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Abstract

Digital filtering has become a key building block of digital signal processing and therewith

a wide range of utilization within wireless communication systems emerged. In general,

filter design relies on given filter specifications either to meet frequency response or time-

domain characteristics. However, in order to optimize a filter for a certain application, the

overall system in which the filter is embedded needs to be considered. Both approaches

are investigated in this work.

Even if there are many beneficial properties compared to analog filters, with digital filters

one has to deal with the effects of quantization. This nonlinear operation makes it difficult

to find an optimized set of filter coefficients for implementation in finite precision hardware.

In this work a differential evolution optimization algorithm is employed to tackle this issue.

It takes either the system model of an existing RF receiver for standard industrial, scientific

and medical (ISM) bands or an filter specification as input. Furthermore, a toolset for an

automatized design flow is proposed and implemented. It delivers quantized coefficients

for infinite impulse response filters that are optimized for low-power/low-area and are

plugged directly into the hardware description language model. It is shown that filter

design based on a system model improves the overall receiver performance significantly.

Kurzfassung

Digitale Filtertechniken entwickelten sich zu einem wichtigen Baustein für die digitale Sig-

nalverarbeitung und daraus entstand eine Vielzahl an Anwendungen in drahtlosen Kom-

munikationssystemen. Im Allgemeinen beruht der Filterentwurf auf gegebenen Filterspez-

ifikationen, entweder um Charakteristiken im Zeit- oder Frequenzbereich zu erfüllen. Um

hingegen einen Filter für eine gewisse Applikation zu entwerfen, muss das Gesamtsystem,

in dem dieser eingebettet ist, betrachtet werden. Beide Ansätze werden in dieser Arbeit

aufgegriffen.

Auch wenn digitale Filter eine Reihe vorteilhafter Eigenschaften gegenüber analogen auf-

weisen, so müssen Effekte der Quantisierung berücksichtigt werden. Diese nichtlineare

Operation erschwert die Optimierung von Filterkoeffizienten für die Implementierung in

Hardware mit endlicher Genauigkeit. In dieser Arbeit wird ein Differential Evolution Op-

timierungsalgorithmus eingesetzt um dieses Problem zu lösen. Dabei wird entweder das

Systemmodell eines existierenden RF Empfängers für die industriellen, wissenschalftlichen

und medizinischen (ISM) Bänder oder eine Filterspezifikation als Optimierungsbasis ver-

wendet. Weiters wird ein automatisierter Entwurfsablauf vorgeschlagen und implemen-

tiert. Dieser liefert quantisierte Koeffizienten welche für geringen Strom- und Flächenbe-

darf optimiert sind und direkt in das Hardwarebeschreibungsmodell übernommen wer-

den. Es wird erwiesen, dass der Filterentwurf basierend auf einem Systemmodell die

Leistungsfähigkeit des Empfängers maßgeblich verbessert.

II



Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

date (signature)

III



Acknowledgements

First and foremost, I would like to thank my advisors from the Signal Processing and

Speech Communication Laboratory, especially Andreas Pedroß for his commitment to

support me with any technical issue and the most valuable inputs he contributed to this

thesis. I also wish to thank Klaus Witrisal and Manfred Mücke for supporting and guiding

me into the right direction throughout this work.

Furthermore, I would like to thank Bernd Janger not only for enabling and supporting

the thesis at Maxim Integrated but also I highly appreciated the flexibility granted to fit

work around my studies. Thanks also to Alexander Resch and Steven Dennis for sharing

their expertise with respect to the implementation details.

Finally, I wish to thank my parents for supporting me in every way throughout my whole

studies.

IV



Contents

1 Introduction 3

1.1 DSP Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 System Model 11

2.1 The RF Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Equivalent Baseband Model . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Transmission Data Generation . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Receiving Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 CIC Decimation Filter . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Highpass Filter (AC coupling) . . . . . . . . . . . . . . . . . . . . 18

2.6 Optimization Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Deriving a Filter Specification . . . . . . . . . . . . . . . . . . . . . 20

2.6.2 Defining the Optimization Problem . . . . . . . . . . . . . . . . . . 21

2.7 Data Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 MMSE Reference Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Quantized Filter Optimization 25

3.1 Digital Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 IIR Filter Architectures . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Lowpass Filter Types . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 Effects of coefficient quantization . . . . . . . . . . . . . . . . . . . 29

3.2 Heuristic Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Evolutionary Heuristics . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Multiobjective Optimization . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Statistical Filter Quantization Model . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Representation of Quantization Noise . . . . . . . . . . . . . . . . 36

3.3.2 Simple One-pole Filter . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 Second-Order Section . . . . . . . . . . . . . . . . . . . . . . . . . 40

1



Contents

3.3.4 Cascade of Second-Order Sections . . . . . . . . . . . . . . . . . . 41

3.4 Optimization Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Magnitude response . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2 Group delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3 Area constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.4 Scales and coefficient power contribution . . . . . . . . . . . . . . . 45

3.5 Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Filter Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Digital Design Tool Flow 48

4.1 Filter Optimization Tool Flow . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Architecture and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Number representation . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Fixed Coefficient Variant . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.3 Programmable Coefficient Variant . . . . . . . . . . . . . . . . . . 52

4.2.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 MATLAB Filter Design HDL Coder . . . . . . . . . . . . . . . . . . . . . 53

4.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.2 Area and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Results 57

5.1 Quantized Filter Optimization . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 System Model Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Effects of Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusion and Outlook 66

A Appendix 68

A.1 System Model MMSE Solution . . . . . . . . . . . . . . . . . . . . . . . . 68

A.2 Theoretical BER of the RF Receiver . . . . . . . . . . . . . . . . . . . . . 69

A.3 MATLAB MEX and MPFR Library . . . . . . . . . . . . . . . . . . . . . 71

A.3.1 Bittrue fixed-point implementation . . . . . . . . . . . . . . . . . . 71

A.3.2 Bittrue CSD fixed-point multiplication . . . . . . . . . . . . . . . . 74

A.3.3 Bittrue floating-point implementation . . . . . . . . . . . . . . . . 75

A.4 MATLAB HDL Coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.4.1 MATLAB Filter Design HDL Coder . . . . . . . . . . . . . . . . . 79

A.4.2 MATLAB HDL Coder for Simulink . . . . . . . . . . . . . . . . . . 83

2



1
Introduction

Keyless go systems have gained significant interest in the last years. Without grabbing

the key from the pocket, the driver just needs to carry it in order to open the car. A

further feature is that an ignition lock is no longer required, it is substituted by the start

button. The engine can be started as soon as the key is located inside the car. There is

huge potential for implementing additional comfort as well as security functions in keyless

go systems.

The hardware setup consists of at least four antennas mounted at the doors, the trunk

and another one inside the car to detect the key as illustrated in Figure 1.1. It is therefore

possible to detect the actual location of the key, especially if it is in- or outside the car.

Figure 1.1: Antennas mounted on a car for a keyless go application [1]

The transceiver system consists of a key and car unit as depicted in Figure 1.2. For

wireless wakeup and communication, an LF/RF link is used. The LF is ranging from

20 kHz to 125 kHz whereas for RF standard ISM bands 315, 433, 868 and 915 MHz are
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1 Introduction

used (geographical location dependent). LF packets with a predefined codeword are sent

out from the car antennas periodically that wakup the key unit. Over the RF link the

data communication is established and a challenge response authentication takes place. A

controller transfers the received data to the immobilizer which verifies the data before the

access is granted finally.

RF

Transceiver

LF

Receiver

Immobilizer
RF

Transceiver

Key 315 - 915MHz

RF Link

Car

3D

coil

X

Y
Z

LF Link

Immobilizer

LF

Transmitter

LF 

coils

ECU

Figure 1.2: Keyless go system

Maxim Integrated offers customized keyless go solutions with advanced wakeup detec-

tion range for convenient keyless experience. This is achieved primarily due to a 22 kHz

operating frequency. However, this thesis will mainly deal with the RF receiver imple-

mented in such systems. It is an application specific standard product (ASIC) with an

internal microprocessor that is used as data link for the authentication process. A digital

filter is designed to improve the overall system performance based on the given receiver

structure.

1.1 DSP Filter Design

Digital filtering is a valuable tool of digital signal processing (DSP). Compared to analog

filters, which are built from passive devices such as resistors, capacitors and inductors,

digital filters consist of standard logic cells. On a transistor level circuit these cells are

combined to create adders and multipliers which are fundamental building blocks for any

DSP1 design. This implies that all the computations are done in discrete amplitude and

time.

There are some very attractive advantages compared to analog filters such as independence

on production process fluctuations, no calibration after production and easy configuration

of filter coefficients during runtime. However, one of the main disadvantages is the finite

number space in which the computations are performed in digital hardware. It causes

quantization noise, stability issues and a limitation of the frequency range due to sampling

1 As this work deals with filter design in ASICs, we stick to digital signal processing and the design itself
(instead of implementation on a processor platform).
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1 Introduction

and the resulting periodic repetition of the frequency spectrum. Number format and

arithmetic are therefore very important design decisions that need to be evaluated already

at system-level design.

In a DSP design methodology a standard approach to design filters is to use specifications

that are coming out from a system-level implementation. They are specified most likely by

frequency response parameters such as cutoff frequency or stopband attenuation. There are

several tools and algorithms available to compute exact coefficients for this design problem.

However, the issue with digital filters is that quantization, a nonlinear operation, needs

to be considered. Several approaches to tackle this problem emerged as digital filtering

became popular. Many of these algorithms employ population based heuristic optimization

algorithms as they are able to optimize several costs simultaneously for a certain set of

candidate solutions.

An extended approach is to consider the target filter within the overall system. By mod-

elling the actual RF receiver, the filter can be optimized for performance measures such

as bit error probability. Although there is a lot of additional design effort, this method

promises to achieve higher receiver performance as long as the system environment is

modelled well.

In order to optimize the filter design for area and power of the final implementation in

hardware, partial cost functions need to be employed at system-level optimization. This

needs to be handled by both of the above mentioned design approaches. The costs are

affected mainly by the filter structure and the arithmetic/number format in which the

computations are performed.

1.2 Objectives

The main purpose of this work is to design and implement a filter in digital hardware that

replaces an existing filter with the goal to optimize the RF receiver in terms of error prob-

ability. The existing filter has been designed based on a certain lowpass filter specification

that came out of the system design. In order to achieve the optimal criterion, the overall

system needs to be considered and the filter designed within its actual boundaries. From

the implementation point of view the hardware description language (HDL) model needs

to improve the existing design with respect to area and power as the filter is used in a

battery supplied device.

Even more important is the reuseability as the filter should be able to be instantiated as

intellectual property (IP) with different filter configurations. This demands a tool to cal-

culate filter coefficients under certain constraints that is embedded in a fully automatized

design toolflow.

As for any DSP design the effects of quantization need detailed investigations. Also, a
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1 Introduction

reasonable trade-off between receiver performance and area/power of the design needs

to be met. Two major number formats in DSP are compared, namely fixed-point and

floating-point. Nevertheless the final implementation will be in fixed-point arithmetic. As

MATLAB supports the auto-generation of very high speed integrated circuit hardware de-

scription language (VHDL) models out of its filter design and analysis tool, it is evaluated

whether an automatic code generation on this basis makes sense.

The actual filter implementation is a completely standalone IP in 0.18 µm complementary

metal oxide semiconductor (CMOS) technology. The coefficients can be determined by

either the system model or a filter specification as illustrated in Figure 1.3. The imple-

mented filter optimization tool takes any of these two inputs as a basis for computing

the coefficients together with a filter architecture and certain constraints that define the

cost functions for optimization. Anyway, the HDL design only needs the coefficients, the

implementation stays the same for all these approaches. The filter optimization tool is em-

bedded in a fully automatized design flow from filter/system specification down to register

transfer level (RTL) and gate level (GL). Equivalence checks are performed automatically

to a bittrue high-level model on all levels. For the hardware description there are two

implementation variants demanded. Firstly, a variant where the coefficients are fixed at

synthesis/compile time, and secondly a variant where coefficients are programmable dur-

ing runtime. Low-power HDL techniques need to be investigated in order to optimize the

costs for area and power also at implementation level.

Digital design

(VHDL)

Area Power

Synthesis

Filter optimization 

tool

Lowpass filter 

specification
System model

Filter 

coefficients

Filter architecture & 

constraints

Figure 1.3: Simplified filter optimization tool flow

6



1 Introduction

1.3 Related Work

Infinite impulse response filters provide much better performance with less computation-

al/hardware requirements compared to finite impulse response filters. The disadvantage

is that the error surface for the digitalized filter is nonlinear and multi-modal [2]. Fur-

thermore, they might become unstable. Most common traditional designs of digital IIR

filters rely on bilinear transformation. Based on an analog (continuous-time) reference fil-

ter transfer function the approximately equivalent digital (discrete-time) filter is designed.

This holds for standard filter types, i.e. lowpass, highpass, bandpass and bandstop.

Besides this standard approach, many different design methods evolved as digital filter

design became more and more valuable in the past decades. Matching a certain fre-

quency response specification is still the major target, however there are also interesting

approaches that design the filter in time-domain. Both of these methods are investigated

in this work. The former is used to design a filter given a certain filter specification whereas

the later approach does so by considering the whole receiver.

Especially for IIR filters designed to meet certain filter specifications such as passband

ripple, cutoff frequency, stopband frequency or stopband attenuation, it is common to

adjust poles and zeros in the z-plane as this automatically ensures stability [3]. It has

been shown that ripples of the magnitude can be controlled by the radii of the poles,

whereas the unevenness, i.e. the difference between the two extremes to the right/left of

a ripple peak, is affected by the phase of poles and zeros. For hardware implementations

it can be said that filters with less poles than zeros deliver promising solutions. Also,

phase distortions and roundoff errors might be reduced in this case [4]. However, for a

digital implementation, coefficients still need to be calculated out of the poles/zeros and

quantized afterwards. Furthermore, depending on the filter structure, scaling factors that

are used to limit the numerical range for finite-wordlength architectures do not come out

directly from this design in the z-plane. Even if the objective to meet a certain magnitude

response is the same, in contrast to [3] this approach adjusts the coefficients of the filter

directly in order to avoid this issue. Of course, to verify stability of these coefficients, poles

and zeros need to be computed. In fact, this is a simple operation with low computational

effort.

Designing the filter in time-domain can be incorporated by trying to match, for instance,

a reference impulse response. The design method in [5] even computes full quantized filter

coefficients. After initially only unquantized coefficients are taken into account, they are

substituted step by step by quantized ones inbetween optimization procedures. Besides the

fact that the implementation is simple, quantization errors can be evaluated convenient

in time-domain. Furthermore, computations of the impulse response can be done fully

bittrue such that any numerical overflow is indicated immediately. In this work the same

approach is used to optimize the overall RF receiver. Still, instead of taking the impulse

response, a data sequence is generated as reference out of the system model where the

target is to minimize the bit errors.

7



1 Introduction

From the architecture point of view most design methods are not specific as the design is

done in the z-plane [6]. However, in DSP designs the cascading of second-order sections

(SOS) has emerged as the coefficient range and therefore also the numerical range for the

computations is limited. Therewith, even quantization errors are reduced which is the main

purpose of utilizing SOS in this work [7]. There are lattice wave filter implementations

as well [8, 9], but there is the issue that in general this filter structure needs the double

amount of multipliers compared to direct-form II implementations [10].

Multiplierless IIR filters are very interesting for hardware implementations. The difficulty

is that the frequency response is highly sensitive to the filter coefficients [11], thus the

application is limited. In [12] a method is proposed to quantize both coefficients and state

variables to power-of-2 values. This leads to simple shifting operations in hardware which

reduces area and power tremendously. Despite, the relatively low stopband attenuation

that is achieved with this approach might not be sufficient for some applications. The

multiobjective optimization proposed in this work simultaneously adopts coefficients to

achieve given filter characteristics while at the same time optimizes for area and power

constraints. That is why a reasonable tradeoff can be selected between costs in digital

hardware and filter characteristic.

Besides the filter architecture the arithmetic in which the computations are performed

in digital hardware is a major design decision. For DSP designs there are various fixed-

and floating-point implementations. Both number formats are capable to use (fractional)

canonic signed digit (CSD) representation [13] which is used in many digital implementa-

tions due to its beneficial aspects regarding area and power consumption.

Above mentioned filter design methods rarely incorporate the effects of finite-precision

computations as they focus on the filter design itself, i.e. are capable to find filter designs

that meet given filter specifications. This is a major drawback of these design methods as

the behaviour of the quantized filter in hardware might be significantly different. Thus,

optimization techniques need to be taken into account whenever different criteria need to

be met [3]. That is why a heuristic optimization method is used in this work for designing

an optimum filter.

Heuristic optimization algorithms have matured and are commonly understood as powerful

tool for various optimization problems. They have been widely and successfully applied

also for digital filter design. Especially the use of population based computation algorithms

such as genetic algorithms (GA) [14–16], differential evolution (DE) [2, 16–19], particle

swarm optimization (PSO) [20] and ant colony optimization (ACO) is widespread. A very

recent and novel approach, the seeker optimization algorithm (SOA) has been developed

with convincing performance [21].

As in the previous section the target is to find a global optimum for the digital (quantized)

filter coefficients within reasonable time. Single-state trajectory based methods such as hill

climbing (HC), simulated annealing (SA) and tabu search (TS) are sensitive to the initial

starting point although they exploit a local optimum very well [21]. On the other hand,
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1 Introduction

population based optimization methods in general explore the overall search space well.

