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Kurzfassung

In den vergangenen Jahren hat sich die organische Elektronik, im wesentlichen vertreten
durch organische Leuchtdioden, am Massenmarkt etabliert. Dennoch, oder gerade de-
shalb, ist es immer noch von großem Interesse, deren Effizienz zu steigern. Die Effizienz
wird besonders von der Ladungsträgerinjektion von den Metallkontakten in den organ-
ischen Halbleiter bestimmt. Deshalb ist es von großer Relevanz, die damit verbundenen
Effekte zu untersuchen und zu verstehen.
Die derzeitig verfügbaren analytischen Modelle zur Beschreibung von Injektion haben
nur einen beschränkten Gültigkeitsbereich bezüglich der Werte die bestimmende Param-
eter wie Feldstärke, Injektionsbarriere und Grad der Unordnung annehmen können. Das
liegt auch daran, dass diese Modelle jeweils nicht alle relevanten Effekte berücksichtigen
können. Eine vollständige Beschreibung des gesamten Parameterraums ist daher nur
mit Simulationen möglich, die alle relevanten mikroskopischen Effekte berücksichtigen
können. Zur Simulation von Ladungstransport in organischen Halbleitern hat sich Ki-
netic Monte Carlo (KMC) bewährt. Mithilfe dieser Technik lassen sich auch einfache
Bauelemente simulieren. Bisher wurde diese Methode jedoch nur unter vereinfachten
Annahmen für die Simulation von Injektionsprozessen verwendet. Aus diesem Grund
entwickeln wir ein KMC Modell für die Injektion von Ladungsträgern von einer Metal-
lelektrode in einen organischen Halbleiter, welches über bisherige Simulationen hinaus-
geht indem es neben thermisch aktiviertem Hüpfen auch die Coulomb-Coulomb Wech-
selwirkungen zwischen den Ladungsträgern berücksichtigt.
Wir ermitteln die injizierte Stromdichte als Funktion des externen Feldes, der Unord-
nung und der Injektionsbarriere. Es lassen sich zwei Regime als Funktion des unord-
nungsabhängigen Stroms identifizieren:
Bei niedrigen Barrieren sammeln sich Ladungsträger durch die attraktive Wechselwirkung
mit ihren Spiegelladungen an der Grenzfläche an. Die elektrostatische Wechselwirkung
mit den so immobilisierten Ladungsträgern führt zur Injektion eines space-charge-limited
current (SCLC). Damit ist die Ladungsträgerdichte im Halbleiter konstant und un-
abhängig von der Barrierenhöhe. Daraus ergibt sich einerseits nur ein vernachlässigbarer
Unterschied zwischen den Strom-Feld Kurven bei sehr kleinen Barrieren. Andererseits
bricht der Strom für größere Unordnung ein, da auch die Mobilität durch tiefe Traps stark
verringert wird. Bei hohen Barrieren identifizieren wir einen Effekt, der durch die un-
mittelbare Nähe von in der Grenzfläche an der Elektrode akkumulierten Ladungsträgern
ausgelöst wird. Die Energie naher Ladungsträger wird derart angehoben, sodass diese
tiefer in den Halbleiter hüpfen können. Dieser Effekt führt zu einer Stromzunahme
bei zunehmender Unordnung. Wir zeigen außerdem, dass die Injektionsbarriere durch
Unordnung verringert wird. Durch die Ergänzung eines klassischen Ausdrucks für die
Stromdichte mit einem einfachen Exponentialfaktor kann diesem Effekt allerdings auch
hier Rechnung getragen werden.
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Abstract

During the last years, organic devices have reached market maturity. Therefore, the im-
provement of the performance of these devices, such as organic light-emitting diodes and
transistors, is in the focus of present research. A crucial process to the performance is
the injection of carriers from the metal contacts into the organic semiconductor. There-
fore, the study of the underlying processes and its description in a comprehensive model
is of high interest.
The behaviour of the injecting contact is expected to be qualitatively different from a
Schottky contact to inorganic, doped semiconductors. Current analytical models aiming
at describing a metal - organic semiconductor interface are valid in limited ranges of
values the parameters, i.e., the electric field, the injection barrier, and the width of the
density of states (representing random disorder), can adopt.
Moreover, present models fail to consider all relevant microscopic effects such as the
Coulomb-Coulomb-interactions between the charges in one single model. A comprehen-
sive description can be achieved best by simulations which are able to directly consider
all relevant microscopic effects. To do so, we utilize the Kinetic Monte Carlo (KMC)
technique which was successful to describe systems as large as small devices. However,
those simulations remained either incomplete due to partial neglect of interactions, or
considered entire devices and, thus, did not permit a clear discrimination of injection-
related effects.
We therefore develop a model for the charge injection from a metal electrode into a
disordered organic semiconductor. In our approach, we go beyond the only present
KMC implementation of injection by incorporating Coulomb-Coulomb-interactions up
to a cut-off radius.

By determining the current density over a wide range of parameters, we are able to
identify two regimes that determine the dependence of the injected current density on
the degree of disorder within the organic semiconductor. In both regimes, i.e., for all bar-
rier values considered, there is a profound accumulation of charges at the metal-organic
interface. The regime changes as a function of the barrier value:
For low values of the barrier, charges accumulate in the first layer adjacent to the metal
surface due to the interactions with their image charges. The interaction with the such
immobilized charges leads to the injection of a space-charge-limited current, associated
to a charge-carrier density in the bulk being almost constant over all fields.
A second regime is established for high barrier values (0.4 ≤ ∆ ≤ 0.7 eV). There, the
current density increases with disorder, despite the low charge-carrier density at the
interface. We are able to explain this behaviour by a disorder-induced lowering of the
barrier as well as a ”proximity effect”. For low barriers, the main event is hopping be-
tween the metal and the first organic layer. By that, disorder increases the likelihood
that these charges moving in a ping-pong fashion, approach nearest neighbour particles
and, in doing so lift their energy, such that they can easily hop further into the bulk.
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1 Introduction

It is known that injection of carriers from a metal contact into an organic semiconductor
is crucially determining the performance of organic devices, particularly that of organic
light-emitting diodes and transistors. Therefore, the study of the underlying processes
and its description in a comprehensive model is of high interest.
The behaviour of the injecting contact is expected to be qualitatively different from a
Schottky contact to inorganic, doped semiconductors, as pristine organic semiconduc-
tors are, in essence, insulators often possessing a large degree of energetic disorder. As
a consequence, organic electronic devices work only if charge carriers are additionally
provided, either by injection or by photogeneration.
Current analytical models fall short in the description of injection, as the corresponding
critical parameters, i.e., the electric field, the injection barrier, and the width of the den-
sity of states (representing random disorder), can adopt a wide range of values. While
the injection barrier can vary between 0 and, typically, 1 eV, relevant fields can vary
by four orders of magnitude. Moreover, many models fail to incorporate all relevant
contributions to net injection. Attempts to explain injection using microscopic KMC
simulations remained either incomplete due to partial neglect of interactions (cf. Ref.
[1]), or considered entire devices (cf. Ref. [2] and Ref. [3]) and, thus, did not permit a
clear discrimination of injection-related effects.
A comprehensive description can, hence, be best achieved by simulations which are able
to directly consider all relevant microscopic effects. As we are interested in macroscopic
observables, such as the current density, molecular dynamics (MD), Kinetic Monte Carlo
(KMC), or drift-diffusion (DD) models might be considered. DD has been shown to be
very successful in, e.g., simulating systems of the size of transistors ( cf. Ref. [4] and
Ref. [5] ). The method relies on effective parameters, due to local averaging. By that,
microscopic insight is lost. That makes it particularly difficult to describe the region
close to the injecting electrode of a transistor. On the other hand, according to Ref.
[6], MD simulations would be computationally too costly, when it is aimed to simulate
systems of the size we are interested in. KMC, on the other hand, has proven to describe
systems of the size of small devices with sufficient accuracy. [1–3]
It is, therefore, the goal of this thesis, to directly explore injection by means of a well-
defined model system consisting of an interface between a metal and a disordered semi-
conductor. Both components are assumed to be spatially homogeneous and their in-
terface to be sharply defined. We will study the injected current across the interface
between a metal and an organic semiconductor as a function of the energetic disorder
and the superimposed electric field by using Kinetic Monte Carlo.
By varying these parameters, we expect to observe and comprehend the borderline cases
that are insufficiently described by the state-of-the-art analytical models in Chapter 2.2.
The findings are to be used in the DD simulation of transistors and other more complex
devices.
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2 Review of the Literature

The aim of this chapter is to give an overview of present works that model injection of
charges from a metal into an organic semiconductor and develop arguments, as to why a
further investigation of injection with Kinetic Monte Carlo (KMC) is promising. First,
an introduction in injection mechanisms is given. Then, an overview of analytical and
KMC models follows. Finally, a justification of the importance to go beyond present
models is given.

2.1 Introduction

In the context of ”classical” metal-semiconductor junctions, so-called Schottky contacts
can be formed in which charges need to overcome a barrier to enter the semiconductor.
A contact between a metal and a semiconductor results in the formation of a potential
barrier. In thermal equilibrium, the Fermi levels of the metal and the semiconductor
align and a barrier ∆ = q(φm − χ) forms as a result of the work function difference
between the metal φm and the semiconductor χ. Injection describes the process to over-
come this barrier.[pp.245, 7]
The ideas of the ”classical” junctions lend the description being used for injection from
a metal contact into an organic semiconductor. Here, the barrier ∆ is the energy dif-
ference between the Fermi level in the metal EF and the transport level of the organic
semiconductor (cf. Figure 2.1, where the equilibrium transport level is shown as a red
dashed line).
The potential energy of an electron at a distance x from the electrode is a superposition
of the injection barrier ∆, the potential due to the external field Fext, and the Coulomb
binding energy of a particles own image charge as described by Equation 2.1:

Epot(x) = ∆− eFextx−
e2

16πεrε0x
, (2.1)

where e is the elementary charge and εr and ε0 are the relative and the vacuum
permittivity. The resulting potential energy as due to Equation 2.1 is shown as a blue
line in Figure 2.1), where the position of the metal is indicated with a gold surface on
the left.

Due to the shape of the potential energy, described by Equation 2.1, the resulting
injection barrier ∆′ (cf. Figure 2.1) is effectively lower than ∆, which is known as the
Schottky effect[8] and given by:

∆′ = ∆−

√
Fexte3

4πεrε0
, (2.2)

with the parameters as previously defined.
There are two major mechanisms to realize injection:
The first is tunnelling, which was originally used for the description of field emission into
vacuum and is relevant at high fields and large barriers only. This mechanism is neither
considered in the analytical models discussed here, nor directly in the KMC models.
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Figure 2.1: Potential energy E(x) (blue) of the transport level in the organic semicon-
ductor due to the Schottky effect as a function of the distance from the metal
electrode (gold). The transport level in absence of any image charge and ex-
ternally applied field is depicted in red (dashed), where a barrier ∆ forms
between the transport level and the Fermi level EF (black line in the metal).
Due to the Schottky effect, the effective barrier is ∆′.

The second mechanism is thermionic emission, which was originally used to describe
glow emission into vacuum. It was used for describing thermionic emission into a semi-
conductor [pp.245, 7] and further adopted for the description of the injection into an
organic semiconductor [8]. In the form it is used for organic semiconductors, it describes
thermally activated hops across an injection barrier giving rise to a current density

jRS = A∗T 2 exp

(
− ∆′

kBT

)
, (2.3)

where T is the temperature, kB Boltzmanns constant, and ∆′ the reduced injection
barrier, given by Equation 2.2. The effective Richardson constant A∗ is defined by the
following equation [8]:

A∗ =
4πm∗k2

B

h3
. (2.4)

Here, h is Planck’s constant and m∗ the effective mass of the electron, which is some-
what difficult to define in the absence of band structures, i.e., for a disordered material.

Equation 2.3 considers the current density when a single electron is injected into the
conduction band. In case of injection into an organic semiconductor, the following effects
are not covered with the thermionic emission current (Equation 2.3):
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1. organic materials posses localized, electronic states with energetic disorder; low
lying states might trap carriers in the bulk

2. charge accumulation (space charge effects) close to the interface due to the image
charge of the injected electron and other electrons present

3. a current flowing back to the electrode, being influenced by the above considera-
tions

4. an influence on the current due to the Coulomb-Coulomb- interaction between
particles in the bulk

Keeping these effects in mind, macroscopic and KMC models of present publications
will be discussed in the following chapters.

2.2 Present modelling approaches of injection

Thermionic emission and recombination current

Scott and Malliaras developed a model for the net current injected from a metal into
an organic semiconductor. [9] The main idea is to identify a current expression from
the metal into the organic semiconductor and, vice versa, from the organic semicon-
ductor into the metal. It results from translating transport equations known from
crystalline semiconductors with delocalized states to amorphous semiconductors with
localized states. In former, states in the conduction band are de-localized, whereas in
latter, the states are localized.
As the final result, the current density for an applied field Fext reads as

jSM = 4Ψ(f)2N0eµFext exp

(
− ∆

kBT

)
exp

√
f(Fext). (2.5)

Here, N0 is the site density and µ the mobility of the organic semiconductor. The
field dependent function f(Fext) in Equation 2.5, is given by

f(Fext) =
eFextrc
kBT

(2.6)

with e the elementary charge, rc the Coulomb capture radius as given by Equation
2.9 below, and Ψ(f), where f is f(Fext) as defined above, given by

Ψ(f) = f−1 + f−1/2 − f−1 ·
(

1 + 2f1/2
)1/2

. (2.7)

The other parameters are as previously defined.
The comparison of the Scott and Malliaras current density to the expression due to
thermionic emission (Equation 2.3) yields remarkably:

1. Equation 2.5 contains the same reduced barrier height given by Equation 2.2, as
the thermionic emission given by Equation 2.3 due to the factor exp

√
f(Fext).

2. Equation 2.5 contains a T−dependent prefactor Ψ(f)2 being proportional to T 2.
[9]

3. The current density j is directly proportional to the mobility µ.
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Equation 2.5 roots on the idea to utilize Langevin theory to describe the net current
density jSM as a superposition of jinj and jrec:

jSM = jinj − jrec. (2.8)

The current density jrec is caused by a recombination of charges with their images in the
metal whose energy is kBT lower than the field dependent maximum of the potential
energy (cf. Figure 2.1). Those charges get attracted to the electrode and ultimately
recombine. For the zero field case, the distance from the metal surface up to which
electrons recombine is given by xc = rc/4, where rc is the Coulomb capture radius[9]:

rc =
e2

4πεrε0kBT
(2.9)

This distance xc, however varies when an external field Fext is applied. This variation
is described by Ψ(f), given by Equation 2.7.
The recombination current finally reads as

jrec = n0eµF (xc),

with n0 the charge-carrier density at the interface due to injection (depending on Ψ(f))
and µ the carrier mobility.
The current density jinj is assumed to arise from thermionic injection(cf. Equation 2.3).
Demanding detailed balance at thermal equilibrium, i.e.,

jSM = jinj − jrec = 0,

the effective Richardson constant is derived as A∗ =
16πεε0k2BN0µ

e2
.

The main insights with respect to the thermionic emission model in Equation 2.3 are
that (1) the current density jSM is directly proportional to the carrier mobility µ and (2)
that the effective Richardson constant A∗ is much smaller than for the free electron case.

The authors mention that a more accurate result could be found by using a field
dependent mobility µ at the field at xc(Fext).
Despite the addition of a field dependent recombination current and the derivation of an
effective Richardson constant, the model lacks desirable features needed for a sufficient
description of injection. Neither does the model (1) consider disorder or the slope of the
density of states, nor are (2) space charge effects or (3) interactions between the injected
particles and non-mutual images taken into account. Also, the final result of Equation 2.5
does not describe the case of a negative field applied. Barker et al. adopted the model to
allow for non-zero current at zero and negative fields[10] in organic photovoltaic (OPV)
devices. However, they had to rely on an intermediate expression derived by Scott and
Malliaras and accounted for an increase in the barrier for negative fields.

Macroscopic description of injection due to hopping

In the work of Arkhipov et al. [11] an analytical expression for the injection current of a
metal-organic contact is derived. The organic material is assumed of having a Gaussian
DOS of width σ. A barrier of the shape following Equation 2.1 on page 13 is assumed,
i.e., a superposition of the injection barrier ∆, the external field Fext, and the Coulomb
binding energy of a particles own image charge.
The main idea is now to view injection as a two step process rather than a single jump

16



Charge Transport in Disordered Solids Philipp Breitegger

of sufficient energy.
The first step is a jump from the metal into the (localized) state in the organic, and
the second step a random walk. The latter is approximated by a continuous drift. The
first hop, on the other hand is based on the Miller - Abrahams rate equation, used for
waiting time calculations in KMC models (cf. Equation 3.7 on page 27).
According to the authors, the current density is dominated by one rate-limiting hop into
the organic, i.e., that hop might be (a) up or (b) down in energy as depicted in Figure
2.2. Each case gives rise to an individual expression for the current I.

Figure 2.2: Potential energy E(x) (blue) of the transport level in the organic semicon-
ductor assuming vanishing disorder (0 kB · T ), due to the Schottky effect as
a function of the distance x from the electrode. Triangles mark the discrete
levels of the hopping sites. Depending on the Fermi level (black squares,
left), the rate-limiting hop can be (a) up or (b) down in energy.

For the case of upward jumps being rate limiting, the value of the barrier ∆ fulfils the
following inequality:

∆ > eFextalatt +
e2

16πεrε0alatt
+ σ

√√√√√2 ln

9
√
π

2
√

2

(
σN

1/3
0

kBTγ

)3
. (2.10)

Here, alatt is the lattice constant of the bulk (i.e. the smallest distance a particle
can hop) and γ the overlap factor as described on page 27. All other constants are as
previously defined. The condition can be understood, when recalling Equation 2.1 for
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the potential energy:

Epot(x) = ∆− eFextx−
e2

16πεrε0x
,

and equating x to the shortest initial jump distance alatt. Then, it tells us, that the
initial jump is up in energy, if the barrier is higher (i.e. the Fermi energy is lower) than
the potential energy at the shortest jump distance plus a disorder σ dependent lowering
of that potential energy. The resulting current, with the initial jump over the distance
x0 into a site with the energy E′, is derived as:

I = eν0
1∫∞

alatt
exp

(
− e
kBT

(
Fextx+ e

16πεrε0x

))
dx

·
∫ ∞
alatt

exp (−2γx0)dx0

·
∫ x0

alatt

exp

(
− e

kBT

(
Fextx+

e

16πεrε0x

))
dx

·
∫ ∞
−∞

Bol (E′)P (Epot(x0)− E′|0, σ)dE′

(2.11)

where ν0 is the attempt frequency, known from the Miller - Abrahams rate equation
(Equation 3.7), g(εi|ε̄, σ) is the Gaussian distribution given by Equation 3.9 and Bol (E),
the Boltzmann distribution, given by equation Equation 2.12:

Bol (E) =

{
exp

(
− E
kBT

)
E > 0

1 E < 0.
(2.12)

For the case of downward jumps being rate limiting, i.e., the first hop is down in energy
or isoenergetic,the following condition needs to be fulfilled:

∆ ≤ eFextalatt +

√
eFext
4πεrε0

+ σ

√√√√√2 ln

9
√
π

2
√

2

(
σN

1/3
0

kBTγ

)3
. (2.13)

The condition can be understood, when recalling Equation 2.2 for the barrier lowering:

∆′ = ∆−

√
Fexte3

4πεrε0
.

Then, it tells us, that the Fermi level is higher than the effective injection barrier ∆′

plus a disorder σ dependent lowering of ∆′. Hence, the first jump will already be down
in energy. The resulting current is then derived as:

I = eν0 exp

−2γ

(
3

2πN0

)1/3

erfc


(

∆− e
√

eFext
4πε0εr

)2

√
2σ


. (2.14)

An advantage over other macroscopic models is the consideration of microscopic hop-
ping processes which also include a Gaussian DOS. Also a recombination current back
to the electrode is considered by regarding surface recombination. However, neither are
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space charge effects (1), nor Coulomb-Coulomb- interactions between non-mutual par-
ticles and their images regarded (2). Another major drawback is, (3), as will become
evident later in this thesis, that Arkhipov et al. does not allow for other hopping pro-
cesses, e.g., between interface and bulk as limiting step. Also, (4), there is no unique
equation for all parameter sets.

