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Abstract

The advanced encryption standard (AES) is one of todays most widely used block ciphers.

Although it was introduced in 2001, no attack on the cipher has been found until now that

would threaten its practical use. In recent years, a lot of research has been done in the area

of single-key attacks. Biclique attacks, for example, are the first attacks on AES that apply

to all full variants of AES and are faster than brute force attacks. Furthermore, various

improvements to existing round-reduced attacks have been made. One of these improved

attacks is the multiset attack which applies to 7-round AES and has a time complexity of

2103 encryptions.

In this thesis we present the three most promising of the recently published single-key

attacks: the multiset attack, low data complexity attacks and biclique attacks. To find new

and improved attacks, we investigate possible combinations of their attack techniques. Since

the biclique attacks on AES are only marginally faster than a brute force attack, we further

take a closer look at the performance of the biclique attack on AES-128. For this purpose,

we created highly optimized software implementations of the biclique attack and a brute

force attack using Intel’s AES-NI technology. Overall, our implementation of the biclique

attack is on average 10.5% faster than the brute force attack. Thus, we were able to verify

the claimed advantage of the biclique attack when implemented in software.
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Zusammenfassung

Der Advanced Encryption Standard (AES) ist eine der heutzutage am weitesten verbreiteten

Blockchiffren. Obwohl der Algorithmus bereits 2001 veröffentlicht wurde, gibt es bis heute

noch keine Attacke, die die praktische Anwendung von AES bedenklich machen würde.

Vor allem in den letzten Jahren gab es zahlreiche Publikationen im Bereich von “single-

key” Attacken auf AES. Ein Beispiel dafür sind Biclique Attacken, die zum erstem Mal

eine Möglichkeit bieten, AES mit der vollen Anzahl an Runden, schneller als eine Brute-

force Attacke, anzugreifen. Weiters wurden kürzlich auch Verbesserungen von bestehenden

Attacken veröffentlicht. Eine davon ist die Multiset Attacke, welche für AES mit sieben

Runden eine Zeitkomplexität von 2103 Verschlüsselungen aufweist.

In dieser Arbeit werden die drei prominentesten Angriffe von kürzlich veröffentlichten

Attacken behandelt: die Multiset Attacke, Attacken mit minimaler Datenkomplexität und

Biclique Attacken. Um neue Angriffe zu finden, werden die Möglichkeiten einzelne Tech-

niken dieser neuen Attacken zu kombinieren, analysiert und bewertet. Da Biclique Attacken

generell nur geringfügig schneller sind als eine normal Brute-force Attacke, wird weiters die

Biclique Attacke auf AES-128 im Detail betrachtet. Dazu werden mit Intel AES-NI Tech-

nologie entwickelte, ins Detail optimierte Software-Implementierungen dieser beiden Angriffe

vorgestellt. Im Schnitt ist die Implementierung der Biclique Attacke 10,5% schneller als die

Brute-force Attacke, was die publizierten Vorteile der Biclique Attacken bestätigt.
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1. Introduction

Encryption is the process of transforming information into a format that is unreadable

for anybody without the knowledge of a secret piece of information called key. With its

origins dating back to the ancient Egyptians, who used unknown hieroglyphs for secret

communication, cryptography has today evolved into a large field of research with a wide

variety of different algorithms. Since the beginning of the computer era, it has also become

more and more present in many areas of our lives. Whenever we use an electronic device,

encryption is always involved at some step. Whether it is while buying a train ticket,

withdrawing cash from an ATM, or making a phone call, encryption is used in some form

to ensure confidentiality of information.

But not everything is perfect and encryption methods can have weaknesses too. Such

flaws make encryption algorithms prone to attacks and easier to break. History has shown

in many occasions that it is often a race between those who use cryptographic algorithms and

those who break them. This has not changed today, when researchers try different methods

of cryptanalysis to find vulnerabilities in algorithms and their areas of use.

Additionally the continuous increase in computing power made exhaustive search for keys,

so-called brute force attacks, faster over time. Therefore, ancient encryption algorithms can

be broken within seconds using today’s computers. Even the Data Encryption Standard

(DES), which was developed in the early 1970s can be broken today. Back then, when

it was computationally infeasible to try all keys of its 56-bit key space. Years later, in

1998, the Electronic Frontier Foundation (EFF) designed and built custom hardware for

just US $250,000 which is able to try all possible keys and decrypt any DES ciphertext

within a few days [Fou98].

These reasons lead to the continuous invention of new algorithms and encryption tech-

niques which are commonly categorized into 2 areas: symmetric and asymmetric ciphers.

Symmetric-key algorithms use the same key for encryption and decryption, asymmetric ci-

phers use different keys for encryption and decryption. Symmetric-key algorithms are further

split into block ciphers and stream ciphers. Where stream ciphers work by combining vari-

able length plaintext with a stream of key material of equal length, block ciphers split the

plaintext into sequences of fixed length called blocks and encrypt them using a key of fixed

length.

Nowadays, one of the most commonly used block ciphers is the Advanced Encryption

Standard (AES), which is – as the name already indicates – a standardized cipher. An-

nounced in November 2001 by the National Institute of Standards and Technology (NIST)

as the successor to DES, AES is now used worldwide on many different devices ranging from

smart cards with 8 bit processors to highly parallel server systems. AES has been used for

more than 10 years and there have been many attempts to fully break it. However, up until

1



1. INTRODUCTION

today there is no publicly known attack which enables an attacker to extract information

from AES-encrypted ciphertexts within feasible amount of time1. Nevertheless, there have

been multiple publications which discovered weaknesses in the algorithm, although, many

of these weaknesses require very special circumstances in order the exploit them. Thus,

AES can still be used in practice without worrying about its security. However, since 2008

new and improved attacks on AES surfaced which attempt to reduce the theoretical secu-

rity margin of AES. A prime example for this are the biclique attacks on all variants of

AES [BKR11]. These attacks are the first to apply to the unmodified versions (full number

of rounds) of AES. However, due to their time complexity (for example 2126.15 on AES-128),

they are only marginally faster than exhaustive key search. Another recent attack is the

multiset attack [DKS10]. This attack is basically an improvement of the saturation attack

on up to six AES rounds [DR02] which was published together with the specification of

AES. Although, AES was specifically designed with enough security margin to withstand

the saturation attack, the multiset attack applies to all variants of AES up to seven rounds

and has a time complexity of about 2103. A completely different approach was taken for

low data complexity attacks on AES [BDD+10]. These attacks aim for minimal data re-

quirements instead of attacking as many rounds as possible. One example is the low data

complexity attack on two AES rounds which requires only two chosen plaintexts to recover

the full encryption key within at most 28 encryptions. Such attacks alone are no threat to

AES, however, they can be used as building block for more complex attacks on more rounds.

The main goals of this thesis are to analyze these recent attacks, verify certain techniques,

and look for possible improvements of those attacks. Thus, we first give a thorough descrip-

tion of each attack and the techniques used to construct this attack. To find improvements

on these attacks, we investigate the possibilities of combining techniques from multiple re-

cent attack. Here, we focus primarily on using low data complexity attacks as building

block for more complex attacks. Consequently, our attempts center on single-key attacks on

AES-128. Another major part of this thesis is an in-depth analysis of the biclique attack

on the full AES-128. This is of interest because this attack has only a marginal advantage

over exhaustive key search. At first glance it seems that this marginal advantage is lost

by the overhead of an implementation which would render this attack completely useless.

However, with our software implementations of the biclique attack and a standard brute

force attack, we confirm that this advantage still exists in practice, but is even smaller. As

these implementations use Intel’s AES-NI technology and were specifically optimized for high

performance, we also provide a exhaustive description of how we achieve these high-speed

implementations.

We introduce the Advanced Encryption Standard in Chapter 2, followed by Chapter 3 with

background information on cryptanalysis of block ciphers. Part I concludes in Chapter 4

on the basic security properties of AES. In Part II we turn to the above mentioned recent

attacks and present them in full detail. Beginning with Multiset attack in Chapter 6, we

continue with a collection of attacks with particularly low data complexity introduced by

1We refer here to full versions of AES and also do not include specific implementation or side channel attacks,
because those use vulnerabilities of the implementation and not weaknesses of the theoretical algorithm
itself. A feasible amount of time means a time complexity below about 264 AES encryptions.

2



Bouillaguet et al. in Chapter 7, and end this part with Chapter 8, where we describe the

Biclique attack by Bogdanov et al. Part III covers our contributions where we construct

hypothetical improvements by combining the techniques from the presented recent attacks,

and verify or disproof the applicability of these improvements in Chapter 10. In Chapter 11

we concentrate on the biclique attack on the full AES-128 and verify its claimed complexities

in practice by implementing it in software. Finally, we conclude this thesis in Chapter 12

with a summary of our findings.
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2. The Advanced Encryption Standard

AES was developed by the Belgian researchers Joan Daemen and Vincent Rijmen and was

one of the submissions to a competition by the NIST in 1997. The goal of this competition

was to find a successor to DES. Initially, the algorithm was called Rijndael, a wordplay

with the last names of the designers. In 2000 Rijndael was selected as the winner of the

competition and published as U.S. FIPS PUB 197 [NIS01]. Due to the wide adoption of

Rijndael, it is nowadays simply known as AES.

The most important design goals of AES are its simple design, adequate security prop-

erties, and the possibility to create fast and compact soft- and hardware implementa-

tions [DR02]. In this chapter we describe the basic operations which achieve these goals.

Plaintext EAES Ciphertext

Key

Figure 2.1.: The AES encryption function, which has a fixed length input (plaintext) and
output of the same length (ciphertext). The encryption key is the same for
encryption and decryption.

2.1. The Structure of AES

Similar to many other block ciphers, AES works by repeating a round transformation a

defined number of times on a given input block. For AES, this input has a fixed length of

128 bits and represents the plaintext to be encrypted. The result of each transformation

during encryption and decryption is called state and has a fixed length of 128 bits. Since

AES operates only at byte level, plaintext, ciphertext and intermediate states are commonly

represented as a 4 × 4 matrix of 16 bytes. Figure 2.2 depicts the order of these 16 bytes

within a state.

The simplistic design of AES is based on a substitution-permutation network (SP-network)

[MVO01, p. 251]. Such ciphers iterate the same round transformation, which is made up

of a substitution followed by a permutation operation. At the end of each round, a round

key is added to the current state. The repeated execution of the round transformation

on the plaintext produces the ciphertext. In contrast to AES, DES is based on a Feistel

network [MVO01, p. 251]. The advantage of AES over DES is that the round transformation

7



2. THE ADVANCED ENCRYPTION STANDARD

row 0 0 4 8 12

row 1 1 5 9 13

row 2 2 6 10 14

row 3 3 7 11 15

co
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0
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m
n
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lu

m
n

2

co
lu

m
n

3

Figure 2.2.: Representation of the AES state as 4 × 4 matrix. The numbers indicate the
position of the corresponding byte in the cipher’s input array.

operates on all state bytes. This allows full diffusion within only two rounds, where Feistel

networks need at best three rounds and in practice normally four rounds. The importance

of diffusion in ciphers was also noted by Shannon in 1949 [Sha49] and describes the grade

of dependence between input and output bits. For a secure cipher the diffusion should be

high. Full diffusion means that every bit of the state depends on all input state bits from n

rounds before. In the case of AES, n = 2 [DR02, p. 41]. Another advantage of AES is that

it allows encryption and decryption to be similar, thus making implementations easier and

smaller in terms of code complexity and code size.

In AES each round key is derived from the initial key. The key schedule takes the initial

key (given as input to the algorithm) and outputs a separate round key for each round

transformation. This is also called key expansion.

AES offers 3 different flavors, which only differ in their respective key length and the

number of rounds. Compared to the original Rijndael proposal, AES only allows a single

block size of 128 bits and three key lengths of 128, 192, and 256 bits, where Rijndael offers

variable key and block lengths. Rijndael allows key and block length to be set independently

to a multiple of 32 bits between 128 bits and 256 bits. Apart from that, both specifications

are equivalent. The three versions of AES are commonly referred to as AES-128, AES-192,

and AES-256, where the number indicates the key size. For AES, the number of rounds is

defined by the key size: AES-128 has 10 rounds, AES-192 12 rounds and AES-256 14 rounds.

The high-level outline of AES is described in pseudo code in Listing 2.1 and roughly works

as follows:

1. Combine plaintext with initial key using XOR

2. Apply n − 1 round transformations on the current state, where n is the number of

rounds defined by the key size.

3. Apply last round

8



2.2. FINITE FIELDS

1 RijndaelEncrypt(State, CipherKey)

2 {

3 KeyExpansion(CipherKey, ExpandedKey);

4 AddRoundKey(State, ExpandedKey[0]);

5 for (i=1; i<Nr; i++) Round(State, ExpandedKey[i]);

6 FinalRound(State, ExpandedKey[Nr]);

7 }

Listing 2.1: High level description of AES given in C-pseudo code as depicted in [DR02],
where Nr is the number of rounds.

2.2. Finite Fields

The operations used in the transformations of AES are finite field calculations over GF (28).

Here, we give a short introduction to the basics and refer the interested reader to [DR02, pp.

9-29], which covers all the mathematical background needed to understand the inner workings

of AES in more detail.

Definition 2.1 (Abelian Group). A set G and an operation + : G×G→ G, (a, b) 7→ a+ b,

denoted by < G,+ >, is called Abelian group if the operation fulfills the following properties

in G:

• Associative: ∀a, b, c ∈ G : (a+ b) + c = a+ (b+ c)

• Commutative: ∀a, b ∈ G : a+ b = b+ a

• Closed: ∀a, b ∈ G : a+ b ∈ G

• Neutral element: ∃0 ∈ G : a+ 0 = a

• Inverse element: ∀a ∈ G, ∃b ∈ G : a+ b = 0

A common example for an Abelian group is < Z,+ > with the set of integers Z and addi-

tion as operation. Another example with a set containing only a finite number of elements

is < Zn,+ > where Zn contains integers from 0 to n− 1 and + is the addition modulo n.

Definition 2.2 (Field). < S,+, · > is called a field, if:

• < S,+ > is an Abelian group

• < S \ {0}, · > is an Abelian group

• + is distributive with respect to · in S

One example for a field is the set of all real numbers, with addition and multiplication.

A special subset of fields are finite fields, which contain only a finite number of elements.

For a set with m elements there exists a finite field if and only if (iff) m = pn, where p

is prime and n a positive integer [DR02]. Such fields are also called Galois fields and are

9



2. THE ADVANCED ENCRYPTION STANDARD

denoted by GF (pn). The simplest form of a Galois field is GF (p), which can be represented

as integers from 0 to p − 1. Consequently, the operations are then addition modulo p and

multiplication modulo p. In case p = 2, the field is called binary field. For n > 1, GF (pn)

can be represented as polynomials over GF (p). In this case, the addition in the finite field is

performed by adding coefficients of equal power. For example if p = 2 and the polynomials

are x6 + x4 + x2 + x+ 1 and x7 + x+ 1, we can add them as follows:

(x6 + x4 + x2 + x+ 1) + (x7 + x+ 1) = x7 + x6 + x4 + x2.

Multiplication in GF (pn) is performed as the algebraic product of both polynomials mod-

ulo an irreducible polynomial m(x) of degree n. An irreducible polynomial is just a polyno-

mial that cannot be factored into smaller polynomials. More formally:

Definition 2.3 (Irreducible Polynomial). Let a(x), b(x), c(x) polynomials in GF (p) and

a(x), b(x) with degree > 0. c(x) is irreducable iff there exists no a(x), b(x) such that c(x) =

a(x) · b(x).

For AES, the irreducible polynomials m(x) = x4 + 1 and m(x) = x8 + x4 + x3 + x+ 1 are

used.

2.3. The Round Transformations

One round in AES consists of four round transformations. The order and purpose of each

transformation is given as follows (see also Figure 2.4):

1. SubBytes: A byte-wise substitution (S-Box ) that provides non-linearity

2. ShiftRows: Permutation of bytes for diffusion within each row

3. MixColumns: Linear operation that provides diffusion within columns

4. AddRoundKey: XOR with round key

The last round differs from a standard (full) round by leaving out the MixColumns op-

eration. Moreover, before the application of first round, the initial key is added1 to the

plaintext. This initial key is often called whitening key.

In order to decrypt a ciphertext, each one of the above operations is invertible, and

has an inverse counterpart. These operations are: InvSubBytes, InvShiftRows and

InvMixColumns. Note that we do not require an inverse operation for AddRoundKey since

the x⊕ x = 0. Thus, the inverse operation to AddRoundKey is also simply the XOR operation

with the round key.

In the following sections, we will introduce each round transformation of an AES round

and explain its purpose and functionality in more detail.

1In a binary field, bitwise XOR of two bytes is the same as bitwise addition modulo 2, so when we write
addition, we perform an XOR operation. Note that the same is true for subtraction modulo 2.
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y
0 1 2 3 4 5 6 7 8 9 A B C D E F

x

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Table 2.1.: The AES S-Box table. The values are given in hexadecimal notation and a cell
(x, y) holds S-Box(xy).

2.3.1. SubBytes

Compared to DES, AES has only one S-Box that is applied to all state bytes. SubBytes rep-

resents the substitution stage of an SP-network and applies the S-Box to each byte separately.

The S-Box is a bijective mapping that adds non-linearity to an AES round. Non-linearity

is an important factor for a block cipher to provide strength against linear and differential

cryptanalysis despite the rather low number of rounds. The mapping has to be bijective to

make the S-Box invertible for the decryption process.

The design of the AES S-Box is based on the multiplicative inverse in GF (28) modulo

the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1. Additionally, an invertible affine

transformation is applied. This affine transformation is specifically designed to remove fixed

points (SB(x) ⊕ x = 0) and yields a more complex algebraic expression for the full S-Box

equation when combined with the multiplicative inverse.

Especially for software implementations, the S-Box itself is realized by a simple lookup

table (see Table 2.1) since it only takes 256 bytes to store. Tables of this size fit nicely into

the CPU cache and make lookup operations very fast. For hardware implementations, it is

useful to calculate the S-Box on-demand2 because such designs can be made quite compact

and need less space in terms of gates [BP09, Can05]. The downside of lookup tables used

in software implementations are side channel attacks. Since the time of a lookup operation

takes depends on the value that is looked up, such implementations are prone to timing

attacks. In a cache timing attack, an adversary uses the time required to look up an S-Box

2The full equations of the S-Box are computed for each value.
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value from the table stored in the CPU cache to retrieve the actual value that is looked up.

This allows to conclude the value of the secret encryption key. The first attack of this kind

on AES was presented by Bernstein in [Ber05]. To avoid this weakness, so called bitslice

implementations calculate the S-Box on-demand, which requires the same amount of time

for every possible value.

2.3.2. ShiftRows

ShiftRows is a simple transposition operation that shuffles the bytes of the current state.

This transposition is a byte-wise rotation (cyclical shift) of each row of the state. To provide

optimal diffusion, each row is shifted by a different offset. The first row is not rotated, the

second is rotated by one, the third by two and the fourth by three bytes. ShiftRows was

further designed to maximize resistance against truncated differential attacks and saturation

attacks like the Square attack described in section 4.2 [DR02, p. 37].

2.3.3. MixColumns

MixColumns is another permutation operation with the purpose to provide high diffusion

within columns of the state. It is a linear transformation that mixes all four bytes of a column

with each other. This mixing is again based on finite field computations over GF (28). Here,

the columns are interpreted as polynomials over GF (28) which are multiplied modulo x4 + 1

with a constant polynomial c(x) = 03 · x3 + 01 · x2 + 01 · x+ 02. The fixed polynomials are

chosen such that it is possible to write fast MixColumns implementations while still having

proper diffusion properties. Its calculation is commonly written as multiplication of each

column (4-byte vector [a0, . . . , a3]T ) with a constant matrix:
b0
b1
b2
b3

 =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

×

a0

a1

a2

a3

 .
Like all other round transformations, it is designed to be invertible for the decryption pro-

cess. For the inverse operation InvMixColumns it is only necessary to change the coefficient

matrix, resulting in: 
b0
b1
b2
b3

 =


0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

×

a0

a1

a2

a3

 .
Instead of evaluating the above equation for each MixColumns operation, software imple-

mentations commonly use lookup tables. These tables can be combined with the lookup

table for SubBytes which yields 4 tables of 1024 bytes each. This is a common implementa-

tion on 32-bit platforms where all tables take up only 4 kB of memory and again fit nicely

into most 32-bit CPU caches to yield fast table lookups [DR02, pp. 53-62].
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2.3.4. AddRoundKey

Each round in AES requires a 128-bit round key. This key is added to the current state

using a byte-wise XOR operation. To revert the AddRoundKey operation, we just add the

same round key again. Thus, AddRoundKey does not require a special inverse operation for

the decryption algorithm.

2.4. Key Schedule

The key schedule provides the keys for each round. It derives each round key through a

recursive algorithm from the previous round key, starting with the initial cipher key as the

whitening key. The key schedule outputs Nr+1 round keys where Nr denotes the number of

rounds. The AES key schedule is designed for high performance with low memory usage while

still providing efficient diffusion of the cipher key differences and appropriate non-linearity

for security.

The key schedule operates on 4-byte blocks (words) wi and is slightly different for each

AES variant. As mentioned before, the input to the key schedule is the initial cipher key.

Depending on the AES variant, the initial key is 128, 192, or 256 bits in length, which is

equal to Nk = 4, 6, or 8 words respectively. The initial key is also directly used as the first

Nk output words of the key schedule (the whitening key). The remaining output words

wi, i > Nk are defined as:

wi =


wi−Nk ⊕ v(wi−1) if i mod Nk = 0

wi−Nk ⊕ SubWord(wi−1) if i mod Nk = 4 and Nk > 6

wi−Nk ⊕ wi−1 otherwise

Where:

• v(x) is defined as v(x) = SubWord(RotWord(x))⊕ Rcon[i/Nk].

• RotWord() rotates four bytes to the left by one, such that [a0,a1,a2,a3] becomes

[a1,a2,a3,a0].

• SubWord() applies the AES S-Box to four bytes.

• Rcon is the round constant, defined in GF (28) by:

Rcon[1] = x0

Rcon[i] = xi−1, i > 1
.

The special case for i mod Nk = 4 and Nk > 6 is only used in the key schedule of AES-256.

Due to the larger key size, this case is required to introduce additional non-linearity. For a

more detailed description of the key schedule algorithm and a implementation in pseudo-code

see Appendix A.

Figure 2.3 shows how to retrieve the individual round keys from the output words wi of the

key schedule. Since the round key of each round has a fixed size of 128 bits for all variants

of AES, the j-th round key rkj consists simply of wj·4, w(j·4)+1, w(j·4)+2, w(j·4)+3.
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w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 · · ·

+ + + + . . . .

+ + + + . . . .

+ + + + . . . .

+ + + + . . . .

· · ·

rk0 rk1 rk2

Figure 2.3.: Derivation of round keys from the key schedule’s output words wi (columns).

2.5. Decryption

For the decryption of a ciphertext produced by AES, we have to revert all the operations that

were applied during the encryption process. To do this, we execute the round transformations

in reverse order on the ciphertext, and also invert each round transformation (SubBytes,

ShiftRows and MixColumns) itself.

ShiftRows is very simple to invert since it is only a rotation of each row by a constant

factor. To get the inverse operation InvShiftRows, we just invert the direction of the

rotation. Since SubBytes is a bijective mapping, we can just create a second lookup table

that performs inverse substitution to get InvSubBytes. As already mentioned above, the

InvMixColumns step is performed by multiplying each column with the inverse coefficient

matrix. The only step left is to revert the AddRoundKey step. Since x⊕ x = 0, we can just

add the same round key again, to undo the key addition. The order of operations within

one full decryption round is then:

1. AddRoundKey

2. InvMixColumns

3. InvShiftRows

4. InvSubBytes

Note that in the last round of the encryption algorithm the MixColumns transformation

is omitted. Hence, for the decryption we have to omit InvMixColumns of the first inverse

round. A similar statement can be made about the initial AddRoundKey with the whitening

key.

This primitive inversion of the encryption process would require us to create new code

for the whole decryption process. This is not very advantageous, since it would be simpler

to keep the round transformations in the same order as for the encryption process. This
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would save space in hardware implementations, and would allow us to reuse code parts in

software implementations. To make decryption more similar to encryption, certain algebraic

properties of the basic operations of AES can be used. The resulting process is called

equivalent decryption algorithm [DR02, pp. 45-50], and uses the following two properties:

1. The order in which InvSubBytes and InvShiftRows are executed does not matter

since those steps work on each byte separately and the same S-Box is used for all

bytes.

2. The order of AddRoundKey and InvMixColumns can be switched if InvMixColumns is

applied to the round key before adding it to the current state.

Using these two properties, we get the same high-level process as for the encryption algo-

rithm shown in Listing 2.1:

1. Run the key schedule.

2. AddRoundKey to ciphertext.

3. Apply Nr-1 full (inverse) rounds.

4. Apply the last (inverse) round.

The only differences are that each round transformation is switched with its inverse coun-

terpart, and for each AddRoundKey operation, we first apply InvMixColumns to this round

key. This improvement makes decryption very similar to encryption, and allows equally

efficient implementations.

2.6. Notation

Throughout this thesis we will use the notations shown in Figure 2.4. The rounds are

numbered from 1 for the first round to Nr for the last round where Nr is 10, 12, or 14 for

AES-128, AES-192, or AES-256, respectively. The round keys are numbered from 0 to Nr.

Thus, in round i we use round key i denoted by rki. For SubBytes, ShiftRows, MixColumns,

and AddRoundKey we use the abbreviations SB, SR, MC, and ARK.

We assign each state a name which specifies its exact position within the algorithm. The

input state of each round is denoted by Si where i is the round number. For the states

within a round, we use the naming scheme Si,<input-of>. The placeholder <input-of> is

replaced with the abbreviation of the next operation, i.e. SR, MC, or ARK. For example, the

state after SubBytes and before ShiftRows of round 4 is named S4,SR. The next state after

S4,SR is called S4,MC, and so on. Further, to denote single bytes of a state, we use an array-like

notation. So, the j-th byte (zero-based count) of a state Si is written as Si[j]. The order of

the bytes within a state is shown in Figure 2.2.

In case there are multiple plaintexts and/or ciphertexts, we use a zero-base number in the

superscript to distinguish them. For example, Sl
i denotes the l-th state Si, and Sl

i[j] denotes
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the byte Si[j] of the l-th state. Moreover, S3
4,SR[0] is the first byte in state S4,SR of plaintext

3.

We denote consecutive round keys for rounds i, i + 1, . . . as rki, rki+1, . . . , and repre-

sent them as a 4 × 4 state matrix equal to an internal AES state shown in Figure 2.2.

We distinguish the four columns of rki by rki,0, rki,1, rki,2, rki,3, and individual bytes of

that key as rki[0], rki[1], . . . rki[15]. For the key schedule of AES-128, we also define vi =

SubWord(RotWord(rki,3))⊕ Rcon[i+ 1].

Si Si,SR Si,MC Si,ARK rki

SB SR MC

Figure 2.4.: The round transformation of AES with all steps and notations used throughout
this thesis. rki denotes the i-th round key.
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3. Background on Cryptanalysis of Block

Ciphers

The theoretical security of an encryption algorithm is primarily concerned with two main

aspects:

• Make exhaustive key search infeasible.

• Avoid short-cute attacks or make them infeasible.

