
Development of a Web Based
Personal Information Environment

Personal Learning Environment
A Mashup Based Widget Concept

Behnam Taraghi BSc

Development of a Web Based Personal Information Environment

Personal Learning Environment
A Mashup Based Widget Concept

Master’s Thesis

at

Graz University of Technology

submitted by

Behnam Taraghi BSc

Institute for Information Systems and Computer Media (IICM),
Graz University of Technology

A-8010 Graz, Austria

03th March 2011

© Copyright 2011 by Behnam Taraghi

Supervisor: Dipl.-Ing. Dr.techn. Univ.-Doz. Martin Ebner

Entwicklung einer webbasierten persönlichen
Informationsumgebung

Persönliche Lernumgebung
Ein mashup-basiertes Widget-Konzept

Masterarbeit

an der

Technischen Universität Graz

vorgelegt von

Behnam Taraghi BSc

Institut für Informationssysteme und Computer Medien (IICM),
Technische Universität Graz

A-8010 Graz

03. März 2011

© Copyright 2011, Behnam Taraghi

Diese Arbeit ist in englischer Sprache verfasst.

Begutachter: Dipl.-Ing. Dr.techn. Univ.-Doz. Martin Ebner

Abstract

Due to the enormous growth of distributed applications, services, tools and information resources,
especially through Web 2.0 technologies on the World Wide Web (WWW) and also within the univer-
sities, it is not easy for end users (learners) to come across existing services, manage and use them in a
way that is customized according to their personal needs. Mashups can be a very interesting approach
to overcome challenges of distributed (unknown) services. Using mashups in a Personal Learning
Environment (PLE) can help to connect resources and applications in an environment customized to the
needs of individual users.

On the other hand, personalization is seen as the key approach to handle the plethora of information
in today’s knowledge-based society. It is expected that personalized information and services will
address the needs of the learners more efficiently. The students of tomorrow will regularly have to deal
with sharing and merging contents from different sources. Therefore, mashup technology will become
a very important means for the realisation of PLE, where the interests and needs of users are the central
focus.

In scope of this master thesis, a PLE is developed that is based on the mashup of widgets. The
widgets represent the distributed services in PLE and base upon a draft of WWW Consortium (W3C)
widget specifications. The PLE is planned to be integrated at the Graz University of Technology as one
of the university services in summer semester 2011.

The first sections of this thesis concentrate on the initial approach and the concept of a PLE es-
pecially aimed at higher education. The subsequent chapters describe the technological background
and structure of PLE, the W3C widget specifications and development of widgets in general, design
and usability issues as well as the first prototype in detail. Finally, the conclusion of this written work
will sum up the main points of this master thesis, including some ideas for future research and further
developments.

Kurzfassung

Aufgrund des enormen Zuwachses an verteilten Applikationen, Dienste und Informationsquellen
im Internet und innerhalb der Universitäten, besonders durch Web2.0-Technologien, ist es für die End-
benutzer (Lerner) nicht einfach, die bestehenden Dienste zu finden, zu verwalten und nach ihren eigenen
persönlichen Bedürfnissen zu benutzen. Mashups können ein sehr interessanter Ansatz zur Lösung die-
ser Probleme sein. Durch den Einsatz von Mashups in einer persönlichen Lernumgebung (PLE) kann
die Aggregation und Integration von verteilten Informationsquellen und Applikationen realisiert wer-
den. Des Weiteren ist die Anpassung an die Bedürfnisse der einzelnen Benutzer möglich.

Auf der anderen Seite, die Personalisierung ist der Schlüsselansatz für die Bewältigung des Informa-
tionsüberflusses in der heutigen Wissensgesellschaft. Es ist zu erwarten, dass die personalisierten Infor-
mationen und Dienste effizienter die Bedürfnisse der Lernenden erfüllen. Die Studierenden von Morgen
werden regelmäßig Inhalte aus unterschiedlichen Quellen teilen und zusammenführen müssen. Daher
sind Mashup-Technologien ein Mittel zur Realisierug einer PLE, wobei die Interessen und Bedürfnisse
der Lernenden im Zentrum stehen.

Im Rahmen dieser Masterarbeit ist eine PLE entwickelt worden, die auf einem Mashup von Widgets
basiert. Die Widgets repräsentieren die verteilten Dienste in der PLE und basieren auf einem Entwurf
der W3C Widget-Spezifikationen. Es ist geplant, die PLE als einen der Dienste der TU Graz im Som-
mersemester 2011 anzubieten.

Die ersten Kapitel dieser Arbeit befassen sich mit dem Ansatz und Konzept der PLE, besonders an
tertiären Sektor. Die weiteren Kapitel beinhalten die technologischen Hintergründe und die Struktur der
PLE, die W3C Widget-Spezifikationen und die Entwicklung der Widgets im Allgemeinen, Entwurfs-
und Usability-Themen sowie den ersten Prototypen im Detail. Schließlich werden die Hauptthemen
dieser Masterarbeit zusammengefasst, wobei auch einige Ideen für die künftigen Forschungs-und Wei-
terentwicklungen vorgeschlagen werden.

Pledge of Integrity

I hereby certify that the work presented in this thesis is my own, that all work performed by others is
appropriately declared and cited, and that no sources other than those listed were used.

Place:

Date:

Signature:

Eidesstattliche Erklärung

Ich versichere ehrenwörtlich, dass ich diese Arbeit selbstständig verfasst habe, dass sämtliche Arbeiten
von Anderen entsprechend gekennzeichnet und mit Quellenangaben versehen sind, und dass ich keine
anderen als die angegebenen Quellen benutzt habe.

Ort:

Datum:

Unterschrift:

Contents

Contents iii

List of Figures iv

List of Tables v

Acknowledgements vi

Credits vii

1 Introduction 1

2 Concept and Challenges 3

3 PLE Architecture 6
3.1 Technical Background . 8

3.2 Use Cases . 9

3.2.1 Administrators . 9

3.2.2 Users . 10

3.3 Server-Side Architecture . 11

3.3.1 Widget Authentication . 12

3.3.2 Proxy . 13

3.3.3 Data Storage . 13

3.3.4 Application Programming Interface (API) . 15

3.4 Client-Side Architecture . 17

3.4.1 General Structure . 17

3.4.2 Dynamic User Interface (UI) Construction . 19

3.4.3 Inter-Widget Communication . 20

3.4.4 Statistics Module . 21

3.4.5 Stylability . 22

3.5 Widget Development Environment (WDE) . 22

3.5.1 WDE Restrictions . 22

i

4 Widgets in PLE 24
4.1 The W3C Widgets Family of Specifications . 25

4.1.1 Widgets Packaging and Configuration . 25
4.1.2 Widgets Interface . 25
4.1.3 Widgets Digital Signature . 26
4.1.4 Widget Updates over HTTP . 26
4.1.5 Widget Access Request Policy . 26
4.1.6 Widgets 1.0: URI Scheme . 26
4.1.7 Widgets ’view-mode’ Media Feature . 26
4.1.8 Widgets 1.0: Requirements . 26
4.1.9 Widgets 1.0: The Widget Landscape . 26

4.2 Packaging and Configuration . 26
4.2.1 Folder Structure . 27
4.2.2 Configuration File . 27

4.3 Application Programming Interface (API) . 29
4.3.1 Read and Write User Preference Data . 30
4.3.2 XMLHttpRequest Methods . 30
4.3.3 Read and Write Widget Settings . 31
4.3.4 Widget Authentication . 31
4.3.5 Inter-Widget Communication . 31

4.4 Cross-Domain XMLHttpRequest (XHR) . 32
4.4.1 JSON with Padding (JSONP) . 32
4.4.2 YQL Proxy . 33
4.4.3 CSSHttpRequest . 33
4.4.4 Flash Proxy . 33
4.4.5 IFrames . 33
4.4.6 HTTP Access Controls . 34

4.5 Simple MVC Framework for Widget Development 34
4.5.1 MVC Frameworks . 35
4.5.2 The Simple MVC Framework . 35
4.5.3 Extendibility Examples . 37

5 PLE First Prototype 40
5.1 User Interface Structure . 41

5.1.1 Sidebar . 41
5.1.2 Widget Zone . 42
5.1.3 Widgets . 42
5.1.4 Personal Desktop . 42
5.1.5 Banner . 43

5.2 Evaluation of User Interface . 43
5.3 PLE Main Screens . 46

5.3.1 Start Page . 46
5.3.2 Logged-in Area . 47

5.4 Widget Prototypes . 50
5.4.1 Widgets Representing some University Services 51
5.4.2 Learning Object (LO) Widgets . 53
5.4.3 Widgets Representing Services on the WWW 55

ii

6 Outlook 57
6.1 General Trends . 57

6.2 Ideas for Future Work . 57

6.2.1 Widget Engine Upgrade . 58

6.2.2 Missing W3C Widget Specifications . 58

6.2.3 UI Extensions . 58

6.2.4 Extension of Simple MVC framework . 58

6.2.5 PLE as a Desktop Application . 59

6.2.6 Desktop and Dashboard Widgets . 59

6.2.7 Mobile PLE . 59

6.2.8 Other Widget Specifications . 60

6.2.9 Web Services . 60

6.2.10 Recommender Systems in PLE . 60

7 Concluding Remarks 61

A Appendix 64
A.1 Structure of PLE RDMS . 64

A.2 Class Diagram of Client Logic . 67

A.3 XML Schema Definition (XSD) of Widget Configuration File 69

A.3.1 manifest.xsd . 69

A.3.2 palette.xsd . 71

Bibliography 77

Acronyms 78

iii

List of Figures

3.1 Mashup Structure of PLE . 7
3.2 Use Cases for PLE Administrators . 10
3.3 Use Cases for PLE Users . 11
3.4 PLE Client-Server Architecture . 12
3.5 Table Relations in PLE Database . 15
3.6 Sidebar and Widget Zone on UI . 17
3.7 Relations and Dependencies in Client Logic . 18
3.8 Sequence Diagram of Dynamic UI Construction . 20

4.1 MVC Design Structure . 35
4.2 Simple MVC Framework . 36

5.1 PLE Concept . 40
5.2 PLE User Interface . 41
5.3 PLE User Interface: A Flipping Widget . 42
5.4 PLE User Interface: Sidebar Switched off . 43
5.5 PLE Start Page . 47
5.6 PLE Widget Wall . 48
5.7 PLE Dock Menu . 48
5.8 PLE Categories (Sidebar Elements) . 48
5.9 PLE Widget Displacement . 49
5.10 PLE Widget: Main and Edit Window . 50
5.11 PLE Widget: TUGraz online . 51
5.12 PLE Widget: TUGTC Courses . 52
5.13 PLE Widget: TUGLL Blogs . 52
5.14 PLE Widgets: Mail and Newsgroups . 53
5.15 PLE LO Widgets: TruthTable, Kana Quiz and Chinese Trainer 54
5.16 PLE LO Widget for Game-Based Learning: Hangman 54
5.17 PLE Widgets: dict.leo.org, dict.cc and Google Translator 55
5.18 PLE Widget: RSS Feed Reader . 56
5.19 PLE Widgets Social Networks: Twitter and Facebook 56

A.1 Class Diagram of Client Logic (1) . 67
A.2 Class Diagram of Client Logic (2) . 68

iv

List of Tables

5.1 Test case 1 used to evaluate the first PLE prototype 44

5.2 Test case 2 used to evaluate the first PLE prototype 44

5.3 Test case 3 used to evaluate the first PLE prototype 44

5.4 Test case 4 used to evaluate the first PLE prototype 45

5.5 Evaluation results: Task completion . 45

5.6 Evaluation results: Task performance . 45

A.1 Structure of Table categories . 64

A.2 Structure of Table cops . 64

A.3 Structure of Table interface . 64

A.4 Structure of Table interface dashboard . 65

A.5 Structure of Table interface preferences . 65

A.6 Structure of Table login data . 65

A.7 Structure of Table tags . 65

A.8 Structure of Table tracks . 65

A.9 Structure of Table users . 66

A.10 Structure of Table widgets . 66

A.11 Structure of Table widget tags . 66

v

Acknowledgements

Many thanks go to my colleagues and friends at the division of Social Learning, Computing and Infor-
mation Services (ZID) and Institute for Information Systems and Computer Media (IICM) who have
provided me with help and feedback during the course of my work and my studies.

I especially wish to express my great gratitude to my supervisor Dr. Martin Ebner for his invaluable
help, immediate attention to my questions and endless support.

A special acknowledgement goes to Dr. Keith Andrews for providing the Latex template for this
written work and allowing the usability tests to be done on the Personal Learning Environment (PLE)
first prototype within the scope of one of his lectures.

I would like also to thank Dipl.-Ing. Gerald Till from Institute of Housing for his support and
thoughts in the initial design phase of the Graphical User Interface (GUI).

Last but not least, I would like to thank my parents and close relatives for their support during my
studies. I dedicate this work to my parents who did not and do not stop believing in me and supporting
me with their continuous faith and love.

Behnam Taraghi
Graz, Austria, March 2011

vi

Credits

I would like to thank the following individuals and organisations for permission to use their material:

• The thesis was written using Dr. Keith Andrews’ skeleton thesis [Andrews, 2006].

• The core functionality used in Personal Learning Environment (PLE) is adopted from mywiwall
widget engine implemented in scope of European Palette project [PALETTE, 2008]. Thanks to
guys who have been involved in the implementation of mywiwall engine. They have done a great
job.

• Figure 5.1 is made by Mag.rer.nat. Walther Nagler who has been involved in the creation of first
ideas for the PLE concept before the start of this work.

• Figures 5.2, 5.3 and 5.4 are made by Dipl.-Ing. Gerald Till who gave support in the design phase
of the PLE for the structure and look & feel of the Graphical User Interface (GUI).

• Some of the widgets that are demonstrated in section 5.4, have been developed under my super-
vision by some students of Informatics in scope of one of their courses.

vii

Chapter 1

Introduction

“ The e-learning application (. . .) begins to look very much like a blogging tool. It repre-
sents one node in a web of content, connected to other nodes and content creation services
used by other students. It becomes, not an institutional or corporate application, but a
personal learning center, where content is reused and remixed according to the student’s
own needs and interests. It becomes, indeed, not a single application, but a collection of
interoperating applications - an environment rather than a system. ”

[Stephen Downes [Downes, 2005]]

Recently, a remarkable transition could be observed in the field of Technology-Enhanced Learning
(TEL) as a transition from content-oriented learning or top-down approach (institute-centred; institute
as content provider) to a more collaborative-communicative bottom-up approach (user-centred; user as
content creator).

It started about seven years ago when Tim O’Reilly pointed to the enormous possibilities of interac-
tions, communications and user-centred approaches on the WWW, Web 2.0, for the first time [O’Reilly,
2005]. Since then, collaboration, content sharing and communication by the use of social software and
other networks have been increasing steadily. Nowadays our life is so much influenced by Web 2.0
applications that it might be difficult to perform our daily activities without them. They have been in-
tegrated very well as part of the daily life in learning or working environments due to their ubiquitous
availability and ease of use [Holzinger et al., 2006] [Klamma et al., 2007]. Twitter1 as a microblog-
ging platform [Lucky, 2009], and Facebook2 as a social network are two well-known examples that are
mostly used for communication and interaction purposes by the broad public, including learners and
teachers. Weblogs [Luca and McLoughlin, 2005], wikis [Augar et al., 2004] and podcasts [Evans, 2008]
are further examples that have dominated research in the field of TEL in recent years. There are numer-
ous other works of research that have explored several different possibilities of Web 2.0 technologies,
or E-learning 2.0, respectively, as noted by Stephen Downes [Downes, 2005], for teaching and learning
purposes in TEL [Ebner, 2007]. In addition to microblogging platforms and social networks that can
be applied in various learning and teaching scenarios [Ebner and Maurer, 2008], numerous types of
content-sharing services, such as YouTube3 for videos, Slideshare4 and Scribd5 for presentations and
documents or Del.icio.us6 for bookmarks also play an important role in innovative teaching methods
and informal learning processes [Mason and Rennie, 2007].

Considering the enormous number of rapidly growing applications intended for the purposes men-
tioned above, efficient management of these distributed tools can become extremely challenging. Teach-
ers and learners as the main actors in teaching and learning environments may be overwhelmed by the
extensive possibilities Web 2.0 tools offer. It may even be difficult to come across the existing services
or manage and use them in a way that is customized according to the users’ personal needs. Various

1

2

studies on Web 2.0 technologies at Graz University of Technology (Technical University (TU) Graz)
have proven this assertion right and have shown that first-year university students are largely unaware
of the existence of numerous Web 2.0 tools [Nagler and Ebner, 2009].

Apart from Web 2.0 applications, the overwhelming effect can also arise with regard to services
available within a university or higher educational institutes. Next to some main services that are
used by a broad number of students and staff at the TU Graz, there are also many minute services
that are unknown to many users, since they are intended for specific kinds of use and not aimed at
all user groups. On the other hand, some main tools, such as the administration system (TUGraz
online) or Learning Management System (LMS), TU Graz TeachCenter (TUGTC) are growing and
being extended in the course of time and provide new functionalities that cannot be handled by all users
either.

Mashups can be of great assistance in managing multiple distributed tools, along with handling in-
formation and the cognitive overload that comes along with it [Kulathuramaiyer and Maurer, 2007].
Personalization is also seen as the key approach to handle the plethora of information in today’s
knowledge-based society. It is expected that personalized information and services will address the
needs of the learners more efficiently, bearing in mind that the students of tomorrow will regularly have
to deal with sharing and merging contents from different sources. Therefore, mashup technology will
become a very important means to focus on individual learning needs and to personalize the access
to particular information. ”The possibility to connect different resources in one environment should
help to maintain the overview of all activities. Mashups merge contents, services and applications from
multiple websites in an integrated, coherent way” [Tuchinda et al., 2008]. As a result, PLEs offer a
new form of personalized learning [Wild et al., 2008]. To overcome the challenge of various distributed
resources, the overload of information and the customization of services, the idea of PLE emerged
[Schaffert and Kalz, 2009].

In the scope of this master thesis, a PLE based on the mashup of widgets has been developed. The
widgets represent the distributed services in the PLE and base upon an extended draft of W3C widget
specifications. The widget engine that is applied in the PLE is developed in the scope of the Palette
project [PALETTE, 2008]. The PLE is planned to be integrated at the TU Graz as one of the university
services in summer semester 2011.

The findings of the initial research, design and development of the PLE at the TU Graz featured in
several publications, presented at different international and European workshops as well as conferences
that are going to be summarized in this written work.

Chapter 2 discusses the challenges that the PLEs present for higher educational institutions along
with the information overflow, whereas other subsequent chapters deal directly with the developed PLE
in the scope of this master thesis. Chapter 3 and 4 will describe the technical background and the
architecture of the PLE along with the widgets in detail. In chapter 5, the first prototype of the PLE will
be presented, which has already been available online since October 2010. Furthermore, this section
will give a detailed description of some of the available widgets for the prototype and provide a first
expert evaluation of the UI. Finally, chapter 6 and 7 will sum up the main points of this master thesis
and present the plans for future research and further developments.

The structure of the Relational Database Management System (RDMS), the class diagram of the
client logic and the XML Schema Definition (XSD) of the widgets configuration file are attached in
Appendix A for further reading.

Chapter 2

Concept and Challenges

“ Personal Learning Environments are systems that help learners take control of and man-
age their own learning. This includes providing support for learners to set their own learn-
ing goals, manage their learning; managing both content and process, communicate with
others in the process of learning and thereby achieve learning goals. A PLE may be com-
posed of one or more sub-systems: As such it may be a desktop application, or composed
of one or more web-based services. ”

[Mark van Harmelen [Van Harmelen, 2008]]

The idea of the so-called Personal Learning Environment (PLE) was first introduced by [Olivier
and Liber, 2001] as a mashup of different web-based applications. In comparison with traditional e-
learning systems, such as the LMSs where mainly formal teaching requirements such as course- or
student management are supported, the PLE focuses on users’ individual (formal or informal) needs.
Thus the difference actually lies in the role of actors who interact with these systems individually. In
a traditional LMS, the teacher manages and arranges the course materials and decides which contents
should be provided to the learners. But within a PLE, the learners make their own decisions according
to their individual needs and interests. They arrange their learning contents themselves, choose the
services they need and manage their learning process individually.

Stephen Downes described the PLE as a future learning environment: ”It becomes, not an insti-
tutional or corporate application, but a personal learning center, where content is reused and remixed
according to the student’s own needs and interests. It becomes, indeed, not a single application, but a
collection of interoperating applications - an environment rather than a system” [Downes, 2005].

Wilson Scott illustrated an image of a Virtual Learning Environment (VLE) [Wilson, 2005] and
described the PLE as a user-centred VLE.

Harmelen [Van Harmelen, 2006] argued that the VLEs and LMSs do not handle the individual needs
of the learners well. He described PLEs as systems that help learners manage their learning process,
starting by defining learning goals up to achieving these goals [Van Harmelen, 2008].

Ron Lubensky [Lubensky, 2006] introduced the general nature of PLEs as a facility: ”A Personal
Learning Environment is a facility for an individual to access, aggregate, configure and manipulate
digital artefacts of their ongoing learning experiences”. He described PLEs as an intersection of VLEs,
Web 2.0 and an expanded view of ePortfolios.

Terry Anderson [Anderson, 2006] compared the advantages and disadvantages of PLEs and LMSs
and described PLE as an interface: ”The PLE is a unique interface in the owners’ digital environment.
It integrates their personal and professional interests (including their formal and informal learning),
connecting these via a series of syndicated and distributed feeds”. He listed the advantages of PLEs as
follows:

3

4

• Identity: The PLE tools integrate the user’s informal identity of their life in an informal setting
with formal study.

• Ease of use: PLE can be customized and personalized by the users themselves.

• Ownership: PLE is based on user-centred content or user-owned content and tools.

• Copyright and re-use: As the content and the tools belong to the user, the user can decide on the
re-use of the content.

• Social presence: Online-culture reigns in PLE.

• Capacity and speed of innovation: New applications and tools evolve rapidly in PLE.

[Schaffert and Kalz, 2009] summed up the different definitions of PLE as a learning environment
where learners can integrate and organize the information, resources, contacts, tools and applications
on the WWW and apply them in other online environments.

There are many other works of research that have tried to introduce PLE by using common social
softwares such as [Attwell, 2007b] [Attwell, 2007a] [Schaffert and Hilzensauer, 2008]. Due to the
numerous possibilities and challenges, especially in the TEL, it seems that no uniform definition can
be found for PLEs. The concept of PLEs is still not elaborated well enough to be introduced into
approaches used within higher education, as Graham Attwell observed: ”Yet for all the talk there was
no consensus on what a Personal Learning Environment (PLE) might be. The only thing most people
seemed to agree on was that it was not a software application. Instead it was more of a new approach to
using technologies for learning. Underpinning a number of the discussions was the issue of what role
teachers and institutions would play if learners themselves developed and controlled their own online
learning environment.” [Attwell, 2007b].

Based on the comparison made by [Anderson, 2006], seven crucial challenges were introduced by
[Schaffert and Hilzensauer, 2008] that must be taken into account to switch from a LMS to PLE:

• Role of the Learner: A change from pure consumer to a prosumer or content-producer must take
place, which requires some user competences. Users must be able to organize their learning
resources and search, find and use the resources that they need.

• Personalization: The user must have the competence to customize their learning environment
according to their requirements; self-organisation is vital.

• Content: Competences to search, find, and use the required resources are needed.

• Social involvement: Competences to work with collaborative tools within PLEs are required.

• Ownership: In a PLE, the user is the owner of the data and tools, not the PLE provider. The user
must be able to handle that.

• Educational and organization culture: The learning culture in a PLE is different. Users must get
used to self-organisation as there are no classes with teacher-oriented instructions.

