Master’s Thesis

Using MVVM for enhanced cross platform de-
velopment of mobile and desktop applications

Written by Valentin Rock

Institute for Software Technology (IST)
Graz University of Technology
Inffeldgasse 16B/II,

8010 Graz, Austria

TU

Grazm
Graz University of Technology

Assessor and supervisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Graz, February 2015

Abstract

Over the last view years mobile devices started to replace the conventional desktops in
many different areas of application. This led to plenty of different mobile platforms that
are well established. For most companies it is important to cover a large number of plat-
forms and devices to serve their existing customers as well as potential new customers.
Since developing good applications for multiple platforms can be resource intensive and
expensive, developers often have to decide if they share parts of their code between the
implementations for different platforms. Today there are plenty of ways to develop cross
platform applications.

In this work we will discuss two of the many possible solutions of how a cross platform
implementation could look like. The first solution uses web technologies to develop an
application for desktop and mobile devices. The second solution uses .NET to create a
native looking application for the different mobile and desktop platforms Android, Win-
dows Store and Windows Desktop. The main focus of this work is the architectural design
pattern MVVM (Model View ViewModel) and how it can be used to enhance cross plat-
form development.

We will see that cross platform implementations can share up to 90% of its code between
platforms and that MVVM can helps to reach these high numbers. In addition to that
MVVM can provide other benefits like reduced developing costs as well as increased user
experience, maintainability, testability and performance. This work will help to under-
stand MVVM as well as many related patterns that can help with cross platform develop-
ment. The lessons we will learn in this work should help to decide which developing tech-
nologies are best suited for individual cases of application and how they can be combined
with MVVM to create successful cross platform applications.

Index

A 11 4 o T [¥ ot o [PPSR 4
2 UNderstanding MVVIMcoouiiiiiie sttt ettt e sttt e sbe e st esbaeesabaesabeeens 8
2.1 Related patterns (MVC and MVP).......oouiii et e 8
2.11 Model View CONTroller.....c.uei it 8
2.1.2 Model VIEW PreSeNterccccueiiiiieiiieieeeteeee ettt s 9
2.1.3 Model View VIEWMOdE!coceeiiiiiiieenienicriesceee e 11
2.2 MVVIM EhEOIY ittt st ettt et e e st e sbeeesaae s 12
2.2.1 MO ... s 12
2.2.2 VIBW ettt ettt b e b bt e bt e st s at e st sttt e teeteen 13
2.23 RV 11T 1Y, o Yo 1= SR 13
2.2.4 PrOPEITIES .eeeeeieiieeee e e 14
2.2.5 21T 0o [T Y (PSPPI 14
2.2.6 ValUBCONVEITET ..ot 15
2.2.7 COMMANGS ..eiiiiiietie ettt e sabe e s e s sne e e sabe e e neeenaneas 15
2.2.8 Y01 4 To] o F- 3O P PP PTTPPPTO 16
2.2.9 Y [T = o = PO PP PP PPTT PP 16
2.2.10 SEIVICES ...ttt e e 16

3 Cross platform development with web technologiescccccceeviieiiiicee e, 18
3.1 Server side compared to client side code........ccceviieviiiiiieeeeeeeiceee e, 18
3.2 DEVEIOPMENT TOOIS ..uvriiiieiiieiiieeee ettt e e e e e eebre e e e e e e eeeearaeeeeeeeenanes 19
3.3 Programming languages and language extensionsccocvevveeencieescieesnieeennns 20
3.3.1 CoffeeScript (JavaScript replacement)ccceveeeeiieenieeniee e 21
3.3.2 Dart (JavaScript replacement)cueeccueeecieeecee et 22
333 TypeScript (JavaScript @XteNSION) c...eececvveeeeiiieeeereee e e 24
334 SASS and LESS (CSS eXteNSION) ...uveeeecuiiieeiiieee e e e e eeeaaee e 26
3.4 UL FramEWOIKS ..c.eeeieeieeieeieesieesi ettt 27
34.1 JQUUEBTY e e e e e e e e e e e e eas 27
3.4.2 @ UT=Y o SRS 28
343 JQUEIYMODIIE....ceiiiieeeeeee e e 28
3.4.4 WINUS o 29
3.4.5 Other Platform specific Ul frameworks (Android and iOS)c.ccccveen.ee. 30
35 BiNdiNG FrameEWOIKScccuvviiiiiiiiieriiiee ettt e s e e 31
351 F AN oY=V - T o £ SRR 31
35.2 KNOCKOULIS .ttt et et 33

3.5.3 [DIU =T o =1 1 KT 35

354 WWINUS et e e s e e e e e e e e e e e e e e e neee 35
3.6 Technologies to create and deploy mobile apps.....cccecveeivriieeevciiee e 35
3.6.1 PRONEGAP cevveeeieeeeeteeee ettt e e e e e r e e e e e e e e ettbr e e e e e e e e e nnnraaees 36
3.6.2 L= 10110 4 O PPP PR 36

4 Cross platform development With .NETcccciiiiiiiiiiiiiiiienee st 38
41 DeVelopPMENT tOOISiiiiiiiiiiiiiee e 38
4.2 Programming languages and the .NET framework........cccccecccvveeeeeeiecciiiieennnn. 39
42.1 (I T UY=L Y 0 - D P 39
4.2.2 Classes, interfaces and inheritanceccoceveeriiniiciicieeeeee 39
4.2.3 Lambda eXPreSSiONS. ...c.uiiiiieriie ettt ettt st sre e st e e e 40
4.2.4 PrOPEITIES .eeeeieieee et e e e e s s e e e e e e 40
4.2.5 LINQ (Language Integrated QUEIY)cccueeeeeiieeeeiiee ettt 42
4.2.6 ASYNC AN QWATT c.uuviiiieeeiiiiiieeee ettt e e e e e e errare e e e e e eeeaabraaeeeeeas 43
4.2.7 REFIECHION ... 44
4.3 Libraries for (NET ..coueoiiieeee ettt st s 44
4.4 MVVIM frameEWOIKS. ...c.ueieiiieriieeiee ettt ettt e s e saneas 45
4.4.1 MVVIM LIRT .ttt eree e e 45
4.4.72 Simple MVVM TOOIKITuviiiieeieeecieeee et e et e e e e 48
443 MVVIM CFOSS ..eeviiiiiiiiieiiiiic ittt s 51
4.5 MonoGame, a cross platform graphics framework.........ccoccvvevevevceerceecieeenne, 56
4.6 Xamarin for Android, i0S anNd MaCeeeeveiiiiiiiiiiiiiiieeeeeeeeeee 56
4.7 Windows’ unified application architecturecccccceeecvveeee e, 57
5 PractiCe IMIVVIM ...ttt e et e ee e e e e s e e e e e e e eeeaeaeaeaeaeaeaeaaseeens 58
5.1 MVVM with web technOolOgYcooveiviiiiiiiiicc e 58
5.1.1 Used frameworks and toolS........cceeieereiiiiiiiiniiieeeeeeeeeeeee e 59
5.1.2 IMplementation (COre) ... et 60
5.1.3 Implementation (DESKEOP) ..cccvveeeeecreeeeeiieee ettt e 65
5.1.4 Implementation (Mobil)ceoovuiieiiiiie e 69
5.1.5 =IO ST PT PP OPP R OPPI 72
5.1.6 ChallENEES ...ttt s ae e 73
5.1.7 Benefits Of MVVM.....cociiiiie et 74
5.1.8 Results and CONCIUSIONSeevviiiiiiiiie ettt 74
5.2 MVVIM WIth UNET Lottt sttt et et stae e sate e st esaaeesanees 75
5.2.1 Used frameworks and toolS........cceereereiiiiiiiniieceeeeeeee e 75
5.2.2 SETUCTUIE et e s e e s ee e nane 76

5.2.3 Implementation (COMe) ...uuiiiiiiiiie et 76

5.2.4 Implementation (Windows Unified)ccceevieeriiereiiieciieciee e 82
5.2.5 Implementation (Windows Desktop)cccevcueeeciereiieesieesiee e 85
5.2.6 Implementation (ANAroid)........ccccveeiiieiiie e 87
5.2.7 LI TP TP UPPRTTUPPI 90
5.2.8 ChallBNEES ...ttt et s s et nane s 91
5.2.9 Benefits Of MVVIML. ..o 92
5.2.10 Results and cONCIUSIONSccocuiiiiiiieiiienie e 92
5.2.11 Extend for more platformscccooeiiee e 94
[o) =T T 0 1Y/ o - PP 95
21 o Lo =4 =T o] o1 PP 96
[o) i 1T ={ U <L SRR 100
LISt OF £ADIES ..t s 101

Page 3

1 Introduction

Over the last view years mobile devices started to replace the conventional desktops in
many different areas of application. This led to plenty of different mobile platforms that
are well established. For most companies it is important to cover a large number of plat-
forms and devices to serve their existing customers as well as potential new customers.
Developing good applications for one platform, takes a lot of time and resources. Devel-
oping individual applications for multiple platforms can often not be afforded. Therefore,
cross platform development can be the right solution to minimize the developing costs
and provide applications for a great number of users on their favorite device and operat-
ing system.

Most of the well-established applications support at least two mobile platforms. Some
applications even support five or more completely different platforms for devices with
screen sizes from one to hundred inch. These applications often support lots of different
input methods like the conventional keyboard/mouse combination, touch or even cam-
era based input.

There are many different solutions for cross platform development, but most of them do
not provide good results for all of the relevant properties like user experience, developing
costs, maintainability, testability and performance. It is important to know which devel-
opment technologies fit the needs of a specific case of application best.

That is why this document will shortly explain some of the well-known technologies that
can be used for cross platform development, to provide an overview of today’s develop-
ment tools and how they compare to each other.

Even if the decision for the right developing tools and technologies has been made, there
are lots of open questions about how to use these technologies to get the best result.
Most platforms are flexible enough to support different application architectures. A good
application architecture is important for single platform development and even more im-
portant for cross platform development. The MV* family of patterns are well known by
many developers and will get our main focus in this document. One derivation of those
patterns is called Model View ViewModel (MVVM) which can be used as the architec-
tural design pattern to build great cross platform applications. This pattern has its roots
at Microsoft but can nowadays be successfully used on many different devices and plat-
forms.

Later on we will see how MVVM, when used in cross platform applications, can greatly
decrease the amount of duplicated code, increase the testability and performance and
provide well-structured code that is easy to maintain.

There will be lots of examples from sample applications to support these claims.

Not many years ago very few smartphones and tablets have been shipped compared to
today’s numbers. The following numbers show that the support of multiple platforms can
be relevant to the success of services and applications.

The following list shows the numbers of different users using the W3Scool’s website.
Since this numbers only reflect a special group of users it is not relevant for each service
or application. Nevertheless it shows the trend to a higher operating systems (OS)
fragmentation.

Page 4

OS platform statistics from W3School's log files

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
2008 2009 2010 2011 2012 2013 2014
H Win. 8.% m Win. 7 W Win. Vista Win. XP Win. (others)

B Mac Linux miOS Android H Others

Figure 1: OS platform statistics from W3School's log files [1]

The following statistic from the information technology research and advisory company
Gartner, shows the shipment numbers of computing devices in 2013. The high number
of mobile phones shipments shows the importance of supporting mobile platforms in
addition to desktops, notebooks and tablets.

Worldwide device shipments by device
type (2013)

= PC (Desk-Based and
Notebook)

= Tablet (Ultramobile)

m Other Ultramobiles
(Hybrid and Clamshell)

= Mobile Phone

Figure 2: Worldwide device shipments by segment [2]

Page 5

Since we know now that there is the need to support mobile platforms let us take a look
at smartphone sales in respect of mobile operating system’s market share in the diagram
below. Android and iOS are dominating the mobile OS sales in 2013.

Smartphone sales

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
2007 2008 2009 2010 2011 2012 2013

Android ®miOS B Windows Phone B Windows Mobile BRIM B Symbian B Bada B Other

Figure 3: Smartphone sales numbers [3]

The diagram below shows the total app store revenue of the biggest four app stores. In
contrast to the smartphone shipments, where Android was the clear winner, the play
store from Google delivers not the highest app revenue. This is likely the result of third-
party app stores, payment platforms and the large number of free apps.

Total app store revenue in 2013

m iPhone = Android Play Store = Blackberry = Windows Phone

Figure 4: Total app store revenue in 2013 [4]

Page 6

When looking at device sales of all device, the operating platforms are well distributed
with the tendency of an increased Android market share. The numbers from 2012 and
2013 are based on collected data. The numbers for 2014 and 2015 have been predicted
by Gartner.

Worldwide device shipments by operating system

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
2012 2013 2014 2015
® Android ®mWindows ™miOS/MacOS ®RIM mChrome mOthers

Figure 5: Worldwide device shipments by operating system [2]

Page 7

2 Understanding MVVM

MVVM, when used correctly and to its fullest extent, is more than a single pattern that
consists of Model, View and ViewModel. In addition to these three essential parts that
define the fundamental structure of the application, there are a large number of other
patterns that can be used to enhance MVVM and improve the written code.

To completely understand how the individual patterns work in theory and how they can
be used on each platform, this chapter will provide a detailed description of MVVM and
some other patterns that can be used in combination with MVVM.

2.1 Related patterns (MVC and MVP)

To better understand MVVM, the patterns Model View Controller (MVC) and Model
View Presenter (MVP) will be described as well, since they all are user interface architec-
tural patterns and related to each other. This will show the similarities and differences of
those three patterns and will point out the advantages and disadvantages for individual
applications. All three patterns can help to improve code quality with regard to cross
platform development.

2.1.1 Model View Controller

The Model View Controller (MVC) is the predecessor of MVP and MVVM, as well as other
structural patterns associated to graphical user interfaces. Variations of MVC are widely
used in web based applications and applications on other platforms that provide massive
graphical user interfaces.

Model The Model is the data representation of the application. It can be used for
any kind of data source like the local file system, a relational database or a
web service. It notifies its View(s) about changes of its data.

View The view fetches the needed information from the Model and visualizes this
information for the user. It notifies the Controller about the user’s interac-
tion with the user interface (Ul) and receives requests for changes of its data
representation.

Controller The controller receives user interaction notifications from the View. Based
on the user’s interactions the Controller will manipulate the Models data.
The View will be notified from the Model about changes of the Model’s
data, to be able to update its Ul. The Controller can also request the View
to change its representation (visualization) of the Model’s data.

Page 8

View

View recieves data
from the Model

Model

kPasses Ul calls

to Controller

MVC

Requests
change in data
representation

Manipulates Controller

Figure 6: Simple dataflow diagram of MVC

The following sequence diagram shows how the View, Model and Controller work to-

gether to update the Ul after the use

|
|

r clicks on a button.

user clicks butto

- =

— -user sees animationr —

Events

——nbutton triggers event

| _controller requests Ul update;

(e.g. starting an animation)

— — -send updated data- —]

|

— user sees updated Ul — ~.<
|
|

- ——

Controller m
|
|
[
|
|
|

manipulates data

Figure 7: Sequence diagram of a simple user interaction using MVC

2.1.2 Model View Presenter

The Model View Presenter (MVP) is a derivative of the original MVC. The main difference
to MVC is that all dataflow passes the Presenter in both directions. This can be a great
improvement to MVC since the Model does not need any information about the View
and the other way round. This results in better decoupled software design which is es-

sential for cross platform developme

nt.

Page 9

Model Similar to the Model used with MVC, the Model of MVP represents all data
that is used by the application.

View Similar to MVC the View is responsible for visualizing data and handling user
interactions. Communication between View and Presenter is event based.
The View passes events triggered from user interaction back to the Pre-
senter, since it has no direct connection to the Model and communicates
only with the Presenter.

Presenter In contrast to MVC the View does not get the information about updated
data directly from the Model. Instead all dataflow passes the Presenter in
both directions and can be manipulated before it is passed to the View.

View
Updates |
Passes Ul calls to the Presenter

v
Presenter

Manioul Fires events for changes
MVP anipulates of the data

Model

Figure 8: Simplified Dataflow diagram of MVP

The following sequence diagram shows how the View, Model and Presenter work to-
gether to update the Ul after the user clicks on a button.

Page 10

user clicks butto Events
——Dbutton triggers event—
1 request Ul update _
| (e.g. starting an animation) manipulates data
__ usersees updated Ul __
I< (e.g. the animation) — get updated datas — —
|
| optional: data manipulation
| | (e.g. filtering)
l | __ requestUlupdate__ _ |
— ‘user sees updated Ul — with new data
|

Figure 9: Sequence diagram of a simple user interaction using MVP

[J
= N

| |
| |
| |
I |
|
|

|

|

2.1.3 Model View ViewModel

The Model View ViewModel (MVVM) is derivative of the MVP and acts in most aspects
similar. The main difference is the introduction of a binding mechanism that is responsi-
ble for the communication between the View and the ViewModel. This binding mecha-
nism can add additional flexibility and reduces the amount of written code. How this
mechanism works will be described in detail later.

Model The Model of MVVM acts very similar to the Model used with MVP.

View Like in MVC and MVP the View is responsible for interaction with the user.
It displays data from the ViewModel by using data bindings and notifies the
ViewModel about user interactions also with the help of the binding mech-
anism. In addition to data bindings, there is a command mechanism, which
replaces event based notifications to achieve better decoupling from View
and ViewModel. With these mechanisms it is especially easy to switch
Views on different platforms or for different display resolutions.

ViewModel The ViewModel is the central part of MVVM, as the presenter is for MVP.
All information passes the ViewModel and can be manipulated by it. It im-
plements an observable interface, so that its View can consume the data
and state without the ViewModel knowing anything about the View.

Page 11

View

Notifies about changes Bindings

ViewModel

M VV M Manipulates ViewModel
fetches data
Model -J

Figure 10: Simple dataflow diagram of MVVM

The following sequence diagram shows how the View, Model and ViewModel work to-
gether to update the Ul after the user clicks on a button.

| |
| — |
| | Binding |
mechanism l
button calls execute()

user clicks butto
change property

ofbound command (e.g. IsAnimationOn
41— animationistriggered
I user sees updated ui through blnd! ng mechanism manipulates data
" '(e.g. the animation) (e.g. binding to — dated data — —
e | IsAnimationOn) get updated data
|
|

|

|

|

|

I

I
)

[]
|
|
|
|
|

optional: data manipulation
(e.g. filtering)

| |

| |

-) |

d I b‘mdl ng mechancljsm_ _ change property |

— -user sees updated ui — triggers ui to update |
|

| |

Figure 11: Sequence diagram of a simple user interaction using MVVM

2.2 MVVM theory

In this section we will learn how the Model, the View and the ViewModel work together
and what their purposes and responsibilities are. In addition to the descriptions of Model,
View and ViewModel, there will be descriptions of other patterns relevant for this work.

2.2.1 Model
The Model represents all the relevant data that an MVVM application uses. The source
of this information can be a domain model or a data access layer that represents content.

Page 12

The data can be managed with an internal data structure that is stored on the disc, the
wrapper of a web service or any other source of data. Often it provides benefits to have
different implementations of the Model. One common use case for more than one im-
plementation is to create an additional implementation to display design time data. On
platforms where developing tools with design time visualization are available or if the
used Model contains distributed data that is not easily accessible at development time,
a design time implementation of the Model may provide significant benefits for develop-
ers as well as designers. Design time data with the right tools can save designers a lot of
time, since the often big applications do not have to get deployed to see visual changes
in the Ul design. On some platforms there are additional tools especially targeting design-
ers, for these tools a design-time Model is necessary to provide content for the visualiza-
tion inside the design software. Developers can also benefit from a design-time imple-
mentation of the Model. With its help the developer can find errors in data bindings and
some parts of the ViewModel’s logic without running the application.

2.2.2 View

The View is responsible for the visualization of its ViewModel’s data. It is recommended
that each View has exactly one ViewModel, but not necessarily the other way round.
One of the many benefits of MVVM is the loose coupling of View and ViewModel. The
View can be replaced without any changes in its ViewModel. Often there is the need for
different implementations of the View, since the native components of graphical user
interfaces are very different on each platform or not supposed to look the same for dif-
ferent cases of application. Different Ul and user experiences (UX) for different screen
sizes can easily be created by providing additional Views. Depending on the implementa-
tion of MVVM the different Views can be statically selected for each configuration or
determined and switched at runtime. When cross developing applications for devices
with a strong variation of screen sizes there is often the need to display multiple Views
at once. To support this functionality Views can be nested within other Views. Another
way of providing advanced functionality to show multiple Views in different ways on the
screen is to introduce presenters. These presenters have nothing to do with the pre-
senter of the Model View Presenter (MVP) pattern. Presenters, as described in this doc-
ument, are responsible for abstracting the way that Views are placed on the screen. How
presenters could look, like when used for real world applications will be described later
in this document.

The Type of the View is usually a Ul element like Page, Window, UserControl or a HTML
div element. In some scenarios it is useful to introduce a derived class of the Ul controls
to add some common functionality often used in Views.

Sometimes additional manipulation of the data is required for visualization and the ma-
nipulation is not supposed to be made by the ViewModel for some reason. For example
the conversion from a portable Ul object to a native Ul object, the inversion of a value or
any other data manipulation. For these tasks most binding frameworks support convert-
ers or similar approaches.

2.2.3 ViewModel

The ViewModel is the central part of MVVM it is the only connection between View and
Model. Each ViewModel has one or more Views. It is even possible, but not often used,
to have multiple Views connected to one ViewModel and visible on the screen at the

Page 13

same time. These Views will have exactly the same state without an additional synchro-
nization mechanism between the two Views. The Views do not even know about the
other’s existence.

Furthermore, the ViewModel provides a subset of the Model’s data to its View(s). It pro-
vides commands and the associated actions, so that they can be used (bound) from the
View. Based on the executed command the ViewModel makes changes to the Model’s
data. Each change of the Model’s data will be immediately reflected back to the View,
using the binding mechanism. Sometimes it is necessary to synchronize the state of two
ViewModels. For this purpose a messenger can be used. How a messenger could look
like and what benefits it can offer will be discussed later in this document.

2.2.4 Properties

Properties were introduced long time before MVVM, but due to the fact that MVVM can
benefit a lot from properties they will be discussed here as well. Properties are the com-
bination between the accessor (get) and mutator (set) methods. A property can be used
like a field but internally the get and set methods will be called. This mechanism reduces
the amount of code and make it better readable. A property can be fully accessible, read
only or write only.