Since exhaustive key search is easily conquered with large enough key sizes, we will con-

centrate on the second aspect. The goal of such attacks is to find certain properties within

the internals of the cipher that allow to retrieve information on key bits. Such attacks ba-

sically exploit the internal structure of the cipher to be faster than exhaustive key search.

For the designers of a cipher, it is practically impossible to make the cipher resistant against

every imaginable attack since the internal structure differs from cipher to cipher. Moreover,

there could still be attacks that have not been discovered yet. Still, many ciphers share com-

mon basic concepts like SP-networks (AES), or the Feistel structure (DES). Such concepts

are common between multiple ciphers and thus, ciphers based on these concepts also share

possible vulnerabilities that stem from them.

The two most prominent forms of cryptanalysis today are linear cryptanalysis and differ-

ential cryptanalysis. Both were initially applied to DES but are applicable to many other

algorithms with similar structure. During the AES competition, many candidates provided

proof that such attacks do not threaten their security. Nowadays, resistance against linear

and differential cryptanalysis is a de-facto standard for each encryption algorithm to be

accepted as good cipher.

This chapter provides the necessary background knowledge on linear and differential crypt-

analysis as well as some other related methods such as truncated and impossible differentials.

It is mainly based on [Kho10,Sch11] with additional information from [DR02,BS91,Mat93].

Readers already familiar with those concepts can safely skip this chapter.

3.1. Complexity of Attacks

To compare different attacks on the same block cipher with each other, a simple measure has

to be found. This allows us to identify how much memory is needed, how long it takes and

what other requirements are needed. Throughout this thesis, we use the following standard

measures which are commonly used for this purpose: time complexity, data complexity and

memory complexity.
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Memory complexity is simply the amount of physical storage needed to perform the attack.

It is measured in blocks of the same size as the input of the cipher uses. So, for AES this

is 128-bit blocks. The data complexity defines the amount of plaintexts and/or ciphertexts

needed to perform the attack. Additionally, we often differentiate between chosen plaintexts

and known plaintexts. We speak of chosen plaintexts if the attacker needs to choose the

values of each plaintext used in the attack. With known plaintexts, the attacker has more

freedom since he does not need to influence the plaintexts which are encrypted but only

needs to know their values. The unit for data complexity is equal to memory complexity, so

for AES, it is 128-bit blocks.

Time complexity is probably the most important measure since it allows to determine

if an attack is feasible or not. In the context of attacks on ciphers, feasible means than

an attacker is able to perform the attack in an acceptable amount of time (a few seconds,

minutes, hours, days or even months). Infeasible attacks often take thousands of years and

are thus merely theoretical attacks. Nevertheless, such attacks are still important to consider

because hardware becomes faster and more affordable over time. Moreover, such attacks

can often provide the basis for faster feasible attacks. There is no fixed boundary between

feasible and infeasible attacks but normally, attacks below about 260 - 264 are assumed to be

feasible. This boundary is subject to change because of new developments in hardware and

the resulting faster implementations of algorithms. Thus, an attack on some block cipher

with time complexity 260 was infeasible ten years ago but might very well be feasible today.

The time complexity of an attack is also often compared to the time complexity of a simple

brute force attack on the same cipher. In a brute force attack or exhaustive search for keys,

an attacker tries all possible keys for a selected plaintext and its corresponding ciphertext

until the matching key is found. Exhaustive search basically provides an upper bound for

attacks since an attack with larger time complexity as exhaustive search makes no sense. For

brute force attacks, the data and memory complexity is simply 2 because only one plaintext

and its corresponding ciphertext are required.

The unit for time complexity is “equivalent encryptions” in the block cipher. So for

AES, a hypothetical attack with time complexity of 2140 needs the same amount of time

as encrypting 2140 plaintexts. It seems, an attack with such a high time complexity is

useless because exhaustive search in AES-128 takes only 2128 encryptions. However, this

hypothetical attack makes sense since there are 3 variants of AES with different key sizes

and this attack would be faster than exhaustive search for AES-192 and AES-256. For

attacks on round-reduced variants of AES, we measure the time complexity in encryptions

of that reduced variant. Therefore, an attack on six rounds of AES with time complexity

253 takes the same time as 253 6-round AES encryptions.

3.2. Linear Cryptanalysis

Linear cryptanalysis was invented by Matsui and first applied to DES [Mat93]. However,

it is applicable to many other block ciphers with an iterative structure that rely on some

non-linear transformation. Linear cryptanalysis is a known-plaintext attack which means the
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attacker has to know the plaintext that gets encrypted and its corresponding ciphertext in

order to apply it.

The general idea is to approximate the non-linear parts of a round transformation with

a linear expression. By doing this, we make the whole round just a linear function which

allows to calculate possible keys by just knowing input and output. It is common for block

ciphers to use an S-Box as the only non-linear operation. Thus, we first concentrate on

approximating the non-linear part without considering the other steps of the round. Later,

we are going to extend this concept to a full round and finally to the full cipher.

To approximate the non-linear substitution S, we choose α and β such that the linear

expression of the form

α · x = β · y

is true for as many inputs x and outputs y as possible. The specific bits of the input and

output are selected using the bit masks α and β. Furthermore, the operator · is the bitwise

AND. There are multiple possibilities for these masks, in fact, for an S-Box with n input bits

and m output bits, there are (2n − 1)× (2m − 1) possible approximations.

Each approximation works only for a subset of all possible input and output masks, hence,

we assign each one a probability p. The probability that an expression holds is

p =
x

2n
,

where x is the number of times the linear expression holds for a particular input and output

mask.

Definition 3.1 (Linear Probability Bias). Let p be the probability of a linear expression.

Then, the linear probability bias is defined as

ε = p− 1

2

and its magnitude represents the effectiveness of the linear expression.

The value of ε has the following meaning:

• ε = 0: No gain in information with this expression.

• ε > 0: The linear approximation α · x = β · y is good.

• ε < 0: The approximation α · x = β · y ⊕ 1 is good.

To find the best linear approximation for our attack, we evaluate all possible masks and

collect the resulting bias values in the Linear Approximation Table.

Definition 3.2 (Linear Approximation Table). Let ε be the bias of a linear expression

α · x = β · y that approximates a non-linear n to m bit function S. For all possible masks α

and β, the linear approximation table contains the bias ε · 2n.
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Until here, we just concentrated on finding a linear approximation for the non-linear part of

the round transformation. The linear approximation table provides the required knowledge

to select a good approximation with a high enough bias. Since a round transformation

normally includes a key addition step, and our goal is to get information on the key from

just plaintext and ciphertext, we modify the linear expression to include the round key:

(α · x)⊕ (β · y) = γ · k,

where k is the round key and γ is its mask.

For extending the linear approximation to cover multiple rounds, we take approximations

of a single round and combine them such that the final approximation only contains plaintext,

ciphertext, and key bits. Such a combination is called linear characteristic.

Definition 3.3 (Piling-up Lemma [Mat93]). Let Xi be an independent boolean expression

with probability Pr(Xi = 0) = 1
2 + ε. Then, the probability of the linear characteristic

X0 ⊕X1 ⊕ · · · ⊕Xn = 0 is defined as:

Pr(X0 ⊕X1 ⊕ · · · ⊕Xn = 0) =
1

2
+ 2n−1

n∏
i=1

εi

Now, we have all the tools needed to construct a linear characteristic for a cipher. If the

cipher is susceptible to linear cryptanalysis, we are able to find a characteristic with a high

probability. This means that, given a set of plaintext-ciphertext pairs, it is likely that for

some of those pairs the linear characteristic applies. This enables us to retrieve information

about the key as follows:

In general, there are multiple ways to get key information using linear cryptanalysis. We

will concentrate on Matsui’s Algorithm 2 [Mat93], which is shown in Algorithm 1. Assume

a cipher with Nr rounds and a corresponding linear approximation (α · p) ⊕ (β · w) = γ · k
for the first Nr-1 rounds that has a high enough probability. The approximation depends

on two values: the plaintext p, and the intermediate state w which is the input to the last

round or equally the state after Nr-1 rounds. The mask β indicates which bits from the

intermediate state are involved in the expression thus also defining the active S-Boxes of the

last round.

For those active S-Boxes, we take all values ki and a set of plaintext-ciphertext pairs

(pj , cj). We decrypt the ciphertext through the last round (Line 7 in Algorithm 1) and

calculate the value of the linear expression with the resulting values for the intermediate

state and the plaintext. Since the linear approximation we chose has a high probability, it is

likely that it holds for the correct key guess and does not hold for wrong key guesses. Thus,

the key with the highest count of pairs for which the linear expression holds is the correct

key.

It becomes clear that to withstand linear cryptanalysis, a cipher must make it hard for an

attacker to create a linear approximation for the whole cipher. This is achieved by making

the bias of the linear approximations as low as possible. Additionally the permutation should

take care that the number of active S-Boxes is high.
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Algorithm 1 Matsui’s Algorithm 2

1: function Algorithm2(L(p, c), F−1(c, k))
2: for all key guesses ki do . Corresponding key bits for active S-Boxes
3: T ki

0 ← 0

4: T ki
1 ← 0

5: end for
6: for all plaintext-ciphertext pairs (pj , cj) and ki do
7: w ← F−1(cj , ki) . inverse round transformation F−1(c, k)
8: a← L(pj , w) . linear expression L(p, c)
9: T ki

a ← T ki
a + 1

10: end for
11: return ki with highest difference between T ki

0 and T ki
1

12: end function

3.3. Differential Cryptanalysis

Differential cryptanalysis was found by Biham and Shamir and initially applied on DES and

DES-like crypto-systems in the late 1980s [BS91]. The authors noted in their analysis that

DES is remarkably resistant against this kind of attack. Later a member of the original

DES team at IBM stated that they had been aware of this kind of attack before Biham and

Shamir and designed DES specifically to be resistant against it.

Differential cryptanalysis is a chosen-plaintext attack that works with pairs of plaintexts

(P, P ∗) and corresponding ciphertext pairs (C,C∗). “Chosen-plaintext attack” means that

the attacker is able to choose or at least influence the plaintext that gets encrypted. The

pairs are formed using XOR so, the difference ∆P of two plaintexts P and P ∗ is defined as:

∆P = P ⊕ P ∗.

The idea is to follow such a difference through all rounds of the cipher and construct

a relation between a plaintext difference ∆P and a ciphertext difference ∆C. This allows

to calculate the values of certain key bits as we are going to explain in the course of this

chapter.

In essence, differential cryptanalysis is, like linear cryptanalysis, an attempt to find an ap-

proximation for the non-linear operations in a cipher. However, for differential cryptanalysis

we look at pairs of plaintexts and their difference ∆P . By tracing the difference ∆P through

the cipher’s operations, we analyze the changes of the differences. The influence of linear

operations is predictable since it modifies the difference only in a deterministic and bijective

way. It holds for all linear transformations that by knowing the input difference (∆x), we

can compute the output difference (∆y). However, for non-linear transformations we are

unable to conclude the output difference from a known input difference because a single

∆x can be transformed into multiple output differences. Which specific output difference

is determined by the actual values (x, x∗) of each pair we do not know since we only know

the difference (∆x) between them. Differential cryptanalysis is an attempt to reduce the

amount of possible output differences for a given input difference.
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∆y
00 01 02 03 04 05 06 07 08 09 0A 0B 0C . . .

∆x

00 256 0 0 0 0 0 0 0 0 0 0 0 0 . . .
01 0 2 0 0 2 0 2 0 2 2 2 2 2 . . .
02 0 0 0 2 2 2 2 2 0 0 0 2 2 . . .
03 0 0 2 0 2 2 0 0 2 0 2 2 2 . . .
04 0 0 0 0 0 0 0 0 0 2 0 0 0 . . .
05 0 0 0 0 2 0 0 0 4 2 0 0 2 . . .
06 0 2 0 0 2 2 0 0 0 2 0 2 4 . . .
07 0 2 0 0 0 0 2 0 2 2 2 0 0 . . .
08 0 0 2 2 0 0 0 0 0 2 0 2 2 . . .
09 0 0 2 2 0 0 2 2 0 0 0 0 2 . . .
0A 0 0 2 2 4 0 2 2 0 2 2 0 2 . . .
0B 0 2 0 0 0 0 0 2 2 2 0 0 2 . . .
0C 0 0 2 2 0 0 2 2 2 2 2 0 0 . . .
0D 0 2 2 0 0 0 2 2 2 2 2 2 0 . . .
0E 0 0 2 2 2 2 0 2 2 0 2 2 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.1.: The partial difference distribution table for the AES S-Box.

3.3.1. Differentials

In their original paper on differential cryptanalysis, Biham and Shamir discovered that a

random input difference does not yield every possible output difference for the DES S-

Boxes. This is also true for non-linear transformations of many other ciphers. Thus, some

transitions from an input difference to an output difference are impossible and some are

more likely than others. Such a transition ∆x → ∆y is called differential. Hence, for each

possible differential we can construct the following table:

Definition 3.4 (Difference Distribution Table (DDT)). Let S be a non-linear transformation

with n input bits and m output bits. Construct the 2n× 2m difference distribution table by

filling it with the number of right pairs (pairs yielding the differential transition)

N(∆x→ ∆y) = #{(x, x∗)|∆x = x⊕ x∗ and S(x)⊕ S(x∗) = ∆y},

for all differences ∆x, ∆y [BS91].

An example for such a difference distribution table is the DDT for the AES S-Box as

shown in Table 3.1. Since the AES S-Box operates on bytes, n = m = 8, and the table has

a dimension of 28× 28. The cells with value zero indicate impossible differential transitions.

Note that the difference is only zero if both input values are equal. Since an S-Box is

invertible, the output values are equal and thus, only a zero output difference is possible.

Therefore, the first row and first column have a non-zero value only in (0, 0). Further, note

that each value always occurs an even number of times since for a pair (a, a∗), the pair (a∗, a)

yields the same input and output difference.
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The difference distribution table forms the basis of differential cryptanalysis. Given an

input difference, only a fraction of all possible difference transitions can occur and the likeli-

hood for each combination of input, output differences varies. We can extract this probability

directly from the DDT.

Definition 3.5 (Difference Propagation Probability). Let ∆x be an arbitrary input differ-

ence and ∆y an arbitrary output difference. The probability p = Pr(∆x → ∆y) that the

non-linear operation S transforms ∆x
p−→ ∆y is called difference propagation probability or

difference probability [Kho10] and is calculated by

Pr(∆x→ ∆y) =
1

2n
·N(∆x→ ∆y)

=
1

2n
·#{(x, x∗)|∆x = x⊕ x∗ and S(x)⊕ S(x∗) = ∆y},

where the number of right pairs N(∆x→ ∆y) is given by the DDT.

3.3.2. Extracting Key Information

To explain the basic concept of how to find the key bits used for encryption, we concentrate

on a single round first and extend this concept to multiple rounds in the next section. As

we have already shown, the linear operations of a round influence the input differences only

in a deterministic way, thus, by knowing one of the differences at either input or output, we

are able to calculate the corresponding other one. So, we omit linear operations in the next

example and concentrate on the substitution using the S-Box and the key addition.

ki−1

∆x S ∆u

ki

∆y

Figure 3.1.: A very simple round of an example cipher without any linear operations except
the key addition.

Assume we only know the input difference ∆x and both corresponding values at the output

(y, y∗) of the round shown in Figure 3.1. From the output values we calculate the output

difference ∆y. Further, we can calculate u = y ⊕ k and u∗ = y∗ ⊕ k. Since ki is equal for u

and u∗, the key addition does not change the output difference, and we get

∆y = y ⊕ y∗
= (u⊕ ki)⊕ (u∗ ⊕ ki)
= u⊕ u∗
= ∆u.
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Using this difference ∆u = ∆y and the input difference ∆x we turn to the difference

distribution table, look up the number of possible output pairs, and retrieve the actual

values (uj , u
∗
j ) for each pair j > 0. Each pair yields one possible key value by calculating1:

ki = y ⊕ uj .

This results in a small set of key guesses (for the AES S-Box it contains 2-4 guesses). To

find the correct key, we have to repeat the procedure for more pairs with the same differences

but different values. By collecting a large enough amount of such sets, the intersection of

all sets should yield a single key guess that is common in all sets. This is the correct key,

however, for this attack to work, we need non-zero input and output differences. Thus,

S-Boxes with non-zero difference are called active S-Boxes.

3.3.3. Differential Trails

To use our method for retrieving key information on a standard cipher, we have to extend a

differential to multiple rounds so that it spans Nr-1 rounds. Thus, we get the input difference

of the last round. Together with the actual output values we are able to retrieve the round

key of the last round for all active S-Boxes.

A differential stretching over multiple rounds is called differential characteristic or differ-

ential trail. It is constructed by chaining multiple differentials. To accomplish this we have

to find differentials ∆xi → ∆yi, i ≥ 0, such that ∆yi = ∆xi+1. Through this, we get a chain

of differentials

∆x0 → ∆x1 → ∆x2 → · · · → ∆xn−1 → ∆xn,

where n is the number of rounds the differential trail should cover.

Each differential characteristic ∆x0 → ∆xn has a specific probability. This probability

describes the likelihood that a randomly chosen plaintext difference ∆x0 yields the difference

∆xn after n rounds. A high probability indicates that we have to collect fewer plaintext-

ciphertext pairs to find pairs matching the needed differences. Computing differential prob-

ability which depends on the number of right pairs is not easy. Since the input pairs of

each differential are not independent, we are unable to exactly calculate the number of right

pairs. Thus a reasonable approach is to approximate this probability [DR05].

Definition 3.6 (Approximate Differential Probability). Assume the probabilities of each

differential ∆xi in the differential trail ∆x0 → ∆xn to be independent. The approximate

differential probability Pr(∆x0 → ∆xn) [Sch11] is then calculated as:

Pr(∆x0 → ∆xn) = Pr(∆x0 → ∆x1 → ∆x2 → · · · → ∆xn−1 → ∆nn)

= Pr(∆x0 → ∆x1) · Pr(∆x1 → ∆x2) · · ·Pr(∆xn−1 → ∆nn)

=

n−1∏
i=0

Pr(∆xi → ∆xi+1)

1Since for each pair (a, a∗) the DDT yields also its reverse (a∗, a), it suffices to calculate only y ⊕ uj and
omit calculating y ⊕ u∗

j .
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If we choose a differential trail with high probability, we need a large enough set of plain-

text pairs with the needed input difference in order to get enough pairs with the matching

ciphertext difference of the trail. For example, if we assume a differential trail with proba-

bility 2−8, we require a set containing at least 28 pairs with matching plaintext difference to

get at least one pair that matches the full differential trail.

Similarly to linear cryptanalysis, the choice of the non-linear function has a large impact

on the success of differential cryptanalysis. The goal is to design the S-Box such that the

probability of the difference propagation is as low as possibly. Additionally, the number of

active S-Boxes over multiple rounds should be as high as possible.

3.4. Truncated Differentials

In 1994 Knudsen published a new attack on block ciphers that uses truncated differentials

[Knu94]. In its essence, this attack is a differential attack as presented above but modified

such that ciphers which are secure against standard differential cryptanalysis could still be

prone to truncated differential cryptanalysis.

In a standard differential cryptanalysis attack we look for differential trails that turn

an input difference to some output difference with high probability. Truncated differential

cryptanalysis differs, such that we only require a part of the output difference to conform to

a differential trail. By ignoring part of the output difference, we are able to construct trails

with larger probability since only a subset of the full state has to match a certain difference.

Countermeasures against truncated differentials are similar to those against standard dif-

ferential cryptanalysis. Moreover, this form of attack is mostly efficient on ciphers that

operate on aligned blocks of the state. AES is a good example for such a cipher, since all its

operations are done at byte level rather than bit level. Nevertheless, AES is still resistant

against this kind of attack as shown in [DR02].

3.5. Impossible Differentials

Impossible differentials were first noted in the initial paper on differential cryptanalysis by

Biham and Shamir. The first applications as stand-alone attack were on IDEA [BBS99b]

and Skipjack [BBD+98,BBS99a] by Biham, Biryukov and Shamir.

The basic idea is to use impossible difference transitions which are represented by entries

with zero in the difference distribution table. These impossible transitions are used between

two differential trails to filter key guesses made at a predefined round. The attacker first con-

structs a set of plaintext pairs that match a certain difference, and obtains the corresponding

ciphertext pairs. Using those ciphertexts he then guesses some key bytes of the last round

and partially decrypts the ciphertexts. With the obtained values of the intermediate state

he than forms pairs that match a certain difference which results in an impossible differential

at some state within the cipher. Together with the plaintexts, the attacker is then able to

filter wrong key guesses since the impossible differential is likely to hold for correct guesses

and unlikely to hold for wrong ones.
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AES has several aspects to ensure that extending short-cut attacks on round-reduced versions

of AES to the full number of rounds makes them infeasible. Such attacks exploit certain

properties of the cipher to be faster than exhaustive search. In Section 4.1, we cover the most

important design aspects of AES that lead to its general security properties and security

against standard cryptanalytic attacks. Then, in Section 4.2 we present the saturation

attack, which is the most commonly known round-reduced attack on AES. This attack

works on up to six rounds of AES but is infeasible for more than that.

4.1. Design Aspects of AES

As we have shown in the previous chapter, the properties of a cipher’s non-linear trans-

formations take an important role in withstanding linear and differential cryptanalysis. In

AES this non-linear transformation is implemented as the AES S-Box which substitutes

byte values. However, the S-Box is not the only important aspect of AES which makes it

resistant against a wide variety of attacks. In the course of this section we introduce the

most important techniques that ensure proper security.

4.1.1. AES S-Box

For resistance against linear and differential cryptanalysis, the AES S-Box was chosen to have

minimal correlation between linear combinations of input bits and output bits. Additionally,

the difference propagation probability was minimized to harden the cipher against differential

cryptanalysis. For the AES S-Box this is achieved by the multiplicative inverse in GF (28).

Another set of attacks that exploit properties of the S-Box are algebraic attacks [Bra09].

Those are effective on non-linear transformations with a simple algebraic expression. Since

this is the case for the multiplicative inverse in GF (28), the AES S-Box could be prone to

such attacks. To achieve security against algebraic attacks, the S-Box also includes an affine

transformation which is applied to the multiplicative inverse. This transformation does not

influence the resistance against linear and differential cryptanalysis but makes the algebraic

expression of the S-Box more complex and thus hardens the S-Box against this algebraic

attacks.

When we analyze the DDT for the S-Box, we can see that 129/256 of the difference

transitions are impossible, 126/256 of them have two possible pairs and for 1/256 of them

there are four possible pairs. This is an important fact about the AES S-Box and is used in

many considerations for attacks, especially attacks that use differentials in some way.
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4.1.2. Proper Diffusion

Since the non-linear transformation operates at each byte of the state individually, it is

important to mix these bytes properly. This results in high diffusion and thus, eliminates

simple relations between plaintext and ciphertext bits. In the case of AES, the linear per-

mutation operations ShiftRows and MixColumns are responsible for that. Both operations

have their specific purpose: MixColumns mixes the bytes within each column and creates a

dependency between them. ShiftRows shuffles the bytes in each row such that the depen-

dencies within each column are spread out over the whole state. Together these operations

attain full diffusion in just two rounds.

An important number that indicates the amount of mixing MixColumns provides is the

branch number.

Definition 4.1 (Branch number, [DR02]). Let P (v) be some linear transformation on a

byte vector v and W (v) be the number of non-zero bytes within such a vector. W (v) is

called byte weight. The branch number of P (v) over all possible byte vectors v 6= 0 is defined

as

min
v 6=0

(W (v) +W (P (v)))

and describes the amount of diffusion introduced by the transformation.

The branch number of MixColumns is 5. Thus a linear relation between input and output

bytes always involves at least five different bytes. A similar statement can be made for

differentials: MixColumns transforms an input difference in only a single byte to a difference

of four bytes of the same column. Or similarly, an input difference in two bytes leads to a

difference in at least three bytes.

Since MixColumns operates on each column individually, the purpose of ShiftRows is to

spread this diffusion over multiple columns. This is especially important since AES operates

only at bytes and not individual bits and is thus potentially prone to truncated differential

cryptanalysis. The rotation of each row by a different offset, as chosen for ShiftRows, is an

optimal way to mix the bytes of different columns with each other and provide resistance

against truncated differential attacks at the same time.

4.1.3. Number of Rounds

Another important factor for the security of a key iterating cipher is the number of times

the round transformation is applied. Normally, it is a trade-off between security and per-

formance. Increasing the number of rounds leads to higher security since it becomes harder

to find differential trails with high enough probability or equally to construct linear char-

acteristics. On the other hand, a lower number of rounds increases the performance. This

is especially important if the cipher should also be usable on embedded systems or smart

cards, as it is the case for AES.

For AES, Daemen and Rijmen chose the number of rounds that, in theory, it ensures a

large enough security margin. This choice is mainly based on the best known attack at that

time which was the saturation attack or square attack [DR02]. The saturation attack is a
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short-cut attack on up to six rounds of AES. For AES-128, which has ten rounds in total,

this gives four additional rounds of security margin. Since two full rounds for AES already

provide full diffusion (a single bit of the state depends on all bits from two rounds before),

these four rounds can be seen as adding full diffusion at the beginning and at the end.

For larger key sizes the security margin is six and eight rounds, respectively. This higher

security margin is needed because the block size stays the same while the key size increases.

Therefore, the knowledge of part of the key influences more than one round. Additionally,

as a larger key size results in more workload for an exhaustive key search, the workload for

a shortcut attack should be higher too.

4.1.4. Key Schedule

The key schedule itself is also known to provide a target for attacks on block ciphers [KSW96,

KS99]. AES counters this with a simple key schedule that provides enough diffusion within

the round keys and is still fast on a wide range of processors. It uses the AES S-Box to

introduce non-linearity to prohibit an attacker from deriving the full round key differences

with the help of the cipher key differences. Further, AES has no known weak keys like

DES [NIS81] and also no weak keys similar to IDEA [DGV93].

Since the round transformation of AES is exactly the same for each round, the cipher itself

is fully symmetric. This symmetry could potentially lead to weaknesses of the algorithm.

Therefore, the key schedule uses different round constants for each round key to break up

this symmetry.

4.2. The Saturation Attack

The Saturation attack was initially developed by Knudsen for the block cipher Square and

was part of the initial description of Square [DKR97]. Therefore it is known as Square

attack. The attack itself exploits the byte-oriented structure of Square but is not bound

to this specific cipher. Instead, it works on multiple other ciphers with a similar structure.

Since the basic structure of AES is similar to that of Square, AES is also susceptible to this

attack. However, the number of rounds of AES was chosen large enough to make this kind

of attack infeasible. In the proposal for Rijndael, the authors analyze the security of AES

and note that an attack on up to six rounds of AES is faster than exhaustive search [DR02].

The saturation attack on AES is a chosen plaintext attack which is based on a straight

forward attack on four rounds. This basic attack can be extended to a practical attack

on up to six rounds. The basic idea is to choose a set of plaintexts which are known to

fulfill a certain property within three full rounds and use this property as a filter for key

guesses. With the corresponding ciphertexts for the plaintexts, an attacker guesses certain

bytes of the last round (rk4) and partially decrypts the corresponding ciphertext bytes. By

decrypting the same bytes of each ciphertext he can check the 3-round property and remove

wrong key guesses with high probability.
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Figure 4.1.: Transformation of a Λ-set through three rounds of AES. + indicates active bytes
of the Λ-set, . indicates bytes for which only the balanced property holds and

represents constant bytes.