That is why they are advantageous in contrast to single-state methods as they incorporate

a whole set of individuals at the same time.

For standard GA it is claimed that they have two major drawbacks. They lack in local

search ability and premature convergence [2]. That is why [14] uses an SA in addition to

the GA. It improves the local search abilities and therefore a tradeoff between exploration

and exploitation is found. In contrast to that, DE has shown very well performance

for filter design optimization problems. Especially remarkable is that a standard DE

converges faster2 with lower variance over different runs than other, much more complex

approaches [21]. For this reason a DE is utilized in this work.

Many of the algorithms referenced above have single cost functions they are trying to

optimize. For instance, [2, 14, 21] try to match a given magnitude response of the filter.

This design task can be simply reformulated to a system identification problem as shown

in Figure 1.4. The cost function is defined as

J(c) =
1

N

N∑
n=1

(d[n]− y[n])2 (1.1)

where d and y represent the desired and actual filter response respectively and c represents

the filter parameters to be optimized. This however is only a single objective optimization,

no further constraints are taken into account. The approach has it’s entitlement whenever

a fixed system design or even a filter transfer function is given and needs to be matched

as good as possible.

x[n]

Desired Filter

IIR Filter

Heuristic Optimization

Algorithm

d[n]

y[n]

º [n]

e[n]

{

+

Figure 1.4: System Identification for Digital IIR Filter Design

By relaxing this fitting constraint to boundaries where the magnitude response is allowed

to live in, partial costs can be taken into account. In a multiobjective optimization different

cost functions of the objectives are computed and applied simultaneously. This technique

has been successfully applied for some approaches already. In [15] they try to optimize

2 Note that it is common to measure the convergence speed in number of generations instead of time
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1 Introduction

for the magnitude and phase response as well as the lowest filter order. In contrast to

that, [17, 20] targets the magnitude response and the group-delay. This work extends the

latter approach by adding dedicated cost functions for digital hardware implementation.

On the one hand that is the area required by the filter (mainly for multiplication and

registering the intermediate results) and on the other hand the power that is consumed

(mainly affected by the chosen coefficients).

To sum up, there is a variety of algorithms to solve this optimization problem with high

performance utilizing heuristics. Nevertheless these approaches consider a fixed system

design, i.e. a given filter specification, and mostly a single cost function. The optimization

problem extended to the overall system can be performed by using a DE again [22] as the

filter coefficients are adopted once again. The multiobjective cost functions are reformu-

lated to 1) the bit error rate of the system, 2) the area required by the filter and 3) the

power consumption of the filter.

1.4 Outline

The thesis is organized as follows. Chapter 2 presents the system model and formulates

the optimization problem. Chapter 3 proposes the filter optimization tool based on (ar-

bitrary) filter specifications. Chapter 4 describes the toolflow for digital hardware design

and provides analysis for different design options. Finally, Chapter 5 recaptures the results

before in Chapter 6 a conclusion is drawn and an outlook for future work is presented.

The appendix provides further details and insight to implemented and used tools.
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2
System Model

This section presents the RF receiver in which the target IIR filter is implemented. The

design and optimization of the filter based on the system model is derived, therefore a

complex baseband equivalent model is investigated. The receiver performance is evalu-

ated by comparing the existing filter implementation to the minimum-mean squared error

(MMSE) solution.

2.1 The RF Receiver

In Figure 2.1 a simplified block diagram of the receiver part of the RF transceiver is il-

lustrated. From the antenna port the signal enters a low noise amplifier (LNA). Passing

through the down conversion mixers, the signal is split up into the in-phase (I) and quadra-

ture (Q) paths. The signals are not directly downconverted to baseband but instead to

a so-called intermediate frequency (IF). Therefore, the system will also be referred to as

low-IF receiver. In a pair of variable gain amplifiers (VGA) the signal is amplified and

bandpass filtered in order to scale the received signal to the dynamic range of the following

analog to digital converters (ADC). These are sigma-delta (Σ∆) ADCs that provide a 1-bit

datastream. In the digital domain a decimation filter reconstructs a digitalized waveform

out of this oversampled bitstream. A highpass filter performs AC coupling before the

downconversion to baseband including the upper/lower side band (USB/LSB) selection is

done. This baseband signal is input for the target IIR filter that is mainly designed for

image rejection. After decimation, a coordinate transformation computes magnitude and

11
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phase out of the real and imaginary parts of the received signal which are used for further

processing like codeword correlation, bit clock recovery and finally data reception. The

receiver is able to deal with amplitude shift keying (ASK) as well as frequency shift keying

(FSK), however in this work only ASK is considered.

Digital domainAnalog domain

RF LO I

LNA

IF 

bandpass 

filter

Coordinate 

transform

Re

Im

Magnitude

Phase

RSS 

processing,

correlation,

bit clock 

recovery,

data 

reception

VGA 

Amp.

IIR 

lowpass 

filter

Decimation

A

D

A

D

USB /

LSB

RF LO Q

Digital 

IF filters

IF LO I

IF LO Q

Figure 2.1: Abstract Receiver Model

2.2 Equivalent Baseband Model

In order to simulate and finally design an optimized filter for the present receiver, the

whole system is modelled in a complex baseband equivalent representation. This simplifies

the receiver model compared to a full passband model as any up- and downconversion

to/from a carrier frequency is neglected. Therewith, simulation, and in a later context

optimization, is much more convenient and has less computational effort. The passband

and baseband equivalent representation is illustrated in Figure 2.2. The low- and highpass

filters that are designed for the IF are used for equivalent filtering and band selection in

this model. Therefore, they need to be transformed to baseband equivalents which is

accomplished by shifting them by the IF carrier frequency fIF.

The baseband equivalent model of the RF receiver is illustrated in Figure 2.3. Starting at

the transmitter side, the desired binary data is upsampled and fed into the transmitting

filter HT (z) which performs the pulse shaping. This reduces the infinite bandwidth of the

δ-pulses for transmission. For simplification an additive white Gaussian noise (AWGN)

channel is implemented. There are neither fading nor other distortions between transmitter

and receiver considered as the receiving bandwidth is relatively small. The receiving filter

HR(z) performs a band selection through a low- and highpass filter cascade. Finally the

optimization filter HE(z) suppresses the introduced signal distortions before the signal is

downsampled to symbol rate for detection again.

The following sections provide further details on the separate blocks of the system model

from Figure 2.3.
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Figure 2.2: Passband and baseband spectra with filter masks
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Figure 2.3: System model

2.3 Transmission Data Generation

The data for transmission is a bitstream that is provided by the microcontroller. Let’s

define the symbol sequence as

db[n] =

Nb∑
k=0

akδ[n− k], (2.1)

where Nb is the number of symbols to be transmitted, ak ∈ {0, 1} are the symbols/bits and

δ[n] is the Kronecker delta. Note that one symbol equals a single bit as we are dealing with

a binary modulation method. After upsampling by a factor of M the infinite bandwidth

of the signal is bandlimited by Gaussian pulse shaping. Therewith an appropriate tradeoff

between the required bandwidth and the introduced inter-symbol interference (ISI) is

selected. The actual transmitted sequence is obtained as

s[m] = d[m] ∗ hT [m], (2.2)
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where ∗ denotes the convolution operator and hT [m] is the Gaussian impulse response of

the transmitting filter defined as [23]

hT [m] =

√
π

α
e−

π2

α2
m2

, (2.3)

where α defines the bandwidth B of the filter, with

α =

√
ln 2√
2B

. (2.4)

The corresponding transfer function is then written as

HT (f) = e−α
2f2 . (2.5)

For the actual implementation, instead of using a filter, the pulse shaping is performed via

a Gaussian lookup table (LUT) for computational simplification and hardware efficiency.

The values for the LUT are obtained by (2.3). It provides a one-sided Gaussian pulse

transition of length M . To apply the LUT, the binary input sequence db[n] is oversampling

by a factor M . The current data pointer within the LUT is updated according to the

oversampled bitstream. If the sample is 1 the counter is increased and vice versa for 0 it is

decreased. Whenever the pointer reaches the lower/upper bound of the LUT it is saturated

to 0 or M respectively. This means, that if at least two equal symbols are transmitted

successively, s[m] constantly stays at either 0 or 1 inbetween the symbols. There is no

drop as would occur with upsampled pulse shaping. The resulting transmission sequence

s[m] is presented in Figure 2.4 with M = 16. The corresponding power spectral density

(PSD) is presented in Figure 2.5.

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

m
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Figure 2.4: Transmission data pulse shaping
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Figure 2.5: PSD of pulse shaped data samples

For performance evaluation, the average energy per bit of the sent data is calculated as

Eb =
1

N · fb

N∑
m=1

s2[m], (2.6)

where N = Nb ·M is the total number of samples of the data samples d[m] and fb is

the data rate (bits per second). The nominal data rate is 125 kbit/s which is chosen for

further analysis as well.

For ASK the baseband signal s[m] is directly modulated onto the analog carrier wave,

which is

c[m] = s[m] cos(2πfc/fs m), (2.7)

where fc is the carrier frequency and fs is the sampling frequency. Due to the transmitted

symbols ak ∈ {0, 1} the modulation scheme is on-off-keying (OOK). In Figure 2.6 the

discrete-time equivalent passband signal c[m] is illustrated.
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Figure 2.6: ASK modulation (OOK)

2.4 Channel

The wireless transmission channel is modelled as AWGN source. Issue at stake is the noise

power that is added to the signal. White noise is defined by its autocorrelation function

rνν(t) =
N0

2
δ(t), (2.8)

where N0/2 is the noise power and δ(t) is the Dirac delta function. The corresponding

PSD is

Pνν(f) = F{rνν(t)} =
N0

2
, (2.9)

where F denotes the Fourier transform. Thus, ν(t) results in a constant power spectrum

with infinite bandwidth. For mathematical simplification it is convenient to assume that

the noise introduced and added at the antenna passed through an ideal bandpass filter

[24]. The PSD of the noise ν(t) is presented in Figure 2.7 and defined as

Pνν(f) =

{
N0/2 if |f | ≤ B/2
0 if |f | > B/2

(2.10)

where N0/2 is the noise power density and B is the bandwidth of the ideal bandpass filter.

As the system model is discrete-time the noise is sampled, the noise power is obtained by

multiplying the PSD (power per Hz) of the noise by the noise bandwidth, that is limited
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f
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Figure 2.7: Ideal bandpass filtered white noise

by the sampling frequency fs. Therewith, the noise variance

σ2
ν =

N0

2
fs. (2.11)

Thus, the additive noise randomly added to the signal is

ν[n] = σν γ[n] (2.12)

where γ[n] is a stationary random process with normal distribution of zero mean and unit

variance. Note that as we are dealing with a complex baseband model, also the noise

added to the signal is complex in general. However, as the modulation scheme is OOK,

the signal is modulated onto the real part only. Thus it suffices to consider only the real

part of the noise.

2.5 Receiving Filter

The receiving filter models a cascade of digital filters for the IF, transformed to baseband

equivalents. For nominal operation the IF is 250 kHz. The filters are located directly after

the ADCs as depicted in Figure 2.1. The downconversion of the IF via mixers is performed

fully in the digital domain. The overall digital IF processing is illustrated in Figure 2.8.

Again, for efficiency reasons the digital sinusoid waveform for the I/Q downconversion is

generated out of a LUT.

2.5.1 CIC Decimation Filter

The cascaded-integrator-comb (CIC) decimation is very suitable for hardware implemen-

tations and a standard approach to reconstruct signals from Σ∆-ADCs [25]. The two

objectives of the filter are given as follows:

1) Reconstruction of the bitstream from the Σ∆-ADC into a digitalized waveform
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Figure 2.8: Low-IF digital filtering and mixing

(signed two-complement). Inherently this implies that the oversampling rate is re-

duced.

2) Suppress image of the signal at 2 fLO introduced by the RF mixers.

The transfer function of the CIC filter is defined as

HCIC(z) =

[
M−1∑
n=0

z−n

]N
, (2.13)

where M is the decimation factor and N is the number of filter stages. The corresponding

magnitude is a sinc shaped response as depicted in Figure 2.9. A very advantageous

property of this filter is that it has a linear phase response and therewith a constant group

delay.

Note that there is no compensation filter used to equalize the magnitude response in the

passband of the filter as is generally implemented for CIC filters in combination with

Σ∆-ADCs [25]. This can be seen as potential improvement with the cost of an additional !
filter.

2.5.2 Highpass Filter (AC coupling)

The highpass filter is mainly used to remove DC components introduced by the Σ∆-

ADC. Despite, it is used for the baseband equivalent model as kind of band selection

filter together with the CIC decimation filter. It is shifted by the IF to form the complex

baseband equivalent filter.

Finally, these two filters are cascaded to form the receiving filter HR(z). They fully
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Figure 2.9: Magnitude response of the CIC decimation filter
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Figure 2.10: Magnitude response of the highpass filter

represent baseband equivalent filters as they are transferred from the IF to the complex

baseband equivalent as shown in Figure 2.2.
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2.6 Optimization Filter

The optimization IIR filter HE(z) is placed directly after the receiving filter HR(z) and

the following downconversion to baseband. Low-IF receivers are advantageous compared

to direct-downconversion receivers as DC offset issues, 1/f noise and second-order nonlin-

earities are circumvented [26]. The issue with low-IF receivers is though that through the

downconversion an image of the signal occurs at the double IF. Thus, the main purpose of

the existing IIR filter is image rejection. This is accomplished simply by lowpass filtering

as shown in Figure 2.11. The second objective of this filter is to reduce the bandwidth as

downsampling is performed right after the filter, but this is given by the image rejection

inherently.

fIF0
f

fIF0
f

Passband

2fIF

Baseband

Figure 2.11: Image rejection

2.6.1 Deriving a Filter Specification

From the analysis done so far we can define a certain filter specification that has been

used to design the existing filter. It will be reused for filter design in Chapter 3. The

required bandwidth of the data is 250 kHz as has been shown in Figure 2.5. As this

filter is the first in the baseband, the cutoff frequency of the lowpass filter is chosen to be

150 kHz to have a reasonable tradeoff between noise suppression and damping of the data

signal. The stopband frequency is defined at 350 kHz to allow a smooth transition. As no

distortions to the passband signal are desired, the magnitude response ripple should be as

low as possible (around 0 dB). In order to keep the ISI low, special care should be taken

of the group delay. In order to suppress the image as much as possible, a high stopband

attenuation is desired at -80 dB. The sampling frequency is 4 MHz. The filter specification

is depicted in Figure 2.12.
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f

150 kHz

-80 dB

|H(  ej! )|2

350 kHz 2 MHz

0 dB

Figure 2.12: Filter specification for the existing filter design

2.6.2 Defining the Optimization Problem

Based on the blocks of the transceiver model described so far, the optimization problem to

maximize the sensitivity of the receiver is defined. Under the constraints that the system

model is fixed, an optimization filter is implemented that ensures optimum detection as

deduced in Figure 2.13.
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Figure 2.13: System optimization

2.7 Data Reception

A usual transmission packet for the RF transceiver consists of a preamble (PR), a packet

synchronization (PS) word and the data field (DF) as depicted in Figure 2.14. The pream-

ble consists of an alternating 1010 sequence, typically 8 or 16 bits long. It is mainly used

for data slicing threshold generation. More important is the packet synchronization which

correlates the known, predefined reference word.

Preamble
(1010101010101010)

Packet sync

(Reference word)
Data field

Figure 2.14: Typical transmission packet consisting of PR, PS and DF

If the samples of the correlator shift register match with the expected reference word, the

correlation sum reaches its maximum. This crosscorrelation is defined as

cyp[m] =
1

MNb

MNb∑
n=0

y[n]p[n], (2.14)

where M is the oversampling factor, Nb is the number of bits used for the PS, y[m] are the

received samples and p[m] is the oversampled PS word. This correlation peak provides a

basis for sampling. Thus, right after the occurrence of a PS, the bit clock generation is

triggered that delivers sampling strobes for the rest of the DF as illustrated in Figure 2.15.

It is therefore ensured, that the sampling of a bit value takes place in the middle of the

oversampled incoming data bitstream.
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. . .

Packet sync

achieved

. . .

Sampling strobes
Tb

Data bitstream

Figure 2.15: Sampling strobes generation after packet sync

2.8 MMSE Reference Filter

Standard linear equalizers that aim to flatten the frequency spectrum to remove ISI are

the zero-forcing (ZF) and minimum-mean squared error (MMSE) equalizer. The ZF equal-

izer tries to compensate any distortions inbetween transmitter and receiver. However, it

neglects the introduced channel noise. In contrast to that, the MMSE equalizer considers

the overall receiver structure including the noise. This optimization procedure is visual-

ized in Figure 2.13. The optimization algorithm can be arbitrary. For MMSE equalizers

the least-mean squares (LMS) algorithm is often utilized to seek the filter parameters

iteratively.

The MMSE solution will be used to compare the existing receiver performance to an

optimum reference solution. Furthermore, it will also be compared to the solution found

by the DE approach later on. Refer to Section A.1 for a detailed derivation of the MMSE

solution for the receiver.
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2.9 Performance Evaluation

In order to evaluate the receiver performance the bit error rate (BER) is computed for two

different filter types. Firstly, there is a simple Butterworth lowpass filter which is used

in the current version of the RF receiver. Secondly, there is the MMSE equalizer. As a

reference, the theoretical BER as deduced in Section A.2 is plotted.