Macroscopic description based on the local electric field

In the work of Neumann et al. [12], a one dimensional analytical model for the charge
carrier transport is presented. Here, the main idea is derived from a drift-diffusion per-
spective.
In steady state, the current density must be constant at all distances from the metal-
organic interface.
Being able to describe the current in the bulk of the conductor and the organic semicon-
ductor allows one to derive a condition for the electric field distribution at the contact
interface. The model assumes, that charges are arranging within a certain screening
length inside the conductor (ranging from 1 Å to a few nm - the Thomas Fermi screening
length). Those charges will form a space charge region within the conductor. This allows
the definition of an electrochemical potential κ(x) in the conductor.
Assuming the free electron approximation in the conductor, the electrochemical potential
κ(x) is derived within the conductor as

κ(x) =
~2

2meff

(
3π2n(x)

)2/3
+ eΦ(x). (2.15)

Here, ~ is the reduced Planck constant, meff is the effective mass in the conductor,
n(x) the charge carrier density and Φ(x) the electrostatic potential. Finally, an equation
for the field in the conductor is derived.
For the organic material, a DOS is introduced only in the sense of a total density of
states N in the organic as an integral over the DOS. This quantity is part of the elec-
trochemical potential (cf. Equation 2.16) in the organic semiconductor. It is, however,
explicitly stated, that the width of disorder is taken as vanishing, where charge-carrier
trapping can be neglected.

κ(x) = kBT ln
n(x)

N
+ ∆ + κ∞ + eΦ(x). (2.16)

In Equation 2.16, κ∞ is the electrochemical potential at an infinite distance from the
conductor-organic interface. All the other constants are as previously defined.

Similar to κ(x), also the electric displacement is taken to be continuous within de-
vice, leading to two requirements which are used to define the integration constants of
the differential equations for the corresponding electric fields in the conductor and the
organic material (self-consistency).
Using these two conditions, a non-linear differential equation for the field in the organic
is derived. The analytical solution of the latter equation is investigated for two different
cases: the case of thermal equilibrium (no field applied) and the case of steady state
(field applied). In both cases, a formation of space charges is observed in the conductor,
as well as in the organic.
By specifying a current density j, the equations can be solved for the fields, which, in
turn, determine the voltage V . The j−V characteristic of a such calculated steady-state
for a 100 nm device is shown in Figure 2.3, for barriers between 0 and 0.4 eV. For the
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0 eV barrier, space-charge limited current (SCLC) behaviour jSCLC ∝ V 2 is observed
for all voltages. For the higher barriers a linear voltage dependence is observed between
1 and 10 V. This is said to be due to the space charge region in the bulk. At higher
voltages (above 100 V) and high fields, SCLC is observed for all barriers, as the space-
charge region moves closer to the electrode and finally vanishes.

Figure 2.3: j − V characteristics for barrier heights ∆ of 0, 0.2, 0.3, 0.35, and 0.4 eV of
the model presented in Ref. [12]. Adopted from Ref. [12].

Due to its drift-diffusion-like form of the equation for the field in the organic, the model
of Neumann et al. enables to account for charge accumulation at the interface and to
consider the resulting potential intrinsically. By this, it is possible to account observe a
space-charge limited current. However, except for the total density of states, no disorder
effects such as trapping are considered (1). Also no Coulomb-Coulomb- interactions in
the bulk, apart from the resulting potential are modelled (2). Finally, the model does
not yield a closed j − V relation (3) but rather defines the voltages implicitly via the
solution of desired values of j.

A simple KMC model of injection

In the work of Wolf et al. [1], KMC simulations are utilized for the first time to study the
injection efficiency from a metal electrode into a disordered organic. The state energies
of the sites were drawn from a Gaussian-shaped density of states of width σ. Instead
of treating injection as a hopping event as in [2] and [3], charges are placed randomly
in the first two layers of the bulk. The probability that one site of the bulk is chosen
for injection, is determined by the formula Pij =

νij∑
j 6=i

νij
, where νij is the hopping rate of

jumps from a site i in the metal into a possible site j in the bulk. The authors correct
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for this direct placement of a charge in the bulk with a factor f , which is multiplied
with the injection efficiency of the simulation. A detailed analysis of the method of this
paper will be given in Chapter 5.
Injection is only allowed perpendicular to the metal into the first two layers of the bulk.
Similarly, a jump back into the metal can only be perpendicular. A charge is regarded
as having escaped after reaching the ninth layer of the bulk.
Apart from, (1), not treating the first injection hop as an event also, (2), Coulomb-
Coulomb- interactions in the bulk and between the images of non-mutual charges are
not considered. Only the Coulomb-attractions between particles and their own images,
as described by Equation 2.1 are considered. Due to (2), also charge accumulation close
to the interface and its influence on the barrier is neglected (3). Finally, the results
of the work of Wolf et al. cannot be used to check against the model to be presented
here, as an injection efficiency as in their simulation cannot be defined for the injection
of interacting charges (cf. Chapter 4.4). Neither are current density simulations that
would allow a direct comparison given.

Injection in an OPV simulation using KMC

Marsh et al. [2] present a KMC model for an OPV device. Within the organic, Coulomb-
Coulomb-interactions between like particles are considered up to the Coulomb capture
radius (cf. Equation 2.9). At the electrodes, the mechanism of thermionic injection is
used to model dark injection. The authors understand thermionic injection as a hopping
event from the electrodes into the organic. Therefore, the electrodes are discretized layers
being one mesh cell wide, with the same edge length as the bulk sites. Hopping into the
organic semiconductor is described with the same rate equation and the same parameters
as in the bulk. All sites of the electrodes can inject into the organic material. In order
to decrease computational effort, no Coulomb-Coulomb-interactions are considered for
these initial steps. This is well justified, as only low charge carrier densities are expected.
The authors mention, that their simple algorithm was checked against an algorithm,
which correctly included Coulomb-Coulomb-interactions in the initial step, without any
difference. By using this simple approach for injection, the computationally inexpensive
first reaction method (FRM, cf. Chapter 3.5) can be used not only for hopping events
in the bulk, but also for injection events. It needs to be mentioned, that, although
Coulomb-Coulomb-interactions are not regarded for injection, the intrinsic energy εi of
the bulk sites, drawn from a Gaussian DOS (described in Chapter 3.4), is included not
only in the bulk hops, but already at initial injection steps.

Injection into a sandwiched organic using KMC

An advanced approach for KMC simulations, including injection was used by van der
Holst et al. [3]. Here, KMC simulations of a disordered organic, sandwiched between
two electrodes are carried out. Similar to Ref. [2] and Ref. [1], disorder is introduced,
by using a Gaussian DOS. Similar to Ref. [2], a hop from the metal into the organic and
vice versa is treated in the same way as a hop in the bulk. Additionally, all Coulomb-
Coulomb-interactions between particles and images are considered already in the initial
injection hop.
The methodology used in Ref. [3] is certainly including all Coulomb-Coulomb-interactions
and consequential effects. However, it is not possible to deduce laws for pure injection,
due to the presence of a second electrode, where image charges are mirrored infinitely
and the extraction of charges at the second electrode might influence the current tremen-
dously. A comparison to the results of this work will nonetheless be presented in Chapter
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5, in order to check the validity of the presented code and investigate the differences be-
tween a single contact and a sandwiched setup. Also, it needs to be mentioned, that
the choice of a 1.6 nm lattice constant might be too large to account for the effect of
Coulomb-Coulomb-interactions correctly.

2.3 Aim of the thesis

As the discussion of macroscopic models has shown, those are not capable of including all
expected effects. Ref. [9] is the first approach of regarding a recombination current back
to the electrode, but neglects any microscopic effects, such as disorder, space charges
or any Coulomb-Coulomb interactions between particles in the bulk. Ref. [11] on the
other hand is the only macroscopic model that explicitly regards disorder. However, it
lacks space charge effects and other Coulomb-Coulomb-interactions due to the injected
particles. Ref. [12], on the other hand, contains space charge effects, but lacks a deeper
consideration of disorder. Any Coulomb-Coulomb-interactions are only considered in
terms of the electrostatic potential.
Therefore, a deeper (microscopic) insight into injection can only be achieved by micro-
scopic models. As the review has shown, KMC gradually improved over the past years
in describing injection. Ref. [1] contains already disorder, even though injection was not
directly included into the methodology but rather by applying some trick and Coulomb-
Coulomb-interactions were only considered between particles and their own images. In
Ref. [2], only the initial injection hop neglects interactions with other particles, while
hops within the organic material account for these interactions. This has been shown to
be a reasonable assumption for OPV devices and average injection barriers of 0.4 eV.
An approach including all effects described in the introductory chapter was done by Ref.
[3]. However, it did not only focus on injection, but also charge extraction, due to the
second electrode. Therefore, the j − V relationship described in Ref. [3], are expected
not to coincide with the ones for a simple metal-organic semiconductor setup.
It is, therefore, the aim of this thesis to develop a KMC model for describing injection
from a metal electrode into a disordered organic semiconductor, which accounts for all
effects described in the introduction, going beyond present approaches.

We expect our simulations to reach a SCLC, as described by Ref. [12] for high fields,
as a result of an expected accumulation of space charges near the metal-organic semicon-
ductor interface. Moreover, we also expect the current density to be disorder dependent,
i.e., decreasing with disorder, which is not accounted for explicitly in Ref. [12]. Com-
pared to Ref. [11], we expect an earlier saturation due to the SCLC regime, originating
our considerations of the Coulomb-Coulomb-interactions between particles in the bulk.
For low fields, the current is expected to follow an injection limited current, such as in
Ref. [9].
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3 Mesoscopic Modelling using Kinetic
Monte Carlo

KMC is employed to study the time evolution of a system based on events. In the case of
hopping transport, it is assumed, that particles hop from localized site i to site j within
a material at a certain rate Rij determined e.g., by their different site energies εi. This
is shown schematically in Figure 3.1 for a one-dimensional system.

Figure 3.1: Schematic picture of the random site energies in a one-dimensional system.
A hop from site i to site j occurs at a rate Rij which can be related to a
hopping time τij .

Due to an exponential decay, the rate can be related to a waiting time τij via a uniform
distributed random number X according to Equation 3.1 [6] :

τij = − ln(X)

Rij
(3.1)

The following sections provide the methodological and theoretical background of KMC
simulations. First, the theoretical foundations of KMC are presented. Next, an overview
of the ingredients of a KMC simulation as well as variations of particular simulation steps
is given.

3.1 Theoretical foundations of KMC

A short overview of the Master equation and Poisson processes is given, before the three
criteria for a Poisson process, a crucial prerequisite for KMC modeling, are summarized.

3.1.1 The Master equation and the Poisson process

The transport equation capable of describing the hopping of a localized site to another
is the Master equation. In general, the Master equation (Equation 3.2 [4]) is known to
”describe the time-evolution of a system that can be modelled as being in exactly one
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of countable number of states at any given time, and where switching between states is
treated probabilistically” [13].

dP (σ, t)

dt
=
∑
σ′

W (σ′ → σ)P (σ, t)−
∑
σ′

W (σ → σ′)P (σ, t). (3.2)

Here, P (σ, t) is the probability of the system being in state σ at time t and W (σ → σ′)
is the transition probability at which the system goes from a state σ to a state σ′.

Therefore, the time evolution
∂P (σ, t)

∂t
of a particular state σ described in equation 3.2

can be interpreted as the rate of probability of all states going to state σ, minus that of
state σ going to any other state of the system.
The Master equation has been formulated and solved for charge transport previously.
[3] However, an alternative and intuitive approach to obtain the time evolution of charge
transport is Kinetic Monte Carlo. The basic idea, as stated by Fichthorn and Weinberg
is that the Master equation describes a Poisson process [4]. Hence, KMC can be used
to solve the Master equation, if KMC describes a Poisson process.

A Poisson process obeys the stochastic differential equation (SDE) dx = αxdt+βxdN
[14], where αxdt is the drift term and βxdN the noise term. Here, dN can only take
values 0 or 1 and β is a scaling factor. The probability for dN taking the value 1 or
0 is λdt or 1 − λdt, respectively [14]. Then, the probability density function of N(t),
which is the number of jumps within time t follows a Poisson distribution given by

P (n, t) = (λt)ne−λt

n! , which is the probability for n jumps in time t. [14]
As an alternative to the SDE, the same problem can be stated in terms of a Master

equation (Equation 3.3) [14] :

dP (n, t)

dt
= λ (P (n− 1, t)− P (n, t)) , n > 0. (3.3)

This formulation has the advantage of explicitly containing λ and thus, obliterates
difficulties in solving the SDE with respect to time or positive x. The solution P (n, t)
is again the Poisson distribution.

3.1.2 Requirements on KMC for being a Poisson process

The theoretical background of KMC relevant for this work is described by Fichthorn and
Weinberg [4]. The authors show that the master equation (cf. Equation 3.2) describes
a Poisson process.
They further argue, that the following three criteria have to be met by a dynamical
interpretation of Monte Carlo, as the authors call it, for being a Poisson process:

1. independence of events

2. transition probabilities satisfy

a) detailed balance

b) a dynamical hierarchy

3. time increments are formulated correctly

The first criterion is met for ”sufficiently large systems” [4].
The second criterion for the transition probabilities consists of two requirements: (a) At
equilibrium, detailed balance must be achieved. I.e., that transitions from state σ to σ′
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happen at the same rate as from σ′ to σ (cf. equation 3.4, which can be obtained by
setting the time derivative in equation 3.2 to zero[4]):

W (σ′ → σ)P (σ′, t) = W (σ → σ′)P (σ, t). (3.4)

Furthermore, (b) away from equilibrium, a dynamical hierarchy has to be achieved,
which is, to put it crudely, a transition probability based on a given rate expression W
is smaller than unity. A mathematical description is shown in equation 3.5 [4], where
r(σ → σ′) is the rate from σ to σ′ .

W (σ′ → σ) =
r(σ → σ′)

ξmax
, ξmax ≥ sup

{
r(σ → σ′)

}
(3.5)

The third criterion is met by drawing a time increment from an exponential distribu-
tion[4], such as Equation 3.1, if the corresponding event took place. Note that KMC is,
thus, only valid on timescales, where only one event happens at a time[4].
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3.2 Set-up of the KMC simulations

In the case of this thesis, the three-dimensional system is uniformly discretized into cubes
of either 0.6nm, 1nm or 1.6nm edge length (alatt). The edge length of 0.6nm is used in
[1] , whereas [2] is using 1 nm and [15] is using 1.6 nm. A value of approximately 1 nm
is a trade-off between accuracy and the size of a system that can actually be simulated.
In particular, an edge length sufficiently larger than 1 nm would underestimate the
Coulomb-Coulomb-interaction between close by particles. Additionally, the edge length
is related to the size of the molecules of the material and is therefore material specific.
In Figure 3.2, such a model system is shown in a two-dimensional representation, where
the electrode is depicted in gold on the left.

Figure 3.2: Schematic picture of the uniformly discretized model system, shown in two-
dimensional representation for clarity. The electrode is depicted in gold on
the left. The particle at site i = 9 may hop to one of the nearest neighbour
sites (other sites are not shown for clarity), where each hop has a particular
waiting time. The particle experiences a Coulomb-Coulomb-interaction with
its own image charge, depicted in gray on site i = 2. A particle might hop
to an adjacent site, if periodic boundary conditions apply, as shown for the
particle at site i = 36.

All sites (voxels) are possible hopping sites, with a particular energy assigned (cf.
Chapter 3.4). The waiting time τij for a hop from a localized site i to site j is calculated
from a rate equation Rij (cf. Chapter 3.3) according to Equation 3.1. The rate depends
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upon the energy difference between sites i and j, which contains the Coulomb-Coulomb-
interaction with any particle and in presence of a metal interface their image charges (cf.
Chapter 3.4). In Figure 3.2, the particle at site i = 9 experiences a Coulomb-Coulomb-
interaction with its own image charge, depicted in gray on site i = 2.

If a metal contact is introduced perpendicular to the x−direction, periodic bound-
ary conditions (PBC) in the y− andz−directions apply. I.e., particles may experience
Coulomb-Coulomb-interactions with periodic replica of other particles. Also, hopping
out of the considered volume is possible. This is shown for the particle at site i = 36 in
Figure 3.2, which hops to a voxel on the top, due to the superimposed PBC.

In order to perform a KMC simulation in a reasonable amount of time, a number of
simplifications have been suggested by the literature (cf. Chapter 3.5). However, the
most accurate way, to perform a KMC simulation would consist of the following steps:

1. Recalculate the waiting time for each particle to jump to any site using formula
3.1, considering the following energies:

a) Coulomb-Coulomb-interaction with any particle and in presence of a
metal interface their image charges, considering the periodic boundary
conditions

b) the intrinsic energy due to a given density of states (DOS)

c) the energy due to an external electic field Fext.

2. Choose the smallest waiting time and perform the corresponding hop.

3. Go back to step 1.

Figure 3.3: KMC steps for solving the Master equation.

3.3 Rate equations for charge carriers

As explained in the beginning of this chapter, the waiting time for a hop from site i
to site j is calculated from a rate Rij (cf. Equation 3.1). In literature, two rates are
used to describe a transition as a function of the site energy difference ∆Eij and the
temperature T .
In Ref. [16], a hopping rate RMij following Marcus theory (Equation 3.6) is derived from
the Holstein model for large electron-vibrational coupling and high temperatures.

RMij = ν0 exp

(
−(∆Eij + Ereorg)

2

4EreorgkBT

)
(3.6)

In contrast to that theory, the Miller Abrahams equation (Equation 3.7) is valid for
weak electron coupling and low temperatures[16].

RM−Aij = ν0 exp (−2γrij)

{
exp

(
−∆Eij

kBT

)
∆Eij > 0

1 ∆Eij < 0
(3.7)

In the two equations, ν0 is the attempt frequency and kB Boltzmanns constant. ∆Eij
is the difference in site energy between sites i and j: Ej −Ei. This includes all energetic
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influences such as the intrinsic energy and the coulombic interactions (cf. Chapter 3.4).
In Equation 3.6, Ereorg is the reorganization energy (see below). In Equation 3.7, γ
is an overlap factor accounting for the electronic interaction between the sites i and j.
The exponential factor, related to γ, makes long distance hops less likely and is, thus,
sometimes also introduced in Marcus Theory (cf. Chapter 3.5).

Compared to Miller - Abrahams, Marcus-type rates depend on the difference in site
energies also for downward hops. The Marcus rate essentially describes the rate of elec-
tron transfer between two states. The basic idea of Marcus theory is sketched in Figure
3.4. Shown are the potential energies of the initial state i and the final state j as a
function of the nuclear configuration coordinate Q; Qi and Qj denote the configurations
at which the states adopt their minimum with the energy values Ei and Ej .

Figure 3.4: Schematic sketch of the energy levels before the electron transfer (blue) and
after the electron transfer (red) as a function of a nuclear coordinate Q. In
order to transfer the electron from state Qi to Qj of energies Ei and Ej
a Gibbs free energy of activation ∆G is needed, which can be calculated
according to the text, using the reorganization energy Ereorg

To transfer the electron from i to j, an activation energy ∆G has to be overcome.
In the harmonic approximation, ∆G can be expressed using the difference in electronic
energies ∆Eij = Ej−Ei and the reorganisation energy Ereorg, i.e., the energy dissipated
in going from Qi to Qj in the final state. Such a transition occurs activationless if
∆Eij = Ereorg. The larger the deviation between Ereorg and ∆Eij , the less likely the
electron transfer will be.[17]
Despite the fact that the Miller - Abrahams rate is derived for low temperatures and
Marcus rate for high temperatures, they have both been used for simulations at around
room temperature (cf. [1, 2, 15, 18]).

28



Charge Transport in Disordered Solids Philipp Breitegger

3.4 Energetic Landscape

The energetic difference between two sites with coordinates ri and rj , ∆Eij , is given by
Equation 3.8.

∆Eij = ∆εij(Eq.(3.9)) + ∆Eext,ij(Eq.(3.10)) + ∆Ebulkcoul,ij(Eq.(3.11))︸ ︷︷ ︸
bulk

+ ∆Eimg,ij(Eq.(3.13)) + ∆Eimgcoul,ij(Eq.(3.12))︸ ︷︷ ︸
metal

(3.8)

Here, the energy following each ∆, represents the corresponding energetic difference
between the two sites, followed its defining formula given in brackets. For example, ∆εij
is the difference εj − εi, where εi/j is given by Equation 3.9. The first part of Equation
3.8 is the energy contribution of particles experiencing only bulk interactions, far away
from any metal interface. The second part has to be considered, if a metal interface is
present in order to satisfy a constant potential at the metal interface.