4.2.1. Balanced Property

The heart of the Square attack is the 3-round balanced property. It requires the cipher’s

inputs to be chosen such that they form a so called Λ-set.

Definition 4.2 (Λ-set). A Λ-set is formed by a set of 256 plaintexts that are equal in all

bytes except a single byte. This byte is called active and varies over all possible 256 values.

Definition 4.3 (Balanced property). Given an arbitrary set of n plaintexts, the balanced

property for a byte bi,j = Si[j] for some state S, over all plaintexts 1 ≤ i ≤ 256 is defined

as:
n⊕

i=1

bi,j = 0,∀j,

where j defines the position in the state representation of the plaintext.

It is clear that the balanced property holds for all Λ-sets, since x⊕ x = 0 and
⊕255

i=0 i = 0.

By tracing a Λ-set through the AES round transformation, we can see that AddRoundKey

just creates another Λ-set since the same key is applied to all plaintexts. A similar statement

can be made for SubBytes. Since it is a bijective function, it does not destroy the Λ-set

as well. Moreover, as ShiftRows moves bytes, only the position of the active byte changes.

MixColumns is the only operation that is able to destroy a Λ-set since it operates on four

bytes and not on a single byte. As noted by Daemen and Rijmen in [DR02, p. 150], the

output of MixColumns stays a Λ-set only in certain cases. For example, if the input had at

most one active byte per column, this active byte is transformed to a column with all active

bytes.
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When we apply these observations to multiple rounds, we can observe the evolution of a

Λ-set as shown in Figure 4.1. It is apparent from the explanation above that up to state

S3,MC we still have a proper Λ-set. After applying the next MixColumns operation, the states

do not form a Λ-set anymore. We denote the input of this MixColumns operation as ai,j and

its output as bi,j , then the balanced property holds for the output because ∀j:

⊕
i

bi,j =
⊕
i

MixColumns(ai,j)

=
⊕
i

(02 · ai,j ⊕ 03 · ai,j+1 ⊕ 01 · ai,j+2 ⊕ 01 · ai,j+3)

= 02 ·
⊕
i

ai,j ⊕ 03 ·
⊕
i

ai,j+1 ⊕ 01 ·
⊕
i

ai,j+2 ⊕ 01 ·
⊕
i

ai,j+3

= 02 · 0⊕ 03 · 0⊕ 01 · 0⊕ 01 · 0 = 0

4.2.2. Basic Attack on 4 Rounds

First, we explain the basic attack on a round-reduced version of AES with four rounds (three

full rounds plus the last round). We apply the balanced property on the first three rounds

and use the last round to guess key bytes and filter them at the end of round 3 as shown in

Figure 4.2. The whole attack goes as follows:

1. Choose a random plaintext and construct a Λ-set.

2. Retrieve the 256 ciphertexts by encrypting the plaintexts of the Λ-set.

3. We know that the balanced property holds at the end of round 3. Since the last round

has no MixColumns operation, we have a one-to-one relation between each byte of

ciphertext and the state at the end of round 3.

4. Choose an arbitrary byte from the ciphertext and guess the corresponding key byte of

round key 4 (last round key).

5. For each key guess, partially decrypt this byte through the last round to the output

state of round 3.

6. Verify the balanced property for this byte. For a correct guess, the balanced property

must hold. For a wrong guess, the probability that it holds is 1/256 [DR02, p. 151].

7. Collect the guesses for which the balanced property holds.

8. Repeat the whole process for a different Λ-set to eliminate the false-positives from the

set of key guesses.

9. Retrieve further key bytes by repeating the process until it is possible to find the

remaining unknown key bytes using exhaustive search within a feasible amount of

time.
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S4 S4,SR S4,ARK CT

rk4

SB SR

5. decrypt byte

4. guess key byte

6. verify balanced property

Figure 4.2.: The last round of the basic 4-round saturation attack on AES. The numbering
corresponds to the attack description in Section 4.2.2.

4.2.3. Attacking 5 Rounds

The attack on four rounds can be extended to five rounds by adding one round at the

end. As before, we apply the balanced property on the initial three rounds and guess key

bytes on the remaining two rounds. To reach the output state of round 3, we now have to

partially decrypt through the last two rounds. The idea is to partially decrypt the ciphertext

through the last round, and then apply the same technique as for the attack on four rounds.

To achieve this, we choose four bytes from the ciphertext such that they align in a single

column after applying the inverse last round. By guessing the corresponding four bytes of

the last round key (rk5), we can partially decrypt these four state bytes.

To continue from that state, we would have to guess four bytes from rk4 in order to apply

the inverse of this round and reach round 3 to check the balanced property. Instead, we

swap MixColumns and AddRoundKey in round 4 and apply InvMixColumns first to reduce

the amount of key guesses and thus also the workload. This is possible as we described for

the decryption process of AES in Section 2.5. The only consequence is that we have to guess

bytes of the corresponding equivalent round key rk′4, which is defined as:

rk′i = InvMixColumns(rki).

The advantage is that at this stage we have the exact same situation as in the attack on

four rounds. Since we already applied InvMixColumns, the remaining operations to revert for

round 4 are equal to the last round. Thus, we only have to guess one byte of the equivalent

round key. For each byte we verify at the end of round 3, we get a filter for four key bytes

of the last round key and one of the equivalent round key 4. Figure 4.3 shows this process

on the last two rounds.

4.2.4. Extension to 6 Rounds

To attack six rounds, we add an additional round at the beginning of the 5-round attack.

This way, we use the balanced property starting from round 2 and apply the same attack
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S4 rk4

S5 rk5 CT

SB,SR MC

SB,SR

guess key bytes
k0, k7, k10, k13

invert SR,SB

guess key byte k0 MC−1 for b0

verify balanced property

Figure 4.3.: The partial decryption and filtering stage of the saturation attack on the last
two rounds.

on the last two rounds as before. To get a Λ-set at the beginning of round 2, we take a set

of 232 plaintexts instead of 28. These plaintexts are chosen such that four bytes vary over

all possible 232 values, and the remaining bytes are constant throughout all plaintexts.

The position of the four active bytes in the plaintext is selected so that all bytes are in

the same column in state S1,MC. Instead of tracing a single Λ-set through the first round,

we take all 232 plaintexts since they form 224 Λ-sets. As we have seen before, all operations

except MixColumns keep the Λ-set intact. In this case, also MixColumns of round 1 does not

destroy it either because all the active bytes align in one column and they take all possible

values in the 232 plaintexts.

Thus, we know that at state S1,ARK we have 224 Λ-sets but we do not know which plaintext

belongs to which Λ-set. To select a single Λ-set, we would have to guess four bytes of the

initial key and partially encrypt the active bytes to S1,ARK. Instead, we avoid this problem by

taking all 232 state values for the attack. This is possible because if the balanced property

holds for one Λ-set, it also holds for a combination of them as should be evident from its

definition. To filter wrong key guesses on the last two rounds, we just calculate the balanced

property for all values and achieve the same effect.

The resulting final attack on six rounds needs 232 chosen plaintexts and memory to store

232 ciphertexts. Due to the fact that some wrong key guesses might survive the filtering, we

have to repeat the attack on about four different sets of plaintexts to find the single right

key [DR02, p. 151]. Each execution of this attack delivers five key bytes, thus the time

complexity is calculated from 4 runs, 232 plaintexts, 240 key guesses, and 5 S-Box lookups
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for partial decryption through the last two rounds. This equals to about 272 6-round-AES

encryptions.

4.2.5. Improvement using Partial Sums

Ferguson et al. suggested an improvement on the 6-round attack using partial sums

[FKL+00]. The basic attack stays the same as above, but the difference lies in the partial

decryption of ciphertext bytes to verify the balanced property. When looking at this partial

decryption in detail, we can omit ShiftRows since it is just a byte shuffle and does only

influence the choice of bytes. We denote ciphertext bytes that are chosen for the attack

by ci,j , where i denotes the i-th ciphertext and j, 0 ≤ j ≤ 3 enumerates the four bytes we

choose from it. The involved round key bytes ki are numbered from 0 to 4, where k0 to

k3 are from the last round key and k4 is from round key rk5. Then the verification of the

balanced property for a single byte is represented by the equation:⊕
i

SB−1[T0(ci,0 ⊕ k0)⊕ T1(ci,1 ⊕ k1)⊕ T2(ci,2 ⊕ k2)⊕ T3(ci,3 ⊕ k3)⊕ k4]
?
= 0.

Tj , 0 ≤ j ≤ 3 denotes InvSubBytes followed by the multiplication with the corresponding

field element of the InvMixColumns matrix. The Tj(ci,j⊕kj) partially decrypt the ciphertext

bytes through the last round, and their XOR is the InvMixColumns for a single byte. k4 is

the single byte from the equivalent round key 5 we have to guess.

To improve this calculation and consequently reduce the workload of the attack, we reor-

ganize the calculations by first constructing a triple (T0(ci,0⊕k0)⊕T1(ci,1⊕k1), ci,2, ci,3) for

all key guesses k0 and k1 and ciphertexts 1 ≤ i ≤ 256. For convenience we define the partial

sums xl for 0 ≤ l ≤ 3:

xl =

l⊕
j=0

Tj(ci,j ⊕ kj).

For l > 0 the partial sums can also be calculated recursively:

xl = xl−1 ⊕ Tl(ci,l ⊕ kl).

From the values we get for the triple (T0(ci,0⊕ k0)⊕T1(ci,1⊕ k1), ci,2, ci,3) = (x1, ci,2, ci,3),

we continue by calculating the tuple (x2, ci,3) for all possible key bytes k2, and for each tuple

we guess k3 and calculate x3. Finally, we verify the balanced property by guessing k4 and

calculate SB−1(x3 ⊕ k4) for each x3.

Instead of enumerating each triple, tuple and x3, we only count their occurrences. Further-

more, if we encounter a triple, tuple or x3 an odd number of times, we know that x⊕ x = 0

and thus, we can omit this value from the calculation since it has no influence on the result.

Consequently, we count modulo 2 which requires only one bit for each value we count.

Despite this improvement, we still get false-positives for the key guesses and remove them

by repeating the whole process about six times. To calculate the time complexity, we count

the evaluations of the full equation from above. First, we guess two key bytes and calculate

the triple (x1, ci,2, ci,3) for all 232 plaintexts. This yields at most 224 values which we use
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together with the 28 possible values for k2 to compute (x2, ci,3). For x3, this leaves 216

possible values for the tuple and 28 possible values for k3. Finally, we have at most 28 values

for x3 and 28 values for k4 to check the full equation. This results in (232 · 216) + (224 · 28) +

(216 · 28) + (28 · 28) ≈ 248 evaluations of the full equation. Since the equation contains five

S-Boxes, and we have to repeat the process six times to eliminate all wrong key guesses, we

get an equal of about 253 S-Box applications. Using the rough estimate of 28 S-Box lookups

for one AES encryption this yields a time complexity of about 245.

This improvement using partial sums allowed Ferguson et al. to extend the attack further

to seven rounds by adding one more round at the end and guessing the full last round key.

Naturally, this increases the workload drastically. Thus, this attack only applies to AES-192

and AES-256.
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5. Introduction

This second part covers recent attacks on AES that form the foundation of this thesis.

Generally, these attacks can be split into two categories: single-key attacks and related-key

attacks. With a single-key attack, an adversary tries to find the secret encryption key of the

system by using known or chosen ciphertexts and/or plaintexts to extract information on the

key. In the related-key attack model, ciphertexts encrypted under multiple different keys are

required. Those keys need to have a special relation to each other which has to be known or

chosen by the adversary. In a chosen related-key attack she does not choose the value of the

key directly, but influences the original encryption key such that it becomes a different key

with the desired relation to the original one. An example where this is possible is a block

cipher used in a hash function. Here, the key of the block cipher depends on the message

which is hashed. The first appearances of related-key attacks were in [Knu92,Bih94].

Most recent attacks concentrate on the single-key attack scenario. Thus, we focused on

three recent attacks on AES in the single-key attack model. The first is the multiset attack

by Dunkelman et al., which is closely related to the saturation attack from Section 4.2. In

Chapter 6 we give a detailed explanation of the multiset attack and both major techniques

that were used to create it. Chapter 7 focuses on a different kind of attacks which aim for

minimal data requirement. Such attacks alone do not threaten the security of any full AES

variant, however, they provide a building block for more complex attacks like the 6-round

known-plaintext attack on AES-128 presented in Section 7.3. The third recent publication

we cover in this part is concerned with biclique attacks. Bicliques were originally used for

cryptanalysis of hash functions, but have recently also been used for block cipher analysis by

Bogdanov et al. In Chapter 8, we present the techniques used by Bogdanov et al. to create

bicliques for block ciphers, specifically AES. Moreover, we also introduce their attacks on all

full variants of AES and cover the biclique attack on 10-round AES-128 in full detail.

In addition to single-key attacks, there have also been two recent publications in the area

of related-key attacks which are worth mentioning: The first related-key attacks on full AES-

192 and full AES-256 were created by Biryukov and Khovratovich and published in [BK09].

These attacks are particularly interesting as they require only four related keys and have a

time complexity of 2176 on AES-192 and 299.5 on AES-256. The second recent related-key

attack was introduced by Biryukov et al. and focused on round-reduced attacks for AES-

256 with practical time complexity [BDK+10]. The best feasible attack they found works

on 10-round AES-256 and has a time complexity of only 245.

A detailed listing of all attacks presented in this chapter, including the related-key attacks,

and their complexities is shown in Table 5.1.
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Attack Kind Rnds Key Time Data Memory Reference Section

LDC KP 1 128 232 1 224 [BDD+10] Sec. 7.2.2

KP 2 128 232 2 1 [BDD+10] Sec. 7.2.1

LDC CP 2 128 28 2 28 [BDF12] Sec. 7.2.3

CP 3 128 216 2 28 [BDF12] Sec. 7.2.3

LDC KP 3 128 240 9 231 [BDD+10] Sec. 7.2.4

LDC+diff. KP 6 128 2120 2109 288 [BDD+10] Sec. 7.3

Saturation CP 6 all 244 6 · 232 232 [FKL+00] Sec. 4.2

Multiset CP 7 all 2103+n 2103+n 2129−n [DKS10] Sec. 6.5/6.6

Biclique CC 10 128 2126.15 288 28 [BKR11] Sec. 8.4

CP 10 128 2127.34 28 28 [BKP+12] Sec. 11.1

CC 12 192 2189.74 280 28 [BKR11]

CC 14 256 2254.42 240 28 [BKR11]

Related-key CC 10 256 245 244 233 [BDK+10]

CP 12 192 2176 2123 2152 [BK09]

CP 14 256 299.5 299.5 277 [BK09]

Table 5.1.: A list of all recent attacks presented in this thesis. Additionally, three recent
related-key attacks are also shown. CP, CC indicates chosen plaintext resp.
ciphertext attacks and KP indicates known plaintext attacks.
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The attack by Dunkelman et al. [DKS10] represents the latest stage of multiple improvements

on the square attack. It is based on the attack by Demirci and Selçuk from [DS08], which

itself is an improvement of the attack by Gilbert and Minier from 2000 [GM00]. Due to

its close relation to the original square attack, it is also a single-key attack using chosen

plaintexts.

The general idea behind all these attacks is to find a distinguishing property or distin-

guisher. A good distinguisher allows us to differentiate a sequence of values, produced by

encrypting a plaintext through a given number of AES rounds, from a random sequence.

Such a sequence is constructed by encrypting multiple plaintexts and selecting the values a

single ciphertext byte assumes. The balanced property itself is such a distinguisher. Given

a sequence of 256 values, we can use it to verify if this sequence stems from encrypting a

plaintext trough three rounds of AES or is just a random permutation. This is used in the

square attack to verify key guesses made on the last two rounds. If the balanced property

holds, it is very likely that the key guess is correct.

Since the theory of this attack is rather extensive, we first explain the 3-round distinguisher

by Gilbert and Minier in Section 6.1, followed by the improved distinguisher by Demirci

and Selçuk and their basic attack on the round-reduced variant of AES with seven rounds

in Section 6.2. Afterwards, we continue with the new techniques added by Dunkelman

et al., and explain their enhanced attack on seven rounds in full detail. We conclude our

explanations of the multiset attack with some additional trade-offs which allowed Dunkelman

et al. to further reduce the complexity of the attack.

6.1. The 3-Round Distinguisher by Gilbert and Minier

The basic idea of Gilbert and Minier is to take the balanced property and find a more

performant way to distinguish a sequence of 256 values for which the balanced property

holds from a sequence for which it does not hold. This is done by determining all possible

sequences of values a byte can take when the balanced property holds. The distinguisher

uses the following underlying observation on the balanced property:

Take a Λ-set and encrypt it through three full rounds. It is possible to introduce an order

to the plaintexts of the set by sorting them according to the value of the active byte. For

each byte of the output we thus get a well defined sequence of 256 values. For comparison, a

random permutation of 256 bytes yields a total of (28)256 = 22048 possible sequences. Since

we use a Λ-set, 15 bytes of the input (plaintext) are fixed and consequently equal. Thus, a

Λ-set yields only 2256+15·8 = 2376 potential sequences. For AES, there are actually far fewer

41
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possible sequences since it is possible to create a relation between plaintext, involved round

keys and ciphertext.

In [GM00] Gilbert and Minier show that only nine bytes (272 possible sequences) are

necessary to uniquely define such a relation between the active byte of the Λ-set and one

byte of the ciphertext. These nine bytes are not unique state or ciphertext bytes but rather

a combination of them. Thus, we can enumerate these nine bytes and calculate the possible

sequences, but we are not able to calculate the actual values of the involved key and state

bytes. However, Gilbert and Minier used this observation to mount an attack on seven

rounds for AES-192 and AES-256 with 232 chosen plaintexts and a time complexity of 2140

encryptions. Additionally, they showed that this attack can be optimized for AES-128 to be

marginally faster than exhaustive search.

6.2. 4-Round Distinguisher by Demirci and Selçuk

Demirci and Selçuk extended this distinguisher by one round. Their extension fully defines

a sequence by just 25 bytes. This gives 225·8 = 2200 possible sequences for a single byte after

decrypting a Λ-set through four rounds which is still less than the 2376 potentially possible

sequences. Explaining the full process of how this distinguisher is constructed would exceed

the scope of this thesis. Thus, we refer the reader to [DS08].

With this 4-round distinguisher they constructed a basic attack on seven rounds which

provides the basis for the improvements by Dunkelman et al. described in the following

sections. The basic attack is split into two phases: a precomputation phase and an online

phase. In the precomputation phase we enumerate all 2200 possible sequences determined by

the 25 bytes of the distinguisher and store them into a hash table. This enables us to take

a random sequence and perform a fast lookup if it is contained in the table. This lookup

determines if the sequence is a random permutation or stems from an AES encryption. The

advantage of the precomputation phase is that it has to be performed only once per Λ-set.

The online phase, on the other hand, has to be executed for every attack. The rough outline

of the online phase is as follows:

1. Guess 4 bytes of first round key to construct a Λ-set starting from S2.

2. Guess 1 key byte of rk1 to sort elements of the Λ-set by the active byte.

3. Obtain the ciphertexts from the encryption oracle.

4. As in the square attack, guess the necessary 5 key bytes on the last two rounds to

partially decrypt the ciphertext bytes.

5. This yields a sequence of 256 values for a decrypted byte in S6.

6. If this sequence is in the hash table, keep the key guess, otherwise discard it.

7. To eliminate false-positives, repeat the process a few more times.
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The time complexity of this attack is 280 and requires only 232 plaintexts. Unfortunately,

the memory requirements for the hash table and the amount of time needed to prepare the

table are so high (about 2200) that it is slower than exhaustive search for AES-128 and AES-

192. Therefore, Demirci and Selçuk introduced a trade-off between precomputation phase

and online phase which makes the attack faster than exhaustive search for AES-192. For

more details on this improvement we refer to [DS08].

6.3. Multiset Tabulation

For their improved attack on seven rounds Dunkelman et al. introduced two new techniques

in [DKS10]. The Multiset Tabulation technique is the first one. The basic idea behind it is

to modify the above 4-round distinguisher such that, instead of enumerating sequences of

256 bytes for a state byte, it represents the values using a multiset.

Definition 6.1 (Multiset). A multiset [Knu98, p. 473] is a set of values where in addition, a

counter is assigned to each value. This counter indicates how often an element was inserted

into the set.

For the following explanation, we enumerate the states of those four rounds from S1

through S5, where S1 is the plaintext and S5 the resulting ciphertext after four full rounds.

It is not necessary for this distinguisher to bring the plaintexts into a specific order as before.

Thus, it suffices to just enumerate them arbitrarily from 0 to 255.

The goal of the 4-round distinguisher by Dunkelman et al. is to construct the difference

vector

di,5 = (S0
5 [i]⊕ S0

5 [i], S1
5 [i]⊕ S0

5 [i], . . . , S255
5 [i]⊕ S0

5 [i])

and collect the results in a multiset. This is done for each byte i of the ciphertext individually.

In the remainder of this section, we outline how to construct this difference vector di,5 from

24 parameters which are explicit key or state bytes.

+ + + +

+ + + +

+ + + +

+ + + +

S3

. . . .

. . . .

. . . .

. . . .

S3,ARK

.

.

.

.

S4

.

.

.

.

S4,ARK S5

+

+

+

+

rk3 rk4

SB,

SR,MC

SB,

SR,MC

di,4,ARK = di,5

compute di,4,ARK

Figure 6.1.: First step in the multiset construction. + indicates known bytes, . marks
calculated values and marks calculated differences.

First, assume for each plaintext in the Λ-set that the full state S3 is known. As shown in

Figure 6.1, we can use these values to calculate S3,ARK for each element of the Λ-set (indicated

43



6. THE MULTISET ATTACK

by . ). By knowing four bytes (0, 5, 10 and 15) of the round key rk3 ( + ), we can encrypt the

four corresponding bytes of S3,ARK further. Thus, we get the values for the full first column

of S4,ARK. Using the values for these four bytes of S4,ARK, we construct the difference vector

di,4,ARK = (S0
4,ARK[i]⊕ S0

4,ARK[i], S
1
4,ARK[i]⊕ S0

4,ARK[i], . . . , S
255
4,ARK[i]⊕ S0

4,ARK[i])

for i ∈ {0, 1, 2, 3}.
Since AddRoundKey is a linear operation and it does not change differences, this vector

di,4,ARK is equal to di,5 (indicated as in Figure 6.1). This is exactly the difference vector

we require for the construction of the multisets. Moreover, we can formulate a similar

dependency for the other bytes (i ∈ {4, . . . , 255}) of S5 by choosing the appropriate bytes of

rk3.

Instead of knowing the full states Sl
3 for all l ∈ {0, . . . , 255}, it suffices to know S0

3 (S3 for

plaintext 0) and the difference vector

D3 = (S0
3 ⊕ S0

3 , S
1
3 ⊕ S0

3 , . . . , S
255
3 ⊕ S0

3)

since this vector enables us to construct the full states for all l from S0
3 . When we trace

D3 backwards through the linear operations AddRoundKey, MixColumns and ShiftRows of

round 2, it is clear we can also use the difference vector D2,SR instead of D3. So far, to define

the multiset we need to know:

• The full state S0
3 ,

• four bytes of rk3 and

• the differences D2,SR = (S0
2,SR ⊕ S0

2,SR, S
1
2,SR ⊕ S0

2,SR, . . . , S
255
2,SR ⊕ S0

2,SR).

+

S1(PT ) S1,SR

×
×
×
×

S2

.

.

.

.

S2,SR

.

.

.

.

S2,MC S2,ARK S3

SB SR,

MC,ARK

SB SR MC ARK

compute D2

S0
2 [0 . . . 3] known

compute D2,SR

compute D3

Figure 6.2.: Improved multiset construction by considering plaintexts. × marks bytes where
we know the actual value for one plaintext only.

We can reduce these parameters further since we also know the 256 chosen plaintexts.

Using the plaintexts we calculate the difference vector D1,SR. This is possible because after

SubBytes all constant bytes remain equal and the active byte takes all possible values before

and after SubBytes. Again, as shown in Figure 6.2, the remaining operations in the current

round are all linear. Consequently, we also know the differences D2. Note that all four active
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bytes in state S2 are in the first column. Equally to the balanced property, all other columns

contain constants (see Figure 4.1).

By knowing the value of the first column of S0
2 ( × in Figure 6.2), we are able to use the

differences D2 to calculate the first column of Sl
2. Hence, we can now also compute the first

column of Sl
2,SR for l ∈ {0, . . . , 255}. Since we know the actual values of those four bytes, we

are also able to calculate the differences D2,SR. As the other bytes in columns 1 to 3 of S2

and S2,SR are constant and thus equal for all l = {0, . . . , 255}, the differences in these bytes

are also zero because

Sl
2,SR[i]⊕ S0

2,SR[i] = 0.

As a result, the knowledge of bytes 0, 1, 2, 3 of state S0
2 and the 256 chosen plaintexts

enable us to calculate the full vector of differences D2,SR for all bytes. In the end, this leaves

only 24 parameters to determine a multiset:

• The full state S0
3 ,

• four bytes of rk3 and

• four bytes of S0
2 (bytes 0, 1, 2, 3 if active byte of Λ-set is byte 0).

This leaves 2192 possible multisets for these 24 parameters, compared to theoretically(
510
256

)
≈ 2505.2 possible multisets1.

The advantage of this distinguisher over that presented by Demirci and Selçuk is that we

do not have to sort the plaintexts of the Λ-set. Thus, it is not necessary to guess one byte

of rk1 in the attack to sort the plaintexts. Further, since there are 24 parameters, there

are only 2192 possible multisets. For the distinguisher by Demirci and Selçuk there were

25 parameters and thus 2200 possible sequences. Furthermore, for the next improvement, it

is also advantageous that the parameters are explicit state or key bytes. For the previous

distinguisher by Gilbert and Minier, and also that by Demirci and Selçuk, this was not

possible since some parameters depended on a combination of key and state bytes. Hence,

we could only enumerate the parameters, but could not calculate the values of actual state

or key bytes.

6.4. Differential Enumeration

To reduce the amount of possible multisets further, Dunkelman et al. introduced a technique

called differential enumeration. Its goal is to fix as many of the 24 parameters as possible

to previously known values. Some of those parameters are key bytes, which clearly cannot

be fixed since their value depends on the unknown encryption key. However, the remaining

parameters are state bytes, and it is possible to reduce the amount of possible values for

them. Specifically, it is possible to reduce the 16 parameters of S0
3 by a huge factor, as we

describe in the remainder of this section.

1For a thorough explanation of the probability distribution of multisets see [DKS10].
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S1(PT ) S1,SR S2 S2,SR S3

S3,SR S4 S4,SR S5

SB SR,

MC,ARK

SB SR,

MC,ARK

SB

SR,

MC,ARK

SB SR,

MC,ARK

28 28 232 232

232 232 28 28

Figure 6.3.: The maximum possible amount of differences per state of the 4-round expected-
probability differential.

To fix some parameters that define a multiset to known values, Dunkelman et al. use an

expected-probability differential. This is basically a truncated differential trail with neither

very high nor very low probability. The truncated differential chosen for this attack is

depicted in Figure 6.3. It covers four full rounds of AES, and its input state and output

state have only one active byte each. For our explanation of the multiset attack, we chose

this active byte to be byte 0 of input and output state. However, it is also possible to choose

different bytes as long as certain criteria are met to achieve the same effect.

