
Master’s Thesis

On the Usage of Value- and
Dependency-based Models for

Spreadsheet Debugging with SMT Solvers

Andrea Höfler
andrea.hoefler@student.tugraz.at

Institute for Software Technology (IST)
Graz University of Technology

Inffeldgasse 16B/II,
8010 Graz, Austria

Supervisors: Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa,
Dipl.-Ing. Dr.techn. Birgit Hofer

Graz, February 2015

Abstract

Spreadsheet programs count among the most used end-user programs. They
are vital for many businesses, but also commonly used by private people.
Therefore, especially because these programs are so vastly used, it would be
preferable that spreadsheets are free from errors. This however, is rarely
the case, showing the importance of spreadsheet debugging. There are
many different approaches for spreadsheet debugging. However, they are
hardly used in practice, due to unreasonable debugging time or unsatisfy-
ing results. Therefore, in this work we extend a framework developed by
a team at the Graz University of Technology with a spreadsheet debug-
ging approach based on the principles of Model-based Software Debugging
(MBSD) with dependency-based models in combination with Z3, a Satisfia-
bility Modulo Theories (SMT) solver. Additionally, we integrate a method
to verify dependency-based diagnoses with value-based models to improve
the diagnoses’ qualities. Furthermore, we compare our dependency-based
approaches with the framework’s existing value-based approach. In doing
so we show 1) that on average debugging spreadsheets with dependency-
based models is considerably faster than with value-based models, 2) that
the quality of the dependency-based diagnoses can be improved to equal
that of the value-based approach when verifying the diagnoses with value-
based models, 3) that in the best cases on average around ten cells need to
be inspected to find a faulty cell among the reported diagnoses, and 4) that
there is a correlation between a low diagnoses quality and a high debugging
time. Based on these findings it is possible to further improve the runtime
of the dependency-based approaches and the quality of their reported di-
agnoses. Furthermore, due to the extension of dependency-based models
to the framework it is now possible to integrate any Boolean Satisfiability
(SAT)- or SMT solver and compare its performance to Z3 when debugging
spreadsheets.

Kurzfassung

Tabellenkalkulationsprogramme zählen zu den meist genutzten Enduser-
Anwendungen. Sie sind aus Unternehmen nicht wegzudenken und wer-
den auch im privaten Sektor sehr häufig verwendet. Genau aus diesem
Grund, da diese Programme so weit verbreitet sind, wäre es wichtig, dass
Tabellenkalkulationen frei von Fehlern sind. Leider ist das nur selten der
Fall, was die Wichtigkeit von Tabellenkalkulationsdebugging aufzeigt. Es
gibt viele unterschiedliche Ansätze um Tabellenkalkulationen zu debuggen,
allerdings werden sie kaum in der Praxis genutzt. Das liegt unter anderem
daran, dass die Debug-Zeit zu lange oder das Ergebnis zu unzufriedenstel-
lend ist. Aus diesem Grund erweitern wir in dieser Arbeit ein Framework,
entwickelt von einem Team an der Technischen Universität Graz, um eine
Methode zum Debuggen von Tabellenkalkulationen. Diese Methode basiert
auf den Grundlagen von Model-based Software Debugging (MBSD) mit
abhängigkeits-basierten Modellen in Kombination mit Z3, einem Satisfia-
bility Modulo Theories (SMT) Solver. Zusätzlich fügen wir dem Frame-
work eine Methode hinzu um abhängigkeits-basierte Diagnosen mit wert-
basierten Modellen zu überprüfen und somit die Qualität der Diagnosen zu
steigern. Weiters vergleichen wir die abhängigkeits-basierten Ansätze mit
der—bereits im Framework integrierten—wert-basierten Methode. Dabei
zeigen wir, 1) dass im Durchschnitt das Debuggen von Tabellenkalkula-
tionen mit abhängigkeits-basierten Modellen deutlich schneller ist als mit
wert-basierten Modellen, 2) dass mit wert-basierter Überprüfung die Qual-
ität der abhängigkeits-basierten Diagnosen soweit verbessert werden kann,
dass sie gleich der Qualität der wert-basierten Diagnosen ist, 3) dass im
besten Fall durchschnittlich ungefähr zehn Zellen untersucht werden müssen,
bis eine falsche Zelle in den retournierten Diagnosen gefunden wird, und
4) dass es einen Zusammenhang zwischen einer niedrigen Diagnosen Qual-
ität und einer hohen Debug-Zeit gibt. Basierend auf diesen Ergebnissen
ist es möglich die Debug-Zeit der abhängigkeits-basierten Methoden und
die Qualität der Ergebnisse zu verbessern. Zusätzlich ist es durch die Er-
weiterung am Framework möglich jeden Boolean Satisfiability (SAT)- oder
SMT Solver ins Framework zu integrieren und seine Leistung beim Debuggen
von Tabellenkalkulationen mit der von Z3 zu vergleichen.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources / resources, and that I have explicitly
marked all material which has been quoted either literally or by content
from the used sources.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

. .
Datum Unterschrift

Contents

1 Introduction 1

2 Basic Definitions 5

3 Constraint-, SAT- and SMT Solvers 10
3.1 Constraint Solver . 10

3.1.1 Constraint Satisfaction Problem 11
3.1.2 Famous Problems expressed as CSP 11
3.1.3 Resolution of CSPs . 13

3.2 SAT Solver . 17
3.2.1 Propositional Logic . 17
3.2.2 Boolean Satisfiability Problem 18
3.2.3 Famous Problems expressed as SAT 18
3.2.4 Davis-Putnam-Logemann-Loveland Paradigm 19

3.3 SMT Solver . 22
3.3.1 First-order Logic . 23
3.3.2 Satisfiability Modulo Theories Problem 24
3.3.3 Theories . 25
3.3.4 Famous Problems expressed as SMT 33
3.3.5 Resolution of SMT . 34
3.3.6 DPLL(T) Paradigm 36

3.4 Conclusion . 40

4 SMT Solver Comparison 41
4.1 Z3 . 42
4.2 CVC4 . 46
4.3 MathSAT 5 . 47
4.4 SMTInterpol . 50

i

4.5 veriT . 51
4.6 Yices 2 . 52
4.7 Findings . 53

5 Framework and Implementation 55
5.1 Existing . 55

5.1.1 Model-based Software Debugging 56
5.1.2 Z3’s Solving Methodologies 61
5.1.3 Supported Spreadsheet Functions 67

5.2 Extensions . 69
5.2.1 Dependency-based Models 69
5.2.2 Sophisticated Dependency-based Model 74
5.2.3 Verifying Diagnoses with Value-based models 78
5.2.4 Extended Spreadsheet Functions 82

6 Empirical Evaluation 86
6.1 Spreadsheet Corpus . 86
6.2 Evaluation Results . 88

6.2.1 Runtime Comparison 90
6.2.2 Diagnosis Comparison 91
6.2.3 Faulty Cells’ Distribution 100

7 Related Work 105

8 Conclusion 108

List of Figures 111

List of Tables 112

List of Algorithms 113

Acronyms 114

Bibliography 116

ii

Chapter 1

Introduction

Spreadsheet programs, like Microsoft’s Excel, OpenOffice’s Calc or Apple’s
Numbers, count among the most used end-user programs. They are vital
for many businesses, but also commonly used by private people. Due to
their vast functionality these programs can be considered as programming
environments for non-professional programmers. With help of spreadsheet
programs, people can easily create very complex spreadsheets, sometimes
containing thousands of formulas. Since these programs are so vastly used,
it would be preferable that spreadsheets are free from errors. This however,
is rarely the case, as Ray Panko shows in a study conducted in 1995 to
2007 [56]. During this study about 100 spreadsheets of different US and
British companies were investigated and 88% of these spreadsheets were er-
roneous. Brown and Gould [14] conducted a study, where nine highly expe-
rienced spreadsheet developers had to each develop 3 different spreadsheets.
Even though these persons can be considered experts in the field of spread-
sheet development, 63% of the spreadsheets contained errors. These exam-
ples show the importance of spreadsheet debugging and even though there
are many different approaches, spreadsheet debugging is hardly used in prac-
tice. Strategies that try to debug spreadsheets with the help of constraint
solvers are restricted through the limited support of real numbers. Further-
more, if large spreadsheets are considered, it is difficult to debug the spread-
sheets within a reasonable time span. That is where Satisfiability Modulo
Theories (SMT) solvers come in handy to get rid of these limitations. SMT
solvers can handle real numbers and since they operate modulo a theory, they
can easily be expanded to handle many different data types. To determine

Chapter 1 Introduction

how well SMT solvers perform when debugging spreadsheets, we make use of
a framework [6] developed by a team at the Graz University of Technology.
This framework compares different SMT- and constraint solvers based on
their execution time and performance when debugging spreadsheets. Their
approach for spreadsheet debugging is called Model-based Software Debug-
ging (MBSD) with value-based models. Until now they integrated Z3, an
SMT solver, and two constraint solvers, called Choco and Minion. Their
research showed that Z3, in combination with the MCSes-U algorithm [48],
exceeds the constraint solvers concerning modeling abilities and execution
time. On average Z3 is six times faster than Choco and Minion. Whereas,
the performance difference between Choco and Minion is minimal. How-
ever, their work is mainly focused on integrating the constraint solvers and
it remains unclear, whether other SMT solvers would yield similar perfor-
mance as Z3 when debugging spreadsheets with the MBSD approach and
value-based models. Therefore, we give a general overview of constraint-,
Boolean Satisfiability (SAT)- and SMT solvers. We show how they work and
how they solve specific problems. Furthermore, we conduct a comparison
of different state-of-the-art SMT solvers, regarding their functionality and
suitability for spreadsheet debugging. For the comparison we only consider
solvers that are able to operate with real numbers and since a translation of
a spreadsheet into a spreadsheet debugging problem results in a non-linear
arithmetic problem, it is equally important that the SMT solvers support the
theory of non-linear arithmetic. Moreover, the spreadsheet debugging algo-
rithm MCSes-U that performed best in combination with Z3 depends on the
solvers’ functionality to extract unsatisfiable cores. Therefore, another im-
portant requirement is the solvers’ support of unsatisfiable core extraction.
Surprisingly we found that not many SMT solvers support real numbers
and unsatisfiable core extraction. Furthermore, Z3 is the only solver that
supports non-linear arithmetic, meaning it is currently the only SMT solver
suitable for MBSD of spreadsheets with value-based models. Therefore,
we introduce two different dependency-based models for MBSD of spread-
sheets, based on the research of Hofer et al. [43] and integrate them into
the framework [6]. Dependency-based models can be expressed in Propo-
sitional Logic (PL) and therefore, any state-of-the-art SAT solver could be
used for MBSD of spreadsheets with dependency-based models. However,
most SMT solvers integrate a SAT solver and therefore, we can also use any

2

Chapter 1 Introduction

modern SMT solver. Since debugging spreadsheets with dependency-based
models mostly results in less accurate diagnoses than with the value-based
approach, we furthermore, introduce a method to verify dependency-based
diagnoses with value-based models to improve their quality. However, using
value-based models for diagnosis verification changes the spreadsheet prob-
lem into a non-linear arithmetic problem. Therefore, the verification can
only be conducted with Z3. Finally, we evaluate the different approaches.
Specifically, we compare the runtimes of the approaches with one another
and state that on average debugging spreadsheets with dependency-based
models is considerably faster than with value-based models. The fasted
approach (sophisticated without value-based diagnosis verification) for ex-
ample is on average 7.4 times faster than the value-based approach. Fur-
thermore, we compare the quality of each approach’s reported diagnoses and
show that the quality of the dependency-based diagnoses is slightly worse
than that of the value-based approach. However, it can be improved to
equal the quality of the value-based approach when verifying the diagnoses
with value-based models. Furthermore, we show that there exists a cor-
relation between a low diagnoses quality and a high runtime. At last, we
give an overview of the faulty cells’ distribution by means of the reported
diagnoses. We show that in the best cases on average around ten cells need
to be inspected to find a faulty cell among the reported diagnoses. In the
average case this number increases to an average of around seventeen cells.
Based on these findings it is possible to further improve the runtime of the
dependency-based approaches and the quality of their reported diagnoses.
Furthermore, due to the extension of dependency-based models to the frame-
work, it is now possible to integrate any SAT- or SMT solver and compare
its performance to Z3 when debugging spreadsheets.
To summarize, we state the main contributions of this master’s thesis which
are:

• an explanation of the basic functionality of constraint-, SAT-, and
SMT solvers,

• a comparison of six state-of-the-art SMT solvers concerning their func-
tionality,

• an extension of the framework with dependency-based models for MBSD
of spreadsheets with SMT solvers,

3

Chapter 1 Introduction

• an introduction of a value-based verifying method to improve the qual-
ity of dependency-based diagnoses and its integration into the frame-
work,

• an extension of the framework with additional spreadsheet functions,

• an enhancement of the list of functions for which coincidental correct-
ness might occur, and

• an evaluation of the runtime, diagnoses quality and faulty cells’ dis-
tribution of the dependency-based approaches in comparison to the
value-based approach.

This master’s thesis is organized as follows: Chapter 2 states the basic
definition of spreadsheets and the spreadsheet language. Chapter 3 intro-
duces the principles of constraint-, SAT- and SMT solvers. We give a de-
tailed description of their input languages, the problems they are designed
to solve and how they operate to solve these problems. Chapter 4 consists of
a comparison of six state-of-the-art SMT solvers that support real numbers.
We give a short summary of their basic functionality as well as describe
their technical features. In Chapter 5 we describe the framework’s [6] ex-
isting features and design. Furthermore, we state the extensions we added
to the framework, including the dependency-based models and the value-
based diagnosis verification. Chapter 6 compares the different approaches
concerning their runtime, quality of diagnoses and distribution of faulty cells
among the reported diagnoses. Some related work is discussed in Chapter 7
and finally, the work is concluded in Chapter 8.

4

Chapter 2

Basic Definitions

This chapter provides an overview of the syntax and semantics of spread-
sheets and the definition of the spreadsheet debugging problem as a fault
localization problem. Furthermore, we describe the differences between
spreadsheet debugging and conventional software debugging, as well as how
these differences can be overcome so that traditional software debugging
strategies can be applied to spreadsheet debugging.

Given the complexity of functions available in spreadsheet programs it would
be unreasonable to give a full definition of the spreadsheet syntax. There-
fore, to keep the extent of this definition manageable we restrict it to basic
arithmetic operators (+, -, ·, /, <, . . .) and functions which can be easily
expressed in First-Order Logic (FOL), like for example the conditional (IF),
summation (SUM), minimum (MIN) or power (POWER) function. Fur-
thermore, we base our definitions upon the fact that common spreadsheet
programs only support a finite number of cells. Even though programs the-
oretically allow loops, we additionally restrict spreadsheets to be loop-free.
Therefore, from here on the term spreadsheet signifies a finite and loop-free
spreadsheet.

If we consider spreadsheets taken from Excel, Numbers or Calc, we can say
that they are nothing more than a matrix consisting of cells. Each cell c has
a position p(c), a value v(c) and a formula f(c). We define these functions
and the spreadsheet syntax and semantics (Definition 2.1 to Definition 2.6)
like Hofer et al. in [42].

Chapter 2 Basic Definitions

Definition 2.1. Position: The position of a cell consists of two coordi-
nates x and y, representing the column and row number of a cell within a
spreadsheet. px(c) returns the column number and py(c) the row number.

Definition 2.2. Value: The value of a cell can either be undefined ©, an
error ⊥, a Boolean, an integer, a real number or a string. The value itself is
determined through the evaluation of the formula f(c).

Definition 2.3. Formula: A formula of a cell f(c) can either be empty ε
or a formula written in the language L.

Definition 2.4. Area: An area of a spreadsheet Π is a set containing
multiple cells.

c1:c2 =
{
c ∈ Π

∣∣∣∣∣ px(c1) ≤ px(c) ≤ px(c2)∧
py(c1) ≤ py(c) ≤ py(c2)

}

Above definitions describe the basic structure of spreadsheets. Defi-
nitions 2.5 and 2.6 introduce the functional language L which is used to
represent the formulas. It takes constants and values of cells together with
operators and functions as input, to compute values for other cells. Not
all functions of spreadsheet programs are included in the definition, since
extending the language with new operators and functions is straightforward.
Furthermore, no recursive functions are allowed.

Definition 2.5. Syntax of L: A formula f(c) is an expression e ∈ L if it
is of the following form:

• a Boolean, integer, real number or string.

• a cell name (i.e. the position of another cell)

• an operation of the form e1 o e2, with e1 and e2 being expressions and
o ∈ {+,−, ·, /, <,>,=, <>}

• an expression of the form (e), where e is an expression

• a function like f(e1,. . . ,en), with f denoting functions like IF, SUM,
MIN, POWER, . . . and e1,. . . ,en being expressions.

For the definition of the semantics of L an interpretation function J·K is
introduced. It maps an expression e ∈ L to a value, which is either © if no

6

Chapter 2 Basic Definitions

value can be determined, ⊥ if a type error occurs, or a number, Boolean or
string.

Definition 2.6. Semantics of L:

• If e is a constant k, then the constant is given back as a result
(JeK = k).

• If e denotes a cell name c, then its value is returned (JeK =v(c)).

• If e is of the form (e1), then JeK = Je1K.

• If e is of the form e1 o e2, then:

– If either Je1K = ⊥ or Je2K = ⊥, then Je1 o e2K = ⊥,

– else if either Je1K =© or Je2K =©, then Je1 o e2K =©,

– else if o ∈ {+,−, ·, /, <,>,=, <>}, then

Je1 o e2K =
{

Je1K o Je2K if all expressions evaluate to a number.

• If e is of the form f(e1,. . . ,en), then the return value of function f’s
implementation is returned. Let fI be the implementation of f, then
J f(e1,. . . ,en) K = fI(Je1K,. . . ,JenK). The return value of fI might be ⊥
if type errors or mismatches of arguments occur.

Above definitions are really straight forward since they are very similar
to the semantics used in most modern spreadsheet programs. However, for
the definition of the spreadsheet debugging problem we still need to define
a failing test case. For that purpose we introduce Definitions 2.7 to 2.13
which are based on Hofer et al. [43].

Definition 2.7. Referenced cell: A cell c is a referenced cell, or referenced
by an expression e ∈ L, iff c is used in e.

Definition 2.8. Function ρ: Let ρ(e) be a function, that returns a set
consisting of all referenced cells for a specific expression, then ρ(e), e ∈ L is
defined as follows:

• If e is a constant, then ρ(e) = ∅.

• If e is a cell c, then ρ(e) = {c}.

7

Chapter 2 Basic Definitions

• If e = (e1), then ρ(e) = ρ(e1).

• If e = e1 o e2, then ρ(e) = ρ(e1) ∪ ρ(e2).

• If e = f(e1,. . . ,en), then ρ(e) =
⋃n
i=1 ρ(ei).

Definition 2.9. Direct data dependency: A cell c is direct data depen-
dent on another cell c′ iff c′ is referenced in f(c).

dd(c′, c)⇔ c′ ∈ ρ(f(c))

Definition 2.10. Input cell: A cell c is an input cell, iff it is not direct
data dependent on another cell c′ and there exists at least one cell c′′ that
is direct data dependent on c. (Cells containing strings are ignored.)

Input(Π) = {cells c : (@c′ : dd(c′, c) ∧ ∃c′′ : dd(c, c′′))}

Definition 2.11. Output cell: A cell c is an output cell, iff there exists
no cell c′ that is direct data dependent on c and c is direct data dependent
on at least one other cell c′′.

Output(Π) = {cells c : (@c′ : dd(c, c′) ∧ ∃c′′ : dd(c′′, c))}

Definition 2.12. Test case: A test case T for a spreadsheet Π is composed
of two parts: input I and output O. I is a set of tuples (c, v), with c being
an input cell of Π and v being its value. O is a set of tuples (c, vexp), with
c being a cell of Π and vexp being its expected value.

Definition 2.13. Failing test case: A test case T is a failing test case, if
there exists at least one cell c where the calculated value v(c) differs from
the expected value vexp. If T is a failing test case, then O can be split into
two sets, Owrong and Ocorrect. Owrong contains all output cells for which
hold that v(c) differs from vexp. Ocorrect contains all output cells where the
calculated value equals vexp or Ocorrect = O \ Owrong.

Now with above definitions it is easy to state the spreadsheet debugging
problem.

Definition 2.14. Spreadsheet Debugging Problem Given a spread-
sheet Π and a failing test case T related to Π, the Spreadsheet Debugging
Problem (SDP) is the problem of finding the locations in Π, that could cause
T to fail.

8

Chapter 2 Basic Definitions

This definition states the spreadsheet debugging problem as a fault lo-
calization problem. This implies, that the debugging process only locates
possible causes of faults, while no solution is offered. However it is possi-
ble, yet not in the scope of this work, to alternatively define the debugging
problem as a fault correction problem.

Like Hofer et al. in [42] describe, there are many issues to overcome when we
apply conventional software debugging techniques for traditional procedural
and object-oriented programming languages to spreadsheets. For conven-
tional programming languages, there exists the concept of code coverage to
measure the lines of code executed by test cases. This concept cannot be ap-
plied to spreadsheets, since they do not have explicit lines of code and do not
support test execution. To resolve these problems some modifications need
to be made. The lines of code need to be mapped to the spreadsheet’s cells,
and so-called cones need to be computed as an alternative to the missing
concept of code coverage in spreadsheets.

Definition 2.15. Function Cone: The Function Cone for a cell c ∈ Π
computes the data dependencies of c like follows:

Cone(c) = c ∪
⋃

c′∈ρ(c)
Cone(c′)

Finally, the correctness of the output cells are either checked manually,
by comparing the results of the current spreadsheet with another one which
is considered correct, or automatically with a technique that detects spread-
sheet "smells" [26].

9

Chapter 3

Constraint-, SAT- and SMT
Solvers

Constraint solvers, Boolean Satisfiability (SAT) solvers and Satisfiability
Modulo Theories (SMT) solvers are terms that often occur together in sci-
entific papers. The technologies behind these terms are based on the same
principles, also the fields of application for these solvers are closely related.
Therefore, for people not familiar with topics concerning these technologies,
it is difficult to understand the differences, unless it is understood how they
work and what they are designed to do. Therefore, in this chapter we give
a short overview of the different solvers, how they work and what kind of
problems they are designed to solve.

3.1 Constraint Solver

In the last few years Constraint Programming (CP) became a more and
more important topic not only in the field of software development, but in
general. The broad application area of CP let many different companies to
exploit this technology to develop a vast number of industrial applications for
distribution planning, production planning and scheduling, tour planning,
personnel allocation and many more [63, p. 11-16].
Constraint solvers take a constraint formula as input and try to find an
assignment for every variable which makes the formula satisfiable. Problems
like that are called constraint satisfaction problems.

Chapter 3 Constraint-, SAT- and SMT Solvers

3.1.1 Constraint Satisfaction Problem

Constraint Satisfaction Problems (CSPs) deal, as the name suggests, with
constraints. Examples for such constraints could be temporal constraints,
constraints by law, or a maximum capacity constraint. To solve a CSP all
the imposed constraints have to be considered.

Definition 3.1. As the Cork Constraint Computation Centre [18] and
Brailsford et al. [13] described, a CSP consists of a set of variablesX1, X2, . . . , Xn

and a set of domains D1, D2, . . . , Dn. Each domain Di corresponds to a vari-
able Xi and contains a range of valid values for the corresponding variable.
Furthermore, CSPs consist of conditions called constraints, which define the
relations of the variables and therefore, restrict the values that each variable
can simultaneously take.

A solution to a CSP is an assignment to every variable with a value from
its domain. If at least one solution is found the problem is satisfiable. On
the contrary, if no assignment can be found that satisfies all constraints,
then the problem is unsatisfiable. Sometimes finding only one solution is
not sufficient. Therefore, all possible solutions need to be found, as is the
case for example if constraint solver are utilized for debugging purposes.

3.1.2 Famous Problems expressed as CSP

Many logic puzzles can be expressed as CSPs, like Sudoku, Numbrix, the
N-queens puzzle and the map coloring problem. As a short demonstration
we describe the later two problems and have a look at how they can be
expressed as CSPs.