• Technological aspects : In a LMS, the data can be retrieved from data repositories. In a PLE,
certain interoperability strategies are required to aggregate the required data in the PLE.

The list above shows that it would be quite challenging for the learners and teachers to switch from
LMS to PLE. However, it is not necessary to substitute any existing e-learning systems by PLE in
higher educational institutes. PLE should not act as a substitute for other tools and applications, but
rather as an additional environment where learners can apply the services provided by these tools in a
more efficient and personalized way. Thus a PLE is not a competitive product for existing tools. Its

5

existence renders present tools and services more valuable since they can be customized according to
the user’s needs and can be used as a result more efficiently from the user’s point of view.

Another challenging point is the probable overwhelming effect within a PLE. A common problem
for mashups is the rapidly growing amount of data and availability of tools within the environment.
Will the users be able to follow the development of tools and the flow of data in a PLE? The size of
entities is a critical factor for the overwhelming effect. If thousands of widgets are provided within a
PLE, a mechanism must be found to inform the users about eventual widgets that might be of interest to
them. In case of widgets representing social or content-sharing networks, for instance, it is likely that
the user is not able to keep up with the mass of information flow in a short period of time. To avoid such
problems, a recommender tool could be applied, which can indeed be challenging from the technical
point of view (see section 6.2.10).

Chapter 3

PLE Architecture

“ A PLE is comprised of all the different tools we use in our everyday life for learning. ”

[Graham Attwell in ”Qualität im e-Learning” [Attwell, 2007b]]

A PLE that can be seen as a personalized individual website is not a new idea. This idea has been
applied in the form of contact widgets in some social networks, such as Facebook, to enable users to get
in touch with other registered users on the platform. Nowadays PLEs are gaining increasing attention
with the growth of Web 2.0, as described in chapter 1, and Rich Internet Application (RIA) technologies.
It allows developers to build more dynamic and stable client-side applications with a flexible GUI and
programming logic. The programming logic is most often fully integrated in the presentation layer
on the client side, which results in a distribution of server load, reduction of server response time and
achieving a higher performance. The server-side logic of the applications is not responsible for the
presentation layer anymore. Its only task is to provide clients with the data and resources they need for
using an API in a Service Oriented Architecture (SOA).

The goal of a PLE cannot be reduced to being only a platform for accumulating distributed learning
applications, used at university or on the Internet. Certainly one of the goals is that students are able
to adapt their learning environment to their preferences, so they are able to make their own decisions
on which applications they want to use and integrate into their environment. By the same token, each
application or service that is integrated into a PLE should be flexibly configurable to meet the individual
needs of the student. From the technical point of view, a PLE is a client-side environment RIA, com-
prised of a mashup of different small independent web applications and services selected by the user
[Taraghi et al., 2009a]. These distributed applications are configurable and can communicate with other
web applications within the PLE environment. What is more, Hoyer [Hoyer, 2008] introduced some
existing mashup tools with different emphases, such as Yahoo Pipes and Microsoft Popfly. Aumüller
and Thor [Aumüller and Thor, 2008] described three main components of a mashup application: data
extraction, data flow and presentation. They categorize different mashup tools according to one or
several of these components.

As it is not possible to integrate the entire set of services into one presentation layer, the PLE server
serves as a single entry point to provide the client-programming logic with such small applications or
services. These small applications are called widgets.

Widgets are small embeddable applications that can be included in an HTML-based web page or
executed on the desktop. This client-side code can be a simple JavaScript, Java-applets or anything that
can be embedded in a valid HTML or XHTML document. It entails the functionality to build the GUI
of the widget dynamically and the logic to retrieve or update data from services provided by the PLE
server as well as remote servers [Taraghi et al., 2009b]. Chapter 4 discusses widgets in general as well
as the widget specifications of W3C.

6

7

Figure 3.1: Mashup structure of PLE describing data extraction from distributed resources, data

flow between widgets and presentation components in PLE.

As mentioned before, personalization is a very important factor for a PLE. Users should be able
to customize their learning environment personally and in accordance with their own needs. The cus-
tomization of GUI is important to give learners a personalized look-and-feel. Besides, the users should
be allowed to use and customize the various distributed learning applications and university services on
the Web in their PLE. In order to meet these requirements, a mashup of widgets can be used. When
short lightweight applications are put into widgets, users can organize and personalize the applications
(widgets) that are interesting for them, which they can combine into a vast number of possible mashups
[Taraghi et al., 2009a].

The mashups of widgets used in a PLE can be classified as end-user mashups, as described in
[Gamble and Gamble, 2008]. The PLE contains a widget engine, implemented in the Palette project
[PALETTE, 2008] to load and handle the widgets according to the W3C widget specifications. While
data extraction is carried out on the side of the server, the data flow and presentation components are
handled by the widget engine on the side of the client, as illustrated in figure 3.1.

Applying widgets in a PLE can have several advantages [Taraghi et al., 2009b]. Widgets represent
independent web applications, hence they can be implemented independently from a PLE. The W3C
widget specifications, which are explained briefly in section 4.1, introduce a unique standard for wid-
gets. If this standard is applied, it could result in many open-source widgets that can be employed in
different PLEs or other learning systems, supporting the W3C widget specifications. Another issue is
the distributed knowledge transfer from different servers, along with diffusion. The service used by the
widgets must not necessarily be located on the same PLE server. Remote servers provide widgets with
corresponding services through their API. Widgets cannot send cross-site requests to remote servers
due to security restrictions of the XHR object in browsers. Yet, there are some techniques to bypass
this restriction. which are described in detail in section 4.4. In the PLE, a proxy script is used on the
PLE server to enable cross-site communication between widgets and remote services. As a result, many
different distributed remote services can be provided within the PLE without any technical effort.

Section 3.1 introduces two European projects that have already been implementing W3C widget 1.0
specifications (Packaging and Configuration as well as API). Based on the widget engine implemented
in the Palette project, the PLE is designed to be applied at the TU Graz within the framework of this
thesis.

In order to know what users can do exactly in the PLE, it is necessary to know about different use
cases beforehand. Section 3.2 gives a general description of such use cases.

As mentioned before, the PLE as a whole can be considered as a RIA with a client-server architec-
ture. The separation of tasks between the client and the server makes it possible to work on each tier

3.1. Technical Background 8

independently. Sections 3.3 and 3.4 introduce the server and client architecture of PLE in detail. They
contain the adapted architecture from mywiwall portal and the additional newly implemented extensions
as well as the necessary upgrades.

Section 3.5 describes briefly the Widget Development Environment (WDE) that is developed within
the scope of this master thesis to make widget development for widget developers on the local host
possible.

3.1 Technical Background

Next to the TenCompetence project, the Palette [PALETTE, 2008] is one of the two projects of the
European Union (EU) focusing on educational applications. They have already implemented the draft
of W3C widgets specifications (Packaging and Configuration as well as API). Refer to section 4.1 for
further information.

Wookie7 is a standalone widget engine which was developed as a part of the TenCompetence project
in order to enable coordination of the usage of different external tools in learning activities. It can be
integrated into any web application by using the wookie widget factory API. Its task is to instantiate
the widgets within the platform and render them to the UI of the corresponding web applications. To
simplify this integration for existing applications, plug-ins are developed to be used in certain famous
web applications, such as Wordpress8, Moodle9 and Elgg10 [Taraghi et al., 2009c]. Unlike Wookie,
the widget engine in the Palette project is implemented as a part of the Palette web portal (mywiwall)
[Taraghi et al., 2009b], which means that the integration of widgets in other applications cannot be
performed by plug-ins. In the Palette project, the W3C widget configuration is extended and some
additional default user preference values are added. These values may be modified by users to customize
the widgets according to their own needs (see section 4.2). Although this extension is advantageous for
e-learning systems where widgets can be configured and customized according to their preferences, the
wookie widget engine cannot handle these widgets, as their manifest file contains extended elements
not described in W3C packaging and configuration specifications. But since the Palette preferences
are added under a separate namespace, it remains compatible with the W3C specification (see section
4.2.2).

The Palette service portal represents a web portal (mywiwall) that users can customize by adding
and removing widgets. The W3C built-in widget engine enables the installation and integration of any
widget that is compatible with the W3C specification.

Palette has extended the Widgets Interface specifications described in section 4.1.2 as well. Through
these extensions, a new way of communication between widgets has been enabled. Widgets can add
listeners to events or fire events to trigger certain events in other widgets (see section 4.3.5). This can
be graphically realised by a simple drag & drop between widgets. As a very simple example, setting
a location in a map widget can fire an event that triggers the other widgets within the web page. A
weather forecast widget can adjust its contents after being triggered by the map widget to show the
weather status of a selected location on the map.

Next to HyperText Transfer Protocol (HTTP) authentication, Palette also supports a separate widget
authentication mechanism in case the widgets are required to be authenticated by third-party services
that they make use of or represent (see section 3.3.1).

Palette distinguishes between local widgets, which are deployed within the platform, and remote
widgets, which are stored on a remote server. While local widgets are static client-side applications that
are compatible with W3C widget 1.0 specifications and implemented in HTML and JavaScript, remote
widgets may include server-side programming languages that dynamically produce the widget content.
In theory, it is possible to implement any type of widget using both approaches. Looking at a wide
scope of learning objects and services together with their eventual dynamic processing requirements

3.2. Use Cases 9

in the background, it becomes clear that the remote widgets provided by Palette can be applied very
usefully in this context. The widget variation used in a PLE can be increased and extended to many
learning services on remote servers in the form of remote widgets.
Note: The PLE designed in the framework of this master thesis is based on the widget engine imple-
mented in mywiwall. It supports the W3C widget packaging and configuration as well as API specifi-
cations. Since W3C specifications have often been updated, the widget engine is outdated and needs to
be updated to remain compatible with the current version of W3C specifications (see section 4.1).

3.2 Use Cases

Two types of actors are designated for PLE: Administrators and current users. The use cases of each
actor are described as follows:

3.2.1 Administrators

Administrators are authorised to organize and manage the provided widgets within PLE. They can
install and de-install widgets, update the already installed widgets to new versions (edit widgets), add,
edit and remove categories in the PLE portal, and last but not least add, edit and delete users. Moreover,
they can view statistics results and the list of users who have been online in a certain period of time.

Statistics data regarding user behaviour in the PLE can be viewed for a certain period of time and
include the following cases:

• The number of widgets that have been used by the user at least once.

• (A): The list of widgets that have been used by the user at least once.

• The number of times the user has used the widgets (A).

• The number of times the user has used each widget in (A).

• The average number of times the user has used a widget in (A).

• The number of times the user has been online.

• The period of time the user has been online each time.

Statistics data regarding the usage of widgets in PLE can be viewed for a specific period of time and
include the following cases:

• The number of users who have used a widget at least once.

• (B): The list of users who have used a widget at least once.

• The number of times a widget has been used by users (B).

• The number of times a widget has been used by each user in (B).

• The average number of times a widget has been used by one user in (B).

The statistics data regarding user agent in PLE can be viewed for a certain period of time and include
the following cases:

• number and percentage of different Operating Systems (OSs) of user agents

3.2. Use Cases 10

Personal Learning Environment
(Administration Area)

Admin

Install Widget

Auto-Subscribe
Widget

Edit Category

Toggle Widget
Visibility Remove Widget

Edit Widget

Edit User

Add Category

Remove
Category

Reorder
Category

Add User Remove User

View Widget
Statistics

View User
Statistics

View User Agent
Statistics

View Online Users

Figure 3.2: Use cases for PLE administrators.

• number and percentage of different browsers of user agents

• number and percentage of different browsers in specific OSs of user agents

• number and percentage of mobile user agents

Figure 3.2 shows the use cases regarding administrators.

3.2.2 Users

Users can be either students and lecturers of the TU Graz with a valid TU access account, or external
users who have been registered by the administrator to be able to access and use PLE. They can activate
(add), remove, search or move the widgets in the UI. What is more, they are also able to add or remove
widgets on their personal desktop, which is part of the UI. For more details, refer to section 5.1.

The login to PLE is different for students and lecturers with a valid TU access account. A while
ago, the login to TU services and web applications was switched to Single Sign-on (SSO) authentication
mechanism. Once the user has acquired authentication in one of the TU services, no further authenti-
cation is required to access other TU services. The same mechanism is used to log out. Once the user
is logged out of one of the TU services, all other sessions from other services are closed as well. As
the PLE is going to be used as one of the TU services, the SSO authentication applies. The SSO at TU
Graz is based on the Shibboleth11 system, where a central Identity Provider (IdP) is responsible for the
identification and authentication of users via a HTTP Secure (HTTPS) connection.

Figure 3.3 shows the use cases regarding users.

3.3. Server-Side Architecture 11

Personal Learning Environment

User

Add Widget

Open Widget

Add Widget to
Personal
Desktop

Search Widget Close Widget

Edit Widget

Switch Interface
Style Sheet

Reposition
Widget

Remove Widget
Remove Widget
from Personal

Desktop

SSO Login SSO Logout

Figure 3.3: Use cases for PLE users.

3.3 Server-Side Architecture

As mentioned in the preceding sections, the PLE as a whole can be considered as a RIA with a client-
server architecture. The server is merely responsible for the retrieval of data from data resources. The
tasks that the server has to fulfil can vary from adding and updating data to local storage (such as
user preferences, widgets, etc.) to retrieving data from remote servers. The server scripts act as web
services. An Asynchronous JavaScript and XML (AJAX) approach is used to transmit data between the
client and the server. The server responds to the client’s GET requests with data retrieved from the data
storage, either in eXtensible Markup Language (XML) or JavaScript Object Notation (JSON) format.

The server architecture is based on the ClearFw12 framework. ClearFw is a framework based on
the Model View Controller (MVC) design architecture and is implemented by CRP-HT13 in Hypertext
Preprocessor (PHP) 5 programming language. Figure 3.4 illustrates the client-server architecture that
is applied in PLE.

Section 3.3.1 describes the widget authentication possibilities for third-party services. Section 3.3.2
describes the proxy module that deals with the transmission of data between widgets and external
resources (services). Section 3.3.3 sheds light on the data storage that is distributed on the file system
and on RDMS. Section 3.3.4 describes the server API that is responsible for handling client requests.

3.3. Server-Side Architecture 12

RDMS

Controller

Model

View

Client Engine

Widgets

Server

Client

Figure 3.4: PLE client-server architecture.

3.3.1 Widget Authentication

PLE acts as an environment where various services and applications on the WWW and from the TU
Graz are integrated in and realized through a mashup of widgets. Contrary to most of the general ser-
vices on the WWW that are accessible publicly, there are many user-based services which may require
authentication, such as SlideShare, Scribd, Facebook, etc. Most of these services provide methods for
authentication through their API where the username and password must be submitted as arguments.
The corresponding widgets must send the login data (saved as user preference on the PLE server) to the
service API through a built-in proxy (see section 3.3.2).

Yet, in many cases no API is provided for authentication. For instance, there can be services that re-
quire HTTP authentication. The same holds true for many university services. Most university services
are not accessible to the public at all and their use is restricted only to users with a valid TU Graz access
account. Since TU Graz users are authenticated in the PLE through SSO, they should be authorised
to access to all TU services without the need of repeated authentication for each service. On the other
hand, widgets can communicate with remote servers through a proxy. The proxy acts as an independent
web client for web services and is not authenticated for TU services; hence it does not own the SSO
cookies that the widgets own. Therefore, a widget authentication mechanism is necessary to establish a
trust relation between widgets deployed by the PLE server and remote services. In this way, the widget
should be authorized to apply the remote service. Furthermore, the user Identifier (ID) in PLE must be
transmitted to relevant remote services for eventual retrievals of user-related data.

In order to meet these requirements, the approaches given below are applied.

Secret Shared Service Key (S3K)

The 256 bit S3K shared between widgets and remote services is used in a cryptographic algorithm
called Rijndael. If the widget uses this authentication mechanism, a shared key is generated and saved
automatically in the PLE Database Management System (DBMS) at widget installation time [Naudet et

3.3. Server-Side Architecture 13

al., 2008]. The widget authentication mechanism must be declared as enabled in the widget configura-
tion file to let the installation module know that the widget requires a S3K to communicate with remote
services (see section 4.2.2). The generated S3K for the widget can be viewed in the administration area
and shared manually with other services. Once a XHR arrives from a widget with an enabled authen-
tication mechanism, the proxy encrypts the username of the user using the widget in the PLE with the
S3K of the widget and sets the username along with the encrypted version of it as (user, password) pairs
in the HTTP authentication header. The remote service needs to read the HTTP authentication header
values and decrypt the password with the same S3K. If the decrypted version is identical with the user,
the service provider authorises the user to use the service.

This widget authentication mechanism is applied in the mywiwall engine as well.

Randomly Generated Token (RGT)

RGT is another approach that is implemented in the PLE. It rests on a very simple idea. The remote
servers must be registered on the PLE server with their main Uniform Resource Locator (URL) and
Internet Protocol (IP) address. The client (widget) sends an XHR to the PLE API to retrieve a RGT
and the username of the user at first. The tokens are 32 characters long and are generated on the fly
randomly. They are valid only for a limited period of time and are unique for each user and each
subscribed service. When the widget sends an XHR to the remote service, it sends the retrieved token
and username of the user as an additional parameter. The remote service calls the PLE API to verify if
the token is valid for the specified username. If the service is subscribed and the token is valid for the
specified user, the remote service will respond positively.

HTTP Authentication

PLE also supports normal HTTP authentication, if so required by a web service. In this case, the widget
API provides the developers with methods to set the HTTP authentication header with corresponding
login data, namely the user and password data (see section 4.3.4), when they send an XHR to the
remote web service. The build-in proxy on the PLE server passes the header values on to remote
services [Naudet et al., 2008].

3.3.2 Proxy

The server is responsible to retrieve data from external resources upon request of the client (mainly
widgets). Due to security restrictions of browsers for XHRs, the client (widgets) cannot send requests
directly to remote servers. This feature is most often required by widgets that represent or make use of
third-party services on the WWW. To meet this requirement, a proxy module is used.

The proxy acts as a web client for remote web services. It passes on all unmodified HTTP requests
and responses from the client to the target services and vice versa. The header values are passed on as
well, so that target remote servers can handle the request and the client can parse the response correctly.
In case of widget HTTP authentication, the authentication header values (user and password) are passed
on as they are in the client request to the target servers. For the shared-key authentication mechanism,
provided that it is enabled, the username in the PLE and the encrypted version of it are set as the
corresponding HTTP authentication header (user and password) [Naudet et al., 2008].

3.3.3 Data Storage

The PLE requires a DBMS and the file system to fulfil the requirements. These are described as follows:

3.3. Server-Side Architecture 14

File system

The file system is needed to save widget archives on the server. Widgets are actually archives of files
that are required for each widget to run, such as images, Cascading Style Sheets (CSS), JavaScript and
Hypertext Markup Language (HTML) Files. The administrator has to upload the widget to install it on
the PLE. The server verifies the widget archive according to W3C widget packaging and configuration
specifications, and finally saves it on the file system under ./widget/ directory. The default values for
user preferences are read from the configuration file during installation and saved in DBMS for easier
processing.
Note: Remote widget archives include only a configuration file that is saved on the file system after
successful installation.

Moreover, there is also an ./upload/ directory where miscellaneous files can be uploaded by the
administrator. A category icon can for instance be set in the administration area for each category.

Relational Database Management System (RDMS)

For the RDMS, a database abstraction layer is used from Clearbricks14. For the current version, only
three database drivers are provided to support MySQL15, PostgreSQL16 and SQLite17 RDMSs. To
support other DBMSs, corresponding drivers must be provided. The database driver can be set in the
config.php file on the server. This is advantageous since it is possible to change the RDMS, if desired,
simply by resetting the database configuration in the config.php file.

A detailed view of the database structure is given in appendix A.1. The tables in the PLE database
are described as follows:

• categories: Contains categories defined by the administrator and their display order in PLE’s UI.

• cops: Contains user groups that are defined manually.

• interface: Contains the activated widget IDs and their positions (column, position) as well as the
status (minimized or maximized) in PLE’s UI for each user.

• interface dashboard: Contains the activated widget IDs and their positions (column, position) as
well as the status (minimized or maximized) on PLE’s personal desktop UI for each user.

• interface preferences: Contains user preferences of users for each widget.

• login data: Contains statistic data about the logged-in users such as session, login and logout
time, metadata about user agent (browser, OS, browser version, etc.).

• tags: Contains tags submitted to the system.

• tracks: Is used to collect data in relation to the use of widgets for usability purposes. It contains
the widget IDs and the timestamp that are used by each user.

• users: Contains the list of registered users in the PLE and their membership of user groups.

• widgets: Contains the list of installed widgets in the PLE and their membership of user groups.

• widget tags: Contains tags submitted by each user for each widget.

Figure 3.5 demonstrates the one to many relations between the described tables in the database.

3.3. Server-Side Architecture 15

users

categories

cops

interfaceinterface_dashboard

login_data

tags

tracks

widgets

widget_tags

interface_preferences

n 1

n

1

n

1

n

1

n

1

n

1

n

1
n 1 n1

n

1

n

1

n

1

n

1
n

1

n

1

Figure 3.5: One to many relations in PLE database.

3.3.4 Application Programming Interface (API)

As mentioned in section 3.3, a PLE is a RIA with a client-server architecture. The server acts as a
web service for the client. The client sends GET AJAX requests to the server and the server responds
to the client by sending the required data either in XML or JSON format. The only exception is the
administration area. Since the administration area is normally used by one or a couple of users as
administrators, it does not rely on RIA principles. It is realized as usual classic web development. The
content is generated dynamically and the whole generated layout is pushed into the browser as HTML
markup. To view the services that are provided in the administration area, refer to the use cases in
section 3.2.

The services described below are provided by PLE API for the client’s XHRs.

Widget-related services

This API is used for client requests that are related to widget operations (see section 3.4):

• updateInterface: Updates the UI status of the user in the database when a widget is added to,
deleted from, moved, opened or closed in the user’s UI.

• updatePDInterface: Is the same as updateInterface, but just for the user’s personal desktop.

• getCategories: Returns the list of categories.

• getInterface: Returns the complete UI of the user (list of widgets, widget positions in user’s UI,
etc.).

• getManifest: Returns the XML manifest file of the widget with user preferences attached.

• getTags: Returns all tags already submitted to the system.

3.3. Server-Side Architecture 16

• getUserTagsForWidget: Returns the tags submitted by the user for the widget.

• getWidgetList: Returns a list of widgets that are tagged by a keyword or exist within a category,
or both.

• updatePreferences: Updates user preferences for a widget.

• isUsingAuthentication: Returns if the widget applies the HTTP authentication mechanism.

• getWidgetsByCategory: Returns widgets within a category.

User related services

This API is used for client requests related to user operations (see section 3.4):

• shibbolethAutoLogin: Signs in the user if the user is already logged in at a Shibboleth service
provider.

• authenticate: Performs user authentication.

• logout: Performs user logout for external users.

• shibbolethLogout: Performs logout for users with a valid TU account.

• updateStyleSheet: Updates the customized CSS of the user’s GUI.

• currentOnlineUsers: Returns the list of users currently online in PLE.

• currentOnlineUserInfo: Returns some meta data about the online user (session owner).

• searchForUsers: Returns the search result for a user in the PLE.

Widget-authentication related services

This API is used for the RGT approach as a widget-authentication mechanism by third-party services
(see section 3.3.1):

• getToken: Returns the user’s username and a RGT for a specific subscribed service.

• check: Returns if the specified token is valid for the specified user and a subscribed service.

Statistic related services

This API is used by the client to save gathered statistics information on the client in the DBMS on the
server (see section 3.4):

• trace: Saves the given widget IDs for the online user in the DBMS.