For the input state of the differential trail (S1 in Figure 6.3), we take all 28 possible

differences for the single active byte. MixColumns of the first round spreads this differences

to all four bytes of column 0. Nevertheless, there are still 28 possible differences in state S2.

Only, these differences are spread in some unknown way over the four active bytes of the first

column. Since SubBytes of round 2 is a non-linear operation, and the differences in S2 are

unknown, we assume all 232 possible differences for these four bytes in S2,SR. The remaining

linear operations in this round (up to S3) spread the differences to all 16 bytes such that

all of them are active. Despite 16 active bytes, the amount of possible differences stays the

same at 232. Note that these differences are completely independent from any round keys.

We perform a similar analysis from the end of those four rounds backwards. Beginning, in

state S5, we again take all 28 possible differences for the single active byte. The amount of

possible differences remains unchanged until the output of SubBytes (S4,SR in Figure 6.3).

However, there are four active bytes at this state. For the same reason as before, to move

backwards through SubBytes, we have to assume all possible differences for these four bytes.

Thus, in state S4 we take all 232 possible differences for the active bytes 0, 5, 10 and 15. Up

to state S3,SR, this amount stays the same, however, all bytes of this state are active due to

MixColumns in this round.

At this point, we know that in states S3 and S3,SR there are 232 possible differences each.

Additionally, all bytes are active and the only operation left between those states is SubBytes.
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By knowing input and output differences of the SubBytes operation, it is possible to deduce

the actual values using the DDT of the AES S-Box. On average, there is only one possible

pair of actual values for a random input and output difference (see also Chapter 4). In our

case, we have 232 differences for the input state and 232 (most likely different) differences at

the output of SubBytes. Consequently, there are only a total of 232 ·232 = 264 pairs of actual

values for the input state. The same holds for the output state of SubBytes since knowing

the actual values of the input state enables us to calculate the values of the output state.

Now, we use this differential to reduce the amount of possible multisets by overlaying the

truncated differential on the 4-round distinguisher. Since we require the value for S0
3 to

construct the multisets from above, we can use this differential trail to reduce the amount

of possible values for S0
3 from 2128 to 264. By reducing the amount of possible values for

S0
3 , we also reduce the overall amount of possible multisets for the distinguisher. To do this,

we have to select plaintext 0 of the Λ-set from the right pair with respect to this truncated

differential. If this is the case, then S0
3 (state S3 for plaintext 0) assumes at most 264 possible

values. As a right pair consists of two actual values for the plaintext, this leaves two choices

for plaintext 0.

To select plaintext 0, we assume that four rounds of AES behave like a random permutation

(which is commonly assumed). Hence, the probability of the above differential trail is 2−120,

which is the same as getting 120 bits to be equal. In essence, this means that within 2120

randomly chosen pairs of plaintexts, there is one pair that is right w.r.t. the differential.

Furthermore, by using Λ-sets, each Λ-set already supports the construction of 215 pairs with

the correct input difference (only one active byte) to the differential. Consequently, it suffices

to take only 2105 Λ-sets with byte 0 as active byte. From these 2105 Λ-sets there is then one

pair which is a right pair w.r.t. the differential trail from Figure 6.3.

Compared to the attack by Demirci and Selçuk, this reduction of possible multisets results

in a huge decrease of time and memory complexity for the precomputation phase. Since the

differential trail is independent of any key bytes, the precomputation phase is independent

of any key bytes too. Thus, we have to perform this phase only once. On the other hand, the

data complexity of the whole attack is increased since this technique requires 2105 ·28 = 2113

chosen plaintexts. Overall, the differential enumeration technique reduces the amount of

possible multisets to 2192 · 2−64 = 2128.

Summarizing the enhancements by Dunkelman et al., we can make the following state-

ments:

• Multiset tabulation replaces explicit byte sequences for S5 with multisets of difference

vectors di,5 = (S0
5 [i]⊕ S0

5 [i], S1
5 [i]⊕ S0

5 [i], . . . , S255
5 [i]⊕ S0

5 [i]).

• A multiset is fully determined by only 24 bytes.

• Differential enumeration reduces all possible values for S0
3 . Consequently, we get only

2128 possible multisets.

• For these improvements to work, plaintext 0 has to be chosen from the right pair for

the differential.
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• The data complexity is increased, but since it was low before, this provides a good

trade-off for the following attack.

6.5. The Multiset Attack on 7-Round AES

The basic attack on seven rounds works for all variants of AES and is faster than exhaustive

search for all of them. The round-reduced variant of AES used for this attack is comprised

of six full rounds plus the last round. Further, this AES variant also includes the initial

AddRoundKey operation with the whitening key before the first round.

As mentioned before, the attack is basically an improvement of the Demirci and Selçuk

attack and thus, the 4-round distinguisher is also placed from S2 to S6. In addition to the

distinguisher, we also place the truncated differential trail from S2 to S6. Similar to the

Demirci and Selçuk attack, we split the attack into two phases: a precomputation phase and

an online phase. The precomputation phase is straightforward because we simply calculate

all 2128 multisets. Then, we store all these multisets in a hash table. The online phase is

more complex, thus, we split it into two stages. The first stage finds the right pair w.r.t.

the differential. The second phase constructs a Λ-set and performs similar key guessing

operations as in the Demirci and Selçuk attack.

To find the right pair in the online phase, we require a large enough amount of plaintexts

since on average there is only one right pair within 2120 randomly chosen plaintexts. As

explained before, by choosing these plaintexts carefully we can lower their required amount.

We achieve this by forming groups of 232 plaintexts which differ only in four bytes. Those

active bytes are byte 0, 5, 10 and 15 and they have to assume all possible values. The right

pair is then found as follows:

1. Take 281 groups of 232 plaintexts as just described.

2. Encrypt all plaintexts under the unknown encryption key, and store the resulting 2113

ciphertexts in a hash table. Thus we get 281 groups of 232 plaintext-ciphertext pairs.

3. Using the ciphertexts of each group, form pairs that have a non-zero ciphertext dif-

ference only in bytes 0, 7, 10 and 13. All other differences have to be zero. For each

plaintext-ciphertext group, there are
(

232

2

)
= 263 pairs with the correct plaintext differ-

ence for the truncated differential. Thus, there are 281 · 263 = 2144 differential pairs for

all groups. Since the differential pairs require 12 bytes or 96 bit of the ciphertexts to

be equal, this removes 296 pairs. Consequently, this leaves 2144 · 2−96 = 248 differential

pairs with correct plaintext and ciphertext difference w.r.t. the truncated differential.

4. Next, guess key bytes 0, 5, 10 and 15 of rk0 and partially encrypt the corresponding

plaintext bytes up to S1,ARK for each key guess. This yields the values for column 0 of

S1,ARK. Consequently, we are also able to calculate the differences of the corresponding

four bytes in S2.
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5. For each key guess, keep only pairs with non-zero difference in S2[0] and zero difference

in S2[1], S2[2] and S2[3]. This is a 24-bit filter, thus, only 248 · 2−24 = 224 pairs per key

guess are expected to remain.

6. Guess bytes 0, 7, 10 and 13 of rk7, partially decrypt the corresponding ciphertext

bytes, and select only pairs with non-zero difference in S6[0] and zero difference in all

other bytes. This leaves about one pair per key guess which is the right pair w.r.t. the

differential and the guessed key bytes.

At the end of this stage, we get 264 possible “right pairs” since we made 232 ·232 = 264 key

guesses and filtered all pairs to about one right pair per guess. For each of these pairs, we

continue by choosing one element of the pair as plaintext 0. Together with the previously

guessed bytes of rk0, we can now create a Λ-set in state S1,ARK with byte 0 as active byte for

each one of these possible “right pairs”. Note that due to the key guesses, we only know the

values for bytes 0 through 3 of S1,ARK. To construct a Λ-set, we XOR byte 0 of S1,ARK with the

values from 1 to 255. Further, we decrypt column 0 of S1,ARK up to the plaintext. We do this

for each possible “right pair” to get one Λ-set per key guess. For each Λ-set, we guess byte

0 of the equivalent round key rk′6, and use the already guessed key bytes of rk7 to partially

decrypt the corresponding ciphertext bytes up to byte 0 of S6. With the actual value for

this byte 0, we can compute the multiset for the difference vector

d0,5 = (S0
5 [0]⊕ S0

5 [0], S1
5 [0]⊕ S0

5 [0], . . . , S255
5 [0]⊕ S0

5 [0]).

To verify a key guess, we simply check if the obtained multiset is stored in the precomputed

hash table. If it exists, we keep the key guess, otherwise we discard it. When we have only one

key guess left, we calculate the remaining key bytes using other methods such as exhaustive

search.

6.5.1. Performance of the Attack

The precomputation phase defines the overall memory complexity of the attack since all the

computed multisets have to be stored in a hash table. Since a multiset can be represented

by 512 bits, the memory complexity is 2130 128-bit blocks. Calculating a single entry of the

multiset is similar to about four full rounds. Since a multiset contains 256 elements, the

time complexity is equivalent to 2128 · 256 · 2−3 = 2133 7-round encryptions.

Calculating the time complexity of the online phase is rather simple: It is clear from

the description of the attack above that the most time-consuming part is encrypting 2113

plaintexts. All other parts are far below this boundary, thus, the overall time complexity is

about 2113 7-round encryptions. The data complexity is also dominated by the 2113 chosen

plaintexts.

6.6. Further Improvements and Trade-offs

To fine-tune their attack, Dunkelman et al. presented three trade-offs which allow to improve

the complexities of the basic 7-round attack. These improvements mainly target the data
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complexity because it is rather high. Moreover, the time complexity is solely determined by

the amount of data to encrypt, thus, reducing the amount of data also improves the time

complexity.

The first improvement reduces data and time complexity by 28 without changing the mem-

ory complexity. We achieve this by modifying the expected-probability differential to allow

an additional byte with non-zero difference at the input state. However, this additional byte

can only be one of bytes 5, 10 or 15, because the additional non-zero difference must not

change the 232 possible differences at S3. The effect of this additional active byte is that

we need fewer plaintexts. Thus, the data complexity is reduced to 2105. However, we have

to make additional key guesses (four bytes of rk1) to filter these pairs with modified input

difference. Nevertheless, the overall time complexity still decreases, because all other oper-

ations of the online phase have substantially lower time complexity compared to encrypting

2113 plaintexts. Consequently, the time complexity of the online phase is also 2105.

The second improvement builds on top of the previous improvement in the sense that

the active bytes of the truncated differential can be moved within a state without changing

the amount of possible differences. Despite that, it is not possible to use all 256 possible

combinations for one active input and output byte, because the active byte of the input state

has to be the same as the active byte of the Λ-set. Hence, precomputations for multiple Λ-

sets would be necessary. Nevertheless, a slight improvement can be achieved in combination

with the additional non-zero byte of the previous improvement. Dunkelman et al. found out

that it is possible to use up to five differentials in parallel, when the additional active byte

for the input difference of each differential is one of 5, 10, 15. For the output difference, the

active byte can be one of 1, 2, 3. Consequently, data and time complexities are both reduced

by a factor of 5 to about 2103.

The third improvement is merely a minor one and reduces the memory complexity. This

can be accomplished by computing only part of the hash table in the precomputation phase.

In online phase, this is compensated by running the attack multiple times on different Λ-

sets. This represents a trade-off by a factor of 2n. Hence, data and time complexities become

2103+n and the memory complexity becomes 2129−n. All complexities are equal at n = 13,

which is 2116.

Dunkelman et al. introduced further improvements to the basic 7-round attack which

allowed them to extend the attack by one round. This improved attack applies only to

8-rounds AES-192 and AES-256. In addition to the techniques from above, this attack uses

certain observations on the key schedule. However, as this would exceed the scope of this

thesis, we refer the interested reader to [DKS10].
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One common problem of attacks is that they require a rather high amount of data. This is

also true for the attacks we have covered so far. The Saturation attack requires 232 plaintext-

ciphertext pairs for 6-rounds AES-128, and the Multiset attack from above requires as many

as 2113 plaintext-ciphertext pairs. In this section, we take a closer look at a different approach

for attacks on AES which demand only a minimal amount of data. For this purpose, we

present a number of attacks by Bouillaguet et al. which they call low data complexity (LDC)

attacks. The content of this chapter is mainly based on [BDD+10] by Bouillaguet et al.

and the closely related paper [BDF12] by Bouillaguet, Derbez and Fouque from 2012 where

the authors describe the tools used to automatically find new attacks with minimal data

complexity.

In general, finding such attacks is hard because most ciphers and their key schedule need

specific properties that can be exploited with a minimal amount of available data. Since

most ciphers like AES are designed to have high diffusion over their full number of rounds,

LDC attacks can be found for only a few rounds. At first, this would seem useless because

this does not pose a threat to a cipher’s security. Nevertheless, there are good reasons to

consider these kinds of attacks: First of all, such attacks are more closely related to practical

applications, because attaining large amounts of plaintext-ciphertext pairs often takes a

lot of time and storage and makes the attack less practical. Furthermore, an attack on a

few rounds with minimal data complexity provides a good building block for more complex

attacks on more rounds. A list of concrete examples of how such attacks can be used is given

in [BDD+10]. The most important ones include:

Slide attacks: The goal of these kinds of attacks is to reduce the attack on the whole cipher

to an attack on a single round with only 2 known plaintext-ciphertext pairs. The

idea for slide attacks was first described by Wagner and Biryukov in [BW99] and for

example used to attack the cipher Keeloq [CBW08].

Side channel attacks: For these kind of attacks, an attacker mostly has access to some

internal state information and the amount of data is also often very low. Hence in

such cases low data complexity attacks aid these kinds of attacks.

Building Blocks: LDC attacks can be used to construct more complex attacks. For instance,

one attack in [BDD+10] uses a 2-round low data complexity attack to construct a

known-plaintext attack on six rounds of AES. At the end of this section we will cover

this attack in detail.

Attacks on similar ciphers: Certain ciphers share the same basic operations. For example,

there are other ciphers and hash functions which use similar basic operations as AES.
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Low data complexity attacks can also provide the means to create new attacks on

them.

As mentioned before, finding LDC attacks on many rounds is hard and these attacks are

mostly infeasible. This is also true for AES, thus, Bouillaguet et al. concentrated on round-

reduced versions of AES-128 from one to four rounds. Both papers considered here contain

multiple different attacks ranging from one known plaintext to ten chosen plaintexts. All

these attacks are based on two main concepts: differential properties and a meet-in-the-

middle approach.

Differential properties use known differences before and after SubBytes, and the DDT

to retrieve the actual values of those bytes. The idea of the meet-in-the-middle approach

is to partially encrypt certain plaintext bytes and decrypt certain ciphertext bytes towards

some intermediate state bytes. This is done by guessing a minimal amount of key bytes and

using properties of the key schedule and the basic round operations. Since the key schedule is

different for all three variants of AES, these attacks work only for AES-128 and are not easily

adaptable for the other variants of AES. For completeness, a full list of the best attacks for

each number of rounds and attack model (known or chosen plaintext) is given in Table 7.1.

It can be seen from this table that it is possible to get fairly fast attacks with a minimal

amount of chosen or even known plaintexts for up to four rounds.

Rounds Attack Model
Complexity

Reference
Data Time Memory

1 known plaintext 1 232 216 [BDF12]

known plaintext 2 212 1 [BDD+10]

2 known plaintext 1 264 248 [BDF12]

known plaintext 2 232 224 [BDF12]

chosen plaintext 2 28 28 [BDF12], Sec. 7.2.3

3 known plaintext 1 296 272 [BDF12]

known plaintext 9 240 231 [BDD+10], Sec. 7.2.4

chosen plaintext 2 216 28 [BDF12], Sec. 7.2.3

4 chosen plaintext 2 280 280 [BDF12]

chosen plaintext 4 232 224 [BDF12]

Table 7.1.: A list of best low data complexity attacks from [BDD+10] and [BDF12].

The remainder of this section is divided into three parts: In Section 7.1, we introduce the

basic properties of AES used by these attacks to achieve low data complexity. Section 7.2

covers a selection of LDC attacks ranging from one to three rounds of AES-128. One of

these attacks was used to construct a known-plaintext attack on six rounds of AES which

we cover in Section 7.3.
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7.1. Theoretical Basics

The following five basic properties of AES are used to achieve a low data complexity:

Property 11: The amount of possible actual values for a given input and output difference

to the AES S-Box is as follows:

• For 129/256 difference pairs, the transition is impossible.

• For 126/256 pairs, there are two possible actual values for each element of the pair.

• For 1/256 of the pairs, there exist four values.

Property 2: The MixColumns operation works on each column of the AES state. Thus, its

input and output is four bytes each. The knowledge of four of these eight bytes enables the

calculation of the other four values. Since MixColumns is a linear operation, the same holds

if four differences are known.

Property 3: This property covers five important relations of the AES-128 key schedule.

For each column of five consecutive round keys we are able to construct the relations given

in Table 7.2. These equations were used by Bouillaguet et al. to derive the five relations

between a few key bytes over three to five rounds shown in Figure 7.1. The corresponding

equations are:

1. rki+2[j]⊕ rki+2[j + 8] = rki[j + 8]

2. rki+2[j + 4]⊕ rki+2[j + 12] = rki[j + 12]

3. rki+2[j + 4]⊕ vi+1[j] = rki[j + 4]

4. rki+4[j + 12]⊕ vi+3[j] = rki[j + 12]

5. rki[j + 8]⊕ rki[j + 12]⊕ vi+2[j] = rki+3[j + 12]

The above relations are valid for 0 ≤ j ≤ 3, which basically means that each equation

holds for all bytes of the respective column.

Property 4: For rounds i > 1, Bouillaguet et al. found three relations between columns of

consecutive states. The first relation can be constructed by starting with

Si−1,MC[4 . . . 7] = InvMC(Si−1,ARK[4 . . . 7]),

where InvMC denotes the inverse MixColumns operation. By knowing the four corresponding

bytes of rki−1, we can replace the right side with bytes from Si and the round key:

Si−1,MC[4 . . . 7] = InvMC(rki[4 . . . 7]⊕ Si[4 . . . 7]).

Further, by using the linearity of the key schedule, rki[4 . . . 7] can be represented by eight

bytes of rki+1:

1We covered this property before, but for completeness we mention it here again.
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Rnd. Column 0 Column 1 Column 2 Column 3

i rki,0 rki,1 rki,2 rki,3

i+ 1 rki,0 ⊕ vi rki,0 ⊕ rki,1 ⊕ vi rki,0 ⊕ rki,1 ⊕ rki,2 rki,0 ⊕ rki,1 ⊕ rki,2
⊕vi ⊕rki,3 ⊕ vi

i+ 2 rki,0 ⊕ vi ⊕ vi+1 rki,1 ⊕ vi+1 rki,0 ⊕ rki,2 ⊕ vi rki,1 ⊕ rki,3 ⊕ vi+1

⊕vi+1

i+ 3 rki,0 ⊕ vi ⊕ vi+1 rki,0 ⊕ rki,1 ⊕ vi rki,1 ⊕ rki,2 ⊕ vi+1 rki,2 ⊕ rki,3 ⊕ vi+2

⊕vi+2 ⊕vi+2 ⊕vi+2

i+ 4 rki,0 ⊕ vi ⊕ vi+1 rki,1 ⊕ vi+1 ⊕ vi+3 rki,2 ⊕ vi+2 ⊕ vi+3 rki,3 ⊕ vi+3

⊕vi+2 ⊕ vi+3

Table 7.2.: Relations between columns of five consecutive round keys.

rki rki+1 rki+2

1.

2.

3.
rki+3 rki+4

4.

5.

Figure 7.1.: Visualization of the five key schedule relations for the first byte of the corre-
sponding column of rki.
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Si−1,MC[4 . . . 7] = InvMC(rki+1[0 . . . 3]⊕ rki+1[4 . . . 7]⊕ Si[4 . . . 7]).

Since the round keys are added using XOR, it is possible to express them as Si,ARK ⊕ Si+1.

Thus, we get:

Si−1,MC[4 . . . 7] = InvMC(Si,ARK[0 . . . 3]⊕Si+1[0 . . . 3]⊕Si,ARK[4 . . . 7]⊕Si+1[4 . . . 7]⊕Si[4 . . . 7]).

The last step is to apply the inverse MixColumns operations where possible. Thus, we get:

Si−1,MC[4 . . . 7] = Si,MC[0 . . . 3]⊕ Si,MC[4 . . . 7]⊕ InvMC(Si+1[0 . . . 3]⊕ Si+1[4 . . . 7]⊕ Si[4 . . . 7]).

Similar equations can be constructed for columns 2 and 3. Hence, this yields three equa-

tions:

1. Si−1,MC[4 . . . 7] ⊕ Si,MC[0 . . . 3] ⊕ Si,MC[4 . . . 7] = InvMC(Si[4 . . . 7] ⊕ Si+1[0 . . . 3] ⊕
Si+1[4 . . . 7])

2. Si−1,MC[8 . . . 11] ⊕ Si,MC[4 . . . 7] ⊕ Si,MC[8 . . . 11] = InvMC(Si[8 . . . 11] ⊕ Si+1[4 . . . 7] ⊕
Si+1[8 . . . 11])

3. Si−1,MC[12 . . . 15]⊕Si,MC[8 . . . 11]⊕Si,MC[12 . . . 15] = InvMC(Si[12 . . . 15]⊕Si+1[8 . . . 11]⊕
Si+1[12 . . . 15])

Property 5: Knowing the input and output state of one full round and one column of the

round key (rk1,0), we can retrieve rk0[7] and rk0[8] by a table lookup. Basically, there are

at most twelve possible values for each value of rk1,0 and on average actually only one. The

time required to generate this table is 232, and the table itself has a size of 224 128-bit blocks.

For details on how to construct this table as well as a thorough proof, see [BDD+10].

7.2. Low Data Complexity Attacks

All of the attacks covered in the this section have practical time and memory complexities.

The first attack applies to two rounds without MixColumns in the second round, the other

three attacks are all on full rounds (the last round includes MixColumns). Furthermore, the

initial AddRoundKey is also considered in all four attacks. Thus, an attack on three rounds

involves four round keys: the initial whitening key and three derived round keys.

The attacks on one, two and three rounds are known-plaintext attacks. The second attack

on three rounds is a chosen-plaintext attack. As shown in Table 7.1, known-plaintext attacks

require a higher amount of time. This is clear since such attacks have less degrees of freedom

as chosen-plaintext attacks. Therefore, there are only chosen-plaintext attacks with practical

time complexity on three and four rounds.

Note on figures: For all figures shown in this section, we use a similar scheme as in the

original paper by Bouillaguet et al. to explain each step of the attack. The number within

each cells (e.g. 4 ) indicates at which step the actual value for this byte is calculated during

the attack. Furthermore, . indicates a known byte of a state or a round key. A cell +
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marks guessed values for bytes, so, basically all possible values for such bytes are considered.

Finally, indicates that this byte’s value is retrieved using differences. In case Property 5

is used to limit the amount of possible values for the two key bytes to twelve possibilities,

then those two key bytes are depicted as × .

7.2.1. Attacking 2-Round AES-128 without Last MixColumns

We start with the attack on two rounds, without MixColumns in round 2. The attack is split

into two phases, which are both depicted in Figure 7.2. The attack uses only two known

plaintexts, and the bytes of the intermediate state for both of these plaintexts are retrieved

in parallel.

We describe this attack in more detailed than the following LDC attacks since it is used

in next section to construct the attack on six rounds AES-128.

The first phase starts with encrypting both plaintexts under the unknown key to retrieve

their ciphertexts. With these two ciphertexts, we are able to trace their differences up to

S2,SR, which is the output state of SubBytes in round 2. From the initial whitening key rk0

we then guess bytes 0, 5, 10 and 15, which allows us to calculate the values for column 0 in

state S1,ARK and the differences of column 0 in S2 (Steps 1-4 in Figure 7.2). Since we know

the differences in column 0 before and after SubBytes in round 2, we are able to deduce

the actual values of these bytes by using Property 1 (Step 5). We discard all key guesses

which lead to impossible differences at the S-Box and get two or four pairs of actual values

for valid differences from the DDT. So, on average there should be one pair of values per

key guess. With these four bytes, we calculate the first column of rk1 since we now know

column 0 before and after AddRoundKey of round 1 (Step 6).

Additionally, since MixColumns is missing in the last round, bytes 0, 7, 10 and 13 of rk2

can be calculated. We do this by applying ShiftRows the the known values of S2,SR (Steps

7-8). Furthermore, we calculate the key bytes rk0[2] and rk0[13] from the key schedule by

using the known key bytes from rk0 and rk1 (Step 9). The basic property of key schedule

used for this is:

rki+1[j] = rki[j]⊕ vi.

For j = 0, we get v0 from rk1[0] and rk0[0]. Similarly, we compute rk0[2] from v3 and

rk1[2] for j = 3. Using similar (simple) properties of consecutive round keys, more key bytes

can be retrieved in the following order: rk1[5], rk1[13], rk1[9], rk2[9], rk2[5], rk2[1], rk1[14],

rk2[14] and rk0[9] (Steps 10-20, 25). Refer to Table 7.2 for the exact relations.

With these newly retrieved key bytes, we are able to calculate bytes 5, 6, 9 and 13 of

S2 upwards from the ciphertext (Steps 21-23). Further, the known key bytes of rk1 allow

to calculate bytes 5, 9 and 13 of S1,ARK (Step 24). The final step in Phase 1 is to use the

plaintext and the retrieved key bytes to calculate byte 5 of S1,MC (Steps 26-28).

The second phase continues the process of switching between retrieving a few key bytes and

calculating state bytes from them. First we use Property 3, Equation 2 to retrieve rk2[15]

and Equation 1 to retrieve rk2[2] (Step 1). Next, we use simple key schedule properties to

calculate rk1[15], rk2[11] and rk1[11] (Steps 2-4). Consequently, we can now calculate byte
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Figure 7.2.: The two phases of the LDC attack on two rounds of AES, where the second
round is without MixColumns.
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Figure 7.3.: The LDC attack on one full round using only one known plaintext.

11 of S1,ARK (Steps 5-8) and use Property 2 to retrieve bytes 10, 8 of this state and bytes 8,

11 of S1,MC (Step 9).

This enables us to retrieve three more key bytes: rk1[10], rk2[6] and rk1[6] (Steps 10-12).

Further, we can calculate bytes 7 and 8 of S1 (Steps 13-14), which allows to calculate the

corresponding bytes of rk0 (Step 15). Next, we retrieve key bytes rk1[7], rk0[11], rk2[3] and

rk1[12] (Steps 16-19) and, using Equation 1 of Property 3, we can also retrieve rk2[8] (Step

20). Then, we calculate byte 8 of S2,ARK with the just retrieved key byte (Step 21). Finally,

we calculate the last two missing bytes of rk1 (Steps 22-25).

Overall, this attack has a memory complexity of 1. Since the time complexity is determined

by guessing four key bytes, it is 232 2-round encryptions.

7.2.2. An Attack on 1 Round with 1 Known Plaintext

Next, we explain the even simpler attack on one round using only one known plaintext. This

round-reduced version uses one full round plus the initial AddRoundKey with rk0. Equally

to the previous attack, it has a time complexity of 232 1-round AES encryptions, but has a

higher memory complexity of 224 since we use Property 5. The full attack with all its steps

is shown in Figure 7.3.