3.4.1 Bulk

In this work, the bulk simulation is restricted to one kind of particle being transported
through one kind of material. Therefore, each voxel gets assigned one discrete transport
level. In order to mimic the random disorder in organic materials, the density of states
(DOS) is assumed to follow a Gaussian distribution. This is accomplished by drawing
the intrinsic energy of each voxel, εi, from a Gaussian distribution of width σ, following
Equation 3.9.[1, 2, 18] The center of the intrinsic energy level, ε̄, is set to zero, as only
energy differences play a role in the rates.

g(εi|ε̄, σ) =
1

σ
√

2πa3
latt

exp

(
−1

2

(
εi − ε̄
σ

)2
)

(3.9)

This procedure can be extended by adding additional transport levels for additional
kinds of particles (e.g. HOMO and LUMO for holes and electrons). Additionally, the
bulk might consist of a blend of different materials, each of which could have different
properties such as σ and ε̄. Correspondignly, simulations with artificial blends (Ref. [2])
and blends derived from lower length scale predictions (Ref. [19]) or experiment (Ref.
[20]), in particular aiming at organic bulk-heterojunction solar cells, have been reported.

External electric field An externally applied, homogeneous field Fext results in an
energy Eext at a distance ri‖ parallel to the field for an electron at site i of charge qi,

Eext,i = qiFextri‖. (3.10)

Coulomb Interactions Charges in the bulk experience Coulombic forces between each
other. The related energy contribution to a particle i is given in Equation 3.11. Here,
qi and qi′ are the charges of particles i and i′ and ε is the permittivity of the bulk. The
index i′ runs over all N particles in the bulk.

Ebulkcoul,i =
N∑
i′ 6=i

qiqi′

4πεrii′
(3.11)
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3.4.2 Metal interface

In order to satisfy a constant potential at the metal surface at the metal bulk interface,
image charges are introduced. These are mirrored along the metal interface and placed
inside the metal with the same charge but opposite sign of their counterparts in the
bulk.
Each particle i in the bulk experiences a coulombic energy, similar to Equation 3.11, of
the images of all N − 1 other particles i′. This contribution is given by Equation 3.12.
The term rimgii′ is the distance between particle i and the image of particle i′, which is
mirrored along the metal interface.
The contribution of the image of particle i itself adds an energy Eimg,i (Equation 3.13),
where ri‖ is the distance between the particle and the metal contact[21]. The other
variables are as previously defined.

Eimgcoul,i =

N∑
i′ 6=i

−qiqi′
4πεrimgii′

(3.12)

Eimg,i =
−q2

i

16πεri‖
(3.13)

3.5 Update Algorithm

FRM vs. exact calculation As mentioned in the introductory Chapter 3, the exact way
of implementing KMC would require to recalculate all waiting times after an event (hop)
had occured, which results in high computational effort. It can, however, be reduced
dramatically by using the first reaction method (FRM), as introduced by Marsh et al.
[2]. It is argued, that after a hop occurred, it will not change the energetic surrounding
of the other particles too much for a low concentration of particles[2], which has also
been tested by comparing the dynamic behaviour to that of an exact implementation[2].
Therefore, in FRM the exact calculation of all waiting times will only be done once as
an initial step. After the particle with the lowest waiting time has hopped, time will
be advanced by that waiting time, which is also done for all the previously calculated
waiting times. Then, only for the hopped particle, a new waiting time is calculated from
its new energy environment.
M.Krammer (personal communication, 2014) suggested to extend this method by recal-
culating also the waiting times of particles within a certain radius with little additional
computational effort, but more exact results. It was therefore used for this work, as
described in section 4.2.

Hopping range Depending on whether long range, or only nearest neighbour hops are
regarded in a simulation, Marcus rates (equation 3.6) may be adopted by a distance
dependent factor e−αrij which is referred as variable range hopping in [23], which is
already part of the Miller-Abrahams rate (cf. Equation 3.7). Similarly to γ in Equation
3.7, α describes the spread of the wavefunction and rij the distance between sites i and
j.
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4 Methodology

The simulations were implemented in MATLAB. In order to be able to compare against
the data of the reference papers (cf. Chapter 5), for each reference a tailored-made
code was generated to accomodate specific details, i.e., the rate expression, voxel size,
considerations of Coulomb-Coulomb-interactions, the use of boundary conditions, or de-
termination of observables.
This chapter will first go into more detail explaining the update algorithm, which is the
crucial part of the code. The waiting times in the update algorithm are calculated from
a rate equation (cf. Equation 3.1) which furthermore depends on the energetic landscape
(cf. Chapter 3.4).
Certain contributions to the site energy are not changing within a simulation run, such
as the intrinsic energy levels εi. These will be referred to as static.
Furthermore, other parts change due to the Coulomb potential connected to the hopping
particles, which will be referred to as dynamic. For comparing against non interacting
cases, such as Ref. [2], the Coulomb-Coulomb-interaction is simply switched off, by set-
ting the cut-off radius smaller than the voxel size alatt.
In all cases, however, except for the comparison to the work of Wolf et al. [1], a site in
the bulk may only be occupied by one carrier, known as the Pauli exclusion principle.

Furthermore, it can be chosen, whether a Miller - Abrahams or Marcus rate equation
is used (cf. Chapter 3.3).
In order to be able to compare against Ref. [1], injection was initially implemented in
a similar way as described in the corresponding paper (cf. Chapter 5.2), which made
certain assumptions for hopping from the metal into the organic, in order to reduce the
computational effort. However, due to today’s computing power, it was decided to im-
plement injection similar to the work of van der Holst et al. [3], which considers injection
being a hopping event and, therefore, in a more consistent way.

4.1 Initialization

The initial condition depends on whether pure bulk or injection simulations are con-
ducted.

4.1.1 Bulk

The particles are placed in the bulk at random positions and the position of each particle
is saved in an array. In a second step, the Coulomb-Coulomb-interactions due to the
particles are added to the dynamical array of energies (cf. Chapter 3.4). In a next
step, all waiting times for all the particles are calculated. For each particle, only the
shortest waiting time is saved in a list together with the particle index. Furthermore,
the coordinates of the corresponding hopping event are stored in a list. The resulting
list of waiting times is sorted by increasing waiting time and one event is processed after
another according to its position in the queue.
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4.1.2 Injection

The metal contact is implemented as an additional layer of lattice width alatt, as sug-
gested by Ref. [2] and [3]. In this model, injection can take place from the metal contact
into bulk layers which lie within the hopping radius rhop, usually the first two layers.
In the course of the simulation, the particles hop into the initially unoccupied bulk. To
do so, the waiting times for all perpendicular jumps from the metal into the organic
are calculated. The smallest time is chosen for injection and the particle is injected
to the corresponding site. Next, the Coulomb energy due to the injected particle and
its image are added to the dynamical array of energies. Also, the waiting times within
rhop of the injected particle are calculated from which the shortest waiting time and the
corresponding particle index and coordinates are saved, similar to the bulk case. Each
voxel in the metal layer is assumed to be occupied for calculating injection and empty
for a hop back into the metal (recombination).
A charge accumulation is expected close to the metal organic interface which is not neg-
ligible. Therefore, it is necessary to ensure that each injection event is chosen based on
the current system-state at any time. To do so, the lowest waiting time of all injection
sites is calculated every iteration as explained above and sorted into the list containing
the waiting times of the particles in the bulk.
Restricting ourselves to perpendicular metal-organic jumps is reasonable, since the corre-
sponding rates are higher than for non-perpendicular jumps due to the shorter distance
and the large number of injecting sites and the high number of injection sites in the
metal.

4.2 Update Algorithm

In order to be able to simulate sufficiently large systems, it was decided to use FRM as
introduced in chapter 3.5. In order to increase the accuracy with few additional compu-
tational effort, a partial update of the waiting times was added to FRM, as explained
by M. Krammer (personal communication, 2014) . Here, it was chosen to update the
waiting times of all particles which are located within the hopping radius rhop around
the new position of the hopped particle.
A flow chart diagram of our FRM implementation for hopping in the bulk is shown in
Figure 4.1. After each KMC step, marked with a box in Figure 4.1, the newly calculated
events are sorted into the queue of waiting times.
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Figure 4.1: Flow Chart diagram of the implemented FRM algorithm for a bulk simulation
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4.2.1 Selection of allowed hopping sites

Additionally, it can be chosen for the hopping range, to either allow hopping within a
cube or a sphere of an adjustable size. Also, either simple bulk with periodic boundary
conditions (PBC) or a metal-bulk interface can be simulated.
In the case of a pure bulk simulation, there are periodic boundary conditions in all direc-
tions. However, for the simulation of injection, those only apply in the y- and z-direction,
but not perpendicular to the metal-surface. Also, for the case of a metalcontact, hops
onto and from the metal surface are only allowed perpendicular to the position of the
carrier (cf. Figure 4.2).

(a) allowed hopping sites for a particle located at
x = 3 nm

(b) allowed hopping sites for a particle located at
x = 2 nm

Figure 4.2: Allowed hopping sites for a charge (black circle) into the metal for different
distances ∆x = x − xmetal from the metal (red) and rhop = 2 nm. A site
within the metal (xmetal = 0nm) can be target only if the associated hopping
occurs perpendicular to the metal surface (in analogy to Ref. [1]).

To achieve an efficient selection of the allowed hopping sites, the following strategy
was chosen:

1. Define the size of a cube, where the desired form (e.g. sphere) fits in (for
example edge length 5, for a sphere of radius 2).

2. Use that size to create for each coordinate (x, y, z) a set of allowed nearest
neighbours to hop onto, within that cube (e.g. for x = 4: [2, 3, 4, 5, 6]).

3. In order to have the desired form (e.g. sphere) for each x-position, an array of
logical indices for the forms (cf. Figure 4.2) as well as a vector which includes
the particular index of the logical array for the corresponding x-position is
created. For example, the second element of that vector would link the logical
array to the position indicated in Figure 4.2b.

4. When accessing the nearest neighbours of a particular site (x,y,z), the logical
array with the index defined by the x-position is used to select the relevant
energies from the cube.
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4.2.2 Further update adjustments due to injection

For a simulation of injection, additions to the update method conceived for hopping in
the bulk have to be made. The corresponding flow chart diagram is shown in Figure 4.3.
In contrast to the bulk simulation, one has to discriminate between different types of
sites and jumps in between them. Thus, four different cases for hops must be taken care
of, especially for doing queueing correctly:

1. Particle injected: Add new entry to the queue and update waiting time for the
entry;

2. Particle hops in bulk: Update waiting time for corresponding particle;

3. Particle recombined at the contact: Remove entry of corresponding particle from
the queue;

4. Particle escaped: Remove entry of corresponding particle from the queue.
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Figure 4.3: Flow Chart diagram of the implemented FRM algorithm for the simulation
of injection.
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4.3 Site energies

Contributions to the site energy are stored in two different arrays of equal size. The first
array, Estat, contains energy that is not changing within a simulation. The other array,
Edyn, contains the Coulomb part, which is changing due to the motion of the particles.

4.3.1 Static within a run

Each site of the bulk has an intrinsic energy assigned, which is drawn from a Gaussian
distribution (cf. Chapter 3.4.1) with a mean energy of zero. The energy due to an
external applied field is added to the sites as well, as it will not change during a run.
A metal interface is considered by introducing one additional layer with the intrinsic
energy εi set to ∆, which is the difference between the center of the Gaussian and the
Fermi level. Additionally all sites in the bulk will have an energy due to their image
charge added (cf. Chapter 3.4.2).
Figure 4.4 shows exemplarly how Estat could look like, when a metal surface is present
at x = 0.

Figure 4.4: Example for the static energy part with a metal interface for one value of
the z-coordinate. The position of the Fermi-level EF is marked with a red
line. The potential energy due to Fext is marked with a blue line.

4.3.2 Dynamic within a run

This chapter explains how the energy contribution due to the Coulomb-Coulomb-interactions
between moving particles is treated. It should be mentioned here, that each time a hop-
ping rate is calculated for a particular particle, its own contribution (and that of its
image) of the dynamical energy array to the energy difference ∆Eij has to be subtracted
for a correct calculation.
Due to the metal contact, the array containing the Coulomb energy of a specific particle
and its image changes depends on the particles position in x-direction. The different
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energy-arrays are calculated before the simulation starts. The selection of the corre-
sponding arrays is accomplished in the same way as described in Chapter 4.2.1 for the
allowed hopping sites.

Coulomb-Coulomb-interactions between particles in the bulk One dynamical ingre-
dient is the Coulomb-Coulomb-interaction between charges of the same polarity. When-
ever a particle hops, its surrounding monopole potential (cf. Equation 3.11) is hopping
as well, leading to the subtraction of its potential around the previously occupied site
and the addition of it around the site it hopped onto. This results in an effective dipole
potential (cf. Figure 4.6) whose contribution is truncated beyond a certain cut-off radius
(see below) and saved to the array Edyn. In order to avoid a sudden jump in energy due
to the truncation at rc, the energy at the cut-off radius is subtracted from the values of
all affected sites in Edyn.

The cut-off radius is by default chosen to be the thermal capture radius, defined by
Equation 2.9. This choice of the cut-off radius was suggested by Marsh et al. [2]. How-
ever, when simulating injection at low fields and low barriers ∆, the device dimensions
as well as the cut-off radius have to be adjusted carefully, as discussed in Chapter 4.5.2.
As it will be discussed below, charge accumulation in the first layer can lead to a sudden
jump in energy at the position x = rc, which results in a spurious charge accumulation
at that point. This is handled by increasing the cut-off diameter to the width of the
device and decreasing the device length to the cut-off radius.

Figure 4.5: Update of the dynamical energy array due to a moving charge carrier that
adopts the form of an effective dipole potential. In this example, the particle
is hopping from the position marked with a black cross-hair to the one marked
with a red dotted cross-hair.

Coulomb-Coulomb-interactions due to other images For simulating injection, the
Coulomb-Coulomb-interactions due to the images induced by the particles located in
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the bulk (cf. Equation 3.12) have to be considered. To be consistent, their contributions
are also considered up to rc. For reducing the computational effort, these contributions
are joined with the contributions from the Coulomb-Coulomb-interactions between par-
ticles in the bulk (see above) before the simulation starts (i.e., before the box ”KMC
Simulation Injection” in Figure 4.3).

Figure 4.6: Example for the contribution of the image charge of an electron to the dy-
namical energy array for one value of z (z = 0). The position of the electrode
is marked by a gold surface.
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4.4 Observables

Mobility In bulk simulations the mobility µ is usually an observable of interest. It
is defined as the average drift velocity of the charges, vd, at a given electric field Fext:
[p.224, 8]

µ =
vd
Fext

=
∆l‖

N · Fext · τsim
.

(4.1)

It is measured by calculating the ensemble average according to the lower right-hand-
side of Equation 4.1. Here, ∆l‖ is the total distance travelled by all particles, parallel to
Fext, N the number of particles, and τsim the simulation time. The latter is calculated
by τsim =

∑
i τi, i.e., the sum of all waiting times τi of the hopping events that occurred.

Injection Efficiency The injection efficiency φinj , introduced in Ref. [1] for injection
experiments, is calculated as follows

φinj =
nesc
ninj

, (4.2)

where nesc is the number of escaped particles and ninj the number of injected particles.
The number of escaped and recombined particles is handled according to section 4.2.2.
In the absence of Coulomb-Coulomb-interactions, the injection efficiency is a well defined
observable. In Ref. [1], a certain number of particles is initially placed in the bulk
and then the experiment runs until all particles left the bulk. As the charges do not
interact in this case, a charge will behave in the same way, whether there are ten or
thousand particles in the bulk. However, upon including the Pauli exclusion principle,
the environment is different in the beginning, where fewer voxels are available then later
in the experiment, where a number of charges has already left the bulk. The situation is
even more complicated upon including Coulomb-Coulomb-interactions, as the number of
particles present in the bulk changes not only the number of available hopping sites but
also the energetic landscape. Also, measuring φinj in steady state is problematic, since
fast charges would be overrepresented, when trying to compare to a measurement of non-
interacting charges with initially placed charges. Therefore, for injection simulations of
interacting particles, it was decided to look into the current density j.

Current Density In addition to the previous justification, the current density offers the
possibility to easily compare results against reference papers (cf. Chapter 2.3), where
the current density is usually given as a function of the external field or applied voltage.
The current density j is defined as the current I per cross-sectional area.[p.223, 8] For
the case of only one type of charge carrier of charge q present, this may by rewritten
into Equation 4.3 to be used for KMC simulations:

j =
I

A

=
q · nesc
A · τsim

.
(4.3)

Another formulation for the case of one carrier-type is

j = n · q · vd, (4.4)
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where n is the carrier density.[p.224, 8] The right hand side of Equation 4.4 can be
rewritten in terms of the total displacement ∆l‖ and the simulation duration τsim:

j =
q ·∆l‖

V ol · τsim
. (4.5)

Here, V ol is the active volume of the bulk (i.e., the active length is (rhop − alatt)
shorter).

We convinced ourselves that the two methods (Equation 4.3 and Equation 4.5) con-
verge to the same result after sufficiently long simulation times. However, Equation 4.4
converges faster due to being an average with respect to the whole volume rather than
the vicinity of the exiting plane. Therefore, we used that method for our calculations.

Electrostatic Potential In the case of a metal-organic interface, the plane-averaged
electrostatic potential Φ(x) offers the possibility to quantify the average contribution of
accumulated charges to the energy landscape. In this way, also the voltage drop over
the modelled system can be easily calculated as the difference in potential between the
interface and the end of the device.
In order to determine the electrostatic potential Φ(x), the one-dimensional Poisson equa-
tion (Equation 4.6) needs to be solved:

d2Φ(x)

dx2
= −ρ(x)

εrε0
. (4.6)

Here, ρ(x) is the charge-density, which is calculated from the charge-carrier density
n(x) as ρ(x) = qn(x), where the charge q = −e in the case of electrons being the charge-
carriers.
In this work, we solve for a numerical value of Φ(x) in the following way: First, the
plane-averaged charge-carrier density n(x) is determined in a simulation (cf. Chapter
4.4.1). Second, from n(x) and the above relation for ρ(x), the right hand side of Equation
4.6 is approximated by a spline and integrated twice. The two boundary conditions are
(1) a constant potential at the interface Φ(x = 0) = 0V and (2) the field at the bulk side

being the applied field via −dΦ(x)

dx

∣∣
x=L

= Fext, where L is the length of the device. The

first boundary condition is simply met by setting n(x = 0) = 0. The second boundary
condition is simply included in the first integration step as an integration constant at
x = L.
The process from calculating a spline from the charge carrier density n(x) (Figure 4.7a)
to the integration to calculate the field F (x) (Figure 4.7b), and finally the electrostatic
potential Φ(x) (Figure 4.7c) is illustrated in Figure 4.7. The corresponding simulation
data was acquired for a benchmark calculation referring to Ref. [3] (see figure caption
for details).
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(a) The charge carrier density n(x) from the simulation (blue circles) is approximated
by splines (solid red line).

(b) The spline from Figure 4.7a) can be integrated to calculate the field F (x) consid-
ering the boundary condition F (x)

∣∣
x=L

= Fext.

(c) Another integration step of the spline from Figure 4.7b yields the potential Φ(x).

Figure 4.7: Using splines, the charge carrier density n(x) (Figure 4.7a) is integrated
once to calculate the field F (x) (Figure 4.7b) and by another integration
step the electrostatic potential Φ(x) (Figure 4.7c). The data was taken from
a benchmark experiment related to Ref. [3], where the length of the device
is 102 nm, the disorder σ = 75 meV, ∆ = 1 eV and Fext = 1× 10−1 V nm−1.42
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4.4.1 Convergence of observables

The following paragraph explains, how the code recognizes automatically that the sys-
tem is in a state such that a measurement can be started. The time it takes the system
to evolve from an initial state to a converged state is called the thermalization time. For
all measurements the lower limit for a measurement is set to 1× 106 iteration steps and
the upper limit (including thermalization) to 12× 106 steps.