3.4. Client-Side Architecture 17

widget

widget
widget

widget wallsidebar

Figure 3.6: The sidebar and widget zone on UI

3.4 Client-Side Architecture

As noted in some of the preceding sections, the PLE is a RIA with a client-server architecture. An
AJAX approach is used to transmit data between client and server. The server responds to the client’s
GET requests with data retrieved from data storage, either in XML or JSON format. The client is
responsible for the dynamic creation of the UI and the whole client-side logic.

The client architecture is based on JavaScript. In order to assure browser compatibility on the client
side jQuery18, JavaScript library is applied. jQuery is a lightweight JavaScript library that simplifies
HTML traversing, event handling, AJAX interactions and everything else related to Dynamic HTML
(DHTML) programming (DOM scripting) in the development of RIAs. It supports CSS 1-3 selectors
and is a cross-browser solution for web-based client side applications in JavaScript. The GUI is built
using the jQuery CSS framework19 and jQuery UI20.

Section 3.4.1 describes the general structure of the client logic. Section 3.4.2 gives an example of
how the initial layout of a widget wall (see section 5.3.2) is dynamically constructed.

As mentioned in section 3.1, the PLE supports event-based communication between widgets. Sec-
tion 3.4.3 describes how this is rendered possible. As mentioned in the section on use cases (section
3.2.1), a statistics module is implemented in the PLE that gathers statistic data by tracking user be-
haviour. Section 3.4.4 sheds further light on this issue. The users in PLE are able to change the style
sheet of UI in line with their interests. Section 3.4.5 describes this process in detail.

3.4.1 General Structure

The client-side logic is realized with an Object-Oriented (OO) approach in JavaScript programming
language. Communication with PLE API is performed through asynchronous XHRs, which results in
a higher performance on the client side. Users can work on UI continuously while the client engine
communicates with the server (e.g. to load widgets or update user preferences). No interruption would
happen in this case.

The client logic is also responsible for the dynamic creation of the GUI. It is composed of several
classes that are described below. The relations and dependencies between these classes are illustrated
in figure 3.7. Figure 3.6 shows the sidebar and widget zone on the UI that are created dynamically by
the corresponding classes.

• WidgetFactory: For each widget that must be loaded to the interface, WidgetFactory requests the
configuration file from the server API through an XHR, parses the XML content and initializes a

3.4. Client-Side Architecture 18

LayoutContainer StyleSwitcher

SidebarContainer

WidgetZoneFactory WidgetZoneContainer

WidgetFactory WidgetContainer

WidgetEngine

ConfigParser

WidgetIcon

WidgetSeeker

EventDispatcher

i18n

DragManager

Widget

Figure 3.7: The relations and dependencies between classes in client logic

WidgetContainer, which is then saved as a reference.

• WidgetContainer creates the HTML code of the main widget GUI (toolbar and container) as well
as the GUI of the edit window. The widget container is actually an Inline Frame (IFrame) with
the src referred to the start file of the widget (index.html). WidgetContainer brings widgets to
life by appending the generated HTML code into the Document Object Model (DOM). Once
the HTML code is appended and the widget has been loaded completely, the widget object is
initialized and injected into the DOM of the widget.

• Widget contains the methods specified as widget API. The widget object is actually the imple-
mentation of the extended W3C widgets interface specification described in section 4.3.

• WidgetIcon contains attributes of a widget icon such as source, width, height, etc.

• StyleSwitcher contains the functionality to append new CSS to the head of the document, used
for switching the style sheet.

• SidebarContainer initializes and constructs the sidebar elements on the PLE UI. It is also re-
sponsible for event handling on sidebar elements and the Dock menu functionality.

• WidgetZoneContainer initializes and constructs widget zones on PLE UI. It is also responsible
for event handling on widget zones, such as drag & drop events for widget displacement on the
widget wall.

• WidgetZoneFactory: For each widget zone that must be loaded to the interface (depending on
categories), WidgetZoneFactory initializes a WidgetZoneContainer, which is then saved as a ref-
erence.

• LayoutContainer serves as the controller of other classes and is responsible for the main func-
tionalities of the client. It initializes and constructs the whole UI, the widget wall, by retrieving
the list of defined categories through an XHR from server API. It contains the unique instances

3.4. Client-Side Architecture 19

of SidebarContainer, WidgetZoneFactory and StyleSwitcher. It thus controls and triggers the ini-
tialization of sidebar, widget zones and the process of style switching. The created GUI (HTML
code) for the of sidebar (by SidebarContainer) as well as widget zones (by WidgetZoneFactory)
are appended to the DOM in the initial phase. Furthermore, the interactions between the sidebar
and widget zones are managed, user-driven events are set, AJAX related issues are defined and
message boxes that may contain alert messages for the user are initialized.

• WidgetEngine acts as a further controller and contains methods that are used to carry out some
of the use cases depicted in figure 3.3. These include ”add widget”, ”load user interface” (widget
that a user has already activated), ”update interface” (in case of widget displacement), ”update
user preferences”, ”search widget”, etc. As described before, communication and data transmis-
sion to the server are performed via asynchronous XHRs.

• WidgetSeeker is responsible for sending search queries to the server API.

• EventDispatcher acts as a central listener for events subscribed to by widgets. Refer to section
3.4.3 for more details.

• ConfigParser is actually an XML parser that parses the content of a widget configuration file and
returns the configuration data as a JavaScript multidimensional array.

• i18n retrieves the translated strings from the server API.

For further information on each class and the list of class members refer to appendix A.2.

3.4.2 Dynamic User Interface (UI) Construction

In the RIAs, as it is the case in PLE, the UI is created dynamically on the client side. This is done with
DHTML or DOM scripting. This process is explained here with an example in case of the PLE.

Once a user is authenticated successfully, he is redirected to the widget wall (see section 5.3) where
the UI is dynamically constructed using the OO structure described in section 3.4.1. Figure 3.8 depicts
the sequence diagram of the dynamic construction of the widget wall for a better illustration.

The following processing steps are performed to build the initial user’s UI on the client side:

• LoadLayout(): The LayoutContainer, which is responsible to construct the whole UI, sends a
request to the server to receive the categories.

• initLayout() => LoadInterface(): As soon as the categories arrive on the client side, the Wid-
getEngine is asked to load the user’s interface from the server, which includes all the widgets that
the user has already added (activated) in the PLE within different categories (widget walls). The
WidgetEngine sends a request to the server API to retrieve the widget IDs.

• LoadWidgets(): Afterwards, the WidgetFactory is asked to build and load the widgets of the
currently active widget wall into the user’s UI. In case of initial UI construction, it would be the
”personal desktop” that appears on top of the sidebar and is loaded by default.

• requestManifest(): WidgetFactory requests the manifest file of widgets within the specified wid-
get wall (in this case ”personal desktop”) from the server, by sending the widget IDs that have
already been retrieved from the server.

• parseManifest(): Once the manifest files arrive on the client side, they will be parsed and the
widget data will be extracted and forwarded to the WidgetContainer to build the GUI of the wid-
get (main and edit window) according to the retrieved widget configurations. The WidgetFactory

3.4. Client-Side Architecture 20

LayoutContainer WidgetEngine WidgetFactory

loadInterface()

PLE Server

Get Widgets

loadLayout() Get Categories

loadWidgets()

requestManifest()

Get manifest files

initLayout()

WidgetContainer

parseManifest()
init()

insertWidgetIntoContainer()

initSidebar()

initWidgetZone()

Figure 3.8: The sequence diagram of the dynamic initial UI construction.

contains a reference to each WidgetContainer for each widget to access the DOM element of
the widget as fast as possible for eventual further processing (e.g. switching to edit window or
removing from DOM triggered by a remove action).

• init(): WidgetContainer initializes the GUI of the widget. At this step, the widget is appended to
the DOM and can be viewed by the user in the column and position specified on the widget wall.

• insertWidgetIntoContainer(): As soon as the widget is loaded completely in the PLE (when the
DOM of the widget IFrame is ready for access), the WidgetContainer creates a new Widget object
and inserts it into the DOM of the widget. Thus the widget can access user preferences and the
Widget API to meet user requirements (see section 4.3).

In the meantime, LayoutContainer calls initSidebar() and initWidgetZone() from SidebarContainer
and WidgetZoneFactory to build the GUI related to the sidebar and widget zones on the UI. Since
all XHRs in the described process steps above are asynchronous, the client continues to operate and
construct the sidebar and widget zones without any interruptions.

3.4.3 Inter-Widget Communication

One of the extensions of W3C specifications is the inter-widget communication mechanism imple-
mented in the Palette project [Naudet et al., 2008]. It allows for an interaction between widgets in the
form of unicast, multicast or broadcast communication within the PLE, based on event notifications.
Widgets can communicate with each other by sending event messages. The messages, which include
the name of an event and the associated data, are transmitted from source widget to target widget (or
multiple target widgets) by the widget engine on the client. Through unicast communication, the event
and the data are transmitted to only one target widget. Through multicast communication, the message
is transmitted to a number of specified target widgets. In the case of broadcast communication, events
and data are transmitted to all widgets within the PLE that are listening to that event. The event names
must be unique Uniform Resource Identifiers (URIs). The widget engine on the client can also fire

3.4. Client-Side Architecture 21

events. The widgets can follow these standard events to be notified if an action takes place. The actions
can be for instance opening or closing and removing or adding a widget.

The inter-widget communication mechanism is managed in EventDispatcher. If a widget adds an
event listener, four parameters are saved in a multidimensional array (listener) in EventDispatcher.

1. The target widget ID as the listener widget that should be notified when an event is fired by any
source widgets.

2. The event type, which the target widget listens to. If the specified event is fired, the target widget
should be notified.

3. The event handler that is called when the target widget is notified.

4. The accepted source widget IDs as the firing widgets. The target widget should be notified only
if any of the specified source widgets fire the specified event type.

If a widget fires an event, the listener array is searched for the target widgets that are listening to
the fired event and expecting to be notified from the firing source widget(s). If any listening widgets are
found, their registered event handlers are easily called.

The inter-widget communication mechanism has been applied in the statistics module that is de-
scribed in section 3.4.4.

3.4.4 Statistics Module

In order to improve the PLE, it is necessary to consider different parameters that influence the attrac-
tiveness and effectiveness of the entire system in general as well as the widgets. To meet this goal, a
statistics module has been implemented to measure quantitatively how often widgets are used, and on
the other hand to find out more about the quality of user experience. The statistics module provides the
system with valuable data that can then be used to analyse user behaviour and widget reputation.

Variation and selection are important mechanisms in the evolutionary development of organismal
life forms. These mechanisms were examined and described by Charles Darwin in his famous book
[Darwin, 1859]. He argued that there is an advantage in the probability to survive for these individuals
and populations, which are able to adapt better to their environment. Following the Darwin model of
PLE evolution, this will ensure a stepwise improvement and rejection of rarely used widgets in further
iterations of the development cycle.

In order to measure the usage of widgets quantitatively, a hidden module in the background is
required to track users’ behaviour in relation to widgets. The statistics module is able to collect infor-
mation on the usage of widgets in detail. The client-side statistics module is added to the PLE widget
engine in order to provide widgets, together with the possibility to offer information about user be-
haviour on the client side. The information (if any) is captured from all activated widgets on users’ UI
and sent in periodic intervals to the server through the specified API (see section 3.3.4).

The flow of information between the widgets and the statistics module is made possible through
event notifications, which are applied in inter-widget communication. For more information on event
notifications refer to section 3.4.3.

Each widget should be sufficiently extended to offer information about user behaviour to the statis-
tics module. The information provided by the widget can be detailed. As an example, a Twitter widget
can provide the following data about user behaviour:

• TWEETS READ

• TWEETS SEND

3.5. Widget Development Environment (WDE) 22

• DIRECTMESSAGE SEND

• LIST CREATE

• FOLLOW

The captured data are then saved in PLE DBMS for later analysis.

3.4.5 Stylability

The GUI of PLE is developed by using a uniform CSS framework by jQuery, since jQuery UI is used
for a great part of the functionalities in the UI, and jQuery UI is based on the jQuery CSS framework.
The benefit of using a uniform CSS framework is that the style sheet of the system can be substituted
by another one just by using another CSS theme provided by the same framework. In the PLE, this is
realized in form of a preference widget. In the preference widget, the user can select a new theme from
a list and then save it as a favourite. In this case, the new selected style sheet is appended as a style
sheet link to the head of the document, which would definitely overwrite the rules of the existing ones.
In order to be sure that the old style sheets have no effect on the document, they will be disabled.

jQuery has made it easy to generate new themes for the GUIs that base upon the jQuery CSS
framework. It provides a web application called ThemeRoller21. ThemeRoller offers an interface for
designing and downloading themes for jQuery UI. The number of provided themes in the PLE can be
extended easily by using this application. Furthermore, users can also use this application to design
their own favourite theme. Using the FireFox bookmarklet, provided by ThemeRoller, it is possible to
change the theme in the PLE by a single click.

3.5 Widget Development Environment (WDE)

PLE is a mashup of widgets. From the technical point of view, it also acts as a container to deploy
and aggregate different widgets within one environment. It plays an important role in providing as
many qualitative widgets as possible in the PLE, hence a PLE with few widgets would not meet the
expectations of users and appear to be incomplete. This can only be possible if a high number of
developers work simultaneously on the development of different widgets.

In the scope of this master thesis, a WDE has been developed to let developers, such as students
of informatics who have the know-how on software development, work on widget development. The
developed WDE makes widget development independent of the PLE. WDE includes a very light version
of the widget engine that is used in the PLE. It contains an index.html file as the start file of the
environment. Additionally, some JavaScript and CSS files are included in the package for the sake of
providing for the functionality and the look & feel of the WDE.

Since the WDE directory contains only HTML, JavaScript and CSS files, it can be started from
any browser. The developers need to put the WDE folder somewhere on their local working Personal
Computer (PC) and open the start file index.html in their favourite browser. The WDE directory also
contains an empty subdirectory named ./widgets/. ./widgets/ will contain the widget folders that the
developer will implement.

3.5.1 WDE Restrictions

WDE works relatively well for the development of pure client-side widgets that own no preference
definitions in the configuration file.

3.5. Widget Development Environment (WDE) 23

User Preferences

Since the server-side DBMS is missing in WDE, no preferences can be saved permanently or loaded
dynamically. That is why the developer cannot test the widget for different user preferences. A
workaround would be to set the new user settings as the value of the attribute default value in the
configuration file for the corresponding preference (see section 4.2.2). In this way, developers can test
the widget for different user preferences.

XHR Restrictions

Since the WDE is normally started from the file system, there is no possibility to work with AJAX
requests in a widget. The only solution is to install a local server on the client machine (e.g. Apache22)
and start the WDE from a local host. This solution enables the sending of XHR to local files that exist
in the widget folder.

Since the server-side proxy is missing in WDE, no XHRs can be sent to remote services. The
developers are encouraged to use one of the approaches described in section 4.4, otherwise they have
to use a separate proxy on their own local host implemented by a server-side dynamic programming
language.

In any case, it is not possible to apply the widget authentication mechanism (see section 3.3.1) in
WDE, if this is required for widget development.

Chapter 4

Widgets in PLE

“ Widgets are full-fledged client-side applications that are authored using Web standards
such as [HTML5] and packaged for distribution. They are typically downloaded and in-
stalled on a client machine or device where they run as stand-alone applications, but they
can also be embedded into Web pages and run in a Web browser. Examples range from
simple clocks, stock tickers, news casters, games and weather forecasters, to complex ap-
plications that pull data from multiple sources to be ”mashed-up” and presented to a user
in some interesting and useful way. ”

[Widgets Packaging and Configuration 2010]

Widgets (in some applications also known as gadgets) are small client-side applications than run
on desktop or a web page. Briefly put, widgets are a portable chunk of code that can be installed and
executed on any HTML-based web page or desktop. The code, which is hosted on the client side, can
be a simple JavaScript code, a Java Applet or an Adobe Flash code for embedding media players. This
code is usually embedded in the <body>-tag of an HTML document on the client side. It includes
the client-side programming logic and presentation layer. Widgets allow for a very simple distributed
knowledge transfer and diffusion. The code that implements the widget can be located on any server
that is accessible through the WWW. As a result, many different distributed services can be provided by
the client side, such as a Content Management System (CMS) or a LMS, without any further technical
effort [Taraghi et al., 2009c].

What is more, widgets are very often used on personalized web sites, personal desktops or in the
PLEs, where users are encouraged and supported to aggregate and create their own configuration of
widgets. iGoogle23, Netvibes24, Protopage25 and Pageflakes26 are some examples of such personalized
desktops. The most famous projects that provide developers with tools to develop widgets, are the
Konfabulator from Yahoo widgets, Dashboard from the Apple project, Desktop widgets from Opera,
and Google gadgets. The disadvantage that these projects have in common is the lack of interoper-
ability for desktop widgets [Taraghi et al., 2009c]. Different types of widgets require different widget
engines. Widgets of one widget engine, like iGoogle, cannot be applied in others, like Netvibes. The
W3C widget family of specifications, which will be introduced in section 4.1 contains a series of speci-
fications to gain a standard for widgets and remove the lack of interoperability among widget engines.
The widgets applied in PLE are compatible with the Palette specification, which has been developed
within the Palette project [PALETTE, 2008] and extends the W3C widget specifications (Packaging and
Configuration as well as API) to some extent. Sections 4.2 and 4.3 describe these extensions in detail.

Due to security restrictions of the XHR object in browsers, client-side applications such as widgets
can only send AJAX requests to the URIs on the same domain. If communication is required by widgets
to remote servers, a proxy module is applied on the PLE server to make data retrieval from remote

24

4.1. The W3C Widgets Family of Specifications 25

servers possible. However, there are some client-side techniques to bypass this restriction without the
need to go through a proxy on the same domain. These techniques are summarized in section 4.4.

In the scope of this master thesis, a very simple framework for widget development is developed
that bases upon MVC design architecture. The framework has been applied during the development
phase of widgets for the PLE and is described in section 4.5.

4.1 The W3C Widgets Family of Specifications

The W3C Widgets Family of Specifications [WidgetSpecs, 2008] includes a set of specifications, which
together standardize a widget. The following specifications have been formally published by W3C
and are briefly described below to provide a general overview. Other W3C specifications are still not
implemented in the PLE widget engine and are just mentioned here for the sake of completeness.

Note: since W3C specifications are updated continuously, some specifications implemented in the
PLE widget engine may be outdated. The described packaging and configuration specification in section
4.2 and widget interface in section 4.3 correspond to the actual version of the PLE widget engine.

4.1.1 Widgets Packaging and Configuration

According to Widgets Packaging and Configuration27, ”widgets are client-side applications that are
authored using Web standards such as HTML 5, but whose content can also be embedded into Web
documents.”

The Widgets Packaging and Configuration specification standardizes a .zip packaging format, which
includes the whole widget source code with a specified file structure and an XML-based configuration
file with some mandatory and non-mandatory elements that declare meta data and configuration param-
eters for a widget. The packaging format acts as a container for files used by a widget and includes some
obligatory and non-obligatory elements. It also describes how internationalization and localization must
be applied within the packaging format. Moreover, this specification determines a series of steps that
should (must) be followed by developers while they implement widgets. Finally, the behaviour and the
means of error handling for widget user agents are also specified.

The PLE widget folder structure and XML-based configuration file are described in detail along
with Palette extensions in section 4.2.

4.1.2 Widgets Interface

The Widgets Interface specification 28 defines an API for the functionality of widgets. It describes
the means to access the data defined in a widget’s configuration file, such as the widget’s metadata
and widget-related user preferences, which are stored as persistent data. It can furthermore be used to
handle events related to the changes in the view state of a widget. It also determines the locale under
which a widget is currently running (to support localisation), and the notification mechanism of events
relating to the widget being updated. Other points in this specification are how to invoke a widget to
open a URL on the user’s default browser and how to request the user’s attention to the widget in a
device-independent manner.

The widget interface and the additional extension that are applied in PLE are described in detail in
section 4.3.

4.2. Packaging and Configuration 26

4.1.3 Widgets Digital Signature

Widgets Digital Signature 29 is another W3C widget specification that deals with the digital signing of
a widget package if required, by using a custom profile of the XML-Signature Syntax and Processing
Specification. It gives a description of signature syntax and its usage in widget packages along with an
explanation on their generation and validation. Next to that, signature algorithms and processing rules
for widget user agents are described as well.

4.1.4 Widget Updates over HTTP

This is a specification 30 that defines a version control model which enables widgets to remain updated
over HTTP. It defines a process and a document format to enable users to update an already installed
widget package with a different version of a widget package via HTTP and via non-HTTP sources (for
instance directly from the hard disk or memory card of the device).

4.1.5 Widget Access Request Policy

The Widget Access Request Policy specification 31 describes a method to obtain access to web re-
sources. In the scope of this specification, the security model is defined as a method for widget authors
to file a request to the user agent to grant them access to specific network resources.

4.1.6 Widgets 1.0: URI Scheme

Widgets 1.0: URI Scheme specification 32 defines a URI scheme that is used to address resources
inside a widget package. Among others, the syntax, the authoring base URI, the relative URI reference
resolution and mapping widget URIs to files incorporated in a widget package are presented.

4.1.7 Widgets ’view-mode’ Media Feature

The ’view-mode’ Media Feature specification 33 defines a CSS Media Query in relation to the mode of
presentation of a document’s contents.

4.1.8 Widgets 1.0: Requirements

This document 34 enumerates the design aims and requirements that specifications ought to address in
order to standardize different aspects of widgets.

4.1.9 Widgets 1.0: The Widget Landscape

In this document 35, a survey is performed among a group of market-leading widget user agents in order
to inform the requirements of Widgets 1.0: Requirements document.

4.2 Packaging and Configuration

The instructions for widget packaging and configuration apply only to local widgets in the PLE. The
.zip archive file format, defined in the ZIP specification 36, is the packaging format for local widget
packages.

4.2. Packaging and Configuration 27

In case of remote widgets, the folder containing widget files must be accessible over HTTP and can
have any kind of structure. The start file of the widget must be a valid index file according to the remote
server configuration and must output a valid (X)HTML.

4.2.1 Folder Structure

The widget folder (.zip file) must contain the two following files at its root [Naudet et al., 2008]:

• index.html: This is the start file that is displayed in the browser while the widget is loaded.
Normally it contains the whole JavaScript functionality, CSS and HTML structure of the widget.

• config.xml: The configuration or manifest file is an XML document that contains all the metadata
needed to initialize and run widgets in a PLE, such as a widget’s name, identity, width, height,
description, author, icon reference, preferences, etc. For more information about the manifest file
refer to section 4.2.2.

The widget folder may contain some non-mandatory files and folders that are necessary to meet
widget requirements, such as JavaScript and CSS files, images, etc.

4.2.2 Configuration File

The configuration file is an XML document, which contains elements describing the widget and its
preferences, which can be customized by the user. The widget configuration file, which is specified
in W3C widget packaging and configuration, has been extended to add some default user preference
values in order to facilitate widget customization.

The configuration file is extended in the Palette project [Naudet et al., 2008], where two differ-
ent namespaces are used; one namespace for default W3C specifications (http://www.w3.org/TR/
widgets) and the other for the Palette specification (http://palette.ercim.ord/ns/). All ex-
tensions must be specified in the palette namespace.

The root element of the configuration file is the widget element that must be present. It must contain
the following three attributes:

• id: The unique identifier to identify the widget within the PLE environment.

• width: The width of the widget in pixel

• height: The height of the widget in pixel

Note: The width is actually ignored in the PLE and must be specified, thus it must be present accord-
ing to the XSD. In the PLE UI the width is set automatically to exploit the whole width of the user screen.

The widget element contains the following mandatory element as child:

• title: A human-readable title for the widget that is displayed to the user.

