was not very accurate and
became obsolete, since the blob image is rectified. Due to the rectification that is required for classification,
the estimation of the real position is a simple task. The only challenge is to acquire the focus point, which
is used to determine the four points to rectify the image. The approach to find the focus point is similar to
the first approach but only with the center image coordinates. This facilitates the calculation, because the
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camera angle in the transformation stream can be used for the focus point calculation without any offset.

Focus Point

The computation of the focus point requires the height ∆ heightcam of the camera above the game board
and the camera angle α to the horizontal. Both values can be requested from a transformation of the bottom
camera in a foot link. This yields the height heightcam f oot of the camera to the ground and a camera angle
α f oot that is rotated by 90◦, because the z-axis of the foot corresponds to the y-axis of the camera and
therefore the angle has to be rotated as shown in Equation 5.4. For better understanding a draft of the focus
point estimation can be found in Figure 5.19.

Figure 5.19: Draft of the focus point on the board

∆ heightcam = heightcam f oot −heightboard (5.3)

α = f abs(α f oot)−
π

2
(5.4)

Using the sine with the calculated height ∆ heightcam and angle α, yields the distance d from the camera
center to the focus point on the board (see Equation 5.5). The line from the camera center to the focus point
is always the z-axis in the camera system. The focus point in the camera system is, per definition, zero for
x and y. Therefore this point is transformed into the game board system using the ROS transformation (see
Equation 5.6).

d1 =
∆ heightcam

sin(α)
(5.5)

pointgameboard = trans f orm cam to game board(0,0,d) (5.6)

This results in the estimated point pointgameboard on the board. The height of this point deviates from the
expected one, which requires a correction step. The difference point.zgameboard in the expected height has
to be divided by the sine of α, as shown in Equation 5.7, and added to the previously calculated distance
d1 and transformed again to achieve a better real position for the focus point, as shown in Equation 5.8.

d2 = d1+
pointgameboard .z

sin(α)
(5.7)

pointgameboard = trans f orm cam to game board(0,0,d) (5.8)

Now the refined point fits to the real focus point and can be used for the rectification procedure.
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Real Token Positions

The computation of the real token position is a simple task after the image has been rectified and mapped to
the combined mask. At first, the center pixel coordinates of the token that has to be grasped, is calculated
in the rectified blob image. Afterwards the half mask size is subtracted from the image coordinates and
they are divided by the mask-to-game-board-factor

(
700.315 pixels

meter

)
(see Section 5.6.6) to convert pixels

into meters in the game board system.

Blue Stripe Distance

The blue stripe has been mounted on the board for a course localization support. The robot tries to estimate
the minimal distance to the board, using the lowest row in the image that contains blue values and the
camera roll angle. A lower row in the image corresponds to closer objects, while a higher row refers to
more distant objects. In contrast to the focus point estimation, the blue stripe distance estimation considers
the row in the camera image. The distance should be calculated in torso coordinates for direct usage of the
walk planner.
For better understanding there is a draft of the calculation shown in Figure 5.20.

Figure 5.20: Draft of the blue stripe distance calculation. The camera image that is projected on the board
plane can be seen with the y-offset, the new angle and the resulting horizontal torso distance.

The origin of the camera is in the center of the image, while the pixel coordinates of the row are counted
from the bottom image border. Therefore the row coordinate has to be shifted by half of the image size
(see Equation 5.9) to receive the y offset y o f fimg from the origin. Additionally the degrees

pixely
(Equation 5.10),

which are calculated by the vertical aperture angle β and the image height iy, are required to compute the
new view angle of the blue stripe. The new angle wynew is computed, by the current camera angle wy plus
the offset that is converted to an angle, as shown in Equation 5.11. The camera height is computed the same
way, which is shown in Equation 5.3. The minimal horizontal distance to the blue stripe from the torso
is estimated, using the new height, the tangent of the new camera angle and the offset from the camera in
front of the torso x o f fcam.
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y o f fimg = row−
iy
2

(5.9)

degrees
pixely

=
β

iy
(5.10)

wynew = wy+
y o f fimg · degrees

pixely
·π

180
(5.11)

distance =
heightcam

tan(wynew)
+ y o f fcam (5.12)

5.6.5 Projection of the 3D tokens into the Image Plane

This projection maps a visible point of the three-dimensional space into a two-dimensional point on the
image plane. We experimented with different approaches. The first intuitive approach did not consider
the intrinsic parameters directly but worked very well after a short calibration. In all cases the points are
available in the camera coordinate system, therefore the extrinsic parameters are negligible.

The first approach is based on the following considerations. Figure 5.21 shows the camera with its image
plane and a three-dimensional object in a perpendicular view to the x-axis and z-axis of the camera.

Figure 5.21: Projection of three-dimensional point of the scene into the image plane of the camera

For a three-dimensional point, given in the camera coordinate system, the z-axis is the perpendicular
”distance”, while the x-axis and y-axis are the offset from the camera origin. The camera origin should
be the middle of the image plane without considering the principal point offset. Assuming we have an
aperture angle of 90◦ and a x and z value of 1 m. This means that the object is 1 m in front of and 1 m right
to the camera center. A division of the offset to the right x by z results 1. This result would correspond
to the most right possible position on the image plane. Now the resolution of the image plane has to be
considered. Owing to the fact that the x and y start from the center of the image, the half image width has to
be multiplied with the resulting value of x

y . An image width of 320 pixels concludes to a range from -160
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to +160 pixel. Furthermore the origin of the image plane points should be in the bottom left corner. So
another offset of the half image width has to be added to the result. For now our formula with the example
looks like Equation 5.13.

ximage =

widthimage
2 · xcam

zcam
+

widthimage

2
(5.13)

ximage =
160 ·1

1
+160 (5.14)

ximage = 320 (5.15)

For real cameras, the aperture angle is not 90◦ and the image plane is not square shaped. In the case of
Nao’s cameras, we measured the foremost right, left, top and bottom pixel. For x an absolute maximum
values of 0.4, and 0.3 for y were received. Thus a distance of one meter on the optical axis from the image
plane to the object, the object could be 0.4 m to the left or right and 0.3 m to the top or bottom that the
camera can barely see it. We normalize our z value to receive 1.0 on the greatest extend of x and y. The
resulting formula in the real world case with the horizontal x value is shown in Equation 5.16. The same
formula can the applied for y with a factor for the aperture angle of 0.3 instead of 0.4.

ximage =

widthimage
2 · xcam

zcam · xaperture
+

widthimage

2
(5.16)

ximage =
160 ·0.4

1 ·0.4
+160 (5.17)

ximage = 320 (5.18)

This naive approach offers points in the image plane that approximate the three-dimensional points nearly
as well as using a projection matrix.