Figure 2.16 shows that the receiver performance is improved by the MMSE equalizer.

At an Eb/N0 ratio of 10−3, which is defined as the sensitivity limit, the improvement is

approximately 1.2 dB. The theoretical BER is not reached due to the encountered system !
design issue discussed in Section 2.5. The simulation is done for 106 bits.
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Figure 2.16: Comparison of existing Butterworth filter and MMSE equalizer
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This section deals with the optimization of the filter with an arbitrary (lowpass) filter spec-

ification as well as for the dedicated RF receiver presented in Section 2. The filter specifi-

cation may be defined by the system design and already provides certain constraints about

the filter criteria such as passband and stopband behaviour of the frequency response. A

DE algorithm will be employed to optimize the filter coefficients. The algorithm incorpo-

rates several partial cost functions that one might want to optimize.

3.1 Digital Filter Design

Most common traditional designs of IIR filters rely on analog-to-digital transformation

based on filter specifications. Established filter design methods are Butterworth, Elliptic,

Chebyshev type I and II filters. Based on the analog filter transfer function it is trans-

formed into a digital filter using the bilinear transformation. MATLABs filter design

and analysis tool (FDAtool) computes solutions for standard filters on this basis. This

powerful tool even has the possibility to extract quantized coefficients (fixed-point) that

are stable and normalized to unity gain, nevertheless it does not optimize the filter for a

certain application [3, 10,27].

Before starting with optimization of the filter itself, an introduction to IIR filter architec-

tures is provided.
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3.1.1 IIR Filter Architectures

In general an IIR filter can be represented by the difference equation

y[n] =
M∑
k=0

bk x[n− k]−
N∑
k=1

ak y[n− k], (3.1)

where x[n] and y[n] are the in- and output of the filter respectively, M is the number of

previous input and N the number of previous output samples taken into account for the

filtering operation. The samples are weighted by bk and ak respectively. Equation (3.1)

consists of a feedforward (FIR) and a feedback path. The latter is responsible for the

infinite impulse response of the filter. The corresponding transfer function H(z) is given

as

H(z) =

∑M
k=0 bkz

−k

1−
∑N

k=1 akz
−k
. (3.2)

The filter architecture itself can be represented in different ways [10]. When writing the

transfer function as in (3.2), it is said to be in direct form. By factorizing the polynomials

by their poles dk and zeros ck, the transfer function H(z) can be rewritten in cascade

form, which is

H(z) = s

∑M
k=1(1− ckz−1)∑N
k=1(1− dkz−1)

(3.3)

There is full freedom of pairing the poles/zeros to subsystems in the form of (3.3). Thus,

by combining pairs of real factors and complex conjugate pairs into second-order factors,

the above equation can be rewritten as product (cascade) of sub-filter stages, so called

second-order sections (SOS) or biquads. Therefore, the transfer function H(z) can be

given as

H(z) =

Ns∏
k=1

sk
b0k + b1kz

−1 + b2kz
−2

1− a1kz−1 + a2kz−2
, (3.4)

where Ns is the number of sections. Each SOS has a filter order of two. Additionally

a scale value sk is introduced for each biquad. Note that there is also full freedom in

ordering the sections itself.

A graphical representation of (3.4) in direct-form II is given in Figure 3.1. This structure

is rather advantageous for implementation in DSP designs [7]. Starting at the entry of the

biquad, the scale value is a useful factor for limiting the numerical range of finite-precision

arithmetic, thus overflows can be suppressed in an elegant way. Furthermore this scale

value can be used to weight the SOS itself. As each SOS is a filter of order two, quantization

errors are only influencing one section, the influence to the overall filter transfer function

is reduced. Nevertheless the errors introduced at early stages will propagate through the

following filter stages. This will be discussed in detail in Chapter 3.3. Finally, the number
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of delay elements is decreased (compared to direct-form I sections). It is important to

note that the magnitude response is constrained by the filter order [10,19].

SOS 1x[n] SOS i SOS NS y[n]

xi[n]

b1ia1i

a2i

z-1

z-1

yi[n]
b0i

b2i

si

. . .. . .

Figure 3.1: Cascade of second-order sections in direct-form II

3.1.2 Lowpass Filter Types

There are several lowpass filter types available based on the previously derived cascaded

form [10,27]. In this work the Butterworth and elliptic structure are mainly used. Within

its SOS there are only two configurable coefficients, namely a1 and a2. The feedforward

coefficients are fixed to b0 = 1, b1 = 2 and b2 = 1. This filter type has a smooth magnitude

response with low passband ripple and relatively low group delay ripple as depicted in

Figure 3.2. However, sharp transition bands can’t be reached using this filter architecture.

In contrast to that the elliptic filter has three configurable parameters a1, a2 and b1. This

architecture allows for sharper transition bands with high stopband attenuation at the

cost of passband ripple in the magnitude response and deterioration of the group delay

as illustrated in Figure 3.3. Of course, Butterworth filters consume less area and power

as one multiplier is saved since the coefficient multiplication by b1 can be implemented as

simple shift. This needs to be considered during the filter design.

By looking at corresponding pole/zero plot in Figure 3.4 it is observed that the poles of

the elliptic filter get very close to the unit circle. Depending on the quantization step size

the filter could become unstable as the pole is shifted outside the unit circle.
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Figure 3.2: Magnitude and group delay of a fourth order butterworth filter with cutoff frequency
150 kHz and 4 MHz sampling frequency
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Figure 3.3: Magnitude and group delay of a fourth order elliptic filter with cutoff frequency 150 kHz
and 4 MHz sampling frequency
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Figure 3.4: Poles/zeros of the Butterworth and elliptic filters from Figure 3.2 and 3.3 respectively
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3.1.3 Effects of coefficient quantization

As quantization plays an important role in this chapter the effects are demonstrated here

very shortly. Figure 3.6 shows the passband magnitude response of an elliptic filter with

order 6. The coefficiants and scales are quantized to 10 bits. The outcoming filter response

derivates significantly from the double-precision solution. Especially remarkable is, that

the magnitude is no longer normalized to unity. This could cause overflows in systems

where the arithmetic is assuming this constraint is hold. The group delay is less affected

by the quantization process as presented in Figure 3.6.
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Figure 3.5: Effects of quantization on passband magnitude response of an elliptic lowpass filter
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Figure 3.6: Effects of quantization on group delay of an elliptic lowpass filter

3.2 Heuristic Optimization Methods

As the effects of coefficient quantization and roundoff noise aren’t negligible in general,

optimization techniques need to be employed [3]. Quantization is a nonlinear process, thus

optimization of a quantized filter is not a trivial task. A general optimization approach

would always be some sort of gradient search which would need a cost3 function that is fully

3 Note that for heuristics the cost is often referred to as fitness although the meaning is completely the
same.
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differentiable. In fact this no longer holds when coefficient quantization is incorporated

into the minimization [28]. Whenever exhaustive/random search is impractical, heuristic

methods are applied in order to improve the speed of convergence to find an optimum, or

at least a satisfactory solution.

This section provides a short introduction and overview about evolutionary meta-heuristic

optimization methods and examples for existing implementations are given based on [29],

[30]. Additional investigations are provided for multiobjective optimization [31].

Evolutionary heuristics try to improve candidate solutions in an iterative way. A certain

cost function needs to be defined that creates a hyperplane in which a minima or maxima

shall be found. The target is to find a global optimum, thus the aim is to cover the whole

search space. Metaheuristics are generally applied to find solutions for problems where the

optimum might not be obvious to find and the path to arrive there is not straightforward.

An structured overview of algorithms that will be discussed shortly in this section is given

in Figure 3.7.

Heuristic Optimization

Gradient Based
Trajectory 

Methods

Population 

Methods

Hybrid

Meta-heuristics

Gradient Descent/AscentGradient Descent/Ascent Hill Climbing (HC)Hill Climbing (HC)

Threshold Methods (TM)Threshold Methods (TM)

Tabu Search (TS)Tabu Search (TS)

Simmulated Annealing (SA)Simmulated Annealing (SA)

Genetic Algorithm (GA)Genetic Algorithm (GA)

Ant Colonies (AC)Ant Colonies (AC)

Differential Evolution (DE)Differential Evolution (DE)

Particle Swarm 

Optimization (PSO)

Particle Swarm 

Optimization (PSO)

Memitic Algorithm (MA)Memitic Algorithm (MA)

Figure 3.7: Overview of Heuristic Optimization Methods

3.2.1 Evolutionary Heuristics

Gradient Based

A traditional mathematical method to find optima of a function is the gradient ascent/de-

scent method. It does so by computing the derivative of the function and therefore moves

up/down the hill iteratively. The update is done with a configurable step size α that needs

to be chosen appropriate. If the slope becomes zero, the algorithm has found at least a

local optimum. The initial starting point is chosen randomly. For a multidimensional

function f(x),x = x1, ..., xN , where N represents the dimensionality, the gradient ∇f(x)

is computed to obtain the update vector. A pseudocode of the gradient descent algorithm
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is provided in Listing 3.1.

1 x ← random vector

2

3 loop

4 x ← x + α ∇f(x)
5 until Optimum solution found or max. iterations reached

6

7 return x

Listing 3.1: Gradient descent algorithm

The algorithm is constraint as it can only deal with continuous and differentiable functions.

Also, the step size α needs to be readjusted for different optimization problems. In order

to overcome this issue Newton’s method can be employed. It additionally computes the

second derivative of f(x), thus it converges faster. However, the major problem with these

algorithms is that they get stuck in local minima or maxima.

Trajectory Methods

The constraint that the cost function needs to be differentiable for gradient based opti-

mization is a major drawback. For many application such a function can’t be provided.

It might even be, that the function to be optimized is completely unknown. Trajectory

methods try to test such systems with candidate solution generated randomly around the

current solution and evaluate the output. An abstract pseudocode is provided in List-

ing 3.2.

1 a ← random candidate

2

3 loop

4 b ← Manipulate(a) -- Generate new candidate solution based on a
5

6 if Fitness(b) > Fitness(a)
7 a ← b
8 until Optimum solution found or max. iterations reached

9

10 return a

Listing 3.2: Trajectory optimization algorithm

� Hill Climbing The hill climbing technique is related to gradient based methods,

however neither the direction nor the slope of the gradient itself is computed. In-

stead, this algorithm randomly creates individuals spread out into random directions.

Iteratively, a local hill or valley is found. As the gradient method, this algorithm

gets stuck at local optima, thus several starting points are needed to find different

minima/maxima of the cost function.
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� Tabu Search (TS) Tabu search has the prerequisite that the search space is finite

and therefore discrete. Visited solutions are stored in a memory (tabu-list), thus

tabu-solution will never be re-visited. This exploits the search space, however the

strong prerequisite limits the usage to certain applications.

� Simulated Annealing (SA) This method is considered as a refinement of a local

search which is based on the annealing process of solids for solving combinatorial

problems. In contrast to standard hill climbing it accepts moves into the wrong

direction with given probability. This probability depends on the current temperature

T that decreases exponentially, thus the innovation is large at the beginning, but

small in the end to find a refined optimal solution.

Population based methods

This set of algorithms improve a certain population of individuals at the same time. That

is what makes them advantageous in terms of exploitation of the whole search space. Of

course, this increases the computational costs of the overall optimization process. This

class of algorithm is built up in the same way, a basic framework is provided in Listing 3.3.

1 popsize ← population size

2 P ← random initial population

3

4 best ← none

5 loop

6 for 1 to popsize do

7 for each Pi in P
8 EvaluateFitness(Pi)
9 if best = none or Fitness(Pi) > Fitness(best)

10 best ← Pi
11 end

12 end

13

14 Q ← []

15 for 1 to popsize

16 -- Select parents randomly

17 [P1, P2] ← Selection(P )

18 -- Create child out of it’s parents

19 C ← Crossover(P1, P2)

20 -- Mutate the child

21 Qi ← Mutation(C)

22 end

23 P ← Q
24 end

25 until Optimum solution found or max. iterations reached

26

27 return best

Listing 3.3: Population based optimization

� Genetic Algorithm (GA; Holland, 1975)

The GA imitates the sexual reproduction during evolution from a population and
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is considered as the prototype for population based heuristics. New individuals are

evolving using crossover where random properties of the parents are used to create

the childs (mutation). These properties are also called individuals or chromosomes.

Depending on the random selection of these properties the child might have an im-

proved performance, thus higher probability to survive within the population. Only

the fittest individuals are kept inside the population after each iteration, they will

become parents for the next one. Obviously, the average fitness is improved step by

step while at the same time the exploration is high due to the random mutation.

Generated childs that do not improve or provide any new features are neglected

anyway. The variance of new mutated chromosomes is large in the beginning if the

population is spread out over the whole search space (3.8a). Once the individuals

settle around potential solutions the variance will decrease and the mutation will

produce refined individuals within this area (3.8b). Nevertheless it is claimed that

the GA lacks in local search ability [2]. At this point it is important to note that the

population size needs to be chosen with care. Carrying a high number of individuals

results in high exploration of the search space, but convergence speed will decrease

as the exploitation happens after the individuals accumulate around optimum solu-

tions. The algorithm either runs for a certain number of iterations or stops after an

individual with a fitness less than a certain threshold has been found.

(a) (b)

Figure 3.8: Evolvement of Genetic Algorithm over generations

� Ant Colony Optimization (ACO; Colorni et al., 1992)

This method imitates the way ants explore their environment to find food. Initially

the ants do a random search. Once a food source has been found, the ant leaves a

trace of pheromones (fitness) on it’s way back to the nest that delivers a potential

path for the other ants. The intensity of pheromones provides a weight for the food

quality, quantity and the travel distance from the nest. Once the food sources are

exhausted, the process starts all over again.
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For implementation the search area is divided into a discrete set, an objective func-

tion represents the amount/quality of food and the pheromone path is modelled via

an adaptive memory. The objective function is evaluated iteratively and the best

path and its weights updated accordingly.

� Differential Evolution (DE; Storn and Price, 1997)

The DE evolution is closely related to the GA, the main difference is that the update

(mutation) is done based on a differential vector addition. The basic principle behind

this vector addition/subtraction is rather simple and illustrated in Figure 3.9. In

order to update individual A, two other randomly chosen individuals B and C are

incorporated to compute the update. The vector difference between B and C is

computed and added to A. This provides the mutated child A′.

It has been shown that this algorithm delivers better results with faster convergence

compared to the GA especially for filter design [2, 21].

B

CA

A‘

Figure 3.9: Vector addition/subtraction in differential evolution

� Particle Swarm Optimization (PSO; Eberhart and Kennedy, 1995)

In PSO the population consists of so called particles which are iteratively updated

with a velocity. The vector along which the update is performed is computed out of

a vector between the positions of the current particle and

1) the best particle found within the current population respectively

2) the best particle found so far.

These two vectors are then randomly blended to define the direction in which the

update with the velocity estimate is performed.

Hybrid meta-heuristics

A hybrid meta-heuristic is defined by assembling two different heuristic approaches in

order to gain further performance and/or precision. Hence a better tradeoff between

exploration of the overall search space and exploitation of the solution at local minima
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can be found. For instance, a population based method might explore the search space

well while a trajectory method climbs up the hill pretty fast in the local surrounding. For

filter design this technique has been successfully applied [14]. As one can imagine there

are numerous possible combinations of methods that need to be fully customized for a

dedicated optimization problem.

3.2.2 Multiobjective Optimization

In order to fully use the power of heuristic algorithms, multiple objective cost functions

can be defined. The optimization problem is then reformulated to minimizing/maximizing

the fitness functions Fn(x) for n = 1, 2, ..., N , where N is the number of objectives and x is

a vector containing the parameter variables needed for computation of the fitness function.

Multiple objectives can be applied to any of the above described heuristic optimization

methods, it’s just about computing the total fitness of an individual. For instance, this

can be performed by a naive weighting approach, i.e.

Ftotal(x) =
N∑
n=1

αnFn(x) (3.5)

with αn being a normalized weighting factor for the partial cost functions Fn.

Another approach is to compute the Pareto dominance and Pareto front. Individual A

Pareto dominates individual B if

FAn(x) ≥ FBn(x) ∀ n = 1, 2, ..., N (3.6)

where N is the number of objectives. FAn(x) and FBn(x) are the fitness functions of the

n-th objective of individual A and B respectively given the parameter set x. However, for

the whole population there will be individuals that do not Pareto dominante others but

are still of interest as they are better in some objectives. Some of these will even be the

best for a single or very few objectives. The hyperplane out of these chromosomes defines

the Pareto front. By non-dominated sorting, the fitness space is classified into different

Pareto ranks and the selection done based on the rank of the individuals. Although this

is an interesting measure there is an additional computational effort to obtain the Pareto

ranks. It grows exponentially with the number of objectives N .

3.2.3 Design Decisions

For the optimization tool implemented in this work a multiobjective DE approach is

chosen. Among other heuristics it has proven to have very high performance for filter

design [2, 21]. In general, the design is independent on the filter structure, however in

this work an SOS approach is used due to advantages described in Section 3.1. One
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chromosome represents a whole cascade of SOS. There are six parameters per SOS to

tweak. The cascaded structure is presented in Figure 3.1, where Ns is the number of

sections (overall filter order 2Ns). The corresponding chromosome that is used in the DE

can be represented via an SOS matrix c given as

c =


b01 b11 b21 a01 a11 a21

b02 b12 b22 a02 a12 a22

...
...