A simple configuration File can be viewed in Listing 4.1.

http://www.w3.org/TR/widgets
http://www.w3.org/TR/widgets
http://palette.ercim.ord/ns/

4.2. Packaging and Configuration 28

1 <widget
2 xmlns=http : / / www .w3 .org /TR /widgets /
3 xmlns :palette=http : / / palette .ercim .org /ns /
4 id=”helloWorldWidget” width=”200” height=”300”>
5 <title>Hello World!</title>
6 <icon src=”icon .png” width=”16” height=”16” />
7 <author url=”http : / / mmustermann .com” email=”mm@example .org”>
8 Mustermann
9 </author>

10 <description>Widget Description</description>
11 </widget>

Listing 4.1: A simple configuration file

The widget element contains the following non-mandatory elements as children:

• author: The name of the widget developer. It may contain email and url as attributes.

• description: The description of the widget in plain text.

• license: The license of the widget in plain text.

• version: The version of the widget in plain text.

• icon: The path to the widget icon. It may contain width and height as attributes.

• scrollable: It can contain a boolean value to make the widget content scrollable.

• alternative url: The URL to an alternative view for the widget. For instance in case of the Google
Translator widget, it can be the URL to the Google translation service that is provided by the
widget. It must be specified in the palette namespace.

• widget type: It can contain one of the values ”local” or ”remote” and can be used to define the
widget as a remote one. It must be specified in the palette namespace.

• widget location: It applies only to remote widgets and is ignored in local widgets. In case the
widget type element is set to ”remote”, this element must be present. It contains the URI to the
folder on the web, in which the widget index file is expected. It must be specified in the palette
namespace.

• widget authentication: It can contain one of the values ”enabled” or ”disabled” and can be used to
turn on/off the widget authentication mechanism (see section 4.3.4).

• preferences: Through the preferences element, customizable user preferences can be defined. The
preferences are stored continuously on the PLE server and are accessible to the widget via its
interface (see section 4.3). It must be specified in the palette namespace.
This element contains a preference child element for each user preference. An example of defined
user preferences can be viewed in Listing 4.2.

• preference: Every customizable user preference must be defined as preference element.
preference elements must be children of the preferences element and must be specified in the
palette namespace. The attributes of the preference element are as follows:

– name: The name of the variable, under which the preference data is perstistently stored. It
must be present.

4.3. Application Programming Interface (API) 29

– display name: Optional string to display to the user on the edit window.
– default value: Optional string to be set as default value for the preference element.
– datatype: Optional string to specify the type of stored data. Possible types are: string

(default), number, bool, hidden and enumeration.
The enumeration data type is used to provide the user with the possibility to select a user
preference out of different choices. The choices must be defined as enumeration elements
as children of the preference element. If the preference element is of type enumeration, the
enumeration elements must exist. An example of enumerations can be viewed in Listing
4.3.

• enumeration: This element must be a child of the preference element and must be specified in the
palette namespace. The attributes of the preference element are:

– value: The value of a user preference that is stored persistently if selected by the user. It
must be present.

– display value: Optional string to display to the user in the edit window.

1 <palette :preferences>
2 <palette :preference name=”address” display_name=”Address”
3 datatype=”string”/>
4 <palette :preference name=”tel” display_name=”Tel . ” datatype=”number”/>
5 </palette :preferences>

Listing 4.2: Preferences defined in configuration file

1 <palette :preferences>
2 <palette :preference name=”lang” display_name=”Language”
3 datatype=”enumeration” default_value=”de”>
4 <palette :enumeration value=”de” display_value=”German”/>
5 <palette :enumeration value=”en” display_value=”English”/>
6 <palette :enumeration value=”es” display_value=”Spanish”/>
7 </palette :preference>
8 </palette :preferences>

Listing 4.3: Preferences defined as enumerations

For more information about the XSD of the configuration file refer to appendix A.3 [Naudet et al.,
2008].

4.3 Application Programming Interface (API)

The W3C widget interface has been extended to enable widget intercommunication within the PLE
environment. Communication can run in the background automatically or can be directed manually by
the user, for instance as a drag and drop event for data flow between two widgets [Naudet et al., 2008].

The widget API is accessible in JavaScript through the widget object. The widget object is inserted
into the DOM of the widget index file as soon as the widget is completely loaded in the browser to
expose the functionality to the widget. Once the widget is fully loaded, the PLE calls the onLoad()
function, which may be defined in the widget. onLoad() function should replace the onload() event
specified in HTML 4 and serve as the start of a widget functionality. Widget developers can be sure that
the widget object is available within the onLoad() function and they can access the widget API.
Note: The widget object is not available in JavaScript for remote widgets. As a result, remote widgets
cannot use the methods specified in the widget interface.

4.3. Application Programming Interface (API) 30

4.3.1 Read and Write User Preference Data

The following two methods provide the functionality to access and store preference data on the PLE
server [Naudet et al., 2008]. Key stands for the variable name that is defined for preference data in the
configuration file.

• <datatype> preferenceForKey (string key)

• void setPreferenceForKey (<datatype> preference, string key)

For remote widgets, user preferences are appended to the widget URL as GET parameters (key=preference).
It is possible to update preferences only through the built-in client logic in the PLE edit window. In
other words, since the widget interface is not available for remote widgets, they can only be customized
by users through the PLE user interface.

4.3.2 XMLHttpRequest Methods

The widget interface provides five built-in XHR methods to retrieve data from local or remote servers
[Naudet et al., 2008].

1. void httpGet (string URI, object params, function callback, function errorCallback)
This method sends an asynchronous HTTP GET request to the specified URI with the parameters
params. The response is intelligently parsed as either responseText or responseXML.

2. void httpGetJSON (string URI, object params, function callback), function errorCallback)
This method sends an asynchronous HTTP GET request to the specified URI with the parameters
params. The response is parsed as JSON.

3. void httpPost (string URI, object params, function callback, [string contentType],
function errorCallback)
This method sends an asynchronous HTTP POST request to the specified URI with the parame-
ters params. The response is intelligently parsed as either responseText or responseXML.

4. void httpPut (string URI, object params, function callback), [string contentType])
This method sends an asynchronous HTTP PUT request to the specified URI with the parameters
params. The response is intelligently parsed as either responseText or responseXML.

5. void httpDelete (string URI, object params, function callback)
This method sends an asynchronous HTTP DELETE request to the specified URI with the pa-
rameters params. The response is intelligently parsed as either responseText or responseXML.

The params are key value pairs in JavaScript. In case the HTTP response code is 200, the callback
function is called, otherwise the errorCallback function is triggered. The actual response from the
server is passed on as the first argument to the callback function.

Because of security restrictions of the XHR object imposed by browsers, which only allows to
access files on the same domain, a proxy module is applied on the PLE server. In case of requests by
a remote server, the XHR methods send requests directly to the proxy module on the PLE server. The
proxy acts as a bridge and passes all requests and replies unmodified from the client to the remote server
and vice versa (see section 3.3.2).

There are some techniques to bypass the restriction of the XHR object in browsers, which are
described in section 4.4. If these techniques were applied in widget development, there would be no
need to use XHR API.

4.3. Application Programming Interface (API) 31

4.3.3 Read and Write Widget Settings

The following methods provide the possibility to access the metadata defined in the configuration file
and readjust some features of the widget if desired:

• <number> getDefaultHeight ()
returns the default widget height set in configuration file.

• <string> getDefaultTitle ()
returns the default widget title set in configuration file.

• <number> getHeight ()
returns the height of the widget.

• <string> getTitle ()
returns the title of the widget.

• void openURL (<string> URI)
opens the specified URI in a new window

• void setHeight (<number> height)
sets the height of the widget

• void setTitle (<string> title)
sets the title of the widget

• void setContentProxy (<string> URI)
sets the specified URI as the path to proxy module on PLE server

4.3.4 Widget Authentication

The following methods [Naudet et al., 2008] deal with the normal HTTP authentication and widget
authentication mechanism for the case the widget needs to be authenticated by third-party services,
mainly by remote services (refer to section 3.3.1 for more information).

• void setHttpCredentials (<string> usr, <string> pwd)
sets the specified username and password in the header of XHR to be applied for HTTP authen-
tication.

• void enableAuthentication ()
enables the widget authentication mechanism.

4.3.5 Inter-Widget Communication

One of the extensions to W3C specifications is the inter-widget communication mechanism imple-
mented in the Palette project [Naudet et al., 2008]. Widgets can add listeners to events or fire events
to notify other widgets. The interaction between widgets can be unicast (widget to widget), multicast
(widget to more than one widget) or broadcast (widget to all widgets) communication.

The following methods describe the messaging API, which provides the possibility for widgets to
add listeners to events, remove events or fire some events in one of the types of communication listed
above.

4.4. Cross-Domain XMLHttpRequest (XHR) 32

• void addWidgetEventListener (<string> eventType, <string> eventHandler
, <string> acceptedSource)
listens to an event of the specified event type with the specified event handler from specified
source widget(s). When an event is fired, the function eventHandler is executed. If accepted-
Source is null, the widget will be notified for event of type eventType from any source widget.

• void removeWidgetEventListener (<string> eventType, <string> source)
stops listening to the specified event type from the specified source widget(s). If source is null,
the widget stops listening to eventType events.

• void fireWidgetEvent (<string> target, <string> eventType, <datatype> data)
fires an event of the specified event type to one or several target widgets with the attached data.
If target is null, it would be a broadcast event notification.

Manual inter-widget communication by Drag & Drop

While inter-widget communication can be run automatically in the background, it can also be triggered
manually by the user [Naudet et al., 2008]. For this case, two more methods are added to the messaging
API to make manual communication between two widgets (unicast) possible:

• bindWidgetToDropType (<string> eventType)
defines the widget as a drop target for drag & drop events of the specified eventType. The widget
is notified if a dragged widget element is dropped on it.

• addDragData (<DOM element> target, <string> eventType, <datatype> data, <string> tooltip)
manipulates the specified DOM element of the widget into a draggable element, triggers a drag
event of the type eventType with associated data and displays a tooltip message during dragging.

In future, this API can be substituted by the HTML 5 cross-document drag & drop feature.

4.4 Cross-Domain XMLHttpRequest (XHR)

The widgets that represent a remote service on the WWW need a way to send XHRs to APIs on remote
domains. However, browsers do not allow such requests to be sent to remote domains due to security
restrictions. Although there is a built-in proxy on the PLE server that can be used for this purpose, there
are some client-side techniques that can be applied in widget development to communicate directly to
remote servers without the need to go via the server-side proxy. These techniques are investigated in
the scope of this master thesis and are described here for the sake of completeness.

4.4.1 JSONP

JSON with Padding (JSONP) is an approach to carry out cross-domain AJAX requests. It can be realized
by appending a <script/> tag dynamically to the header of the HTML document when the sending of
a cross-site request is required. The src value of the <script/> tag corresponds to the URI of JSONP
API on the remote server. A callback function name must be added as a GET parameter to the URI
of JSONP API. Through this approach, the widget actually loads a JavaScript code from the remote
server. The JavaScript code contains merely a JavaScript function definition with the name specified as
the GET parameter to the URI of JSONP API. The requested data is the return value of the retrieved
JavaScript function and is in JSON encoded format. Just after the JavaScript code is downloaded,
calling the specified function would give back the desired data resources.

This approach can only be applied if the remote service provides the clients with a corresponding
JSONP API.

4.4. Cross-Domain XMLHttpRequest (XHR) 33

4.4.2 YQL Proxy

Yahoo! Query Language (YQL)37 is a SQL-like language that lets the developers query, filter and join
data across Web services through Yahoo API. This technique resembles the JSONP approach to some
extent. In both techniques, the API is called through the HTML <script/> tag. The difference is that
instead of calling the API of the remote service directly, the Yahoo API is called and used as a proxy to
fetch data from different Web services.

Yahoo API has a cache mechanism for retrieved data that seems to be very fast. On the other
hand, the developers can use the SQL-like language to query, filter, and join data across Web services.
The SQL-like query (SELECT, UPDATE, INSERT and DELETE) can be set as the value of the GET
parameter q (URI-encoded) to the URI of the Yahoo API. When the YQL processes a query, it retrieves a
data resource on the WWW, transforms the data, and returns the results in either XML or JSON format.
YQL can retrieve several data resources such as Yahoo and other Web Services as well as Web content
in HTML, XML, Really Simple Syndication (RSS), and Atom formats. Some other configurations can
be set by GET parameters in URI as well. For instance, it is possible to specify the return format of data
retrieved from Web services. A callback function name can be specified to be called in order to handle
the requested data on the client side. More information related to YQL can be found on the official
YQL web site (http://developer.yahoo.com/yql/).

4.4.3 CSSHttpRequest

CSSHttpRequest38 is cross-domain AJAX through CSS. It functions similarly to JSONP, but using
CSS as CSS is not subject to the Same-Origin Policy (SOP) that affects XHR. The data is encoded
on the server into URI-encoded 2KB chunks and serialized into CSS rules with a modified data: URI
scheme39. For more information about CSSHttpRequest refer to the official web site (http://nb.io/
hacks/csshttprequest).

This approach can be only applied if the remote service supports CSSHttpRequest.

4.4.4 Flash Proxy

Cross-Domain requests can be processed with Flash as a client-side proxy. CrossXhr40 and fIXHR41 are
two tools hat follow this approach to realize a Flash-based client-side proxy. Cross-Domain requests
with Flash must be permitted by the remote domain. This is done by a file called crossdomain.xml, which
must exist on the remote server. The service provider can limit access to its services and allow only
specific domains to call its services by defining the domain names in the XML file mentioned above.
If third-party services forbid the request or if they do not have any crossdomain.xml file, this technique
is useless. On the other hand, this approach requires Flash to be installed in the browser. A 1-pixel
transparent Flash is embedded in the top-left corner of the page as a replacement for the XHR object in
browsers.

4.4.5 IFrames

IFrames can be applied to request data from remote servers. As an example, a client from domain A
requires to retrieve data resources from a service on domain B. In this case, the client calls (opens) the
remote service in an IFrame (iB). The IFrame content, which is actually loaded from remote domain B,
must contain an IFrame (iA) referencing to a dynamic script on domain A. The service sets the response
data serialized as GET parameter in the src of the IFrame iA. Now the dynamic script on domain A,
which is called through the IFrame iA, receives the data through the GET parameter and writes them
down in a cookie on the client side. The client must wait until the cookie is set. Then the client reads
the data from the cookie and destroys it at the end.

http://developer.yahoo.com/yql/
http://nb.io/hacks/csshttprequest
http://nb.io/hacks/csshttprequest

4.5. Simple MVC Framework for Widget Development 34

This is a very primitive approach. It has many security leaks and cannot be used for large data. In
addition to that, the remote script must use the technique described above.

4.4.6 HTTP Access Controls

Cross-site access control is a way for web servers to enable secure cross-site data transfers. The
Web Applications Working Group42 within the W3C has proposed the Cross-Origin Resource Sharing
(CORS)43 to meet this goal. On the client side, the browser handles the components of cross-origin
sharing, including headers and policy enforcement. This capability means that the servers have to han-
dle new headers and send resources back with new headers. Similar to CrossXhr, the server can restrict
access to specific domains. This, however, is done in response headers. Currently Firefox 3.5+, Sa-
fari 4 and Google Chrome 2 have implemented the CORS using XMLHttpRequest object. Internet
Explorer (IE) 8 implements parts of the CORS specification, using XDomainRequest object44. A com-
plete treatment of CORS and the XMLHttpRequest object can be found on the Mozilla Developer
Wiki45 (https://developer.mozilla.org/En/HTTP_access_control).

4.5 Simple MVC Framework for Widget Development

The great advantage of a RIA is the improved performance, since a great part of the processing logic
can be performed on the client-side rather than the server-side. For many web-based RIAs, JavaScript
is the most common programming language as it is popular as a script language for browsers. While
server-side programming languages have the advantages of the OO programming paradigm, JavaScript
bases upon objects with a specific object literal notation. Using design architectures such as MVC in
JavaScript, reduces the code complexity and allows for a semi-parallel application development. MVC
design architecture was first published in Smalltalk-80 by Glenn Krasner and Stephen Pope [Krasner
and Pope, 1988]. It enables an easier and much less time-consuming development on further extensions
of RIAs. Web-based widgets as such, developed in the PLE environment, are actually RIAs. In the
scope of this master thesis, a very simple framework for widget development is developed that bases
upon MVC design architecture [Taraghi and Ebner, 2010]. The framework has been applied during the
development phase of widgets for the PLE and appeared to be mostly appropriate for students and RIA
developers who have beginner knowledge/experience with JavaScript programming language.

Especially in interactive environments like PLE, user requirements and desires change very of-
ten. Therefore, each widget must be easily extendible in the sense of the features it provides and its
adaptation to new technologies. The designed framework is suitable to meet these requirements. It
can guarantee greater scalability and less complexity in widget development. It can also be applied in
any other RIA developed in JavaScript. The biggest advantage of the framework, in comparison with
other conventional frameworks, is its simplicity and resemblance to OO programming in server-side
languages. Especially for developers who are not advanced JavaScript programmers or have beginner
knowledge/experience with client-side programming, but are familiar with OO paradigm, this frame-
work is an appropriate tool to start with.

Section 4.5.1 describes MVC design architecture in general and mentions some existing MVC
frameworks implemented in JavaScript programming language. Section 4.5.2 goes over the simple
MVC framework that is developed in the scope of this master thesis for easier and more efficient widget
development. Last but not least, section 4.5.3 describes in detail how the designed framework can be
used and expanded to different submodules.

https://developer.mozilla.org/En/HTTP_access_control

4.5. Simple MVC Framework for Widget Development 35

 Figure 4.1: MVC Design Structure

4.5.1 MVC Frameworks

The great advantage of a RIA is an improved performance, since a great part of the processing can be
done on the client-side rather than the server-side. For many web-based RIAs, JavaScript is the most
common programming language because of its popularity as a script language for browsers. While
server-side programming languages have the advantages of the OO programming paradigm, JavaScript
bases upon objects with a specific object literal notation. There are several different ways to implement
inheritance and class-like structures in JavaScript as described in [Crockford, 2008]. By using design
architectures, such as MVC in JavaScript, the code complexity is reduced and it allows for semi-parallel
application development.

MVC design architecture bases upon the separation of three main distinctive components of an
application:

• The presentation layer (view) that deals with the visual display of the application and the whole
GUI.

• The logic layer (controller) that describes the behaviour of the application and connecting com-
ponents, presentation and data layer to each other.

• The data layer (model) that is responsible for data collected on the client-side.

Figure 4.1 displays the structure of an MVC framework.

There are already some works in the field of MVC design architecture for JavaScript. JavaScript-
MVC46 is one of the open-source frameworks. In addition to MVC architecture, it provides features
such as concatenation, compression, testing modules, error reporting, etc. TrimJunction47 is a clone
of the Ruby On Rails48 web MVC framework for JavaScript. PureMVC49 provides a lightweight im-
plementation of MVC design architecture in different programming languages, including JavaScript.
Sproutcore50 is an HTML 5 application framework for building responsive client applications in mod-
ern browsers and bases upon MVC design architecture.

4.5.2 The Simple MVC Framework

PLE is actually a widget container. It would have no benefits without widgets. The more various
widgets exist in PLE, the more interesting the environment becomes for the users. For example the
students of informatics at TU Graz, who have the necessary know-how in software development, help to
implement many various widgets, as shown in [Ebner and Taraghi, 2010]. They are mostly experienced
programmers in server-side programming languages, that is why they know the OO paradigm very well
and are familiar with different MVC frameworks in server-side programming languages such as Java or

4.5. Simple MVC Framework for Widget Development 36

Figure 4.2: Simple MVC Framework in JavaScript used for developing web-based widgets

PHP. On the other hand, not all of them have sufficient experience in client-side programming, at least
not such as would be necessary for JavaScript. The conventional MVC frameworks provide (advanced)
developers with features that are beneficial for implementing advanced RIAs. The support for these
features increases the complexity of the frameworks, which is extremely time-consuming to learn and
hence a disadvantage for beginners or less experienced JavaScript developers. In order to make widget
development for students as simple as possible, the plan was to apply a very simple and lightweight
MVC architecture that aims to become very easy to start with. It is realized through a module pattern.
Each three components of MVC are actually a module in JavaScript. Modules use a singleton paradigm,
support private data and stay out of the global namespace. These features suit the module pattern to be
applied for the model, view and controller in projects that may grow in the course of time and become
more complex. The modules themselves are implemented by using closure functions in JavaScript. In
Douglas Crockford’s book [Crockford, 2008] modules, closures and the singleton paradigm are very
well described.

Less experienced students, who are actually advanced OO developers in server-side programming
languages, need to consider the modules as three static classes with the ability to contain private and
public methods or variables. They can then start implementing the three modules as they are used
to in server-side OO programming languages. They can extend the framework by adding additional
submodules to support features that are provided by conventional MVC frameworks such as templates,

4.5. Simple MVC Framework for Widget Development 37

event handling, etc.

Figure 4.2 demonstrates a very simple example of the MVC architecture based on the described
structure above for deeper comprehension.

The outlined private area in figure 4.2 contains private members that are valid only within the
scope of the corresponding module. The interFace objects contain public members of the corresponding
modules. Public members can get access to private members as expected. The view and model modules
are in the sandbox of the controller (passed on as arguments of the closure function: MVC.Model and
MVC.View). Consequently, the controller can call public members of the view and model interfaces
through the local objects Model and View. Correspondingly, the view can access public members of the
controller for event handling and the methods of jQuery framework for DOM manipulation.

It is possible to define some default public members in each module directly in the definition of
MVC closure. If a module already contains such default members, its interFace object must not be
initialized, but extended in order to avoid unsetting the default-defined members. An example of such
a case can be seen in listing 4.4. The interFace object of the View module defined in that example is
extended, so that the default members, if any are set, are maintained.

In the case of widgets, we need a special type of functionality, such as distribution of user require-
ments across multiple pages and navigation among pages in UI. This could be realized e.g. with the
help of a page module as an additional module, or a submodule in View. Submodules can be used as
helpers in all three main modules and have exactly the same structure and benefits as the main modules.

With the help of such architecture a very simple framework is realized, which resembles the classes
and their public and private members in server-side programming languages. Widget developers have
the possibility to control whether (sub)module A is allowed to access (sub)module B by setting (sub)module
B in the sandbox of (sub)module A. Through this approach, all (sub)modules and their members stay
out of the global namespace; the code is readable, maintainable and easily extendible.

4.5.3 Extendibility Examples

As mentioned above, through the use of a module pattern the MVC architecture is easily extendible.
Widget developers can use their experience from server-side programming to add additional (sub)modules
and refine the JavaScript code in detail. Here, some extensions in View and Model are considered. The
examples are kept very simple and basic for a better insight.

View Extension Examples

As an example of extension possibilities, we can consider the View module and extend it by using
templates. View is the actual presentation layer in the MVC design architecture. The public methods in
View are normally called by the Controller to display the retrieved data in the UI. In the example shown
in figure 4.2, View.init() is called. When the user clicks on an HTML <div> element, some data (here
the name) are retrieved by the Controller and put into a node in DOM.

Templates can be used to reduce the complexity of View and separate the HTML layout from the
actual View’s functionality. Web designers are able to create the templates independently of the pro-
grammers who are responsible for three main units (Model, View and Controller). Listing 4.4 shows this
extension in a very simple style for a deeper insight.