Bulk For bulk measurements, an ensemble is considered to have reached steady-state,
if two subsequent mobility measurements (cf. Equation 4.1), averaged over a certain
number of runs each, do not vary more than a threshold of 1%. The number of runs
required determining the average is set to the number of particles present in the bulk.
The criterion is indicated in Equation 4.7, where rth is the threshold and µi and µi−1

are the last and the next-to-last averages of the mobility:∣∣∣∣µi − µi−1

µi−1

∣∣∣∣ 6 rth. (4.7)

Meeting the criterion three times, which is an empirical value for having a high cer-
tainty, indicates, that the Coulomb-Coulomb-interaction between the particles has aver-
aged out and the ensemble is in a good initial position for measurements.

A rule of thumb, as given in Ref. [24], suggests a measurement duration of at least ten
times the thermalization time (i.e., the time it takes to converge as described above) for
reasonable measurements. Therefore, this value was chosen for the maximum number
of runs after which the measurement is stopped. In Figure 4.8 this is illustrated for
the simulations used to compare against [18] (cf. Chapter 5.3). The carrier density n is
5× 10−2 in both figures. The disorder σ is 50 meV in Figure 4.8a and 150 meV in Figure
4.8b. It can be seen that for the high disorder it takes much longer to converge, but
in both cases the algorithm detects the thermalized state reliably (red circles in Figure
4.8).
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(a) Time evolution of the mobility averaged over the number of particles in the bulk µ
(blue) as a function of iterations (tKMC) for a disorder of σ = 50 meV. The start of the
measurement is marked with a red circle, the end with a red diamond.

(b) Time evolution of the mobility averaged over the number of particles in the bulk µ (blue) as
a function of iterations (tKMC) for a disorder of σ = 150 meV. The start of the measurement
is marked with a red circle, the end with a red diamond.

Figure 4.8: Time evolution of the mobility averaged over the number of particles in
the bulk µ (blue) as a function of iterations (tKMC) for different degrees of
disorder σ. The carrier density is n is 5× 10−2. The simulation parameters
are taken from Table 5.3.
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Injection An investigation of the benchmark measurements referring to Ref. [3] (to be
described in Chapter 5.4) has shown that two different behaviours occur when looking
at the time evolution of the number of particles inside the bulk. The first case is shown
exemplary in Figure 4.9. Here, the number of particles is increasing exponentially until
reaching a constant value. It can be simply explained by the bulk getting filled and
equilibrium being a constant number of particles travelling from the metal into the bulk.
The second case is shown in Figure 4.10. Here, the barrier is so high, that there is only
a small number of particles present in the bulk. This number might be fluctuating, but
never shows the behaviour seen in the former case. Due to the low number of particles
(order of 10), already the first Kinetic Monte Carlo step is in equilibrium, as the particles
are not supposed to interact at that low carrier densities.
In the first case, convergence is clearly an equilibrium between particles being injected
from the metal and particles being absorbed in the bulk or recombined at the contact,
where the total number of particles in the bulk remains constant. Therefore, the criterion
for equilibrium is a fluctuation of the injected particles of less than 0.001%, averaged
over 500 runs, which is calculated similarly to Equation 4.7. In contrast to the mobility
criterion, this has to happen only once. The total simulation time is again set to ten
times the thermalization time.
As mentioned before, the second case can be viewed as converged already from the first
hop. This low density case is detected in the code, if the number of particles in the bulk,
is lower than ten on average. The measurement will then start already at the beginning
and will stop after the first particle has escaped at the end of the device.
The measurement of the charge-carrier density n(x), which is needed to determine the
electrostatic potential Φ(x), is started when the number of particles has converged as
described above. Every 1000 runs the carrier distribution in the bulk is stored to an
array. After the simulation has finished, that array is layer-averaged and also averaged
over the number of carrier-measurements taken. This yields an effective charge-carrier
density, n(x), which can be used to determine the charge-density and by two integrations
the electrostatic potential as described above.
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(a) Time evolution of the particle number nin in the bulk (blue) as a function of iterations
(tKMC), the start of the measurement is marked with a red circle, the end with a red
diamond

(b) Time evolution of the current density j (red) as a function of iterations (tKMC)

Figure 4.9: Time evolution of (a) the particle number n in the bulk and (b) the current
density j for a length of 102 nm at σ = 75 meV, ∆ = 0 eV, Fext = 1× 106

V cm−1. Figure 4.9b shows, that the current remains constant in a certain
range at the same point where the number of particle converges (cf. Figure
4.9a)
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(a) Time evolution of the particle number nin in the bulk (blue) as a function of iterations
(tKMC), the start of the measurement is marked with a red circle, the end with a red
diamond

(b) Time evolution of the current density j (red) as a function of iterations (tKMC)

Figure 4.10: Time evolution of (a) the particle number n in the bulk and (b) the current
density j for a length of 102 nm at σ = 150 meV, ∆ = 1 eV, Fext = 1× 106

V cm−1. Figure 4.10a shows, that the number of particles is so low, that
the current remains constant in a certain band right from the beginning (cf.
Figure 4.10b)
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4.4.2 Error Analysis

When averaging over different morphologies (i.e. energetic landscapes), the sample vari-
ance s2 associated with an observable y is calculated following Equation 4.8, where yi is
the i-th measurement of y and y the arithmetic mean, being determined by Equation 4.9.

s2 =
1

n− 1

n∑
i=1

(yi − y)2 (4.8)

y =
1

n

n∑
i=1

yi (4.9)

We calculate the sample variance for calculating the uncertainty of the current density
j, the mobility µ, and the layer averaged Coulomb-Coulomb n(x).

4.5 Experimental Design

In this chapter, the choice of parameters for the injection experiments of Chapter 6 is
explained. First, an overview to the parameters is given, then a detailed discussion of
the cut-off radius follows, which is crucial in order not to run into simulation artefacts.
Figure 4.11 shows a sketch of the model system. Charges are injected from the metal
surface (gold surface) and may hop into the bulk (positive x-direction). An external
electric field (Fext) in x-direction is applied.

4.5.1 Selection of reasonable parameters

In Table 4.1 an overview of the parameters used in this work is given.

Table 4.1: Parameters used for the investigations in Chapter 6

rate Miller −Abrahams
size 101(or 25)× 51× 51

alatt 1.0 nm

ε 3.5

T 300K

ν0 1 s−1

γ 10/alatt
σ varied

∆ varied

Fext varied

We use the Miller - Abrahams-rate for two reasons. Firstly, all reference papers that
include injection, rely on Miller - Abrahams-rate except for Ref. [2], where Marcus-rates
are employed. Secondly, according to Kimber et al. ”Marcus rate is not applicable to
the process of charge injection from electrode sites into the bulk” [25]. As discussed in
Chapter 3.3, in Marcus-theory, the rate depends upon a reorganization energy Ereorg.
In contrast to the organic material, no reorganization takes place in the metal and the
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Figure 4.11: Sketch of the system simulated in this thesis. Charges are injected from
the metal surface (at x = 0, gold surface). The first layer in the bulk with
possible hopping sites is drawn after the metal surface. An external electric
field (Fext) in x-direction is applied, which is shown a blue arrow. The mesh
within the semiconductor is suppressed for clarity.

meaning of Ereorg breaks down for the metal-organic contact.
The cross sectional area is chosen large enough to avoid finite size effects. According to
Zhou et al. [18], an area of 51× 51 nm is sufficient.
The length of the device in the direction parallel to the field must be chosen such, that it is
longer than the point where a particle would have a non-vanishing probability of hopping
back to the contact and recombine. By this, one is able to measure a representative net
current. In Ref. [1], a length of 6 nm was chosen. We believe, however, that this is too
short for the case of low fields and low barriers. A length of 101 nm, as we chose it,
appears to be more than sufficient to achieve this. In order to justify that, the critical
cases have to be identified.
These are, where (1) no charges accumulate in the layer after the contact (high barriers),
such that particles in the bulk do not experience a repulsive force from accumulated
charges or (2) the fields are too low to efficiently carry particles away from their images.
In both cases, we can estimate an upper limit for the distance that is needed, to efficiently
separate a charge from its image. This is done by applying the picture of a single, non-
interacting charge, where no charge accumulation is present. For the case of a vanishing
external field, according to Ref. [9], this distance is given by the Coulomb cut-off radius
(cf. Equation 2.9), which is 15.9 nm for the given parameters and, therefore, much lower
than the length of the bulk. As a second check, we might assume a particle as having
escaped from its image, upon hopping further than the position of the maximum of the
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barrier shape, as it is done in Ref. [9]. The position of the maximum is given by

xmax =

√
e

16 · π · εr · ε0 · Fext
. [p. 250, 8]

For the lowest field and the given parameters, it yields a distance of 10.14 nm, which is
also lower than the length of the set-up. As described in Chapter 4.5.2, the bulk length
is decreased to 25 nm for low barriers and low fields, which is still longer than the two
upper limits above.
The choice of the edge length of 1 nm corresponds to the typical size of molecule and
is supposed to be a value where Coulomb-Coulomb-interactions are neither under- nor
overestimated.
The value of relative permittivity is also a common value for organic materials.
Similarly, an experiment at room temperature is a reasonable assumption. It is also used
in Ref. [3] and [1].
The attempt frequency ν0 was set to unity. As the current density j and the mobility µ
scale linearly with ν0, we can depict these observables in terms of ν0, with the advantage
of more generality. I.e., the current density j in Chapter 6 corresponds to j/ν0.
A value of γ being 10/alatt is commonly used in literature, where Miller - Abrahams
rates are usede.g., in Ref. [3] and [1].

4.5.2 Investigation of the influence of the cut-off radius

An investigation of the layer-averaged charge carrier density n(x) for the parameters
of Table 4.1 has shown, that the choice of the cut-off radius for including Coulomb-
Coulomb- interactions (cf. Chapter 4.3.2) can lead to artefacts. In Figure 4.12 the
charge carrier density n(x) is plotted for the case of no disorder for different barriers
and fields.
As can be seen for the 0.4 eV barrier (Figure 4.12c) and low fields of 1× 10−3 (blue) and
1× 10−2 V nm−1 (red), the charge-carrier density is highest in the first few monolayers
and slowly decays towards the extracting contact at 101 nm.
For the low barriers of 0.1 (Figure 4.12a) and 0.2 eV (Figure 4.12b) and low fields
of 1× 10−3 (blue) and 1× 10−2 V nm−1 (red), however, a second accumulation zone,
at around 16 nm away from the contact is formed that is preceded by a pronounced
minimum. In the vicinity of the extracting contact, there is a steep, field-dependent
decay.
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(a) Charge carrier densities for different fields and
barrier ∆ = 0.1 eV

(b) Charge carrier densities for different fields and
barrier ∆ = 0.2 eV

(c) Charge carrier densities for different fields and
barrier ∆ = 0.4 eV

(d) Charge carrier densities for different fields and
barrier ∆ = 0.7 eV

Figure 4.12: Charge carrier density n(x) for the case of no disorder (σ = 0kBT ) and
various fields Fext and barriers ∆ as a function of the distance from the elec-
trode x, when using the Coulomb cut-off radius for the Coulomb-Coulomb-
interactions.

The former behaviour cannot be due to disorder induced trapping, as the disorder
was switched off. As the rise in charge carrier density is observed at approximately the
same position for all the cases described above, we further investigated the role of that
distance. Computing the Coulomb cut-off radius for the parameters given by Table 4.1
gives a value of 15.9 nm, i.e., a value that almost coincides with the local maximum of
n(x). Repeating the same experiments and measuring n(x) for different cut-off radii and
the extreme case of ∆ = 0.1 eV and Fext = 1× 10−3 V nm−1 (cf. Figure 4.13), reveals
that the position of the local maximum of n(x) is dependent on the chosen cut-off radius.

51



Charge Transport in Disordered Solids Philipp Breitegger

Figure 4.13: Layer averaged charge-carrier density n(x) for the case of no disorder (σ =
0kBT ), field Fext = 1× 10−3 V nm−1 and the lowest barrier ∆ = 0.1 eV
as a function of the distance from the electrode x, for different cut-off radii
rco for the Coulomb-Coulomb- interactions. The local maximum of n(x)
clearly moves to the right, for increasing cut-off radius.
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The reason for this behaviour can be understood by investigating the layer averaged
energy contribution due to the average charge carrier density n(x). The latter is plotted
for the borderline case of the 0.2 eV barrier and a field of Fext = 1× 10−2 V nm−1 in
Figure 4.14. Here, the average energy contribution is calculated only due to the accu-
mulation in the first and second layer after the electrode, which contain approximately
27 and three charges on average. The average contributions due to the remaining layers
are neglected, as the third layer contains one and the remaining layers 0.6 charges on
average.
Figure 4.14, reveals a higher energy and a larger slope due to the accumulation in the
first two layers reaching to the approximate distance of the the cut-off radius, beyond
which the slope of the curves correspond to the external field. As a result, charges in
the area of the large slope will hop faster than charges after that area. This happens,
even though Miller - Abrahams does not differentiate between hops down in energy. The
reason is, that disorder is introduced, by the charges in the bulk, as noted by Ref. [18].
Hence, also in the disorder free case, a higher slope means a faster drift, as disorder can
more easily be overcome. At the transition from the large to the small slope, charges
will therefore accumulate, as those are not hopping to the right, as fast as charges are
approaching that transition. Hence, charges at the transition will block other charges
from the left, which increases the accumulation there, leading to a lower charge carrier
density to the left.

Figure 4.14: Layer averaged energy landscape due to own image charge, external field
with (red) and without (blue) contribution due to charge accumulation in
the first and second layer in the bulk as a function of the distance x from
the electrode for a barrier ∆ of 0.2 eV barrier and a field of Fext = 1× 10−2

V nm−1. The transport level in the zero field case is at 0 eV, the Fermi
energy at −0.2 eV.

From this discussion two conclusions can be drawn: (1) For the cases of the low barriers
and low fields the simulations show artefacts for a bulk length of 100 nm, which condense
as an accumulation of charges in the bulk at the distance rco. These artefacts are due to
space charges, which accumulate in the first two layers. (2) These leads to an effectively
higher energy slope, which makes it, however, unnecessary to demand particles to travel
100 nm after considering them as escaped, as the high slope will make a hopping back
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to the electrode very unlikely.
For the discussed cases, the cut-off radius is therefore set to 25 nm - the maximum
possible for the device dimensions. The length of device is set to the same value, as
25 nm are more than enough to consider a particle having escaped. This is justified by
conclusion (2) and also a far lower Coulomb cut-off radius, which would be the capture
distance for the particles and their own images at zero field.
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5 Literature Benchmarks for KMC

The KMC code to be used for the simulations, was developed from scratch. To be
able to spot implementation errors as early as possible, the code was advanced from a
basic stage to levels with increasing complexity. For each stage, simulations published
in literature incorporating the appropriate level were selected to test the functionality
of the code. An overview over the different literature set-ups is given in Figure 5.1.

(a) Set-up of Ref. [2]. (b) Set-up of Ref. [1].

(c) Set-up of Ref. [18]. (d) Set-up of Ref. [3].

Figure 5.1: Set-ups of the simulations published in literature.

We started with an easy toy-system for single charges in bulk to replicate the results of
Ref. [2] (Figure 5.1a). After this was accomplished, injection of electrons from a metal
interface was implemented, without considering electron interactions (Figure 5.1b).[1]
The next step was to introduce multiple charge interactions to the pure bulk-system
(Figure 5.1c), as described in Chapter 4, and compare the results to Ref. [18]. Finally,
the code as described in Chapter 4 was used to compare against the simulation of Ref.
[3], in which charges were injected into a bulk material being sandwiched between two
electrodes and in which their mutual interactions accounted for (Figure 5.1d).
For each of the benchmarks, the parameters for the simulations were taken from the
respective publications or, if not fully specified or otherwise available, estimated. Thus,
for each of the benchmarks, first the purpose of the reference simulation and the employed
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simulation parameters are summarized. Then, the results of our KMC code are compared
to the reference data and critically assessed.

5.1 Single charges in bulk

The reference publication The paper of Marsh et al. [2], which presents a KMC model
for organic photovoltaic devices, starts with a simple measurement of the mobility for
single charges in the bulk. In that work, the DOS is Gaussian type with a standard
deviation σ whose value is shown in Table 5.1. The model uses a Marcus type rate
equation (cf. Equation 3.6 in Chapter 3.3), and allows only nearest neighbour hops. The
size of the system is 70 × 35 × 35 sites with an edge length alatt of 1 nm. The external
electric field Fext is applied parallel to the longest extension of the active volume and
varied between values of 3× 106 V m−1 and 1× 108 V m−1. The model incorporates
periodic boundary conditions in all three dimensions. Table 5.1 gives a short overview
over the simulation parameters, where ε, T , ν0 and Ereorg as defined in Chapter 3.

Table 5.1: Parameters used in Ref. [2]

rate Marcus− type (Equation3.6)

size 70× 35× 35

alatt 1nm

ε 4

T 298K

ν0 6.76 · 1011 s−1

Ereorg
1 1.2 · 10−19 J

σ 1 · 10−20 J (= 61meV )

Fext varied

The authors find a typical Poole-Frenkel-type behaviour of the mobility, i.e., µ depends
on the applied electric field Fext as:

µ(Fext) = µ0e
γ
√
Fext , (5.1)

with µ0 being the mobility without external field applied and γ a scaling pre-factor.

Tests The results of this paper (red squares) have been reproduced with the single
carrier version of the KMC code as depicted in Figure 5.2. Each measurement point
of our simulations (black with errorbars) is averaged over eight different morphologies
where each ran for a number of 106 hops.
It can be seen that our results match that of Ref. [2] very well, where the difference
between the two curves is believed to be mainly due to the digitalization of the reference
publication graph to make it usable here.
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Figure 5.2: Mobility µ as a function of the applied electric field Fext. Results of the
presented code (black with error bars) compared to the values from [2] (red
squares).
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5.2 Metal Interface, single charge

The reference publication In the work of Wolf et al. [1], the injection efficiency from
a metal surface into the bulk is studied.

The bulk is discretized into 170 × 170 × 20 sites. The DOS is Gaussian type with
a standard deviation σ whose value is shown in Table 5.2. The way, injection was
implemented in that work is equivalent to having single charges being injected along
the z-direction from the metal surface into the bulk material. Additionally, there is a
constant external electric field applied in the z-direction. Charges are regarded as having
escaped after reaching the ninth layer after the metal surface, leading to an effective bulk
size of 170× 170× 10.

The metal contact has a Fermi energy EF , however as only energy differences play
a role in the assessment of Miller-Abraham rates, the mean of the DOS is taken to be
zero and its difference from the Fermi level can be expressed by an energy barrier ∆.
In order to incorporate a constant potential at the metal surface, the potential of image
charges is considered.
The probability that one site of the bulk is chosen for injection is determined by the
formula Pij =

νij∑
j 6=i

νij
, where νij is the hopping rate of jumps from a site i in the metal

into a possible site j in the bulk. Injection into the bulk is only allowed perpendicular to
the metal surface into the first two layers of the bulk. Considering only Pij corresponds
to an injection probability of unity where the value of Pij determines the site into which
injection takes place. However, to incorporate the possibility of a relaxation process
within the metal, i.e., the particle will not arrive in the semiconductor, an additional
factor f is introduced:

f =

∑
i 6=j

νij

ν0 +
∑
i 6=j

νij
. (5.2)

The factor normalizes the resulting injection efficiency φinj = nesc
ninj
·f by regarding the

relaxation process happening at rate ν0 as can be seen in Equation 5.2.

Within the bulk, hopping is allowed beyond nearest neighbours to all sites within a
5×5×5 cube. The bulk incorporates periodic boundary conditions in x- and y- direction,
where the edge length of one site was assumed to be 0.6 nm.

Table 5.2 gives a short overview over the simulation parameters. The parameter ν0 is
arbitrary, because the injection efficiency φinj is independent of time, and was, therefore,
set to 1 s−1 in this table.

The results of the paper suggest an increasing injection efficiency for higher applied
electric fields and lower barriers.