...
...

...
...

b0Ns b1Ns b2Ns a0Ns a1Ns a2Ns

 (3.7)

and a scale vector s defined as

s = [s1, s2, ..., sNs ]
T. (3.8)

3.3 Statistical Filter Quantization Model

In this section a statistical model for representing round-off noise due to quantization in

digital filters is derived. Starting with a simple one pole filter the quantization model for

a cascade of second-order sections is deduced. Main concepts are taken from [10,32].

3.3.1 Representation of Quantization Noise

As an introduction it is shown that quantization noise can be represented by substituting

a quantizer by the addition of a single noise source. The concept is the addition of pseudo

quantization noise (PQN) as proposed in [33].

Lets define ν[n] as a random variable (RV), uniformly distributed between ±q/2, with q

representing the smallest quantization interval of a quantizer Q. The noise RV has zero

mean and variance σ2
n = q2/12, the corresponding probability density function (PDF) is

fν(ξ) as shown in Figure 3.10(a). The signal x[n] is fed through a quantizer Q as depicted

in Figure 3.10(b), the quantizer output is yQ[n]. Now, utilizing the PQN model [33]

the random noise variable ν[n] is added to x[n] and hence substituted by the nonlinear

quantization process as depicted in Figure 3.10(c). Assuming that x[n] and ν[n] are

statistically independent, the addition

yν [n] = x[n] + ν[n] (3.9)
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results in a convolution of the PDFs, given as

fyν (ξ) = fx(ξ) ∗ fν(ξ). (3.10)

yν[n]

ν[n]

x[n] yQ[n]Q

(a) (c)

ξ

fν(ξ)

-q/2 q/2

(b)

x[n]

Figure 3.10: PDF of independent quantization noise (a), signal passing through quantizer (b) and
quantization represented as independent additive noise (c)

Note that there is a fundamental difference of the output yQ[n] and yν [n] from Fig-

ure 3.10(b) and 3.10(c) respectively as the quantization and addition of the RV is a

completely different operation. fyQ(ξ) consists of discrete dirac impulses, uniformly spaced

with q, whereas fyn(ξ) is a continuous function in general. This is illustrated in Figure 3.11.

ξ

yn
f  (ξ)

0-q-2q-3q q 2q 3q

yQ
f   (ξ)

Figure 3.11: PDF of the quantizer output yQ[n] and yν [n]

To constitute the actual difference between the models an impulse train c(ξ) is defined

which models the uniformly spaced Dirac impulses used for sampling the PDF. Then,

fyQ = c(ξ) [fx(ξ) ∗ fν(ξ)]︸ ︷︷ ︸
fyν (ξ)

. (3.11)
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For further analysis the characteristic function is utilized. It is defined by

Φx(µ) =

∫ ∞
−∞

fx(ξ) ejξµ dξ (3.12)

which is the Fourier transform of a PDF, where µ can be considered as formal frequency

parameter. Applying a Fourier transform to (3.11) therefore results in

ΦyQ = C(µ) ∗ [Φx(µ) · Φn(µ)] . (3.13)

This shows that there is a direct correspondence between sampling and quantization using

this model. As the PDF is sampled, there are bandlimitation conditions of the input

signal x that need to be satisfied such that the PQN model can be applied for analysis

of quantization noise. This is covered by the quantization theorem QT I [33]. As the

convolution in (3.13) results in a periodic repetition every 2π/q it is given as

Φx(µ) = 0, |µ| > π

q
. (3.14)

3.3.2 Simple One-pole Filter

The simple one-pole filter that is used for an introductory example for fixed-point quan-

tization is shown in Figure 3.12(a). The input and output of the system are x[n] and

y[n] respectively. There is simply one multiplication and one addition performed. The

quantization noise introduced by these two operations is represented by Q1 and Q2 (Fig-

ure 3.12(b)). Both are implemented as PQN noise sources ν1[n] and ν2[n].

x[n] y[n]

a

z-1

(a) One-pole filter

x[n] y[n]

a

z-1

ν1[n]

ν2[n]

Q1

Q2

(b) One-pole filter (PQN model)

Figure 3.12: One-pole filter structures
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Time-domain analysis

The transfer function of the system in Figure 3.12(a) is

H(z) =
1

1− a z−1
. (3.15)

As the signal, and hence also the introduced quantization error passes recursively through

the filter, the impulse response of the filter is of major interest. For this system this is

a simple geometric series h[n] = an−1. We wish to compute the overall round-off noise

power introduced by the system. It is given by the sum of squares of the impulse response,

which is
∞∑
n=1

|h[n]|2 =
∞∑
n=1

a2(n−1) =
1

1− a2
∀ |a| < 1. (3.16)

To get the overall contribution ofQ1 to the system transfer function we can simply multiply

the sum of squares of the impulse response with the mean square quantization error to

obtain the noise variance given as

σ2
ν1 =

q2

12
· 1

1− a2
. (3.17)

As long as the quantization noise is assumed to be uncorrelated, the quantization noise

introduced by Q2 is

σ2
ν2 =

q2

12
· 1

1− a2
. (3.18)

The total noise power introduced by the quantizers sums up to

σ2
ν = σ2

ν1 + σ2
ν2 = 2

q2

12 (1− a2)
. (3.19)

Frequency-domain analysis

For a filter design problem, the impact of quantization on the transfer function is issue

at stake. Based on the previous calculations it is straightforward to compute the noise

power introduced. The quantization noise variance is attenuated by the squared magnitude

response of the filter, hence written as

Pνν(ω) = 2
q2

12
|H(ejω)|2. (3.20)
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Stability

The one-pole filter is stable as long as |a| < 1. In order to guarantee that the filter is

stable even on a finite arithmetic unit, the pole that the coefficient a creates needs to stay

within the unit circle even after the coefficient quantization process. As a second stability

criterion the numerical range of the state variable needs to be considered. The integer

portion of the number representation must be chosen large enough such that all possible

multiplication results stay within the lower/upper bound.

3.3.3 Second-Order Section

The theory derived in the previous section will now be extended to a full filter section. For

one SOS there are six multiplications performed. The corresponding direct-form II model

including quantizers is presented in Figure 3.13. Each multiplication results in quantiza-

tion noise at the output. For the adders there are no quantization errors introduced as

the inputs to each of them are already quantized. Of course there is also the possibility

that the summation of the feedforward or feedback path causes an overflow, however this

is assumed to be covered by a suitable scale value. In Figure 3.13 the fixed-point number

representation is indicated for different Qm.n number formats. This notation represents

the number of integer (m) and fractional (n) portions of the number representation. After

each multiplication the bitwidth of the number doubles and therewith the double amount

of integer and fractional portions, i.e. Q2m.2n, is required without further knowledge.

x[n]
v[n]

b1a1

a2

z-1

z-1

v[n-1]

v[n-2]

y[n]
b0

b2

 
s

Qm.n

Q

Q

Q

Q

Q

Q

Q2m.2n

Figure 3.13: Second-order section with quantizers and corresponding number representations

In order to compute the noise variance the scale factor, the coefficients of the feedback

path and the coefficients of the feedforward path are considered separately. The noise

introduced by the feedforward coefficients is directly added to the output signal without

attenuation. The quantization noise from the feedback path is multiplied with its impulse

response as shown exemplary for the one-pole filter. Analogous, the quantization error
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from the scale multiplication is multiplied with the overall impulse response of the SOS.

The resulting noise variance is

σ2
ν =

q2

12

∞∑
n=0

|h[n]|2︸ ︷︷ ︸
from scale factor

+ 2 · q
2

12

∞∑
n=0

|h[n]|2︸ ︷︷ ︸
from feedback path

+ 3 · q
2

12︸ ︷︷ ︸
from feedforward path

, (3.21)

where h[n] is the impulse response of the overall SOS. Note that σ2
ν replaces all the separate

noise introduced by the quantizers by a single addition after the SOS.

The corresponding noise PSD can be similarly derived as

Pνν(ω) =
q2

12
|H(ejω)|2︸ ︷︷ ︸

from scale factor

+ 2 · q
2

12
|H(ejω)|2︸ ︷︷ ︸

from feedback path

+ 3 · q
2

12︸ ︷︷ ︸
from feedforward path

, (3.22)

where |H(ejω)| is the magnitude response of the overall SOS.

Floating-point

As defined in [32], the noise power of one floating-point quantizer is given as

E{σ2
ν} = 0.180 · 2−2pE{y2[n]}, (3.23)

where p is the number of bits used for the mantissa. There is some additional computa-

tional effort needed to compute the expectation value E{y2[n]}. A certain input sequence

needs to be defined before the variance σν [n] might be computed as the number range mat-

ters for floating-point computations. Besides that the noise power is propagated through

the filter in the same manner, thus also (3.21) and (3.22) hold for the floating-point case.

3.3.4 Cascade of Second-Order Sections

The model from the previous chapter can be developed even further by cascading the

second-order sections to obtain a quantization noise model for the overall filter structure.

The overall noise power for the cascaded SOS can be calculated out of the single noise

PSDs as

Pνν(ω) =

Ns∑
n=1

Pνν,n(ω)

Ns∏
i=n+1

s2
i |Hi(e

jω)|2, (3.24)

where Ns is the number of sections and Pνν,n(ω) are the noise PSDs for n = 1, ..., Ns.

Important to note is that the quantization noise introduced at prior sections is suppressed

by the scale values of the following sections. This is shown by computing the noise PSD

for each single SOS, examplary done for a sixth order elliptic filter with a bitwidth of 10
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for the internal state variables. Figure 3.14, 3.15 and 3.16 show the magnitude response of

the SOS and the corresponding feedback path as well as the round-off noise PSD of each

section. Figure 3.17 presents the resulting overall magnitude response and the round-off

noise introduced. Note that the quantization noise is almost fully dominated by the last

section.
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Figure 3.14: Magnitude responses and noise PSD of SOS1
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Figure 3.15: Magnitude responses and noise PSD of SOS2
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Figure 3.16: Magnitude responses and noise PSD of SOS3
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Figure 3.17: Effects of quantization

3.4 Optimization Parameters

The implemented optimization tool works based on a DE algorithm with multiobjective

optimization as defined in Section 3.2. There are several objectives computed that will be

discussed in this section.

3.4.1 Magnitude response

The target magnitude response is defined via the pass- and stopband attenuation as visu-

alized in Figure 3.18. Its transition band is of low interest, since the pass- and stopband

are limiting the slope anyway. In addition to that a weight for these two frequency ranges
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is taken into account for customization purposes.

The fitness of the frequency response is calculated from two integrals over the range of

pass- and stopband respectively. For the passband, any deviation from 0 dB worsens

the fitness. For the stopband, this happens whenever the magnitude is above the upper

stopband attenuation Astop,u. The cost function for the magnitude response is defined as

Fmag = αpass

∫ ωc

ω=0
|H(ejω)|2dB dω + αstop

∫ πfs

ω=ωstop

σ[∆Astop(ejω)] ·∆Astop(ejω) dω, (3.25)

where αpass and αstop are the pass- and stopband weights, ωc is the cutoff frequency, ωstop

is the stopband frequency and fs is the sampling frequency. Furthermore,

∆Astop(ejω) = |H(ejω)|2dB −Astop,u

and σ(x) is the unit step function defined as

σ(x) =

{
0 if x < 0

1 if x > 0
.

Note that in practice the integrals of 3.25 are computed over sums with discrete values

of ω.

3.4.2 Group delay

Whenever a filter is designed, the distortions of the filter in the passband should be

minimized. As ripple of the magnitude is already covered, there is a further demand for a

constant group delay in order to remove ISI.

For the group delay of a lowpass filter only the passband is of interest as signals in the

stopband are significantly damped. The first derivative of the phase gives the group delay

whereas the second derivative provides the slope and therefore directly the desired fitness

constraint, given as

Fgd =

∫ ωc

ω=0

∂2φ(ejω)

∂2ω
dω, (3.26)

with φ(ejω) being the phase response given as

φ(ejω) = arg(H(ejω)). (3.27)

Analogous to the magnitude response, the integral for the group delay is computed over

a discrete ω.
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Figure 3.18: Arbitrary lowpass filter specification

3.4.3 Area constraint

As the implementation of the filter is done in digital hardware, the area of the IP inside

the chip is directly related to

� the number of sections,

� the number of multipliers and adders and

� the bitwidths of scales, coefficients and internal filter states (size of multipliers).

All this constraints are reformulated to partial cost functions to contribute to the overall

fitness of the individual. For this purpose, the optimization algorithm needs the bitwidths

which are given by the numerical range of the filter input and the desired resolution.

3.4.4 Scales and coefficient power contribution

Any set bit within the scale or SOS coefficient multiplier values will increase the overall

power consumption of the circuit. This objective therefore determines the number of all

the set bits within a population and sums up all of them to get a single fitness value.
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3.5 Algorithm Details

For the DE optimization employed in this work, the optimization for a filter specification

and the system model are distinguished. Nevertheless they use the same optimization core

and partially share cost functions.

3.5.1 Filter Specification

1) Initialization

Generation of initial population of individuals (coefficient sets). One individual

consists of a vector of scale values and a matrix of filter coefficients (SOS matrix).

By default the coefficients are uniformly distributed around zero. Optionally there

is the possibility to generate the initial population based on the double-precision

floating-point solutions derived from the MATLAB Filter Design and Analysis Tool.

The individuals are then distributed around this solution.

2) Stability and SOS ordering

Stability needs to be checked as the initial as well as mutated chromosomes might de-

liver unstable solutions. If there are unstable solutions found, the poles are mirrored

into the unit circle, i.e. p = 1/|p| ej·arg(p) where p is a pole of the filter individual

that is located outside the unit circle.

Ordering of sections is done according to [34] of all generated individuals. This not

only results in an overall filtering improvement, but also reduces the quantization

noise.

3) Compute fitness

Obtain the characteristics for each individual that are needed in order to calculate

the fitness. For the frequency response, add the quantization noise PSD as derived

in Section 3.3.

4) Evaluate fitness

Evaluate the multiobjective fitness functions described in Section 3.4. The overall

fitness is merged by weighting of the partial cost functions for magnitude response,

group delay, area and power contribution for each individual as discussed in Sec-

tion 3.2.2. The weighting parameters were found by empirical test runs that tradeoff

the partial costs against each other.

5) Mutation and Selection

Mutation is done according to the DE algorithm as investigated in Section 3.2. The

selection is based on the natural survival of individuals. Depending on the fitness

the parents and childs stay within the population or not [17,28].

6) Termination

The termination condition is met if the number of maximum generations reached or
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3 Quantized Filter Optimization

at least one coefficient set reaches a fitness less than a certain threshold. Otherwise

the algorithm continues with step 2).

3.5.2 System Model

For the design of an optimized filter based on the system model the same DE core is reused.

Still there are different cost functions that are evaluated at step 4), given as follows:

1) The receiver bit error rate (BER). Therefore a trainings sequence is provided at a

certain Eb/N0 ratio.

2) The area consumed by the filter design

3) The coefficient power contribution

For further details on 2) and 3) refer to Section 3.4.
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Digital Design Tool Flow

In this section the actual tool flow and the design in digital hardware is presented. The

register transfer level (RTL) design is tied to the system and high-level optimization tools

presented in Chapter 3. Also, full verification downto gate-level (GL) is performed au-

tomatically in a sophisticated design process utilizing these models to provide bit-true

reference signals. Two different implementation variants are presented depending on the

application of the filter.

4.1 Filter Optimization Tool Flow

This section gives insight into the overall design flow that is used to design a filter. As

mentioned and depicted in Figure 4.1, there are two ways to do so.

1) Filter Specification Tool Flow

This flow starts with a lowpass filter specification together with a certain architec-

ture (SOS by default). The specification is based on pass- and stopband constraints

as discussed in Section 3.5. By default, the filter optimization tool generates its ini-

tial parameters for the scales and coefficients randomly without any prior knowledge.

As an alternative MATLABs FDA tool which delivers double-precision floating-point

scales and coefficients can be used to do so [14]. These are then quantized for the

desired architecture. The filter optimization tool will generate an initial population
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4 Digital Design Tool Flow

around this solution, as the best one is assumed to be in the vicinity of them de-

pending on the quantization granularity. If a standard lowpass filter (Butterworth,

Elliptic) is designed, the pre-processing leads to faster convergence although the

optimization might deliver a completely different solution. Based on these two dif-

ferent initializations the filter optimization tool utilizes the algorithm described in

Section 3.5 to compute optimized coefficients and scales given the constraints from

the filter specification (cost functions).

2) System Model Tool Flow

Entry point for this flow is the baseband equivalent receiver model described in

Section 2. Based on a system simulation a training sequence for optimization is

generated. Therefore, an operating point is chosen at a certain Eb/N0 ratio. Now,

the filter optimization tool optimizes for this certain sequence using the algorithm

described in Section 3.5.

Lowpass Filter 

Specification &

Architecture

MATLAB Filter 

Designer
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floating-point

scales & coeffs

Digital Design

(HDL)

Filter 

Optimization Tool
Quantization

Area Power

Synthesis
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Design HDL 
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constraints

System Model

constraints

Filter 

Optimization Tool

Filter
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Simulation

Training sequence

Optimized fixed-point

scales & coeffs

Optimized fixed-point

scales & coeffs
Optimized fixed-point

scales & coeffs

Optimized fixed-point

scales & coeffs

Figure 4.1: Filter optimization tool flow

The optimization tool delivers fully quantized coefficients with the desired wordlengths

which can then be plugged into the RTL model. By using a single script, following steps

are performed for verification.