4.5. Simple MVC Framework for Widget Development 38

1 MVC .View .Templates = (function (interFace) {
2 var _innerHtml = ’ ’ ;
3
4 interFace .createPersonProfile = function (P) {
5 _innerHtml = ’<p>Name : ’+P .firstname+ ’</p> ’;
6 _innerHtml += ’<p>Last name : ’+P .lastname+ ’</p> ’;
7 _innerHtml += ’<p>Tel : ’+P .tel+ ’</p> ’;
8 _innerHtml += ’<p>Email : ’+P .email+ ’</p> ’;
9 return _innerHtml ;

10 }
11 return interFace ;
12 } ({})) ;
13
14 MVC .View = (function (interFace , Controller , $, Templates) {
15 interFace .init = function () {
16 $ (document) .ready (function () {
17 _init () ;
18 }) ;
19 } ;
20
21 / * private methods * /
22 var _init = function () {
23 $ (”button ”) .click (function () {
24 var P = Controller .retrieveProfile () ;
25 var html = Templates .createPersonProfile (P)
26 $ (this) .next () .html (html) ;
27 }) ;
28 } ;
29 return interFace ;
30 } (MVC .View | | {} , MVC .Controller , jQuery , MVC .View .Templates)) ;

Listing 4.4: Extension of the View to use HTML templates by adding a new submodule Templates

Different templates can be put into one submodule for View. For the sake of better understanding,
this example is kept as simple as possible. In real applications, different template engines can be ap-
plied, such as JavaScript Templates (JST)51, PURE JavaScript Template Engine52, Closure Templates53

and jQuery template plugin54.

Model Extension Examples

As another example, Model can be extended. Model acts as the data layer in the MVC framework and can
be responsible for data retrieval from data resources (from the same domain or remote servers) through
XHRs. Creating a submodule for XHRs can have certain benefits. Different XHR submodules (AJAX,
cross-domain requests, etc.) can stand for data retrieval from a remote server in Model. The submodule
can be configured for different widget specifications. For instance, in the first case the developed
widget is applied as a gadget in iGoogle and therefore the widget must be adapted correspondingly. In
this case, no total refactoring is needed in Model. The XHR submodule must only be extended to use
proxies specified for iGoogle gadgets. For W3C widgets and other specifications, the same approach
must be applied.

Another example is the use of one of the HTML 5 features for caching in Model. Caching is an
efficient approach to increase performance in RIAs. Local storage can be used to cache data on browser
side. This approach can be applied for instance by using jStorage55 in a submodule. jStorage is a
simple plugin for Prototype56, MooTools57 and jQuery to cache data (string, numbers, objects, even
XML nodes) on the browser side, making use of HTML 5 local storage.

4.5. Simple MVC Framework for Widget Development 39

Listing 4.5 shows model extensions with XHR and HTML 5 local storage. In this example, the data
is retrieved from remote resources through the XHR submodule and saved on local storage if the data
has not already been saved before. Otherwise the saved data is returned directly from local storage. The
XHR submodule is extended to support the W3C widget specification. In the case of a W3C widget,
the specified proxy is used. Otherwise (i.e. for the case of a normal web-based widget) it is assumed
that the remote service is on the same domain and therefore a normal AJAX request is sent.

1 MVC .Model .XHR = (function ($, spec) {
2 var interFace = {
3 fetchCourses : function (url , user_id , callback) {
4 _sendRequest (url , { ’L ’ : user_id} , callback) ;
5 }
6 } ,
7
8 _sendRequest = function (service_url , param , callback) {
9 switch (spec) {

10 case ’W3C ’ :
11 proxy .send (service_url , param , callback) ;
12 break ;
13 default :
14 $.getJSON (service_url , param , callback) ;
15 break ;
16 }
17 } ;
18 return interFace ;
19 } (jQuery , Config .specification)) ;
20
21 MVC .Model = (function (interFace , $, XHR) {
22 interFace .getListOfCourses = function (addr) {
23 return _getCourses (addr) ;
24 } ;
25 / * private methods * /
26 var requestIsActive = false ,
27 _getCourses = function (addr) {
28 var value = $.jStorage .get (addr) ;
29 if (!value) {
30 / / if not − load the data from the server
31 if (!requestIsActive) {
32 requestIsActive = true ;
33 XHR .fetchCourses (’http : / / example /service ’ , addr ,
34 function (data) {
35 value = data ;
36 / / and save it
37 $.jStorage .set (addr ,value) ;
38 requestIsActive = false ;
39 }) ;
40 }
41 return _getCourses (addr) ;
42 }
43 else return value ;
44 } ;
45 return interFace ;
46 } (MVC .Model | | {} , jQuery , MVC .Model .XHR)) ;

Listing 4.5: Extension of the Model to make use of a separate XHR submodule and HTML 5
local storage. The XHR submodule supports data retrieval for W3C widgets.

Chapter 5

PLE First Prototype

“ Some of us will do our jobs well and some will not, but we will be judged by only one
thing - the result. ”

[Vince Lombardi.]

The implemented first prototype of PLE offers centralized access to various university services
[Ebner et al., 2010], among others to administration systems, such as TUGraz online58, LMS: TUGTC59,
or blogospheres: TU Graz LearnLand (TUGLL)60 [Ebner and Taraghi, 2008] in one overview. The
users can personalize their PLE to their individual information and learning needs. Currently only one
widget is provided for each university service; however, for each use case a widget will be developed to
cover all relevant services in the PLE. For the time being, for searching in TUGraz online and browsing
through courses in TUGTC, a blog reader for TUGLL, e-mail and newsgroups widgets are integrated.
As an example, TUGLL provides many other services [Ebner et al., 2008], such as social bookmarking,
file sharing, semantically enriched tag search [Softic et al., 2009], etc., that can be provided in a PLE
through widgets.

What is more, public services on the WWW are also offered in the PLE. For each of these services,
a widget has been developed that can be integrated into the PLE. Figure 5.1 shows a conceptual view
of the first prototype of PLE that integrates university portals as well as other Internet services.

Figure 5.1: PLE concept. It illustrates the aggregation of different services from distributed uni-
versity portals and other applications on the WWW.

Section 5.1 gives an overview of the first design structure of the UI and the work flow to under-
stand the functions of the GUI as well as possible. Section 5.2 describes the usability tests that have

40

5.1. User Interface Structure 41

Figure 5.2: PLE User Interface. 1) Sidebar elements contain widget topics. 2) Widget zone con-
tains widgets that belong to a widget topic. 3a and 3b) Widgets within the corre-
sponding widget zone. 4) Hidden personal desktop containing a mash-up of widgets
from different widget zones selected by the user. 5) Banner displays information in
context of the active widget zone from the network.

been carried out on the described design architecture in the preceding section, at the beginning of the
development phase to assure that the end result will be satisfying. Section 5.3 demonstrates the actual
prototype of the developed PLE and describes the two main screens. Section 5.4 demonstrates some
widget prototypes that have already been implemented in the PLE.

5.1 User Interface Structure

There are many e-Learning services that are already provided by the TU Graz, including course ad-
ministrations in TUGraz online, course learning materials such as e-books, podcasts, etc., in TUGTC
and user-generated contents as well as user contributions such as blogs, bookmarks and file posts in
TUGLL. All these services are going to be integrated in the PLE as widgets. Therefore it was nec-
essary to design a coherent GUI to avoid probable usability and consistency problems that may occur
[Taraghi et al., 2009b].

The PLE GUI is a combination of a traditional UI with a sidebar element and banner for orientation
and navigation. In addition, it offers a widget-based UI with the so-called ”widget zones”, which
require adjustments to be made by the user (see figure 5.2).

The following sections describe each UI element in detail [Taraghi et al., 2009b].

5.1.1 Sidebar

Widgets are categorized according to pre-defined topics. Each widget topic (category) has its own
widget zone. The sidebar elements contain the main widget topics and help the user to switch between
widget zones. The topics are easily extendible if the number of widgets is increasing. Furthermore,
it is planned that the sidebar also updates the user on the status of the widgets by means of color and
numerical indicators (see chapter 6.2). The sidebar can be switched off in favour of the unfamiliar
widget-based UI and replaced by another navigation element, which resembles the Mac Dock menu on
the bottom, left, top or right part of widget zones (see figure 5.4).

5.1. User Interface Structure 42

 Figure 5.3: PLE User Interface: The widget is flipped to change to its rear side.

5.1.2 Widget Zone

Widget topics include different areas related to formal and informal learning, i.e. ”Communication
Center” for emails, chats and news groups, ”TeachCenter” for all services related to the TU Graz
LMS system TUGTC, such as course materials, podcasts, etc., ”LearnLand” for services related to the
TU Graz blogosphere system TUGLL social bookmarking, file sharing, etc. and ”Help and Support”
for the help desk as well as Frequently Asked Questions (FAQ). These areas are called widget zones.
Widget zones contain widgets and are structured in columns. Users can switch between widget zones,
add, open, close, customize, position and arrange the widgets in different columns according to their
personal learning preferences.

5.1.3 Widgets

The widgets consist of a front side and a rear side, where the rear side contains widget preferences
that can be modified by the user. If preferences must be changed, the desired widget can be flipped.
By this applied flip-animation the users’ spatial perception is undisturbed and makes the GUI more
understandable (see figure 5.3).

There are two kinds of widgets:

• System widgets: A system widget exists from the very first beginning of the widget zone and its
position can be shifted by the user but cannot be removed. Depending on the use case, it contains
information relevant to the specific center. An example of system widgets is the Help widget.
If the widget zone is empty, the system proceeds on the assumption that the user is not familiar
with the widget-based UI and needs help. Therefore a Help widget is displayed on the widget
zone with instructions related to the UI. Once the user adds widgets to the widget zone, the Help
widget disappears (see figure 5.3 part 3a).

• Standard widgets: Standard widgets are those that can be added by the users from the sidebar and
removed later if necessary (see figure 5.3 part 3b).

5.1.4 Personal Desktop

The users are able to create a mash-up of the most frequently used interesting widgets from different
widget zones in a special interface called ”personal desktop”. The personal desktop is always available
to the user and can be activated at any time. When the user activates the personal desktop, it overlies the

5.2. Evaluation of User Interface 43

 Figure 5.4: PLE User Interface: the personal desktop view with sidebar switched off.

whole screen from the bottom of the page upwards (see figure 5.2 part 4). The user can add or remove
widgets from all widget zones to his personal desktop and arrange them in columns according to his
personal taste.

5.1.5 Banner

On top of the page, there is a graphic element called ”banner” (see figure 5.2 part 5), which contributes
to brand a site and helps users to locate contents and orientate themselves. But its main purpose will be
to display information from the network in a user-profile-sensitive way (see chapter 6.2). It also keeps
track of the currently active widget zone.

5.2 Evaluation of User Interface

From the very beginning, an appropriate and good usability of the PLE was one of the main objectives
of the development. Therefore, in the implementation of the first prototype, four tasks are defined to
evaluate the functionality of the system and ensure efficient navigation within the PLE. The so-called
Heuristic evaluation are carried out to examine opinions of experts in order to reduce problems caused
by usability issues to a minimum [Nielsen, 2005].

The first pilot tests are carried out in the concept phase of development to ensure the suitability of
test cases. For this reason, a number of experts were asked to answer a basic questionnaire on personal
information, PC and Internet experience, and domain knowledge of expert users. The questionnaires
were analysed afterwards to ensure a reliable test phase and guarantee a broad range of user types with
different levels of domain knowledge and Internet experience. The test environment consisted of a
notebook with a built-in webcam, Windows XP Service Pack (SP) 3 as the Operating System (OS) and
Camtasia Studio 6.061, which was installed for screen capturing. With regard to the different heuristics,
a number of different tasks are carried out that are described in tables 5.1, 5.2, 5.3 and 5.4 in more
detail. The definition of the tasks followed the crucial steps that a new user of the PLE has to take to
get the environment running.

Tables 5.5 and 5.6 show the general outcomes of the heuristic evaluation according to two parame-
ters, namely task completion and task performance, performed by four expert users. According to the
test results, the following conclusions could be made:

• Only one user was unable to complete one simple task. This proves that in general, the test users
had no problems to carry out the tasks.

5.2. Evaluation of User Interface 44

Table 5.1: Test case 1 used to evaluate the first PLE prototype
Task 1 List all courses you are registered for on the TeachCenter (LMS)
Goal The expert explores working with the widget-based system. After performing the

task, the user should be familiar with the basic navigation process.

Precondition
Expert is logged on.
The communication center is open and displays different widgets.
All items in the sidebar (hierarchy) are closed. Only the communication center is
open.

Expected flow

The user navigates to the sidebar.
The user moves the cursor over the TeachCenter area .
The user clicks on TeachCenter.
The widget zone appears
The user clicks on ”MyCourses”

Post Condition MyCourses-widget is enlarged and all courses are listed.

Table 5.2: Test case 2 used to evaluate the first PLE prototype
Task 2 Add MyCourses-widget to the personal desktop
Goal The user should be able to add a widget to a widget zone or the personal desktop.

With this task the user should understand the range of options the personal desktop
offers.

Precondition
The user is logged on.
MyCourses widget is open.

Expected flow

The user navigates to the top right corner of the widget.
The user clicks on ”add to Personal Desktop”.
The personal desktop appears.
The personal desktop presents ”Inbox” widget and ”MyCourses” widget.
The user clicks on the personal desktop bar on the right side ”<<” to close.

Post Condition The personal desktop has 2 widgets (Inbox and MyCourses).

Table 5.3: Test case 3 used to evaluate the first PLE prototype
Task 3 Try to find the NewsCenter
Goal The user should be able to navigate to other centers. The user should experience

them from a new viewpoint and discover that each center has its own widget zone.

Precondition
The user is logged on.
The user is on the maximized MyCourses widget.

Expected flow
The user moves cursor to the sidebar.
The user clicks on NewsCenter.
NewsCenter opens its widget zone (RSS).

Post Condition Widget zone of the NewsCenter is opened.

5.2. Evaluation of User Interface 45

Table 5.4: Test case 4 used to evaluate the first PLE prototype
Task 4 Add RSS-widget to NewsCenter widget zone
Goal The user should be able to search for available widgets. The user should notice

that there are different categories of widgets.

Precondition
The user is logged on.
The NewsCenter widget zone appears.

Expected flow

The user notices the ”addWidget” functionality in the widget zone.
The user clicks on ”addWidget”.
The user receives a list of possible widgets ordered by category (only RSS avail-
able).
The user clicks on ”addWidget to widget zone”.
The list closes.
The new RSS-widget is shown in the widget zone.
A modal dialogue asks for RSS-URL.
The user provides the URL (some example URLs are provided by the experts in
the background).
The user clicks ”OK”.
The RSS-widget loads its content.

Post Condition The NewsCenter widget zone is extended with another RSS-widget.

Table 5.5: Evaluation results: Task completion
User Task 1 Task 2 Task 3 Task 4
Expert 1 Succeeded Succeeded Succeeded Succeeded
Expert 2 Failed Succeeded Succeeded Succeeded
Expert 3 Succeeded Succeeded Succeeded Succeeded
Expert 4 Succeeded Succeeded Succeeded Succeeded

Table 5.6: Evaluation results: Task performance
User Task 1 Task 2 Task 3 Task 4
Expert 1 00:50 00:10 00:10 00:19
Expert 2 00:19 00:08 00:08 00:50
Expert 3 00:08 00:15 00:20 00:25
Expert 4 00:40 00:20 00:08 00:15
Average 00:44 00:13 00:11 00:12

5.3. PLE Main Screens 46

• The approach to combine a classical navigation bar with the new concept of a widget zone finds
general approval. Most users realized the direct relation and consistency of the shown widgets
and displayed menu points in the navigation bar.

• The possibility to collect frequently-used widgets on the personal desktop proved to be very
popular. The users want to have an overview of things they really need and use most.

• The test results show that widget-based navigation is much more intuitive and provides more
overview than the classical hierarchical navigation.

• Some terms caused too many misunderstandings and led to time-consuming problems when try-
ing to accomplish some tasks, e.g. some users referred personal desktop to a list of links or
favourites.

Widget was known as a window or module to some users and RSS was absolutely unknown to
the majority of users with little Internet experience. Some users pointed out that perhaps the term
”Apps” is more appropriate than ”widgets” as they were already familiar with the term from
mobile devices.

• Many users agreed with the fact that the overview gets lost because widgets appear in different
heights. Setting the same initial height for all widgets in the same widget zone would provide a
better overview.

According to usability results and to improve the overview, all widgets are configured to have
the same initial height when they are closed. Additionally, some metadata about widgets, such as
description or name of the corresponding widget developers can be shown to the user in this mode.

5.3 PLE Main Screens

From the end-users point of view, there are only two screens that can be viewed. The start screen, which
is publicly accessible on the WWW, and the screens in the logged-in area. These two screens are briefly
described below:

5.3.1 Start Page

The start page of PLE62 is publicly accessible on the WWW under http://ple.tugraz.at. It is a
static HTML page with a dynamic client-side JavaScript functionality. It contains an embedded video
from YouTube63 that describes the concept and UI of the first prototype in brief. The embedded video
was made for the Mediacast contest on Personal Learning Environments in scope of the PLE conference
in Barcelona 201064 and won the second-best award.

What is more, the start page is also an entry point for authentication. Normally, it shows two login
buttons, one for external users and the second for users with a TU Graz access account. Clicking on the
first button would show the user the login form. The latter redirects the user to the TU central Identity
Provider (IdP) for central authentication. The start page can be adjusted to the user type according to
the GET parameter ref.

• if ref=extern, the login form will be shown directly as it is assumed that an external user wants
to sign in.

• if ref=admin, the user enters directly to the administration area after successful authentication.

• if ref=tu, the user is redirected to the TU central IdP and will not observe the start page.

http://ple.tugraz.at

5.3. PLE Main Screens 47

Figure 5.5: PLE start page

If the user is already authenticated in the TU central IdP, he will be authorised as logged in and will be
redirected automatically to the widget wall.

Last but not least, the start page controls if the user agent (browser) is supported by PLE. The
supported browsers are currently Chrome 7+, FireFox 3+, IE 8, Opera 9+ and Safari 5+. If the browser
is detected as not supported, a corresponding notice appears on the screen to inform the user about
eventual malfunctions that may occur.

Figure 5.5 demonstrates the start page of the first prototype.

5.3.2 Logged-in Area

Widget Wall

Once the users are logged in, they will see the main screen of the portal that is called widget wall. Since
PLE is a RIA and is based on client-server architecture, there is no navigation to any other page. The
user would never leave the widget wall. From the user point of view, the whole use cases are fulfilled
by the client side on widget wall (for the detail technical issues for the client side functionality refer to
section 3.4).

As described in section 5.1, the widget wall screen is divided into three distinct parts: sidebar
(figure 5.6 part 1), control panel (figure 5.6 part 2) and widgets zones (figure 5.6 part 3). Figure 5.6
shows the widget wall with the personal desktop as a widget zone, open.

By clicking on a certain category or personal desktop on the sidebar, a switch is made feasible to
the desired widget zone and a list of all widgets within the category is displayed. Users can add widgets
to the corresponding widget zone by clicking on a widget label from the widget list. Figure 5.8 shows
the sidebar elements. In this example, the widget zone Miscellaneous is opened. The widget list within
this category is visible.

The sidebar can be dropped out of the screen to enlarge the space for widget zones. As soon as
the sidebar is dropped out, the Dock menu appears to allow the user further navigation between widget
zones. Figure 5.7 shows this view more obviously.

5.3. PLE Main Screens 48

Figure 5.6: PLE widget wall: sidebar(1), the control panel(2) and the widgets zone(3)

Figure 5.7: PLE dock menu: The widget wall with sidebar dropped out and dock menu opened

Figure 5.8: PLE Categories: A category in the form of a sidebar element displays the list of
widgets

5.3. PLE Main Screens 49

Figure 5.9: PLE widget displacement: Example of moving a widget from one column to another
using the ”Drag & Drop” technique

For now, the widget zone is organized in 3 columns. It is planned to let the user customize the num-
ber of columns, and therefore the ideal view depends on the user’s screen resolution (see chapter 6.2).
Each column contains an undetermined number of widgets. The columns of widgets are independent
of each other and automatically adjust their size depending on the size of the widgets they contain.

Widgets can be rearranged and displaced from one column to another or within the same column,
depending on the user’s interests. This is done by Drag & Drop. Figure 5.9 shows an example of
moving a widget from one column to another by using this technique.

The widget itself contains a toolbar and its main body is loaded within an IFrame. The widget
toolbar includes different action buttons that can be used to trigger an action on the widget. These
actions can be:

• Remove a widget: Removes a widget from the widget zone; user preferences for the correspond-
ing widget will be deleted.

• Close/Open a widget: Closes or opens the widget, respectively.

• Save to personal desktop: Saves a widget to personal desktop.

• Edit a widget: Opens the rear side of the widget with the flipping effect. Users can customize
the widget in the edit window. Figure 5.10 shows a Google map widget, adopted from mywiwall,
with the front side (map) and rear side (edit view).

• Send an email to the widget developers: A possibility to get in touch with widget developers.

• Go to an alternative URL: Opens the alternative URL that is specified in the widget configuration
file, in a new browser window (see section 4.2.2).

Help Page

The help page is a completely static HTML page that provides an introduction on use cases and general
functionality of the PLE.

5.4. Widget Prototypes 50

Figure 5.10: PLE Widget Google Maps: main and edit window

Administration Pages

If the logged-in user is authenticated as administrator, he is authorised to view the administration pages.
They include:

• User management: Adding, removing and editing user information.

• Widget management: Installing, removing, editing, and modifying widget-related settings.

• Category management: Adding, editing and removing categories.

• Statistics: Monitoring the actual and archived statistic information (see section 3.2.1).

5.4 Widget Prototypes

Except for a couple of widgets, almost all widgets are implemented by using the simple MVC frame-
work described in section 4.5. This approach would help to extend widget functionalities in the future
much easier and faster and apply new technologies in widgets, such as HTML 5 features.

Furthermore, the widgets are developed in a way that they allow for changes in style by using a
uniform CSS framework. Using a uniform CSS framework in widgets has at least two major benefits:
Firstly, the GUI can be developed much faster and easier as the CSS rules are already provided by the
applied framework. Secondly, the style sheet of the widget can be switched over to an another one
just by using another CSS theme provided by the same framework. As jQuery UI is used in PLE for
the stylability of PLE-UI, the same framework is also applied in widget development. In the future,
switching the style sheet in PLE could affect widgets too as they use the same CSS framework (see
section 6.2).

Internationalization is another feature that is supported by the majority of widgets. Although inter-
nationalization is already specified in W3C widget packaging and configuration, it is not implemented
in the PLE widget engine yet. Hence it is realized by applying a separate solution. Most widgets support
English and German as the two main languages that will mostly be required in PLE at TU Graz.

This section will look at the first widget prototypes that have been designed for PLE. Widgets
vary from different distributed Internet applications to various services within the university to enhance
formal learning and foster informal learning scenarios.

5.4. Widget Prototypes 51

Figure 5.11: PLE Widget: TUGraz online

5.4.1 Widgets Representing some University Services

Currently, there are several widgets running in PLE that represent some of the university services. They
are described briefly below:

”TUGraz online” widget

”TUGraz online” widget [Bachleitner, 2010] provides some services from the administration system
of TU Graz (TUGraz online).

This widget provides users with the possibility to search for courses by name, lecturer’s name,
organisation or best ratings. What is more, users can search for lecturers by name or the organisation
they belong to. Users can also add the search results to their favourites (institutes, courses and lecturers),
so that it won’t be necessary for them to search for this information again. Moreover, users can also
rate courses in this widget. The best rated courses are listed on top in the search result.

To describe the back-end briefly, TUGraz online provides a restricted API for third-party appli-
cations. The data resources from the administration system are retrieved from TUGraz online API
through a cron job in specific time intervals and cached in a local DBMS. The widget communicates
with a separate API to retrieve the data needed from local DBMS.

Figure 5.11 shows screenshots of this widget.

”TeachCenter Courses” widget

”TeachCenter Courses” widget represents the LMS of TU Graz, TUGTC.
The user can see a list of existing courses from TUGTC on the start page. The list includes the public
courses in TUGTC and the restricted courses which the user is currently registered for. Clicking on a
course directs the user to the second page where different options and information regarding the course
are listed, such as course materials, announcements, etc. The user can select a certain option to view
the required information.

The widget communicates with a separate API. The API retrieves data from TUGTC, parses and
converts the results in JSON encoded format and returns it to the client. The API used for this widget
can be considered as a server-side application which is responsible for data retrieval from TUGTC.

