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Abstract

The derivation of the Born-Markov master equation apt to describe open dis-
sipative quantum systems in non-equilibrium is depicted and compared with
the Lindblad formalism. Further it's extensions to quasi-degenerate states and
it' evaluation in the system eigenbasis is given for the steady state in the wide
band limit.
In the second part the derivation of the self-consistent Born approach an

improvement of the before discussed master equation is presented and explicit
formulas for the calculation of the steady state and steady state current in a
single quantum dot (Anderson Impurity) with spin dependent coupling is given.
In the third part these two methods are numerically evaluated for the single

quantum dot and the in�uence of temperature and coupling strength on the
steady state and current characteristics is discussed. Further the quantum dot
with spin-dependent coupling and a cyclic triple quantum dot are investigated
to show current blocking e�ects and negative conductance due to Coulomb re-
pulsion respectively quantum interference. The issue of quasi-degenerate states
is discussed on the triple quantum dot by variation of gate voltages.



Kurzfassung

Die Born-Markov Mastergleichung und deren Herleitung zur Beschreibung of-
fener dissipativer Quantensysteme im Nicht-Gleichgewicht wird in Kapitel 1
vorgestellt und mit dem Lindblad Formalismus verglichen, welcher eine gültige
Lösung für den stationären Zustand garantiert. Anschlieÿend wird auf die
Erweiterung auf quasi-entartete Zustände eingegangen und die resultierenden
Gleichungen in der System Eigenbasis für den stationären Zustand im Weit-
bandlimit dargestellt.
Im zweiten Kapitel wird die Herleitung des selbst-konsistenten Born Ansatzes

präsentiert, der eine Verbesserung der eingangs erwähnten Born-Markov Mas-
tergleichung darstellt. Weiters werden explizite Formeln für die Berechnung des
stationären Zustandes und des stationären Stromes für einen einzelnen Quan-
tenpunkt (Anderson Störstelle) mit Spin-abhängiger Badkoppelung hergeleitet.
Im dritten Kapitel werden diese beiden Methoden schlieÿlich numerisch für

den Quantenpunkt ausgewertet, wobei explizit auf den Ein�uss von Temperatur
und Badkoppelungsstärke auf den stationären Zustand und auf die Spannungs-
Strom-Kennlinie eingegangen wird. Anschlieÿend wird bei dem Quantenpunkt
mit Spin-abhängiger Badkoppelung und bei einem zyklischen Quantenring, das
Verschwinden der elektrischen Leitfähigkeit (Coulomb-Blockade) bzw. eine neg-
ative Leitfähigkeit aufgrund von Coulomb Abstoÿung beziehungsweise aufgrund
von Quanteninterferenz beobachtet. Auf die Behandlung von quasi-entarteten
Zuständen ohne sekulare Approximation wird anhand des zyklischen 3-Platz
Systems unter Variation der Gatespannung eingegangen.
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Introduction/Motivation

Advances in strongly correlated electron systems Condensed matter physics is a
branch in physics that tries to explain physical properties in �uids, solids or more exotic
condensed phases of matter [1, 2]. Since the 1930s the Schrödinger equation serves as the
basis of condensed matter physics and it is in combination with the Pauli-Dirac equation (to
account for relativistic e�ects) still assumed to describe the physical behaviour of matter
correctly. By providing a time evolution of probabilities it incorporates the quantum
nature of the relevant elementary particles. Though the Schrödinger equation is not apt to
derive directly macroscopic properties because the dimensions of the con�guration space go
beyond any computable scale. Since it's formulation 1926 a signi�cant part of condensed
matter physics is occupied with �nding the best approximations to successfully solve the
Schrödinger equation. Most of those approaches like mean �eld theory, Bloch theory or
density functional theory [3, 4] assume the interactions of electrons to be small or even
neglect them. Still this branch of theories is well apt to describe the metallic, insulating or
semiconducting behaviour and many more e�ects of many materials where the correlation
of electrons is not dominant.
Other interesting e�ects like Mott insulator transition [5] in nickel(II) oxide, the Kondo

e�ect [6] in iron doped gold or high temperature superconductivity [7] in cuprates cannot
be addressed by these approaches and need indeed other methods that account for this
correlation since in these materials the physics is determined by the strong interaction of
electrons. A very prominent model to describe these phenomena is the Hubbard model [8]
which itself can be solved exactly only in some special cases. For the general case one faces
the problem that the Hilbert space increases exponentially with the number of orbitals/sites
N . The corresponding Hamilton matrix is not very decomposable (in contrast to the tight
binding model), so the resulting eigenvalue problem is hard to address with increasing N
by brute force methods like full diagonalisation, but also more sophisticated approaches
like Krylov space methods (Lanczos algorithm) already reach their limits for N ≈ 20. A
more detailed discussion about the limits of the Lanczos method when solving the Hubbard
model is given in [9, Chapter 8].
In the last three decades the dynamical mean �eld theory (DMFT) [10, 11] developed

to describe the electronic structure of strongly correlated materials. It maps the in gen-
eral intractable many-body lattice problem on a single site impurity problem which is also
known as the Anderson impurity model [12]. It describes a single interacting quantum dot
connected to a non-interacting environment and can be regarded as a combination of a
tight binding model and a single site Hubbard model.

3
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Quantum microelectronics Whereas theoretical techniques and understanding of solid
states has increased over the past decades also enormous progress has been achieved on the
manufacturing side. Since electronic devices have already reached the molecular limit it
has become crucial to understand the electronic properties of such nano-structured devices
like single-molecule transistors [13]. Quantum phenomena, like quantum blockade, Kondo
e�ect or quantum interference [14, 15], have a great in�uence on the transport properties
in single electron devices and present a rich pool of possible new quantum technologies.
At this point it is important to emphasize not to investigate the quantum system as an
isolated system because the in�uence of the contacts cannot be neglected. To include also
dissipation we model a so called open quantum system, which is realised by attaching
non-interacting thermalized metallic leads to the strongly correlated quantum device.
To describe such an open quantum systems the before mentioned Anderson impurity

model serves as a good starting point. Since solving this model is also a crucial step in
the before mentioned DMFT several di�erent methods have been developed like numer-
ical renormalization group (nRG) techniques [16, 17], non-equilibrium Green's function
technique with non-crossing approximation (nGF+NCA) [18], continuous time Quantum
Monte Carlo algorithms (ctQMC) [19], density matrix renormalization group methods
(DMRG) [20, 21] or cluster approaches like cluster perturbation theory (CPT) and it's
improvement, the variational cluster approach (VCA) [22, 23, 24].

Approach to open quantum systems In this thesis I address two methods to describe
the dynamics of such open quantum systems, the Born-Markov master equation approach
(BM) [25] and it's extension the self-consistent Born master equation approach (SCB) [26].
These methods shall help to describe quantum microelectronic properties of mesoscopic
quantum devices that in near future may be or already are realised [27, 28, 29]. An
example of the full application of this method combining ab-initio calculations to determine
parameters needed in the model is given in [30] for a benzene ring attached to gold contacts.
The master equation approach has also be used in combination with other methods. For
example the group around my supervisor Prof. von der Linden has proposed in a recent
work [31] the so-called auxiliary master equation approach to act as an impurity solver for
single-site DMFT. In a more recent work the group presented a CPT method that is based
on the steady state solution of the Born-Markov master equation approach [32].
My thesis is structured the following way: In the �rst part I give a detailed derivation of

the BM method and I explain and motivate the performed approximations. I explain the
relation to the Lindblad formalism and discuss the approach for quasi-degenerate states
and it's in�uence on the stability of the solution.
In the second part I explain the SCB approach and discuss it's improvements compared

to the �rst method. With this more sophisticated approach I derive an analytic expression
for the steady state of a single quantum dot in the wide band limit that inherits spin
dependent coupling and also present the current formula in this SCB approach.
In the third part I give numerical results for di�erent quantum systems, discuss temper-

ature and coupling dependence of both introduced methods and analyse their numerical
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instabilities for certain parameter ranges. Further I compare the current-voltage charac-
teristics of the single Anderson impurity model obtained by di�erent methods and reveal
the quantum phenomenon of Coulomb blockade respectively negative conductance in two
di�erent setups, in one case for spin dependent hopping and in the other case in a cyclic
quantum system, hosting interference e�ects.



1 Born-Markov master equation
approach

In this chapter I give the derivation of the Born-Markov master equation approach roughly
following [33, 25, 34].
The aim of this approach is to predict the non-equilibrium state of an open quantum

system [35], that is characterized by a central system of interest exchanging information
with an environment. This environment is realized by thermally stabilized baths b, also
referred to as reservoirs or leads which are assumed to be in�nitely long and inherit a
dissipative character thus information propagated from the system to the baths gets lost
(see section 1.4.1). The baths shall not inherit electronic correlation features thus will be
modelled with a non-interacting tight binding Hamiltonian (1.4).
The central system s of interest instead is modelled by a Hubbard Hamiltonian (1.5) to

include strongly correlated electrons that for instance arise from on-site interactions due to
Coulomb repulsion. For this Born-Markov master equation approach basically any system
Hamiltonian can be applied that can be fully solved since we need the system eigenstates
as eigenbasis to evaluate the �nal equations. Depending on the strength of the realized
non-equilibrium we also have to consider eigenstates corresponding to higher eigenenergies,
but for small deviations from equilibrium also Hamiltonians can be treated for which only
the energetically lowest eigenspace is tractable. For the calculations described in this work
we restrict the number of sites in the central system to N ≤ 6.
The non-equilibrium situation of the system is realised by coupling it to the baths which

are associated with di�erent potentials like an external electric �eld inducing an electric
current. The coupling of the system to the non-interacting leads will be realised by an
interaction Hamiltonian (1.2) also used in the Anderson impurity model (AIM). With the
special choice of choosing a Hubbard Hamiltonian for the central region this model indeed
corresponds to the AIM but as mentioned before any quantum system described by it's
eigenspectrum and it's corresponding eigenbasis can be treated with this approach.

We are interested in the the dynamics of a quantum system that is described by the
probabilistic mixture of pure states: the density operator. Since we are not interested in
the detailed properties of the baths we will average over their degrees of freedom by taking
the partial trace and receive the central object of interest used to describe the quantum
system: the reduced density operator (see section 1.1.3).
A �rst order di�erential equation that describes the time evolution of such probabilities

(given by the reduced density operator) is called a Master Equation [33]. The starting
point to derive such a description of quantum dynamics is - as mentioned in the introduction

6
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- the Schrödinger equation (see section 1.1.4).
The Born and Markov approximations are in detail discussed in section 1.4 and are

essential to get a closed equation for the steady state 1.5.
In section 1.6 we will see how the secular approximation guarantees the steady state to

represent indeed a valid solution (density matrix) by applying the Lindblad formalism.

1.1 Setup

1.1.1 Techniques

Basic concepts of di�erent quantum mechanical pictures (Schrödinger, Heisenberg, Interac-
tion) presumed the reader will be introduced to the superoperator notation. Several times
the practical features of traces and the basic commutator / anticommutator relations are
needed. A repetition of complex Laplace and Fourier transforms and their properties and
of some functional analytic integration theorems is given in the appendix 4.2.
The following features of the examined system Hamiltonian (Hubbard) will be used

during the derivation: The Hubbard Hamiltonian is time invariant and conserves particle
number and spin.
Here is a list of approximations respectively assumptions used throughout the work to

make a calculation feasible:

• Perturbation theory to second order in the Liouville-von Neumann equation

• Born approximation

• Markov approximation

• Secular approximation

• Adiabatic switch-on of the interaction between bath and system at t = −∞

• Steady state limit t→∞

• Weak coupling limit (as justi�cation for Born/Markov approximation)

Later on we use the terminology of non-equilibrium Green's functions [36] to describe
the current formula in a more common way.

1.1.2 Model system

The examined problem shall consist of a strong interacting fermionic system S coupling
weakly to a fermionic reservoir or bath b.
Let asiτ = asµ be an annihilator (s = −) or a creator (s = +) of an electron of a spin

τ at a system site i (combined index µ represents state |µ〉). For the leads let dsαkτ be
analogously an creator/annihilator of an electron with a spin τ and momentum k, where
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the index α indicates on which bath (lead) the operator acts. To refer to the spin of asµ we
use τµ.
The total Hamiltonian H can be separated according to the a�ective domain of their

operators, so we identify the interaction Hamiltonian H1, that operates on both, system
and bath and is switched on adiabatically at time t = −∞

H = H0 +H1, H0 := Hb +Hs (1.1)

The general form of the interaction Hamiltonian is

H1 := lim
ε→0+

e−ε|t|
∑
αµkτ

tαµkτa
†
µ(τµ)dαkτδτµ,τ + h.c. = e−0+|t|

∑
µs

sasµD
s
µ (1.2)

Ds
µ :=

∑
αkτ

tsαµkτd
s
αkτδτµ,τ (1.3)

with the coupling constants (t+αµkτ = t∗αµkτ ). So for the bath operators D the bath index
α is additionally included in the combined index µ, we may use later Ds

µ =
∑

αD
s
αµ. The

spin isn't changed by the interaction Hamiltonian and it's index τ may be used later to
discuss spin dependent coupling. We will assume later, that each lead α couples just to
one system site µα.
The Hamiltonian of the non interacting leads (reservoir) is

Hb =
∑
αkτ

εkd
†
αkτdαkτ (1.4)

The system Hamiltonian don't has to be speci�ed in the following derivation but for
later calculations we will refer to the following Hubbard model:

Hs =
∑
iτ

ξia
†
iτaiτ + b

∑
iτ

(a†iτai+1τ + a†i+1τaiτ ) (1.5)

+ U
∑
i

(ni↑ni↓ −
1

2
(ni↑ + ni↓))

+ V
∑
i

(ni↑ + ni↓ − 1)(ni+1↑ + ni+1↓ − 1)

1.1.3 Modi�ed density operator

To describe the behaviour of the system S under in�uence of the leads we will start deriving
an equation for the full density operator of the total setup, ρbs, including system and bath.
Subsequently we will trace out the bath to get a reduced density operator σs of the system
S. Summarized in this paragraph some of the main important properties of the density
operator are given:
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Properties of the density operator ρsb(t). The density operator is used to describe a
quantum system in a mixed state [37, 38, 34]. Main motivation for this is, that it's possible
to perform a 'complete' experiment on all quantum systems, for instance it's not possible
to clarify in which quantum state a quantum system de�nitely is. But statements of the
probabilistic mixture of pure states (mixed quantum state) are feasible and can be used to
describe the quantum system in a statistical way.
The density matrix can be constructed in an eigenstate basis (|ϕi〉)i∈N of H

ρ(t) =
∑
i

pi|ϕi(t)〉〈ϕi(t)| (1.6)

with 0 ≤ pi ≤ 1 and
∑

i pi = 1. If the basis is orthonormal then the coe�cients pi indicate
the probability to �nd the system in the state |ϕi(t)〉. Arising from the probabilistic
construction the density operator is positive, which means that for any state |a〉 in the
Hilbert space H the expression 〈a|ρ|a〉 gives a positive result, indicating the probability to
�nd a system in that state. The property of positivity is equivalent to having all eigenvalues
of ρ greater or equal to zero.
The trace of the operator is equal to one. The density operator is describing a pure

state if and only if the trace of ρ2 is equal to one. Since it's symmetric construction the
density operator is self-adjoint (hermitian density matrix) ρ† = ρ.

Modi�ed density operator ρsb(t). For later use we extend this derivation to a more
general operator, in particular we want to regard a modi�ed density operator beside the
normal density operator:

ρ =

{
ρbs, η = +1

[asκρbs], η = −1
(1.7)

σ = Trb

{
ρ
}

The index η is used to distinguish between the two cases. For η = +1 we refer to the
bosonic density operator ρbs whereas we use η = −1 to label the fermionic modi�ed
density operator ρ̃.
As the modi�ed density operator is not self-adjoint we use a comma or parenthesis in

the scalar product (matrix representation) to indicate on which side of the scalar product
the operator acts �rst:

〈a|(σ|b〉 = 〈a|σ†)|b〉 (1.8)

In general this will be the right side using the short notation for matrix elements Aab :=
〈a|(A|b〉. As we will identify some Hermitian conjugate parts later on, we need a special
dagger operator ‡ that works like the usual dagger (adjoint) operator † but acts like a
unity operator on the modi�ed (not self-adjoint) density operator σ̃, pretending it to be



1 Born-Markov master equation approach 10

self-adjoint in some sense:

σ‡ = σ (1.9)

ρ‡ = ρ (1.10)

〈a|( [A†σ]‡|b〉 = 〈a|(σA|b〉 (1.11)

We will need this special dagger notation in section 1.4.3 where we will use the abbreviation
h.c.(‡) to indicate that the Hermitian conjugate is performed according to that special
dagger operator.

Notation

Operators with the subscripts s of b are always referring to density operators, either to
reduced system, reduced bath or total density operators. The operators ρ and σ without
subscript will be of general type as de�ned in equation (1.7) and used in the following
sections to get the derivation for both cases. Superscripts s are referring to the dagger
operations (†, ‡). If we refer explicitly to the modi�ed density operators we will use a tilde
to make the setting clear

σ̃sκ = Trb

{
ρ̃sκ

}
=

Trb

{
aκρbs

}
s = −

Trb

{
a†κρbs

}
s = +

(1.12)

Note: (σ̃sκ)
† 6= σ̃sκ.

We will refer to the de�nition of the modi�ed density operator in section 1.4.3 where
it is of relevance especially when treating the self-consistent Born approach in chapter 2.
The time dependence and relationship of both operators is of crucial importance and will
be discussed in detail in section 2.1.

