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Abstract

The software development process is a complex and dynamic task performed by
humans. The reduction of source code and maintenance dependencies among soft-
ware artifacts, and the improvement of coordination between developers, teams, and
stakeholders, are essential issues regarding software engineering. Conway’s Law was
one of the first formulated assumption about the relations between the technical
structure of a product and the organizational structure producing them, expect-
ing that the technical architecture reflects the organizational. Since the emergence
of web-supported distributed software projects, access to a large range of software
repositories and corresponding traces of collaboration has now become available.
The interest of software engineers in socio-technical congruence, motivated by Con-
way’s Law, consists of developing methods to calculate congruence of coordination
requirements, arisen through technical dependencies, and the corresponding actual
coordination activities, because an association with development productivity and
effectivity was acknowledged. This thesis deals with investigations about socio-
technical congruence of two real world software projects, Eclispe SDK and IBM
Jazz Rational Team Concert, for investigating two issues. On the one hand, the
extent to which congruence measures are useful for solving practical problems is
studied. On the other hand, theoretical implications of Conway’s law are explored.
In an empirical study, software quality and success factors are identified which are
supposed to affect socio-technical congruence of software projects, such as number
of bugs per software component.

Keywords: Socio-technical Congruence, Conway’s Law, Network-theoretic Anal-
ysis, Repository Mining, Coordination Requirements



Zusammenfassung

Der Software Entwicklungsprozess ist eine sehr komplexe und dynamische, von Men-
schen ausgeführte, Tätigkeit. Die Reduzierung von Source Code und Maintenance
Abhängigkeiten zwischen Softwarekomponenten und die Verbesserung der Koordina-
tion zwischen Entwicklern, Entwicklerteams und anderen Interessengruppen, gehört
zu den grundlegenden Fragestellungen in der Softwareentwicklung. Conway’s Gesetz
war eine der ersten formulierten Annahmen über den Zusammenhang von techni-
schen Strukturen von Produkten und der organisationalen Struktur, welche die Pro-
dukte fertigt. Seit dem Aufkommen von web-basierten verteilten Software Projekten
ist eine große Anzahl an Software Repositories und die zugehörigen aufgezeichneten
Kollaborationsspuren von Entwicklern zugänglich geworden. Das Interesse von Soft-
ware Ingenieuren an sozio-technischer Übereinstimmung, motiviert durch Conway’s
Gesetz, besteht aus der Entwicklung von Methoden zur Berechnung von Kongru-
enz zwischen Koordinationsanforderungen, welche durch technischen Abhängigkei-
ten entstehen, und dazugehörigen tatsächlichen Koordinationsaktivitäten, weil ein
Zusammenhang mit Entwicklungsproduktivität und -effektivität eingeräumt wird.
Diese Arbeit beschäftigt sich mit Untersuchungen von sozio-technischen Überein-
stimmungen von zwei realen Software Projekten, Eclipse SDK und IBM Jazz Ratio-
nal Team Concert, um zwei Fragestellungen zu untersuchen. Zum einen den Umfang
in dem Kongruenz Metriken nützlich sind, um praktische Probleme zu lösen und
zum anderen,welche theoretischen Implikationen, beruhend auf Conway’s Gesetz,
erforscht werden können. In einer empirischen Studie werden verschiedene Qua-
litäts- und Erfolgsfaktoren identifiziert, die vermeintlich die sozio-technische Kon-
gruenz von Software beeinflussen, wie beispielsweise die Anzahl an Softwarefehlern
pro Software Komponente.

Schlagworte: Sozio-technische Kongruenz, Conway’s Gesetz, Netzwerk-theoretische
Analyse, Datengewinnung, Koordinationsanforderungen



STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

.............................. .........................................................
(date) (signature)



Acknowledgements

I would like to express my gratitude to my advisor Dr.Markus Strohmaier, who in-
spired me to social network analysis and improved my understanding for scientific
writing, supporting and guiding me during the course of this thesis.

Thanks to my parents, who harbored me during the time of writing my thesis and
to my family and friends who always encouraged me, especially with my constant
commuting between Austria and Germany.

Ela, thank you for your trust, understanding and being there for me.

Gabriele Zorn-Pauli, May 2010



Contents

1 Introduction 3
1.1 The Complexity of Socio-technical Structures . . . . . . . . . . . . . 4
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Structure of this Document . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7
2.1 Social Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Concepts and Definitions . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Network Types . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Topological Network Properties . . . . . . . . . . . . . . . . . 11

2.2 Socio-technical Congruence . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Understanding Congruence . . . . . . . . . . . . . . . . . . . 16
2.2.2 Measuring Congruence . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Achieving Congruence . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Software Development Quality and Success Metrics . . . . . . . . . . 19
2.4 Mining Software Repositories . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Mining Source Code . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Mining Issue-tracking Systems . . . . . . . . . . . . . . . . . 26
2.4.3 Mining Cross-Media Resources . . . . . . . . . . . . . . . . . 29

3 Data Sets and Network Construction 32
3.1 Eclipse SDK Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Social-inferred Eclipse Dependency Network . . . . . . . . . . 33
3.1.2 Code-inferred Eclipse Dependency Network . . . . . . . . . . 36

3.2 IBM Jazz Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Social-inferred Jazz RTC Dependency Network . . . . . . . . 37
3.2.2 Code-inferred Jazz RTC Dependency Network . . . . . . . . 38

3.3 Social Network Analysis of the Generated Networks . . . . . . . . . 39

4 Selected Congruence Measures 42
4.1 Arc Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Weighted Coordination Requirements . . . . . . . . . . . . . . . . . 44
4.3 Edge Weight Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Similarities, Distinctions and Characteristics . . . . . . . . . . . . . 48

1



CONTENTS 2

5 Results and Discussion 49
5.1 Impact on Congruence by Reducing Data Volume . . . . . . . . . . . 50
5.2 Evolution of Congruence over Time . . . . . . . . . . . . . . . . . . 51
5.3 Segmentation of Static and Dynamic Code Dependencies . . . . . . . 54
5.4 Correlation of Congruence Algorithm Measures . . . . . . . . . . . . 55
5.5 Identification of Quality- and Success Factors Effecting Congruence . 56

6 Conclusion 60
6.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.2 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A Implementation 68
A.1 Matlab/Python Framework . . . . . . . . . . . . . . . . . . . . . . . 68
A.2 Additional Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B Resources 71
B.1 Excerpt of the Bugzilla Data Set . . . . . . . . . . . . . . . . . . . . 71
B.2 Eclipse SDK Component List . . . . . . . . . . . . . . . . . . . . . . 72
B.3 Example plugin.xml Metadata File IBM Jazz RTC Project . . . . . 72
B.4 Example MANIFEST.MF Metadata File IBM Jazz RTC Project . . 73
B.5 IBM Jazz RTC Project Matched Software Component Tag List . . . 73
B.6 Screenshot IBM Jazz Work Item GUI . . . . . . . . . . . . . . . . . 74



Chapter 1

Introduction

Any organization that designs a system will produce a design whose structure is a
copy of the organization’s communication structure.

Melvin E. Conway

The software development process is a dynamic and complex activity performed
by humans. The reduction of code and maintenance dependencies among software
artifacts and the improvement of coordination between developers, teams, and stake-
holders are essential issues regarding software engineering. [Conway, 1968] was one of
the first formulating an assumption about the relation between the technical struc-
ture of a product and the organizational structure producing them, expecting that
the technical architecture reflects the organizational. Conway’s Law, illustrated in
figure 1.1, implies two aspects. On the one hand, that there may exist a similarity
between the technical and organizational or socially-inferred structures of products,
measurable through congruence. On the other hand, that there may exist a causal
relation, where the socially-inferred structure causes the technical structure of a
product.

Figure 1.1: Conway’s Law

This thesis deals with investigations about socio-technical congruence of real world
software projects, examining whether the technical or code-inferred software archi-
tecture correlate with the socially-inferred software architecture using socio-technical
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CHAPTER 1. INTRODUCTION 4

congruence measures. The interest of software engineers in socio-technical congru-
ence, motivated by Conway’s Law [Conway, 1968], consists of developing methods to
calculate congruence of coordination requirements, arisen through technical depen-
dencies, and the corresponding actual coordination activities. Hence, socio-technical
congruence underlines the importance of detecting relationships among social and
technical dependencies, because an association with development productivity and
effectivity was acknowledged [Cataldo et al., 2008].

1.1 The Complexity of Socio-technical Structures

An enormous problem in software development is the growing complexity of software
systems. Therefore, an established approach in software development is to divide-
and-conquer problems into smaller units, that means decomposing software into
several subsystems or components where developers could work independently [Fon-
seca et al., 2006]. This leads on to the problem of reassembling the different software
components as well as the coordination effort between developers working on two
components which depend on each other. [Grinter, 2003] refers to this as a recompo-
sition process, ’the work necessary to ensure that a software product can be assembled
from its component pieces’, where dependencies between components play an impor-
tant role. In this case, a very important question is the definition of dependencies
and for example, [Wermelinger and Yu, 2008] define software or code-inferred de-
pendencies of software components in the following way:

Software component X depends on component Y if the compilation of X requires Y

On the other side, socially-inferred dependencies could be identified, if for example
two developers work on the same component, traced through occurring in the same
bug report or feature request. Hence, they got socially linked according to [Crow-
ston and Howison, 2005]. Therefore, code-inferred dependency networks comprise
dependencies between software artifacts acquired through code dependency analy-
sis and socially-inferred dependency networks reflect dependencies among software
components, gained through organizational coordination activities.

Furthermore, a software development process requires many tasks of coordination
as well as communication between people who are engaged within the development
process. Concerning this process there are two dimensions which have to be aligned.
The first dimensions focuses on the technical perspective, because especially software
development contains technical dependencies between software components based on
code dependencies as well as for example maintenance dependencies. Otherwise, the
second dimension relates to the organizational structure and the behavior of devel-
opers or people who are associated with the development process.

For being successful in software development it would be necessary to focus on
both dimensions and align the technical and the social aspects [Cataldo et al.,
2008]. [Valetto et al., 2007] state that the knowledge about socio-technical con-
gruence of software projects and the understanding of how involved people, not only
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developers, communicate and interact with each other is important to improve the
quality and probability of success. [Herbsleb and Mockus, 2003] argue that a bad
alignment would result in a longer development time and also cause a higher amount
of bugs and therefore higher costs.

1.2 Research Questions

This thesis concentrates on studying the relationships of socially- and technically
inferred dependency networks acquired from software projects, using new approaches
of socio-technical congruence and methods of social network analysis answering the
following questions:

• To what extent is Conway’s Law amenable for qualitative analysis?

• Are the measures of socio-technical congruence algorithms useful and practi-
cally applicable?

• Does congruence evolve over time? Growth or stable equilibrium?

• Is congruence correlated with some quality and success criteria, for example
number of bugs?

1.3 Contribution

This thesis evaluates different approaches for measuring congruence of dependency
networks by assessing three socio-technical congruence algorithms applied to two
different real world data sets extracted from web-mediated software repositories.

The resulting insights about relationships between socially-inferred networks and
software code-inferred networks through network-theoretic analysis could have im-
plications on the design of an efficient team organization in software development
projects. Therefore, the results and conclusions could support solving problems in
coordination of software development projects by providing a better understanding
of network-theoretic properties and characteristics of social and technical networks.

Additionally, the research on socio-technical congruence is a rather young discipline,
and proof of concept and comparison of different approaches and metrics through
an empirical study have not taken place on real world data sets yet.

1.4 Structure of this Document

The introduction chapter is followed by a synopsis of related works in chapter 2,
which includes foundations of social network analysis, socio-technical congruence,
software quality measures and different practices of mining of software repositories.
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Figure 1.2 illustrates the thesis process chart of necessary steps conducting the em-
pirical study on socio-technical congruence measures.

Figure 1.2: Thesis process chart

Chapter 3, contains descriptive properties of the two real world data sets, mined
from software repositories and describes the generation of the dependency networks
and results of a social network analysis. The next chapter 4 characterizes the three
selected socio-technical congruence measures and the corresponding algorithms to
consider similarities and differences. The following chapter 5 illustrates the results of
the empirical study used to answer the questions in chapter 1.2 evaluating the results
of the social network analysis, congruence measure calculations, and the identifica-
tion of congruence influence factors. Chapter 6 discusses the results and insights
and gives an outlook on future work and improvements.

The appendix A provides details on the implemented MATLAB/Python framework
and the additionally used tools. Further, appendix B illustrates some resource ex-
amples including excerpts of the data and file formats for mining the software repos-
itories and the dependency networks construction.



