
Graz University of Technology

Institute for Applied Information Processing and Communications

Master’s Thesis

Measuring Code Coverage on an

Embedded Target with

Highly Limited Resources

Philipp Pani
Graz, Austria, April 2014

Advisor

Prof. Roderick Paul Bloem
Institute for Applied Information Processing and Communications

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Abstract

Microchips are integrated into everyday items like running shoes, membership cards and

car keys, to name just a few examples. Hence, we use microchips everyday. We rely on

them, whether consciously or not. Consequently, we rely also on the software running

on microchips. Testing is essential for achieving confidence in the correctness and the

reliability of the software. Measuring the code coverage of a software provides information

on the quality of a test suite. A high-quality test suite helps to ensure that a software

fulfills its specification.

Measuring code coverage usually increases the execution time, the size of the executable

and the memory usage of a software under test. For the majority of systems this is not a

problem. However, for embedded systems with limited resources this can be an issue. For

such systems, available out-of-the-box systems cannot be easily applied.

In this work we developed, implemented and evaluated two approaches to measure

coverage in embedded systems with very limited resources. The first one is based on

binary instrumentation and the second one is based on source code instrumentation. The

idea of the binary approach is to patch the return instruction of each function with a

call to a special function in order to measure function coverage. The second approach,

based on source code instrumentation, is able to measure decision coverage. It uses a

tool called Coccinelle1 to get a token stream of the source code. From this we produce

an instrumented version of the source code, cross-compile it and deploy the resulting

executable on the target device. Then we examine the results from the device and update

the instrumented source code. It iteratively repeats this steps until it does not collect new

probes. At the end it creates a visual report of the results.

Finally, we evaluated the approaches on a firmware for a MRK-IIIe microcontroller

from NXP Semiconductors. Our evaluation shows that our method is applicable to systems

with very limited resources. Furthermore, the overhead in the test suite execution time is

acceptable in this industrial case study.

1http://coccinelle.lip6.fr/

v

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Problem Definition . 2

1.2.1 Requirements . 4

1.2.2 Assumptions . 5

1.3 Contribution . 5

1.4 Structure of this Document . 7

2 Preliminaries 9

2.1 Test Suite Adequacy . 9

2.1.1 The Subsume Relation . 11

2.1.2 Statement and Block Coverage . 11

2.1.3 Function Coverage . 13

2.1.4 Conditions and Decisions . 13

2.1.4.1 Lazy Evaluation . 14

2.1.4.2 Infeasibility . 14

2.1.5 Decision Coverage . 15

2.1.6 Condition Coverage . 16

2.1.7 Condition/Decision Coverage . 18

2.1.8 Multiple Condition Coverage . 19

2.1.9 Modified Condition/Decision Coverage 19

2.2 Instrumentation . 20

2.2.1 Overview . 20

2.2.2 Binary Instrumentation . 21

2.2.3 Source Code Instrumentation . 22

2.3 Embedded Systems . 22

2.3.1 What is an embedded System? . 22

2.3.2 Peripherals . 23

2.3.3 Real-Time Systems . 24

2.3.4 Debugging . 24

vii

viii CONTENTS

3 Binary Approach 25

3.1 Overview . 25

3.2 Idea of the Approach . 26

3.3 Implementation . 27

3.3.1 SRV-Parser . 27

3.3.2 RELF . 28

3.3.3 2-link . 28

3.3.4 Test . 29

3.3.5 Coverage Function . 29

3.3.6 Script . 29

3.4 Restrictions and Change of Strategy . 30

4 Source Code Instrumentation Approach 33

4.1 Overview . 33

4.2 Issues and Approaches . 34

4.2.1 Instrumentation . 34

4.2.1.1 Source Code Navigation . 35

4.2.1.2 Prettifying of the Source Code 36

4.2.1.3 Placement of Probes . 38

4.2.2 Efficient Reporting of Covered Probes 39

4.2.3 Error Handling . 39

4.3 Implementation . 40

4.3.1 Overview . 40

4.3.2 C-CoCATool . 41

4.3.2.1 TS-Parser . 41

4.3.2.2 Prettifier . 41

4.3.2.3 Instrumenter . 42

4.3.2.4 Updater . 42

4.3.2.5 Reporter . 42

4.3.2.6 Summary . 43

4.3.3 2-link . 43

4.3.4 Test Suite Modifications . 43

4.3.5 Toolchain . 45

4.3.5.1 Instrument . 46

4.3.5.2 Build . 46

4.3.5.3 Deploy . 46

4.3.5.4 Test . 47

4.3.5.5 Update . 47

4.3.5.6 Report . 47

4.4 Summary . 47

CONTENTS ix

5 Evaluation 49

5.1 Test Setup . 49

5.1.1 Normal Test Setup . 50

5.1.2 Modified Test Setup . 51

5.2 Results . 52

5.2.1 Binary Instrumentation Approach 52

5.2.2 Source Code Instrumentation Approach 52

5.3 Discussion . 54

5.3.1 Protocol I . 54

5.3.2 Protocol II . 60

5.3.3 Protocol III . 60

5.3.4 Protocol IV . 60

5.3.5 Differences Due to Timing . 61

5.3.6 Summary . 62

6 Related Work 67

6.1 Commercial Tools for Measuring Code Coverage 67

6.1.1 Additional Key Points for the Comparison 67

6.1.1.1 Instrumentation . 68

6.1.1.2 Supported Coverage Criteria 68

6.1.1.3 Supported Host Platforms 68

6.1.2 Evaluation of the Tools . 68

6.1.2.1 VectorCAST/Cover (Vector Software) 69

6.1.2.2 Testwell CTC++ Test Coverage Analyser (Verifysoft Tech-

nology) . 70

6.1.2.3 BullseyeCoverage (Bullseye Testing Technology) 70

6.1.2.4 LDRAcover (LDRA Software Technology) 71

6.1.2.5 Test Coverage Tools (Semantic Designs) 71

6.1.2.6 Tessy (Razorcat, Hitex) . 71

6.1.3 Summary of the tool evaluation . 71

6.2 Related Research on Code Coverage for Embedded Systems 73

6.2.1 Source Instrumentation . 73

6.2.2 Binary Instrumentation . 75

6.2.3 Simulation and Emulation . 76

6.2.4 Summary . 76

7 Conclusion and Outlook 77

7.1 Summary . 77

7.2 Future Work . 78

x CONTENTS

A C Statement Definitions 81

A.1 Labeled statements . 81

A.2 Compound statement . 81

A.3 Expression statements . 82

A.4 Selection statements . 82

A.5 Iteration statements . 82

A.6 Jump statements . 82

B Selected Source Code Extracts from the Implementation 83

Bibliography 87

List of Figures

3.1 A schematic overview of the structure of our proof of concept implementation. 27

4.1 A schematic overview of the structure of our code coverage measurement

system. 40

4.2 Overview page of the HTML code coverage report. 43

4.3 HTML code coverage report of a specific file. 44

4.4 A schematic overview of the toolchain of our code coverage measurement

system. 45

5.1 Test setup for the embedded device. 50

5.2 Protocol I . 63

5.3 Protocol II . 64

5.4 Protocol III . 65

5.5 Protocol IV . 66

xi

List of Tables

2.1 Evaluation outcome for all conditions for every test in T 17

5.1 Comparison between instrumented execution and normal execution of

Protocol I. 55

5.2 Comparison between instrumented execution and normal execution of

Protocol II. 56

5.3 Comparison between instrumented execution and normal execution of

Protocol III. 57

5.4 Comparison between instrumented execution and normal execution of

Protocol IV. 58

6.1 Comparison of commercial code coverage tools. 72

xiii

List of Listings

2.1 Example of an infeasible decision. 14

2.2 Function that returns the absolute value of a given integer. 15

3.1 Coverage function of the proof of concept implementation. 28

4.1 Simple code snippet for a sample token stream output (if.c). 36

4.2 Sample token stream output from Coccinelle. 36

4.3 Instrumented if, while, for. 37

4.4 Instrumented case and default in a switch. 37

4.5 Original and prettified version of an if statement. 41

B.1 Source code of the Prettifier. 83

xv

Chapter 1

Introduction

Contents

1.1 Background and Motivation . 1

1.2 Problem Definition . 2

1.3 Contribution . 5

1.4 Structure of this Document . 7

1.1 Background and Motivation

The growing demand for embedded microchips [27] has pushed their development over the

last decades to the effect that microchips can be found just about everywhere today. They

are integrated in items like running shoes, animal ear tags, keys, and even gravestones 1.

Hence people rely on computer systems more than ever. This includes hardware as well

as software. It is widely accepted that software testing is essential to develop reliable

systems [28]. A lot of tests are needed to be fairly confident that a software behaves as

it should. Ideally, every possible input combination for a program should be tested [13].

Unfortunately the number of input combinations is impractically or even infinite large in

real world programs, even if we just want to test every possible execution path [35]. For

this reason, only a small subset of the possible input combinations can be tested. However,

we need a measure to quantify how well such subset tests a given program.

Code coverage is a well known measure to determine how well a program is tested by a

test suite with respect to a specific criterion. It provides information on the quality of the

program as well as on the quality of the test suite. A high code coverage indicates a suitable

1http://www.siliconvalley.com/ci 16866566, last visited on 2014-02-04

1

2 Chapter 1. Introduction

test suite and a low amount of unreachable source code. The notion of code coverage

is already more than 50 years old. A lose definition was already given by Miller and

Maloney [32] in 1963. Many different criteria can be used to determine the code coverage

of a program. For instance function coverage, statement coverage, branch coverage, and

modified condition/decision coverage (MC/DC) are well known coverage criteria. There

exist several techniques to measure code coverage. One of these techniques is the insertion

of special statements or code snippets into the given source code. We call such a special

statement probe. If a probe is being reached during the execution of the program, it

reports that it is being covered. If probes are distributed strategically over the entire

program, it can be analyzed which parts of the program have been executed during a test

run. This allows us to say which parts of the program have been covered. This is one

technique to measure the code coverage of a given test suite. What adequacy in respect

to a specific coverage criteria means depends on the criteria. For instance, a test suite

is considered as adequate in respect to the statement coverage criteria if every statement

of the program has been executed at least once during a test run [31]. Coverage criteria

can be compared with respect to the difficulty of achieving them. We say that a coverage

criterion A subsumes a coverage criterion B if every test suite that satisfies A will also

satisfy B. For instance statement coverage subsumes function coverage. If criterion A

subsumes criterion B, we say A is more complex than B, or B is simpler than A. The costs

for achieving a more complex criterion are higher than the costs for achieving a simpler

one. The costs ranges from very low to practically infeasible. Therefore, it is not possible

to always apply the most powerful criterion [35]. The results of an empirical study on

testing [29] indicated that faults could be detected and removed with the increase of code

coverage (block coverage, decision coverage).

1.2 Problem Definition

The goal of this work is to develop approaches to measure the code coverage of a given test

suite on an embedded system with very limited resources and tight real-time constraints.

Measuring code coverage on such systems is not always straightforward. For instance,

embedded systems often have a very limited amount of memory, and a poorly equipped

debugging interface. In addition, embedded systems are usually attached to peripherals

like antennas or sensors. To communicate with these peripherals, it is necessary to meet

certain timing constraints. These timing constraints can be very tight. One violated

constraint can lead to a failed test.

1.2. Problem Definition 3

There exist some major reasons why it is difficult to measure code coverage on specific

embedded systems.

• Measuring code coverage by inserting statements into given source code increases

the size of the source code.

• Furthermore, the execution time and the memory consumption of the program are

increased due to the reporting of covered probes. It can also happen that the logging

of the coverage information is so time-consuming that it is not possible to meet all

timing constraints. This can cause an abortion of a test case, which is a serious

issue for measuring code coverage. This timing issue will accompany us through this

thesis.

• There is also the possibility that a fully instrumented program does not fit on the

chip, or that there is not enough memory to store the collected coverage information

on a target device.

There are different stages where probes can be inserted into a program. For example,

we can instrument the user source code, the object code, or in a compiler specific interme-

diate representation. If someone wants to instrument the object code or the intermediate

representation the compiler can be an additional challenge. For instance, if a compiler

provides no extensive debug information it is hard to map collected coverage information

to the source code representation. Another point is that compilers usually provide a lot of

useful information for collecting code coverage information. In contrast, if a code coverage

tool depends heavily on a compiler it may be affected by updates of the compiler.

In this work we focus on resource-limited embedded systems with external peripherals.

We want to measure code coverage for programs that are running on such systems. There-

fore, we want to measure the adequacy of the test suites of these programs with respect

to a specific coverage criterion. We focus on decision coverage and function coverage, but

the approach can easily be extended to other coverage metrics. In addition, we focus on

programs that are written in the language C. The results have to be represented in a

graphical way in order to help a developer to easily identify which parts of the source are

covered or not. Another goal of this work is to identify issues that might come up with

more sophisticated code coverage criteria in this special context.

The target platform for the experiments in this work is a RISC microcontroller (MRK-

IIIe) provided by NXP Semiconductors2. The resources of the MRK-IIIe applied embedded

2http://www.nxp.com/

4 Chapter 1. Introduction

systems are very limited in terms of memory and the applications running on them are

very limited in terms of execution time. In addition, a proprietary compiler is used to build

the executables. Embedded systems with the MRK-IIIe are heavily used in industry, for

instance, in car keys. These reasons make them a well suited example of embedded systems

for which it is difficult to measure code coverage.

1.2.1 Requirements

This section defines the requirements for a code coverage measurement system that is able

to overcome the issues in the above problem definition.

Requirement 1 (Language Support): The code coverage tool should work with pro-

grams written in the language C. Some embedded devices also support specific language

extensions. The system should be able to handle these.

Requirement 2 (Memory Consumption): The code coverage measurement tool should

not occupy more than 1 KB of random access memory on the embedded device.

Requirement 3 (Code Coverage Criteria): The code coverage tool should be able to

measure at least decision coverage on the applications running on the embedded device.

Requirement 4 (Test Abortion Handling): The code coverage tool should be able to

handle test abortions due to the instrumentation overhead.

Requirement 5 (Total Time): The whole measurement should be doable in an overnight

task. For test suites that normally need about two hours for a test run. Therefore, the

code coverage system should not multiply the test time by a factor greater than seven.

Requirement 6 (Visual Report): At the end of the coverage measurement a visual report

should be created. This report should provide information on the source code level. The

report should consist of an overview page and a detail page for each source code file.

Therefore, it is important that it is possible to map the code coverage information to the

source code.

Requirement 7 (Efficient Instrumentation): The code coverage tool should achieve the

instrumentation in an efficient way. Means the number of inserted probes should be as low

as possible. There are two reasons for that. First, every additional instruction adds an

overhead to the execution time. It can be the case that due to this timing overhead certain

timing constraints cannot be met. Second, inserting probes can prevent the compiler to

perform optimization at certain code parts. Therefore, the code segment can increase for

two reasons, the additional instructions from the inserted probes, and the unoptimized

1.3. Contribution 5

regions. It can be the case that the code segment grows too large and cannot be stored

on the embedded device. Therefore, the overhead should be kept small.

1.2.2 Assumptions

In this section we give some assumptions that the code coverage system can make on the

input source code.

Assumption 1 (Syntactically Correct): We can assume that the source code of the pro-

grams that should be tested is syntactically correct.

Assumption 2 (Semantically Correct): We can assume that the source code of the pro-

grams that should be tested is semantically correct.

Assumption 3 (Switch is Complete): We can assume that the switch statements in

the source of the programs that should be tested is complete. With complete we mean

that every defined option of the expression of the switch statement is handled in an own

case and that there exists a default case.

1.3 Contribution

In this work we present a method to find and report code coverage information of software

running on a resource-limited embedded device during a test suite run. We started with

a market analysis to get an overview of the state of the art in the software-development

industry. There are many different code coverage tools for C/C++ available. The majority

of them are commercial products. We identified requirements that a code coverage tool

must have to be applicable to such a specific microcontroller (Section 1.2.1). The majority

of the tools do not support embedded targets with such limited resources like the MRK-

IIIe.

Secondly, we investigated the possibilities of retrieving code coverage information of

a firmware of an embedded system with limited resources under test. There are very

different approaches to introduce coverage points into a program. For example, it could

be done in the source code, in some intermediate representation from the compiler or in

the final binary. Every approach has its advantages and disadvantages. We decided to

experiment with the binary and the source code approach. Therefore, we implemented for

each of the two approaches a prototype code coverage tool for resource-limited embedded

systems.

6 Chapter 1. Introduction

The first prototype we implemented is based on binary instrumentation. Basically, this

approach patches the return instruction of each function with a call to a special function

in order to measure the function coverage. This call stores the address of the called

function and returns to the next instruction. Since this approach stores the addresses of

the called functions sequentially in order of occurrence in the memory, it not only records

function coverage but also the execution trace at function level. This approach consumes

two bytes of RAM per executed function. This relatively high resource consumption, the

technical difficulty to put this approach into practice, and its low flexibility suggest that

more advanced coverage criteria can be better measured with source code instrumentation.