For the use with MVVM bind-able properties are used. Therefore, the ViewModel and
most data objects have to implement an observable interface to listen to changes of
properties. If the value of a property has changed, the implementation of the observable
interface notifies all registered observers that one of its properties has changed. If the
observer is interested in the changed property it can read the new value of the property
by calling the get method of the property. It is recommended to have strict guidelines
when to use a property or when to provide an explicit method. For example the get and
set method of a property should not be used to run resource intensive or blocking code.
The get method should also not be used to manipulate the object’s state. That means a
second call to the get method, executed immediately after the first one, should not de-
liver a different value.

2.2.5 Bindings

The binding framework is sometimes provided by the platform itself. It is the mechanism
that connects the Ul control’s properties with the properties of the ViewModel. It is the
implementation of an observable object on the data side combined with an automated
mechanism to observe properties and make the corresponding changes on the Ul side.

Page 14

Ul control Data object
Changes value

P —

Ul - Property

Ul property
Prope rty reads value

"~ _—

Notifies control about
changes of the data

Figure 12: Diagram of data binding mechanism

The above data flow diagram shows the principle of a data binding mechanism. How this
mechanism works in detail looks different on most platforms and will be described for
each platform individually later in the practical parts of this document.

2.2.6 ValueConverter

The ValueConverter can be a specific Interface with two methods Convert and Convert-
Back. It is used among other things to perform platform dependent conversions or con-
versions that are not supposed to be included in the ViewModel. Converters can be re-
used multiple times. The goal of cross platform development is to share as much code as
possible. In real world applications most converters can be reused across Views and plat-
form.

2.2.7 Commands
Commands (for .NET platforms) are bindable properties that implement the 1Command
interface. This interface has two important Methods:

Execute(object parameter): The Execute method also known as action gets fired
from the Ul control that binds to the command. This
mechanism is already implemented for most .NET
based Ul frameworks. For frameworks that do not pro-
vide this functionality it can often be easily added to
existing controls.

The optional parameter can be used to provide addi-
tional context for the execution logic (action).

Page 15

CanExecute(object parameter): CanExecute can be used to let the Ul control know
about the state of the command. It returns a boolean
value that indicates if the command can be executed
or not. The Ul control can use this information to
change its Ul’s state. For example a Button can use this
information to decide if it is enabled or not.

2.2.8 Actions
Actions are the execution logic of commands. They manipulate the Model and change
the ViewModel’s states.

2.2.9 Messaging

Most MVVM frameworks provide a messaging mechanism to synchronize ViewModels
with each other. The messenger provides a mechanism to subscribe to a specific kind of
message. It also provides functionality to publish new content. The messenger will then
notify all registered listeners about the changed content. The messaging mechanism pro-
vides a loose coupled way to communicate within the application.

The following sequence diagram shows how the messaging mechanism can be used to
synchronize changes between ViewModelA and ViewModelB.

w
ViewModelA ViewModelB

| |
| |
| |
| |
| |
| |
change property
publish new data
for type "A"
|
|
|
|
|
|

Messenger

|
|
register for publications
I with type "A" 1
|
|
|
|
!
|
|

I notify ViewModelB about

the publication for
type "A"

I
Figure 13: Sequence diagram of a simple messaging implementation

2.2.10 Services

A Services is a construct to encapsulate individual parts of the application. They can be
used to abstract platform dependent functionality. The platform specific APIs can then
be used from code inside an independent (portable) part of the application that has oth-
erwise no access to platform specific APls.

A service consists of one interface and at least one implementation of that interface.
Usually an inversion of control (IOC) system is used to register the services as singleton
instances and let them be accessed from everywhere within the application. In addition

Page 16

to that, the concept of constructor dependency injection can be used to get an better
overview of what interfaces a component uses.

Page 17

3 Cross platform development with web technologies

When looking for cross platform development technologies, web tools are a good place
to start. Nearly any smartphone, tablet or desktop computer supports at least one
browser to run web applications. Developing applications with common tools like PHP,
Active Server Pages (ASP.NET) or Java Server Pages (JSP), where most of the logic for data
manipulation and Ul creation runs on the server side, often provides fast ways to create
big applications. Server side web developing is still common for different cases of appli-
cation. However, there are many situations, where running most of the code on the
server side is not wanted.

This chapter will describe many aspects of client side web development and tools that
help to increase the development experience. Each aspect will only be described briefly
to give an overview of the different tools and libraries to choose from. In the following
chapters some of the below described languages, tools and libraries will be used to create
sample implementations.

3.1 Server side compared to client side code

Server side code

Web applications that use mostly server side code are developed with tools like PHP,
ASP.NET, JSP and other technologies. With this technologies HTML code gets generated
on the server side and the full HTML page will then be sent to the client’s browser. To
update the Ul the server has to send the full HTML page or parts of it once again to the
client. Every time the Ul gets updated the full HTML markup is being sent to the client.

Client side code

When using client side code the application is loaded inside the client’s browser or in-
stalled on the device by using application packages for the target platform. Once the ap-
plication is loaded and the user interacts with the application, there will not necessarily
be a communication with the server. The Ul will be updated through client side code and
only if remote data is needed, pure data, without HTML markup, will be sent from the
server to the client.

The server is not necessarily required for the application to run. Therefore, the applica-
tion can be used without any internet connection once it is loaded. This enables the ap-
plication to run completely offline if required.

Comparison of server and client side code
The following lists will highlight the benefits of each solution.

Page 18

Client side code
The application can be used offline

Network traffic can be significantly re-
duced by sending only the pure infor-
mation to the client without having the
overhead in the form of HTML markup.
Reduce server side central processing unit
(CPU) load by processing most of the input
data on client side.

Client side manipulation of the DOM is of-
ten required for server side applications
as well, since responsive and fluent user
interaction cannot be achieved with pure
server-side code.

Applications can be deployed using indi-
vidual app stores like Google’s Play Store
and others.

When deployed as app for an app store
the application is able to use native appli-
cation programming interfaces (APls) with
the help of tools like PhoneGap.

Benefits of great client side libraries like
jQuery and others.

Better scalable software architecture.

Server side code

Server side programming languages and
libraries can be used.

Most parts of the program’s code will not
be seen by the user.

Servers have lots of processing power in
comparison with small mobile devices and
can run resource intensive tasks faster.
This can save battery life for mobile client
devices.

It is often easier to implement security
features.

Table 1: Comparison of client and server code

There is no strict boundary between these two architectures and they can be combined
to fit the application’s needs best. The scope of this work will only cover client side code.

3.2 Development tools

Good developing tools are important and can help the developer to write better code in
less time. Especially, for bigger development teams, integrated development environ-
ments (IDEs) have many features the team can benefit of. Modern IDEs have features like
syntax highlighting, code completion, automated refactoring, integrated source control,
and many more.

Three of the best tools to develop web applications will be described and compared in
the following sections.

Page 19

License

Developing Plat-
forms

Language support
(WEB)

Source control in-
tegration

Debugger

Aptana Studio [5]
Open source

Windows, Mac OS X,
Linux, Eclipse plugin

HTMLS5, CSS3, Javas-
cript, CoffeeScript,
Ruby, Rails, PHP, Py-
thon

Subversion, Mercu-
rial, Git, Perforce,
CVS, TFS

Integrated

Webstorm [6]
Commercial

Windows, Mac OS
X, Linux

HTML5, CSS3, Ja-
vaScript, Type-
Script, Coffee-
Script, Dart
Subversion, Mercu-
rial, Git, Perforce,
CVS, TFS

Integrated

Visual Studio [7]
Commercial

Windows

HTML5, CSS3, Ja-
vaScript, Type-
Script, CoffeeScript,
ASP.NET
Subversion, Mercu-
rial, Git, Perforce,
TFS

Integrated

Table 2: Comparison of web developing IDEs

3.3 Programming languages and language extensions

When developing web applications there is currently no way to ignore JavaScript as a
developing language since it is the only way to run code in a wide range of browsers. The
dynamic typing of JavaScript provides flexibility for software developers to realize their
own software designs. JavaScript is an object oriented programming language but has no
support for classes or inheritance like the traditional object oriented programming lan-
guages C++, Java, C# and others do. Instead it provides a flexible prototype based pro-
gramming paradigm. ECMAScript is the formal definition of the current version of Javas-
cript and gets continuously improved to adapt to the changing needs of software devel-
opers.

JavaScript is a basic but powerful scripting language and can be used to create great web
applications. JavaScript’s flexibility and programming paradigms can often lead to prob-
lems though. It can be challenging for new programmers especially, when creating larger
applications. That is why it is important to introduce coding standards and additional pro-
gramming paradigms to secure good maintainability. The MVVM pattern can help to fur-
ther increase maintainability by providing strict rules about the architectural design of
the application.

In addition to MVVM there are plenty of other patterns and frameworks that provide
solutions to common problems occurring during the development of web applications
using JavaScript.

Another solution to increase developing experience is the introduction of a replacement
for JavaScript as the main programming language. Since most browsers can only run Ja-
vaScript, all replacement languages have to compile to JavaScript.

Apart from writing JavaScript code or any of its alternatives a big part of developing web
applications is styling the application using cascading style sheets (CSS). Similar to JavaS-
cript replacements there are libraries that extend or replace CSS and provide numerous
improvements.

The following sections will state a short overview of some common JavaScript replace-
ments and CSS extension languages. This comparison should help with the decision on
which techniques to use.

Page 20

3.3.1 CoffeeScript (JavaScript replacement)

CoffeeScript is a compact scripting language that compiles to JavaScript. Its syntax is in-
spired by Python and Ruby. CoffeeScript implements many features of those two lan-
guages. Although, the language is not as comprehensive as Dart or TypeScript it is a very
compact language and allows to create powerful applications while writing little code. In
addition to that, CoffeeScript has some nice features that make writing code easier and
faster.

CoffeeScript is not very different from pure JavaScript despite of its syntax. The language
was developed to fix some problems developers see in the current version of JavaScript.

The book “The Little Book on CoffeeScript” [8] delivers a solid introduction to CoffeeScript
and is the main source for this section.

Syntax

The syntax of CoffeeScript often looks similar to its JavaScript counterpart, but it is not a
superset of JavaScript. This means valid JavaScript code is not necessarily valid Coffee-
Script code. One reason for this is that CoffeeScript does not use curly braces for scope
definitions. Instead it uses whitespaces like Python does.

Typing and generics

CoffeeScript is a weak and dynamically typed language like pure JavaScript. Therefore, it
has the benefits and performance of a dynamically typed language, but lacks the main-
tainability, as well as some of the possible support that integrated development environ-
ments (IDEs) can provide for statically typed languages.

Variables, functions and namespaces

Variables are defined similar to JavaScript. One of the biggest sources of hard to find Ja-
vaScript errors are accidentally created global variables by forgetting the var keyword.
Therefore, CoffeeScript removes the JavaScript way of defining global variables and uses
only the “window” object or an “export” object to define global variables.

Functions in CoffeeScript look a little different than their JavaScript counterparts. Coffee-
Script uses the single arrow “->” or double arrow “=>" to define functions. The following
single arrow function gets the parameters x and y and returns the arithmetic product of
both parameters.

multiply = (x, y) -> x *y

The difference of single and double arrow functions is the context of the function which
can be accessed with the this pointer. The function defined with the single arrow be-
haves like a conventional JavaScript function. Therefore, the scope is the executing ob-
ject. The double arrow behaves like functions created with common object oriented lan-
guages like c++, Java and .NET. Here the context is always the local context where the
function was defined.

In addition to the basic functionality functions can have default values and accept lists of
arguments.

Page 21

There is no common way do define namespaces in CoffeeScript, but like JavaScript, clo-
sures can be used to create individual solutions to support concepts similar to
namespaces.

Classes, interfaces and inheritance
CoffeeScript has in contrast to JavaScript a concept for class definitions that supports in-
heritance as well.

class Animal
constructor: (name) ->
@name = name

class Cat extends Animal

cat = new Cat("Pinky")

Interfaces like the one known from Java and other object oriented languages are not in-
cluded in the CoffeeScript language definition. Instead, class inheritance can be used to
achieve the same functionality.

External libraries
CoffeeScript is able to handle existing JavaScript libraries. So for developers there are not
many differences between including JavaScript libraries or native CoffeeScript libraries.

3.3.2 Dart (JavaScript replacement)

Dart is like CoffeeScript a replacement for the current version of JavaScript with the pur-
pose to enhance the developing experience when creating web based applications. It is
an open source language, which is manly developed by Google. Unlike CoffeeScript Dart
feels more like a completely new language in contrast to a JavaScript improvement. Dart
provides several improvements over JavaScript. Furthermore, it has its own APIs for many
tasks a developer faces while creating web applications.

In contrast to JavaScript, which was originally designed to provide only simple client side
DOM manipulations for existing multi page applications, Dart focuses on single page ap-
plications.

For developing MVVM applications there is an interesting Dart library called “Angu-
larDart”. It is a binding framework similar to its JavaScript counterpart “AngularJs”, but
written natively with Dart and therefore offers better integration.

Dart already contains many powerful libraries to manipulate the DOM, communicate
with web services, as well as other common functionality that is used by most web appli-
cations. These libraries are well designed and easy to use. Since Dart is a completely new
language, it does not have to deal with the often criticized legacy features of JavaScript.

The improvements of Dart compared to JavaScript are a major benefit, but all that comes
for a cost. Like CoffeeScript, Dart compiles to JavaScript to run on a wide range of brows-
ers. Therefore, every function Dart adds to the basic features of JavaScript has to be im-
plemented by the developers of Dart. Furthermore, all Dart libraries have to be trans-
ferred to the client’s browser in some way. Dart differs much more from JavaScript than
CoffeeScript differs from JavaScript therefore, errors occurring at run-time can be difficult
to find.

Page 22

This is a reason why Google has the idea of running Dart directly inside each browser.
Having Dart implemented from the browser itself would make it unnecessary to send the
whole Dart framework to the client. It should also result in a mayor improvement in per-
formance due to the efficient design of Dart and the lost overhead from compiling it to
JavaScript.

With that Dart could replace JavaScript as the only native programming language sup-
ported by browsers. However, this vision from Google is not likely to happen due to the
incompatibility with the current version of JavaScript and the objections that other mayor
web companies like Microsoft, Apple and Firefox are likely to have.

Syntax
The syntax of Dart looks similar to JavaScript and offers lots of useful additions.

Typing and generics

Dart is an optionally strong and dynamic typed language and supports most features a
strong typed language has to offer. The usage of generics can improve the benefit of
strong typed application development further.

Variables, functions and namespaces
Variables in Dart are defined as they are in JavaScript, but with the possible addition of
specifying the variables’ types.

To define a function Dart offers multiple syntaxes. There is a shortcut for single line
functions using the “=>" operator that looks similar to the function definition with Cof-
feeScript. Multiline functions are defined with a syntax similar to JavaScript. In addition
to multiline functions, Dart offers several shortcuts with typed and non-typed parame-
ters and return values. [9]

Multiline function syntax Single-line function syntax

int power(int n) { return n * n; } int power(int n) => n * n;
power(int n) { return n * n; } power(int n) => n * n;
power(n) { return n * n; } power(n) => n * n;

var power = (n) { return n * n; } var power = (n) => n * n;

(n) { return n * n; } (n) => n * n;

Table 3: Syntax of function definitions with Dart

Dart has no concept for namespaces, instead it has a library concept that can be used to
separate code. Each library has its own namespace to prevent naming collisions.

Classes, interfaces and inheritance

Different from the prototype based approach of JavaScript, Dart offers solid concepts to
support classes, interfaces and inheritance in a common object oriented way. The follow-
ing code shows a simple inheritance scenario.

class Animal {
string name;

Animal (string name) {
this.name = name;

Page 23

}

class Cat extends Animal {
Cat (string name): super(name);

}

void main() {
Cat cat = new Cat("Pinky")

}

The following code shows the implementation of an interface with Dart using an abstract
class.

abstract class I {

f10);
f2(String x);
}

class A implements I {

f1() {.}
f2(String x) {..}

}

void main() {
A a = new A();
a.f1();
a.f2("s");

}

In addition to basic class usage, Dart provides support for named constructors that can
make code easier to read.

External libraries
Dart offers good support for calling existing JavaScript code from an external library
through the Dart library “js.dart”.

3.3.3 TypeScript (JavaScript extension)

TypeScript is an open source script language mainly developed by Microsoft. TypeScript
is like CoffeeScript and Dart a language trying to improve the current version of JavaScript
by introducing lots of useful concepts. Unlike CoffeeScript and Dart, TypeScript is a su-
perset of JavaScript. This means that every valid line of code written in JavaScript is also
valid TypeScript code. This fact makes not only switching from JavaScript to TypeScript
very easy, but also lets you use existing JavaScript libraries with ease.

Like the name of the languages indicates, TypeScript is all about introducing static typing
to JavaScript. This will improve readability and maintainability while providing similar per-
formance as JavaScript.

One nice fact about TypeScript is that it implements most of the features of the unfin-
ished ECMAScript 6 language definition for the coming version of JavaScript. Technically
TypeScript is a snapshot of the possible future of JavaScript, which you can already use
today, to develop great applications. TypeScript is implementing the ECMAScript defini-
tion carefully and introduces only minor differences. That is the reason why TypeScript is
probably more future-prove than CoffeeScript or Dart. While writing your TypeScript ap-
plication that compiles to the current version of JavaScript, the same application could

Page 24

be natively supported by all browsers in a few years without the need for major changes
inside the application.

Although the compatibility of JavaScript brings many benefits, it is also a weakness. One
of the severe problems of writing JavaScript applications is the variety of ways you can
write and structure the code. Languages like Dart force the developers to write their code
in a more predefined way, so others can understand it more easily. Since TypeScript is
compatible to the current version of JavaScript, it offers even more different ways to
write an application. When using TypeScript this structure could be artificially enforced
by development tools or advanced coding guidelines instead of the compiler. Another
problem that results from the nature of TypeScript is the enforced support of legacy APls
of JavaScript that are criticized by many web developers.

An extensive overview of the TypeScript language can be found in the TypeScript lan-
guage specification [10], which also builds the basis for following description of the Type-
Script language.

Typing and generics

As mentioned above TypeScript is all about introducing strong and static typings to Ja-
vaScript by maintaining the possibility to use dynamic and weak typings. Therefore, Type-
Script is an optionally strong and dynamic typed language. Using types in TypeScript looks
a little different than it does in Dart or most other object oriented languages. This is a
result of the required compatibility to the current JavaScript version. In addition to basic
type features, TypeScript supports the usage of generic types.

Variables, functions and namespaces

Variables, function return values and parameters can be defined with or without type
specification. This ensures the compatibility to current JavaScript and the benefits of writ-
ing strong typed code. Typed code provides lots of benefits like improved readability and
maintainability. When compiled to JavaScript, all additional type information is removed
for better performance.

The following code shows how to add type information to a variable definition and how
to use generic objects.

var x: number;
var y = new Y<string>();

TypeScript functions are exactly the same as JavaScript functions. One of the mayor im-
perfections of JavaScript is the this pointer, which always points to the calling object and
not like in C++, Java and .NET to the parent object, where the function was defined. To
get this functionality with TypeScript, developers have to use some tricks already known
from the current version of JavaScript or by using the following lambda expression.
Lambda expressions always use the local context for the this pointer and not the calling
object.

var a = () => { return this; };

Classes, interfaces and inheritance
As necessary for a full featured statically typed language TypeScript offers a feature rich
implementation of classes, interfaces and inheritance.

Page 25

The following implementation of the animal inheritance example looks like the following
with TypeScript.

class Animal {
name: string;

constructor(name: string) {
this.name = name;
}

}

class Cat extends Animal {
constructor(name: string) {
super(name);
}
}

var cat : Cat = new Cat("Pinky");

The following code shows how to use interfaces with TypeScript.

interface I {
f10);
f2(x: string);
}

class A implements I {

f10{}
f2(x: string) {}

}

var a = new A();
a.f1();
a.f2("s");

External libraries

Since TypeScript is a superset of JavaScript every existing JavaScript or TypeScript library
can be used within a TypeScript application. To benefit from full IDE support additional
typing information can be added to existing JavaScript libraries. This additional typing
information is available for most common JavaScript libraries in the form of an external
file, which is used only at development time and will not be deployed to the client’s
browser.

3.3.4 SASS and LESS (CSS extension)
Like CoffeeScript, Dart and TypeScript that are trying to replace or extend JavaScript there
are also libraries trying to do the same with CSS.

Syntactically Awesome Style-Sheets (SASS) and Leaner CSS (LESS) are two similar lan-
guages that compile to CSS. They introduce variables, nestings, mixins, inheritance and
many other useful concepts. These concepts can make CSS more maintainable, themea-
ble and extendable.

Since it is not within the scope of this work, we will not describe the differences of these
extensions. Detailed documentations of SASS [11] and LESS [12] can be found on the web-
sites.

Page 26

3.4 Ul frameworks

To create good looking and competitive web applications there is often the need for one
or more Ul frameworks. Teams can decide to write their own frameworks, but with lots
of different browser engines to support, this task can be quite resource intensive. There
are currently countless good Ul frameworks to choose from. Most of them offer similar
functionality, but differ in the visualization of the controls. Some libraries like jQuery only
provide basic functionality for DOM manipulation where other libraries can build on.

3.4.1 JQuery

The useful tools that jQuery [13] provides are an essential part in many modern web ap-
plications. JQuery’s powerful methods for DOM traversal and manipulation, event han-
dling, AJAX calls and all of its great extensions save lots of development time by resolving
browser incompatibilities and offering advanced features that are easy to use.

DOM traversal and manipulation

JQuery features a rich API for traversing and manipulating the DOM. It provides an easy
to use interface for many common use cases and allows great results by writing little
code. An implementation of CSS selectors inside jQuery makes the traversal of the DOM
powerful and flexible, by using a familiar syntax.

The following line of jQuery code selects the HTML element with the ID “MessageBox”
that has an Attribute with the name “data-field” and the value “HeaderContent”. The
method sets the inner HTML of the selected element to “The Header”.