Chapter 2

Related Work

This chapter provides an overview of the most related literature which discusses the
issues and approaches of socio-technical architectures and according research areas
such as data mining or social network analysis. The first section provides an intro-
duction and foundations of social network analysis metrics and methodologies. The
second section deals with related works from the socio-technical congruence domain
and the third section deals with different software quality measures, including both
software code quality and software community measures. In the last section, dif-
ferent practices on mining software repositories using source code, bug reports or
email archives for producing social networks reflecting collaboration or coordination
structures of software developers are discussed.

2.1 Social Network Analysis

Various studies in the past have given an advice on the pervasion of social network
analysis concerning software development processes and the regarding alignment of
socio-technical aspects. The presence of network structures in technical and also
in business domains make network research useful. Since Web 2.0 and the rise of
web-mediated social software tools and services, the importance of social network
analysis has increased. This section provides an introduction to key concepts and
foundations of social network analysis, network theory and measurement of network
topologies.

2.1.1 Concepts and Definitions

One of the key concepts in social network analysis are the social entities and their
links among each other, denoted as actors, where this description is used as a
metaphor and does not limit actors to entities which are able to act. These ac-
tors could represent different characteristics of entities such as a real person, person
groups up to technical units or modules. For constructing a social network, the
concept of relating actors by relation ties, or so called edges, is used. Thereby, the
decision of linking two actors depends on the specific context and ties could repre-
sent different relations such as friendship, affiliation or technical dependencies.

7
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In literature, many approaches of network analysis concern the issue of linking node
pairs, where this relation concept is denoted as dyad. This was discussed by [Wasser-
man and Faust, 1994] and represents the basic unit of network analysis.

Dyad A dyad is an unordered pair of actors and the arcs that exist
between the two actors in the pair. The dyad consisting of actors i and
j will be denoted by Di, j = (Xi, j , Xj, i), for i 6=j. There are exactly
n(n−1)

2 dyads for n nodes represented in a adjacency matrix X which is
also called sociomatrix in literature.

Sociomatrix Define Xi,j as the value of the tie from the ith actor to
the jth actor on the single relation. Since there are n actors, the matrix
is of size n×n with n rows and n columns. The value of the tie from ni

to nj is placed into the (i, j)th element of X.

[Wasserman and Faust, 1994] also defined three dyadic isomorphism states of dyads
concerning different arc directions illustrated in figure 2.1 and arc weights are rep-
resented by different values in the adjacency matrix.

Figure 2.1: Dyadic isomorphism states [Wasserman and Faust, 1994]

The next greater unit which is considered in many network analysis approaches is
the triad which represents a subgroup containing three actors and their relation-
ships. An interesting issue concerning triads is the analysis of transitively relations
discussed in [Wasserman and Faust, 1994] and [Granovetter, 1973] who define the
model of the forbidden triad, shown in figure 2.2, specifying that within a triad with
two existing edges, the absence of the third is forbidden.

Transitivity The triad involving actors i, j and k will become a fully
connected triad if i is connected to j and j is connected to k then i is
connected to k.

2.1.2 Network Types

On studying social networks, a division of different network types or network modes
categorizing networks by the number of disjoint node types takes place. Therefore,
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Figure 2.2: Forbidden Triad by [Granovetter, 1973]

this subsection describes the different network types of social networks.

One-mode Networks
A traditional network or unipartite graph G = (V,E) includes only one particular
set of node types H, for example actors, and consists of a number of nodes or ver-
texes V and a set of edges E⊆V×V capturing the relations between nodes. (see
also definition of sociomatrix in section 2.1.1) [Latapy et al., 2008]

Two-mode Networks
Considering a two-mode network or bipartite graph, the network represents relations
only between two different node types. [Wasserman and Faust, 1994] relate to them
also as dyadic two-mode networks because of the references to dyad performance
clarifying that the two vertices of the dyad are assigned to different node types.
[Latapy et al., 2008] define two-mode networks as follows:

Let G = (>, ⊥, E) denote a two-mode network, where the ⊥-projection
of G is the graph G⊥ = (⊥, E⊥) in which two nodes (of ⊥) are linked
together if they have at least one neighbor in common in G: E⊥ = (u, v),
∃ x ∈ > : (u, x) ∈ E and (v, x) ∈ E. The >-projection G> is denoted in
the same way.

Figure 2.3: A two-mode network (middle) with according > (left) and ⊥-projections (right) [Latapy
et al., 2008]

Therefore, figure 2.3 illustrates the top and bottom projections of an exemplary
two-mode network, depicting the disjoint relations between the two node types and
the according one-mode networks derived from the projections using graph repre-
sentation. Assuming that one node type describes a set of actors and the other a set
of events in which an actor could be affiliated with, then in literature such networks
are defined as affiliation networks [Wasserman and Faust, 1994]. Compared to
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one-mode networks, affiliation networks provide a focus on two perspectives of actors
and events depicted in one network structure, because information about affiliations
is concretely mapped in the affiliation network.

G =


A B C D E F

1 1 1 1 0 0 0
2 0 1 1 1 0 0
3 0 0 1 0 1 0
4 0 0 0 1 0 1

 G> =



A B C D E F
A 1 1 1 0 0 0
B 1 2 2 1 0 0
C 1 2 3 1 1 0
D 0 1 1 2 0 1
E 0 0 1 0 1 0
F 0 0 0 1 0 1


Table 2.1: Adjacency matrix representation of the affiliation network shown in figure 2.3 and ac-
cording >-projection

[Datta et al., 2010] examine the dynamics of software development teams by con-
structing affiliation networks relating developers to roles, seniority and location.
Further, most of the approaches discussed in the section 2.4.1, use affiliation net-
works for representing mined network data and relations between developers, bugs
or software artifacts.

Hence, one approach of analyzing two-mode networks is to transform or reduce
the network into two one-mode networks which is also denoted in literature as pro-
jection by using matrix manipulations [Latapy et al., 2008]. Therefore, it has to
be observed that data is lost through transformation, because the one-mode net-
work projection only provides information about one perspective of actors or events.
To get the different projections, for example the ⊥-projection involving the actor
information and >-projection the events, two matrix manipulations are necessary
as denoted in formula 2.1 and 2.2. Referring to figure 2.3 and the transformed >-
projection, containing nodes from A to F , node pairs were linked only if they share
the same neighbors in the affiliation network. An adjacency matrix representation
would reveal the results of the transformation function shown in table 2.1. The dif-
ferent entries in the transformed adjacency matrix G>, denote the number of shared
neighbors, for example node B and C share the same two neighbors (node 1 and
2) in the affiliation network and were linked with a edge weight of 2. Further, the
diagonal provides information about the node degree in the affiliation network, for
example node C possesses a degree of 3 due to three neighbors in the two-mode
network.

G⊥ = G×GT (2.1)

G> = GT×G (2.2)

Most methodologies for analyzing social networks are based on and optimized for
one-mode networks. [Latapy et al., 2008] provide an overview of basic notations and
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methods of transforming networks with multi-level node types into one-mode net-
work projections.

k-mode Networks
An extension of two-mode networks are networks which include k different node
types, where edges only exist between nodes of different types. Specially in terms of
Web 2.0 and according to social web mechanisms like tagging, structures of so called
tripartite or three-mode networks could be generated, including affiliations between
user, resources such as videos, photos or bookmarks and between tags. Such three-
mode structures could be indeed shown in graph representation but the network
structure could only be stored in three two-mode sociomatrices comprising affilia-
tions for example between users and objects, users and tags and relations between
objects and tags.

[Neubauer and Obermayer, 2009] deal with k-mode networks for community detec-
tion, identifying groups which are denoted through a close connectedness in large
and complex networks.

2.1.3 Topological Network Properties

The field of social network analysis provides a number of methods and metrics for
measuring social network properties. This section gives an overview of selected topo-
logical network properties used for investigations in this thesis.

Over the last decades, social network analysis was conducted using randomly gen-
erated network models like Erdös-Renyi networks [Erdös and Rényi, 1960] for sim-
ulating real-world networks. The construction of random networks according to
the Erdös-Renyi model is accomplished by connecting every pair of N nodes with
a probability of p. This produces a network with randomly distributed edges of
around pN(N−1)

2 edges.

However, real-world networks like a software project developer community do not
share the same attributes like a randomly generated network, because they are more
complex and reflect some organizational structures or principles such as scale-free or
small-world attributes in their network topology [Albert and Barabási, 2002], [Watts
and Strogatz, 1998] and [Newman, 2002].

2.1.3.1 Small-world Property

Several studies of social networks are focused on the connectedness of networks. The
concept of small-world networks is defined as ’the principle that we are all linked by
short chains of acquaintances’ by [Kleinberg, 2000], which means that for example
the developer of a large development team is related approximately to any other
developer within the group and therefore the paths for reaching any other developer
are relatively small. [Milgram, 1967] was the first pointing out the small-world
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phenomenon investigating network average path lengths of social networks. In an
experimental study, [Travers and Milgram, 1969] examine ’the probability that any
two people, selected arbitrarily from a large population, such as that of the United
States, will know each other’ where they denote that two persons A and B may
not know each other directly, but they share the same acquaintances. Further re-
search on the small-network phenomenon such as that by [Watts and Strogatz, 1998]
or [Kleinberg, 2000] was carried out and the small-world phenomenon is referred to
as the six degrees of separation in literature. However, some criticism arises for ex-
ample by [Kleinfeld, 2002] who argues that [Milgram, 1967] did not use an adequate
amount of data and that the mathematical models of [Watts and Strogatz, 1998]
will not replace empirical evidence.

Figure 2.4: Comparison of real world networks and random networks concerning small-world char-
acteristics by [Newman, 2002]

Quantified indicators for a small-world property are a relatively low diameter and
a high clustering coefficient, which is discussed by [Watts and Strogatz, 1998] and
[Newman, 2002], who examine the dynamics and properties of small-world networks
and show that Erdös-Renyi networks do not share these properties. Table 2.4 shows
the results of the investigations of [Newman, 2002], comparing clustering coefficients
of real-world networks with randomly generated networks, where n denotes the
number of nodes and z the mean degree.

Distance and Diameter The distance dist(x, y) in G of two nodes x, y
is the length of the shortest x − y path in G; if no such path exists,
dist(x, y) := ∞. Concerning distances between every possible node pair
in G, the longest shortest (geodesic) path of G is denoted as diameter.
[Diestel, 2005]

diameter = max(dist(G)) (2.3)

Clustering Coefficient Ratio value between actual and possible edges
among a specific node v and its neighbors k, where i represents the num-
ber of existing edges between the neighbor nodes [Watts and Strogatz,
1998].
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cc. =
2i

k(k − 1)
(2.4)

2.1.3.2 Scale-free Property

[Albert and Barabási, 2002] and [Barabasi and Bonabeau, 2003] examine the dif-
ferent degree distributions of real-world networks and random networks and observe
that many real world networks present a power law degree distribution which sig-
nificantly differs from Poisson distributions of random networks. This feature of
power law distribution is one property denoting so called scale-free networks and
defined as follows by [Barabasi and Bonabeau, 2003] in function 2.6. A further
feature of scale-free networks is that network evolution is denoted by preferential
attachment. [Albert and Barabási, 2002] describe this conjecture by an increasing
probability of receiving new edges depending on the node degree.

Degree Distribution The degree dG(v) of a vertex v is the number of
|E(v)| edges at v or the number of neighbors of v. A vertex of degree 0
is isolated [Diestel, 2005]. The degree distribution P (k), formulated in
formula 2.5, represents the fraction of vertices in the network of degree
k for each value of k [Newman, 2002].

P (k) =
(
n− 1
k

)
pk(1− p)n−1−k (2.5)

Power Law Distribution Denotes the probability P (k) that a vertex
in the network is interacting with k other vertices, decays as a power
law. [Barabasi and Bonabeau, 2003]

P (k) ∼ k-γ (2.6)

Preferential Attachment defined by [Albert and Barabási, 2002] When
choosing the nodes to which the new node connects, assuming that the
probability

∏
that a new node will be connected to node i depends on

the degree ki of node i, so that∏
(ki) =

ki∑
jkj

(2.7)

The results and conclusions of [Albert and Barabási, 2002] were extended with fur-
ther research on scale-free network properties such as the study of [Newman, 2002]
or [Barabasi and Bonabeau, 2003], who examines among others degree distributions
of real world networks, shown in figure 2.5, which appear with a power law degree
distribution.

Related to the tenor of this thesis, for example [Hein et al., 2006] investigated in a
case study the impact of network topologies influencing communication and diffusion
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Figure 2.5: Power Law denoted degree distributions of real world networks [Newman, 2002]

processes in socio-technical structures. Concerning the nature of social networks
appearing with small-world and scale-free networks, a corresponding performance of
Open Source development communities was recognized and examined. For example
[Xu et al., 2006] determined Open Source projects concerning network topology
properties and observe that such projects feature characteristics of small-world and
scale-free networks. Table 2.6 illustrates the results of [Xu et al., 2006] and implies
that specially the nature of Open Source software projects, where new members join
in depending on their individual interests and the evolution of the communities tends
to highly connected networks, represents a successful policy of software development
network structures which is verified and quantified in the amount of successful Open
source projects.