Tests The parameters were taken from Table 5.2 with 1000 particles injected. For a
better result, each simulation was done eight times such that an average efficiency could
be calculated. It was watched carefully, that all particles either recombined or escaped
before the maximum number of runs was reached.
Figure 5.3 shows a comparison between the simulation results of the injection efficiency
(black with errorbars) and data from Ref. [1] (solid red line with circles). For high
barriers ∆ ≥ 0.5 eV, the test simulations are in accordance with the paper. However,
for lower barriers, specifically for ∆ = 0.2 eV, the injection efficiency in our simulation
shows an injection efficiency, which is an order of magnitude higher than in the paper.
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Table 5.2: Parameters used in [1]

rate Miller −Abrahams
size 170× 170× 20 (10)

alatt 0.6nm

ε 3.5

T 250K

ν0 1 s−1

γ 5/alatt
σ 80meV

Fext varied

When looking at Figure 5.3a, there is a rapid increase in the injection efficiency prior
reaching a saturation. However, the field value associated to the transition into sat-
uration differs between the two curves. The value identified in the reference is with
approximately 4× 106 V cm−1 considerably higher than our prediction consistent with
the field independent motion described below. The reason for the saturation with respect
to the field is as follows: When the external field compensates or overcompensates the
injection barrier due to ∆, the hops become independent of the field. Then, we observe
a drift motion without the need to perform (field-assisted) hops upward in energy. This
transition occurs, according to Figure 5.4 at a field strength of Fext = 15× 105 V cm−1,
consistent with the onset of saturation in our simulation (black crosses with errorbars) in
Figure 5.3a. We suppose, that the different behaviour in Ref. [1] results from a technical
simulation detail: Most likely, the simulation is stopped before all carriers have left the
bulk. If that is the case, the uncertainty of the injection efficiency greatly increases, as
it is unclear which fraction of these left over particles would have escaped or recombined
with the contact.
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(a) Injection efficiency for ∆ = 0.2 eV (b) Injection efficiency for ∆ = 0.4 eV

(c) Injection efficiency for ∆ = 0.5 eV (d) Injection efficiency for ∆ = 0.6 eV

(e) Injection efficiency for ∆ = 0.7 eV (f) Injection efficiency for ∆ = 0.8 eV

Figure 5.3: KMC Simulation of injection efficiency φinj as a function of the electric field
Fext (black with errorbars) compared to data from [1] (solid red line)
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Figure 5.4: Potential energy E(x) for different fields Fext as a function of the distance
x from the electrode for an injection barrier ∆ = 0.2 eV. The center of the
DOS is located at E = 0. The potential energy is calculated at multiples of
alatt using Equations 3.10 and 3.13. For fields larger than Fext = 15× 105

V cm−1, the field fully compensates the barrier ∆.

Figure 5.5 summarizes the simulation results. It can be seen clearly, that lower barrier
heights ∆, lead to higher injection efficiencies. Also, the point, where the external electric
field fully compensates the barrier ∆ (e.g., for Fext = 15× 105 V cm−1 for the 0.2 eV
barrier as explained in Figure 5.4), can be observed for low barriers and high fields.
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Figure 5.5: Simulation results for the injection efficiency φ of different barrier heights ∆.
The lines are a guide for the eye.

62



Charge Transport in Disordered Solids Philipp Breitegger

5.3 Multiple charges in bulk

The reference publication In the work of Zhou et al. [18], the mobility as a function of
the carrier density is calculated for a disordered bulk of a single material with multiple
charges, which experience each others Coulomb potential. A constant external field Fext
is applied. The bulk is discretized into 51 × 51 × 51 sites of edge length alatt = 1 nm.
The simulation incorporates periodic boundary conditions.
Also, periodic replica of the charges outside the sites bulk are considered until converged
(i.e. the 51×51×51 cube is periodically replicated outside until adding these replicas does
not change the result any more). These Coulomb interactions are calculated directly.
Hopping is allowed only to nearest neighbours with a Miller-Abrahams rate. Table 5.3
shows the parameters used for the simulation. The value for γ was taken from Ref. [26],
as the simulation in Ref. [18] was compared to that work. For the edge length alatt,
hopping rate ν0 and temperature T no values were given in the paper and were chosen
to be 1nm, 1s−1 and 298 K for a comparison simulation.

Table 5.3: Parameters used in Ref. [18]

rate Miller −Abrahams
size 51× 51× 51

alatt 1nm

ε 4

T 298K

ν0 1 s−1

γ 10/alatt
σ varied

q · Fext · alatt/kB · T 4

In the simulation, the standard deviation was varied betweend σ = 0kB · T and
σ = 6kB · T . It is argued that for high intrinsic disorders, the introduced disorder
due to the Coulomb interaction is lifting the site energy of close-by particles, leading to
a rapid increase in the mobility for high carrier densities. On the other hand, for low
intrinsic disorder, Coulomb-Coulomb-interactions introduce additional disorder, which
results in a decreasing mobility for high carrier densities.

Tests Due to the fact, that energy is given in relative values of kB · T in the reference
publication, but no absolute value of the temperature T , the temperature had to be
guessed to be T = 298K in the simulation.
An absolute value of T is, however, necessary, as Coulomb-Coulomb-interactions have
an absolute energy scale and can therefore only be given in terms of kB ·T if T is known.
Also, it is rather unclear, if the values for γ and alatt match. Therefore, the mobility can
only be compared in a qualitative way.
The results of the simulation are plotted against the reference publication, which was
normalized to the mobility of lowest disorder and lowest carrier density for better compa-
rability in Figure 5.6. The simulation yields the same trends as the reference publication,
namely an increase of the mobility for high disorders and high carrier densities and a de-
crease of the mobility for low disorders and high carrier densities. The deviation within
the simulation for high disorders, σ ≥ 2kB ·T , is assumed to be due to the fact, that our
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simulations were only done for one morphology, leading to larger morphology differences
especially for that high disorders.

Figure 5.6: Mobility µ in units of the attempt frequency ν0 as a function of the carrier
density n0 for different disorders in the energetic landscape σ given in terms
of kBT . Closed symbols: simulated with the code of this thesis (one run
each). Open symbols: results of the reference publication (averaged over
10-50 runs)
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5.4 Injection of multiple charges

The reference publication In the work of van der Holst et al. [3] simulations with
Kinetic Monte Carlo, drift-diffusion and a Master-equation approach have been carried
out. The current voltage characteristics that are used for comparison here, have been
obtained with Kinetic Monte Carlo using the parameters given in Table 5.4. In Ref.
[3], the organic semiconductor of one material is sandwiched between two electrodes
of the same kind. This is a major difference to the code that was developed for this
work, which only incorporates one electrode, and in which a particle escapes after it has
reached the end of the bulk material. The presence of the second electrode increases
the computational effort enormously, as they produce, in principle, an infinite number
of images of the image charges, where up to 100 images are considered in Ref. [3].
Another difference in the calculation of the site energies is that in Ref. [3] Coulomb-
Coulomb interactions are separated into short- and long range contributions. The former
are included exactly up to a cut-off radius rc of 10 · alatt. The latter are included in a
layer-averaged way, including a correction against double counting in the volume within
the cut-off radius.
Similar to the work presented here, periodic boundary conditions are incorporated in
the y− and z− direction, with a field Fext applied in the x− direction.
Hopping is allowed up to a distance of

√
3 · alatt (i.e., within a cube of size 3× 3× 3).

Injection is handled in the same way as in this work (cf. Chapter 4), where a hop from
and onto an electrode is handled similar to hopping in bulk. It is not mentioned, however,
whether carriers may perform these hops other than perpendicular to the interface, as
it is done in this work.
For the current-voltage characteristics, the barrier ∆ was varied between 0 and 1 eV.
The characteristics have been simulated for two different device lengths of 22.4 nm and
102.4 nm and Gaussian disorders σ = of 3 kB · T and 6 kB · T (75 meV and 150 meV).
Note here, indicated in Table 5.4, two different attempt frequencies ν0 were used for the
simulations. An attempt frequency of 3.5× 1013 s−1 is used for the 3 kB · T disorder
simulations, whereas ν0 = 1.4× 1016 s−1 is used for the 6 kB · T disorder simulations.

Table 5.4: Parameters used in Ref. [3]

rate Miller −Abrahams
size 50× 50× 14 / 64

alatt 1.6nm

ε 3

T 300K

ν0 3.5× 1013 / 1.4× 1016 s−1

γ 10/alatt
σ 3 / 6 kB · T
Fext varied

Tests The simulations run to compare against Ref. [3] used the parameters as ex-
plained above and in Table 5.4. The cut-off radius, following Equation 2.9, is 18.6 nm
and therefore slightly higher than in the reference publication with a value of 16 nm.
To reproduce the j − V curves given in Ref. [3], the field strengths Fext corresponding
to selected voltage values were estimated with Fext ≈ V/dx, with dx being the device
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length. These yielded values for Fext of 1× 104, 1× 105 and 1× 106 V cm−1, for which
the corresponding current densities j were calculated.
The actual, total potential drop across the semiconductor was determined from integrat-
ing the layer-averaged charge-carrier density n(x) obtained from the simulation twice
using splines as explained in Chapter 4.4.
Figure 5.7 compares the j−V curves obtained in Ref. [3], with the corresponding KMC
simulations obtained in this work.

(a) j−V characteristic of the 102.4 nm device with
disorder σ = of 3 kB · T

(b) j−V characteristic of the 22.4 nm device with
disorder σ = of 3 kB · T

(c) j−V characteristic of the 102.4 nm device with
disorder σ = of 6 kB · T

(d) j−V characteristic of the 22.4 nm device with
disorder σ = of 6 kB · T

Figure 5.7: Current density j as a function of the applied voltage V for different disor-
ders σ (upper and lower figures) and device lengths (left and right). Closed
symbols refer to simulations based on the code of this thesis (one run each),
while open symbols refer to results of the reference publication (averaged
over 10-20 runs).

As can be seen in Figure 5.7, the lower disorder plots (closed symbols in Figure 5.7a
and 5.7b)) match the results of the reference publication (open symbols) very well for
all barriers. The high disorder plots (closed symbols in Figure 5.7c and 5.7d)) show
a good match with the reference publication (open symbols) only for the high barriers
∆ ≥ 0.4 eV . The lack of correspondence between our calculations and the reference
is more pronounced for ∆ = 0.1 eV than for ∆ = 0.2 eV . Also, the results for the
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long device appear to deviate more strongly from the reference publication. We believe
that the different behaviour of our simulations originates from two reasons: (1) the high
uncertainty of the calculated voltage V and, (2), the different test set-up of Ref. [3],
where charges can accumulate in the interface layer at the counter-electrode.
The former will be investigated in detail in Chapter 6.2.2. There, it will be shown, that
the uncertainty for fields higher than 1× 105 V cm−1 exhibits 10% for 6 kB · T disorder
and a barrier value of ∆ = 0.2 eV. The uncertainty increases with decreasing barrier
value and increasing field, as it is observed in our comparison to Ref. [3].
The latter origin is more closely investigated by plotting the potential energy Epot(x)
of a single, non-interacting charge inside the set-up of the reference publication. This
potential, illustrated in Figure 5.8, accounts for the electric field Fext and the repetitive
image charges as elaborated in Ref. [3]. The black horizontal line on the right edge
marks the position of the second electrode. The positions of the four barrier values ∆
are marked with different symbols along this line. The energy of the two last sites before
entering the second electrode are illustrated in red with an errorbar equal to the 6kB ·T
disorder.

It can be seen, that the energy at the second electrode is for all fields, except for the
lowest barrier lower than in the sheet before. This is recovered also in our simulation,
i.e., as a slope down in energy is always treated in the same way by the Miller - Abra-
hams rate-equation.
In the case of low disorder, of σ =3 kB · T , which is half the errorbar width as indicated
in Figure 5.8, traps are not deep enough to accumulate charges in the layer forming the
interface to the second electrode. Also, charges that approach a charge, located in this
last layer, might lift the site energies of those charges and assist hops into the electrode.
In this way, the apparent barrier for extraction formed for small offsets between EF and
the transport layer can be readily supposed.
In the case of high disorder, however, deep traps in the last layer cannot be neglected.
This is especially the case for the lowest barrier ∆ = 0.1 eV in combination with the two
lower fields (cf. Figure 5.8c - 5.8f). Owing to the low barrier a large number of charges is
injected into the bulk and are, thus available for trapping. Once trapped, these charges
form a repulsive potential near the second electrode. Consequently, charges arriving near
the second electrode are prevented from escaping.
When comparing the potential energy Epot(x) of the long and the short device for dif-
ferent fields, depicted in Figure 5.8, no significant difference can be found. The higher
discrepancy in the long device simulation for low fields is, therefore, assumed to be a
result of the above-described formation of a repulsive potential at the second electrode.
The traps in front of the second electrode are, however, lower in energy in the long de-
vice, as they are less affected by the lifting due to the accumulated charges in the layer
next to the injecting electrode. This might lead to a higher accumulation right next to
the counter electrode and, hence, a higher repulsive potential in the simulation of Ref.
[3].
Finally, it has to be considered, that the reference publication averaged the results over
ten to twenty runs, whereas here only one run is presented.
Our KMC code has proven to deliver the same trends as Ref. [3], with a good agreement
for the low barrier values, within the error bounds due to the potential calculation and
the fact, that the simulation were only done for one morphology. The deviations for the
high disorder are a result of the two uncertainties above and the different set-up of our
simulation, where charges will not accumulate at the end of the device.
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(a) Φ(x) of the 102.4 nm device for Fext = 1 × 106

V cm−1
(b) Φ(x) of the 22.4 nm device for Fext = 1 × 106

V cm−1

(c) Φ(x) of the 102.4 nm device for Fext = 1 × 105

V cm−1
(d) Φ(x) of the 22.4 nm device for Fext = 1 × 105

V cm−1

(e) Φ(x) of the 102.4 nm device for Fext = 1 × 104

V cm−1
(f) Φ(x) of the 22.4 nm device for Fext = 1 × 104

V cm−1

Figure 5.8: Potential Epot(x) of a single, non-interacting charge inside the set-up of the
reference publication, due to the electric field Fext and the repetitive image
charges. The black horizontal line on the right edge, marks the position of
the second electrode. The positions of the four barrier values ∆ are plotted
with different symbols. The energy of the two last sites before entering the
second electrode are marked in red with an errorbar equal to the disorder
6 kB · T .
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6 Simulation Results and Discussion

The goal of this chapter is to investigate, how injection is affected by the injection bar-
rier, external field strength, and degree of disorder. The impact of these parameters is
explored by considering an organic semiconductor with one interface towards a metal
contact as introduced in Chapter 4.5.1. In this way, the large range of values, the afore-
mentioned parameters can adopt, can be consistently considered.
The disorder σ is varied between 0kB ·T and 1kB ·T to see the influence of low disorder.
For investigating the intermediate and high disorder cases, 3 kB · T and 6 kB · T were
chosen, similar to the work of Ref. [3]. In our work, 1 kB ·T is equal to 25 meV at room
temperature.
In the simulations, the external field Fext takes values of 1× 10−3,1× 10−2 and 1× 10−1

V nm−1, in order to cover a wide and reasonable range (cf. Chapter 5.4).
The measurements are taken for values of the barrier ∆ of 0.1, 0.2, 0.4 and 0.7 eV. The
choice of the range was influenced by Ref. [1]. Though neither reference publication car-
ried out simulations for a barrier of 0.1 eV, we expect to see a huge carrier accumulation
and thus a significant influence on the current, we also look at that case.
All measurements, except for the 0 kB · T disorder case, were taken eight times, in order
to make the results independent of the random intrinsic energy landscape (being not
present in the ordered 0 kB · T case).
We start by discussing the current-field characteristics in terms of disorder and bar-
rier height in Chapter 6.1. We then discuss the charge-carrier density we measured for
the different cases and determine the resulting potential in Chapter 6.2. We conclude
with Chapter 6.3 by comparing the current-field and current-voltage characteristics to
selected analytical models introduced in Chapter 2.2.

69



Charge Transport in Disordered Solids Philipp Breitegger

6.1 Investigation of the Current Density

In Figure 6.1, the current density - field characteristics of the model system are shown.
Each sub-figure shows the j − F characteristics for different barrier values ∆. The
disorder σ is increasing from left to right and top to bottom (i.e. increasing from Figure
6.1a to Figure 6.1d). Closed symbols represent the value obtained from the simulations,
while the lines serve as a guide to the eye. In the following chapter, the corresponding
errorbars are plotted. In should be stated here, that at high disorder (6 kB · T ) and low
fields, the current density results are less reliable.
The characteristics exhibit a rise in the current as a function of the field in all cases.
This behaviour is also seen in Ref. [9], [11], [12], and [3].

(a) j − F characteristic for disorder σ = 0 kB · T . (b) j − F characteristic for disorder σ = 1 kB · T .

(c) j − F characteristic for disorder σ = 3 kB · T . (d) j − F characteristic for disorder σ = 6 kB · T .

Figure 6.1: Current density j as a function of the externally applied field Fext for different
barriers ∆ and disorders σ (increasing from left to right and top to bottom).
Closed symbols represent the points for which simulations were done. The
lines serve as guide to the eye. The current densities are averaged for eight
different energy landscapes in Figures 6.1b to 6.1d.

However, we note two different regimes of the disorder dependent current density j(σ).
The regimes can be observed best when plotting the current density j as a function of
the barrier value ∆ at the highest field of Fext =1× 10−1 V nm−1 (Figure 6.2). In the
first regime, at ∆ = 0.1 eV and ∆ = 0.2 eV, j is decreasing with the disorder. In the
second regime, however, at ∆ = 0.7 eV, j is increasing with increasing disorder. A
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cross-over is observed at a barrier value of ∆ = 0.4 eV, where j increases from 0 kB · T
to 1 kB · T disorder, but decreases for higher disorder.

Figure 6.2: Current density j as a function of the barrier value ∆ for the external field
Fext =1× 10−1 V nm−1 for different disorders σ. In the first regime (∆ =
0.1eV and ∆ = 0.2eV ) j is decreasing with the disorder. In the second regime
(∆ = 0.7 eV ), j is increasing with increasing disorder. Between ∆ = 0.2 eV
and ∆ = 0.7 eV (cf. values at ∆ = 0.4 eV ) we observe a cross-over of the
two regimes.

Ref. [15] investigated the j −∆ dependence with a 3-D Master-Equation model of a
sandwiched device. This reference utilizes the same model introduced in Ref. [3] (cf.
Chapter 5.4). It has to be considered, that in that reference publication the attempt
frequency ν0 is different for 3 kB · T disorder (3.5× 1013s−1) and the 6 kB · T disorder
case (1.4× 1016s−1). As the current density scales linearly with the attempt frequency
ν0, a comparison can easily be carried out.
In accordance with our results, the current density for 3 kB · T disorder is higher than
that for 6 kB ·T disorder for low barrier values when the same ν0 is assumed. Moreover,
the current density for low barrier values is decreasing with disorder. This behaviour
is consistent with a simple rationale inspired by the model of Scott and Malliaras. We
can estimate the dependence of the current density on the disorder by using the simple

thermionic picture jRS = A∗T 2 exp
(
− ∆′

kBT

)
(Equation 2.3), together with the effective

Richardson constant as given by Scott and Malliaras by A∗ =
16πεε0k2BN0µ

e2
. In that

picture, the current would depend linearly on the mobility. From the results of Chapter
5.3 we saw, that the mobility decreases for increasing disorder. Hence, we expect the
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current density to decrease as well. A more detailed analysis will be given in Chapter
6.1.1.
However, there is no cross-over observed in Ref. [15] with the Master-Equation model
at higher barrier values. As will be explained below, the cross-over is due to hopping
processes confined between the electrode and the first layer. Such hopping processes can
not be covered by a model that makes use of spatially averaged transition rates such
as the Master-Equation model. In this approach, also the electrostatic potential due
to space charges is only taken into account in a layer-averaged way, whereas our KMC
simulations make use of the exact Coulomb-Coulomb-interactions and the microscopic
hopping processes.
Further, Ref. [15] carried out KMC simulations for the sandwiched device. As discussed
in Chapter 5.4, our system is difficult to compare against that of Ref. [15], in particular,
since no explicit j − ∆ relation is shown for the KMC simulation in that publication.
Nevertheless, the trends observed from the j−V curves given in Ref. [15] corroborate our
findings: (1) The j − V characteristic of the 100 nm device of the reference publication
exhibits a higher current density for the 0.67 eV barrier at 6 kB · T disorder than at
3 kB ·T disorder, when a voltage of 10 V is applied; this bias approximately corresponds
to a field Fext =1× 10−1 V nm−1 in our system. In contrast to that, (2), at a barrier
of 0.00 and 0.33 eV, the current density is lower at high disorder than at low disorder.
This supports our idea, that present macroscopic models are not able to fully account
for all effects present in an organic device.