Therefore, we shifted to focus to the latter approach.

The second prototype, which is based on source code instrumentation, is able to mea-

sure decision coverage (also called branch coverage). In order to get a token stream of a

given program, which is the output of the lexical analysis of the program, it uses a tool

called Coccinelle. First, our tool creates an exact copy of the original source file. Then

it prettifies this copy, which means, for instance, adding missing else branches or curly

braces. In this prettified version, the tool identifies appropriate locations to insert the

probes. Afterwards the cross-compiler of the embedded system builds an executable with

the instrumented version of the source code. Then our tool deploys the binary on the

target and starts a test suite run. After the run, our tool examines and evaluates the

results and updates the instrumentation by removing probes that were already covered.

This procedure is repeated until no new coverage information has been collected. This

approach only needs one bit of RAM and two instructions in the binary per inserted probe.

Furthermore, we implemented a simple add-on that creates a visual report of the results

at the end of the procedure. In this visual report, the results of the code coverage analysis

can be studied by the developers.

Finally, we tested these two approaches and evaluated the results of these experiments.

The results of the source code instrumentation approach show that the overhead in the

test suite execution time is acceptable in this industrial case study, which means it is

doable in an overnight task. Even in the worst cases our tool needed only about four

times longer than the original test suite. The results also show that there is considerable

room for improvement.

As far as we know there are no commercial products available that are able to collect

code coverage information even from the smallest embedded targets running very time

constrained software. The aim of this thesis is to implement a prototypical system, which

1.4. Structure of this Document 7

can handle such resource limited embedded targets. We also want to identify and document

the main issues during this development process.

1.4 Structure of this Document

The rest of this document is structured as follows. We start with some preliminaries to

give the reader an overview of all concepts that are important to understand this thesis.

In the next two chapters we give a detailed explanation of our methods. First, we describe

our binary instrumentation approach and afterwards our source code instrumentation

approach. Then we discuss our experimental results. After that we present the market

analyses and give an overview of related work. Finally we talk about our conclusions and

give an outlook on future work. The following paragraphs provide a more detailed outline

of the subsequent chapters.

In Chapter 2 we give some definitions of established code coverage or test suite ad-

equacy criteria. We introduce the concept of binary instrumentation as well as source

instrumentation. Furthermore we give an overview of embedded systems aspects that are

important for this work, like real-time constraints and debugging methods.

In Chapter 3 we explain in detail how our binary instrumentation approach for mea-

suring function coverage works. Furthermore we talk about theoretical advantages and

disadvantages of this approach. Additionally we focus on the practical limitations of this

approach under our setup.

Chapter 4 focuses on the source code instrumentation approach. It explains in detail

how we insert probes into the source code. In addition we present how we evaluate and

report the coverage results to the user. Furthermore we provide precise information how we

overcome the difficulties of our resource-limited target system. To complete this chapter

we discuss our design decisions during the development of our code coverage tool.

Chapter 5 presents, evaluates, and discusses our experimental results. We describe the

setup of our experiments and the outcome.

Chapter 6 gives an overview over the work that is related to the work in this thesis. In

addition we use this chapter to highlight the differences between our work and the related

work in this field. In this chapter we discuss commercial products as well as scientific

related work. In a market research we evaluated a series of commercial code coverage

tools.

In Chapter 7 we summarize the major facts to recapitulate this thesis. Furthermore

this chapter provides suggestions for future work.

Chapter 2

Preliminaries

Contents

2.1 Test Suite Adequacy . 9

2.2 Instrumentation . 20

2.3 Embedded Systems . 22

2.1 Test Suite Adequacy

Many developers wonder when they can stop testing a program. There are two criteria,

or better, rules, that are widely used in practice [33]. The first one is to reserve a certain

amount of time for testing during a development process. When the time is over, testing

is finished. The second approach is to stop testing at the point where the test suite do

not detect new errors. Since the first rule can be satisfied with doing absolutely nothing

and the second rule can be satisfied with tests that not test anything, it is obvious that

it is hard to derive any information about the quality of a test suite from these rules.

Therefore the developer has no awareness how well his test suite performs. Nevertheless,

at some point a diligent developer wants to know how well a certain test suite performs.

Let us start with pointing out the ideal solution. A complete test suite would provide

a test for every possible input combination of a program. Dijkstra showed in [13] that even

for a small program with only two input variables, the number of possible test cases is

impractically large. Huang stressed this point in [19] and gave the following example. Let

us assume that we run a program on a 32-bit machine. The program takes two integers

as input variables. On average this program takes one millisecond for an execution. To

test all possible combinations of the two input variables (which are 232 × 232 = 264) our

9

10 Chapter 2. Preliminaries

test would take more than 584 million years. Huang also pointed out that this example

indicates that no matter how many test cases we generate in a reasonable amount of

time, we will always produce just a small subset of the possible test cases for a given

program [19]. The idea of structural coverage criteria is that bugs in untested code can

never be detected. Therefore, adding test cases until every part of the source code is

covered increases the change to find errors in it. However, this does not mean that these

parts are free of errors afterwards.

Let us assume that there is a program P and a test suite T = {T1, T2, . . . , Tn}. All

of the tests T are executed against a program P . If a test case reveals incorrect behavior

someone fixes this issue and executes the test suite again. This procedure is repeated until

the program P produces correct behavior, against every test of T [31].

The fact that a program P produces correct behavior against the stimuli of a given test

suite T does not guarantee that there are no errors left in P . After writing an extensive

test suite and testing a given program with it, nothing can be said about the thoroughness

of the test suite [31]. Therefore, several test suite adequacy criteria have been proposed.

Definition 1 (Test Suite Adequacy [31]). A test suite T is considered adequate for a given

program P with respect to a criterion C when T satisfies C. In order to determine if T

satisfies C depends on the definition of the criterion C.

Unfortunately an adequate test suite with respect to a specific criterion cannot guar-

antee an error-free program either. This does not mean that it is not possible to derive

useful information from it. In contrast to an adequate test suite, an inadequate test suite

with respect to some criterion C definitely indicates that the given program is not tested

accurately in respect to C. For example, let us assume that a criterion C states that for

every if in P , both possible branches, namely the true- and false-branch, must be

executed at least once. If a test suite is adequate with respect to C, one can be sure that

all branches are executed during the test run. If not all branches has been exercised, errors

that would have been found if all branches has been exercised remain undetected [31].

Measurement of code coverage can be used as a test suite adequacy criterion. In this

thesis we focus on control-flow based adequacy criteria like statement coverage, block

coverage, condition coverage or decision coverage to name just a few. These criteria will

be defined in the following subsections.

In [16] Glass states that in praxis a code coverage percentage of 100 % code is nearly

impossible to reach. Therefore, it is unlikely that a test suite is adequate in respect to

2.1. Test Suite Adequacy 11

a specific criterion in praxis. Nevertheless, to compare code coverage criteria it is very

useful to have the concept of adequacy.

2.1.1 The Subsume Relation

In the following sections we will introduce some test suite adequacy criteria. All of these

criteria help to select a small set of possible paths through a program. Each criterion

selects a set of specific program paths from the set of possible paths for a given program.

Therefore, it is interesting to compare the different test suite adequacy criteria by their

selected subsets of program paths [31].

There are some definitions of the subsumes relation [9], [35], [10], [17]. The following

definition in [46] best fits to the above definition of test suite adequacy criteria.

Definition 2 (Subsume relation between adequacy criteria [46]). Let C1 and C2 be two

test suite adequacy criteria. C1 subsumes C2, written C1 ≥ C2, or C2 ≤ C1, if for all

programs P under test and all test sets T , T is adequate according to C1 implies that T is

adequate according to C2.

In [35] Ntafos gives a comparison of test suite adequacy criteria like statement coverage,

or branch coverage. He analyses the relations of these criteria to each other. He points out

that if C1 subsumes C1 does not mean that C1 is better than criterion C2 for the reason

that cost is not considered in the subsume relation.

2.1.2 Statement and Block Coverage

The statement and the block coverage criteria are among the most widely known test suite

adequacy criteria [19]. Whereas the statement coverage criteria requires each statement

in the program to be executed, the block coverage criteria needs that every basic block

in a program is exercised [35]. A statement or a block is covered if it has been executed

at least once during the test run. In this section we give a detailed description of both

criteria. Furthermore, we explain the notion of a basic block.

Definition 3 (Statement Coverage). In [31] the statement coverage of a test suite T for

a program P is calculated with the formula |Sc|/(|Sa|− |Su|), where Sc is the set of covered

statements during the execution of the test suite, Sa is the set of statements in P , and Su

is the set of unreachable statements in P . If the result is 1, T is adequate for program P

with respect to the statement coverage criterion.

12 Chapter 2. Preliminaries

We can also find definitions of the statement coverage criterion that are slightly dif-

ferent to the above definition from [31]. Some authors like Myers [33] do not consider

the set of unreachable statements in the calculation. This leads to the formula |Sc|/|Sa|.
Unreachable statements or blocks are statements or blocks that are in an infeasible path.

The determination whether a statement is unreachable or not is undecidable. Therefore,

it is very hard to reach full coverage in practice. In practice, we speak of a coverage in

percent, for instance 85% coverage.

Since the programs under test in this thesis are written in the programming language

C, we want to give an rough overview on statements in C. In a procedural programming

language like C, a statement specifies an action to be performed. In the C standard

there are six types of statements: labeled-statement, compound-statement, expression-

statement, selection-statement, iteration-statement and jump-statement [15]. You can

find a syntax definition of these statements in Section A. The semicolon is a statement

terminator in C [21]. If we talk about an inner statement in this thesis, we mean the body

of an iteration or a selection statement, like the body of an if-branch, else-branch, or a

while loop. Note that there is a little difference between the use of the terms statement

in the above definition of code coverage criteria and the use of the term statement in C.

The difference has mainly to do with the counting, for instance, a compound-statement

that consist of three expression-statements. Do we have one, three, or four statements?

It depends on how we count. As far as we know this is not uniformly specified. We only

count a empty compound-statement as an own statement.

In general, statements are executed sequentially. There are several exceptions for that

rule, for example, selection statements like the if statement or the switch statement.

Such statements change the control flow. In order to measure statement coverage, every

statement of a program P has to be executed at least once during testing. For a sequence

of statements that is not changing the control flow it is not necessary to have coverage in-

formation for every statement. It is sufficient to identify sequences of statements that have

an unique entry and exit point. Such sequences of statements are called basic blocks. A

basic block consists of at least one statement. If there is just one statement this statement

is simultaneously the entry and the exit point. Selection, iteration, and jump statements

are always exit points. Function calls play an ambiguous role in basic blocks. In flow

graphs they are usually considered as normal statements. However, in a coverage related

context they represent an exit point [31]. In this thesis, we consider function calls as

exit points. In summary, the following C statements are exit points in a basic block: if,

2.1. Test Suite Adequacy 13

switch, while, do, for, goto, continue, break, return and statements that are

or include function calls.

Definition 4 (Block Coverage). In [31] the block coverage of a test suite T for a program

P is calculated with the formula |Bc|/(|Ba| − |Bu|), where Bc is the set of covered blocks

during the execution of the test suite, Ba is the set of blocks in P , and Bu is set of

unreachable blocks in P . If the result is 1, T is adequate for program P with respect to the

block coverage criterion.

Similar to the statement coverage formula, some authors do not consider the set of

unreachable blocks. This leads to the formula |Bc|/|Ba|, which is also more common in

practice. A test suite that is adequate for a program P with respect to the block coverage

criterion is also adequate with respect to the statement coverage criterion, and vice versa.

In practice it is very common that a test suite has to produce at least 85% coverage

with respect to specific coverage criteria [30]. According to Marick the value 85% is more

or less a practically developed value with less scientific basis. Marick [30] stated that one

reason for this is that people use this number because a lot of respectable companies use

this number. Marick interviewed some of those respectable companies. According to these

interviews they took this number because a division with a high reputation inside their

company is using this number.

2.1.3 Function Coverage

Function coverage is a very coarse-grained test suite adequacy criterion. It can be seen as

a simplified version of the statement coverage criterion: a function is covered if the first

statement of the function is covered. More formally, function coverage can be defined as

follows.

Definition 5 (Function Coverage). The function coverage of a test suite T for a program

P is calculated with the formula |Fc|/(|Fa|− |Fu|), where Fc is the set of covered functions

during the execution of the test suite, Fa is the set of all functions in P , and Fu is the of

unreachable functions in P . If the result is 1, T is adequate for program P with respect to

the function coverage criterion.

2.1.4 Conditions and Decisions

Any expression that evaluates to true or false constitutes a condition [31], which is also

called predicate. Let us assume that A and B are Boolean variables and x and y are inte-

14 Chapter 2. Preliminaries

gers. The following expressions are conditions, A, x < y, (A && B), (A || (x > y)).

Note that these expressions are in C syntax and that in C, x + y or x are also valid con-

ditions and the constant values 1 and 0 correspond to, respectively, true and false.

A condition can be simple or compound [31]. A simple condition does no use all

logical operators and, or, and !. It only uses the unary negation operator !. It consists

of variables and at most one relational operator from the set (<, >, <=, >=, ==, !=).

If a condition is not simple it is a compound one. Of the examples above A, x < y, x + y,

and x are simple conditions. In this thesis, we will use the term condition to mean any

simple or compound condition.

Any condition in a program can be seen as a decision in an appropriate context [31].

Most of the high level languages provide special statements to give contexts for decisions.

In C, these statements are the selection and the iteration statements. It has to be noted

that there is a third possible outcome of an evaluation of a decision. It could be the

case, that the result is undefined. For instance, if the function foo never returns, the

decision of if(x < y && foo(y)) cannot be evaluated [31].

2.1.4.1 Lazy Evaluation

Lazy evaluation is a method to shorten the evaluation of a compound condition. It is also

called short-circuit evaluation [31]. The C standard [15] requires lazy evaluation for the

operators logical AND &&, logical OR ||, and the conditional operator ?.

Consider the compound condition (A OP B), whereas are A is a simple condition and

B is a simple or a compound condition. In the case of the logical AND (OP = &&), lazy

evaluation means that if the first operand evaluates to false, the second operand is not

evaluated. In the case of the logical OR (OP = ||), lazy evaluation means that if the first

operand evaluates to true, the second operand is not evaluated. The lazy evaluation of

the conditional operator is not interesting for this thesis.

2.1.4.2 Infeasibility

It can be infeasible to cover a decision or a condition. Consider the example in listing 2.1.

For the reason that the value of x cannot be greater than 20 and smaller than 10 at the

same time, it is infeasible to cover the condition x < 10 in line 3. Since the two simple

conditions in line 3 are connected with a logical AND the decision in this line is also

infeasible to cover.

2.1. Test Suite Adequacy 15

Listing 2.1: Example of an infeasible decision.

1 if(x > 20 && y > 10) {

2 s1 = bar1(x, y);

3 if(x < 10 && y > 30) {

4 s2 = bar2(x, y);

5 }

6 }

2.1.5 Decision Coverage

Test cases that are adequate with respect to the statement and block coverage criterion do

not necessarily force a decision inside an if statement to evaluate to true and false.

The test suite

T = {t1 : 〈a = −3〉, t2 : 〈a = −1〉}

for the program in Listing 2.2 is adequate with respect to the statement coverage criterion.

Nevertheless, it is obvious that possible execution paths are not traversed. For instance,

the decision a < 0 in the if is not evaluated to false with the given test suite T .

Therefore, several errors might stay undetected. A stronger test suite adequacy criterion

is be necessary to ensure that a decision is forced to evaluate to true as well as to false.

Listing 2.2: Function that returns the absolute value of a given integer.

1 int abs(int a)

2 {

3 if(a < 0)

4 {

5 a = -a;

6 }

7 return a;

8 }

A coverage criterion that requires the test suite to execute every decision branch of a

program under test is the decision coverage criterion, sometimes named branch coverage

or branch decision coverage. It states that a decision is covered if it evaluates at least

once to true and false during the run of the test suite. The decision coverage criterion

requires that the decision of every selection or iteration statement of a given program P

is covered.

Definition 6 (Decision Coverage). In [31] the decision coverage of a test suite T for a

program P is calculated with the formula |Dc|/(|Da|− |Du|), where Dc is the set of covered

16 Chapter 2. Preliminaries

decisions during the execution of T , Da is the set of decisions in P , and Du is the set of

infeasible decisions in P . If the result is 1, T is adequate for program P with respect to

the decision coverage criterion.

Similar to the statement coverage formula, some authors do not consider the number of

unreachable decisions. This leads to the formula|Dc|/|Da|. Usually, all statements in a

program P are covered if all decisions of P are covered. Unfortunately, there are at least

two exceptions for that [33].

• P has no decisions. Here the empty test suite would be decision adequate but not

statement adequate.

• P has multiple entry points. Here a statement might be only executed if P starts at

a specific entry point. Then a decision adequate test suite would be not statement

adequate.