The second approach uses the projection matrix P that projects a three-dimensional point into the image
plane in homogeneous coordinates. This approach is similar to the first one, but also respects the intrinsic
camera parameters K. K is a 3x3 identity-matrix that contains the focal length f and the principal point
offset t of the camera model as shown in Equation 5.19. Rarely cameras also have a skew, which means
that the chip plane is not perpendicular to the optical axis of the camera. This could be modeled with the
second intrinsic parameter of the first row of K, but equals to zero in most cases.

K =

 fx 0 tx
0 fy ty
0 0 1

 (5.19)

The extrinsic parameters are a rotation matrix R and translation vector~t to define the pose of the camera
in the world. The three-dimensional points already were transformed into the camera coordinate system
and the extrinsic parameters just need to be set to the identity matrix, so that the Equation 5.20 for the
projection can be simplified.

The three-dimensional point itself is a vector I with three elements. As the result we receive a three-
dimensional vector P in homogeneous coordinates. For dehomogenization x and y have to be divided by z.
The simplified formula is shown in 5.21.

P = K ·R ·
[
I ·~t
]

(5.20)
P = K · I (5.21)

The result with this approach did not improve. This could correspond to uncertainties of the principal point
offset or the focal length, which were calculated with the Caltech toolbox [9]. This toolbox is based on
the approach of Zhang [46], who proposed a flexible and simple way to calibrate common cameras. The
calibration target that has been used is shown in Figure 5.22, where 30 pictures were taken of different
poses of the target.
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Figure 5.22: Calibration target to obtain the intrinsic camera parameters

5.6.6 Blob Classification

The classification is a challenging task, due to occlusions of tokens that appear under certain angles of view
and transformation uncertainties that also depend on the accuracy of the marker detection. The marker ac-
curacy depends on the illumination and the angle of view. Hence there were several methods implemented
to reduce uncertainties and handle logical conflicts to make the classification step more robust.
The blob classification requires the binary blob image to classify each blob. Furthermore there is an ad-
ditional helper library ”BwLabel”, discussed in Section 5.6.7 and class ”NaoHelper”, explained in Sec-
tion 5.5, that are designed to simplify the further processing of the blobs. Before the binary images are
labeled, they are rectified and mapped to another fixed size matrix. In an earlier version this step was not
required, because the blobs were directly evaluated by their overlap with the dilated ideal position. This is
an efficient method and valid solution but performs badly, if a token does not lie next to an ideal position.
Therefore a solution was required that rectifies the blob images and compares them to manually prepared
masks. The combined image of all comparison masks has already been shown in Figure 1.4 and represents
a perfectly rectified game board.

Due to the fact that rectification is a challenging task, it is described in detail in Section 5.6.6. After
the rectification procedure of the blob image, all blobs have to be labeled, because at this very moment all
blobs together are segmented from the rest only.

The ”BwLabel”-library offers a function called ”getBlobPixelList”, which takes the blob image that
is passed by the Classification-class and returns a vector with a vector of points. Each of these point-
containing vectors contains all pixel coordinates of one blob. Furthermore ”BwLabel” offers the function
”getLabeledMatrix” that returns a matrix, where each blob is assigned to a value (see Section 5.6.7).

Now that each blob pixel size is known and the image is rectified, we could directly make an assumption
about the probability of a blob. In the earlier version, the blob probability was estimated with the number
of pixels of the blob and its distance that was estimated with the camera pose and the position in the image.
This led to challenges in the estimation of real positions. Although they could be estimated, it was only
possible to do so next to an ideal position, which sometimes led to an insufficient accuracy.

The current approach rectifies the blob image. On the assumption of an ideal rectification, all blobs
should have more or less the same size with a specific tolerance for distortion. Additionally the estimation
of the real position is much easier, because the blob position in the rectified image can directly be converted
into a game board position, with an offset and a factor for each rectified position.

There is a loop that iterates through all 24 positions checking every blob for every position. The decision,
if a blob lies on a position, is made by the amount of pixels that result by a ”binary AND” of two matrices.
The first matrix contains the mask of one strategic position and the second mask contains the rectified
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blob image with the same orientation as the mask. If there is a minimum amount of common pixels,
there definitely is a blob. In this case the probability for that player’s color is increased, the timestamp
for that position is set and the three-dimensional position is estimated. This is the common procedure for
one image. Due to the fact that it is not possible to see the whole game board at once (see Figure 5.23),
there are multiple images needed to acquire the whole game state. There has to be a border condition that
ignores halved tokens, as the red token on the right side of the middle camera image of the last mentioned
figure. Only complete tokens are allowed to be evaluated and filled in the ”board information“. This is
essential for the world model to know, which positions have already been updated and which positions are
still unknown. If all positions are observed, the game state is up to date, until a token is placed or removed.

If everything works as expected, the blob classification returns a filled ”board information“ message with
a status code ”0”. A code lower than ”0” shows that an error occurred and the information is invalid or
compromised. It contains information for every strategic position, like the probability for each player, the
estimated three-dimensional position and a time stamp of the last update. Furthermore the ”BoardInforma-
tion” contains information about where detection conflicts happened. The two different conflicts that may
occur are explained in the two next sections.