First, we start by guessing four key bytes of column 0 for rk1. This enables us to calculate

certain state bytes which yield a few key bytes of rk0 and one additional byte of rk1 (Phase

1 in Figure 7.3). These few key bytes suffice to apply Property 5 in order to retrieve at most

twelve possible values for rk0[7] and rk0[8]. For each of these possible values for these bytes,

we perform the following steps:

58



7.2. LOW DATA COMPLEXITY ATTACKS

We use just retrieved possible values for key bytes rk0[7] and rk0[8] to calculate column

2 of S1,ARK (Steps 1-4). Together with the ciphertext we can now retrieve column 2 of rk1

(Step 5). This enables us to use the key schedule to retrieve a few more bytes of both round

keys and a few more state bytes. In Steps 13 and 19, the MixColumns property (Property

2) is used to retrieve the missing state bytes in the respective columns. Finally, we retrieve

the remaining bytes of rk1 and invert the key schedule to calculate the unknown encryption

key rk0.

In [BDF12], Bouillaguet et al. analyzed the attack model with a single known plaintext

for more rounds and found attacks for up to four rounds. These attacks are all faster than

exhaustive search. For example, their attack on four rounds has a time complexity of 2120

and a memory complexity of 280.

7.2.3. Attack on 2 and 3 Rounds Using 2 Chosen Plaintexts

This next attack on two full rounds with two chosen plaintexts is especially interesting since

it has a time and memory complexity of only 28. We first describe this attack in full detail,

and then cover how it can be extended to three full rounds with a time complexity of 216.

Both attacks were found using tools developed by Bouillaguet et al. that automatically find

low data complexity attacks. These tools are also described in [BDF12].

The chosen plaintexts are required to have a non-zero difference only on the first column.

All other plaintext bytes have to be equal. After we have retrieved the ciphertexts by

encrypting the chosen plaintexts under the unknown key, we start with a bottom up approach

and calculate the difference for the full state S2,SR from the ciphertext difference. Now we

assume that we know the value of S1[1]. As shown in Figure 7.4, the knowledge of S1[1] also

reveals S1,MC[13] (Step 1). Further, also the differences for all bytes of column 3 in S2 are

known because of Property 2. Since we now know the differences before and after SubBytes

in round 2 for the whole column 3, we can deduce the actual values using the DDT for each

byte (Step 2). Consequently, it is possible to deduce bytes 3, 6, 9 and 12 of rk2 (Steps 3-4).

Hence, by only knowing the value of one byte (S1[1]) we are able to retrieve four bytes from

the round key rk2. Furthermore, the additional knowledge of bytes S1[0], S1[2] and S1[3]

allows to retrieve the full rk2.

The straightforward approach to retrieve rk2 would be to try all values for these four

bytes (bytes 0, 1, 2 and 3 of S1) and retrieve the possible keys. This would take 232 time

and would result in about 232 possible key candidates. However, Bouillaguet et al. found

a different attack that is a lot faster by using the equations of Property 4. The basic idea

is to try all 28 possible values for S1[1] and calculate the values S1[0], S1[2] and S1[3] from

S1[1] (see also Figure 7.4):

Assume that S1[1] is known, S1[0] can then be calculated using Equation 3 of Property 4:

S1,MC[12 . . . 15]⊕ S2,MC[8 . . . 11]⊕ S2,MC[12 . . . 15]

= InvMC(S2[12 . . . 15]⊕ S3[8 . . . 11]⊕ S3[12 . . . 15]).

Since we assumed that S1[1] is known, all bytes marked with 1, 2, 3 and 4 in Figure 7.4

are known. This includes column 3 of S2. Hence, the full right side of the equation is known
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Figure 7.4.: The LDC attack on two full rounds using two chosen plaintexts. The time and
memory complexity of this attack is as low as 28.

because S3[8 . . . 11] and S3[12 . . . 15] are just ciphertext bytes. From the left side, we also

know S1,MC[13] and S2,MC[9], which allows us to use the above equation to retrieve S2,MC[13]

by:

S2,MC[13] = S2,MC[9]⊕ S1,MC[13]⊕ InvMC(S2[12 . . . 15]⊕ S3[8 . . . 11]⊕ S3[12 . . . 15])[1].

Note that InvMC(. . . )[1] selects the second byte of the resulting 4-byte vector. Having cal-

culated S2,MC[13] (Step 5), we can now also calculate S2[1] (Step 6).

Further, we know that bytes 1, 2 and 3 of column 0 in S1,MC have zero difference. We use

this knowledge and the known difference in S2[1] to deduce the difference of S1,MC[0] using

Property 2. Finally, we use the DDT to retrieve the actual values for S1,SR[0] and hence also

S1[0] (Steps 7-8). We can now compute four more bytes for rk2 (Steps 9-11).

As for S1[2], Equation 2 of Property 4 can be used to retrieve its value from S1[1]. First,

we rearrange the equation to

S2,MC[4 . . . 7]⊕ S2,MC[8 . . . 11] = S1,MC[8 . . . 11]⊕ InvMC(S2[8 . . . 11]⊕ S3[4 . . . 7]⊕ S3[8 . . . 11]).

We can see that the third byte of the right-hand side can be calculated from S1[2]. To use

this, we construct a table for all possible values of S1[2] which is indexed by the third byte

of the right-hand side of the above equation

r = S1,MC[10]⊕ InvMC(S2[8 . . . 11]⊕ S3[4 . . . 7]⊕ S3[8 . . . 11])[2].

For a known S1[1] we are able to calculate bytes S2,MC[6] (Step 2) and S2,MC[10] (Step

9). Since we know the values of these two bytes, we can calculate r = S2,MC[6] ⊕ S2,MC[10].

Thus, we simply look up r in the table and retrieve the value for S1[2] (indicated by ×

in Figure 7.4). Consequently, we use this value to compute four more bytes of rk2 (Steps

12-15).

For S1[3] a similar table can be constructed using Equation 1 of Property 4. This time,

the fourth byte of the vector is used and the rearranged equation to construct the table is:

S2,MC[3]⊕ S2,MC[7] = S1,MC[7]⊕ InvMC(S2[4 . . . 7]⊕ S3[0 . . . 3]⊕ S3[4 . . . 7])[3].

As before, the complete right-hand side can be calculated from S1[3]. Thus, we enumerate

all its values and index the table by the right-hand side of the equation. To retrieve the
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corresponding value of S1[3] for a given S1[1], we just calculate the left-hand side of the

equation and perform a lookup in the hash table. Thus, we can calculate the remaining four

bytes of rk2 (Steps 16-19).

For the full attack, we enumerate all possible values of S1[1] and calculate the other three

bytes of this column as described above. This yields 28 values for the full round key rk2

which can be checked using exhaustive search.

Performing the above calculations for one value of S1[1] equals about one AES encryption.

Hence, the time complexity of the whole attack is 28 encryptions. As for the memory

complexity, Bouillaguet et al. give an approximate of 28 AES blocks. However, we believe it

is actually less than that since the attack only requires storage for two tables with 28 entries

per table, and each entry has a size of one byte. This gives only 2 · 28 · 2−4 = 25 AES blocks.

Extension to 3 Rounds

This attack can easily be extended to three rounds by adding one round at beginning. Here,

only one non-zero difference in byte 0 of the plaintexts is allowed. If we guess byte 0 of

whitening key rk0, then we are able to calculate the differences in column 0 of S2. Since

the bytes in this column are the only active bytes in S2, it suffices to run the above 2-round

attack from here with the known differences in S2 and the values of ciphertexts as input.

7.2.4. Attack on 3 Rounds with 9 Known Plaintexts

For an attack on three rounds of AES-128 with nine plaintexts, we assume three full rounds

and the initial AddRoundKey with the whitening key. Additionally, we exchange MixColumns

with AddRoundKey in the last round. As explained before, this is possible due to the linearity

of both operations. However, we now have to use the equivalent round key (rk′3) instead of

rk3. We also switch MixColumns and AddRoundKey in round 2. Further, we denote byte 0

of state S2,MC for the i-th plaintext as bi
2. Thus, bi = Si

2,MC[0].

The first phase of this attack is to guess bytes 0, 7, 10 and 13 of rk′3 and partially decrypt

the corresponding ciphertext bytes up to S3 (Steps 1-2 in Figure 7.5). Since we now know

the actual values for column 0 of S3, we can calculate the differences in bi for every key guess

and every ciphertext (Step 3). With these differences we construct the vector

b1 ⊕ b2, b1 ⊕ b3, . . . , b1 ⊕ b9

and store all encountered values in a hash table.

In the second phase, we perform similar computations using the plaintext. First, we guess

bytes 0, 5, 10, 15 of rk0 and byte 0 of rk1. This allows us to partially encrypt all plaintexts

up to byte 0 of S2,MC (Steps 4-6). Thus, we also get values and differences for all bi. From

these values we again construct the difference vector from above, and check for each vector if

it appears in the hash table. If the vector occurs in the hash table, we keep the corresponding

key guess. Since this is a 64-bit filter, only 272 · 2−64 = 28 key guesses should remain.

2Normally, this is the state right before MixColumns in round 2. However, since we switched AddRoundKey

and MixColumns in this round, this state is the input to AddRoundKey.
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Figure 7.5.: The LDC attack on three full rounds using nine known plaintexts. Both phases
calculate a 64-bit difference vector for byte 0 of S2,MC.

We can repeat this process for the remaining three columns to get 232 suggestions for the

full round key rk0. Since this is a very small amount of possible keys, we can check them

using a brute force attack to eliminate false-positives. Overall, the memory complexity is

about 232 · 23 · 2−4 = 231 AES states, and the time complexity is about 240 encryptions.

7.3. Known-Plaintext Attack on 6-Round AES-128

In this section, we present an example on how an LDC attack can be used as a building

block for a more complex attack. In this case, a differential trail similar to that used for

differential enumeration is used to limit the amount of possible values for an intermediate

state. This differential is in fact equal to that from Section 6.4 except the last round is

removed. Thus, it covers only three rounds (see also Figure 6.3). Nevertheless, the amount

of possible actual values is the same with 264.

The basic concept of the attack is to place the differential from S2 (input state to differ-

ential with only one non-zero difference in byte 0) to S5 (output state of differential), which

results in 264 possible values for state S4. Then, the LDC attack from Section 7.2.1 is applied

to states S4,ARK to S7, which is the ciphertext.

The full attack is thus as follows:

1. Take 2109 plaintexts and encrypt them.

2. Insert the plaintext-ciphertext pairs into a hash table.
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3. Use the hash table to create differential pairs where bytes 1-4, 6-9, 11-14 of the plaintext

and bytes 1-6, 8, 9, 11, 12, 14 and 15 of the ciphertext are equal. Since this is a 192-bit

filter, there will be about 2216 · 2−192 = 224 pairs left3.

4. Assume that those are right pairs. Hence, in state S4 there are only 264 possible actual

values for each potential right pair.

5. For each of those possible values, run the LDC attack from Section 7.2.1 on states

S4,ARK to S7.

The data complexity of this attack is 2109 plaintexts. As for the time complexity, the LDC

attack has a time complexity of 232 and for each of the 224 pairs there are 264 possible states.

Hence, the overall time complexity of this attack is 224 · 264 · 232 = 2120. The advantage of

this attack is that it has no requirements on the plaintexts. The memory complexity of the

attack is 224 · 264 = 288 times the memory complexity of the LDC attack. According to the

authors, this attack is currently the best known-plaintext attack on 6-round AES.

3Since we take 2109 plaintexts, there are
(
2109

2

)
≈ 2216 possible pairs we can create from them.
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In general, meet-in-the-middle attacks on block ciphers received less attention because they

require major parts of the cipher to be independent from the encryption key. Cipher prop-

erties such as high diffusion counteract this. Consequently, as we have seen with LDC

attacks on AES above, standard meet-in-the-middle attacks only work on a limited num-

ber of rounds. However, Bogdanov et al. combined the meet-in-the-middle approach with

another technique called bicliques [BKR11]. This enabled them to construct new attacks

that are faster than a standard brute force attack and work on all three variants of AES, up

to their respective full number of rounds. The concept of bicliques was first introduced by

Khovratovich et al. for the cryptanalysis of hash functions, specifically the SHA-3 candidate

Skein-512 and SHA-2 variants [KRS11]. Bogdanov et al. were the first to bring over this

concept to block cipher cryptanalysis with their biclique attacks on AES, which we cover in

this section.

The remainder of this chapter is mainly based on, and structured like [BKR11]. To

familiarize the reader with this new technique, we first define bicliques and present the

high-level concept of how to use them for attacks on block ciphers. Then, we present two

techniques to construct bicliques as well as two concepts of how to recover the encryption

key. Further, we present a biclique attack on the full AES-128.

8.1. The Basics of Biclique Cryptanalysis

A meet-in-the-middle attack works by splitting the key-space into groups of 22d keys, for

some d. Within a group, the keys are represented as 2d×2d matrix K[i, j] with 0 < i, j < 2d.

For the attack, we choose an internal variable v and split the encryption function E of the

cipher into two parts e1, e2, where E = e2 ◦ e1. Furthermore, K[i, j], e1, e2 are chosen such

that for a plaintext and key, v is equal for all keys in a row of K[i, j]:

P
K[i,·]−−−→
e1

v

Moreover, for a ciphertext and a key, v is identical for all keys in a column of K[i, j]:

v
K[·,j]←−−−
e2

C

The attacker then obtains a plaintext-ciphertext pair and uses K[i, j] to compute 2d pos-

sible values −→v from the plaintext, and 2d values for ←−v from the ciphertext. If −→vi = ←−vj for

some i, j, then K[i, j] is a candidate for the secret encryption key. To calculate the expected
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number of key candidates, Bogdanov et al. use the formula 22d−|v|, where |v| is the bit size

of v.

Given there exists such a meet-in-the-middle attack for a given number n of rounds, its

performance advantage over a brute force attack is about 2d cipher executions. This is due

to the fact that the meet-in-the-middle attack tests 22d keys with only 2d executions of n

cipher rounds. If v is not a full internal state but only a fraction of a state (for example one

byte), the advantage can be even higher than 2d. This is because only the bytes necessary

for v have to be computed and all others can be skipped.

8.1.1. Bicliques

Bogdanov et al. proposed to increase the number of rounds that can be attacked with

meet-in-the-middle attacks by the use of bicliques.

Definition 8.1 (Biclique). Let S,C denote two states of a block cipher, where C is l rounds

after S. Further, let f be a sub-cipher of the full encryption algorithm E = g ◦ f such that

fK(S) = C for a key K. The triple ({Ci}, {Sj},K[i, j]) is called biclique if fK[i,j](Sj) = Ci

for 0 < i, j < 2d.

The parameter d is called dimension, and l is the length of the biclique. K[i, j] is again

represented as 2d × 2d matrix. Basically, a biclique connects 2d states Sj to 2d states Ci

using 22d keys as shown in Figure 8.1.

. . .

. . .
S0 S1 S2d−1

C0 C1 C2d−1

K[0, 0] K[2d − 1, 2d − 1]

Fig. 1. d-dimensional biclique

2.3 The Flow of Biclique Cryptanalysis

Preparation. An adversary chooses a partition of the key space into groups of keys of
cardinality 22d each for some d and considers the block cipher as a composition of two
subciphers: e = f ◦ g, where f follows g. A key in a group is indexed as an element of a
2d × 2d matrix: K[i, j].

Step 1. For each group of keys the adversary builds a structure of 2d ciphertexts Ci and
2d intermediate states Sj with respect to the group of keys {K[i, j]} so that the partial
decryption of Ci with K[i, j] yields Sj. In other words, the structure satisfies the following
condition:

∀i, j : Sj
K[i,j]−−−→

f
Ci. (2)

Step 2. The adversary asks the oracle to decrypt ciphertexts Ci with the secret key Ksecret

and obtains the 2d plaintexts Pi:

Ci
decryption oracle−−−−−−−−−−→

e−1
Pi. (3)

Step 3. If one of the tested keys K[i, j] is the secret key Ksecret, then it maps intermediate
state Sj to the plaintext Pi. Therefore, the adversary checks if

∃i, j : Pi
K[i,j]−−−→

g
Sj. (4)

A valid pair proposes K[i, j] as a key candidate.

3 New Tools and Techniques for Bicliques

In here we describe two approaches to construct bicliques, and propose a precomputation
technique that speeds up the application of bicliques for key recovery. The exposition is
largely independent of a cipher.

3.1 Bicliques from Independent Related-Key Differentials

A straightforward approach to find a d-dimensional biclique would be to fix 2d states and 2d

ciphertexts, and derive a key for each pair to satisfy (2). This would require at least 22d key
recovery attempts for f . A much more efficient way for the adversary is to choose the keys
in advance and require them to conform to specific differentials as follows.

Figure 8.1.: A d-dimensional biclique as shown in [BKR11].

8.1.2. Concept of a Biclique Attack

The idea of a biclique attack is to combine the biclique with a meet-in-the-middle attack,

and hence, increase the number of rounds that can be attacked. Throughout the rest of

Chapter 8, we assume Ci to be ciphertexts. Consequently, the biclique is placed at the end

of the block cipher and Sj is some intermediate state. We do this because the attacks on

AES we present also have the biclique placed at the end. However, the biclique could also

be placed at the beginning, where Sj would then be a plaintext and Ci an internal state

of the cipher. When placing the biclique at the end, the concept for the full attack on a

n-round block cipher is to cover the first m rounds using a meet-in-the-middle attack and

the remaining l = n−m using a biclique.

66



8.2. BICLIQUE CONSTRUCTION FOR BLOCK CIPHERS

With the basic idea explained, we continue with the rough outline of a biclique attack,

which is as follows:

1. Partition the key space into groups of 22d keys and find sets {Ci}, {Sj} which satisfy:

∀i, j : Sj
K[i,j]−−−→

f
Ci

2. Decrypt the ciphertexts Ci, and retrieve their corresponding plaintexts Pi from the

decryption oracle. Then, Ek(Pi) = Ci for the secret encryption key k.

3. Finally, check for each key K[i, j] if it maps Pi to Sj . More formally, check if:

∃i, j : Pi
K[i,j]−−−→

g
Sj

Each K[i, j] which satisfies this mapping is a key candidate. If there exists a meet-in-

the-middle attack for m rounds, it can be used to check the keys.

Consequently, the advantage of a biclique attack over a brute force attack lies in Steps 1

and 3. In Step 1, the biclique yields a way to enumerate values for Sj for each ciphertext.

The advantage of the biclique is that this enumeration process is faster than computing l

cipher rounds. Similarly in Step 3, the process to verify a key K[i, j] (by a meet-in-the-middle

attack or similar method) is usually faster than computing m cipher rounds.

In the following section we explain two methods on how to construct bicliques (Step 1),

and in Section 8.3 we cover two paradigms on how to recover the secret key (Step 3).

8.2. Biclique Construction for Block Ciphers

In [BKR11], Bogdanov et al. present two techniques to construct bicliques for a block cipher.

Both methods are mostly independent of the actual cipher, and have in common that the

key groups are chosen according to some specified differential trails. This approach is more

advantageous than just fixing the sets {Sj}, {Ci}, and deriving keys from them because this

would require at least 22d executions of the sub-cipher f . Furthermore, both techniques use

related-key differential trails over f for the construction of the biclique. Note that although

related-key differentials are used, the attack itself is still a single-key attack.

8.2.1. Independent Related-Key Differentials

For the first technique to construct bicliques, we use independent related-key differentials.

Independent in this context means that the differential trails do not share any active com-

ponents (for AES this would be active bytes of a state). Overall, we choose 2 ·2d differentials

which we split into two sets ∆i, 5j of equal size. We construct all differentials with respect

to S0
K[0,0]−−−−→

f
C0 which is called base computation. Moreover, all differentials cover the full

sub-cipher f and the two sets of differentials are constructed as follows:
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∆i-differentials: Differentials in this set start with input difference 0, end in some output

difference ∆i, and use a key difference ∆K
i . More formally:

0
∆K

i7−−→
f

∆i

with ∆K
0 = 0 and ∆0 = 0 to respect the base computation.

5j-differentials: Differentials in this set start with input difference 5j , end in output dif-

ference 0, and use a key difference 5K
j . More formally:

5j

5K
j7−−→
f

0

with 5K
0 = 0 and 50 = 0.

Since the differential trails of both sets do not share active components, 2d combined

(∆i,5j)-differentials can be constructed by XOR of two trails from different sets. Hence,

∀i, j : 5j

∆K
i ⊕5K

j7−−−−−−→
f

∆i

It is easy to see that this is a valid construction because the trails are independent.

Consequently, an active component belongs either to a ∆i-differential or to a 5j-differential,

but never to both. This is very similar to boomerang attacks [Wag99], first introduced by

Wagner. Hence, the above construction can be seen as a boomerang on f with probability

1.

Since (S0, C0,K[0, 0]) conforms to all differential trails of both sets, it also conforms to

the combined differentials, and we can add it to the combined (∆i,5j)-differentials using

XOR:

S0 ⊕5j

K[0,0]⊕∆K
i ⊕5K

j7−−−−−−−−−−−→
f

C0 ⊕∆i

This already looks very similar to the definition of a biclique. Thus, we simply obtain the

d-dimensional biclique by setting:

• Sj = S0 ⊕5j ,

• Ci = C0 ⊕∆i, and

• K[i, j] = K[0, 0]⊕∆K
i ⊕5K

j .

This construction is more efficient than a straightforward construction since it takes no

more than 2 · 2d executions of f . Basically, this method allows us to create differentials of

higher dimension. However, the length is still limited because the diffusion properties of a

block cipher limit the length of the differential trails.
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8.2.2. Interleaving Related-Key Differentials

The bicliques constructed by the above technique are clearly limited in length. The sec-

ond approach presented here tries to construct longer bicliques by considering related-key

differentials that overlap, and hence, share active components. However, if a block cipher

is secure against differential cryptanalysis, constructing long bicliques with high degree is

hard. Consequently, a trade-off has to be made. In this case, it is a trade-off between the

length and degree of the biclique. By aiming to construct bicliques with very low degree,

constructing long bicliques becomes easier because less degrees of freedom are consumed by

the biclique itself.

For this method, we aim to create bicliques of minimal degree (d = 1) for a fixed key

group of four keys. The construction is similar to that of the rebound attack [MRST09]:

1. Choose an intermediate state T in f , and split f = f2 ◦ f1 such that Sj
f17−→ T and

T
f27−→ Ci.

2. Select truncated differentials ∆, 5, with the ∆-trails over f1 and the 5-trails over f2.

3. Guess the differences of the active components in all trails towards T . Then, retrieve

the actual pairs for T that satisfy these guessed differences over the full sub-cipher f .

This resembles the inbound phase of the rebound attack.

4. Propagate each possible pair of T outwards until Sj or Ci is reached. This step is

similar to the outbound phase of the rebound attack. After this step, only a few

pairs for Sj and Ci should be left. Those are the input and output states of the biclique.

This generic approach allows multiple improvements:

• Not all differences of the differential trails have to be guessed. Instead, guessing only

parts of them is less restrictive. Choosing the components which are guessed carefully,

ensures that wrong pairs are still filtered during the outbound phase.

• Instead of fixing all keys within a key group, only the differences of the key can be

fixed. The actual values of the keys can then be retrieved during the construction of

the biclique.

• A major advantage of this construction is its reusability: The construction of one

biclique allows to produce multiple other bicliques with only some very small modifi-

cations.

8.3. Methods for Key Recovery

This chapter focuses on how to recover the encryption key. Basically, we describe two

methods on how to perform the check

∃i, j : Pi
K[i,j]−−−→

g
Sj
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on the remaining rounds of the cipher which are not covered by the biclique.

Assume a n-round block cipher for which we can construct a biclique that covers at most

l rounds. Let the encryption function of the cipher be E = g ◦ f , and f cover the last l

rounds (i.e. the biclique). There are two possibilities for the above check: If there exists a

meet-in-the-middle attack for the remaining n− l rounds, we can apply it to verify the 22d

keys with less than 2d executions of the sub-cipher g. This approach is called long-biclique,

since the biclique is long enough to admit a meet-in-the-middle attack on the remaining

rounds.

On the other hand, if there exists no meet-in-the-middle attack of the required length, we

have to find an alternative method to check the above formula. At first, this approach seems

disadvantageous because the complexity for recovering the key increases to 22d. However,

Bogdanov et al. presented another technique called matching with precomputations, which

allows to decrease the cost of recovering the key. Moreover, since the bicliques used for this

technique are shorter and have an easier description, the attack becomes more compact and

has lower data complexity. For this second approach, bicliques constructed from independent

related-key differentials are used. Hence, this method is called independent-biclique.

In the remainder of this section, we analyze the complexities of both attack paradigms

and describe the technique of matching with precomputations.

8.3.1. Long-Biclique

The idea of this approach is to construct a biclique of required length such that we are

able to use a meet-in-the-middle attack on the remaining rounds of the block cipher. One

advantage of this method is that we are able to use the meet-in-the-middle attack without

major modifications. So, we basically extend the meet-in-the-middle attack by l rounds. A

disadvantage is the construction of the biclique. Since we have to use interleaving related-

key differential trails for the construction to get longer bicliques, we loose most degrees of

freedom. As a result, we get higher data complexity because we might not have enough

degrees left to restrict the plaintexts and ciphertexts. Furthermore, the total number of

rounds we can attack is limited because both, meet-in-the-middle attack and biclique, are

limited in their length.

As shown in Figure 8.2, we choose an internal variable v for the meet-in-the-middle attack,

and recover the keys by calculating towards v from Pi and Sj . We also note that the biclique

needs an appropriate dimension for the meet-in-the-middle attack. For example, if the meet-

in-the-middle attack requires four plaintexts, the biclique has to have dimension d = 2.

To recover the full encryption key, we have to test all 2k possible key values, where k is the

bit size of the key. Consequently, we execute the attack 2k−2d times. The time complexity

of the full attack can then be calculated by the formula:

Cfull = 2k−2d(Cbiclique + Cmatch + Cfalsepos)

Cbiclique denotes the complexity for the construction of the biclique. Cmatch is the com-

plexity of the meet-in-the-middle attack, which is at most 2d. Since there is a certain chance
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Hence, to check (4) the adversary selects an internal variable v ∈ V that can be computed
as follows for each key group {K[i, j]}:

P
K[i,·]−−−→

E1

v
K[·,j]←−−−

E2

S. (9)

Therefore, the computational complexity of matching is upper bounded by 2d computations
of the cipher.

S0

S2

C0

C1

key

plaintext ciphertext

C2

S1

K[3, 3]

K[0, 0]

K[i, ∗] K[∗, j]

S3 C3

K[i, j]

K[∗, 3]

K[∗, 0]

Decryption
oracle

K[3, ∗]

K[0, ∗]

Fig. 3. Long-biclique attack with four states and four ciphertexts.

Complexity of Key Recovery. Let us evaluate the full complexity of the long-biclique
approach. Since the full key recovery is merely the application of Steps 1-3 2n−2d times, we
get the following equation:

Cfull = 2n−2d [Cbiclique + Cmatch + Cfalsepos] ,

where

– Cbiclique is the complexity of constructing a single biclique. Since the differential-based
method is time-consuming, one has to amortize the construction cost by selecting a proper
set of neutral bytes that do not affect the biclique equations.

– Cmatch is the complexity of the computation of the internal variable v 2d times in each
direction. It is upper bounded by 2d calls of E.

– Cfalsepos is the complexity generated by false positives, which have to be matched on
other variables. If we match on a single byte, the number of false positives is about
22d−8. Each requires only a few operations to re-check.