N-Queens Puzzle

The N-queens puzzle is based on the rules of chess. Given an n · n chess
board, n chess queens have to be placed on that board in such a way, that
no queen can attack another. (Queens can attack other pieces if they are in
the same row, column, or diagonal from the queen.)
A 4-queens puzzle represented as a CSP can look as follows [18]:

• Variables: Q0, Q1, Q2, Q3 (each queen represents a row; Q0 = queen
in row 0)

11

Chapter 3 Constraint-, SAT- and SMT Solvers

(a) A wrong solution for the 4-queens puz-
zle.

(b) A valid solution for the 4-queens puz-
zle.

Figure 3.1: Example of a 4-queens puzzle.

• Domains: Di = {0, 1, 2, 3} (columns)

• Constraints: no queen can attack another queen

Alldifferent(Q0, Q1, Q2, Q3)∧ for i = 0 . . . 3 ∧ j = (i+ 1) . . . 3,
k = j − i, Qi 6= Qj + k ∧Qi 6= Qj − k

Figure 3.1 shows an example for a wrong solution and a possible valid
solution of the 4-queens puzzle.

Map Coloring Problem

Given a map of a country with different territories and n different colors,
color the map in a way that no neighboring territories have the same color.
Expressed as a CSP for a map of Austria and with three different colors this
might look as follows [44]:

• Variables: W, N, O, ST, B, S, K, T, V (one variable for each territory)

• Domains: Di ={red, green, blue}

• Constraints: neighboring territories must have different colors

(V, T) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . . }
∧ (T, S) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . . }
∧ . . . (for each combination of neighboring territories)

12

Chapter 3 Constraint-, SAT- and SMT Solvers

Figure 3.2: A possible solution of the map coloring problem for the map of
Austria.

Figure 3.2 shows a possible solution of the map coloring problem for the
map of Austria.

3.1.3 Resolution of CSPs

This section describes in a general way how constraint solvers solve CSPs.
A more elaborate explanation can be found under [18] or [67, ch. 1-2].
Generally, solving a CSP means to find an assignment for all variables with-
out violating any of the corresponding constraints. Possible values for each
variable are chosen from the variable’s domain. Domains differ depend-
ing on the type of the variable. For instance, a domain could include only
Boolean values, integer numbers, real numbers, a mix of these or others. The
solving progress itself typically involves a form of search and other various
techniques like backtracking, constraint propagation and local search.

Search

The search starts with choosing a variable and assigns a possible value from
its domain to it. This is continued until an assignment of all variables is
found that fulfills the given formula of constraints. In fact, this is the best
case scenario that hardly ever occurs. It is much more likely that at some
point it is no longer possible to assign a valid value to the remaining variables
due to a conflict with the constraints. This does not necessarily mean the
formula is unsatisfiable. Although, this could be the case, it is much more

13

Chapter 3 Constraint-, SAT- and SMT Solvers

likely that one or more variables got assigned a wrong value. During this
situation constraint solvers use a certain technique called backtracking.

Backtracking

Let us consider a simple depth-first search like described above. At some
point during the search it may no longer be possible to assign a value to a
variable due to the imposed constraints. In that case we must go backward.
We know that a domain holds all possible values which can be assigned
to a variable. When during the search a variable is assigned a value, this
value is chosen randomly from the variable’s domain. If furthermore, the
assignment is consistent with the constraints imposed on the variable, an-
other variable is chosen and the assignment process is repeated. In case
that the assignment is not consistent, another randomly selected value from
the domain gets chosen. If all values of the domain lead to an inconsistent
assignment backtracking occurs. This means, the algorithm goes back a
level in the search tree and assigned variables from a lower level get their
values deleted. The previously assigned variable gets assigned different val-
ues from its domain and the search algorithm continues to assign values to
uninitialized variables. If again no valid assignment for the input formula
can be found, backtracking goes back yet another level and tries different
values for that variable. This is repeated until a solution is found, or until
the algorithm cannot go back further. In that case the formula is unsatisfi-
able. Figure 3.3 illustrates how backtracking works for a simple version of
the n-queens problem.

Constraint propagation

Above described techniques are able to find solutions for CSPs, yet the
efficiency of these procedures can be further improved with the help of con-
straint propagation techniques. One specific form of constraint propagation
is called forward checking. Every time a variable gets assigned a value,
the algorithm retrieves all other variables that are connected by constraints
to the currently instantiated variable and adjusts their domains. Meaning
values that are inconsistent with the current assignment are temporarily
removed from the domains. If in any case a domain becomes empty, then
another value must be chosen for the current assignment, since it is no longer

14

Chapter 3 Constraint-, SAT- and SMT Solvers

Fi
gu

re
3.
3:

Ill
us
tr
at
io
n
of

ba
ck
tr
ac
ki
ng

w
ith

4-
Q
ue

en
s.

15

Chapter 3 Constraint-, SAT- and SMT Solvers

Figure 3.4: Illustration of forward checking with 4-Queens.

possible to assign all variables a value. In the event that no other value can
be chosen for the current variable, the algorithm has to backtrack and the
values temporarily removed from the different domains have to be restored.
That is how forward checking can—to a limited extent—predict which as-
signments will lead to failures and act accordingly to increase efficiency.
Figure 3.4 shows how the above algorithm of forward checking works, again
based on the n-queens problem.

16

Chapter 3 Constraint-, SAT- and SMT Solvers

Local search

Local search first assigns a random value to all variables. This will most
likely lead to an inconsistent state. Therefore, it continues with switching
the values of the variables until a solution is found. It is important to
mention, that local search does not work well with all types of CSPs, but
can find a solution very quickly for some problems. For local search to work
well a good initial assignment is critical. In fact local search works best, if
the initial assignment almost solves the problem.

3.2 SAT Solver

Boolean Satisfiability (SAT) solvers specialize in solving SAT problems. SAT
is a very important topic in computer science. It was the first decision
problem proved to be Nondeterministic Polynomial (NP) complete (1971 by
Stephen Cook and Leonid Levin [70]). In short this means there is not yet
an algorithm known that efficiently solves all instances of SAT. Of course, a
theory like that would lead to a development of many different solvers, each
trying to disprove it. However, with no success to this day. Yet over the
last decade many efficient algorithms were developed, leading to us being
able to solve instances involving tens of thousands of variables and millions
of constraints [62].

3.2.1 Propositional Logic

SAT solvers operate on the language of PL, which Alessandro Farinelli de-
fined in his lecture notes on propositional and first-order logic [35]:

Definition 3.2. Variables: The language of PL consists of Boolean vari-
ables.

Definition 3.3. Operators: In addition to variables, PL makes use of the
operators negation (¬), conjunction (∧) and disjunction (∨).

Definition 3.4. Parentheses: Essentially each finite possible sentence
constructed by operators must be enclosed in parentheses. Many paren-
theses can be omitted though, due to operator priorities and thus improve
readability. Priorities from highest to lowest are: ¬, ∧, ∨.

Definition 3.5. Literals: A literal is a variable or its negation.

17

Chapter 3 Constraint-, SAT- and SMT Solvers

Definition 3.6. Terms: A term is a string of literals connected by con-
junctions.

Definition 3.7. Atoms or formulas: an atom is a formula.

• If P is a formula, ¬P is a formula.

• If P1 and P2 are formulas, P1 ∧ P2 is a formula.

• If P1 and P2 are formulas, P1 ∨ P2 is a formula.

• Every finite concatenation of above rules is formula as well.

3.2.2 Boolean Satisfiability Problem

The Boolean or propositional satisfiability problem (SAT) describes the
problem of determining whether the variables of a given Boolean formula
can be assigned in such a way that the formula evaluates to TRUE. In other
words, it decides if a Boolean formula is satisfiable (at least one instantiation
evaluates to true) or unsatisfiable (all instantiations evaluate to false). The
function itself and all its variables are all binary valued. In some special
cases, especially, in computational complexity theory, SAT is restricted to
be in the Conjunctive Normal Form (CNF). This means an AND (∧) of ORs
(∨), whereas each OR term is called a clause.

Example 3.1. Examples of CNFs:

• (A ∨B) ∧ (C ∨A)

• (A ∨B ∨ ¬C) ∧A ∧D

• ¬A ∧B ∧ (C ∨D)

3.2.3 Famous Problems expressed as SAT

Like for CSPs we show how the N-queens puzzle and the map coloring
problem can look like, when expressed as a SAT problem.

N-Queens Puzzle

One possible option of the 4-queens puzzle expressed as a SAT problem
follows:

18

Chapter 3 Constraint-, SAT- and SMT Solvers

• Variables: p11, p12, p13, p14, p21, . . . , p43, p44 (one variable for each field
of the board)

• Domains: Di={0, 1} (since the variables are of type Boolean)

• Constraints: no queen can attack another queen

((p11∨p12∨p13∨p14)∧ (¬(p11∧p12)∧¬(p11∧p13)∧¬(p11∧p14)∧
¬(p12∧p13)∧¬(p12∧p14)∧¬(p13∧p14)))∧. . . (for each row and column)∧
(¬(p11∧p22)∧¬(p11∧p33)∧¬(p11∧p44)∧¬(p22∧p33)∧¬(p22∧p44)∧
¬(p33 ∧ p44)) ∧ . . . (for each diagonal)

Map Coloring Problem

For the map coloring problem we again use a map of Austria with three
different colors to show one possible way of how the problem can be expressed
as a SAT instance.

• Variables: Wr, Wb, Wg, Nr, Nb, Ng, Or, Ob, Og, STr, STb, STg, Br,
Bb, Bg, Sr, Sb, Sg, Kr, Kb, Kg, Tr, Tb, Tg, Vr, Vb, Vg (one variable
for each territory and color)

• Domains: Di = {0, 1} (since the variables are of type Boolean)

• Constraints: neighboring territories must have different colors

((Wr ∨ Wg ∨ Wb) ∧ ¬(Wr ∧ Wg ∧ Wb) ∧ ¬(Wr ∧ Wg) ∧ ¬(Wr
∧ Wb) ∧ ¬(Wg ∧ Wb)) ∧ . . . (for all colors per territory)) ∧ ((Wr ∨
Nr ∨ Or ∨ STr ∨ Br ∨ Sr ∨ Kr ∨ Tr ∨ Vr) ∧ . . . (for each color)) ∧
(¬(Vr ∧ Tr) ∧ ¬(Tr ∧ Sr) ∧ ¬(Tr ∧ Kr) ∧ ¬(Sr ∧ Or) ∧ ¬(Sr ∧ STr)
∧ ¬(Sr ∧ Kr) ∧ ¬(Or ∧ Nr) ∧ ¬(Or ∧ STr) ∧ ¬(STr ∧ Nr) ∧ ¬(STr ∧
Br) ∧ ¬(STr ∧ Kr) ∧ ¬(Nr ∧Wr) ∧ ¬(Nr ∧ Br) ∧ . . . (for each color))

3.2.4 Davis-Putnam-Logemann-Loveland Paradigm

The Davis-Putnam-Logemann-Loveland (DPLL) procedure was introduced
in 1962 by Martin Davis, Hilary Putnam, George Logemann and Donald
Loveland to decide satisfiability of PL formulas in CNF, later known as SAT.
Nowadays, over 50 years later, different variations of the DPLL procedure
build the basis for most state-of-the-art SAT solvers [28], [27]. It consists of
the following transition rules, which describe in a general way how DPLL-
based SAT solvers work.

19

Chapter 3 Constraint-, SAT- and SMT Solvers

UnitPropagate

M ‖ F, C ∨ l =⇒ M l ‖ F, C ∨ l if
{
M |= ¬C
l is undefined in M

For a CNF formula to be satisfiable, all its clauses have to be true. There-
fore, UnitPropagate looks for clauses whose literals have all been assigned
the value false, with exception of one literal, whose value is not yet defined
in model M . The only way for the clause to be true in M is to extend M
with the remaining literal equal to true [54].

PureLiteral

M ‖ F =⇒ M l ‖ F if

l occurs in some clause of F
¬l occurs in no clause of F
l is undefined in M

A literal l is called pure, if its negation does not occur in the formula F .
Leading to the consequence, that F is only satisfiable if l is true. Therefore,
M has to be extended to make l true [54].

Decide

M ‖ F =⇒ M ld ‖ F if
{
l or ¬l occurs in a clause of F
l is undefined in M

Decide conducts a case split. It chooses an undefined literal l, assigns
a truth value to it and adds it to M . Additionally, l gets denoted as a de-
cision literal ld. In case that l ∈ M cannot be extended to a model of F ,
¬l ∈M must still be considered [54].

Fail

M ‖ F, C =⇒ FailState if
{
M |= ¬C
M contains no decision literals

If a conflicting clause gets detected and M contains no decision literals,
DPLL produces a FailState. Meaning it returns the result that F is unsat-
isfiable [54].

20

Chapter 3 Constraint-, SAT- and SMT Solvers

Backtrack

M ld N ‖ F, C =⇒ M ¬l ‖ F, C if
{

M ld N |= ¬C
N contains no decision literals

If a conflicting clause is detected but no FailState is produced, the Back-
track procedure goes back one decision level, by changing the most recent
decision literal ld to ¬l and removing all literals from M that got added
after ld. Furthermore, ¬l is added to M as a non-decision literal, since the
other possibility has already been tested [54].

Above procedure describes only the theoretical principles of the classical
DPLL algorithm. Modern implementations do not implement this version
of the DPLL algorithm, but an improved one, where the PureLiteral rule
is mostly used in the preprocessing step and Backjumping is used instead
of chronological Backtracking. Furthermore, most DPLL implementations
use the backjump clauses by adding them to the clause set as learned clauses
(lemmas). This process is usually called Conflict-Driven Clause Learning
(CDCL). Modern implementations also make use of a Restart rule, which
restarts the DPLL procedure when the search is not making enough progress.
So for a modern DPLL implementation we have the rules UnitPropagate,
Decide and Fail from the classic DPLL, and in addition the rules Back-
jump, Learn, Forget and Restart [54].

Backjump

M ld N ‖ F, C =⇒ M l’ ‖ F, C if

M ld N |= ¬C, and there is
some clause C ′ ∨ l′ such that:
F, C |= C ′ ∨ l′ and M |= ¬C ′,

l′ is undefined in M, and
l′ or ¬l′ occurs in F or in M ld N

Chronological backtracking always goes back to the last decision literal ld

and negates it to ¬l. Conflict-driven Backjumping evaluates why the con-
flicting clause was produced and then, if necessary, goes back several decision
levels at once, where it adds some new literals to that lower level. This pro-
cess is much more efficient than the backtracking method, since it jumps
over levels unrelated to the conflict [54].

21

Chapter 3 Constraint-, SAT- and SMT Solvers

Learn

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |= C

Learn basically uses backjump clauses (C ′∨ l′) and adds them to the clause
set as learned clauses. Theoretically, Learn allows to add any clause C to
F , as long as all atoms of C are included in either F or M . Meaning, not
only lemmas can be added, but any produced consequence of F [54].

Forget

M ‖ F, C =⇒ M ‖ F if
{
F |= C

Forget, on the contrary to Learn, removes lemmas with relevance or ac-
tivity levels below a certain threshold. For instance, if a clause has not
become a unit or conflicting clause for n iterations, it gets removed. Similar
to Learn, Forget theoretically can remove not just those clauses added by
Learn, but any clause, if it is entailed by the rest of F [54].

Since producing consequences and determining entailments are very costly,
their usage is limited in practice.

Restart

M ‖ F =⇒ ∅ ‖ F

The idea behind Restart is that the additional knowledge of the learned
lemmas will lead to theDecide rule to behave differently and find a solution
faster than by backtracking [54].

3.3 SMT Solver

As the name Satisfiability Modulo Theories (SMT) suggests, SMT solvers
have a close relation to Boolean Satisfiability (SAT). In fact, most SMT
solvers use a state-of-the-art SAT solver to evaluate whether an SMT in-
stance is satisfiable or not. That is why recent breakthroughs in SAT solver
development also resulted in a great advancement in the relevance of SMT
solvers, leading to the development of many different industrial applications

22

Chapter 3 Constraint-, SAT- and SMT Solvers

in the fields of software verification, model-based testing, model checking,
test-case generation and many more [53], [70].
Within this section we describe the basic technology of SMT solvers and the
kind of problems they are designed to solve.

3.3.1 First-order Logic

Generally speaking, SMT solvers determine whether a formula, in the lan-
guage of quantifier-free First-Order Logic (FOL), is satisfiable or not. Only
a few SMT solvers are able to handle quantifiers. That is why both quan-
tifiers, for all (∀) and there exists (∃), were omitted in the below definition
of FOL. For a complete definition of FOL we refer to Alessandro Farinelli’s
lecture notes on propositional and first-order logic [35]. Definitions 3.8 to
3.16, are based on Farinelli’s description of FOL [35].

Definition 3.8. Variables and Constants: The language of FOL consists
of constants and variables with values of various types, f.i. Boolean, integer
or real.

Definition 3.9. Operators: Additionally, to the operators of PL, negation
(¬), conjunction (∧) and disjunction (∨), FOL makes use of the equals
operator (=).

Definition 3.10. Parentheses: As already stated in Definition 3.4 for the
language of PL, parentheses can be omitted due to operator priorities. The
same is true for FOL with priorities from highest to lowest: =, ¬, ∧, ∨.

Definition 3.11. Predicates: Predicate symbols, also called relation sym-
bols, are most of the time denoted by uppercase letters. They have an arity
stating how many parameters a predicate takes. Basically, a predicate is a
statement that is either true or false, depending on the values of its argu-
ments. Predicates of arity 0 are equivalent with Boolean variables.

Example 3.2. Assuming, Person is a predicate symbol with arity 1, then
Person(x) would evaluate to true only if x really is a person.

Example 3.3. Assuming, On(Table, Pen) is a predicate with arity 2, then
in case the pen is on the table it follows that On(Table, Pen) would be true
and false otherwise.

23

Chapter 3 Constraint-, SAT- and SMT Solvers

Definition 3.12. Functions: On the contrary to predicate symbols, func-
tional symbols are mostly denoted by lowercase letters and also have an
arity. Functions of arity 0 are equal to constants.

Example 3.4. Assuming, add is a functional symbol, then add(x, y) may
be interpreted as: the sum of x and y. Meaning, add(x, y) returns the
solution of x+ y as a value.

Definition 3.13. Terms: Every variable and constant on its own is a term.
Furthermore, if f is a function with arity n and t1,. . . ,tn are terms, then
f(t1,. . . ,tn) is a term as well.

Definition 3.14. Formulas: Every Boolean variable is a formula. Fur-
thermore, if P is a predicate with arity n and t1,. . . ,tn are terms, then
P (t1,. . . ,tn) is a formula as well. Terms linked by any operator are also
formulas.

Definition 3.15. Sentences: A formula with no free variable is called a
sentence.

Definition 3.16. Atomic formulas: A formula containing no logical con-
nective and no bound variable is called an atomic formula or an atom.

3.3.2 Satisfiability Modulo Theories Problem

An SMT problem describes the problem of determining whether a formula
expressed in quantifier-free FOL is satisfiable, with respect to a background
theory. Typical examples of such theories are for instance: the theory of
uninterpreted functions with equality, the theory of linear arithmetic over
integers or reals, or the theories of different data structures like lists, arrays,
bit-vectors.

Solving SMT problems draws on symbolic logic’s biggest problems of the
past century, namely the decision problem, complexity theory and complete-
ness and incompleteness of logical theories. As already mentioned, SMT
solvers rely on SAT solvers and SAT is NP-complete. Furthermore, FOL
is undecidable and the computational complexity of most SMT problems is
very high. That is why most solvers focus on solving practical problems,
like formulas produced by verification and analysis tools, since these for-
mulas can be efficiently solved. SMT additionally struggles with finding

24

Chapter 3 Constraint-, SAT- and SMT Solvers

algorithms that not only are able to efficiently handle different theories, but
can also be modularly combined with one another. However, even with all
these problems and limitations there has been a vast progress in the field
of SMT in recent years. Many problems can be solved, not only thanks to
modern SAT solvers, but also because of constantly improved algorithms
and efficient implementations [52].

3.3.3 Theories

One core part of SMT is made up by the theories, or more specifically,
the theory solvers. Most modern SMT solvers follow the Davis-Putnam-
Logemann-Loveland modulo Theories (DPLL(T)) paradigm, which suggests
a separate implementation for each theory. This leads to the conclusion that
not all SMT solvers implement the same theories, just those needed for their
field of application. Some theories became very popular because of their
wide range of application, like the theory of uninterpreted functions with
equality, linear arithmetic over integers and reals or the theories of arrays or
bit-vectors. Due to their popularity, the website Satisfiability Modulo Theo-
ries Library (SMT-LIB) [9] started to provide standard rigorous descriptions
of these most commonly used theories. On the website these descriptions
of theories are named SMT-LIB logics. There is also a yearly competition
called Satisfiability Modulo Theories Competition (SMT-COMP), where dif-
ferent SMT solvers compete against each other. Participants of this compe-
tition can enroll their SMT solvers in the divisions of their choice, since not
every solver supports each background theory. All these different divisions
correlate to a specific SMT-LIB logic. Figure 3.5 shows an overview of the
SMT-LIB logics. The abbreviations’ meanings of these logics are explained
in Table 3.1.

Basic Theory Definitions

Basically, a theory is a set of sentences and we say, a formula ϕ is satisfiable
modulo a theory T if T ∪ {ϕ} is satisfiable. Meaning, there exists a model
M that satisfies ϕ under the theory T , denoted as M |=T ϕ. Furthermore,
if there is a procedure δ that checks whether any quantifier-free formula is
satisfiable or not, then the satisfiability problem for a theory T is decidable.
Meaning, δ is a decision procedure for T [52].

25

Chapter 3 Constraint-, SAT- and SMT Solvers

Figure 3.5: Overview of the SMT-LIB logics [9]. A link from a logic L1 to a
logic L2 means that every formula of L1 is also a formula of L2. The logic
shaded in gray is the one relevant for spreadsheet debugging.

Abbreviation Meaning
QF quantifier-free
A or AX theory of arrays
BV theory of fixed size bit-vectors
IA theory of integer arithmetic
RA theory of real arithmetic
IRA theory of mixed integer real arithmetic
IDL theory of integer difference logic
RDL theory of real difference logic
L before IA, RA, IRA linear
N before IA, RA, IRA non-linear
UF uninterpreted functions with equality

Table 3.1: Short explanation of the SMT-LIB logics’ abbreviations [9].

26

Chapter 3 Constraint-, SAT- and SMT Solvers

Uninterpreted functions with equality

The theory of uninterpreted functions with equality is denoted by the SMT-
LIB as QF_UF: quantifier-free uninterpreted functions with equality. An
uninterpreted function is a function with a name and arity but, as the name
suggests, no interpretation, like for example:

f(x), g(x, y), f(f(x)), or f(g(f(y), x))

Furthermore, as Condit and Harren stated in their lecture notes [25], the
theory allows boolean connectives (∧, ∨, . . .), equalities (=) and unequalities
(6=). Following axiom definitions are valid for =, as well as 6= and were
defined in [25]:

Definition 3.17. Reflexivity: E=E

Definition 3.18. Transitivity: E1=E2 E2=E3
E1=E3

Definition 3.19. Symmetry: E2=E1
E1=E2

Definition 3.20. Congruence: E1=E2
f(E1)=f(E2)

Decision procedures for this theory have great significance, since the de-
cision problem for other theories can be reduced to it. Many theory solvers
for uninterpreted functions are based on the congruence closure method.
If we consider a formula, which consists of conjunctions of equalities be-
tween terms using free functions, congruence closure can be applied to find
a representation of the smallest set of implied equalities. This is done by
converting each term of the formula into a Directed Acyclic Graph (DAG).
These DAGs can be used to check if the formula, consisting of a mix of
equalities and disequalities, is satisfiable by applying above axioms. Finally,
a last check needs to be performed that checks, whether terms on both sides
of each disequality are in different equivalence classes [52]. Figure 3.6 shows
a step-by-step example of the congruence closure algorithm.

Linear arithmetic

The theory of linear arithmetic is denoted by the SMT-LIB as LIA, LRA,
QF_LIA and QF_LRA, which stands for quantified or quantifier-free linear
integer arithmetic or linear real arithmetic. Their definitions state that the
arithmetical functions add (+), subtract (-) and multiply (·) are supported.

27

Chapter 3 Constraint-, SAT- and SMT Solvers

(a) DAGs, each representing a term of the
example.

(b) Equivalences a = b and b = c added as
dashed lines.

(c) Nodes g(a) and g(c) are congruent be-
cause a = c, which is implied by the first
two equalities (transitivity rule).