Multiple Blobs

Multiple blobs are defined as blobs of the same color that melted together to one blob in the binary blob
image as shown in Figure 5.23. On the one hand this results partly on the morphological close effect
that is applied to the blob detection. This effect reduces disturbing objects in the image but also leads to
melted blobs. On the other hand, adjacent blobs already appear like one blob under perspective observation.
Usually a melted blob has a higher pixel size than a single blob. In an earlier version, multi blobs led to
challenging tasks in the detection of the real position but in the current approach the position of a blob is
only computed on the local mask at each strategic position. Although multi-blobs are still a challenge, this
strategy results in a far more accurate position of each blob.

Figure 5.23: Example of multiple tokens detected as one blob. The image on the left shows tokens from an
external camera at the height of the Nao. Note that there is no visible white space between the tokens of the
same color, although they are placed perfectly. The middle image is the camera view and token detection
of the robot. The three tokens of the same color that lie in a line are detected as one big blob. The image
on the right is the rectified camera image combined with all masks.

Conflict Tokens

Conflict token are generated, if there are apparently more than one token in one mask. An example for a
conflict token can be seen in Figure 5.24. Conflict tokens have been implemented as repair strategy for
place actions. If a token cannot be recognized after it has been placed, the game board is updated. The
conflict value of the ”board information“ is set to the index, where two tokens are recognized in one mask.
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Additionally the real position of the second token is saved. Now the robot knows, were its lost token is
gone. If the conflict value is not set, the difference of the updated and the last game state is extracted. If
there is a difference, it is obvious that the lost token rolled to this previously unoccupied area. Afterwards
the robot can correct the misplacement by grasping and replacing the token. In case no conflict token or
difference is found on a misplaced token, the token may have fallen of the table and human help is required.

Figure 5.24: Example of two separate detected blobs in one mask

Rectification

The rectification procedure should apply a projective transformation to the current camera image. This is
accomplished by a mapping from the first into the second image. The mapping is also called homoge-
neous matrix H. The following paragraphs for the calculation of the homogeneous matrix H are based on
the book of Hartley and Zisserman [21, p. 33-35]. As a matter of fact, an image transformation is two-
dimensional and calculated by a 3 × 3 matrix, as shown in Equation 5.22. The image coordinates (x,x′)
are homogeneous. x

′
1

x
′
2

x
′
3

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 x1
x2
x3

 (5.22)

x
′

= Hx (5.23)

The matrix H can be multiplied with a non-zero factor and will also result in the same transformation,
because only the ratio of the matrix elements is important for the transformation. The nine elements yield
eight independent ratios that lead to eight degrees of freedom. The eight degrees of freedom consist of:

• 2× translation

• 2× rotation

• 2× scale

• 2× line at infinity

Invariant in the projective transformation are the cross-ratios, as points will always have the same order
before and after the projection. This fact results on the central projection through one common point.
Considering multiple lines, as one is visible in Figure 5.25, from the common projection point o, to a point
in the first image will always result in the same order of points in the second image.

Usually an image is distorted under perspective view as shown in Figure 5.27a, one can see the original
distorted camera image. In the top region of the image one can see that the lines are not rectangular,
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Figure 5.25: The plane mapping of a projection [21, p. 34]. It shows that based on the common projection
point o, the cross-ration is preserved.

although in the scene they are. The lines appear to converge at a finite point. Applying a projective
transformation H to the image will remove the distortion, showing the image in its correct geometric
shape. The resulting rectified image after the transformation is shown in Figure 5.27b, where all angles of
the game board lines are rectangular. The computation of the transformation matrix requires corresponding
inhomogeneous points of the images, where x is the point in the first image and x

′
is the point in the second

image.

x
′
=

x
′
1

x′3
=

h11x+h12y+h13

h31x+h32y+h33
, y

′
=

x
′
2

x′3
=

h21x+h22y+h23

h31x+h32y+h33
(5.24)

Since the points in both equations of 5.24 are known, they generate two equations per point correspondence
to calculate the transformation H. Equation 5.25 and 5.26 show the two equations for one point.

x
′
(h31x+h32y+h33) = h11x+h12y+h13 (5.25)

y
′
(h31x+h32y+h33) = h21x+h22y+h23 (5.26)

Due to eight degrees of freedom and two equations per point correspondence, four corresponding points
are required to solve H. The precondition for each of those points is to be currently visible and collinearity
of more than two points is strictly prohibited. As an image has to be rectified, four points in a rectangular
turned out to be the best choice. The scale factor of H cannot be retrieved, but as mentioned, it is useless
for the transformation.

The resulting rectified image has always the same rotation in relation to the marker, regardless of the
position of the robot due to the point selection. A rectification from another board side was already shown
in Figure 5.23.

As the OpenCV library [32] already has functions to compute the transformation, corresponding points
need to be found. For this purpose we created four points in the plane of the game board that form a square.
These four points are selected all around the current focus point of the camera to ensure that all four points
are visible. This also implicitly defines that it is never possible for three points to lie on a line. Additionally
the distance between all points is proportionally increased with the distance from the camera to the game
board. The distance is measured from the center of the camera along their z-axis to the intersection of
the board. This is required, because with increased distance, the rectangular shape appears smaller in the
camera image and the resulting computation of the transformation would be more inaccurate. A good value
for the distance from the focus point to each of the four points turned out to be f ocus point distance

7 . Once
these four points are set, they have to be transformed in the coordinate system ”CameraBottom frame” (see
transformations in Section 5.3.4). The two-dimensional positions of the first four points are now retrieved
by projecting the three-dimensional camera points to the image plane (see Section 5.6.5).
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In the next step, the paired four points have to be computed. Again we take the same four points in
the game board system. These points have to be converted from meters into pixels. The conversion factor
is calculated by dividing the side lengths of the outer squares, as shown in Equation 5.27 and visualized
in Figure 5.26. The side length of the outer square of the mask is calculated by subtracting two times
the border b to the first square from the complete side length of the mask m. The side length of the outer
square of the real game board is calculated by the sidelength of inner square d1, plus four times the distance
between two squares d2.