Generally, the complexity is dominated by Cmatch and hence has an advantage of at least 2d

over brute force. The memory complexity depends on the biclique construction procedure.

4.2 Independent-Biclique

Our second paradigm lets the attacker exploit the diffusion properties rather than differen-
tial properties, and does not aim to construct the longest biclique. In contrast, it proposes

Figure 8.2.: A long-biclique attack with a 2-dimensional biclique at the end [BKR11].

for false-positives, Cfalsepos denotes the time complexity to eliminate these wrong key can-

didates. Normally, Cfalsepos is negligible since the overall time complexity is dominated by

Cmatch. Cbiclique can also be high especially since the construction using differentials is rather

time-consuming. However, since we can use one construction to obtain multiple bicliques,

it is lower than Cmatch. The memory complexity is dominated by the construction of the

biclique since the meet-in-the-middle attack itself has rather low memory requirements.

8.3.2. Matching with Precomputations

Matching with precomputations is basically a replacement for the meet-in-the-middle attack.

Again, we aim to check the equation:

∃i, j : Pi
K[i,j]−−−→

g
Sj

This alternative is required because we might not be able to construct long enough bicliques

for a meet-in-the-middle attack to cover the whole cipher.

To recover the encryption key using matching with computations, we first choose a small

internal component v (for example one byte of a state) between Pi and Sj . Then, we compute

2d values for:

∀i : Pi
K[i,0]−−−→

g

−→v

and also 2d values for:

∀j :←−v K[0,j]←−−−
g

Sj

All 2 ·2d values are stored in memory. For each K[i, j], i > 0, j > 0, we recompute only those

parts that differ from the precomputed ones and are required to calculate v. The advantage
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of this method depends on the diffusion properties of the block cipher. For AES, the key

schedule has low diffusion, hence, a lot of computation can be skipped in that area.

8.3.3. Independent-Biclique

The independent-biclique approach uses shorter bicliques with higher dimension. To con-

struct such bicliques, we use independent related-key differentials. Further, the key recovery

is done by matching with precomputations since meet-in-the-middle attacks are not possible

due to their limitations in length. The computational advantage of this approach is the high

dimension of the biclique because the biclique has to be constructed only once for every 22d

keys, and d is large. Moreover, the precomputations for the matching part are also only

done once per 22d keys, and thus, they are negligible.

For the independent-biclique approach, the time complexity is calculated according to the

formula:

Cfull = 2k−2d(Cbiclique + Cprecomp + Crecomp + Cfalsepos)

The complexity of the precomputations for the matching is denoted by Cprecomp, and Crecomp

is the complexity for the recomputations of v which depends on the diffusion properties of

the cipher.

Since the biclique construction using independent related-key differentials is rather cheap,

the overall time complexity for this approach is dominated by the recomputation complexity

Crecomp. An additional influence on the time is the size of v since it has a direct impact on

Crecomp and Cprecomp. The memory requirements for this attack are at most 2d computations

of the full cipher which are required for matching with precomputations.

8.4. Biclique Attack on the Full AES-128

In this section, we describe the attack on the full ten rounds of AES-128. We place a

biclique on rounds 8-10 and use matching with precomputations on rounds 1-7 to retrieve

the encryption key.

The first step of the attack is to partition the key space of 2128 possible keys into 2112

groups of 216 keys. Consequently, the biclique we construct has to be of dimension d = 8.

We partition the key space with respect to rk8, which is the key of round 8 (the beginning

of biclique). The base keys (K[0, 0]) for all groups are obtained by fixing rk8[1] and rk8[12]

to zero and enumerating the remaining 14 bytes over all possible values. This yields 2112

base keys, each one defines a different group of keys. To get the keys within a group, we

enumerate i, j ∈ {0, 1, . . . , 255} and add i, j to specific bytes of the group’s base key using

XOR (see Figure 8.3). Specifically, we set:

rk8[1] = rk8[1]⊕ j
rk8[9] = rk8[9]⊕ j
rk8[8] = rk8[8]⊕ i
rk8[12] = rk8[12]⊕ i.
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+

+
rk8

Base key for each key group.
Bytes 1 and 12 are fixed to zero.

i i

j j
rk8

Enumeration of keys
within a group by i, j.

Figure 8.3.: Construction of key groups for the biclique attack on AES-128. The groups are
defined on round key rk8.

Note that although we fixed only two bytes for the base keys, we add i, j to four bytes of

each base key. This is done to get the necessary key differences required for the ∆i and 5j

differential trails.

Now, we construct a 3-round biclique from an independent related-key differential: Ini-

tially, we perform the base computation by setting C0 = 0 and calculating S0 = f−1
K[0,0](C0).

Further, we construct the two sets of differential trails ∆i, 5j by using their corresponding

key difference. More specifically, the ∆i-differentials are based on the key difference ∆K
i of

rk8, and the 5j-differentials are based on 5K
j of rk8. The key difference ∆K

i covers all keys

from the group with j = 0 and i ∈ {0, . . . , 255}. The key difference 5K
j covers all keys

constructed from the base key with i = 0 and j ∈ {0, . . . , 255}. These two key differences

define the two sets of differential trails depicted in Figure 8.4. The combination of both

trails yields the 8-dimensional biclique.

To calculate the values of Sj , we choose ciphertexts Ci according to the ciphertext differ-

ences of ∆i. As shown in Figure 8.4, twelve bytes are active. This would result in 296 possible

ciphertexts when we enumerate the values of all active bytes. However, the values of bytes

10 and 14 of the ciphertext are equal because the key difference of rk10[10] is equal to the

key difference of rk10[14]. Hence, there only are 288 possible ciphertexts. For each of these

288 ciphertexts, we calculate the corresponding value for Sj by using the base computation

for S0 and both differential trails.

8.4.1. Key Recovery

After having constructed the biclique, we retrieve the corresponding plaintexts Pi for all the

ciphertexts Ci and move on to the last step: the key recovery. This is done using matching

with precomputations, where we choose v to be byte 12 of state S3. Then, we perform the 2·2d
precomputations towards v from Pi (−→v ) and Sj (←−v ) and store them in memory. Finally, we

simply have to perform the necessary recomputations for the remaining keys K[i, j], i, j > 0.

The computations from Pi towards −→v are shown in Figure 8.5. These recomputations are

defined by the difference between K[i, j] and K[i, 0] of the base computation. To retrieve the

key difference in rk0, rk1 and rk2, we trace the key differences, used to define the differential

trails on rk8, backwards through the reverse key schedule. Hence, we get a difference in nine

bytes of rk0. Since rk0 is added to S1 by the first AddRoundKey operation, differences are

introduced in state S1 which we can trace towards −→v . In this trace, we consider only bytes

required to calculate −→v . This results in 13 S-Boxes which have to be recomputed.

73



8. BICLIQUE ATTACKS ON AES

S8

S8,ARK

S9

S9,ARK

S10

S10,ARK

CT

S8

S8,ARK

. .

S9

. .

. .

. .

. .

S9,ARK

. .

. .

. .

. . . .

S10

. .

. .

. .

. . . .

S10,ARK

. .

. .

. . . .

. . . .

CT

× × × ×
× × × ×
× × × ×
× × × ×

S8

× ×
× × ×

× ×
× ×

S8,ARK

× ×
× ×

× ×
× ×

S9

× ×S9,ARK

×
S10

×S10,ARK

CT

. .

rk8

.

. . . .

rk9

. .

. . . .

. .

rk10

× ×
rk8

× ×
rk9

×
rk10

rk8

rk9

rk10

SB

SR

MC

SB

SR

MC

SB

SR

SB

SR

MC

SB

SR

MC

SB

SR

SB

SR

MC

SB

SR

MC

SB

SR

∆i-differentials 5j-differentialsbase computation

Figure 8.4.: The differential trails for the biclique attack on AES-128.
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Figure 8.6.: Bytes that need to be recomputed between Sj and ←−v .

For the backward direction from Sj towards ←−v we perform a similar analysis. This time,

the differences between K[i, j] and K[0, j] determine the recomputations. The full trace of

differences is shown in Figure 8.6. It can be seen from this figure that between S6 and S4,ARK

all bytes have to be recomputed. However, overall we only have to evaluate 41 S-Boxes for

each key in backward direction.

8.4.2. Complexity Analysis

As we explained in Section 8.3.3, the time complexity of the independent-biclique approach

is determined by Crecomp. Hence, we perform an accurate analysis of this complexity. We

do this by counting the number of S-Box evaluations in the key schedule and in SubBytes.

From Figure 8.5 and Figure 8.6 we can directly see the active bytes and derive the required

amount of operations. Overall, one recomputation involves 54 S-Box evaluations, which is

equivalent to 3.375 SubBytes operations. The full AES-128 contains 10 SubBytes and its key

schedule another 2.5, thus, overall 10 + 2.5 = 12.5 evaluations of SubBytes. Consequently,

one recomputation is equivalent to 216 · 3.375/12.5 = 214.11 full AES-128 executions. Since

Cbiclique and Cprecomp are both below 28, we assume them to be at most 27; Cfalsepos is

216−8 = 28. The full complexity of this attack is thus:

2112 · (27 + 27 + 214.11 + 28) = 2126.15

The memory complexity is dominated by matching with precomputations, thus, this is

at most 28 computations of rounds 1-7. As mentioned before, the data complexity of the
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attack is 288 chosen plaintexts. The success probability of this attack is 100% because every

possible key from the key space is tested.

8.5. Overview of other Biclique Attacks on AES

In [BKR11], Bogdanov et al. present multiple attacks on all three variants of AES using

bicliques. In this section, we give a short overview of these remaining attacks.

First, bicliques can also be used for attacks on full AES-192 and AES-256. Both attacks

are very similar to the attack on full AES-128 presented in the previous section. The main

differences are in the construction of the biclique because the key schedule of these variants

differs from AES-128. Consequently, also the bytes to be recomputed differ because the

active bytes in the round keys change. However, the overall concept and outline of these

attacks remains the same as both attacks use bicliques constructed from independent related-

key differentials and obtain the key by matching with precomputations. Concerning the

performance, these attacks are also just marginally faster than brute force. The attack on

the full AES-192 has a time complexity of 2189.68, and the attack on AES-256 has a time

complexity of 2254.64.

The second group of attacks follow the long-biclique paradigm. Consequently, these at-

tacks differ greatly from the above independent-biclique attacks since they use interleaving

related-key differentials to construct the bicliques. The key is recovered using meet-in-the-

middle attacks on up to three rounds. Although the long-biclique approach looks promising,

it can not be used to attack the full versions of AES. Thus, the long-biclique attacks pre-

sented in [BKR11] work only on up to eight rounds of AES-128 and up to nine rounds of

AES-256. Moreover, their performance is still only marginally faster than a brute force at-

tack. Additionally, the memory and data requirements are much higher compared to the

independent-biclique attacks. The long-biclique attack on AES-128 has a time complexity

of 2124.97, memory complexity of 2102 and data complexity of 2126.33, which is almost the

entire codebook. The attack on AES-256 has a time complexity of 2253.1, data complexity

of 2120 and very low memory requirements of 28.
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9. Summary

In this part, we have presented three papers describing recent attacks on AES in the single-

key attack scenario. For each attack, we introduced the theoretical background knowledge

and explained the underlying techniques it uses. Furthermore, we gave a detailed description

of each attack and covered the most important extensions or trade-offs that are possible.

The multiset attack continues the series of improvements made to the initial saturation

attack which was published together with the specification of AES. The general concept of

the attack is to take a set of plaintext-ciphertext pairs with specific requirements, guess some

key bytes at the beginning and end of the cipher, and use a distinguisher to filter out wrong

key guesses. In case of the multiset attack, two basic techniques are used: The first is multiset

tabulation, which yields a distinguisher for four full rounds of AES. This distinguisher allows

to enumerate all possible multisets after four rounds, by using only 24 parameter bytes as

input. The second technique is called differential enumeration and aims to fix as many of

these 24 parameters as possible to known values. Thus, this enhancement further reduces

the amount of possible multisets of the distinguisher. Both techniques combined were used

in an attack on 7-round AES-128 with a time and memory complexity of 2113 each.

In the chapter on low data complexity attacks, we covered attacks that aim for minimal

data requirements. We presented multiple techniques and properties of AES that can be used

to construct attacks with low time complexity and low memory requirements. Although the

resulting attacks only allow to attack up to four rounds of AES-128, they can still be used as

building blocks for more sophisticated attacks. One example for this is the known-plaintext

attack on six rounds of AES-128 which we presented in Section 7.3.

With the biclique attack, we presented a technique that was originally created for hash

functions. Bogdanov et al. were the first to modify this tool for the cryptanalysis of block

ciphers and used it to attack AES. We gave a thorough explanation of the techniques used

to construct bicliques and recover the encryption key. We also presented the first attacks on

all variants of AES with the full number of rounds which are faster than brute force and use

bicliques. However, the resulting attacks are only marginally faster than a standard brute

force attack. Thus, they are theoretical attacks only.
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10. Analysis of Single-Key Attacks

One goal of this thesis was to find improvements on the attacks presented above. Since

some of them, for example the low data complexity attacks, work only on AES-128, we

concentrated our improvement efforts on this variant of AES. Moreover, since practical

applicability of related-key attacks is disputed, and the existing attacks in this scenario are

already quite good, we focused on the single-key attack model.

From the attack techniques presented in Part II, we derived our general hypothesis that

combining techniques from LDC attacks with multiset and similar attacks should allow to

improve existing attacks on AES. More specifically, we formulated the following two concrete

hypotheses:

1. Combining an LDC attack with distinguishers like the balanced property, or multiset

tabulation allows to create improved attack.

2. The known-plaintext attack on 6-round AES presented in Section 7.3 can be enhanced

using differential enumeration.

In the course of this chapter we analyze each specific hypothesis and verify if it in fact

delivers an improved attack on AES-128. In Section 10.1 we check Hypothesis 1 by taking a

closer look at the balanced property. To check Hypothesis 2 in Section 10.2, we modify the

6-round attack from Section 7.3 to a chosen-plaintext attack and try to extend it to seven

rounds by using a different LDC attack.

10.1. Combining LDC Attacks with Square-like Distinguishers

Low data complexity attacks are ideal to recover the full encryption key from just a few

rounds of AES by knowing only a minimal amount of plaintexts and their corresponding

ciphertexts. It is possible to construct LDC attacks for up to three rounds of AES such

that the time complexity is still practical. To use these techniques for more than just a few

rounds, other techniques are required to combine them with LDC attacks. For every such

attack, an attacker needs to know the full input and output state for the rounds on which

he applies the LDC attack.

One proposed method to achieve this are differentials. They allow to narrow down the

possible states at the end or beginning of the differential to a fraction of the 2128 overall

possible states. Of course, this is only valid for plaintext-ciphertext pairs that correspond to

that differential. For the known-plaintext attack on 6-round AES-128 from Section 7.3, such

a differential is used on the first four rounds to decrease the number of possible intermediate
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states at the end of the differential to just 264. For each of these possible states, an LDC

attack is applied on the last two rounds to recover the full encryption key.

Our idea is to use other distinguishers like the balanced property from the saturation

attack (see Section 4.2) or the multiset tabulation technique (see Section 6). They too allow

to retrieve certain information about intermediate states. If the distinguisher is placed at

the beginning, then the distinguishing property can be checked two to three rounds before

the end of the cipher. In this section, we analyze if such distinguishers provide enough

information on the intermediate states to combine them with LDC attacks for a new attack

on AES.

10.1.1. Balanced Property

The balanced property covers three rounds. At the beginning there are 256 plaintexts that

differ only in a single byte which takes all possible values. After encrypting these plaintexts

through three rounds, the XOR-sum over all values is zero. We can observe this property for

every single byte separately and it holds with high probability for the correct encryption key

only. Taking the XOR-sum over 256 values and having it result in zero basically means that

each single bit is set to 1 an even number of times. This knowledge allows us to throw away

a few impossible internal states. More specifically, for every bit of a single byte we have a

sequence of 256 bits. There are 2256 · 2−1 = 2255 sequences for which the XOR-sum results

in zero. Thus, for a full byte we get 23 · 2255 = 2258 possible values for a single byte which

satisfies the balanced property. This is only a minor reduction in possible values and hence

still leaves an unacceptable amount of possible states at the end of the balanced property.

As a result, just relying on the balanced property is not feasible. Moreover, it does not admit

to combine this technique with an LDC attack for a feasible attack on AES.

10.1.2. Multiset Tabulation

The multiset tabulation technique is basically a generalization of the balanced property. It

uses 24 bytes to describe all possible sequences a single byte takes after encrypting it through

four full rounds (compared to the actual 256 bytes for a single sequence). This yields 2192

possible sequences for a single byte. Since a state consists of 16 bytes and each byte has 2192

possible sequences, this yields 24 · 2192 = 2196 states. Thus, there are still too many possible

states left, and it is not feasible to perform an LDC attack for each of them. Moreover,

a multiset does not describe the actual values of the sequence, but rather an optimized

representation which makes it hard or even impossible to deduce the actual values of the

intermediate state.

10.1.3. Summary

Since the main reason for these high numbers of possible states are the large amount of

plaintexts used (28), it might be possible to reduce the number of possible intermediate

states by reducing the amount of plaintexts. This does not work for the balanced property,
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AND LDC ATTACKS

but might be possible for the multiset technique and similar methods. However, this would

require to completely redefine the multiset technique.

Overall, none of these distinguishers reduces the amount of possible intermediate states

enough to be usable in combination with an LDC attack. Thus, this disproofs Hypothesis 1

from above.

10.2. Attacking 7-Round AES-128 Using Differential Enumeration

and LDC Attacks

Here, we describe an attack on 7-round AES-128 that works by combining the differential

enumeration technique, developed for the multiset attack, with an LDC attack on three

rounds. Since this attack is very similar to the 6-round known-plaintext attack presented

in Section 7.3, the attack we describe here can also be seen as an extension of the 6-round

attack to seven rounds. However, the difference is that the 7-round attack we present here

is a chosen-plaintext attack.

The basic idea of our 7-round attack is to use an LDC attack on the last three rounds of

the cipher. Thus, state S4,ARK of the 7-round AES-128 algorithm is the input to the LDC

attack. Since this input is in the middle of the cipher, there are 2128 possible values for state

S4,SR we would have to consider. To reduce the amount of possible states and calculate the

values in advance, we use a truncated differential trail on rounds 2-5. The full attack is thus

split into two phases: differential enumeration and the LDC attack. The purpose of the first

phase is to reduce the possible values of the input to second phase (state S4,SR), the LDC

attack.

10.2.1. Differential Enumeration

The first phase of our attack borrows heavily from the differential enumeration technique we

covered in Section 6.4 to get a smaller set of possible intermediate states in S4,SR.

The differential we use to accomplish this is the same as the one used for the multiset

attack, and it is shown in Figure 6.3. The input difference has only one active byte (i.e. byte

0) and all other bytes have zero difference. At the end of the differential, we have exactly

the same requirement: only one active byte and all the others zero. Considering all possible

2128 input states of the differential, there are about 2120 ·215 = 2135 possible pairs that match

the input difference1. Assuming that four rounds of AES behave like a random permutation,

this differential has a probability of 2−120. This means within 2120 randomly chosen pairs,

about one pair is a right pair w.r.t. the differential. Hence, for the whole codebook there

exist about 2135 · 2−120 = 215 right pairs.

Consequently, for a single right pair we know that the amount of possible differences in

state S4 (of the 7-round AES-128) is reduced to 232 · 232 = 264 possible combinations. Thus,

we can use a difference distribution table to get about 264 pairs whose actual values for state

1Consider a set of 28 plaintexts that differ only in a single byte which takes each value exactly once. These

can be used to construct
(
28

2

)
= 215 − 27 possible pairs with a difference only in this active byte.
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S4. Further, we can trace these values through round 4 and compute 264 values for S4,ARK.

Since this state is the input to the LDC attack, we have only 264 possible inputs (instead of

2128) for which we have to run the LDC attack.

10.2.2. Adapting the LDC Attack

The original LDC attack on three rounds which we use here, requires nine known plaintexts

and was covered in Section 7.2.4. For the original LDC attack, we had to initially guess bytes

0, 7, 10 and 13 from the last round key. Since we switched AddRoundKey and MixColumns in

round 2 and 3, we were able to calculate the actual values for column 0 of state S2,ARK. We

calculated a 64-bit difference vector for bi = Si
2,MC[0] and stored all encountered values in a

hash table. The full difference vector was:

b1 ⊕ b2, b1 ⊕ b3, . . . , b1 ⊕ b9.

By performing similar calculations from the plaintext towards S2,MC[0], we got additional

key candidates and filtered them with those stored in the hash table. We kept only key

guesses we encountered in both computations. By repeating this three more times for the

remaining columns, we obtained about 232 key guesses for rk0. For these remaining key

guesses, we used exhaustive search to find the full encryption key. The time complexity of

this attack is about 240 encryptions, the data complexity is 9 known plaintexts, and the

memory complexity is 231 (see also Section 7.2.4 and Figure 7.5).

Now, for the 7-round attack, we use the same LDC attack on the last three rounds.

However, we do not have to switch MixColumns with AddRoundKey on the last round. Since

this is anyways the last round of the full 7-round cipher, there is no MixColumns operation

in this round. Further, we decrease the required inputs states from 9 to 8. To compensate

for this reduction, we build every possible difference from the bytes bi:

b1 ⊕ b2, b1 ⊕ b3, . . . , b1 ⊕ b9, b2 ⊕ b3, b2 ⊕ b4, . . . , b8 ⊕ b9.

These
(

8
2

)
= 28 differences provide a 224-bit filter for the key guesses. In the original

attack we had only a 64-bit filter and were left with overall 232 key guesses to verify. Now,

with the 224-bit filter only a single key guess should remain. The time complexity of the

attack stays the same at about 240 encryptions. However, the memory complexity is slightly

increased to 28 · 232 · 2−4 ≈ 233 128-bit blocks.

10.2.3. The Full Attack

For the full attack, we place the differential from Section 6.4 at rounds 2-5 as shown in

Figure 10.1. This results in at most 264 actual values for the state S4,SR or equally for state

S4,ARK. The latter is the input state of our 3-round LDC attack. In the first phase, we filter

the plaintexts for right pairs w.r.t. the differential in the following way:

1. Encrypt 283 groups of 232 plaintexts (2115 in total) using the oracle. Within each

group, bytes 0, 5, 10 and 15 take all values and all other bytes are constant.
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Figure 10.1.: Our attack on 7-round AES. . indicate known bytes, + shows calculated val-
ues using guessed key material and indicates active bytes of the differential.

2. Use the ciphertexts obtained in the previous step to construct pairs where only bytes

0, 7, 10 and 13 have non-zero differences (bytes marked with + in Figure 10.1). To

achieve this, we use a hash table for each group from Step 1 indexed by bytes 1-6,

8, 9, 11, 12, 14 and 15 of the ciphertext. Since we are able to construct
(

232

2

)
= 263

pairs with the correct plaintext difference for each group, and this is a 96-bit filter, we

should have about 250 of the 283 · 263 = 2146 possible pairs left.

3. Guess four key bytes of the whitening key (rk0) and partially encrypt the corresponding

plaintext bytes.

4. Keep pairs with non-zero difference in S2[0], only. Since three bytes have to be equal,

this leaves 250 · 2−24 = 226 right pairs per key guess.

5. Guess four additional bytes of the last round key (rk7), partially decrypt the corre-

sponding ciphertext bytes and keep only pairs with non-zero difference in S6[0].

6. Thus, only 226 · 2−24 = 4 right pairs per key guess are left.

At this point we know the following:

• There are only 264 pairs of possible internal states in S4,SR, and these possible states

are independent from the key guesses we made.

• For each guess of the 232 · 232 = 264 key guesses we made during the filtering, there

are four pairs (eight ciphertexts) we can use for an LDC attack together with the 264

possible states for S4,SR as input.

• If we build all possible pairs with those eight ciphertexts in state S6 during the LDC

attack, we do not only get a difference in byte 0 but also get a difference in other bytes.

This is because the difference trail we used for filtering the right pair is only valid for

four pairs out of these
(

8
2

)
= 28 pairs. This allows us to use our LDC attack to recover

the full key as this attack requires differences in at least one byte per column of state

S6.
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• We can skip guessing four bytes from the last round key once per LDC attack since

these coincide with the bytes we guessed when filtering the right pairs in the first phase

of our attack.

There is one problem that makes the attack infeasible: For each LDC attack we take four

pairs out of the 264 possible input pairs and we have no knowledge on which of these states

is the matching state for which of the eight ciphertexts under the unknown encryption key.

This is a problem since the LDC attack considers the order of differences when creating the

sequence of differences stored into a hash table. Thus, we have to consider every possible

permutation of those 264 states! This increases the time complexity of our attack drastically

and thus makes it slower than exhaustive search.

10.2.4. Improving the Attack

To solve this problem, we tried to change the LDC attack such that it requires just one pair.

For this purpose, we consider an LDC attack on three rounds that uses just one plaintext-

ciphertext pair. Such an attack was found by Bouillaguet et al. in [BDF12]. The attack

has time and memory complexities of 280 and requires two known plaintexts. In [BDF12]

the number of rounds for this attack is denoted by 2.5 since they assume the third and last

round has no MixColumns operation. This fits our requirements since we place the LDC

attack on the last three rounds.

For our attack we would need to slightly modify the differential enumeration phase that

it only delivers one right pair w.r.t the differential per key guess. To achieve this, we reduce

the number of groups of 232 plaintexts from 283 to 281. For each ciphertext pair, we execute

the LDC attack together with one of the 264 possible internal states. Without considering

any specifics of the LDC attack, like which bytes need a non-zero difference for the attack

to work, we first calculate the approximate overall time complexity of the full attack. The

complexity results in 264 · 264 · 280 = 2208 and is thus still far too high2.

Unless, there exists a not yet discovered LDC attack on three rounds (two full and the last

round) that requires only two plaintexts and has low time complexity and, this attempt to

improve the time complexity of our 7-round attack does not work. Consequently, this also

shows that Hypothesis 2 from above is wrong.

2We have one pair for each one of the 232 ·232 = 264 key guesses (232 for the four bytes of rk0, and 232 for the
last round key) from the filtering phase. Next, we have 264 possible internal states and a time complexity
of 280 encryptions per LDC attack.
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11. Implementation of the Biclique Attack on

AES-128

The full biclique attack on AES-128, which we presented in Chapter 8, has a time complexity

of 2126.15 which is only marginally faster than a standard brute force attack. Normally, when

implementing a theoretical attack, the implementation introduces a certain overhead. This is

mostly due to memory access and other operations that are not directly concerned with the

attack. Since the difference in time complexity between the biclique attack and a brute force

attack is very small, and the biclique attack is generally more complex, it is questionable if

this difference remains.

Only very recently, Bogdanov et al. showed in [BKP+12] that a hardware implementation

of a specifically modified biclique attack is in fact faster than a brute force attack. Compared

to tailored hardware implementations, software implementations have less possibilities for

optimizations since the software runs on a general purpose hardware. The upside of im-

plementing an attack in software is that it does not require special hardware which makes

it cheaper and more accessible. To verify the claim that the biclique attack is faster than

brute force, we believe that in addition to a hardware implementation, also a comparison of

software implementations should be performed. So, the goal for this part of this thesis was

to verify if biclique attack is still faster than brute force when implemented in software.