(d) Nodes f(a, g(a)) and f(b, g(c)) are also
congruent, since a = c and g(a) = g(c).
Therefore, the example is unsatisfiable be-
cause the term f(a, g(a)) 6= f(b, g(c)) is
not true.

Figure 3.6: Congruence closure example: a = b ∧ b = c ∧ f(a, g(a)) 6=
f(b, g(c)) [52].

28

Chapter 3 Constraint-, SAT- and SMT Solvers

(a) An example of conjunc-
tions of difference inequalities.

(b) The example’s representation as a graph. The neg-
ative cycle is depicted by the dashed lines, making the
problem unsatisfiable.

Figure 3.7: Difference inequalities example [52].

However, multiply is restricted to be of form c ·x, where c is a constant and
x a variable. For linear arithmetic over reals the following form of divide (/)
is also allowed: c/x, where c is a rational coefficient and x a variable. Fur-
thermore, relational symbols for equality and inequalities (=, ≤, <, . . .)
are used to form atomic predicates. A popular procedure for deciding linear
arithmetic, which many SMT solvers use in their linear arithmetic solver, is
called the simplex algorithm [52]. Dutertre and de Moura [34] explained in
detail how this algorithm works and presented a more efficient version for
linear arithmetic solvers for DPLL(T).

Difference arithmetic

The theory of difference arithmetic is denoted by the SMT-LIB as QF_IDL
and QF_RDL, which stands for quantifier-free integer difference logic and
quantifier-free real difference logic. It is a part of linear arithmetic, where
inequalities are restricted to have the form x− y ≤ c, for variables x, y and
constant c. Conjunctions of such inequalities can be solved very efficiently
by searching for negative cycles in weighted directed graphs. Whereas, each
variable represents a node of the graph and an inequality x − y ≤ c cor-
responds to an edge from y to x with weight c [52]. Figure 3.7 shows an
example of a conjunction of difference inequalities, as well as its representa-
tion as a graph.

29

Chapter 3 Constraint-, SAT- and SMT Solvers

Non-linear arithmetic

Non-linear arithmetic is a super-set of linear arithmetic. It is denoted by
the SMT-LIB as NIA, NRA, QF_NIA and QF_NRA, which stands for
quantified or quantifier-free non-linear integer arithmetic and non-linear real
arithmetic. Decision procedures for non-linear arithmetic over reals use al-
gorithms from computer algebra, like computing a Gröbner basis from equal-
ities [17]. The problem of deciding satisfiability for non-linear integer arith-
metic however, is undecidable. Meaning, there exists no algorithm, which
can solve each instance of this problem [52]. Adding quantifiers to the theory
makes it even worse. According to [52], there is not even a computable set
of axioms for characterizing quantified non-linear integer arithmetic. There
are not many SMT solvers that support non-linear arithmetic, which is un-
fortunate, since we need non-linear real arithmetic to debug spreadsheets.

Bit-vectors

The theory of bit-vectors is denoted by the SMT-LIB as QF_BV: quantifier-
free bit-vectors. It represents every number as a fixed-size sequence of bits.
In addition to standard arithmetic operations, the theory of bit-vectors also
allows mixing bit-wise operations, like NOT, AND, OR, XOR, as well as bit
shifts. Efficient decision procedures for bit-vectors use methods, like lazy
bit-blasting and approximating long bit-vectors by short bit-vectors [52].

Arrays

The theory of arrays is denoted by the SMT-LIB as QF_AX: quantifier-free
arrays with extensions. As the name suggests, it defines the usage of arrays,
which have two special functions:

Definition 3.21. write(a, i, v): writes value v at index i of array a.

Definition 3.22. read(a, i): denotes the value stored in array a at index
i.

The definition of the theory of arrays is very vague, to allow for different
extensions or restrictions. For instance, some theories restrict, which array
sorts are allowed, by restricting its maximal dimension. Furthermore, some
could use the theory of array as a basis and with certain extension create
for example the theory of lists. The most common approach to deal with

30

Chapter 3 Constraint-, SAT- and SMT Solvers

the theory of arrays is to use a reduction to the theory of uninterpreted
functions with equality through lazy array axiom instantiation [52].

Quantified Theories

If we consider quantifiers part of the language of FOL the problem of de-
ciding satisfiability becomes significantly more difficult. In fact only a few
SMT solvers support theories that allow quantifiers. However, if quanti-
fiers are supported, usually some form of E-matching is performed to decide
satisfiability.

Theory Combination

As already mentioned above, one major difficulty in SMT solver develop-
ment lies within finding algorithms that not only are able to efficiently han-
dle special theories, but can also be modularly combined with one another.
There are several different methods to combine theories for SMT solving
that proved themselves in practice, the Nelson-Oppen combination method,
the delayed theory combination method and the Model-based theory com-
bination method.

• Nelson-Oppen Combination [52], [16]: Assume, we have an SMT
input formula ϕ, of the form:

f(f(x)− f(y)) = a ∧ f(0) = a+ 2 ∧ x = y,

as provided by Oliveras and Rodriguez-Carbonell in [55]. To check
satisfiability for this formula, we have to combine the theories of unin-
terpreted functions and linear arithmetic. That is where the Nelson-
Oppen combination method comes into play: it purifies the formula ϕ
into ϕ1 ∧ . . . ∧ ϕn by splitting alphabet Σ, such that, ϕi ∈ Σi. These
Σi’s do not have any common function or predicate symbols, however,
they may have shared variables. The purification is done according to
the following satisfiability preserving transformation rule:

f(x)→ f(e) ∧ e = x,where e is a fresh variable.

31

Chapter 3 Constraint-, SAT- and SMT Solvers

Uninterpreted Functions Linear Arithmetic
f(e1) = a e2 − e3 = e1
f(x) = e2 e4 = 0
f(y) = e3 e5 = a+ 2
f(e4) = e5
x = y

shared variables: e1, e2, e3, e4, e5, a

Table 3.2: Purification example of the Nelson-Oppen combination method.

For our above example, this would split our formula into one part
solvable by the theory solver for uninterpreted functions with equality
and one part solvable by the linear arithmetic theory solver, as can be
seen in Table 3.2.

With that the two theory solvers can check satisfiability for their part
of the formula, while propagating entailed equalities of their shared
variables between them. This is done until a convergence is reached,
meaning, the formula is satisfiable, or until one solver returns unsat-
isfiable.

• Delayed Theory Combination: The delayed theory combination
method is a refinement for the Nelson-Oppen method. Instead of di-
rectly exchanging equalities between the two theory solvers, the de-
layed theory combination method takes a different approach. The
theory solvers work isolated from each other. All entailed equalities
between shared variables are added to both parts of the formula be-
fore given to the SAT solver to find a satisfying truth assignment.
This assignment is then splitted into different sub-assignments. One
assignment for each theory, containing theory pure literals, and one as-
signment for shared equalities. The later and the corresponding theory
assignment is then checked for consistency by each theory solver. If
both theory solvers return satisfiable, the formula is satisfiable. Oth-
erwise, the conflict set is added to the formula, to prevent the same
truth assignments from occurring. If no T -consistent model can be
found, the formula is unsatisfiable [16].

• Model-based Theory Combination: The model-based theory com-
bination method also builds upon the Nelson-Oppen combination. For

32

Chapter 3 Constraint-, SAT- and SMT Solvers

this approach each theory Ti needs to maintain its own model Mi.
When an equality is found, the theory creates a new equality decision
literal (u ' v)d and propagates it to all theories sharing u and v. Each
of these models Mi need to get changed to satisfy the new literal. In
case the equality does not hold within one of the models, satisfiability
needs to be checked for the negated literal. If this again leads to an
inconsistency, the formula is unsatisfiable. Otherwise, the process is
continued until models are found that satisfy the whole formula [29].

3.3.4 Famous Problems expressed as SMT

Let us have a look at a more practical topic. As we already did for CSP
and SAT, this section shows how the N-queens puzzle and the map coloring
problem can be expressed as an SMT problem.

N-Queens Puzzle

Again we use the 4-queens puzzle and show one possible way of formulating
it as an SMT instance.

• Variables: p11, p12, p13, p14, p21, . . . , p43, p44 (one variable for each field
of the board)

• Domains: Di = {0, 1} (for the options: one queen or no queen on a
field)

• Constraints: no queen can attack another queen

(p11 +p12 +p13 +p14 = 1)∧ . . . (for each row and column) ∧(p11 +
p22 + p33 + p44 ≤ 1)∧ . . . (for each diagonal)

Map Coloring Problem

Expressed as an SMT problem the map coloring problem for the map of
Austria with three different colors might look like the following:

• Variables: W, N, O, ST, B, S, K, T, V (one variable for each territory)

• Domains: Di = {1,2,3} (each value represents a color)

33

Chapter 3 Constraint-, SAT- and SMT Solvers

• Constraints: neighboring territories must have different colors

(V 6= T) ∧ (T 6= S) ∧ (T 6= K) ∧ (S 6= O) ∧ (S 6= ST) ∧ (S 6=
K)∧ (K 6= ST)∧ (ST 6= O)∧ (ST 6= N)∧ (ST 6= B)∧ (O 6= N)∧ (N 6=
W) ∧ (N 6= B)

3.3.5 Resolution of SMT

As already mentioned before, state-of-the-art SMT solvers use efficient SAT
solvers for deciding satisfiability of a formula. However, SAT solvers work on
PL and therefore, a conversion from FOL to PL is necessary. Furthermore,
PL has a lower expressiveness than FOL and that is why several steps are
needed for a successful translation. Once the formula is successfully trans-
lated, it can be passed to the SAT solver to decide satisfiability. In modern
SMT solvers, there are two common approaches on how the SMT solvers
interact with the SAT solver.

Eager approach

SMT solvers that implement the eager approach translate the FOL formula
into a PL CNF formula using an algorithm, which preserves satisifability.
This is done by considering each atom as a Boolean variable and by adding
inconsistencies to the formula. The eager approach derives all the incon-
sistencies before calling the SAT solver. This leads to an easy set-up, since
the SAT solver functions as a kind of black-box. However, there might arise
the problem that too many inconsistencies get produced, which could turn
an easy problem into an impossible one. Most SMT solvers for bit-vectors
are based on the eager approach, since there exists eager encoding, which
prevents the generation of too many inconsistencies [15]. Furthermore, for
a correct translation of FOL formulas into PL formulas efficient procedures
for every theory are needed. Even though a lot of effort was spend to cre-
ate algorithms like that, the lazy approach is in many cases tremendously
faster [54].

The following solving methodology gives a general idea on how an SMT
solver, that interacts with its SAT solver according to the eager approach,
decides satisfiability for an FOL formula [15]:

• Assume each atom is a Boolean variable.

34

Chapter 3 Constraint-, SAT- and SMT Solvers

• Search for all inconsistencies between atoms.

• Translate the formula into a Boolean formula.

• Pass the resulting SAT formula to a SAT solver and return the same
result.

Example 3.5. x = y ∧ (x < y ∨ x > y)
According to above’s methodology we first need to consider each atom as
a Boolean variable. Therefore, we say (x = y) 7→ a, (x < y) 7→ b and
(x > y) 7→ c. The next step requires us to look for inconsistencies. If x = y,
neither x < y and x > y can be true. Therefore, our inconsistencies are
¬(a∧ b) and ¬(a∧ c). We now translate the FOL formula into a PL formula
by converting every atom into a Boolean variable and by adding all found
inconsistencies. This leads to the result a ∧ (b ∨ c) ∧ ¬(a ∧ b) ∧ ¬(a ∧ c).
If this formula is passed to the SAT solver to decide its satisfiability, it
would return unsatisfiable. Therefore, the SMT solver’s result would also
be unsatisfiable, since it returns the same result.

Lazy approach

The lazy approach derives inconsistencies during SAT solving. Meaning, it
adds inconsistencies on demand and therefore, usually requires less incon-
sistencies to find a solution. Yet, for the lazy approach to work properly,
it needs to interface with the SAT solver to decide the T -consistency of the
found models. This leads to a more difficult set-up as for the eager ap-
proach. Nonetheless, the lazy approach is, due to its flexibility, the more
commonly used approach in existing SMT solvers [15].

Following solving methodology gives a general idea on how an SMT solver,
that interacts with its SAT solver according to the lazy approach, decides
satisfiability for a FOL formula [15]:

• Assume each atom is a Boolean variable.

• Pass the resulting SAT formula to a SAT solver.

• If the SAT solver returns unsatisfiable return the same result.

• If the SAT solver finds a model, check the model for T -consistency.

35

Chapter 3 Constraint-, SAT- and SMT Solvers

• If the model is T -consistent return satisfiable.

• If the model is T -inconsistent, add theory lemmas to the formula, pass
it to the SAT solver and begin anew with deciding its satisfiability.

Example 3.6. x = y ∧ (x < y ∨ x > y)
Again we have to consider each atom as a Boolean variable: (x = y) 7→ a,
(x < y) 7→ b and (x > y) 7→ c. In the next step we pass the translated
formula (a ∧ (b ∨ c)) to the SAT solver and let it decide satisfiability. In
our case the SAT solver would return satisfiable and pass a model to the
theory solver. This model could look like a = 1, b = 1, c = 0. Meaning, a
and b have to be true to make the formula satisfiable. The theory solver
checks this model for T -consistency by verifying, if the corresponding FOL
atoms can be true as well. In our case a is true and a correlates to x = y.
Furthermore, b is true, which correlates to x < y. For the FOL formula to
be satisfiable as well, x and y need to be equal and unequal at the same
time, which is not possible. Therefore, the model is T -inconsistent. The
theory solver adds this inconsistency, ¬(a ∧ b), to the formula and passes it
back to the SAT solver to check for satisfiability. Again the formula would
be satisfiable, however, the theory solver would prove the model to be T -
inconsistent and add the theory lemma ¬(a∧c), leading to the formula being
unsatisfiable.

Figure 3.8 shows a high-level view of both the eager and lazy approach.

3.3.6 DPLL(T) Paradigm

Most modern SAT solver are based on the DPLL paradigm, which describes
different procedures to efficiently solve SAT problems. SMT solvers make
use of this paradigm as well, since they depend on a SAT solver to decide
satisfiability. However, as already mentioned, most SMT solvers interact
with the SAT solver according to the lazy approach. Therefore, it is neces-
sary to slightly adapt the DPLL paradigm for it to be able to interact with
the theory solver and work modulo a theory. A description of these adapta-
tions as well as some commonly used methods, which can greatly enhance
the performance of SMT solvers follows below.

36

Chapter 3 Constraint-, SAT- and SMT Solvers

(a) Eager approach: The encoder adds
inconsistencies to the SMT formula and
translates it into a propositional formula.
The translated formula is then passed to
the SAT solver to decide satisfiability.

(b) Lazy approach: The formula is
translated into a propositional formula
and passed to the SAT solver to decide
satisfiability. The SAT solver and theory
solver interact with each other to decide
the T -consistency of the candidate mod-
els.

Figure 3.8: Illustration of the eager and lazy approach [15].

Before we can adapt our abstract DPLL model, presented in Section 3.2.4,
to work modulo theories, we need to consider that instead of dealing with
propositional literals, DPLL(T) deals with quantifier-free first-order ones.
Concerning the rules Decide, Fail, UnitPropagate and Restart that is
the only change necessary. As for the rules Learn, Forget and Backjump,
they need to be slightly adapted to work modulo theories. These adaptations
are described below and are based on the definitions from [54].

T-Learn

M ‖ F =⇒ M ‖ F, C if
{

each atom of C occurs in F or in M
F |=T C

Entailment between formulas becomes entailment in T . Also T -learned
clauses can belong to M and F , instead of only to F . Otherwise, the rule
behaves the same as Learn [54].

37

Chapter 3 Constraint-, SAT- and SMT Solvers

T-Forget

M ‖ F, C =⇒ M ‖ F if
{
F |=T C

The only change in the T-Forget rule is that entailment between formulas
becomes entailment in T [54].

T-Backjump

M ld N ‖ F, C =⇒ M l’ ‖ F, C if

M ld N |= ¬C, and there is
some clause C ′ ∨ l′ such that:
F, C |=T C

′ ∨ l′ and M |= ¬C ′,

l′ is undefined in M, and
l′ or ¬l′ occurs in F or in M ld N

T-Backjump makes use of both, the propositional notion of entailment
(|=), and the first-order notion of entailment modulo a theory (|=T) [54].

The theory solver waits for the SAT solver to find a model M for the for-
mula. If such a model is found and neither of the rules Decide, Fail,
UnitPropagate and T-Backjump can be applied, the T-solver checks the
models consistency. If it is T -consistent, the formula is satisfiable with re-
spect to the theory. Otherwise, if M is T -inconsistent, then there exists a
set of literals {l1, . . . , ln} in M , which is inconsistent with the theory. T-
Learn learns the theory lemma ¬l1 ∨ . . . ∨ ¬ln and Restart is applied.
This process is repeated until a T -consistent model is found or a FailState
is reached [54]. Additionally, most modern SMT solvers implement different
methods to enhance performance. The most commonly used methods are
listed below.

Incremental T-solver

Most state-of-the-art SMT solvers implement the concept of incremental
T-solvers. This means, instead of waiting for the SAT solver to find a
model, the T -consistency of the assignment is checked incrementally while
it is being built by the DPLL procedure. This can be done eagerly, that
is, detecting T -inconsistencies as soon as they are produced, or in certain
intervals, e.g., once every k literals are added to the assignment. For this to
work efficiently, the theory solver has to be faster in processing one additional

38

Chapter 3 Constraint-, SAT- and SMT Solvers

literal, than in reprocessing the whole set of literals from the beginning. This
is, in fact, practicable for many theories but not all [54].

On-line SAT solvers

After a T -inconsistency is detected and learned as a theory lemma, instead
of beginning the search anew, the procedure either applies T-Backjump, to
go back to a point where the assignment was still T -consistent, or produces
a FailState through the Fail rule [54].

Theory propagation

The techniques described up to now allowed the theory solver to only provide
information after a T -inconsistent state was reached. Theory propagation
describes the technique to detect literals l of a formula that are currently
true in the partial assignment M (denoted as M |=T l), and adds these
literals to M [54]. Theory propagation is a kind of forward checking and
plays an important role in DPLL(T). Therefore, another rule is added to
the abstract model from above.

TheoryPropagate

M ‖ F =⇒ M l ‖ F if

M |=T l

l or ¬l occurs in F
l is undefined in M

TheoryPropagate prunes the search tree by assigning a truth value to
T -entailed literals, instead of guessing a value in the Decide step.

Exhaustive theory propagation

Exhaustive theory propagation means, to apply theory propagation
with a higher priority than the Decide rule. Techniques that do not use
theory propagation, but instead learn theory lemmas, have to add many
consequences of the theory into the clause set and therefore, duplicate the
theory information. With Exhaustive theory propagation the process
of duplicating theory information becomes unnecessary, and non-exhaustive
theory propagation reduces it greatly [54].

39

Chapter 3 Constraint-, SAT- and SMT Solvers

3.4 Conclusion

After discussing each technology closely in the previous sections let us come
to a conclusion. We learned how each solver operates and what kind of
problems they are designed to solve. Constraint solvers try through a search
and techniques like backtracking and constraint propagation to solve CSPs.
SAT solvers solve problems called SAT, which are formulated in the language
of PL. Most common solvers are still based on an improved version of the
DPLL algorithm, which in its original form is already over 50 years old.
SMT solvers work modulo a background theory, and depend upon SAT
solvers to help solve their FOL problems, called SMT. There are two different
established approaches on how they interact with SAT solvers, the lazy
approach and the eager approach. A common procedure to implement SMT
solvers is called DPLL(T), on which most state-of-the-art Solver are based
on.
Therefore, let us say that both SAT- and SMT solvers are certain forms
of constraint solvers, with each focusing on solving different problems. In
terms of expressiveness SAT- and SMT solvers are both limited by their
languages, which is not true for constraint solvers. Furthermore, constraint
solvers can solve more difficult problems, which may not be expressible in
PL or FOL.

40

Chapter 4

SMT Solver Comparison

As already mentioned in Chapter 1, Z3 solves SDP on average six times
faster than Choco and Minion—as shown by Außerlechner et al. [6]. There-
fore, in this chapter we compare six state-of-the-art SMT solvers concern-
ing their functionality. Furthermore, we list which solvers can be used for
MBSD of spreadsheets, and therefore, find suitable candidates to integrate
into the framework introduced in Chapter 5. Only solvers that can handle
real numbers are considered, since they should be able to debug spread-
sheets, and usually spreadsheets contain real numbers. Since the framework
uses a solving algorithm called MCSes-U algorithm that makes use of the
solvers’ functionality to extract unsatisfiable cores, it is important that the
solvers support this feature. The following pages give a detailed description
of each solver’s functionality and technical features as well as a summary of
our findings.

Table 4.1 lists all SMT solvers that support real numbers and participated
in at least one of the SMT-COMPs from 2005 to 2014.

A summarized overview of the SMT solvers supporting real numbers can
be found in Table 4.2 and Table 4.3, whereas, a more detailed description
follows below.

Chapter 4 SMT Solver Comparison

Name SMT-COMP
Barcelogic 2006-2009
CVC/CVCLite/CVC3 2005-2012
CVC4 2010-2014
MathSAT 2005-2014
SMTInterpol 2011-2014
test_pmathsat 2010
veriT 2009-2011, 2013, 2014
Yices 2 2005-2009, 2014
Z3 2007, 2008, 2011, 2013, 2014

Table 4.1: SMT solvers that support real numbers and participated in the
SMT-COMP at least once [64], [8], [24]. Solvers shaded in gray are outdated.
Either they are no longer in development or a newer version is available.

4.1 Z3

Z3 is a high-performance theorem prover implemented in C++ and devel-
oped at Microsoft Research. It is published under the Microsoft Research
License Agreement (MSR-LA) license. Application Programming Interfaces
(APIs) are available in C, C++, .NET, Python, Java and OCaml. As input
language, Z3 supports an extended version of the SMT-LIB v2.0 script lan-
guage, the Simplify format and the DIMACS format. Furthermore, it is one
of the few solvers able to handle every SMT-LIB logic [59]. Z3 participated
in many SMT-COMPs over the years and always did very well. In 2011’s
competition Z3 won QF_BV, QF_UF, QF_LIA, QF_LRA, QF_UFLIA,
QF_UFLRA, QF_AUFLIA, QF_IDL, AUFLIA, AUFNIRA among oth-
ers. Furthermore, 15 benchmarks could only be solved by Z3 and no other
solver. A year later Z3 did not participate in the SMT-COMP, yet, the win-
ning solvers could not improve over Z3’s 2011 submission in any division,
with exception to the division QF_BV [24]. The number of benchmarks
that could only be solved by Z3 increased to 21 benchmarks in 2013 [64]. In
2014’s SMT-COMP Z3 participated non-competitive, as a reference for the
other competitors. However, it still won in 15 divisions out of 32 [23].

42

Chapter 4 SMT Solver Comparison

N
am

e
A
ffi
lia

ti
on

C
od

in
g

La
n-

gu
ag
e

Li
ce
ns
e

A
P
I

In
pu

t
La

ng
ua

ge
M
od

el
s

P
ro
of
s

U
ns
at
-

C
or
es

C
V
C
4
[4
0]

N
Y
U
,

U
.

Io
w
a

C
+
+

B
SD

C
+
+

SM
T
-L
IB

v1
.0
/v

2.
0,

na
tiv

e
la
ng

ua
ge

ye
s

ye
s

no

M
at
hS

AT
5
[2
0]

U
.

Tr
en
to
,

FB
K
-ir

st
C
+
+

Pr
op

rie
ta
ry

C

SM
T
-L
IB

v1
.2
/v

2.
0,

D
I-

M
A
C
S

fo
rm

at
,

na
tiv

e
la
ng

ua
ge

ye
s

ye
s

ye
s

SM
T
In
te
rp
ol

[1
9]

U
.F

re
ib
ur
g

Ja
va

LG
PL

v3
Ja
va

SM
T
-L
IB

v1
.2
/v

2.
0,

D
I-

M
A
C
S
fo
rm

at
ye
s

ye
s

ye
s

ve
riT

[3
2]

U
.