Figure 2.6: Descriptive data of development community properties [Xu et al., 2006]

During the course of this thesis, further topology measures were used for a social
network analysis of the generated dependency networks, described in chapter 3. The
definitions of this metrics are as follows, formulated by [Wasserman and Faust, 1994].

Subnetwork A network GS is a subnetwork of G if the set of nodes of
GS is a subset of the set of nodes of G, and the set of lines in GS is a
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subset of the lines in the graph G. Denoting the nodes in GS as NS and
the lines in GS as LS, where LS is a subset of L, then GS is a subnetwork
of G if NS ⊆ N and LS ⊆ L. [Wasserman and Faust, 1994]

Network Component A network is connected if there exist a path be-
tween every pair of nodes in the network. If there exist nodes that were
not reachable, than the network is disconnected. The nodes in a discon-
nected network may be partitioned into two or more subnetworks where
no paths between the nodes in different subnetworks exist. The con-
nected subnetworks in the network are called components. [Wasserman
and Faust, 1994]

Density Is defined for a network as the ratio of the number of undirected
lines L or directed arcs A present to to maximum possible number lines
or arcs that could arise. The density ∆ fraction goes from 0, if no arcs or
lines present, to a maximum of 1, if all arcs or lines present. [Wasserman
and Faust, 1994]

∆undirected =
L

n(n− 1)/2
(2.8)

∆directed =
A

n(n− 1)
(2.9)

Closeness Centrality Measures how close for example an actor is to all
the other actors in the set of actors. The idea is that an actor is central
if it can quickly interact with all other. Let dist(ni,nj) be the number of
lines in the geodesic linking of actor i and j. The total distance that i
is from all other actors is

∑g
j=1 dist(ni, nj), where the sum is taken over

all j 6=i. [Wasserman and Faust, 1994]

cc =

 g∑
j=1

dist(ni, nj)

−1

(2.10)

Betweenness Centrality Suppose that in order for actor i to contact
actor j, actor k must be used as an intermediate station. Actor k in
such a network has a certain responsibility to actors i and j. If we
count all of the minimum paths which pass through actor k, then we
have a measure of the stress which actor k must undergo during the
activity of the network. Let gjk be the number of geodesics linking the
two actors and let gjk(ni) be the number of geodesics linking two actors
that contain actor i. The actor betweenness index cb(ni) is the sum of
estimated probabilities over all pairs of actors not including the ith actor
and standardize on g, c′b(ni) takes on values between 0, if ni falls on no
geodesics and 1, if ni is present in all geodesics of all node pairs not
including ni which is defined as (g− 1)(g− 2)/2. [Wasserman and Faust,
1994]
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cb(ni) =
∑
j<k

gjk(ni)/gjk (2.11)

c′b(ni) = cb(ni)/[(g − 1)(g − 2)/2] (2.12)

Clique A clique, illustrated in figure 2.7, in a network is a maximal
complete subnetwork of three or more nodes. It consists of a subset of
nodes, all of which are adjacent to each other, and there are no other
nodes that are also adjacent to all of the members of the clique.

Figure 2.7: An example network and including cliques [Wasserman and Faust, 1994]

2.2 Socio-technical Congruence

Socio-technical congruence highlights the importance of identifying and tracking
the dynamic relationships between social and technical dependencies.

[Cataldo et al., 2009]

Software engineering is inherently a socio-technical endeavor and the work of [Con-
way, 1968] was one of the earliest acknowledgements of that fact, arguing that any
organization that creates a product, certainly produces a copy of its organizational
structure. The interest in socio-technical congruence research, establish issues of
socio-technical congruence in software development, aligning coordination needs and
coordination requirements within the development process. The coordination of
development teams, specially in large, complex and more often geographically dis-
tributed development teams is a well known challenge which claims development
cost, time and software quality to improve.

2.2.1 Understanding Congruence

The work of [Sarma et al., 2008] provides an extensive introduction to the different
challenges of understanding, measuring and achieving congruence because of the
nature of comprising social and technical aspects in software projects.
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Congruence, the state in which a software development organization har-
bors sufficient coordination capabilities to meet the coordination demands
of the technical products under development [...] [Sarma et al., 2008]

Therefore, congruence could be interpreted as a state of alignment between coordi-
nation requirements, gained through technical dependencies and actual coordination
conducted through the organizational structures. This state is dynamical, only a
snapshot, because specially in software development, code dependencies or the evo-
lution of development teams change continuously [Sarma et al., 2008].

Issues of socio-technical congruence comprise the measurement of socio-technical
congruence and policies for improving technical and organizational structures.

Figure 2.8: Mapping between a social developer network (top) and the according network of software
modules (bottom) [Amrit et al., 2004]

Further research extends the methods of representing the socio-technical structures
by generating socially- and code-inferred networks, reflecting the technical depen-
dencies of software artifacts on the one side and dependencies gained from organi-
zational coordination activities on the other.

One of the first works capturing the idea of matching similar networks derived from
different structures was done by [Bowman and Holt, 1998] who argue that their
results validate Conway’s Law through an empirical study using code ownership
architectures as predictors for the concrete software architectures. They conclude
that the organization structure of development teams mirrors the architecture of
the software. [Amrit et al., 2004] map developer networks and software components
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networks, shown in figure 2.8, where they consider different developer roles and re-
late them in an affiliation network of developers and software modules. Therewith
they show the possibility of relating different tasks concerning a specific software
component to the appropriate developer from the developer network.

[Cataldo et al., 2006] use a concept of coordination requirements gained through
task dependencies and task assignments for representing the socio-technical architec-
tures, and they see a chance in identifying task dependencies’ evolution and changes
over time for a better possibility of designing information interchange with task
dependencies. Therefore, they examine that congruence have an effect on task per-
formance and observe congruence evolution over time.

Further works about the relationships of socio-technical structures were carried out
in several studies. For example [Curtis et al., 1988] show that

higher connectivity among components required more communication among
developers to maintain agreed upon interface definitions. Occasionally,
the partitioning was based not only on the logical connectivity among
components, but also on the social connectivity among the staff.

[Herbsleb and Grinter, 1999] describes the different problems of coordination, spe-
cially in geographic distributed software development teams and the importance of
informal ad hoc communications.

2.2.2 Measuring Congruence

A further issue concerning socio-technical congruence are the questions about useful
sources containing dependency data. Related to software engineering, an estab-
lished practice is the mining of software repositories and related communication and
collaboration tools like mailing lists or newsgroups. The following list below, re-
lated to [Sarma et al., 2008], provides an overview of data which could be used for
constructing social and technical dependencies.

• Team or community structures considering multiple team membership

• Direct and indirect communication between people

• Formal and informal communication paths

• Constrained prescribed processes or work practices

• Actual coordination actions traced by issue-tracking systems

• Tacit knowledge that individuals possess, implicitly reflected in expert hierar-
chies or code ownership

• Technical artifact dependencies captured for example in code structures or
code dependencies
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• Locality of people and artifacts

• Task assignment over time considering priorities or task dependencies

• Changes in work procedures, patterns or work practices, which indicates co-
ordination problems

Different approaches and practices of data extraction or mining were discussed in
chapter 2.4.1. The next issue concerning socio-technical congruence are the ap-
proaches measuring the achievement of congruence.

2.2.3 Achieving Congruence

Research on socio-technical congruence provides several approaches and algorithms
for calculating a global congruence measure, denoting the aligning state between
technical coordination requirements and actual coordination of development teams.
In the course of this thesis, three selected approaches of [Valetto et al., 2007],
[Strohmaier et al., 2009] and [Kwan et al., 2009] were discussed in chapter 4 de-
termining their characteristics and similarities.

Congruence is achieved when coordination capabilities match or exceed
coordination required. [Cataldo et al., 2006]

These measures provide both, global and local focused congruence measurement and
prioritization of coordination requirements and also offer monitoring capabilities of
the congruence state to intervene if a trend of incongruence emerges. For achiev-
ing congruence, [Sarma et al., 2008] denote two basic strategies ’lowering demand
for coordination and increasing coordination capacity’, and indicate that these two
strategies are certainly dependent on each other.

• Lowering demand by reducing code dependencies and therefore dependencies
among software artifacts by restructuring the code structure

• Increasing coordination capacity by identifying coordination gaps between mem-
bers and support them for example with collaboration or awareness tools

2.3 Software Development Quality and Success Metrics

For improving software development processes and therefore the software quality,
a wide range of software quality metrics was established in the research area of
software engineering. Until several years ago, traditional metrics were used for pre-
dicting failure-proneness in software projects such as code churn [Graves et al., 2000]
or code dependencies [Schröter et al., 2006], which do not capture the influence of
team dynamics in software development teams relating software quality with the
organizational structures.
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Figure 2.9: Release defect density evolution [Westfall, 2008]

An important established measure for software quality is the defect density which
provides the possibility of comparing different software projects through normalizing.
It is further used for the identification of faulty software components by comparing
the number of defects per component with the relative number of failures. Figure
2.9 shows the evolution of defect density over time from release to release.

Defect Density is the measure of totally known defects (bugs) divided
by the size of the software entity (components) being measured. The
number of known defects is the count of total defects identified against
a particular software entity during a particular time period [Westfall,
2008].

number of known defects
size

(2.13)

[Brooks, 1995] argues that there exists a correlation between product quality and
the organizational structure which extends the conjecture of [Conway, 1968], who
has not stated a qualifying causal relationship between socio-technical architectures.

Two influential examples of relating software quality and organizational dynam-
ics are the work of [Nagappan et al., 2008] that created a metric scheme to quantify
the impact of the organizational structures on software quality by observing correla-
tions with failure-proneness, and the work of [Crowston et al., 2004] measuring the
success of Open Source Software projects.

[Nagappan et al., 2008] define eight measures, listed below, and evaluate them by pre-
dicting failure-prone binaries in Windows Vista. Figure 2.10 illustrates the results
of comparing different previous prediction models with the organizational metric
prediction model, which denotes a rather high precision and recall level compared
to code-based failure-proneness models.
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1. number of engineers

2. number of ex-engineers

3. edit frequency

4. depth of master ownership

5. percentage of organizational contribution to development

6. level of organizational code ownership

7. overall organizational ownership

8. organizational intersection factor

Figure 2.10: Results of the organizational failure prediction model by [Nagappan et al., 2008]
compared to code-based failure prediction models

[Crowston et al., 2004] deal with metrics, measuring the process of system develop-
ment of Open Source projects analyzing

• development team size,

• bug fixing time (hazard ratio),

• activity rank and

• number of downloads.

Therefore, table 2.11 illustrates an overview of extracted data concerning the quality
measures and their correlation values.

2.4 Mining Software Repositories

Socio-technical congruence benefits from Open Source Software, but needs to deal
with the challenges and difficulties of extracting and mining data according to [Crow-
ston and Howison, 2005] who describe issues of data extraction and also data inter-
pretation for generating social networks derived from software repositories. Specially
since the increasing appearance of web-mediated accessible Open Source projects like
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Figure 2.11: Descriptive data and correlations among quality measures [Crowston et al., 2004]

SourceForge1 or Eclipse2, data mining of software repositories and according bug
tracking systems has become easier and a huge amount of data has been available.

2.4.1 Mining Source Code

Since the last decades, a huge problem in software engineering has been the lack of
system documentation, because an accurate documentation enhances software qual-
ity and reduces development costs. Software reverse engineering provides practices
on analyzing source code to reconstruct the software architecture by identifying the
system components and their interdependencies [Byrne, 1991]. An approach for ex-
tracting a so called ownership architecture derived from the developer organization
structure to predict the concrete architecture of the software system is described
by [Bowman and Holt, 1998].

Table 2.2: Conceptual (left), ownership (middle) and concrete (right) system architectures of a
Linux Kernel [Bowman and Holt, 1998]

They capture the idea of Conway’s Law [Conway, 1968] which states that the or-
ganizational structure of an organization influences the design of a product or the

1http://sourceforge.net
2http://eclipse.org

http://sourceforge.net
http://eclipse.org
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system’s architecture. To validate this assumption of predicting the concrete system
architecture using the ownership architecture, [Bowman and Holt, 1998] determine
three software systems. Table 2.2 represents the three constructed architecture de-
pendency networks of the Linux Kernel (800KLOC) containing about 1.600 source
files, where the conceptual architecture is derived manually from the existing sys-
tem’s documentation, the ownership architecture represents dependencies extracted
from revision control logs and the concrete architecture is derived from the actual
system implementation. The challenge of creating the system dependency networks
is the decision of connecting subsystems. In the ownership architecture, the inter-
connection of subsystems depends on code ownership, meaning that a subsystem A
is connected with a subsystem B if there exists a developer that was working on
both subsystems. Further, dependencies in the concrete system architecture network
arise via function call relations and variable reference relations, which means that
if a source file X calls a function or variable by reference from file Y , then file X
depends on file Y - where the files were clustered into different subsystems by using,
for example, the source code file directory structure.