$("#MessageBox [data-field=HeaderContent]").html("The Header");

Event handling

Event handling with pure JavaScript is not easy, especially when developing applications
that target different browsers including older ones. JQuery provides a solid solution that
makes event handling easy and comfortable.

The following code registers a function to the click event of a button. This function
changes the visibility of the HTML element with the ID “Box” to “visible”.
var box = $("#Box");

$("#Button").on("click", function (event) {
box.show();

1)

AJAX calls

Many modern web applications use AJAX calls to load data dynamically without forcing
the browser to navigate to another page. This procedure is difficult to implement with
pure JavaScript but jQuery offers many easy to use functions to help with down- and up-
loading data using AJAX.

The “get” method used in the code below fetches the HTML code contained in the remote
file “sample.data” and calls a function with the loaded data after the AJAX call has fin-
ished.

$.get("sample.data", function (data) { .. });

Page 27

3.4.2 JQueryUl

JQueryUl [14] offers a wide collection of Ul related interactions, effects, widgets, and
themes. It is built upon jQuery hence, it is easy to use for developers with jQuery experi-
ence.

Interactions

Advanced user interactions are not always easy to create without the help of additional
libraries. JQueryUl provides solid tools for the most common user interactions like drag-
ging, dropping and resizing of Ul elements. In addition to that jQueryUl provides tools for
creating collections of HTML elements with the ability to let the user reorder or select
individual items.

The code below makes the HTML element with the ID “Draggable” draggable. If the drag-
gable element gets moved and dropped inside the element with the ID “Droppable” a
JavaScript function will be called.
$(function () {
$("#Draggable").draggable();

$("#Droppable").droppable({
drop: function (event, ui) { ... }

s
1)

Effects
Effects are a big part of jQueryUl. There are plenty of different animations for different
use cases like showing, hiding and moving HTML elements.

The following code animates the width of the DOM element with the ID “EffectCon-
tainer”. The animation changes the current value of “width” via linear interpolation from
the current value to 500 and will take 1000 milliseconds to complete.

$("#EffectContainer").animate({width: 500}, 1000);

Widgets

The widgets included in jQueryUl are built on top of all other features. JQueryUl offers
these controls to show the user a well-designed Ul with animations to make user inter-
action look responsive and seamless.

The following code turns the input element with the id “Button” into a jQueryUl themed
button.

$("#Button").button();

Themes

The theming system is a great way to offer the user a choice of different designs with
little development effort to create them. JQueryUl offers an online tool with the name
“ThemeRoller” [15] that provides an easy and interactive way to create themes for
jQueryUl controls.

3.4.3 JQueryMobile
JQueryMobile [16] is a Ul framework similar to JQueryUl without the basic functions for
interaction and effects. Since jQueryMobile is built like jQueryUl on top of jQuery those

Page 28

two frameworks can be used together with little complications. The main difference be-
tween jQueryUl and jQueryMobile is that jQueryMobile especially, targets mobile plat-
forms with touch input. With jQueryMobile the developers can create good looking ap-
plications that target smartphones, tablets and desktop devices.

JQueryMobile provides a wide range of useful widgets to create rich mobile applications.
It also offers tools for virtual page navigation, which enables back and forward navigation
in applications where all code is nested within one single html document. Most modern
applications, especially when used offline, need such a mechanism.

As with jQueryUl the tool “ThemeRoller” can be used to create multiple themes for
jQueryMobile controls with little effort.

The following examples show how easy it is to create rich mobile Uls with jQueryMobile
without writing any JavaScript code.

The Page control that is used for in app navigation

<div data-role="page">
<div data-role="header">header content</div>
<div role="main" class="ui-content">main content</div>
<div data-role="footer">footer content</div>

</div>

A Touch friendly themed button

Button

Slider control to select a numeric value between 0 and 10

<label for="slider">Slider</label>
<input name="slider" id="slider" type="range" min="0" max="10" value="3">

3.4.4 Winls

Microsoft introduced native JavaScript development to create fast and fluent Windows
Store apps, with the release of Windows 8. The development with JavaScript is similar to
its .NET and C++ alternatives. The reason for the introduction of those tools was, among
other things, to attract the many web developers to write apps for the new Windows 8
platform. This step of Microsoft was also a big win for cross platform developers that
want to share lots of their code between multiple platforms without sacrificing native
look and feel. For users it is almost not possible to distinguish weather the application
was developed with web tools, .NET or C++.

WinlJs is available as an open source library that should work within all browsers and
within web based application environments like PhoneGap and others.

Microsoft provides all Ul controls known from their Extensible Application Markup Lan-
guage (XAML) markup language with WinJs to create great applications. The following
examples will show how to define Windows Store controls using HTML.

Defining a button themed as the back button commonly used inside modern Windows
applications.

Page 29

<button data-win-control="WinJ]S.UI.BackButton"/>

Windows Store applications written with HTML, CSS and JavaScript can use Templates
with similar usage as when written in XAML and .NET.
<div class="itemtemplate" data-win-control="WinJS.Binding.Template">
<div class="item">
<img class="item-image" src="#"
data-win-bind="src: backgroundImage; alt: title" />
</div>
</div>

This template can then be used to create Lists of items where each item uses the same
template.
<div class="itemlist win-selectionstylefilled"
aria-label="List of this group's items"

data-win-control="WinJS.UI.ListView" data-win-options="{
itemTemplate: select('.itemtemplate'),

s

</div>

Microsoft introduce their own binding framework to WinJs to provide all the benefits
developers had when using XAML. The binding framework will be explained in detail later
on. MVVM, with all its power, is fully supported without the need to use any additional
library. However, if for some reasons alternative binding Frameworks are required, it is
easily possible to combine WinJs with other frameworks like KnockoutJs or Angularls.

WinJs was at its introduction closed source and only used with Microsoft’s web engine.
During the time this work was composed it was made open source. That is why it does
not jet provide the same good experience on all browsers. Microsoft has published a
roadmap for WinJs that promises better compatibility for a wide range of web engines.
In addition to that the support for theming and other new features was promised [17].

The following list includes all the major controls and features that WinlJs has to offer [18]:

o ListView e DatePicker e Scheduler

e Semantic Zoom e TimePicker e XHR

e FlipView e Hub e Binding

e Animations e Pivot e Binding

e AppBar e Repeater e Templates
e NavBar e Searchbox e Fragments
e Flyout e Toggle e Page control
e Ratings e Promises e Navigation
e Tooltip

3.4.5 Other Platform specific Ul frameworks (Android and iOS)
For most major operating systems like Android and iOS there is no out of the box support
for the development of native looking applications with web tools. This could be achieved

Page 30

by using specialized Ul libraries that are trying to imitate native look and feel. For exam-
ple, the company Telerik [19] offers native looking Ul controls for multiple platforms like
Android, iOS, Windows and others.

3.5 Binding Frameworks

Data bindings are an essential part of MVVM, without them the creation of the MVVM
architecture would not be possible. Web based technologies (HTML, CSS and JavaScript)
do not have a built-in concept for the support of data bindings.

However, there are lots of different binding frameworks to choose from. Some of the
most common binding frameworks are listed below. Three frameworks that seem most
suitable for our sample application will be described in detail. For the sample application
created with web technologies which will be discussed later, the framework KnockoutJs
was used.

e Angular)s [20]

e Knockoutls [21]

e Durandal, a combination of jQuery and KnockoutlJs [22]
e WinlJs [23]

e Backbonels [24]

e Derby [25]

e Ember [26]

e JsViews [27]

e jQXB Expression Binder [28]

e Meteor [29]

3.5.1 AngularJs

Angularls [20] is a full featured open source binding framework but has also some addi-
tional tools for the creation of single page web applications. It provides a solid structure
for client side web applications with the help of a good software design architecture. It
officially calls the used design architecture MVC but due to the fact that the communica-
tion between view and controller is handled by the binding framework it could also be
called MVVM.

Angularls is mostly developed by Google and greatly influenced by the experience and
vast knowledge of the developers working on Google’s successful and modern web ap-
plications.

For Dart developers there is a similar project called AngularDart which provides the same
binding and structure feature for Dart applications [30].

Bindable data objects

Angularls does not require to add code to data objects like many other binding frame-
works do. Instead all existing data classes can be used without any change. This is espe-
cially helpful when receiving AJAX data from the server. For this scenario most other bind-
ing frameworks have to dynamically add code to make the received data objects binda-
ble.

Binding syntax
Angularls provides a simple and yet powerful syntax to specify bindings inside HTML. An-
gular)s adds several additions to the HTML syntax to make bindings as easy as possible.

Page 31

The most important addition to the HTML syntax are probably the double curly braces
“{{ ... }}* that are used to set up the binding.

The following code inside the double curly braces sets the binding of the HTML content
for the span element. It uses the text inside the “name” variable from the controller, which
is responsible for this section of the HTML.

{{name}}

Controllers form the Model View Controller (MCV) pattern are used to specify the context
of HTML elements. The “ng-controller ” property can specify which controller is respon-
sible for a hypertext markup langiuage (HTLM) element and its descendants.

The following code sets the context of the HTML body element and all its descendants

4

(unless otherwise overruled) to the controller with the name “SomeController ”.

<body ng-controller='SomeController'>

The property “ng-app ” is used to tell AngularJs which part of the DOM it is responsible
for. This can be used to embed an Angularls application inside an existing non Angularls
web application. The following code tells AngularJs that it should manage the bindings
for the whole HTML page.

<html ng-app>

Lists and templates

The template mechanism from Angularls can easily be used to visualize lists of objects.
To visualize multiple objects inside a collection variable the template is copied for each
item of the collection and then added to the DOM.

The following code shows how to use lists and templates to visualize multiple objects.
The span element inside the div will be copied and inserted as a new child of the div once
for each item of the items collection. The name property of each item object will be used
to provide the inner content for the span element.

<div ng-repeat='item in items'>

{{item.name}}
</div>

Advanced bindings and Converters

Converts are an important part of MVVM. AngularJs does have a Converter implementa-
tion similar to the one we learned before in the theory chapter. Angularls is calling it
Filters instead of Converters, but their behavior is nearly identical.

Angularls includes lots of bundled filters to help developers write their code faster. New
filters can be easily added by writing JavaScript code.

The following code shows how to use the Filter numberSquare to manipulate the binding’s
content by calculating the squared value before visualizing the manipulated value. Filters
can also work the other way around when used with two-way bindings for Ul elements
that support user input.

{{numer | numberSquare}}
In addition to filters Angular)s enables in line calculations like the following.

{{numberA * numberB}}

Page 32

Events and Commands
Events can be used with AngularJs like the following.

<button ng-click="action()">Action</button>

In Angularls, like with most web based binding frameworks, there is no command pat-
tern, as it is described in the theory section. Instead the actions are directly bound and
the “is enabled” mechanism from the command can be implemented with an additional
binding.

Additional features
Angularls is more than just a binding framework. It adds lots of convenient functionality
to manage and structure the code.

3.5.2 KnockoutJs

Knockoutls is a popular and well known open source binding framework. It provides bind-
ing functionalities similar to Angular)s. The main difference between KnockoutJs and An-
gular)s is that KnockoutJs does not provide its own application design pattern. This is not
necessarily a bad thing, because the lack of an included application design structure
makes it more flexible and compatible to other libraries and patterns like MVC, MVP or
MVVM.

Bindable data objects

Knockoutls uses a different concept than Angularls for binding data objects to the Ul. We
have seen that Angular)s does not require the manipulation of data objects to support
bindings. KnockoutJs on the other hand requires additional code to make data objects
bindable. Data variables can have bindable and non bindable properties. Non bindable
members look like any JavaScript member but bindable ones have to be of an observable

type.
The observable types supported by KnockoutJs are:

ko.observable This type is used for single observable objects like numbers,
string or user defined objects including other observables.

var observableString = ko.observable('value');
var observableNumber = ko.observable(42);

ko.observableArray When working with collections of data objects the observable-
array type is used.

var someObservableArray = ko.observableArray();
someObservableArray.push('value');

ko.computed This type is used for computed observables. With it a method
can be used to generate or manipulate data each time the Ul
asks for a new value. This is similar to the Filter approach used
by AngularJs.
In the code below, the Ul will be notified of every change of the
used observables A and B and gets a new calculated value.

var observableComputed = ko.computed(function () {
return this.A() * this.B();
}, this);

Page 33

Binding syntax
On the HTML side there are a few additional properties that enables bindings support.

The most important addition is the data-bind property. It defines all the bindings with its
own syntax inside the value of the HTML property. Many different binding scenarios are
available with the included bindable HTML and CSS properties like visible, text, css,
style, checked, enabled, and others. For binding types that are not natively supported by
Knockoutls, there is a mechanism to write custom binding.

The following code shows a simple data binding. The visibility of the div element is bound
to the isvisible property of the ViewModel, Controller or Presenter.

<div data-bind="visible: isVisible">

To specify the binding context of DOM elements, KnockoutJs uses the with keyword in-
side the data-bind property. In the sample below the context of the div and all its chil-
dren will be the contextObject.

<div data-bind="with: contextObject">

Lists and templates

Knockoutls has a template system that works similar to the one we have seen of Angu-
larJs. For collections of data objects there is a mechanism that uses a template defined
with HTML. That template HTML code will be copied and inserted into the DOM for each
item inside the ko.observableArray. The binding context of each copied template is the
corresponding data object itself.

The following HTML code shows how to use the foreach binding mechanism of Knock-
outls. In the case below the ul element specifies, the content of the Ul template for a
collection of items. The source variable that includings all items is items. The 1i will be
copied items.count times and placed inside the ul element. The property a of each item
inside the collection is shown as inner HTML for each span element.

<ul data-bind="foreach: items">
<1li>

</1i>

Advanced bindings and Converters
Knockoutls supports inline calculations similar to Angularls.

For more complex calculations it is recommended to use computed observables as de-
scribed in the beginning of this section.

Events and Commands

Binding commands or actions works like binding any other property of the data context.
The click binding used below, as well as others, can be declared within the data-bind
property as well.

<button data-bind="click: action">Action</button>

Page 34

Additional features
Knockoutls is a pure binding framework and does not provide application design and
lifecycle management tools like AngularJs.

When using data objects originating from a remote server, there are mostly no observa-
ble objects used. Therefore, the “Mapping” plugin [31] for KnockoutJs automatically con-
verts pure JavaScript variables and arrays to KnockoutJs observables.

3.5.3 Durandalls

Durandalls is a nice framework that combines jQuery, KnockoutJs and Requirels. Its tools
can be used to create MVC, MVP and MVVM architectures. The following list of features
originates from the official Durandalls website [22] and provides a good explanation of
the benefits Durandalls offers.

e Clean MV* Architecture

e JS & HTML Modularity

e Simple App Lifecycle

e Eventing, Modals, Message Boxes, etc.

e Navigation & Screen State Management

e Consistent Async Programming w/ Promises

e App Bundling and Optimization

e Use any Backend Technology

e Built on top of jQuery, Knockout & RequirelS

e Integrates with popular CSS libraries such as Bootstrap and Foundation
e Make Your Own Templatable and Bindable Widgets
e Fully Testable

3,54 WinlS

Winls uses JavaScript code, in addition to other things, to provide a mechanism to bind
properties of Ul controls to properties of data objects. WinJs specifies the bindings not
with HTML like Angularls or Knockout)s do, instead it uses JavaScript code. This often
results in more code that is worse structured. However, WinJs was designed to work well
with other frameworks. Frameworks like Angular)s and KnockoutJs can be easily used in
combination with WinJs. How the binding mechanism of WinJs works can be seen on the
TryWinJs website [18] that offers lots of interactive code samples for most features that
WinJs offers.

3.6 Technologies to create and deploy mobile apps

Not so many years ago there was only one possible deployment scenario of web based
applications, hosting it on a web server. With the raise of mobile platforms many different
scenarios for the usage of web applications have evolved. There are application platforms
that only accept web applications like ChromeOS [32] and FirefoxQS [33]. Other platforms
like Windows and Windows Phone applications support three different native develop-
ment platforms with one being web based.

Other platforms like Android [34] and iOS have no built in web development support, but
they all have one special native Ul control. This control is similar to a conventional
browser and can be used to host web applications. Therefore the creation of web based
applications is theoretically possible on most mobile platforms. Finished web applications
can be downloaded from the platform’s application store and behave mostly like native

Page 35

apps. The only limitation is the lack of native Ul controls which often results in applica-
tions without native look and feel. More complex frameworks add a custom APl wrapper
to let developers use the native controls within their web applications.

Some of the most interesting deployment scenarios and frameworks will be described
and compared in the following sections.

3.6.1 PhoneGap

PhoneGap [35] is an open source project supported by Adobe and successfully used by
many developers worldwide. It is a HTML, CSS and JavaScript based cross operating sys-
tem mobile development platform. PhoneGap provides libraries and tools to create ap-
plication packages for the following platforms.

e Amazon Fire OS [36]
e Android [34]

e BlackBerry 10 [37]

e Firefox OS [33]

e i0S[38]

e Ubuntu [39]

e Windows Phone [40]
e Windows 8 [23]

e Tizen [41]

In addition to the application packaging, PhoneGap provides APl wrappers for most of
the devices’ native features that are not available with the standard JavaScript APls, like
accessing the camera, reading and writing on shared storage, using the phone’s payment
abilities and others. PhoneGap tries to unify the APIs by combining similar APls into one
PhoneGap API, to help developers to cross develop their applications.

Unlike other solutions PhoneGap does not provide APIs for native Ul controls. All Ul inside
a PhoneGap application is written with pure HTML. This makes it easy to port existing
web applications to PhoneGap, but the applications may not feel as native and well per-
forming as they could, when developed with the native tools of each platform.

Building PhoneGap applications require the development tools for the targeted platforms
installed on the development device. Installing all platform development tools can be a
lot of work and does not work with every operating system. Therefore, Adobe provides
the PhoneGap Build service [42], which let developers build their applications on Adobe’s
servers instead of local development devices. Furthermore, this allows the creation of
application packages for multiple platforms within minutes.

Applications developed with PhoneGap have the same performance limitations as other
applications developed for mobile browsers. For most applications this becomes less and
less important though, due to the rapid increase of performance of mobile hardware and
the continuous improvements of mobile web engines.

3.6.2 Titanium

Titanium [43] is a cross platform open source web development solution that has its focus
on creating performance optimized and native looking applications. Unlike PhoneGap,
Titanium does not use HTML and CSS to create the Ul of the application, instead it pro-
vides APIs to use native Ul controls from the target platform by writing JavaScript code.

Page 36

Due to the more complex and resource intensive nature of Titanium’s internal design,
Titanium does not support as many platforms as PhoneGap does. At the time of this work,
Titanium supported the following platforms.

Android [34]

i0S [38]

Blackberry 10 [37]
Windows Phone [40]
Windows 8 [23]

To make development with Titanium easier and more comfortable Appcelerator, the
company behind Titanium, provides an IDE that is based on Eclipse.

Due to the usage of the platforms native controls Titanium applications offer good user
experience and potentially better performance than PhoneGap applications. However,
they are mostly not as well performing as purely native developed applications.

Page 37

4 Cross platform development with .NET

When searching for cross platform development tools .NET is most likely not the first
choice to look at, since .NET is developed by Microsoft and has the reputation of being
closed source with a proprietary license. However, this is mostly untrue. Many parts of
.NET are open source and can be used for open source projects as well as commercial
projects under the Apache License 2.0. In 2014 Microsoft made another big step to make
even more Parts of .NET open source, including the new compiler platform Roslyn, the
Entity Framework and many other parts of .NET. A list of all open source projects that are
managed by the .NET foundation can be found on the official .NET Foundation website
[44]. Xamarin, a company focused on .NET development tools for non-Microsoft plat-
forms provides a solid cross platform development experience for .NET developers. The
combination of Microsoft’s own platforms and the Xamarin platforms cover a wide range
of mobile and desktop devices.

Microsoft: Windows Phone, Windows desktop, Windows Store, Silverlight for web,
ASP.NET web applications, and xBox games and applications.

Xamarin: Android, iOS and Mac OS

With this set of supported platforms .NET development is easily possible for a large part
of mobile and desktop devices sold today. When looking at the statistics from the moti-
vation section of this document we can see that .NET covers about 95% of all mobile and
desktop devices, which is not as much as the more than 99% that web platforms can
cover, but is a more than decent ammount.

This means, if an individual developer or a company needs to support multiple platforms
with one of the platforms has no support for .NET, they either not use .NET at all or use
a cross platform .NET solution in addition to web or native applications. Often it is easier
and faster to find websites than it is to install an application. Therefore, it is beneficial to
create a web application in addition to .NET applications even if all required platforms
are supported by .NET.

4.1 Development tools

For developing .NET applications good development tools are even more important than
they are with web development. A good IDE can make the development process much
easier and faster. Unlike for web development there are not many different IDE’s to
choose from. For cross platform development with .NET there are only two IDE’s availa-
ble. The first one is Microsoft’s Visual Studio, which was already described in the web
section. The other one is Xamarin Studio.

To support all possible platforms where .NET can be used, it is necessary to either work
with both IDE’s or use only Visual Studio, since each of the platforms are supported by
Visual Studio in combination with the Xamarin plugins, yet not all platforms are sup-
ported by Xamarin Studio.

A short comparison of Visual Studio and Xamarin Studio can be found in the following
table.

Page 38

Visual Studio Xamarin Studio

License = Commercial Commercial
Developing plat- Windows Windows, Mac
forms

Supported tar- | Windows Desktop, Windows Store, = Android, iOS, Mac, ASP.NET
get platforms = Windows Phone, Silverlight, Xbox,
ASP.NET, Android®, i0oS"*, Mac®*

Source control = Subversion, Mercurial, Git, Per- Subversion, Mercurial, Git, TFS
integration = force, TFS

Debugger = Integrated Integrated

Table 4: Comparison of .NET IDEs

1) Android, iOS and Mac platforms need the commercial plugin from Xamarin for use inside Visual Stu-
dio

4.2 Programming languages and the .NET framework

.NET is a framework that supports three different languages C#, VB.NET and F#. In addi-
tion to them platform specific markup languages like XAML or Android XML are used for
graphical user interface (GUI) declarations. For this document we focus on C# as well as
the two markup languages XAML and Android XML.

In this section we will discuss some language feature of C#, as well as possible scenarios
to use them. All of the following examples are in some way relevant for MVVM develop-
ment.