In the following chapter we will investigate the dependence of the current on the
disorder. Afterwards, the reason for the equivalence of the j − F characteristics of the
two lowest barriers will be investigated.

6.1.1 Current density as a function of disorder

In order to investigate the influence of the current density on the disorder, we plot j
against the disorder parameter σ for constant barrier values (increasing from Figure 6.3a
to 6.3d) and different fields Fext.

Three different behaviours with respect to disorder can be identified. When investi-
gating the two lowest barriers of 0.1 and 0.2 eV (Figures 6.3a and 6.3b), we see, (1),
that the current density is decreasing for all field values with increasing disorder. For the
intermediate and high barrier we additionally observe, (2), a rising current as a function
of the disorder (e.g. at ∆ = 0.7 eV and Fext =1× 10−1 V nm−1 in Figure 6.3d), and
(3) an apparent increase followed by a decrease in the current (e.g., at ∆ = 0.4 eV and
Fext =1× 10−1 V nm−1).
We interpret the three distinct trends observed in terms of the disorder-dependent bulk
mobility as well as the influence of charge-carriers in the first layer after the interface.
However, prior discussing the consequences of disorder, it is useful to turn first to the
case of vanishing disorder. The positions of the transport levels are, given that there is
only one particle present, determined by the external field and the potential of a parti-
cles own image charge. Figure 6.4 shows these discrete transport levels (triangles) for
the three external fields used for the simulations and the four different Fermi levels (i.e.,
barrier values) marked with black squares in Figure 6.4.

We note that, on average, hops other than from the metal interface into the first two
layers will only be favoured, when all sites in these layers have energies higher than the
Fermi energy. We can, however, restrict our discussion here to the first layer, as the
large value of γ that we have used here, is strongly suppressing large distance hops.
Only when the energy of the sites in the first layer is lifted above the Fermi energy, the
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(a) j − σ characteristic for barrier ∆ = 0.1 eV . (b) j − σ characteristic for barrier ∆ = 0.2 eV .

(c) j − σ characteristic for barrier ∆ = 0.4 eV . (d) j− σ characteristic for barrier ∆ = 0.7 eV . No
current is given for the lowest field at the high-
est disorder, because the error is larger than
the actual value of the current density.

Figure 6.3: Current density j as a function of the disorder σ for different externally
applied field Fext and different barriers ∆ (increasing from left to right and
top to bottom). Closed symbols represent the points where simulations were
done. The lines serve as guide to the eye. The current densities are averaged
for eight different energy landscapes for σ 6= 0.

Boltzmann factor in the Miller - Abrahams equation will yield values larger than 1 and
therefore hops from the electrode will have longer waiting times than particles in the
bulk. Such a shift in site energies is achieved by charge accumulation in the first layer.
We can therefore identify two scenarios, which are shown schematically in Figure 6.5.

If the Fermi energy is below the energy of the first layer (〈εi〉 < EFermi, EFermi1 in
the figure), a hop from a first layer site back to the Fermi level (b) will occur with the
same likelihood as to the next site in the bulk (c). If the Fermi energy is above the
energy of the first layer (〈εi〉 > EFermi, EFermi2 in the figure), a hop from a first layer
site will most likely be into the bulk (c). In the latter case, hops from the electrode
into the bulk are preferred (a). Those might either be trapped due to their own and
other particles image charges or hop between the electrode and the first layer. They are
able to release charges into the bulk by lifting the energies of particles that are trapped
nearby and enabling them to escape from deep traps, similar as reported by Zhou et al.
[18]. Depending on the barrier ∆, a critical charge carrier density in the first layer may
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Figure 6.4: Potential energy Epot of the transport levels, assuming vanishing disorder
(0 kB · T ), for the three different external fields used for the simulations as
a function of the distance from the electrode. Triangles mark the discrete
levels of the hopping sites. The four different barriers ∆ of 0.1, 0.2, 0.4 and
0.7 eV are marked with black squares at the position of the electrode (x = 0).

be reached. Moreover, the accumulation of charges in the first layer raises the energy
of the first layer. Then, all sites in that layer have energies equal to the Fermi level at
a critical charge-carrier density whose value depends on the barrier ∆. Hence, injection
of more charges is impeded and the current is determined by the bulk properties. That
case will be investigated in Chapter 6.1.2.

As can be seen, this is the case for the 0.1 and 0.2 eV barrier for the field Fext =
1× 10−1 V nm−1. For all barriers, charge accumulation will be more relevant, if dis-
order is introduced and more charges are supposed to accumulate if the disorder and
therefore the number of deep traps is increased in the first layer.
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Figure 6.5: Schematic picture of the site energies as a function of the distance from
the electrode x. Downward hops are most likely and therefore the most
important hops. Due to the Miller - Abrahams rate equation, their rates are
independent of the energy difference. If the Fermi energy is below the energy
of the first layer (EFermi1), a hop from a first layer site will with the same
likelihood be either back to the Fermi level (b) or to the next site in the bulk
(b). If the Fermi energy is above the energy of the first layer (EFermi2), a
hop from a first layer site will most likely be into the bulk (c). In latter, hops
from the electrode into the bulk are preferred (a).
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Decreasing current density The first case is investigated exemplary by looking at the
∆ = 0.2 eV barrier. Figure 6.6a shows the evolution of the charge-carrier density in the
first layer as a function of the disorder. Figure 6.6b shows the evolution of the average
charge-carrier density in the bulk being determined between layers eight and 20 (cf.
Chapter 6.2.1). We must note here, that the average bulk values for the lowest field and
high disorder in Figure 6.6b has a huge uncertainty, as enhanced trapping in the bulk
inhibits a representative average (cf. Chapter 6.2.1).

(a) Charge carrier density in the first layer as a
function of the disorder σ.

(b) Average charge carrier density in the bulk as a
function of the disorder σ. The charge-carrier
density for the lowest field not representative
due to reduced hopping and therefore too few
carriers for a good statistic.

Figure 6.6: Charge carrier density in the first layer and average charge-carrier density in
the bulk as a function of the disorder σ for different externally applied field
Fext and a barrier of ∆ = 0.2 eV . Closed symbols represent the points where
simulations were done. The lines serve as guide to the eye. Note that the
ordinates in (a) and (b) have a different scale.

Figure 6.6a shows that more charges accumulate in the first layer as the disorder is
increased. This is the result of more and deeper traps introduced with enlarging disorder.
The charge-carrier density in excess of the critical charge-carrier density, i.e., the charges
trapped in the first layer, is transferred to the bulk and only weakly dependent on σ (cf.
Figure 6.6b). Hence, the current leaving the device, which is calculated by j = n·q·µ·Fext,
is determined by the mobility µ for a spatially constant charge-carrier density 〈n〉(x) (cf.
Figure 6.6b), and a constant field Fext for different disorders. This is known as space-
charge-limited current (SCLCL) in literature.[12] Corroborated by the results of Chapter
5.3, at constant charge-carrier density, a higher disorder must lead to a lower mobility
and hence a lower current as observed. Another indicator is that the j − F curves from
Figure 6.1b are parallel in the logarithmic plot. Assuming that the mobility µ only
dependent of the disorder σ, which is corroborated by Ref. [18] (cf. Chapter 5.3), one
would expect the j − F curves separated by a rigid offset. This is indeed observed.

Increasing current density The effect of an increasing current density as a function of
the disorder is strongest for the barrier of ∆ = 0.7 eV and the field Fext =1× 10−1

V nm−1 (cf. Figure 6.3d). At the same barrier, the current density is almost un-
changed by the disorder for the lower fields. We will therefore study the effect on
the Fext =1× 10−1 V nm−1 case. We start again by plotting the evolution of the charge-
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carrier density in the first layer (Figure 6.7a) and the average in the bulk (Figure 6.6b)
as a function of the disorder.

(a) Charge carrier density in the first layer as a
function of the disorder σ.

(b) Average charge carrier density in the bulk as a
function of the disorder σ.

Figure 6.7: Charge carrier density in the first layer and average charge-carrier density in
the bulk as a function of the disorder σ for different externally applied field
Fext and a barrier of ∆ = 0.7 eV . Closed symbols represent the points where
simulations were done. The lines serve as guide to the eye. Note that the
ordinates in (a) and (b) have a different scale.

Here, we can see that the charge-carrier density of the highest field evolves different
than that of the lower fields. In contrast to the lower fields, the charge-carrier density
in the first layer increases tremendously with increasing disorder. The charge-carrier
density in the bulk is of the same order of magnitude for the three low disorders, where
for the highest disorder it increases dramatically.
For the 6 kB · T disorder, we assume the increased current to be driven by the high
charge-carrier density in the bulk. In particular, as we saw in Chapter 5.3, that µ is
dropping for an increasing disorder. We ascribe the increased current to a proximity
effect present at the metal-organic interface, which is stronger than the effect of a de-
creasing bulk mobility. If we calculate the current leaving the device by j = n · q ·µ ·Fext
and assume a slightly decreased mobility µ and a constant field Fext we see that the
current must be driven by the two order of magnitude increased charge-carrier density
n, which outweighs the slightly decreased mobility.
Before we continue the discussion of the increased charge-carrier density in the bulk, we
explain the increase in the first layer charge-carrier density. This can be easily explained
by drawing the energy position of the transport levels (Figure 6.11). The discrete hop-
ping sites have errorbars of the 6 kB · T disorder attached. Obviously, for the case of no
disorder, there is only one site with a barrier at x = 1 nm (i.e., upward hop from the
metal). If a particle is placed there it may either hop away from the electrode or back
to the electrode with approximately the same likelihood, as both hops are downward
hops. As we only allow perpendicular hops back to the electrode, it will more likely hop
into the bulk. From any point x > 2 nm the energy decreases to the right. Therefore,
almost all particles which entered x = 2 nm leave the device. This explains, why the
charge-carrier density in the first layer is slightly lower than that in the rest of the bulk
for 0 kB · T disorder. Compared to the 0 kB · T case, more sites with lower energy are
available at x = 1 nm with increasing the disorder; indicated by the errorbars in Figure
6.11. As all metal sites are occupied, also an increasing number of particles will hop into
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the first layer at higher disorder.

Figure 6.8: Potential energy Epot of the transport levels for the external field
Fext =1× 10−1 V nm−1 as a function of the distance from the electrode.
Triangles mark the discrete levels of the hopping sites, the disorder σ is in-
dicated by errorbars of ±6kBT . The barrier ∆ of 0.7 eV is marked with a
black square at the position of the electrode (x = 0)

It is still necessary, to explain, why the current increases, as the disorder increases
from 0kB ·T to 3kB ·T , although the charge-carrier density in the bulk is not increasing.
We note, that the highest charge-carrier density in the first layer of 6× 10−4 nm−3 is
equal to one and a half particle per time and layer. This is not a number where we would
expect a dramatic accelerating effect on the other bulk particles. However, we have to
take into account that the charge-carrier density is averaged over a large number of runs
and therefore a static picture. Here, we have to consider which processes is happening
most often. From simulations, where we watched the actual hopping processes in the
bulk, we saw, that for high barriers, the leading events are hopping processes from the
electrode into the first layer and back. This ping-pong - like behaviour leads to an
average charge-carrier density in the first layer which is very low. However, within a
small number of runs, particles have visited a large fraction of the sites in the first layer.
By that, it is very likely that a particle in the first layer approaches a particle in the
second layer closely, which promotes the hop of the second layer particle into the bulk due
to the Coulomb-Coulomb-repulsion, similar to the effect described by Zhou et al.. We
denote this effect the proximity effect. Increasing the disorder leads to more favourable
sites in the first layer, which in turn leads to an increased occupation of sites.
In order to justify this hypothesis, we recorded which sites were occupied at least once
within 3× 103 runs, which is of the same order of magnitude as the number of available
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sites in the first layer. In Figure 6.9a, the visited sites in the first layer for σ = 1kB ·T are
plotted. We can see that the coverage is much higher than in the second layer in Figure
6.9b. Moreover, by comparing the sites visited in the second layer with those in the first
layer we see that for each site visited in the second layer, there is at least one next-nearest
site being visited in the first layer. This is the prerequisite to enable the proximity effect
described above. For an increased disorder of σ = 3kB ·T , the coverage in the first layer
increases alongside with a large number of ”clusters” of nearest neighbour sites. This is
consistent with a higher current density prediction in the simulation.

(a) Occupied sites in the first layer after 3 × 103

runs for σ = 1 kB · T .
(b) Occupied sites in the second layer after 3 × 103

runs for σ = 1 kB · T .

(c) Occupied sites in the first layer after 3 × 103

runs for σ = 3 kB · T .
(d) Occupied sites in the second layer after 3 × 103

runs for σ = 3 kB · T .

Figure 6.9: Sites in the first and second layer (left and right) that have been occupied at
least once after 3× 103 runs for disorders σ of 1 kB · T and 3 kB · T (top and
bottom) for an injection barrier ∆ = 0.7 eV and Fext =1× 10−1 V nm−1.

Increase followed by decrease For the ∆ = 0.4 eV barrier and the Fext =1× 10−1

V nm−1 field, we observe an increased current density when increasing the disorder from
0 kB · T to 1 kB · T . This is followed by a decreased current density for higher disorder.
Similar to the ∆ = 0.7eV barrier, the charge-carrier density in the first layer is increasing
with higher disorder (Figure 6.10a). The slightly increased current from 0kB ·T to 1kB ·T
can again be explained by the proximity effect explained above.
Already for the 3 kB · T disorder, the charge-carrier density in the first layer reaches
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comparable size as for the ∆ = 0.2 eV barrier, which enhances the SCLC, described
earlier, giving rise to a decreased current.
From 3 kB · T to 6 kB · T the charge-carrier density in the bulk only weakly increases.
Hence, the decreased current density is due to the increased disorder in the bulk, as for
the ∆ = 0.2 eV barrier.

(a) Charge carrier density in the first layer as a
function of the disorder σ.

(b) Average charge carrier density in the bulk as a
function of the disorder σ.

Figure 6.10: Charge carrier density in the first layer and average charge-carrier density
in the bulk as a function of the disorder σ for different externally applied
field Fext and a barrier of ∆ = 0.4 eV . Closed symbols represent the points
where simulations were done. The lines serve as guide to the eye. Note that
the ordinates in (a) and (b) have a different scale.
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6.1.2 Similar characteristics at the lowest barriers

If we look at the j−F characteristics in Figure 6.1, we can see that there is, independent
of the disorder σ, only a minor difference in the current-density of the lowest barriers of
0.1 and 0.2 eV. The same is observed by Ref. [3] for low barriers.
We will investigate this by plotting the transport level for both barrier values and the
highest field of Fext = 1× 10−1 V nm−1 in Figure 6.11.

Figure 6.11: Potential energy Epot of the transport levels for the external field
Fext =1× 10−1 V nm−1 as a function of the distance from the electrode.
Triangles mark the discrete levels of the hopping sites, the disorder σ is
indicated by errorbars of ±6kBT . The barriers ∆ of 0.1 and 0.2 eV are
marked with black squares at the position of the electrode (x = 0)

When the injection experiment is started, charges will hop from the electrode onto
the sites in the first layer until the energy of a large fraction of sites in that layer has an
energy above the Fermi level. This is because all sites in the metal may be injecting sites
and hence a hop from the electrode is more likely (due to the large number of carriers
in the metal) than a hop in the bulk, unless it is energetically more favourable to hop
in the bulk. This is shown schematically and explained in Figure 6.12.
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(a) When the injection is started, the energy levels
in the bulk are below the Fermi energy EF .

(b) After the system has thermalized, the average
energy levels in the bulk are lifted above the
Fermi energy EF , due to charge accumulation
in the first layer (evolution from dashed to solid
lines).

Figure 6.12: Schematic picture of the site energies as a function of the distance from
the electrode x for low barrier values ∆. When the injection starts (Figure
6.12a), the energy levels in the first layer of the bulk are below the Fermi en-
ergy EF . As a result hops from the electrode into the bulk are favoured ((a)
in Figure 6.12a) amongst hops from the bulk to the electrode (b). Jumps
into the next layer are less likely, though a favourable energy (c), because
all sites of the electrode are filled. As the system evolves in time, the charge
accumulation in the first layer leads to an increase of the average energy in
the bulk (Figure 6.12b). Then, we find an equilibrium of downward hops
to the electrode (a), upward hops from the electrode (b) and hops into the
bulk (c). Note that also downward hops from the electrode into the bulk
are possible, as not all sites in the first layer are below the Fermi energy.
This can, however, not be drawn in this simplified picture.

82



Charge Transport in Disordered Solids Philipp Breitegger

In order to corroborate this, we have investigated the distribution of the site energies
in the first layer for an external field Fext =1× 10−1 V nm−1 for the 0.1 (Figure 6.13a)
and 0.2 eV (Figure 6.13b) barrier. We can see, that sites above the Fermi energy (EF )
are occupied (red) in both cases; however, there is still a small number of unoccupied
sites (blue) below that energy.

(a) Energy distribution of occupied (red) and un-
occupied (blue) sites in the first layer for the
0.1 eV barrier.

(b) Energy distribution of occupied (red) and un-
occupied (blue) sites in the first layer for the
0.2 eV barrier.

Figure 6.13: Number of sites (abscissa) of particular energy E in the first layer of the 0.1
(Figure 6.13a) and 0.2 eV (Figure 6.13b) barrier. The disorder is 3 kB · T
and the external field Fext =1× 10−1 V nm−1. Occupied sites are marked in
red, unoccupied sites are marked in blue. The zero point of the energy is the
transport level. Both experiments were only done for a single morphology
until converged.

As the site energies associated to the 0.1 eV barrier are higher than in the 0.2 eV
barrier case, more charges will accumulate in the first layer for the lower of the two
barriers, i.e., ∆ = 0.1 eV. When comparing the number of occupied sites from Figure
6.13a and Figure 6.13b (area of the red histogram), clearly more sites are occupied for
the ∆ = 0.1 eV barrier. With increasing disorder, this charge-carrier density will increase
as well, as more traps are available. Both can be seen in Figure 6.14a.
In Figure 6.14b we can see that the charge-carrier density in the bulk is independent
of the barrier and only weakly dependent on σ. We presume that the reason for this
behaviour is that in both cases the Fermi energy is close to or above the potential energy
in the first layer. If that is the case, sites in the first layer get occupied until a certain
fraction of unoccupied sites below the Fermi energy remains. Then, consequently, the
number of unoccupied sites below the Fermi energy is mostly independent of the disorder
and the barrier. For the ∆ = 0.1 eV barrier, we determined this number to be 0.8%,
where for the ∆ = 0.2 eV it is 0.45%. As these numbers were determined from the
single morphology experiment depicted in Figure 6.14, i.e., associated with a certain
uncertainty, we note that the values are in the same order of magnitude. In a first
approximation, this number determines how many particles can enter the bulk per time,
which leads to a charge-carrier density in the bulk only weakly dependent of the disorder,
as will be discussed in the following section. As argued for the 0.2 eV barrier in Chapter
6.1.1, the current leaving the device is determined by the mobility at a constant charge-
carrier density known as SCLC. Hence the j − F characteristics of the low barriers
coincide.
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(a) Charge carrier density in the first layer as a
function of the disorder σ.

(b) Average charge carrier density in the bulk as a
function of the disorder σ.

Figure 6.14: Charge carrier density in the first layer and average charge-carrier density in
the bulk as a function of the disorder σ for the applied field Fext = 1× 10−1

V nm−1 for the two lowest barriers. Closed symbols represent the points
where simulations were done. The lines serve as guide to the eye.
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Net current in SCLC In Figure 6.15 we show the preferred hops (i.e. ∆Eij < 0) in
steady-state when the Fermi level is above or close to the intrinsic energy level in the
first bulk layer as it is the case for the 0.1 and 0.2 eV barrier. Particles will hop from
the electrode into the bulk (b), from sites above the Fermi energy either back to the
electrode (a) or (c) into the bulk, and (d) from sites below the Fermi level into the bulk.

Figure 6.15: Schematic picture of the preferred hops (i.e. ∆Eij < 0) in steady state
when the Fermi level is above or close to the intrinsic energy level in the
first bulk layer. The hops are: (a) hops from occupied sites to the electrode,
(b) hops from the electrode into unoccupied sites below the Fermi energy,
(c) hops from above and (d) below the Fermi level into the bulk.