1) RTL compilation
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4 Digital Design Tool Flow

The RTL code is compiled with the filter coefficients obtained by the optimization

tool.

2) Run RTL simulation

The testbench driving the actual filter design implementation is provided with the

coefficients. It performs an output comparison to the bittrue high-level implementa-

tion. A text based simulation result is provided together with a waveform database.

3) Synthesis

The filter model is synthesized and a Verilog netlist generated.

4) GL compilation

The RTL code is compiled to GL.

5) GL simulation

Verifies the model at gate-level by comparing its output to the bittrue high-level

implementation.

This provides a straightforward filter implementation flow with full verification for any

filter design.

4.2 Architecture and Design

In digital hardware a single SOS filter can be implemented as illustrated in Figure 4.2. It

consists of the well know coefficients and a scale value, provided as registers or generics,

at the input which ensures that the number range of the following section stays within

a certain range. The boundaries of the block (sos in and sos out) are registered, i.e.

implemented as Flip-Flops. This is very important as the combinatorial depth of the

multipliers is large and the hazards/toggling activity needs to be minimized in order to

reduce the power consumption. The filter itself has two delay lines, state1 and state2. As

the input is assumed to be registered already, the overall filter section has a delay of three

clock cycles, two for the delay lines and one for registering the output. This constant delay

is negligible in general as the filters run at oversampled clock frequencies compared to the

symbol rate.

There are two different implementation variants demanded depending on the application.

Firstly, there is a variant with fixed coefficient sets at synthesis/compile time. Secondly,

there is a variant that has the ability to configure the coefficients during runtime (pro-

grammable). Both of these variants are implemented with the same filter structure and

number representation.
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state1

state2

 sos_outsos_in

a1 b1

a2 b2

b0s

Figure 4.2: Second-order section in digital hardware

4.2.1 Number representation

As the filter is design in fixed-point arithmetic, a standard two’s complement (signed)

representation is used. In addition to that the canonic signed digit (CSD) representation

will be evaluated. It’s a different radix-two number representation that needs 33% less

non-zeros compared to standard two’s complement representation on average. This is

achieved by introducing a ternary coefficient set {0, 1, 1̄}, where 1̄ denotes a subtraction

of the actual bit value from the total value of the number. For instance, the number 15

can be represented as

15d = 01111d = 24 + 23 + 22 + 21.

Using CSD it can be written as

15d = 10001̄CSD = 25 − 21.

The number of non-zero bits is halved in this case. For DSP designs this technique has

been widely used as in hardware implementations this reduces both area and power at

the same time [13]. For multiplication of a standard two’s complement fractional number

with a CSD number a modification of Horner’s method can be utilized [35]. This method

searches for the non-zero bits in the CSD multiplicand, i.e. 1 and 1̄, and in case performs

the multiplication with the two’s complement number and the corresponding weight (shift

by power of two). If the CSD bit is 1 the value is added to the accumulator but subtracted

if it is 1̄. For an example code refer to Listing A.3.

The numbers are represented in the Q-format where fixed-point, two’s complement num-

bers can be represented with integer and fractional portions. A Qm.n number has m

integer and n fractional portions. Thus the overall bitwidth b = m + n + 1, where one
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4 Digital Design Tool Flow

additional bit is used for the sign information. For efficiency reasons, the coefficients do

not have any fractions. They are aligned with the fractional point of the state register.

From that point it is clear that the bitwidth of the scales and coefficients needs to be

less or equal than the bitwidth of the internal state signals. Figure 4.3 shows a multi-

plication alignment example of a state register s represented as Q2.13 and a coefficient c

with bitwidth 10. The coefficient is shifted by five bits to the right to be aligned with the

fractional point. The other bits are filled up with zeros for multiplication.

+/- s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

c9 c8 c7 c6 c5 c4 c3 c2 c1 c0 0 0 0+/-

state

coeff 0 0

Figure 4.3: Alignment of Q2.13 state with 10-bit coefficient for multiplication

By looking at the signal flow graph in Figure 4.2 it is clear that by addition/subtraction

of the different state variables the number range of the state signals might be exceeded.

Therefore, a certain amount of integer bits needs to be preserved depending on the chosen

coefficients.

4.2.2 Fixed Coefficient Variant

This implementation variant has fixed coefficients that are once computed/optimized dur-

ing the filter design process. Multiplication is performed by addition of the intermediate

results in hardware. The number of binary multipliers, and hence the number of adders,

is proportional to the number of bits set within the coefficient. Therefore, this variant

needs reduced area as not all adder paths of the multipliers need to be instantiated. If a

bit of the coefficient/scale value is zero, the intermediate result is zero and thus there is

no contribution to the result. These adder paths are not instantiated in hardware then.

Introducing CSD coefficients for this implementation variant decreases the area directly

and is considered as potential improvement for power consumption as well. Nevertheless,

the bitwidth of the coefficient/scales for the actual designs are relatively small compared to

that of the state variables at the delay sections. This means, that the amount of non-zeros

decreased by CSD has relatively low impact.

4.2.3 Programmable Coefficient Variant

This implementation variant has programmable coefficients that can be changed freely

during runtime of the chip via dedicated configuration registers. Thus, all adder paths of

the multipliers need to be instantiated which leads to a significant increase in area.
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Implementing CSD multipliers for this implementation variant is not effective due to the

following reasons:

1) All adder paths of the multipliers need to be realized in hardware. Note that this is

independent of the number representation as any binary combination for the coeffi-

cients/scales is possible.

2) The specification in a datasheet with CSD multipliers is not welcome. Hence, a CSD

to binary wrapper would be necessary, causing additional hardware.

4.2.4 Design

The actual design is hierarchically split up into the major filter blocks. The filter is im-

plemented with second-order section submodules which are cascaded to build the overall

filter. A dedicated multiplier cell is designed as utility function which performs the frac-

tional shifting of coefficients, the multiplication and truncation of the result to the desired

bitwidth. A second multiplier cell is used for CSD multiplication which can be substituted.

By default there are two main filter types, namely Butterworth and Elliptic type im-

plemented. As discussed in Section 3.1 these two implementation variants only differ in

the coefficient b2. The switching between these architectures is rather easy by simply

evaluating this single coefficient. In fact, if b2 is set to zero, Butterworth sections are

implemented, elleptic ones otherwise.

4.3 MATLAB Filter Design HDL Coder

MATLABs filter design and analysis tool has a built-in code generator that produces

VHDL code out of the actual filter design. By analysing the auto-generated code, it can

be observed that a high combinatorial depth is used. This results in high toggling activity.

The generated code is fixed for one certain bitwidths for scales and coefficients. Therefore

it is not worth to use this model as a basis for an IP as parametrisation for different

designs is not possible by simply changing the coefficients. One would always need to

generate a completely new VHDL code (instead of coefficients) out of a certain filter

design. This is impractical as small modifications and adoptions to the auto-generated

VHDL model will need to be done over and over again. Furthermore, the tool lacks

in configuration possibilities in terms of coding standard. A generated code example is

presented in Listing A.4.

The auto-generated testbench is rather easy, it applies stimuli and compares it to a ref-

erence model output in time-domain. A lot of utility functions are generated inside an

additional package, nevertheless most of these functions aren’t used at all. Another draw-
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back is, that the stimuli file is embedded in a VHDL source file. Thus for different input

stimuli the testbench needs to be recompiled every time. This is impractical for automa-

tion of the verification process.

4.4 Verification

The verification of the designed filter is done within a testbench as defined in [36]. Firstly,

it generates a periodic system clock and sampling clock signal for driving the simulation.

Secondly, it provides stimuli vectors and applies them to the model under test (MUT) at

well-defined moments in time. Thirdly, it loads the stimuli data from the high-level model

as a reference against which to compare. Fourthly, it creates a simulation report which

points to timing wise problems and optionally prints debug output.

The stimuli test data can be one of the following waveforms:

� Dirac delta impulse

� Unit step function

� Sinusoid

� Input sequence directly taken from the system model

As mentioned the high-level model is fully bittrue (fixed-point arithmetic) and therefore

direct comparison with the design can be performed.

4.5 Analysis

In order to compare the design to the existing implementation, an area and power analysis

is performed. Since the existing and new design are rather compatible in terms of the

outer interface, a meaningful measure can be exhausted. Before presenting the results the

synthesis flow is explained in more detail.

4.5.1 Synthesis

The synthesis is done using CADENCE Encounter® RTL Compiler, the simplified

synthesis flow is presented in Figure 4.4. On RTL the IP is compiled and simulated,

actually this is where the verification takes place. The output of this step is the report

with the timing wise differences between the MUT and the high-level model. In order

to estimate the area of the design a synthesis is performed. Given the input and output
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delays as constraints, the area, a Verilog netlist and the corresponding delay format file

(SDF) is created. Finally also a GL simulation is done where the reference signals can

be compared against. The waveform file from the GL simulation now specifies exactly

the stimuli applied for the power consumption analysis which gives the overall and most

important measure of the design.

    Register

    Transfer

    Layer

Stimuli file(s)

Compile

Run simulation

Simulation report,

equivalence check

    Synthesis Netlist (Verilog)Area

Run synthesis

    Gate Level

Compile

Run simulation

Simulation report,

equivalence check

Delay format file

(sdf)

Power 

consumption
Run power simulation

Constraints

VHDL source files

Figure 4.4: Register Transfer Layer, Synthesis and Gate Level simulation flow

Synthesis runtime

The synthesis runtime is decreased by 28% compared to the existing design, the corre-

sponding measurements are presented in Table 4.1.

Existing Design New Design

[s] [s]

94 68

Table 4.1: Synthesis runtime comparison
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4.5.2 Area and Power

In order to compare the area and power of the existing and new design the different

designs are fed with the same input data and the synthesis as well as a power simulation

is performed. This is provided in Table 4.2 for the two different implementation variants,

fixed or programmable coefficients. Also, the number of bits used for the state registers,

coefficients and scales are provided. Corresponding area and power for the different designs

of a third-order butterworth filter are given based on a 0.18 µm process. The data sequence

used for this comparison is based on the system model input data for the filter, thus

hardware and application near.

Design Coeffs State Coeff Scales Cells Area Power

[bits] [bits] [bits] [µm2] [µW ]

Existing design fixed 20 8 16 2894 74733 1238

MATLAB HDL coder fixed 16 16 16 1841 50470 2693

Improved design fixed 20 9 17 1881 53640 697

Improved design prog. 20 9 17 6622 149653 1187

Improved design (CSD) fixed 20 9 17 1632 43970 532

Table 4.2: Area and power comparison for different designs

The first line of Table 4.2 presents the area and power of the existing design which is

the reference to compare. It is fixed to 8 bits for the coefficients and 16 bits for the

scales. Unfortunately with MATLAB HDL coder it is not possible to set the same bit

lengths since the number of bits for coefficient and scales always needs to be the same.

A meaningful comparison is therefore impossible. However, the improved design can be

configured to meet exactly the same configuration. For the fixed coefficient variant the

area is reduced by roughly 28% while at the same time the power consumption is reduced !
by 44%. The implementation variant with programmable coefficients has an expected,

tremendous increase in area as all multipliers need to be fully instantiated. However,

the power consumption is still less compared to the existing implementation with fixed

coefficients. There is some further, significant improvement to both area and power by

utilizing CSD coefficient multipliers. As mentioned in Section 4.2 CSD multipliers are

only implemented for the fixed coefficient variant.
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5
Results

This section provides the results by evaluating the different optimization procedures. The

filter design problems based on a given filter specification and based on the whole system

model are investigated respectively.

5.1 Quantized Filter Optimization

In Figure 5.1 the optimization of the magnitude response is presented. The filter speci-

fications are taken from the system model as defined in Section 2.6 (indicated with hor-

izontal/vertical red lines). For a standard third-order elliptic filter the reference double-

precision solution is obtained using MATLABs FDAtool. The directly quantized solution

is plotted as well, it matches the reference solution quite well as a bitwidth of 20 is chosen

for this simulation run. The reference filter can be compared to the final solution found

by the DE. It fits the filter specification exactly. The intermediate best results are plotted

in dashed blue lines which are the best candidate solutions found after each generation.

Zooming into the passband (Figure 5.2) shows that the magnitude response is flattened

out completely. Especially remarkable is the constant gain of 0 dB in the passband which !
isn’t even achieved by the reference MATLAB double-precision solution.

By looking at the group delay in Figure 5.3 it can be observed that it is smoothed out

compared to the reference filter, especially the passband has almost constant group delay.

This is possible due to the fact that the transition band of the magnitude response doesn’t
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Figure 5.1: Magnitude response
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Figure 5.2: Magnitude response (passband zoomed)

need to have such a steep slope as the reference solution provides. Therewith some play

is introduced for optimization of the group delay as well.

In order to demonstrate the evolvement over generations, a waterfall plot of the best

solutions found iteratively is shown in Figure 5.4. As the inital coefficients are based
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Figure 5.3: Group delay

on the double-precision solution from MATLABs FDAtool for this simulation run, the

convergence is quite fast. In contrast to that, the convergence time is much slower if the

filter individuals are initialized randomly as depicted in Figure 5.5.

Figure 5.6 shows the evolvement of the best and average fitness over the optimization

generations. As in general for population based algorithms the fitness drops very fast

in the beginning and stagnates after a while [21]. It is often claimed that algorithms

such as GA have premature convergence [2]. This can be partly contradicted by this DE

approach by observing Figure 5.7 and 5.8. While the scales and coefficients of the best

solution are changing quite frequently initially, the update steps get smaller as the number

of iterations increases. Still, after some 2000 generations the algorithm finds a new valley.

After approximately 3000 generations the algorithm found a solution with a fitness less

than the target threshold.

The poles and zeros are shown in Figure 5.9. By comparing it to Figure 3.4(b) it is

noticeable that the placement of poles within the unit circle is retained approximately.
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Figure 5.4: Magnitude response over generations
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Figure 5.5: Magnitude response over generations (random initial coefficients)
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5.2 System Model Optimization

As mentioned in Section 3.5 a DE is used as well for finding optimum filter coefficients and

scales. In Figure 5.10 the recevier BER is evaluated with the optimized solution found by

the DE. Note that it reaches the same performance as found be the MMSE optimization !
filter derived in Section 2.8. The simulations are done for 106 bits each.
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Figure 5.10: Bit error probability

5.2.1 Effects of Quantization

The receiver performance will now be evaluated using fixed- and floating-point arithmetic.

As there are only bittrue reference models for a Butterworth and elliptic architecture, this

analysis is done based on the existing design solution which is a Butterworth filter. How-

ever, the purpose is to demonstrate the effects of quantization on the receiver performance

with the two different number formats.

Fixed-point

The fixed-point evaluation is performed using the well known Qm.n format. A BER

simulation is done for different number of fractional portions n for the internal state

registers of the SOS. Especially for fixed-point arithmetic the magnitude of the input

signal is of major importance as no dynamic scaling is performed prior to the filter input.

Thus, the number of fractions needs to be sufficient to cover the whole range of the
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receivers amplitude range. As illustrated in Figure 5.11 with Q2.10 and Q2.14 the number

of fractional bits is not sufficient to receive correct data. Starting from Q2.20 the maximum

performance for this filter is reached (Q2.20, Q2.22 and Q2.24 result in same BER curves).

Obviously, the quantization noise for n less than 20 exceeds the noise introduced by the

channel resulting in a worse performance.

2 4 6 8 10 12 14 16

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 [dB]

B
it 

er
ro

r 
ra

te
 (

B
E

R
)

 

 

Q2.10
Q2.14
Q2.18
Q2.20
Q2.22
Q2.24
Theoretical BER   

Figure 5.11: Bit error probability with different fixed-point bitwidths
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Floating-point

For the floating-point scenario, simulation runs for various floating-point precisions are

performed and the BER evaluated. The exponent is kept at a constant value. As illus-

trated in Figure 5.12 a precision of 5 is not sufficient to receive correct data. Starting

from precision 11 the maximum receiving performance is reached. As the exponent is held

constant at 7 for all runs, the actual number of bits needed to obtain the maximum perfor-

mance is 18, compared to 22 for the fixed-point scenario. This evidences the advantageous

scaling feature of floating-point arithmetic. !
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Figure 5.12: Bit error probability with different floating-point precisions
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6
Conclusion and Outlook

This thesis shows the optimization potential for the presented RF receiver and a semi-

automatized design flow to derive optimized filter coefficients quantized for digital hard-

ware implementations. The RF receiver operating in standard ISM bands is a low-IF

receiver with fully digital IF processing and downconversion to baseband. The system is

modelled in a complex baseband equivalent. This simplifies the complexity of the model

and therewith the optimization procedure.

By considering the system model as fixed, the probability of bit errors is decreased by

the optimized filter design by roughly 1.2 dB at the sensitivity limit (Section 5.2). This

is accomplished by utilizing a DE approach which targets at minimizing the BER. It

achieves the same performance as the MMSE equalizer introduced in Section 2.9 and

chosen as reference solution. The DE delivers fully quantized coefficients, optimized for

low-area and low-power implementations in digital hardware.