4.2.1 Language syntax
The syntax of C# looks familiar to C++ and Java with lots of nice additions like for example
LINQ, which is included in the language itself.

4.2.2 Classes, interfaces and inheritance

With C# the developers have full featured support of classes, interfaces and inheritance
as known from other object oriented languages. The following example shows how to
implement a simple animal inheritance with C#. The sample uses the base class Animal to
provide common functionality for all animal classes like the cat class below.

public class Animal

{
public string Name { get; set; }
public Animal(string name) {

this.Name = name;

}

}

public class Cat : Animal

{
Cat(string name) : base(name) {
}

}

Cat cat = new Cat("Pinky");

Page 39

The same example implemented with the use of an interface instead of the Animal base
class could look as follows.

public interface Animal

{

string Name { get; set; }
}
public class Cat : Animal
{

public Cat(string name)

{

Name = name;

}

public string Name { get; set; }
}

Cat cat = new Cat("Pinky");

4.2.3 Lambda expressions
Lambda expressions [45] are a short way of writing anonymous functions by using the
following syntax.

(input parameters) => expression

The following list includes some examples of lambda expressions as well their explana-
tions.

Simple lambda expression that returns a function to
multiply two integers.

(int x, int y) => x*y

The types of the parameters are not required in many
cases where the compiler is able to determine them by
looking at the functions context.

(X, y) =>x *y

a = { The curly brackets are used for multiline functions.

int b = a + 1;
Console.WriteLine(b);

() => variable A Lambda expression that always returns a specific
or variable or property.
() => Property

Table 5: Examples for lambda expressions

4.2.4 Properties

Properties are an interesting construction that are used to replace the get and set meth-
ods by combining them into one concept. This makes it possible for the data binding com-
ponents to know which get and set methods belong together.

Page 40

Properties in C# can have the accessibility options, public, protected, internal and private.
Additionally, the property can be set to read-only or write-only by removing either the
get or set method.

The code below shows a simple property implementation.

The property reads and writes the value to and from a private variable, which is also
called “backfield” variable.

private string _property;

public string Property {

get { return _property; }
set { _property = value; }

Properties can be used on the left or right side of an assignment.

When used on the right side of an assignment, the get method is called and its return
value is assigned to the statement of the left side of the assignment.

var value = objectl.Property;

When used on the left side of an assignment, the set method will be called and the value
variable will be the result of the right side of the assignment.

objectl.Property = value;

When both the get and set methods have the default functionality as shown above, the
definition of a property can be abbreviated.

public string Property { get; set; }

When using data bindings with C# it is often required to implement the INotifyProper-
tyChanged interface. This interface makes it possible to subscribe to the PropertyChanged
event to get notified when a property has changed. The notification can be done with the
helper method RaisePropertyChanged. In the following example the RaiseProperty-
Changed method is called on the end of the property’s set method.

public class BindableClass : INotifyPropertyChanged

{
private string _property;
public string Property
{
get { return _property; }
set {
_property = value;
RaisePropertyChanged("Property");
}
}
public event PropertyChangedEventHandler PropertyChanged;
private void RaisePropertyChanged(string name) {
if(PropertyChanged != null)
PropertyChanged(this,
new PropertyChangedEventArgs(name));
}
}

Page 41

This is a convenient way to implement a bindable class but it has one major disadvantage.
Since the name of the property is specified as a string value it is not checked by the com-
piler if a property with this name even exists. This results in a possible source of hard to
find typing errors. Another problem is that the IDE’s refactoring functionality, which can
automatically rename the property’s definition and all of its usages, will not rename the
string value and therefore, introduce errors to the code.

To resolve those issues the following methods can be used instead of the above RaiseP-
ropertyChanged implementation.

public void RaisePropertyChanged<T>(Expression<Func<T>> selector) {
if (PropertyChanged != null) {
PropertyChanged(this, new PropertyChangedEventArgs(
PropertyHelper.GetPropertyName(selector)));

}

public static string GetPropertyName<T>(Expression<Func<T>> property){
var lambda = (LambdaExpression)property;
MemberExpression memberExpression;

var body = lambda.Body as UnaryExpression;
if (body != null) {
var unaryExpression = body;
memberExpression = (MemberExpression)unaryExpression.Operand;

}
else {

memberExpression = (MemberExpression)lambda.Body;
}

return memberExpression.Member.Name;

Instead of specifying the string value this implementation of RaisePropertyChanged is
called with a lambda expression that has no input parameters and a method that returns
the property as its function body. The GetPropertyName method extracts the name of the
property from the lambda expression and returns it as a string value.

RaisePropertyChanged(() => Property);

Now the compiler and the refactoring tools can associate the property with its usage as
the parameter for the RaisePropertyChanged method.

4.2.5 LINQ (Language Integrated Query)

LINQ is an included features in the .NET language itself and provides an SQL like syntax
for writing queries. These queries have the great advantage that they can be checked by
the compiler in contrast to queries that are specified as string values. LINQ providers are
used to interpret and translate the LINQ expressions to interact with the underlying data
source.

The .NET framework by itself already includes some LINQ providers. Furthermore, new
providers can be created by implementing a set of LINQ interfaces. Four included link
providers are listed in the following table.

Page 42

LINQ to Objects LINQ to Objects is the included LINQ provider for in-memory
collections. It can be used for collections that implement the
IEnumerable<T> interface.

LINQ to XML LINQ to XML provides the LINQ functionality for a collection of
objects with the type XElement. With the XDocument class
thatisincluded in the .NET framework a tree shaped collection
of XElements can be created easily.

LINQ to SQL LINQ to SQL is the LINQ provider for the Microsoft SQL server
connection. It translates LINQ expressions internally into SQL
statements and returns the results of the query as .NET ob-

jects.

LINQ to DataSets LINQ to DataSets can work with ADO.NET databases and
works with the Microsoft SQL servers, as well as with other
databases.

LINQto * In addition to the four built-in LINQ providers, many third-

party providers can be used to connect LINQ with different
data sources.

Table 6: List of LINQ providers

The following code shows a simple examples of how LINQ to Objects can be used on a
collection of animals. The names variable will be a collection of the names of all female
animals that are less than ten years old.

class Animal

{
public string Name { get; set; }
public int Age { get; set; }
public bool Male { get; set; }

}

var animals = new List<Animal>{...};

var names = from a in animals
where a.Age < 10 && a.Male == false
select a.Name;

In addition to this simple use case, LINQ offers lots of SQL like functionality, as for exam-
ple ordering, filtering, merging and grouping objects.

4.2.6 Async and await

The concept of async and await was introduced to the .NET platform not long ago and
got very well accepted by the .NET community by now. The concept is an alternative to
conventional asynchronous calls, which use a call-back function to return the result of
the application. These conventional asynchronous calls often create lots of code that is
difficult to read. The async and await language feature of the .NET framework can simplify
asynchronous calls and reduce the lines of code.

The following code shows how to make use of the async and await concept to simplify
asynchronous calls within .NET applications. Instead of two methods and one additional
delegate the async and await implementation uses only one method that can be used like
a synchronous method and is therefore easy to use and debug.

Asynchronous method with callback

Page 43

public delegate void AsyncCallback(Result r);

void Main(){
Task.Run(()=>AsyncCall(Callback));

}

void Callback(Result r) {
Use(r);

}

public void AsyncCall(AsyncCallback callback) {
var r = ResourceIntensiveTask();
callback(r);

}

Async and Await

async void Main() {
var r = await AsyncCall();
Use(r);

}

public async Task<Result> AsyncCall() {
return await ResourceIntensiveTask();

}

4.2.7 Reflection

The .NET language provides advanced support for reflection and has lots of classes that
help to make the usage of reflection easy and powerful. Reflection is an important con-
cept that is used within many parts of modern software. One good example for the ex-
tensive use of reflection is the inversion of control (I0C) mechanism that many MVVM
frameworks use to add better code structure and produce cleaner code. This I0C compo-
nents rely heavy on reflection and could not be implemented without it.

4.3 Libraries for .NET

The .NET framework is one of the most powerful development frameworks with lots of
built-in libraries. In addition to the included functionality there are many high quality li-
braries available from third-party sources. Most of those libraries can be added to Visual
Studio and Xamarin Studio projects using the NuGet package manager. NuGet is a handy
tool to manage and update third-party libraries, as well as some parts of the .NET frame-
work itself.

The range of available third-party libraries include a large number of commercial and
open source libraries. Since the different .NET platforms are not always compatible with
each other, some libraries are not available for all platforms. Since the introduction of
portable class libraries this has become less of a problem. Portable class libraries simplify
the process of producing platform independent libraries and are widely used by the .NET
community.

Portable class libraries can be used for different platforms by using only a common subset
of APIs that are available on every supported platform. The developer of the portable
class library can specify which platforms to support. Portable class libraries are not only
available for Microsoft platforms but also for third party platforms like the ones sup-
ported by Xamarin.

Page 44

4.4 MVVM frameworks

Itis easy to develop a simple MVVM architecture without the use of any additional frame-
work, but in most cases it can be beneficial to use one of the many availabe open source
MVVM frameworks. The following list contains some of the most established open source
MVVM frameworks for .NET applications.

e PRISM [46]

e Caliburn Micro [47]

e Simple MVVM Toolkit [48]
e (Catel [49]

e MVVM Light [50]

e MVVM Cross [51]

The following section will give a detailed description of the three highlighted frameworks.
The sample code used in this section is only one of many use cases for each of the MVVM
frameworks. The examples are chosen to give a short but meaningful overview to com-
pare the frameworks with each other.

All of the cross platform MVVM frameworks that will be described in the following sec-
tions will use a similar structure when used for cross platform development. The here
described project structure for Visual Studio (or Xamarin Studio) applies to all three sam-
ple applications using either MVVM Light, the Simple MVVM Toolkit or MVVM Cross. The
solution includes a “core” or “portable” project that contains the Model the ViewModels
and all other code that can be shared across platforms. For each platform there will be a
dedicated project that includes the Views, as well as all other platform specific code.

Solution
e Project.Core (Model, ViewModels, ...)
e Project.Platform1 (Views, ...)
e Project.Platform2 (Views, ...)

441 MVVM Light

MVVM Light is a small and simple MVVM framework that includes basic, but useful func-
tionality for the creation of MVVM applications. This section will include a very basic sam-
ple application developed with the help of MVVM Light.

Supported Platforms

MVVM Light depends on a few Windows specific APIs and is therefore only available for
Windows platforms. Xamarin platforms do not provide a binding framework by default.
Even if it would be possible to replace the windows specific API calls from the MVVM
Light source code, MVVM Light would not be able to serve non-Microsoft platforms very
well without the addition of an external binding framework for Android, iOS and Mac.

The MVVM Light CodePlex page [50] promises that MVVM light supports the following
platforms:

e Windows Presentation Foundation (WPF)
e Silverlight
e Windows Store with Windows Runtime (WinRT)

Page 45

e Windows Phone with WinRT

However, when looking at the source code we will find iOS and Android implementations
as well.

Model

Our Model contains a collection of animals. All data classes should implement the TNoti -
fyPropertyChanged interface to fully support data bindings. The base class
ObservableObject provided by the MVVM Light framework offers a solid implementation
of the INotifyPropertyChanged interface by providing the RaisePropertyChanged method.

public class Animal : ObservableObject {
private string _name;
public string Name {
get { return _name; }
set {
_name = value;
RaisePropertyChanged(()=>Name);

Messaging

MVVM Light includes a full featured messenger that enables loosely coupled communi-
cation within the application. The messenger has two important methods, one to register
for a specified token and another to broadcast updates.

Register:

void Register<TMessage>(object recipient, Action<TMessage> action);

Publish:

void Send<TMessage>(TMessage message, object token);

Commands

MVVM Light offers the RelayCommand class, which is an implementation of the 1Command
interface that is used to bind commands to Ul-controls. In addition to the Action that
specifies the command’s execution behavior a canExecute method can be used to show
if the command can be executed or not.

public RelayCommand(Action execute);
public RelayCommand(Action execute, Func<bool> canExecute);

ViewModel

The code below shows the full Implementation of our ViewModel. The ViewModel will
subscribe to the MessengerTokens.Animals token and will receive the list of animals from
our little setup code that is executed at the startup of the application.

public class MainViewModel : ViewModelBase {
// Bindable Properties
private ObservableCollection<Animal> _animals;
public ObservableCollection<Animal> Animals {
get { return _animals; }
set { _animals = value; RaisePropertyChanged(()=>Animals); }}

Page 46

// Commands and Actions
public RelayCommand Command { get; set; }

private void Action() { /* ... */ }

// Message callback methods
private void AnimalsChanged(ObservableCollection<Animal> animals) {
Animals = animals; }

// Constructor
public MainViewModel() {
//Message registrations
Messenger.Default.Register<ObservableCollection<Animal>>
(this, MessengerTokens.Animals, AnimalsChanged);

// Command setup
Command = new RelayCommand(Action);

// Model setup
var animalService = new AnimalService();
var animals = animalService.GenerateRandomAnimals();
Messenger.Default.Send(
new GenericMessage<ObservableCollection<Animal>>(animals));}

View

Views with MVVM Light can be of any Ul control’s type like Window, Page or UserControl.
The only connection to the ViewModel is the specification of the controls DataContext.
To specify the DataContext for the used control, the following XAML binding can be used.
The staticResource with the name Locator is an instance of the ViewModellLocator that
holds an instance of every ViewModel and is defined in a global resource file.

DataContext="{Binding MainViewModel, Source={StaticResource Locator}}"

We have only one View that displays the list of animals from our Model. It uses a ListBox
with a simple DataTemplate to visualize the name of each animal. The Button will bind to
the ViewModel’s command. The following implementation shows the View for the Win-
dows Phone platform. It can look very similar on other Microsoft platforms that use XAML
as a markup language. For Xamarin platforms this code looks quite different and will be
discussed in the MVVMCross section as well as in the practical part later in this document.

<StackPanel DataContext="{Binding MainViewModel,
Source={StaticResource Locator}}">
<ListBox ItemsSource="{Binding Animals}">
<ListBox.ItemTemplate>
<DataTemplate>
<TextBlock Text="{Binding Name}"></TextBlock>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
<Button Command="{Binding Command}" Content="Tap me"></Button>
</StackPanel>

Impression and Conclusions

When comparing the three MVVM frameworks MVVM Light is the smallest and easiest
to use. It provides solid tools for messaging, commands and other MVVM concepts. When
developing only for Microsoft platforms this framework will be a good choice. Especially

Page 47

smaller teams and developers with little experience can benefit from this MVVM frame-
work. This framework is probably not the best choice, when targeting non-Microsoft plat-
forms.

4.4.2 Simple MVVM Toolkit

Simple MVVM Toolkit is a simple, but useful framework to help with the development of
MVVM applications. It provides a little more functionality than MVVM Light but might
require more time to get used to.

Supported Platforms
The Simple MVVM Toolkit is available for most .NET platforms as the following list shows:

o WPF

e Silverlight

e Windows Store (RT)
e Windows Phone

e Xamarin.Android

e Xamarin.iOS

The framework does not include binding functionality for Android and iOS development.
It is recommended to use the MVVMCross.Core library to support bindings for non-Mi-
crosoft platforms.

Model

The Simple MVVM Toolkit provides advanced functionality for data model objects. It in-
cludes the base class ModelBase that has some useful functionality like an advanced im-
plementation of the INofifyPropertyChanged interface.

public class Animal : ModelBase<Animal> {
private string _name;
public string Name {
get { return _name; }
set {
_name = value;
NotifyPropertyChanged(m => m.Name);

}

Messaging

Similar to MVVM Light, the simple MVVM Toolkit includes a full featured messenger that
enables loosely coupled communication within the application. The two methods de-
scribed below are implemented by the base class of all ViewModels. In addition to the
methods below, there are other implementations with different parameters available.

Registration:

void RegisterToReceiveMessages(string token,
EventHandler<NotificationEventArgs> callback);

Publish:

void SendMessage<TOutgoing>(string token,
NotificationEventArgs<TOutgoing> e);

Page 48

Commands
The DelegateCommand included in the Simple MVVM Toolkit offers the same functionality
as MVVM Light’s RelayCommand.

public DelegateCommand(Action<T> executeAction);

public DelegateCommand(Action<T> executeAction,
Func<T, bool> canExecute);

ViewModel

The simple MVVM Toolkit offers two different base classes for ViewModels to choose
from.

MainViewModel

The first one (ViewModelBase<TViewModel>) is similar to the one from MVVM Light. Bel-
low’s example of a simple MVVM Toolkit ViewModel offers the same functionality as the
ViewModel from the sample implementation with MVVM Light.

public class MainViewModel : ViewModelBase<MainViewModel>

{
// Bindable Properties
private ObservableCollection<Animal> _animals;
public ObservableCollection<Animal> Animals
{
get { return _animals; }
set { _animals = value; NotifyPropertyChanged(m => m.Animals); }
¥
// Commands and Actions
public DelegateCommand<Animal> AnimalSelectedCommand { get; set; }
private void AnimalSelectedAction(Animal animal)
{
SendMessage<Animal>(MessengerTokens.SelectedAnimal.ToString(),
new NotificationEventArgs<Animal>("Animal changed"”, animal));
}
// Message callback methods
private void AnimalsChanged(object sender,
NotificationEventArgs<ObservableCollection<Animal>> e) {
Animals = e.Data;
}
// Constructor
public MainViewModel(IAnimalService animalService) {
//Message registrations
RegisterToReceiveMessages<ObservableCollection<Animal>>
(MessengerTokens.Animals.ToString(), AnimalsChanged);
// Command setup
AnimalSelectedCommand =
new DelegateCommand<Animal>(AnimalSelectedAction);
// Model setup
var animals = animalService.GenerateRandomAnimals();
SendMessage(MessengerTokens.Animals.ToString(),
new NotificationEventArgs<ObservableCollection<Animal>>
("Animals changed", animals));
}
}

Page 49

AnimalDetailViewModel

The second one (ViewModelDetailBase<TViewModel, TModel>) is specialized on data visual-
ization and manipulation for a specific data model object. The second generic type
(TModel) specifies the type of the model object that provides the data for this ViewModel.
This base class implements the IEditableObject Interface that supports a concept for
object manipulation. The IEditableObject interface provides an easy and unified way to
add editing with rollback functionality. A simple example for this could be a detail page
that provides data manipulation and has two buttons, “OK” and “Cancel”. In case the user
presses the “OK” button the ViewModel saves all changes. When the “Cancel” button
gets pressed, all changes get rolled back.

public class AnimalDetailViewModel :
ViewModelDetailBase<AnimalDetailViewModel, Animal>

{
// Properties
public string Name {
get { return Model != null ? Model.Name : null; }
set { Model.Name = value; NotifyPropertyChanged(m=>m.Name); }
}
// Commands and Actions
public DelegateCommand SaveCommand { get; set; }
public void SaveAction() {
EndEdit();
}
public DelegateCommand CancelCommand { get; set; }
public void CancelAction() {
CancelEdit();
}
// Message callback methods
private void SelectedAnimalChanged(object sender,
NotificationEventArgs<Animal> e) {
Model = e.Data;
BeginEdit();
NotifyPropertyChanged(m => m.Name);
}
// Constructor
public AnimalDetailViewModel() {
// Command setup
SaveCommand = new DelegateCommand(SaveAction);
CancelCommand = new DelegateCommand(CancelAction);
//Message registrations
RegisterToReceiveMessages<Animal>
(MessengerTokens.SelectedAnimal.ToString(),
SelectedAnimalChanged);
}
}

View

With the Simple MVVM Toolkit it is possible to use all Ul controls as a View. The following
XAML markup shows the Implementation of the two Views corresponding to the above
described ViewModels.

MainView

<StackPanel DataContext="{Binding MainViewModel,
Source={StaticResource Locator}}">
<ListBox ItemsSource="{Binding Animals}">

Page 50

<ListBox.ItemTemplate>
<DataTemplate>
<Button Content="{Binding Name}"
Command="{Binding MainViewModel.AnimalSelectedCommand,
Source={StaticResource Locator}}"
CommandParameter="{Binding}"/>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
</StackPanel>

AnimalDetailsView

<StackPanel DataContext="{Binding AnimalDetailViewModel,
Source={StaticResource Locator}}">
<TextBox Text="{Binding Name, Mode=TwoWay}"/>
<Button Command="{Binding SaveCommand}" Content="Save" />
<Button Command="{Binding CancelCommand}" Content="Cancel"” />
</StackPanel>

Impressions and Conclusions

The Simple MVVM Toolkit has some nice features and is easy to use. It supports a wider
range of platforms than MVVM Light, offers good documentation and has a large com-
munity. It does not provide an own binding framework for Android or iOS. That is why it
is dependent on MVVM Cross or other frameworks that provide binding functionality for
non XAML platforms.

4.43 MVVM Cross

MVVM Cross is unlike MVVM Light and the Simple MVVM Toolkit a rather large frame-
work that can offer much more than Model, View, ViewModel, Messenger and Command
implementations. Due to its modularity the individual core package can be extended with
numerous packages that provide cross platform solutions for common problems MVVM
developers are facing. It was built with great care to support cross platform MVVM de-
velopment as best as possible and does that with lots of success.

Supported Platforms
MVVMCross is available for most modern .NET platforms including the following.

o WPF

e Windows Store
e Windows Phone
e Xamarin.Android
e Xamarin.iOS

e Xamarin.Mac

This framework includes advanced binding functionality for all non-Microsoft platforms
and therefore can provide a full featured MVVM experience for all supported platforms
without the use of any external library.

Packaging system

MVVM Cross consists of a required core that can be extended with additional plugins.
Those plugins can be easily created and reused across multiple MVVM cross applications.
MVVM Cross offers numerous plugins for the most common use cases via individual Nu-
Get packages. The following list contains some of the available plugins [51].

e Accelerometer

Page 51

e Bookmarks
e Color
e DownloadCache

e Email
e File
e Json

e JsonLocalisation
e Location

e Messenger

e MethodBinding
e Network

e PhoneCall

e PictureChooser
e Reflection

e ResourcelLoader

e Share

e SoundEffects
e SQlite

e ThreadUtils
o Visibility

e WebBrowser

Model

The data objects can use the MvxNotifyPropertyChanged base class to inherit an
implementation of the INotifyPropertyChanged interface. This base class offers similar
methods like the corresponding classes of the other two already mentioned MVVM
frameworks.

public class Animal : MvxNotifyPropertyChanged

{
private string _name;
public string Name {
get { return _name; }
set
{
_name = value;
RaisePropertyChanged(()=>Name);
}
}
}
Messaging

Messaging with MVVM Cross can be done with the messenger plugin that is available
from the MVVM Cross repository or via NuGet. The messages sent with the MVVM Cross
Messenger will be identified by the type of the message and not by tokens like it was the
case for the other two applications developed with MVVM Light and the Simple MVVM
Toolkit.