Figure 2.12: Using conceptual and ownership architecture as predictor of concrete software archi-
tecture [Bowman and Holt, 1998]

[Bowman and Holt, 1998] argue that if Conway’s Law is valid, the ownership archi-
tecture network will be an adequate predictor for the concrete architecture network.
The following metrics according to the derived conceptual and ownership architec-
ture networks were calculated and compared:

• predicted edges (E) representing the number of predicted edges

• correct edges (K) representing the number of concrete edges which were cor-
rectly predicted

• false negative (M) representing the difference of existing concrete edges and
not predicted edges

• false positive (V ) representing the number of predicted edges which do not
exist in the concrete architecture

The results summarized in figure 2.12 indicate that the ownership architecture net-
work is even proper for predicting dependency edges of the concrete architecture
network as the conceptional architecture network.
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However, [Souza et al., 2005] extract developer networks from software reposito-
ries, observing source code dependencies using call graph analysis and developer
co-occurrence. Therefore, the authors create Augur, a visualization tool investigat-
ing the question ’how the relationships between software modules expose one view of
the underlying social structure’ [Souza et al., 2005]. Figure 2.13 shows a screenshot
of the Augur tool providing software developers with an overview of dependencies
among software artifacts and the according software development process activities.
By contrast to [Bowman and Holt, 1998], the conclusion of [Souza et al., 2005] is
that regarding to Conway’s Law both socially-inferred and technically-inferred sys-
tem architectures reflect and constrain bilaterally, and that the relations between
software artifacts also include relations between developers.

Figure 2.13: Augur visualization tool [Souza et al., 2005]

The works of [Strohmaier et al., 2009] and [Wermelinger and Yu, 2008] have influ-
enced this thesis by adopting the approach of data mining code dependencies using
software repository metadata files. [Strohmaier et al., 2009] apply a code-inferred
dependency network generated with a provided tool of [Wermelinger and Yu, 2008]
for analyzing Eclipse plugins’ evolution.

This approach differs from previous approaches of mining source code in generating
software artifact dependency networks. The major difference consists in extracting
code dependencies without touching the code. This is realized by using metadata
files which provide information about the technical architecture of the software sys-
tems such as the Eclipse project which is organized in plugins. These plugins rep-
resent the different subsystems of the software system which were also denoted as
software components.

A further difference of this approach is the distinction of static and dynamic code
dependencies. The authors provide the possibility of generating three different types
of Eclipse plugin-based code-inferred dependency networks extracted from metadata
files.
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1. static dependencies: containing only static (compile-time) dependencies

2. dynamic dependencies: containing only dynamic (run-time) dependencies

3. combined dependencies: containing static and dynamic dependencies combined
in one network

A metamodel for architectural evolution shown in figure 2.14, illustrates the dif-
ferent relations and dependencies. For extracting the statical code dependencies,
using the information provided in the MANIFEST.MF file, the relation depends,
shown in figure 2.14, will be verified. Further, the dynamical code dependencies ex-
tractable from the plugin.xml file are represented in the relations use and provide
between plugins and extension points. [Wermelinger and Yu, 2008] define these code
dependencies as follows:

A plugin X statically depends on plugin Y , if the compilation of X
requires Y - if the compilation of X requires Y , and we say that X dy-
namically depends on Y if X uses an extension point that Y provides.

Figure 2.14: Metamodel for plugin-based software architectures [Wermelinger and Yu, 2008]

The discussed publications provide an insight into different practices of generating
dependency networks representing relations or interconnections between software ar-
tifacts and developers, mining source code architecture. While [Bowman and Holt,
1998] use code ownership attributes mined from revision logs, [Souza et al., 2005]
apply call graph analysis and [Wermelinger and Yu, 2008] analyze code dependen-
cies without touching code by using metadata files containing information about the
technical architecture stored in software repositories.

Whereas [Bowman and Holt, 1998] and [Souza et al., 2005] also deal with socio-
technical aspects related to Conway’s Law and possible conclusions, [Wermelinger
and Yu, 2008] only focus on the technical aspects, investigating structural design
principles by analyzing the evolution of eclipse plugin architectures.
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2.4.2 Mining Issue-tracking Systems

Systems such as task management or bug tracking frameworks represent an impor-
tant element in the software development process and expose revealing information
about the evolution of developer activity, incidence of bugs or feature request and
also information about developer community or collaboration structures.

[Anvik et al., 2006] devote themselves to the question of bug report assignment
through a semi-automated approach of analyzing the former assignments of bug re-
ports archived in the Eclipse bug tracking system Bugzilla. In this case, specially
the Eclipse bug report life-cycle, shown in figure 2.15, plays a major role because
the status of a bug report changes repeatedly over lifetime and has to be considered.
Further, this paper describes the anatomy of a bug report and the different features
such as activity logs which were tracked by the system.

Figure 2.15: Eclipse bug report life cycle [Anvik et al., 2006]

For improving the bug report assignment, [Anvik et al., 2006] use a software component-
based classifier for the report assignment and therefore they extracted information
about the number of components which were handled by developers mined from
the Bugzilla bug tracking system. The extracted information, shown in figure 2.3,
provides an insight into the multi-tasking level of software development teams and
concludes that the component-based approach is more accurate for software projects
comprising developers that concentrate on a small amount of software components.

Project Components Min Mean Max
Eclipse 17 1 1.8 9
Firefox 30 1 2.9 29

gcc 30 1 3.2 28

Table 2.3: Number of components for which a developer has resolved a bug report [Anvik et al.,
2006]

[Schröter et al., 2006] have also mined the Eclipse bug tracking system and Eclipse
version database for dedicating bugs to Eclipse components by calculating the de-
fect density of all Eclipse software components. Further they demonstrated how to
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associate code or developers to failures, and provided their results online hosted by
the project3 website.

The next level of mining issue-tracking systems constitutes the extraction of social
structures by relating developers with software artifacts. This would provide a better
insight into the organization or structure of development teams, the monitoring of
developer contribution or level of activity and also the possibility of locating experts.
The extraction of affiliation or participation networks was done by several authors
such as [Linstead et al., 2007] who mined the Eclipse bug data obtaining developer
contribution lists and modified source files per developer data through author-topic
modeling. This approach provides the possibility of an automated framework for
extracting author-document relations. Therefore, they have produced an author-
document matrix m, representing the participation network, where

m[i, j] =

{
1, If author i contributes to document j
0, otherwise

The work of [Linstead et al., 2007] deals with the extraction of social structures
using bug tracking data from the Eclipse bug tracking system, which is usually
accessible in XML files comprising a set of bug report entries. Other works such
as [Crowston and Howison, 2005] or [Xu et al., 2006] describe the extraction of data
from SourceForge4, a web-mediated Open Source management software repository.

Figure 2.16: Excerpt of SourceForge database schema [Xu et al., 2006]

The difference to the previous discussed Eclipse bug tracking system is the provi-
sion of data via database access. The database schema, illustrated in figure 2.16,
is still the same for all hosted Open Source projects. The mining of data from a
SourceForge data dump is described by [Xu et al., 2006] who used the relations stored
in the database to identify member activities and participations in different projects.

3http://www.st.cs.uni-sb.de/softevo/
4http://sourceforge.net/

http://www.st.cs.uni-sb.de/softevo/
http://sourceforge.net/
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The database provides therefore information about projects, developers and oc-
curring communities, and the different roles of developers are extractable using the
seven tables which contain the following information:

• Table groups: list of all projects

• Table artifact group list, artifact: stores information about bug tracking
and feature requests or document writing

• Table forum group list, forum: contains developer participation activities
in discussion forums

• Table users: includes all user data like user id or joining date

• Table user group: illustrates relationships among projects and project lead-
ers and core developers

Using these tables for data processing, [Xu et al., 2006] were able to extract relations
between developers and projects, including specifying different member roles such
as project leader, core developer and passive or active users.

Further, [Crowston and Howison, 2005] use bug tracking data of SourceForge projects
for extracting information about developer interaction networks, as shown in figure
2.17, by identifying cooperations among developers through bug related discussions
traced in bug reports for examining the social structure of open source software
projects.

Figure 2.17: Interaction network mined from a SourceForge project [Crowston and Howison, 2005]

The influence of technologies like tagging mechanisms find more and more practi-
cal application in many disciplines of collaborative work. In software development
tagging-based collaborative tools such as the IBM Jazz work item management plat-
form were used for work item organization. [Treude and Storey, 2009] examine the
impact and influence of using tagging-mechanism supporting software development
for improving the alignment of socio-technical aspects and the identification of infor-
mal processes in software engineering. The authors argue that ’collaborative tagging
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implies an underlying social structure’ and therefore they mine work items including
information about developers and tags.

2.4.3 Mining Cross-Media Resources

The previous approaches have focused on the features that an issue-tracking sys-
tems provide for improving the usefulness of such systems or gathering latent socio-
technical structures in software repositories. However, nowadays software development-
supporting systems comprise also different Web 2.0 applications for collaboration or
social networking like wikis or rather new technologies like Twitter or Google Wave.
Therefore, another direction in mining social activities, not only in software develop-
ment processes, includes cross-media analysis for extracting social networks, where
the preliminary perspective was so far limited only to the activities traced in soft-
ware project management systems or so called software repositories.

For depicting more accurate latent social structures or community patterns within
software projects, the step into mining cross media resources would be inciden-
tal. [Cao et al., 2008], for example, describe methodologies like cross-media analysis
and social pattern-based analysis introduced by [Degenne and Forsé, 2004] and were
concerned with the mining of social network data extracted from varying sources
segmented in

• non-public access (private SMS or chats)

• semi-public access (mailing lists, group chats, forums or protected wikis)

• public access (blogs, public wikis, public image or video sharing)

A similar direction follows the approach of [Agrawal et al., 2003], which mines news-
groups for generating social networks specially for identifying user categories of
proponents and opponents of newsgroup topics through analyzing the arisen social
network structures. In comparison, [Bird et al., 2008] mine social structures from
mailing lists to examine the social organization structures of large, complex and
stable software projects such as the Apache Webserver, Python or Perl project. The
mining approach is based on text parsing of all email messages for reconstruction of
conversation threads regarding the following email message entries:

• date

• body

• sender name

• sender email address

• message id header

• in-reply-to header



CHAPTER 2. RELATED WORK 30

The decision of linking two specific messages to sender or replier is defined by [Bird
et al., 2008] as follows:

If the message id of message A appears in the in-reply-to header of mes-
sage B, then B was sent in response to A which indicates that the sender
of B found message A interesting.

Table 2.18 gives an overview of gathered data mined from mailing lists by [Bird
et al., 2008].

Figure 2.18: Data overview extracted from mailing lists [Bird et al., 2008]

The discussed publications in this chapter cover topics closely related to socio-
technical congruence, such as social network analysis, software quality measures
and data mining. An overview of social network analysis is given by discussing fun-
damentals like different network types or network topology properties in section 2.1.

Moreover, characterizing properties of real world social networks such as the small-
world and scale-free properties were discussed. These insights into network charac-
teristics benefit the understanding of social- and code-inferred dependency networks,
which represent a software architecture gathered from two different perspectives for
improving congruence achievement. Concerning the nature of social networks ap-
pearing as small-world and scale-free networks, a corresponding study of Open
Source development communities was recognized and examined [Xu et al., 2006].

For the generation of code-inferred dependency networks which reflect the tech-
nical coordination requirements, data mining of software repositories is necessary.
An insight into different practices on mining and analyzing source code was pro-
vided by [Bowman and Holt, 1998], [Souza et al., 2005] and [Wermelinger and Yu,
2008]. Further, provided network data comprised in issue-tracking systems, dis-
cussed by [Crowston and Howison, 2005], [Linstead et al., 2007] and [Xu et al.,
2006], have exposed revealing information about the evolution of developer activ-
ity, incidence of bugs and also information about developer collaboration structures.
These social network data were used for the generation of socially-inferred depen-
dency networks representing coordination capacity.

Socio-technical congruence deals with issues of aligning the technical coordination re-
quirements with the social coordination capabilities [Cataldo et al., 2009]. In section
2.2, publications concerning the understanding [Conway, 1968], [Cataldo et al., 2006],
measuring [Sarma et al., 2008], and achievement [Valetto et al., 2007], [Strohmaier
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et al., 2009] [Kwan et al., 2009] of congruence were discussed. Section 5.5 has cov-
ered different works about code quality [Westfall, 2008] and software quality and
success metrics to quantify the impact of the organizational structures on software
quality [Nagappan et al., 2008] and [Crowston et al., 2004].