Here, we present our software implementation of the biclique attack and show that the

biclique attack is indeed also faster than a brute force attack in this scenario. For our

analysis, we also created a highly optimized brute force attack in software. Similarly to

the hardware implementation, we concentrated on targeting AES-128, however, we assume

that for the other variants of AES the results will be similar. In Section 11.1, we take a

look at the modified biclique attack by Bogdanov et al. and their hardware implementation.

For our software implementations we use Intel’s SSE extensions and the AES instruction

set (AES-NI ) which we introduce in Section 11.2. Furthermore, this section also covers a

detailed description of how to achieve optimal performance with these instructions. Sec-

tion 11.3 covers our implementations of the brute force attack and the biclique attack and

their respective performances. Finally, we provide a discussion of the performance results of

our implementations in Section 11.4.

11.1. Hardware Implementation by Bogdanov et al.

In [BKP+12] Bogdanov et al. describe their hardware implementation of the biclique attack

and verify that it is also practically faster than a standard brute force attack. For this

purpose, they modified the biclique attack to reduce its data complexity, and simplified the
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matching phase where the key is recovered. The main difference to the original biclique

attack is that they use only a 2-dimensional biclique that is applied on the first two rounds

instead of the last three rounds. Furthermore, instead of choosing v for the key recovery

as some part of an internal state on the last eight rounds, they choose v to be four bytes

of the ciphertext. This simplifies the matching phase since it is basically just a forward

computation from state S3 to those four bytes of the ciphertext.

First, we describe the theory of the modified attack from [BKP+12]. In addition to the

attack itself, we also give a comparison of each step to a brute force attack on AES. This

provides the basis for the analysis of our software implementations of the biclique and brute

force attack in Section 11.4. For this comparison, we evaluate the complexity of each step

in S-Box computations since this is the most time-consuming operation of an AES round.

Following the theoretical attack, we give an overview of the hardware implementation by

Bogdanov et al. and its performance, especially the performance difference between the

biclique attack and a brute force attack.

Note on figures: All figures in this section show the i-difference as . and the j-difference

as × .

11.1.1. Theoretical Attack

The modified biclique attack targets AES-128. The biclique is placed on the initial two

rounds and the meet-in-the-middle matching to recover the encryption key is done on the

remaining eight rounds. The key space is divided into 2124 groups of 24 keys each. These key

groups are constructed from the initial cipher key rk0 (whitening key) and do not overlap.

The partitioning of the key space defines the dimension d of the biclique which is d = 2.

Biclique Construction

Each key group is constructed from a base key. We retrieve the base keys by setting the two

least significant bits of rk0[0] and rk0[6] to zero (see Figure 11.1) and iterating the remaining

bits of rk0 over all possible values. Hence, bytes 0 and 6 of the base key have the binary

value b = b0b1b2b3b4b500. To get the 16 keys within a key group, we enumerate differences

i, j ∈ {0, . . . , 3} and add them to bytes 0, 4, 6, and 10 of the base key as follows (see also

Figure 11.1):

rk0[0] = rk0[0]⊕ i
rk0[4] = rk0[4]⊕ i
rk0[6] = rk0[6]⊕ j
rk0[10] = rk0[10]⊕ j

.

Similar to the original attack, we use these key differences to construct two differential

trails ∆i and 5j . First, we define two key differences for rk0. The key difference ∆K
i

covers all keys with i ∈ {1, . . . , 3} and j = 0. For the key difference 5K
j , we fix i = 0 and

enumerate j ∈ {1, . . . , 3}. Each of these key differences defines a differential trail, however,
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+

+rk0

Base key for each key group.
Active bytes have the binary

value b = b0b1b2b3b4b500.

i i

j jrk0

Enumeration of keys within
a group by differences i, j.

Figure 11.1.: Partitioning of the key space into groups. Partially zeroed bytes of the base
key are indicated by + .

to get more than one plaintext, we also add differences to the plaintext. The plaintext

difference for each trail corresponds to the key difference of this trail (see Figure 11.2). So,

for the ∆i differential, we add the difference i to bytes 0 and 4 of the plaintext, and for the

5j differential, we add the j-difference to bytes 6 and 10. As shown in Figure 11.2, this also

cancels the key differences introduced by the whitening key, thus, round 1 is the same for

every differential. For each differential trail, we get three values for S3, which we denote by

Si
3 for the ∆i trails, and Sj

3 for the 5j differential.

By combining both differential trails (rightmost trail in Figure 11.2), we get the definition

of the biclique which maps a set of 16 plaintexts to their corresponding values for the state

S3 with the keys of each key group. Note that contrary to the original biclique attack,

both differential trails start with some non-zero difference and end in a non-zero difference.

Moreover, the differential trails are not fully independent from each other because byte 12

of state S3 is active in both trails. However, we are still able to combine both trails with

the independent biclique construction technique (see Section 8.2.1) by considering byte 12

during the combination of both differential trails as described below.

Until here, we have constructed the biclique from two (almost) independent differential

trails. This yields 16 values for S3 by encrypting each one of the 16 plaintexts under the

corresponding key from a key group. Thus, for each key group, we retrieve a different set

of 16 values for S3. This is called precomputation phase, and we have to calculate the full

values for S3 in an effective way. The algorithm is similar to the original biclique attack and

has the following steps for each key group:

1. Perform the base computation by taking the all-zero plaintext and encrypting it with

the base key of the group. Store the resulting value for S3 (S0
3). Moreover, store the

value for rk2 (rk0
2) since we need to calculate the remaining round keys from it for the

meet-in-the-middle matching.

2. Compute the values of Si
3 for every i by adding the key difference ∆K

i to rk0 and

recomputing only the active bytes from the ∆i trail. The inactive bytes are equal to

the base computation. This yields three values for Si
3.

3. Perform the same for every j and the 5j differential to get three values for Sj
3.

4. Combine the values for S0
3 from the base computation, Si

3 from the ∆i differential, and

Sj
3 from the5j differential to get the 16 values for S3 where each corresponds to the one
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of the plaintexts encrypted through the first two rounds under the corresponding round

key. To get the values for rk2, we just add the i, j differences to the corresponding

bytes. This is possible because no S-Box has to be computed for the active key bytes

in the key schedule. Since S3[12] is active in both differential trails, we consider this

byte separately and retrieve its value by calculating Sj
3[12]⊕ i or alternatively Si

3 ⊕ j.

Thus, the advantage of this phase over a standard brute force attack is that we save S-Box

computations by simply combining precomputed values for S3. For a standard brute force

attack, we perform 16 3-round AES computations to get 16 values for S3. Here, we compute

the full three rounds only for the base computation and then recompute only the required

bytes for each differential trail. Moreover, we have to recompute the active bytes of each

trail only three times for i, j ∈ {1, 2, 3}.
There is one possible improvement that enables us to save some S-Box evaluations in the

matching phase: Instead of computing values for S3, we can include the following SubBytes

and ShiftRows operations and compute S3,MC instead. In the base computation, we compute

the S-Box for bytes 5, 7, 9, and 11 (see Figure 11.2), and for each of the differential trails

we compute the S-Box for their corresponding active bytes. This leaves only byte 12, which

we have to compute for all 16 possible values of S3,MC.

Key Recovery

As already described, the matching phase is simplified to match on four bytes of the cipher-

texts. Thus, we first take the 16 plaintexts and retrieve the corresponding ciphertexts from

the encryption oracle. From the output of the biclique (16 values for S3,MC), we then compute

only the required bytes to get the four ciphertext bytes. As shown in Figure 11.3, we compute

the full states from S4 up to S7,MC. From this state on until the ciphertext, we only compute
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the four active bytes. For the resulting four ciphertext bytes, we check if they match the

corresponding ciphertext bytes retrieved from the encryption oracle. If they do, we have a

possible key candidate which we have to verify with one additional plaintext-ciphertext pair.

However, we should get only about one false key candidate per 232 keys.

The advantage of this phase over brute force is that we avoid some S-Box computations

by matching on only four bytes of the ciphertext instead of all 16 bytes.

Complexity of the Attack

Concerning the time complexity, Bogdanov et al. estimated the computation of the 16 values

for S3 using the biclique (precomputation phase) to be at most 0.3 full AES-128 encryptions.

For the matching phase they estimated an effort similar to 7.12 AES-128 encryptions. Thus,

the time complexity is

2124 · (0.3 + 7.12) = 2126.89

AES-128 encryptions to test for all possible keys. Thus, the biclique attack is about 55%

faster than a brute force attack.

However, our calculation yields a slightly higher complexity as that given by Bogdanov

et al.: To get an accurate estimate for the time complexity, we count the amount of S-

Box evaluations that are required for the precomputation and matching phases. In this

count we also include the S-Box evaluations required for the key schedule. Hence, one

standard AES-128 round including the key schedule requires 16 + 4 = 20 S-Box evaluations.

Consequently, one full AES-128 encryption and key expansion requires 200 S-Box evaluations

or 12.5 SubBytes operations.

In the precomputation phase we compute 16 values for state S3,MC. These values are

constructed from the base computation which is the encryption of the all-zero plaintext

through the first two rounds under the base key of a key group. Additionally, we recompute

the active bytes of the differential trails ∆i,5j where i, j ∈ {1, . . . , 3}. The total amount of

S-Box is composed of:

• 2× 4 = 8 S-Box evaluations for the key expansion up to rk2.

• 2× 16 = 32 S-Boxes for computing S0
3 in the base computation.

• 2×3 = 6 S-Boxes for recomputing the active bytes in round 2 of both differential trails

(for all i, j).

• For computing S3,MC, we have to compute 4 S-Boxes for the inactive bytes, 4× 11 = 44

for the active bytes of both differential trails in round 3, and 16 S-Box evaluations for

computing byte 12.

This results in a total of 110 S-Boxes. Computing three AES rounds (incl. the key

schedule) for 16 keys as it would be done in a brute force attack takes 16 · 3 · 20 = 960.

Thus, the precomputation phase is about the same as 0.11 3-round AES-128 encryptions or

equally 0.55 full AES-128 executions.
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The matching phase has to be performed for every one of the 16 keys in a key group. The

total amount of S-Box evaluations per key is made up of:

• 5 × 16 = 80 S-Boxes for the full rounds 4-8. Note that in round 8 we only compute

four output bytes of MixColumns but we still have to compute SubBytes for the full

state before.

• 4 + 4 = 8 S-Boxes for the last two rounds.

• Since we cannot skip any S-Box evaluations of the key schedule, we add another 8×4 =

32 S-Boxes.

This results in a total of 16× 120 = 1920 S-Box evaluations per key group. Since a brute

force attack for 16 keys on seven rounds requires 16·7·20 = 2240 S-Box computations. Hence,

the matching phase is about the same as 0.86 7-round AES-128 encryptions or equally 9.6

full AES-128 executions. The resulting time complexity of the full modified biclique attack

is thus:

2124 · (0.55 + 9.6) = 2127.34.

Consequently, this biclique attack is about 37% faster than a standard brute force attack on

AES-128.

The data complexity is defined by the biclique and thus, equals 24.

11.1.2. Hardware Implementation

For their evaluation of the biclique attack’s performance, Bogdanov et al. implemented a

standard brute force attack and the modified biclique attack from above on FPGAs (more

specifically on the RIVYERA platform with 128 Xilinx Spartan-3 XC3S500 FPGAs). Fur-

thermore, they realized both attack in application-specific integrated circuits (ASICs). Since

the greatest bottleneck in an AES round is the S-Box, they implemented the S-Box with

composite finite field inverters in GF (((22)2)2) [HV06, SM03] which is currently one of the

fastest ways to implement the AES S-Box.

Additionally, to achieve full utilization of every hardware component, they used pipelining

as much as possible. The idea of a pipeline resembles that of a real-world assembly line

by splitting an operation, for example an AES round or S-Box computation, into multiple

stages. These stages are executed in parallel in a time-sliced manner. So, after the first

stage of operation 1 is finished, its output is directly forwarded to stage 2, and while stage

2 is in progress, stage 1 for the next operation is done in parallel. This concept is also used

in CPUs where a single instruction is split into micro-operations (µops).

For their brute force implementation, they used an 11-stage pipeline for one AES round

from which they put ten in series to get the full AES-128 encryption algorithm. The small

size of the full AES logic allowed them to put two encryption cores on each FPGA. Their

reported performance for the brute force attack is 526× 106 keys/s per FPGA.

For the biclique attack, they created two implementations: a conceptual attack which

resembles the theoretical attack, and an inline implementation where the biclique output
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states are computed on-the-fly. The reason for computing the biclique output on-the-fly

was to reduce the memory access which was very high in the conceptual attack. This

achieved a huge increase in performance, and thus, the biclique implementation with on-the-

fly computation is faster than the brute force attack.

To perform the precomputations on-the-fly, they compute the active bytes of differential

trails in parallel to the base computation. The output of the base computation is directly

forwarded to the matching phase, and the bytes for the differential trails are temporarily

stored in memory. The matching phase performs four serialized AES rounds and then

computes the last two rounds for the four necessary bytes only. The verification of key

candidates is performed offline, outside of the FPGAs on a standard CPU. Overall, they

managed to fit four biclique engines on each FPGA and reported a performance of 945×106

keys/s per FPGA.

Overall, this hardware implementation of the biclique attack is about 44% faster than the

brute force attack. However, the main reason for this is that the biclique attack is about a

factor 2 smaller in size of its implementation than the brute force attack. Thus, Bogdanov

et al. were able to fit four biclique cores onto a single FPGA. For the brute force attack,

they could only put two cores onto an FPGA. Consequently, this comparison includes also

the sizes of both implementations. To compare only the performance, we calculate the

performance of a single core: The biclique core is able to test 236.25 × 106 keys/s and a

brute force core tests 263 × 106 keys/s. Which shows that a single biclique core is actually

slower than a brute force core. Hence, this implementation of the biclique attack is mainly

faster because of its smaller size, which allows to fit more cores onto a single FPGA.

11.2. Background on AES-NI and Optimization

For our software implementation we chose to use the Intel AES instruction set AES-NI

because it provides the fastest way to implement AES on a standard CPU and makes the

implementation easier to compare. Moreover, AES-NI gave us an equal basis for the brute

force and biclique implementations since the AES instructions take exactly the same amount

of time for both implementations. In this section we provide an overview of the AES-NI

technology and give an insight into which techniques we used to achieve optimal performance.

11.2.1. Intel AES Instruction Set

The AES-NI extensions were proposed by Intel and are described in [Int10]. The exten-

sions are available on Intel CPUs starting with the x86 micro architecture called Nehalem

(Intel Core family). Additionally, AMD included this extensions into their Bulldozer CPU

architecture. Today, almost all current Sandy Bridge and Ivy Bridge CPUs support AES-NI

which makes it a de facto standard instruction set for desktop computers.

Basically, AES-NI builds atop of Intel’s “single instruction, multiple data” (SIMD) in-

struction extensions called Streaming SIMD Extensions (SSE ) which, in its current ver-

sion SSE4.2, provides 16 128-bit registers with dedicated integer and floating-point instruc-

tions [Int12, Chapters 9-13]. The idea of SIMD is to process a vector of data with a single
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instruction. A simple example is the addition of four independent 32-bit values (a1, a2, a3, a4)

with four other 32-bit values (b1, b2, b3, b4). In SSE it is possible to load both sets of four

values into two 128-bit registers and use the SIMD addition instruction to perform four

32-bit additions (a1 + b1, a2 + b2, a3 + b3, a4 + b4) at once.

For the AES-NI instruction set, Intel integrated certain operations for AES directly into

the hardware, thus, making them faster than any pure software implementation and pro-

viding more security against timing attacks [Int10]. Overall, AES-NI adds the following

operations for key schedule, encryption and decryption:

AESENC, AESDEC performs one full encryption or decryption round, respectively. Both op-

erations take two operands: a round key and an input state. The round key operand

can also be a memory location.

AESENCLAST, AESDECLAST performs the last encryption or decryption round. The operands

are the same as for AESENC.

AESKEYGENASSIST computes the SubWord and RotWord operations required for the key sched-

ule. This is a 3-operand instruction where two operands contain the input values and

the result is stored into the third operand. The full algorithm for this instruction is

shown in Listing 11.1.

AESIMC performs InvMixColumns on the given 128-bit register and stores the result to an-

other 128-bit register.

A full description of all instructions can be found in [Int12, Volume 2].

1 AESKEYGENASSIST(uint32 SRC[4], uint32 DEST[4], uint8 RCON)

2 {

3 uint32 t0, t1;

4

5 t0 = SRC[1];

6 t1 = SRC[3];

7 DEST[0] = SubWord(t0);

8 DEST[1] = RotWord(SubWord(t0)) ^ (uint32)RCON;

9 DEST[2] = SubWord(t1);

10 DEST[3] = RotWord(SubWord(t1)) ^ (uint32)RCON;

11 }

Listing 11.1: The algorithm of the AESKEYGENASSIST instruction. SRC is a 128-bit input
register, RCON a 8-bit constant also given as input, and DEST is the 128-bit
output register.

11.2.2. Optimizing for Performance

Optimizing software implementations for high performance requires some background knowl-

edge on how CPUs operate. Here, we give a short overview of the basic concepts used in
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todays CPUs, and how to gain better performance by using them properly. Most of this

chapter is based on the software optimizations resources provided by Agner Fog in [Fog12b]

and [Fog12c] which provide a good introduction into software optimization for C++, C, and

Assembly.

Measuring performance in seconds or µseconds is not useful, because to reproduce a result,

a CPU with the same clock frequency and architecture would be required. Thus, it is better

to measure performance in CPU cycles which are independent of clock cycle and only depend

in actual CPU architecture. Moreover, for most of the basic instructions the amount of cycles

required for a instruction is the same throughout multiple architectures.

Memory Access

The most important and first step in optimization for speed is to reduce memory access,

because fetching a value from memory requires the CPU to access external resources (RAM)

outside the core and wait for the value to be ready. To reduce the time required for memory

access, CPUs have multiple levels of cache which keep recently fetched values from the RAM

inside the CPU core. Thus, code that requires frequent access to only a small segment of

memory is still very fast because that specific area of the RAM is fetched from the CPU cache.

This idea is also used for table lookup implementations of the AES S-Box. Furthermore,

cache management is done fully automatically by the CPU itself, so there is no need for the

developer to do anything.

Out-of-order Execution

Another technique CPUs perform automatically is out-of-order execution. A good example

where this technique is useful is loading a value from memory into a register. Instead of

waiting for the value to be loaded, out-of-oder execution enables the CPU to perform other

operations that do not require this value. So, the CPU basically has the ability to reorder

the instructions of the program such that the outcome is the same, but a minimal amount

of CPU cycles is wasted with doing nothing.

In this context it is also worth to note that the CPU is able to rename registers as required.

For example, if the same register is used for two independent pieces of code, the CPU can

basically perform one of the pieces with a different (unused) register. This increases the

usage of out-of-order execution. However, out-of-order execution only works to a certain

extend, thus, compilers still take an important role in the optimization process.

Multiple Execution Units

Even before multi-core CPUs, a single CPU core already contained multiple execution units.

Thus, a single CPU could do multiple things at the same time as long as they where in-

dependent from each other and required different execution units. Today, a standard CPU

has at least one floating point addition unit, one floating point multiplication unit, and two

Arithmetic Logic Units (ALUs) for integer operations. As a result, in a single clock cycle

a CPU could perform a floating point addition, a multiplication, and two integer additions
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Instruction
Nehalem Sandy Bridge

Duration Throughput Duration Throughput

AESENC, AESDEC,
5 2 8 4

AESENCLAST, AESDECLAST

AESIMC 5 2 2 2

AESKEYGENASSIST 5 2 8 8

Table 11.1.: The performance of all AES-NI instructions on Nehalem and Sandy Bridge
architectures as measured in [Fog12a]. The ”Throughput” columns list the
reciprocal throughput.

at the same time. Furthermore, there is also at least one dedicated memory read, and one

memory write unit. This is especially important, because memory read and write operations

can thus be done in parallel to other operations. So, in a program with a low amount of

memory operations the memory operations are negligible because they can be done in paral-

lel to other operations on ALUs or floating point units. Naturally, having multiple execution

units also increases the impact of out-of-order execution.

Pipeline Utilization

One CPU feature which we already introduced in the context of the biclique hardware imple-

mentation is pipelining. This is especially important for AES-NI and some SSE instructions

since these instruction normally take more than one CPU cycle. Due to the CPUs ability to

split a single instruction into multiple µops, pipelining allows the CPU to start processing

an SSE instruction before the previous has finished. Obviously, this only works if both in-

structions are independent from each other. To create highly optimized implementations, it

is thus important to know the exact amount of CPU cycles an instruction takes (duration),

and how many cycles have to pass until the next instruction can be scheduled (reciprocal

throughput).

11.2.3. AES-NI Specific Improvements

Since our implementations are mostly concerned with AES, we take a closer look on the

performance of the AES instructions. Table 11.1 lists the duration and reciprocal throughput

for the AES instructions on Nehalem and Sandy Bridge architectures. Since Westmere is

just a 32nm die shrink of Nehalem and Ivy Bridge is a 22nm die shrink of Sandy Bridge, the

performance on these architectures is equal to Nehalem and Sandy Bridge, respectively.

From the table, we can clearly see that in order to use the pipeline effectively, we have

to perform multiple independent encryptions in parallel. This allows us reduce the amount

of cycles for the overall implementation because the instructions overlap each other. For

instance, if we perform four independent AESENC instructions in parallel on a Nehalem CPU,

it would require 5 cycles until the first operation is finished, and after that, every second cycle

another operation finishes. So, in total it requires only eleven cycles for those four operations
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to finish instead of 20 cycles if we do not parallelize them. Interestingly, the AES instructions

are slower in the newer Sandy Bridge architecture. To minimize the impact of this slower

instructions on this architecture, we can performing more independent instructions in parallel

(e.g. 8). Naturally, this is limited by the amount of available 128-bit registers.

For parallel execution, it is further important to consider the performance of SSE in-

structions since they also of require more than one CPU cycle. Moreover, the reciprocal

throughput plays an important role. On the Nehalem architecture it is for example possible

to execute three SSE XOR instruction (PXOR) in a single cycle. However, this works only if

both operands are 128-bit registers. If one of the operands is a memory address, then only

one PXOR instruction can be executed per cycle. Thus, when we have to XOR the same value

(stored in memory) to multiple other values the intuitive way to implement this to use a

memory operand as shown in Listing 11.2. However, this can be improved by first loading

that value from memory to a register and then computing XOR with that register as shown

in Listing 11.3. Since there is one dedicated execution unit for loading values from memory,

this memory operation is negligible.

1 pxor (%rsp), %xmm0

2 pxor (%rsp), %xmm1

3 pxor (%rsp), %xmm2

4 pxor (%rsp), %xmm3

Listing 11.2: Intuitive approach.

1 movdqa (%rsp), %xmm8

2 pxor %xmm8, %xmm0

3 pxor %xmm8, %xmm1

4 pxor %xmm8, %xmm2

5 pxor %xmm8, %xmm3

Listing 11.3: Improved code.

A detailed listing with the performance of all instructions on various CPU architectures

is given in [Fog12a].

On-the-fly Key Expansion

As mentioned before, memory operations take a lot of time until the value is ready, especially,

if the cache is not large enough to hold the whole data that is required. For our brute force

attack and also the biclique attack, we have to perform the key schedule for every key we test.

Compared with standard implementations of AES where the key practically never changes

or at least changes only rarely, this introduces additional computations. Thus, we analyzed

the impact of two approaches for computing the key schedule: on-the-fly computation or

precomputation. The precomputation variant is the standard approach to compute the key

schedule. At first, we execute the full key schedule, then, store the round keys to memory, and

finally run the full encryption algorithm. This way, we have additional memory operations

for writing the round keys to memory and loading them again afterwards.

The on-the-fly approach tries to minimize memory access, by keeping the current round

key in a register and computing the next round key shortly before it is required. We basically

alternate between one key schedule round and one encryption round where the just computed

round key is used. Listing 11.4 shows this for four keys in parallel. Since we test multiple

keys in parallel, the amount of required memory operations depends on the number of keys.
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1 int i;

2 uint128 keys[4], states[4], tmp;

3

4 /*

5 * Full 9 rounds with on-the-fly key expansion

6 * and 4 keys in parallel.

7 */

8 for (i = 0; i < 9; i++) {

9 key_schedule_round(keys[0], tmp);

10 key_schedule_round(keys[1], tmp);

11 key_schedule_round(keys[2], tmp);

12 key_schedule_round(keys[3], tmp);

13 encrypt_round(states[0], keys[0]);

14 encrypt_round(states[1], keys[1]);

15 encrypt_round(states[2], keys[2]);

16 encrypt_round(states[3], keys[3]);

17 }

Listing 11.4: On-the-fly key expansion for four keys in parallel.

For testing four keys in parallel it is possible to create a memory-less implementation since

there are enough register available. When testing more than that, for example eight keys in

parallel, we require memory operations regardless of using the on-the-fly or precomputation

approach. The reason for this is that for computing one key schedule round, we require at

least one additional temporary 128-bit register. Our evaluations showed that in most cases

the on-the-fly computation is faster than the precomputation approach.

Reducing AESKEYGENASSIST Instructions

To increase the performance for the key schedule even further, we optimized the usage of the

AESKEYGENASSIST instruction. As shown in Listing 11.1 this operation computes SubWord

and RotWord for two 32-bit words. Normally, we would just use one of those results when

running the key schedule for a single key. However, since we execute the key schedule for

four or more independent keys in parallel, we can use this property to half the amount of

AESKEYGENASSIST instructions. As this is the most time expensive operation of the key

schedule (the other operations are just byte-shuffle and XOR instructions), this yields a great

performance boost.

Nevertheless, this improvement adds a few additional byte-shuffle and XOR instructions to

assemble the input for AESKEYGENASSIST and extract the resulting output values. Despite

of this additional instructions, this modification still improves the key schedule. Especially

on the Sandy Bridge architecture the gain is higher, because the AES instruction takes 8

cycles. Overall this improvement saves about 9 cycles on Nehalem and about 17 cycles on

Sandy Bridge CPUs. For the full code of the key schedule see Appendix A.
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AVX Extensions

Starting with the Sandy Bridge CPU generation, the AVX extension provides even larger

registers that are 256 bits wide. Furthermore, the data path has been extended from 128

bits to 256 bits, thus, AVX allows most of the SSE instruction to become non-destructive,

because before AVX most SSE instructions wrote their result to one of the input registers.

AVX introduced new versions for almost every SSE instruction which accept an additional

operand where the result of the instruction is stored without altering the input registers.

For our implementations we did not use the 256-bit registers because the AES instructions

only operate on the lower 128 bits and ignore the upper 128 bits of those registers. However,

we used the non-destructive instructions where possible to safe most of the mov instructions.

11.3. Software Implementation

For comparison and to find the optimal implementation, we created two sets of implemen-

tations for the brute force attack and the biclique attack:

• C implementations with the use of intrinsic functions.

• Assembly (ASM) implementations in the x86 assembly language to avoid any subop-

timal influences by a compiler.

Intrinsic functions are a set of functions which are directly translated to their corresponding

CPU instruction by the compiler. This allows us to use the AES-NI instructions within a

C program and, moreover, gives us access to other SSE instructions. The idea for our

implementations in C is to use the compiler’s optimization routines and at the same time

avoid memory access by using SSE instructions as much as possible. This way, we do not

have to care about the amount of available 128-bit registers because the compiler takes

care of that. For the assembly implementations, we had full control over the optimization

process which allowed us to reduce the memory access as much as possible. Our goal for

both approaches was to achieve very high utilization of the CPU pipeline.