The following method is used to publish new messages that are required to have the base
type MvxMessage.

void Publish(MvxMessage message);

Page 52

To subscribe to a message type, there are three methods available. Depending on what
thread should execute the notification a different method can be chosen. The subscribe
methods return an object of type MvxSubscriptionToken, which can be used to manage
the subscription. In case the token gets collected by the garbage collector or the Dis-
pose() function gets manually called, then the recipient is no longer registered and will
not receive any further messages for the registered type.

The subscribe method always executes the deliveryAction on the publishing thread.

MvxSubscriptionToken Subscribe<TMessage>
(Action<TMessage> deliveryAction, MvxReference reference =
MvxReference.Weak, string tag = null) where TMessage : MvxMessage;

The SubscribeOnMainThread method always executes the deliveryAction on the plat-
form’s main-thread/Ul-thread. This is useful if the deliveryAction directly manipulates
Ul controls or changes the values of bindable properties.

MvxSubscriptionToken SubscribeOnMainThread<TMessage>
(Action<TMessage> deliveryAction, MvxReference reference =
MvxReference.Weak, string tag = null) where TMessage : MvxMessage;

The last option is used for resource intensive code inside the deliveryAction what should
always run on a thread pool thread.

MvxSubscriptionToken SubscribeOnThreadPoolThread<TMessage>
(Action<TMessage> deliveryAction, MvxReference reference =
MvxReference.Weak, string tag = null) where TMessage : MvxMessage;

Commands

Commands are a part of the MVVM Cross core and do not need an additional package.
The MvxCommand<T> included in MVVM Cross offers similar functionality as the Relay-
Command class used within MVVM Light and the DelegateCommand from the Simple MVVM
Toolkit.

public MvxCommand(Action<T> execute);
public MvxCommand(Action<T> execute, Func<T, bool> canExecute);

Application setup
Unlike MVVM Light and the Simple MVVM Toolkit, the MVVM Cross framework provides
a unified way for initializing the application.

In the common portable class library project the App class can be used to execute common
initialization code. The following code sample is the default implementation of this class.
It registers all classes with the ending "Service", as a lazy loading singleton and calls the
RegisterAppStart method that executes some internal setup code and navigates to the
MainViewModel.

public class App : Cirrious.MvvmCross.ViewModels.MvxApplication {
public override void Initialize() {
CreatableTypes().EndingWith("Service").AsInterfaces()
.RegisterAsLazySingleton();
RegisterAppStart<ViewModels.MainViewModel>();

}

The setup class in each platform specific project is used to make all platform specific ini-
tializations. The CreateApp method is usually executed within the native initialization

Page 53

events of each platform. The default implementation of the Setup class for Windows
Phone looks like the following.

public class Setup : MvxPhoneSetup {
public Setup(PhoneApplicationFrame rootFrame) : base(rootFrame){

}

protected override IMvxApplication CreateApp(){
return new Core.App();

}

protected override IMvxTrace CreateDebugTrace(){
return new DebugTrace();
}
}

ViewModel

The base class of all ViewModels (MvxviewModel) used in MVVM Cross has similar func-
tionality as the one used by MVVM Light or the Simple MVVM Toolkit. Additionally, it has
an automated dependency injection mechanism that can find the right Service implemen-
tation when the interface of a service is used as constructor parameter of the ViewModel.

public class MainViewModel : MvxViewModel {
// Messenger subscription tokens
private MvxSubscriptionToken _animalsChangedToken;

// Used services
private readonly IMvxMessenger _messenger;

// Bindable Properties
private ObservableCollection<Animal> _animals;
public ObservableCollection<Animal> Animals {
get { return _animals; }
set { _animals = value; RaisePropertyChanged(() => Animals); }

}

// Commands and Actions
public MvxCommand<Animal> AnimalSelectedCommand { get; set; }

private void AnimalSelectedAction(Animal animal) {
_messenger.Publish(
new SelectedAnimalChangedMessage(this, animal));

}

// Message callback methods

private void AnimalsChanged(AnimalsChangedMessage m) {
Animals = m.Animals;

}

// Constructor
public MainViewModel(IMvxMessenger messenger,
IAnimalService animalService)
{
//Message registrations
_messenger = messenger;
_animalsChangedToken =
_messenger.Subscribe<AnimalsChangedMessage>(AnimalsChanged);

// Command setup
AnimalSelectedCommand =
new MvxCommand<Animal>(AnimalSelectedAction);

// Model setup
var animals = animalService.GenerateRandomAnimals();

Page 54

_messenger.Publish(new AnimalsChangedMessage(this, animals));

View

MVVM Cross requires Ul controls to implement the interface 1MvxVview, as well as some
other interfaces to be used as a View. MVVM Cross also includes a special page control
class, which can be used instead of each platform’s native page control. This class extends
from the native page control and implements the IMvxVview interface as well as a different
interface on each platform. For example, the IMvxStoreVview interface is used for Win-
dows Store applications.

The ViewModelLocator of MVVM Cross does not look like the one of MVVM Light and the
Simple MVVM Toolkit. With MVVM Cross, the Ul control’s DataContext can be used to
identify the ViewModel, since the DataContext of an IMvxView does always point to its
ViewModel by default. The design time property d:DataContext can be used to benefit of
compile time type checking, since the type of the ViewModel will otherwise not be known
until the application is running.

<views:MvxPhonePage
d:DataContext="{d:DesignInstance viewModels:MainViewModel }">
<ListBox ItemsSource="{Binding Animals}">
<ListBox.ItemTemplate>
<DataTemplate>
<Button Content="{Binding Name}"
Command="{Binding DataContext.AnimalSelectedCommand,
Source={RelativeSource TemplatedParent }}"
CommandParameter="{Binding}"/>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
</views:MvxPhonePage>

Binding frameworks for Android, iOS and Mac

One big disadvantage of iOS and Android development when using Xamarin compared to
Microsoft’s XAML platforms is that they do not support data bindings by default. There-
fore, MVVM Cross provides a solid binding framework for those platforms, which is simi-
lar to web based binding frameworks like Knockoutls or Angularls. This binding frame-
work can not only be used within iOS, Android and Mac applications, but also as an alter-
native to the native binding concept for XAML based applications.

The MVVM Cross bindings provide functionality similar to the XAML bindings and offer a
more compact syntax. Later in the practice section we will show some examples of how
the MVVM Cross binding framework can be used to enable data bindings inside an An-
droid application developed with the Xamarin runtime.

Impression and Conclusions

MVVM Cross is without a doubt one of the most powerful MVVM frameworks, especially
when used for cross platform development. It offers a lot of functionality and a solid ap-
plication design for cross platform development. The included binding framework works
well with XAML and non XAML platforms and enables MVVM development for all sup-
ported platforms. Due to the modular design of MVVM Cross and its plugin system it is
suitable for small, as well as extensive applications. It allows to integrate many different
plugins when needed, but also keeps the app binary as small as possible. Furthermore,

Page 55

through their plugin system the developers of MVVM Cross encourage third party devel-
opers to create additional plugins.

This all sounds very amazing, but developing with MVVM Cross comes at a small cost. All
the included concepts and the complex application design makes MVVM cross more dif-
ficult to understand than MVVM Light or the Simple MVVM Toolkit. Choosing MVVM
Cross is probably not the easiest way to create someone’s first MVVM application.

4.5 MonoGame, a cross platform graphics framework

Sometimes the platform’s Ul features are not enough to create graphically advanced ap-
plications and games. Graphically intense code is often written with native libraries, once
for every target platform. Nowadays there are lots of frameworks that provide tools to
develop performance oriented graphical applications that are able to run with little
changes on multiple platforms.

MonoGame is one of these cross platform graphic frameworks. It can easily be used to-
gether with an existing MVVM application to enhance the user experience by adding an-
imations or advanced user controls. MonoGame lets developers create fast and powerful
applications for i0S, Android, Mac OS X, Linux, Windows, Windows Store and Windows
Phone. Currently it is under constant development and support for even more platforms
is planned for the future.

4.6 Xamarin for Android, iOS and Mac

The company Xamarin [52] has adopted the .NET platform to provide .NET’s great fea-
tures for development of non-Microsoft platform applications. Xamarin uses the open
source parts of .NET and implements most proprietary components by themselves. Fur-
thermore, they add .NET wrappers for platform specific functionality. This concept works
very well, with decent performance similar to native developed applications. Xamarin
does not replace the native Ul controls with new implementations. The native controls
get wrapped into .NET controls and will behave like the native controls when running on
the target device. This makes it easy to create .NET applications that run on Android, iOS
or Mac with a great native user experience. In most cases even experienced developers
cannot tell the difference between a native application and an application developed
with the help of a Xamarin platform without looking at the application’s source code.

For developing Xamarin Applications the developer can use Xamarin’s own IDE, Xamarin
Studio or a plugin for Visual Studio.

Until 2014 the development for Xamarin platforms was quite similar to writing native
platform code with the benefit of using .NET’s features as an addition to the existing pro-
gramming paradigms.

In 2014 Xamarin adopted the “write once, run everywhere” concept. This means that the
entire application is written once and does not include any platform specific code. In ad-
dition to the existing development environments Xamarin has introduced an extension
library called Xamarin.Forms that includes most common controls for the targeted plat-
forms in the form of cross platform controls. With that an application can be written by
using these controls instead of the previously used wrapped native components. The
main difference to the new controls is that they can be used across platforms. The con-
trols will be translated to native controls for all targeted platforms to get the familiar

Page 56

fluent user experience and performance as known from Xamarin platforms. The Xama-
rin.Forms controls do also support data bindings, therefore no third party binding frame-
work is needed. How to use these new controls is not within the scope of this work and
will not be discussed by this document. A good description of the Xamarin.Forms library
can be found on the Xamarin homepage [53].

4.7 Windows’ unified application architecture

In spring 2014 Microsoft has enabled the possibility to develop unified apps. Up to this
point it was only possible to share code across platforms with the use of a portable class
library. Portable class libraries are limited to pure code files and do not support XAML
markup files or other application resources.

The Unified app architecture is a very new concept introduced by Microsoft. At the time
this document was composed, the unified app architecture was available for Windows
Phone 8.1 and Windows 8.1 with Update 1. Microsoft is still working to further improve
and expand this technology in terms of features and supported platforms.

With the use of unified apps, source code can be shared across multiple platforms more
easily than before. With the further unification of Windows Phone and Windows it is now
possible to share more than 90% of the applications code for many real world applica-
tions. For some types of applications it is even possible to have no unique code at all. The
MVVM architecture can help to get the most out of this new and useful concept.

Page 57

5 Practice MVVM

This section describes the implementation of a simple data intensive application called
ShoppinglList. The application is the implementation of a very simple shopping list appli-
cation where users can add and manage products in lists. The functionality of the appli-
cation is only partly implemented to show how MVVM can be used on different plat-
forms.

Each implementation of Shoppinglist provides similar functionality and has a similar
structure to better compare individual implementations with each other. The sample ap-
plication consists of the following three Views.

ListsView This View displays the shopping-lists and lets the user select one of
the available lists. When a list is selected the application navigates and
displays the ProductsView.

ProductsView The ProductsView shows a list of all products from the selected list. It
offers functionality to open the AddProductView to add a new prod-
uct to the list. In addition to that, a cleanup function can be executed,
which removes all bought products from the selected list.

AddProductView The AddProductView allows the user to create a new product and add
it to the currently selected list. It should only be possible to add a
product with a name that has a minimum length of two characters.

5.1 MVVM with web technologies

As described in the previous section for MVVM development with web based applica-
tions, there is the need of several tools, libraries and frameworks to make the develop-
ment process as fast and comfortable as possible.

This section will describe the used frameworks in different ways. At first there will be an
explanation about why this frameworks and tools were chosen, followed by the example
implementation of the ShoppingList application which includes solutions for many com-
mon problems. To demonstrate how easy it is to introduce an additional visualization,
there will be two different implementations of this application one for mobile devices
with touch screens and one for conventional desktop devices that are controlled with
mouse and keyboard.

To ensure that our new application behaves as expected, there will be a short explanation
on how unit-tests could be added to our application. Since MVVM is a software design
pattern that is especially suitable for unit testing, it will be easy to test most of the appli-
cation’s logic with unit-tests.

The full source code of the examples used in this section is available on GitHub under the
MIT license.

https://github.com/Lupinlst/Shoppinglist.Web

Page 58

5.1.1 Used frameworks and tools

Web based technologies are a great way to create applications for multiple platforms but
as discussed above JavaScript, HTML and CSS alone are often not the best tools to create
big and data intensive applications. Therefore, most web based applications use different
kinds of libraries and extensions to provide better developing experiences. The following
list includes all external libraries and tools that were used to develop the ShoppinglList
application. In addition to a description there will be a justification of why each tool was
chosen for the development process of the application.

Programming Tools (Visual Studio with extensions)

The web application was implemented with the help of Visual Studio, since it provides a
lot of features that help with developing web applications. Especially when using Type-
Script as a JavaScript replacement, the usage of Visual Studio is encouraged. There are
also a large number of additional extensions for Visual Studio that can increase develop-
ing comfort and add new features to the IDE. The following list contains all relevant ex-
tensions for VisualStudio that were used to develop this sample application.

Web Essentials Web Essentials [54] extends Visual Studio with lots of useful additions
to help developers create web applications easier, faster and supports
them to write cleaner code.

In addition to basicimprovements it provides tools and enhancements
for CSS, HTML, JavaScript, TypeScript and CoffeeScript.

NuGet NuGet [55] is a package management system for libraries. It delivers
a solid solution for managing libraries inside Visual Studio. With Nu-
Get, developers can add new libraries quickly to their projects. The
NuGet package manager also makes updating to the newest version
of libraries more convenient.

For companies that have large numbers of internal libraries NuGet can
also be used to manage the internal code and distribute the code
within the company.

ReSharper ReSharper [56] is one of the best known and most used extensions for
Visual Studio. It adds countless tools and improvements to Visual Stu-
dio and provides great enhancements to the developing experience of
Visual Studio for .NET, C++ and web applications.

Alternative programming language (TypeScript)

When working with JavaScript there are nowadays plenty different approaches to create
code. As described previously the three programming languages CoffeeScript, Dart and
TypeScript are good candidates to replace JavaScript and enhance the developing expe-
rience.

Between these three languages to create JavaScript code, Typescript was chosen because
of multiple reasons.

e TypeScript is near to JavaScript and therefore, easier to debug

e Good integration in the used developing environment Visual Studio
e Clean and well-structured object oriented syntax

e Good compatibility with existing JavaScript libraries

Page 59

e Future-proof compatibility to ES6

HTML tools and extensions (jQuery)

The usage of the two Ul frameworks that are described below are dependent on jQuery
and require the jQuery library. The DOM manipulation mechanisms of jQuery will not be
used directly within our sample application since the binding framework makes this ob-
solete, in many cases.

Ul frameworks (jQueryUl and jQueryMobile)

For creating modern web applications there are plenty of good Ul frameworks to start
with. For this implementation the two frameworks jQueryUl and jQueryMobile were cho-
sen because of their openness, easy usage, good documentation and large community.

Only one of each framework will be used simultaneously. This will show how MVVM can
be used to create different interfaces for the same web application while sharing a large
amount of code.

Binding framework (KnockoutJs):

KnockoutlJs will be used to provide a full featured binding framework for the ShoppinglList
sample application. Bindings are an essential part of MVVM and will link our Views, writ-
ten in HTML, to the ViewModels, written in TypeScript. KnockoutJs was chosen because
of its solid implementation and the flexibility to use an external software architecture.

MVVM Framework:

For web applications the MVVM architecture is not as widely used as it is for .NET devel-
opment. There are only a view MVVM frameworks available and none of them seems
suitable for this sample application. Therefore, all MVVM classes as well as an |OC system
and a messenger implementation were especially created for this application.

5.1.2 Implementation (Core)

The core application includes all shared code that can be used for the mobile and the
desktop implementation. It contains the data Model, the ViewModels, all service inter-
faces, as well as the implementation of all shared services like the messaging service and
a class for initializing the application. For this example the core application does not con-
tain any HTML or CSS code, yet for larger applications it can be useful to share some HTML
and CSS code as well.

Model

The model class itself includes all data relevant for the application. In this case it is a col-
lection of all shopping-lists (DataList). For real world applications a service could load
and store the model’s state to the local storage or onto a remote server. The use of an
interface makes it easy to change the model implementation for multiple reasons later
on.

export interface IDataModel {
lists: Array<Datalist>;

}

class DataModel implements IDataModel {
public lists: Array<DatalList> = Array<Datalist>();

constructor() { /* adding lists for first time use */ }

Page 60

The Datalist class has two properties. The first is its name, which is a knockout observa-
ble object of the type string. The second one is an observable collection that contains
all products associated with the list. It is important to use knockout observables, since
data objects are later used for data bindings, which would not work otherwise.

class DatalList {
public name: KnockoutObservable<string> = ko.observable("");
public products: KnockoutObservableArray<DataProduct> =
ko.observableArray<DataProduct>();

constructor(name: string) {
this.name(name);

}
}

The DataProduct class, like the DataList class, uses observable types for its three proper-
ties.

module ShoppinglList.Model {
export class DataProduct {
public name: KnockoutObservable<string> = ko.observable("");
public amount: KnockoutObservable<string> = ko.observable("");
public bought: KnockoutObservable<boolean> = ko.observable(false);

constructor(name: string, amount: string, bought: boolean) {
this.name(name);
this.amount(amount);
this.bought(bought);

}

Services
Services are used to create well structured, testable and reusable classes to help with
common tasks.

Messaging

The very basic messaging service provides only the two methods register and publish. The
implementation of the messenger uses a map to store the tokens as its keys and a list of
functions with the signature of MessageRecievedCallback as its values. When new content
gets published all subscribers get notified through the execution of their callback func-
tion.

interface MessageRecievedCallback {
(content: any): void;

}

interface IMessagingService {
register(token: MessagingToken, messageRecievedCallback:
MessageRecievedCallback): void;
publish(token: MessagingToken, content: any): void ;

}

class MessagingService implements IMessagingService { /* ... */ }

Navigation

The navigation service is used for page navigation, it can navigate forward and backward
on the navigation stack. Its implementation is highly dependent on the used Ul frame-
work and can therefore not be shared between the mobile and desktop version of our
application.

Page 61

interface INavigationService {
navigateTo(containerId: string): void;
navigateBack(containerId: string): void;

}

Notification

The NotificationService allows us to show message boxes with the design of each Ul
framework and will be implemented by the platform specific parts of the application.

interface MessageBoxFinishedCallback {
(result: MessageBoxResult): void;

}

enum MessageBoxResult { Ok, Cancel }

interface INotificationService {
showMessageBox(title: string, content: string,
callback: MessageBoxFinishedCallback): void;

}

ViewModels

The ViewModels are located inside the core part of the application and will be shared
across all implementations. As described in the theory section of this document, the
ViewModel provides some of the Model’s data for the View and manages the visualiza-
tion states of the View. Its properties are all observable, so they can be used for data
binding.

ViewModel locator

The ViewModellLocator holds static variables of all the ViewModels. In this basic scenario
all ViewModels get created at startup and will live until the application gets closed. For
larger applications it is often required to unload some of the ViewModels to save
memory. This is especially important for ViewModels that hold references to large ob-
jects.

ViewModel base class

This base class can be used to provide functionality that is often used inside ViewModels.
In this sample application the viewModelBase class is responsible for managing the this
pointer’s scope. It automatically changes the behavior of the this pointer to always point
to the ViewModel and not the calling object.

ListsViewModel
The ListsviewModel provides the data for the ListsView it has two observable properties.
One is the collection of lists that will be displayed and the other one is the currently se-
lected list that is later used by the View for highlighting the selected list.
class ListsViewModel extends ViewModelBase {
// Properties

public lists = ko.observable<Array<Model.DatalList>>();
public selectedList = ko.observable<Model.DatalList>();

The selectList action is responsible to tell other ViewModels about changes of the se-
lected list and will navigate to the Productsview after the selection of a list.

// Actions

public selectList(list: Model.DatalList) {

Services.ServicelLocator.MessagingService.publish(
Services.Messaging.MessagingToken.SelectedListChanged, list);

Page 62

Services.Servicelocator.NavigationService.
navigateTo("ProductsView");

}

The message actions are called when someone publishes changes about all available lists

or the currently selected list.

// Message actions
private listsChangedMessageAction(lists: Array<Model.DatalList>) {

this.lists(lists);
¥

private selectedListChangedMessageAction(list: Model.DatalList) {
this.selectedList(list);
}

The constructor registers the ListsViewModel for the two message-tokens ListsChanged

and SelectedListChanged.

// Constructor
constructor() {
super();

Services.Servicelocator.MessagingService.register(
Services.Messaging.MessagingToken.ListsChanged,
this.listsChangedMessageAction);

Services.ServicelLocator.MessagingService.register(
Services.Messaging.MessagingToken.SelectedListChanged,
this.selectedListChangedMessageAction);

}

ProductsViewModel
The ProductsViewModel has only the selected list as an observable property.

// Properties
public selectedList = ko.observable<Model.DatalList>();

It provides actions for toggling the bought state, adding new products or removing the
already bought products from the list.

// Actions
public buyProduct(product: Model.DataProduct) {

product.bought(!product.bought());
}

public addProduct() {
Services.Servicelocator.NavigationService.
navigateTo("AddProductview");

Page 63

public cleanup() {
Services.ServicelLocator.NotificationService.showMessageBox(
"Cleanup", "Remove all bought products?", (result) => {
if (result == Services.MessageBoxResult.Ok) {
var products = this.selectedList().products;

for (var p = @; p < products().length; p++) {
if (products()[p].bought()) {
products.splice(p, 1);
p--;

1)
}

To receive changes for the selected list, the ProductsviewModel listens like all other
ViewModels to all messages that are published with the SelectedListChanged massage-
token.