Hence, the decision coverage criterion does not subsume the block or the statement cov-

erage criterion.

In C, the decision of a selection or iteration statement is called controlling expression,

which should have a scalar type [15], for instance

if (expression) statement1 else statement2 .

According to the C99 standard in [15] arithmetic types and pointer types are

collectively called scalar types. With the help of the controlling expression the if

statement can make the decision whether the true or the else branch should be

executed. If the expression in the if statement is no 0 statement1 is executed, otherwise

statement2. The expression can be a simple or a compound condition which evaluates to

true or false.

2.1.6 Condition Coverage

The outcome of a decision depends on its condition. A simple condition is considered

covered if it has evaluated to both values (true and false) during the test run. There-

fore, all simple condition decisions are covered during a test run that achieves decision

coverage. A compound condition is considered as covered if every simple condition in the

compound condition has exercised to both values by the test suite during the test run.

2.1. Test Suite Adequacy 17

(x < 5) (y < 3) ((x < 5) || (y < 3))

t1: true true true
t2: true false true
t3: false true true

Table 2.1: Evaluation outcome for all conditions for every test in T .

Hence, decision coverage is not necessarily strong enough to cover all simple conditions

within a compound condition.

Definition 7 (Condition Coverage). In [31] the condition coverage of a test suite T for a

program P is calculated with the formula |Cc|/(|Ca| − |Cu|), where Cc is the set of covered

simple conditions during the execution of T , Ca is the set of all simple conditions in P ,

and Du is set of infeasible simple conditions in P . If the result is 1, T is adequate for

program P with respect to the condition coverage criterion.

Similar to the statement coverage formula, some authors do not consider the number

of infeasible conditions. This leads to the formula |Cc|/|Ca|.
It could be the case that a condition is covered and the dependent decision is not.

Consider a test set T designed to test the simple program if((x < 5) || (y < 3)):

T = {t1 : 〈x = −3, y = −2〉, t2 : 〈x = −3, y = 4〉, t3 : 〈x = 6, y = −2〉}.

T is adequate with respect to the condition coverage criterion. Table 2.1 shows the eval-

uation outcome for all conditions for every test in T . As it can be seen, for every t in T

the decision evaluates to true. Therefore T , is not a decision coverage adequate test set

for this simple program. For a programming language that uses lazy evaluation this is not

true.

Proposition 1 (Condition Coverage and Lazy Evaluation). If a test suite T for a program

P written in a language that uses lazy evaluation is adequate with respect to condition

coverage it is adequate with respect to decision coverage.

Proof. On the one hand, lazy evaluation ensures that a simple condition is only evaluated if

the outcome of the expression can influence the outcome of its decision. On the other hand,

the condition coverage criterion requires that every simple condition within a decision is

evaluated to true and false at least once. Based on these observations, we can prove

Proposition 1 by considering only the last simple condition A of a decision Φ(n). There

are two possible cases to connect A with Φ(n− 1), with ∧ or ∨.

18 Chapter 2. Preliminaries

Φ(n) = Φ(n− 1) ∧A

Φ(n) = Φ(n− 1) ∨A

In the ∧-case, Φ(n − 1) has to be true, otherwise A is not evaluated. Due to the

condition coverage criteria A has to evaluate to true and false. If A evaluates to true

the decision is true. If A evaluates to false the decision is false. In the ∨-case,

Φ(n − 1) has to be false, otherwise A is not evaluated. Due to the condition coverage

criteria A has to evaluate to true and false. If A evaluates to true the decision is

true. If A evaluates to false the decision is false. Therefore, the fact that the last

simple condition evaluates to both true and false implies that decision coverage will

be achieved.

2.1.7 Condition/Decision Coverage

For languages that do no use lazy evaluation the decision coverage criterion and the con-

dition coverage criterion are incomplete. A test suite that is adequate with respect to

decision coverage achieves every possible outcome of all decisions in a program. In con-

trast to the condition coverage criterion, decision coverage does not imply that every

simple condition within a compound condition has evaluated to both values (true and

false). With a test suite that is adequate with respect to condition coverage criterion

we can have the exact opposite problem, since this criterion ensures that every possible

outcome of every simple condition within a compound one has been taken. This does not

imply that every possible outcome of the decision has been exercised [31].

Since neither condition coverage nor decision coverage subsumes the other one, a

stronger test suite adequate criteria named condition/decision coverage has been proposed.

This test suite adequate criterion combines the strengths and overcomes the limitations

of using one of the two coverage criteria in isolation. The condition/decision coverage is

also known as branch condition coverage [31].

Definition 8 (Condition/Decision Coverage). In [31] the condition/decision coverage of

a test suite T with respect to a program P is computed as (|Cc|+ |Dc|)/(|Ca|−|Cu|+ |Da|−
|Du|), where Cc is the set of covered simple conditions, Dc the set of covered decisions, Ca

and Da the sets of simple conditions and decisions, respectively, and Cu and Du the set of

infeasible simple conditions and decisions, respectively. T is adequate with respect to the

condition/decision coverage criterion if the condition/decision coverage of T with respect

to P is 1.

2.1. Test Suite Adequacy 19

Similar to the other coverage formulas, some authors do not consider the number

of infeasible conditions and decisions. This leads to the formula (|Cc| + |Dc|)/(|Ca| +
|Da|). The condition/decision coverage criterion subsumes the condition and the decision

coverage criterion.

2.1.8 Multiple Condition Coverage

In Section 2.1.6 we stated that a test suite T that is adequate with respect to the condition

coverage criterion ensures that every simple condition within a compound condition has

taken both values (true and false). Multiple condition coverage ensures that every

possible combination of truth values of each simple condition within a compound condition

has been taken during the execution of the test suite. This corresponds to examining

all lines of the truth table of the compound condition. If we need one test case per

combination and C is the number of simple conditions within a compound condition, we

need 2C test cases for each compound condition. In an avionic application it can be the

case that a compound condition consists of C = 32 conditions, which would lead to over

four billion test cases for only this compound condition. If we assume that the execution

of one test case take 1 millisecond, the execution of all 4 billion test cases would take over

49 days [31]. For programming languages that are using lazy evaluation the set of test

cases is significantly smaller than for languages that are not using lazy evaluation [20].

The multiple condition coverage criterion subsumes the modified condition/decision, the

condition/decision, the condition, and decision coverage criteria.

2.1.9 Modified Condition/Decision Coverage

As described in the previous section, multiple condition coverage is very expensive if

decisions consist of many conditions. Therefore, a weaker adequacy criterion has been

proposed, namely modified condition/decision coverage (MC/DC). In [7] Chilenski and

Miller describe MC/DC as a coverage criterion that requires that it has been shown by

execution that each condition within a condition independently and correctly affects the

outcome of the decision. Chilenski and Miller also stated that this criterion has been

developed to help meet the need for extensive testing of complex Boolean expressions in

safety-critical applications.

The author of [31] defines MC/DC as follows. A test set T for a given program P is

considered adequate with respect to the modified condition/decision coverage criterion if

after the execution of the test set, the following four requirements are fulfilled [31]:

20 Chapter 2. Preliminaries

• T is adequate with respect to the block coverage criterion,

• T is adequate with respect to the condition coverage criterion,

• T is adequate with respect to the decision coverage criterion, and

• “Each simple condition within a compound condition C in P has been shown to

independently affect the outcome of C [31].”

As for the the multiple condition coverage criterion the set of test cases is significantly

smaller if a programming language with lazy evaluation is used [20]. The modified condi-

tion/decision coverage criterion subsumes the the condition/decision, the condition, and

decision coverage criteria. For further details on this criterion please refer to [31].

2.2 Instrumentation

2.2.1 Overview

Measuring code coverage requires information that can only be collected during the execu-

tion of the program under test. Therefore, several intrusive, non-intrusive, and combined

methods are available. The term non-intrusive methods usually refers to techniques like

program counter logging, also called tracing. Such methods usually need Hardware Per-

formance Monitoring (HPM) support [39]. This is provided by special units in certain

processors like the Intel Itanium 2 processor [12] or processors with the Embedded Trace

Macrocell from ARM [26], to name just two examples. Another non-intrusive method is

emulating the target device in a virtual machine [6]. In such an environment, a lot of

information can be easily collected. Usually non-intrusive methods like program counter

logging collect information in the object code. One problem with non-intrusive methods

is the mapping of the results from the object code into the source code. This strongly

depends on the debug information provided by the compiler. If the original source code

decisions cannot be fully recovered from the provided debug information, it is not possible

to map the covered objects to the source code [6].

Whereas non-intrusive methods like program counter logging usually need read access

to several cpu registers or a sophisticated debugging interface, intrusive methods can

normally be applied on less highly developed environments. Therefore, intrusive methods

have to be used in less sophisticated environments to gather the necessary information.

A very frequently used intrusive method is instrumentation. The authors in [3] define

a probe as an additional program code that does not change the functional behavior of

2.2. Instrumentation 21

the program but collects some additional information. A probe, also known as point or

marker, can be inserted at any step between source code and executable. This can be done

directly in the source code (source code instrumentation) or in the compiled executable

(binary instrumentation). A less common way is to insert these points in the compiler’s

intermediate language.

Probes can negatively affect a program in several ways [3]. A very important point

to mention in this context is that a probe can affect the timing in a real-time system.

Inserting probes into a program also increases the size of a program. This is usually not a

problem with state-of-the-art desktop machines. However, for an embedded system, this

can be a serious issue. Furthermore, additional memory is needed during the execution of

an instrumented program for storing visited probes.

There is also a considerable difference between just reporting code coverage in contrast

to do profiling or program tracing. The reason for this is, that for code coverage it is just

necessary to track whether a probe has been covered during the test or not. On the other

hand, for profiling or program tracing it is necessary to store the number of executions for

each probe or the order of executions of the points respectively.

It has to be noted that the applied test suite adequacy criterion has a tremendous

impact on the points above. For instance, decision coverage needs much less probes than

condition/decision coverage. In addition, for condition/decision coverage, the expressions

of the program have to be somehow rewritten, whereas for decision coverage just some

points have to be inserted.

2.2.2 Binary Instrumentation

Binary instrumentation or object code instrumentation is the process of inserting probes

in the executable binary of a program [23]. In other words, it is instrumentation on the

machine-code level, for instance, manipulating assembly code in an ELF (Executable and

Linkable Format) file originally written in C [23]. Another example is the insertion of

probes in Java bytecode [31]. This can be done before and after the linking phase.

There is one big drawback with binary instrumentation for code coverage: It can be

difficult to map a covered probe back to the source code statement [6]. This is going to be

harder if the compiler uses optimizations. It can be the case that some statements that

should be covered are not present in the optimized executable. Furthermore, it can be

that there is no or insufficient debug information available in the binary. This makes it

very hard to connect the coverage results with the source code.

22 Chapter 2. Preliminaries

On the other hand, there are some advantages for code coverage on the machine-code

level. An advantage within binary instrumentation is that machine-code is very easy to

parse. For instance, assembler instructions for comparing or jumping are very easy to

find. These are very common points for instrumentation. Another advantage is that

differences between the version of the binary instrumented executable and the original

executable is smaller than the differences between the original version and the executable

from source code instrumentation [6]. Another drawback is that instrumentation depends

on the instruction set of the target architectures.

2.2.3 Source Code Instrumentation

Source code instrumentation is the process of inserting probes directly in the source code

of a program. In the case of the language C, this can be, for instance, a macro, a function

call, or another statement. It is instrumentation before the compiling phase.

Of course this technique has advantages as well as disadvantages. Let us start with the

advantages. A major benefit with this method is that information about covered probes

can be easily mapped to the original source code [31]. Another advantage of source code

instrumentation is that inserting probes is much simpler and more understandable than

inserting something in the object code and map it back to the source level.

Now let us come to the disadvantages. Source code instrumentation can affect the

compiler optimization and therefore increases the size of the executable more than binary

instrumentation. The reason for this is that an inserted point can prevent an optimization

by the compiler in the area of code around the inserted point. Another drawback is the

need for parsing the source code. Parsing the source code is very important to find the

right locations for inserting probes in the code. Unfortunately, writing a parser for the

language C is not a trivial task. In contrast, if the source code is correctly parsed into

a good representation, it is very easy to instrument. If parts of the source code are not

available, or it is not possible to recompile parts of the program, this technique is not

applicable [31].

2.3 Embedded Systems

2.3.1 What is an embedded System?

In the literature, many authors have proposed definitions for the term embedded systems.

Almost every author somehow mentions that the proposed definition is not the end all

2.3. Embedded Systems 23

solution. It is possible to provide a definition for a specific time in the past. However,

with the fast development of hardware and the decreasing costs these definitions do not

hold for long. The author in [5] gives the following definition. “An embedded system is

a combination of computer hardware and software - and perhaps additional parts, either

mechanical or electronic - designed to perform a dedicated function.” He also stated that

the design of an embedded system is to perform a dedicated task, whereas a personal

computer is not designed to perform a specific task. In [34] Noergaard gives an similar

definition.

Whereas the differentiation from a general-purpose computer system is a frequently

used part in an embedded system definition there are examples that weaken this cir-

cumstance. For instance, with the rise of PDAs (Personal Digital Assistance) we got

“embedded systems” with the possibility to provide many functionalities. Furthermore,

today we use smart phones that are better equipped than state-of-the-art PCs some years

ago. Therefore, the definitions have been weakened due to new technical developments.

In contrast to other authors, Heath stated in [18] that the best way to define what

an embedded system is, is to describe it in terms of what it is not and give examples of

how it is used. Furthermore, he stresses that an embedded system is not designed to be

programmed by the user.

As it can be seen, it is not easy to give a one-sentence-straight-to-the-point definition

for embedded systems. However, the embedded system on which we focus in this thesis is

definitely not in the group of ambiguous systems.

2.3.2 Peripherals

With peripherals an embedded system can communicate with the external world. Gen-

erally, a peripheral is everything that is not on the processor. They exist in all shapes

and sizes. The range is practically endless. For the reason that the processor has direct

access to the memory, the memory hardly counts as a peripheral [43]. Some peripherals

are very specific and just used in a small domain of embedded devices, whereas others, like

timers or serial ports, are widely used [5]. The majority of the commonly used peripherals

are located on the same chip as the processor [5] . These devices are called internal, or

on-chip peripherals. Devices that are not located on the same chip as the processor are

called external peripherals.

It is also common practice that peripherals a directly connected to interrupt pins of a

processor or with the interrupt controlling unit to signal the processor an event [5] .

24 Chapter 2. Preliminaries

2.3.3 Real-Time Systems

A subgroup of embedded systems are real-time systems. A system is considered as a

real-time system if it processes external stimuli in a limited amount of time [5]. For a real

time system, a late response is as bad as a wrong one. In other words, real time systems

have computations with a deadline. To meet these deadlines protocols with tight timing

constraints are used [5]. In summary, timing is a very important factor for this group of

embedded devices.

To measure code coverage on real-time systems can be a challenge. The reason for

this is that the instrumentation can influence the timing. If a deadline is missed due to

the timing overhead of the instrumentation the execution of a test or even the whole test

suite can be aborted. This is a serious issue, because if the test suite cannot perform the

tests due to the instrumentation, code coverage cannot be measured.

2.3.4 Debugging

Unfortunately, not all embedded systems can be debugged like a normal program on a PC.

The reason for that is that the majority of embedded systems do not provide resources

to be debugged directly on the system itself. To debug an embedded system, a cross-

debugger is needed. This cross-debugger runs on a “host” PC and communicates with a

debug interface. This debug interface is usually called JTAG even if it has not implemented

this standard [43].

Debugging requires some processor resources and can therefore influence the perfor-

mance of the embedded device during debugging. This can change the timing of the

execution. Consequently, this can lead to bugs that only occur during debugging. An-

other issue is that, the more debugging features a processor supports, the more resources

are needed. This increases the costs for the processor. In order to keep the costs low, in

a lot of processors just a subset of the possible debugging features are implemented. [43].

Chapter 3

Binary Approach

Contents

3.1 Overview . 25

3.2 Idea of the Approach . 26

3.3 Implementation . 27

3.4 Restrictions and Change of Strategy 30

3.1 Overview

Before we started with this thesis we discussed ideas how to measure code coverage on

embedded targets with very limited resources. Soon, we narrowed the selection to two ap-

proaches, a binary instrumentation approach and a source code instrumentation approach.

First, we decided for the binary approach because we wanted to avoid to parse C. After

a first evaluation of our binary approach, which focused on function coverage, we decided

to change our strategy to our source code based approach (see Chapter 4), which is able

to measure a combination of function coverage and decision coverage.

The rest of this chapter is structured into three sections. In Section 3.2, we discuss the

idea of our binary instrumentation approach. Section 3.3 presents the proof of concept

implementation of this approach. In Section 3.4 we discuss the restrictions. Furthermore,

we will explain why we changed our strategy to the source code instrumentation approach.