By making the following simplifications, we try to rationalize the steady-state be-
haviour for the 0.1 eV barrier at Fext = 1× 10−1 V nm−1 for a disorder parameter σ =
3 kB · T which we believe to be resonant transport:

1. We look at our system in a one-dimensional picture, i.e., we only consider hops in
x-direction.

2. We only consider nearest neighbour hops.

3. We only consider hops down in energy (i.e. ∆Eij < 0).

4. As these hops occur at equal likelihood, occupation is only determined by the filling
of each layer and its mean energy.

In the case of the ∆ = 0.1 eV barrier, the filling of the first layer is 0.07 particles per
site, i.e., 7% of the metal layer in steady-state (cf. Figure 6.14a). At that degree of filling
only a small fraction of unoccupied sites below the Fermi energy is left (cf. blue bars
with energy smaller than EF in Figure 6.16). Following our previous simplifications, this
number must be equal to the number of particles in the first layer above the mean energy
of the second layer plus all remaining particles in the bulk, that have a neighbouring site
accessible by a downward hop, i.e., ∆Eij < 0.
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Let us assume, that an electron from the electrode hops into a first-layer site below
the Fermi energy ((b) in Figure 6.15). Now, one of the following events will happen (if
we disregard hopping events in the bulk): (1) an electron was lifted in energy due to
that event (b), such that that electron, or any other electron above the Fermi energy
will, with equal likelihood, (a), hop back to the electrode or, (c), into the bulk. Due to
our assumptions events (a) and (c) will compensate each other and, therefore, do not
contribute to the net current. However, (2) the electron from event (b) or any other
electron below the Fermi energy will, (d), hop into the bulk, contributing to the net
current.
Hence, with the simplifications above, we see that in steady-state conditions only events
(b) and (d) contribute to the net current.

Figure 6.16: Energy distribution of occupied (red) and unoccupied (blue) sites in the
first layer for the 0.1 eV barrier. The disorder is 3 kB · T and the external
field Fext =1× 10−1 V nm−1. Occupied sites are marked in red, unoccupied
sites are marked in blue. The zero point of the energy is the transport
level. The axes limits ware adopted, such that the energy distribution of
the occupied sites can be seen. The experiment was only done for a single
morphology until converged.
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6.2 Investigation of the carrier densities and resulting potential

We start by plotting the charge-carrier density of the different simulations. We will pay
particular attention, whether the spatially averaged charge-carrier density in through
the bulk deviates strongly. This deviation will also be discussed in terms of the related
current density and the electrostatic potential we calculate from the charge-carrier den-
sity. It will be shown, that latter can only be determined within large error bounds in
Chapter 6.2.2.

6.2.1 Charge-Carrier Densities

Figure 6.17 and 6.18 show the layer averaged charge-carrier densities n(x) of all simula-
tions as a function of the distance from the electrode x. All charge-carrier densities are
additionally averaged over the same eight different morphologies used for the simulations
(except for the 0kB ·T disorder case). Each sub-figure shows the charge-carrier densities
for the three fields used in the simulations, one disorder and one barrier. Figure 6.17a
to Figure 6.17d show the charge-carrier density for the ∆ = 0.1eV barrier. The disorder
is increasing from left to right and top to bottom. The remaining figures are sorted
following the same scheme.
We note, that the cut-off radius artefact described in Chapter 4.5.2, was present also for
the highest fields at the two lowest barriers of ∆ = 0.1 eV and ∆ = 0.2 eV and highest
disorder. We therefore had to repeat these experiments with a higher cut-off radius and
a shorter device as described in Chapter 4.5.2 (cf. Figure 6.17d and Figure 6.17h).
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(a) Charge carrier densities n(x) for different exter-
nal fields Fext for ∆ = 0.1 eV and σ = 0 kB ·T .

(b) Charge carrier densities n(x) for different ex-
ternal fields Fext for ∆ = 0.1 eV and σ =
1 kB · T .

(c) Charge carrier densities n(x) for different exter-
nal fields Fext for ∆ = 0.1 eV and σ = 3 kB ·T .

(d) Charge carrier densities n(x) for different ex-
ternal fields Fext for ∆ = 0.1 eV and σ =
6 kB · T .

(e) Charge carrier densities n(x) for different exter-
nal fields Fext for ∆ = 0.2 eV and σ = 0 kB ·T .

(f) Charge carrier densities n(x) for different exter-
nal fields Fext for ∆ = 0.2 eV and σ = 1 kB ·T .

(g) Charge carrier densities n(x) for different exter-
nal fields Fext for ∆ = 0.2 eV and σ = 3 kB ·T .

(h) Charge carrier densities n(x) for different ex-
ternal fields Fext for ∆ = 0.2 eV and σ =
6 kB · T .

Figure 6.17: Charge carrier densities n(x) as a function of the distance from the electrode
x, where the electrode is placed at x = 0 for different external fields Fext
and different device lengths (25 and 101 nm). Figures 6.17a to 6.17d show
n(x) for the ∆ = 0.1 eV barrier and Figures 6.17e to 6.17h show n(x) for
the ∆ = 0.2 eV barrier
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We observe three properties. (1) There is always a good convergence of the charge-
carrier density (i.e. only small variations of n(x) between different x) at all disorders for
the highest field of Fext =1× 10−1 V nm−1. (2) There is a continuous decrease of n(x)
at the end of the device for the two lower fields and a disorder below 3 kB · T . (3) With
increasing disorder the variations of the charge-carrier density increase tremendously
and reach two decades for 6 kB · T disorder.

The good convergence at the highest field is due to the high field, where (a) the highest
potential energy lies in the first layer (cf. Figure 6.4). Then, all remaining sites have a
decreasing energy with increasing distance from the interface, a condition that promotes
the transport of the charge-carriers. Secondly, (b) at an external field of Fext =1× 10−1

V nm−1 the energy drops by 100 meV from site to site soon after the first layer. This
lifts the energy of deep traps, e.g., at a high disorder of 150 meV (6 kB · T ) the traps
are approximately lowered by 150− 100 = 50meV . Both leads to faster particles, which
also leads to a homogeneous distribution in the x-direction.

There is a continuous decrease in the charge-carrier density n(x) at the end of the bulk,
which can be seen e.g. in Figure 6.17a starting at a position of approximately 20 nm for
the field of Fext =1× 10−2 V nm−1 and earlier for the field of Fext =1× 10−3 V nm−1.
The reason for this observation is as follows: If we imagine the bulk to be extended, the
charge-carrier density far away from the metal contact would be homogeneous, due to
the Coulomb-Coulomb-repulsion of the particles in the bulk. However, if we now remove
a charge from a system of finite size also its repulsive potential would vanish. Then, an
effectively attractive Coulomb potential, centered at the original position of the particle
is formed.
This results in an attractive force at the end of the device (x = L), such that par-
ticles get extracted faster. This translates into a reduced charge-carrier density close
to where charges are extracted. However, the decrease in the charge-carrier density is
rather small. The highest fluctuation due to that effect is observed for 0 kB · T disorder
(we neglect the 6 kB · T disorder case for this discussion, as the deviation in that case
is mainly due to the disorder), a barrier of 0.1 eV and the field Fext =1× 10−2 in Fig-
ure 6.17a. There, the charge-carrier density drops from approximately 1× 10−4 nm−3

to 5× 10−5 nm−3. This is equal to a drop from 0.26 to 0.16 particles, which we con-
sider negligible for the current density j. For the calculation of the potential we bypass
this reduction by calculating the average charge-carrier density between the eight and
the 20th layer and extrapolate to 100 nm if the simulation was done with a 25 nm set-up.

We already saw in Chapter 6.1.1, that the current density at high disorder has a huge
uncertainty. The reason for this can be seen in Figures 6.17 and 6.18, where the charge-
carrier density fluctuates enormously for the 6 kB · T disorder, although having been
averaged over eight morphologies. We should, therefore, discuss results generated with
high disorder and low fields with great care. This is especially critical when calculating
the electrostatic potential, and from that the voltage drop over the device, as described
in the following chapter.
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(a) Charge carrier densities n(x) for different exter-
nal fields Fext for ∆ = 0.4 eV and σ = 0 kB ·T .

(b) Charge carrier densities n(x) for different ex-
ternal fields Fext for ∆ = 0.4 eV and σ =
1 kB · T .

(c) Charge carrier densities n(x) for different exter-
nal fields Fext for ∆ = 0.4 eV and σ = 3 kB ·T .

(d) Charge carrier densities n(x) for different ex-
ternal fields Fext for ∆ = 0.4 eV and σ =
6 kB · T .

(e) Charge carrier densities n(x) for different exter-
nal fields Fext for ∆ = 0.7 eV and σ = 0 kB ·T .

(f) Charge carrier densities n(x) for different exter-
nal fields Fext for ∆ = 0.7 eV and σ = 1 kB ·T .

(g) Charge carrier densities n(x) for different exter-
nal fields Fext for ∆ = 0.7 eV and σ = 3 kB ·T .

(h) Charge carrier densities n(x) for different ex-
ternal fields Fext for ∆ = 0.7 eV and σ =
6 kB · T .

Figure 6.18: Charge carrier densities n(x) as a function of the distance from the electrode
x, where the electrode is placed at x = 0 for different external fields Fext
and different device lengths (25 and 101 nm). Figures 6.18a to 6.18d show
n(x) for the ∆ = 0.4 eV barrier and Figures 6.18e to 6.18h show n(x) for
the ∆ = 0.7 eV barrier
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6.2.2 Electrostatic Potential

The electrostatic potential Φ(x) is determined as described in Chapter 4.4. We solve the

one-dimensional Poisson-equation
d2Φ(x)

dx2
= −ρ(x)

ε
by integrating the layer and mor-

phology averaged charge-carrier density (except for the 0 kB · T disorder case, otherwise
from eight different morphologies) twice by using splines.
Figure 6.19 and 6.20 show the electrostatic potential Φ(x) of all simulations as a func-
tion of the distance from the electrode x. As the charge-carrier density varies most in
the first layers of the device, we have drawn Φ(x) only up to a distance of 6 nm. Each
sub-figure shows Φ(x) for the four disorder values σ used in the simulations, one field
value and one barrier. The value of the field is increasing from top to bottom, and the
barrier value from left to right. I.e., Figure 6.19a, Figure 6.19c, and Figure 6.19e show
Φ(x) for the ∆ = 0.1 eV barrier with increasing value of the field. The remaining figures
are sorted according to the same scheme.
In the sub-figures of Figure 6.19, where we depict Φ(x) for the low barrier values ∆ of
0.1 and 0.2 eV, we observe a parabolic curve, which is characteristic for space-charge
limited current (SCLC), in accordance with our findings.
In the sub-figures of Figure 6.20, we depict Φ(x) for the barrier values ∆ of 0.4 and
0.7 eV. For the highest barrier value of 0.7 eV, we see, except for the highest disorder
value, a constant slope, which indicates a vanishing carrier density. This is again in ac-
cordance with our simulations, as these few carriers are mostly provided by thermionic
emission, i.e., a very inefficient process at ∆ = 0.7 eV. As discussed in Chapter 6.1.1, at
the barrier value ∆ of 0.4 eV, we observe a cross-over between the thermionic emission,
supported by the proximity effect, and SCLC as a function of the disorder. For all fields,
depicted in Figure 6.20a, Figure 6.20c, and Figure 6.20e, it can be clearly observed, that
Φ(x) turns from a constant slope into a parabolic behaviour with increasing disorder
parameter σ, indicating a transition into a SCLC behaviour.
For all cases, where we switched to a shorter device, the average charge-carrier density
between the eighth and 10th layer was calculated and then extrapolated to 100nm in
order to estimate Φ(x) for the same device length.
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(a) Electrostatic potential Φ(x) for different dis-
order values σ for ∆ = 0.1 eV and Fext =
1 × 10−3 V nm−1.

(b) Electrostatic potential Φ(x) for different dis-
order values σ for ∆ = 0.2 eV and Fext =
1 × 10−3 V nm−1.

(c) Electrostatic potential Φ(x) for different disor-
der values σ for ∆ = 0.1eV and Fext = 1 × 10−2

V nm−1.

(d) Electrostatic potential Φ(x) for different dis-
order values σ for ∆ = 0.2 eV and Fext =
1 × 10−2 V nm−1.

(e) Electrostatic potential Φ(x) for different disor-
der values σ for ∆ = 0.1eV and Fext = 1 × 10−1

V nm−1.

(f) Electrostatic potential Φ(x) for different disor-
der values σ for ∆ = 0.2eV and Fext = 1 × 10−1

V nm−1.

Figure 6.19: Electrostatic potential Φ(x) as a function of the distance from the electrode
x, where the electrode is placed at x = 0 for different disorder values σ.
Figure 6.19a, Figure 6.19c, and Figure 6.19e show Φ(x) for the ∆ = 0.1 eV
barrier and Figure 6.19b, Figure 6.19d, and Figure 6.19f show Φ(x) for the
∆ = 0.2 eV barrier.
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(a) Electrostatic potential Φ(x) for different dis-
order values σ for ∆ = 0.4 eV and Fext =
1 × 10−3 V nm−1.

(b) Electrostatic potential Φ(x) for different dis-
order values σ for ∆ = 0.7 eV and Fext =
1 × 10−3 V nm−1.

(c) Electrostatic potential Φ(x) for different disor-
der values σ for ∆ = 0.4eV and Fext = 1 × 10−2

V nm−1.

(d) Electrostatic potential Φ(x) for different dis-
order values σ for ∆ = 0.7 eV and Fext =
1 × 10−2 V nm−1.

(e) Electrostatic potential Φ(x) for different disor-
der values σ for ∆ = 0.4eV and Fext = 1 × 10−1

V nm−1.

(f) Electrostatic potential Φ(x) for different disor-
der values σ for ∆ = 0.7eV and Fext = 1 × 10−1

V nm−1.

Figure 6.20: Electrostatic potential Φ(x) as a function of the distance from the electrode
x, where the electrode is placed at x = 0 for different disorder values σ.
Figure 6.20a, Figure 6.20c, and Figure 6.20e show Φ(x) for the ∆ = 0.4 eV
barrier and Figure 6.20b, Figure 6.20d, and Figure 6.20f show Φ(x) for the
∆ = 0.7 eV barrier.

As we have seen in in Chapter 6.2.1, the charge-carrier density fluctuates greatly for
the 6 kB · T disorder. In those cases, we expect the uncertainty of Φ(x) to reach large
values.
We try to estimate the uncertainty of the voltage calculation, by considering four test
points. These are inspired by the simulations of Chapter 5.4, where we tried to compare
against the work of Ref. [3] and saw large variations from the reference publication.
We calculate Φ(x) by fitting a second order spline to the charge-carrier density of the N
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layers as given by Equation 6.1:

n(x) =
N−1∑
i=1

Pi(x) =
N−1∑
i=1

[aix
2 + bix

1 + cix
0] · 1(xi≤x<xi+1). (6.1)

and then integrating twice to obtain the electrostatic potential as described in Chapter
4.4.
It is difficult to calculate the numerical error by propagation of uncertainty, as the
charge-carrier density is integrated twice and influencing the integration constant of
the next polynomial. Thus, we attempt the following estimation: Each layer averaged
charge-carrier density corresponds also an average over eight morphologies (for σ > 0).
Therefore, we can calculate a sample variance following Equation 4.8 for each n(x).
For the extrapolation of the charge-carrier density, we simply take the largest sample
variance of the charge-carrier densities between layer eight and 20. We now calculate
a lower and an upper bound electrostatic potential by adding up the maximum sample
variance from its mean value n(x).
The results for the test points of the 6 kB · T disorder are shown in Figure 6.21. We
first investigate the uncertainty of the voltage drop, i.e., of Φ(x = L). It can be seen,
that the uncertainty increases with increasing field Fext and decreasing barrier value ∆.
Figure 6.21a shows, that for the highest barrier of 0.7 eV and the lowest external field
Fext =1× 10−3 V nm−1, the voltage drop of 103 mV only varies by 5 mV at most, which
corresponds to an uncertainty of 5%. At the medium field of Fext =1× 10−2 V nm−1

and a low barrier of 0.2 eV the uncertainty of the voltage drop is already 10%. The
highest uncertainty of more than 25% is observed at the lowest barrier and the highest
field, as shown in Figure 6.21d.

In Figure 6.22, we now investigate the uncertainty of the electrostatic potential in the
first layer, i.e., of Φ(x = 1nm), by plotting Φ(x) and its uncertainty for the same test
points only until a distance x of 1 nm from the electrode.
Only at the 1× 10−2 V nm−1 field and the 0.2 eV barrier (Figure 6.22b) the uncertainty
is 10%. The remaining first layer potentials yield uncertainties of 20% (Figure 6.22a,
Figure 6.22c, and Figure 6.22d).

For fields higher than Fext =1× 10−2 V nm−1 the uncertainty of the voltage drop
exhibits 10% for low fields, and a disorder of 6kB ·T . The uncertainty of the electrostatic
potential in the first layer Φ(x = 1nm) even exhibits 20% for the low barriers and the
highest field.
The such determined uncertainty has two implications: A quantitative comparison to
results obtained either considering a voltage, corresponding here to Φ(x = L), such as
Ref. [3], or rely on macroscopic charge-carrier density and fields, such as Ref. [12], has
to be considered with great care. Also, when calculating the electrochemical potential
from Φ(x = 1nm) to compare against macroscopic models the profound uncertainty does
not allow for a reliable comparison.
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(a) Calculated potential Φ(x) (solid line) and its
error bounds (dotted lines) at 6 kB · T dis-
order, a 0.7 eV barrier and an external field
Fext =1 × 10−3 V nm−1.

(b) Calculated potential Φ(x) (solid line) and its
error bounds (dotted lines) at 6 kB · T dis-
order, a 0.2 eV barrier and an external field
Fext =1 × 10−2 V nm−1.

(c) Calculated potential Φ(x) (solid line) and its
error bounds (dotted lines) at 6 kB · T dis-
order, a 0.2 eV barrier and an external field
Fext =1 × 10−1 V nm−1.

(d) Calculated potential Φ(x) (solid line) and its
error bounds (dotted lines) at 6 kB · T dis-
order, a 0.1 eV barrier and an external field
Fext =1 × 10−1 V nm−1.

Figure 6.21: Estimate of the error (dotted lines) of the calculated potential (solid line)
of the test points.
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(a) Calculated potential Φ(x) (solid line) and its
error bounds (dotted lines) at 6 kB · T dis-
order, a 0.7 eV barrier and an external field
Fext =1 × 10−3 V nm−1 plotted till the first
layer.

(b) Calculated potential Φ(x) (solid line) and its
error bounds (dotted lines) at 6 kB · T dis-
order, a 0.2 eV barrier and an external field
Fext =1 × 10−2 V nm−1 plotted till the first
layer.

(c) Calculated potential Φ(x) (solid line) and its
error bounds (dotted lines) at 6 kB · T dis-
order, a 0.2 eV barrier and an external field
Fext =1 × 10−1 V nm−1 plotted till the first
layer.

(d) Calculated potential Φ(x) (solid line) and its
error bounds (dotted lines) at 6 kB · T dis-
order, a 0.1 eV barrier and an external field
Fext =1 × 10−1 V nm−1 plotted till the first
layer.

Figure 6.22: Estimate of the error (dotted lines) of the calculated potential (solid line)
of the test points.
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6.3 Comparison to present analytical models

In this chapter, we compare our results to selected works presented in Chapter 2.2.
Neither Ref. [11] nor Ref. [1] could be taken for a qualitative analysis, as the former
reference uses an unknown normalization factor and latter does not present a current
density, which would be the only observable we could use for a comparison (cf. Chapter
4.4). We note, however, that our simulations using a 3kB ·T disorder qualitatively agree
with the 80 eV disorder j−F curves shown in Ref. [11], where also the current densities
of the 0.2 and 0.4 eV barrier values approach a space charge limited current (SCLC) for
the field of 1× 10−1 V nm−1. Similar to our simulations, no SCLC is observed for the
0.7 eV barrier.
A comparison to Ref. [3] is problematic due to the high uncertainty in the voltage results
(cf. Chapter 6.2.2) and the different experimental design. A proof of the validity of our
model, where we checked the general trends of our model and Ref. [3] was, however,
presented in Chapter 5.4. Also, a comparison to Ref. [2] is not possible, as that model
focuses on the simulation of an OPV and the related effects, rather than on the process
of injection.
The models that are left for a comparison are from Ref. [9], where one is provided with a
closed equation with well defined parameters, and Ref. [12], where certain assumptions
on some parameters have to be made, in order to compare against our KMC model.
In latter case, we tried to calculate the disorder from the total density of states and adopt
the attempt frequency to match the j − V characteristic from the reference. However,
due to the high uncertainty of both, our current and especially voltage calculation, it
was not possible to gain meaningful results for a comparison. We note, however, that we
observed the same space charge limited current regime, that was reported in Ref. [12]
for high external fields.
As a consequence, we restrict ourselves to the model of Scott and Malliaras for a quan-
titative comparison to a macroscopic model (cf. Chapter 6.3.3).