Hence, socio-technical congruence underlines the importance of detecting relation-
ships among social and technical dependencies, because an association with devel-
opment productivity and effectivity was acknowledged [Cataldo et al., 2008].



Chapter 3

Data Sets and Network
Construction

Since the emergence of web-supported distributed software projects, especially in
the area of Open Source projects, access to a large range of software repositories
has become available. This chapter describes the data sets of the Eclipse1 SDK and
IBM Jazz2 collaboration tool Rational Team Concert3 which were used in this work,
and which include useful information for generating dependency networks derived
from collaboration tracking between developers or source code analysis.

However, this information is implicitly available and could be mined from web-based
software repositories using practices as introduced in chapter 2.4.1. Therefore, this
chapter depicts the characteristics and structures of the two real-world data sets and
the essential steps of mining and realized transformations using the mined data.

3.1 Eclipse SDK Data Set

The Eclipse SDK was selected because of the idea of [Strohmaier et al., 2009] to
use this Open Source software for their socio-techncial congruence measure and the
fact that the Eclipse project provided a stable environment relating to technical
architecture and developer community. The data set of the bug tracking system
contains about 200.000 bug reports and feature requests from the Eclipse Bugzilla4

data base exported in XML format for the MSR Challenge5 2008, including feature
requests from the year 2001 to 2007. This data was used to generate the socially-
inferred dependency network described in the next section. The creation of the
code-inferred dependency network is illustrated in chapter 3.1.2.

1http://www.eclipse.org/
2http://jazz.net/
3http://jazz.net/projects/rational-team-concert/
4https://bugs.eclipse.org/bugs/
5http://msr.uwaterloo.ca/msr2008/challenge/
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3.1.1 Social-inferred Eclipse Dependency Network

The available Bugzilla data set provides a huge amount of bug reports and feature
requests, and every bug report entry contains several attributes. An example bug
report item using the Bugzilla schema6 is illustrated in appendix B.1. For the pur-
pose of generating a socially-inferred dependency network, the following bug report
attributes shown in table 3.1 were extracted and stored in CSV format shown in
figure 3.2. This information was used as starting point for the socially-inferred de-
pendency network construction.

Attribute Description

bug id The bug ID.

creation ts The times of the bug’s creation.

product Eclipse software product.

component The product component.

reporter The user who reported this.

assigned to The current owner of the bug.

who Developers involved through discussion.

Table 3.1: Mined Eclipse bug report attributes

time bug id product/component developer

2004-08-07 67877 PlatformUserAssistance konradk@ca.ibm.com

2004-08-07 67877 PlatformUserAssistance birsan@ca.ibm.com

2004-09-21 67879 PDEBuild pascal rapicault@ca.ibm.com

2003-09-24 67882 PlatformUI michaelvanmeekeren@yahoo.ca

2003-10-03 67882 PlatformUI erich gamma@ch.ibm.com

2003-10-03 67883 PlatformSWT kim horne@ca.ibm.com

Table 3.2: CSV format of mined bug report entries

One of the difficulties of generating the socially-inferred dependency networks is the
decision of linking nodes. For example, [Crowston and Howison, 2005] generated an
edge between a component A and a developer X, if messages of X were tracked in
bug report B.

The same approach was used by [Strohmaier et al., 2009], linking a component
A with developer X if they are transitively related via a bug report. For the Eclipse
bug tracking data this would generate a three-mode or tripartite structure as shown

6http://tinyurl.com/bugzilla-schema

http://tinyurl.com/bugzilla-schema
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in figure 3.3 of three different node types, software components C with 16 nodes,
developers D with 14.741 nodes and bugs B counting 99.089 nodes and an amount
of 439.324 edges. For the creation of the socially-inferred dependency network, the
relations between components and developers are interesting and useful.

Table 3.3: Three-Mode network structure (left) and transitive relation (right)

This information is given implicitly or transitively, see [Wasserman and Faust, 1994],
who denote that if, using the example from figure 3.3, developer X is tied with bug
id 1 and component A is also tied with bug id 1, a relation between developer X
and component A can be inferred. In this case it makes sense, because if a developer
co-occurs with a software component or another developer within a bug report, a
relation obviously exists since an activity of collaboration takes place. Using the
information of the three-mode structure, three different two-mode networks can be
generated:

• developer × bug network (D×B)

• component× bug network (C×B)

• component× developer network (D×C)

For the generation of the dependency network the D×C two-mode network is useful,
because it includes information about the relations of developers tied with different
components and vice versa. To get the relations between the software components
derived from social collaboration activities of the developers, the generated two-mode
D×C network was transformed into a one-mode network containing only software
components and their relations.

The calculation was realized by transforming the D×C two-mode network into its
⊥ (bottom) projection, see chapter 2.1.2 or [Latapy et al., 2008]. Thus, the trans-
formed C×C network answered the linking question and revealed in satisfying the
condition if two components share the same neighbor or in this case developer,
then they got linked. The edge weights of the C×C dependency network result
through the transformation step, representing the number of shared neighbors. Us-
ing the example of the three-mode network in figure 3.3, the two-mode adjacency
matrix D×C would be defined as shown in figure 3.4. After the transformation step,
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D×C =


A B

X 1 0

Y 1 1

Z 1 1



C×C =


A B

A 3 2

B 2 2


Table 3.4: Two-mode (top) and according one-mode >-projection network (bottom) with corre-
sponding adjacency matrices

C×C = D×CT × D×C, the >-projection adjacency matrix C×C would look like
shown in figure 3.4.

The information that is now provided, is included in the diagonal of the matrix
denoting the degree of the components within the two-mode network, that depicts
how many developers were connected to a specific component and also different edge
weights result in the amount of developers that are shared through two components.
For example, component A and B are related with the same two developers Y and
Z. Thus, they are connected with an edge weight of 2. Therefore, the dependency
of two software components is higher if the number of shared developers is higher,
because it indicates a raised level of relation importance between the two software
components.

The generated socially-inferred dependency network SE extracted from the Eclipse
Bugzilla data set is illustrated in figure 3.1, where the strength of the edge lines
indicate the edge weights. The thicker and darker an edge, the more weight is
assigned to the edge. Additionally, it has to be observed that during the course of this
thesis, conducting the empirical study in chapter 5, the generated socially-inferred
dependency network was also split up into monthly time stamps for observing the
network evolution. The creation of the code-inferred Eclipse dependency network is
described in the next chapter.
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Figure 3.1: Generated Eclipse socially-inferred dependency network SE

3.1.2 Code-inferred Eclipse Dependency Network

The generated code-inferred dependency networks provided by [Wermelinger and
Yu, 2008] comprise static and dynamic code dependencies among software compo-
nents or plugins of the Eclipse SDK Release 3.3.1.1, which is the according release
from the Bugzilla data set, described in section 3.1.1.

The first CE stat represents the Eclipse SDK code-inferred dependency network in-
cluding only static dependencies, the next network CE dyn included only dynamic
dependencies and CE all combined both of them. In figure 3.2, the code-inferred
dependency network is illustrated including both dynamic and static code depen-
dencies, and the same 16 software components as in the socially-inferred dependency
network described in the previous chapter. The representation of the edges is the
same as described in chapter 3.1.1 and a list of the Eclipse component labels is
provided in appendix B.2.

3.2 IBM Jazz Data Set

The second data set consists of an IBM Jazz work item collection tracking software
development activities from 2006 to 2008 and the according release 1.0 of the Ratio-
nal Team Concert7 (RTC) software project. [Treude and Storey, 2009] consider in a
case study the use of tagging mechanisms to support collaborative software devel-
opment by ’bridging the gap between technical and social aspects of managing work
items’. Therefore, [Treude and Storey, 2009] use a data set containing information
about tags, work items and developers that could be extracted from the web-based

7http://jazz.net/projects/rational-team-concert/

http://jazz.net/projects/rational-team-concert/
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Figure 3.2: Generated Eclipse code-inferred dependency network CE

IBM Jazz work item system. An excerpt of a work item example is illustrated in
appendix B.6. Compared to the Eclipse data set, a minor difference lies in the
varying development phases. While the Eclipse data set reflects activities in the
maintenance phase, the IBM Jazz data were generated in the implementation phase
developing the first release.

3.2.1 Social-inferred Jazz RTC Dependency Network

The challenge for generating a socially-inferred dependency network derived from
the IBM Jazz data set was to identify or match the used tags in the work item
collection with the relevant software plugins or components. Table 3.5 depicts an
excerpt of the used data set containing information about the work item id, the used
tag and the related developer working on or discussing a specific work item. Please
note that the developers were alienated because of protecting privacy.

Creation time workitemID Tag Developer

15.11.2006 4 ux [UUID wNof8PYJEdqU64Cr2VV0dQ]

13.12.2006 10 ux [UUID wNof8PYJEdqU64Cr2VV0dQ]

15.12.2006 10 mwhot [UUID wNof8PYJEdqU64Cr2VV0dQ]

07.06.2006 12 collaboration [UUID KGRY4CFWEdq-WY5y7lROQw]

15.11.2006 12 ux [UUID wNof8PYJEdqU64Cr2VV0dQ]

07.06.2006 13 workitem [UUID KGRY4CFWEdq-WY5y7lROQw]

15.11.2006 13 ux [UUID wNof8PYJEdqU64Cr2VV0dQ]

07.06.2006 17 workitem [UUID KGRY4CFWEdq-WY5y7lROQw]

Table 3.5: Excerpt of the extracted IBM Jazz RTC data set

Using this data, a three-mode network structure could be generated which includes
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work items W including 18.592 nodes, tags T with 1.169 nodes and developers D
counting 360 nodes and an amount of 52.963 edges. The approach of using the
three-mode network to produce two-mode networks using transitively relations is
still the same as applied in chapter 3.1.1.

However, an intermediate step was necessary to match the tags T with existing
software components. Therefore a plugin list was extracted from the software repos-
itory and matched against the tag list. Known issues such as individual tag using,
internal specific idioms or the use of singular or plural forms had to be resolved with
NLP8 methods and results in a list of 20 tags which matched a specific software
plugin or component.

After that, the new three-mode network structure contains a reduced amount of
tags and the generation of the dependency network transforming the T×D network
into a one-mode network T×T projection resulted in a socially-inferred dependency
network SJ, containing 20 software components related to the IBM Jazz Rational
Team Concert software derived from the tag matching and developer collaboration
activities. Figure 3.3 illustrates the generated socially-inferred dependency network,
and a list of component labels is shown in appendix B.

Figure 3.3: Generated Jazz socially-inferred dependency network SJ

3.2.2 Code-inferred Jazz RTC Dependency Network

For the code analysis of the IBM Jazz Rational Team Concert project, to generate
the code-inferred dependency network, the provided tool by [Wermelinger and Yu,
2008] was used to extract the compile-time (static) and run-time (dynamic) depen-
dencies between the software plugins or components. This approach for generating
code dependency is based on analyzing only the meta files of the specific plugins
which include static and dynamic code dependencies. The IBM Jazz RTC project

8Natural Language Processing
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shares the same architectural structures as an Eclipse project and is also organized
with plugins, features and releases as described in the metamodel of software archi-
tecture in figure 2.14. Therefore, the architectural structure of the software is stored
in metadata files which provide any necessary information without concerning the
source code. Examples of the plugin.xml and MANIFEST.MF files of the RTC
project are illustrated in appendix B.3. Further, an overview of the used tool set
provided by [Wermelinger and Yu, 2008] and described in more detail in [Yu and
Wermelinger, 2008], is shown in appendix A.2.

The generated code-inferred dependency network CJ, using the tool set of [Wer-
melinger and Yu, 2008] is shown in figure 3.4. The network also denotes all depen-
dencies, means combining static and dynamic dependencies and contains the same
20 components as represented in SJ. The representation of the edges is related also
to their weights, the higher the edge weight, the thicker and darker the edges are
illustrated.

Figure 3.4: Generated Jazz code-inferred dependency network CJ

3.3 Social Network Analysis of the Generated Networks

The generated socio-technical dependency networks shall provide an insight into the
different relation characteristics between software artifacts derived from code de-
pendencies as well as organizational structures through the collaboration activities
of the software developer community. Therefore, an interesting point was to gain
knowledge about the generated networks from a social network analysis perspective.
For this purpose, several social analysis metrics were calculated to get attributes and
characteristics, which were helpful for interpreting the results of the socio-technical
congruence study in chapter 5.