// Message actions

private selectedListChangedMessageAction(list: Model.DatalList) {
this.selectedList(list);

}

The constructor registers the ViewModel for messages published with the SelectedList-
Changed message token.

//Constructor
constructor() {

super();

Services.ServicelLocator.MessagingService.register(
Services.Messaging.MessagingToken.SelectedListChanged,
this.selectedListChangedMessageAction);

AddProductViewModel

The AddProductViewModel has three properties, the first is the selected list where the new
products will be added to after the View executes the addProduct action. The other two
are used to store the current state of the name and the amount of the new product.

class AddProductViewModel extends ViewModelBase {
// Properties
public selectedList = ko.observable<Model.DatalList>();
public name = ko.observable<string>();
public amount = ko.observable<string>();

The addProduct action is responsible for creating a new product by using the two tempo-
rary properties name and amount. After a successful creation of the new product the Nav-
igationService will navigate back to the previous page.

// Actions

public addProduct() : void {

var product = new ShoppinglList.Model.DataProduct(
this.name(), this.amount(), false);

this.selectedList().products.push(product);

this.name("");
this.amount("");

Page 64

Services.Servicelocator.NavigationService.
navigateBack("AddProductView");

}

// Message actions
private selectedListChangedMessageAction(list: Model.DatalList) : void{
this.selectedList(list);

}

// constructor
constructor() {
super();

Services.ServicelLocator.MessagingService.register(
Services.Messaging.MessagingToken.SelectedListChanged,
this.selectedListChangedMessageAction);

Setup

The AppBase class is the base class for the platform specific initialization classes and con-
tains common code to setup the application. This class tells KnockoutJs about the binding
relation between the HTML controls and the ViewModels.

export class AppBase {
public initialize() {
this.registerCommonServices();
this.registerServices();

var views = ["Lists", "Products", "AddProduct"];
this.applyBindings(views);
}

public registerCommonServices(): void {
ShoppinglList.Services.ServicelLocator.MessagingService =
new ShoppinglList.Services.Messaging.MessagingService();

}

public applyBindings(names: Array<string>): void {
var outstanding = names.length;

ViewModel.ViewModelLocator.initialize();

for (var i in names) {
var viewContainer = $("div[data-view = '" +
names[i] + "View']")[0];
var viewModel = ShoppinglList.ViewModel.
ViewModelLocator[names[i] + "ViewModel"];
ko.applyBindings(viewModel, viewContainer);

}

var model: Model.IDataModel = new Model.DataModel;

Services.ServicelLocator.MessagingService.publish(
Services.Messaging.MessagingToken.ListsChanged, model.lists);

5.1.3 Implementation (Desktop)

The following implementation is platform specific and will only be included in the desktop
implementation. It includes Views, services as well as code to setup the desktop specific
parts of the application.

Page 65

Setup

The setup class AppDesktop is derived from AppBase and uses the Servicelocator to regis-
ter service implementations that are specific for the desktop application.

class AppDesktop extends AppBase {
public registerServices(): void {
ShoppinglList.Services.ServiceLocator.NavigationService =
new ShoppinglList.Services.NavigationServicelQueryUi();
ShoppinglList.Services.ServicelLocator.NotificationService =
new ShoppinglList.Services.NotificationServicelQueryUi();

}

Services

The desktop implementation has two specific services, the NavigationService and the
NotificationService.

Navigation
This implementation of the NavigationService uses jQueryUl to manage all pages and
dialogs. It calls the jQueryUl method “$.dialog” to open and close dialog windows.

export class NavigationServiceJQueryUi implements INavigationService {
navigateTo(containerId: string): void {
$("#" + containerId).dialog();
}

navigateBack(containerId: string): void {
$("#" + containerId).dialog("close");
}

}

Notification

The notification service for the desktop implementation uses a jQueryUl dialog to show
themed message boxes.

export class NotificationServicelQueryUi implements INotificationService {
showMessageBox(title: string, content: string,
callback: MessageBoxFinishedCallback): void {

$("#messageBox").attr("title", title);
$("#messageBox #messageBoxContent").html(content);

$("#messageBox").dialog({
resizable: false, height: 250, modal: true,
buttons: {

"0k": function () {
callback(MessageBoxResult.Ok);
$(this).dialog("close");

3

Cancel: function () {
callback(MessageBoxResult.Cancel);
$(this).dialog("close");

}
s

}

The following HTML code is nested within an invisible container and will only be shown
when jQueryUl displays it as a dialog window.

<div id="messageBox" title="">

Page 66

<p>
<span class="ui-icon ui-icon-alert”
style="float:left; margin:® 7px 2@px 0;">

</p>
</div>

The message box will be used to ask if the user wishes to remove all bought products
from the list and will look like the following screenshot.

Cleanup %

A Remove all bought
products?

Ok Cancel

Figure 14: Screenshot of a MessageBox (Desktop)

Views
The desktop implementation has one View for each ViewModel and uses jQueryUl to

provide a solid experience for desktop users.

ListsView

The root div uses the CSS class view-container-1lists to inform the setup code of the
AppBase class, which HTML control is the root container of the ListsView. It uses Knock-
outJs bindings to bind the Ul to the ListsViewModel’s collection of all lists. For each list in
the collection there will be one 1i item inside the ul container. A data binding for the CSS
property will highlight the selected list by applying a different style for selected and not
selected lists.

<div data-view="ListsView" class="view-container-lists">
<div data-role="header " data-position="inline"><h2>Lists</h2></div>
<div data-role="content" data-theme="a">
<ul data-bind="foreach: lists">
<li data-bind="text: $data.name, click: $root.selectList,
css: { list_container_selected: $data ==
$root.selectedList() }" />

</div>
</div>

ProductsView
The ProductsView displays a list of all products from the currently selected list and pro-
vides two buttons one for adding a new product and a second one for removing all bought

products.

<div data-view="ProductsView" class="view-container-products">
<div data-role="header"><h2>Products</h2></div>
<button data-bind="click: addProduct, visible: selectedList()">
Add Product
</button>

Page 67

<button data-bind="click: cleanup, visible: selectedList()">

Cleanup
</button>
<!-- ko with: selectedList -->
<ul data-bind="foreach: products">
<1li data-bind="text: $data.amount() + ' ' + $data.name(),
click: $root.buyProduct,
css: { product_container_bought: $data.bought }" />

<l-- /ko -->
</div>

The desktop application displays the ListsView and the ProductsView next to each other
on the starting page of the application. The result looks like the following screenshot.

Shoppinglist
Lists Products
_ Add Product C}'eanup
List 2
1 Product 1
2 Product 2
3 Product 3

Figure 15: Screenshot of ListsView and ProductsView (Desktop)

AddProductView

The AddProductView provides two input fields. One for the name and one for the amount
of the new product. The View also contains a button to submit the changes and add the
entered values as a new product to the selected list.

<div data-view="AddProductView">
<div id="AddProductView" title="Add Product" style="margin: 12px">
<p>
Name: <input data-bind="value: name, valueUpdate: 'afterkeydown'" />
</p>
<p>Amount: <input data-bind="value: amount" /></p>
<button data-bind="click: addProduct, enable: name() &&
name().length >= 2">
Add
</button>
</div>
</div>

The screenshot below shows the AddProductView after the user added name and
amount of a new product.

Page 68

Add Product x

Name:
Pizzal

Amount:
2

Add

Figure 16: Screenshot of the AddProductView (Desktop)

5.1.4 Implementation (Mobile)

The following implementation is platform specific and will only be included in the mobile
implementation. It includes Views, services as well as code to setup the mobile specific
parts of the application.

Setup

The setup for the mobile implementation looks the same as the one for the desktop im-
plementation, with the difference of registering service implementations that use jQuery-
Mobile instead of jQueryUl.

Services

The mobile implementation has to implement the same services as the desktop imple-
mentation. For the case that one platform does not provide all the features that are used
in another implementation, it is recommended to use a dummy implementation for this
service as well. This makes the code cleaner and provides the possibility of an easy adop-
tion when the APIs gets available in the future.

Navigation
JQueryMobile does provide a different page navigation experience as jQueryUl. It navi-
gates through the application with the use of pages instead of showing popup windows.
The NavigationServiceJQueryMobile calls the jQueryMobile page navigation methods to
switch pages.

class NavigationServiceJQueryMobile implements INavigationService {

navigateTo(containerId: string): void {
$.mobile.navigate("#" + containerlId);

}

navigateBack(containerId: string): void {
window.history.back();
}

}

Notification

For displaying a message box with jQueryMobile a dialog is used, which contains the in-
formation. JQueryMobile’s dialogs are structured similar to pages, with the difference
that they are displayed as modal windows instead of whole pages. In the example below

Page 69

jQuery is used to manipulate the div element that will later be used as content for the
dialog. This could also be implemented with the help of Knockout)s and an additional
ViewModel.

class NotificationServicelQueryMobile implements INotificationService {
showMessageBox(title: string, content: string,
callback: MessageBoxFinishedCallback): void {
$("#MessageBox [data-field=HeaderContent]").html(title);
$("#MessageBox [data-field=BodyContent]").html(content);

$("#MessageBox [data-button=ButtonOk]").unbind('click"');

$("#MessageBox [data-button=ButtonOk]").click(() => {
callback(MessageBoxResult.Ok);
window.history.back();

1)

$("#MessageBox [data-button=ButtonCancel]").unbind('click");

$("#MessageBox [data-button=ButtonCancel]").click(() => {
callback(MessageBoxResult.Cancel);
window.history.back();

s

$.mobile.navigate("#MessageBox");

}

The mobile implementation of the message box looks like the following screenshot when
displayed by the cleanup command.

Cleanup

Remove all bought products?

Ok Cancel

Figure 17: Screenshot of a MessageBox (Mobile)

The following HTML code contains the content for each message box. It will be filled with
data from the NotificationService each time a message box needs to get displayed.

<div id="MessageBox" data-role="dialog">
<div data-role="header">
<hl data-field="HeaderContent">
Add product
</hl>
</div>
<div data-role="main" class="ui-content">
<p data-field="BodyContent"></p>
</div>
<div>
<table style="width: 100%">
<tr>
<td style="width: 50%">
<button data-button="ButtonOk">0k</button></td>
<td style="width: 50%">
<button data-button="ButtonCancel">Cancel</button>

Page 70

</td>
</tr>
</table>
</div>
</div>

Views
The Views for the mobile implementation use jQueryMobile themed Ul controls like
pages, dialogs, buttons and others to provide a solid user experience for mobile devices.

For the mobile implementation, the ListsView and ProductsView are displayed on sepa-
rate pages while using the same ViewModels as the desktop implementation.

Products

Sdlenduet £
5 Product 5
B Produst 5

Add Product

Figure 18: Screenshot of the ListsView Figure 19: Screenshot of the ProductsView
(Mobile) (Mobile)

The screenshot below shows the AddProductView of the mobile implementation after
the user added name and amount of a new product.

Add product

Name:
Pizza
Amount:

2

Page 71

Figure 20: Screenshot of the AddProductView (Mobile)

515 Tests

The unit testing platform for our sample application will be the qUnit framework. It is one
of the most common and powerful unit testing frameworks for JavaScript and can be used
comfortably with TypeScript as well.

It is important, as always by writing unit tests, that the tests do not depend on or change
the global states of the application. When writing unit tests for an application with a
structure based on MVVM, testing the ViewModels is an important part, since most of
the applications logic is located within them.

It is often beneficial to create test implementations of all services that use platform spe-
cific APIs to be able to run tests for all ViewModels on the desired testing platform. This
platform is most likely a browser from a development device or a test runner on a con-
tinuous integration server.

Platform specific tests can obviously only run on the individual platform and can there-
fore not easily run on a continuous integration system. Although, it is often possible to
find a solution for running platform specific code from a continuous integration server, it
is rarely that important. Since platform specific code is located within services and should
only abstract some of the platform’s APls, which hardly ever change. Furthermore, the
usage of platform specific services should be reduced to a minimum and should never
contain logic that could be placed in the common part of the application.

The following sample is a test for the AddProductViewModel. It creates instances of ser-
vice implementations that are designed to work specifically well for testing. Those test
implementations can offer additional functionality for testing through exposing some of
the internal states.

The messaging service can be handy to simulate the behavior of ViewModels with condi-
tions similar to the conditions when the application is actually running on the user’s de-
vice.

test("AddProductTest", ()=> {
ShoppinglList.Services.Servicelocator.MessagingService =
new Services.Messaging.MessagingService();
var navigationService = new Services.NavigationServiceTest();
navigationService.NavigationStack = ["addProductView"];

ShoppinglList.Services.ServicelLocator.NavigationService =
navigationService;

var addProductViewModel =
new ShoppinglList.ViewModel.AddProductViewModel();

var listl = new Model.DatalList("ListTest");
listl.products.push(
new Model.DataProduct("TestProductl", "1", false));

ShoppinglList.Services.Servicelocator.MessagingService.publish(
Services.Messaging.MessagingToken.SelectedListChanged, listl);

addProductViewModel.name("TestProduct2");
addProductViewModel.amount("2");

addProductViewModel.addProduct();

Page 72

QUnit.ok(listl.products().length == 2);

QUnit.ok(listl.products()[1].name() == "TestProduct2");
QUnit.ok(listl.products()[1].amount() == "2");
QUnit.ok(navigationService.NavigationStack.length == 0);

1)

QUnit has a nice testing interface, but can also be run within other test environments like
the integrated test runner of Visual Studio or most continuous integration services.

5.1.6 Challenges

Although the development of the two web applications was easier and more comfortable
than expected there were some unexpected challenges and problems that had to be
solved. The following table will show some positive and negative impressions of the de-

velopment process.

Positive

TypeScript has major advantages over Ja-
vaScript especially, for developing larger
applications. Also the use of object ori-
ented design patterns like MVVM and oth-
ers can benefit a lot from TypeScript.

Good frameworks like jQuery make it easy
to manipulate HTML code.

Knockoutls is a powerful, reliable and
easy to use binding framework.

There are a great number of tools and a
large community of web developers.

Even the TypeScript community is quite
large and active, for such a new technol-
ogy.

Great support through Visual Studio for
the entire development process.

NUGET package management makes it
easy to manage web libraries as well as
others.

Negative

TypeScript is still not as powerful and its
usage not as comfortable compared to
major high level object oriented frame-
works like .NET or Java.

Especially the “this” pointer’s scope of Ja-
vaScript that is still present within Type-
Script can be bothersome for developers
with .NET or Java background.

Browser inconstancies can make it more
difficult to run the application on different
devices.

The amount of Ul frameworks is large but
none of them seem as useful as most na-
tive tools of today’s mobile and desktop
platforms. Let us see how WinlJs turns out,
maybe it will change this in the near fu-
ture.

Integrating different Ul frameworks with
completely different concepts can be dif-
ficult to manage with shared code.

Table 7: Positive and negative impressions (Web)

Page 73

5.1.7 Benefits of MVVM
When developing web applications there are many advantages when using MVVM. The
following list will show some of them.

e MVVM can offer a clean application architecture with defined places for nearly
every type of code.

e The possibilities for structuring web applications are endless and it is always dif-
ficult for developers to work on already existing source code. With MVVM new
developers can adopt more easily especially, if they already have experience with
MVVM.

e Data bindings provide an easy, flexible, robust and unified way to update the
HTML code.

e Views can be easy replaced or extended.

e Multiple Views with the same ViewModel are always in sync without additional
syncing mechanisms.

e With the use of a messaging service the data flow within the application is always
well defined and errors can be easily found.

e Services provide a clean concept for common functionality and are easy to main-
tain, replace or extend.

5.1.8 Results and conclusions
The following numbers represent the amount of code used by the individual components
of our sample application.

Projects Model" Views? Services® ViewModels* setup® overall
Core 44 0 60 110 42 212
Desktop 0 55 32 0 16 103
Mobile 0 52 30 0 16 98
Sum: 413

Table 8: Lines of code used by the sample application (Web)

1) The Model includes all data classes

2) Views contain markup code (HTML) and TypeScript/JavaScript code that is used
for visualization

3) Services and the implementation of the messenger

4) Code inside ViewModels

5) Code used to initialize the application

The above numbers show that the individual implementations for mobile and desktop
use a similar amount of code. The data classes (Model) the ViewModels and a part of the
services are used across all implementations while the Views are implemented once for
every platform.

The numbers below are calculated using the lines of code of the table above and show
the distribution of the code across the individual platforms. The column for shared code
shows the numbers of one individual implementation and ignores the line numbers of
the other one.

Page 74

Projects overall shared code

Core 51,33%
Desktop 24,94% 67,30%"
Mobile 23,73% 68,39%

Table 9: Distribution of code across the individual implementations (Web)

. . Desktop
1) The Value is computed with: ————
Core+Desktop

Mobile
Core+Mobile

2) The Value is computed with:

As can be seen in the table above, about 70% of the code can be shared across platforms.
This value can likely be achieved for real world implementations as well. These numbers
could be increased even further when concepts for sharing HTML code get introduced.

5.2 MVVM with .NET

MVVM pattern appeared the first time on the .NET platforms Silverlight, and WPF and
has not changed much since its beginning. The adoption of MVVM is wide and many of
the great .NET applications today benefit from the structure of MVVM.

The following application was developed to show how MVVM can be used to enhance
.NET applications on different platforms. The sample application will use MVVM for ex-
tensive cross platform development to show how MVVM can help to develop applications
for multiple platforms with a large amount of shared code.

The developed sample application has similar functionality as the web application but
was extended with full localization capabilities and the ability to store the state of the
application across user sessions.

The full source code that is described in this section is available on GitHub and licensed
under the MS-PL.

https://github.com/Lupinlst/ShoppingList.Net

5.2.1 Used frameworks and tools

For the implementation of this sample application Visual Studio was used as the main
development environment. Without a doubt it provides the most powerful and advanced
features for developing .NET applications. Especially, when used with the ReSharper ex-
tension.

The MVVM framework used to develop this application is MVVM Cross, due to the fol-
lowing reasons:

e It is the only framework that provides binding features for non-Microsoft plat-
forms

e ltis extremely flexible and has an extendable architecture

e It has a lightweight application design because of its plugin system

e There are lots of plugins for most common tasks

e There is great support from a large community

Page 75

MVVM Cross provides more features than most other MVVM frameworks especially,
when used for cross platform development. The MVVM Cross framework and its plugins
are extensively used in all parts of this sample application.

The core of MVVM Cross, as well as its plugins can be installed as NuGet packages. The
following list shows the plugins, which were used to develop this sample application.

e Messenger: a messenger implementation

e Localization: for localizing the application (only used for the Android implemen-
tation)

e File: for reading and writing files to the local file system

e Json: for serializing and deserializing objects to and from strings

5.2.2 Structure

Within Visual Studio the application is separated into multiple projects. A “Core” project,
which is a portable class library is used to contain all platform independent code. Further-
more, there is one additional project for Windows Desktop (WPF) and one for Android.
Applications for Windows RT platforms have a special structure, since the implementa-
tion makes use of the unified Windows platform, introduced with the Update 2 of Visual
Studio 2013. The full implementation for Windows Phone and Windows Store needs
three additional projects, one shared project and one project for each platform. For the
sample application only the Windows Store part will be implemented, since most of the
Ul code is placed in the shared project. Therefore, a Windows Phone application could be
added with little effort.

f3] Solution ‘ShoppingList.Net' (6 projects)

F WinRT

P ShoppingList. Windows Windows (Windows 8.1)
b % ShoppingList.Windows.Shared

a ShoppingList.Android

Shoppinglist.Core (Portable)

1 ShoppingList.Core.Tests

Shoppinglist. WindowsDesktop

k ¥V VY

Figure 21: Screenshot of the project structure within Visual Studio (.NET)

5.2.3 Implementation (Core)

The core implementation contains all data classes, ViewModels as well as most of the applications
Ul independent logic. Furthermore, it provides interfaces for platform specific code (services) and
contains the resource files used for localization.

Model
The model consists of the two data objects DatalList and DataProduct and the
DataModel class itself. All three objects extend the base class MvxNotifyPropertyChanged.

Page 76

MvxNotifyPropertyChanged

- RaisePropertyChanged(property : Expression)

Datalist DataProduct DataModel

+ Name : String + Name: String + Lists : ObservableCollection<DataList>
+ Products : ObservableCollection<DataProduct> + Amount : String + SelectedListIindex : int
+ Bought : Boolean

Figure 22: Inheritance structure of data classes (.NET)

Services

The core project contains service interfaces for all platform specific code that needs to
be called from the core project, as well as interfaces for individual functionalities that are
implemented in the core project itself. For convenience the implementation of those in-
terfaces have strict naming rules. All services end with the “Service” keyword plus the
name of the platform. This is later used to register all services as singleton instances with
only a view lines of code.

StateService

The StateService is responsible for preserving the state of the application across applica-
tion sessions. It has two properties that hold the current state of the application and two
methods to store and restore these properties to the local file system.

<<Interface>>

IStateService

List : ObservableCollection<DataList>
SelectedList : DatalList

Restore()

Store()

Figure 23: UML diagram of the IStateService interface

Unlike most services the StateService is implemented only once in the core project. For
better extendibility, consistency and use with the MVVMCross I0C system it has an inter-
face like all other services. To simplify testing there is an implementation of the StateServ-
ice specifically for testing.

Restore

The Restore method reads the file that includes the last state of the application from the
local file system using the File plugin of MVVM Cross. If the file exists, then it uses the
MVVM Cross Json plugin to deserialize the content to an object of the type DataModel. If
the file was never written to the file system, it creates a new DataModel object and fills it

Page 77

with sample data. Now the loaded state can be accessed from everywhere within the
application using the two properties of the StateService. The last view lines of the Restore
method publish the values of the same two Properties using the MVVM Cross messenger,
to make sure that all parts of the application have the current reference to the state ob-
jects.

Store

The store method serializes the local DataModel variable and saves its content to the de-
vices file system.

NotificationService

The NotificationService is a typical service that abstracts device specific functionality to
be used from within the core project. It provides only one method to show a simple mes-
sage box with two buttons on the targeted platform.