N
an

cy
,

IN
R
IA

,
U
FR

N
C

B
SD

C
SM

T
-L
IB

v2
.0
,
D
I-

M
A
C
S
fo
rm

at
ye
s

ye
s

no

Y
ic
es

2
[3
3]

SR
I

C
Pr

op
rie

ta
ry

C
SM

T
-L
IB

v1
.2
/v

2.
0,

na
tiv

e
la
ng

ua
ge

ye
s

no
no

Z3
[3
1]

M
ic
ro
so
ft

R
es
ea
rc
h

C
+
+

M
SR

-L
A

C
,

C
+
+
,

.N
ET

,
Py

th
on

,
Ja
va
,

O
C
am

l

SM
T
-L
IB

v2
.0
,

Si
m
pl
ify

fo
rm

at
,

D
IM

A
C
S
fo
rm

at
ye
s

ye
s

ye
s

Ta
bl
e
4.
2:

O
ve
rv
ie
w

of
SM

T
so
lv
er
s
su
pp

or
tin

g
re
al

nu
m
be

rs
,r

eg
ar
di
ng

th
ei
r
affi

lia
tio

n,
co
de

ba
sis

,p
ro
vi
de

d
in
te
rf
ac
es

an
d

su
pp

or
te
d
fu
nc

tio
na

lit
y.

C
ol
um

ns
sh
ad

ed
in

lig
ht

gr
ay

de
no

te
th
e
ne

ce
ss
ar
y
fu
nc

tio
na

lit
y
fo
rs

pr
ea
ds
he

et
de

bu
gg

in
g.

C
ol
um

ns
de

no
tin

g
th
e
fu
nc

tio
na

lit
y
re
qu

ire
d
to

w
or
k
in

co
m
bi
na

tio
n
w
ith

th
e
M
C
Se

s-
U

al
go

rit
hm

[4
8]

ar
e
sh
ad

ed
in

da
rk

gr
ay
.

43

Chapter 4 SMT Solver Comparison

N
am

e
Q
F
_
U
F

Q
F
_
A
X

Q
F
_
B
V

Q
F
_
D
L

Q
F
_
LA

Q
F
_
N
A

Q
ua

nt
ifi
er
s

C
V
C
4

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

M
at
hS

AT
5

ye
s

ye
s

ye
s

no
ye
s

no
no

SM
T
In
te
rp
ol

ye
s

no
no

no
ye
s

no
no

ve
riT

ye
s

no
no

ye
s

ye
s

no
ye
s

Y
ic
es

2
ye
s

ye
s

ye
s

ye
s

ye
s

no
no

Z3
ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

Ta
bl
e
4.
3:

O
ve
rv
ie
w

of
su
pp

or
te
d
th
eo
rie

s.
C
ol
um

ns
fo
r
ar
ith

m
et
ic

th
eo
rie

s
al
w
ay
s
ap

pl
y
fo
r
in
te
ge
r
an

d
re
al

ar
ith

m
et
ic
.
N
ot

lis
te
d
in

th
is

ta
bl
e
ar
e
th
e
su
pp

or
te
d
co
m
bi
na

tio
ns

of
th
e
th
eo
rie

s.
T
he

y
ca
n
be

fo
un

d
in

th
e
in
di
vi
du

al
so
lv
er
’s

de
sc
rip

tio
n.

T
he

co
lu
m
ns

sh
ad

ed
in

lig
ht

gr
ay

de
no

te
th
es

ol
ve
rs

w
hi
ch

su
pp

or
tt

he
th
eo
rie

sr
el
ev
an

tf
or

va
lu
e-
ba

se
d
sp
re
ad

sh
ee
td

eb
ug

gi
ng

.

44

Chapter 4 SMT Solver Comparison

Technical characteristics

A more detailed description of Z3’s characteristic features follows below [31],
[30].

• User Interaction: Z3 supports many different input formats. Next
to its own native input language, Z3 accepts the SMT-LIB v2.0 script
language, the Simplify format and the DIMACS format as input. Fur-
thermore, it is also accessible via an API, which is available in C, C++,
.NET, Python, Java and OCaml.

• Simplifier: Z3 implements a module called simplifier. The simplifier
simplifies the input formulas by applying standard algebraic reduction
rules and contextual simplifications.

• Core technology: Like most modern SMT solvers, Z3 is based on the
lazy/DPLL(T) paradigm. Furthermore, it integrates a custom DPLL-
based SAT solver with functionalities like standard search pruning
methods, two-watch literals for constraint propagation, lemma learn-
ing using conflict clauses, and non-chronological backtracking.

• Theory solver: Z3 integrates a core theory solver that handles equali-
ties and uninterpreted functions and different satellite solvers for linear
arithmetic, bit-vectors, arrays and others. Additionally, Z3 makes use
of an E-matching machine to handle quantifiers. The theory solver
for uninterpreted functions with equalities is based on the congruence
closure algorithm. A basis for the linear arithmetic theory solver pro-
vides the simplex algorithm. The theory solver for arrays uses lazy
instantiation of array axioms. Whereas, the bit-vector theory solver
applies bit-blasting to all bit-vector operations except equality. To
combine theories, Z3 makes use of the model-based theory combina-
tion method [10].

• Models and Proofs: Microsoft’s SMT solver is able to return mod-
els for satisfiable formulas and generate proofs and extract unsatisfi-
able cores for unsatisfiable formulas. An unsatisfiable core is a set of
clauses which are T -unsatisfiable. Z3, SMTInterpol and MathSAT 5
are currently the only three SMT solvers supporting unsatisfiable core
extraction.

45

Chapter 4 SMT Solver Comparison

4.2 CVC4

CVC4 stands for Cooperating Validity Checker and is a joint project of New
York University and University of Iowa. It is an open-source software written
in C++ and published under the terms of the modified Berkeley Software
Distribution (BSD) license. Although, some builds link against libraries
published under the GNU General Public License (GPL) and therefore, the
use of these builds is allowed for open-source projects only. CVC4 accepts
three different input languages, namely SMT-LIB v1.0, SMT-LIB v2.0 and
CVC4’s own native language. Furthermore, CVC4, like Z3, is able to handle
every SMT-LIB logic [40]. Like MathSAT 5, CVC4 and its predecessors
participated in every SMT-COMP from 2005 to 2014. CVC4 is one of the
few SMT solvers that support quantifiers. In 2012, CVC4 and its predecessor
CVC3 were the only submissions for the divisions including quantifiers. That
is why they were only run as a demonstration. The result showed though
that neither of the two did improve over Z3, the winner of the year before.
For the theory of QF_UFLRA CVC4 won against four other participants,
and managed to improve over one but not all of the winners in 2011 [24]. In
2014’s SMT-COMP CVC4 won in the divisions AUFLIA, AUFNIRA, LRA,
QF_AUFBV, QF_LIA, QF_LRA, QF_UFNIA, UF and UFLIA [23].

Technical characteristics

CVC4 has four predecessors to learn from in terms of implementation archi-
tecture, and efficiency. Therefore, it offers many different features [40], [7].

• User Interaction: As already mentioned, CVC4 supports SMT-LIB
language v1.0 and v2.0, as well as its own native language. It reads
input from an external file and recognizes the input language by the
file’s extension (.cvc for CVC4’s native language, .smt2 for SMT-LIB
v2.0 and .smt for SMT-LIB v1.0). Additionally, the user can specify
the type of the input language by a command line flag. CVC4 is also
accessible via a C++ API.

• Core technology: CVC4 is based on the lazy/DPLL(T) approach.
As for satisfiability checking, CVC4 theoretically allows for different
SAT solvers to be plugged in, yet, up till now, only MiniSAT is sup-
ported.

46

Chapter 4 SMT Solver Comparison

• Theory solver: CVC4 uses approaches based on the modern DPLL(T)
paradigm, implementing different theory solvers for each theory. The
theory solver for uninterpreted functions is based on the congruence
closure algorithm. In case of the theory solver for linear arithmetic,
the implementation is based on the simplex method. The array theory
solver makes us of lazy instantiation of array axioms and the approach
used for the theory of bit-vectors combines lazy bit-blasting with in-
processing using an algebraic solver. For combining theories, the solver
relies on polite combination and care functions.

• Models and Proofs: CVC4 has functionalities for generating mod-
els and proofs. Its proof system is designed to have absolutely zero
footprint in memory and time, when switched off at compile-time. It
also supports the Logical Framework with Side Conditions (LFSC),
which is a high-level declarative language for defining proof systems
and proof objects for almost any logic. LFSC supports computational
side conditions on proof rules, which facilitate the design of proof sys-
tems [60]. Unfortunately, CVC4 does not yet support unsatisfiable
core extraction.

• Parallel solving: CVC4 provides an opportunity to run multiple
instances of CVC4 in different threads. Although, lemmas are not
shared between threads by default, there exists an option to do so.
With this option switched on, CVC4 is able to share lemmas of n
literals, excluding literals that are local to one thread and therefore,
ineligible for sharing. Operations can be interrupted, if results from
another thread make them irrelevant. Even though this is a great
feature, it is still in an experimental state and thus, should be used
with caution.

4.3 MathSAT 5

MathSAT 5 is a joint project of Fondazione Bruno Kessler (FBK-irst) and
University of Trento. It is implemented in C++ and freely available for
academic research and evaluation purposes. MathSAT 5’s default input for-
mat is SMT-LIB v2.0. Additionally, MathSAT 5 supports SMT-LIB v1.2 or
the DIMACS format. It supports most of the SMT-LIB logics, like that of

47

Chapter 4 SMT Solver Comparison

equality and uninterpreted functions (QF_UF), linear arithmetic over in-
tegers and reals (QF_LIA, QF_LRA), arrays (QF_AX), bitvectors (QF_-
BV) and floating point numbers, as well as their combinations (QF_UFLIA,
QF_UFLRA, QF_AUFBV, QF_AUFLIA, QF_UFBV) [20]. Like CVC4,
MathSAT 5 and its predecessors have participated in every SMT-COMP
taken place from 2005 to 2014. In 2010, MathSAT 5 won in the divisions
QF_UFLRA and QF_UFLIA. Two years later in 2012, MathSAT 5 again
won QF_UFLIA [8]. MathSAT 5, like SMTInterpol, was one of only 2 par-
ticipants in the unsat core track of 2012’s SMT-COMP [24]. In 2014, Math-
SAT 5, like Z3, was a non-competitive participant in the SMT-COMP. Un-
like Z3, MathSAT 5 did not win any division. However, it did perform very
well, considering that it was not optimized for any of the benchmarks [23].

Technical characteristics

MathSAT 5 has been in constant development for many years to provide a
vast array of functionality for its users [20].

• User Interaction: Users can interact with MathSAT 5 via command
line, by providing an SMT-LIB script file, in either v1.2 or v2.0. The
solver also accepts input in the form of the DIMACS format. Further-
more, MathSAT 5 provides a C API, which is similar to the commands
of the SMT-LIB v2.0 language.

• CNF Converter: MathSAT 5’s constraint encoder converts every
input formula into its CNF.

• Core technology: By default, MathSAT 5’s core consists of a MiniSAT-
style SAT solver, which interacts with the theory solvers according to
the lazy/DPLL(T) procedure.

• Theory solver: MathSAT 5 consists of individual theory solvers
based on state-of-the-art algorithms. The solver for uninterpreted
functions is based on the congruence closure algorithm. As for the
linear arithmetic on integers and rationals a layered approach based
on simplex and branch & bound is used. For the floating point theory,
MathSAT 5 implements two different approaches. One is based on
either lazy or eager bit-blasting. The second and more recent one is

48

Chapter 4 SMT Solver Comparison

based on a combination of Interval Constraint Propagation for float-
ing point numbers and modern CDCL SAT solvers. For the array
theory solver MathSAT 5 uses axiom instantiation. The bit-vector
theory solver uses either lazy or eager bit-blasting and the combina-
tion of theories is handled by MathSAT 5’s delayed theory combination
framework.

• Models and Proofs: In addition to deciding satisfiability, Math-
SAT 5 is able to enumerate models with different truth values for sat-
isfiable formulas, or a resolution proof and theory specific sub-proofs of
the T -lemmas for unsatisfiable formulas. Furthermore, it can extract
unsatisfiable cores or Craig interpolants [21].

Craig’s interpolation theorem describes a certain relationship between
two logical formulas. Lately, this theorem was introduced into the
world of SMT and soon became very popular. If we consider an SMT
problem for the background theory T and an ordered pair of formu-
las (A, B), such that, A and B are unsatisfiable under the theory
T (A ∧ B |=T⊥), then a Craig interpolant is a formula I for which
holds: [21]

– A satisfies I under the theory T : A |=T I,

– I and B are unsatisfiable under the theory T : I ∧B |=T⊥,

– I precedes, or is the same as A and I precedes, or is the same as
B: I � A and I � B

• AllSMT and Predicate Abstraction: MathSAT 5 implements an
AllSMT functionality. Meaning, for a satisfiable formula, it can effi-
ciently generate a complete set of theory-consistent partial assignments
satisfying the formula.

• Pluggable SAT solvers: MathSAT 5 allows its users to integrate an
external SAT solver of their choice.

49

Chapter 4 SMT Solver Comparison

4.4 SMTInterpol

SMTInterpol is an interpolation SMT solver developed by the University of
Freiburg. It is implemented in Java and available under the open source
software license GNU Lesser General Public License (LGPL) v3. As in-
put language SMTInterpol supports SMT-LIB v1.2 and v2.0, as well as
the DIMACS format. The solver supports the theories of uninterpreted
functions with equality (QF_UF), linear arithmetic over integers and reals
(QF_LIA, QF_LRA) and the combination of these theories (QF_UFLIA,
QF_UFLRA). SMTInterpol also participated in the SMT-COMP of 2011
in both the main and the application track and was able to solve as many
problems as the winning solver, but with an inferior runtime [19]. In 2012’s
SMT-COMP SMTInterpol was open-source winner for the theory of QF_-
UFLIA and sole competitor in the proof generation track. Furthermore,
SMTInterpol and MathSAT 5 were the only two solvers that participated in
2012’s unsat core track. Meaning, in the field of proof generation and unsat
core extraction, SMTInterpol is one of leading SMT solvers available [24].

Technical characteristics

SMTInterpol is a very "young" SMT solver. However, it provides a wide
range of features for its users [19].

• User Interaction: SMTInterpol is SMT-LIB v1.2/v2.0 compliant.
Meaning, it supports the SMT-LIB script language. Furthermore, it
includes a parser for the DIMACS format. It also provides a Java
API modeled after the commands of this language. Users can issue
commands through an SMT-LIB file, use the standard input channel
of the solver, or use the Java API.

• CNF Converter: SMTInterpol converts every input formula into its
CNF.

• Core technology: SMTInterpol is based on the DPLL(T) paradigm
and interacts with its SAT solver according to the lazy approach. The
implemented SAT solver is a CDCL engine. Meaning, the SAT solver
is based on the DPLL algorithm, but with the one difference that its
backtracking is non-chronologically.

50

Chapter 4 SMT Solver Comparison

• Theory solver: SMTInterpol consists of two theory solvers, one for
uninterpreted functions, which is based on the congruence closure al-
gorithm, and one for linear arithmetic based on the simplex algorithm.
Furthermore, it uses the model-based theory combination procedure
to combine theories.

• Models and Proofs: The solver can return models for formulas
which are satisfiable. For unsatisfiable formulas it can produce res-
olution proofs from which it can extract unsatisfiable cores or Craig
interpolants.

4.5 veriT

VeriT was created in a joint work of the University of Nancy, Institut na-
tional de recherche en informatique et en automatique (INRIA) and Federal
University of Rio Grande do Norte (UFRN). It is an open-source tool writ-
ten in C and distributed under the BSD license. VeriT supports SMT-LIB
v2.0 and DIMACS as a valid input format [12]. Up to 2011 veriT provided a
decision procedure for the logic of quantifier-free formulas over uninterpreted
symbols (QF_UF), difference logic over integer and real numbers (QF_IDL,
QF_RDL), and the combination thereof (QF_UFIDL). Since then the pro-
gram has been completely rewritten to also support linear arithmetic and
quantifier reasoning capabilities. In 2014’ SMT-COMP veriT participated
in the divisions QF_IDL, QF_LIA, QF_LRA, QF_RDL, QF_UF and in
the combinations thereof QF_AUFLIA, QF_UFIDL, QF_UFLIA, QF_-
UFLRA, as well as in the divisions allowing quantifiers ALIA, AUFLIA,
AUFLIRA, LIA, LRA, UF, UFLIA, UFLRA [32]. VeriT has yet to win a
division of an SMT-COMP, but that has low significance, since veriT is still
in its early tracks.

Technical characteristics

VeriT’s different features are discussed below [12].

• User Interaction: VeriT is compliant to SMT-LIB v2.0. In case,
one wants to use veriT as a SAT solver, the DIMACS format should
be the input language of choice. Of course, veriT is also accessible via
a C API.

51

Chapter 4 SMT Solver Comparison

• Core technology: The basis for the solver builds the lazy/DPLL(T)
approach. As integrated SAT solver, veriT makes use of MiniSAT.

• Theory solver: VeriT’s reasoning engine for linear arithmetic is
based on the Simplex method. The solver handling uninterpreted func-
tions is based on the congruence closure method. Furthermore, veriT
integrates some level of quantifier reasoning through E-matching. To
combine theories veriT makes use of the Nelson-Oppen theory combi-
nation method [32].

• Models and Proofs: The prover uses the MiniSAT solver to pro-
duce models for the Boolean abstaction of the input formula. It can
also produce proof traces for quantifier-free formulas containing unin-
terpreted functions and arithmetic. Unfortunately, veriT does not yet
support unsatisfiable core extraction.

4.6 Yices 2

Yices 2 is an efficient SMT solver developed by the Stanford Research In-
stitute (SRI International). It is a closed-source software written in C and
distributed free-of-charge for personal use under the terms of the Yices li-
cense. Yices 2 can decide satisfiability for formulas consisting of quantifier-
free combinations of uninterpreted functions with equality (QF_UF), linear
arithmetic over integers and reals (QF_LIA, QF_LRA), bit-vectors (QF_-
BV), arrays (QF_AX) and integer and real difference logic (QF_IDL, QF_-
RDL) and (QF_UFLIA, QF_UFLRA, QF_AUFBV, QF_AUFLIA, QF_-
UFBV QF_UFIDL). These are all SMT-LIB logics, which do not involve
quantifiers and nonlinear arithmetic. Additionally, it supports tuples and
enumeration types. As input, Yices 2 supports SMT-LIB v1.2 and SMT-
LIB v2.0 syntax, as well as its own specification language [33]. Yices 2 and
its predecessor have participated in the SMT-COMPs of 2005 to 2009 and
again in 2014. Furthermore, Yices 2 defeated Z3 in 2008, in the divisions
QF_UF and QF_LRA. In 2009, Yices 2 won in the divisions QF_AX, QF_-
UFLRA, QF_AUFLIA, QF_UFLIA, QF_UF, QF_RDL and QF_LRA [8].
In 2014’s SMT-COMP Yices 2 won the divisions QF_ALIA, QF_AUFLIA,
QF_AX, QF_RDL, QF_UF and QF_UFBV [23].

52

Chapter 4 SMT Solver Comparison

Technical characteristics

To see what sets Yices 2 apart from the other solvers, its specifics are listed
below [33].

• User Interaction: Yices 2 can read and process input in the form
of SMT-LIB notation, in either v1.2 or v2.0, as well as in its own
specification language. Furthermore, it is accessible via its C API.

• Core technology: Since Yices 2 is closed-source, one can only guess
the technology behind, although it is known that it is based on the
lazy/DPLL(T) approach and its custom SAT solver is based on the
CDCL procedure.

• Theory solver: Yices 2 currently implements four different theory
solvers configured for uninterpreted functions, linear arithmetic, ar-
rays and bit-vectors, respectively. It is possible to manually couple
these components with the SAT solver or remove them individually, if
not needed, to optimize runtime for specific problems. The solver for
uninterpreted functions is based on the congruence closure method.
Linear arithmetic theories are handled by the theory solver based on
the simplex algorithm. The decision procedure for the theory of arrays
uses lazy instantiation of array axioms. Bit-vectors are handled using
bit-blasting. To combine theories, Yices 2 makes use of the Nelson-
Oppen theory combination method.

• Models but no Proofs: Yices 2’s API provides functions to create
models, which map the formula’s symbols to concrete values. Unfor-
tunately, it does not support commands to get proofs or unsatisfiable
cores.

4.7 Findings

The six previously described SMT solvers are all able to handle real num-
bers. Furthermore, each solver provides functionality to produce models for
satisfiable formulas and with the exception of Yices 2 all solvers are able to
generate proofs for unsatisfiable formulas. The extraction of unsatisfiable
cores is supported only by MathSAT 5, SMTInterpol and Z3. Non-linear

53

Chapter 4 SMT Solver Comparison

arithmetic support is provided only by Z3. CVC4 supports non-linear arith-
metic in a very restricted form, by converting non-linear arithmetic expres-
sions into linear arithmetic. However, our tests showed that this approach to
handle non-linear arithmetic is not suited for spreadsheet debugging, since
the solver cannot even solve very simple spreadsheet debugging problems.
This leads us to the conclusion that Z3 is currently the only suitable candi-
date for MBSD of spreadsheets.

54

Chapter 5

Framework and
Implementation

Recently, a team at the Graz University of Technology developed a frame-
work [6] to compare the performance and execution time of different SMT-
and constraint solvers when debugging spreadsheets. The framework was
developed to find an efficient way to debug spreadsheets and thus develop
a tool for end-users to verify spreadsheets. Within our work we extend the
framework with new model creation approaches for model-based spread-
sheet debugging with SMT solvers. Therefore, in this chapter we describe
the framework’s existing functionality and design. Furthermore, we intro-
duce new model creation approaches and how they can be integrated into
the framework.

5.1 Existing

In this section we discuss the framework’s existing functionality impor-
tant for model-based spreadsheet debugging with SMT solvers. Currently,
there are three different solvers integrated in the framework, two constraint
solvers, called Minion and Choco and one SMT solver, called Z3. Further-
more, the framework includes different constraint solving methodologies.
Figure 5.1 shows an overview of the framework’s basic components. The
components shaded in gray depict the ones relevant for spreadsheet debug-
ging with SMT solvers. These are the components we focus on within this
section. We give an overview of how the framework creates value-based

Chapter 5 Framework and Implementation

models for Z3 as well as describe its different solving methodologies. Fur-
thermore, we give a list of supported standard spreadsheet functions, for
which the framework is able to produce Z3 constraints.

The framework takes a spreadsheet—as defined in Chapter 2—and a cor-
responding property file as input. A property file can be considered as a
failing test case. It is composed of a list of the spreadsheet’s correct output
cells and the incorrect output cells with their expected values. However, we
defined a test case in Definition 2.12 to also contain the spreadsheet’s input
cells. Since the property file does not contain a list of input cells, the frame-
work extracts the list from the spreadsheet itself. Furthermore, the property
file contains a list of the faulty cells (cells causing an error), only for test-
ing purposes, to automatically check whether the right solutions are found.
In addition to spreadsheets and property files the framework accepts user
input, to choose a solver and since the framework integrates two different
solving algorithms for Z3, the user has to specify which algorithm should be
used. Once a solver is chosen—in our case that is Z3—the framework creates
a SDP by converting the spreadsheet and the data from the corresponding
property file into a value-based model. The model is specifically created
for the chosen solver by accessing its API. Finally, one of the solving algo-
rithms is executed which enumerates all diagnoses for the faulty spreadsheet
by solving the SDP. That is only a short overview of how the framework
debugs spreadsheets with Z3, a detailed description of value-based models
and the different solving algorithms follows.

5.1.1 Model-based Software Debugging

To create an SDP using Model-based Software Debugging (MBSD) we need
a spreadsheet Π, as defined in Chapter 2 and some given observations, f.i.
a failing test case T , as defined in Definition 2.13. Furthermore, we need to
create a model M , which represents the spreadsheet as a constraint system.
This model is used to detect contradictions between the expected output
cells defined in T and the obtained output cells from Π [51]. To decide
which cells could resolve these discrepancies, MBSD introduces so called
not-abnormal variables (NAB). These not-abnormal variables represent the
"health" state of a cell. In case a cell c is not-abnormal the formula of the cell

56

Chapter 5 Framework and Implementation

Figure 5.1: A general overview of the framework’s components. Components
shaded in gray depict the ones relevant for spreadsheet debugging with SMT
solvers.

57

Chapter 5 Framework and Implementation

must be correct, otherwise it is suspected to be faulty. As Hofer et al. [43]
described this can be represented as follows:

NAB(cellc)→ constraint(c).