6.3.1 The model of Neumann et al.

The model of Neumann et al., assumes that only charge carriers injected from the metal
contribute to the current as the conduction band of the organic is taken to be far away
from its valence band. This is in agreement with our model, which also only considers
charges that are injected from the metal. Moreover, that model considers the effect of
space-charges, which is also inherent in our model.
In contrast to our model, however, trapping due to disorder is not considered.

In order to be able to compare against the model of Ref. [12], we had to set up new
simulations, to reach an agreement with the parameters of that reference publication
and also cover the wide voltage- (i.e., field-) range depicted in that work. The current
voltage characteristics that are used for comparison here, have been obtained by Kinetic
Monte Carlo and the parameters as given in Table 6.1.

The values for εr, T and ∆ are given in Ref. [12]. The attempt frequency ν0 was
adopted such that we obtain similar current densities as Ref. [12]. The overlap factor γ
is the same as for our previous simulations.
To reproduce the j − V curves given in Ref. [12], the field strengths Fext corresponding
to selected voltage values were estimated with Fext ≈ V/L, with L =100 nm being the
device length. These yielded values for Fext of 1× 10−4,1× 10−3, 1× 10−2,1× 10−1,
and 1 V nm−1, for which the corresponding current densities j were determined.
To determine the value of the disorder parameter σ, we evaluated Equation 6.2, given
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Table 6.1: Parameters used for the simulations to compare against Ref. [12].

rate Miller −Abrahams
size 101(or 25)× 51× 51

alatt 1.0 nm

ε 3

T 300K

ν0 6.76× 1017 s−1

γ 10/alatt
σ 45 meV

∆ varied

Fext varied

in that work, for different values of σ until we obtained a value of N = 1 nm−3 which
corresponds to a value of 1× 1021 cm−3, given in Ref. [12]:

N =

∫ ∞
−∞

g(ε|0, σ) exp

(
− ε

kBT

)
dε. (6.2)

The calculations yielded a disorder parameter of σ = 45 meV. As we are interested
in a qualitative comparison, and due to the high uncertainty of our voltage calculations,
the simulations were only carried out for one morphology.
In Figure 6.23 the j − V characteristics of Ref. [12] (Figure 6.23a) and our simulations
(Figure 6.23b) are depicted.

As can be seen in Figure 6.23, the j−V curves of our simulations yield the same slope
as that of the 0 eV barrier of the reference (Figure 6.23a). Also, in our simulations,
the j − V characterstics perform transition into a SCLC regime for all barriers used for
this comparison (i.e., ∆ ≤ 0.4 eV) at large fields Fext. In contrast to the reference, we
already observe this transition for 20 − 40 V, compared to approximately 100 V of the
reference.
The regime at voltages below this transition voltages (i.e., injection limited regime) are
difficult to compare, due to the high voltage and current density uncertainty. We can,
however, observe that the current of the highest barrier (0.4 eV) is lower than the current
density of the 0 eV barrier for the same voltage, in accordance with Ref. [12]. In contrast
to Ref. [12], however, we do not observe a constant slope for the 0 eV barrier.
To investigate this in more detail, we plot the current density j against the applied
electric field Fext in Figure 6.24. Here, a vanishing barrier (∆ = 0 eV , square), j is
undergoing a transition from a constant value at low fields to a linear rise of slope 2 at
Fext = 1× 10−2 V nm−1, which is indicating a space-charge-limited current. We believe
the reason for the constant current density in the reference publication, as compared to
the curve observed in our simulations, as well as the different voltage for a transition
into SCLC to be as follows: The mobility in the reference is constant over all fields. In
our simulations, and for real materials, however, the mobility depends on the external
field Fext and the disorder value σ. At low fields, the mobility will drop, and, as a result,
also the current density will decrease, as observed in our simulations.
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(a) j−V characteristics for barrier heights ∆ of 0, 0.2, 0.3, 0.35, and 0.4eV of the model presented
in Ref. [12]. Adopted from Ref. [12].

(b) j − V characteristics of our simulations for barrier heights ∆ of 0, 0.2, 0.3, 0.35, and 0.4 eV .

Figure 6.23: Comparison of the j − V characteristics of Ref. [12] (Figure 6.23a) and our
simulations (Figure 6.23b).
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Figure 6.24: j − F characteristics of our simulations for barrier heights ∆ of 0, 0.2, 0.3,
0.35, and 0.4 eV .
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6.3.2 The model of Arkhipov et al.

A comparison to the analytical curves of Ref. [11] and KMC-simulations by Ref. [1]
are of high interest, as it is possible to see (1) how our model compares to an analytical
approach based on similar assumptions as KMC and (2) in which way the consideration
of Coulomb-Coulomb-interactions in our simulations changes the macroscopic behaviour.
For a qualitative comparison to the work of Ref. [11], we chose j − F characteristics of
Ref. [11] (Figure 6.25a), which were simulated and analytically calculated for external
fields ranging from 1× 10−2 to 1 V nm−1. The value for T is 300 K, as in our simulations.
The disorder parameter σ is 80 meV in that work, which we can nicely compare to our
simulations, where we used σ= 3 kB · T , i.e., 75 meV. The overlap factor γ for these
plots is not explicitly given. We assume, that the value of γ = 5/alatt is implied by Ref.
[1] (Chapter 5.2) to which the subsequent analytical calculations refer to. This is equal
to a value of γ = 8.3 nm−1 due to the lattice constant of alatt = 0.6 nm used in Ref.
[1]. This value is only slightly different to γ = 10 nm−1 used in our simulations. The
relative permittivity εr = 3.5 in the simulations of Ref. [1]. This value is the same as in
our simulations.
Hence, the current densities only differ in ν0. The attempt frequency ν0 is a scaling factor,
and causes an offset along the y-axis in the double logarithmic plot of Figure 6.25. We
cannot, thus, compare the absolute value of j, but the relative distance between the
different curves.
In Figure 6.25 the j − F characteristics of Ref. [11] (Figure 6.25a) and our simulations
(Figure 6.25b) are depicted.

When comparing the behaviour of the 0.2 and 0.4 eV curves, we can see, that the
curves are closer together than the analytical curves of Figure 6.25a and even more than
the reference curves from the simulations of Ref. [1]. This clearly indicates, that for
such small barriers the accumulation of space charges due to the Coulomb-Coulomb-
interactions leads to a lower current for a given field. This, in fact, implies that a
space-charge limited current is formed at lower field strengths.
The current density of the 0.7 eV barrier is higher than in the reference simulations and
the analytical curves. This increase in j as described in Chapter 6.1.1, is attributed to
Coulomb-Coulomb-interactions that promote injection via the proximity effect.
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(a) j − F characteristics for different barrier
heights ∆ for a disorder parameter σ = 80
meV of the analytical model (lines without
symbols) and simulations (lines with sym-
bols) presented in Ref. [11]. Adopted from
Ref. [11].

(b) j−F characteristics of our simulations for dif-
ferent barrier heights ∆ for a disorder param-
eter σ = 75 meV. The lines serve as a guide
to the eye.

Figure 6.25: Comparison of the j −F characteristics of Ref. [11] (Figure 6.25a) and our
simulations (Figure 6.25b).
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6.3.3 The model of Scott and Malliaras

We start by describing how we determined the parameters for the current density equa-
tion suggested by Scott and Malliaras [9], followed by a j − F plot to compare that
model against our results. We conclude by discussing the deviations from our model and
suggesting how the model of Scott and Malliaras could be extended for a better match
with the predictions of our model.
In the model of Scott and Malliaras, as described in Chapter 2.2, the current density as
a function of the applied field Fext is given as:

jSM = 4Ψ(f)2N0eµFext exp

(
− ∆

kBT

)
exp

√
f(Fext).

The barrier value ∆ and the temperature T are taken from the KMC simulation
parameters. Also, the constants e and kB are given. The site density, N0, is 1 nm−3 due
to the lattice constant, alatt, of our model being 1 nm. The mobility, µ, is determined
from the trajectories of single charges in the bulk at specific fields and disorder and the
parameters from our injection simulation. The reason for using a single, non-interacting
charge for the determination of µ, is that the model of Scott and Malliaras only takes
into account the interaction between a charge and its own image but not with any
other charge. One could, however, calculate the surface charge-carrier density n0 as
given by Ref. [9] to calculate the bulk mobility of interacting charges. The values we
obtained by that expression differed from the charge-carrier density of our simulations
by orders of magnitude. Therefore, we decided to use simulations of non-interacting
charges. Also, as assessed in Chapter 5.3, the mobilities vary only slightly for the bulk
charge-carrier density as we saw already in Chapter 6.2.1 (〈n〉(x) < 1× 10−3 m3) for
disorder parameters σ ≤ 4 kB · T . In order to get a morphology independent mobility
for a disorder σ > 0, µ is averaged over eight morphologies.
Nevertheless, the authors of Ref. [9] also suggest to incorporate the fact that mobilities
are field-dependent. The field dependent function f(Fext) is calculated by

f(Fext) =
eFextrc
kBT

,

where rc is the Coulomb capture radius as given by Equation 2.9. The prefactor Ψ(f)
is given by

Ψ(f) = f−1 + f−1/2 − f−1 ·
(

1 + 2f1/2
)1/2

.

In Figure 6.26, the current density j is plotted as a function of the externally applied
field Fext for different barriers ∆ and disorders σ. The simulations by our model are
marked with closed symbols. Solid lines represent the corresponding results calculated
by the model of Scott and Malliaras.

As we saw in Chapter 6.1.2, for low barrier values (∆ ≤ 0.2 eV) we obtain the regime
of SCLC. Here, the charge-carrier density in the bulk is mostly independent of the barrier
and the current density is determined by the product of the charge-carrier density and the
corresponding mobility. The charge-carrier density in the model of Scott and Malliaras is
also barrier-dependent. However, there are no space charge effects taken into account in
that model, which are expected to arise for low barrier values, as we have seen in Chapter
6.1.2 and Chapter 6.3.1. Therefore, we expect the model of Scott and Malliaras not to
be in agreement with our model for low barrier values. The deviation from that model
due to SCLC can be seen for all disorders in Figures 6.26a to 6.26d, where the curves
of the 0.1 and the 0.2 eV barrier coincide in our simulations. The model of Scott and
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(a) j − F characteristic for disorder σ = 0 kB · T . (b) j − F characteristic for disorder σ = 1 kB · T .

(c) j − F characteristic for disorder σ = 3 kB · T . (d) j − F characteristic for disorder σ = 6 kB · T .

Figure 6.26: Current density j as a function of the externally applied field Fext for dif-
ferent barriers ∆ and disorders σ (increasing from left to right and top
to bottom). Closed symbols represent the points of simulations with our
KMC model. Lines of corresponding color show the corresponding results
determined with the model of Scott and Malliaras as described in the text.

Malliaras (1) does not yield the SCLC-related saturation of the characteristic for high
fields and (2) the match of the characteristics with the two low barrier values (SCLC).
We will, therefore, continue our discussion for barrier values, where space charge effects
play a minor role.

One would expect a good agreement of our model with that of Scott and Malliaras
for low disorder (σ ≤ 1 kB ·T ) and sufficiently high barrier values (∆ ≥ 0.4 eV). Firstly,
because the expected charge-carrier densities are small enough, such that its dependence
on the mobility and space charges should be negligible. Secondly, the disorder-induced
lowering of the effective barrier should be low. However, we can see in Figure 6.26a and
6.26b (triangles), that our data does not correspond to the model also in this case.
We think that the reason for this is (1) the proximity effect as described in Chapter 6.1.1,
which is not accounted for in a macroscopic model and (2) a lowering of the effective
injection barrier due to disorder.

As a first step to comprehend the impact of the former effect, one could try to map
the proximity effect on a factor accounting for a lowering of the effective barrier for the
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0 kB · T disorder case. Then the current density jSM would change to j′SM as given by
Equation 6.3, with a lowering energy contribution ∆a:

j′SM = jSM exp

(
∆a

kBT

)
. (6.3)

By simply equating the current density from our KMC model to that of Scott and
Malliaras at 0 kB · T disorder and 0.7 eV barrier value, we fit the parameter ∆a to 54
meV. The resulting current densities for ∆ ≥ 0.4 eV match nicely for the two low fields,
as can be seen in Figure 6.27. For high fields, however, the proximity effect is stronger,
as we saw in Chapter 6.1.1, which we did not account for in our simple approximation
of Equation 6.4.

Figure 6.27: Current density j as a function of the externally applied field Fext for dif-
ferent barriers ∆ and 0kB ·T disorder. Closed symbols represent the points
of simulations with our KMC model. Lines of corresponding color show the
corresponding results determined with the model of Scott and Malliaras,
adopted by Equation 6.3, as described in the text.

For a disorder σ > 0 kB · T , we expect paths to form below the barrier. This idea was
also suggested by Burin and Ratner [27]; the associated barrier lowering is proportional
to the disorder parameter σ and the square-root of the field. Here, we only consider the
barrier lowering due to the disorder and adopt the current density of Scott and Malliaras
to j′SM as given by Equation 6.4:

j′SM = jSM exp

(
b · σ
kBT

)
. (6.4)

Here, b is a fitting factor, that takes into account, that particles are able to hop onto
sites with values below the effective barrier for a non-vanishing disorder. As the lowering
of the effective barrier is supposed to be affected by the disorder, the induced barrier
lowering is assumed to be b · σ. Note that Equation 6.4 does not consider the proximity
effect (cf. Equation 6.3).

Again, we equate the current density from our KMC model to that of Scott and
Malliaras at 1 kB · T disorder and 0.7 eV barrier value, and find that b = 2.5 yields a
good agreement for all j − F curves in Figure 6.28a. The resulting current densities
for ∆ = 0.7 eV match nicely for all disorders, as can be seen in Figure 6.28. For the
barrier of ∆ = 0.4 eV, however, the characteristics of model and simulation deviate with
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increasing disorder. Presumably, this is due to an increasing charge-carrier accumulation
that increases with disorder. Thus, the lowering of the barrier is much more pronounced
than for the ∆ = 0.7 eV barrier. The effect of space-charges however, can not be treated
that easily by an adoption of an effective injection barrier height.

(a) j − F characteristic for disorder σ = 1 kB · T .

(b) j − F characteristic for disorder σ = 3 kB · T . (c) j − F characteristic for disorder σ = 6 kB · T .

Figure 6.28: Current density j as a function of the externally applied field Fext for dif-
ferent barriers ∆ and disorders σ (increasing from left to right and top to
bottom). Closed symbols represent the points of simulations with our KMC
model. Lines of corresponding color show the corresponding results deter-
mined with the model of Scott and Malliaras, adopted by Equation 6.3, as
described in the text.

We conclude that the model of Scott and Malliaras fails to describe the j−F character-
istics of low injection barriers correctly, where space-charges predominantly determine
the behaviour. Our simulation results suggest, that the current density predicted by
Scott and Malliaras requires an additional exponential factor, that corrects the effec-
tive injection barrier height for disorder and space-charge effects. To account for the
proximity effect at vanishing disorder the barrier height is lowered by a constant value
(Equation 6.3), whereas for non-vanishing disorder, the exponent is disorder-dependent
(Equation 6.4), since sites below the effective barrier are available for transport. This
works well for intermediate barriers (∆ ≥ 0.4 eV), until high disorder leads to charge
accumulation at the interface, which promotes space-charge-limited current.
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7 Conclusions and Outlook

Within this thesis, we developed a model for the charge injection from a metal elec-
trode into a disordered organic semiconductor. We used the KMC method, because all
relevant microscopic processes are intrinsically contained in the model and macroscopic
observables can easily be obtained. In our approach, we go beyond the only present
KMC implementation of injection, described in Ref. [1].
Our model simulates the injection of charges from a metal electrode into an organic
semiconductor, discretized into cubes of edge length alatt and a thickness of 25 nm and
larger, as a function of a superimposed electric field Fext. The density of states in the
organic material is assumed to be Gaussian. All hopping rates are calculated with the
Miller - Abrahams rate equation. For the sake of consistency, in the organic material
and at the interface to the metal the same parameters we used. The model includes
Coulomb-Coulomb-interactions between all particles and all images up to a cut-off ra-
dius rc.
As the simulation framework was developed from scratch, we started with a set-up as
simple as possible, and, then, increased the complexity of the simulation step by step.
At each step, the results of the implementation were compared to references in order to
notice errors in an early stage. Those comparisons were taken from Ref. [2], Ref. [1]
and Ref. [18].
Finally, our model was compared to the results of Ref. [3], which is the only KMC
reference, that directly includes all Coulomb-Coulomb-interactions. We observed the
same trends. The small quantitative deviations found in some scenarios were shown to
originate from the different set-up of our model system and a large uncertainty in our
observables in both the current density and the voltage.
By determining the current density over a wide range of external fields, disorder val-
ues, and barrier values, we were able to identify two regimes of the disorder-dependent
current density j(σ). In both regimes, i.e., for all barrier values considered, there is a
profound accumulation of charges at the metal-organic interface. The regime changes as
a function of the barrier value:
For low values of the barrier ∆, charges accumulate in the first layer, adjacent to the
metal surface due to the interactions with their image charges. This leads to a space-
charge-limited current, associated to a charge-carrier density in the bulk being almost
constant over all fields. As a result, (1) the current densities for the two lowest barrier
values assumed in this work (∆ = 0.1 and 0.2 eV) are essentially equal and (2) the cur-
rent densities decrease with increasing disorder, due to a lowering of the bulk mobility
as a result of traps. The model of Scott and Malliaras [9] is not able to account for this
space charge effect. The model of Neumann et al. [12] considers the impact of charge
accumulation at the contact but disregards the field- and disorder-dependence of the
mobility entering the space-charge-limited current.
A second regime is established for high barrier values (0.4 ≤ ∆ ≤ 0.7 eV). There, the
current density increases with disorder, due to a hopping of charges between the elec-
trode and the first layer, which leads to an increase of the energy of nearby charges,
which, as a result, get pushed into the bulk. This proximity effect is not covered by any
macroscopic model known to the author. Also, a simple extension of the model of Scott
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and Malliaras [9] to account for the proximity effect did not yield satisfying results for
all fields, as this effect can be compensated by a second effect:
We have also learned from our comparison to the model of Scott and Malliaras [9], that
the effective injection barrier is lowered by introducing disorder, which competes with a
decreased mobility due to disorder. By augmenting the current density computed with
the model of Scott and Malliaras [9] by a simple, field-independent exponential factor,
we achieved noteworthy accordance with our simulations over the disorder range from
1 kB · T to 6 kB · T except for the highest field considered.

We also evaluated the electrostatic potential from the average charge-carrier density.
However, we observe for intermediate fields and high disorder, that the uncertainty of
the voltage drop across the model system exhibits more than 10%, and in selected cases,
even larger. This makes comparison to the literature, such as Ref. [3] and Ref. [12] very
difficult. Also the application of the calculated electrostatic potential Φ(x) in macro-
scopic models, such as drift-diffusion, is critical, (1), due to the high uncertainty and,
(2), due to the inability to account for the proximity effect.

Hence, in order to exploit our results in a drift-diffusion model, the best way is, there-
fore, a simple look up table, that predicts a current density j as a function of the fields,
disorder and barrier value, which delivers valid input values for a drift-diffusion model
of the bulk region.

We note here the following list of future steps aiming at resuming and verifying our
results:

1. Investigate the dependence on the temperature T .

2. Formulate criteria for establishing SCLC using parameters such as ∆, Fext and T .

3. Explore the field-dependence of the barrier lowering,

a) by considering more field values and possibly a larger range of Fext, and

b) by investigating the net current as a function of the site-energy at the position
of the barrier-shape maximum.

4. Perform simulations to discriminate between the proximity effect and the disorder
induced barrier lowering.

5. Explore the impact of tunnelling for large values of ∆.

6. Perform experiments to compare our results against.

7. Model inhomogeneous electrodes, as a more realistic approach to model real world
devices.
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