<<Interface>>

INotificationService

ShowMessageBox(header: string, content: string)

Figure 24: UML diagram of the INotificationService interface

Since some ViewModels will need the NotificationService within their constructor, it was
necessary to implement a design-time dummy for this service that is only used when an
XAML application is in design-mode.

Application setup and ViewModelLocator

The MVVM Cross framework provides a built-in concept for ViewModel location. The in-
tegrated ViewModel locator uses the 10C system of MVVM Cross to dynamically create
ViewModels when needed. This leads to lots of performance and convenience improve-
ments over a ViewModel locator that creates all ViewModels at the start of the applica-
tion.

However, at its default implementation it is not compatible with design-time data on
Windows platforms. Therefore, the default implementation was slightly changed for the
sample application. This was done by overwriting the MvxDefaultViewModellLocator class
with an implementation that holds an additional property for each ViewModel. For Win-
dows platforms an additional ApplicationContext class was created that holds a refer-
ence to the ViewModelLocator and provides methods for both design-time and run-time
initialization. An instance of this class was added as an application resource to the
App.xaml file. With that change an instance of the ApplicationContext will be created
when the application starts or when the designer of Visual Studio performs its design-
time initialization. With that the ApplicationContext instance can be used to access the
ViewModellLocator and its ViewModels from each View on windows platforms. At run-time
only the run-time initialization will be used on all platforms.

The initialization code initializes all MVVM Cross components and registers all used ser-
vices as a singleton instance with the help of the I0C system from MVVM Cross.

Page 78

To restore the state of the last application session and to save the state when the appli-
cation closes, the individual platform events had to be used, since these events behave
different on every platform. The Store and Restore methods of the StateService are used
to read and write the application’s states to and from the local file system.

ViewModels

With MVVM the ViewModels are always the central part of the application and connect
the individual Views of each platform with the common data Model. Since ViewModels,
most of the time, have similar properties and methods it is recommended to structure
the code of each ViewModel in the same way to increase maintainability.

ViewModels use services for common tasks and do not contain platform specific code.
However, sometimes it is required to include some lines of code that are not relevant to
all platforms. In that case these lines could be added to the ViewModel with caution.
When adding platform specific code to ViewModels, it is important to keep in mind that
this might lead to different behavior on each platform. Furthermore, this could drastically
reduce overview of the application’s behavior and complicate testing. Due all these rea-
son introducing platform specific code should be avoided, if possible.

The ViewModels communicate with each other, as well as with services by using the mes-
senger provided by MVVM Cross.

For better testing capabilities and overview of which services are used by which View-
Model, all consumed services are added as constructor parameters (constructor depend-
ency injection) to the ViewModel.

The base class for all ViewModels
For common functionality used in ViewModels the class ViewModelBase was introduced
as the base class for all ViewModels.

It provides the BackCommand that is needed in every ViewModel for back navigation. For
consistency this command will replace the devices default back navigation mechanism
even if no different behavior is required.

Furthermore, the viewModelBase contains a TextSource property that is used for the
MVVM Cross multi-language support. This property is used only by the Android applica-
tion. The multi-language features will be described in detail later on.

ListsViewModel

The ListsViewModel is the first ViewModel that is created after the start of the applica-
tion. This ViewModel provides functionality for the View to visualize the different shop-
ping lists. Moreover, it offers a mechanism to select one shopping-list.

Properties

ObservableCollection<DatalList> Lists:
This collection will always contain all current shopping-lists of the application and will be

updated when another part of the application changes the collection. The Views will use
this property to bind it to the items-source of the platform’s list control.

Datalist SelectedList:

Page 79

This property holds a reference to the currently selected list. When the property’s setter
is called the property sends a message containing its new value to notify all other View-
Models. After the value got successfully changed the NavigationService is used to navi-
gate to the ProductsViewModel. This navigation will have different behavior on each plat-
form.

Commands and actions
The ListsViewModel does not have any command and therefore, also no actions.

Messaging actions

The ListsViewModel registers for the two messages ListsChangedMessage and Selected-
ListChangedMessage and sets the corresponding local property to the value received from
the message.

Constructor
Like all ViewModels the constructor registers for messages and initializes the local prop-
erties. In this case it fetches the shopping-lists, as well as the selected list from the
StateService.

ProductsViewModel

The ProductsViewModel provides data for the Productsview and is responsible for provid-
ing functionality to display the products of the currently selected list, as well as adding a
new product and removing all bought products.

Properties

Datalist List:
The ProductsViewModel provides a property for the currently selected shopping-list that

is used by the Views to display the right products.
Commands and Actions

The AddProductCommand navigates to the AddProductViewModel to let the user create a new
product.

public MvxCommand AddProductCommand { get; private set; }
private void AddProductAction() {
ShowViewModel<AddProductViewModel>();

}

The CleanupCommand shows a message box and removes all bought products, if the “OK”
button was clicked by the user.

Since it uses the async method ShowMessageBox from the NotificationService, this com-
mand cannot be of the type MvxCommand that is provided by MVVM Cross and used for all
non-async commands. Since MVVM Cross does not provide an implementation of the
ICommand interface that is able to call async methods inside its action, the AsyncCommand
was introduced. The implementation of the AsyncCommand will allow us to call any async
method inside the command’s action and provides functionality similar to the implemen-
tation of the MvxCommand.

After displaying the message box the product is being removed from the list. It is im-
portant that this is done while running on the Ul-thread. Changing products while running
on a worker thread can result in a problem because this action will automatically trigger

Page 80

the Ul to visualize the new products. Changing Ul-controls is often only possible when
running on the Ul-thread and will likely throw an exception otherwise. The RequestMain-
ThreadAction from the cross platform dispatcher that is provided by MVVM Cross allows
us to ensure that the later part of the action will run on the platform’s Ul-thread.

public AsyncCommand CleanupCommand { get; private set; }
private async Task CleanupAction(object parameter) {
var result = await _notificationService.ShowMessageBox(
LocalizationResources.DeleteBought,
LocalizationResources.CleanupMessageBody);

if (result == QuestionResult.Ok) {
var productsToDelete = List.Products.Where(
product => product.Bought).ToArray();

Dispatcher.RequestMainThreadAction(() => {
foreach (var product in productsToDelete) {
List.Products.Remove(product);
}

1)

Lastly the ProductsViewModel overrides the BackAction from the base class (ViewModel-
Base) to clear the selected list when the user navigates to the previous View. This is only
relevant to Android, since Windows Store and Windows Desktop, display both Listsview
and ProductsView within one page or window. The Close method is part of the navigation
concept of MVVM Cross and will be described later.

protected override void BackAction() {
_messenger.Publish(new SelectedListChangedMessage(this, null));
Close(this);

AddProductViewModel
The AddProductViewModel is responsible for the AddProductView and offers functionality
to add a new product to the current shopping-list.

Properties

The AddProductViewModel has three properties. One represents the currently selected
list (DatalList List). The other two properties (Name and Amount) are of type String and
are used to temporarily store information about the new product. They both will be
data bound to the View’s text editing controls.

Commands and Actions

The AddProductViewModel has only one command, which creates a product with the en-
tered values for name and amount and adds the new product to the current shopping-
list. The command also has a CanExecute method that is used to determine if the applica-
tion is in a state where the command can successfully be executed. That is the case, if the
entered name of the product has a minimum length of two characters. To tell the com-
mand that a valid state is reached, the command’s RaiseCanExecuteChanged method is
called every time the Name property of this ViewModel has changed.

Page 81

public MvxCommand SaveProductCommand { get; private set; }
private void SaveProductAction() {
List.Products.Add(new DataProduct {
Amount = Amount,
Name = Name

1)

Amount = "";
Name = "";

}

private bool SaveProductCanExecute() {
return Name != null && Name.lLength >= 2;
}

Localization

MVVM Cross includes functionality to localize the application by using JavaScript object notation
(JSON) files that store the translations as pairs of key and value. This however, has two disad-
vantages. The first one is that editing JSON is not the most comfortable way to manage string
resources, unlike for example the resource file editor of Visual Studio. The second disadvantage is
that the localization plugin of MVVM Cross does not work at design-time.

Furthermore, MVVM Cross provides interfaces for most of its internal functionality and it
is easy to replace individual parts of the framework. To replace the default JSON localiza-
tion plugin the IMvxTextProvider interface is used [57]. The new ResxTextProvider is only
used for the Android application. For all XAML applications the resource class generated
from Visual Studio is used directly as a binding source for localizing the Ul controls.

Navigation

For writing native looking cross platform applications, the navigation concept is often one
of the most challenging parts to implement. The application should call all navigational
methods from within the ViewModels, yet individual code for each platform is not
wanted there. However, MVVM Cross provides a solid concept for navigating between
pages. The simple default navigation implementation, is convenient for small screen ap-
plications, where one View correlates with one page. For applications that are designed
for devices with large screens the default implementation would not be appropriate.
Luckily MVVM Cross provides Individual classes for all platforms that can be overwritten
to get customized navigation behavior. For this sample application an alternative imple-
mentation of the navigation concept was realized for the Windows Store and the Win-
dows Desktop implementation, since both are required to work well with larger display
sizes. When supporting a platform, which supports many different display sizes, different
implementations can be determined statically by providing individual application pack-
ages, dynamically during the startup of the application or even every time the display size
changes.

5.2.4 Implementation (Windows Unified)

The implementation for the unified application platform contains two projects. One
shared project that contains files that are used for all platforms. The other one is the
platform specific Windows Store project. As already mentioned, for this sample applica-
tion only the Windows Store project was implemented, since extending the application
with and additional Windows Phone project would be straight forward.

Due to the usage of the Windows unified architecture most of the files can be located
within the shared project and used for both, the Windows Store and the Windows Phone

Page 82

implementation. For our example application the Windows Store project contains only
two files, the implementation of the presenter and the MainView.

Services

The implementation of the INavigationService uses the MessageDialog from the com-
mon WinRT and can be placed in the shared project.

Views

The shared project contains one View for each ViewModel. In addition to that, the Win-
dows Store implementation includes an additional View that has no own ViewModel. It
simply uses the Views from the shared project and displays them on one page. That is the
reason why the Windows Store project needs a different navigation concept. This job is
done by the presenter class, which navigates only to the Mainview instead of all other
Views.

MainView

The Mainview has no own ViewModel and is used to place the three shared Views on the
screen. The ListsView and ProductsView are placed next to each other on the screen
while the AddProductView is hidden and shown as a flyout by the press of a button.

Flyouts are a Ul control available only in Windows Store applications and therefore, can-
not be placed within the shared project. However, Flyouts are directly associated with a
button control and that is why we located the two buttons “new” and “cleanup” within
the Mainview of the Windows Store project instead within the ProductsView. Through this
method we were able to use flyouts for the Windows Store application, yet also include
the ProductsView in the shared project to maximize code sharing. The following code is
the MainviewModel’s markup without the parts relevant only for the design.

To let the Ul controls know which ViewModel is responsible for them the DataContext of
the root Ul control needs to be set. All children of the control will inherit the same DatacC-
ontext.

For localization there is an application resource named Localization that holds a refer-
ence to the resource dictionary that includes all translations.

<Grid>
<views:ListsView/>
<Grid>
<views:ProductsView/>
<Grid DataContext="{Binding Locator.ProductsViewModel,
Source={StaticResource App}}">
<Button Command="{Binding AddProductCommand}"
Content="{Binding Strings.New,
Source={StaticResource Localization}}">
<Button.Flyout>
<Flyout x:Name="FlyoutAddProduct">
<views:AddProductView />
</Flyout>
</Button.Flyout>
</Button>
<Button Command="{Binding CleanupCommand}"
Content="{Binding Strings.DeleteBought,
Source={StaticResource Localization}}"/>
</Grid>
</Grid>
</Grid>

Page 83

The following screenshot shows the Mainview after clicking the “New” button.

Lists Products

Supermarket 5 Apples

v6
Tools Store Bananas

. 12 Oranges
Electronics Store g

MName

Strawberries|

Amount

Figure 25: Screenshot of the main page (Windows Store)

ListsView
The ListsVview only contains one ListBox control that displays all shopping-lists. It binds
the SelectedItem property to the ViewModel’s SelectedList property.

<Grid>
<ListBox ItemsSource="{Binding Lists}"
SelectedItem="{Binding SelectedList, Mode=TwoWay}">
<ListBox.ItemTemplate>

<DataTemplate>
<TextBlock Text="{Binding Name}"/>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
</Grid>

ProductsView
For the Windows Store implementation the Productsview only contains one ListBox that
shows the products of the selected list.

<ListBox ItemsSource="{Binding List.Products}">
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel>
<CheckBox IsChecked="{Binding Bought, Mode=TwoWay}" />
<TextBlock Text="{Binding Amount}"/>
<TextBlock Text="{Binding Name}"/>
</StackPanel>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>

Page 84

AddProductView

The AddProductView provides Ul for creating a new product. When looking at the Text-
Block for the name of the product, there is a TextChanged event handler registered in
addition to the binding.

The reason for that lies with the XAML TextBlock’s update functionality. Only when the
TextBlock loses focus the update method is called. However, for real-time validation of
the save button’s enabled state, it is necessary to call the update function for every
change of the inserted text. A second possible solution for this problem would be the
usage of MVVM Cross’ binding features that are also available for Windows platforms via
an individual NuGet package.
<StackPanel >
<TextBlock Text="{Binding Strings.Name,
Source={StaticResource Localization}}" />

<TextBox Text="{ Binding Name }"
TextChanged="TextBoxName_OnTextChanged" />

<TextBlock Text="{Binding Strings.Amount,
Source={StaticResource Localization}}" />
<TextBox Text="{ Binding Amount, Mode=TwoWay }" />

<Button Command="{Binding SaveProductCommand}"
Content="{Binding Strings.Save,
Source={StaticResource Localization}}"
HorizontalAlignment="Center" />
</StackPanel>

Navigation

The navigation concept for Windows Store applications is exceptionally difficult to com-
bine with applications that use pure page navigation. Windows Store applications usually
have only a few pages. Furthermore, they often hide Views within Flyout controls, which
would be separate pages on platforms with smaller screens.

For this sample implementation it was satisfying enough to overwrite the default pre-
senter in a way that it always shows the MainVview, instead of the other three Views, and
lets the View itself open the Flyout. This however, has one big disadvantage. The pre-
senter does not know anything about the Flyouts and cannot open or close them. Instead
the View itself has to manage them.

It is often necessary to manage the navigation behavior from within the ViewModel in-
stead of the View. This is not possible with the current implementation of the navigation
mechanism. To control the navigation within the ViewModels a more complex implemen-
tation of the presenter classes could be used.

5.2.5 Implementation (Windows Desktop)

The implementation for Windows Desktops is a WPF application that uses, like the Win-
dows Store implementation, XAML as a markup language. Although both markup lan-
guages look very similar, their binaries are not compatible and that is why Views cannot
be shared between the two platforms.

Views
The Views of the Windows Desktop implementation look nearly identical to the Windows
Store implementation.

Page 85

The following screenshot shows the ListsView and the ProductsView arranged next to
each other by the presenter.

" ShoppingList - =

Lists Products

Supermarket [1 5 Apples
@ Bananas

[] 12 Oranges

Tools Store
Electronics Store

Cleanup

Figure 26: Screenshot of the main page (Windows Desktop)

The AddProductView is displayed as a single View inside a new dialog window.
" Shoppinglist - &

New product

Mame
Strawberries
Amount

[1

Cancel

Figure 27: Screenshot of the AddProductView (Windows Desktop)

Navigation

The navigation mechanism of the Windows Desktop implementation uses an implemen-
tation of the MVVMCross presenter similar to the one used for the Windows Store pro-
ject. With the difference that it does not use an additional View to place the ListsView
and the ProductsView next to each other on the screen. Instead the implementation of
the presenter adds both Views to the applications root window. All other Views, except
the Listsview and the Productsview, will be opened as new dialog windows.

Page 86

5.2.6 Implementation (Android)

The implementation for Android devices uses the Xamarin.Android platform to provide
the features of the .NET platform. The Xamarin platforms are able to consume portable
class libraries and therefore, can use our Core project.

Services

Like the other implementations, the Android application provides an implementation of
the INotificationService. When writing applications for the Xamarin.Android platform
it is often required to have a reference to the currently active activity, since it is needed
for many of the platform’s APIs. Placing most of the code inside ViewModels and Services
can make it difficult to get hold of this reference. Therefore, MVVM Cross provides an
implementation for the IMvxAndroidCurrentTopActivity interface that always holds a ref-
erence to the top activity and is available as a singleton managed by the I0C system of
MVVM Cross.

Views

The Views of the Android implementation use the Android XML files as a markup lan-
guage. Different to XAML, the Android XML markup language does not provide a native
binding framework. Luckily MVVM Cross provides a solid and full featured binding frame-
work, which can be used in a similar way.

ListsView

The Listsview of the Android implementation uses the MVVM Cross’ binding framework
to communicate with its ViewModel. The template for the shopping-list items is located
in a separate Android XML file with the path "@layout/item_list".

</LinearLayout>
<Mvx.MvxListView local:MvxBind="ItemsSource Lists;
ItemClick SelectedListChangedCommand"
local:MvxItemTemplate="@layout/item_list" />
</LinearLayout>

The following template will be used to create the shopping-list’s items. The context for
the binding framework is the corresponding DatalList item.
<LinearLayout>

<TextView local:MvxBind="Text Name" />
</LinearLayout>

The following screenshot shows the Listsview with the three default shopping-lists gen-
erated by the StateService.

Page 87

P Lists
Supermarket
Tools Store

Electronics Store

Figure 28: Screenshot of the ListsView (Android)

ProductsView

The ProductsView contains an MvxListView to show all products from the selected list, as
well as two buttons. The MvxLang attribute is added by MVVMCross and enabled the sup-
port of localization. For this sample application the same RESX files are used, as for the
Windows platforms’ implementation, to provide the string resources for each language.

<LinearLayout>
<Mvx.MvxListView local:MvxBind="ItemsSource List.Products;"
local:MvxItemTemplate="@layout/item_product" />
<LinearlLayout>
<Button local:MvxBind="Click AddProductCommand"
local:MvxLang="Text New" />
<Button local:MvxBind="Click CleanupCommand"
local:MvxLang="Text DeleteBought" />
</LinearLayout>
</LinearLayout>

The following Android XML code is used as a template for the items of the MvxListView
control.
<LinearlLayout>

<CheckBox local:MvxBind="Checked Bought; Text Amount + ' ' + Name" />
</LinearlLayout>

Finally, following screenshot shows the Productsview after clicking the first shopping-list
on the ListsView.

Page 88

. Products

5 Apples
+ 6 Bananas
12 Oranges

New Cleanup

Figure 29: Screenshot of the ProductsView (Android)

AddProductView
The AddProductView looks similar to the corresponding implementations of the two Win-
dows platforms. It offers two EditText controls as well as two Buttons.

<LinearLayout>
<TextView local:MvxLang="Text Name" />
<EditText local:MvxBind="Text Name" />

<TextView local:MvxLang="Text Amount" />
<EditText local:MvxBind="Text Amount" />

<LinearLayout android:orientation="horizontal">
<Button local:MvxLang="Text Cancel”
local:MvxBind="Click BackCommand" />
<Button local:MvxLang="Text Save"
local:MvxBind="Click SaveProductCommand" />
</LinearLayout>
</LinearLayout>

The following screenshot shows the AddProductView after entering some text into the two
EditText controls. Similar to the other implementations, the save button will not be en-
abled until the EditText control, for the name of the shopping-list, contains text that is
at least two characters long.

Page 89

. New product

Name
Strawberries
Amount

42

Cancel Save

Figure 30: Screenshot of the AddProductView (Android)

Navigation

The navigation concept for the Android implementation is more generic than the one for
the Windows Store or Windows Desktop implementation. Every View is shown as a single
Android page. Therefore, it is not necessary to override the default presenter implemen-
tation of MVVMCross. If a better scaling Ul for Android devices with larger screens is re-
quired, a different implementation for the presenter would be needed.

5.2.7 Tests

Good testing characteristics are one of the major benefits of MVVM. The loose coupling
between the ViewModels and the Ul makes it particularly easy to test all aspects of the
ViewModel, which contains most of the applications logic.

The concept of putting all common helping mechanisms into individual Services makes it
easy to replace them with implementations that can run on the testing platform and pro-
vide specialized functionality for unit tests.

The test implementation uses a specialized implementation of the IStateService inter-
face to offer better testing properties than the implementation designed for the use at
run-time. Such test implementations can be very useful for services that abstract device
specific functionality like showing a message box or other things. In such case the test
implementation of the service can simulate user input or sensor data and make the test-
ing process a lot easier. Many otherwise needed Ul tests can be replaced by unit tests
that are more flexible, easier to create and maintain, and will run a lot faster on the test-
ing environment.

For .NET there are multiple unit testing frameworks available and many of them run well
from within Visual Studio and on continuous integration platforms. For the following unit
test the Microsoft unit testing framework was used.

Testing ViewModels

The AddProductTest unit test checks some functionality of the AddProductViewModel by
setting the Name and Amount properties and executing the SaveProductCommand exactly
the same way the user would, when using the Ul.

Page 90

[TestMethod]
public void AddProductTest() {
var messenger = new MvxMessengerHub();
var stateService = new StateServiceTest();
var addProductViewModel =
new AddProductViewModel(messenger, stateService) {
Name = "NewProduct", Amount = "1"

}s
addProductViewModel.SaveProductCommand.Execute();

var list = stateService.SelectedlList;
Assert.AreEqual(1l, list.Products.Count);
Assert.AreEqual("NewProduct"”, list.Products[@].Name);
Assert.AreEqual("1", list.Products[@].Amount);

5.2.8 Challenges

The above seen cross platform implementation using .NET and MVVM, provides lots of
benefits. However, not all parts of the application were implemented without mastering
some challenges first. This section will describe the most challenging parts of the devel-
opment process to better understand the complexity of cross developing applications
with the used tools and frameworks.

Our sample application was built on top of MVVM Cross and uses many of the frame-
work’s features. The MVVM Cross framework is very well designed in respect to extend-
ibility and modularity, and provides more features than most other MVVM frameworks.
It is very powerful, yet not always easy to use. MVVM Cross uses many modern program-
ming paradigms that the developers should be familiar with. It is probably not the best
framework for developers starting with MVVM development. For beginners frameworks
like MVVM Light or the Simple MVVM Toolkit are better suited. The documentation of
MVVM Cross is good, but does not cover every aspect of the framework. However, expe-
rienced developers will likely master any challenges that come with using MVVM Cross
by looking at its clean and well-structured source code.