1.1.4 Time dependent Schrödinger equation

The time dependent Schrödinger equation is the fundamental starting point to describe
the time evolution of a state |Ψ(t)〉 in the given quantum system described by the (not
necessarily time-independent) Hamilton operator H:

i~
d

dt
|Ψ(t)〉 = H|Ψ(t)〉

The time evolution of the system described by the (modi�ed) density operator ρ(t) is given
by the Liouville-von Neumann equation:

i~
d

dt
ρ(t) = [H, ρ(t)]− (1.13)

where [ · , · ]− de�nes the commutator [A,B] = AB − BA. Later we use [ · , · ]+ for the
anticommutator.
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1.2 Superoperators

In this section the superoperator notation is introduced to have a more convenient way to
write the equations.
De�nition: A superoperator is a mapping of an operator A ∈ O, (O vector space of

operators) onto an operator. We use the word operator to refer to mappings that operate
on the Hilbert space of quantum states of the examined quantum system. In quantum
mechanics we de�ne the Liouville superoperator or Liouvillian LH with respect to the
Hamiltonian H as

LH : O → O, LH(A) := [H,A] = HA− AH (1.14)

1.2.1 Properties of superoperators

Theorem 1.1 (Exponentials of the Liouville operator)
We want to prove the exponential application of the Liouville operator:

eiLH tA = eiHtAe−iHt (1.15)

Proof 1.1
We start with the series representation of the exponential superoperator:

eiLH tA =
∞∑
n=0

(it)n

n!
LnHA (1.16)

Now we show by induction that

LnHA =
n∑
k=0

(−1)k
(
n

k

)
Hn−kAHk (hypothesis)

L1
HA = HA− AH = (−1)0H1AH0 + (−1)1H0AH1 (basis)

Ln+1
H A = LHLnHA =

n∑
k=0

(−1)k
(
n

k

)
Hn+1−kAHk −

n∑
k=0

(−1)k
(
n

k

)
Hn−kAHk+1 (step)

We shift the index of the second sum k + 1→ k and extend the sums as
(
n
n+1

)
=
(
n
−1

)
= 0.

=
n+1∑
k=0

(−1)k
(
n

k

)
Hn+1−kAHk +

n+1∑
k=1

(−1)k
(

n

k − 1

)
Hn−k+1AHk

With
(
n
k

)
+
(
n
k−1

)
=
(
n+1
k

)
we have proven this representation.

Now we have a look at the right side and compare the coe�cients of tn, with r = n− s:

eiHtAe−iHt =
∞∑
r=0

(it)r

r!
Hr · A ·

∞∑
s=0

(−it)s

s!
Hs =

∞∑
n=0

n∑
s=0

n!

n!
· (it)n(−1)s

(n− s)!s!
Hn−sAHs

s=k
=

∞∑
n=0

(it)n

n!
LnHA = eiLH tA
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Note: The exponential form of the superoperator is self-adjoint:(
e−iLH tA

)†
=
(
e−iHtAeiHt

)†
= e−iHtA†eiHt = e−iLH tA† (1.17)

Theorem 1.2 (Matrix representation of functions and adjoint functions
of Liouville superoperators in the eigenbasis of the system)
Let L be the Liouvillian superoperator according to the system Hamiltonian acting on the
not necessarily self-adjoint operator A and let |a〉, |b〉 be system eigenvectors with eigenen-
ergies Ea and Eb. The function f : C→ C shall be an analytic function around zero.
Then the following identities for the matrix representation and the adjoint of functions

of the superoperator holds:

(f(L)A)ab = f(Ea − Eb) (A)ab (1.18)

[f(L)A]† = f(−L)∗A† (1.19)

Note: As the operator in the scalar product 〈a| . . . |b〉 is not necessarily self-adjoint we use
a comma or a single parenthesis to indicate to which side of the scalar product the operator
belongs. Throughout all sections this will be the right side Aab := 〈a|, A|b〉.
Proof 1.2
We start looking at the Taylor series of f(L)A =

∑
n≥0 anLnA. We show by induction that

(LnA)ab = (Ea − Eb)nAab Aab := 〈a|(A|b〉 (hypothesis)

(HA− AH)ab = EaAab − AabEb = (Ea − Eb)Aab (basis)

(HLnA− LnAH)ab = Ea(Ea − Eb)nAab − (Ea − Eb)nAabEb = (Ea − Eb)n+1Aab (step)

So we get in the series representation

(f(L)A)ab =
∑
n≥0

an (LnA)ab =
∑
n≥0

an(Ea − Eb)nAab = f(Ea − Eb)Aab

Some examples:

Tr{f(L)A} = f(0)Tr{A} (1.20)(
f(ω − L)A

)
ab

= f(ω − (Ea − Eb))Aab (1.21)

For the adjoint operator † acting on the function of a Liouville superoperator we have([
f(L)A

]†)
ab

= 〈a|,
[
f(L)A

]†|b〉
= 〈b|, f(L)A|a〉
= f(Eb − Ea)〈b|, A|a〉
= f(−(Ea − Eb))∗〈a|, A†|b〉
=
(
f(−L)∗A†

)
ab
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Time evolution

The Liouville-von Neumann equation can thus be expressed via superoperators:

ρ̇(t) = − i
~

[H, ρ(t)] = − i
~
LHρ(t) (1.22)

From now on ~ shall be set to 1.
For the time evolution of a not-necessarily self-adjoint (modi�ed) density operator in

Schrödinger picture ρ we can use the superpropagator (operator that evolves an operator
in time)

ρ(t) = e−iLH(t−t0)ρ(t0) (1.23)

Note that the time evolution of ordinary operators in Heisenberg (or interaction picture)
picture have the opposite sign in the propagators:

A(t) = eiHtAe−iHt = eiLH tA (1.24)

Notation of time propagators and superpropagators

As all occurring Hamiltonians are not time dependent (time translation invariant) we can
write all time propagators and superpropagators T as exponentials of the corresponding
Hamiltonian respectively Liouvillian and just need one argument (time di�erence) instead
of two for initial and �nal time T (tf , ti) = T (tf − ti). In order to indicate time intervals
from a �xed initial time t0 we use underlined time arguments as short notation t = (t− t0).
If t0 = −∞, we write T (t,−∞). We will use the letter G for time propagators and the
calligraphic letter G for time superoperators with a subscript indicating according to which
Hamiltonian / Liouvillian the propagation is carried out Gx(t) = eiHxt. A missing subscript
indicates time evolution with respect to the full Hamiltonian H. Some relations with the
corresponding Hamiltonians are given below:

G(t)A = e−iLtA = e−iHtAeiHt = G(t)AG†(t) (1.25)

Below is a table with abbreviations for propagators, superpropagators and Liouvillians
according to the Hamiltonians de�ned in section 1.1.2:

G(t) = eiHt G(t) = eiLt LA = [H,A]− H = H0 +H1

G0 G0 L0 H0 = Hb +Hs

Gs Gs Ls Hs

Gb Gb Lb Hb

GI GI L1 H1
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When in the Born approximation scheme we introduce a time superpropagator U acting
on the system space that propagates according to the full Hamiltonian

U : S → S, U(t− t′)σs(t′) := Trb

{
G(t− t′)ρbs(t′)

}
= σs(t) (1.26)

ρbs(t
′) = ρb(t

′)⊗σs(t′), with ρb(t
′) = ρb, ∀t′ in Born approx.

The Born approximation with the time invariant bath density matrix is essential as oth-
erwise the operator wouldn't be well de�ned. Note that the operator is additive in the
time argument U(t)U(t′) = U(t + t′) and that the trace over the bath and the time prop-
agator according to the full Hamiltonian do not commute since the involved interaction
Hamiltonian.

1.3 Interaction picture

We want to go now to the interaction picture (Dirac picture, denoted by I) where we treat
the coupling Hamiltonian H1 as a weak perturbation switched on adiabatically at time
t0. Before this starting point, the interaction Hamiltonian is zero and thus the interaction
picture is equal to the Schrödinger picture |ΨI(t0)〉 = |ΨS(t0)〉. Time independent operators
A in the interaction picture have an underlined time dependent argument that also includes
implicitly the starting time t0:

A(I)(t) = eiH0(t−t0)Ae−iH0(t−t0) = eiL0tA, (1.27)

The density matrices are denoted explicitly with an ρS(t) respectively ρI(t) for distin-
guishing between Schrödinger and interaction picture.1

ρI(t) = G†(t− t0) ρS(t)G(t− t0) = eiL0(t−t0)ρS(t), (1.28)

ρI(t0) = ρS(t0).

Liouville-von Neumann equation in the interaction picture

ρ̇I(t)
!

= −i[HI
1 (t), ρI(t)] = −iLI1(t)ρI(t), (1.29)

LI1(t) := eiL0(t−t0)L1. (1.30)

Proof 1.3

ρ̇I(t) =
d

dt
eiH0(t−t0)ρ(t)e−iH0(t−t0) = eiH0(t−t0)(i[H0, ρ(t)] + ρ̇(t))e−iH0(t−t0) (1.31)

1As the Hamilton has no time dependency the stationary solution and thus ρ must be time independent,
but as we don't know this solution, we have to start from an arbitrary point (solution of the isolated
system) and evolve in time to reach the total stationary solution.
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Using (1.22) we get

. . . = eiH0t(i[H0, ρ(t)]− i[HT , ρ(t)])e−iH0t = −ieiL0t[H1, ρ(t)] = −ieiL0tL1ρ(t)

On the other hand we can insert the unity operator 1 = e−iH0teiH0t between the Hamilton
and density operator in the second term of the previous equation and get:

· · · = −i[eiL0tH1, e
iL0tρ(t)] = −iLI1(t)ρI(t), (1.32)

regaining the Liouville equation in the interaction picture and extending the interaction
notation to superoperators.

LI1(t)A := (eiL0tL1)A (1.33)

The brackets indicate, that the exponential superoperator just works on the Hamiltonian in
the commutator of the second superoperator We have also received a convenient rule for
the composition of superoperators:

eiL0t(L1A) = (eiL0tL1)(eiL0tA) (1.34)

1.3.1 Interaction picture for tensor product operators

Next we want to derive the interaction picture of tensor-product operators. Let Asb =
As⊗Ab be such an tensor-product operator with [As, Ab] = 0, then we also get in the
interaction picture with H0 = Hb +Hs, [Hb, Hs] = 0 a tensor structure:

AIsb(t) = ei(Hb+Hs)(t−t0)Asbe
−i(Hb+Hs)(t−t0)

= eiHs(t−t0)Ase
−iHs(t−t0) eiHb(t−t0)Abe

−iHb(t−t0) = AIs(t)⊗AIb(t) (1.35)

1.3.2 Series expansion in the interaction picture

The advantage now is to have only the small perturbation Hamiltonian in the di�erential
equation. We proceed by integration (one Picard iteration though ρI(t) in the integral is
still unknown) starting from the known state ρ(t0) of the non interacting system:

ρI(t) = ρ(t0)− i
∫ t

t0

dt′L1(t′)ρI(t′). (1.36)
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Reinserting this expression for ρI(t) into the right part of the Liouville-von Neumann
equation (1.22) results in:

Integro-differential form of the Liouville-von Neumann equation

ρ̇I(t) = −iL1(t)ρ(t0)−
∫ t

t0

dt′L1(t)L1(t′)ρI(t′). (1.37)

I want to remark, that this equation in it's present form evaluated in the system eigen-
basis is similar to the Red�eld-Bloch equation [34], which assumes t0 = 0 and the density
operator to be only dependent on it's present state ρS(t′) = ρS(t) (Markovian property).
The drawback of having a more complex structure in the equation above with having

an additional integral now is compensated by the fact, that errors in the unknown density
operator in the integral are alleviated by the square of the perturbation Hamiltonian that
is supposed to be small.
In the spirit of perturbation theory a treatment in higher orders is possible by further

expansion of equation 1.36 through recursively inserting the equation of motion of the
density matrix.

ρI(t) = ρ(t0)− i
∫ t

t0

L1(t′)ρ(t0)dt′ −
∫ t

t0

∫ t′

t0

L1(t′)L1(t′′)ρ(t′′)dt′′dt′ (1.38)

At this point another method shall be mentioned that is to a certain extent similar to
the later discussed self-consistent Born approximation. Main idea is to decompose the
Liouville-von Neumann equation for the reduced density operator in an unperturbed part
and one corresponding to a self-energy term, which inherits an operator for whom a new
equation of motion is de�ned. This results in an in�nite hierarchy of equations that leads
to the so-called hierarchical master equation approach [39, 40, 41].

1.3.3 Transformation back to Schrödinger picture

Now that we have expanded the integral of ρ to second order in H1 we go back to the
Schrödinger picture:

ρS(t) = e−iL0(t−t0)ρI(t),

ρ̇S(t) = −iL0ρ
S(t) + e−iL0(t−t0)ρ̇I(t),

ρ̇S(t) = −iL0ρ
S(t)− ie−iL0(t−t0)L1(t)ρ(t0)−

∫ t

t0

dt′e−iL0(t−t0)L1(t)L1(t′)ρI(t′). (1.39)
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1.3.4 Trace over bath

Next we want to trace out the bath because we are interested in the system. So we get the
reduced (modi�ed) density operator

σ(t) := Trb

{
ρ(t)

}
=

{
σs(t) η = +1

asjσs(t) η = −1
(1.40)

and the equation (1.39) turns into:

σ̇(t) = −iTrb

{
L0ρ

S(t)
}
− iTrb

{
e−iL0(t−t0)L1(t)ρ(t0)

}
−
∫ t

t0

dt′Trb

{
e−iL0(t−t0)L1(t)L1(t′)ρI(t′)

}
.

(1.41)

1.4 Born and Markov approximation

1.4.1 Born approximation

To evaluate the trace we assume that the density operator is separable at all times t, thus it

can be written as a tensor product of a system and a bath part ρ(t) = Trb

{
ρ(t)

}
⊗ ρb(t) =

σ(t)⊗ ρb(t) (Born approximation). That means, we assume, that there are no en-
tangled states of bath and system for any time, which is reasonable because due to the
thermalization of the bath, dissipation occurs and any entanglement would break down in-
stantly due to the very short decoherence times. The interesting fact in this approximation
is that the feature of dissipation or open quantum system is introduced just by claiming
the density operator to be separable.
This thermalization implies that the reduced density operator of the bath is constant

over time ρb(t) = ρb = 1
Z
eβ(Hb−µα). Here we also have introduced the bath potential µα

that isn't per-se de�ned in the non-equilibrium situation.
The separability of the density operator holds also in the interaction picture (1.35):

ρI(t) =
(
eiHs(t−t0)σS(t)e−iHs(t−t0)

)
⊗
(
eiHb(t−t0)ρSb (0)e−iHb(t−t0)

)︸ ︷︷ ︸
=ρb

= σI(t)⊗ ρb (1.42)

Features of the reduced density operator concerning entanglement[42]

• The reduced density operator for an entangled pure ensemble is a mixed ensemble.

• A bipartite pure state ρ is entangled if and only if its reduced states are mixed rather
than pure.

• There is the Positive Partial Transpose (PPT) condition (also known as Peres�Horodecki
criterion) to �nd out whether a mixed state is entangled or not in the 2×2 and 2×3
dimensional case.
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For non-Markovian systems that do not inherit such rapidly decaying correlations in the
bath as assumed in this work, their is a generalization of the Born approximation. Instead
of restricting the setup to product states and excluding entanglement one can de�ne a more
general projection superoperator P that includes correlations between system and bath by
projecting onto the relevant part of the full density operator. This approach can be cast
in a more general Lindblad form that allows to treat also highly non-Markovian quantum
processes in structured environments [43, 34, 44].

1.4.2 Master Equation for the reduced density operator in the

Schrödinger picture

For the �rst term of the equation (1.41) we decompose the non interacting Hamiltonian
and use that system and bath Hamiltonian act on only one factor of the total density
operator

Trb

{
L0ρ(t)

}
= Trb

{
[Hs, σ(t)]ρb

}
+ Trb

{
σ(t)[Hb, ρb]

}
(1.43)

= [Hs, σ(t)] Trb

{
ρb

}
︸ ︷︷ ︸

=1

+σ(t)Trb

{
[Hb, ρb]︸ ︷︷ ︸

=0

}
. (1.44)

and get

Trb

{
L0ρ(t)

}
= [Hs, σ(t)]. (1.45)

For the second term we �rst proof the following identity

Trb

{
e−iL0(t−t0)A

}
= Trb

{
e−iLs(t−t0)e−iLb(t−t0)A

}
= e−iLs(t−t0)Trb

{
A
}

(1.46)

We use that the commutator [Hs, Hb] is zero and let the bath superoperator vanish due to
the cyclic invariance ot the bath trace for bath operators. So now we get for the second
term using the separability of ρ at time t0:

−iTrb

{
e−iL0(t−t0)L1(t)ρ(t0)

}
= −ie−iLs(t−t0)Trb

{
[HI

1 (t), σ(t0)ρb]
}

(1.47)

Now we look at the representation of the interaction HamiltonianH1 (1.2) in the interaction
picture (1.35)

Hb
1(t) = eiLb(t−t0)e−0+|t|

∑
µs

sasµD
s
µ = e−0+|t|

∑
µs

sasµD
s
µ(t) (1.48)

Ds
µ(t) :=

∑
αkτ

tsαµkτd
s
αkτ (t)δτµ,τ
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and use it to evaluate the �rst summand of the commutator

Trb

{
HI

1 (t)σ(t0)ρb

}
= e−0+|t|

∑
αµkτs

stsαµkτa
s
µ(τµ)σ(t0) Trb

{
dsαkτ (t)ρb

}
︸ ︷︷ ︸

=〈dsακτ 〉=0

= 0 (1.49)

We get the same result for the other summand of the commutator. So the second term
vanishes.
We remain with the third term of equation (1.41), an integral, where we also apply the

just noted identity and use that the time evolution for the density matrix just happens in
the system space (see equation 1.42).

Trb

{
e−iL0(t−t0)L1(t)L1(t′)ρI(t′)

}
= Trb

{
e−iLs(t−t0)L1(t)L1(t′)eiLs(t

′−t0)ρS(t′)
}

(1.50)

To deal with the bath trace we go from the interaction picture with the Hamiltonian H0

to a bath interaction picture with the Hamiltonian Hb:

Lb1(t) := eiLb(t−t0)L1 = e−iLs(t−t0)L1(t) (1.51)

Hb
1(t) := eiLb(t−t0)H1 (1.52)

By applying several times equation 1.34 we get

e−iLs(t−t0)L1(t)L1(t′)eiLs(t
′−t0)]ρS(t′) (1.53)

= Lb1(t)e−iLs(t−t
′+t′−t0)L1(t′)eiLs(t

′−t0)ρS(t′) = Lb1(t)e−iLs(t−t
′)Lb1(t′)ρS(t′) (1.54)

Thus having

Master equation for the reduced density operator in the
Schrödinger picture

σ̇(t) = −i[Hs, σ(t)]−
∫ t

t0

dt′Trb

{
Lb1(t)Gs(t− t′)Lb1(t′)ρS(t′)

}
(1.55)

Gs(t− t′) := e−iLs(t−t
′) (1.56)

Gs(t− t′) := e−iHs(t−t
′) (1.57)
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1.4.3 Evaluation of the commutators

Next we evaluate the superoperator induced commutators in the trace

{. . . } = [Hb
1(t), Gs(t− t′)[Hb

1(t′), ρ(t′)]G†s(t− t′)] (1.58)

= Hb
1(t)Gs(t− t′)Hb

1(t′)ρ(t′)G†s(t− t′)︸ ︷︷ ︸
=:T1

−Hb
1(t)Gs(t− t′)ρ(t′)Hb

1(t′)G†s(t− t′)︸ ︷︷ ︸
=:T2

(1.59)

−Gs(t− t′)Hb
1(t′)ρ(t′)G†s(t− t′)Hb

1(t)︸ ︷︷ ︸
=:T3

+Gs(t− t′)ρ(t′)Hb
1(t′)G†s(t− t′)Hb

1(t)︸ ︷︷ ︸
=:T4

(1.60)

= T1 − T3 + (T1 − T3)‡ = T1 − T3 + h.c.(‡) (1.61)

Here it is of importance that the Hermitian conjugate is performed due to the previously
introduced (see section 1.1.3) modi�ed dagger operator ‡, that doesn't change the modi�ed
density operator σ̃.
To evaluate T1 we use again the representation of Hb

1 (see equation (1.48) and insert it
in T1.