25

26 Chapter 3. Binary Approach

3.2 Idea of the Approach

Before we present our approach, we want to point out two main difficulties of binary

instrumentation for code coverage. First, inserting additional instructions at a point shifts

the subsequent instructions. This changes the addresses of the subsequent instructions.

Therefore, also the references to these instructions have to be changed. Note that this is

only an issue if we modify the machine code. Second, to find the associated source line for

all instructions is not an easy task. If it is possible or not, depends on the provided debug

information. Therefore, it is not trivial to map the coverage information to the source

code if it has been instrumented at binary level.

The first idea for instrumenting the binary was to start with a minimal invasive ap-

proach. Note that this approach focuses on function coverage. We had two reasons for

that. The first reason was that we searched for a starting point to get into the whole

task. The second reason was that we did not want to be confronted with all the difficulties

simultaneously. Therefore, we only wanted to overwrite instructions and not to insert new

ones in order to avoid relocations. We started to look for possibilities to instrument the

binary only with overwriting existing instructions. During this research we came up with

the following idea.

Cover all return from subroutine instructions to obtain function coverage informa-

tion. Before we start to explain our approach in more details, we have to introduce three

instructions.

• Instruction RET (return from subroutine) performs a return from a subroutine.

Therefore, it pops the return address from the current stack and then the execu-

tion continuous from this address.

• Instruction USR is a software interrupt with a context switch to user mode. It pushes

the return address (PC+1) and the program status word on the current stack. Then

it sets the PC to the interrupt vector and the code executions continues from there.

• Instruction RETI (return from interrupt) performs a return from an interrupt service

routine. Therefore, it pops the program status word from the stack and restores it.

Afterwards it pops the return address from the stack and the executions continuous

from there.

3.3. Implementation 27

First we rewrite all RET instructions in the ELF1 executable binary file with a software

interrupt user call USR. The user call jumps to a special function called covreturn (see

Section 3.3.5). This function copies the return address of the user call into an array

reserved for coverage data (cov array) and jumps back to the return address of the

function which belongs to that patched RET instruction. The stored address is the address

after the address of the caller instruction. Hence, it is easy to calculate which function we

covered. It is the function that is called in the address before. After the execution of the

software that should be tested, we extract the coverage array from the embedded device

and create a report.

3.3 Implementation

SRV-Parser

1,5

SRV File
Memory Map

RELF

2

ELF file

2-link

3

Test

4

Patch Instr.

Instr. ELF fileCoverage Data

Figure 3.1: A schematic overview of the structure of our proof of concept imple-
mentation.

In order to test this approach we did a proof of concept implementation, which we

discuss in this Section. Figure 3.1 gives a schematic overview of the implementation. The

SRV-Parser and RELF, presented with blue rectangles, are implemented by us and the

Test and 2-link are specific third party tools of the embebbed target.

3.3.1 SRV-Parser

The SRV-Parser has three purposes. First, it extracts the instructions that should be

patched from a SRV file and stores the source references, i.e. it stores which RET belongs

to which function. The SRV file is an intermediate output of the compiler and holds the

instructions names, the associated addresses, and the source references. Furthermore, it

1Executable and Linkable Format [11]

28 Chapter 3. Binary Approach

1 assembly void covreturn(void) property(isr) clobbers(R4,R6)
2 {
3 asm_begin
4 .undef global data cov_array
5 .undef global data cov_ptr
6 asm_text
7 // R7 is the stack pointer (SP)
8 PUSH R4,R6 // save registers
9 MOV R4,@R7+8 // copy return address to register

10 MOV.s R6,cov_pter // move cov_ptr into R6
11 MOV @R6,R4 // copy the return address into cov_array
12 ADD.w cov_ptr,#2 // increment cov_ptr
13 MOV R4,@R7+4 // prepare Frame for RETI (step 1)
14 MOV @R7+6,R4 // prepare Frame for RETI (step 2)
15 POP R4,R6 // restore registers
16 ADD R7,#2 // set SP, discard unused value
17 RETI // returns to the return address of
18 // the to be covered function
19 asm_end
20 }

Listing 3.1: Coverage function of the proof of concept implementation.

generates a patch instruction file with the offsets to these instructions. These are the

offsets in bytes from the start of the instructions in the ELF file to the instructions that

should be patched. Second, it extracts the addresses of the cov array and the cov ptr.

This is important for the extraction of the coverage information after testing. Third, after

the test it receives the extracted coverage date and generates a report.

3.3.2 RELF

RELF (RET instrcution patcher for ELF files) is the tool that locates the instructions

of the patch instruction file in the ELF file and overwrites it with a USR to the function

covreturn. Before patching an instruction it has to find the beginning of the code

segment in the ELF file. The output of this tool is an instrumented ELF file.

3.3.3 2-link

The 2-link debug probe is the debug interface to the MRK-IIIe. It can be connected to a

host machine with a USB cable. The 2-link can be addressed over an API. There is also a

command line interface for this API. The 2-link provides the functionality to set or read

registers or memory locations, set the program counter or breakpoints, and start or stop

the execution. Furthermore, binaries can be loaded onto the embedded target with this

3.3. Implementation 29

tool. This is the only way to debug the target. In this system we mainly use the 2-Link

to deploy a binary to the embedded system and extract the results from it.

3.3.4 Test

This component is not really a component in the usual sense. For this approach we had

no test suite. We tested a demo applications without external test stimuli as input.

3.3.5 Coverage Function

The USR jumps to a special function covreturn (Listing 3.1). This functions is supposed

to store the return address of the function that should be covered. In order to do this it

performs five steps.

1. First it saves the values of the registers R4 and R6 onto the stack (line 8, 9).

2. In lines 10 to 13 the function stores the return address of the function that should

be covered in the coverage array. The cov ptr points to next free field in the array.

Therefore, it has to be incremented at the end (line 13).

3. In line 14 and 15 the functions prepare the stack frame for the RETI. Therefore,

it rewrites the return address of the interrupt subroutine with the program status

word.

4. Then it restores the registers R4 and R6 to their original values (line 15).

5. In line 16 we set the stack pointer to the prepared stack frame for the RETI and in

line 17 we can perform the RETI. It pops the program status word from the stack

and then it pops the return address of the to be covered function from the stack and

the execution continuous from there.

Note that the instruction syntax is from right to left, the left operand is the destination

and the right operand is the source. Furthermore, the register R7 in the Listing 3.1 is the

stack pointer (SP).

3.3.6 Script

A control script manages the communications between the tools. As you can see in Fig-

ure 3.1, five steps are necessary to measure function coverage.

30 Chapter 3. Binary Approach

1. The SRV-Parser receives a SRV file and a memory map and creates a file with a

list of all instructions that should be patched with a USR.

2. The RELF receives the patch instructions file from the SRV-Paser and the ELF

file. It overwrites all instructions of the patch instruction file with a USR and returns

an instrumented version of the ELF file.

3. The script generates a runnable binary from the ELF file and deploys it with the

help of the 2-link.

4. Then the scripts starts the execution of the demo application. After the execution

it extracts the coverage information from the embedded device.

5. The SRV-Parser receives the coverage data and creates a report.

3.4 Restrictions and Change of Strategy

Unfortunately, this approach fulfills only a view of the requirements from Section 1.2.1.

R1 (Language Support) Is fullfilled.

R2 (Memory Consumption) The approach did not consume more than 1 KB, but we

tested it only with demo applications. Since we store the addresses one after another

into an char array and do not prevent overflows other applications can produce an

overflow. However, for this proof of concept implementation this was acceptable.

R3 (Code Coverage Criteria) Is not fulfilled. For a stronger coverage criterion like deci-

sion coverage we have to insert new instructions. Therefore, we would need reloca-

tions.

R4 (Test Abortion Handling) Since we had no test suite, we cannot really say something

about this requirement.

R6 (Total Time) Since we had no test suite, we cannot really say something about this

requirement.

R5 (Visual Report) Is not fulfilled. With the available debug information it is hard to

map the coverage data to the source, which is important for this requirement.

R7 (Efficient Instrumentation) We need one probe per RET instruction. Hence, it fulfills

this requirement.

Besides these shortcomings regarding the requirements the approach has the restriction

that it is not possible to cover inline functions or tail calls. The issue with the inline

3.4. Restrictions and Change of Strategy 31

functions is that there is no debug information left that can give us a hint that a statement

belongs to a called inline function. This is a compiler specific issue. Furthermore, there

is no RET instruction that we can patch. Another issues is that in the case of a tail call,

we cover only the callee function and not the caller function of the tail call. This is also a

compiler specific issue. With the compiler of our test embedded system it was possible to

turn this tail call optimization off. Nevertheless, it can be a restriction with other systems.

With this facts in mind we decided to change the focus on the source code instrumentation

approach and see where there are the problems.

Chapter 4

Source Code Instrumentation

Approach

Contents

4.1 Overview . 33

4.2 Issues and Approaches . 34

4.3 Implementation . 40

4.4 Summary . 47

4.1 Overview

In order to achieve code coverage measurement of a resource-limited embedded device

with source code instrumentation we identified three major points to address.

1. The Instrumentation of the Source Code

In order to achieve this, we have to solve at least three subpoints. First, the naviga-

tion inside of the source code. We need this for the third point. Second, we have to

ensure the uniformity of the source code. It will be easier to instrument the source

if statements like if or for can always be processed in the same way. Finally, we

need to find the right locations inside of the source code to place a probe. In order

to measure a specific code coverage metric it is important to insert probes at the

right locations.

2. The Reporting Mechanism During Runtime

How can we store the information that a probe has been covered?

33

34 Chapter 4. Source Code Instrumentation Approach

3. The Handling of Timing Issues

What can be done if the test aborts due to some timing issues caused by the instru-

mentation?

The rest of this chapter is divided into two main sections and a summary. In Section 4.2,

we discuss the above described issues in detail and present our approaches to solve them.

Section 4.3 presents the prototypical implementation of our source code instrumentation

approach.

4.2 Issues and Approaches

4.2.1 Instrumentation

In order to instrument source code written in C, it is necessary to navigate through code

and to insert probes at the right locations. Therefore, at least three major issues has to

be solved. The first issue is that we cannot navigate through the source code without

parsing it. Since code in C is not easy to parse, this is not a trivial task. The second issue

is that important statements for the instrumentation like an if can occur in different

ways, for instance with our without curly braces. Maybe the if has an associated else

branch. There can be sequences like if-else-if etc. Therefore we want standardize

every occurrence of such a statement. We call this process of standardizing from now on

prettifying. The last issue is the appropriate placement of the probes in order to measure

a specific code coverage criterion.

For this work we reduced the complexity of the task by disregarding preprocessor

statements. This means that we instrument the user source code and not the preprocessed

version of the user source code. We are aware that this might distort our results a little

bit because we might instrument switched off code snippets.

The appropriate placement of the probes will be much more easier if we do not have

to deal with the first two issues. For that reason our approach for instrumenting the

source code works as follows. First, we provide the functionality to navigate through the

source code. Second, we prettify the source code. Finally, we insert the probes in order to

measure a specific code coverage criterion. In the following three subsection we describe

how we want to overcome each of these issues.

4.2. Issues and Approaches 35

4.2.1.1 Source Code Navigation

In order to provide the functionality to navigate through the source we have to analyze it.

The source code can be seen as a stream of characters. The analysis part of a compiler is

doing such an analysis of the source code of a program.

The analysis part of a classical compiler consists of three phases or components [2]. The

first component that is doing the lexical analysis is called scanner. It reads in the source

code and groups the characters into meaningful fractions, called tokens. The output of the

scanner is called a token stream. The second component is the parser and it performs the

syntax analysis. It uses the tokens from the token stream to produce a syntax tree, which

is a representation that characterize the grammatical structure of the token stream. It uses

the information from the second phase to check the source code for semantic consistency

with the language definition [2].

To navigate to locations that have to be instrumented for decision coverage we need the

token stream from the lexical analysis. Having the syntax tree from the parser would be

good but is not absolutely necessary. It should be possible to navigate to the appropriate

positions in the token stream with some easy rules. In summary, we need at least a token

stream and a reduced set of syntax rules to navigate inside of the token stream.

Let us assume we have a tool that provides a token stream, then we only need to think

about how to navigate to the right tokens. In order to prettify or to instrument the source

code we need to navigate to the beginning and the end of the inner statements of selection

and iteration statements. This can be done with a set of recursive functions. The idea is

to iterate through the token stream until we find a selection or iteration statement. Then

call the function that handles this statement, for instance handleIf(). This function

navigates to the beginning of the inner statement and iterates through the tokens until it

reaches the end of the inner statement or it finds a selection or an iteration statement. If

the latter is the case, it calls the function which handles this statement.

With this navigation functionality we can identify all locations that we need to prettify

or instrument the source code.

Coccinelle’s Lexer Output/Token Stream Coccinelle is da program matching and

transformation engine by LIP61 (Laboratoire d’Informatique de Paris 6). It provides a

language called SmPL (Semantic Patch Language) for specifying desired matches and

transformation in C code. Coccinelle performs a semantic analysis of the given C code.

1http://www.lip6.fr

36 Chapter 4. Source Code Instrumentation Approach

Therefore, it needs to perform lexical analysis. With the command line interface it is pos-

sible to return the produced token stream in a file. Listing 4.2 shows such a token stream

output of the small code snipped in Listing 4.1. In order to shorten this representation,

we disregarded all the tokens associated to any kind of white space.

Each line of the token stream file represents exactly one token. The prefix of each

line is Tag#, where the # denotes the token number. For instance, Tag80 represents

an if token, Tag7 indicates a string token, etc. Every token has a 5-tuple like

("a", 15, 3, 2, "if.c"). The first value is the printed representation of the token

in the source file. The second value is the number of the token, for instance 18th token

in this source file. Value number three is the corresponding source code line number.

The fourth value is the column number at which the token begins in the source file. The

last value is the filename. All the other information in this file is not required for our

approach.

1 if(a < 5)

2 {

3 a++;

4 }

Listing 4.1: Simple code snippet for a sample token stream output (if.c).

1 Tag80 (((("if", 0, 1, 0, "if.c")), (0), ((0, 0, 0, 0)), 0))

2 Tag12 (((("(", 2, 1, 2, "if.c")), (0), ((0, 0, 0, 0)), 0))

3 Tag8 (("a", ((("a", 3, 1, 3, "if.c")), (0), ((0, 0, 0, 0)), 0)))

4 Tag38 (((("<", 5, 1, 5, "if.c")), (0), ((0, 0, 0, 0)), 0))

5 Tag4 ((("5", (0, 2)), ((("5", 7, 1, 7, "if.c")), (0), ((0, 0, 0, 0)))))

6 Tag13 ((((")", 8, 1, 8, "if.c")), (0), ((0, 0, 0, 0)), 0))

7 Tag14 (((("{", 11, 2, 0, "if.c")), (0), ((0, 0, 0, 0)), 0))

8 Tag8 (("a", ((("a", 15, 3, 2, "if.c")), (0), ((0, 0, 0, 0)), 0)))

9 Tag21 (((("++", 16, 3, 3, "if.c")), (0), ((0, 0, 0, 0)), 0))

10 Tag30 ((((";", 18, 3, 5, "if.c")), (0), ((0, 0, 0, 0)), 0))

11 Tag15 (((("}", 20, 4, 0, "if.c")), (0), ((0, 0, 0, 0)), 0))

Listing 4.2: Sample token stream output from Coccinelle.

4.2.1.2 Prettifying of the Source Code

In this section we address the issue that iteration and selection statements can occur in

different ways. In order to instrument these statements it is helpful to prettify them, or

in other words to unify or standardize the structure of these statements. The structures

4.2. Issues and Approaches 37

should be like in Listing 4.3 and 4.4. At this point, please disregard the probes in these

two Listings. We will explain them in Section 4.2.1.3.

i f (exp r e s s i on)
{ probe

statement ;
}
e l s e
{ probe

statement ;
}

whi le (exp r e s s i on)
{ probe

statement ;
} probe

f o r (exp r e s s i on)
{ probe

statement ;
} probe

Listing 4.3: Instrumented if, while,
for.

switch (i d e n t i f i e r)
{

case 0 : probe
statement ;
break ;

.

.

.

case n : probe
statement ;
break ;

d e f a u l t : probe
statement ;
break ;

}

Listing 4.4: Instrumented case and
default in a switch.

It is important for the instrumentation step that all inner statements of iteration,

selection, and else statements are compound statements. For example, if we want to

instrument a selection statement like if(a < 3) x = 5; we have to insert a probe

like this if(a < 3) cover(id); x = 5;. In this case the inserted probe kicks the

statement x = 5; out of the if branch. In order to prevent this, we need to ensure that

every inner statement is a compound statement, which means it has to be surrounded with

curly braces. If we also want to instrument the else branch in this example, we have

to add the whole else branch. As already said, this process is called prettifying. Since

we can assume that a switch statement is complete (Assumption 3), which means that

there is a default case and for each option there is an associated case, we are done.