Figure 5.26: Sidelengths of the abstracted combined masks and the real game board to calculate the con-
version factor. Additionally the origins of both systems are shown with red cross.

pixels
meter

=
m−2 ·b

d1+4 ·d2
(5.27)

pixels
meter

=
420−2 ·99.5

0.117+4 ·0.05
(5.28)

pixels
meter

= 700.315 (5.29)

After the conversion to pixels, the point needs to be shifted by an offset value that corresponds the offset
from the origin of the game board system to the origin of the mask. The origin of the mask is located on
the top left corner while the origin of the game board is located in the center of the board. So the offset
value is defined by the half of the complete side length of the mask m as shown in Equation 5.30.

o f f set =
m
2

(5.30)

Algorithm 2 shows the summarized calculation of all eight points.

Now, that the two-dimensional positions of all eight points are known, the homography may be esti-
mated, using the OpenCV function ”getPerspectiveTransform” [32]. Afterwards the current camera image
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Algorithm 2: compute eight points for rectification
input : f p ... three-dimensional focus of the camera in game board system,

distance ... distance between camera center and focus point on the board
output: pointsimage ... four points in the image

pointsmask ... four points in the mask

size square = distance ·71
point[0]board = f p.x− size square2
point[1]board = f p.y+ size square3
point[2]board = f p.y− size square4
point[3]board = f p.x+ size square5
pxm = 700.3156
pointmask.x = pointboard ∗ pxm+o f f set7
pointmask.y = pointboard ∗ pxm−o f f set8
pointcamera = trans f romPointsFromGameBoardToCamera(pointboard)9
pointimage = pro ject3DPointsIntoImage(pointcamera)10

may be rectified by the function ”warpPerpective”. The order of the points is very important due to the
invariance of cross-ratios. Otherwise the computation of the correct transformation will fail. Although it
will be rectified, the orientation will be wrong. The orientation has to always be the same in relation to the
marker. Otherwise the tokens cannot be classified correctly. The order of these points are always known,
as they are chosen depending on the game board coordinate system. An introduction for affine transfor-
mations using OpenCV can be found in [10]. The original and the rectified blob image combined with all
masks are shown in Figure 5.27. The uncut rectified image has a black border, as shown in Figure 1.4. This
is used to cope with border conditions, because it is not guaranteed that one of the four points to rectify the
image lies inside the game board area.

(a) Original RGB camera image (b) Rectified image

Figure 5.27: Both images show four points that are all all round the current focus point in green. These
four points are the point correspondence that were used to compute the projective transformation H. The
blue dot in the middle is the center of the image. In Figure 5.27b, the rectified camera image is overlays
with the masks. Additionally the tokens are colored, depending on their detection and classification.
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5.6.7 BW Label

The BW Label class is used to simplify the blob image handling. There are two public methods to process
a binary blob image. Both take the same input parameters and are labeling the blobs, but they differ in
their kind of return parameters. The first method ”getLabeledMatrix” returns a matrix of same size as the
input image and is filled with chars. The difference to the binary input image is that all pixels of one blob
now have the same value. From top left to bottom right the blobs are labeled in ascending order from
1-255. This also limits the maximum blobs to 255, while the background receives the value 0. Due to
morphological operations on the player blob images, it is not possible to exceed the maximum blob value
of 255. If the blobs would be placed optimal equidistant and not overlapping, the maximum number of
blobs num blobsmax after a morphological close with the size of 20x20 on an image of the size of 320x240
would be 196, as calculated in Equation 5.32.

num blobsmax =
320
20
· 240

20
(5.31)

num blobsmax = 196 (5.32)

The second method ”getBlobPixelList” returns a vector with vectors of points. Each of the vectors that
contains points corresponds to one blob. Each point of the vector contains the image coordinates of the
pixel. On the one hand it is easier to count the number of pixels of a specific blob or address its pixels. On
the other hand, the first method is easier to visualize.

Both methods are using the same algorithm. There is a loop through all pixels in the binary blob image.
If a non black pixel is found that has not been processed already, it is added to the labeled matrix and to
a vector. Then all non-black pixels in the 8-neighborhood are examined. If they have not been assigned
yet, they are added to the labeled matrix and to the vector. This procedure is repeated until there are no
non-black pixels that have not been assigned yet. Only then, the loop continues and repeats this process
until it reaches the last pixel and returns.

5.6.8 Visual Odometry

The visual odometry was implemented to support the localization during walk procedures. Sometimes a
walk failed, because the rotation about the vertical robot axis was off by about 10◦. A forward motion of
about 0.5 m then resulted in an offset of about 0.09 m, which sometimes led to a collision of the robot and
the table. This rotation error is calculated by the visual odometry to correct the robot rotation.

The visual odometry is now active during a walk procedure. Before a large rotation (> 45◦) is made, the
robot rotates its head to the target angle and takes a picture. Afterwards the head is rotated back and the
torso is rotated to the target angle. The robot takes a picture again. Assuming the head rotation is more
precise than the torso rotation, the robot has now taken two similar pictures. This is possible due to a nearly
pure camera rotation. Both images should only be shifted slightly along the horizontal. However, they are
not similar, if there are many changes between the capture of the two images.

Both images are analyzed with the help of the OpenCV library [32] . First of all a keypoint detector is
applied to find interesting points in each image. Raw interest points are useless, so descriptors of this points
have to be made. The SURF descriptor was chosen, because it combined the robustness and speed, which
is required to solve this task. After the descriptors are calculated for both images, the next task was to find
matches between both images. A ”radiusMatch” function was used that finds matches for descriptors in a
given distance.
The matches have to be evaluated now, They are shown in Figure 5.28.

A perfect robot rotation should result in the same image and keypoints. In real world applications there
always is a deviation. We wanted to retrieve the offset of the matches in pixels in the horizontal direction.
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Figure 5.28: Sample of two images after rotation with visualized matches.

The offset of each match is computed, sorted and the median value is taken. If there are enough matches
(by definition > 9), this pixel offset has to be converted to an angle, which the robot can correct. If there
are too little matches, the visual odometry fails. This results from too little keypoints, which most of the
time is the result of insufficient light.