Trb

{
T1

}
= Trb

{
Hb

1(t)Gs(t− t′)Hb
1(t′)ρ(t′)G†s(t− t′)

}
(1.62)

= e−0+(|t|+|t′|)
∑
µκrs

rsTrb

{
arµD

r
µ(t)Gs(t− t′)asκDs

κ(t
′)ρ(t′)G†s(t− t′)

}
(1.63)

Now we get a minus sign from the anti-commuting fermionic operators when separating
system and bath operators. As we are interested in the situation when the interaction is
switched on (|t| ≈ 0) we can simplify the time argument of the adiabatic convergence term
to (|t|+ |t′|)→ |t− t′|.

Trb

{
T1

}
= −e−0+|t−t′|

∑
µκrs

rsTrb

{
Dr
µ(t)Ds

κ(t
′)ρb

}
arµGs(t− t′)asκσ(t′)G†s(t− t′) (1.64)

= −e−0+|t−t′|
∑
µκrs

rs
〈
Dr
µ(t)Ds

κ(t
′)
〉
arµGs(t− t′)asκσ(t′)G†s(t− t′) (1.65)

The time dependence of the operators in the correlation function can be transferred to one
operator since the bath Hamiltonian is time independent and commutes with ρb. Again
we use the invariance of the partial trace under cyclic permutation of bath operators. The
resulting bath correlation function is now only dependent on the time di�erence since the
starting point of the Heisenberg evolution t0 has dropped out.〈

Dr
µ(t)Ds

κ(t
′)
〉

= Trb

{
eiHb(t−t0)Dr

µe
−iHb(t−t0−(t′−t0))Ds

κ e
−iHb(t−t0)ρb︸ ︷︷ ︸

[Hb,ρb]=0]

}
(1.66)

=
〈
Dr
µ(t− t′)Ds

κ

〉
(1.67)



1 Born-Markov master equation approach 21

We now evaluate this bath correlation function - see equation (1.3) for the de�nition of
Ds
µ. As particle number, momentum and spin are conserved in the bath Hamiltonian (no

superconducting), we have δs,r, δk,k′ respectively δτ,τ ′ ⇒ δµτ ,κτ . As di�erent baths are not
correlated we also have δα,α′ The primes refer to the second operator Dκ.〈

Dr
µ(t− t′)Ds

κ

〉
=
∑
αkτ
α′k′τ ′

tsαµkτ t
s
α′κk′τ ′

〈
dsαkτ (t− t′)dsα′k′τ ′

〉
δα,α′δk,k′δτ,τ ′δµτ ,κτ δτ,µτ (1.68)

Cs
µκ(t− t′) := e−0+|t−t′|

〈
Ds
µ(t− t′)Ds

κ

〉
δα,α′δk,k′δτ,τ ′ (1.69)

With a minus sign resulting from the term rs we get:

Trb

{
T1

}
=
∑
µκs

Cs
µκ(t− t′)asµ ·

(
Gs(t− t′)asκσ(t′)

)
(1.70)

For T3 we proceed analogously,

Trb

{
T3

}
:= Trb

{
Gs(t− t′)Hb

1(t′)ρ(t′)G†s(t− t′)Hb
1(t)
}

(1.71)

= e−0+(|t|+|t′|)
∑
µκrs

rsGs(t− t′)Trb

{
asκD

s
κ(t
′)ρbσ(t′)G†s(t− t′)arµDr

µ(t)
}

(1.72)

We use the same argument for the adiabatic convergence term and the conservation of
particle number δs,r. But in contrast to T1 the system operator σ has to interchange
position with a bath operator thus it's commutation relation, which isn't speci�ed yet, is
of importance. As mentioned in section (1.1.3), we assume here the operator σ to be either
of fermionic σ := asjσs, (η = −1) or of bosonic σ := σs, (η = +1) type, with σs denoting
the actual reduced density matrix of the system. Depending on this statistical behaviour
we get the sign factor η. Using the cyclic permutation invariance in the bath trace and
equation (1.69) we end up with

. . . = −ηe−0+|t−t′|
∑
µκrs

rsTrb

{
Ds
κ(t
′)ρbD

r
µ(t)
}

︸ ︷︷ ︸
=〈Drµ(t)Dsκ(t′)〉

Gs(t− t′)asκσ(t′)G†s(t− t′)arµ (1.73)

Trb

{
T3

}
= η

∑
µκs

Cs
µκ(t− t′)

(
Gs(t− t′)asκσ(t′)

)
· asµ (1.74)

Now with both terms T1 (1.70) and T3 the integral in equation (1.55) can be summarized
by a commutator [ · , · ]− respectively an anticommutator [ · , · ]+∫ t

t0

dt′Trb

{
T1 − T3

}
=
∑
µκs

∫ t

t0

dt′Cs
µκ(t− t′)

[
asµ,Gs(t− t′)asκσ(t′)

]
−η
. (1.75)

Now we move the integral and the summation over κ into the right side of the commutator
and de�ne this as the correlation operator Asµσ(t′)(t) which will make notation more com-
pact as our next approximations will all act on this operator. The resulting equations are
presented in the following box and will serve as starting point for the next approximations:
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Born master equation

σ̇(t) = −iLsσ(t)−
∑
µs

[
asµ, A

s
µσ(t′)(t)

]
−η

+ h.c.(‡) (1.76)

Asµσ(t′)(t) =

∫ t

t0

dt′
∑
κ

Cs
µκ(t− t′)Gs(t− t′)asκσ(t′) (1.77)

Cs
µκ(t− t′) = e−0+|t−t′|

∑
αkτ

tsαµkτ t
s
ακkτ 〈dsαkτ (t− t′)dsαkτ 〉

1.4.4 Bath correlation function for non-interacting thermally

equilibrated leads

Now we want to have a closer look at the previously introduced bath correlation function

Cs
µκ(t) =

∑
α

Cs
αµκ(t) (1.78)

Cs
αµκ(t) = e−0+|t|

∑
kτ

tsαµkτ t
s
ακkτ 〈dsαkτ (t)dsαkτ 〉 (1.79)

We can assume the baths to stay in thermal equilibrium since the coupling via the system
to the other bath is assumed to be small. Thus we can assign them a temperature and a
potential µα and describe the reduced bath density operator

ρb =
e−β(Hb−µαN̂)

Zleads

(1.80)

in the grand-canonical ensemble with the grand-canonical partition function Zleads as nor-
malization factor and the particle number operator N̂ =

∑
αkτ d

†
αkτdαkτ =

∑
αkτ n̂αkτ .

For the correlation function of the bath operators we can now evaluate the expectation
value in the eigenbasis of the bath Hamiltonian Hb|n〉 = εn|n〉. (Note, that the cre-
ation/annihilation bath operators dsαkτ in the interaction picture just depend on the time
di�erence t since t0 dropped out.)

〈dsαkτ (t)dsαkτ 〉 = Trb

{
dsακτ (t)d

s
ακτρb

}
=
∑
n

〈n|e
−β(Hb−µαN̂)

Zleads

eiHbtdsαkτe
−iHbtdsαkτ |n〉 (1.81)

Now we use the following commutation relation of the fermionic bath operators with func-
tions of the bath Hamiltonian Hb:

[dsαkτ , Hb] =
∑
k′α′τ ′

[dsαkτ , εk′n̂α′k′τ ′ ] = −sεkdsαkτ · δαα′δkk′δττ ′

dsαkτ · f(Hb) = f(Hb − sεk) · dsαkτ (1.82)
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So we get for the correlation function

〈dsαkτ (t)dsαkτ 〉 = eisεkt
∑
n

〈n|e
−β(Hb−µαN̂)

Zleads

dsαkτd
s
αkτ︸ ︷︷ ︸

n̂sαkτ

|n〉 = eisεkt〈n̂sαkτ 〉 (1.83)

Using the invariance under cyclic permutation of the trace and equation (1.82) we get

〈n̂sαkτ 〉 =
1

Zleads

∑
n

〈n|dsαkτe−βHdsαkτ |n〉 (1.84)

=
1

Zleads

∑
n

〈n|e−β(H−s(εk−µα)) dsαkτd
s
αkτ︸ ︷︷ ︸

=1−dsαkτd
s
αkτ

|n〉 (1.85)

〈n̂sαkτ 〉 = e−sβ(εk−µα)(1− 〈n̂sαkτ 〉) (1.86)

So we have derived the generalized Fermi function

nsα(εk) := 〈n̂sαkτ 〉 =
1

1 + esβ(εk−µα)
(1.87)

Now with inserting a delta distribution to transform the sum into an integral over the real
axis

∑
k ⇒

∫
dωδ(εk − ω), we introduce the convenient spectral density function Ssαµκ(ω)

that we call in combination with the generalized Fermi function nsα(ω) the bath density
function Γsαµκ(ω) and can express the bath correlation function for a bath α as follows:

Bath Correlation Function
for a non-interacting thermally equilibrated lead

Cs
αµκ(t) = e−0+|t|

∑
kτ

tsαµkτ t
s
ακkτe

isεktnsα(εk) (1.88)

= e−0+|t|
∫ ∞
−∞

dω

2π
Γsαµκ(ω)eisωt (1.89)

Γ+
αµκ(ω) = n+

α (ω)Γακµ(ω), Γ−αµκ(ω) = n−α (ω)Γαµκ(ω) (1.90)

Γαµκ(ω) = 2π
∑
kτ

tαµkτ t
∗
ακkτδ(εk − ω) (1.91)

F [Cs
αµκ(t)] = 2

∑
kτ

tsαµkτ t
s
ακkτ

0+

(sω − sεk)2 + (0+)2︸ ︷︷ ︸
0+→0−−−→πδ(ω−εk)

nsα(ω) (1.92)

(
Γsαµκ(ω)

)†
= Γsακµ(ω), ∀ω ∈ R (1.93)

The bath density function Γsαµκ can be interpreted as the Fourier transform (s dependent
integral kernel eisωt) of the bath correlation function without the adiabatic switch-on factor.



1 Born-Markov master equation approach 24

A Fourier transform including the adiabatic switch-on term would anyway result in a
Lorentz peak converging to a delta distribution.
As we will see later from the Markov approximation we will consider times t > 0, thus

we can combine the adiabatic switch on factor with omega: ω+ = ω + i0+.

1.4.5 Decay behaviour of the bath correlation function in the

wide band limit

We want to get an analytic estimation for the time-dependent bath correlation function in
the wide band limit (Γsαµκ(ω) = Γsαµκn

s
α(ω)) assuming the spectral density function Ssαµκ for

each bath α to be constant. Since the integral of the generalized Fermi function diverges
in one direction we introduce the convergence factor e−η|ω|, with taking the limit η → 0+

in the end.

Cs
µκα(t) = Γsαµκ

∫ ∞
−∞

dω

2π

eisωt

1 + esβ(ω−µα)
= Γsαµκ

∫ ∞
−∞

dω

2π

eiωt−η|ω|

1 + eβ(ω−sµα)
(1.94)

This integral of the form ∫ ∞
−∞

dω
eiωt−η|ω|

1 + eβω
= 2πi

∑
ω0

Res(f, ω0) (1.95)

can be solved using the residue theorem, assuming that the integral in the upper complex
plain ω = Reiϕ, ϕ ∈ [0, π] vanishes for large R. The complex roots of the denominator in
the upper complex plane are the Matsubara frequencies ω0 = i2π

β
(n+ 1

2
), n ∈ N0. A Taylor

expansion of the denominator around ω0 leads to:

1 + eβω = 1 + eβω0︸ ︷︷ ︸
=0

+β eβω0︸︷︷︸
=−1

(ω − ω0) +
β2

2!
(−1)(ω − ω0)2 + · · · = (ω − ω0)(−β . . . ) (1.96)

So the residues of the integrand f can be calculated

Res(f, ω0) = lim
ω→ω0

(ω − ω0)
eiωt−η|ω|

1 + eβω
(1.97)

= lim
ω→ω0

eiωt−η|ω|

−β − β2

2!
(ω − ω0)− . . .

(1.98)

= −e
iω0t−η|ω0|

β
= −e

− 2π
β

(n+ 1
2

)t−η|ω0|

β
(1.99)

Thus the solution yields∫ ∞
−∞

f(ω)dω = −2πi
∑
n≥0

e−
2π
β

(n+ 1
2

)t

β
= −2πi

β
e−

πt
β

1

1− e−
2πt
β

= −πi
β

1

sinh(πt
β

)
(1.100)

So we have as a result for the bath correlation function in the wide band limit
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Decaying behaviour of the bath correlation function in the wide
band limit

Cs
µκα(t) ≈ 1

sinh(πt
β

)
(1.101)

So we indeed see, that the bath correlation function is strongly peaked around t = 0
and decays with approximately Γ

t
. Figure 1.4.5 illustrates the relaxation of a random

initial state calculated in the Born Markov master equation approach in contrast to the
corresponding bath correlation function. The fact that this function is peaked around zero
will allow to regard the system as Markovian and perform further approximations.

Laplace transform of the bath correlation function in the wide band limit

For the Laplace transform of the bath correlation function we can use the dispersive rela-
tion. We only have to take care of the sign factor s since it was used to de�ne the Fourier
transform of Cs

αµκ(t)

Cs
αµκ(ω) =

∫ ∞
0

dteiωtCαµκ(t) =

∫ ∞
−∞

dω′

2π
Γsαµκ(ω

′)

∫ ∞
0

dteiωtei(sω
′+i0+)t

=

∫ ∞
−∞

dω′

2π
Γsαµκ(ω

′)
i

ω + sω′ + i0+

Applying again the wide band limit, assuming the spectral distribution to be �at and
constant reveals with some calculations (see also 4.2)

Laplace transform of the Bath correlation function in the wide
band limit

Cs
αµκ(ω) = Γ(s)

αµκ

(
1

2
nsα(−sω) +

i

2π
Re

[
Ψ

(
1

2
+ i

β(ω + sµα)

2π

)])
(1.102)

with Ψ(z) the digamma function.

1.4.6 Markov approximation

If we look at the correlation operator in the Born master equation (1.77) in it's present form,
we see that the (modi�ed) density operators is involved at di�erent times (t′) (convolution),
thus making it's evaluation quite complicated.

Asµσ(t′)(t) =
∑
α

∫ t

t0

dt′Cs
αµκ(t− t′)e−iHs(t−t

′)asκσ(t′)eiHs(t−t
′)
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time t
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Time evolution of random start density matrix in BM approximation
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Bath correlation function

|Re(C(t))|
|Im(C(t))|
1/ sinh(t)

quantum dot: U = 10, β = 10, Γ = 0.5, ξ0 = 12, Vb = 4

Figure 1.1: In the upper panel there is given the calculated time evolution of the occupation
densities of a strong interacting quantum dot in the Born-Markov approach.
In the second panel the calculated correlation time C(t) and is it's envelope an
inverse sinus hyperbolicus is plotted.
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Our aim is to simplify this time dependency and get a correlation operator that contains
the (modi�ed) density operator just at one time.

Cs
αµκ(t) = e−0+|t|

∑
kτ

tsαµkτ t
s
ακkτe

isεktnsα(εk) (1.103)

= e−0+|t|
∫ ∞
−∞

dω

2π
Γsαµκ(ω)eisω

+t (1.104)

Thus we perform a variable transformation as most of the factors just depend on the
time di�erence t− t′

τ := t− t′, τ ∈ (t− t0, 0), dt′ = −dτ (1.105)

and we set t0 = −∞ as we have switched on the interaction adiabatically at that time.
After switching the integration limits we have for the correlation operator:

Asµσ(t−τ)(t) =
∑
ακ

∫ ∞
0

dτCs
αµκ(τ)Gs(τ)asκσ(t− τ) (1.106)

This equation will be the starting point for two slightly di�erent approximations, the �rst
one the so called Markov approximation, whereas later we will develop a self-consistent
approach from this equation (see section 2.1). Main idea of the Markov approximation is
to claim that the dynamics σ̇(t) of the (modi�ed) density operator σ are just depending
on it's present state σ̇(t) ∝ σ(t) with no time propagator Gs acting on it anymore. To see
the details we write out the propagators and insert a unity operator 1 = eiHsτe−iHsτ at the
left side of σ:

Asµσ(t−τ)(t) =

∫ ∞
0

dτCs
αµκ(τ)e−iHsτasκe

iHsτ e−iHsτσ(t− τ)eiHsτ︸ ︷︷ ︸
=Gs(τ)U(t−τ,−∞)ρ(−∞)

(1.107)

The Markov approximation states that

Gs(τ)σ(t− τ) ≈ σ(t)
(

= U(τ)U(t− τ,−∞)︸ ︷︷ ︸
U(t,−∞)

σ(−∞)
)

(1.108)

Note that due to the Born approximation we can always factorize our full density operator
ρ into a system and a constant bath part, but the time evolution of the whole operator
cannot be described by a restriction just to the system. The crucial di�erence of full
evolution and system evolution is the interplay with the bath that for instance allows to
change the occupation densities in the system which in an isolated environment would
remain constant. As this coupling to the bath is assumed to be weak (weak coupling
limit [35]) the interaction with the bath happens in such a slow way, that for small values
of τ we can neglect it.
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Secondly that approximation is justi�ed for bigger values of τ since the bath correlation
term in the integral in equation (1.77) is sharply peaked at τ = 0 (see section 1.4.5), thus
cancelling eventual errors.
The Markovian property of the system can be explained physically by the weak coupling

and the thermal stabilization of the baths. Any excitation that enters a bath dissipates on
a much shorter time-scale than the interaction time scale. So the baths cannot give any
feedback.
Here we summarize the formulas for the Born-Markov master equation:

Born-Markov Master Equation

σ̇(t) =− iLsσ(t)−
∑
µs

[
asµ, A

s
µσ(t)(t)

]
−η

+ h.c.(‡) (1.109)

Asµσ(t)(t) =

∫ ∞
0

dτ
∑
ακ

Cs
αµκ(τ)e−iHsτasκe

iHsτσ(t)

Cs
αµκ(τ) =

∫ ∞
−∞

dω

2π
Γsαµκ(ω)eisω

+τ

Note that this derivation is done also for the modi�ed density operator σ̃ (dependent on
η and ‡). The adiabatic switch-on parameter is hidden in ω+ = ω + i0+.
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1.5 Evaluation of the Born-Markov master equation

1.5.1 Steady state

The Born-Markov master equation gives us a formula for the time derivative of the reduced
system matrix σs (η = +). Our main goal is to calculate the steady state σ of the quantum
system. As we assume our setup to be ergodic we can say that we are in steady state
at t → ∞. The property of a steady state σ̇ = 0 will help us to develop a closed set of
equations to solve it.
The following box contains the formulas to which we will refer later when calculating

the steady state and the steady state current.