If we pass a constraint system like this to a constraint or SMT solver, it
can compute which not-abnormals have to be set to false in order to get rid
of the discrepancies. MBSD can be utilized with different kinds of models.
For Z3 the framework makes use of value-based models.

Value-based Models

Like Hofer et al. [43] describe, value-based models take the cells’ values into
account. This leads to following constraint generation rules for value-based
models:

∀ cells c ∈ Input(Π) : c == v(c)

∀ cells c ∈ Output(Π) : c == vexp(c)

∀ cells c ∈
⋃

c′∈Owrong

Cone(c′) : NAB(cellc)→ c == constraint(f(c))

∀ cells c ∈ (
⋃

c′∈Ocorrect

Cone(c′)\
⋃

c′′∈Owrong

Cone(c′′)) : c == constraint(f(c))

with functions Input(Π), Output(Π) and Cone(c) defined as in Defi-
nitions 2.10, 2.11 and 2.15 and Owrong and Ocorrect defined as in Defini-
tion 2.13. Since formulas represented as constraints are handled as equations
instead of assignments, it is possible to draw conclusions not only from the
input on the output but also vice versa.

Generating Value-based Models

To convert spreadsheets into value-based models the framework makes use of
Algorithm 5.1. It is a modified version of the algorithm presented by Abreu

58

Chapter 5 Framework and Implementation

et al. [4]. The algorithm requires a spreadsheet Π and a failing test case T
as input and returns a value-based model representing Π and T . First each
cell for which holds:

c ∈
⋃

c′∈Owrong

Cone(c′)

is added to a set of cells Ow at the Lines 5 to 7. Additionally, each cell for
which holds:

c ∈
⋃

c′∈Ocorrect

Cone(c′)\Ow

is added to a set of cells Oc at the Lines 8 to 10. The formulas of cells which
are elements of the set Ow are converted into clauses using Algorithm 5.2
at Line 12. Line 13 generates the cells’ Boolean not-abnormal variables and
links them with the cells’ value-based constraints. The functions Name(c)
and Index(c) respectively, return a unique name or index for each cell c.
Then the cells’ clauses are added to the spreadsheet clause set CΠ at Line 14.
The formulas of cells which are elements of the set Oc are converted into
clauses by Algorithm 5.2 at Line 17. Line 18 generates the cells’ value-based
constraints, which are added to the clause set CΠ at Line 19. At Lines 22
to 27 the constraints for the test case information are generated. Finally,
the conjunction of the spreadsheet’s constraint set CΠ and the test case’s
constraint set CT is returned at Line 28.

Algorithm 5.2 converts each cell’s formula into a value-based constraint.
Lines 2 to 4 state that a constant is represented by itself. Lines 5 to 7 express
that referenced cells are represented by their unique name. If an expression
e consists of an expression e1 enclosed in parentheses, it is represented by
the clause of e1 as shown at the Lines 8 to 11. Expressions of the form e1

o e2 are handled by the Lines 12 to 18. Each sub-expression (e1 and e2) is
converted into a clause separately. Additionally, a new clause is created that
represents the relationship between e1, e2, operator o and auxiliary variable
result. The supported spreadsheet functions are converted separately into
constraints, since they differ in syntax and semantic. As representatives
two examples for the conversion of spreadsheet functions into constraints
are given. Lines 19 to 26 and Lines 27 to 30 show the representation of
conditionals and sums, respectively.

59

Chapter 5 Framework and Implementation

Algorithm 5.1 Algorithm to convert a spreadsheet into a value-based
model [4].
Require: Spreadsheet Π, a failing test case T with input I and output

Owrong and Ocorrect
Ensure: Value-based clause set of Π and T
1: function ConvertSpreadsheetIntoVBModel(Π, T)
2: CΠ := ∅
3: Ow := ∅
4: Oc := ∅
5: for all cells c ∈ Owrong do
6: Ow := Ow ∪ Cone(c)
7: end for
8: for all cells c ∈ Ocorrect do
9: Oc := Oc ∪ Cone(c) \ Ow

10: end for
11: for all cells c ∈ Ow do
12: [C, aux] := ConvertExpressionVB(f(c))
13: clause := NAB(Index(c)) → (Name(c) == aux)
14: CΠ := CΠ ∧ C ∧ clause
15: end for
16: for all cells c ∈ Oc do
17: [C, aux] := ConvertExpressionVB(f(c))
18: clause := Name(c) == aux
19: CΠ := CΠ ∧ C ∧ clause
20: end for
21: CT := ∅
22: for all tuples (c,v) ∈ I do
23: CT := CT ∧ (Name(c) == v)
24: end for
25: for all tuples (c, vexp) ∈ O do
26: CT := CT ∧ (Name(c) == vexp)
27: end for
28: return CΠ ∧ CT
29: end function

60

Chapter 5 Framework and Implementation

Definition 5.1. Clause for conditionals: Ψ(cond, e1, e2, result) is a
clause, which ensures the relationship of cond, e1, e2 and result like follows:
If cond is true result = e1 else result = e2.

Definition 5.2. Clause for sums: Sum(c1 . . . c2, result) is a clause, which
ensures that result equals the sum of the values contained in the area c1:c2.

Running Example

To give a demonstration of how value-based models can look like, we in-
troduce a running example, as shown in Figure 5.2. Figure 5.2a shows the
value view of the correct version of the example spreadsheet. The spread-
sheet shows the moving behavior of an object in three different phases. The
first phase describes a constant acceleration of the object which is calculated
in column B. In phase two the object moves with constant velocity, calcu-
lated in column C. Column D calculates the third phase which describes a
constant deceleration of the moving object until it stops because its velocity
reaches zero, as shown in Cell E2. For better demonstration we shaded the
input cells of the spreadsheet in gray and the correct output cells in green.
Figure 5.2b shows the value view of the faulty spreadsheet. We manually
injected a fault in Cell C5—colored in red—where we purposely used the
initial velocity of phase one (Cell B2) instead of phase two (Cell C2). This
can be seen in Figure 5.2c, which shows the formula representation of the
faulty spreadsheet. The cells colored in yellow depict the output cells which
are wrong due to their references to the faulty cell. Table 5.1 shows the
failing test case for the faulty spreadsheet from Figure 5.2b. It contains the
input cells with their values and the output cells with their expected values.

Example 5.1. If the faulty spreadsheet from Figure 5.2b and the failing
test case from Table 5.1 are passed to Algorithm 5.1, we receive a constraint
set as shown in Table 5.2. Solving this constraint set results in a single-fault
diagnosis stating that Cell C5 has to be a faulty cell.

5.1.2 Z3’s Solving Methodologies

For Z3 the framework integrates two different solving methodologies. They
are called the MinimalCorrectionSets algorithm (Algorithm 5.3) and

61

Chapter 5 Framework and Implementation

Algorithm 5.2 Algorithm to convert an expression into a value-based con-
straint [4].
Require: Expression e
Ensure: [C, var] with C as a clause, and var as the name of an auxiliary

variable, a cell name or a constant
1: function ConvertExpressionVB(e)
2: if e is a constant then
3: return [∅, e]
4: end if
5: if e is a cell name then
6: return [∅, Name(e)]
7: end if
8: if e is of the form (e1) then
9: [C, aux] := ConvertExpressionVB(e1)
10: return [C, aux]
11: end if
12: if e is of the form e1 o e2 then
13: [C1, aux1] := ConvertExpressionVB(e1)
14: [C2, aux2] := ConvertExpressionVB(e2)
15: var result
16: Create a new clause clause according to the given operator o,

which defines the relationship between aux1, aux2 and result
17: return [C1 ∧ C2 ∧ {clause}, result]
18: end if
19: if e is of the form IF(cond,e1,e2) then
20: [C1, aux1] := ConvertExpressionVB(cond)
21: [C2, aux2] := ConvertExpressionVB(e1)
22: [C3, aux3] := ConvertExpressionVB(e2)
23: var result
24: C := C1 ∧ C2 ∧ C3
25: return [C ∧ Ψ(aux1, aux2, aux3, result), result]
26: end if
27: if e is of the form SUM(c1:c2) then
28: var result
29: return [Sum(c1 . . . c2, result), result]
30: end if
31: . . .
32: end function

62

Chapter 5 Framework and Implementation

(a) Correct spreadsheet

(b) Faulty spreadsheet

(c) Formula view of the faulty spreadsheet

Figure 5.2: Running example

Input cells with
values:

Output cells with
expected values:

B2 == 0 B6 == 100
B3 == 2 C6 == 200,100
B4 == 10 D6 == 200,150
C3 == 0 E2 == 0
C4 == 10,000
D3 == -4
D4 == 50

Table 5.1: The failing test case for the running example from Figure 5.2b.

63

Chapter 5 Framework and Implementation

Input Cells: Output Cells:
B2 == 0 B6 == 100
B3 == 2 C6 == 200,100
B4 == 10 D6 == 200,150
. . . E2 == 0

Formula Constraints:
NAB(B5) → B5 == B2 · B4 + B3 · B4 · B4 / 2
NAB(C2) → C2 == B2 + B3 · B4
NAB(C5) → C5 == B2 · C4 + C3 · C4 · C4 / 2
NAB(C6) → C6 == B5 + C5
NAB(D2) → D2 == C2 + C3 · C4
NAB(D5) → D5 == D2 · D4 + D3 · D4 · D4 / 2
NAB(D6) → D6 == B5 + C5 + D5
B6 == B5
E2 == D2 + D3 · D4

Table 5.2: Value-based constraint set for the running example from Fig-
ure 5.2b.

the MCSes-UnsatisfiableCores algorithm (Algorithm 5.4), both intro-
duced by Liffiton and Sakallah [47], [48]. The later, Algorithm 5.4, is an
improved version of Algorithm 5.3. It has increased performance, since it
makes use of the SMT solvers’ functionality to extract unsatisfiable cores.
Otherwise the two algorithms behave the same by enumerating all Minimal
Correction Sets (MCSes) of an unsatisfiable formula.

Definition 5.3. Correction set: A correction set is a set of clauses, which
needs to be removed from the formula to make it satisfiable.
A correction set cs is minimal if there does not exist any subset of cs, that
is a correction set itself.

This means by finding all MCSes, with either of above mentioned algo-
rithms, we are able to find a set of diagnoses, which tells us which of the
spreadsheet’s cells are responsible for the test case to fail. Let us have a
look at how the algorithms find these MCSes.
Algorithm 5.3 takes as input a formula which is satisfiable, if all not-abnormal
variables are unassigned. As output the algorithm provides all minimal di-
agnoses with increasing cardinality. The cardinality is represented in the
algorithm through the variable upperBound and is set to one in Line 3 by
default. Line 4 performs an initial check, whether the solver is able to find

64

Chapter 5 Framework and Implementation

any diagnoses for the formula. In case the solver returns unsatisfiable the al-
gorithm terminates. Otherwise, the algorithm continues with Line 5, where
a weight function is added to a temporary copy of the formula. In the al-
gorithm the weight function is called AtMost and Liffiton and Sakallah
defined it like the following [47]. It takes a set of n literals {l1,l2,. . . ,ln} and
a positive integer k as input and returns a constraint which ensures that:

AtMost(l1, l2, . . . , ln, k) ≡
n∑
i=1

value(li) ≤ k,

where value(li) is one if li is assigned true and zero otherwise.
Since SMT solvers do not allow to retrieve all models for a formula at

once, the solvers have to be called several times to retrieve all MCSes of
maximum cardinality upperBound. That is what the inner loop at Line 6 is
for. At Line 7 the function GetNewMCS is called. This function tells the
solver to find a model and obtains an MCS as follows:

MCS = {nab ∈ NAB : model(nab) = true} .

Since we want the algorithm to find each MCS only once, blocking clauses
are added to the original formula ϕ and to ϕ’ in the Lines 9 and 10. They
ensure that the solver returns each MCS only once. A blocking clause for a
specific MCS is defined as the disjunction of all not-abnormals included in
the MCS.

BlockingClause(MCS) =
∨

nab∈MCS
nab

If all MCSes of the current cardinality are found, meaning solve(ϕ’)
returns UNSAT, upperBound gets incremented by one in Line 12. Then the
loop condition from Line 4 is checked again. In case the original formula
ϕ extended by the blocking clauses is still satisfiable, further MCSes are
computed. Otherwise, the algorithm terminates and returns the found set
of MCSes.

A year after Liffiton and Sakallah introduced the MCS algorithm, they
published an improved version, called MCSes-U that makes use of unsatis-
fiable cores. Most state-of-the-art SMT solvers have the ability to generate
a proof of unsatisfiability. As a byproduct an, not necessarily minimal,
unsatisfiable core is created, which is a set of variables that led to the for-

65

Chapter 5 Framework and Implementation

Algorithm 5.3 Algorithm to find minimal correction sets [47]
Require: Formula ϕ with unassigned not-abnormals (NAB)
Ensure: Minimal diagnoses MCSes
1: function MinimalCorrectionsSets(ϕ)
2: MCSes := ∅
3: upperBound := 1
4: while solve(ϕ) == SAT do
5: ϕ’ := ϕ ∧ AtMost({nab | nab ∈ NAB}, upperBound)
6: while solve(ϕ’) == SAT do
7: MCS := GetNewMCS(ϕ’)
8: MCSes := MCSes ∪ {MCS}
9: ϕ’ := ϕ’ ∧ BlockingClause(MCS)
10: ϕ := ϕ ∧ BlockingClause(MCS)
11: end while
12: upperBound := upperBound + 1
13: end while
14: return MCSes
15: end function

mula being unsatisfiable. With help of the unsatisfiable core the number of
not-abnormals, that need to be considered while calculating MCSes, can be
reduced. Meaning all not-abnormals that are not included in the unsatisfi-
able core set can be assigned to true and therefore, reducing the unassigned
variables and shortening the run-time of the algorithm.
The MCSes-U algorithm at first assumes, that all not-abnormals are true,
which makes the formula unsatisfiable. Then the GetCore function is
executed at Line 4, which calls the SMT solver’s function to extract the
unsatisfiable core. At Line 5 the SMT solver is called again. This time all
not-abnormals are unassigned. If the solver cannot satisfy the formula the
algorithm terminates. Otherwise, there has to exist at least one unreported
diagnosis. The Instrument function of Line 6 adds the AtMost cardi-
nality to a temporary copy ϕ’. Additionally, all not-abnormals not included
in the unsatisfiable core are set to true, since they are not responsible for
the formula being unsatisfiable. Variables included in the core set how-
ever, remain unassigned. The loop from Line 8 to 13 produces all MCSes
just like Algorithm 5.3. At Line 14 an additional core set is added to the
current one. This is done by solving ϕ’ under the assumption that all not-
abnormals, which are not included in the current core, are true. The loop
of Line 7 checks, if there are any new solutions with the same maximum

66

Chapter 5 Framework and Implementation

cardinality for the changed formula. If this is the case, the inner loop is ex-
ecuted at least one time, otherwise Line 17 is executed, where upperBound
is incremented by one. When no more solutions can be found the algorithm
terminates by returning all computed MCSes.

Algorithm 5.4 Algorithm to find minimal correction sets with unsatisfiable
cores [6] (a modified version of [48])
Require: Formula ϕ with unassigned not-abnormals (NAB)
Ensure: Minimal diagnoses MCSes
1: function MCSesUnsatisfiableCores(ϕ)
2: MCSes := ∅
3: upperBound := 1
4: core := GetCore(ϕ, NAB)
5: while solve(ϕ) == SAT do
6: ϕ’ := Instrument(ϕ, core, upperBound)
7: while solve(ϕ’) == SAT do
8: while solve(ϕ’) == SAT do
9: MCS := GetNewMCS(ϕ’)
10: MCSes := MCSes ∪ {MCS}
11: ϕ’ := ϕ’ ∧ BlockingClause(MCS)
12: ϕ := ϕ ∧ BlockingClause(MCS)
13: end while
14: core := core ∪ GetCore(ϕ’, NAB\core)
15: ϕ’ := Instrument(ϕ, core, upperBound)
16: end while
17: upperBound := upperBound + 1
18: end while
19: return MCSes
20: end function

5.1.3 Supported Spreadsheet Functions

To debug spreadsheets the framework needs the functionality to convert each
spreadsheet function into constraints. There are a lot of different spreadsheet
functions and depending on the program the syntax might differ. Therefore,
until now the framework only supports a limited amount of these functions.
Table 5.3 lists all the supported functions and gives a short description
thereof aligned to the equivalent Microsoft Excel functions.

67

Chapter 5 Framework and Implementation

Function Description
Numeric binary operations addition (+), subtraction (-), multiply (·), di-

vide (/) and power (^).
Boolean binary operations less than (<), less or equal (≤), greater

than (>), greater or equal (≥), equal (==)
and unequal (6=).

Unary binary operations unary plus (+) and unary minus (-)
Logical functions AND (∧), OR (∨) and NOT (<>)
ABS Returns the absolute value of a supplied num-

ber.
AVERAGE Returns the arithmetic mean of a list of sup-

plied numbers.
IF Tests a condition and returns one result if the

condition is true, and another result if the
condition is false.

MAX Returns the largest value from a list of sup-
plied numbers.

MIN Returns the smallest value from a list of sup-
plied numbers.

MOD Returns the remainder from a division be-
tween two supplied numbers.

SUM Returns the sum of a supplied list of numbers.

Table 5.3: List of all spreadsheet functions for which the framework is able
to produce Z3 constraints.

68

Chapter 5 Framework and Implementation

5.2 Extensions

As we show in our comparison of different state-of-the-art SMT solvers in
Chapter 4, Z3 is currently the only SMT solver suitable for spreadsheet
debugging with value-based models. Therefore, we introduce dependency-
based models for MBSD of spreadsheets based on the research of Hofer
et al. [43]. Furthermore, we introduce a verifying method to improve the
quality of dependency-based diagnoses, as well as extend the framework with
some additional spreadsheet functions. Figure 5.3 gives an overview of the
extended framework focused on the components relevant for SMT solvers.
The component shaded in dark gray represents a component with extended
functionality. Components which are newly added for this work are shaded
in light gray. Note that since Z3 now supports the creation of value-based
as well as dependency-based constraint sets, the user needs to specify which
approach should be used.

5.2.1 Dependency-based Models

The concept to use dependency-based models for MBSD of spreadsheets is
based on the research of Hofer et al. [43]. They state that on the contrary to
the value-based models, dependency-based models only propagate the infor-
mation whether the computed values are correct. Therefore, dependency-
based models can be expressed in PL. Meaning we could use any state-of-
the-art SAT solver to debug spreadsheets with dependency-based models.
However, we can also use SMT solvers, since they all have a SAT solver inte-
grated. Table 5.4 shows that all six compared solvers can be used for MBSD
of spreadsheets with dependency-based models. However, only MathSAT 5,
SMTInterpol and Z3 can be used in combination with the MCSes-U algo-
rithm.

To create dependency-based constraints we consider each cell as a Boolean.
Furthermore, the concrete formulas are ignored and only the cells’ depen-
dencies are modeled as a conjunction of the related cells. To do that we make
use of implications, instead of equations. This leads to following constraint
generation rules for dependency-based models:

∀ cells c ∈ Input(Π) : c == true

69

Chapter 5 Framework and Implementation

Figure 5.3: Overview of the framework’s relevant components for spread-
sheet debugging after the expansion. Components shaded in light gray de-
pict the framework’s newly added components. The component shaded in
dark gray represents a component with extended functionality.

Name Decide SAT
for PL QF_NA Models Unsat-Cores

CVC4 yes yes yes no
MathSAT 5 yes no yes yes
SMTInterpol yes no yes yes
veriT yes no yes no
Yices 2 yes no yes no
Z3 yes yes yes yes

Table 5.4: Overview of Solvers suitable for dependency-based spreadsheet
debugging. Solvers shaded in light gray can be used for dependency-based
spreadsheet debugging. Columns shaded in dark gray denote that the solver
can be used in combination with the MCSes-U algorithm.

70

Chapter 5 Framework and Implementation

∀ cells c ∈ Output(Π) ∧ c ∈ Ocorrect : c == true

∀ cells c ∈ Output(Π) ∧ c ∈ Owrong : c == false

∀ cells c ∈ (
⋃

c′∈Ocorrect

Cone(c′)\
⋃

c′′∈Owrong

Cone(c′′)) :
∧

c′′′∈ρ(c)
c′′′ → c

∀ cells c ∈
⋃

c′∈Owrong

Cone(c′) : NAB(cellc)→
∧

c′′∈ρ(c)
c′′ → c

with functions Input(Π), Output(Π), Cone(c) and ρ(c) defined as in
Definitions 2.10, 2.11, 2.15 and 2.8 and Owrong and Ocorrect defined as in
Definition 2.13. We call this version of a dependency-based model the "sim-
ple dependency-based version".

Generating Simple Dependency-based Models

To create simple dependency-based models instead of value-based models
we need to make slight adaptions to Algorithm 5.1. The new version of the
algorithm, is depicted by Algorithm 5.5.

If we compare Algorithm 5.5 to the one we used to create value-based mod-
els, we see that Lines 1 to 10 behave exactly the same. For all cells in Ow we
create a conjunct set of the cells’ dependencies at Line 12. Line 13 gener-
ates the cells’ Boolean not-abnormal variables and links them with the cells’
simple dependency-based constraints. For the formulas of cells, which are
elements of the set Oc, we again create a conjunct set of the cells’ dependen-
cies at Line 17. Line 18 adds the cells’ simple dependency-based constraints
to the auxiliary variable clause, which is added to the clause set CΠ at
Line 19. At Lines 22 to 27 the constraints for the test case information are
generated. Since we consider each variable as a Boolean, we initialize it with
either true or false instead of with the cell’s value. Finally, the conjunction
of the spreadsheet’s constraint set CΠ and the test case’s constraint set CT
is returned at Line 28.

71

Chapter 5 Framework and Implementation

Algorithm 5.5 Algorithm to convert a spreadsheet into a simple
dependency-based model.
Require: Spreadsheet Π, a failing test case T with input I and output

Owrong and Ocorrect

Ensure: Simple dependency-based clause set of Π and T
1: function ConvertSpreadsheetIntoSDBModel(Π, T)

. . .

11: for all cells c ∈ Ow do
12: D :=

∧
c′∈ρ(c) Name(c′)

13: clause := NAB(Index(c)) → (D → Name(c))
14: CΠ := CΠ ∧ clause
15: end for
16: for all cells c ∈ Oc do
17: D :=

∧
c′∈ρ(c) Name(c′)

18: clause := D → Name(c)
19: CΠ := CΠ ∧ clause
20: end for
21: CT := ∅
22: for all cells c ∈ I ∪Ocorrect do
23: CT := CT ∧ (Name(c) == true)
24: end for
25: for all cells c ∈ Owrong do
26: CT := CT ∧ (Name(c) == false)
27: end for
28: return CΠ ∧ CT
29: end function

72

Chapter 5 Framework and Implementation

Figure 5.4: Dependency graph of the running example from Figure 5.2b.
Gray cells represent the input cells, green cells the correct output cells. The
red cell represents the faulty cell and the yellow cells the wrong output cells.
An arrow from one Cell X1 to another Y1 denotes the reference of X1 in
Y1’s formula.

Example 5.2. One important part of creating a simple dependency-based
constraint set is to model each cell’s dependencies. Therefore, we introduce
Figure 5.4 which shows the dependency graph of the running example from
Figure 5.2b. An arrow from one Cell X1 to another Y1 denotes the reference
of X1 in Y1’s formula. Cells with no arrows pointing to them are input cells.
Cells with no arrows pointing away from them are output cells. If we apply
the simple dependency-based approach to the running example we receive a
constraint set as shown in Table 5.5. Solving this constraint set returns two
single-fault diagnoses: either Cell B5 or C5 must contain the fault.

The simple dependency-based model leads to more diagnoses, since we
use implications to model the cells’ relationships with other cells. Therefore,
we can only draw conclusions from the input on the output, which leads to

73

Chapter 5 Framework and Implementation

Input Cells: Output Cells:
B2 == true B6 == true
B3 == true C6 == false
B4 == true D6 == false
. . . E2 == true

Formula Constraints:
NAB(B5) → B2 ∧ B3 ∧ B4 → B5
NAB(C2) → B2 ∧ B3 ∧ B4 → C2
NAB(C5) → B2 ∧ C3 ∧ C4 → C5
NAB(C6) → B5 ∧ C5 → C6
NAB(D2) → C2 ∧ C3 ∧ C4 → D2
NAB(D5) → D2 ∧ D3 ∧ D4 → D5
NAB(D6) → B5 ∧ C5 ∧ D5 → D6
B5 → B6
D2 ∧ D3 ∧ D4 → E2

Table 5.5: Simple dependency-based constraint set for the running example
from Figure 5.2b.

some loss of information. That is why the solution is not as accurate as
when using value-based models. However, the problem of information loss
can be solved by using "sophisticated dependency-based" models instead.