Figure 5.12 shows three screenshots of this widget.

5.4. Widget Prototypes 52

Figure 5.12: PLE widget TUGTC Courses

Figure 5.13: PLE Widget: TUGLL Blogs

”TUGLL Blogs” widget

”TUGLL Blogs” widget is a blog reader for the blogosphere of TU Graz, TUGLL.

Users can select their own or a community blog on the start screen of the widget. On the second
page, users can see a list of selected blogs. They can view the content of each blog item separately.

This widget uses the RGT approach for widget authentication and the JSONP API provided by
TUGLL for data retrieval. The widget authentication mechanism is described in detail in section 3.3.1.
For more information about cross-site requests through JSONP refer to section 4.4.1.

Figure 5.13 shows screenshots of this widget.

”Mail” widget

”Mail” widget acts as an e-mail client for the e-mail account of the university. The university e-mail
server is based on the PHP-based Horde Application Framework65. In order to realize this widget, a
Horde plug-in is developed to handle the JSONP requests of the widget. Figure 5.14 left shows a view
of this widget.

5.4. Widget Prototypes 53

Figure 5.14: PLE Widgets: Mail on the left and Newsgroups on the right

”Newsgroup” widget

”Newsgroup” widget [Gritsch, 2010] acts as a newsgroup client for newsgroups of the university. Users
can read and post threads as well as search and add news groups to their favourites. Figure 5.14 right
shows a view of this widget.

5.4.2 Learning Object (LO) Widgets

Learning Object (LO) Widgets are pure client-side widgets (no XHR applied) that can be used for or
can help to improve learning, comprehension and understanding of a learning subject. Some examples
are mentioned below:

• TruthTable widget: A Truth table is a mathematical table used in logics. It is composed of one
column for each input variable (for example A and B), and one final column for all the possible
results of the logical expression that the truth table is meant to represent (for example, A AND
B). Users can operate with the following operators: NOT, AND, OR, XOR, => and <=> (see
figure 5.15 left).

• Kana Quiz widget: The Kana Quiz widget follows the Hepburn romanization (see figure 5.15
middle). Three character data subsets are available: Hiragana, Katakana and Kana (Hiragana
+ Katakana). Some Kana are not included in the quiz because they are obsolete Kana (e.g.
’wi’ and ’we’). For Hiragana romanization and stroke order, the quiz uses the table specified
at http://en.wikipedia.org/wiki/File:Table_hiragana.svg, and for Katakana ro-
manization and stroke order the table specified at http://en.wikipedia.org/wiki/File:
Table_katakana.svg.

• Chinese Trainer widget: The Chinese Trainer widget can be used to learn Chinese vocabulary.
For each Chinese word you can see the Pinyin and German translation (see figure 5.15 right).

• Hangman widget: The Hangman widget represents the Hangman game. The user can select a
learn catalogue and try to answer the questions in form of a Hangman game. This widget realizes
game-based learning scenarios (see figure 5.16).

http://en.wikipedia.org/wiki/File:Table_hiragana.svg
http://en.wikipedia.org/wiki/File:Table_katakana.svg
http://en.wikipedia.org/wiki/File:Table_katakana.svg

5.4. Widget Prototypes 54

Figure 5.15: PLE LO Widgets: from left to right TruthTable, Kana Quiz and Chinese Trainer

Figure 5.16: PLE LO Widget Hangman: A game-based learning scenario

5.4. Widget Prototypes 55

Figure 5.17: PLE Widgets: from left to right dict.leo.org, dict.cc and Google Translator

5.4.3 Widgets Representing Services on the WWW

There are many widgets that have been implemented up to now that represent some services on the
WWW. Some of the widgets described here are mentioned for the sake of completeness.

• Dictionary services: There are already three widgets that apply certain translation services on
the WWW. dict.leo.org widget uses the online service of http://dict.leo.org/. dict.cc
widget uses the service of http://www.dict.cc/. Google Translator widget uses the Google
translation service to perform translation on http://translate.google.com/. With the
help of this widget it is possible to translate sentences to numerous languages. Figure 5.17 shows
these three widgets.

• RSSFeedReader: The RSS Feed Reader widget can be used to read subscribed RSS feeds. The
widget shows how many new feeds are still not being read by the user (see Figure 5.18).

• Social Networks: Social networks can also be integrated in a PLE. Figure 5.19 shows Twitter
[Sandriesser, 2010] and Facebook [Tazl, 2010] widgets as two examples.

For social network services on the WWW, different widgets can be developed and integrated into
a PLE. In case of Twitter for instance, there are lots of third-party applications that provide ser-
vices, which base on mining twitter data. A widget can provide users with the possibility to search
among their own tweets archive by using Grabeeter66 [Mühlburger et al., 2010] or to perform se-
mantically enriched search queries to gain more accurate information about different entities in
twitter data sets [Softic et al., 2010]. In case of Facebook, there are also many possibilities such
as chat, messages, pages, etc.

http://dict.leo.org/
http://www.dict.cc/
http://translate.google.com/

5.4. Widget Prototypes 56

Figure 5.18: PLE Widget: RSS Feed Reader

Figure 5.19: PLE Widgets Social networks: Twitter and Facebook

Chapter 6

Outlook

“ The distinction between the past, present and future is only a stubbornly persistent illu-
sion.”

[Albert Einstein.]

This chapter first looks at some general trends regarding the usage of widgets as tiny applications
along with RIAs in general, and further explores some ideas for future work related to the implemented
PLE.

6.1 General Trends

With the growth of modern technologies and the reduction of prices for modern devices such as smart-
phones, the number of users of these devices is increasing steadily. The tendency to use mobile appli-
cations is obviously growing rapidly as it is observable at global mobile statistics 2011 [mobiThinking,
2011]. This affects widget-based systems as well. Although mobile widgets have existed for some time
now, the lack of uniform standards and support among different mobile browsers for end devices has
made an integration of web-based widgets in mobile phones very difficult. However, users tend to ac-
cess to their tiny applications ubiquitously, which means anywhere and at any time, also when they are
mobile. Bringing the PLE to the mobile world would definitely meet the expectations of many users.
Especially smart phones, such as iPhone67 and Android68 capable mobile phones, should be taken into
consideration.

From the technical point of view, the number of so-called web Apps is also increasing. HTML
5 provides many new features that make the realisation of many new interesting use cases in RIAs
possible. Web storage69 (local and session), web SQL database70 (SQLite71 engine) within the browser,
canvas, audio and video tags, file upload72 and support for Geolocation73 as well as Drag and Drop74

are just some examples of the novelties in this area. It may still take some more time before all browsers
will have implemented the new HTML 5 feature mentioned above, but HTML 5 will definitely be the
future of web-based RIAs.

6.2 Ideas for Future Work

There are some specific ideas and suggestions for further work, which will be explored in detail in the
following sections.

57

6.2. Ideas for Future Work 58

6.2.1 Widget Engine Upgrade

As mentioned in chapter 3, PLE bases upon mywiwall, the widget engine implemented within the Palette
project. mywiwall has implemented W3C widgets packaging and configuration as well as interface
specifications, while also adding extensions to support additional features (see section 3.1). Since then,
the W3C widget specifications have been updated several times, which means the widget engine used
in PLE is not up to date and is not 100% compatible with the actual version of W3C specifications.
Therefore an upgrade to the current version would be necessary to support the deployment of other
W3C-based widgets in PLE, such as wookie widgets.

6.2.2 Missing W3C Widget Specifications

As mentioned before, the widget engine of PLE implements and extends an old version of W3C widgets
packaging and configuration as well as interface specifications. These two main specifications are
necessary to adhere to in order to run widgets within an environment based on W3C, like PLE. However,
there are some other W3C specifications related to widgets that are described in section 4.1. In order to
be fully compatible with W3C, missing specifications must be also implemented.

6.2.3 UI Extensions

PLE stands for Personal Learning Environment, which literally means it should provide as many pos-
sibilities for personalization as possible. Moreover, the users should be able to organize their widgets
(customize their PLE) according to their own wishes. As a matter of fact, this is already the case to
some extent. Users can add, remove, close, open and reorganize widgets within widget walls. However,
categories are static entities that are allocated by the administrator. This should be changed so that the
users can categorize their widgets according to their own personal opinions and needs.

Furthermore, the number of installed widgets is increasing in the course of time. It may be useful
in the future to provide a widget pool in PLE, like the app store for iPhone apps or market for Android
apps. Users should be able to search for various widgets in a widget pool. To realize this concept,
a detailed semantic description of widgets may be appropriate to apply in order to guarantee that the
desired widgets can be found in the widget pool through a semantically enriched search query.

The next issue is the fixed number of columns within widget walls. The number of columns should
be customizable as well since users might access their PLE with different screen resolutions. Three
columns might be enough for very low resolutions. On the other hand, screens with high resolutions
may have enough capacity for more than three columns in widget walls.

The next point is the full-view modus for widgets. Some widgets, i.e. TUGTC courses widget, need
to display very detailed information, which sometimes requires more space to be shown correctly. It
must be possible to enlarge the widget, for instance by a new ”enlarge” action button on the widget
toolbar, so that the user can follow the information or application provided by the widget as easily as
possible.

Last but not least, a user-notification system must be integrated into the UI to inform the user about
new situations and states in different active widgets. Some examples could be a new incoming email
in the mail widget, a new unread RSS feed item in RSS widget, a recently published answer to a user’s
thread in a newsgroup widget, a new message from a chat widget, etc. Notifications can appear within
the sidebar area for each widget wall or on the control panel.

6.2.4 Extension of Simple MVC framework

In section 4.5 a simple MVC framework is introduced that is used in widget development. The frame-
work provides a basis for developers to implement their JavaScript code in a specified structured way,

6.2. Ideas for Future Work 59

so that it is maintainable and extendible. However, the framework does not provide any tools for dy-
namic generation of uniform GUI elements. From the usability viewpoint, it may be advantageous to
offer widgets in the PLE that use the same UI structure and elements, i.e. paging, sliding, input fields,
buttons, etc. In this way, the users will not need to familiarize themselves with the UI structure of each
widget individually. To reach this goal, the designed MVC framework must be extended to provide the
necessary functionalities regarding the dynamic generation of GUI.

6.2.5 PLE as a Desktop Application

If users work with a web-based application too often, it would be more comfortable and enjoyable if
they do not have to open a browser each time they want to access the application. A desktop application
would be handier to let the users feel that they have their own PLE on their PC. On the other hand,
as mentioned in section 6.1, using HTML 5 web storage would make it possible to realize an offline
PLE that can be started directly from the desktop. In this case, once the PLE is loaded, the user can go
offline and work with widgets. Nevertheless, a condition that would have to be fulfilled beforehand is
that widgets also support a local cache and can run offline.

The easiest way to realize this idea is to use Prism75. Prism is a Firefox extension that provides
the possibility to run HTML pages as stand-alone applications on the desktop. Mac76, Linux and
Windows77 OS are supported. Naturally, this approach requires that the Firefox browser is installed on
the client machine. According to the last PLE statistics, about 67% of registered users use Firefox to
access the PLE. This makes Prism a good candidate to be applied for desktop PLE as majority of users
already have Firefox installed on their machines.

Another solution can be JavaFX78. JavaFX is a rich client platform for building cross-device ap-
plications. JavaFX applications run in a Java Virtual Machine (JVM) and can therefore be executed in
a broad range of devices, since JVM is installed on many devices, including PCs and mobile devices.
Adobe AIR79 or Microsoft Silverlight80 can also be applied [Taraghi et al., 2009b]. They require an
own runtime environment being installed on the client though, which renders them rather inappropriate
[Taraghi et al., 2009c].

6.2.6 Desktop and Dashboard Widgets

For users with Mac or Windows 7 OS, ”dashboard widgets” or ”desktop widgets” is not an unknown
term. According to PLE statistics concerning user agents, Windows 7 OS is leading with a share of
ca. 43%, with Mac OS being the runner-up with ca. 23%. It can be deduced from the statistics that
about 66% of users have the possibility to use widgets as stand-alone applications on their OS desktop
or dashboard, respectively. To support widgets running alone on Windows or Mac OS, a converter is
necessary to convert a W3C widget on the fly to the desktop and dashboard widget according to the
desktop and dashboard widget specification in Windows and Mac OS, respectively.

6.2.7 Mobile PLE

As mentioned in section 6.1, it would be advantageous to provide a mobile PLE. The mobile version
requires a reimplementation of the client-side logic and of course a mobile-suitable UI. The JavaScript
functionality needs to be held as light and simple as possible to support a wide range of mobile browsers.
For the UI, the jQuery mobile framework81 can be used. It is built upon the jQuery UI framework and
supports almost all popular mobile device platforms. Although it is currently alpha-released, it will
definitely be a good choice for future work.

6.2. Ideas for Future Work 60

6.2.8 Other Widget Specifications

In order to have a variety of widgets running in the PLE, it is required that many widget developers are
engaged in the development process. If other existing widget specifications, i.e. Google gadgets82, are
supported in the PLE, it is probably easier to attract more developers, as each can have the know-how
in one specification. On the other hand, the widgets implemented in other specifications can be applied
in the PLE too, which would increase the variety and number of installed widgets in the PLE.

6.2.9 Web Services

The PLE at TU Graz may be provided to other higher educational institutes and universities that follow
the same approach as TU Graz in the area of TEL. It would be advantageous to provide web services
for communication between different PLEs that are actually all instances of the same one. Different
use cases can be realised through web services, i.e. automatic exchange of new widgets, searching for
installed widgets on one platform, etc.

6.2.10 Recommender Systems in PLE

A common problem for mashups-based systems, such as PLEs, is the amount of data that is quickly
gathered in a short period of time. To overcome the overwhelming effect and help the users to structure
and filter the information flow within the PLE, it would be beneficial to investigate some possibilities
to apply the recommender system technology within a PLE.

Nowadays, there are many recommender systems that recommend certain web services, applica-
tions or widgets to individual users instead of recommending content or persons [Kokash et al., 2007].
Depending on the number of widgets available in the PLE, a recommender widget for the existing
widgets can be very useful. Such a widget can suggest certain widgets to particular users. It can also
recommend different sets of widgets to the users on the basis of their study domain or course selec-
tion. For instance, a student of computer science that subscribed to a course in computer algorithms
could take advantage of an algorithm visualization widget. Thus, after subscription to the course, the
recommender will suggest this particular widget to the student. It is required that the recommender
widget can retrieve the information it needs from other widgets, e.g. the TUGTC courses widget must
notify the recommender widget about the courses, which the user is already registered for. This can
be realised through an inter-widget communication mechanism described in section 3.4.3. The recom-
mender would mainly be based on a top-down knowledge-driven approach, as it is the case in some
e-commerce systems [Felfernig, 2005]. It can also be combined with a bottom-up approach, like col-
laborative filtering, and allow students to assess the value and usability of a widget.

[Drachsler et al., 2010] applied a recommender system approach from e-commerce, implemented
in a mashup PLE. Learners can specify different Web 2.0 services in a mashup PLE (the so called
ReMashed system) and rate the content to train the recommender system according to their needs and
interests. The recommender system suggests the most suitable Web 2.0 items to the learners. Such an
approach can also be used in PLE at TUGraz to provide the users with a more personalized usage of
web 2.0 related widgets and avoid the overwhelming effect that may arise due to frequently updated
information in social and content-sharing Web 2.0 networks such as Twitter, Facebook, YouTube, etc.

Chapter 7

Concluding Remarks

“ Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end
of the beginning. ”

[Winston Churchill.]

The main concern of this thesis was to develop a Personal Learning Environment (PLE) as a mashup
of widgets for the TU Graz in the field of Technology-Enhanced Learning (TEL). As described in chap-
ter 3, the widget engine mywiwall that is applied in the PLE is developed in the scope of the Palette
project. mywiwall provides the possibility of customization that is one of the key features of the User
Requirements (URs) in PLE. In mywiwall, the W3C Widget Configuration specification is extended and
some additional default user preference values are added. These values may be modified by users to
customize the widgets according to their own needs (see section 4.2). Widgets Interface specifications
described in section 4.1.2 are extended too so that a new way of communication between widgets is
enabled. Next to HTTP authentication, mywiwall also supports a separate widget authentication mech-
anism in case the widgets are required to be authenticated by third-party services that they make use
of or represent (see S3K in section 3.3.1). The inter-widget communication and widget-authentication
mechanism can be applied in PLE for widgets representing university services, since a coordination and
trust communication between different services is most often a desired use case. On the other hand, the
remote widgets supported by mywiwall can be applied in the context of a learning environment very
usefully. Dynamically generated contents can be integrated and represented in PLE in form of widgets
from remote servers.

All these features made mywiwall a good choice to be applied in PLE in order to realize the URs and
the concept of PLE in general. However, from today’s point of view, the wookie widget engine might
have been a better choice (see section 3.1). The work on mywiwall terminated as the Palette project
came to an end. The wookie widget engine has been developed further under the Apache Incubator
project and has gained a broad community up to now. Other missing W3C widget specifications have
been implemented recently in wookie. Google Wave API is currently also supported by wookie. At the
time of PLE development and design phase it was not clear though what will happen with those two
European projects in the future.

Personalisation is the key to a more effective learning process. Humans do not only differ in their
fingerprints but also in all their personal characteristics, social and learning behaviours. As a result,
each learner knows his own individual learning methods, which are the most effective mode of prac-
tices for him to achieve the required learning goals. Yet, our traditional education system is based on
strict uniform rules and learning/teaching schedules that are adapted to all types of learner groups, as if
all learners would have the same learning requirements. The educational plans in education institutes
may be appropriate to some extent as humans share a common part of learning behaviours. However,

61

62

the uncommon parts, which are actually different individual/personal learning requirements, are ne-
glected totally in our education system. As a simple example, learning of a language can be taken into
consideration. The mother tongue(s) can be learnt almost perfectly (with a high efficiency), since the
children learn individually according to their own personal learning manner, which is unique. Learning
a new language as an adult person on the basis of a designed formal education process (such as a lan-
guage course) would definitely not result in the same efficiency nor lead to the same result. Combining
the two approaches would increase the learning results enormously. In case of the example mentioned
above, attending a course in a surrounding where the native language is spoken can help the learners
enormously to meet their personal learning requirements regarding the new language. Through differ-
ent situations that occur in daily life among native speakers, learners can learn unknowingly much more
efficiently than through the formal educational approach.

Considering other study domains, it is obvious that the personal/individual learning process should
be integrated into our formal educational system to improve the efficiency of learning results. PLEs can
be of great assistance to fulfil this goal in higher educational institutions, provided that the personal/in-
dividual learning needs and requirements of all different user groups are met in PLE. In case of PLE
at TU Graz, it means that the provided widgets must quantitatively and qualitatively cover the learning
needs of users from different study domains. Otherwise the expected results cannot be achieved.

By the same token, PLEs can be used as Personal Teaching Environments (PTEs) or Personal Work-
ing Environments (PWEs), especially in the Information Technology (IT) section. All possible web-
based tools that can be applied directly for teaching purposes or indirectly for supporting the teaching
process can be integrated into a PTE and customized according to the teacher’s interests. Answering
the students’ questions in newsgroups, keeping contact with students in social networks, course admin-
istrations, preparing course materials, etc., are only some examples of possible mashups that can be
provided in a PTE. In case the aspect of personalisation of a PLE is not required, it can be reduced to
an environment to aggregate different useful applications in the workplace as a PWE. For instance, an
IT administrator can aggregate different web-based tools in his PWE to manage his daily work more
easily, such as monitoring the performance of different systems, configuration of servers, etc.

Appliance of a PLE in higher education requires a rethinking process and some minor changes
in the traditional education concept. Teachers must accept and support the idea of PLEs in general.
The students would need to change their learning habits as well. They must be encouraged to detect,
search and organise their learning tools according to their individual interests. As mentioned before, it
is definitely obligatory for a PLE to be complete and cover different individual interests of users. Many
various widgets must be provided for individual user groups (students in different study domains) to
make a PLE useful from the user’s point of view. PLEs can be compared to smartphones, as smart-
phones are personal devices used as a mashup of apps. A PLE, which does not provide enough useful
widgets for all user groups, is the same as a smartphone that provides few apps to the users. Since the
PLE at TU Graz has been launched recently, further widget developments will still take some time.

From the technical point of view, the challenging part of this work was the client-side logic. As
the PLE is a RIA, most of the functionality takes place on the client side. Client-side programming
with JavaScript is different from server-side programming languages. Asynchronous processes such as
XHRs must be handled appropriately and numerous performance issues must be taken into account.
Moreover, browser compatibility is another issue that must be considered and tested steadily. The same
holds true for widget development.

Finally, according to the points discussed above, it can be concluded that the successful use of a
PLE in higher education requires some changes in the students’ learning process. In traditional learn-
ing activities, teachers provide students with specific resources and learning materials. According to
the PLE concept, learners must organize their learning resources themselves and search, find and use
the resources they need on their own. Enough various learning resources must be provided within PLE
to cover a broad set of users’ interests and learning requirements. PLE users must get used to self-

63

organisation as there are no teacher-oriented instructions in this approach. They must be released from
formal learning structures, which are fixed by lecturers, and switch to a self-controlled learning pro-
cess. What is more, there must be no restrictions for providing resources and applications within PLE.
Teachers should have the option to recommend some resources from PLE to the students. Nevertheless,
if teachers are the only resource providers in a PLE, the PLE becomes an application, as it is common
in traditional formal learning environments, where teachers are the sole producers and students the con-
sumers of their resources. As Graham Attwell has pointed out [Attwell, 2007b], a PLE must not be
seen as a software application but rather as a new approach to using different technologies for learning
in an online self-controlled learning environment.