11.3.1. Test Environment

Since AES-NI performs differently on Nehalem and Sandy Bridge architectures, we tested

our implementations on two test systems:

• Westmere: MacBook Pro with Intel Core i7 620M, running Ubuntu 11.10 and gcc

4.6.1

• Sandy Bridge: Google Chromebox with Intel Core i5 2450M, running Ubuntu 12.04

and gcc 4.6.3

On both systems we tested our implementations without running X11, and for the C imple-

mentations we used the following compiler flags: -march=native -O3 -finline-functions

-fomit-frame-pointer -funroll-loops.
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For measuring the CPU cycles, we used Intel’s time stamp counter which can be read

with a specific instruction and returns the number of elapsed cycles since its last reset. To

measure the performance of our implementations, we read the time stamp counter on each

iteration of our main loop and stored the values into a buffer. At the end, we took the

median of all samples and calculated the CPU cycles per encrypted byte (cycles/byte). This

is the unit for all measurements we give in the remainder of this chapter. For more details

on the time stamp counter and sample code, see Appendix B.

11.3.2. Brute Force Reference Implementation

The implementation of our reference brute force attack is quite straight forward. Although,

to find the best implementation, we evaluated various approaches. The basic variant tests

eight keys in parallel which means that in the main loop we perform key schedule and

encryption for eight keys at once. For the intrinsics variant, we compute the key schedule

on-the-fly. Since we require at least one temporary register per key for one round of the key

schedule, and there are only 16 128-bit registers, we do not have enough registers to avoid

all memory read and write operations.

The alternative to this is to perform the full key schedule first, store the round keys in

memory and then perform the full encryption. We used this approach for the assembly

implementation to verify our tests that the on-the-fly approach is faster in most cases.

Since the memory operations have a large influence on a programs performance, we also

created a fully memory-less implementation of the brute force attack. To do this, we reduced

the amount of keys we test in parallel from eight to four. Thus, we have enough registers

available to hold the current states and expand the round keys on-the-fly.

The full performance measurements for all implementations are shown in Table 11.2. The

8x variants test eight keys in parallel but require memory access, and the 4x variants test four

keys in parallel without any memory access. The table shows nicely that the memory-less

implementation can in fact be faster under certain circumstances. Overall, the performance

of a implementation depends highly on the duration of the AES instructions. On the Sandy

Bridge architecture, the instructions take longer, thus, testing only four keys in parallel does

not utilize the CPU pipeline optimally.

Interestingly, the 8x C implementation is the overall fastest on the Sandy Bridge archi-

tecture. This can be explained by compiler optimizations since the compiler rearranges the

instructions to use possibly few CPU cycles. Note that the 8x C and ASM implementa-

tions are not directly comparable since in the assembly implementations we run the full key

expansion before the encryption and in the C implementation we execute the key schedule

rounds on-the-fly.

If AVX is available, it additionally allows to safe some mov instructions because the non-

destructive SSE instructions can be used. However, this has no drastic impact on the results.

Note that our C implementations automatically us the AVX instructions if they are available

on the target architecture.
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Approach Westmere Sandy Bridge

C, 4x 3.09 3.80

ASM, 4x 3.00 3.80

ASM-AVX, 4x - 3.80

C, 8x 3.86 3.45

ASM, 8x 3.40 3.95

ASM-AVX, 8x - 3.93

Table 11.2.: Performance measurements for the various software implementations of the
brute force attack. All values are given in cycles/byte.

11.3.3. Biclique Implementation

Instead of implementing the original biclique attack in software, we chose to implement the

modified biclique attack by Bogdanov et al. as covered in Section 11.1. The main reason

for this is the low data complexity of the attack with only 16 plaintext-ciphertext pairs.

Additionally, the matching phase of the attack is simpler than in the original attack since

it is performed on four ciphertext bytes. This modifications allowed us to implement the

attack with almost no memory operations. The only difference from the theoretical attack

to our implementation is that we compute the biclique only to state S3 and not S3,MC due to

limitations of AES-NI.

Since the biclique attack considers groups of 16 keys, our main loop consists of three steps:

1. Precompute values for S0
3 , rk2 and active bytes of Si

3, Sj
3.

2. Combine the precomputed bytes to 16 values for the full state S3.

3. Encrypt the remaining rounds and match with the ciphertexts from the encryption

oracle.

Since we have to compute five full encryption rounds and two reduced rounds for Step

3, this is the most time expensive step. For this reason, we concentrated on improving the

performance of this step (matching phase) by creating two variants, similar to the brute

force attack. For the first variant, we match four keys in parallel (4x) and use a minimal

amount of memory operations. For the second variant we test eight keys in parallel (8x) to

achieve higher utilization of the CPU pipeline, but risk more memory accesses. For both

variants we compute the key schedule on-the-fly because it yields faster code.

In general, our implementations of the biclique attack are very close the theoretical attack.

However, since we use Intel’s AES instructions, it is not possible to recompute only the

required bytes in every case. This is due to the fact that the AES instructions only operate

on full 128-bit states and there are no instructions for single bytes. Thus, we often compute

one round for the full state although we would only need to compute it for a few bytes.

This is mainly the case in the matching phase where we compute the full round 8 instead of

computing MixColumns the four required bytes only.
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Approach Westmere Sandy Bridge

C, 4x 2.71 3.18

ASM, 4x 2.61 3.24

ASM-AVX, 4x - 3.21

C, 8x 3.41 3.39

Table 11.3.: Performance measurements for the various software implementations of the
biclique attack given in cycles/byte.

The limitations of AES-NI are also the reason why we did not extend the precomputation

phase to S3,MC as proposed for the modified biclique attack. Let us consider this in more detail:

The fastest way to compute SubBytes for a full state using AES-NI is to use AESENCLAST

with an all-zero round key and apply InvShiftRows1 afterwards. Since AESENCLAST alone

has the same performance as AESENC, computing only SubBytes would take more time than

to just compute a full round. Hence, we start the matching phase with state S3 and compute

the full round 3 for every key of the group.

Overall, for the full matching phase (4x and 8x variants) we compute six full rounds with

AESENC and then compute the remaining two rounds as reduced rounds. For a reduced round

we collect the required bytes of four states into one 128-bit register and use again the AES

instructions to compute the round. Therefore, the sole advantage of the matching phase

over brute force is that the last two rounds are computed for the required four bytes only.

Similar to the brute force implementations, we created the 4x and 8x variants in C with

the use of intrinsics. Further, we implemented the 4x variant directly in x86 assembly. For

the 4x assembly implementation we were able to create an almost memory-less variant which

requires only four memory read and four memory write operations per key group. More-

over, pipelining and out-of-order execution take care that these operations are negligible.

Therefore, the 4x assembly implementation yields the best performance on the Westmere

architecture.

The full performance results for our implementations of the biclique attack are shown

in Table 11.3. The 4x assembly implementation is slightly slower on the Sandy Bridge

architecture due to longer execution times for the AES instructions. Generally, for the

biclique attack the 4x variants yield better results on both architectures, although, the 8x

variant is only slightly slower. When we compare the 4x variants, we nicely see the limitations

of out-of-order execution. The C variant is the fastest because the compiler rearranges the

instructions, although the compiler generates about the same amount of memory access and

AES instructions as our assembly implementations use.

1This can be done by a simple SSE byte-shuffle instruction.
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Attack Westmere Sandy Bridge

Brute Force 3.00 3.45

Biclique 2.61 3.18

Biclique faster by 13% 8%

Table 11.4.: Performance results for the biclique attack and the brute force attack.

11.4. Performance Results

Table 11.4 lists the best performance results for the biclique attack and the brute force

reference attack on both of our test platforms. We can clearly see that the biclique attack is

faster than the brute force attack in all scenarios. The average difference is 0.33 cycles/byte

or 5.28 cycles per key. Thus, the biclique attack is on average about 10.5% faster than the

brute force attack. Further, if we take the performance of the brute force attack as baseline

for the time complexity of 2128, our software implementation of the biclique attack has an

average time complexity of about 2127.84. This strengthens the claim that the biclique attack

is faster than a standard brute force attack, although, only very slightly.

To compute the performance in keys/s, we assume a recent CPU with four cores and a

clock frequency of 2.80 GHz. Since our implementation uses only a single CPU core, we

can run four biclique attacks in parallel. Hence, the implementation of the biclique attack

achieves a performance of 268 · 106 keys/s, and for the brute force implementation we get

233 · 106 keys/s.

It is evident for these results that the difference in performance between brute force and

biclique attack for the software implementations is far less distinct than for the hardware

implementation. As mentioned before, the advantage of the biclique attack in hardware is

mainly due to its smaller size. In the software setting, we completely ignore the code size of

the implementations as they do not have an impact on the performance. For the software

implementation of the brute force attack it is also worth to note that we here too used

the improvements on AES-NI from Section 11.2.3. Thus, our brute force attack is not a

completely standard brute force attack, but also a highly optimized implementation of this

attack.

Moreover, there is one factor that actually reduces the performance of the biclique at-

tack in software: AES-NI. As we have shown for the theoretical modified biclique attack,

the precomputation phase requires only an equivalent of 0.55 AES-128 encryptions, and

the matching phase requires about 9.6 AES-128 encryptions. Together, this results in an

equivalent of 10.15 AES-128 encryptions for 16 keys. However, since the AES instruction

set provides only instructions on full states, we loose some of this advantage. For example,

we did not run the precomputations up to state S3,MC. Thus, our implementation is actually

closer to 14 AES-128 encryptions. Nevertheless, AES-NI provided an equal basis for a fair

comparison of both implementations.
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To use all advantages of the biclique attack, it would be interesting to create a software

implementation of the biclique attack without the use of AES-NI. This way, it might be

possible to get closer the the theoretical 10.55 equivalent AES-128 encryptions.
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This thesis was devoted to attacks on the widely used block cipher AES. As there have been

multiple publications concerning new attacks on AES in recent years, we analyzed three of

these attacks in full detail. For our analysis we concentrated on the single-key attack model.

Single-key attacks are one of the most common attacks since they have a wide range of

practical applications.

In Part I, we provided the basic preliminary information on the block cipher AES and its

round transformations. Moreover, we introduced the two most common forms of cryptanal-

ysis, namely linear cryptanalysis and differential cryptanalysis. Since this thesis focuses on

attacking AES, we also provided a detailed description of the security mechanisms AES uses

against common forms of cryptanalysis.

Part II concentrated on three prominent recent attacks. The first attack was the multiset

attack. It is basically an improvement of the saturation attack that was published together

with the initial specification for AES. A previous improved version of the saturation attack

applied to 6-round AES with a time complexity of 244. For seven rounds, the saturation

attack is only marginally faster than a brute force attack. The described multiset attack

improved this and makes it possible to attack all AES variants with seven rounds with a

time complexity of 2103 encryptions.

Next, we presented a completely different approach for attacks on AES, namely low data

complexity attacks. This kind of attacks are less concerned with the amount of rounds that

can be attack, but focus more on minimal data requirements. A great example for a low data

complexity attack is the attack on two full AES rounds which we presented in Section 7.2.3.

This attack requires only two chosen plaintexts. Moreover, it enables an attacker to retrieve

the full encryption key with a time complexity of only 28 2-round AES encryptions.

The third recent attack on AES was the biclique attack by Bogdanov et al. This is the

first attack to apply to the full versions of all three AES variants. More importantly, this

attack is a single-key attack, which is less restrictive and more closely related to real-world

applications than related-key attacks. Since bicliques were originally used for cryptanalysis

of hash functions, we also presented the techniques developed by Bogdanov et al. to use

bicliques for cryptanalysis of block ciphers. Although the resulting attacks apply to the full

number of rounds, their time complexity is only marginally faster than a standard brute

force attack. Thus, this attack is far from any feasible application.

Our contributions are collected in Part III, which covers our efforts for new, improved

attacks in Chapter 10. For our analysis we focused on attacking AES-128 by combining

techniques from multiple recent attacks, especially low data complexity attacks. Although

our analysis of recent attacks did not yield new attacks or improvements, this provides a

proper documentation of our efforts for future reference.
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Moreover, Part III covered the second goal of this thesis, which was to verify the claimed

time complexity of the biclique attack. Only very recently, Bogdanov et al. presented their

hardware implementation of this attack to verify its claimed performance. We covered their

results and theoretical attack in Section 11.1. Moreover, we showed that their implementa-

tion of the biclique attack gains its advantage over the brute force attack mainly through

smaller size on hardware.

Since dedicated hardware is expensive and also allows more fine-grained improvements

than software implementations, we aimed to verify the claimed performance in software. In

Chapter 11, we provided a detailed description of how we implemented the biclique attack

on AES-128 in software. In that context, we first gave an overview of software optimization

techniques, as well as a thorough introduction into Intel’s AES-NI extensions which we used

for our software implementation. Further, we documented our extensive comparison between

the implementations of the biclique attack and the brute force attack. Our highly optimized

implementations of these attacks also reflect the claimed advantage of the biclique attack

over exhaustive key search. On average, our biclique attack achieves a throughput of about

268× 106 keys/s on a standard desktop computer which is about 10.5% of the performance

our brute force attack on the same platform achieves.

Our intensive analysis of the biclique attack has shown that it gains its advantage over

exhaustive key search in two main areas: The fast enumeration of intermediate states by a

biclique, and the reduced matching in only four bytes. As shown, this does not threaten the

security of AES since the attack is only slightly faster than exhaustive key search. In fact,

we claim that the biclique attack itself is more closely related to a highly optimized brute

force attack than to the other attacks presented in this thesis. The matching phase is a good

indication for this as it save computations by simply reducing the amount of bytes on which

it matches the ciphertexts from 16 to 4. This does not use any specific properties of AES

and can easily be done for the brute force attack on any other block cipher.

Overall, none of the presented attacks really threatens the practical security of AES as

the cipher still has a large enough security margin to make these attacks infeasible on the

full number of rounds. As finding new and better attacks becomes harder, we believe that

AES will remain a secure cipher in the foreseeable future. However, we also believe with

the continuous increase in computing power, the invention of new technology and the im-

provements of attack techniques, the current security margin of AES will still be reduced

further.
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In this chapter, we take a closer look on the AES key schedule algorithm and its improved

implementation for the biclique attack and brute force attack in C using AES-NI.

A.1. Pseudo Code for Key Schedule Algorithm

1 KeyExpansion(uint32 CipherKey[Nk],

2 uint32 ExpandedKey[4*(Nr+1)])

3 {

4 uint32 tmp; // 32 bit unsigned integer (4 bytes)

5

6 // copy over initial cipher key

7 for (i=0; i<Nk; i++) {

8 ExpandedKey[i] = CipherKey[i];

9 }

10 // expand round keys

11 for (i=Nk; i<4*(Nr+1)) {

12 // previous column

13 tmp = ExpandedKey[i-1];

14 if (i % Nk == 0) {

15 // column 0 (first) of each round key

16 tmp = SubWord(RotWord(tmp)) ^ Rcon[i/Nk];

17 } else if ((Nk > 6) && (i % Nk == 4)) {

18 // special case for column 4 (AES-256 only)

19 tmp = SubWord(tmp);

20 }

21 ExpandedKey[i] = ExpandedKey[i-Nk] ^ tmp;

22 }

23 }

Listing A.1: The key schedule given in C-pseudo code. The ^ sign denotes bitwise XOR and
% denotes modulo.

Listing A.1 gives a C-like pseudo code description of the key schedule algorithm. Initially

cipher key copied to output array (Nk*4 bytes). Then we calculate the first column of each

round key by taking column i-1 (last one of the previous round key) and applying the S-Box

to the rotated column. Afterwards we XOR it with the round constant for this key schedule

round Rcon[i/Nk]. For all other columns we just take the previous columns and do not
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apply anything to it. Finally in line 22 we add the same column of the previous round key

to get the new value for the current column.

A.2. AES-NI Implementation

1 /*

2 * 1 round of AES-128 key schedule for a single key.

3 */

4 #define aesni_expand_key_rnd(rk, rcon, tmp0, tmp1) do { \

5 tmp1 = _mm_set1_epi16(0); \

6 tmp0 = _mm_aeskeygenassist_si128(rk, rcon); \

7 tmp0 = _mm_shuffle_epi32(tmp0, 255); /* 11111111 */ \

8 tmp1 = (__m128i)_mm_shuffle_ps((__m128)tmp1, \

9 (__m128)rk, 16); /* 00010000 */ \

10 rk = _mm_xor_si128(tmp1, rk); \

11 tmp1 = (__m128i)_mm_shuffle_ps((__m128)tmp1, \

12 (__m128)rk, 140); /* 10001100 */ \

13 rk = _mm_xor_si128(tmp1, rk); \

14 rk = _mm_xor_si128(tmp0, rk); \

15 } while(0)

Listing A.2: C-macro for one round of the AES key schedule using AES-NI intrinsic
functions.
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1 /*

2 * 1 round of AES-128 key schedule for 4 keys in parallel.

3 * Enhanced to use only 2 AESKEYGENASSIST instructions.

4 */

5 #define expand_key_4(rcon,k0,k1,k2,k3,t0,t1,t2,t3,t4,t5) do { \

6 t0 = _mm_set1_epi16(0); \

7 t1 = _mm_set1_epi16(0); \

8 t2 = _mm_set1_epi16(0); \

9 t3 = _mm_set1_epi16(0); \

10 t4 = (__m128i)_mm_shuffle_ps((__m128)k0, (__m128)k2, 204); \

11 t5 = (__m128i)_mm_shuffle_ps((__m128)k1, (__m128)k3, 204); \

12 /* keygenassist for 2 keys at once: bytes

13 15-12 for k2,k3 and bytes 7-4 for k0,k1 */ \

14 t4 = _mm_aeskeygenassist_si128(t4, rcon); \

15 t5 = _mm_aeskeygenassist_si128(t5, rcon); \

16 /* xor key bytes */ \

17 t0 = (__m128i)_mm_shuffle_ps((__m128)t0, (__m128)k0, 16); \

18 t1 = (__m128i)_mm_shuffle_ps((__m128)t1, (__m128)k1, 16); \

19 t2 = (__m128i)_mm_shuffle_ps((__m128)t2, (__m128)k2, 16); \

20 t3 = (__m128i)_mm_shuffle_ps((__m128)t3, (__m128)k3, 16); \

21 k0 = _mm_xor_si128(t0, k0); \

22 k1 = _mm_xor_si128(t1, k1); \

23 k2 = _mm_xor_si128(t2, k2); \

24 k3 = _mm_xor_si128(t3, k3); \

25 t0 = (__m128i)_mm_shuffle_ps((__m128)t0, (__m128)k0, 140); \

26 t1 = (__m128i)_mm_shuffle_ps((__m128)t1, (__m128)k1, 140); \

27 t2 = (__m128i)_mm_shuffle_ps((__m128)t2, (__m128)k2, 140); \

28 t3 = (__m128i)_mm_shuffle_ps((__m128)t3, (__m128)k3, 140); \

29 k0 = _mm_xor_si128(t0, k0); \

30 k1 = _mm_xor_si128(t1, k1); \

31 k2 = _mm_xor_si128(t2, k2); \

32 k3 = _mm_xor_si128(t3, k3); \

33 /* extract result of keygenassist and xor with k0-k3 */ \

34 t0 = _mm_shuffle_epi32(t4, 85); \

35 t1 = _mm_shuffle_epi32(t5, 85); \

36 t2 = _mm_shuffle_epi32(t4, 255); \

37 t3 = _mm_shuffle_epi32(t5, 255); \

38 k0 = _mm_xor_si128(t0, k0); \

39 k1 = _mm_xor_si128(t1, k1); \

40 k2 = _mm_xor_si128(t2, k2); \

41 k3 = _mm_xor_si128(t3, k3); \

42 } while(0)

Listing A.3: C-macro for one the key schedule round with four keys in parallel.
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The simplest method the get performance measurements for software running on the x86

micro-architecture is to use the CPU’s time stamp counter. This counter delivers the number

of CPU cycles which have elapsed since it has last been reset. Measuring in CPU cycles

provides an advantage over measuring performance in time because the measurements are

independent from the CPU’s clock frequency.

B.1. The Time Stamp Counter

The time stamp counter was introduces with Intel’s first Pentium processors. The current

counter value is a 64-bit unsigned integer value which can be retrieved using the CPU

instruction rdtsc. Since the Pentium processors had only 32-bit registers, the values was

stores in two registers. EDX holds the upper 32 bits and EAX the lower 32 bits. With the

introduction of 64-bit CPUs Intel choose to keep compatibility with older CPUs and did not

modify this behavior. However, on 64-bit processors the upper 32 bits of RAX are cleared.

Since todays processors have multiple CPU cores this instruction has to be used more

carefully because the operating system has control over which process runs on which core.

Moreover, the operating system can move the execution of a single process (also single-thread

processes) from one core to another while the program is running. This presents a problem

for programs that use the time stamp counter since each core has its own counter which is

not synchronized across the other CPU cores. To overcome this problem, a program has to

be locked to a single core. This was easily achieved for our programs because they had only

a single execution thread. Thus, we could simply assign each program a single CPU core

using the taskset provided by Linux.

Another set of features that influence the correctness of the rdtsc instruction are

power-saving features. A CPU can for example dynamically reduce the clock frequency

of each core if the CPU load is currently low. If any power-saving feature is enabled,

the results of the time stamp counter are undefined. Hence, it is required to disable

all power-saving features before the measurement process. On Linux, this can sim-

ply be done by executing the following command for each core: echo performance >

/sys/devices/system/cpu/cpu<id>/cpufreq/scaling governor (replace <id> with

the zero-based number of the core).
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B.2. Measurement Process

For our measurements, we collected a time stamp counter reading at the beginning of each

iteration of the programs main loop. We used a buffer to store the last 1024 counter readings.

At the end of our program, we took the median value of these 1024 samples and used it as

the average performance. The advantage of taking the median value instead of computing

the overall average value is that it yields a more stable measurement.

Since reading the current value from time stamp counter adds an additional instruction

introduces a certain overhead. To eliminate the measurement overhead, we first measure the

amount of cycles the rdtsc instruction requires and subtract this overhead in the end.

The full C-macro for taking performance measurements using CPU cycles is shown in

Listing B.1.
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1 #define CYCLE_SAMPLE_COUNT 1024

2

3 #define cpucycles(CYCLES) __asm__ \

4 volatile("rdtsc; shlq $32,%%rdx; orq %%rdx,%%rax"

5 : "=a" (CYCLES)

6 :: "%rdx");

7

8 #define cpucycles_start(CYCLES) cpucycles(CYCLES)

9

10 #define cpucycles_stop(CYCLES, overhead) do { \

11 uint64_t tmp; \

12 cpucycles(tmp); \

13 CYCLES = tmp - CYCLES - overhead; \

14 } while (0)

15

16 /*

17 Measures overhead introduced by cpucycles and

18 stores it into given variable "overhead".

19 */

20 #define OVERHEAD_LOOPS 100

21 #define measure_overhead(overhead) do { \

22 int i; \

23 uint64_t cycles[OVERHEAD_LOOPS]; \

24 for (i=0; i < OVERHEAD_LOOPS; i++) { \

25 cpucycles_start(cycles[i]); \

26 cpucycles_stop(cycles[i], 0); \

27 } \

28 median(cycles, OVERHEAD_LOOPS, overhead); \

29 } while (0)

30

31

32 /*

33 Calculates the differences between consecutive

34 elements of an array with cpucycle(...) samples.

35 The resulting differences are stored inplace,

36 thus replacing the sample values.

37 */

38 #define cycle_diffs(cycles, len, overhead) do { \

39 int i; \

40 for (i=0; i < len-1; i++) { \

41 cycles[i] = cycles[i+1] - cycles[i] - overhead; \

42 } \

43 cycles[len-1] = cycles[len-2]; \

44 } while(0)

Listing B.1: C-macro for measuring CPU cycles and calculating the measurement overhead.
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[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A Meet-in-the-Middle Attack on 8-Round

AES. In FSE, pages 116–126, 2008.

124

http://2012.sharcs.org/record.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/


BIBLIOGRAPHY

[FKL+00] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David

Wagner, and Doug Whiting. Improved Cryptanalysis of Rijndael. In FSE, pages

213–230, 2000.

[Fog12a] Agner Fog. Instruction tables – Lists of instruction latencies, throughputs and

micro-operation breakdowns for Intel, AMD and VIA CPUs. http://www.

agner.org/optimize/instruction_tables.pdf, 2012. Accessed 2012-09-02.

[Fog12b] Agner Fog. Optimizing software in C++: An optimization guide for Windows,

Linux and Mac platforms. http://www.agner.org/optimize/instruction_

tables.pdf, 2012. Accessed 2012-09-02.

[Fog12c] Agner Fog. Optimizing subroutines in assembly language: An optimization guide

for x86 platforms. http://www.agner.org/optimize/instruction_tables.

pdf, 2012. Accessed 2012-09-02.

[Fou98] Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research,

Wiretap Politics and Chip Design. O’Reilly Media, September 1998.

[GM00] Henri Gilbert and Marine Minier. A Collision Attack on 7 Rounds of Rijndael.

In AES Candidate Conference, pages 230–241, 2000.

[HV06] Alireza Hodjat and Ingrid Verbauwhede. Area-Throughput Trade-Offs for Fully

Pipelined 30 to 70 Gbits/s AES Processors. IEEE Trans. Computers, 55(4):366–

372, 2006.

[Int10] Intel Corporation. Intel R© Advanced Encryption Standard (AES) Instruction Set,

White Paper. Technical report, Intel Mobility Group, Israel Development Center,

Israel, January 2010.

[Int12] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s Man-

ual. Intel Corporation, March 2012.

[Kho10] Dmitry Khovratovich. New Approaches to the Cryptanalysis of Symmetric Prim-

itives. PhD thesis, University of Luxembourg, 2010.

[KKS00] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified Boomerang At-

tacks Against Reduced-Round MARS and Serpent. In FSE, pages 75–93, 2000.

[Knu92] Lars R. Knudsen. Cryptanalysis of LOKI91. In AUSCRYPT, Lecture Notes in

Computer Science, pages 196–208. Springer, 1992.

[Knu94] Lars R. Knudsen. Truncated and Higher Order Differentials. In Fast Software

Encryption: Second International Workshop, Lecture Notes in Computer Science,

pages 196–211. Springer, 1994.

[Knu98] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical

Algorithms, 2nd Edition. Addison-Wesley, 1998.

125

http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf


BIBLIOGRAPHY

[KRS11] Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques

for Preimages: Attacks on Skein-512 and the SHA-2 family. IACR Cryptology

ePrint Archive, 2011:286, 2011.

[KS99] John Kelsey and Bruce Schneier. Key-Schedule Cryptanalysis of DEAL. In

Selected Areas in Cryptography, pages 118–134, 1999.

[KSW96] John Kelsey, Bruce Schneier, and David Wagner. Key-Schedule Cryptoanalysis

of IDEA, G-DES, GOST, SAFER, and Triple-DES. In CRYPTO, Lecture Notes

in Computer Science, pages 237–251. Springer, 1996.

[LDKK08] Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New Impossible

Differential Attacks on AES. In INDOCRYPT, pages 279–293, 2008.

[Mat93] Mitsuru Matsui. Linear Cryptoanalysis Method for DES Cipher. In EURO-

CRYPT, Lecture Notes in Computer Science, pages 386–397. Springer, 1993.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
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Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
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