For the RF receiver itself a potential improvement has been proposed. The CIC decimation

filter could be cascaded with a compensation filter that flattens the sinc shaped magnitude

response in the passband to unity (Section 2.5).

The implemented filter optimization tool for filter design based on filter specifications

utilizes the same DE core as for system model optimization. It uses partial cost functions

to find the optimum solution for the magnitude response, group delay as well as area and

power constraints for digital hardware implementation. The advantage of the population

based heuristic is that the partial costs are applied simultaneously. The DE delivers

quantized filter coefficients that can be plugged directly into the HDL model. A toolset is

implemented to automatize this process.
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Due to a new digital implementation of the IIR filter IP an area saving by 28% and a

power consumption reduction by 44% is achieved compared to the existing design (Sec-

tion 4.5). Utilizing CSD coefficients instead of a two-complement representation gains

further improvements regarding area and power. However, this number format is imprac-

tical if the coefficients are intended to be programmable. Verification of the digital design

is performed by simple input-output comparison against the bittrue high-level model with

auto-generated test patterns from RTL downto GL.

Regarding the usage of MATLAB’s MEX functionality it can be said that the interface to

native C code is a potential tool for high-level reference designs. Also, the MPFR library

has proven to be a powerful tool for bittrue floating-point computations as it enables the

possibility to set variable lengths for the mantissa and exponent. It should be mentioned,

however, that the debugging features of MATLAB are no longer available when calling

native C code via MEX resulting in a slightly more complex implementation. In addition

to that, stability issues arise if the memory handling is erroneous.

A high-level synthesis based on the integrated HDL coder of MATLAB has been investi-

gated. It shows that it is not suitable for reuse in IPs as it lacks in configurability and

code readability. A synthesis based on this auto-generated HDL model has been inves-

tigated, resulting in a relatively high area and power consumption. It is therefore not

recommended to use such an approach for optimized designs. However, this tool could be

investigated for prototyping as it delivers a fast, fully synthesizable RTL model.

For future work the implemented framework could be extended to enable the design of

arbitrary filter transfer functions as proposed in [28]. This can be easily accomplished as

only the cost function needs to be changed, the DE algorithm and its framework are fully

reusable. Furthermore, the filter structure could be a possible optimization target. Thus,

the heuristic could search for potential alignments of the multipliers and adders by itself.

From the digital design point of view, a floating-point implementation in hardware could

be investigated. There are tools to auto-generate code out of a high-level model. Issue

at stake is then the resulting area and power consumption, especially as the number of

bits for the internal state registers of the filter needed for the floating-point design is less

compared to the fixed-point one (Section 5.2).
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A.1 System Model MMSE Solution

The MMSE solution, that is used for performance evaluation, will be derived for the

receiver system as illustrated in Figure 2.13. The goal is to find an analytic expression

for calculating the optimum filter coefficient vector c = [c0, c1, ..., cL−1]T of length L that

minimizes the bit errors. The cost function is defined as

J(c) =

Nb∑
n=0

e2[n] = E(e2), (A.1)

where Nb is the number of transmitted symbols for the training sequence. The error e[n]

compares the delayed transmitted sample to the actual received one, given as

e[n] = db[n−∆]− yb[n]

= d[m−∆M ]− y[m]

= d[m−∆M ]− cTx[m], (A.2)

where ∆ is the delay caused by the transmission and the group delays of the different

filters. The input signal x[m] to the filter consists of the data samples filtered by HT (z)

and HR(z) as well as the noise ν[m] filtered by HR(z), which is

x[m] = hTd[m] + hT
Rν[m], (A.3)
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where h c sH(z) = HT (z)HR(z) and hR c sHR(z) are the impulse responses of these

systems.

For the derivation of the optimum MMSE solution we plug (A.2) into (A.1) to obtain

J(c) = E(d[m−∆M ]− cTx[m])2

= E([d[m−∆M ]− cTx[m]] [d[m−∆M ]− cTx[m]])

= E(d2[m−∆M ])︸ ︷︷ ︸
σ2
d

−2cTE(x[m]d[m−∆M ])︸ ︷︷ ︸
pxd

+cTE(x[m]xT[m])︸ ︷︷ ︸
Rxx

c, (A.4)

where σ2
d is the variance of the input signal d[m], pxd is the cross-correlation vector between

x[m] and d[m] and Rxx is the autocorrelation matrix [37]. The cost function simplifies to

J(c) = σ2
d − 2cTpxd + cTRxxc. (A.5)

As we are facing an optimization problem we derive the cost function after c, i.e.

∇cJ(c) = 0− 2pxd + 2Rxxc. (A.6)

To find the minima of the cost function, we set the derivative to zero, which is

∇cJ(c) = Rxxcopt − pxd ≡ 0. (A.7)

Thus, the optimal coefficients are computed as

copt = R−1
xx pxd. (A.8)

A.2 Theoretical BER of the RF Receiver

The data reception is based on a simple threshold decision as the symbols transmitted are

binary ASK. The reference BER comes out of theory for the optimum detector that can

be realized either by the correlation or matched filter demodulator [24]. As depicted in

Figure A.1 the received signal for the symbol s0 is

y(t) = ν(t) (A.9)

while for symbol s1 it is

y(t) =
√
Eb + ν(t), (A.10)

where ν(t) is a Gaussian random variable with zero-mean and variance σ2
ν = N0

2 . As
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the symbols occur with equal probability, the decision threshold is set as
√
Eb/2. The

conditional PDF that either s0 or s1 is received is defined as

p(y|si) =
1√

2πσn
e
− (y−

√
Eb/2)

2

2σ2ν ∀ i = 0, 1. (A.11)

Substituting σn we get

p(y|si) =
1√
πN0

e
− (y−

√
Eb/2)

2

N0 ∀ i = 0, 1. (A.12)

We define a conditioned error criterion, i.e. the probability that the wrong symbol is

received. For symbol s1 that is

p(e|s1) =
1√
πN0

∫ 0

−∞
e
− (y−

√
Eb/2)

2

N0 dy

=
1√
2π

∫ −√Eb/2N0

−∞
e−x

2/2dx

=
1√
2π

∫ ∞
√
Eb/2N0

e−x
2/2dx. (A.13)

Introducing the Q-function

Q(x) =
1√
2π

∫ ∞
x

e−t
2/2dt (A.14)

and plugging it into (A.13) we obtain the theoretical BER, defined as

p(e|s1) = Q

(√
Eb

2N0

)
. (A.15)

This holds for p(e|s0) in the same way as the PDFs are fully symmetric and the symbols

are assumed to occur with same probability.
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bEEb

s0 s1

0

Figure A.1: Binary signal detection: Errors and probability distribution

A.3 MATLAB MEX and MPFR Library

In order to implement a fully bittrue high-level model of the filter with relatively high

computation performance native C code is called from MATLAB using the standard MEX

interface. Of course one could use the Fixed-Point Toolbox with the same outcome, how-

ever from a implementation point of view the easy and flexible MEX interface seems more

convenient. Furthermore, for floating-point computations the GNU MPFR library is used.

A.3.1 Bittrue fixed-point implementation

This code shows an SOS fixed-point filter implementation for Butterworth and Elliptic

form.

1 #include <mex.h>

2 #include <stdio.h>

3 #include <math.h>

4

5 typedef long filtertype;

6

7 int bitwidth = 16;

8 int frac = 13;

9 int inout_bitwidth = 16;

10 int inout_shift = 4;

11 int scales_bitwidth = 16;

12 int coeff_bitwidth = 16;

13

14 // ------------------------------------------------------------------------

15 // -- multfrac

16 // -- Fractional multiplication of a and b. oper_bitwidth provides the

17 // -- bitwidth of b (smaller).

18 // -- b is aligned with the fractions of a

19 filtertype multfrac(filtertype a, filtertype b, const int oper_bitwidth)

20 {

21 b = b * pow(2, frac -( oper_bitwidth -1)); // Align fractional point of b
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22

23 long long temp = a * b;

24

25 filtertype result = temp >> frac;

26

27 // Saturation

28 if(result > ((1<<(bitwidth -1)) -1)) result = pow(2, bitwidth -1) - 1;

29 if(result < -(1<<(bitwidth -1))) result = -pow(2, bitwidth -1);

30

31 return result;

32 }

33

34 // ------------------------------------------------------------------------

35 // -- sosfilt

36 // -- Second order section filtering

37 void sosfilt(filtertype* x, filtertype* y, filtertype* coeffs ,

38 filtertype* scales , const int num_samples ,

39 const int num_sections)

40 {

41 int i, j, b;

42 filtertype states[num_sections ][3]; // One second order section consists

43 // of 3 states with 2 delay lines

44 // each

45 filtertype yi;

46

47 for(i=0; i<num_sections; i++)

48 for(j=0; j<3; j++)

49 states[i][j] = 0;

50

51 for(i=0; i<num_samples; i++)

52 {

53 // Shift for correct input signal scaling

54 filtertype xi = x[i] << inout_shift;

55

56 for(b=0; b<num_sections; b++)

57 {

58 // Input scaling

59 xi = multfrac(xi, scales[b], scales_bitwidth);

60

61 // Delay lines

62 states[b][2] = states[b][1];

63 states[b][1] = states[b][0];

64

65 // Feedback

66 states[b][0] = xi -

67 multfrac(states[b][1],

68 coeffs[b+4* num_sections], coeff_bitwidth) -

69 multfrac(states[b][2],

70 coeffs[b+5* num_sections], coeff_bitwidth);

71

72 // Check coeff b1 to select filter type

73 if(coeffs[b+1* num_sections] == 0)

74 {

75 // Butterworth feed -forward

76 yi = states[b][0] + (states[b][1] * 2) + states[b][2];

77 }

78 else

79 {

80 // Elliptic feed -forward

81 yi = states[b][0] +

82 multfrac(states[b][1],

83 coeffs[b+1* num_sections], coeff_bitwidth) +
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84 states[b][2];

85 }

86

87 xi = yi; // Output of this SOS is input for the next one

88 }

89

90 // Shift for correct output signal scaling

91 y[i] = yi >> inout_shift;

92 }

93 }

94

95 // ------------------------------------------------------------------------

96 // -- MEX interface function

97 // -- prhs [0]: Samples in

98 // -- prhs [1]: Coefficient matrix

99 // -- prhs [2]: Scale values

100 // -- prhs [3]: Bitwidth of state variables

101 // -- prhs [4]: Fractional portions of state variables

102 // -- prhs [5]: Bitwidth of in- and outputs

103 // -- prhs [6]: Shift (scaling) at filter in - and output

104 // -- prhs [7]: Bitwidth of scale values

105 // -- prhs [8]: Bitwidth of coefficients

106 // -- plhs [0]: Samples out

107 mexFunction(int nlhs , mxArray *plhs[ ], int nrhs , const mxArray *prhs[ ])

108 {

109 mxArray *samples_in_m , *samples_out_m;

110 mxArray *coeffs_m , *scales_m;

111 filtertype *samples_in , *samples_out;

112 filtertype *coeffs , *scales;

113 const mwSize *dim_samples , *dim_coeffs , *dim_scales;

114 int i, j;

115

116 // Local copies of MATLAB inputs

117 samples_in_m = mxDuplicateArray(prhs [0]);

118 coeffs_m = mxDuplicateArray(prhs [1]);

119 scales_m = mxDuplicateArray(prhs [2]);

120 bitwidth = (int)mxGetScalar(prhs [3]);

121 frac = (int)mxGetScalar(prhs [4]);

122 inout_bitwidth = (int)mxGetScalar(prhs [5]);

123 inout_shift = (int)mxGetScalar(prhs [6]);

124 scales_bitwidth = (int)mxGetScalar(prhs [7]);

125 coeff_bitwidth = (int)mxGetScalar(prhs [8]);

126

127 // Check input dimensions

128 dim_samples = mxGetDimensions(prhs [0]);

129 if(dim_samples [1] != 1) {

130 printf("Samples must be a column vector !\n");

131 return;

132 }

133 int num_samples = dim_samples [0];

134 printf("Number of samples: %d\n", num_samples);

135

136 dim_coeffs = mxGetDimensions(prhs [1]);

137 printf("SOS Matrix dimension: %dx%d\n", dim_coeffs [0], dim_coeffs [1]);

138 if(dim_coeffs [1] != 6) {

139 printf("SOS Matrix must have 6 columns !\n");

140 return;

141 }

142

143 dim_scales = mxGetDimensions(prhs [2]);

144 printf("Scales dimension: %dx%d\n", dim_scales [0], dim_scales [1]);

145 if(dim_scales [1] != 1) {
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146 printf("Scales must be a column vector !\n");

147 return;

148 }

149

150 if(dim_coeffs [0] != dim_scales [0]) {

151 printf("Number of sections doesn ’t match number of scales !\n");

152 return;

153 }

154 int num_sections = dim_coeffs [0];

155

156 samples_out_m = plhs [0] = mxCreateNumericMatrix(dim_samples [0],

157 dim_samples [1],

158 mxINT64_CLASS , 0);

159

160 // Fetch pointers to get access to data

161 samples_in = (filtertype *) mxGetPr(samples_in_m);

162 coeffs = (filtertype *) mxGetPr(coeffs_m);

163 scales = (filtertype *) mxGetPr(scales_m);

164 samples_out = (filtertype *) mxGetPr(samples_out_m);

165

166 // Apply filter

167 printf("Filtering ...\n");

168 sosfilt(samples_in , samples_out , coeffs , scales , num_samples ,

169 num_sections);

170 }

Listing A.1: Second-order section fixed-point filtering using MEX

A.3.2 Bittrue CSD fixed-point multiplication

The multiplication can also be performed using CSD multipliers according to [35] as pro-

vided in the source code below.

1 filtertype multfrac_csd(filtertype a, filtertype csd_value ,

2 filtertype csd_sign , const int oper_bitwidth ,

3 const int oper_frac)

4 {

5 int bit_index;

6 int prev_bit_index = 0, index_diff;

7 filtertype result , value;

8 int negative , csd_negative = 0;

9 filtertype max_value = pow(2, bitwidth) -1;

10

11 // Align fractions of coefficient value and sign

12 csd_value = csd_value * pow(2, frac -oper_frac);

13 csd_sign = csd_sign * pow(2, frac -oper_frac);

14

15 value = a;

16 result = a;

17

18 // Extract sign information

19 if(value == 0) return (filtertype) 0;

20 else if(value < 0) negative = 1;

21 else negative = 0;

22

23 for(bit_index =1; bit_index <oper_bitwidth; bit_index ++)

24 {
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25 // Check if bit is set within the CSD value

26 if((( csd_value >> bit_index) & 0x01) == 0x01)

27 {

28 // Compute difference to previous bit index

29 index_diff = bit_index - prev_bit_index;

30 result >>= index_diff;

31 prev_bit_index = bit_index;

32

33 // Check the sign bit and add/subtract accordingly

34 if((( csd_sign >> bit_index) & 0x01) == 0x01)

35 result -= value;

36 else

37 result += value;

38 }

39 }

40

41 // Check sign bit of coefficient

42 if((( csd_sign >> (frac +1)) & 0x01) == 0x00)

43 {

44 index_diff = frac - prev_bit_index;

45 result >>= index_diff;

46 }

47 else

48 {

49 result <<= 1;

50 csd_negative = 1;

51 }

52

53 // In case a negative result is expected , convertion to unsigned

representation needs

54 // to be performed

55 if(( csd_negative == 1 && negative == 0) || (csd_negative == 0 &&

negative == 1))

56 result = (filtertype)(result - max_value) % max_value;

57

58 return result;

59 }

Listing A.2: Second-order section CSD fixed-point multiplication

A.3.3 Bittrue floating-point implementation

Utilizing the MPFR library an equivalent implementation of the SOS can be exhausted

with floating-point arithmetic. Important to note is that this library is capable to change

the mantissa and exponent to arbitrary values. The minimum and maximum exponent is

set via mpfr set emin() and mpfr set emax() respectively. The precision is set when-

ever a MPFR variable is instantiated via mpfr init2(). The handling of vectors/arrays of

standard type mpfr t is not recommended as some instability issues have been encountered

during implementation. The implementation therefore keeps the in- and output samples

in a double* and converts it to a mpfr t sample by sample.