The relation from the offset of the pixels in the image pair to angles is not affected by any distance of
the robot to its environment. A simple rotation of the camera around one fixed point can never estimate a
distance. It does not matter, if a detected point is 0.5 m or 5 m away, because only the position in the image
is important. Any point in the three-dimensional space, which is visible in the camera, is projected into the
image plane and results in a pixel without any depth information.

Figure 5.29: Illustrates the difference angle αcorr computed of two similar camera images.

Figure 5.29 illustrates an observation of the same keypoint that is visible in two similar images. As-
suming a camera rotation in a common point, yields a rotation angle α to one keypoint in both images.
The difference of both angles corresponds proportionally to the offset in pixels in the image. With suffi-
cient matches, the degrees of the correction angle αcorr can be calculated with the horizontal median offset
o f f setpixel , the image width ix and horizontal aperture angle β by:

αcorr = o f f setpixel ·
ix
β

(5.33)

αcorr = o f f setpixel ·
320

44.865
(5.34)

αcorr = o f f setpixel ·7.1325 (5.35)
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5.7 Motion Package

The motion package contains the ”NaoMovement“ node, which executes the packed commands received
from the planner package by sending it in the correct form to the NaoQi. Each command is checked for
valid angle values. The tasks of the motion package are summarized in Figure 5.30.

Figure 5.30: Motion tasks

Additionally the motion package is responsible to initialize all joints of the robot. Therefore it raises
and lowers the torso and moves all arms and the head to an init position. The init procedure moves all of
the joints to update the sensor information of the joints. Without the init, the robot sometimes performs
strange trajectories, while executing a path. We think this results of uninitialized or invalid joint positions
at startup.

The relax function also is implemented in the motion. If it is called by the planner, the robot sits down
and removes its stiffness. This relax is called after each turn to switch off the motors to preserve their func-
tionality. Otherwise the motors overheat and the robot is losing stiffness. This could result in breakdown
while walking.

5.8 Game Tokens

Due to the amount of game tokens, it was more economical to produce them on our own. This way, it was
possible to choose the preferred colors that could be easier detected by the vision. In the color evaluation,
yellow color could be detected best. Followed by purple, red, blue and green. Although red is very different
to yellow, it is more challenging to detect red in the HSV color-space, because red is at the start and end
hue value of the circle of the color cone. This means red can have the hue value of 0 or 2π, as can be seen
in Figure 5.31.

Figure 5.31: A HSV cone from [31] that shows all channels. The circle illustrates, why there is no max-
imum or minimum hue value. All colors are 2π periodical, whereas red is at a hue value of around 0 or
2π.
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The vision is also able to detect red, like any other color. If one of the borders is exceeded, the detection
includes the overlap on the other border side. In this case this corresponds to two color detections for one
color, where two masks are combined with a bitwise OR. Instead of purple, the color red was chosen for
the tokens, because the game board received a blue stripe to support localization. The color red is more
different from blue than purple. Although we talk about colors, the robot does not know any color. It
just looks for color values that are in a range of the values, which are initialized at the calibration step.
The distances on the HSV cone between the different token colors have been visualized in a histogram in
Figure 5.32a, whereas the source image for the histogram is shown in Figure 5.32b. The source image
contains the blue stripe and a token of yellow, red and purple color.

(a) Histogram (b) Source image

Figure 5.32: The histogram of Figure 5.32a shows the game token colors and the blue stripe color in the
HSV color space in a resolution of 360 bins. The left side at bin zero represents a hue in the color cone of
zero, while the right side of bin 360 represents 2π. The overlap of the red color is also visible. Figure 5.32b
shows the source image of the histogram.

Different kind of tokens for the robot to grasp were tested. At first ordinary tokens from a human Nine
Men’s Morris game were used. In general these tokens have a very low height and are difficult to grasp
with Nao autonomously. The next token was ball-shaped, with the intention of having a uniform surface to
detect and grasp. Although they have no sharp borders, which is good for detection, the ball-shaped tokens
tend to roll away or slip out of the hand, if only grasped with two fingers. So in the next test, a cuboid
wood token was used. The cuboid-shape does not roll away and was also graspable with two fingers, but it
has edges that result in shadows and it can tilt, if not placed properly.

All fingers of one hand (see Figure 5.33a) are simultaneously controlled by one wire rope in each hand,
as shown in Figure 5.33b, which is a little bit fragile. A material was required to preserve the hand func-
tionality. Therefore tokens out of foam were manufactured. The tokens performed well on a grasp action,
but if the token is placed, it could jump away like a rubber ball.

The only experienced disadvantage of modeling clay is that it air-drys quickly. After each use the tokens
need to be put back in a plastic box or bag. A cold temperature supports the lifetime of modeling clay
tokens.
The final 2×9 game tokens already have been shown in Figure 4.1. They are not all of equal size but
nevertheless the robot is able to play with them, because the recognition has enough tolerances to deal with
different sizes and distortions.
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(a) Nao’s fingers that are controlled by one wire
rope.

(b) Wire rope mechanic to open and
close all fingers.

Figure 5.33: The pincer fingers and the corresponding wirerope to grasp something

5.8.1 Production of the Game Tokens

The amount of nine tokens requires approximately the following ingredients.

• 1
4 cup of water

• 1
8 cup of salt

• 1
2 table spoon of alum1 [42]

• some color 2

• 1 table spoon of oil

• and a 3
4 cup of flour

For the best result the first four ingredients need to be mixed in a pot and boiled. Then the last two in-
gredients need to be added. Afterwards the mixture has to be removed from the pot and pugged until a
homogeneous mixture is received that feels like plastic modeling mass. The flour generates the basic com-
pound of the modeling clay, while the alum (shown in Figure 5.34), oil and salt influences the consistency.
Especially the alum and oil together with an air-proof storage keeps the modeling clay soft. The cold mass
can be stored in a plastic bag in the fridge with an approximate durability of one year depending on the
usage.

1Alum: is a special chemical compound that consists of hydrated potassium aluminum sulfate and can be bought in a pharmacy
2Colored powder of easter egg color has been used, mixed together with the fluid to receive colored tokens in the end. Note that in

contrast to the easter egg color that colored the mixture very well, colored juices will not work. They will just make the mixture
stickier and do not color the tokens very well.
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Figure 5.34: Alum powder in its solid form, which was used to create modeling clay.