5.2.2 Sophisticated Dependency-based Model

To get rid of above mentioned weakness of the simple dependency-based
model, Hofer et al. [43] suggest to replace the implication with bi-implication
(equivalence). By using bi-implication instead of implication conclusions can
be drawn from the input on the output and vice versa. However, when using
bi-implication we have to be careful of coincidental correctness.

Definition 5.4. Coincidental correctness: Coincidental correctness de-
scribes the case where a cell’s formula evaluates to the correct value, even
though the formula is faulty, or references a faulty cell.

Definition 5.5. Function ifCC : The function ifCC(c) takes a cell c as
input and returns true if coincidental correctness might occur for the formula
of c and false otherwise.

Formulas which might lead to coincidental correctness still have to be
modeled with implication. Meaning in case of coincidental correctness, sim-
ilar to the simple dependency-based approach, there occurs some loss of

74

Chapter 5 Framework and Implementation

information. Table 5.6 shows some common spreadsheet functions for which
coincidental correctness might occur.

If we change the simple dependency-based constraint generation rules to
use bi-implication instead of implication and furthermore, consider coinci-
dental correctness, we get following constraint generation rules for sophisti-
cated dependency-based models:

∀ cells c ∈ (
⋃

c′∈Ocorrect

Cone(c′)\
⋃

c′′∈Owrong

Cone(c′′)) :

{ ∧
c′′′∈ρ(c) c

′′′ → c ifCC(c) = true∧
c′′′∈ρ(c) c

′′′ ↔ c otherwise

∀ cells c ∈ (
⋃

c′∈Ocorrect

Cone(c′)\
⋃

c′′∈Owrong

Cone(c′′)) :

{
NAB(cellc)→

∧
c′′∈ρ(c) c

′′ → c ifCC(c) = true

NAB(cellc)→
∧
c′′∈ρ(c) c

′′ ↔ c otherwise

with the other rules staying the same. Functions Cone(c), ρ(c) and
ifCC(c) are defined as in Definitions 2.15, 2.8 and 5.5 andOwrong andOcorrect

are defined as in Definition 2.13.

Generating Sophisticated Dependency-based Models

Since simple dependency-based models and sophisticated dependency-based
models look very similar, except for bi-implication instead of implication,
we only need to make slight adaptions to Algrotihm 5.5. The new version of
the algorithm, is depicted by Algorithm 5.6. However, we need to consider
coincidental correctness. That is why we introduce Algorithm 5.7 to check
whether coincidental correctness might occur for a certain formula.

If we compare Algorithm 5.6 to the one we used to create simple dependency-
based models, the only difference is that we check for coincidental correctness
before creating the different constraints (Line 13 and Line 22). In case coin-
cidential correctness might occur the constraints are created the same way as
for the simple dependency-based models (Line 14 and Line 23). However, if

75

Chapter 5 Framework and Implementation

Function Description
∗IF, SUMIF, COUNTIF,
. . .

In case the condition contains an error the
result could still be right. Additionally, if
one of the values contains an error but it
is not used since the condition is not sat-
isfied the result would still be right. The
same is true for all conditional functions.

∗MIN, ∗MAX, ∗COUNT,
SMALL, . . .

An error in the target area of the function
could still lead to a correct result. The
same is true for all functions that take an
area of cells as input and only pick one of
the cells’ values as a result.

∗Boolean x ∨ true is always true; false ∧ x is al-
ways false; Therefore, no conclusion can
be drawn on the value of x.

∗PRODUCT,
SUMPRODUCT

The result of a multiplication with 0 is
always zero. Therefore, no conclusion can
be drawn on the other multiplicand.

∗POWER No conclusion can be drawn on the expo-
nent if the base equals 0 or 1. Further-
more, if the exponent is 0 no conclusion
can be drawn on the base.

MOD Two entirely different calculations could
produce the same result, f.i. 10%3 = 1;
31%3 = 1.

ROUND, FLOOR, . . . Coincidental correctness can occur for
each rounding function.

ABS The function could produce the right re-
sult even if a value with the wrong sign is
passed to it.

SIN, COS, . . . For all trigonometric functions which re-
peat themselves coincidental correctness
can occur, f.i. cos(0) = 1; cos(2π) = 1.

. . .

Table 5.6: Shows some common spreadsheet functions for which coinciden-
tal correctness might occur. The occurrence of coincidental correctness for
functions preceded by ∗ was shown by Hofer et al. [43]

76

Chapter 5 Framework and Implementation

it is not possible for coincidental correctness to occur we use bi-implication,
instead of implication, for the clause creations (Line 16 and Line 25).

Algorithm 5.6 Algorithm to convert a spreadsheet into a sophisticated
dependency-based model.
Require: Spreadsheet Π, a failing test case T with input I and output

Owrong and Ocorrect

Ensure: Sophisticated dependency-based clause set of Π and T
1: function ConvertSpreadsheetIntoSophDBModel(Π, T)

. . .

11: for all cells c ∈ Ow do
12: D :=

∧
c′∈ρ(c) Name(c′)

13: if IsCoincidentalCorrect(c) then
14: clause := NAB(Index(c)) → (D → Name(c))
15: else
16: clause := NAB(Index(c)) → (D ↔ Name(c))
17: end if
18: CΠ := CΠ ∧ clause
19: end for
20: for all cells c ∈ Oc do
21: D :=

∧
c′∈ρ(c) Name(c′)

22: if IsCoincidentalCorrect(c) then
23: clause := D → Name(c)
24: else
25: clause := D ↔ Name(c)
26: end if
27: CΠ := CΠ ∧ clause
28: end for

. . .

29: end function

Since we need to consider coincidental correctness for sophisticated de-
pendency-based models we introduce Algorithm 5.7. It takes a cell c as input
and returns true if coincidental correctness might occur or false otherwise.
The algorithm checks all possible cases in which coincidental correctness
might occur. In case of nested formulas Lines 2 to 7 check each part of the
formula separately for coincidental correctness. If at least one part returns
true coincidental correctness occurs. If the formula is not nested we still

77

Chapter 5 Framework and Implementation

Input Cells: Output Cells:
B2 == true B6 == true
B3 == true C6 == false
B4 == true D6 == false
. . . E2 == true

Formula Constraints:
NAB(B5) → B2 ∧ B3 ∧ B4 → B5
NAB(C2) → B2 ∧ B3 ∧ B4 ↔ C2
NAB(C5) → B2 ∧ C3 ∧ C4 → C5
NAB(C6) → B5 ∧ C5 ↔ C6
NAB(D2) → C2 ∧ C3 ∧ C4 → D2
NAB(D5) → D2 ∧ D3 ∧ D4 ↔ D5
NAB(D6) → B5 ∧ C5 ∧ D5 ↔ D6
B5 ↔ B6
D2 ∧ D3 ∧ D4 ↔ E2

Table 5.7: Shows the sophisticated dependency-based constraint set for the
running example from Figure 5.2b.

need to check all other possibilities in which coincidental correctness can
occur. Lines 8 to 11 handle conditional functions and Lines 12 to 16 handle
some abstract functions. At Lines 17 to 19 the algorithm checks whether
the cell is dependent on a Boolean variable. The case of a multiplication
with zero is handled by Lines 20 to 25. Lines 26 to 30 handle the case of
a power function with zero or one as a base or zero as an exponent. If no
case is found in which coincidental correctness might occur the algorithm
returns false at Line 31.

Example 5.3. If the sophisticated dependency-based approach is applied to
the running example from Figure 5.2b we receive a constraint set as shown in
Table 5.7. Solving this constraint set returns the same single-fault diagnosis
as the value-based model: Cell C5 has to be a faulty cell.

5.2.3 Verifying Diagnoses with Value-based models

For simple examples—like our running example—sophisticated dependency-
based models provide accurate diagnoses. However, if we add formulas
for which coincidental correctness might occur, the sophisticated approach
looses its advantage over the simple dependency-based version, since they
both model these constraints with implication. Therefore, we introduce a

78

Chapter 5 Framework and Implementation

Algorithm 5.7 Algorithm that decides if coincidental correctness might
occur.
Require: Cell c
Ensure: Boolean isCC where isCC is true when coincidental correctness

might occur or false otherwise
1: function IsCoincidentalCorrect(c)
2: if f(c) is of the form e1 o e2 then
3: if IsCoincidentalCorrect(e1) ||
4: IsCoincidentalCorrect(e2) then
5: return true
6: end if
7: end if
8: if f(c) is of the form IF(cond,e1,e2) || SUMIF(. . .) ||
9: COUNTIF(. . .) then

10: return true
11: end if
12: if f(c) is of the form MIN(. . .) || MAX(. . .) || COUNT(. . .) ||
13: SMALL(. . .) || MOD(. . .) || ROUND(. . .) || FLOOR(. . .) ||
14: ABS(. . .) || SIN(. . .) || COS(. . .) then
15: return true
16: end if
17: if f(c) is a Boolean then
18: return true
19: end if
20: if f(c) is of the form e1 · e2 || PRODUCT(. . .) ||
21: SUMPRODUCT(. . .) then
22: if ∃ expression e : v(e) == 0 then
23: return true
24: end if
25: end if
26: if f(c) is of the form POWER(e1,e2) then
27: if v(e1) == 0 || v(e1) == 1 || v(e2) == 0 then
28: return true
29: end if
30: end if
31: return false
32: end function

79

Chapter 5 Framework and Implementation

method to verify, if dependency-based results are real diagnoses. With this
method we can improve the quality of dependency-based diagnoses. How-
ever, since we make use of value-based models we can not express the spread-
sheet debugging problem in PL anymore. Instead we have to express it in
FOL, since we model the cells’ formulas and therefore, we are confronted
with a non-linear arithmetic problem again. This means that only Z3 can
be used to verify dependency-based diagnoses.

To create models for dependency-based diagnosis verification we create a
value-based model similar as described in Section 5.1.1. However, we do
not make use of not-abnormal variables. Instead we represent each cell—
that would otherwise be connected to a not-abnormal variable—equal to its
formula’s constraint. This leads to a constraint system like the following:

∀ cells c ∈ Input(Π) : c == v(c)

∀ cells c ∈ Output(Π) : c == vexp(c)

∀ cells c ∈
⋃

c′∈Output(Π)
Cone(c′) : c == constraint(f(c))

with functions Input(Π), Output(Π) and Cone(c) defined as in Defini-
tions 2.10, 2.11 and 2.15. To verify if dependency-based diagnoses are valid,
we have to try for each of the returned MCSes whether the constraint set
is satisfiable if we omit each cell’s constraint. In case the constraint set is
satisfiable, we mark the MCS as a High Priority Diagnosis (HPD), mean-
ing that it is valid. However, if the constraint set is unsatisfiable, we mark
the MCS as a Low Priority Diagnosis (LPD), since it could still be a valid
diagnosis in combination with other cells.

Modified Running Example

To illustrate this case we modify our running example from Figure 5.2b. The
modified version is shown in Figure 5.5. Figure 5.5a shows the value view of
the modified faulty spreadsheet where we manually inserted a second fault in
Cell B5—colored in red. We purposefully replaced the acceleration (Cell B3)
with the duration (Cell B4) in the calculation of the distance. This can be

80

Chapter 5 Framework and Implementation

(a) Modified faulty spreadsheet

(b) Formula view of the modified faulty spreadsheet

Figure 5.5: Modified running example

seen in the formula view of the modified faulty spreadsheet depicted in
Figure 5.5b. Furthermore, it follows that Cell B6 is now an incorrect output
cell and therefore, colored in yellow. The test case for the modified example
stays the same as for the original example (Table 5.1).

Example 5.4. If we debug the modified faulty spreadsheet from Figure 5.5a
with either the simple or the sophisticated approach, we receive the results
that Cell B5 is a single-fault diagnosis and (B6, C5) and (B6, C6) are double-
fault diagnoses. The value-based approach however, returns only double-
fault diagnoses: (B5, B6), (B5, C5), (B5, C6), (B6, C5) and (B6, C6).
Therefore, if we verify the solutions from the dependency-based approaches
with a value-based model, B5 will be a LPD, since on its own, it is not a valid
diagnosis. However, as shown by the result of the value-based approach, B5
is a valid solution in combination with other cells.

Verifying Algorithm

Algorithm 5.8 takes a spreadsheet Π, a failing test case T and a list of
dependency-based diagnoses D as input and verifies which diagnoses are
valid by splitting them into HPDs and LPDs. First the algorithm creates a
constraint set similar to Algorithm 5.1. At Lines 7 to 14 the constraints for
the formulas of the output cells are added to the constraint set CΠ. Then
the constraints for the test case information are generated and added to
the constraint set CT at the Lines 16 to 21. At Line 22 the two constraint

81

Chapter 5 Framework and Implementation

Figure 5.6: Flow chart of the verifying process for the simple approach and
running example from Figure 5.2b.

sets CΠ and CT are added to a combined constraint set CS. Lines 24 to 35
show the verifying process. Each diagnosis mcs contained in D gets verified.
Therefore, we omit for each cell contained in mcs the cell’s constraint from
CS, and store the result in an auxiliary variable CSaux at Lines 26 to 29.
Then the solver checks whether CSaux is satisfiable or not (Line 30). In case
it is satisfiable the diagnosis is stored in the list of HPDs at Line 31. If
CSaux is unsatisfiable the diagnosis is stored in the list of LPDs at Line 33.
Finally, at Line 36 the algorithm returns the list HPD as well as LPD.

Example 5.5. Figure 5.6 shows a flow chart of the verifying process for
the simple approach and the running example from Figure 5.2b. First a
simple dependency-based model is created out of the spreadsheet and the
property file. As shown in Example 5.2 the simple approach returns the
Cells B5 and C5 as single-fault diagnoses. Both of the diagnoses need to be
verified. Table 5.8 and Table 5.9 show the constraint sets for the diagnosis
verification. In the constraint set of Table 5.8 Cell B5’s constraint is omitted
and if passed to the solver, it returns unsatisfiable. In the constraint set of
Table 5.9 Cell C5’s constraint is omitted and if passed to the solver, it returns
satisfiable. This leads to the result that C5 is in fact a valid diagnosis and
therefore, is reported as a HPD. However, B5 is only a LPD, meaning it is
either no diagnosis at all, or it cannot correct the error of the spreadsheet
on its own. Therefore, the user can focus on inspecting the HPDs first.

5.2.4 Extended Spreadsheet Functions

Since the framework only supports a limited number of spreadsheet func-
tions, we add some more common functions to the framework. Table 5.10

82

Chapter 5 Framework and Implementation

Algorithm 5.8 Algorithm to verify dependency-based diagnoses with value-
based models.
Require: Spreadsheet Π, a failing test case T with input I and output O,

and dependency-based diagnoses D
Ensure: A list of high priority diagnoses HPD and a list of low priority

diagnoses LPD
1: function VerifyDiagnoses(Π, T , D)
2: HPD := ∅
3: LPD := ∅
4: CS := ∅
5: CΠ := ∅
6: O := ∅
7: for all cells c ∈ Output(Π) do
8: O := O ∪ Cone(c)
9: end for

10: for all cells c ∈ O do
11: [C, aux] := ConvertExpressionVB(f(c))
12: clause := Name(c) == aux
13: CΠ := CΠ ∧ C ∧ clause
14: end for
15: CT := ∅
16: for all tuples (c,v) ∈ I do
17: CT := CT ∧ (Name(c) == v)
18: end for
19: for all tuples (c,vexp) ∈ O do
20: CT := CT ∧ (Name(c) == vexp)
21: end for
22: CS := CΠ ∧ CT
23: CSaux := ∅
24: for all diagnoses mcs ∈ D do
25: CSaux := CS
26: for all cells c ∈ mcs do
27: [C, aux] := ConvertExpressionVB(f(c))
28: CSaux := CSaux \ {C ∧ aux}
29: end for
30: if solve(CSaux) == SAT then
31: HPD := HPD ∪ mcs
32: else
33: LPD := LPD ∪ mcs
34: end if
35: end for
36: return HPD, LPD
37: end function

83

Chapter 5 Framework and Implementation

Input Cells: Output Cells:
B2 == 0 B6 == 100
B3 == 2 C6 == 200,100
B4 == 10 D6 == 200,150
. . . E2 == 0

Formula Constraints:
removed constraint for Cell B5
C2 == B2 + B3 · B4
C5 == C2 · C4 + C3 · C4 · C4 / 2
C6 == B5 + C5
D2 == C2 + C3 · C4
D5 == D2 · D4 + D3 · D4 · D4 / 2
D6 == B5 + C5 + D5
B6 == B5
E2 == D2 + D3 · D4

Table 5.8: Shows the value-based constraint set to verify whether Cell B5 is
a valid diagnosis.

Input Cells: Output Cells:
B2 == 0 B6 == 100
B3 == 2 C6 == 200,100
B4 == 10 D6 == 200,150
. . . E2 == 0

Formula Constraints:
B5 == B2 · B4 + B3 · B4 · B4 / 2
C2 == B2 + B3 · B4
removed constraint for Cell C5
C6 == B5 + C5
D2 == C2 + C3 · C4
D5 == D2 · D4 + D3 · D4 · D4 / 2
D6 == B5 + C5 + D5
B6 == B5
E2 == D2 + D3 · D4

Table 5.9: Shows the value-based constraint set to verify whether Cell C5 is
a valid diagnosis.

84

Chapter 5 Framework and Implementation

Function Description
PI Returns the constant value of pi.
POWER Returns the result of a given number raised

to a supplied power.
PRODUCT Returns the product of a supplied list of num-

bers.
RANK Returns the statistical rank of a given value,

within a supplied array of values.
SMALL Returns the kth smallest value from a list of

supplied numbers, for a given value k.
SUMPRODUCT Returns the sum of the products of corre-

sponding values in two or more supplied ar-
rays.

VAR Returns the variance of a supplied set of val-
ues.

Table 5.10: List of newly added spreadsheet functions for which the frame-
work is able to produce Z3 constraints.

lists all the functions we integrate into the framework. Furthermore, we give
a short description of each function according to the equivalent Microsoft
Excel function.

85

Chapter 6

Empirical Evaluation

In this chapter we evaluate the value-based and dependency-based approach-
es in combination with the SMT solver Z3 by means of different spread-
sheet corpora. For the evaluation we compare 1) the runtime behavior of
the value-based approach with the dependency-based approaches with and
without value-based diagnosis verification, 2) the quality of the returned di-
agnoses of the value-based approach with the dependency-based approaches
with and without value-based diagnosis verification, and 3) the distribution
of the faulty cells by means of the reported diagnoses. Therefore, in this
chapter we describe the spreadsheet corpora used for the evaluation, as well
as present the results of the empirical evaluation.

6.1 Spreadsheet Corpus

For the evaluation we make use of a mutated version of the EUSES spread-
sheet corpus [37] presented by Hofer et al. [42], which is publicly available
at [41]. They filter the EUSES spreadsheet corpus by removing all Excel 5.0
spreadsheets and spreadsheets containing less than five formula cells. For
the spreadsheets left, they automatically create up to five mutated spread-
sheets by applying mutation operators on randomly chosen formula cells.
Following mutation operators are used:

• Continuous Range Shrinking: Randomly choosing whether to in-
crement the index of the first column/row, or decrement the index of
the last column/row in areas.

Chapter 6 Empirical Evaluation

• Reference Replacement: Randomly changing the row or column
index of cell references.

• Arithmetic Operator Replacement: Replacing "+" with "-" and
vice versa and "·" with "/".

• Relational Operator Replacement: Replacing the operators "=",
"<", "≤", ">", "≥", and "6=" with one another.

• Constant Replacement: Replacing constants with a different con-
stant of the same type.

• Constant for Reference Replacement: Replacing cell references
with a constant.

• Formula Replacement with Constant: Replacing a whole formula
with a constant.

• Formula Function Replacement: Replacing "SUM" with "AVER-
AGE", "MIN" with "MAX" and vice versa.

Finally, they check for each mutant whether it is valid, i.e. it does not
contain circular references. Furthermore, the inserted fault must be revealed,
i.e. at least for one output cell the computed value of the mutant must differ
from the value of the original spreadsheet. If either one of these cases does
not apply the mutant is discarded. Based on this spreadsheet corpus we re-
move all spreadsheets containing functions not supported by the framework,
leading to a set of 267 spreadsheets for the evaluation. All these spreadsheets
contain a single faulty cell. From here on we define these 267 spreadsheets
to be the single-fault spreadsheet corpus for the evaluation. These spread-
sheets contain both integer and real values. Their content reaches from
calculating grades for students, or private issues (e.g. price to remodel a
room), to spreadsheets with financial background (e.g. calculations of sav-
ings schemes). On average the spreadsheets contain around 105 formula
cells, whereas the smallest spreadsheet contains six formula cells and the
largest 604 formula cells.

For the last part of the evaluation, we generate double and triple-fault mu-
tants from the EUSES spreadsheet corpus with the same procedure as Hofer

87

Chapter 6 Empirical Evaluation

et al. [42]. In total this corpus consists of 217 faulty spreadsheets, whereas
122 spreadsheets contain double-faults and 95 triple-faults. Since these mu-
tants are also based on the EUSES corpus, they have the same attributes
as the single-fault spreadsheets. From here on we define these 217 mutants
to be the multi-fault spreadsheet corpus.

6.2 Evaluation Results

The evaluation is performed on a computer with an Intel Core i7-3639QM
(2,40 GHz quadcore) processor and 8 GB RAM. The framework is running
on a 32-Bit Java VM 1.8.0 Update 20 within a 64-Bit Windows 7. For the
first two parts of the evaluation we call the framework 25 times to run the
value-based approach, as well as the simple and sophisticated approach—
later two each with and without value-based diagnosis verification—for each
faulty spreadsheet of the single-fault spreadsheet corpus from Section 6.1.
Furthermore, we make use of Z3 in combination with the MCSes-U algo-
rithm and set a time limit of five minutes. Finally, we only compute the
diagnoses with lowest cardinality, i.e. we only compute double-fault diag-
noses, if no single-fault diagnoses are found. Note that from here on we
refer to the simple and sophisticated approach with value-based diagnosis
verification as the simple and sophisticated approach. If in any case we want
to refer to a dependency-based approach without diagnosis verification, we
state so explicitly. For the last part of the evaluation we run the value-
based approach as well as the simple and sophisticated approach for each
faulty spreadsheet of the multi-fault spreadsheet corpus from Section 6.1.
Furthermore, we compute all possible diagnoses and not just the ones with
the lowest cardinality. The rest of the set-up remains the same. We make
use of Z3 in combination with the MCSes-U algorithm and set a time limit
of five minutes.

Table 6.1 shows some basic information about the executed runs of the
single-fault spreadsheet corpus. For 6.0% (equals sixteen spreadsheets) of
the spreadsheets the value-based approach results in a timeout. The simple
and sophisticated approach result in a timeout for 3.0% (equals eight spread-
sheets) of the spreadsheets. Running the dependency-based approaches
without value-based diagnosis verification results in both cases in a time-

88

Chapter 6 Empirical Evaluation

Value-
based Simple Soph.

Simple
without
Verifica-
tion

Soph.
without
Verifica-
tion

Total

Timeouts 16 8 8 7 7 16
Timeouts
in % 6.0% 3.0% 3.0% 2.6% 2.6% 6.0%

Out of
Memory 4 4 3 3 3 5

Out of
Memory
in %

1.5% 1.5% 1.1% 1.1% 1.1% 1.9%

Table 6.1: The number and percentage of spreadsheets for which each ap-
proach results in a timeout or Z3 runs out of memory for the single-fault
spreadsheet corpus. Column Total states the number and percentage of dif-
ferent spreadsheets for which at least one approach results in a timeout or
out of memory.

out for 2.6% (equals seven spreadsheets) of the spreadsheets. In total there
are sixteen different spreadsheets for which at least one of the approaches
reaches a timeout. Z3 runs out of memory for 1.5% (equals four spread-
sheets) of the spreadsheets for the value-based and simple approach. For
the sophisticated approach, as well as for the dependency-based approaches
without diagnosis verification Z3 runs out of memory for 1.1% (equals three
spreadsheets) of the spreadsheets. In total there are five different spread-
sheets for which Z3 runs out of memory for at least one approach.
Table 6.2 shows some basic information about the executed runs of the
multi-fault spreadsheet corpus. For 3.2% (equals seven spreadsheets) of the
spreadsheets the value-based approach results in a timeout. The simple
approach runs out of time for 2.3% (equals five spreadsheets) of the spread-
sheets and the sophisticated approach for 1.8% (equals four spreadsheets)
of the spreadsheets. Running the dependency-based approaches without
value-based diagnosis verification results in both cases in a timeout for 1.4%
(equals three spreadsheets) of the spreadsheets. In total there are seven
different spreadsheets for which at least one of the approaches reaches a
timeout. Finally, Z3 does not run out of memory for any spreadsheet of the
multi-fault spreadsheet corpus.