With the ability to navigate inside of the token stream, we can identify the beginning and

the end of the inner statements of selection and iteration statements. Hence, we only have

to check whether the inner statements are already surrounded by curly braces or not. If

not we insert them. If there is no associated else branch for an if statement, we add it

including the curly braces. With Coccinelles’s token stream and the navigation rules from

the previous section this is be doable.

A shortcoming of this approach is that we cannot instrument the do-while statement.

The reason for that is that for decision coverage only inserting probes is not sufficient,

38 Chapter 4. Source Code Instrumentation Approach

because the first execution of the inner statement of a do-while statement does not

depend on the controlling expression.

Since we can assume that our input programs are syntactically and semantically correct

(Assumption 1 and 2), we can be sure that after the prettifying step the selection and

iteration statements have exactly the structures as in Listing 4.3 and 4.4.

4.2.1.3 Placement of Probes

Inserting the probes at the right positions in the source code is the basis for measuring a

specific code coverage criterion. We want to instrument the source for a combination of

the decision coverage criterion and the function coverage criterion. Therefore, we need to

insert probes at the following locations:

• At the beginning of every function,

• in the inner statement of every selection and iteration statement.

• after the colon of every case or default, and

• in the inner statement of every else branch.

Listings 4.3 and 4.4 show the placement of the probes in the selection and iteration state-

ments.

If you are able to identify the beginning of a statement, the identification of the begin-

ning of a function in the token stream of a C source code file is not a problem. According

to the C Standard [15], the body of a function is a compound statement. Therefore, the

beginning of the first function in a source code file is the beginning of the first compound

statement in the file. The second body of a function is the next compound function that

is not inside of another compound function etc.

Since we can navigate to all locations in the token stream, where we want to insert a

probe, we only have to be able to insert the probes. It is possible to specify new token

types with special fields to store additional information. Furthermore, new tokens can be

easily inserted into this token stream. Hence, our idea is to instrument the token stream

and then produce an instrumented version of the source code from this instrumented token

stream.

4.3. Implementation 39

4.2.2 Efficient Reporting of Covered Probes

In this section we address the problem of reporting a covered probe during runtime. The

difficulty lies not in the reporting itself, but in doing it efficiently. According to Re-

quirement 2 only up to 1 KB of RAM is available to store the coverage information.

Furthermore, the number of used instructions to report a probe should be reduced to a

minimum in order to affect the timing as little as possible.

Our approach here is to first solve the memory problem and than optimize the reporting

mechanism in terms of minimum number of instructions. Two things should be sufficient

to report the probe. First, an array of characters that reserves the memory for the probes.

Second, an inline function cover() that takes the ID of the probe as parameter. The

ID should be a unique number for the probe and also the bit index of the coverage bit

array, for instance the probe cover(14) sets the 14th bit in the coverage bit array if it

is executed. The function cover() calls a macro that sets the bit with the index ID in

the bit array. For instance, let the ID be 29, then the function should set the sixth bit of

the character stored at index four in the array of characters. This approach only needs

one bit per inserted probe.

4.2.3 Error Handling

This section addresses handling of errors due to timing violations. The execution overhead

of reporting covered probes can cause timing violations, which can affect the test result or

even lead to an abortion of the test. This is a very serious problem, because if test cases

fail to execute we cannot measure their coverage. Requirement 4 addresses this issue and

asks for a solution.

Our approach to overcome this difficulty is to remove the covered probes from the

instrumentation after a test run and ro run the test suite again. Since a probe can only

cause a timing violation if it has been executed. In other words, if a probe affects the

timing it must has been covered before. Therefore, we can remove all the covered probes

from the instrumentation and do another test suite run. We repeat this procedure of

updating the instrumentation and rerunning the test suite until we do not cover new

probes or at least all test cases end as expected.

40 Chapter 4. Source Code Instrumentation Approach

source code

Coccinelle

TS Parser Instrumenter Compiler

Prettifier
Updater
(if new probes)

2-link

Reporter Test Suite

Token Stream

Instr. TS Binary

Coverage Data

Updated instr. SC

yes

Results

no

Figure 4.1: A schematic overview of the structure of our code coverage measure-
ment system.

4.3 Implementation

4.3.1 Overview

In this Section we discuss the implementation of our code coverage measurement system,

which consists of five different programs. Figure 4.1 gives a schematic overview of the

system. All the blue rectangles in the dashed container are modules of our code cover-

age measurement tool, which from now on is called C-CoCATool (C Code Coverage

and Analysis Tool). The four green rectangles represent third party software. The tool

Coccinelle has been described in Section 4.2.1.1. It provides the token stream of the

source code that should be analyzed. The compiler builds the binary for the embedded

system. The 2-link is the debugging interface of the embedded system and deploys the

binary to it. The Test Suite holds all the tests for the embedded system. We modified

4.3. Implementation 41

the Test Suite and give an explanation in Section 4.3.4. A controlling script manages

the dataflow and the communication between the five programs. We treat this in detail

in Section 4.3.5.

4.3.2 C-CoCATool

The C-CoCATool is the heart of our code coverage measurement system. It consists of

five parts or modules (the blue rectangles in Figure 4.1). In the following paragraphs we

present every part of the C-CoCATool.

4.3.2.1 TS-Parser

The TS-Parser parses the tokens from Coccinelle’s token stream. In addition to that,

it builds a data structure for the later processing of the stream. Therefore, it creates a

token instance for each token of the stream. Every instance provides the functions for an

easy access to the tokens information.

4.3.2.2 Prettifier

The Prettifier implements the idea described in Section 4.2.1.2. Which means that the

Prettifier ensures that every inner statement of a selection or an iteration statement

becomes a compound one. In addition to that, it ensures that every if gets an associated

else branch. We implemented this functionality in an recursive approach, which can

be seen in Listing B.1 in the Appendix. In order to facilitate the mapping of coverage

information to the associate line in the uninstrumented original source code the Pretti-

fier does not add lines during the prettifying process. The code snippet in Figure 4.5

illustrates this. Another important point is, that we prettify the data structure created by

the TS-Reader and not the source code itself. Means that we insert new tokens, for in-

stance the curly braces or an else token in the data structure and create an instrumented

version of the source code from this data structure.

Listing 4.5: Original and prettified version of an if statement.

1 if(a < 5) --> if(a < 5) {

2 a++; --> a++ } else { }

42 Chapter 4. Source Code Instrumentation Approach

4.3.2.3 Instrumenter

The Instrumenter receives the prettified data structure and inserts probes as tokens.

A probe token consists of the normal 5-tuple with two extra values: an unique identifier,

and a boolean field covered. The boolean field stores whether the probe is already covered

or not. A probe will only appear in the instrumented source code if it is not set covered.

The technique to navigate through the tokens is similar as in the Prettifier.

4.3.2.4 Updater

The purpose of the Updater is to evaluate the coverage information of a test run and

adjust the instrumentation according to these results. Therefore, it receives the coverage

information after a test run. This coverage information is the content of the coverage

bit array. The Updater iterates through this bit array and sets the value covered of

all newly covered probes to true. The Updater provides the functionality to create

an instrumented source code file from the instrumented token stream data structure.

Therefore, it only iterates through the token stream and writes the printed representation

of the token into a file. If at least one new probe has been covered in the last test run it

creates an instrumented version of the source code from the updated token data structure.

Otherwise, the work is done and the Reporter takes over.

4.3.2.5 Reporter

If no new probes have been discovered in the last test run the work is done and a report

has to be generated. This is the task of the Reporter. It creates a graphical HTML web

report. With this report a developer can study the coverage of his source code. Figure 4.2

shows the overview page of a sample report and Figure 4.3 shows a specific file. The layout

is strongly inspired by LCOV2, which is a graphical front-end for GCC’s coverage testing

tool gcov3. The coverage percentage in the report is the number of the covered probes in

relation to the total number of inserted probes. In the file specific report it can be seen if

a branch has been taken or not. A green line indicates that a branch has been taken at

least once and red one indicates that it has not been taken. This module should satisfy

Requirement 6.

2http://ltp.sourceforge.net/coverage/lcov.php
3http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

4.3. Implementation 43

Figure 4.2: Overview page of the HTML code coverage report.

4.3.2.6 Summary

The C-CoCATool provides the functionality to instrument source code. Furthermore, it

is able to update this instrumentation based on the coverage information collected in the

previous test run. At the end of the measurement procedure it creates a visual HTML

report. How the C-CoCATool interacts with the other components of the system is treaten

in Section 4.3.5.

4.3.3 2-link

We discussed the 2-link already in Section 3.3.3. In our code coverage measurement

system we mainly use the 2-Link to deploy a binary to the embedded system.

4.3.4 Test Suite Modifications

A test suite that is integrable within our code coverage measurement system has to pro-

vide some extra functionality. We implemented this functionality in a C++ class called

Coverage. This class provides functions to zero out the coverage memory area in the

RAM of the embedded system or to read this area out and append it to the already gath-

44 Chapter 4. Source Code Instrumentation Approach

Figure 4.3: HTML code coverage report of a specific file.

ered coverage information. Furthermore, it provides the functionality to create a result

file with the coverage information collected during the test run.

Before we explain where the modifications take place during the execution of the test

suite, we describe how a test case is designed in the test suite we used for our experimental

results. Normally, the embedded system is stopped. Before executing a test case the test

suite stops the embedded system and after executing the test case it stops the device. We

call this starting process a power up and this stopping process a power down. However,

it could be the case that there are unexpected power downs, for instance if a test case is

aborted. If we only read the coverage memory out after a test case we would miss covered

4.3. Implementation 45

probes. In order to be sure that we do not miss covered probes we read the memory out

after every power down. There exists also test cases that perform more than one power

down.

Now let us explain at which steps of the execution our modifications take place. The

test suite holds a buffer that has the same size as the coverage bit array on the embedded

device. We call this buffer coverage image. Our modified test suite zeros out the memory

area that is reserved for coverage information (the bit array) before starting the very

first test. After each power down of the embedded system during the test run, the test

suite reads out the coverage memory from the embedded system and updates the coverage

image. After each power up of the embedded system during the test run, the test suite sets

the coverage memory with the stored image, to ensure that the memory is not corrupted.

At the end of the test run, the test suite writes the image of the coverage memory area in

a result file.

4.3.5 Toolchain

Deploy

Instrument Build Test

Update

Report

Figure 4.4: A schematic overview of the toolchain of our code coverage measure-
ment system.

Our code coverage measurement system can also be seen as a toolchain. The system

consists of six different steps or phases, namely Instrument, Build, Deploy, Test, Update,

and Report. Figure 4.4 illustrates this toolchain view. In order to overcome the issue of

aborted test runs due to timing violations (see Section 4.2.3), we developed and imple-

46 Chapter 4. Source Code Instrumentation Approach

mented an iterative approach. This approach is based on Algorithm 1. A controlling script

manages the communication between the components of the system in order to provide

the functionality of the algorithm. In the following subsections we give more information

on each of the steps in the toolchain.

Algorithm 1 Code coverage algorithm

1: instrument source code
2: repeat
3: build updated executable
4: deploy executable on chip
5: run test-bench on protocol
6: update the instrumentation
7: until no new probes are found
8: create visual report

4.3.5.1 Instrument

Two components of the system are needed to perform this step, Coccinelle and C-

CoCATool. The first thing in this step is the creation of the token streams by Coc-

cinelle. The token stream of the source code is the input for the C-CoCATool, which

performs the instrumentation and returns an instrumented version of each source code

file.

4.3.5.2 Build

For this step only the Compiler is needed. The instrumented source code files from the

Instrument step is the input for the the Build step. The controlling script first copies the

files in the right folders and then starts the build.

4.3.5.3 Deploy

This step is done by the 2-link debug probe. The input for the Deploy step is the binary

produced in the Build step. To be entirely accurate, a little bit more has to be done to

produce an executable binary for the embedded device. Nevertheless, these steps are not

really interesting in the context of this thesis.

4.4. Summary 47

4.3.5.4 Test

After deploying the instrumented binary to the embedded device a test run can be

launched. For this step only the Test Suite is necessary. To be exact, the Test Suite

uses components to communicate with the embedded target during the test, but these

components are not of interest in the toolchain view. Nevertheless, we discuss them in

Section 5.1.1. The output of this step is a file with the collected code coverage information

during the test run.

4.3.5.5 Update

This step is performed by our C-CoCATool. The input for the Update step is the

collected code coverage information of the Test step. The first thing to do here is to check

if new probes have been covered in the test run. The term new in this context means that

in the last test run at least one probe has been covered that has not been covered in earlier

test runs. If new probes have been covered in the last test run, the C-CoCATool updates

the instrumentation, which means set for all newly covered probes the value covered to

true. Therefore, they will not appear in updated version of the source code. After that

it creates the updated instrumented source code files as an output of this step. If new

probes have been covered in the last test run, the script continues with the deploy step.

Otherwise, the controlling script proceeds with the Report step.

4.3.5.6 Report

As said in the last section, after not finding new points we are almost finished. This is the

final step of the toolchain and it is performed by the C-CoCATool. The input for this

step is the previous gathered code coverage information and the output is a little HTML

coverage report.

4.4 Summary

In this chapter we presented a code coverage measurement system that is able to measure

a combination of function and decision coverage of applications running on embedded

systems with very limited resources. The systems consists of two major parts. On the

one hand we have our instrumentation and analysis tool C-CoCATool and on the other

hand we have Coccinelle, the test suite, a compiler and a debugger.

48 Chapter 4. Source Code Instrumentation Approach

The C-CoCATool instruments the program at the source code level. With this sys-

tem we realized an iterative approach, which is able to update the instrumentation by

removing covered probes. Furthermore, we overcome the problem of aborted test cases

due to timing violation caused by the instrumentation. At the end of the instrumentation

process we generate a visual report of the gathered code coverage information. Our ap-

proach has two restrictions. It does not support do-while loops and it also instruments

source code that might be inactive due to preprocessor statements.

This code coverage measurement system is designed to fulfill the requirements in Sec-

tion 1.2.1. Therefore, we can say that this system fulfills the Requirements 1, 3, and 6. To

determine if the other requirements are fulfilled we need experimental results. Therefore,

we discuss them in Section 5.3.6.

Chapter 5

Evaluation

Contents

5.1 Test Setup . 49

5.2 Results . 52

5.3 Discussion . 54

In this work we proposed two approaches for measuring code coverage on embedded

systems with very limited resource (Chapter 3 and 4). We started with our binary in-

strumentation approach that is able to measure function coverage. We implemented this

approach in a prototype tool and tested it. After the evaluation of this approach we de-

cided to change our focus to a source code instrumentation approach. One reason for that

was that we did not want to restrict our tool to a specific instruction set. Furthermore, we

can measure more sophisticated code coverage metrics with the source code instrumenta-

tion approach. The following results will confirm this. Hence, we focus in this section on

the results of our source code instrumentation approach and mention results of the binary

approach only very briefly. The following results will show that this approach is able to

measure a combination of function and decision coverage on an embedded system with

highly limited resources in an industrial use case. First of all we describe our test setup.

Afterwards we will present the results and give a discussion.

5.1 Test Setup

We tested our source code instrumentation approach on an MRK-IIIe attached embedded

system provided by NXP Semiconductors. This is a RISC controller that uses the third

generation of NXP’s Micro RISC Kernel (MRK-IIIe). The MRK-IIIe is 16-bit microcon-

49

50 Chapter 5. Evaluation

troller using a Harvard architecture. The processor supports a maximum clock frequency

of 16MHz. The size of the user ROM for application on the board is 32 KB and the size of

the RAM is 2 KB. Depending on the software up to 1 KB of RAM is available for coverage

data.

We tested our approach on four protocols of industrial use with a modified version of

the original test suite of the protocols. Therefore, we used basically the same test setup as

for a normal test suite run without applying our test coverage measurement approach. To

get a better understanding of the test setup, we will start with a description of the original

test setup and afterwards we will describe how we modified this setup for our coverage

measurement approach.

5.1.1 Normal Test Setup

The original test setup for the MRK-IIIe consists of hardware and software parts. The

hardware part includes a host machine, a 2-link debug probe, a TED-Kit and a develop-

ment board with a MRK-IIIe applied on. Figure 5.1 illustrates how the hardware parts

are connected. The software part of a normal test run consists of the test suite and the

API-interfaces for the 2-link and the TED-Kit.

Figure 5.1: Test setup for the embedded device.

The test suite provides several test benches for different protocols on the MRK-IIIe.

It can address the 2-link and the TED-Kit by calling their API-methods. Additionally,

5.1. Test Setup 51

the test suite evaluates the results of the test cases.

To test the firmware on a MRK-IIIe we used an embedded development board. This

board is equipped with the MRK-IIIe and all the necessary peripherals. Figure 5.1 illus-

trates such a board with a mounted chip and an antenna as a peripheral.

The 2-link debug probe is the debug interface to the MRK-IIIe and the only way to

debug the target. It has been described in Section 4.3.3.