Appendix A

Appendix

A.1 Structure of PLE RDMS

Table A.1: Structure of Table categories
Field Type Null Default

id smallint(6) Yes NULL
category varchar(50) Yes NULL
position tinyint(4) Yes 0

Table A.2: Structure of Table cops
Field Type Null Default

copname varchar(50) Yes NULL
coplabel varchar(100) Yes NULL

Table A.3: Structure of Table interface
Field Type Null Default

userid mediumint(8) Yes NULL
widgetid varchar(50) Yes NULL
column tinyint(4) Yes 0
minimized tinyint(1) Yes 0
position smallint(5) Yes 0

64

A.1. Structure of PLE RDMS 65

Table A.4: Structure of Table interface dashboard
Field Type Null Default

userid mediumint(8) Yes NULL
widgetid varchar(50) Yes NULL
column tinyint(4) Yes 0
minimized tinyint(1) Yes 0
position smallint(5) Yes 0

Table A.5: Structure of Table interface preferences
Field Type Null Default

userid mediumint(8) Yes NULL
widgetid varchar(50) Yes NULL
preference varchar(50) Yes NULL
value varchar(255) Yes NULL

Table A.6: Structure of Table login data
Field Type Null Default

id bigint(20) Yes NULL
userid mediumint(8) Yes NULL
sessionid char(32) Yes NULL
login timestamp Yes CURRENT TIMESTAMP
logout timestamp Yes NULL
platform varchar(20) Yes NULL
browser varchar(20) Yes NULL
version varchar(10) Yes NULL
ismobile tinyint(1) Yes NULL

Table A.7: Structure of Table tags
Field Type Null Default
label varchar(50) Yes NULL

Table A.8: Structure of Table tracks
Field Type Null Default

trackid int(11) Yes NULL
userid mediumint(8) Yes NULL
widgetid varchar(50) Yes NULL
timestamp timestamp Yes CURRENT TIMESTAMP
state varchar(255) Yes NULL

A.1. Structure of PLE RDMS 66

Table A.9: Structure of Table users
Field Type Null Default

id mediumint(8) Yes NULL
username varchar(50) Yes NULL
password varchar(32) Yes NULL
copname varchar(50) Yes NULL
level tinyint(3) Yes 0
lang varchar(32) Yes en
openid longtext Yes NULL
style varchar(50) Yes NULL
firstname varchar(50) Yes NULL
lastname varchar(50) Yes NULL
email varchar(50) Yes NULL

Table A.10: Structure of Table widgets
Field Type Null Default

widgetid varchar(50) Yes NULL
widgetname varchar(50) Yes NULL
visible tinyint(1) Yes 0
copname varchar(50) Yes NULL
category smallint(6) Yes NULL
description longtext Yes NULL
authkey tinyblob Yes NULL
auto subscription tinyint(2) Yes NULL

Table A.11: Structure of Table widget tags
Field Type Null Default

widget varchar(50) Yes NULL
tag varchar(50) Yes NULL
userid mediumint(8) Yes NULL

A.2. Class Diagram of Client Logic 67

A.2 Class Diagram of Client Logic

setEvents
setContent
getContent
loadLayout
setTUGrazAnalytics
initLayout
setEventWindowOnResize
initGlobalAjaxSettigs
ajaxErrorHandling
initTrace
uploadTraceInfo
handleTraceInfoOnUnload
toggleNavigationWZ
toggleNavigationW
fadeInStartPage
alert
notify
confirm
toggleFade

showTime
html
jqObject
jqObjectNavW
jqObjectNavWZ
jqObjectNav2
categories
initCategoryOpen
styleSwitcher
sidebar
widgetZone
userData
widgetsCSS
sessionTimeOut
lastActiveTimestamp
tracedWidgetsStates
traceUploadTimeInterval

LayoutContainer

init
setAttr
applyCssToGUI
tryStyleSheet
applyCssToWidgets
applyCssAttr
setActiveCss
switchCssTo
appendCSSLinkToHead
setCssJqLinks

active
jqLinks
loadedLinks
attr
list
lastInitialStyleSheetIndex
styleWidgetCategory

StyleSwitcher

initWidgetZone
setEvents
setEventWindowOnResize
setContent
getContent
toggleWidgetZone
setWidth
setNewWidth

widgetZones
html
active
jqObject
minWidth
outerBorderWidth
width
secpix

WidgetZoneFactory

displayPlaceHolder
init
insertWidgetIntoContainer
edit
updateTitle
updateHeight
getRemotePreferences
showHide
setAttention
setIcon

id
manifest
minimized
requiresSync
category
widgetTitleContainer
jqObjectContainer
jqObjectIframeContainer
widgetSource
lock

WidgetContainer

getAutoHelpWidgetID
widgetIdentifiedAsHelpWidget
loadWidgets
parseManifest
requestManifest
requestManifestFailed
getLoadedWidget
deleteWidget

widgets
personalDesktopIDPrefix
helpWidgetIDPrefix

WidgetFactory

addWidget
loadInterface
updateInterface
updatePreferences
getPortalBaseURI
initWidgetSearch
buildSearchedWidgetsResults

WidgetEngine

parse
parsePreferences
getElements

ConfigParser

addWidgetEventListener
removeWidgetEventListener
fireWidgetEvent
handleFiring

listeners
EventDispatcher

onChange

src
width
height
active

WidgetIcon

init
reset
next
previous

readyCallback
countByPage
categories
currentOffset

WidgetSeeker

init
initMessages
__

messages
i18n

Figure A.1: Class diagram of client logic (1).

A.2. Class Diagram of Client Logic 68

initSidebar
initDockMenu
setEvents
setEventToggleSidebar
addItemToDockMenu
addAccordion
addItem
setContent
getContent
addItemSection
setItemSectionContentOnDemand
getItemSection1

html
initItemOpen
dockMenuHtml
jqObject
jqObjectDockMenu
sidebarIsOn
outerWidth
width
events
sidebarId
sidebarItemIdPrefix
userData

SidebarContainer

init
setContent
getContent
setEvents
addDragAndDrop

title
id
columnClass
columnIdPrefix
html
jqObject

WidgetZoneContainersetPreferenceForKey
setIcon
openURL
show
hide
getAttention
showNotification
preferenceForKey
httpGet
httpGetJSON
httpPost
httpPut
httpDelete
setHttpCredentials
setContentProxy
setTitle
getTitle
setHeight
getHeight
getDefaultHeight
getDefaultTitle
addWidgetEventListener
removeWidgetEventListener
fireWidgetEvent
enableAuthentication

id
title
defaultTitle
defaultHeight
defaultWidth
eventDispatcher
useAuthentication
dragManager
minimized
maximized
identifier
authorName
authorEmail
authorURL
name
description
version
locale
height
width
currentIcon

Widget

Figure A.2: Class diagram of client logic (2).

A.3. XML Schema Definition (XSD) of Widget Configuration File 69

A.3 XML Schema Definition (XSD) of Widget Configuration File

A.3.1 manifest.xsd

1 <?xml version= ” 1 . 0 ” encoding=”UTF−8”?>
2 <xs :schema
3 targetNamespace=”http : / / www .w3 .org /TR /widgets / ”
4 xmlns=”http : / / www .w3 .org /TR /widgets / ”
5 xmlns :xs=”http : / / www .w3 .org / 2 0 0 1 /XMLSchema”
6 xmlns :palette=”http : / / palette .ercim .org /ns / ”
7 elementFormDefault=”qualified”
8 attributeFormDefault=”unqualified”>
9 <xs :import namespace=”http : / / palette .ercim .org /ns / ”

10 schemaLocation=”palette .xsd”/>
11 <xs :element name=”widget”>
12 <xs :complexType>
13 <xs :all>
14 <xs :element ref=”name” minOccurs=”0” maxOccurs=”1”/>
15 <xs :element ref=”title” minOccurs=”0” maxOccurs=”1”/>
16 <xs :element ref=”description” minOccurs=”0” maxOccurs=”1”/>
17 <xs :element ref=”icon” minOccurs=”0”/>
18 <xs :element ref=”access” minOccurs=”0” maxOccurs=”1”/>
19 <xs :element ref=”author” minOccurs=”0”/>
20 <xs :element ref=”license” minOccurs=”0”/>
21 <xs :element ref=”content” minOccurs=”0”/>
22 <xs :element ref=”palette :widget_type” minOccurs=”0” />
23 <xs :element ref=”palette :widget_location” minOccurs=”0”/>
24 <xs :element ref=”palette :alternate_url” minOccurs=”0”/>
25 <xs :element ref=”palette :preferences” minOccurs=”0”/>
26 <xs :element ref=”palette :widget_authentication” minOccurs=”0”/>
27 <xs :element ref=”palette :scrollable” minOccurs=”0” maxOccurs=”1”/>
28 </xs :all>
29 <xs :attribute name=”id” type=”xs :ID” use=”required”/>
30 <xs :attribute name=”version” type=”xs :string” use=”optional”/>
31 <xs :attribute name=”height” type=”xs :positiveInteger”
32 use=”optional”/>
33 <xs :attribute name=”width” type=”xs :positiveInteger” use=”optional”/>
34 <xs :attribute name=”start” type=”xs :string” use=”optional”/>
35 </xs :complexType>
36 </xs :element>
37
38 <xs :element name=”title” type=”xs :string”/>
39 <xs :element name=”name” type=”xs :string”/>
40 <xs :element name=”description” type=”xs :string”/>
41
42 <xs :element name=”icon”>
43 <xs :complexType>
44 <xs :attribute name=”src” type=”xs :anyURI”/>
45 <xs :attribute name=”width” type=”xs :positiveInteger”
46 use=”optional”/>
47 <xs :attribute name=”height” type=”xs :positiveInteger”
48 use=”optional”/>
49 </xs :complexType>
50 </xs :element>
51
52 <xs :element name=”access”>

A.3. XML Schema Definition (XSD) of Widget Configuration File 70

53 <xs :complexType>
54 <xs :attribute name=”network” type=”xs :boolean”/>
55 <xs :attribute name=”plugins” type=”xs :boolean”/>
56 </xs :complexType>
57 </xs :element>
58
59 <xs :element name=”author”>
60 <xs :complexType>
61 <xs :simpleContent>
62 <xs :extension base=”xs :string”>
63 <xs :attribute name=”url” type=”xs :anyURI”/>
64 <xs :attribute name=”email” type=”xs :string”/>
65 </xs :extension>
66 </xs :simpleContent>
67 </xs :complexType>
68 </xs :element>
69
70 <xs :element name=”license”>
71 <xs :complexType>
72 <xs :simpleContent>
73 <xs :extension base=”xs :string”>
74 <xs :attribute name=”href” type=”xs :anyURI”/>
75 </xs :extension>
76 </xs :simpleContent>
77 </xs :complexType>
78 </xs :element>
79
80 <xs :element name=”content”>
81 <xs :complexType>
82 <xs :simpleContent>
83 <xs :extension base=”xs :string”>
84 <xs :attribute name=”src” type=”xs :string”/>
85 <xs :attribute name=”type” type=”xs :string” use=”optional”/>
86 <xs :attribute name=”charset” type=”xs :string” use=”optional”/>
87 </xs :extension>
88 </xs :simpleContent>
89 </xs :complexType>
90 </xs :element>
91 </xs :schema>

Listing A.1: XML-schema of the configuration file (manifest.xsd)

A.3. XML Schema Definition (XSD) of Widget Configuration File 71

A.3.2 palette.xsd

1 <?xml version= ” 1 . 0 ” encoding=”UTF−8”?>
2 <xs :schema xmlns :xs=”http : / / www .w3 .org / 2 0 0 1 /XMLSchema”
3 targetNamespace=”http : / / palette .ercim .org /ns / ”
4 xmlns=”http : / / palette .ercim .org /ns/”>
5
6 <xs :element name=”scrollable” type=”xs :boolean”/>
7
8 <xs :element name=”widget_type”>
9 <xs :simpleType>

10 <xs :restriction base=”xs :string”>
11 <xs :enumeration value=”local”/>
12 <xs :enumeration value=”remote”/>
13 </xs :restriction>
14 </xs :simpleType>
15 </xs :element>
16
17 <xs :element name=”widget_location” type=”xs :anyURI”/>
18 <xs :element name=”alternate_url” type=”xs :anyURI”/>
19
20 <xs :element name=”preferences”>
21 <xs :complexType>
22 <xs :choice minOccurs=”0” maxOccurs=”unbounded”>
23 <xs :element ref=”preference”/>
24 </xs :choice>
25 </xs :complexType>
26 </xs :element>
27
28 <xs :element name=”preference”>
29 <xs :complexType>
30 <xs :choice minOccurs=”0” maxOccurs=”unbounded”>
31 <xs :element ref=”enumeration”/>
32 </xs :choice>
33 <xs :attribute name=”name” type=”identifier” use=”required”/>
34 <xs :attribute name=”display_name” type=”xs :string” use=”optional”/>
35 <xs :attribute name=”datatype” use=”optional”>
36 <xs :simpleType>
37 <xs :restriction base=”xs :string”>
38 <xs :enumeration value=”string” />
39 <xs :enumeration value=”bool” />
40 <xs :enumeration value=”number” />
41 <xs :enumeration value=”hidden” />
42 <xs :enumeration value=”enumeration” />
43 </xs :restriction>
44 </xs :simpleType>
45 </xs :attribute>
46 <xs :attribute name=”default_value” type=”xs :string” use=”optional”/>
47 </xs :complexType>
48 </xs :element>
49
50 <xs :element name=”enumeration”>
51 <xs :complexType>
52 <xs :attribute name=”value” type=”identifier” use=”required”/>
53 <xs :attribute name=”display_value” type=”xs :string” use=”optional”/>
54 </xs :complexType>
55 </xs :element>

A.3. XML Schema Definition (XSD) of Widget Configuration File 72

56
57 <xs :simpleType name=”identifier”>
58 <xs :restriction base=”xs :string”>
59 <xs :pattern value=”[a−zA−Z0−9_]+”/>
60 </xs :restriction>
61 </xs :simpleType>
62
63 <xs :element name=”widget_authentication”>
64 <xs :simpleType>
65 <xs :restriction base=”xs :string”>
66 <xs :enumeration value=”enabled”/>
67 <xs :enumeration value=”disabled”/>
68 </xs :restriction>
69 </xs :simpleType>
70 </xs :element>
71 </xs :schema>

Listing A.2: XML-schema of the configuration file (palette.xsd)

Bibliography

Anderson, Terry [2006]. PLE’s versus LMS: Are PLEs ready for Prime time? http://terrya.

edublogs.org/2006/01/09/ples-versus-lms-are-ples-ready-for-prime-time/.
(Cited on pages 3 and 4.)

Andrews, Keith [2006]. Writing a Thesis: Guidelines for Writing a Master’s Thesis in Computer Sci-
ence. Graz University of Technology, Austria. http://ftp.iicm.edu/pub/keith/thesis/.
(Cited on page vii.)

Attwell, Graham [2007a]. E-Portfolios - The DNA of the Personal Learning Environment? Jour-
nal of eLearning and Knowledge Society, 3(2), pages 41–64. http://www.pontydysgu.org/

wp-content/uploads/2008/02/eportolioDNAofPLEjournal.pdf. (Cited on page 4.)

Attwell, Graham [2007b]. The Personal Learning Environments - the future of eLearning? eLearn-
ing Papers, 2(1). ISSN 1887-1542. http://www.elearningeuropa.info/files/media/

media11561.pdf. (Cited on pages 4, 6 and 63.)

Augar, N, R Raitman, and W Zhou [2004]. Teaching and learning online with wikis. In Atkinson,
R, C McBeath, D Jonas-Dwyer, and REditors Phillips (Editors), Beyond the comfort zone Pro-
ceedings of the 21st ASCILITE Conference, volume 39, pages 95–104. ISSN 00071013. http:

//www.ascilite.org.au/conferences/perth04/procs/augar.html. (Cited on page 1.)

Aumüller, David and Andreas Thor [2008]. Mashup-Werkzeuge zur Ad-hoc-Datenintegration im Web.
Datenbank-Spektrum, 8(26), pages 4–10. (Cited on page 6.)

Bachleitner, Stefan [2010]. Bachelor project at Graz University of Technology. (Cited on page 51.)

Crockford, Douglas [2008]. JavaScript: The Good Parts. O’Reilly Media / Yahoo Press. (Cited on
pages 35 and 36.)

Darwin, Charles [1859]. On the Origin of Species by Means of Natural Selection, volume 146.
John Murray. ISBN 0486450066, 51-52 pages. doi:10.1126/science.146.3640.51-b. http:

//www.literature.org/authors/darwin-charles/the-origin-of-species/. (Cited
on page 21.)

Downes, Stephen [2005]. E-learning 2.0. eLearn Magazine. http://www.elearnmag.org/

subpage.cfm?section=articles&article=29-1. National Research Council of Canada.
(Cited on pages 1 and 3.)

Drachsler, Hendrik, L Rutledge, P Van Rosmalen, H Hummel, D Pecceu, T Arts, E Hutten, and R Koper
[2010]. ReMashed - An Usability Study of a Recommender System for Mash-Ups for Learning. 5,
pages 7–11. ISSN 18630383. doi:10.3991/ijet.v5s1.1191. http://online-journals.org/

i-jet/article/view/1191. (Cited on page 60.)

73

http://terrya.edublogs.org/2006/01/09/ples-versus-lms-are-ples-ready-for-prime-time/
http://terrya.edublogs.org/2006/01/09/ples-versus-lms-are-ples-ready-for-prime-time/
http://ftp.iicm.edu/pub/keith/thesis/
http://www.pontydysgu.org/wp-content/uploads/2008/02/eportolioDNAofPLEjournal.pdf
http://www.pontydysgu.org/wp-content/uploads/2008/02/eportolioDNAofPLEjournal.pdf
http://worldcatlibraries.org/wcpa/issn/1887-1542
http://www.elearningeuropa.info/files/media/media11561.pdf
http://www.elearningeuropa.info/files/media/media11561.pdf
http://worldcatlibraries.org/wcpa/issn/00071013
http://www.ascilite.org.au/conferences/perth04/procs/augar.html
http://www.ascilite.org.au/conferences/perth04/procs/augar.html
http://www.amazon.com/exec/obidos/ASIN/0486450066/keithandrewshcic
http://dx.doi.org/10.1126/science.146.3640.51-b
http://www.literature.org/authors/darwin-charles/the-origin-of-species/
http://www.literature.org/authors/darwin-charles/the-origin-of-species/
http://www.elearnmag.org/subpage.cfm?section=articles&article=29-1
http://www.elearnmag.org/subpage.cfm?section=articles&article=29-1
http://worldcatlibraries.org/wcpa/issn/18630383
http://dx.doi.org/10.3991/ijet.v5s1.1191
http://online-journals.org/i-jet/article/view/1191
http://online-journals.org/i-jet/article/view/1191

Bibliography 74

Ebner, Martin [2007]. E-Learning 2.0 = e-Learning 1.0 + Web 2.0? In Proceedings of the 2nd Con-
ference on Availability Reliability and Security ARES07, pages 1235–1239. IEEE Computer Society.
ISBN 0769527752. doi:10.1109/ARES.2007.74. (Cited on page 1.)

Ebner, Martin and Hermann Maurer [2008]. Can Microblogs and Weblogs change traditional scientific
writing? In Proceedings of ELearn, pages 768–776. AACE. http://go.editlib.org/p/29699.
(Cited on page 1.)

Ebner, Martin, Nicolai Scerbakov, Behnam Taraghi, Walther Nagler, and Isidor Kamrat [2010]. Teach-
ing and Learning in Higher Education - An Integral Approach. In Gibson, David and Bernie Dodge
(Editors), Proceedings of Society for Information Technology & Teacher Education International
Conference 2010, pages 428–436. AACE, San Diego, CA, USA. http://www.editlib.org/p/
33375. (Cited on page 40.)

Ebner, Martin and Behnam Taraghi [2008]. A Blog Sphere for Higher Education. In Luca, Joseph
and Edgar R. Weippl (Editors), Proceedings of World Conference on Educational Multimedia,
Hypermedia and Telecommunications 2008, pages 5618–5625. AACE, Vienna, Austria. http:

//www.editlib.org/p/29157. (Cited on page 40.)

Ebner, Martin and Behnam Taraghi [2010]. Personal Learning Environment for Higher Education -
A First Prototype. In Proceedings of World Conference on Educational Multimedia, Hypermedia
and Telecommunications 2010, pages 1158–1166. AACE, Toronto, Canada. ISBN 1-880094-81-9.
http://www.editlib.org/p/34779. (Cited on page 35.)

Ebner, Martin, Behnam Taraghi, and Walther Nagler [2008]. The TUGLL Plug-ins: Spe-
cial Needs for a University Wide Blogosphere. In Proceedings of International Confer-
ence on Knowledge Management and Knowledge Technologies (I-KNOW ’08), pages 453–456.
J.UCS, Graz, Austria. ISSN 0948-6968. http://i-know.tugraz.at/blog/2008/09/

the-tugll-plug-ins-special-needs-for-a-university-wide-blogosphere. (Cited
on page 40.)

Evans, C [2008]. The effectiveness of m-learning in the form of podcast revision lectures in higher ed-
ucation. Computers & Education, 50(2), pages 491–498. ISSN 03601315. doi:10.1016/j.compedu.
2007.09.016. http://linkinghub.elsevier.com/retrieve/pii/S0360131507001182.
(Cited on page 1.)

Felfernig, Alexander [2005]. Koba4MS: Selling complex products and services using knowledgebased
recommender technologies. In 7th IEEE International Conference on E-Commerce Technology,
pages 92–100. Munich, Germany. (Cited on page 60.)

Gamble, M.T. and R. Gamble [2008]. Monoliths to Mashups: Increasing Opportunistic Assets. Soft-
ware, IEEE, 25(6), pages 71–79. ISSN 0740-7459. doi:10.1109/MS.2008.152. (Cited on page 7.)

Gritsch, Hannes [2010]. Bachelor project at Graz University of Technology. (Cited on page 53.)

Holzinger, Andreas, Alexander K Nischelwitzer, and Michael D Kickmeier-Rust [2006]. Pervasive
E-Education supports Life Long Learning: Some Examples of X-Media Learning Objects (XLO
). Digital Media, pages 20–26. http://www.wccee2006.org/papers/445.pdf. (Cited on
page 1.)

Hoyer, Volker [2008]. Ad-hoc-Software aus der Fachabteilung. page 98. http://www.heise.de/
artikel-archiv/ix/2008/10/98. Report - Enterprise Mashups, iX 10. (Cited on page 6.)

http://www.amazon.com/exec/obidos/ASIN/0769527752/keithandrewshcic
http://dx.doi.org/10.1109/ARES.2007.74
http://go.editlib.org/p/29699
http://www.editlib.org/p/33375
http://www.editlib.org/p/33375
http://www.editlib.org/p/29157
http://www.editlib.org/p/29157
http://www.amazon.com/exec/obidos/ASIN/1-880094-81-9/keithandrewshcic
http://www.editlib.org/p/34779
http://worldcatlibraries.org/wcpa/issn/0948-6968
http://i-know.tugraz.at/blog/2008/09/the-tugll-plug-ins-special-needs-for-a-university-wide-blogosphere
http://i-know.tugraz.at/blog/2008/09/the-tugll-plug-ins-special-needs-for-a-university-wide-blogosphere
http://worldcatlibraries.org/wcpa/issn/03601315
http://dx.doi.org/10.1016/j.compedu.2007.09.016
http://dx.doi.org/10.1016/j.compedu.2007.09.016
http://linkinghub.elsevier.com/retrieve/pii/S0360131507001182
http://worldcatlibraries.org/wcpa/issn/0740-7459
http://dx.doi.org/10.1109/MS.2008.152
http://www.wccee2006.org/papers/445.pdf
http://www.heise.de/artikel-archiv/ix/2008/10/98
http://www.heise.de/artikel-archiv/ix/2008/10/98

Bibliography 75

Klamma, Ralf, Mohamed Amine Chatti, Erik Duval, Hans Hummel, Ebba Thora, Milos Kravcik,
E Law, A Naeve, and P Scott [2007]. Social Software for Life-long Learning. Educational Technol-
ogy & Society, 10(3), pages 72–83. ISSN 14364522. https://lirias.kuleuven.be/handle/
123456789/164277. (Cited on page 1.)

Kokash, Natallia, Aliaksandr Birukou, and Vincenzo D’Andrea [2007]. Web Service Discovery Based
on Past User Experience. In Abramowicz, Witold (Editor), Business Information Systems, Lecture
Notes in Computer Science, volume 4439, pages 95–107. Springer Berlin / Heidelberg. doi:10.1007/
978-3-540-72035-5 8. (Cited on page 60.)

Krasner, Glenn E and Stephen T Pope [1988]. A Description of the Model-View-Controller User
Interface Paradigm in the Smalltalk-80 System. Journal Of Object Oriented Programming, 1(3),
pages 26–49. http://www.itu.dk/courses/VOP/E2005/VOP2005E/8_mvc_krasner_and_
pope.pdf. (Cited on page 34.)

Kulathuramaiyer, Narayanan and Hermann Maurer [2007]. Current Development of Mashups in
Shaping Web Applications. In Proceedings of World Conference on Educational Multimedia Hy-
permedia and Telecommunications 2007, pages 1172 – 1177. 1, Vancouver, Canada. http:

//www.editlib.org/p/25525. (Cited on page 2.)

Lubensky, Ron [2006]. The present and future of Personal Learning En-
vironments (PLE). http://www.deliberations.com.au/2006/12/

present-and-future-of-personal-learning.html. (Cited on page 3.)

Luca, Joe and Catherine McLoughlin [2005]. Can blogs promote fair and equitable teamwork? In
ascilite 2005 Balance Fidelity Mobility maintaining the momentum. http://www.ascilite.org.
au/conferences/brisbane05/blogs/proceedings/45_Luca.pdf. (Cited on page 1.)