Steady state in the Born-Markov master equation for the reduced
system density operator σs

0 = −iLsσ −
∑
µs

[
asµ, A

s
µσ

]
− + h.c.(†) (1.110)

Asµσ =

∫ ∞
0

dτ
∑
ακ

Cs
αµκ(τ)e−iHsτasκe

iHsτσ (1.111)

Asµσ =

∫ ∞
−∞

dω

2π

∑
ακ

Γsαµκ(ω) (Gs(sω)asκ)σ (1.112)

There is also an alternative representation of the correlation operator Asµσ using the
Fourier representation of the bath correlation function and containing the Laplace trans-
form of the time propagator Gs(sω). Note that the sign factor s is present now in the
argument of the superpropagator.∫ ∞

0

dτCs
µκ(τ)Gs(τ) =

∫ ∞
0

dτ

∫ ∞
−∞

dω

2π
Γsµκ(ω)eisω

+τGs(τ) (1.113)

=

∫ ∞
−∞

dω

2π
Γsµκ(ω)

∫ ∞
0

dτeisω
+τGs(τ)︸ ︷︷ ︸

Gs(sω)

(1.114)
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1.5.2 Evaluation in system eigenbasis

Now we want to evaluate this Born-Markov master equation for the reduced system density
operator σs in the system eigenbasis consisting of eigenstates Hs|a〉 = Ea|a〉 using the
notation: σab := 〈a|σs|b〉. We start by rewriting the steady state solution:

0 = −iLsσ −
∑
µκs

∫ ∞
−∞

dω

2π
Γsµκ(ω)

[
asµ,

∫ ∞
0

dτeisω
+τe−iHsτasκe

iHsτσ

]
+ h.c.(†) (1.115)

To derive an equation of the form σ̇ = Kσ we insert unity operators 1 =
∑

a |a〉〈a| on the
left and right side of the density operator σs.
The commutator then becomes:

∑
ab

[
asµ,

∫ ∞
0

dτei(sω−Hs+i0
+)τasκe

iEaτ |a〉σab〈b|
]

(1.116)

=
∑
ab

[
asµ,

i

sω −Hs + Ea + i0+
asκ|a〉σab〈b|

]
(1.117)

= i
∑
abcd

|c〉 〈c|asµ|d〉︸ ︷︷ ︸
=:Qsµ,cd

(sω − (Ed − Ea)︸ ︷︷ ︸
Eda

+i0+)−1 〈d|asκ|a〉︸ ︷︷ ︸
Qsκ,da

σab〈b| (1.118)

−|d〉(sω − Eda + i0+)−1Qs
κ,daσabQ

s
µ,bc〈c| (1.119)

Here we have introduced the handy Q-matrices Qs
κ which represent the eigenbasis rep-

resentation of the system annihilators/creators Qs
κ,da := 〈d|asκ|a〉. We still have to eval-

uate the frequency integral in equation (1.115), that will be a function of the system
energy gap Eda. We label this function F s

µκ and note that all information about the bath
and applied potentials are encoded in this expression via the spectral density function
Ssαµκ and the generalized Fermi functions nsα both combined in the bath density function
Γsαµκ(ω) = Ssαµκ(ω)nsα(ω).

Born-Markov master equation in the system eigenbasis

0 = −iLsσ −
∑
µκs
abcd

(F s
µκ)da

(
Qs
µ,cdQ

s
κ,daσab|c〉〈b| −Qs

κ,daσabQ
s
µ,bc|d〉〈c|

)
+ h.c.

(1.120)

(F s
µκ)da =

∑
α

F s
αµκ(Eda), F s

αµκ(Eda) = i

∫ ∞
−∞

dω

2π

Ssαµκ(ω)nsα(ω)

sω − Eda + i0+
(1.121)
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1.5.3 E�ective bath coupling in the wide band limit

We call this function F s
αµκ the e�ective bath coupling function as it inherits all information

about the bath and is just dependent on the systems energy di�erences ∆E. Through-
out this work we assumed the spectral density function S(ω) occurring in the integral to
be �at respectively constant. We label this coupling constants with Γ

(s)
αµκ without argu-

ment. In this so-called wide band limit the integral has an analytic solution derived in the
appendix 4.2.

F s
α(E) = iΓαµκ

∫ ∞
−∞

dω

2π

nsα(ω)

sω − E + i0+
=

Γαµκ
2

(
nsα(sE) +

i

π
Re

[
Ψ

(
1

2
+ i

β(E − sµα)

2π

)])
(1.122)

with Ψ(z) the digamma function, see �gure 4.1.

1.6 Secular Approximation and Lindblad formalism

In this section we want to discuss the issue how it is guaranteed that we have indeed a
the steady state solution, which represents a valid reduced density matrix of our system.
The demanded properties imply certain restrictions on our Born-Markov master equation
which represents the evolution of some starting state. If this state at t0 was valid then it's
su�cient to demand that this evolution preserves these features. So if the Born-Markov
master equations conserves trace, hermiticity and positivity of any given initial state, then
the steady state, which is reached for t→∞ will be valid.
A closer look at the the given equations let us recognize that hermiticity and trace preser-

vation are already guaranteed, compare [33]. The challenging part is to check for positivity.
This will lead us to the now discussed secular approximation that is the restriction neces-
sary to transform the Born-Markov master equation into the Lindblad formalism, which
itself embodies the generalization such valid dynamical maps [45].

1.6.1 Lindblad formalism

Here I give the de�nition of a Lindblad form following [33]:

Definition 1.1
(Lindblad Form) A master equation of Lindblad form to describe the time evolution of a
quantum system represented by the density operator ρ has the following structure:

ρ̇(t) = −i[H, ρ(t)] +
N2−1∑
αβ=1

γαβ

(
Lαρ(t)L†β −

1

2

{
L†βLα, ρ(t)

})
(1.123)

where the hermitian operator H = H† can be interpreted as an e�ective Hamiltonian and
γαβ = γ∗βα is a positive semi-de�nite matrix, that means it ful�ls

∑
αβ x

∗
αγαβxβ ≥ 0 for
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all elements x of the according Hilbert space (or, equivalently that the spectrum of (γαβ) is
non-negative.

As mentioned in the introduction of the section the Lindblad form is the generalized form
of a Markovian master equation that guarantees the conservation of trace, hermiticity and
positivity of the evolved density operator. Our aim will it now be to match our Born-
Markov master equation into a Lindblad form to gain these desired features.

1.6.2 Secular Approximation

In order to transform equation (1.120) to Lindblad form we write out the hermitian con-
jugate, where we can relabel the eigenbases to match the �rst expression2:

σ̇s(t) = −iLsσs(t)−
∑
µκs
abcd

F s
µκ(Eda)

(
Qs
µ,cdQ

s
κ,daσab −Qs

κ,daσabQ
s
µ,bc

)
(1.124)

+ F s
µκ(Ebc)

(
σabQ

s
κ,bcQ

s
µ,cd −Qs

µ,daσabQ
s
κ,bc

)
(1.125)

From this we recognize that if the energy di�erences Eda and Ebc are the same we can
condense the bath coupling functions F and get

σ̇s(t) = −iLsσs(t) +
∑
µκs
abcd

(
F s
µκ(Eda) + F s

µκ(Ebc)
)
Qs
κ,daσabQ

s
µ,bcδEdaEbc (1.126)

−
(
F s
µκ(Eda)Q

s
µ,cdQ

s
κ,daσab + F s

µκ(Ebc)σabQ
s
κ,bcQ

s
µ,cd

)
δEdaEbc (1.127)

Now we decompose the function F s
µκ(ω) = N s

µκ(ω) + iΛs
µκ(ω) in it's real and imaginary

part. The �rst expression in the last equation can be expressed by the real part, whereas
for the second expression we get an anticommutator for the real and a commutator for
the imaginary part, which is added as so-called Lamb-Shift Hamiltonian to the Liouvillian
before the sum.

σ̇s(t) = −i[Hs +HLS, σs(t)] (1.128)

+ 2
∑
µκs
abcd

N s
µκ(Eda)

(
Qs
κ,daσabQ

s
µ,bcδEdaEbc −

{
Qs
µ,cdQ

s
κ,da|c〉〈a|, σs(t)

})
(1.129)

HLS =
∑
µκs
acd

Λs
µκ(Eda)Q

s
µ,cdQ

s
κ,da|c〉〈a| (1.130)

2Here we have marked the dependence of the F functions from the Q-matrices in blue.
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Now we can relabel the black Q-matrix in the commutator to match the black Q-matrix
before to be able to extract them:

σ̇s(t) = −i[Hs +HLS, σs(t)] (1.131)

+
∑
µκs
abcd

= 2N s
µκ(Eda)Q

s
κ,daQ

s
µ,bcδEdaEbc︸ ︷︷ ︸

:=γda,bc

(
|d〉〈a|σs(t)|b〉〈c| −

1

2

{
|b〉〈c||d〉〈a|, σs(t)

})
(1.132)

With identifying |d〉〈a| = Lα, |b〉〈c| = L†β we have successfully transformed the master
equation to Lindblad form.
The approximation that made this possible concerned the energy di�erences: Eda = Ebc.

In connection with the �rst term in the Lindblad form this restricts the density operator to
states with the same energy. This approximation is also called random phase approximation
and can be motivated in the interaction picture by neglecting fast oscillating terms that
average to zero. The frequency of those terms is determined by the energy di�erence of
used eigenstates. For big energy gaps this approximation is justi�ed, since the frequency
is higher but for quasi-degenerate states this approach fails.
For practical application the secular approximation can be easily implemented by just

regarding those entries in the density matrix that belong to eigenstates with the same
energy, so it will be block-diagonal in all degenerate states. From here the step to a pure
rate equation representing the diagonal of the density matrix doesn't seem far but as we
will see with numerical examples in last chapter these e�ects of degenerate states play an
important role to resolve for example interference e�ects.

1.6.3 Quasi-degenerate states - non secular approximation

As mentioned in the treatment of the secular approximation the occurrence of quasi-
degenerate states that for instance may arise from slightly deviated on site-energies due
to symmetry breaking lead contacts may be a problem for the correct description of the
dynamics of such a system. In section 3.4.2 I numerically examine such a case realised by
a triple quantum dot where interference e�ects of degenerate states are fundamental for
the current characteristics.
To circumvent the possibly wrong results accomplished with the before introduced ap-

proximation one can simply not use it and solve the problem in the full con�guration
space (1.120), so we also consider density matrix elements of di�erent energies though the
block diagonal structure with respect to particle number and total spin will be still main-
tained due to the symmetry properties of the system Hamiltonian. The improvements and
drawback of a non-positive density matrix are also discussed in 3.4.2.



2 Self-consistent Born approximation

In this section I give the derivation of a more sophisticated method compared to the
Born-Markov master equation approach. The aim is to include the features of the level
broadening in our current characteristics as they are not su�cient treated in the before
introduced method. A more detailed discussion concerning level broadening is given in
section 3.1.
In this derivation I follow the papers of Jin, Li, et. al. [26], [46] and present the current

formula for an interacting quantum dot with spin dependent coupling, which has been
also discussed with a similar method of Born-Markov master equation enhanced cluster
perturbation theory (meCPT) in [32].

2.1 Self-consistent Born-Markov master equation

The main idea of this approach is to derive a self-consistent way to include the quite original
problem in the solution of the problem. This recursive approach e�ectively re-includes
higher-order diagrams that manifest for example in higher order tunnelling contributions
which in turn result in the broadening e�ect, energy shift and the interplay between the
coherent multiple tunnelling and the on-site strong Coulomb interaction that are essential
to the Kondo e�ect[26] .
Starting point is the Born master equation (1.76) for the reduced system density operator

σs where we already have set t0 = −∞, corresponding to adiabatically switching on the
interaction. For the correlation operator Asµσ we just have obtained right before applying
the Markov approximation:

Asµσ(t′)(t) =

∫ t

−∞
dt′
∑
κ

Cs
µκ(t− t′)Gs(t− t′)asκσ(t′) (2.1)

The central object of that equation is

Gs(t− t′)[asκσs(t′)] = Trb

{
G0(t− t′)[asκρbs(t′)]

}
(2.2)

For each time t′ we identify the term in the square brackets with the (reduced) modi�ed
density operator ρ̃sκ as we have introduced them in section 1.1.3 at time zero.

ρ̃sκ(0) = [asκρbs(t
′)] (2.3)

σ̃sκ(0) = Trb

{
asκρbs(t

′)
}

= asκσs(t
′) = asκU(t′,−∞)σs(−∞) (2.4)

34
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Self-consistent approach

Now we need the time evolution of this object σ̃ which is currently done just with respect
to the system. The key of the self-consistent approach is now to regard the object ρ̃ as time
evolved by the full Hamiltonian H through exchanging the superoperator Gs(τ)→ U(τ).

σ̃sκ(t) = Trb

{
ρ̃sκ(t)

}
= U(t)σ̃sκ(0) (2.5)

ρ̃sκ(t) = G(t)ρ̃sκ(0) (2.6)

σ̃sκ(t) = U(t)asκU(t′,−∞)σs(−∞) (2.7)

To indicate this generalization to the full Hamiltonian in the correlation operator A we use
the calligraphic A:

Asµ(t) =

∫ t

−∞
dt′
∑
κ

Cs
µκ(t− t′)U(t− t′)σ̃sκ(0), σ̃sκ(0) = asκσs(t

′) (2.8)

In contrast to the Markov approximation done in section 1.4.6 at the same point, we gain
here an equation that still depends on di�erent times t′. We still need to know the reduced
density matrix at all times t′ < t in order to get the system dynamics at time t. As the
bath correlation function is strongly peaked at t′ ≈ t, we postulate (similar to the Markov
approximation) that σs(t′) is not depending on the integration variable t′ but on a �xed
time t close to t.
We now perform a variable transformation τ = t− t′ and show that for t→∞ also the

density operator at time t converges into steady state σs(t)→ σ. For t→∞ we have

σs(t) = σs(t)
∣∣∣
t→∞︸ ︷︷ ︸

=σ

+
d

dt
σs(t)

∣∣∣
t→∞︸ ︷︷ ︸

=0

(t− t)︸ ︷︷ ︸
≈const.

+ . . . = σ (2.9)

Asµσ(t→∞) =

∫ ∞
0

dτ
∑
κ

Cs
µκ(τ)U(τ)asκσ (2.10)

Also in steady state we cannot solve the stationary solution σ directly since we still have
the time evolution operator U to consider that acts on the modi�ed density operator
asκσ =: Xs

κ. We now introduce this new notation for the time evolution of the modi�ed
density operator starting in steady state1 Xs

κ(τ) = U(τ)asκσ to emphasize the di�erence in
the time evolution of density and the modi�ed density operator in steady state.
Although this time evolution Xs

κ(τ) = U(τ)Xs
κ(0) is similar to the problem we wanted

to solve originally for the reduced system density operator.

σs(t) = U(t− t0)σs(t0) (?)

1Remember that we have de�ned the modi�ed density operator σ̃sκ(t) for an arbitrary starting time t′,
so σ̃sκ(t) = U(t)asκσs(t′). Note that also for t′ = 0, σ̃sκ(t) 6= asκσs(t), as the time evolution of this new
operator behaves di�erently.
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We call this a self-consistent approach since in the treatment of the problem (?) we need
the solution of the almost same problem.
One could also regard this problem as a �x point equation (x = f(x̃)), with x the solution

of the problem (?) depending on the solution of the almost same problem x̃ and solve this
recursively under the presumption x ≈ x̃ and the involved function f to be a contraction
(Banach �xed-point theorem).
To have this equation in frequency space we use the Fourier representation of the bath

correlation function Cs
µκ, swap integrals and Laplace transform the superpropagator:

Asµσ̃(t→∞) =

∫ ∞
−∞

dω

2π

∑
κ

Γsµκ(ω)U(sω)Xs
κ(0)︸ ︷︷ ︸

=Xs
κ(sω)

, Xs
κ(0) = asκσ (2.11)

The Laplace transform of the superpropagator U(ω) is de�ned by it's e�ect on the operator
space:

U(ω)A =

∫ ∞
0

dteiω
+tU(t)A (2.12)

In the next section we will concentrate on the time evolution of Xs
κ and it's evolution in

frequency space which we will need to calculate the steady state self-consistently.
The following box sums up all equations in the self-consistent Born approach. The

equations in the second half for the modi�ed density operator in frequency space are
derived in the following section.

Self-consistent Born-Markov master equation

0 = σ̇(t) = −iLsσ −
∑
µs

[
asµ,Asµσ(t→∞)

]
−

+ h.c. (2.13)

Asµσ(t→∞) =
∑
κ

∫ ∞
−∞

dω

2π
Γsµκ(ω)U(sω)Xs

κ(0)︸ ︷︷ ︸
Xs
κ(sω)

, Xs
κ(0) = asκσ (2.14)

Xs
κ(ω) =

(
i(Ls − ω) + Σ(ω)

)−1

Xs
κ(0) (2.15)

Σ(ω)(Xs
κ(ω)) :=

∑
ντ

(
{aτν , AτνX(ω)}+ {(AτνX(−ω))‡ , aτν}

)
(2.16)

AτνX(ω) =
∑
j

Cτ
νj(ω − Ls)aτjXs

κ(ω) (2.17)

(AτνX(−ω))‡ =
∑
j

Cτ
νj(Ls − ω)∗Xs

κ(ω)aτj (2.18)



2 Self-consistent Born approximation 37

2.2 Laplace transform of the Born-Markov equation

We consider now the modi�ed density operator as we want to get it's evolution in ω space.
In section 1.4.3 we have already shown that the modi�ed density operator σ̃sκ(t)

2 underlies
the same equation of motion as the system density matrix σs with the small di�erence,
that in equation 1.76 there is an anticommutator instead of a commutator and a modi�ed
dagger operator ‡ that doesn't change the modi�ed density operator σ̃.