The TED-Kit (Transponder Evaluation and Development Kit) is the tool that is able

to stimulate the embedded device via wireless communication. In our test setup, this was

the device that applied the test stimuli on our embedded device under test. The TED-Kit

is equipped with an API-interface and can be connected to a host machine with a USB

cable. Note that this wireless communication adds nondeterministic timing behavior to

the test suite.

In the host machine everything comes together. It is connected with the 2-link and the

TED-Kit. The test suite, which applies all the test stimuli over the TED-Kit, also runs

on it. Additionally, a new binary can be deployed from the host machine on the target

device. In conclusion, the host is the “brain” of the whole system.

5.1.2 Modified Test Setup

To apply our code coverage measurement approach it was necessary to make some modifi-

cations to the test setup (see Section 4.3.4). We made all this modifications to the software

side of the test setup.

The major change was the introduction of our code coverage toolchain. As described

in Section 4.3.5, the toolchain consists of six steps, namely instrument, build, deploy,

test, update, and report. We integrated the test suite application into the test step. For

this integration, some adaptations in the test suite were necessary. These modifications

were responsible for keeping track of the covered probes and are described in detail in

Section 4.3.4

Algorithm 1 illustrates our arrangement of the six steps in this test setup. The instru-

mentation step is a preliminary one and is only applied once. The report step is a final

step and also only applied once. Therefore, only the first iteration consists of five steps.

Every other iteration needs just four steps (build, deploy, test, update).

During our test runs we measured the execution time for each step in every iteration.

Furthermore, we measured the number of newly covered probes in every iteration. We

separated all source files in two disjunct groups. The first group consisted of all files that

52 Chapter 5. Evaluation

were related to a specific protocol and the second group consisted of all auxiliary files.

Note that the test benches focused on the protocol-related files. Hence, we measured not

only the overall coverage but also the coverage for these disjunct groups separately. In the

next section we present the results of these test runs.

5.2 Results

5.2.1 Binary Instrumentation Approach

Since we achieved much better results with the source code instrumentation approach, we

mention our results with the binary approach only very briefly. We tested the approach

with a demo software application on the MRK-IIIe. The results showed that it is possible

to measure function coverage on a resource-limited embedded system with our approach.

In our tests we got no problems with timing constraints. Hence, we were able to cover all

probes in the first iteration. This makes this approach very fast. We are aware that the

function coverage criterion is a very coarse grained one. Nevertheless, it can be useful for

a first function profiling. This is possible for the reason that we store the address of each

covered function consecutively.

5.2.2 Source Code Instrumentation Approach

In our experiments we tested four different firmware protocols, we named them Proto-

col I, Protocol II, Protocol III, and Protocol IV. Since the behavior of the system is not

fully deterministic we performed three fully instrumented test runs to reduce the effect of

outliners in the evaluation. Fully instrumented means that all associated files, protocol

related as well as the auxiliary files, were fully instrumented. We measured the time for

all steps of each iteration. Additionally, we measured the covered probes per iteration.

Tables 5.1 (Protocol I), 5.2 (Protocol II), 5.3 (Protocol III), and 5.4 (Protocol IV) show the

results. Figures 5.2 (Protocol I), 5.3 (Protocol II), 5.4 (Protocol III), and 5.5 (Protocol IV)

coherences of the different runs of the same protocol.

For a better understanding of the data presentation in these tables and figures, we

give a brief description in the following paragraphs. Let us start with the explanation of

the tables. The first column, which is named Iteration, represents the iteration number.

The iteration number is the counter of the loop in the toolchain, for instance if we are

in the third iteration, we did already two loops of build, deploy, test, and update before.

In the second column (Instrumentation) the instrumentation time is listed. This step is

5.2. Results 53

only needed in the first iteration. Therefore, the cells for the other iterations are empty.

In the next column (Build) the time that was needed to rebuild the source code with

the added or updated instrumentation is recorded. The fourth column (Deploy) shows

the time in seconds for loading the executable binary to the target. Column five (Test)

represents the runtime of the test suite. For the sake of readability, we present these

values in minutes instead of seconds. The next column (Evaluation) lists the time that

was needed to evaluate the results of the iteration and to update the instrumentation in

the source code with the determined information. In the column Offline Overhead the

overall offline overhead for this specific iteration is listed. This overhead is the sum of the

steps instrumentation, build, deploy, test and update. The next column Overall Runtime

represents the time of the whole iteration. In the column New Probes the overall number

of probes that were newly covered in this iteration is listed. The next two columns, which

are listed under the name (Protocol), refer to the protocol related files. The first column

shows the number of probes in a protocol related file that were newly discovered in this

iteration. The second column shows the overall coverage for the protocol related files after

each iteration in percentage. In the second to the last column (Auxiliary) the number of

newly discovered probes in all auxiliary files is listed. The symbol in the last column (Test

Result) gives a hint on the number of tests which had produced the expected result. The

symbol × indicates that either only a very low number of tests produced the expected

results or that the test suite run did not produce any results. The symbol ∼ indicates

that a lot of tests produced the expected result. If every single test produced the expected

result, we indicate this with the symbol
√

.

The row with the bold text represents the overall numbers of the whole test run. To get

a comparison between the runtime of the original test procedure and the code coverage test

procedure, we calculated an average time of the original test suite run for each protocol. It

can be found in the last section of the table, for instance, Protocol I - original in table 5.1.

The slowdown factor value in the headline of a protocol is the total overall runtime of this

protocol divided by the overall runtime of the original test-suite.

For each of the protocols we provide a number of diagrams (Figures 5.2 on page 63,

5.3 on page 64, 5.4 on page 65, and 5.5 on page 66) to illustrate certain aspects of our

results. The diagram Total Test-Suite Runtime shows the differences and similarities

between the original run and the code coverage runs with respect to the execution time

per iteration. The bar chart All Files - New Cov. Probes per Iteration illustrates for each

code coverage run the newly covered probes per iteration. All Files means that we do not

54 Chapter 5. Evaluation

differentiate between protocol or auxiliary files. The next diagram (All Files - Total Probes

Covered) presents the different coverage runs with respect to the total number of covered

probes and iterations. A probe in a graph shows the total number of covered points after

an iteration. The next three diagrams (All Files - Coverage in %, Protocol Files - Coverage

in %, and All Auxiliary - Coverage in %) show the increasing coverage percentage after

each iteration. The first of the latter three diagrams illustrates the coverage percentage

for all files. The last two of them show only the coverage percentage for either the protocol

files or for the auxiliary files.

We checked the binaries of the instrumented source code files and we saw that the

source code approach only needed two instructions for reporting a probe as covered. One

instruction to set save the right bitmask to a register and the other one for oring this

register with the right byte in the code coverage memory area. For instance, if the probe

with the ID 607 should be stored. The first instructions copies the constant 128 into a

register and the second instructions performs an OR operation with the 76th byte of the

coverage data in the memory.

5.3 Discussion

We tested the adequacy of a test suite with respect to a combination of function coverage

criterion and decision coverage criterion for four different protocols on the MRK-IIIe. For

each of the four protocols we did three test suite runs to reduce the effect of nondeterminism

and compared the results afterwards. Note that this four protocols are applications that

are under development and not final products. The results of the different protocols are

very similar. Therefore, we will start with an exemplary discussion of just one of them.

For the other three protocols we will just point out things that are different or of particular

interest. At the end we will compare the results, point out the similarities as well as the

differences and identify general trends.

5.3.1 Protocol I

The performed results for this protocol are summarized in Table 5.1 (page 55) and Fig-

ure 5.2 (page 63). In this paragraph we point out how the overall runtime spread across

the five different steps of our method. Execution run one of Protocol I took eight itera-

tions with an overall runtime of 576 minutes. The instrumentation step, which has to be

done just once, took two or three seconds. In comparison with the overall runtime this is

5.3. Discussion 55

It
er

a
ti

o
n

In
st

ru
m

en
ta

ti
o
n

B
u
il
d

D
ep

lo
y

T
es

t

U
p

d
a
te

O
ffl

in
e

O
v
er

h
ea

d

O
v
er

a
ll

R
u
n
ti

m
e

N
ew

P
ro

b
es

P
ro

to
co

l

A
u
x
il
ia

ry

T
es

t
R

es
u
lt

Protocol I - fully instrumented - Execution Nr. 1 slowdown factor: 8.44
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 3 53 8 6 1 65 7 227 132 53.0 95 ×
2 33 9 6 1 43 7 2 0 53.0 2 ×
3 12 9 93 1 22 94 150 87 88.0 63 ∼
4 22 6 93 1 29 94 17 2 88.8 15 ∼
5 17 6 93 1 24 94 5 0 88.8 5

√

6 13 7 93 1 21 94 1 0 88.8 1
√

7 12 6 93 1 19 94 2 0 88.8 2
√

8 12 6 93 0 18 94 0 0 88.8 0
√

8 3 174 57 572 7 241 576 404 221 88.8 183

Protocol I - fully instrumented - Execution Nr. 2 slowdown factor: 7.08
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 2 53 9 6 2 66 7 224 129 51.8 95 ×
2 28 9 6 1 38 7 2 0 51.8 2 ×
3 12 9 93 1 22 94 152 90 88.0 62 ∼
4 22 6 93 1 29 94 20 2 88.8 18 ∼
5 17 6 93 1 24 94 6 0 88.8 6

√

6 12 6 93 2 20 94 1 0 88.8 1
√

7 12 6 93 0 18 94 0 0 88.8 0
√

7 2 156 51 479 8 217 483 405 221 88.8 184

Protocol I - fully instrumented - Execution Nr. 3 slowdown factor: 7.02
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 3 53 7 6 2 65 7 224 129 51.8 95 ×
2 34 10 6 1 45 6 2 0 51.8 2 ×
3 13 8 90 3 24 90 152 90 88.0 62 ∼
4 24 6 94 1 31 94 20 2 88.8 18 ∼
5 17 7 94 1 25 94 6 0 88.8 6

√

6 11 6 94 1 18 94 1 0 88.8 1
√

7 11 6 94 0 17 94 0 0 88.8 0
√

7 3 163 50 475 9 225 479 405 221 88.8 184

Protocol I - original
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 41 7 67 48 68
√

Table 5.1: Comparison between instrumented execution and normal execution of
Protocol I.

56 Chapter 5. Evaluation

It
er

a
ti

o
n

In
st

ru
m

en
ta

ti
o
n

B
u
il
d

D
ep

lo
y

T
es

t

U
p

d
a
te

O
ffl

in
e

O
v
er

h
ea

d

O
v
er

a
ll

R
u
n
ti

m
e

N
ew

P
ro

b
es

P
ro

to
co

l

A
u
x
il
ia

ry

T
es

t
R

es
u
lt

Protocol II - fully instrumented - Execution Nr. 1 slowdown factor: 6.79
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 3 42 7 10 2 54 10 215 62 36.3 153 ×
2 26 7 143 2 35 143 138 85 86.0 53 ×
3 20 7 186 2 29 186 25 6 89.5 19

√

4 20 7 186 2 29 186 2 0 89.5 2
√

5 20 7 186 2 29 186 2 0 89.5 2
√

6 19 7 186 0 26 186 0 0 89.5 0
√

6 3 147 42 895 10 202 899 382 153 89.5 229

Protocol II - fully instrumented - Execution Nr. 2 slowdown factor: 4.18
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 3 42 7 9 2 54 9 214 62 36.3 152 ×
2 26 7 7 1 34 8 97 52 66.7 45 ×
3 21 6 178 1 28 179 67 39 89.5 28

√

4 17 6 178 1 24 179 3 0 89.5 3
√

5 12 7 179 2 21 179 0 0 89.5 0
√

5 3 118 33 551 7 161 554 381 153 89.5 228

Protocol II - fully instrumented - Execution Nr. 3 slowdown factor: 5.16
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 3 37 9 9 1 50 9 214 62 36.3 152 ×
2 70 7 137 2 79 138 141 85 86.0 56 ×
3 22 7 178 1 30 179 27 6 89.5 21

√

4 16 6 178 1 23 178 1 0 89.5 1
√

5 11 7 178 1 19 178 0 0 89.5 0
√

5 3 156 36 679 6 201 683 383 153 89.5 230

Protocol II - original
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 41 6 131 47 132
√

Table 5.2: Comparison between instrumented execution and normal execution of
Protocol II.

negligibly small. The time for building the executable is also very small. It took less than

a minute in each run. The fewer files are affected by updating the instrumentation during

one iteration, the smaller is the effort for rebuilding the executable. Hence, sometimes it

took only 12 seconds. Deploying the binary on the target was also a minor factor in the

overall runtime, it usually took less than 10 seconds. The time needed for the evaluation

of the results of an iteration is also negligibly small. The offline overhead, which consists

of instrumentation, build, deploy, and update, took approximately half a minute per iter-

ation, which is only a very small part of the overall runtime. On the other hand we have

5.3. Discussion 57

It
er

a
ti

o
n

In
st

ru
m

en
ta

ti
o
n

B
u
il
d

D
ep

lo
y

T
es

t

U
p

d
a
te

O
ffl

in
e

O
v
er

h
ea

d

O
v
er

a
ll

R
u
n
ti

m
e

N
ew

P
ro

b
es

P
ro

to
co

l

A
u
x
il
ia

ry

T
es

t
R

es
u
lt

Protocol III - fully instrumented - Execution Nr. 1 slowdown factor: 4.02
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 3 14 7 6 1 25 7 204 86 41.7 118 ×
2 30 9 84 1 40 84 138 90 85.4 48 ×
3 19 8 98 1 28 99 37 9 89.8 28

√

4 18 6 98 0 24 99 0 0 89.8 0
√

4 3 81 30 287 3 117 289 379 185 89.8 194

Protocol III - fully instrumented - Execution Nr. 2 slowdown factor: 5.18
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 4 46 8 6 2 60 7 201 86 41.7 115 ×
2 24 9 80 2 35 81 143 93 86.9 50 ×
3 22 8 94 2 32 95 37 6 89.8 31

√

4 16 6 94 2 24 95 1 0 89.8 1
√

5 13 6 94 0 19 95 0 0 89.8 0
√

4 4 121 37 369 8 170 372 382 185 89.8 197

Protocol III - fully instrumented - Execution Nr. 3 slowdown factor: 5.17
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 2 53 7 6 1 63 7 201 86 41.7 115 ×
2 26 8 80 1 35 81 141 93 86.9 48 ×
3 19 8 94 1 28 95 39 6 89.8 33

√

4 16 7 94 1 24 95 1 0 89.8 1
√

5 17 7 94 1 25 95 0 0 89.8 0
√

5 2 131 37 368 5 175 371 382 185 89.8 197

Protocol III - original
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 41 6 71 47 72
√

Table 5.3: Comparison between instrumented execution and normal execution of
Protocol III.

the test step (execution of the test suite) that took the major part of the overall runtime

and represents the online overhead. If the test suite run was not aborted as in the first

two iterations of each run, the execution of the modified test suite took around 94 minutes

per iteration. This is 27 minutes longer than the original test suite needed for one test

run. In comparison to the run step all other steps are not very time consuming.

The first two iterations of each run took only a fraction of the normal runtime of the

test suite. The reason for this is that the test suite first checks for functionality that

is required for running the tests. With the fully instrumented executable, the system

is too slow to meet certain timing constraints. Hence, the system aborts the execution.

58 Chapter 5. Evaluation

It
er

a
ti

o
n

In
st

ru
m

en
ta

ti
o
n

B
u
il
d

D
ep

lo
y

T
es

t

U
p

d
a
te

O
ffl

in
e

O
v
er

h
ea

d

O
v
er

a
ll

R
u
n
ti

m
e

N
ew

P
ro

b
es

P
ro

to
co

l

A
u
x
il
ia

ry

T
es

t
R

es
u
lt

Protocol IV - fully instrumented - Execution Nr. 1 slowdown factor: 3.92
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 3 49 8 0 1 61 1 142 72 15.1 70 ×
2 0 41 7 251 3 51 252 464 335 85.3 129 ×
3 0 39 7 251 1 47 252 12 2 85.7 10 ∼
4 0 20 7 251 0 27 252 0 0 85.7 0 ∼
4 3 149 29 754 5 186 757 618 409 85.7 209

Protocol IV - fully instrumented - Execution Nr. 2 slowdown factor: 3.91
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 4 57 8 0 1 70 1 133 63 13.2 70 ×
2 0 40 7 251 2 49 251 477 344 85.3 133 ×
3 0 38 7 251 1 46 252 12 2 85.7 10 ∼
4 0 38 7 251 2 47 252 0 0 85.7 0 ∼
4 4 173 29 753 6 212 756 622 409 85.7 213

Protocol IV - fully instrumented - Execution Nr. 3 slowdown factor: 3.92
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 3 56 8 0 1 68 1 133 63 13.2 70 ×
2 0 39 7 251 3 49 252 475 344 85.3 131 ×
3 0 34 7 251 2 43 252 14 2 85.7 12 ∼
4 0 18 7 252 1 26 252 0 0 85.7 0 ∼
4 3 147 29 755 7 186 757 622 409 85.7 213

Protocol IV - original
[-] [sec] [sec] [sec] [∼min] [sec] [sec] [∼min] [-] [- %] [-] [-]

1 41 5 192 46 193 ∼

Table 5.4: Comparison between instrumented execution and normal execution of
Protocol IV.