Table 3.6 provides an overview of the calculated social network analysis measures
that were theoretically discussed in chapter 2.1. Interesting at this point were the
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measures of diameter and the clustering coefficient. These two measures are indi-
cators of the small-world phenomenon, if the networks possess a low diameter and
therefore a high clustering coefficient, determined by [Watts and Strogatz, 1998]
and [Newman, 2002].

Comparing the results of the two data sets of Eclipse and Jazz, the Eclipse de-
rived networks met the requirements of the small-world phenomenon much better.
A high clustering coefficient indicated a lower risk of redundancies through break-
downs of network nodes and therefore provided a more stable system. A relatively
small network diameter indicated short and fast communication paths. Besides,
the evolution of the degree distribution, shown in table 3.7, denotes the attributes
of scale-free networks. Therefore, it was interesting to observe that the generated
dependency networks share the same characteristics as small-world networks which
represent real world networks better than randomly generated networks.

ECLIPSE CE all CE stat CE dyn SE

n 16 16 16 16

possible edges 120 120 120 120

actual edges 40 31 32 98

max edge weight 24 23 12 2547

cc. 0.68 0.66 0.64 0.96

∆ 0.33 0.26 0.27 0.82

D 4 6 4 7

cc 0.71 0.66 0.66 0.96

cb 0.33 0.43 0.43 0.51

cliques 7 7 6 8

JAZZ CJ all CJ stat CJ dyn SJ

n 20 20 20 20

possible edges 190 190 190 190

actual edges 82 76 44 81

max edge weight 165 66 99 12180

cc. 0.55 0.57 0.26 0.66

∆ 0.43 0.40 0.23 0.43

D 18 17 27 31

cc 0.63 0.38 0.31 0.26

cb 0.59 0.52 0.82 0.44

cliques 7 7 4 8

Table 3.6: Social network analysis measure results, where the columns comprise the Eclipse CE and
Jazz CJ code-inferred dependency networks, divided into static (stat), dynamic (dyn) and combined
(all) code dependencies, where SE and SJ denote the socially-inferred dependency networks. The
rows contain topology measures, where n denotes the number of network nodes and cc. the clustering
coefficient, ∆ the density, D the network diameter, cc closeness centrality and cb betweenness
centrality (for definitions see chapter 2.1.3)

However, table 3.7 denotes no indication of a power law distribution which is an indi-
cator for scale-free networks, and the use of preferential attachment as network evo-
lution or construction principle could not be observed using only this data. Scale-
free network properties provide advantages compared to other network types, con-
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tributed through their prevalence in social networks, because they are ’robust against
accidental failures but vulnerable to coordination attacks according to [Barabasi and
Bonabeau, 2003]. Therefore, for example the degree distribution of SE shows a
skewed distribution, whereas the degree distributions of the remaining networks
are rather similarly characterized and differ significantly from SE. Moreover, these
measures were also supportive in finding influence factors concerning socio-technical
congruence.

Eclipse Degree Distribution Jazz Degree Distribution

CE all CJ all

CE stat CJ stat

CE dyn CJ dyn

SE SJ

Table 3.7: Overview of degree distributions for Eclipse CE and Jazz CJ code-inferred dependency
networks, divided into static (stat), dynamic (dyn) and combined (all) code dependencies, and
socially-inferred dependency networks SE and SJ.

In this particular case, the socially-inferred dependency networks are derived from
social networks and referencing to Conway’s Law [Conway, 1968], who argues that
the social or organizational structure influence the technical and would imply that
socio-technical congruence may also be affected by social network characteristics.
An interesting question that arises is whether code-inferred dependency networks
share the same network properties as socially-inferred dependency networks, thus
being comparable.



Chapter 4

Selected Congruence Measures

This thesis includes the evaluation of socio-technical congruence measures to de-
termine if existing algorithms are useful and practically applicable. Therefore, this
chapter discusses three selected approaches of measuring socio-technical congruence
which were applied later on to the two real world data sets described in chapter
3. This chapter provides an overview of the different approaches, characteristics
and differences of the congruence measures illustrated on small examples, and also
describes the modifications for using the congruence algorithms with the generated
data sets.

4.1 Arc Mirroring

The first selected approach for calculating congruence of social and technical struc-
tures is an extension of the approach of [Cataldo et al., 2006]. [Valetto et al., 2007]
enhance the concepts of unweighted coordination requirements using two approaches,
ArcMirroring, which is further discussed in this chapter, and node ties.

The basic information for the ArcMirroring algorithm are three networks contain-
ing information about the different relationships between people, between software
artifacts, and also between both of them, which is defined as work relationship, il-
lustrated in figure 4.1. Further, [Valetto et al., 2007] formalize the dependencies and
relationships and also define an algorithm for calculating the congruence value.

Let GP = (P,EP) formalize an undirected network of people with a node set P
and an edge set EP including relationships between pairs of persons, probably de-
velopers, (i, j) ∈ P .

Further, let GS = (S,AS) formalize a directed network of software artifacts with
a node set S and an arc set AS including interconnections between pairs of software
artifacts (v, u) ∈ S.

Additionally, let J denote a set of joins connecting node i ∈ P with node v ∈ S.
The calculation of ArcMirroring based congruence ∼= is defined as follows in formula

42
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Figure 4.1: A socio-technical software network [Valetto et al., 2007] where GP represents a people
network and GS a network of software artifacts

4.1, where κ means the number of corresponding or mirrored arcs and γ specifies
the number of edges in EP.

Congruence(GP, GS, J) = κ/γ (4.1)

During the course of this thesis, the ArcMirroring algorithm is used in a modified
way, because of different available input networks which characterize still similar
relationships as described in [Valetto et al., 2007]. For the evaluation of the algo-
rithm two dependency networks including relations between software artifacts or
components are given, where one network is generated code-inferred and the other
socially-inferred. Details on the generation of the dependency networks can be found
in chapter 3.

Figure 4.2: ArcMirroring of code and socially-inferred dependency networks

The results of this algorithm reflect the ratio of founded mirrored edges and ex-
isting edges which only match the network structure of both dependency networks
where the information about existing edge weights gets lost. [Valetto et al., 2007]
and [Cataldo et al., 2006] suggest the possibility of taking weighted coordination
requirements into account to refine the results of using unweighted coordination
requirements. For the specific example in figure 4.2, the input networks C for code-
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inferred and S for socially-inferred are specified as adjacency matrices as follows:

C =


A B C

A 0 1 0

B 0 0 0

C 0 1 0

 S =


A B C

A 0 1 0

B 1 0 0

C 0 0 0


Referring to equation 4.1 and the matrices C and S, κ are the number of mirrored
edges which would only be the edge between component A and B in matrix C and
S and γ the number of edges in C are 2 (A-B, C-A) which results in a congruence
measure of (C ∼= S) = 0.5, which means that there exists a congruence between the
two dependency networks of about 50%, where the congruence value would range
between 0 and 1.

Moreover, [Valetto et al., 2007] argue that this concept of socio-technical congruence
could be used in a global and local focus, providing a better insight into the align-
ment of technical and social software architectures of the whole network or specific
subgroups or project teams.

4.2 Weighted Coordination Requirements

[Kwan et al., 2009] capture the limitations of existing socio-technical congruence
measures according to [Valetto et al., 2007] and develop an approach where cal-
culations of congruence would not be based on dichotomized edges. They develop
a weighted congruence measure to identify important gaps of coordination. These
gaps arise if coordination needs gained through the technical structures will not
be met through the organizational activities of the developers and these coordina-
tion requirements could be defined as more or less important for the software project.

The model of weighted coordination described by [Kwan et al., 2009] would be
more properly by using weighted task dependency and weighted task assignment
matrices for calculating coordination requirements, where the measurements of edge
weights could range from 0 to 1.

The weighted task assignment and task dependency matrices are defined by [Kwan
et al., 2009] as follows:

Weighted Task Assignment (TA) matrix is a m×n matrix where m
is the number of selected people and n denotes the number of selected
tasks. Each entry in the matrix defines the strength of the connection
between a person i and a task j.
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Weighted Task Dependency (TD) matrix is a n×n matrix where n
denotes the number of selected tasks. Each entry in the matrix describes
the strength of the relation between two tasks.

Figure 4.3: Weighted task assignments and dependencies

Figure 4.3 illustrates an example of a weighted task assignment and dependency
network which could be represented in the two adjacency matrices TA for task as-
signment and TD for task dependency illustrated in table 4.1. The edges between
tasks and people could be weighted for example by proportion of working hours or
the amount of expertise a person has about a specific task. In figure 4.3, person Y
spends 0.65 percent of her work time on task B and 0.08 percent on task C. The
dependencies between the different tasks could be defined by the degree of coupling
between tasks, which means that for example task A depends to 0.75% on task B
where task B only depends to 0.25% on task C.

TA =


A B C

X 0.22 0.00 0.00

Y 0.00 0.65 0.08

Z 0.65 0.00 0.00

 TD =


A B C

A 0.00 0.75 0.00

B 0.75 0.00 0.25

C 0.00 0.25 0.00


Table 4.1: Task Assignment and Task Dependency matrices

These two adjacency matrices in table 4.1, are used to calculate the technical co-
ordination requirements CRC and are related to [Cataldo et al., 2006] which have
denoted the formula 4.2.

CRC = TA× TD × (TA)T (4.2)

The result of the calculation using formula 4.2 implicates the coordination require-
ments derived from the defined weighted task dependencies and task assignments
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and represents technical or code-inferred dependencies. The next step for calculat-
ing congruence is a subtraction of the actual coordination requirement matrix CRS,
which represents the socially-inferred dependencies mined from software reposito-
ries, from the calculated coordination requirement matrix CRC.

For the calculations in this thesis, the coordination requirements are represented
through the code-inferred dependency networks and the actual coordination require-
ments are represented through the socially-inferred dependency networks, see an
example illustrated in figure 4.4. After subtraction a so called lack-of-coordination
CRL matrix would be calculated and suggests information about local lacks of co-
ordination between specific, in this case software components or artifacts. To get a
global socio-technical congruence value, first change all values less than zero in the
lack-of-coordiantion matrix to zero and sum the edge weights of the matrix. Next
also sum the edge values of the coordination requirement matrix, in this case the
code-inferred dependency network, and calculate the ratio between these two sums.

Figure 4.4: Weighted code and socially-inferred dependency networks

Summarizing the algorithm is defined as follows:

1. Create the coordination requirement matrix CRC which is represented by the
code-inferred dependency network (see figure 4.4).

2. Create the actual coordination requirement matrix CRS which is represented
by the socially-inferred dependency network (see figure 4.4).

3. Calculate the lack-of-coordination matrix: CRL = CRC − CRS

4. Set all edges in CRL lower than zero to zero.

5. (CRC
∼= CRS) = 1−

 P
v∈CRL

=weight(v)P
u∈CRC

=weight(u)


For the specific example in figure 4.4, the network matrices would look like this:

CRC


A B C

A 0 10 0

B 0 0 0

C 0 3 0

 - CRS


A B C

A 0 2 0

B 2 0 0

C 0 0 0

 = CRL


A B C

A 0 8 0

B 0 0 0

C 0 3 0
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This results in a congruence measure of (CRC
∼= CRS) = 1−

(
11
13

)
= 0.15 and

provides a congruence range from 0 to 1. This approach differs from other practices
which calculate congruence only with ratio values because of providing the possibility
of identifying local discrepancies and priorities using the lack-of-coordination matrix.

4.3 Edge Weight Ranking

In comparison with the two congruence algorithms in previous sections, the approach
of [Strohmaier et al., 2009] is different. The basis of the algorithm is focused on edge
weights which denote the importance of relations between software components or
artifacts. The core approach lies in calculating edge ranking correlations of two
dependency networks using Spearman correlation and the congruence measure is
defined as the result of this correlation.

Figure 4.5: Edge weight ranked socially- and code-inferred dependency networks

Using figure 4.5 as reference example, the first step is to number or index all existing
edges of both dependency networks. Next generate the edge ranking vectors of each
dependency network depending on edge weights where the highest weight ranks the
highest. For the small example in figure 4.5, the two edge ranking vectors would
be defined as shown in table 4.2. This generates a spearman correlation with the
two rank vectors of 0.87 between [-1..+1] which indicates the congruence of the two
dependency networks assuming that a high correlation of the edge weight ranking
provides a high socio-technical congruence and vice versa.

code-inferred socially-inferred

Rank Edge Index Weight Rank Edge Index Weight

1 E1 10 1 E1 2

3 E2 0 2.5 E2 0

2 E3 3 2.5 E3 0

Table 4.2: Edge weight ranking vectors of code- and socially-inferred software dependency networks

To make this congruence measure of edge weight ranking comparable with the two
other congruence measures discussed in previous sections, a transformation of the
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values into the same range of [0..1] is necessary. With an inverse Z-transformation
according to [Kähler, 2004], the congruence value z could be transformed from z →
z′ taking values in [-1..+1] to taking values in [0..1], using formula 4.3 where s
constitutes the standard variance and m represents the mean.

z → z′ = s ∗ z +m (4.3)

The transformation of the calculated congruence value of 0.87 using s = 0.5 and
m = 0.5 transforms the congruence value to 0.93 which makes this congruence
measure comparable with the other congruence values in the same range of [0..1].