Lucky, Robert W [2009]. To Twitter Or Not to Twitter? IEEE Spectrum, 46(1),
page 22. ISSN 00189235. http://search.ebscohost.com/login.aspx?direct=true&db=
buh&AN=36042606&site=ehost-live. (Cited on page 1.)

Mason, Robin and Frank Rennie [2007]. Using Web 2.0 for learning in the community. The Inter-
net and Higher Education, 10(3), pages 196–203. ISSN 10967516. doi:10.1016/j.iheduc.2007.06.
003. http://linkinghub.elsevier.com/retrieve/pii/S1096751607000383. (Cited on
page 1.)

mobiThinking [2011]. Global mobile statistics 2011 : all quality mobile marketing research,
mobile Web stats, subscribers, ad revenue, usage, trends. http://mobithinking.com/

mobile-marketing-tools/latest-mobile-stats. (Cited on page 57.)

Mühlburger, Herbert, Martin Ebner, and Behnam Taraghi [2010]. @twitter Try out #Grabeeter to
Export, Archive and Search Your Tweets. In Proceedings of the 2nd International Workshop on
Research 2.0. At the 5th European Conference on Technology Enhanced Learning (ECTEL’10): Sus-
taining TEL, volume 675, pages 76–85. CEUR-WS, Barcelona, Spain. ISSN 1613-0073. http:

//sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-675/. (Cited on
page 55.)

Nagler, Walther and Martin Ebner [2009]. Is Your University Ready For the Ne(x)t-Generation? In
Siemens, George and Catherine Fulford (Editors), Proceedings of World Conference on Educational
Multimedia, Hypermedia and Telecommunications 2009, pages 4344–4351. AACE, Honolulu, HI,
USA. ISBN 1-880094-73-8. http://www.editlib.org/p/32114. (Cited on page 2.)

Naudet, Yannick, Nikos Karousos, Stéphane Sire, Jérôme Bogaërts, Jean-David Labails, Alain Vagner,
Marie-Laure Watrinet, Géraldine Vidou, Sami Miniaoui, Manolis Tzagarakis, George Gkotsis, and

http://worldcatlibraries.org/wcpa/issn/14364522
https://lirias.kuleuven.be/handle/123456789/164277
https://lirias.kuleuven.be/handle/123456789/164277
http://dx.doi.org/10.1007/978-3-540-72035-5_8
http://dx.doi.org/10.1007/978-3-540-72035-5_8
http://www.itu.dk/courses/VOP/E2005/VOP2005E/8_mvc_krasner_and_pope.pdf
http://www.itu.dk/courses/VOP/E2005/VOP2005E/8_mvc_krasner_and_pope.pdf
http://www.editlib.org/p/25525
http://www.editlib.org/p/25525
http://www.deliberations.com.au/2006/12/present-and-future-of-personal-learning.html
http://www.deliberations.com.au/2006/12/present-and-future-of-personal-learning.html
http://www.ascilite.org.au/conferences/brisbane05/blogs/proceedings/45_Luca.pdf
http://www.ascilite.org.au/conferences/brisbane05/blogs/proceedings/45_Luca.pdf
http://worldcatlibraries.org/wcpa/issn/00189235
http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=36042606&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=36042606&site=ehost-live
http://worldcatlibraries.org/wcpa/issn/10967516
http://dx.doi.org/10.1016/j.iheduc.2007.06.003
http://dx.doi.org/10.1016/j.iheduc.2007.06.003
http://linkinghub.elsevier.com/retrieve/pii/S1096751607000383
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats
http://worldcatlibraries.org/wcpa/issn/1613-0073
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-675/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-675/
http://www.amazon.com/exec/obidos/ASIN/1-880094-73-8/keithandrewshcic
http://www.editlib.org/p/32114

Bibliography 76

Nikos Karacapilidis [2008]. Final version of PALETTE registry and delivery framework. http:

//palette.ercim.org/images/stories/DocumentPDF/d.imp.07_final.pdf. (Cited on
pages 12, 13, 20, 27, 29, 30, 31 and 32.)

Nielsen, Jakob [2005]. How to Conduct a Heuristic Evaluation. http://www.useit.com/papers/
heuristic/heuristic_evaluation.html. (Cited on page 43.)

Olivier, Bill and Oleg Liber [2001]. Lifelong Learning: The Need for Portable Personal Learning
Environments and Supporting Interoperability Standards. 20. http://ssgrr2002w.atspace.

com/papers/14.pdf. (Cited on page 3.)

O’Reilly, Tim [2005]. What is Web 2.0 - Design Pattern and Business Models for the next Generation of
Software. http://oreilly.com/web2/archive/what-is-web-20.html. (Cited on page 1.)

PALETTE [2008]. Pedagogically sustained Adaptive Learning through the Exploitation of Tacit and
Explicit Knowledge. http://palette.ercim.org/. (Cited on pages vii, 2, 7, 8 and 24.)

Sandriesser, Jörg [2010]. Bachelor project at Graz University of Technology. (Cited on page 55.)

Schaffert, Sandra and Wolf Hilzensauer [2008]. On the way towards Personal Learning Environ-
ments : Seven crucial aspects. eLearning Papers, 9, pages 1–11. ISSN 18871542. http:

//www.elearningeuropa.info/files/media/media15971.pdf. (Cited on page 4.)

Schaffert, Sandra and Marco Kalz [2009]. Persönliche Lernumgebungen: Grundlagen, Möglichkeiten
und Herausforderungen eines neuen Konzepts. In Wilbers, Karl and Andreas Hohenstein (Edi-
tors), Handbuch ELearning, volume Gruppe 5, pages 1–24. Deutscher Wirtschaftsdienst (Wolters
Kluwer Deutschland). http://dspace.learningnetworks.org/handle/1820/1573. (Cited
on pages 2 and 4.)

Softic, Selver, Martin Ebner, Herbert Mühlburger, Thomas Altmann, and Behnam Taraghi [2010].
@twitter Mining #Microblogs Using #Semantic Technologies. In Proceedings of 6th Workshop on
Semantic Web Applications and Perspectives (SWAP 2010), pages 1–12. Bressanone, Italy. (Cited on
page 55.)

Softic, Selver, Behnam Taraghi, and Wolfgang Halb [2009]. Weaving Social E-Learning Platforms
Into the Web of Linked Data. In Proceedings of International Conference on Semantic Systems (I-
SEMANTICS ’09), pages 559–567. J.UCS, Graz, Austria. (Cited on page 40.)

Taraghi, Behnam and Martin Ebner [2010]. A Simple MVC Framework for Widget Development. In
Proceedings of the 3rd Workshop on Mashup Personal Learning Environments (MUPPLE10). In
conjunction with the 5th European Conference on Technology-Enhanced Learning (ECTEL’10):
Sustaining TEL, volume 638, pages 1–8. CEUR-WS, Barcelona, Spain. ISSN 1613-0073. http:

//sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-638/. (Cited on
page 34.)

Taraghi, Behnam, Martin Ebner, and Sandra Schaffert [2009a]. Personal Learning Environments for
Higher Education: A Mashup Based Widget Concept. In Proceedings of the Second Workshop on
Mashup Personal Learning Environments (MUPPLE09). In conjunction with the 4th European Con-
ference on Technology-Enhanced Learning (ECTEL’09): Sustaining TEL, volume 506, pages 1–8.
CEUR-WS, Nice, France. ISSN 1613-0073. http://sunsite.informatik.rwth-aachen.de/
Publications/CEUR-WS/Vol-506/. (Cited on pages 6 and 7.)

Taraghi, Behnam, Martin Ebner, Gerald Till, and Herbert Mühlburger [2009b]. Personal Learning Envi-
ronment - A Conceptual Study. In Proceedings of International Conference on Interactive Computer
Aided Learning (ICL), pages 1–10. Auer, M., Villach, Austria. ISBN 978-3-89958-481-3. (Cited on
pages 6, 7, 8, 41 and 59.)

http://palette.ercim.org/images/stories/DocumentPDF/d.imp.07_final.pdf
http://palette.ercim.org/images/stories/DocumentPDF/d.imp.07_final.pdf
http://www.useit.com/papers/heuristic/heuristic_evaluation.html
http://www.useit.com/papers/heuristic/heuristic_evaluation.html
http://ssgrr2002w.atspace.com/papers/14.pdf
http://ssgrr2002w.atspace.com/papers/14.pdf
http://oreilly.com/web2/archive/what-is-web-20.html
http://palette.ercim.org/
http://worldcatlibraries.org/wcpa/issn/18871542
http://www.elearningeuropa.info/files/media/media15971.pdf
http://www.elearningeuropa.info/files/media/media15971.pdf
http://dspace.learningnetworks.org/handle/1820/1573
http://worldcatlibraries.org/wcpa/issn/1613-0073
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-638/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-638/
http://worldcatlibraries.org/wcpa/issn/1613-0073
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-506/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-506/
http://www.amazon.com/exec/obidos/ASIN/978-3-89958-481-3/keithandrewshcic

Bibliography 77

Taraghi, Behnam, Herbert Mühlburger, Martin Ebner, and Walther Nagler [2009c]. Will Personal
Learning Environments Become Ubiquitous through the Use of Widgets? In Proceedings of
International Conference on Knowledge Management and Knowledge Technologies (I-KNOW
’09), pages 329–335. J.UCS, Graz, Austria. http://i-know.tugraz.at/blog/2009/09/

will-personal-learning-environments-become-ubiquitous-through-the-use-of-widgets.
(Cited on pages 8, 24 and 59.)

Tazl, Oliver [2010]. Bachelor project at Graz University of Technology. (Cited on page 55.)

Tuchinda, Rattapoom, Pedro Szekely, and Craig A. Knoblock [2008]. Building Mashups by example.
In Proceedings of the 13th international conference on Intelligent user interfaces (IUI 08), pages
139–148. ACM, Gran Canaria, Spain. ISBN 978-1-59593-987-6. doi:10.1145/1378773.1378792.
http://www.isi.edu/integration/papers/tuchinda08-iui.pdf. (Cited on page 2.)

Van Harmelen, Mark [2006]. Personal Learning Environments. Sixth IEEE International
Conference on Advanced Learning Technologies ICALT06, 16(1), pages 815–816. ISSN
10494820. doi:10.1109/ICALT.2006.1652565. http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=1652565. (Cited on page 3.)

Van Harmelen, Mark [2008]. Design trajectories: four experiments in PLE implementation. Interactive
Learning Environments, 16(1), pages 35–46. doi:10.1080/10494820701772686. (Cited on page 3.)

WidgetSpecs [2008]. W3C Widgets Family of Specifications. http://www.w3.org/2008/webapps/
wiki/WidgetSpecs. (Cited on page 25.)

Wild, Fridolin, Felix Mödritscher, and Steinn E. Sigurdarson [2008]. Designing for change:
Mash-up Personal Learning Environments. eLearning Papers, 9, pages 1–15. http://www.

elearningeuropa.info/files/media/media15972.pdf. (Cited on page 2.)

Wilson, Scott [2005]. Architecture of Virtual Spaces and the Future of VLEs. PowerPoint slides. http:
//www.cetis.ac.uk/members/scott/resources/itslearning.ppt. (Cited on page 3.)

http://i-know.tugraz.at/blog/2009/09/will-personal-learning-environments-become-ubiquitous-through-the-use-of-widgets
http://i-know.tugraz.at/blog/2009/09/will-personal-learning-environments-become-ubiquitous-through-the-use-of-widgets
http://www.amazon.com/exec/obidos/ASIN/978-1-59593-987-6/keithandrewshcic
http://dx.doi.org/10.1145/1378773.1378792
http://www.isi.edu/integration/papers/tuchinda08-iui.pdf
http://worldcatlibraries.org/wcpa/issn/10494820
http://dx.doi.org/10.1109/ICALT.2006.1652565
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1652565
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1652565
http://dx.doi.org/10.1080/10494820701772686
http://www.w3.org/2008/webapps/wiki/WidgetSpecs
http://www.w3.org/2008/webapps/wiki/WidgetSpecs
http://www.elearningeuropa.info/files/media/media15972.pdf
http://www.elearningeuropa.info/files/media/media15972.pdf
http://www.cetis.ac.uk/members/scott/resources/itslearning.ppt
http://www.cetis.ac.uk/members/scott/resources/itslearning.ppt

Acronyms

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CMS Content Management System

CORS Cross-Origin Resource Sharing

CRP-HT Centre de Recherche Public Henri Tudor

CSS Cascading Style Sheets

DBMS Database Management System

DHTML Dynamic HTML

DOM Document Object Model

EU European Union

FAQ Frequently Asked Questions

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP HyperText Transfer Protocol

HTTPS HTTP Secure

ID Identifier

IdP Identity Provider

IE Internet Explorer

IFrame Inline Frame

IICM Institute for Information Systems and Computer Media

IP Internet Protocol

IT Information Technology

JSON JavaScript Object Notation

JSONP JSON with Padding

JST JavaScript Templates

78

79

JVM Java Virtual Machine

LMS Learning Management System

LO Learning Object

MVC Model View Controller

OO Object-Oriented

OS Operating System

PC Personal Computer

PHP Hypertext Preprocessor

PLE Personal Learning Environment

PTE Personal Teaching Environment

PWE Personal Working Environment

RGT Randomly Generated Token

RDMS Relational Database Management System

RIA Rich Internet Application

RSS Really Simple Syndication

SOA Service Oriented Architecture

SOP Same-Origin Policy

SP Service Pack

SQL Structured Query Language

SSO Single Sign-on

S3K Secret Shared Service Key

TEL Technology-Enhanced Learning

TU Technical University

TUGLL TU Graz LearnLand

TUGTC TU Graz TeachCenter

UI User Interface

UR User Requirement

URI Uniform Resource Identifier

URL Uniform Resource Locator

VLE Virtual Learning Environment

WDE Widget Development Environment

80

WWW World Wide Web

W3C WWW Consortium

XHR XMLHttpRequest

XHTML eXtensible HTML

XML eXtensible Markup Language

XSD XML Schema Definition

YQL Yahoo! Query Language

ZID Zentraler Informatikdienst

Further References (last visited: February 2011) 81

Further References (last visited: February 2011)

1http://twitter.com/

2http://www.facebook.com/

3http://www.youtube.com/

4http://www.slideshare.net/

5http://www.scribd.com/

6http://www.delicious.com/

7http://getwookie.org/Welcome.html

8http://wordpress.org/

9http://moodle.org/

10http://elgg.org/

11http://shibboleth.internet2.edu/

12http://code.google.com/p/clearfw/

13http://www.tudor.lu/

14http://clearbricks.org/

15http://www.mysql.com/

16http://www.postgresql.org/

17http://www.sqlite.org/

18http://jquery.com/

19http://jqueryui.com/docs/Theming/API

20http://jqueryui.com/

21http://jqueryui.com/themeroller/

22http://httpd.apache.org/

23http://www.google.com/ig

24http://www.netvibes.com/

25http://www.protopage.com/

26http://www.pageflakes.com/

27http://www.w3.org/TR/widgets/

28http://www.w3.org/TR/widgets-apis/

http://twitter.com/
http://www.facebook.com/
http://www.youtube.com/
http://www.slideshare.net/
http://www.scribd.com/
http://www.delicious.com/
http://getwookie.org/Welcome.html
http://wordpress.org/
http://moodle.org/
http://elgg.org/
http://shibboleth.internet2.edu/
http://code.google.com/p/clearfw/
http://www.tudor.lu/
http://clearbricks.org/
http://www.mysql.com/
http://www.postgresql.org/
http://www.sqlite.org/
http://jquery.com/
http://jqueryui.com/docs/Theming/API
http://jqueryui.com/
http://jqueryui.com/themeroller/
http://httpd.apache.org/
http://www.google.com/ig
http://www.netvibes.com/
http://www.protopage.com/
http://www.pageflakes.com/
http://www.w3.org/TR/widgets/
http://www.w3.org/TR/widgets-apis/

Further References (last visited: February 2011) 82

29http://www.w3.org/TR/widgets-digsig/

30http://www.w3.org/TR/widgets-updates/

31http://www.w3.org/TR/widgets-access/

32http://www.w3.org/TR/widgets-uri/

33http://www.w3.org/TR/view-mode/

34http://www.w3.org/TR/widgets-reqs/

35http://www.w3.org/TR/widgets-land/

36http://www.pkware.com/documents/casestudies/APPNOTE.TXT

37http://developer.yahoo.com/yql/

38http://nb.io/hacks/csshttprequest

39http://en.wikipedia.org/wiki/Data:_URI_scheme

40http://code.google.com/p/crossxhr/wiki/CrossXhr

41http://flxhr.flensed.com/

42http://www.w3.org/2008/webapps/

43http://www.w3.org/TR/cors/

44http://msdn.microsoft.com/en-us/library/cc288060%28VS.85%29.aspx

45https://developer.mozilla.org/En/HTTP_access_control

46http://javascriptmvc.com/

47http://code.google.com/p/trimpath/wiki/TrimJunction

48http://rubyonrails.org/

49http://trac.puremvc.org/PureMVC_JS/

50http://www.sproutcore.com/

51http://code.google.com/p/trimpath/wiki/JavaScriptTemplates

52http://beebole.com/pure/

53http://code.google.com/intl/de-DE/closure/templates/

54http://github.com/nje/jquery-tmpl

55http://www.jstorage.info/

56http://www.prototypejs.org/

57http://mootools.net/

58https://online.tugraz.at/

http://www.w3.org/TR/widgets-digsig/
http://www.w3.org/TR/widgets-updates/
http://www.w3.org/TR/widgets-access/
http://www.w3.org/TR/widgets-uri/
http://www.w3.org/TR/view-mode/
http://www.w3.org/TR/widgets-reqs/
http://www.w3.org/TR/widgets-land/
http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://developer.yahoo.com/yql/
http://nb.io/hacks/csshttprequest
http://en.wikipedia.org/wiki/Data:_URI_scheme
http://code.google.com/p/crossxhr/wiki/CrossXhr
http://flxhr.flensed.com/
http://www.w3.org/2008/webapps/
http://www.w3.org/TR/cors/
http://msdn.microsoft.com/en-us/library/cc288060%28VS.85%29.aspx
https://developer.mozilla.org/En/HTTP_access_control
http://javascriptmvc.com/
http://code.google.com/p/trimpath/wiki/TrimJunction
http://rubyonrails.org/
http://trac.puremvc.org/PureMVC_JS/
http://www.sproutcore.com/
http://code.google.com/p/trimpath/wiki/JavaScriptTemplates
http://beebole.com/pure/
http://code.google.com/intl/de-DE/closure/templates/
http://github.com/nje/jquery-tmpl
http://www.jstorage.info/
http://www.prototypejs.org/
http://mootools.net/
https://online.tugraz.at/

Further References (last visited: February 2011) 83

59http://tugtc.tugraz.at/

60http://tugll.tugraz.at/

61http://www.techsmith.com/camtasia/

62http://ple.tugraz.at

63http://www.youtube.com/

64http://pleconference.citilab.eu/

65http://www.horde.org/

66http://grabeeter.tugraz.at/

67http://www.apple.com/iphone/

68http://www.android.com/

69http://www.w3.org/TR/webstorage/

70http://www.w3.org/TR/webdatabase/

71http://www.sqlite.org/

72http://www.w3.org/TR/FileAPI/

73http://www.w3.org/TR/geolocation-API/

74http://dev.w3.org/html5/spec/dnd.html

75http://prism.mozilla.com/

76http://www.apple.com/mac/

77http://www.microsoft.com/WINDOWS/

78http://www.sun.com/software/javafx/

79http://www.adobe.com/de/products/air/

80http://www.silverlight.net/

81http://jquerymobile.com/

82http://code.google.com/intl/de-DE/apis/gadgets/

http://tugtc.tugraz.at/
http://tugll.tugraz.at/
http://www.techsmith.com/camtasia/
http://ple.tugraz.at
http://www.youtube.com/
http://pleconference.citilab.eu/
http://www.horde.org/
http://grabeeter.tugraz.at/
http://www.apple.com/iphone/
http://www.android.com/
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/webdatabase/
http://www.sqlite.org/
http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/geolocation-API/
http://dev.w3.org/html5/spec/dnd.html
http://prism.mozilla.com/
http://www.apple.com/mac/
http://www.microsoft.com/WINDOWS/
http://www.sun.com/software/javafx/
http://www.adobe.com/de/products/air/
http://www.silverlight.net/
http://jquerymobile.com/
http://code.google.com/intl/de-DE/apis/gadgets/

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Credits
	1 Introduction
	2 Concept and Challenges
	3 PLE Architecture
	3.1 Technical Background
	3.2 Use Cases
	3.2.1 Administrators
	3.2.2 Users

	3.3 Server-Side Architecture
	3.3.1 Widget Authentication
	3.3.2 Proxy
	3.3.3 Data Storage
	3.3.4 Application Programming Interface (API)

	3.4 Client-Side Architecture
	3.4.1 General Structure
	3.4.2 Dynamic User Interface (UI) Construction
	3.4.3 Inter-Widget Communication
	3.4.4 Statistics Module
	3.4.5 Stylability

	3.5 Widget Development Environment (WDE)
	3.5.1 WDE Restrictions

	4 Widgets in PLE
	4.1 The W3C Widgets Family of Specifications
	4.1.1 Widgets Packaging and Configuration
	4.1.2 Widgets Interface
	4.1.3 Widgets Digital Signature
	4.1.4 Widget Updates over HTTP
	4.1.5 Widget Access Request Policy
	4.1.6 Widgets 1.0: URI Scheme
	4.1.7 Widgets 'view-mode' Media Feature
	4.1.8 Widgets 1.0: Requirements
	4.1.9 Widgets 1.0: The Widget Landscape

	4.2 Packaging and Configuration
	4.2.1 Folder Structure
	4.2.2 Configuration File

	4.3 Application Programming Interface (API)
	4.3.1 Read and Write User Preference Data
	4.3.2 XMLHttpRequest Methods
	4.3.3 Read and Write Widget Settings
	4.3.4 Widget Authentication
	4.3.5 Inter-Widget Communication

	4.4 Cross-Domain XMLHttpRequest (XHR)
	4.4.1 JSONP
	4.4.2 YQL Proxy
	4.4.3 CSSHttpRequest
	4.4.4 Flash Proxy
	4.4.5 IFrames
	4.4.6 HTTP Access Controls

	4.5 Simple MVC Framework for Widget Development
	4.5.1 MVC Frameworks
	4.5.2 The Simple MVC Framework
	4.5.3 Extendibility Examples

	5 PLE First Prototype
	5.1 User Interface Structure
	5.1.1 Sidebar
	5.1.2 Widget Zone
	5.1.3 Widgets
	5.1.4 Personal Desktop
	5.1.5 Banner

	5.2 Evaluation of User Interface
	5.3 PLE Main Screens
	5.3.1 Start Page
	5.3.2 Logged-in Area

	5.4 Widget Prototypes
	5.4.1 Widgets Representing some University Services
	5.4.2 Learning Object (LO) Widgets
	5.4.3 Widgets Representing Services on the WWW

	6 Outlook
	6.1 General Trends
	6.2 Ideas for Future Work
	6.2.1 Widget Engine Upgrade
	6.2.2 Missing W3C Widget Specifications
	6.2.3 UI Extensions
	6.2.4 Extension of Simple MVC framework
	6.2.5 PLE as a Desktop Application
	6.2.6 Desktop and Dashboard Widgets
	6.2.7 Mobile PLE
	6.2.8 Other Widget Specifications
	6.2.9 Web Services
	6.2.10 Recommender Systems in PLE

	7 Concluding Remarks
	A Appendix
	A.1 Structure of PLE RDMS
	A.2 Class Diagram of Client Logic
	A.3 XML Schema Definition (XSD) of Widget Configuration File
	A.3.1 manifest.xsd
	A.3.2 palette.xsd

	Bibliography
	Acronyms