5.9 Other Packages

In order to solve the complete task, our framework uses other ROS-packages that provide tools and func-
tions. Following packages have been used:

• roscpp ”is a C++ implementation of ROS. It provides a client library that enables C++ programmers
to quickly interface with ROS Topics, Services, and Parameters.” [36].

• rospy ”is a pure Python client library for ROS. The rospy client API enables Python programmers
to quickly interface with ROS Topics, Services, and Parameters. The design of rospy favors imple-
mentation speed (i.e. developer time) over runtime performance so that algorithms can be quickly
prototyped and tested within ROS. It is also ideal for non-critical-path code, such as configuration
and initialization code.” [36]

• opencv2, cv bridge and image transport are interfaces to the OpenCV library and easy image
handling [36, 32].

• sensor msgs, geometry msgs and visualization msgs are predefined ROS messages that include
points clouds, vectors, markers etc. [36].

• tf is the transformation package of ROS, which is required for broadcasting and listening to it [36].

• camera calibration parsers are used to parse configuration text files that contain camera parame-
ters [36].

• AR ToolKit and resource retriever are required for the AR ToolKit to recognize the marker. Al-
though the AR ToolKit is no ROS package, we created one that contains the its framework [5].

• arm navigation msgs, nav msgs and kdl are required for the kinematics.

• planning environment ”is a library/ROS node that allows users to instantiate robot models and
collision models based on data from the parameter server with minimal user input.” [36]

• robot state publisher publishes the joint states of the robot to the tf [36].

• rviz is a visualization environment that supports cameras, transformations, points clouds and prede-
fined visualization messages to model the robot and its environment [36]. It is used to visualize and
debug the whole framework. Once rviz has been configured for the project, this configuration can be
saved to a file. Additionally the virtual environment is drawn in the camera, which is very helpful
for debugging.
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Experimental Evaluation

This chapter presents an evaluation of our experimental results. Explanations to specific results are dis-
cussed in Chapter 7. The overall evaluation is similar to the work of [28], because this master project was
developed in cooperation and the components can be tested in combination of the motion and vision mod-
ules only. For example, to get a game state, the robot needs to move the head to watch specific positions
on the board. However the discussion is focused on the vision tasks.

The decision of the color of the game tokens is discussed in Section 5.8. In all tests the color calibration
detected the correct colors. However it also depends on the precision of the user that places the tokens,
which are used for calibration. If the tokens are not located at the ideal positions at the initialization, the
calibration cannot work.

6.1 Network Traffic

The network traffic test evaluates the bandwidth usage of all nodes that communicate with the robot over
the network. Regarding our framework, the average network traffic was measured with a system monitor
in Ubuntu. The results can be seen in Table 6.1.

Node Mean transfer rate Percent of usage
nao get data.py 5 KB/s 6.5 %

nao cam.py 50 KB/s 64.9 %
nao motion control.py 2 KB/s 2.6 %

nao tf.py + world model 20 KB/s 26.0 %

Table 6.1: Average network traffic between the NaoQi and ROS

6.2 Token Placement

In the placement sequence the robot raises its arm, opens its fingers and waits for a human to hand over
a token of its color. The token has to be recognized, the fingers have to be closed and the hand has to be
moved to the target ideal token position without touching anything. When the hand is at the target position,
the fingers open again, release the token and the arm retracts. Due to the shape of some tokens, they could
roll, tilt or just fall out of the hand. Thus the robot checks, if the placed token is on the desired position.
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The recognition has not been mentioned in the table, because all tokens have been recognized correctly
before the placement procedure. The arm position before the placement can be seen in Figure 6.1. The
fingers are already closed a little bit, because the robot has recognized the token.

Figure 6.1: Pre-placement position of the hand, after the token has been recognized and the fingers have
been closed, but before the hand moves to the target position.

Figure 6.2 shows the hand at a target token position on the middle square at the moment when the
token was placed. One can also see that the token will tilt a little bit. The reliability of the placement
procedure has been evaluated with 30 placements of tokens on the board. We evaluated the accuracy of
the token placement. Therefore we distinguished between a success or fail of the placement process. For
a successful placement, a token has to be placed inside its target mask area, next to the ideal position. If
a token is not placed next to its ideal position, but nevertheless in its mask, it could be also classified as a
fail placement. On the inner square there is only a little tolerance to place a token. Not accurately placed
tokens could be misclassified in subsequent game turns.
Additionally we rated how many of the placements were repaired, after the token could not be confirmed
on its target position. The results can be found in Table 6.2.

Figure 6.2: Placement on the middle square
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Repair place
∑ %Success Fail

Place Success 28 0 28 93.33
Fail 1 1 2 6.66

∑ 29 1 30
% 96.66 3.33

Table 6.2: Evaluation of token placements

6.3 Token Grasp

The grasp procedure includes the localization of the robot and the real token position. The robot has to
calculate its arm angles to move the opened hand to the target real token position to grasp the token. When
the hand is at the target position, the fingers are being closed to grasp the token and the hand is raised to a
predefined position for visual confirmation.
A grasp on the inner square is shown in Figure 6.3. One can see that the fingers are very close to the
marker. Another grasp from different views to the middle position of the middle square can be seen in
Figure 6.4. The predefined hand position for the visual confirmation can be seen in Figure 6.5a. The grasp
in the last mentioned figure was a perfect grasp, as the token between the three fingers has no possibility to
fall out of the hand. Another example, where the token has been grasped using two fingers only, is shown
in Figure 6.5b. Although this is a valid grasp, it becomes a challenge, when the token is lost during motion
actions.
The grasping and recognition were evaluated in 30 grasps. A token that was not grasped or lost anywhere,
was classified as fail. The recognition fails, if a token is between two finger and could not be detected or if
a token is detected, when the hand is empty. This test was important to verify the accuracy of the real token
position, calculated after the rectification step of the blob classification. The results are shown in Table 6.3.