4.4 Similarities, Distinctions and Characteristics

The three selected and described approaches for calculating socio-technical congru-
ence provide different levels of congruence for the small example used in the previous
sections. Therefore, it could be noticed that every congruence algorithm has a spe-
cific focus and needs a different interpretation of the congruence results. It is difficult
to assert which congruence measure fits best, independent of a particular problem
domain, but the possibility of having local coordination information or knowledge
about coordination priorities benefits congruence achievement.

However, the trend of weighting communication and coordination activities or the
importance of relations could be observed. Comparing the ArcMirroring and the
WeightedCoordinationRequirements algorithms, it could be recognized that the ap-
proaches are still the same except that one time dichotomized or unweighted edges
were used and one time weighted edges to represent the coordination requirements.
ArcMirroring provides a structural similarity measure where different priorities or
importance of relations are ignored.

An interesting observation of the ArcMirroring and WeightedCoordinationRequire-
ments approach was that both concepts are still motivated by Conway’s Law [Con-
way, 1968] which argues that the technical structure or design of products will be in-
fluenced by the organizational structure. [Valetto et al., 2007] using the ArcMirroring
approach and [Kwan et al., 2009] applying the WeightedCoordinationRequirements
approach assume the opposite way. This implies that both the ArcMirroring and the
WeightedCoordinationRequirements algorithm proceed on the assumption that the
technical structure of a product, for example a software, influences the organizational
structure by measuring how the social or organizational structure fits the technical
coordination requirements and not inversely. The concept of [Strohmaier et al.,
2009] using the EdgeWeightRanking algorithm provides an approach for looking in
both directions. By calculating edge ranking correlations, it could be considered
that the organizational structure could predict or mirror the technical structure and
vice versa. Compared to the ArcMirroring and WeightedCoordinationRequirements,
the EdgeWeightRanking approach does not directly measure structural similarity,
but considers if the strength of component dependencies correlates with the amount
of developers dealing with two components.



Chapter 5

Results and Discussion

This chapter provides the results of an empirical study investigating the practical
usefulness of the selected socio-technical congruence measures applied to the two
real world data sets described in chapter 3.

The socio-technical congruence measures and corresponding algorithms were imple-
mented using a Python and MATLAB framework, see appendix A.1. This framework
was used for (1) generating the code- and socially-inferred dependency networks and
(2) applying the algorithms to the generated socio-technical network pairs. The first
step was to apply them to different network pair set-ups.

Eclipse

CE all ∼= SE CE all ∼= Nrand CE all ∼= CE all CE all ∼= Nzero

E
c
li
p
se Arc Mirroring: 0.93 0.51 1.00 0

Edge Weight Ranking: 0.76 0.08 1.00 Inf

Weighted Coord. Requ.: 0.90 0.12 1.00 0

Jazz

CJ all ∼= SJ CJ all ∼= Nrand CJ all ∼= CJ all CJ all ∼= Nzero

J
a
z
z

Arc Mirroring: 0.35 0.43 1.00 0

Edge Weight Ranking: 0.48 0.01 1.00 Inf

Weighted Coord. Requ.: 0.12 0.03 1.00 0

Table 5.1: Congruence output values on different network pair set-ups, where CE all and CJ all

denote a code-inferred dependency network extracted from Eclipse (E) or Jazz (J), comprising
combined static and dynamic code dependencies (all) and SE and SJ denote a socially-inferred
dependency network mined from Eclipse (E) or Jazz (J). N rand and Nzero denote a random and a
disconnected zero network.

Table 5.1 shows the different characteristics of the algorithms, applying them with
code-inferred and socially-inferred Eclipse (CE all|SE) or Jazz (CJ all|SJ) network
pairs, where all means that in code-inferred networks both dynamic and static de-
pendencies were considered. Additionally, an interesting point was to observe the
characteristics of the measures applying untypical network pairs like a random gen-
erated network N rand, a disconnected zero network N zero or committing the same
code-inferred network for example CE all twice.
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The results shown in table 5.1 underline therefore the assumed performances of
the algorithms that two identical networks produced a congruence value of 1.00,
randomly applied networks generated congruence values in the range of 0 and 0.5
and a comparison with a zero network produced Null or Infinite values, because
a level of congruence was not measurable.

5.1 Impact on Congruence by Reducing Data Volume

The amount and accessibility of data extracted from web-mediated distributed soft-
ware projects play an important role in measuring congruence of socio-technical
software architectures, because a development process should be monitored during
all phases of development and not only be reactive if the process has been more or
less successfully finished.

Figure 5.1: Congruence values for Eclipse code-inferred and socially-inferred dependency network
CE all

∼= SE k, where all denote the combination of static and dynamic code dependencies and
k denotes a threshold (2 ≤ k ≥ 1024) for discarding network edges of weight < k in the Jazz
developer×component network. Please note, that the values of EdgeWeightRanking were trans-
formed into a value range of [0...1] (see chapter 4.3)

Therefore an approach was to study the impact of reducing the data volume of
the extracted two-mode developer×component networks before transforming into a
one-mode projection, see chapter 3, which means that edges with a lower weight
as defined with threshold k were eliminated in every step. This was conducted as
simulation for a decrementing access of network data. To get a better insight, fig-
ure 5.1 shows the evolution of congruence values with reduced data volume through
threshold k with k = 21 to 210. The generated code-inferred network CE all and
the socially-inferred network SE of the Eclipse data set were applied to the three
algorithms through different k′s. Figure 5.1 points out the different trends of the
algorithm’s response. The EdgeWeightRanking algorithm coped with less diversi-
fications and the congruence values remained relatively stable over k. Interesting
in this case are the different moments of reaching congruence maxima. While Ar-
cMirroring and WeightedCoordRequirements reach their maxima still at k = 21, the
EdgeWeightRanking obtain the maxima value at k = 25.
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Figure 5.2 depicts that the congruence values of the Jazz networks, ranging from
0.12 to 0.48, are lower compared to the Eclipse networks in figure 5.1, which range
from 0.73 to 1. This results in the different software development phases of the
software architectures. While the Eclipse networks are located in the maintenance
phase, the Jazz dependency networks are build during the implementation phase of
the first release. However, figure 5.2 also shows that the EdgeWeightRanking algo-
rithm is relatively stable over different k’s, which implied that EdgeWeightRanking
would be tough on data reducing and could also be applied to smaller development
projects with a less amount of network data.

Figure 5.2: Congruence values for Jazz code-inferred and socially-inferred dependency network
CJ all

∼= SJ k, where all denote the combination of static and dynamic code dependencies and
k denotes a threshold (2 ≤ k ≥ 1024) for discarding network edges of weight < k in the Jazz
developer×component network. Please note, that the values of EdgeWeightRanking were trans-
formed into a value range of [0...1] (see chapter 4.3)

5.2 Evolution of Congruence over Time

Software development is a very dynamic and complex process and this assumes that
socio-technical congruence would also be dynamic regarded over time. Depending
on the maturity of the software architecture and the organizational structure influ-
enced by the communication and collaboration behavior of development teams, the
level of congruence would grow over time.

To investigate the trend of congruence over time, the available data sets were split up
in monthly time stamps observing the trends within the given time period. Figure
5.3 displays the congruence evolution of the Eclipse code- and socially-inferred de-
pendency networks from October 2002 to August 2007. The different times needed
for adjusting to the maxima congruence values was interesting to note. While
EdgeWeightRanking needed less time to level at the maxima congruence value, Ar-
cMirroring and WeightedCoordinationRequirements required a longer period and
the congruence value ranges, against expectations, different. The congruence value
range over time of the ArcMirroring and WeightedCoordinationRequirements con-
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Figure 5.3: Progress of congruence over time for Eclipse code- and socially-inferred dependency
network CE all

∼= SE, where all denote the combination of static and dynamic code dependencies.
Please note, that the values of EdgeWeightRanking were transformed into a value range of [0...1],
see chapter 4.3

gruence was from 0.25 to 0.94 which is significantly greater than the congruence
value range of EdgeWeightRanking from 0.63 to 0.74. After reaching the maxima
values, all congruence measures were relatively stable till the end of the period.

Figure 5.4: Impact on congruence evolution by edge destruction for Eclipse code- and socially-
inferred dependency network CE all

∼= SE t=20, where all denotes the combination of static and
dynamic code dependencies and t denotes a threshold for discarding edges with an edge weight <
20 in the socially-inferred dependency network.

A further experiment was observing the characteristics of congruence manipulating
the derived one-mode component×component socially-inferred dependency networks
by eliminating low weighted edges by threshold t. Therefore, figure 5.4 shows the
impact by eliminating edges with edge weights lower t = 20. This approach depicted
that only the WeightedCoordinationRequirements algorithm was strongly influenced,
which was expected because this algorithm is based on edge weights. Interesting was
also the fact that both EdgeWeightRanking and ArcMirroring were not significantly
affected, which was verified by calculating the correlation of congruence measures
with and without edge destruction shown in figure 5.5.
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Figure 5.5: Correlation of the three congruence measures, applied to Eclipse code- and socially-
inferred dependency networks CE all

∼= SE with Eclipse code- and socially-inferred dependency net-
works CE all

∼= SE t=20, where all denotes the combination of static and dynamic code dependencies
and t denotes a threshold for discarding edges with an edge weight < 20 in the socially-inferred
dependency network.

In figure 5.6, the evolution of the Jazz dependency networks is shown in a monthly
period from November 2006 to March 2008. The characteristics of the EdgeWeigh-
tRanking algorithm was similar to them in figure 5.3 and ArcMirroring and Weight-
edCoordinationRequirements depicted a linear growth. Another interesting issue
was the observation that the congruence values of ArcMirroring and WeightedCoor-
dinationRequirements still increased over time, but EdgeWeightRanking indicated a
continuous, but gently drop of the congruence level during the time period.

Figure 5.6: Progress of congruence over time for Eclipse code- and socially-inferred dependency
network CJ all

∼= SJ, where all denote the combination of static and dynamic code dependencies.
Please note, that the values of EdgeWeightRanking were transformed into a value range of [0...1] (
see chapter 4.3)
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5.3 Segmentation of Static and Dynamic Code Depen-
dencies

The technical architecture of software could be modeled as a network of software
components related through code dependencies. These code dependencies are divid-
able into static and dynamic dependencies. So far, in previous sections both static
and dynamic dependencies were considered.

Related to [Wermelinger and Yu, 2008], static dependency means that two software
components depend statically if the compilation of the first component requires the
second, and dynamic dependency states the addiction of two software components
if the first component provided an extension point at run-time which is used by the
second component. Concerned with socio-technical congruence, an interesting step
was to split up the code-inferred networks in dependency networks with only static
or dynamic dependencies.

Figure 5.7: Division of static (stat), dynamic (dyn) and combined (all) code dependencies for
congruence calculations applied to the Eclipse code- and socially-inferred dependency network
CE all|dyn|stat

∼= SE, where k denotes a threshold (2 ≤ k ≥ 1024) for discarding network edges
of weight < k in the Jazz developer×component network.

In figure 5.7, the same approach was used as illustrated in figure 5.1, but the code-
inferred Eclipse networks were divided into dynamic and static dependencies and
each congruence algorithm was considered separately. The same was applied to the
code-inferred Jazz dependency networks which is shown in figure 5.8. An interesting
observation was that different congruence measures, specially within the Jazz net-
works, acted divergently whereas the congruence performance was rather convergent
within the Eclipse networks.
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Figure 5.8: Division of static (stat), dynamic (dyn) and combined (all) code dependencies
for congruence calculations applied to the Jazz code- and socially-inferred dependency network
CJ all|dyn|stat

∼= SJ, where k denotes a threshold (2 ≤ k ≥ 1024) for discarding network edges of
weight < k in the Jazz developer×component network.

5.4 Correlation of Congruence Algorithm Measures

In the previous sections, the different characteristics of the congruence algorithms
were determined. In the next step, the correlations between the three algorithms
distinguishing also static and dynamic code dependencies were calculated. The heat
map in figure 5.9 shows both the congruence value correlations over different k
and the correlations between congruence values calculated over time for the Eclipse
social- and code-inferred dependency network congruence.