Born-Markov equation for the modified density operator

˙̃σsκ(t) = −iLsσ̃sκ(t)−
∑
ντ

({
aτν , A

τ
νσ̃(t′)(t)

}
+
{(

Aτνσ̃(t′)(t)
)‡
, aτν

})
(2.19)

Aτνσ̃(t′)(t) =

∫ t

0

dt′
∑
j

Cτ
νj(t− t′)G(t− t′)aτj σ̃sκ(t′) (2.20)

G(t− t′) = e−iL0s(t−t′) (2.21)

Cτ
νj(t) =

∫ ∞
−∞

dω

2π
Γτνj(ω)eiτω

+t (2.22)

We want to have a look at the complex Laplace transformed Born-Markov equation.
The main transformation rules are summarized in the appendix 4.1 and their application
gives:

−iωσ̃sκ(ω)− σ̃sκ(0) = −iLsσ̃sκ(ω)−
∑
ντ

(
{aτν , Aτνσ̃(ω)(ω)}+ {

(
Aτνσ̃(ω)(−ω)

)‡
, aτν}

)
(2.23)

First we evaluate (Aτν)(ω). Starting time of the evolution is t0 = 0 when we can express
the modi�ed density operator directly by the reduced system density operator σ̃sκ(0) =
[asκσs(t

′)]. We apply the convolution theorem (see section 4.1.2) for the Laplace transform
of the appearing convolution.

(Aτνσ̃(ω))(ω) =
∑
j

∫ ∞
0

dtei(ω+i0+)t

∫ t

0

dt′Cτ
νj(t− t′)G(t− t′)aτj σ̃sκ(t′) (2.24)

=
∑
j

L
[
(Cτ

νj ◦ G) ∗ (aτj σ̃
s
κ)
]

=
∑
j

L
[
Cτ
νj(t)e

−iLst
]
· aτjL [σ̃sκ(t)]

=
∑
j

Cτ
νj(ω − Ls)

(
aτj σ̃

s
κ(ω)

)
As the superoperator is of exponential form we have applied the shifting theorem. The
resulting function of a superoperator still acts on the operator to it's right side.

2In this section we are not necessarily in steady state thus not using Xs
κ for the modi�ed density operator.
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Now we have to evaluate the Laplace transform of the Hermitian conjugated operator

and we use the identity L
[
(Aτν(t))

‡
]

:=
(
(Aτν)

‡) (ω) = (Aτν(−ω))‡. We start by switching

the sign of the argument:

Aτν(−ω) =
∑
j

Cτ
νj(−ω − Ls)aτj σ̃sκ(−ω) (2.25)

Note that there is a superoperator in the argument of the function Cτ
νj thus the applica-

tion of the adjoint operator has to be treated with care as done in theorem 1.2, stating
(Cτ

νj(Ls))† = Cτ
νj(−Ls)∗:

(Aτν(−ω))‡ =
∑
j

(
Cτ
νj(−ω − Ls)

)†
(σ̃sκ(−ω))‡ aτj (2.26)

=
∑
j

(
Cτ
νj(−ω + Ls)

)∗
L
[
σ̃sκ(t)

‡]︸ ︷︷ ︸
=L[σ̃sκ(t)]

aτj (2.27)

=
∑
j

(
Cτ
νj(Ls − ω)

)∗
σ̃sκ(ω)aτj (2.28)

Laplace transform of the Born-Markov master equation for the
modified density operator

−iωσ̃sκ(ω)− σ̃sκ(0) = −iLsσ̃sκ(ω)− Σ(ω)σ̃sκ(ω) (2.29)

Σ(ω)(σ̃sκ(ω)) :=
∑
ντ

(
{aτν , Aτνσ̃(ω)}+ {(Aτνσ̃(−ω))† , aτν}

)
(2.30)

Aτνσ̃(ω) =
∑
j

Cτ
νj(ω − Ls)aτj σ̃sκ(ω) (2.31)

(Aτνσ̃(−ω))† =
∑
j

Cτ
νj(Ls − ω)∗σ̃sκ(ω)aτj (2.32)

From this equation we receive an approximation of the Laplace transformed propagator
U(ω) that we need in the self-consistent current formula (2.50) in order to evaluate it.

Laplace transformed propagator U(ω)

U(ω)σ̃sκ(0) = σ̃sκ(ω) =
1

i(Ls − ω) + Σ(ω)
σ̃sκ(0) (2.33)
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2.3 Current from self-consistent Born-Markov master

equation in steady state

In this section we develop formulas for the current using the two presented approximations
and compare them to the Meir-Wingreen current formula [47], which describes the current
through an interacting electron system using the non-equilibrium Keldysh formalism. The
cited paper gives also a good overview of di�erent types of current formulas in the di�erent
regimes, like the Landauer-Büttiker formula in the non-interacting case.

2.3.1 Formula for the current in the Born-Markov approximation

In general the total current in the system is de�ned by the time derivative of charge
(e = 1, ~ = 1):

Q̇ =
d

dt
〈Ns〉 =

d

dt
Trs

{
Nsρbs

}
= Trs

{
Nsσ̇s

}
= 0 (2.34)

and according to the continuity equation it is equal to zero since ingoing current is equal
to the negative outgoing current. For σ̇s in the above equation we apply the Born-Markov
master equation (1.109) for the reduced system density operator σs

J(t) =
e

h︸︷︷︸
set to 1

Q̇(t) = −iTrs

{
Ns[Hs, σs(t)]−

}
−
∑
µs

Trs

{
Ns[a

s
µ, A

s
µσs(t)]− + h.c.(†)

}
(2.35)

= −iTrs

{
[Ns, Hs]−︸ ︷︷ ︸

=0

σs

}
− 2Re

(∑
µs

Trs

{
[Ns, a

s
µ]−︸ ︷︷ ︸

−sasµ

Asµσs(t)
})

= 2
∑
µ

Re
(

Trs

{
aµA

+
µσs(t)− a

†
µA
−
µσs(t)

})
= 0

If we just look at the terms of the sum according to one bath index α we get the contribution
of just that bath and thus an e�ective current. We consider the stationary current in steady
state, thus t→∞, σs(t)→ σ (1.112).

Jα = 2
∑
µ

Re
(

Trs

{
aµA

+
αµσ − a†µA−αµσ

})
(2.36)

Asαµσ(t→∞) =
∑
κ

∫ ∞
−∞

dω

2π
Γsαµκ(ω)Gs(sω)[asκσ]

So the current formula can be written as:

Jα = 2
∑
µκ

Re

(∫ ∞
−∞

dω

2π
Γ(+)
αµκ(ω)Trs

{
aµGs(ω)[a†κσ]

}
− Γ(−)

αµκ(ω)Trs

{
a†µGs(−ω)[aκσ]

})
(2.37)
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Complex conjugated of the trace

For the negative s we now want to get rid of the negative frequency argument in the
superpropagator. As we just need the real part in the formula we can also work with the
adjoint. Thus we remember (Γsαµκ)

†(ω) = Γsακµ(ω) and use that Re(A) = Re(A†)

Trs

{
a†µGs(−ω)[aκσ]

}†
=

∫ ∞
0

dtTrs

{
a†µe

i(−ω)tGs(t)[aκσ]
}†

(2.38)

=

∫ ∞
0

dtTrs

{
a†µe

−iωte−iHst[aκσ]eiHst
}†

=

∫ ∞
0

dtTrs

{
eiωte−iHst[σa†κ]e

iHstaµ

}
= Trs

{
aµ

∫ ∞
0

dteiωtGs(t)[σa†κ]
}

= Trs

{
aµGs(ω)[σa†κ]

}
Markov approximation

Applying the Markov approximation has in fact excluded the steady state from being time
propagated further so in fact we can write using the complex conjugated representation of
the second trace

Jα = 2
∑
µκ

Re
(∫ ∞
−∞

dω

2π

∫ ∞
0

dteiω
+tΓ(+)

αµκ(ω)Trs

{
aµe

−iH0ta†κe
iH0tσ

}
(2.39)

− Γ(−)
ακµ(ω)Trs

{
e−iH0ta†κe

iH0taµσ
})

Here we cannot identify greater and lesser Green's function as we will do later in the
self-consistent Born approach but we show the evaluation in the system eigenbasis

Jα = 2
∑
µκ

∑
abcd

Re
(∫ ∞
−∞

dω

2π
Γ(+)
αµκ(ω)

∫ ∞
0

dtTrs

{
ei(ω

+−Eb+Ec)t|a〉〈a|aµ|b〉〈b|a†κ|c〉〈c|σ|a〉〈a|
}

(2.40)

− Γ(−)
ακµ(ω)Trs

{
ei(ω

+−Ea+Eb)t|a〉〈a|a†κ|b〉〈b|aµ|c〉〈c|σ|a〉〈a|
})

= 2
∑
µκ

∑
abcd

Re
(∫ ∞
−∞

dω

2π
Γ(+)
αµκ(ω)

∫ ∞
0

dtTrs

{
ei(ω

+−Eb+Ec)t|a〉〈a|aµ|b〉〈b|a†κ|c〉〈c|σ|a〉〈a|
}

(2.41)

− Γ(−)
ακµ(ω)Trs

{
ei(ω

+−Ea+Eb)t|a〉〈a|a†κ|b〉〈b|aµ|c〉〈c|σ|a〉〈a|
})

The integrals is similar to the one already solved in (1.122)

F s
αµκ(Ebc) =

∫ ∞
−∞

dω

2π
Γ(±)
αµκ(ω)

∫ ∞
0

dtei(ω
+−Ebc)t =

∫ ∞
−∞

dω

2π
Γ(±)
αµκ

insα(ω)

ω − Ebc + i0+

=
Γαµκ

2

(
nsα(Ebc) +

i

π
Re
[
Ψ
(1

2
+ i

β(Ebc − µα)

2π

)])
(2.42)
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The full formula with Q-matrices is given in the box below:

Current formula for the Born-Markov master equation

Jα = 2
∑
µκ

Re
(

Trs

{
QµQ̃

†,+
κ σ

}
− Trs

{
Q̃†,−κ Qµσ

})
(2.43)

Q̃†,sκ =
∑
ab

F s
αµκ(Eab)〈a|a†κ|b〉|a〉〈b| (2.44)

Self-consistent approach

We identify the expressions in the square brackets with the reduced modi�ed density op-
erators as we have introduced them in the sections 1.1.3 and 2.1, Xs

κ(0) = [asκσ].
We can also make the self-consistent Born approximation here, exchanging the time

evolution operator Gs by U which propagates the modi�ed density operator according to
the full Hamiltonian H. The equation is given below (2.50).

Green's function description

Our next aim is to receive a formula in terms of Green's function. For the �rst trace we
de�ne

φ+
µκ(ω) := Trs

{
aµσ̃

†
κ(ω)

}
= Trs

{
aµU(ω)a†κσ

}
(2.45)

Since we just need the real part of the second trace we de�ne for it's adjoint (2.38):

φ−µκ(ω) := Trs

{
aµU(ω)σa†κ

}
(2.46)

For the two traces we have the the initial condition φsµκ(0) = Trs

{
aµ(asκσ)s

}
. Remembering

the Born approximation we can insert the trace over bath and have in time space:

φ+
µκ(t) = Tr{aµe−iLsta†κρ} = Tr{aµe−iHsta†κρeiHst} = Tr{(eiHstaµe−iHst)a†κρ} = 〈aµ(t)a†κ〉
φ−µκ(t) = Tr{aµe−iLstρa†κ} = Tr{aµe−iHstρa†κeiHst} = Tr{a†κ(eiHstaµe−iHst)ρ} = 〈a†κaµ(t)〉

Here we have used the cyclic property of the trace and note that for time evolution of
annihilation or creation operators in Heisenberg picture we have in contrast to density
operators the opposite sign in the exponential terms. We now identify these expressions
with the greater respectively lesser Green's functions:

G>
µκ(t) = −iφ+

µκ(t), G<
µκ(t) = iφ−µκ(t) (2.47)
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Now we have to go to frequency space. Since φsµκ(ω) is the Laplace transform of isGs
µκ(t)

we use the dispersive relation for the Fourier transform 4.1.3

G<,>
µκ (ω) =

∫ ∞
−∞

dte−iωtG<,>
µκ (t)

G<,>
µκ (t) =

∫ ∞
−∞

dω

2π
eiωtG<,>

µκ (ω)

φsµκ(ω) =

∫ ∞
−∞

dω′

2π

−sGs
µκ(ω

′)

ω + ω′ + i0+

with the same mapping of s for the Green's functions as given in equation (2.47): (+ ≡>).
Since φµκ(t) := φ+

µκ(t) + φ−µκ(t) = 〈{aµ(t), a†κ}〉 combined with −iΘ(t) gives the retarded
Green's function we get for the Laplace transform which implicates the theta function:

φµκ(ω) = iGr
µκ(ω) (2.48)

Formulas for the current

Jα = 2
∑
µκ

Re

(∫ ∞
−∞

dω

2π
Γ(+)
αµκ(ω)φ+

µκ(ω)− Γ(−)
ακµ(ω)φ−µκ(ω)

)
(2.49)

= 2
∑
µκ

Re

(∫ ∞
−∞

dω

2π
Γ(+)
αµκ(ω)Trs

{
aµσ̃

+
κ (ω)

}
− Γ(−)

αµκ(ω)Trs

{
a†µσ̃

−
κ (−ω)

})
(2.50)

(2.51)

We now decompose the bath density function into spectral and Fermi function

Γsαµκ(ω) = Sα(µκ)Π(s)
(ω)nsα(ω),

with Π(s) denoting a transposition of the indices for negative s. Note that for both values
of s, we get the same sequence of indices µκ in the spectral density function S since in
the above formula the indices are already twisted for negative s. So we can combine both
φ's by using n−α (ω) = 1 − n(+)

α (ω) to regain the retarded Green's function. By taking the
di�erence of the current formulas according to right and left bath we additionally get a
formula of

Jα = 2
∑
µκ

Re
[ ∫ ∞
−∞

dω

2π
Sαµκ(ω)nα(ω)

(
φ+
µκ(ω) + φ−µκ(ω)

)︸ ︷︷ ︸
=iGrµκ(ω)

−Sαµκ(ω)φ−µκ(ω)
]

(2.52)

J =

∫ ∞
−∞

dω

2π
Trµκ

{
Re
([
SR(ω)nR(ω)− SL(ω)nL(ω)

]
iGR(ω)−

[
SR(ω)− SL(ω)

]
φ−(ω)

)}
(2.53)
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In the second equation we introduced a matrix notation G for the representation of Gµκ

and interpreted the sums over both variables as trace of a matrix product.3 We assume
here the spectral function S to be adjoint according to µ and κ and can interpret the real
part of Tr{iSGr} as iTr{S(Gr−Ga)/2} since the retarded Green's function is the adjoint
of the advanced Green's function in frequency space.
For the right hand side we can apply a similar trick since adding the adjoint resembles two

times the real part. We now show that the adjoint of φ− in fact embodies the continuation
to the full Fourier transform of the lesser Green's function φ−(ω) + (φ−(ω))† = −iG<(ω).
Written out with indices we show that φ−µκ(ω) + φ−κµ(ω)† = −iG<

µκ(ω). Looking at the
second addend we have

(φ−κµ(ω))† =

(∫ ∞
0

dωeiωtφκµ(t)

)†
=

∫ ∞
0

dte−iωt〈a†µaκ(t)〉†

t→−t
= −

∫ −∞
0

dteiωt〈a†κ(−t)aµ〉 =

∫ 0

−∞
dteiωt 〈a†κaµ(t)〉︸ ︷︷ ︸

=φ−µκ(t)

which comes out to be in fact the continuation of the Laplace to the full Fourier transform.
Finally we have received the Meir-Wingreen formula [47]:

Current formula in the self-consistent Born approach in the
Meir-Wingreen representation

J =
ie

2~

∫ ∞
−∞

dω

2π
Tr {(SRnR − SLnL)(Gr −Ga) + (SR − SL)G<} (2.54)

For assuming the spectral density of both functions to be linear dependent SL = λSR
one can recast the Landauer-Büttiker type of current formula, see [26].

3S represents switched indices µκ in Sακµ to match the matrix multiplication.
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2.4 Evaluation of the self-consistent Born-Markov

master equation for a quantum dot with spin

dependent coupling

2.4.1 Model

In this section we want to analytically derive an equation for the current and the reduced
density matrix of a single interacting quantum dot weakly coupled to two non-interacting
baths, referred to as left and right bath (α ∈ {L,R}) (Anderson impurity). We use the
same Hamiltonians for the baths and the coupling as de�ned in section 1.1.2.
As each bath just couples to the one system site we have δµκ in the interaction Hamil-

tonian and the bath correlation function so there is one degree of freedom in the spin left
κ = τ ∈ {↑, ↓}. For the baths we assume to have a �at spectral density distribution (wide
band limit). Thus the spectral density function of the baths looks like4

Γsακκ(ω) = nsα(ω)2π|tακ|2
∑
k

δ(ω − εk)︸ ︷︷ ︸
=constant

= nsα(ω)Γακ (2.55)

Additionally we assume that the coupling from the baths to the quantum dot is spin
dependent, namely blocked for one spin to one bath:

ΓL↑ = ΓL↓ = ΓR↑ = Γ, ΓR↓ = 0 (2.56)

2.4.2 Formulas of the self-consistent problem

Starting point is the self-consistent Born-Markov master equation for the reduced system
density operator σs in steady state, see also equation (2.13).