89

Chapter 6 Empirical Evaluation

Value-
based Simple Soph.

Simple
without
Verifica-
tion

Soph.
without
Verifica-
tion

Total

Timeouts 7 5 4 3 3 7
Timeouts
in % 3.2% 2.3% 1.8% 1.4% 1.4% 3.2%

Table 6.2: The number and percentage of spreadsheets for which each ap-
proach results in a timeout for the multi-fault spreadsheet corpus. Column
Total states the number and percentage of different spreadsheets for which
at least one approach results in a timeout.

6.2.1 Runtime Comparison

To calculate each approach’s runtime we add up the average solving time
over 25 runs for all the spreadsheets of the single-fault spreadsheet corpus.
Furthermore, we leave out the runtime of the spreadsheets resulting in a
timeout and of those for which Z3 runs out of memory. Table 6.3 shows
the runtime behavior of each approach in seconds, as well as the percentage
of the required time compared to the fastest approach. The sophisticated
approach without diagnosis verification is the fastest with an accumulated
average runtime of 44.37 seconds. It is followed by the simple approach
without diagnosis verification which on average takes 94.33 seconds. The
dependency-based approaches with diagnosis verification take on average
5.3 (sophisticated) and 7.6 (simple) times longer than the fastest approach,
and the value-based approach takes on average 7.4 times longer. However, an
average runtime for each spreadsheet of 0.18 seconds to 1.37 seconds of the
approaches shows that each approach is applicable for real-time spreadsheet
debugging. Table 6.4 shows a runtime comparison for each approach with
the others. On average the simple approach is for 72.2% of the spreadsheets
faster than the value-based approach and the sophisticated for 62.0% of
the spreadsheets. A comparison of the dependency-based approaches shows
that the simple approach is for 59.3% of the spreadsheets faster than the
sophisticated approach. Figures 6.1, 6.2 and 6.3 show the same results as
Table 6.4 but in a graphical representation. Based on these results we can
infer that spreadsheet debugging with dependency-based models is on aver-
age significantly faster than with value-based models. Even with value-based
diagnosis verification the dependency-based approaches on average outper-

90

Chapter 6 Empirical Evaluation

Value-
based Simple Soph.

Simple
without
Verifica-
tion

Soph.
without
Verifica-
tion

Accumulated
Avg. Runtime 329.54 s 337.44 s 234.98 s 94.33 s 44.37 s

Accumulated
Avg. Runtime
in %

742.7% 760.5% 529.6% 212.6% 100%

Average 1.34 s 1.37 s 0.96 s 0.38 s 0.18 s
Median 0.024 s 0.016 s 0.017 s 0.002 s 0.002 s
Stdev 8.33 s 9.29 s 6.17 s 2.65 s 1.08 s

Table 6.3: Accumulated average runtime behavior of each approach over all
spreadsheets of the single-fault spreadsheet corpus, with exception to the 21
spreadsheet from Table 6.1 where at least one approach results in either a
timeout or out of memory.

Value-based Simple Sophisticated
Value-based - 72.2% 62.0%
Simple 27.8% - 40.7%
Sophisticated 38.0% 59.3% -

Table 6.4: Percentage of spreadsheets for which the "column" approach is
faster than the "row" approach.

form the value-based approach. There are however, single cases in which
the value-based approach is tremendously faster than the simple approach,
leading to the accumulated average runtime of the simple approach to be
higher than the value-based approach’s. Figure 6.4 and Figure 6.5 show a
comparison of the runtime to the number of formula cells and the number
of constraints, respectively. They show that there exists a slight correlation
between a high runtime and a large number of formula cells and constraints.

6.2.2 Diagnosis Comparison

To evaluate the quality of the diagnoses we make use of the single-fault
spreadsheet corpus. Table 6.6 shows the total number of diagnoses returned
by each approach and compares them to the value-based approach. The
simple approach returns the same amount of diagnoses as the value-based
approach. Whereas, the sophisticated approach returns even one diagnosis

91

Chapter 6 Empirical Evaluation

Figure 6.1: Comparison of the average runtime in milliseconds between the
value-based and simple approach.

Figure 6.2: Comparison of the average runtime in milliseconds between the
value-based and sophisticated approach.

92

Chapter 6 Empirical Evaluation

Figure 6.3: Comparison of the average runtime in milliseconds between the
simple and sophisticated approach.

Figure 6.4: Comparison of the runtime with the number of formula cells.
There exists a slight correlation between a high runtime and a high number
of formula cells.

93

Chapter 6 Empirical Evaluation

Figure 6.5: Comparison of the runtime with the number of constraints.
There exists a slight correlation between a high runtime and a high number
of constraints.

less than the value-based approach. This is quite interesting, since it is true
for exactly one spreadsheet. The reason therefor is the MCSes-U algorithm
which performs an unsatisfiable core extraction on the constraint set before
solving it. For the constraint set of the sophisticated approach Z3 is able to
reduce the amount of variables that lead to the formula being unsatisfiable
to two variables. In case of the simple approach the unsatisfiable core set
contains three variables, since the simple approach can model its constraints
only with implication, unlike the sophisticated approach which makes use of
bi-implication. However, we cannot say for sure why the unsatisfiable core
for the value-based constraint set contains also three variables instead of two.
The most plausible reason is that Z3 does not necessarily compute a minimal
unsatisfiable core. Another reason could be that Z3 makes use of several pre-
processing steps to simplify a problem before solving it. This pre-processing
steps differ for each theory and therefore, different unsatisfiable cores are
produced. Figure 6.6 shows the relevant parts of this special spreadsheet
and its formula view. Furthermore, the spreadsheet’s faulty test case is
depicted in Table 6.5.

The dependency-based approaches without diagnosis verification return
2.42% or 155 (simple) and 0.20% or 13 (sophisticated) more diagnoses than
the value-based approach. However, if we divide these numbers by the total
amount of spreadsheets, we can see that the simple approach without diag-

94

Chapter 6 Empirical Evaluation

(a) Special spreadsheet

(b) Formula view

Figure 6.6: Spreadsheet for which the sophisticated approach produces one
diagnosis less than the value-based and simple approach. Cells shaded in
gray represent input cells. The correct output cells are colored in green and
the faulty cell is colored in red.

95

Chapter 6 Empirical Evaluation

Input cells with
values:

Output cells with
expected values:

D7 == 25 M19 == 0.959
D9 == 23 M9 == 0.938
D10 == 25 M10 == 0.913
D11 == 20,000 M11 == 0.913
D12 == 19 M12 == 0.908
D13 == 16 M13 == 0.949
.

Table 6.5: A failing test case for the special spreadsheet from Figure 6.6.

nosis verification produces around 0.58 more diagnoses for each spreadsheet
than the value-based approach. In case of the sophisticated approach with-
out diagnosis verification the results contain around 0.05 more diagnoses
per spreadsheet. This shows that with value-based diagnosis verification it
is possible to reduce the number of reported diagnoses for the dependency-
based approaches to equal those from the value-based approach. Table 6.7
states the distribution of the reduction. Like Hofer et al. [43] we define the
reduction as shown in Definition 6.1.

Definition 6.1. Reduction: Reduction equals the diagnoses’ quality and
states the percentage of cells which can be excluded from the number of
formula cells that need to be manually investigated by a user to fix the
faulty spreadsheet.

Reduction = 1− |Diagnoses in model|
|Formula cells|

The simple and sophisticated approach produce almost the same number
of diagnoses as the value-based approach, therefore, they share the same re-
duction rates. For the simple and sophisticated approach without diagnosis
verification we can see that the reduction rates for the other approaches are
only slightly better. This leads to the conclusion that with average reduction
rates of around 73%, each of the approaches has the potential to aid users
in debugging faulty spreadsheets. Figure 6.7 illustrates the distribution of
the reduction rates with respect to the evaluated spreadsheets of the single-
fault spreadsheet corpus. It shows that for around 30 spreadsheets not one
approach is able to significantly reduce the number of cells that have to be
manually investigated (reduction < 10%). However, for over 110 spread-

96

Chapter 6 Empirical Evaluation

Value-
based Simple Soph.

Simple
without
Verifica-
tion

Soph.
without
Verifica-
tion

Diagnoses 6400

6400
(HPDs)
155

(LPDs)

6399
(HPDs)

14
(LPDs)

6555 6413

Compared
to value-
based

Absolut - 0 -1 +155 +13
In per-
centage - 0% -0.02% +2.42% +0.20%

Per
spread-
sheet

- 0 0 +0.58 +0.05

Table 6.6: Compares the diagnoses of the simple and sophisticated approach
with and without diagnosis verification to the value-based approach and
shows how many more diagnoses per spreadsheet are reported.

sheets all approaches are able to reduce the percentage of formula cells that
have to be manually investigated by more than 90%. Comparing the spread-
sheets with low reduction rate to those with high reduction rate results in
one major difference. Low reduction rates mostly occur for spreadsheets
where many cells are direct data dependent on the faulty cell. Whereas,
high reduction rates mostly occur for spreadsheets where few cells are direct
data dependent on the faulty cell. Figure 6.8 shows the distribution of the
reduction rate with respect to the average runtime in milliseconds for each
approach. It can be seen that there exists a correlation between a low re-
duction rate and a high runtime. As previously stated, low reduction rates
mostly occur for spreadsheets where many cells are direct data dependent
on the faulty cell, which means that the constraint representations of the
spreadsheets contain many not-abnormal variables. The more not-abnormal
variables a constraint set contains, the more satisfiability checks have to be
performed with the SMT solver which in turn results in a high runtime. On
the basis of this information, reasonable termination criteria can be intro-
duced, i.e. the debugging process can be aborted once the runtime exceeds
a certain threshold, since most likely no satisfying diagnoses will be found.

97

Chapter 6 Empirical Evaluation

Reduction Value-based
Simple
without

Verification

Sophisticated
without

Verification
Average 73.68% 72.91% 73.63%
Median 89.09% 89.09% 90.63%
Stdev 33.27% 33.27% 33.28%

Table 6.7: Distribution of the reduction which equals the diagnoses’ quality.
The reduction rate of the value-based approach is equal to the reduction
rates of the simple and sophisticated approach with diagnosis verification,
since they produce almost the same number of diagnoses.

Figure 6.7: Shows an overview of the reduction’s distribution for the value-
based approach, as well as the simple and sophisticated approach without
diagnosis verification.

98

Chapter 6 Empirical Evaluation

Figure 6.8: Shows an overview of the reduction’s correlation to the average
runtime for the value-based, simple and sophisticated approach. Low reduc-
tion rate equals high runtime. On the basis of this information, reasonable
termination criteria can be introduced.

99

Chapter 6 Empirical Evaluation

6.2.3 Faulty Cells’ Distribution

To evaluate the distribution of the faulty cells we analyze the reported di-
agnoses for only the multi-fault spreadsheet corpus. For each spreadsheet
we split the reported diagnoses into six different categories with decreasing
significance: "single-fault HPDs", "single-fault LPDs", "double-fault HPDs",
"double-fault LPDs", "triple-fault HPDs" and "triple-fault LPDs". Then we
search in each diagnoses category—starting with the most significant one,
the single-fault HPDs—for the spreadsheet’s faulty cells. Once a faulty cell
is found, we report the category it is contained in and continue with the
next spreadsheet’s diagnoses. Based on the reported categories we can de-
termine the distribution of the faulty cells for each approach which is shown
in Figure 6.9. For around 43% of the spreadsheets all the approaches report
the first faulty cell as a single-fault HPD. These high numbers are based on
the fact, that even though we only consider multi-faults, the spreadsheet’s
faulty cells are in many cases connected and therefore, correcting one er-
ror could resolve the others. This however, is not always the case, since
for around 45% of the spreadsheets the first found faulty cell is contained
in the double-fault HPDs. These are the cases in which the errors are not
connected with each other. Meaning correcting one error would not resolve
another. Neither of the approaches reported the first found faulty cell in a
category with lower significance than the triple-fault HPDs. Furthermore,
for only around 0.9% of the spreadsheets the first found faulty cells are re-
ported as LPDs by both the simple and sophisticated approach. However,
in total the sophisticated approach reports fewer LPDs than the simple ap-
proach. These are the cases for which the dependency-based approaches find
diagnoses with lower cardinality than the value-based approach. However,
once these diagnoses get verified by the value-based verification method they
will be returned as LPDs. Meaning they can only correct the spreadsheets
faults in combination with further cells. As for the value-based approach,
no diagnosis verification is needed and therefore, no LPDs are reported.
Another interesting fact is that the distributions of the faulty cells for each
approach look very alike which shows that the dependency-based approaches
with value-based diagnosis verification produce diagnoses of similar quality
as the value-based approach.

For an overview of how many cells have to be inspected to first find a
faulty cell we give a definition of the best-, average- and worst case, respec-

100

Chapter 6 Empirical Evaluation

Figure 6.9: Shows the distribution of the faulty cells for each approach based
on the results of the multi-fault spreadsheet corpus.

tively. To compute these values the sets of reported diagnoses and their
containing cells are not rearranged or changed, but counted from the first
reported cell to the last. Since each approach is implemented to first calcu-
late diagnoses with the lowest cardinality—starting with one—and continues
with increasing cardinality only if no more solutions can be found, the cells
are already in the right order. Therefore, let D be a set containing all
reported diagnoses which we split into sets according to their category.

Definition 6.2. Category: Let i represent the category of the reported
diagnosis:

i =

1 single-fault HPDs,
2 single-fault LPDs,
3 double-fault HPDs,
4 double-fault LPDs,
5 triple-fault HPDs,
6 triple-fault LPDs

Definition 6.3. Diagnoses set: We define D to be the set of all reported
diagnoses containing different diagnoses sets of category i, called Di:

101

Chapter 6 Empirical Evaluation

D =
⋃
Di,

Di = {Di
1, D

i
2, . . . , D

i
n},

with Di
j being a diagnosis of Di containing one or more cells Cij,k:

Di
j = {Cij,1, Cij,2, . . . , Cij,n}.

Definition 6.4. Faulty set: Furthermore, we define F to be the set of
faulty cells.

F = {Cij,k, Cij,k, . . .} with different Cij,k

Definition 6.5. First faulty cell: CFfirst represents the first listed faulty
cell in D:

CFfirst ∈ F,

CFfirst ∈ D,

CFfirst = mink {minj {mini {Cij,k ∈ F}}}.

Definition 6.6. Function 1: Finally, we define function 1(Cij,k, Ci
′
j′,k′)

which returns one if Cij,k is positioned before or at the same position as
Ci

′
j′,k′ in D and zero otherwise.

1(Cij,k, Ci
′
j′,k′) =

{
1 if (i = i′ ∧ j = j′ ∧ k ≤ k′) ∨ (i = i′ ∧ j < j′) ∨ (i < i′),
0 otherwise

With Definitions 6.2 to 6.6 we can further define the best-, average- and
worst case for the amount of cells that have to be inspected until the first
faulty cell is found in D.

Definition 6.7. Best case: To compute the best case we simply count the
number of reported cells, until we find the first faulty cell.

Best =
∑

∀Ci
j,k

∈Di
j∈D

1(Cij,k, CFfirst)

102

Chapter 6 Empirical Evaluation

Value-based Simple Sophisticated
Best 10.5 10.8 10.4
Average 17.3 17.9 17.2
Worst 24.0 25.1 24.0

Table 6.8: The best-, average- and worst cases for the amount of cells that
have to be inspected to find the first faulty cell based on the results of the
multi-fault spreadsheet corpus.

Definition 6.8. Worst case: The worst case results from the reported
diagnoses’ total amount of cells.

Worst =
∑

∀Di
j∈D

|Di
j |

Definition 6.9. Average case: The average case represents the arithmetic
middle of the best- and worst case.

Average = (Best + Worst)
2

Table 6.8 states the best-, average- and worst cases for the amount of
cells that have to be inspected to find the first faulty cell within the reported
diagnoses for the results of the multi-fault spreadsheet corpus. The best case
results in an average amount of around ten cells that need to be inspected. In
the average case the number of to inspecting cells rises to around seventeen
cells and in the worst case an average of 24 cells from the reported diag-
noses need to be considered to find the first faulty cell. Overall, the simple
approach is slightly outperformed by the other two approaches. However,
as Table 6.9 shows the percentage of more cells that need to be considered
in all the cases is minimal. Altogether, the numbers do not spread consid-
erably, proving further that with the value-based diagnosis verification the
quality of the dependency-based approaches can be improved to be equal to
the quality of the value-based diagnoses.

103

Chapter 6 Empirical Evaluation

Value-based Simple

Compared to
sophisticated

Best +0.41% +3.42%
Average +0.17% +4.09%
Worst +0.06% +4.38%

Table 6.9: Compares the value-based and simple approach’s best-, average-
and worst case to the sophisticated approach and shows the percentage of
more cells that need to be considered to find the first faulty cell based on
the results of the multi-fault spreadsheet corpus.

104

Chapter 7

Related Work

Supporting programmers with debugging has been an important topic since
the computer’s early beginnings. Over the years many different automated
debugging methods have been introduced. There are many different ap-
proaches for automated debugging but mainly there are three different cat-
egories: 1) automated fault detection, 2) automated fault localization, and
3) automated fault correction. One approach that can be considered part
of all these categories are the source code compilers. They report syntax
errors to the programmers, help them to locate errors and sometimes even
suggest a solution for fixing them. However, compilers cannot help the pro-
grammers with detecting errors in their program’s logic. There are however,
analytical debugging methods that can. One such method is the automated
generation of test cases [39], [66], with the help of test cases, errors can be
detected that otherwise would go unnoticed. Furthermore, many automated
fault localization and error correction methods are dependent on test cases.
Like for example Delta Debugging [22]. Delta Debugging is a fault localiza-
tion approach that automatically narrows down the set of failure-inducing
circumstances to reduce the amount of data the user has to manually in-
spect for errors. Another automated fault localization method is Program
Slicing [69]. Program Slicing reduces faulty programs to a set of statements
which are connected to the fault. Yet another automated fault localization
approach—upon which our work is based on—is MBSD [58]. It localizes
faults by detecting contradictions between the expected- and the obtained
output of a program with the help of a model which describes the program’s
behavior. As for automated fault correction, there are some approaches that

Chapter 7 Related Work

rely on mutation-based repairs [11], meaning modifying the parts related to
the fault until it is corrected. Other approaches make use of template-based
error correction [46], where they use constraint- or SMT solvers to find a
valid initialization for the template’s variables and therefore, correct the
program. Yet another approach is genetic programming [68]. Genetic pro-
gramming is inspired by biological evolution. It maintains a population of
different programs and mutates them to generate different variants. Then
it evaluates these variants by means of a fitness function and selects the
suitable variants to correct faults in programs.

MBSD was first introduced by Reiter [58] in 1987. Its concept is appli-
cable for many different areas. Mateis et al. [49], [50] show how MBSD can
be utilized to debug Java programs. Friedrich et al. [38] introduce the usage
of MBSD for debugging hardware description languages. MBSD can also
be applied to debug functional programs as shown by Stumptner et al. [65].
Finally, MBSD can be applied for debugging spreadsheets. Hofer et al. [43]
and Abreu et al. [4], [5] make use of MBSD in combination with constraint-
and SMT solvers to debug spreadsheets, which builds the basis for our work.

A similar approach is introduced by Jannach and Engler [45], where they
make use of an extended Hitting-Set algorithm and user-specified or histori-
cal test cases and assertions to solve SDPs. However, their approach slightly
differs from ours in some aspects. 1) Jannach and Engler use a constraint
solver, whereas we make use of an SMT solver. 2) Instead of using an ex-
tended Hitting-Set algorithm, we encode the correct- or incorrectness of the
formulas directly into the constraint set. 3) While they require several test
cases for their approach to work, our approach relies on only a single test
case.

Abraham and Erwig [2] present GoalDebug, a spreadsheet debugger for end
users. Whenever the computed output of a cell is incorrect, the user can
supply an expected value for the cell. The program then generates a list of
change suggestions, which would fix the error if applied. Meaning GoalDe-
bug not only locates errors but also suggests solutions to correct them. The
later part is not yet supported by the version presented by Hofer et al. [43]
and Abreu et al. [4], [5] and neither by our implementation.

106

Chapter 7 Related Work

Reichwein et al. [57] developed an incremental testing and debugging tool for
spreadsheets. It provides a graphical interface to create and run test cases
for spreadsheets. For fault localization it makes use of the dicing approach
which is an improved version of program slicing. Additionally to information
on incorrect data, dicing makes also use of information on correct data and
therefore, further reduces the set of cells the user has to manually inspect.

All of above’s approaches, as well as our approach, have one similarity. They
only are semi-automatic debugging tools. Meaning, they all are dependent
on some kind of user input. Abraham and Erwig [3] introduce UCheck, a
fully automated fault localization tool for spreadsheets. It performs a header
and unit inference—needing no user input—and reports unit errors.

The WYSIWYT ("What You See Is What You Test") system introduced
by Rothermel et al. [61] addresses the topic of spreadsheet testing. Origi-
nally, the system helped the user with manual test case creation. A few years
later Fisher et al. [36] extended the system with two different automated test
case generation techniques. One technique is based on random generation.
The other technique is based on a dynamic, goal-oriented approach.

Similar to the WYSIWYT approach Abraham and Erwig [1] present Au-
toTest, a tool to automatically generate test cases for spreadsheets. It gen-
erates test cases by backward propagation and by solving constraints on cell
values.

107

Chapter 8

Conclusion

Considering the vast usage of spreadsheet programs by businesses and pri-
vate persons it is shocking that there are no common options to automati-
cally debug them. With this work we build upon the research conducted by
a team at the Graz University of Technology where they introduce a frame-
work to compare performance and execution time of SMT- and constraint
solvers when debugging spreadsheets with value-based MBSD. However, in
their work they mainly focus on the constraint solvers. On these grounds
we give a general overview of constraint-, SAT- and SMT solvers, how they
work and solve specific problems. Furthermore, we conduct a comparison
of six different state-of-the-art SMT solvers to find some that can compete
with the already integrated SMT solver, Z3, in terms of performance and
execution time. To be able to debug spreadsheets, it is important that the
solvers can handle real numbers in combination with non-linear arithmetic.
Furthermore, the framework’s spreadsheet debugging algorithm MCSes-U,
which showed the best results in combination with Z3, depends on unsat-
isfiable core extraction. Therefore, it is equally important that the SMT
solvers support that functionality. To our surprise, there exist not many
SMT solvers supporting real numbers and from those which do, even less
support non-linear arithmetic. In fact there are only six SMT solvers sup-
porting reals that are actively in development, namely CVC4, MathSAT 5,
SMTInterpol, veriT, Yices 2 and Z3. From these solvers only Z3 supports
non-linear arithmetic. Functionality to extract unsatisfiable cores is pro-
vided only by three solvers: MathSAT 5, SMTInterpol and Z3. This leads to
the result that currently there exists no solver except Z3, which is a suitable

Chapter 8 Conclusion

candidate for spreadsheet debugging with value-based models. Therefore,
we extend the framework with two different dependency-based models for
MBSD of spreadsheets. On the contrary to value-based models, dependency-
based models only propagate the information whether the computed values
are correct. Therefore, each cell can be considered as a Boolean, meaning
that dependency-based constraint systems can be expressed in PL. With this
modification to the framework any state-of-the-art SAT solver, or since most
SMT solvers integrate SAT solvers, any of the six compared SMT solvers can
be utilized to debug spreadsheets with dependency-based models. However,
debugging spreadsheets with the dependency-based approaches may result
in less accurate diagnoses than with the value-based approach, due to for
example coincidental correctness. To overcome this weakness we introduce
a method to verify dependency-based diagnoses with value-based models.
Since value-based models take the cells’ value into account, we can decide
for each dependency-based diagnosis, if it is a real diagnosis or not and
divide them into high- and low priority results. Through this process the
quality of dependency-based diagnoses can be improved to equal that of the
value-based approach. However, since we make use of value-based models we
can not express the spreadsheet debugging problem in PL anymore. Instead
it is expressed in FOL and therefore, we are confronted with a non-linear
arithmetic problem again. Meaning, that value-based diagnosis verifica-
tion can currently only be conducted with Z3. Furthermore, we compare
the dependency-based approaches with and without value-based diagnosis
verification to the framework’s original value-based approach. Specifically,
we answer three questions: 1) which is the fastest approach and are the
dependency-based approaches with value-based diagnosis verification faster
than the value-based approach, 2) does our method to verify dependency-
based diagnoses, improve the quality of the diagnoses enough to equal the
quality of the value-based diagnoses, and 3) on average how many cells have
to be inspected to find a faulty cell among the reported diagnoses.
The fastest approach is the sophisticated approach without value-based diag-
nosis verification with an average runtime of 0.18 seconds. The dependency-
based approaches with diagnosis verification take on average 5.3 (sophisti-
cated) and 7.6 (simple) times longer than the fastest approach. However,
as our research shows they are still considerably faster than the value-based
approach. As for the quality of the diagnoses, we show that with the value-

109

Chapter Conclusion

based diagnosis verification method the dependency-based approaches re-
port similar amounts of diagnoses as the value-based approach. However,
without value-based verification the results of the dependency-based ap-
proaches are slightly worse than the value-based approach’s. Furthermore,
we show that there is a correlation between a low diagnoses quality and a
high runtime. To find a faulty cell within the diagnoses, in the best cases
an average of around ten cells need to be inspected. In the average case
this number increases to an average of around seventeen cells. Overall, the
numbers for each approach are very similar, proving that the value-based
diagnosis verification method is effective.