Another challenging part was that different platforms often have different ways to load
resource files and have different concepts for localization. MVVMCross provides a plugin
for resource loading as well as localizing strings. The problem was that MVVM Cross’ de-
fault implementation does not work well at design-time. All Windows platforms come
with a great designer integrated in Visual Studio and work well with the external design
environment Blend. Providing design time data for the designer has many benefits for
designers as well as developers. Supporting design-time data can only be achieved if the
setup of the application works under design-time conditions in a similar way as at run-
time. Therefore we had to change the default implementation of MVVM Cross to support
design-time data and localization inside Visual Studio and Blend.

Different platforms have different application models and therefore, a different applica-
tion lifecycle. It is important, especially for platforms like Android and Windows Store to
be familiar with the platform and its expected application behavior. That means how and
when what parts of the application is being garbage collected and where to store and
restore the state of the application, as well as other individual application behavior. This
can be a tough challenge, particularly when dealing with cross platform development.

Page 91

A further challenge was that the used platforms support many different screen sizes and
different concepts for navigating through each application. For example the Windows
Store platform uses Flyout controls to show content (Views) while an implementation for
small Android devices opens each View on a dedicated page. It can be challenging to im-
plement a solid navigation mechanism that can be used from within the ViewModels and
woks well on every platform. The navigation concept of MVVMCross can help to create
such implementations and can be configured to work well on each supported platform.

Additionally, our sample application provides the same features for all platforms. Usually,
when developing larger applications it is often required to use different platform specific
features. Since not all features are supported by all platforms it can be a real challenge
to add those features and still keep a consistent software architecture.

5.2.9 Benefits of MVVM

MVVM has many benefits when developing .NET applications. Most of these benefits,
sometimes even more apply for cross platform development as well. The following list
contains some of the many benefits that the MVVM pattern contributes to our sample
application.

- The Loose coupling of Views and ViewModels make it easy to switch Views

- MVVM is widely used by many developers and can be learned easily using many
different learning resources from the web

- A unified data flow makes it easy to maintain and add additional parts to the
application

- Good MVVM frameworks can be used to easily add MVVM to an existing appli-
cation

- Data bindings are an important part of all XAML languages and can be exploited
best with MVVM

- When developing applications that do not use data bindings it is often hard to
sync data within the application, when using MVVM this problem does not exist

- Loose coupling of the application’s components makes it easy to replace individ-
ual parts

- When using services to encapsulate common functionality, it is easy to reuse
them for other applications

- ViewModels as well as services are easy to unit test, due to their loose coupling
to the rest of the application. Even if the testing environment is not the same as
the run-time environment

5.2.10 Results and conclusions

This section will summarize and interpret the results of our sample application in terms
of code distribution across the individual projects. It will give conclusions about how
much lines of code were needed in each project and what parts of the application use the
most lines of code. Keep in mind that each line of code is not equally complicated to write
and maintain. That is why the results below are only guidance values and may not reflect
the real effort to create and maintain the application.

Page 92

The following table shows the numbers of lines that had to been written to create our
sample application. The numbers do not include empty lines of code, usings for C# code,
XML namespaces as well as automatically generated code.

Projects Model® Views? services® VM® setup® transl.® others” overall

Core 70 0 140 240 36 24 69 509

Win. Shared 0 93 13 0 82 0 0 188
Win. Store 0 64 0 0 0 0 0 64
Win. Phone'® 0 50 0 0 0 0 0 50
Win. Desktop 0 167 13 0 88 0 0 268
Android 0 156 31 0 57 0 0 244

Sum: 1323

Table 10: Lines of code used by the .NET sample application

1) The Model includes all data classes

2) Views contain markup code (XAML for Windows platforms and Android XML for Android), C#
code from the code behind files, as well as code used to place the views on the screen (pre-
senter)

3) Services and message classes

4) Code inside ViewModels

5) Code used to initialize the application including saving and restoring the application’s states

6) String resources that are used to translate the application (one line of code for each string and
language)

7) All other code that is not automatically generated

8) The values for the Windows Phone application are estimated values based on the experience
gained from other platforms

Let us take a closer look at the above numbers to see how the code is distributed within
our sample application and what the differences between each platforms are. The code
that is shared between all platforms and located inside the Core project makes up the
largest part and covers all code categories with the exception of the Views, which are
always platform specific.

The biggest part of the platform specific code is needed for Views, services and code used
to initialize the application. The services part is relatively small for our sample application
but will likely be larger for real world applications. MVVMCross is the main reason for the
small numbers in the service part, since it offers lots of basic device specific services by
default.

The amount of code used to create Views is similar on all targeted platforms, since all of
them use an XML based markup language, which is similar to use.

The amount of code inside the individual Windows Store project, as well as the estimated
number of code inside the Windows Phone project is quite low since all services and most
of the Views are located inside the common Windows Shared project.

The above numbers can be used to create statistics to show the distribution of code
across the application’s components. For cross platform development there are often
numbers used to describe the amount of shared code, which has to be written only once,
yet runs on multiple platforms. Since the amount of supported platforms should not be
relevant to this numbers, the values are often not calculated like the values of the first

Page 93

two columns of the table below. Instead the values are calculate like the two columns on
the right side of the table below.

The setup code can be seen as a static part of the application since it will not dramatically
increase, when crating larger applications. Therefore, the three columns on the right are
calculated by ignoring the code used for initializing the application.

overall shared code
Projects overall (without setup) (without setup)
Core 38,47% 44,62%
Windows Shared 14,21% 10,00%
Windows Store 4,84% 6,04% 73,56%% 88,08%“
Windows Phone' 3,78% 4,72% 75,20%% 90,44%
Windows Desktop 20,26% 16,98% 72,43%
Android 18,44% 17,64% 71,67%"

Table 11: Distribution of code across the individual projects (.NET)

1) The values for the Windows Phone application are estimated values based on the experience
gained from other platforms
Core

P ———— where P is the number of lines inside the plat-

2) The Value is computed with
form specific project

3) The Value is computed with

Cor
T

P eP, where P is the number of lines inside the platform specific pro-

e+
ject
Core+Windows Shared

CoretindowsShared s’ where P is the number of lines inside the plat-

4) The Value is computed with

form specific project

In comparison to other cross platform solutions that have values of nearly 100% for over-
all shared code, the numbers of this sample application seem very low. However, one
needs to keep in mind that applications with such high values of shared code will most
likely do not have the high performance, good usability and high flexibility that this sam-
ple application has. When looking at an application for a single platform about 70% to
75% of its code is located inside the shared project. With our sample application we tried
to cover lots of the key problems that have to be solved for real world applications, it is
likely that similar numbers can be achieved by real world applications as well.

5.2.11 Extend for more platforms

The sample application targets Android, Windows Desktop (WPF) and the Windows Store
platform. Since MVVMCross can be used on many more platforms it is easy to extend the
application to support Windows Phone, iOS, Mac and Silverlight as well. Especially the
addition of the Windows Phone platform can be achieved with little effort, since most of
the code is already implemented inside the shared Windows project.

Right now is an important time for the .NET platform. The .NET source code becomes
more and more open source and its capabilities will likely extend to other platforms in
the near future. All these new platforms can then be added to our solution with little ef-
fort.

Page 94

List of acronyms

AJAX Asynchronous JavaScript and XML
API Application programming interfaces
CPU Central processing unit

CSS Cascading style sheets

DOM Document object model

GUI Graphical user interface

IDE Integrated development environments
10C Inversion of control

JSP Java Server Pages

LINQ Language Integrated Query

MVC Model View Controller

MVP Model View Presenter

MVVM Model View ViewModel

oS Operating System

SASS Syntactically Awesome Style-Sheets
Ul User interfaces

WInRT Windows RunTime

Page 95

Bibliography

[1] Refsnes Data, "OS platform statistics from W3School's log files," 18 1 2014. [Online].
Available: http://www.w3schools.com/browsers/browsers_os.asp.

[2] Gartner, "Mobile statistics and forecast,” 17 1 2014. [Online]. Available:
http://www.gartner.com/newsroom/id/2645115.

[3] Gartner, "Collection of Gartner statistics from 2008 to 2014," 17 1 2014. [Online].
Available: http://www.gartner.com/newsroom.

[4] Statistic Brain, "Mobile Phone App Store Statistics," 23 03 2014. [Online]. Available:
http://www.statisticbrain.com/mobile-phone-app-store-statistics/.

[5] Appcelerator, "Aptana Studio - official website," 2014. [Online]. Available:
http://aptana.com/. [Accessed 24 6 2014].

[6] JetBrains s.r.o., "WebStorm — The smartest JavaScript IDE," 2014. [Online].
Available: http://www.jetbrains.com/webstorm/. [Accessed 24 6 2014].

[7]1 Microsoft, "Visual Studio - official website," 2014. [Online]. Available:
http://www.visualstudio.com/. [Accessed 24 6 2014].

[8] A.MacCaw, The Little Book on CoffeeScript, O'Reilly Media, 2012.
[9] S. L. Chris Bucket, Dart in Action, Manning, 2013.

[10] Microsoft, "TypeScript Language Specification," 6 3 2014. [Online]. Available:
http://www.typescriptlang.org.

[11] Sass, "Sass official website - Start Page," 19 2 2014. [Online]. Available: http://sass-
lang.com/.

[12] Less, "Less official website - Start Page," 17 3 2014. [Online]. Available: http://sass-
lang.com/.

[13] The jQuery Foundation, "jQuery official website," 2014. [Online]. Available:
http://jqueryui.com/. [Accessed 5 6 2014].

[14] The jQuery Foundation, "jQueryUl official website," 2014. [Online]. Available:
http://jqueryui.com/. [Accessed 5 6 2014].

[15] The jQuery Foundation, "jQuery Theme Roller," 2014. [Online]. Available:
http://jqueryui.com/themeroller/. [Accessed 5 6 2014].

[16] The jQuery Foundation, "jQuery Mobile official website," 2014. [Online]. Available:
http://jquerymobile.com/. [Accessed 5 6 2014].

[17] Microsoft Open Technologies, "GitHub - Winls," 9 04 2014. [Online]. Available:
https://github.com/winjs/winjs/wiki/Roadmap.

Page 96

[18] Microsoft, "TryWinls : Bindings," 18 04 2014. [Online]. Available:
http://try.buildwinjs.com/#binding.

[19] Telerik, "Telerik official website - Start Page," 24 2 2014. [Online]. Available:
http://www.telerik.com/.

[20] Angulars, "Angularls official website," 2014. [Online]. Available:
http://angularjs.org/. [Accessed 9 6 2014].

[21] Knockoutls, "Knockout)s official website," 2014. [Online]. Available:
http://knockoutjs.com/. [Accessed 25 6 2014].

[22] Durandalls, "Durandalls official website," 2014. [Online]. Available:
http://durandaljs.com/. [Accessed 25 6 2014].

[23] Microsoft, "WinJs official website - Start Page," 4 4 2014. [Online]. Available:
http://try.buildwinjs.com.

[24] Backbonels, "Backbonels official website," 2014. [Online]. Available:
http://backbonejs.org/. [Accessed 9 6 2014].

[25] Derby, "Derby official website," 2014. [Online]. Available: http://derbyjs.com/.
[Accessed 25 6 2014].

[26] Ember, "Ember official website," 2014. [Online]. Available: http://emberjs.com/.
[Accessed 25 6 2014].

[27] JsViews, "JsViews official website," 2014. [Online]. Available:
http://www.jsviews.com/. [Accessed 25 6 2014].

[28] jQXB, "jQXB Expression Binder wensite on Codeplex," 2014. [Online]. Available:
http://jgxb.codeplex.com/. [Accessed 25 6 2014].

[29] Meteor, "Meteor official website," 2014. [Online]. Available:
https://www.meteor.com/. [Accessed 25 6 2014].

[30] AngularDart, "AngularDart official website," 2014. [Online]. Available:
https://angulardart.org/. [Accessed 9 6 2014].

[31] Knockout)s, "Knockoutls mapping plugin," 2014. [Online]. Available:
http://knockoutjs.com/documentation/plugins-mapping.html. [Accessed 25 6
2014].

[32] Google, "ChromeOS official website," 2014. [Online]. Available:
http://www.chromium.org/chromium-os. [Accessed 25 6 2014].

[33] Mozilla, "FirefoxOS official website," 2014. [Online]. Available:
http://www.mozilla.org/en-US/firefox/os/. [Accessed 25 6 2014].

[34] Google, "Android official website," 2014. [Online]. Available:
http://www.android.com/. [Accessed 25 6 2014].

Page 97

[35] Adobe, "PhoneGap official website - Start Page," 2 3 2014. [Online]. Available:
http://phonegap.com/.

[36] Amazon, "FireOS developer website - Start Page," 15 2 2014. [Online]. Available:
https://developer.amazon.com/appsandservices/solutions/platforms/android-
fireos.

[37] BlackBerry Limited, "Blackberry 10 developer website - Start Page," 11 2 2014.
[Online]. Available: https://developer.blackberry.com/.

[38] Apple Inc., "Apple developer website," 11 2 2014. [Online]. Available:
https://developer.apple.com/.

[39] Canonical Ltd., "Ubuntu official website - Start Page," 7 2 2014. [Online]. Available:
http://www.ubuntu.com/.

[40] Microsoft, "Windows Phone developer website - Start Page," 8 2 2014. [Online].
Available: http://dev.windowsphone.com/en-us/develop.

[41] Linux Foundation, "Tizen official website - Start Page," 1 3 2014. [Online]. Available:
https://www.tizen.org.

[42] Adobe, "Adobe PhoneGap Build," 2014. [Online]. Available:
https://build.phonegap.com/. [Accessed 23 06 2014].

[43] Appcelerator, "Titanium official website - Start Page," 5 3 2014. [Online]. Available:
http://www.appcelerator.com/.

[44] .NET Foundation, ".NET Foundation official website : Start page," 18 4 2014.
[Online]. Available: http://www.dotnetfoundation.org/.

[45] Microsoft, "Lambda Expressions (C# Programming Guide)," 25 3 2014. [Online].
Available: http://msdn.microsoft.com/en-us/library/bb397687.aspx.

[46] Microsoft, "Patterns & Practices: Prism," 24 03 2014. [Online]. Available:
http://compositewpf.codeplex.com/.

[47] "Caliburn Micro - GitHub page,” 24 3 2014. [Online]. Available:
https://github.com/BlueSpire/Caliburn.Micro.

[48] T. Sneed, "Codeplex - Simple MVVM Toolkit," 2014. [Online]. Available:
https://simplemvvmtoolkit.codeplex.com/. [Accessed 7 6 2014].

[49] G. v. Horrik, I. A. F. Saldco and R. P. Mounguenge, "Catel MVVM," 24 03 2014.
[Online]. Available: http://catelproject.com/.

[50] MVVM Light community, "MVVM Light," 21 3 2014. [Online]. Available:
http://mvvmlight.codeplex.com/.

[51] MVVM Cross community, "GitHub : MVVM Cross plugins,” 18 4 2014. [Online].
Available: https://github.com/MvvmCross/MvvmCross/wiki/MvvmCross-plugins.

Page 98

[52] Xamarin, "Xamarin website," 2014. [Online]. Available: http://xamarin.com/.
[Accessed 4 6 2014].

[53] Xamarin, "Xamarin website - Forms," 2014. [Online]. Available:
http://xamarin.com/forms. [Accessed 04 06 2014].

[54] M. Kristensen, "VSWebEssentials official website - Start Page," 9 3 2014. [Online].
Available: http://vswebessentials.com/.

[55] Outercurve Foundation, "NuGet official website - Start Page," 23 2 2014. [Online].
Available: http://www.nuget.org/.

[56] JetBrains, "ReSharper website, 3 3 2014. [Online]. Available:
http://www.jetbrains.com/resharper/.

[57]S. Schob, "Schob goes Mobile," [Online]. Available:
http://opendix.blogspot.co.at/2013/05/using-resx-files-for-localization-in.html.
[Accessed 29 5 2014].

Page 99

List of figures

FIGURE 1: OS PLATFORM STATISTICS FROM W3SCHOOL'S LOG FILES [1] ccuveroviriieriieiieiceeenceiee 5
FIGURE 2: WORLDW!IDE DEVICE SHIPMENTS BY SEGMENT [2].....ceiiiiiiiiiiiiienieieee e 5
FIGURE 3: SMARTPHONE SALES NUMBERS [3]eeuiiiiiiieniiienieniesiesieeie ettt 6
FIGURE 4: TOTAL APP STORE REVENUE IN 2013 [4]...cccuiriiriinririiirinieeieeieeeieieseesre s 6
FIGURE 5: WORLDW!IDE DEVICE SHIPMENTS BY OPERATING SYSTEM [2]....ccceeviririiieiereniennenenn 7
FIGURE 6: SIMPLE DATAFLOW DIAGRAM OF MVCcooiiiiiiiiiiiiiiiiic e 9
FIGURE 7: SEQUENCE DIAGRAM OF A SIMPLE USER INTERACTION USING MVCccccocuviriinnnnnne 9
FIGURE 8: SIMPLIFIED DATAFLOW DIAGRAM OF MVPccviiiiiiiiiiiiniiecicece e 10
FIGURE 9: SEQUENCE DIAGRAM OF A SIMPLE USER INTERACTION USING MVP.......cccccevvrvnnrnen. 11
FIGURE 10: SIMPLE DATAFLOW DIAGRAM OF MVVM......cccciiiiiiiiiiiiiniiiciirecn e 12
FIGURE 11: SEQUENCE DIAGRAM OF A SIMPLE USER INTERACTION USING MVVM...........cceeuueee. 12
FIGURE 12: DIAGRAM OF DATA BINDING MECHANISMcccoiiiiiiiiiiiiiiiiiiic i 15
FIGURE 13: SEQUENCE DIAGRAM OF A SIMPLE MESSAGING IMPLEMENTATIONccccviiienen. 16
FIGURE 14: SCREENSHOT OF A MESSAGEBOX (DESKTOP)coteiiiiieieienieniesrenesee e 67
FIGURE 15: SCREENSHOT OF LISTSVIEW AND PRODUCTSVIEW (DESKTOP)ccceeveviiiniiieniennenne. 68
FIGURE 16: SCREENSHOT OF THE ADDPRODUCTVIEW (DESKTOP).....ccoiriniriiriiieieieieieienee, 69
FIGURE 17: SCREENSHOT OF A MESSAGEBOX (MOBILE)ccccoiiuiiiiiiiiicicicnne e 70
FIGURE 18: SCREENSHOT OF THE LISTSVIEW (MOBILE).......ccccceviiiiiiiiiiiiicninn e 71
FIGURE 19: SCREENSHOT OF THE PRODUCTSVIEW (MOBILE)ooveieiiniinienieneneeeeieeeeeeeeneene 71
FIGURE 20: SCREENSHOT OF THE ADDPRODUCTVIEW (MOBILE)ccocoenineriirrinieneeiieeeeeeeneene 72
FIGURE 21: SCREENSHOT OF THE PROJECT STRUCTURE WITHIN VISUAL STUDIO (.NET).............. 76
FIGURE 22: INHERITANCE STRUCTURE OF DATA CLASSES (.NET) ..cueeiteiiriinierieereneeeeieeeeeneneene 77
FIGURE 23: UML DIAGRAM OF THE ISTATESERVICE INTERFACE.......ccccooiiiiiiiiiiiiiiiiccc, 77
FIGURE 24: UML DIAGRAM OF THE INOTIFICATIONSERVICE INTERFACEcccccovviviiiiiiiiniiiennen, 78
FIGURE 25: SCREENSHOT OF THE MAIN PAGE (WINDOWS STORE).......ccccvvvininininieieieieiennenen 84
FIGURE 26: SCREENSHOT OF THE MAIN PAGE (WINDOWS DESKTOP)ccoeviiviiiiiiiiicieice, 86
FIGURE 27: SCREENSHOT OF THE ADDPRODUCTVIEW (WINDOWS DESKTOP)ccccovrurnuirurnnnee 86
FIGURE 28: SCREENSHOT OF THE LISTSVIEW (ANDROID)ccveruteueeieeieeienieienie et 88
FIGURE 29: SCREENSHOT OF THE PRODUCTSVIEW (ANDROID).....ccecuerieniinrenienienierieeiieeeeereneenes 89
FIGURE 30: SCREENSHOT OF THE ADDPRODUCTVIEW (ANDROID)ccvvrvinririnrinieeeieieieieneennen 90

Page 100

List of tables

TABLE 1: COMPARISON OF CLIENT AND SERVER CODEccocoiiiiiiiiiiiiiiincci e 19
TABLE 2: COMPARISON OF WEB DEVELOPING IDESccociiiiiiiiiiiiiiiccn e 20
TABLE 3: SYNTAX OF FUNCTION DEFINITIONS WITH DART ...uviiiiiiiiiiiiniiiciic e 23
TABLE 4: COMPARISON OF .NET IDES ..ottt 39
TABLE 5: EXAMPLES FOR LAMBDA EXPRESSIONScoociiiiiiiiiiiiiii i 40
TABLE 6: LIST OF LINQ PROVIDERS......cotiiiiiiiiiiiiiii i 43
TABLE 7: POSITIVE AND NEGATIVE IMPRESSIONS (WEB) ...ccueeuiiiiiiiiiiiiieniisicnc e 73
TABLE 8: LINES OF CODE USED BY THE SAMPLE APPLICATION (WEB)......ccceeiriiiiiiiciiicieiens 74
TABLE 9: DISTRIBUTION OF CODE ACROSS THE INDIVIDUAL IMPLEMENTATIONS (WEB).............. 75
TABLE 10: LINES OF CODE USED BY THE .NET SAMPLE APPLICATIONcccoviiiiiiiiiiiiiiiiciecenn, 93
TABLE 11: DISTRIBUTION OF CODE ACROSS THE INDIVIDUAL PROJECTS (.NET) ..ooervinrerienrennenene 94

Page 101

	Master - 1 - Cover
	Master - 2 - Abstract EN
	Master - 4 - Content