4We have condensed the summation over spin τ in the summation over system site κ.
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Self-consistent Born-Markov master equation for the quantum dot
for spin dependent coupling in steady state

0 = σ̇s = −iLsσ −
∑
κs

[
asκ,Asκσ̃

]
−

+ h.c. (2.57)

Asκσ̃ =
∑
α

∫ ∞
−∞

dω

2π
Γακn

s
α(ω)U(sω)σ̃sκ(0)︸ ︷︷ ︸

σ̃sκ(sω)

, σ̃sκ(0) := [asκσ] (2.58)

ΓLκ = ΓR↑ = Γ, ΓR↓ = 0 (2.59)

σ̃sκ(ω) =
(
i(Ls − ω) + Σ(ω)

)−1

σ̃sκ(0) (2.60)

Σ(ω)(σ̃sκ(ω)) :=
∑
ντ

(
{aτν , Aτνσ̃(ω)}+ {

(
Aτµσ̃(−ω)

)‡
, aτν}

)
(2.61)

Aτνσ̃(ω) = Cτ
ν (ω − Ls)aτν σ̃sκ(ω) (2.62)

(Aτνσ̃(−ω))‡ = Cτ
ν (Ls − ω)∗σ̃sκ(ω)aτν (2.63)

The aim is to solve this bunch of equations to get the stationary solution of the system
σ. Thus we have assumed the matrix 〈a|σ̇s|b〉 = σ̇ab in the �rst equation to be zero and
endeavour to gain an equation of the form 0 = Kσ where K is a rank four tensor and often
referred to as Lindblad operator [33].
First step will be to solve the second half of equations to get an expression for the

modi�ed density operator σ̃. We use Xs
κ := σ̃sκ(ω) to refer to this operator throughout this

derivation and don't write explicitly the dependence of ω since it's not relevant until the
evaluation of the integral in the end.
As basis set we use the system eigenbasis consisting of |0〉, | ↑〉, | ↓〉, |d〉 = | ↑↓〉. We

denote the half occupied state with |κ〉, address the opposite spin direction with |κ〉 and
use κ also for the sign in the basis representation |d〉 = a†↑a

†
↓|0〉 when creators might have

to switch position. So a†κ|κ〉 = κ|d〉 depending on the spin (↑: +, ↓: −).
We start with the matrix representation of the �rst equation. Since the left hand side is

self-adjoint this holds also for the right hand side where the imaginary part cancels:

0 = σ̇ab = −i(Ea − Eb)σab − 2Re

(∑
κs

〈a|asκAsκσ̃|b〉 − 〈a|Asκσ̃asκ|b〉

)
(2.64)

Selection rules

Since the time evolution U of the modi�ed density operator according to the full Hamilto-
nian preserves the particle number in each spin sector, Asκ and Xs

κ have non zero matrix
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elements for the same indices as asκ, whose are given below :

〈d|a†κ|κ〉 = κ (2.65)

〈κ|a†κ|0〉 = 1

〈κ|aκ|d〉 = κ

〈0|aκ|κ〉 = 1

Therefore equation (2.64) has non-zero matrix elements just on the diagonal, so the result-
ing density operator will will be diagonal in any case.
The same selection rules will be applicable to the self energy operator (ΣXs

κ) (2.61),
when determining non-zero matrix elements, since in all terms occur a pairing of a†ν and
aν .

Evaluation in the eigenbasis

We continue with equation (2.64) with inserting a unity operator 1 =
∑

c |c〉〈c| that leads
to

0 = Re

(∑
κs

∑
c

〈a|asκ|c〉〈c|Asκσ̃(ω)|a〉 − 〈a|Asκσ̃(ω)|c〉〈c|asκ|a〉

)
(2.66)

With the selection rules 〈a|asκ|c〉 ∈ {0,±1} we get for the di�erent eigenstates:

a = 0 : 0 =
∑
κ

Re

〈0|aκ|κ〉〈κ|A+
κ |0〉 − 〈0|A−κ |κ〉︸ ︷︷ ︸

=:A−κ,κ

〈κ|a†κ|0〉


a = κ ∈ {↑, ↓} : 0 = Re

(
〈κ|a†κ|0〉〈0|A−κ |κ〉+ 〈κ|aκ|d〉︸ ︷︷ ︸

=κ

〈d|A+
κ |κ〉

− 〈κ|A+
κ |0〉〈0|aκ|κ〉 − 〈κ|A−κ |d〉 〈d|a

†
κ|κ〉︸ ︷︷ ︸

=κ

)

a = d : 0 =
∑
κ

Re

〈d|a†κ|κ〉︸ ︷︷ ︸
=κ

〈κ|A−κ |d〉 − 〈d|A+
κ |κ〉 〈κ|aκ|d〉︸ ︷︷ ︸

=κ


=
∑
κ

Re

〈d|a†κ|κ〉︸ ︷︷ ︸
=κ

〈κ|A−κ |d〉 − 〈d|A+
κ |κ〉 〈κ|aκ|d〉︸ ︷︷ ︸

=κ


with the now introduced short notation for the matrix elements Asκ. As we gain minus
signs from some matrix elements we include them in the notation with the tilde. We will
see that these factors will cancel out since the �nal result shouldn't depend on the basis
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representation in Fock space.

A+
κ,0 = 〈κ|A+

κ |0〉 A−κ,κ = 〈0|A−κ |κ〉 (2.67)

Ã+
κ,κ = κ〈d|A+

κ |κ〉 Ã−κ,d = κ〈κ|A−κ |d〉

So we get

a = 0 : 0 =
∑
κ

Re
(
A+
κ,0 −A−κ,κ

)
(2.68)

a = κ : 0 =Re
(
A−κ,κ + Ã+

κ,κ −A+
κ,0 − Ã−κ,d

)
a = d : 0 =

∑
κ

Re
(
Ã−κ,d − Ã

+
κ,κ

)
We can use the same notation for the matrix elements of Xs

k := σ̃sk(ω) appearing in the
formula of the operators A because the other terms are just scalar factors.
We remain with evaluating the real part of:

Re
(
Asκ,E

)
=

∫ ∞
−∞

dω

2π

∑
α

Γακn
s
α(ω)Re

(
Xs
κ,E(sω)

)
(2.69)

sω→z
=

∫ ∞
−∞

dz

2π

∑
α

Γακn
s
α(sz)Re

(
Xs
κ,E(z)

)
This equation inherits a big numerical cost, as one has to calculate these matrix elements
Xs
κ,E for every frequency ω before integrating over the real axis.
We proceed by simplifying the generalized Fermi function using the symmetry in the

bath potentials µα = −µsα:

nsα(sω) =

{
(1 + eβ(ω−µα))−1, s = +

(1 + e−β(−ω−µα))−1 = n+
sα(ω), s = −

(2.70)

With the special choice of spin dependent coupling constants (2.56) and n(ω) =
∑

α nα(ω)
we get:

gsκ(ω) :=
∑
α

Γακn
+
sα(ω) (2.71)

g+
↑ (ω) = Γn(ω)

g−↑ (ω) = Γn(ω)

g+
↓ (ω) = ΓnL(ω)

g−↓ (ω) = ΓnR(ω)
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So we have

a = 0 : 0 =

∫ ∞
−∞

dωRe
(
n(ω)X+

↑,0 − n(ω)X−↑,↑ + nL(ω)X+
↓,0 − nR(ω)X−↓,↓

)
(2.72)

a = ↑: 0 =

∫ ∞
−∞

dωRe
(
n(ω)X−↑,↑ + nL(ω)X̃+

↓,↑ − n(ω)X+
↑,0 − nR(ω)X̃−↓,d

)
a = ↓: 0 =

∫ ∞
−∞

dωRe
(
nR(ω)X−↓,↓ + n(ω)X̃+

↑,↓ − nL(ω)X+
↓,0 − n(ω)X̃−↑,d

)
a = d : 0 =

∫ ∞
−∞

dωRe
(
nR(ω)X̃−↓,d − nL(ω)X̃+

↓,↑ + n(ω)X̃−↑,d − n(ω)X̃+
↑,↓

)
Here the constant coupling factor Γ drops out. The same happens in the derivation of
the normal Born-Markov master equation, thus the current curvature is independent of
the coupling strength. In the self-consistent Born-Markov master equation this factor will
come in again through the self-consistent determined operator X - see section 2.4.3.
Below we summarize this �rst evaluation with the general functions gsκ(ω) =

∑
α Γακn

s
α(ω):

Evaluation of the stationary solution of the interacting quantum
dot in it's eigenbasis

0 = K · σaa (2.73)

a = 0 : 0 = + A1 + A2, A1 :=

∫ ∞
−∞

dωRe
(
g+
↑ (ω)X+

↑,0 − g
−
↑ (ω)X−↑,↑

)
(2.74)

a = ↑: 0 =− A1 + A3, A2 :=

∫ ∞
−∞

dωRe
(
g+
↓ (ω)X+

↓,0 − g
−
↓ (ω)X−↓,↓

)
a = ↓: 0 =− A2 + A4, A3 :=

∫ ∞
−∞

dωRe
(
g+
↓ (ω)X̃+

↓,↑ − g
−
↓ (ω)X̃−↓,d

)
a = d : 0 =− A3 − A4, A4 :=

∫ ∞
−∞

dωRe
(
g+
↑ (ω)X̃+

↑,↓ − g
−
↑ (ω)X̃−↑,d

)
From this structure it's obvious that the column sum is always zero, thus the resulting

matrix K will be singular revealing the stationary solution.
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2.4.3 Evaluation of Xs
κ in the system eigenbasis

As we need the matrix elements Xs
κ,E we look at the matrix elements E,E ′ of equa-

tion (2.60)

[asκσ] = (i(Ls − ω) + Σ(ω)) (Xs
κ(ω))

[asκσ]EE′ = i(E − E ′ − ω) (Xs
κ(ω))EE′ +

(
Σ(ω)Xs

κ(ω)
)
EE′

(2.75)

As σ has to be diagonal in the system eigenbasis (conservation of particle number in spin
sectors) we get for the possible non zero matrix elements the same selection rules as de�ned
in equation (2.65).
The �rst term on the right side with the Liouville superoperator is evaluated easily (see

theorem 1.2), whereas the self-energy operator Σ will be more involved to get an expression
in the desired matrix elements.
The general de�nition of the self-energy operator (see equations (2.61) - (2.18)) contains

the bath correlation function Cs
µν for which δµ,ν applies, as there is just one system site

to connect the baths to (compare also section 2.4.1). We use the index ν to describe
the remaining spin degree of freedom (similar to κ). A more detailed look at the bath
correlation function and it's representation according to equation (4.19) reveals:

Cτ
ν (ω) =

∑
α

Cτ
ανν =

∑
α

∫ ∞
−∞

dω′

2π

i

ω + τω′ + i0+
Γτανν(ω

′) (2.76)

with ν ∈ {↑, ↓}. Here also the wide band approximation is applied with spin dependent
coupling:

Γτανν(ω
′) = nτα(ω′)Γαν , ΓLν = ΓR,↑ = Γ, ΓR,↓ = 0 (2.77)

At this point of the self-consistent Born-Markov approximation the constant coupling factor
comes in again.
So we get similar to gsκ(ω):

Cτ
ν (ω) =

∑
α

Γαν

∫ ∞
−∞

dω′

2π

i · nτα(ω′)

ω + τω′ + i0+
(2.78)

τω′→z
=

∑
α

Γαν

∫ ∞
−∞

dz

2π

i · n+
τα(z)

ω + z + i0+︸ ︷︷ ︸
=:uτα(ω)

(2.79)

C+
↑ (ω) = Γu(ω), u(ω) = uL(ω) + uR(ω) (2.80)

C−↑ (ω) = Γu(ω) (2.81)

C+
↓ (ω) = ΓuL(ω) (2.82)

C−↓ (ω) = ΓuR(ω) (2.83)
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The derivation of the analytic expression of the function u is given in the Appendix 4.2.
We remain with the missing matrix elements of equation (2.75):

Σ(ω)Xs
κ(ω) =

∑
ντ

(
aτνC

τ
ν (ω − Ls)aτνXs

κ(ω)

+ Cτ
ν (ω − Ls)aτνXs

κ(ω)aτν

+ Cτ
ν (Ls − ω)∗Xs

κ(ω)aτνa
τ
ν

+ aτνC
τ
ν (Ls − ω)∗Xs

κ(ω)aτν

)
(

Σ(ω)Xs
κ

)
EE′

=
∑
Fντ

(
〈E|aτν |F 〉Cτ

ν (ω − (F − E ′))〈F |aτνXs
κ|E ′〉

+ Cτ
ν (ω − (E − E ′))〈E|aτνXs

κa
τ
ν |E ′〉

+ Cτ
ν (E − E ′ − ω)∗〈E|Xs

κa
τ
νa

τ
ν |E ′〉

+ 〈E|aτν |F 〉Cτ
ν (F − E ′ − ω)∗〈F |Xs

κa
τ
ν |E ′〉

)
We start with s = +:(

Σ(ω)X+
κ

)
dκ

=
∑
Fντ

(
〈d|aτν |F 〉︸ ︷︷ ︸

δτ,−δF,ν〈d|a†ν |ν〉

Cτ
ν (ω − (F − Eκ)) 〈F |aτνX+

κ |κ〉︸ ︷︷ ︸
〈ν|aν |d〉X+

κ,κ

+ Cτ
ν (ω − (Ed − Eκ)) 〈d|aτνX+

κ a
τ
ν |κ〉︸ ︷︷ ︸

δτ,+δν,κ〈d|a†κ|κ〉X
+
κ,0〈0|aκ|κ〉

+ Cτ
ν (Ed − Eκ − ω)∗ 〈d|X+

κ a
τ
νa

τ
ν |κ〉︸ ︷︷ ︸

X+
κ,κ(δτ,+δν,κκ2 + δτ,−δν,κ)

+ 〈d|aτν |F 〉︸ ︷︷ ︸
δτ,+δF,ν〈d|a†κ|κ〉

Cτ
ν (F − Eκ − ω)∗ 〈F |X+

κ a
τ
ν |κ〉︸ ︷︷ ︸

δν,κX
+
κ,0〈0|aκ|κ〉

)

(
Σ(ω)X+

κ

)
dκ

= [C−κ (ω − (Eκ − Eκ)) + C−κ (ω − (Eκ − Eκ))]X+
κ,κ

+ κC+
κ (ω − (Ed − Eκ))X+

κ,0

+ [C+
κ (Ed − Eκ − ω)∗ + C−κ (Ed − Eκ − ω)∗]X+

κ,κ

+ κC+
κ (Eκ − Eκ − ω)∗X+

κ,0
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We proceed with the second matrix element for s = +:(
Σ(ω)X+

κ

)
κ0

=
∑
Fντ

(
〈κ|aτν |F 〉Cτ

ν (ω − (F − E0))〈F |aτνX+
κ |0〉︸ ︷︷ ︸

(δτ,+δν,κδF,dκ
2+δτ,−δν,κδF,0)Cτν (ω−(F−E0))X+

κ,0

+ Cτ
ν (ω − (Eκ − E0)) 〈κ|aτνX+

κ a
τ
ν |0〉︸ ︷︷ ︸

δτ,−δν,κ〈κ|aκ|d〉X+
κ,κ〈κ|a

†
κ|0〉

+ Cτ
ν (Eκ − E0 − ω)∗ 〈κ|X+

κ a
τ
νa

τ
ν |0〉︸ ︷︷ ︸

X+
κ,0δτ,+(δν,κ + δν,κ)

+ 〈κ|aτν |F 〉︸ ︷︷ ︸
〈κ|aκ|d〉

Cτ
ν (F − Eκ − ω)∗ 〈F |X+

κ a
τ
ν |0〉︸ ︷︷ ︸

δτ,−δν,κδF,dX
+
κ,κ〈κ|a

†
κ|0〉

)

(
Σ(ω)X+

κ

)
κ0

= [C+
κ (ω − (Ed − E0)) + C−κ (ω − (E0 − E0))]X+

κ,0

+ κC−κ (ω − (Eκ − E0))X+
κ,κ

+ [C+
κ (Eκ − E0 − ω)∗ + C+

κ (Eκ − E0 − ω)∗]X+
κ,0

+ κC−κ (Ed − E0 − ω)∗X+
κ,κ

We remain with s = −:(
Σ(ω)X−κ

)
κd

=
∑
Fντ

(
〈κ|aτν |F 〉Cτ

ν (ω − (F − Ed))〈F |aτνX−κ |d〉︸ ︷︷ ︸
(δτ,+δν,κδF,dκ2+δτ,−δν,κδF,0)Cτν (ω−(F−Ed))X−κ,d

+ Cτ
ν (ω − (Eκ − Ed)) 〈κ|aτνX−κ aτν |d〉︸ ︷︷ ︸

δτ,+δν,κ〈κ|a†κ|0〉X
−
κ,κ〈κ|aκ|d〉

+ Cτ
ν (Eκ − Ed − ω)∗ 〈κ|X−κ aτνaτν |d〉︸ ︷︷ ︸

X−κ,dδτ,−(δν,κκ2 + δν,κκ
2)

+ 〈κ|aτν |F 〉︸ ︷︷ ︸
〈κ|a†κ|0〉

Cτ
ν (F − Ed − ω)∗ 〈F |X−κ aτν |d〉︸ ︷︷ ︸

δτ,+δν,κδF,0X
−
κ,κ〈κ|aκ|d〉

)

(
Σ(ω)X−κ

)
κd

= [C+
κ (ω − (Ed − Ed)) + C−κ (ω − (E0 − Ed))]X−κ,d

+ κC+
κ (ω − (Eκ − Ed))X−κ,κ

+ [C−κ (Eκ − Ed − ω)∗ + C−κ (Eκ − Ed − ω)∗]X−κ,d

+ κC+
κ (E0 − Ed − ω)∗X−κ,κ
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And �nally: (
Σ(ω)X−κ

)
0κ

=
∑
Fντ

(
〈0|aτν |F 〉Cτ

ν (ω − (F − Eκ))〈F |aτνX−κ |κ〉︸ ︷︷ ︸
δτ,−(δν,κδF,κ+δν,κδF,κ)Cτν (ω−(F−Eκ))X−κ,κ

+ Cτ
ν (ω − (E0 − Eκ)) 〈0|aτνX−κ aτν |κ〉︸ ︷︷ ︸

δτ,−δν,κ〈0|aκ|κ〉X−κ,d〈d|a
†
κ|κ〉

+ Cτ
ν (E0 − Eκ − ω)∗ 〈0|X−κ aτνaτν |κ〉︸ ︷︷ ︸

X−κ,κ(δτ,−δν,κ + δτ,+δν,κκ
2)

+ 〈0|aτν |F 〉︸ ︷︷ ︸
δτ,−〈0|aκ|κ〉

Cτ
ν (F − Eκ − ω)∗ 〈F |X−κ aτν |κ〉︸ ︷︷ ︸

δν,κδF,κX
−
κ,d〈d|a

†
κ|κ〉

)

(
Σ(ω)X−κ

)
0κ

= [C+
κ (ω − (Eκ − Eκ)) + C+

κ (ω − (Eκ − Eκ))]X−κ,κ
+ κC−κ (ω − (E0 − Eκ))X−κ,d
+ [C−κ (E0 − Eκ − ω)∗ + C+

κ (E0 − Eκ − ω)∗]X−κ,κ

+ κC−κ (Eκ − Eκ − ω)∗X−κ,d

For every κ and s value there are two non zero matrix elements that couple. We label
the matrix element with the lower particle number in the ket vector n = 1 and the other
n = 2.
The following table shows the index mapping for the di�erent operators Xs

κ:

m 0 κ κ d
X+
κ,m 1 2

X−κ,m 1 2

Now we introduce the abbreviation Cs
κ,nm with n,m ∈ {1, 2} in order to label those

coupling functions in ω. A tilde is used to indicate that the expression contains the factor
κ. A summary of all those derived functions is given in (2.87).(

(
∑

(ω)Xs
κ)1

(
∑

(ω)Xs
κ)2

)
=

(
Cs
κ,11 C̃s

κ,12

C̃s
κ,21 Cs

κ,22

)(
Xs
κ,1

Xs
κ,2

)
(2.84)

We look now back at equation (2.75) and have the linear equation system for a given
s and κ. Note that the matrix elements of the modi�ed density operator with index two
[asκσ]2 we get a factor of κ similar to (2.65):(

σ1

κσ2

)
=

(
i(E1 − ω) + Cs

κ,11 C̃s
κ,12

C̃s
κ,21 i(E2 − ω) + Cs

κ,22

)
︸ ︷︷ ︸

=:Dsκ

·
(
Xs
κ,1

Xs
κ,2

)
(2.85)
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With the inversion of this matrix Ds
κ we get a closed form for the time evolution of the

modi�ed density operators:(
Xs
κ,1

Xs
κ,2

)
=

1

det(Ds
κ)

(
Ds
κ,22 −κCs

κ,12

−κCs
κ,21 Ds

κ,11

)
·
(
σ1

κσ2

)
(2.86)

with Ds
κ,ii(ω) := i(Ei − ω) + Cs

κ,ii(ω). In the �rst line the sign factor −κ = κ drops
out whereas in the second line the factor κ remains but since we need this factor for the
searched tilde expressions X̃s

κ,2 = κXs
κ,2, as used in equation (2.74), it drops out.