Figure 6.3: A grasp of a token on the inner square

Recognition
∑ %Success Fail

Grab Success 18 2 20 66.66
Fail 10 0 10 33.33

∑ 28 2 30
% 93.33 6.66

Table 6.3: Evaluation of token grasps
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(a) External view (b) Rviz model

(c) Internal camera view (d) Internal camera view with rviz overlay

Figure 6.4: All four figures show the grasping procedure of a middle position on the middle square from
different views.

(a) Perfect pose of a successful grasp (b) Successful, but not safe grasp

Figure 6.5: Different token poses inside the fingers
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6.4 Token Classification

The next test evaluates the reliability of the rectification and token classification. The robot has to segment
the tokens from the background, classify it to a strategic position and combine it with multiple observations
to one game state. Sometimes tokens do not lie on their expected position, which may lead to a fail detection
of single positions. The game state procedure has to classify different game board occupations with random
amounts of game tokens. Figure 6.6 shows a natural game state in the movement phase from an external
camera. An artificial setup from an external view can be seen in Figure 6.7. The detected game state of
the last mentioned figure can be found in Figure 6.8. In contrast to the figures taken by an external camera,
Figure 6.9 represents a game state in the rviz model. We evaluated how many tokens and complete game
states are classified correctly. Empty positions do not contribute to the correct classification, only tokens
that are classified correctly. However, if an empty position is classified as a token, it contributes to the
misclassification. The evaluation can be found in Table 6.4.

Figure 6.6: External view to a possible game state during a game

Number of tests 38 %

Number of classified tokens Correct 359 98.63
Wrong 5 1.37

Game states without any misclassification Correct 33 86.84
Wrong 5 13.16

Table 6.4: Evaluation of token and game state classification
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Figure 6.7: External view to an artificial game state setup

Figure 6.8: Detection result printed to the console for the game state, which is shown in Figure 6.7
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Figure 6.9: Game state representation in rviz with the robot model, table, marker and game tokens on the
left. The yellow and red balls represent the recognized tokens and therefore the game state.
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6.5 Walk and Localization

Board positions on other table sides, require the robot to move the torso around the game board to manip-
ulate a token. A walk includes the save movement from, around and towards the table using the internal
odometry for localization, the visual odometry to correct rotations and a path planner for the path around
the board. The relocalization after the walk around and before the walk towards the table is one of the most
difficult parts, because the marker is far away and sometimes occluded by tokens.
In this evaluation, 23 walks around a quarter of the table have been evaluated. All walks, where the robot
moved correctly without touching anything, have been classified correctly. Additionally we added a cate-
gory for slight collisions, because sometimes the robot streaked the table without any change for the game
situation. Walks fail, if the robot bumps into the table, fails to relocalize, moves too far or short. Most of
the time there is a reason for a fail walk, like a obstacle on the ground, a tensed network cable or hot joints.
In these case we did not rate the walk. Figure 6.10 shows the robot in a corner position, which was passed
during a walk. When the robot is located in such a position, it cannot see the marker. On rotations around
its vertical axis, deviations of up to ten degrees are possible, depending on the angle to rotate. On other
undergrounds the maximum deviation may differ from our tests. The visual odometry works as expected
(see Figure 6.11), as long as the background that is captured by the top camera does not change between
the rotation of the head and torso. If the background changes completely, as shown in Figure 6.12, not
enough matches can be found to make an assumption about the rotation. In this case, the odometry informs
the walk planner that no correction can be applied and the robot has to rely on its internal odometry. The
walk evaluation can be found in Table 6.5.

(a) External view (b) Rviz representation

Figure 6.10: A walk around a corner of the board. The robot is far away from the board, which is visible in
the top left corner of Figure 6.10a. The robot cannot see the marker in this pose.
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Walk
∑ %Success Slight collisions Fail

Marker Found 10 4 0 14 60.86
Lost 9 0 0 9 39.13

∑ 19 4 0 23
% 82.61 17.39 0

Table 6.5: Evaluation of walks around the board

Figure 6.11: Visual odometry: Both images after rotation with enough visualized matches to compute the
rotation angle deviation.

Figure 6.12: Visual odometry: Both images after rotation with too little matches. No reliable assumption
of the rotation deviation is possible.
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Conclusion

This thesis presents a general architecture for playing a board games autonomously with a humanoid robot.
We faced and solved many challenges that arose during game play, like robust localization and classification
of game tokens and accurate position estimation with a single camera. We showed a working implementa-
tion, which does not require any external sensors to successfully play Nine Men’s Morris.
In the end, when we tried to play whole games, we had a severe robot specific problem. During the move
of the opponent player the robot has some time to relax its joints. This time is limited by the time the user
needs to perform a move, but is essential to prevent the joints from overheating. On continuous usage,
with only little time to relax, Nao’s motors are overheating and they lose stiffness. This leads to instable
walk procedures, where the robot just breaks down or falls on the ground. We thought about changing the
strategy to lower the board where Nao’s has to bend over, but where it is able to acquire the game state
while sitting to relax its joints as in the approach of [25]. Additionally a lower game board improves the
angle from the camera to the marker. It would be one way to cope with stability issues, but the board height
also influences the workspace of possible positions to manipulate tokens. Moreover the robot could not sit
with its legs below the table and therefore the distance to the game board increases. Possibly there will
arise other challenges, we have not taken into consideration yet.
The game engine framework has been included in our framework and was tested with a dummy database.
At the moment a simulator is used for playing, because the computation of the full database is still running.
The following sections discuss the experimental results of the individual tasks.

7.1 Network Traffic

The reason why this was measured is that we do not know why the wireless connection was very weak.
We assumed that one node consumes the network bandwidth, but the traffic evaluation has disapproved
that. When the robot was connected wireless, movement commands were executed a few seconds delayed
and recorded images arrived approximately 10 seconds later. Even with deactivated vision, the delay was
remarkably worse than a wired connection. Recently we used another wireless router next to the robot,
which improved the connection and solved the delay issue. However, the transmission over the Ethernet
cable is three times faster. As table 6.1 shows, most network traffic is produced by transmitting the camera
images from the robot to our computer. The other major part of the traffic is created by a script that
periodically requests all joint values, which are required for the localization and kinematic.