1 #include <mex.h>

2 #include <stdio.h>

3 #include <gmp.h>
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4 #include <mpfr.h>

5

6 // ------------------------------------------------------------------------

7 // -- sosfilt

8 // -- Second order section filtering

9 void sosfilt(double* x, double* y, mpfr_t* sos , mpfr_t* scales ,

10 const int num_samples , const int num_biquads ,

11 const int prec)

12 {

13 int i, j, b;

14 char buf [80];

15 mpfr_t states[num_biquads ][3]; // One second order section consists of 3

16 // states with 2 delay lines each

17 mpfr_t tmp;

18 mpfr_t xi, yi;

19

20 mpfr_init2(tmp , prec);

21 mpfr_init2(xi, prec);

22 mpfr_init2(yi, prec);

23

24 for(i=0; i<num_biquads; i++)

25 {

26 for(j=0; j<3; j++)

27 {

28 mpfr_init2(states[i][j], prec);

29 mpfr_set_d(states[i][j], 0, GMP_RNDN);

30 }

31 }

32

33 for(i=0; i<num_samples; i++)

34 {

35 mpfr_set_d(xi, x[i], GMP_RNDN);

36

37 for(b=0; b<num_biquads; b++)

38 {

39 // Input scaling

40 mpfr_mul(xi, xi, scales[b], GMP_RNDN);

41

42 // Delay lines

43 mpfr_set(states[b][2], states[b][1], GMP_RNDN);

44 mpfr_set(states[b][1], states[b][0], GMP_RNDN);

45

46 // Feedback

47 // state1 * a1

48 mpfr_mul(tmp , states[b][1], sos[b+4* num_biquads], GMP_RNDN);

49 mpfr_sub(states[b][0], xi, tmp , GMP_RNDN);

50 // state2 * a2

51 mpfr_mul(tmp , states[b][2], sos[b+5* num_biquads], GMP_RNDN);

52 mpfr_sub(states[b][0], states[b][0], tmp , GMP_RNDN);

53

54 // Feed -forward

55 // state0 * b0

56 mpfr_mul(yi, states[b][0], sos[b+0* num_biquads], GMP_RNDN);

57 // state1 * b1

58 mpfr_mul(tmp , states[b][1], sos[b+1* num_biquads], GMP_RNDN);

59 mpfr_add(yi, yi, tmp , GMP_RNDN);

60 // state2 * b2

61 mpfr_mul(tmp , states[b][2], sos[b+2* num_biquads], GMP_RNDN);

62 mpfr_add(yi, yi, tmp , GMP_RNDN);

63

64 // Output of this SOS is input for the next one

65 mpfr_set(xi, yi, GMP_RNDN);
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66 }

67

68 y[i] = mpfr_get_d(yi, GMP_RNDN);

69 }

70

71 // Free allocated MPFR variables

72 mpfr_clear (** states);

73 mpfr_clear(tmp);

74 mpfr_clear(xi);

75 mpfr_clear(yi);

76 }

77

78 // ------------------------------------------------------------------------

79 // -- MEX interface function

80 // -- prhs [0]: Samples in

81 // -- prhs [1]: SOS Matrix

82 // -- prhs [2]: Scale values

83 // -- prhs [3]: Precision

84 // -- plhs [0]: Samples out

85 mexFunction(int nlhs , mxArray *plhs[ ], int nrhs , const mxArray *prhs[ ])

86 {

87 int i, j;

88 mxArray *samples_in_m , *samples_out_m;

89 mxArray *sos_m , *scales_m;

90 double *samples_in , *samples_out;

91 double *sos , *scales;

92 const mwSize *dim_samples , *dim_sos , *dim_scales;

93 int prec;

94

95 if(nrhs != 4) {

96 printf("Wrong number of input arguments !\n");

97 return;

98 }

99

100 // Local copies of MATLAB inputs

101 samples_in_m = mxDuplicateArray(prhs [0]);

102 sos_m = mxDuplicateArray(prhs [1]);

103 scales_m = mxDuplicateArray(prhs [2]);

104 prec = (int)mxGetScalar(prhs [3]);

105

106 printf("Floating -point precision: %d\n", prec);

107

108 // Check input dimensions

109 dim_samples = mxGetDimensions(prhs [0]);

110 if(dim_samples [1] != 1) {

111 printf("Samples must be a column vector !\n");

112 return;

113 }

114 int num_samples = dim_samples [0];

115 printf("Number of samples: %d\n", num_samples);

116

117 dim_sos = mxGetDimensions(prhs [1]);

118 printf("SOS Matrix dimension: %dx%d\n", dim_sos [0], dim_sos [1]);

119 if(dim_sos [1] != 6) {

120 printf("SOS Matrix must have 6 columns !\n");

121 return;

122 }

123

124 dim_scales = mxGetDimensions(prhs [2]);

125 printf("Scales dimension: %dx%d\n", dim_scales [0], dim_scales [1]);

126 if(dim_scales [1] != 1) {

127 printf("Scales must be a column vector !\n");
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128 return;

129 }

130

131 if(dim_sos [0] != dim_scales [0]) {

132 printf("Number of sections doesn ’t match number of scales !\n");

133 return;

134 }

135 int num_biquads = dim_sos [0];

136

137 samples_out_m = plhs [0] = mxCreateDoubleMatrix(dim_samples [0],

138 dim_samples [1],

139 mxREAL);

140

141 // Fetch pointers to get access to data

142 samples_in = (double *) mxGetPr(samples_in_m);

143 sos = (double *) mxGetPr(sos_m);

144 scales = (double *) mxGetPr(scales_m);

145 samples_out = (double *) mxGetPr(samples_out_m);

146

147 // MPFR: Set default precision and exponent range

148 mpfr_set_default_prec (prec);

149 mpfr_set_emin (-7);

150 mpfr_set_emax (7);

151

152 mpfr_t sos_f[num_biquads *6];

153 for(i=0; i<num_biquads *6; i++)

154 {

155 mpfr_init2(sos_f[i], prec);

156 mpfr_set_d(sos_f[i], sos[i], GMP_RNDN);

157 }

158 mpfr_t scales_f[num_biquads ];

159 for(i=0; i<num_biquads; i++)

160 {

161 mpfr_init2(scales_f[i], prec);

162 mpfr_set_d(scales_f[i], scales[i], GMP_RNDN);

163 }

164

165 // Apply filter

166 printf("Filtering ...\n");

167 sosfilt(samples_in , samples_out , sos_f , scales_f , num_samples ,

168 num_biquads , prec);

169

170 // Free allocated MPFR variables

171 mpfr_clear (* sos_f);

172 mpfr_clear (* scales_f);

173 }

Listing A.3: Second-order section floating-point filtering using MEX and MPFR library
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A.4 MATLAB HDL Coder

A.4.1 MATLAB Filter Design HDL Coder

As the MATLAB FDA tool provides auto-generation of VHDL code, an example is pro-

vided here. The rather complex code needs detailed study for full understanding. This

code is therefore not suitable for maintaining or even reusable in other IPs with different

filter configurations. However, it is fully synthesizeable right away.

1 LIBRARY IEEE;

2 USE IEEE.std_logic_1164.all;

3 USE IEEE.numeric_std.ALL;

4 ENTITY sd_iirlp_core IS

5 PORT( sys_clk : IN std_logic;

6 sys_clk_en : IN std_logic;

7 reset_n : IN std_logic;

8 blk_en : IN std_logic;

9 init : IN std_logic;

10 data_in : IN signed (15 DOWNTO 0);

11 data_out : OUT signed (15 DOWNTO 0)

12 );

13
14 END sd_iirlp_core;

15
16
17 ----------------------------------------------------------------

18 --Module Architecture: sd_iirlp_core

19 ----------------------------------------------------------------

20 ARCHITECTURE rtl OF sd_iirlp_core IS

21 -- Local Functions

22 -- Type Definitions

23 TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF signed (15 DOWNTO 0);

24 -- Constants

25 CONSTANT scaleconst1 : signed (15 DOWNTO 0) := to_signed (107, 16);

26 CONSTANT coeff_b1_section1 : signed (15 DOWNTO 0) := to_signed (8192, 16);

27 CONSTANT coeff_b2_section1 : signed (15 DOWNTO 0) := to_signed (16384 , 16);

28 CONSTANT coeff_b3_section1 : signed (15 DOWNTO 0) := to_signed (8192, 16);

29 CONSTANT coeff_a2_section1 : signed (15 DOWNTO 0) := to_signed (-15024, 16);

30 CONSTANT coeff_a3_section1 : signed (15 DOWNTO 0) := to_signed (7258, 16);

31 CONSTANT scaleconst2 : signed (15 DOWNTO 0) := to_signed (97, 16);

32 CONSTANT coeff_b1_section2 : signed (15 DOWNTO 0) := to_signed (8192, 16);

33 CONSTANT coeff_b2_section2 : signed (15 DOWNTO 0) := to_signed (16384 , 16);

34 CONSTANT coeff_b3_section2 : signed (15 DOWNTO 0) := to_signed (8192, 16);

35 CONSTANT coeff_a2_section2 : signed (15 DOWNTO 0) := to_signed (-13674, 16);

36 CONSTANT coeff_a3_section2 : signed (15 DOWNTO 0) := to_signed (5871, 16);

37 CONSTANT scaleconst3 : signed (15 DOWNTO 0) := to_signed (92, 16);

38 CONSTANT coeff_b1_section3 : signed (15 DOWNTO 0) := to_signed (8192, 16);

39 CONSTANT coeff_b2_section3 : signed (15 DOWNTO 0) := to_signed (16384 , 16);

40 CONSTANT coeff_b3_section3 : signed (15 DOWNTO 0) := to_signed (8192, 16);

41 CONSTANT coeff_a2_section3 : signed (15 DOWNTO 0) := to_signed (-13000, 16);

42 CONSTANT coeff_a3_section3 : signed (15 DOWNTO 0) := to_signed (5177, 16);

43 -- Signals

44 SIGNAL input_register : signed (15 DOWNTO 0);

45 SIGNAL scale1 : signed (34 DOWNTO 0);

46 SIGNAL mul_temp : signed (31 DOWNTO 0);

47 SIGNAL scaletypeconvert1 : signed (15 DOWNTO 0);

48 -- Section 1 Signals

49 SIGNAL a1sum1 : signed (39 DOWNTO 0);

50 SIGNAL a2sum1 : signed (39 DOWNTO 0);

51 SIGNAL b1sum1 : signed (39 DOWNTO 0);

52 SIGNAL b2sum1 : signed (39 DOWNTO 0);

53 SIGNAL typeconvert1 : signed (15 DOWNTO 0);

54 SIGNAL delay_section1 : delay_pipeline_type (0 TO 1);

55 SIGNAL inputconv1 : signed (15 DOWNTO 0);

56 SIGNAL a2mul1 : signed (31 DOWNTO 0);

57 SIGNAL a3mul1 : signed (31 DOWNTO 0);

58 SIGNAL b1mul1 : signed (31 DOWNTO 0);

59 SIGNAL b2mul1 : signed (31 DOWNTO 0);

60 SIGNAL b3mul1 : signed (31 DOWNTO 0);

61 SIGNAL sub_cast : signed (39 DOWNTO 0);

62 SIGNAL sub_cast_1 : signed (39 DOWNTO 0);

63 SIGNAL sub_temp : signed (40 DOWNTO 0);

64 SIGNAL sub_cast_2 : signed (39 DOWNTO 0);

65 SIGNAL sub_cast_3 : signed (39 DOWNTO 0);
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66 SIGNAL sub_temp_1 : signed (40 DOWNTO 0);

67 SIGNAL b1multypeconvert1 : signed (39 DOWNTO 0);

68 SIGNAL add_cast : signed (39 DOWNTO 0);

69 SIGNAL add_cast_1 : signed (39 DOWNTO 0);

70 SIGNAL add_temp : signed (40 DOWNTO 0);

71 SIGNAL add_cast_2 : signed (39 DOWNTO 0);

72 SIGNAL add_cast_3 : signed (39 DOWNTO 0);

73 SIGNAL add_temp_1 : signed (40 DOWNTO 0);

74 SIGNAL section_result1 : signed (15 DOWNTO 0);

75 SIGNAL scale2 : signed (34 DOWNTO 0);

76 SIGNAL mul_temp_1 : signed (31 DOWNTO 0);

77 SIGNAL scaletypeconvert2 : signed (15 DOWNTO 0);

78 -- Section 2 Signals

79 SIGNAL a1sum2 : signed (39 DOWNTO 0);

80 SIGNAL a2sum2 : signed (39 DOWNTO 0);

81 SIGNAL b1sum2 : signed (39 DOWNTO 0);

82 SIGNAL b2sum2 : signed (39 DOWNTO 0);

83 SIGNAL typeconvert2 : signed (15 DOWNTO 0);

84 SIGNAL delay_section2 : delay_pipeline_type (0 TO 1);

85 SIGNAL inputconv2 : signed (15 DOWNTO 0);

86 SIGNAL a2mul2 : signed (31 DOWNTO 0);

87 SIGNAL a3mul2 : signed (31 DOWNTO 0);

88 SIGNAL b1mul2 : signed (31 DOWNTO 0);

89 SIGNAL b2mul2 : signed (31 DOWNTO 0);

90 SIGNAL b3mul2 : signed (31 DOWNTO 0);

91 SIGNAL sub_cast_4 : signed (39 DOWNTO 0);

92 SIGNAL sub_cast_5 : signed (39 DOWNTO 0);

93 SIGNAL sub_temp_2 : signed (40 DOWNTO 0);

94 SIGNAL sub_cast_6 : signed (39 DOWNTO 0);

95 SIGNAL sub_cast_7 : signed (39 DOWNTO 0);

96 SIGNAL sub_temp_3 : signed (40 DOWNTO 0);

97 SIGNAL b1multypeconvert2 : signed (39 DOWNTO 0);

98 SIGNAL add_cast_4 : signed (39 DOWNTO 0);

99 SIGNAL add_cast_5 : signed (39 DOWNTO 0);

100 SIGNAL add_temp_2 : signed (40 DOWNTO 0);

101 SIGNAL add_cast_6 : signed (39 DOWNTO 0);

102 SIGNAL add_cast_7 : signed (39 DOWNTO 0);

103 SIGNAL add_temp_3 : signed (40 DOWNTO 0);

104 SIGNAL section_result2 : signed (15 DOWNTO 0);

105 SIGNAL scale3 : signed (34 DOWNTO 0);

106 SIGNAL mul_temp_2 : signed (31 DOWNTO 0);

107 SIGNAL scaletypeconvert3 : signed (15 DOWNTO 0);

108 -- Section 3 Signals

109 SIGNAL a1sum3 : signed (39 DOWNTO 0);

110 SIGNAL a2sum3 : signed (39 DOWNTO 0);

111 SIGNAL b1sum3 : signed (39 DOWNTO 0);

112 SIGNAL b2sum3 : signed (39 DOWNTO 0);

113 SIGNAL typeconvert3 : signed (15 DOWNTO 0);

114 SIGNAL delay_section3 : delay_pipeline_type (0 TO 1);

115 SIGNAL inputconv3 : signed (15 DOWNTO 0);

116 SIGNAL a2mul3 : signed (31 DOWNTO 0);

117 SIGNAL a3mul3 : signed (31 DOWNTO 0);

118 SIGNAL b1mul3 : signed (31 DOWNTO 0);

119 SIGNAL b2mul3 : signed (31 DOWNTO 0);

120 SIGNAL b3mul3 : signed (31 DOWNTO 0);

121 SIGNAL sub_cast_8 : signed (39 DOWNTO 0);

122 SIGNAL sub_cast_9 : signed (39 DOWNTO 0);

123 SIGNAL sub_temp_4 : signed (40 DOWNTO 0);

124 SIGNAL sub_cast_10 : signed (39 DOWNTO 0);

125 SIGNAL sub_cast_11 : signed (39 DOWNTO 0);

126 SIGNAL sub_temp_5 : signed (40 DOWNTO 0);

127 SIGNAL b1multypeconvert3 : signed (39 DOWNTO 0);

128 SIGNAL add_cast_8 : signed (39 DOWNTO 0);

129 SIGNAL add_cast_9 : signed (39 DOWNTO 0);

130 SIGNAL add_temp_4 : signed (40 DOWNTO 0);

131 SIGNAL add_cast_10 : signed (39 DOWNTO 0);

132 SIGNAL add_cast_11 : signed (39 DOWNTO 0);

133 SIGNAL add_temp_5 : signed (40 DOWNTO 0);

134 SIGNAL output_typeconvert : signed (15 DOWNTO 0);

135 SIGNAL output_register : signed (15 DOWNTO 0);

136
137
138 BEGIN

139
140 -- Block Statements

141 input_reg_process : PROCESS (sys_clk , reset_n)

142 BEGIN

143 IF reset_n = ’0’ THEN

144 input_register <= (OTHERS => ’0’);

145 ELSIF sys_clk ’event AND sys_clk = ’1’ THEN

146 IF sys_clk_en = ’1’ THEN

147 input_register <= data_in;

148 END IF;

149 END IF;
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150 END PROCESS input_reg_process;

151
152 mul_temp <= input_register * scaleconst1;

153 scale1 <= resize(mul_temp , 35);

154
155 scaletypeconvert1 <= resize(shift_right(scale1 (34 DOWNTO 0) + ( "0" & (scale1 (19) & NOT

scale1 (19) & NOT scale1 (19) & NOT scale1 (19) & NOT scale1 (19) & NOT scale1 (19) & NOT

scale1 (19) & NOT scale1 (19) & NOT scale1 (19) & NOT scale1 (19) & NOT scale1 (19) & NOT

scale1 (19) & NOT scale1 (19) & NOT scale1 (19) & NOT scale1 (19) & NOT scale1 (19) & NOT

scale1 (19) & NOT scale1 (19) & NOT scale1 (19))), 19), 16);

156
157 -- ------------------ Section 1 ------------------

158
159 typeconvert1 <= resize(shift_right(a1sum1 (28 DOWNTO 0) + ( "0" & (a1sum1 (13) & NOT a1sum1 (13) &

NOT a1sum1 (13) & NOT a1sum1 (13) & NOT a1sum1 (13) & NOT a1sum1 (13) & NOT a1sum1 (13) & NOT

a1sum1 (13) & NOT a1sum1 (13) & NOT a1sum1 (13) & NOT a1sum1 (13) & NOT a1sum1 (13) & NOT

a1sum1 (13))), 13), 16);

160
161 delay_process_section1 : PROCESS (sys_clk , reset_n)