Figure 5.9: Correlations between congruence measures for Eclipse socio-technical dependency net-
works over different k, see chapter 5.1 and correlations between congruence measure for Eclipse
socio-technical dependency networks over time, see chapter 5.2, where E denotes EdgeWeightRank-
ing and A denotes ArcMirroring, W denotes WeightedCoordinationRequirements and stat, dyn, all
denote static, dynamic and combined code dependencies.
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An interesting observation was that in both correlation heat maps, the congruence
values using the EdgeWeightRanking algorithm with dynamic code dependencies
(E dyn) correlated the least, which indicates that dynamic dependencies are less cor-
related.

The fact that the correlations between the different congruence measures are at a
rather high correlation level, indicates that all three congruence approaches measure
a similar socio-technical relation within a software project.

5.5 Identification of Quality- and Success Factors Ef-
fecting Congruence

One of the major goals of this thesis is the identification of quality and success factors
that correlate with the congruence values of social and technical structures covered
in web-based software project repositories. In literature a huge range of software
quality and quantity measures exist, see chapter 5.5. For this purpose, the focus
is not set only on code quality but on a combination with social network topology
measures such as in [Crowston et al., 2004].

Factors Description

(1) bugs Incidence of bugs or feature requests reported in the back tracking or
work item system within a defined period.

(2) developers Amount of developers traced in the bug tracking or work item system
as bug reporter, assigned as bug fixer or participant in discussions.

(3) clustering coef. (cc.) Network average clustering coefficient, describes the local average con-
nectivity of neighborhood nodes. [Watts and Strogatz, 1998]

(4) comp. size Average size of network components, where size means the number of
nodes contained within a particular network component and a compo-
nent is defined as subnetwork, where any node is connected to any other
node in the subnetwork via a path. [Anvik et al., 2006]

(5) largest comp. size Number of nodes within the largest network component. [Anvik et al.,
2006]

(6) num components Amount of network components within the entire network.

(7) developers/component Indicates the ratio of developers working on a specific software compo-
nent (team size).

(8) bugs/component Indicates the amount of change concerning incidence of bugs per com-
ponent (defect density) [Westfall, 2008].

(9) components/developer Ratio number of components handled by a specific developer (multi-
tasking).

(10) bugs/developer The ratio amount of resolved or worked on bugs or feature requests per
developer (level of activity) [Crowston et al., 2004].

(11) density (∆) Implies the degree of connection within the network by calculating the
ratio of actually edges and possible edges. [Wasserman and Faust, 1994]

(12) diameter (D) Describes the extensiveness of the network by calculating the geodesic
path (longest shortest path) between all network nodes. [Wasserman
and Faust, 1994]

(13) closeness (cc) Closeness Centrality states the average amount of steps to hit every
other node in the network from a specific node. [Wasserman and Faust,
1994]

(14) betweenness (cb) Betweenness Centrality indicates the average frequency of node pres-
ence in all geodesic paths of the network. This reflects the importance
of node v within a network by calculating the number of nodes node v
is related indirectly. [Wasserman and Faust, 1994]

(15) cliques Implies the number of cliques (fully connected sub-networks) within the
network. [Wasserman and Faust, 1994]

Table 5.2: Overview software quality and success factors
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To this end, a set of software project quality and success factors was defined, shown
in table 5.2. These factors involve both software code quality measures like defect
density and network-theoretical measures like clustering coefficient. For calculating
correlations, the factor values for the different time stamps were correlated with the
according congruence measures. The results of the correlations regarding the Eclipse
congruence measures are displayed in figure 5.10. It illustrates the correlations of
the three different congruence values with potential influence factors and gives an
overview of which factors provide a highly positive or negative correlation and which
were uncorrelated.

Figure 5.10: Eclipse: Correlations between quality factors and congruence values

Considering factors 11, 13 and 15 in figure 5.10 that show a rather high positive
correlation, it appealed that especially factors describing the network topology were
intensely related with the congruence measures. Specially factor 10 which represents
the level of activity correlates significantly with the socio-technical congruence mea-
sures, because a higher activity level of developers may result in higher coordination
and collaboration activities, that may benefit congruence. The correlation results
concerning the Jazz networks are shown in figure 5.12.

Figure 5.11: Divergence between the evolution of defect density (factor 8) and software component
developer team size (factor 7) over time
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Further, an interesting observation is the divergence between factor 7 and 8 which
indicates that the lesser the defect density of software projects, the more developers
are working on a specific component. [Brooks, 1995] states that a higher amount
of developers working on a binary or a component requires a higher coordination
effort and therefore the frequency of modification would increase. This implies that
a higher divergence between defect density and the number of developers indicates
a high level of socio-technical congruence. [Brooks, 1995] argues that for N devel-
opers, N × (N − 1)/2 possible diffusion paths persist for interchanging. Figure 5.11
illustrates this divergence for the Eclipse data set.

Figure 5.12: Jazz: Correlations between quality factors and congruence values

Moreover, the evolution of multi-tasking developers, factor 9, also indicates a re-
lation with socio-technical congruence and would intensify [Brooks, 1995] expec-
tations because of increasing coordination efforts. Figure 5.3 depicts the distribu-
tion of multi-tasking developers, developers working on more than one software
component. An interesting observation was the detection of scale-free network
characteristics, denoted by the power law distribution derived from the two-mode
developer×component network.

Table 5.3: Multi-tasking developer distribution of socially-inferred dependency networks mined
from Eclipse (left) and Jazz (right)
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The results further indicate that also the level of community maturity plays an
important role, comparing for example the different clustering coefficient values of
socially-inferred dependency networks derived from Eclipse and Jazz, see table 3.6,
it also indicates that a higher level of connectivity of neighborhood nodes and higher
amount of developer team size also promotes a lower defect density.



Chapter 6

Conclusion

This thesis deals with the network-theoretic analysis of socio-technical relations in
software projects mined from web-supported software repositories. This chapter
discusses the results of the empirical study in chapter 5, providing contributions
and insights in trying to answer the research questions, motivated by Conway’s
Law [Conway, 1968], in chapter 1.2.

6.1 Contribution

The first examined issue for gathering a basis for congruence evaluation was the con-
struction of socially- and code-inferred software component dependency networks
derived from two real world data sets. The comparison of the generated socio-
technical dependency networks showed that the dependency network pairs share
similar network-theoretic topology attributes, which were evaluated through a social
network analysis in chapter 2.1. The analysis also exposes that the Eclipse networks
comprised properties of small-world networks, indicated through a high clustering
coefficient and a relatively small network diameter. Additionally, a power law dis-
tribution of multi-tasking developers in both software projects indicated properties
of a scale-free network.

The results of the empirical study applying different socio-technical congruence
measures to two real world data sets were documented in chapter 5 and provide
insights into the characteristics of the congruence measure levels and congruence
evolution over time. The study has shown that the three selected congruence mea-
sures of [Strohmaier et al., 2009], [Valetto et al., 2007] and [Kwan et al., 2009] were
practically useful and practicable due to their rather simple implementation and
adequate resistance against data reduction.

However, it was observed that the results of the three congruence measure algo-
rithms have to be interpreted differently because of varying basics and perspectives
applying the congruence measure calculation. Resuming the correlations between
the different congruence measures, a rather high correlation indicated that all three
congruence approaches measure similar socio-technical relations within socially- and
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code-inferred dependency networks of software architectures.

Due to the dynamical nature of software development projects, the assumption was
set up that socio-technical congruence will have a dynamical evolution of congru-
ence over time. The results of the empirical study underline this conjecture and
show a rather consistently increasing evolution of congruence over time, illustrated
in chapter 5.2.

A further goal of this thesis was the identification of software quality or success
factors, which influence the socio-technical congruence such as defect density. The
insights into studying influence factors showed that both, software quality metrics
and social network topology metrics such as closeness centrality, correlate with socio-
technical congruence of the two software projects, see chapter 5.5.

An interesting observation was a divergence property of defect density and the av-
erage team size per software component, which indicates that a larger development
team benefits a lower defect density. Another high correlated factor is given by the
level of activity represented by the average number of bug reports worked on by a
specific developer.

Concluding, it could be said that referring to Conway’s Law conjecture of socio-
technical relation, it could be found some evidence that social structures correlate
with technical structures. Nevertheless, the causal relationship between those needs
to be investigated in future work.

6.2 Outlook

6.2.1 Future Work

In the future, an empirical study of socio-technical congruence of different commer-
cial software projects will be interesting, comparing the results with those of this
thesis, which deals with Open Source software projects.

Additionally, the influence of different software development methodologies such
as agile software development could be investigated, observing whether different
software development methodology benefits socio-technical congruence.

6.2.2 Improvements

The generation of the socially-inferred dependency networks succeeds an approach
of relating developers to software components through co-occurrence in bug reports.
The possibility of a finer grained level of distinguishing between different developer
roles would potentially improve the generation of more accurate dependency net-
works.

Additionally, the existing socio-technical congruence measures provide partially the
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possibility of local and priority focused congruence measures. A new approach re-
garding measuring congruence could be the calculation of gap compensators noticed
by [Crowston and Howison, 2005], developers whose communication behavior con-
ceals coordination gaps and decreases the probability of project success if the specific
developer leaves the development team. Therefore, also the concerning of so called
weak ties or informal communication or collaboration process paths could improve
the usefulness of socio-technical congruence measures.
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Appendix A

Implementation

This appendix gives a short overview of the developed frameworks including the im-
plementation of the congruence measure algorithms and used resources and further
detailed results of the social network analysis.

A.1 Matlab/Python Framework

Python was used in combination with the networkX1 library package for creating an
manipulating network structures. The class diagram illustrated in figure A.1 gives
an overview of implemented classes and test classes. Basically the Python framework
was used to parse XML files which were mostly not stored in a valid XML format and
therefore an adapted own XML parser, class MyParser, was implemented. Moreover,
the framework also handles data using CSV format for network construction and
network outputs represented as adjacency matrices.

Figure A.1: Python STC project class diagram

1http://networkx.lanl.gov/
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The generated network matrices were used as input data for the MATLAB frame-
work. MATLAB also provides object-oriented development and therefore a class
stcNetwork was implemented comprising attributes and functions for calculating
network topology measures. Further the three selected socio-technical congruence
measure algorithms were implemented in class congruence. Using the MATLAB
xUnit2 test framework, the classes were tested using unit tests.

Figure A.2: MATLAB class diagram

A.2 Additional Tools

Pajek

An often used tool for representing and manipulating large scaled networks is Pa-
jek3. In course of this thesis, Pajek was basically used for network visualization
of the constructed dependency networks. Further it would be used for calculating
social network topology metrics such as density, cliques and so on, which were not
covered in the MATLAB framework [Nooy et al., 2005].

Tool Set for Code Analysis
Figure A.3 gives an overview of a graph-centric tool set for code analysis developed by
[Wermelinger and Yu, 2008] for investigations on evolution and relations of software
architectures.

2http://www.mathworks.com/matlabcentral/fileexchange/22846
3http://vlado.fmf.uni-lj.si/pub/networks/pajek/

http://www.mathworks.com/matlabcentral/fileexchange/22846
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
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Figure A.3: Graphic-centric code analyzing script collection



Appendix B

Resources

B.1 Excerpt of the Bugzilla Data Set
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B.2 Eclipse SDK Component List

EquinoxFramework
PlatformAnt
JDTCore
JDTDebug
JDTUI
PDEBuild
PDEUI
PlatformDoc
PlatformResources
PlatformSWT
PlatformSearch
PlatformTeam
PlatformText
PlatformUI
PlatformUpdate
PlatformUserAssistance

B.3 Example plugin.xml Metadata File IBM Jazz RTC
Project
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B.4 Example MANIFEST.MF Metadata File IBM Jazz
RTC Project

Manifest-Version: 1.0

Bundle-RequiredExecutionEnvironment: J2SE-1.5

Import-Package: com.ibm.team.repository.jdbcdriver.internal.db2,org.ap

ache.commons.logging

Bundle-SymbolicName: com.ibm.team.repository.jdbcdriver.db2z;singleton:=true

Bundle-ManifestVersion: 2

Bundle-Name: Repository component - DB2z JDBC driver

Bundle-Version: 0.6.0.I200805291754

Bundle-ClassPath: library.jar,external:$DB2Z JDBC$/db2jcc license cisuz.jar,db2jcc.jar

Bundle-ActivationPolicy: lazy

Bundle-Vendor: IBM

Require-Bundle: com.ibm.team.repository.service,com.ibm.team.repository.common,

com.ibm.team.repository.jdbcdriver.db2

B.5 IBM Jazz RTC Project Matched Software Compo-
nent Tag List

reports
scm
process
workitem
fulltext
feed
foundation
datawarehouse
connector
rational
performance
server
filesystem
build
dashboard
interop
repository
repotools
jazz
collaboration
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B.6 Screenshot IBM Jazz Work Item GUI
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