Although a wireless connection is convenient, we faced an issue with delayed camera images. The vision
tasks are synchronized by time stamps, which are saved in each image. If a task requires an updated image,
it waits until it gets an updated one. The timestamp of each image is set in the camera node, when the
transmitted image arrives at our computer. It would better to set the time stamps when the images are
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taken. The NaoQi also sets a timestamp at the image on capture, but as the robot has an external system
and clock, it is not synchronized with our framework yet.

7.2 Place

As table 6.2 shows, the placement procedure works quite well, even including game board side changes,
the target position always was found correctly. Furthermore the requested token always was recognized
immediately after it has been placed in the hand. Sometimes it happens tokens roll away or tilt.
In the 30 test cases the tokens rolled out of the target mask once, into another mask, where a token of
the same color was already occupying this position. The robot noticed that the token was not on the
target position, scanned the whole game board and detected the missing token in the neighboring mask. It
automatically grasped this token successfully and placed it again on its destination.

The one fail case was a placement in the correct target mask, but the token tilted on release, so it was
“far” away from its ideal position (see Figure 7.1). This concerned a token on the inner square, which
means that there is only very little tolerance to the next token on that square. Although the game state
was classified correctly from the same side, this token was not found from another table side, when it was
occluded by another token. Hence this placement was classified as fail.

Figure 7.1: A misplaced token on the inner square

7.3 Grab

Table 6.3 shows that there are some issues concerning the grasp of a token. In the test setup, 33,3% of them
were not grasped correctly, because the three-dimensional position was not accurate enough or the thumb
missed the token. Even a slight uncertainty of a few millimeters results in a fail grasp, because the fingers
will slip on the border of the token and push it away. In two cases the token was grasped correctly, but was
not recognized in the hand. This could happen if the token dropped out of the hand, because the grip was
not firm enough or the token was not correctly arranged inside the hand. The first and easiest issue has been
resolved in the meantime by grasping a little bit firmer. Sometimes the tokens are grasped with only two
fingers as shown in Figure 7.2. If the robot opens its fingers, the token will fall down in front of the robot.
In contrast to a grasp with the thumb and the outer finger, where the token will roll into the palm. It will
stay there until a human player removes it. This could be solved by evaluating the area, which is occupied
by the token in the hand. In case the token is close to the robot, which refers to the inner finger, the robot
will rotate the wrist a little bit, so that the token will also roll into the palm instead of falling down.
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Figure 7.2: Unsafe grasp with two fingers

7.4 Get Game State

The procedure to acquire the game state works reliable, however there are some special cases where all
tokens could be detected, stated in Table 6.4. In two cases, the unrecognized token was a misplaced in the
inner square. From the side where the token was placed, it could be recognized but when the robot walked
to around one corner, this token was too far away from its expected position and the position was marked as
unoccupied. All other positions, except some distant tokens, were classified correctly. At the upmost, only
one token was classified falsely in each game state. The game state recognition can be further improved
by a voting strategy for all positions and players, also regarding different view angles. The speed of the
recognition could be increased by planning a more intelligent trajectory. Both ideas require an intelligent
handling for incomplete seen masks of a position, which has not been solved yet.

7.5 Walk

Lately we discovered that the walk procedure works much better without the connected power cable. We
classified some walk procedure as slight fail in Table 6.5, because the robot touched the game board slightly,
without any harm or game change. The “advantage“ of a slight fail walk is that the robot is closer to the
board, so the marker can be found quickly to relocalize. In other cases the robot walked around the board
perfectly, but did not find the marker, because from its perspective the marker was occluded by tokens.
As the robot did not find the marker, it looked about for a blue stripe in front of it and walked towards it,
leaving enough space for not touching the game board. When the robot was closer to the board, the marker
was found and it relocalized. When the robot was relocalized, it stepped to the table correctly. The visual
odometry also worked very well to correct the rotation of the torso. However in Figure 6.12, I move in
front of the robot, which results in different images and no reliable assumption can be made, because there
are too little matches. If the inner circle is completely occupied, it gets very difficult to detect the marker,
because the black border of it also requires a white adjacent region for detection. This is sometimes not
possible if the player of the darker color has tokens in the inner square.
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7.6 Future Work

There are several possibilities to improve our framework, as we want to have a less restrictive setup. Even
though this project used a marker for the localization, further developments are necessary to show up that
it is possible to play the game without a marker using an adapted SLAM as proposed in [14] or [27].
The drawback of such a mapping and self-localization approach is that the camera has to be active all the
time, tracking the movement. The tracking procedure consumes processing power and has difficulties to
handling motion blur. There are strategies to find a trade off between movement speed and motion blur,
proposed in [24].
We would also like to reduce the human interaction that is required for game play. Instead of handing over
tokens that are going to be placed or removed, the robot should take the tokens out of a box next to the
game board. If we improved the range of the ability to grasp tokens lying in the middle of the game board,
the robot would only need to move at maximum around one corner of the table for one manipulation. This
would also be one possibility speeding up the framework. Additionally for some token moves, it would be
possible to swap the token between the hands to save a walk around the board.
We thought about an automatic color calibration at startup. Instead of the two predefined positions, which
are used to initialize the player colors, the robot could take one color that is distinctive from the game board
surface color after the turn of the human player. Its own color can be calibrated, when the robot waits for
a token being handed over by the human player. When the color camera image that watches the fingers
change, the robot knows that something has to be in its hand, which would be a token of the robot’s player
color.
As a next step we thought about synchronizing the time of the robot with our external system, by measur-
ing the latency and time difference. This way we could set the correct time stamp for the images, when
they were taken and the framework would be delay independent. Then the wireless connection could be
used too. Future approaches should also use an online obstacle detection to detect dynamically changing
environments, as well as a native implementation on the robot. Finally the architecture should by expanded
to handle a variety of board games. Board games like chess, where the game tokens are inhomogeneous,
so we believe will be the next challenge.
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