Nevertheless, in this aborted run our tool covered more than 50% of all inserted probes

and removed them from the instrumentation in the update step. In the second iteration,

the test suite was also stopped earlier due a violated timing constraint. However, the

probes that cause a violation during the test step are removed at the update step. This

is exactly what happens in the second iteration. Here we only covered two points. These

two points were responsible for the timing violation and were removed at the update step.

As can be seen in the column Test Result in Table 5.1, we obtained no test success in the

first two iterations. This is indicated by the symbol ×.

In iteration three, the test suite performed a full run for the first time. The protocol

coverage also increased from around 52% to 88%. In this run almost all tests succeeded,

5.3. Discussion 59

just two test cases failed. This is indicated by the symbol ∼. In iteration four, we covered

just two new probes and increased the protocol coverage to the final value of 88.8%. Only

one test case failed.

In iteration five, all test cases of the test suite succeeded for the first time. We covered

no new probes in protocol related files. However, we covered five auxiliary related probes.

Since we specified that we only stop if the tool does not cover any new probes in the last

iteration, we ran two respectively three more iterations. In these two or three iterations,

we improved only coverage in auxiliary files. It is remarkable that after the iteration in

which all tests succeed for the first time, from now on called the succeeding iteration, the

tool only covered one or two auxiliary related probes.

A very interesting question is how much longer our method needs compared to the

unmodified test suite. Therefore, we divide the runtime of our code coverage tool with the

original runtime by the unmodified test suite. We call the result of this division slowdown

factor. In the case of a full run with seven or eight iterations we got an average slowdown

factor of approximately 7.5 for this protocol. This is still in a range of an overnight task.

Diagram Total Test Suite Runtime in Figure 5.2 illustrates the runtime of each run. The

results are also interesting if we stop after an earlier iteration. The following list discusses

the effects of an earlier stop.

• Stop after the fifth iteration. If we stop after the succeeding iteration, we get a

slowdown factor of only 4.35. Since the test suite is designed to focus on the protocol

related functions and not on the auxiliary functions this would be a reasonable

option. Additionally, we already reached here 100% of the possible protocol coverage

and 99% of the possible overall coverage1.

• Stop after the fourth iteration. It is remarkable that in each run of Protocol I we

reached 100% of the possible protocol coverage one iteration before the succeeding

iteration. Here we get a slowdown factor of approximately 3.

• Stop after the third iteration. Another interesting point is that if we stop after

the first full run of the test suite we almost get the 100% of the possible protocol

coverage. This would give us a slowdown factor of only 1.6 in case of Protocol I.

As said at the beginning, the Protocol I is typical but there are some exceptions we

want to point out. All other protocols reached the full 100% of the possible protocol

1With possible coverage we mean the highest coverage we measured in our execution runs.

60 Chapter 5. Evaluation

coverage with the first full test run, which was iteration number three in each run of every

protocol. Therefore, Protocol I is an outlier in this respect. Furthermore, Protocol I is the

only protocol where in one of the first three iterations just two probes were covered. In

the other protocols the number of newly covered probes per iteration where significantly

higher between the first and the third iteration. This behavior can also be seen in the

diagrams in figure 5.2. In the other protocols the number of newly covered probes is very

high in the first three iterations. After the third iteration the curve flattens out.

5.3.2 Protocol II

The results for this protocol are summarized in Table 5.2 and Figure 5.3. As pointed out at

the beginning of this section, the results of the different protocols are very similar. In the

preceding subsection we discussed Protocol I exemplarily. Therefore, we discuss Protocol II

briefly and point out differences to Protocol I or aspects that are of particular interest.

The average slowdown factor for the full run of our code coverage tool for Protocol II is

5.37. However, if we had stopped after the succeeding iteration it would be only 2.51.

For this protocol the succeeding iteration is also the first iteration where the test suite

performs a full run at the first time. Another remarkable thing is that we had an outlier

at iteration two of the second run. Here, the test suite could not execute all test cases and

aborted after seven minutes. This behavior is illustrated in several diagrams in Figure 5.3

and led to a significant better overall runtime. As in Protocol I, one run took also one

iteration more than the other runs.

5.3.3 Protocol III

The results for this protocol are summarized in Table 5.3 and Figure 5.4. The results of

Protocol III reveal nothing new. The average slowdown factor for the whole run of our

code coverage tool is 4.79. The third iteration is the succeeding one and also the first

one where the test suite performs a full run for the first time. If we would stop after

this iteration, we would get an average slowdown factor of only 1.86. Furthermore, as in

Protocol I and II, one run took one iteration more than the others.

5.3.4 Protocol IV

The results for this protocol are summarized in Table 5.4 and Figure 5.5. The results

of Protocol IV are very similar to the results of Protocol III except for two points. The

first difference is that one test case failed in every execution, also in the execution of the

5.3. Discussion 61

unmodified test suite. If we disregard this test case we get the following results. The

average slowdown factor for the whole run of our code coverage tool is 3.92. The third

iteration is the succeeding one and also the first one where the test suite performs a full

run for the first time. If we would stop after the third iteration, we would get an average

slowdown factor of only 1.86. The second difference is that Protocol IV is the only protocol

where each run took exactly the same number of iterations.

5.3.5 Differences Due to Timing

In this section, we discuss differences between test runs due to nondeterministic timing

aspects. Sometimes, an execution run needs one iteration more than the other runs. The

reason for this is most likely some nondeterministic behavior. This causes variations from

the normal runtime behavior. To get a better understanding of these nondeterministic

timing aspects we investigated some of the probes that we identified as outliners. With

outliners we mean probes that were covered after the succeeding iteration.

After the iteration where all tests succeed for the first time (succeeding iteration), we

still covered some new probes in subsequent iterations. To be precise, in all runs of all

protocols we covered six different probes after the succeeding iteration. We were interested

in these probes and did some further examination. Four of these six probes occurred only

one or two times after the succeeding iteration. Three of these four probes were covered

just once and the other one was covered in two runs of the same protocol. These probes

were covered in other runs in an earlier iteration. The reason for this is most likely some

nondeterministic timing behavior. The majority of these probes occur in a loop like while

(value != 0x001) { cover(76) }. Such probes are covered only in the case that

the value is not set as expected at the first time. Note that four of these six probes were

related to protocol files.

Two of this six probes of interest are related to auxiliary files. One of these two was

outstanding because this probe was covered after the succeeding iteration in seven out

of the twelve runs. Additionally, in six of the twelve runs this probe caused an extra

iteration, where just this single probe was newly covered. Such an issue should be treated

in an extra test or disregarded, otherwise such a probe will cost a lot of time. In our

case this probe was in a while loop as described above. Here we waited until a read has

finished. The second of these two probes was covered after the succeeding iteration in two

different protocols but also in an iteration before the succeeding one in other runs. This

probe occurred in an if branch. The if asks for a peripheral running and if it is not

running it waits. In this case we covered the probe.

62 Chapter 5. Evaluation

5.3.6 Summary

As already pointed out, the results of the different protocols are very similar in general.

Our results show that it is possible to measure code coverage with respect to the decision

coverage criterion on a resource-limited embedded system in reasonable time. The best

slowdown factor of all protocols is only 3.91 (Protocol IV - Execution Nr. 2). On the other

hand the worst slowdown factor of all protocols is 8.44 (Protocol I - Execution Nr. 1).

Now we are able to determine if the rest of the requirements in Section 1.2.1 is also

fulfilled.

R1 (Language Support) Is fulfilled because the system is designed for the language C.

R2 (Memory Consumption) Since we managed to measure code coverage information

for each protocol with less than 1200 probes, which means that we needed only a

small amount of the one kilobyte, we claim that Requirement 2 is fulfilled.

R3 (Code Coverage Criteria) Is fulfilled. The system measures a combination of function

and decision coverage.

R4 (Test Abortion Handling) According to test experimental results, where we can see

that test suite aborts the execution in the first iteration of almost every Run, this

requirement is also fulfilled

R6 (Total Time) Is fulfilled. In average one run took less than 10 hours. The longest

execution took 15 hours (Protocol I, first run) and the shortest less than 5 hours

(Protocol III, first run). Since the run that took 15 hours is an outlier, because

the other two runs of Protocol I needed 9.2 and 11.4 hours, we claim that it is still

doable in an overnight task.

R5 (Visual Report) Is fulfilled (see Section 4.3.2.5).

R7 (Efficient Instrumentation) Since we need only one bit to store the coverage infor-

mation and only two instructions per probe, we state that this approach also fulfills

this requirement.

In summary, our results show that after the iteration where the test suite performs a

full run for the first time, which is iteration three in each run, the coverage percentage

is not going to improve significantly. Furthermore, in three protocols more than a third

of the possible coverable points had been covered in the first iteration. The diagrams

regarding the coverage in the Figures 5.2, 5.3, 5.4, 5.5 illustrate this. As it can be seen,

each curve in each of these diagrams levels off after the third iteration.

5.3. Discussion 63

0 2 4 6 8

0

200

400

600

576

483

479

99

Iterations

T
im

e
(i
n
m
in
)

Total Test Suite Runtime

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

Original Execution

1 2 3 4 5 6 7 8

0

50

100

150

200

Iterations
C
o
v
er
ed

P
ro
b
es

All Files - New Cov. Probes per Iteration

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

0 2 4 6 8

0

100

200

300

400

405 404

Iterations

C
o
v
er
ed

P
ro
b
es

All Files - Total Probes Covered

Exec. Nr. 1

Exec. Nr. 2 and 3

0 2 4 6 8

0

10

20

30 34.834.9

Iterations

C
o
v
er
a
g
e
(i
n
%
)

All Files - Coverage in %

Exec. Nr. 1

Exec. Nr. 2 and 3

0 2 4 6 8

0

20

40

60

80
88.888.8

Iterations

C
o
v
er
a
g
e
(i
n
%
)

Protocol Files - Coverage in %

Exec. Nr. 1

Exec. Nr. 2 and 3

0 2 4 6 8

0

5

10

15

15.715.8

Iterations

C
o
v
er
a
g
e
(i
n
%
)

Auxiliary Files - Coverage in %

Exec. Nr. 1

Exec. Nr. 2 and 3

Figure 5.2: Protocol I

64 Chapter 5. Evaluation

0 1 2 3 4 5 6

0

200

400

600

800
899

554

683

99

Iterations

T
im

e
(i
n
m
in
)

Total Test Suite Runtime

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

Original Execution

1 2 3 4 5 6

0

50

100

150

200

Iterations
C
o
v
er
ed

P
ro
b
es

All Files - New Cov. Probes per Iteration

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

0 1 2 3 4 5 6

0

100

200

300

400

382381/383

Iterations

C
o
v
er
ed

P
ro
b
es

All Files - Total Probes Covered

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

0 1 2 3 4 5 6

0

10

20

30 35.235.1/35.3

Iterations

C
o
v
er
a
g
e
(i
n
%
)

All Files - Coverage in %

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

0 1 2 3 4 5 6

0

20

40

60

80
89.589.5

Iterations

C
o
v
er
a
g
e
(i
n
%
)

Protocol Files - Coverage in %

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

0 1 2 3 4 5 6

0

10

20
25.125.0/25.2

Iterations

C
o
v
er
a
g
e
(i
n
%
)

Auxiliary Files - Coverage in %

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

Figure 5.3: Protocol II

5.3. Discussion 65

0 1 2 3 4 5

0

100

200

300

400

289

372/371

72

Iterations

T
im

e
(i
n
m
in
)

Total Test Suite Runtime

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

Original Execution

1 2 3 4 5

0

50

100

150

200

Iterations
C
o
v
er
ed

P
ro
b
es

All Files - New Cov. Probes per Iteration

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

0 1 2 3 4 5

0

100

200

300

400

379 382

Iterations

C
o
v
er
ed

P
ro
b
es

All Files - Total Covered Probes

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

0 1 2 3 4 5

0

10

20

30
33.9 34.1

Iterations

C
o
v
er
a
g
e
(i
n
%
)

All Files - Coverage in %

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

0 1 2 3 4 5

0

20

40

60

80
89.8 89.8

Iterations

C
o
v
er
a
g
e
(i
n
%
)

Protocol Files - Coverage in %

Exec. Nr. 1

Exec. Nr. 2 and Nr. 3

0 1 2 3 4 5

0

5

10

15

20

21.2 21.6

Iterations

C
o
v
er
a
g
e
(i
n
%
)

Auxiliary Files - Coverage in %

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

Figure 5.4: Protocol III

66 Chapter 5. Evaluation

0 1 2 3 4

0

200

400

600

800
756/757

193

Iterations

T
im

e
(i
n
m
in
)

Total Test Suite Runtime

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

Original Execution

1 2 3 4

0

100

200

300

400

500

Iterations
C
o
v
er
ed

P
ro
b
es

All Files - New Cov. Probes per Iteration

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

0 1 2 3 4

0

200

400

600

618 622

Iterations

C
o
v
er
ed

P
ro
b
es

All Files - Total Covered Probes

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

0 1 2 3 4

0

10

20

30

40 44.5 44.7

Iterations

C
o
v
er
a
g
e
(i
n
%
)

All Files - Coverage in %

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

0 1 2 3 4

0

20

40

60

80

85.7

Iterations

C
o
v
er
a
g
e
(i
n
%
)

Protocol Files - Coverage in %

Exec. Nr. 1

Exec. Nr. 2 and Nr. 3

0 1 2 3 4

0

5

10

15

20

25

22.9
23.3

Iterations

C
o
v
er
a
g
e
(i
n
%
)

Auxiliary Files - Coverage in %

Exec. Nr. 1

Exec. Nr. 2

Exec. Nr. 3

Figure 5.5: Protocol IV

Chapter 6

Related Work

Contents

6.1 Commercial Tools for Measuring Code Coverage 67

6.2 Related Research on Code Coverage for Embedded Systems . 73

In this chapter we discuss related work. This chapter consists of two parts. Part one

is a market analyses of available commercial tools. First, we introduce key points for the

evaluation of the tools. Second, we evaluate and discuss available tools with respect to

these introduced key points. Part two is a discussion of literature related to this work.

6.1 Commercial Tools for Measuring Code Coverage

There is a wide range of commercial code coverage tools on the market. It would exceed

the scope of this work if we would identify and evaluate all of them. Therefore, we focus on

well-established tools. This comparison of commercial tools is based on the requirements

in Section 1.2.1, and should give an indication of the state-of-the-art in this market. First,

we want to discuss the some additional key points for our comparison and then we will

present the results of our evaluation.

6.1.1 Additional Key Points for the Comparison

To evaluate code coverage tools regarding the needs of an resource-limited embedded

system we used the requirements in Section 1.2.1 as key points. Furthermore, we identified

additional points. Before we start with the tools we want to introduce these additional

points.

67

68 Chapter 6. Related Work

6.1.1.1 Instrumentation

An interesting point is how the different tools instrument the programs. For instance, at

which layer do they insert probes, source code, binary or at an intermediate representation.

The last one requires more control over the underlying compiler toolchain. They may also

use non-intrusive methods. Tools that require control over the toolchain usually provide

more flexibility to instrument and gather information than tools that assume that the

compiler toolchain is a black box.

In our case study the compiler toolchain is a proprietary third-party software. Hence,

we do not have control over the compiler. Consequently, we have to insert our instrumen-

tation points either in the binary or in the source code.

It is also interesting to find out what the majority of commercial tool developers do.

In addition, we want to find out why they instrument at this specific layer. Furthermore,

it would be interesting to know why they do not use a specific technique or method. All

this information can give an indication on the practical feasibility of some methods.

6.1.1.2 Supported Coverage Criteria

This point is already covered with Requirement 3. We mention it again, because it some-

how provides information of the maturity of the tool. Another interesting question is the

connection between the instrumentation technique and the achieved code coverage met-

rics. For instance, is there a product on the market that is instrumenting the binary and

supports the MC/DC test suite adequacy criterion?

6.1.1.3 Supported Host Platforms

Another point that should not be as restrictive as the points before, is the question of

supported host operating systems. The integration of a code coverage tool is easier if the

tool supports the same host operating system as the compiler toolchain.

6.1.2 Evaluation of the Tools

We compared six different commercial code coverage tools. In the following we present

our evaluation of the tools according to the requirements and the above additional key

points. Table 6.1 gives an overview of the results of this evaluation. We also added

Our System to this table. It has to be noted that the subsumption relation for coverage

criteria is disregarded in this table. It just illustrates the information we found during our

6.1. Commercial Tools for Measuring Code Coverage 69

research. In the row instrumentation sometimes there is the symbol * after the term SC

(Source Code instrumentation). This indicates that it is not totally clear but very likely

that the investigated tool instruments on source code level. The row Embedded Targets

of the table needs further explanation. The single + means that the producers of this

system claim that they support embedded systems. If there is a double +, the company

have published more details about their embedded target support, for instance a list with

supported targets or specifications.