Given these results, the next step in this research is to further improve
the runtime of the dependency-based approaches by finding a reasonable
termination criteria like aborting the debugging process once the runtime
exceeds a certain threshold, since most likely no satisfying diagnoses will be
found. Furthermore, due to the extension of dependency-based models it
stands to reason to integrate SAT- or SMT solvers into the framework and
compare their performance to Z3 when debugging spreadsheets. Finally, and
most importantly, after new solvers are integrated in the framework, a num-
ber of tests need to be conducted, to evaluate their performance compared
to Z3. Such studies will help us assess whether our spreadsheet debugging
approaches can be used effectively by end users in the future.

110

List of Figures

3.1 Example of a 4-queens puzzle 12
3.2 Solution for a map coloring problem 13
3.3 Illustration of backtracking with 4-Queens 15
3.4 Illustration of forward checking with 4-Queens 16
3.5 Overview of the SMT-LIB logics 26
3.6 Congruence closure example 28
3.7 Difference inequalities example 29
3.8 Illustration of the eager and lazy approach 37

5.1 Framework’s components for spreadsheet debugging 57
5.2 Running example . 63
5.3 Framework’s components after the expansion 70
5.4 Dependency graph of the running example 73
5.5 Modified running example . 81
5.6 Flow chart of the verifying process 82

6.1 Runtime comparison value-simple 92
6.2 Runtime comparison value-sophisticated 92
6.3 Runtime comparison simple-sophisticated 93
6.4 Comparison of runtime and number of formula cells 93
6.5 Comparison of runtime and number of constraints 94
6.6 Special spreadsheet . 95
6.7 Reduction’s distribution . 98
6.8 Reduction’s correlation to runtime 99
6.9 Faulty cells’ distribution . 101

List of Tables

3.1 SMT-LIB logics’ abbreviations 26
3.2 Purification example of the Nelson-Oppen combination method 32

4.1 SMT solvers supporting real numbers 42
4.2 Information of SMT solvers supporting real numbers 43
4.3 SMT solvers’ supported theories 44

5.1 Running example’s failing test case 63
5.2 Value-based constraint set . 64
5.3 Framework’s supported spreadsheet functions 68
5.4 SMT solvers for dependency-based spreadsheet debugging . . 70
5.5 Simple dependency-based constraint set 74
5.6 Cases of coincidental correctness 76
5.7 Sophisticated dependency-based constraint set 78
5.8 Value-based constraint set to verify diagnoses 84
5.9 Value-based constraint set to verify diagnoses 84
5.10 Newly added spreadsheet functions 85

6.1 Timeouts and out of memory (single-fault corpus) 89
6.2 Timeouts (multi-fault corpus) 90
6.3 Average runtime . 91
6.4 Runtime behavior . 91
6.5 Special spreadsheet’s failing test case 96
6.6 Overview of diagnoses . 97
6.7 Diagnoses’ quality (Reduction) 98
6.8 Amount of cells to inspect to find the first faulty cell 103
6.9 Comparison of the to inspecting cells 104

List of Algorithms

5.1 Converting a spreadsheet into a value-based model 60
5.2 Converting an expression into a value-based constraint 62
5.3 Finding minimal correction sets 66
5.4 Finding minimal correction sets with unsatisfiable cores . . . 67
5.5 Converting a spreadsheet into a simple dependency-based model 72
5.6 Converting a spreadsheet into a sophisticated dependency-

based model . 77
5.7 Deciding if coincidental correctness might occur 79
5.8 Verifying dependency-based diagnoses 83

Acronyms

API Application Programming Interface.

BSD Berkeley Software Distribution.

CDCL Conflict-Driven Clause Learning.

CNF Conjunctive Normal Form.

CP Constraint Programming.

CSP Constraint Satisfaction Problem.

DAG Directed Acyclic Graph.

DPLL Davis-Putnam-Logemann-Loveland.

DPLL(T) Davis-Putnam-Logemann-Loveland modulo Theories.

FOL First-Order Logic.

GPL GNU General Public License.

HPD High Priority Diagnosis.

LFSC Logical Framework with Side Conditions.

LGPL GNU Lesser General Public License.

LPD Low Priority Diagnosis.

MBSD Model-based Software Debugging.

MCS Minimal Correction Set.

MSR-LA Microsoft Research License Agreement.

NP Nondeterministic Polynomial.

PL Propositional Logic.

SAT Boolean Satisfiability.

SDP Spreadsheet Debugging Problem.

SMT Satisfiability Modulo Theories.

SMT-COMP Satisfiability Modulo Theories Competition.

SMT-LIB Satisfiability Modulo Theories Library.

Bibliography

[1] Robin Abraham and Martin Erwig. AutoTest: A tool for automatic test
case generation in spreadsheets. In Proceedings of the Visual Languages
and Human-Centric Computing, VLHCC’06, pages 43–50, Washington,
DC, USA, 2006. IEEE Computer Society.

[2] Robin Abraham and Martin Erwig. GoalDebug: A spreadsheet debug-
ger for end users. In Proceedings of the 29th International Conference
on Software Engineering, ICSE’07, pages 251–260, Washington, DC,
USA, 2007. IEEE Computer Society.

[3] Robin Abraham and Martin Erwig. UCheck: A spreadsheet type
checker for end users. Journal of Visual Languages and Computing,
18(1):71–95, February 2007.

[4] Rui Abreu, Birgit Hofer, Alexandre Perez, and Franz Wotawa. Using
constraints to diagnose faulty spreadsheets. Software Quality Journal,
pages 1–26, 2014.

[5] Rui Abreu, André Riboira, and Franz Wotawa. Constraint-based de-
bugging of spreadsheets. In Proceedings of the XV Iberoamerican
Conference on Software Engineering, Buenos Aires, Argentina, April
24-27, 2012, pages 1–14, 2012.

[6] Simon Ausserlechner, Sandra Fruhmann, Wolfgang Wieser, Birgit
Hofer, Raphael Spork, Clemens Muehlbacher, and Franz Wotawa. The
right choice matters! SMT solving substantially improves model-based
debugging of spreadsheets. In 13th International Conference on Quality
Software, pages 139–148, July 2013.

[7] Clark Barrett, Christopher Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli.

CVC4. In Proceedings of the 23rd International Conference on
Computer Aided Verification, CAV’11, pages 171–177, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[8] Clark Barrett, Morgan Deters, Leonardo Mendonça de Moura, Al-
bert Oliveras, and Aaron Stump. 6 years of SMT-COMP. Journal
of Automated Reasoning, 50(3):243–277, 2013.

[9] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). Website. Available at http:

//smt-lib.org/. Visited on July 11th 2014.

[10] Nikolaj Bjørner and Leonardo de Moura. System Description: Z3 0.1,
2007. System Description for the 2007 SMT Competition.

[11] Roderick Bloem, Rolf Drechsler, Görschwin Fey, Alexander Finder,
Georg Hofferek, Robert Könighofer, Jaan Raik, Urmas Repinski, and
André Sülflow. FoREnSiC - an automatic debugging environment for
C programs. In Hardware and Software: Verification and Testing - 8th
International Haifa Verification Conference, pages 260–265, 2012.

[12] Thomas Bouton, Diego Caminha de Oliveira, David Déharbe, and Pas-
cal Fontaine. veriT: an open, trustable and efficient SMT-solver. In
Automated Deduction - CADE-22, volume 5663 of Lecture Notes in
Computer Science, pages 151–156. Springer-Verlag, 2009.

[13] Sally Brailsford, Chris Potts, and Barbara Smith. Constraint satis-
faction problems: Algorithms and applications. European Journal of
Operational Research, 119(3):557–581, 1999.

[14] Polly Brown and John Gould. An experimental study of people creating
spreadsheets. ACM Transactions on Information Systems, 5(3):258–
272, July 1987.

[15] Roberto Bruttomesso. Satisfiability modulo theories: a pragmatic in-
troduction. Lecture Notes, 2012. Available at http://www.oprover.

org/roberto/teaching/smt/files/manuscript.pdf. Visited on July
11th 2014.

[16] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto
Griggio, and Roberto Sebastiani. Delayed theory combination vs.

http://smt-lib.org/
http://smt-lib.org/
http://www.oprover.org/roberto/teaching/smt/files/manuscript.pdf
http://www.oprover.org/roberto/teaching/smt/files/manuscript.pdf

Nelson-Oppen for satisfiability modulo theories: a comparative anal-
ysis. Annals of Mathematics and Artificial Intelligence, 55(1-2):63–99,
2009.

[17] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente
des Restklassenringes nach einem nulldimensionalen Polynomideal.
PhD thesis, University of Innsbruck, 1965.

[18] Cork Constraint Computation Centre. CSP tutorial. Website. Available
at http://4c.ucc.ie/web/outreach/tutorial.html. Visited on July
11th 2014.

[19] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol:
An interpolating SMT solver. In Model Checking Software, volume
7385 of Lecture Notes in Computer Science, pages 248–254. Springer
Berlin Heidelberg, 2012.

[20] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and
Roberto Sebastiani. The MathSAT5 SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 7795
of Lecture Notes in Computer Science, pages 93–107. Springer Berlin
Heidelberg, 2013.

[21] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient
generation of craig interpolants in satisfiability modulo theories. ACM
Transactions on Computational Logic, 12(1):7:1–7:54, November 2010.

[22] Holger Cleve and Andreas Zeller. Finding failure causes through
automated testing. In 4th International Workshop on Automated
Debugging, Munich, Germany, August 2000.

[23] David Cok, David Deharbe, and Tjark Weber. SMT-COMP 2014. Web-
site. Available at http://smtcomp.sourceforge.net/2014/. Visited
on July 11th 2014.

[24] David Cok, Alberto Griggio, Roberto Bruttomesso, and Morgan Deters.
The 2012 SMT Competition. In SMT 2012, volume 20 of EPiC Series,
pages 131–142, 2012.

http://4c.ucc.ie/web/outreach/tutorial.html
http://smtcomp.sourceforge.net/2014/

[25] Jeremy Condit and Matthew Harren. Congruence closure. Lecture
Notes. Available at http://www.cs.berkeley.edu/~necula/autded/

lecture12-congclos.pdf. Visited on July 11th 2014.

[26] Jácome Cunha, João Paulo Fernandes, Hugo Ribeiro, and João Saraiva.
Towards a catalog of spreadsheet smells. In 12th International
Conference Computational Science and Its Applications, pages 202–
216, 2012.

[27] Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem-proving. Communications of the ACM, 5(7):394–
397, July 1962.

[28] Martin Davis and Hilary Putnam. A computing procedure for quantifi-
cation theory. Journal of the ACM, 7(3):201–215, July 1960.

[29] Leonardo de Moura and Nikolaj Bjørner. Model-based theory combina-
tion. Electronic Notes in Theoretical Computer Science, 198(2):37–49,
May 2008.

[30] Leonardo de Moura and Nikolaj Bjørner. Proofs and refutations, and
Z3. In Logic for Programming Artificial Intelligence and Reasoning
Workshops, volume 418 of CEUR Workshop Proceedings, 2008.

[31] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT
solver. In Proceedings of the Theory and Practice of Software, 14th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’08 / ETAPS’08, pages 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

[32] David Déharbe, Pablo Federico Dobal, and Pascal Fontaine. veriT:
System description for SMT-COMP 2014, 2014. System Description
for the 2014 SMT Competition.

[33] Bruno Dutertre. Yices 2 Manual. SRI International, Menlo Park, CA.
Available at http://yices.csl.sri.com/manual.pdf. Visited on July
11th 2014.

[34] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver
for DPLL(T). In Proceedings of the 18th International Conference on

http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
http://www.cs.berkeley.edu/~necula/autded/lecture12-congclos.pdf
http://yices.csl.sri.com/manual.pdf

Computer Aided Verification, CAV’06, pages 81–94, Berlin, Heidelberg,
2006. Springer-Verlag.

[35] Alessandro Farinelli. Propositional and first order logic. Lecture Notes.
Available at http://profs.sci.univr.it/~farinelli/courses/ar/

slides/prop-fol.pdf. Visited on July 11th 2014.

[36] Marc Fisher, Mingming Cao, Gregg Rothermel, Curtis Cook, and
Margaret Burnett. Automated test case generation for spreadsheets.
In Proceedings of the 24th International Conference on Software
Engineering, ICSE’02, pages 141–153, New York, NY, USA, 2002.
ACM.

[37] Marc Fisher and Gregg Rothermel. The EUSES spreadsheet corpus: A
shared resource for supporting experimentation with spreadsheet de-
pendability mechanisms. In Proceedings of the First Workshop on
End-user Software Engineering, Workshop on End-User Software Engi-
neering I, pages 1–5, New York, NY, USA, 2005. ACM.

[38] Gerhard Friedrich, Markus Stumptner, and Franz Wotawa. Model-
based diagnosis of hardware designs. Artificial Intelligence, 111(1-2):3–
39, July 1999.

[39] Peter Fröhlich and Johannes Link. Automated test case generation
from dynamic models. In European Conference on Object-Oriented
Programming 2000 (ECOOP’00), volume 1850 of Lecture Notes in
Computer Science, pages 472–491. Springer Berlin Heidelberg, 2000.

[40] The ACSys Group. CVC4 User Manual. New York University and Uni-
versity of Iowa. Available at http://cvc4.cs.nyu.edu/wiki/User_

Manual. Visited on July 11th 2014.

[41] Birgit Hofer, André Riboira, Franz Wotawa, Rui Abreu, and Elis-
abeth Getzner. Mutated EUSES corpus. Website. Available at
https://dl.dropboxusercontent.com/u/38372651/Spreadsheets/

EUSES_Spreadsheets.zip. Visited on July 11th 2014.

[42] Birgit Hofer, André Riboira, Franz Wotawa, Rui Abreu, and Elisabeth
Getzner. On the empirical evaluation of fault localization techniques
for spreadsheets. In Proceedings of the 16th International Conference

http://profs.sci.univr.it/~farinelli/courses/ar/slides/prop-fol.pdf
http://profs.sci.univr.it/~farinelli/courses/ar/slides/prop-fol.pdf
http://cvc4.cs.nyu.edu/wiki/User_Manual
http://cvc4.cs.nyu.edu/wiki/User_Manual
https://dl.dropboxusercontent.com/u/38372651/Spreadsheets/EUSES_Spreadsheets.zip
https://dl.dropboxusercontent.com/u/38372651/Spreadsheets/EUSES_Spreadsheets.zip

on Fundamental Approaches to Software Engineering, FASE’13, pages
68–82, Berlin, Heidelberg, 2013. Springer-Verlag.

[43] Birgit Hofer and Franz Wotawa. Why does my spreadsheet com-
pute wrong values? In IEEE International Symposium on Software
Reliability Engineering, pages 112–121, 2014.

[44] Adele Howe. Constraint satisfaction problems. Lecture Notes.
Available at https://www.cs.colostate.edu/~howe/cs440/csroo/

F2013/more_progress/09_csp2013.pdf. Visited on July 11th 2014.

[45] Dietmar Jannach and Ulrich Engler. Toward model-based debugging
of spreadsheet programs. In 9th Joint Conference on Knowledge-Based
Software Engineering, pages 252–264, August 2010.

[46] Robert Könighofer and Roderick Paul Bloem. Automated error lo-
calization and correction for imperative programs. In IEEE, editor,
Proceedings of 11th International Conference for Formal Methods in
Computer Aided Design, pages 91 – 100. IEEE, 2011.

[47] Mark Liffiton and Karem Sakallah. Algorithms for computing minimal
unsatisfiable subsets of constraints. Journal of Automated Reasoning,
40(1):1–33, January 2008.

[48] Mark H. Liffiton and Karem A. Sakallah. Generalizing core-guided
Max-SAT. In Theory and Applications of Satisfiability Testing - SAT
2009, volume 5584 of Lecture Notes in Computer Science, pages 481–
494. Springer Berlin Heidelberg, 2009.

[49] Cristinel Mateis, Markus Stumptner, Dominik Wieland, and Franz
Wotawa. Model-based debugging of Java programs. In Automated
analysis-driven debugging, 2000.

[50] Cristinel Mateis, Markus Stumptner, Franz Wotawa, and Technis-
che Universität Wien. Locating bugs in Java programs – first results of
the Java diagnosis experiments (jade) project. In In Proceedings of the
International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, 2000.

[51] Wolfgang Mayer and Markus Stumptner. Model-based debugging using
multiple abstract models. Computing Research Repository, 2003.

https://www.cs.colostate.edu/~howe/cs440/csroo/F2013/more_progress/09_csp2013.pdf
https://www.cs.colostate.edu/~howe/cs440/csroo/F2013/more_progress/09_csp2013.pdf

[52] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories:
An appetizer. In Formal Methods: Foundations and Applications, pages
23–36. Springer-Verlag, Berlin, Heidelberg, 2009.

[53] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories:
Introduction and applications. Communications of the ACM, 54(9):69–
77, September 2011.

[54] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving
SAT and SAT modulo theories: From an abstract Davis–Putnam–
Logemann–Loveland procedure to DPLL(T). Journal of the ACM,
53(6):937–977, November 2006.

[55] Albert Oliveras and Enric Rodriguez-Carbonell. Combining decision
procedures: The Nelson-Oppen approach. Lecture Notes. Available
at http://www.lsi.upc.edu/~oliveras/TDV/NO.pdf. Visited on July
11th 2014.

[56] Ray Panko. SSR-Spreadsheet Research. Website. Available at http:

//panko.shidler.hawaii.edu/SSR/. Visited on July 11th 2014.

[57] James Reichwein, Gregg Rothermel, and Margaret Burnett. Slicing
spreadsheets: An integrated methodology for spreadsheet testing and
debugging. J-SIGPLAN, 35(1):25–38, January 2000.

[58] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95, April 1987.

[59] Microsoft Research. Z3 Website. Website. Available at http://z3.

codeplex.com/. Visited on July 11th 2014.

[60] Andrew Reynolds, Liana Hadarean, Cesare Tinelli, Yeting Ge, Aaron
Stump, and Clark Barrett. Comparing proof systems for linear
real arithmetic with LFSC. In Proceedings of the 8th International
Workshop on Satisfiability Modulo Theories, Edinburgh, Scotland, July
2010.

[61] Karen Rothermel, Curtis Cook, Margaret Burnett, Justin Schonfeld,
Thomas Green, and Gregg Rothermel. WYSIWYT testing in the
spreadsheet paradigm: An empirical evaluation. In Proceedings of the

http://www.lsi.upc.edu/~oliveras/TDV/NO.pdf
http://panko.shidler.hawaii.edu/SSR/
http://panko.shidler.hawaii.edu/SSR/
http://z3.codeplex.com/
http://z3.codeplex.com/

22nd International Conference on Software Engineering, ICSE’00, pages
230–239, New York, NY, USA, 2000. ACM.

[62] Karem Sakallah and Igor Markov. ACM SIGDA newsletter, volume 36,
number 24. Newsletter, December 2006. Available at http://archive.

sigda.org/newsletter/2006/eNews_061215.html. Visited on July
11th 2014.

[63] Helmut Simonis. Building industrial applications with constraint pro-
gramming. In Constraints in Computational Logics, volume 2002 of
Lecture Notes in Computer Science, pages 271–309. Springer Berlin
Heidelberg, 2001.

[64] Aaron Stump, Tjark Weber, and David Cok. Progress report on
the 2013 SMT evaluation. Presentation Slides. Available at http://

sat2013.cs.helsinki.fi/slides/SMTEVAL2013.pdf. Visited on July
11th 2014.

[65] Markus Stumptner and Franz Wotawa. Debugging functional programs.
In Proceedings of the 16th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’99, pages 1074–1079, 1999.

[66] Nigel Tracey, John Clark, and Keith Mander. The way forward for
unifying dynamic test-case generation: The optimisation-based ap-
proach. International Workshop on Dependable Computing and Its
Applications, 1998.

[67] Edward Tsang. Foundations of constraint satisfaction. Computation in
cognitive science. Academic Press, 1993.

[68] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. Automatically finding patches using genetic programming.
In Proceedings of the 31st International Conference on Software
Engineering, ICSE’09, pages 364–374, Washington, DC, USA, 2009.
IEEE Computer Society.

[69] Mark Weiser. Program Slices: Formal, Psychological, and Practical
Investigations of an Automatic Program Abstraction Method. PhD
thesis, University of Michigan, Ann Arbor, MI, USA, 1979.

http://archive.sigda.org/newsletter/2006/eNews_061215.html
http://archive.sigda.org/newsletter/2006/eNews_061215.html
http://sat2013.cs.helsinki.fi/slides/SMTEVAL2013.pdf
http://sat2013.cs.helsinki.fi/slides/SMTEVAL2013.pdf

[70] Lintao Zhang. SAT-Solving: From Davis-Putnam to Zchaff
and Beyond. Presentation Slides. Available at http:

//www.cfdvs.iitb.ac.in/download/Docs/verification/papers/

sat/reviews-and-tutorials/sat_course1.pdf. Visited on July
11th 2014.

http://www.cfdvs.iitb.ac.in/download/Docs/verification/papers/sat/reviews-and-tutorials/sat_course1.pdf
http://www.cfdvs.iitb.ac.in/download/Docs/verification/papers/sat/reviews-and-tutorials/sat_course1.pdf
http://www.cfdvs.iitb.ac.in/download/Docs/verification/papers/sat/reviews-and-tutorials/sat_course1.pdf

	Introduction
	Basic Definitions
	Constraint-, SAT- and SMT Solvers
	Constraint Solver
	Constraint Satisfaction Problem
	Famous Problems expressed as CSP
	Resolution of CSPs

	SAT Solver
	Propositional Logic
	Boolean Satisfiability Problem
	Famous Problems expressed as SAT
	Davis-Putnam-Logemann-Loveland Paradigm

	SMT Solver
	First-order Logic
	Satisfiability Modulo Theories Problem
	Theories
	Famous Problems expressed as SMT
	Resolution of SMT
	DPLL(T) Paradigm

	Conclusion

	SMT Solver Comparison
	Z3
	CVC4
	MathSAT 5
	SMTInterpol
	veriT
	Yices 2
	Findings

	Framework and Implementation
	Existing
	Model-based Software Debugging
	Z3's Solving Methodologies
	Supported Spreadsheet Functions

	Extensions
	Dependency-based Models
	Sophisticated Dependency-based Model
	Verifying Diagnoses with Value-based models
	Extended Spreadsheet Functions

	Empirical Evaluation
	Spreadsheet Corpus
	Evaluation Results
	Runtime Comparison
	Diagnosis Comparison
	Faulty Cells' Distribution

	Related Work
	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