162 BEGIN

163 IF reset_n = ’0’ THEN

164 delay_section1 <= (OTHERS => (OTHERS => ’0’));

165 ELSIF sys_clk ’event AND sys_clk = ’1’ THEN

166 IF sys_clk_en = ’1’ THEN

167 delay_section1 (1) <= delay_section1 (0);

168 delay_section1 (0) <= typeconvert1;

169 END IF;

170 END IF;

171 END PROCESS delay_process_section1;

172
173 inputconv1 <= scaletypeconvert1;

174
175 a2mul1 <= delay_section1 (0) * coeff_a2_section1;

176
177 a3mul1 <= delay_section1 (1) * coeff_a3_section1;

178
179 b1mul1 <= resize(typeconvert1 (15 DOWNTO 0) & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’

& ’0’ & ’0’ & ’0’ & ’0’, 32);

180
181 b2mul1 <= resize(delay_section1 (0)(15 DOWNTO 0) & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ &

’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’, 32);

182
183 b3mul1 <= resize(delay_section1 (1)(15 DOWNTO 0) & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ &

’0’ & ’0’ & ’0’ & ’0’ & ’0’, 32);

184
185 sub_cast <= resize(inputconv1 (15 DOWNTO 0) & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’

& ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’, 40);

186 sub_cast_1 <= resize(a2mul1 , 40);

187 sub_temp <= resize(sub_cast , 41) - resize(sub_cast_1 , 41);

188 a2sum1 <= sub_temp (39 DOWNTO 0);

189
190 sub_cast_2 <= a2sum1;

191 sub_cast_3 <= resize(a3mul1 , 40);

192 sub_temp_1 <= resize(sub_cast_2 , 41) - resize(sub_cast_3 , 41);

193 a1sum1 <= sub_temp_1 (39 DOWNTO 0);

194
195 b1multypeconvert1 <= resize(b1mul1 , 40);

196
197 add_cast <= b1multypeconvert1;

198 add_cast_1 <= resize(b2mul1 , 40);

199 add_temp <= resize(add_cast , 41) + resize(add_cast_1 , 41);

200 b2sum1 <= add_temp (39 DOWNTO 0);

201
202 add_cast_2 <= b2sum1;

203 add_cast_3 <= resize(b3mul1 , 40);

204 add_temp_1 <= resize(add_cast_2 , 41) + resize(add_cast_3 , 41);

205 b1sum1 <= add_temp_1 (39 DOWNTO 0);

206
207 section_result1 <= resize(shift_right(b1sum1 (33 DOWNTO 0) + ( "0" & (b1sum1 (18) & NOT b1sum1 (18)

& NOT b1sum1 (18) & NOT b1sum1 (18) & NOT b1sum1 (18) & NOT b1sum1 (18) & NOT b1sum1 (18) &

NOT b1sum1 (18) & NOT b1sum1 (18) & NOT b1sum1 (18) & NOT b1sum1 (18) & NOT b1sum1 (18) & NOT

b1sum1 (18) & NOT b1sum1 (18) & NOT b1sum1 (18) & NOT b1sum1 (18) & NOT b1sum1 (18) & NOT

b1sum1 (18))), 18), 16);

208
209 mul_temp_1 <= section_result1 * scaleconst2;

210 scale2 <= resize(mul_temp_1 (31 DOWNTO 0) & ’0’ & ’0’ & ’0’, 35);

211
212 scaletypeconvert2 <= resize(shift_right(scale2 (34 DOWNTO 0) + ( "0" & (scale2 (19) & NOT

scale2 (19) & NOT scale2 (19) & NOT scale2 (19) & NOT scale2 (19) & NOT scale2 (19) & NOT

scale2 (19) & NOT scale2 (19) & NOT scale2 (19) & NOT scale2 (19) & NOT scale2 (19) & NOT

scale2 (19) & NOT scale2 (19) & NOT scale2 (19) & NOT scale2 (19) & NOT scale2 (19) & NOT

scale2 (19) & NOT scale2 (19) & NOT scale2 (19))), 19), 16);

213
214 -- ------------------ Section 2 ------------------
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215
216 typeconvert2 <= resize(shift_right(a1sum2 (28 DOWNTO 0) + ( "0" & (a1sum2 (13) & NOT a1sum2 (13) &

NOT a1sum2 (13) & NOT a1sum2 (13) & NOT a1sum2 (13) & NOT a1sum2 (13) & NOT a1sum2 (13) & NOT

a1sum2 (13) & NOT a1sum2 (13) & NOT a1sum2 (13) & NOT a1sum2 (13) & NOT a1sum2 (13) & NOT

a1sum2 (13))), 13), 16);

217
218 delay_process_section2 : PROCESS (sys_clk , reset_n)

219 BEGIN

220 IF reset_n = ’0’ THEN

221 delay_section2 <= (OTHERS => (OTHERS => ’0’));

222 ELSIF sys_clk ’event AND sys_clk = ’1’ THEN

223 IF sys_clk_en = ’1’ THEN

224 delay_section2 (1) <= delay_section2 (0);

225 delay_section2 (0) <= typeconvert2;

226 END IF;

227 END IF;

228 END PROCESS delay_process_section2;

229
230 inputconv2 <= scaletypeconvert2;

231
232 a2mul2 <= delay_section2 (0) * coeff_a2_section2;

233
234 a3mul2 <= delay_section2 (1) * coeff_a3_section2;

235
236 b1mul2 <= resize(typeconvert2 (15 DOWNTO 0) & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’

& ’0’ & ’0’ & ’0’ & ’0’, 32);

237
238 b2mul2 <= resize(delay_section2 (0)(15 DOWNTO 0) & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ &

’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’, 32);

239
240 b3mul2 <= resize(delay_section2 (1)(15 DOWNTO 0) & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ &

’0’ & ’0’ & ’0’ & ’0’ & ’0’, 32);

241
242 sub_cast_4 <= resize(inputconv2 (15 DOWNTO 0) & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ &

’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’, 40);

243 sub_cast_5 <= resize(a2mul2 , 40);

244 sub_temp_2 <= resize(sub_cast_4 , 41) - resize(sub_cast_5 , 41);

245 a2sum2 <= sub_temp_2 (39 DOWNTO 0);

246
247 sub_cast_6 <= a2sum2;

248 sub_cast_7 <= resize(a3mul2 , 40);

249 sub_temp_3 <= resize(sub_cast_6 , 41) - resize(sub_cast_7 , 41);

250 a1sum2 <= sub_temp_3 (39 DOWNTO 0);

251
252 b1multypeconvert2 <= resize(b1mul2 , 40);

253
254 add_cast_4 <= b1multypeconvert2;

255 add_cast_5 <= resize(b2mul2 , 40);

256 add_temp_2 <= resize(add_cast_4 , 41) + resize(add_cast_5 , 41);

257 b2sum2 <= add_temp_2 (39 DOWNTO 0);

258
259 add_cast_6 <= b2sum2;

260 add_cast_7 <= resize(b3mul2 , 40);

261 add_temp_3 <= resize(add_cast_6 , 41) + resize(add_cast_7 , 41);

262 b1sum2 <= add_temp_3 (39 DOWNTO 0);

263
264 section_result2 <= resize(shift_right(b1sum2 (33 DOWNTO 0) + ( "0" & (b1sum2 (18) & NOT b1sum2 (18)

& NOT b1sum2 (18) & NOT b1sum2 (18) & NOT b1sum2 (18) & NOT b1sum2 (18) & NOT b1sum2 (18) &

NOT b1sum2 (18) & NOT b1sum2 (18) & NOT b1sum2 (18) & NOT b1sum2 (18) & NOT b1sum2 (18) & NOT

b1sum2 (18) & NOT b1sum2 (18) & NOT b1sum2 (18) & NOT b1sum2 (18) & NOT b1sum2 (18) & NOT

b1sum2 (18))), 18), 16);

265
266 mul_temp_2 <= section_result2 * scaleconst3;

267 scale3 <= resize(mul_temp_2 (31 DOWNTO 0) & ’0’ & ’0’ & ’0’, 35);

268
269 scaletypeconvert3 <= resize(shift_right(scale3 (34 DOWNTO 0) + ( "0" & (scale3 (19) & NOT

scale3 (19) & NOT scale3 (19) & NOT scale3 (19) & NOT scale3 (19) & NOT scale3 (19) & NOT

scale3 (19) & NOT scale3 (19) & NOT scale3 (19) & NOT scale3 (19) & NOT scale3 (19) & NOT

scale3 (19) & NOT scale3 (19) & NOT scale3 (19) & NOT scale3 (19) & NOT scale3 (19) & NOT

scale3 (19) & NOT scale3 (19) & NOT scale3 (19))), 19), 16);

270
271 -- ------------------ Section 3 ------------------

272
273 typeconvert3 <= resize(shift_right(a1sum3 (28 DOWNTO 0) + ( "0" & (a1sum3 (13) & NOT a1sum3 (13) &

NOT a1sum3 (13) & NOT a1sum3 (13) & NOT a1sum3 (13) & NOT a1sum3 (13) & NOT a1sum3 (13) & NOT

a1sum3 (13) & NOT a1sum3 (13) & NOT a1sum3 (13) & NOT a1sum3 (13) & NOT a1sum3 (13) & NOT

a1sum3 (13))), 13), 16);

274
275 delay_process_section3 : PROCESS (sys_clk , reset_n)

276 BEGIN

277 IF reset_n = ’0’ THEN

278 delay_section3 <= (OTHERS => (OTHERS => ’0’));

279 ELSIF sys_clk ’event AND sys_clk = ’1’ THEN

280 IF sys_clk_en = ’1’ THEN
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281 delay_section3 (1) <= delay_section3 (0);

282 delay_section3 (0) <= typeconvert3;

283 END IF;

284 END IF;

285 END PROCESS delay_process_section3;

286
287 inputconv3 <= scaletypeconvert3;

288
289 a2mul3 <= delay_section3 (0) * coeff_a2_section3;

290
291 a3mul3 <= delay_section3 (1) * coeff_a3_section3;

292
293 b1mul3 <= resize(typeconvert3 (15 DOWNTO 0) & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’

& ’0’ & ’0’ & ’0’ & ’0’, 32);

294
295 b2mul3 <= resize(delay_section3 (0)(15 DOWNTO 0) & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ &

’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’, 32);

296
297 b3mul3 <= resize(delay_section3 (1)(15 DOWNTO 0) & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ &

’0’ & ’0’ & ’0’ & ’0’ & ’0’, 32);

298
299 sub_cast_8 <= resize(inputconv3 (15 DOWNTO 0) & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ &

’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’ & ’0’, 40);

300 sub_cast_9 <= resize(a2mul3 , 40);

301 sub_temp_4 <= resize(sub_cast_8 , 41) - resize(sub_cast_9 , 41);

302 a2sum3 <= sub_temp_4 (39 DOWNTO 0);

303
304 sub_cast_10 <= a2sum3;

305 sub_cast_11 <= resize(a3mul3 , 40);

306 sub_temp_5 <= resize(sub_cast_10 , 41) - resize(sub_cast_11 , 41);

307 a1sum3 <= sub_temp_5 (39 DOWNTO 0);

308
309 b1multypeconvert3 <= resize(b1mul3 , 40);

310
311 add_cast_8 <= b1multypeconvert3;

312 add_cast_9 <= resize(b2mul3 , 40);

313 add_temp_4 <= resize(add_cast_8 , 41) + resize(add_cast_9 , 41);

314 b2sum3 <= add_temp_4 (39 DOWNTO 0);

315
316 add_cast_10 <= b2sum3;

317 add_cast_11 <= resize(b3mul3 , 40);

318 add_temp_5 <= resize(add_cast_10 , 41) + resize(add_cast_11 , 41);

319 b1sum3 <= add_temp_5 (39 DOWNTO 0);

320
321 output_typeconvert <= resize(shift_right(b1sum3 (30 DOWNTO 0) + ( "0" & (b1sum3 (15) & NOT

b1sum3 (15) & NOT b1sum3 (15) & NOT b1sum3 (15) & NOT b1sum3 (15) & NOT b1sum3 (15) & NOT

b1sum3 (15) & NOT b1sum3 (15) & NOT b1sum3 (15) & NOT b1sum3 (15) & NOT b1sum3 (15) & NOT

b1sum3 (15) & NOT b1sum3 (15) & NOT b1sum3 (15) & NOT b1sum3 (15))), 15), 16);

322
323 Output_Register_process : PROCESS (sys_clk , reset_n)

324 BEGIN

325 IF reset_n = ’0’ THEN

326 output_register <= (OTHERS => ’0’);

327 ELSIF sys_clk ’event AND sys_clk = ’1’ THEN

328 IF sys_clk_en = ’1’ THEN

329 output_register <= output_typeconvert;

330 END IF;

331 END IF;

332 END PROCESS Output_Register_process;

333
334 -- Assignment Statements

335 data_out <= output_register;

336 END rtl;

Listing A.4: Auto-generated MATLAB filter design HDL coder output

A.4.2 MATLAB HDL Coder for Simulink

This section investigates a simple example how to generate HDL code out of a MATLAB

Simulink model. Exemplarily an SOS filter is implemented. The model is not quantized

to a certain bitwidth, thus the generated code contains signals of type real. Anyway, the

intention of the example is to show the principle structure of the generated code.
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Figure A.2: Simulink model of a second-order section (SOS)

The automatically generated code by MATLAB looks as follows.

1 LIBRARY IEEE;

2 USE IEEE.std_logic_1164.ALL;

3 USE IEEE.numeric_std.ALL;

4

5 ENTITY sos_model_double IS

6 PORT( clk : IN std_logic;

7 reset : IN std_logic;

8 clk_enable : IN std_logic;

9 In1 : IN real; -- double

10 clk_en : OUT std_logic;

11 Out1 : OUT real -- double

12 );

13 END sos_model_double;

14

15

16 ARCHITECTURE rtl OF sos_model_double IS

17

18 -- Signals

19 SIGNAL enb : std_logic;

20 SIGNAL scale_out1 : real := 0.0; -- double

21 SIGNAL v1_out1 : real := 0.0; -- double

22 SIGNAL a1_out1 : real := 0.0; -- double

23 SIGNAL Sum_out1 : real := 0.0; -- double

24 SIGNAL v2_out1 : real := 0.0; -- double

25 SIGNAL a2_out1 : real := 0.0; -- double

26 SIGNAL Sum1_out1 : real := 0.0; -- double

27 SIGNAL b1_out1 : real := 0.0; -- double

28 SIGNAL b0_out1 : real := 0.0; -- double

29 SIGNAL b2_out1 : real := 0.0; -- double

30 SIGNAL Sum3_out1 : real := 0.0; -- double

31 SIGNAL Sum2_out1 : real := 0.0; -- double

32

33 BEGIN

34 scale_out1 <= 2.0 * In1;

35

36 enb <= clk_enable;

37

38 a1_out1 <= 2.0 * v1_out1;

39
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40 v1_process : PROCESS (clk , reset)

41 BEGIN

42 IF reset = ’1’ THEN

43 v1_out1 <= 0.0;

44 ELSIF clk ’EVENT AND clk = ’1’ THEN

45 IF enb = ’1’ THEN

46 v1_out1 <= Sum_out1;

47 END IF;

48 END IF;

49 END PROCESS v1_process;

50

51

52 v2_process : PROCESS (clk , reset)

53 BEGIN

54 IF reset = ’1’ THEN

55 v2_out1 <= 0.0;

56 ELSIF clk ’EVENT AND clk = ’1’ THEN

57 IF enb = ’1’ THEN

58 v2_out1 <= v1_out1;

59 END IF;

60 END IF;

61 END PROCESS v2_process;

62

63

64 a2_out1 <= 2.0 * v2_out1;

65

66 Sum1_out1 <= a2_out1 + a1_out1;

67

68 Sum_out1 <= scale_out1 + Sum1_out1;

69

70 b1_out1 <= 2.0 * v1_out1;

71

72 b0_out1 <= 2.0 * Sum_out1;

73

74 b2_out1 <= 2.0 * v2_out1;

75

76 Sum3_out1 <= b1_out1 + b2_out1;

77

78 Sum2_out1 <= b0_out1 + Sum3_out1;

79

80 Out1 <= Sum2_out1;

81

82 clk_en <= clk_enable;

83

84 END rtl;

Listing A.5: MATLAB Simulink HDL Coder sample output
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List of Abbreviations

ADC Analog to Digital Converter

ASIC Application Specific Standard Product

ASK Amplitude Shift Keying

AWGN Additive White Gaussian Noise

BER Bit Error Rate

CIC Cascaded-Integrator-Comb

CMOS Complementary Metal Oxide Semiconductor

CSD Canonic Signed Digit

DE Differential Evolution

DSP Digital Signal Processing

FIR Finite Impulse Response

FSK Frequency Shift Keying

GA Genetic Algorithm

GL Gate Level

HDL Hardware Description Language

IIR Infinite Impulse Response

IF Intermediate Frequency

IP Intellectual Property

ISI Inter-Symbol Interference

LMS Least-Mean Squares

LNA Low Noise Amplifier

MMSE Minimum-Mean Squared Error

MUT Model Under Test

PDF Probability Density Function

PQN Pseudo Quantization Noise

PSD Power Spectral Density

RTL Register Transfer Level

SA Simulated Annealing

SOS Second-order section

VHDL Very High speed integrated circuit Hardware Description language

ZF Zero-Forcing
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