The analytical expressions for all functions Cs
κ,ij are given below.
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Summarized formulas for spin-dependent self-energy equation

C+
↑,11 = Γ (uL(ω − Ed0) + u(ω) + u(E↑0 − ω)∗ + uL(E↑0 − ω)∗) (2.87)

C+
↑,12 = Γ (uR(ω − E↑0) + uR(Ed0 − ω)∗)

C+
↑,21 = Γ (uL(ω − Ed↓) + uL(E↑↓ − ω)∗)

C+
↑,22 = Γ (u(ω) + uR(ω − E↑↓) + u(Ed↓ − ω)∗ + uR(Ed↓ − ω)∗)

C−↑,11 = Γ (u(ω) + uL(ω − E↓↑) + u(E0↑ − ω)∗ + uL(E0↑ − ω)∗)

C−↑,12 = Γ (uR(ω − E0↑) + uR(E↓↑ − ω)∗)

C−↑,21 = Γ (uL(ω − E↓d) + uL(E0d − ω)∗)

C−↑,22 = Γ (u(ω) + uR(ω − E0d) + u(E↓d − ω)∗ + uR(E↓d − ω)∗)

C+
↓,11 = Γ (u(ω − Ed0) + uR(ω) + uL(E↓0 − ω)∗ + u(E↓0 − ω)∗)

C+
↓,12 = Γ (u(ω − E↓0) + u(Ed0 − ω)∗)

C+
↓,21 = Γ (u(ω − Ed↑) + u(E↓↑ − ω)∗)

C+
↓,22 = Γ (uR(ω) + u(ω − E↓↑) + uL(Ed↑ − ω)∗ + u(Ed↑ − ω)∗)

C−↓,11 = Γ (uL(ω) + u(ω − E↑↓) + uR(E0↓ − ω)∗ + u(E0↓ − ω)∗)

C−↓,12 = Γ (u(ω − E0↓) + u(E↑↓ − ω)∗)

C−↓,21 = Γ (u(ω − E↑d) + u(E0d − ω)∗)

C−↓,22 = Γ (uL(ω) + u(ω − E0d) + uR(E↑d − ω)∗ + u(E↑d − ω)∗)

C+
κ,11 = [C+

κ (ω − (Ed − E0)) + C−κ (ω) + C+
κ (Eκ − E0 − ω)∗ + C+

κ (Eκ − E0 − ω)∗]

C̃+
κ,12 = κ[C−κ (ω − (Eκ − E0)) + C−κ (Ed − E0 − ω)∗]

C̃+
κ,21 = κ[C+

κ (ω − (Ed − Eκ)) + C+
κ (Eκ − Eκ − ω)∗]

C+
κ,22 = [C−κ (ω) + C−κ (ω − (Eκ − Eκ)) + C+

κ (Ed − Eκ − ω)∗ + C−κ (Ed − Eκ − ω)∗]

C−κ,11 = [C+
κ (ω) + C+

κ (ω − (Eκ − Eκ)) + C−κ (E0 − Eκ − ω)∗ + C+
κ (E0 − Eκ − ω)∗]

C̃−κ,12 = κ[C−κ (ω − (E0 − Eκ)) + C−κ (Eκ − Eκ − ω)∗]

C̃−κ,21 = κ[C+
κ (ω − (Eκ − Ed)) + C+

κ (E0 − Ed − ω)∗]

C−κ,22 = [C+
κ (ω) + C−κ (ω − (E0 − Ed)) + C−κ (Eκ − Ed − ω)∗ + C−κ (Eκ − Ed − ω)∗]
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Explicit current formula

Here we also derive an explicit current formula for the single quantum dot with spin
dependent coupling. Starting point is equation (2.37)

Jα = 2
∑
κ

Re

(∫ ∞
−∞

dω

2π
Γακn

(+)
α (ω)Trs

{
aκX

+
κ (ω)

}
− Γακn

(−)
α (ω)Trs

{
a†κX

−
κ (−ω)

})
With assuming the spin down hopping to and from the right lead to be zero we just have
to consider the spin up contributions when looking at the current to the right lead.

JR = 2Re

(∫ ∞
−∞

dω

2π
ΓR↑n

(+)
R (ω)Trs

{
a↑X

+
↑ (ω)

}
− ΓR↑n

(−)
R (ω)Trs

{
a†↑X

−
↑ (−ω)

})
Evaluation of the trace

Trs

{
asκX

s
κ

}
=

{
〈0|aκ|κ〉〈κ|X+

κ |0〉+ 〈κ|aκ|d〉〈d|X+
κ |κ〉, s = +

〈κ|a†κ|0〉〈0|X−κ |κ〉+ 〈d|a†κ|κ〉〈κ|X−κ |d〉, s = −

φ+
κ (ω) := Trs

{
aκX

+
κ (ω)

}
=

1

det(D+
κ )

(
D+
κ,22σ00 + C+

κ,12σκκ + κκ︸︷︷︸
=1

(
C+
κ,21σ00 +D+

κ,11σκκ
))

φ−κ (−ω) := Trs

{
aκX

+
κ (−ω)

}
=

1

det(D−κ )

(
D−κ,22σκκ + C−κ,12σdd + κκ

(
C−κ,21σκκ +D−κ,11σdd

))
The φs correspond with those introduced in the section about the current 2.3.1. So we
have here the following relations

Green's functions

φ+
κ (ω) =

1

det(D+
κ )

((
D+
κ,22(ω) + C+

κ,21(ω)
)
σ00 +

(
C+
κ,12(ω) +D+

κ,11(ω)
)
σκκ

)
(2.88)

φ−κ (−ω) =
1

det(D−κ )

((
D−κ,22(−ω) + C−κ,21(−ω)

)
σκκ +

(
C−κ,12(−ω) +D−κ,11(−ω)

)
σdd

)
(2.89)

iGr
κ(ω) = φ+

κ (ω) + φ−κ (ω) (2.90)



3 Numerical results

In this part I present numerical results obtained by a Matlab implementation of the Born-
Markov master equation and the self-consistent Born approach as described in section 1.5
respectively in section 2.4. I will examine the in�uence of the applied potential, temperature
in the bath and the in�uence of the coupling strength on the steady state of the single
quantum dot for the two methods.
Next I will present the calculated current characteristics, compare them with other

methods and show the Coulomb blockade due to spin dependent coupling in a quantum
dot respectively due to interference phenomena in a cyclic triple quantum dot depending
on an applied gate voltage. In the end I show results for the Born-Markov approach with
and without the secular approximation in order to deal with quasi-degenerate states.
As explained in the introduction of chapter 1 the method of Born-Markov master equa-

tion is apt for all kind of system Hamiltonians that can be exact solved or at least solved
for lowest energy levels. For my calculations I restricted all central quantum systems to
the Hubbard model1 since the main focus was to solve strongly correlated electron systems
under the in�uence of the Markovian baths. The corresponding Hamiltonian Hs used to
describe the systems is de�ned in (1.5). Note that the system is de�ned to be particle hole
symmetric for zero on-site energy ξ0. The coupling from the baths to the quantum system
is assumed to be weak (weak coupling limit) and the attached baths are described by a
�at density distribution (wide band limit), which allow us to use the analytic expression
for the bath correlation function (1.102).

3.1 Single quantum dot

Temperature and potential dependence for Born-Markov approximation -
instabilities

We start our discussion of the features of the just introduced methods with the most simple
model of a single quantum dot as here some analytical solutions are available. The Fock
basis represents the eigenbasis. For zero on-site energy ξ = 0 and switched on interaction
U > 0 the one particle sector spans the eigenspace of the groundstate. If the system is
isolated from the environment (H1 = 0), we will �nd only those degenerate groundstates
to be populated. Any prepared magnetization will be conserved. Now we attach one
bath, characterized by it's potential µ = 0 with respect to the system and it's inverse
temperature β. The coupling strength to the system is given by Γ = 1. The solution of the

1When taking into account the non-interacting bath we gain the Anderson impurity model.

56
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Born-Markov master equation shows that the occupation probability changes according to
the temperature as depicted in �gure 3.1. The energy gap to the �rst excited level for that
system is one energy unit which thermally can be overcome with increasing temperature.
For low temperatures the Boltzmann factor gets so small that the steady state solution is
not unique any more. I implemented a procedure that projects a randomly chosen initial
state on that zero eigenspace which corresponds to the time evolution for in�nite time.
The observed magnetization depends on the initial state. This strategy also breaks down
for higher values of β due to division by zero in the Gram-Schmidt orthonormalization.

β[e/kBT ]
0 5 10 15 20 25 30 35 40 45

σ
ii
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0.2

0.4

0.6
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σ00

σ↑↑

σ↓↓

σdd

Figure 3.1: Densities of the system eigenstates as a function of inverse temperature for the
single quantum dot attached to a bath with zero potential: U = 2|b|, Γ = |b|.
The variation of spin states for high values of β origin from the randomly chosen
initial state which were used to reach a steady state, since in that region no
unique solution could be found.

In a next step we examine the in�uence of an applied bath potential Vb on the occupation
density for di�erent inverse temperatures (see �gure 3.2). The particle occupation changes
when the applied potential is in the range of the energy gap of the system. The shape of
this transition strongly depends on the temperature. We can see also how the Born-Markov
master equation method fails for low temperatures (high β) and low applied potential as
the steady state is not unique.
We also want to discuss the in�uence of the coupling strength on the occupation density

and see an important di�erence of the two methods, namely the Born-Markov master
equation approach and it's self-consistent enhancement. Figure 3.3 shows the occupation
densities of a quantum dot for a small applied potential Vb = 0.2 (to seperate zero and
double occupied states) as a function of coupling strength calculated with both methods.
The coupling strength in the Born-Markov master equation approach has no in�uence on
the occupation density whereas the self-consistent Born master equation accounts for the
level broadening that results from coupling to the bath.
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Figure 3.2: Densities of the system eigenstates of the single quantum dot attached to a
bath as a function of bias voltage Vb: U = 2|b|, Γ = |b|.

3.1.1 Non-interacting quantum dot - current voltage

characteristics

Now we want to attach two leads α ∈ {L,R} to the quantum dot and calculate the current.
The potential di�erence of the central system to the leads shall be symmetric µL = −µR,
so we have for the applied bias voltage VB = µL − µR = 2µL.
We are going to evaluate the current formulas given in section 2.3.1 and �rst look at the

non-interacting quantum dot with on-site energy ξ0 = 0. All states are degenerate thus
the density matrix in steady state comes out to be σab = 1

4
δab. The current operator in the

Born-Markov current formula 2.43 is

I00 = −2Γn+
L(0)

Idd = 2Γn−L(0) = 2Γ(1− n+
L(0)

Iκκ = Γ(n−L(0)− n+
L(0)) = Γ(1− 2n+

L(0))

So evaluating the trace in the current formula yields

〈IL〉 = Tr(Iσ) = Γ(1− 2n+
L(0)) = Γ

(
1− 2

e−βµL + 1

)
= Γ tanh(

βµ

2
) (3.1)

Although in the non-interacting case for T = 0 the current for such a quantum dot can
be calculated analytically for example with non-equilibrium Green's function method [36]
and is given by

〈I〉 =
2Γ

π
Arctan(

µ

Γ
) (3.2)
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Figure 3.3: Densities of the system eigenstates of the single quantum dot attached to a
bath as a function of the coupling strength Γ calculated with the Born Markov
and the self-consistent Born approach with parameters U = 2, Vb = 0.1, ξ0 = 1.

As visualized in �gure 3.4 we see clearly that for U = 0 the Born-Markov current is wrong
and misses the in�uence of the coupling constant Γ. In contrast the self-consistent Born
approach reproduces the level broadening as it recovers the same Green's functions as with
the exact non-equilibrium Green's functions approach ([26])
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Figure 3.4: Current voltage characteristics of the non-interacting quantum dot for di�erent
temperatures and di�erent coupling strengths calculated with di�erent methods
and compared to the exact zero temperature result.
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3.2 Interacting quantum dot

In this section we approach the interacting quantum dot as treated also in the Anderson
impurity model. For on-site energy ξ0 6= 0 we have three system levels. Here we can
see a typical single electron transport e�ect, the so-called Coulomb blockade, a situation
when the current can't rise though voltage increases. Reason for this is the one-electron
energy level that becomes populated when current starts to �ow. With increasing voltage
additional charge carriers would like to participate in transport but the already present
electron hinders those other electrons from entering due to Coulomb repulsion. Applying a
su�cient high voltage the double occupied energy state gets favourable and the current can
increase again to reach it's maximum value that's proportional to the coupling strength Γ.
Figure 3.5 shows the result for the two introduced methods. One can clearly see how the
�rst current plateau corresponds with the occupation of the one particle sector.

Comparison of methods

I also want to present a comparison of di�erent methods. In �gure 3.6 several di�erent
methods approach the same problem.

• Mean �eld method (Mf)

• Steady state Cluster Perturbation Theory (stsCPT)

• Master equation enhanced cluster perturbation theory (meCPT)

• Born-Markov master equation approach (BM)

• Self-consistent Born-Markov approach (SCB)

As depicted in that plot the mean �eld method basically averages over the plateau and
doesn't resolve the Coulomb blockade for applied voltages in the energy range around
the �rst excited state. Steady state cluster perturbation theory correctly reproduces the
�rst excitation but not the plateau. It's enhancement - a combination of Born-Markov
master equation and cluster perturbation theory as described in [32] repairs that e�ect. A
similar situation is present for the master equation approach in connection with the level
broadening. Whereas the Born-Markov approach doesn't account for the level broadening
connected to the coupling strength, it's enhancement, the self-consistent Born approach
indeed incorporates the in�uence of the bath coupling.
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Figure 3.5: Current voltage characteristics and occupation densities of the interacting
quantum dot for Born-Markov and self-consistent Born approach.



3 Numerical results 62

bias voltage VB/U
0 1 2 3 4 5

tr
a
n
sm

is
si
o
n
cu
rr
en
t
I
/Γ

0

0.2

0.4

0.6

0.8

1

Γ = 0.5, β = 10, U = 10, ξ0 = 12

Mf

stsCPT

meCPT

BM

SCB

Figure 3.6: Current voltage characteristics of the interacting quantum dot for di�erent
methods
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3.3 Spin dependent coupling

As mentioned in the introduction we will have a look at the realisation of a negative con-
ductance in form of a quantum dot with spin dependent coupling, where spin up coupling
to the right lead is forbidden ΓR↑ = 0. In �gure 3.7 we see the current characteristics and
the occupation densities for both methods (BM and SCB). Since spin up electrons are not
allowed to tunnel to the right lead, the one particle state �lls up with those electrons that
hinder spin down electrons to pass through. This results in a total current blockade in the
BM approach whereas in the SCB approach it �nds a minimum. For su�cient high bias
voltage the two particle sector gets populated so the spin down electrons can pass through
again.
The same results are also reproduced in [32] where the same setup has been examined

with the before mentioned master equation enhanced cluster perturbation theory.
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Figure 3.7: Current voltage characteristics and occupation densities of the interacting
quantum dot with spin dependent coupling.
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3.4 Interference in triple quantum dot

Beside spin dependent coupling there is also another mechanism that leads to the previously
examined blocking e�ect respectively the occurrence of negative di�erential conductance.
We can observe this phenomena also in quantum ring system due to destructive interference
of degenerate system eigenstates. More discussion about the symmetric properties of cyclic
quantum systems and the consequential quantum interference e�ects are given in the paper
of Darau et. al. [15], where also the same method (Born-Markov master equation) is used
to calculate the steady state current of a benzene molecule.
I examined a smaller ring system, the triple quantum dot, where I could reproduce the

blocking e�ect and made a parameter study to see the non symmetric behaviour with
respect to the gate voltage when compared to the six-site system. This system can be
regarded as single electron transistor by tuning the system via the on-site energy ξ0 which
I refer to as gate voltage Vg.
The application of self-consistent Born to that system was not implemented yet so the

presented results are calculated using the BM-method with a lacking of level broadening
e�ects. This system was also examined with the before mentioned meCPT approach [32].

3.4.1 Born-Markov master equation results

In �gure 3.8 you can see the di�erential conductance, the current and the average particle
number of the triple quantum dot as a function of bias voltage and gate voltage. In
�gure 3.9 the current characteristics and the relevant occupation densities of the lowest
energy states of the two and three particle sector are given.

3.4.2 Quasi-degenerate states

In this section I want shortly discuss the treatment of quasi-degenerate states. In sec-
tion 1.6.3 we already discussed that a valid solution of the Born-Markov equation in the
sense of a valid density matrix is just guaranteed when applying the secular approximation
which restricts the treatment of the dynamics to the energy block diagonal subspace of the
density matrix. If we consider a perturbation of our system that in a realistic system will
always be probable, for example by varying the on-site energy of one system site we split
our spectrum and formally degenerate states become quasi-degenerate. Since in the secular
approximation we now suddenly neglect interactions between states of the now separated
energies we also don't account for their dynamics that may be important for the current
characteristics.
In �gure 3.10 I have depicted such a situation where the on-site energy ξ3 of the system

site that is not connected to any bath is slightly changed. I performed the calculations
with and without the secular approximation (see also [15]). The drawbacks of not staying
in Lindblad formalism when not applying secular approximation are not yet visible for that
small perturbation but one can observe negative currents for positive applied voltage, non-
zero current for zero applied voltage and negative eigenvalues of the steady state density



3 Numerical results 66

VB

-3 -2 -1 0 1 2 3

V
G

-2

-1

0

1

2

3

dI/dV [eΓ/kBT ]

0 1 2

VB

-3 -2 -1 0 1 2 3

V
G

-2

-1

0

1

2

3

I [eΓ]

-0.5 0 0.5

VB

-3 -2 -1 0 1 2 3

V
G

-2

-1

0

1

2

3

〈N 〉

0 1 2 3 4 5

Figure 3.8: Stability diagram for the triple quantum dot obtained with Born-Markov mas-
ter equation approach. From left to right there are plotted di�erential con-
ductance dI/dV , current I and average particle number 〈N〉 as a function of
bias voltage VB and gate voltage VG. Parameters were chosen to be: U = 2|b|,
Γ = 0.05|b|, β = 50
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Figure 3.9: Current characteristics for the triple quantum dot obtained with Born-Markov
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Figure 3.10: Current characteristics for the triple quantum dot obtained with Born-Markov
master equation approach in the same setup as in �gure. In the lower panel
the relevant density matrix occupation probabilities are given.

matrix if the gap of the quasi-degeneracy gets bigger. Nevertheless this method still ac-
counts for the correlations between the quasi-degenerate states and provides a continuation
from the degenerate to the non-degenerate case.



Conclusion

In this work the detailed derivation of the Born-Markov master equation (BE) and it's
extension the self-consistent Born approach (SCB) were presented. These methods are
well apt to describe small open quantum systems in non-equilibrium. The environment of
the quantum system was modelled by thermally equilibrated non-interacting baths that
were assumed to be in the wide band limit (constant spectral density function), so that an
analytic derivation of the bath hybridization function was feasible.
The system was described by the Hubbard model to investigate correlation e�ects of

electrons in the current transport such as Coulomb blocking and negative conductance. For
a single site system this open quantum system corresponds with the Anderson impurity
model.
I discussed the criteria for a unique and valid solution which is gained with the secular ap-

proximation in the Lindblad formalism and examined the continuation to quasi-degenerate
states. Since here it's not possible to neglect the interference e�ects of these hardly sepa-
rated energy states a non secular solution provides a good extension. The errors of non-zero
current at zero bias voltage and invalid steady states can be neglected for small energy
gaps of the quasi-degenerate states.
For both approaches the formulas for the steady state and for the current were given

and explicitly derived for the quantum dot with special focus at spin-dependent coupling
in the SCB approach. I could show the correspondence of the current formula in the SCB
approach with the Meir-Wingreen formula.
Both methods were implemented in Matlab and applied to describe the current charac-

teristics of a single quantum dot and a triple quantum dot. I discussed the improvement of
the SCB method concerning level broadening e�ects that were not reproduced in the BM
method. In order to compare both methods with analytical current formulas I addressed
a non-interacting system for which the SCB method reproduces the exact result.
Further I showed that the Born-Markov approach runs in numerical problems at low tem-

peratures. A coupling strength dependence in terms of the current shape is just present at
the SCB method since in the Born-Markov approach the corresponding factor Γ drops out.
I also compared di�erent current-voltage characteristics obtained from di�erent numerical
methods applied on the single Anderson impurity problem and discussed the bene�ts of
self-consistent Born approach and master equation enhanced cluster perturbation theory
([32]) in terms of the correct reproduction of the current levels and the level broadening.
Finally I could reproduce the quantum phenomena of Coulomb blockade and negative con-
ductance in two di�erent setups, in one case for spin dependent hopping and in the other
case in a cyclic quantum system, hosting interference e�ects.
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4 Appendix

4.1 Fourier transform and incomplete Fourier transform

4.1.1 Fourier transform

The Fourier transform of a function f in time space shall be de�ned:

f(t) :=

∫ ∞
−∞

dω′

2π
eiω
′tF (ω′). (4.1)

For the inverse Fourier transform we have:

F (ω′) =

∫ ∞
−∞

dte−iω
′tf(t). (4.2)

Fourier transform of the complex conjugated Be aware that the operations Fourier
transform and complex conjugation don't commute though a factor of minus one in the
arguments remains preserved. Let F (ω′) be the Fourier transform of f(t), then we have

F [f(−t)] =

∫ ∞
−∞

dte−iω
′tf(−t) t→−t′

=

∫ ∞
−∞

dt′eiω
′t′f(t′) = F (−ω′) (4.3)

F [f(t)∗] =

∫ ∞
−∞

dte−iω
′tf(t)∗ =

(∫ ∞
−∞

dteiω
′tf(t)

)∗
= (F (−ω′))∗ (4.4)

= (F [f(−t)])∗ (4.5)

So symmetric functions remain symmetric in Fourier space.

4.1.2 Complex Laplace transform

We de�ne the incomplete Fourier transform (Laplace transform):

f(ω) = L [f(t)] =

∫ ∞
0

f(t)ei(ω+i0+)tdt. (4.6)

The i0+ factor is a convergence factor that allows for instance to integrate constant func-
tions. We use the abbreviation ω+ which will indicate that in this integral there is this
convergence factor of e−0+|t| no matter what the actual sign before the ω is. We use f(ω)
to describe the Laplace transform and F (ω) to describe the Fourier transform of f(t).
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Laplace transform of the complex conjugated In contrast to the Fourier transform
a factor of minus one in the argument is not preserved though the relation for the complex
conjugation is still valid:

L [f(−t)] =

∫ ∞
0

f(−t)eiω+tdt
t→−t′

=

∫ 0

−∞
f(t′)e−iω

+t′dt′ 6= f(−ω) (4.7)

L [f(t)∗] =

∫ ∞
0

f ∗(t)eiω
+tdt =

(∫ ∞
0

f(t)e−iω
+tdt

)∗
= (f(−ω))∗ (4.8)

Derivation rule for the complex Laplace transform

L[f ′(t)] =
[
eiω

+tf(t)
]∞

0
− (iω − 0+)

∫ ∞
0

eiω
+tf(t)dt (4.9)

− iωf(ω)− f(0) (4.10)

The pre-factor −iω arises from the complex exponential.

Shift theorem For the Laplace (Fourier) transform of a function f(t) multiplied with
an exponential term we can write

L[f(t)eiat] =

∫ ∞
0

eiωtf(t)eiatdt (4.11)

=

∫ ∞
0

ei(ω+a)tf(t)dt = F (ω + a) (4.12)

with F (ω) = L[f(t)].

Convolution theorem We show that the Laplace (Fourier) transform of a given con-
volution of the functions f(t) and g(t) can be expressed as the product of the individual
Laplace (Fourier) transforms of the two functions:

L[f ∗ g] =

∫ ∞
0

dteiω
+t

∫ t

0

dt′f(t− t′)g(t′) (4.13)

=

∫ ∞
0

dteiω
+t

∫ ∞
0

dt′1(t− t′)f(t− t′)g(t′) (4.14)

=

∫ ∞
0

dt′eiω
+t′
∫ ∞

0

dteiω
+(t−t′)1(t− t′)f(t− t′)g(t′) (4.15)

We swap the integrals allowed due to Fubini's theorem and substitute with respect to t,
τ := t − t′, τ ∈ (−t′,∞), shorten the integration limits by the Heaviside function 1 and
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swap integrals again.

L[f ∗ g] =

∫ ∞
0

dt′eiω
+t′
∫ ∞
−t′

dτeiω
+τ1(τ)f(τ)g(t′) (4.16)

=

∫ ∞
0

dt′eiω
+t′
∫ ∞

0

dτeiω
+τf(τ)g(t′) (4.17)

=

∫ ∞
0

dτeiω
+τf(τ)︸ ︷︷ ︸

f(ω)

∫ ∞
0

dt′eiω
+t′g(t′)︸ ︷︷ ︸

=g(ω)

= L[f ] · L[g] (4.18)

The proof for the Fourier transform works analogously.

4.1.3 Connection between both transformations

Let f(ω) and F (ω′) be the complex Laplace respectively the Fourier transform of f(t).
Then we gain the following dispersive relation:

f(ω) =

∫ ∞
0

f(t)eiω
+tdt =

∫ ∞
0

∫ ∞
−∞

dω′

2π
F (ω′)eiω

′teiω
+tdt (4.19)

=

∫ ∞
−∞

dω′

2π

(∫ ∞
0

dtei(ω
++ω′)t

)
F (ω′) =

∫ ∞
−∞

dω′

2π

i

ω + ω′ + i0+
F (ω′)

4.2 Evaluation of the Laplace transform of the bath

correlation function in the wide band limit

Theorem 4.1 (Sokhotski-Plemelj theorem)
Let φ(x) be a continuous integrable function on the real axis (φ ∈ C1(R) ∩ L1(R)), then

lim
ε→0+

∫ ∞
−∞

dx
φ(x)

x± iε
=

(
pv

1

x
∓ iπδ(x)

)
φ(x) (4.20)

Proof 4.1
We expand on a real denominator:

lim
ε→0+

∫ ∞
−∞

dx
φ(x)

x± iε
= lim

ε→0+

∫ ∞
−∞

dx
x2

x2 + ε2

φ(x)

x︸ ︷︷ ︸
=I1

∓iπ lim
ε→0+

∫ ∞
−∞

dx
ε

π(x2 + ε2)
φ(x)︸ ︷︷ ︸

=I2

(4.21)

We take the half of the �rst integral I1 and perform a variable transformation x → −x′
and combine those halves again

I1 = lim
ε→0+

∫ ∞
−∞

dx
x2

x2 + ε2

φ(x)− φ(−x)

2x
(4.22)
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We can express the integral as a limit and swap the two limits

I1 = lim
η→0+

lim
ε→0+

∫
|x|>η

dx
x2

x2 + ε2

φ(x)− φ(−x)

2x
(4.23)

Now we want to apply Lebesgue's dominated convergence theorem. We �nd a majorant of
the integrand for ε→ 0 and see that the integral

∫
|x|>η dx

φ(x)−φ(−x)
2x

is �nite since x = 0 is

excluded and φ ∈ L1(R). So we swap the limit and the integral. With the remaining limit
we have the de�nition of the Cauchy principal value:

I1 = P
∫ ∞
−∞

dx
φ(x)

x
(4.24)

For the second integral I2 we add and subtract φ(0) in the numerator. The limes can be
separated since both summands are assumed to converge:

I2 = lim
ε→0+

ε

∫ ∞
−∞

x

π(x2 + ε2)

φ(x)− φ(0)

x
dx+

φ(0)

π
lim
ε→0+

∫ ∞
−∞

dx
ε

x2 + ε2
(4.25)

We show that the �rst term goes to zero. We split the integration domain. For |x| > 1 we
apply the dominated convergence theorem and the integrand becomes zero. For |x| ≤ 1 we
show that the absolute value of the integral is zero. So we apply the mean value theorem,
the triangle inequality and perform the remaining integral:

lim
ε→0+

ε

∣∣∣∣∫ 1

−1

dx
x

π(x2 + ε2)

φ(x)− φ(0)

x

∣∣∣∣ ≤ lim
ε→0+

sup
η∈(−1,1)

|φ′(η)|ε
∫ 1

−1

dx
|x|

π(x2 + ε2)

= sup
η∈(−1,1)

|φ′(η)| 1
π︸ ︷︷ ︸

=C

lim
ε→0+

ε

∫ 1

0

dx
2x

(x2 + ε2)︸ ︷︷ ︸
=log(x2+ε2)

∣∣1
0

= C lim
ε→0+

ε log(1 +
1

ε2
)
l'Hosp.

= C lim
ε→0+

1
1+ 1

ε2

−2
ε3

− 1
ε2

= 0

For the last remaining integral we can restrict the integration domain to |x| ≤ 1, since we

know the rest to be zero. Then we substitute x
ε

= y, dx = εdy and use arctan(x)
x→±∞−−−−→ ±π

2
:

lim
ε→0+

∫ 1

−1

dx
ε

(x2 + ε2)
= lim

ε→0+

∫ 1/ε

−1/ε

dy
1

(y2 + 1)︸ ︷︷ ︸
arctan(y)

= π (4.26)

So we have

I2 = φ(0) (4.27)

It can be shown in general that the integral kernel in I2 is a nascent delta distribution, it
converges in the weak sense for ε→ 0+

ε

π(x2 + ε2)

ε→0+

−−−→ δ(x) (4.28)
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For the shifted function x = y + E we have

lim
ε→0+

∫ ∞
−∞

dx
φ(y)

y + E + iε
=

(
pv

1

x
− iπδ(x)

)
φ(x− E) (4.29)

Theorem 4.2 (Evaluation of the bath correlation function)
The Laplace transform of the bath correlation function Cs

αµκ(t) using the dispersive relation
is given by

Cs
αµκ(ω) =

∫ ∞
−∞

dω′

2π
Γsαµκ(ω

′)
i

ω + sω′ + i0+
(4.30)

In the wide band limit this simpli�es to (using the Sokhotski-Plemelj theorem (4.1))

Cs
αµκ(ω) = iΓ(s)

αµκ

∫ ∞
−∞

dω′

2π

nsα(ω′)

ω + sω′ + i0+
= i

Γ
(s)
αµκ

2π

∫ ∞
−∞

dz
nsα(s(z − ω))

z + i0+
(4.31)

= Γ(s)
αµκ

(
1

2
nsα(−sω) +

i

2π
pv

(
nsα(s(z − ω))

z

)
︸ ︷︷ ︸

=:Λsα(ω)

)
= Γ(s)

αµκ · F s
α(ω) (4.32)

with the principal value integral:

Λs
α(ω) = P

∫ ∞
−∞

nsα(s(x− ω))

x
dx

x=ω+sy
= P

∫ ∞
−∞

nsα(y)

ω + sy
dy = Re

[
Ψ

(
1

2
+ i

β(ω + sµα)

2π

)]
(4.33)

Proof 4.2
As the generalized Fermi function in the integrand nsα

(
s(x − ω)

)
=
(
1 + eβ((x−ω)−sµα)

)−1

doesn't ful�l this Schwartz space condition nsα
(
s(x− ω)

) x→−∞−−−−→ 1 we change our �at band
assumption slightly by adding an auxiliary exponential convergence term eηx, with η → 0+.

P
∫ ∞
−∞

dx

2π

nsα
(
s(x− ω)

)
x

nsα(ω) =
(
1 + esβ(ω−µα)

)−1

For the principal value integral we have a look at the closed Cauchy integral, where the
integration along a semicircle with in�nitely large radius and along the semicircle cutting
out the singularity at zero vanish due to the exponential terms. So we apply the residual
theorem. The roots of the Fermi function are the Matsubara frequencies

xn = ω + sµα + i
2π

β
(n+ 1/2).
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We get for the sum of the residuals:∮ ∞
−∞

nsα
(
s(x− ω)

)
x

dx = 2πi
∞∑
n=0

eηxn

−β
1

xn
= −2πi

β

∞∑
n=0

eη(ω+sµα+i 2π
β

(n+1/2))

ω + sµα + i2π
β

(n+ 1/2)

We extract the factor i2π/β from the denominator, de�ne a new convergence factor η̃ =
η · i2π/β and de�ne z := 1

2
− i β

2π
(ω + sµα) and �nd:

= −ezη̃
∞∑
n=0

eiη̃n

z + n

As the exponential term before the sum only depends on η we can already evaluate the
limit and sent it to one. For η > 0, we still have the convergence term in the sum eiη̃n ∝
e−2πηn/β n→∞−−−→ 0 and so also the sum converges

C :=
∞∑
n=1

(
e−2πη/β

)n
n

= − ln(1− e−2πη/β) <∞

Adding and subtracting that constant results in

−
∞∑
n=0

eiη̃n

z + n
= −1

z
+
∞∑
n=1

(
eiη̃n

n
− eiη̃n

z + n

)
− C = −1

z
+
∞∑
n=1

zeiη̃n

n(n+ z)
− C

One can show that the constant C that goes to in�nity for η → 0+ cancels out with the
complex conjugated. Now we can neglect the convergence factor in the sum which behaves
like 1

n2 . Compared to the series expansion of the digamma function Ψ we �nd:

Ψ(z + 1) =
∞∑
n=1

z

n(n+ z)
− γ, Ψ(z + 1) = Ψ(z) +

1

z

−1

z
+
∞∑
n=1

z

n(n+ z)
− C = Ψ(z)− γ − C

with the Euler-Mascheroni constant γ ≈ 0.57721. Another representation of the complex
digamma function is given by the integral expression

Ψ(z) =

∫ ∞
0

e−t

t
− e−zt

1− e−t
dt (4.34)

Re
(
Ψ(a+ bi)

)
=

∫ ∞
0

e−t

t
− e−at cos(bt)

1− e−t
dt (4.35)

As we just need the real part we can see from this expression that the sign of the complex
argument in z doesn't matter, so we �nd for

Λs
α(ω) = Re(Ψ(z))− γ − C, z =

1

2
+ i

β

2π
(ω + sµα) (4.36)
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Figure 4.1: Real and imaginary part of the digamma function. The black line marks the
relevant parameter space used in the analytic expression for the bath correlation
function.
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