The last seven rows show which tools fulfill which requirement of Section 1.2.1. It has

to be noted that the following data consists mainly of information from product websites.

For four of the seven requirements in Section 1.2.1 we were not able to find the information

that is necessary to determine if the offered tool fulfills the requirement or not. We were

not able to find clear information about the memory footprint. Therefore, we cannot

say something about Requirement 2. If the tools are able to handle test abortions due

to the timing overhead caused by the instrumentation, is also not clear. Therefore, we

have no information to determine if Requirement 4 is fulfilled or not. Requirement 5

relies on experimental results. Hence, we cannot say anything about this requirement.

Furthermore, it is not an trivial task to determine if a tool is instrumenting efficiently

or not (Requirement 7). Therefore, we had to rely on the published information of the

companies of the tools. We gathered the information primarily in May 2013.

6.1.2.1 VectorCAST/Cover (Vector Software)

VectorCAST/Cover1 is a code coverage solution by the company Vector Software Inc. Ac-

cording to the datasheet of VectorCast/Cover2 this tool provides code coverage for embed-

ded development and therefore supports embedded targets. Nevertheless, it seems that

VectorCAST/Cover does not support resource-limited embedded systems as our system

does. It is not clear how Vector Software Inc. inserts probes into a program. There-

fore, we cannot be sure how the tool instruments. However, as far as we know, it seems

that VectorCAST does source code instrumentation. VectorCast/Cover supports state-

ment, branch, and multiple condition/decision coverage critera. The tool is able to handle

Ada83/95, C, C++. Windows, Unix, and Linux are the supported host operating systems.

1http://www.vectorcast.com/software-testing-products/embedded-code-coverage
2http://www.vectorcast.com/sites/default/files/pdf/resources/vectorcast cover.pdf

70 Chapter 6. Related Work

6.1.2.2 Testwell CTC++ Test Coverage Analyser (Verifysoft Technology)

The test coverage analyser tool Testwell CTC++3 is a software product from Verifysoft

Technology GmbH. As far as we know the tool does source code instrumentation with the

help of a preprocessor. For embedded targets, Testwell has an add-on named bitCov. With

that tool the needed memory consumption on the embedded target can be reduced. For

one probe one bit of memory is needed. Verifysoft claims that Testwell produces a very

low instrumentation overhead. Nevertheless, the amount of the instrumentation overhead

in the executable is not clear. Verifysoft also claims that their system can perform code

coverage in all embedded targets. Furthermore, the company states that the tool works

even with the smallest targets and microcontrollers and additionally the tool works with

all compilers or cross-compilers. However, adaptations are needed to support a new target,

at least of two points. First, the preprocessor has to be able to process the target-specific

C extensions. Second, there has to be some mechanism to extract the gathered data from

the device.

Testwell supports C, C++, C# and Java. Furthermore, the tool support a wide range

of code coverage metrics: function, statement, decision, condition, multiple condition, and

modified condition/decision. Windows and Linux are supported as host platforms.

In summary, this tool looks like a tool that is applicable to resource-limited embedded

device. However, at least two points remain unclear. It is not clear what happens if the

instrumentation changes the behavior of the program at runtime and affects a timing re-

quirement. Furthermore, the exact overhead of the instrumented executable in comparison

to the original executable is unclear.

6.1.2.3 BullseyeCoverage (Bullseye Testing Technology)

BullseyeCoverage4 is a product of the company Bullseye Testing Technology. The tool

instruments the program on the source code level and supports function coverage, and

condition/decision coverage. The tool supports the languages C and C++. BullseyeCover-

age claims that they support embedded targets and provide a list of supported embedded

devices. Windows, Unix and Linux are the supported host operating systems.

3http://www.verifysoft.com/en ctcpp.html
4http://www.bullseye.com/

6.1. Commercial Tools for Measuring Code Coverage 71

6.1.2.4 LDRAcover (LDRA Software Technology)

LDRAcover5 is a code coverage reporting tool from LDRA Software Technology. As far

as we know, the tool inserts probes at the source code level. They support function,

statement, decision, branch decision condition, branch condition combination, and mul-

tiple condition/decision. The following programming languages are supported: C, C++,

Ada, and Java. Embedded targets are also supported. Unfortunately, we were not able to

gather more detailed information about whether LDRAcover can handle resource-limited

embedded targets or not. The tool works on several kinds of Windows and Linux platforms.

6.1.2.5 Test Coverage Tools (Semantic Designs)

The company Semantic Designs provides Test Coverage Tools6. This tool works with

probes that are inserted at the source code level. Therefore, the tool is not dependent on

a specific compiler. Semantic Designs claims that their tool has a very low overhead per

executed probe, about one or two machine instructions. This must refer to overhead in

terms of time.

With their probe based approach they can support statement coverage and branch

coverage. Test Coverage Tools supports a long list of programming languages, for instance

C (ANSI, MSVC6, GNU, C99), C++ (ANSI, MSVC6, MSVS2005-MSVS2012, GNU, and

C++11), C#, Java and many more. Only Windows can be used as host operating system.

6.1.2.6 Tessy (Razorcat, Hitex)

Tessy7 is a tool for testing embedded software. Tessy is from the company Razorcat Devel-

opment GmbH. It supports condition, decision, multiple condition/decision, and multiple

condition code coverage criteria. Ansi C , C++ and some target compiler extensions are

the languages that are supported by the tool. Only Windows can be used as host operating

system.

6.1.3 Summary of the tool evaluation

Each of the examined code coverage measurement tools focuses on slightly different as-

pects of code coverage. Therefore, they have different strengths and shortcomings. We

5http://www.ldra.com/index.php/en/products-a-services/ldra-tool-suite/ldracover
6http://www.semanticdesigns.com/Products/TestCoverage/
7http://www.razorcat.com/

72 Chapter 6. Related Work

V
ec

to
rC

A
S
T

T
es

tw
el

l

B
u
ll
se

y
eC

ov
er

a
g
e

L
D

R
A

co
v
er

C
o
d
e

C
ov

er
a
g
e

T
o
o
ls

T
es

sy

O
u
r

S
y
st

em

Instrumentation SC* SC* SC SC* SC SC* SC

Coverage

Function
√ √ √ √

Statement
√ √ √ √

Decision
√ √ √ √ √ √

Condition
√ √

Cond./Dec.
√ √

MC/DC
√ √ √ √

MCC
√ √ √

Host OS
Windows

√ √ √ √ √ √ √

Linux
√ √ √ √

Embedded Targets ++ ++ + + ++ +
√

Requirements

R1 Language Support
√ √ √ √ √ √ √

R2 Memory Consumption
√

R3 CC Criterion
√ √ √ √ √ √ √

R4 Test Abortion Hand.
√

R5 Total Time
√

R6 Visual Report
√ √ √ √ √ √ √

R7 Efficient Instr.
√ √ √ √

Table 6.1: Comparison of commercial code coverage tools.

are mainly interested in finding a tool for C that is able to handle resource-limited de-

vices. Unfortunately we were not able to gather more clear information regarding the

requirements in Section 1.2.1.

The companies of the tools Testwell and Code Coverage Tools, claim that their tool

is able to handle resource-limited targets. Besides these two tools, the majority of the

tools that state that they can work with embedded targets seems to be restricted to some

specific, more powerful embedded devices. However, it is not perfectly clear how the tools

deal with real-time embedded devices with very tight timing requirements. For instance,

we could not find out how they handle the case that the instrumentation causes timing

issues. It would be interesting to know if they handle such circumstances, and if so, how

do they handle it.

Extensions to the languages are needed for efficient software development on some

embedded devices. This also applies to the MRK-IIIe. Some tools provide the possibility

for the user to implement language extensions. Unfortunately, it is difficult to say how

much development overhead this is.

6.2. Related Research on Code Coverage for Embedded Systems 73

The mechanism with which one can read out the gathered code coverage information

from the embedded target. Semantic Designs claims that for their tool it is possible to

write customized extensions for a specific embedded device in order to provide an interface.

Again it is very hard to estimate how difficult and time consuming it would be to write

such an extension.

The more sophisticated an applied coverage criterion is, the more likely a timing con-

straints will fail and the more overhead in terms of executable size and memory con-

sumption is needed. Therefore, it is hard to apply those metrics on very resource-limited

systems.

In summary, we could identify only two tools on the market that are comparable

to our solution, Testwell CTC++ Test Coverage Analyser from Verifysoft Technology and

Code Coverage Tools from Semantic Designs. All other tools are not really or not obviously

applicable to very small targets.

6.2 Related Research on Code Coverage for Embedded Sys-

tems

There are a lot of papers that propose code coverage tools. However, there are only a

few that are applicable on embedded systems. There are tools that insert probes into

the user source code, others instrument the object code, even hybrid approaches exist. A

few of those tools work with simulators or emulators. In this section we discuss some of

these approaches to show the differences to our methods. We group the tools into source

instrumentation, binary instrumentation, and tools that use simulators or emulators.

6.2.1 Source Instrumentation

W. E. Wong et al. have proposed in [44] a tool that uses source code instrumentation. They

describe a solution that works with embedded devices with Symbian/OMAP platforms only.

Another example of a tool that works with source code instrumentation has been

proposed by Yong-Yoon et al. in [8]. It is a system for performance evaluation of embedded

software. It consists of a code analyzer, testing agents, a data analyzer, and a report viewer.

The tool is capable of analyzing code coverage of embedded software. They tested their

approach with a strong ARM chip with Linux on it.

The existing research that is most similar to ours is probably [45]. The authors de-

scribe a coverage based testing technique for real-time embedded systems. This approach

74 Chapter 6. Related Work

has been implemented into an automatic coverage tool named eXVantage. The authors

identify the overhead resulting of inserting probes as one major issue of code coverage

testing. This overhead becomes even more a problem for resource-limited embedded de-

vices. To overcome this issue, the authors of [45] focus on minimizing the instrumentation

overhead. In order to achieve this, they optimize three aspects. First, they record coverage

information instead of a full execution trace. This saves memory. Second, they store the

information directly in the memory instead in a file. This results in a reduced number

of instructions per recorded probe. Third, they store the information in a binary format

instead of a human readable format. The experiments of [45] showed that the instrumen-

tation did not alter the behavior of the tested system. Therefore, they do not talk about

how to handle this circumstance.

We use similar ideas for our approach. For instance, we also store just the coverage

information. Furthermore, we need one single bit in the memory for each probe in the

source code. It has to be noted that storing coverage information on files is not even an

option in our resource-constrained devices, because the have no file system.

The authors of [45] tested their tool on embedded device with MIPS architecture with

a reduced image of VxWorks, a Real-Time operating System (RTOS) requiring 4KB. Even

if eXVantage works on resource-limited targets, at the moment it is limited to devices

running VxWorks or Linux. In contrast, our tool needs one C macro in an inline function

and an array as the whole framework. Hence, it is independent of embedded operating

systems.

The authors of [45] also had to overcome a shared memory issue that is related to

the minimal version of VxWorks and the original version of eXVantages. The minimal

version of VxWorks uses a flat memory model whereas the original version of eXVantage

uses shared memory for trace memory buffer maintenance. In contrast to [45], embedded

systems using flat memory model are not an issue for our system.

In [25, 40, 41] dynamic or online instrumentation approaches have been proposed.

Here the instrumentation is altered during the runtime. The idea is to remove probes

that cannot bring additional information, for instance an already covered probe in an if

branch. Our iterative technique of updating the instrumentation is more or less the same

with the difference that we alter the instrumentation offline and recompile the source code.

Note that removing probes at the runtime also produces timing overhead that can lead

to an abortion of a test case. As far as we know these dynamic approaches do not handle

this issue.

6.2. Related Research on Code Coverage for Embedded Systems 75

6.2.2 Binary Instrumentation

The majority of commercial code coverage tools focus on source code instrumentation,

whereas in the literature there are also implementations that do binary instrumentation.

Examples include PEBIL [23], PIN [38], and the method of Thane et al. [14]. PEBIL

(PMaC’s Efficient Binary Instrumentation Toolkit for Linux) is a static binary instrumen-

tation toolkit for Linux on the x86/x86 64 platforms [23]. The system tries to produce

efficiently instrumented object code.

Another binary instrumentation tool called PIN8 was introduced in [38]. PIN is a

tool for investigating workload characteristics. Another goal of PIN is to provide a tool

for students to learn how software performs on hardware in a more practical way. There-

fore, this tool provides methods to experiment with the characteristics of real application

workloads in order to understand modern computer architectures. PIN is a tool from Intel

Corporation9 and works on Intels Itanium systems.

The authors of [14] propose a method to dynamically patch embedded software in order

to measure coverage. They performed their experiments on a Motorola 68000 platform

running the real-time operating system VxWorks 5.410. In version 6.9, VxWorks achieves

a footprint of 75KB with the small footprint profile11. In contrast to that, the authors

of [45], which propose a source code approach based on eXVantage (see Section 6.2.1),

state that they use a reduced image of VxWorks that has a footprint of only 4KB. They

did not specify the version of VxWorks. It is not clear how much this approach depends

on VxWorks.

As it can be seen, there are interesting developments in the literature. The three

approaches we have outlined have one thing in common: they all focus on embedded

systems that are more powerful than the embedded systems we are focusing on. PEBIL is

for x86 Linux platforms, PIN is for Intels Itanium systems, and also the Motorola platform

of the last approach seems to exceed the power of the embedded systems we are interested

in. Therefore, none of the above tools is suitable to our problem of measuring code coverage

information on embedded targets with highly limited resources.

8http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
9http://www.intel.com

10http://www.windriver.com/products/vxworks.html
11http://www.windriver.com/products/product-notes/PN VE 6 9 Platform 0311.pdf

76 Chapter 6. Related Work

6.2.3 Simulation and Emulation

There are also approaches that are depending on simulators or emulators. Wang et al. pro-

posed in [42] a tool named SciSim (Source code instrumentation based Simulation).SciSim

is a framework that combines source code instrumentation with microarchitecture simula-

tors in order to model runtime interactions between embedded systems and their running

software. They support widely used instruction set architectures (ISA) like PowerPC, ARM

and SPARC.

An example for a tool that uses an emulator is COUVERTURE12 from the Open-DO

Initiative. This is a non-intrusive, virtualized execution environment.

In our case, emulation or simulation is not easily possible because our embedded devices

have complex peripherals that cannot be emulated easily. Therefore, we have to find a

solution where it is not necessary to emulate the target device. We want to measure code

coverage on the original device.

6.2.4 Summary

There exists a lot of promising tools. Scientists are researching in different directions:

intrusive, non-intrusive, source code instrumentation, object code instrumentation, simu-

lation or emulation of targets, and hybrid approaches. Unfortunately, the majority of the

research is focusing on powerful embedded systems, for instance, on embedded systems

that are able to run specific embedded operating systems on it, or even Linux [8] [44].

Since operating systems occupy a lot of space in the storage of an embedded device, such

systems are not applicable for resource-limited targets. To the best of our knowledge, it

seems that embedded devices with highly limited resources and peripherals have not been

addressed so far.

12http://www.open-do.org/projects/couverture/

Chapter 7

Conclusion and Outlook

Contents

7.1 Summary . 77

7.2 Future Work . 78

7.1 Summary

At the beginning of this thesis we defined requirements (Section 1.2.1) that a code coverage

system has to fulfill to be able to handle resource-limited embedded devices with tight real-

time constraints. These requirements were used as a roadmap for the whole thesis. We

used them as basis for the design of our code coverage measurement tool and we compared

commercial tools with these requirements to get an overview of the state of the art in the

software-development industry. We were not able to find a tool that fulfills all of our

requirements.

In this thesis we tried two approaches to measure code coverage on a resource-limited

device. One is based on binary instrumentation and the other is based on source code

instrumentation. For both approaches we developed a prototypical implementation. The

binary instrumentation approach is capable to measure function coverage only by patching

return instructions. After a first evaluation we saw that it could be difficult to fulfill all

our requirements with the binary instrumentation approach and changed the focus to the

source code instrumentation approach.

We developed a code coverage measurement system based on source code instrumen-

tation. This system is capable of handling embedded devices with very limited resources

and tight real-time constraints. Very limited resources means that the memory capacity

77

78 Chapter 7. Conclusion and Outlook

on the embedded device is very limited, for instance, we tested an embedded device with

only up to one kilobyte of memory available for storing coverage data. We tested our

code coverage system with four prototypical firmware applications of industrial use on an

embedded device provided by NXP Semiconductors. These experimental results showed

that our system fulfills all defined requirements. The system measures test suite adequacy

with respect to a combination of function, and decision coverage criterion. It requires less

than one kilobyte of RAM. For the tested firmware applications it needed less than 0.25

kilobyte. It needs only two instruction per inserted probe and only one bit of memory is

needed to store if a probe is covered or not. The system prolonged the test time only to

an extent so that it was still doable in an overnight task. It is able to gracefully handle

test abortions caused by timing violations due to the instrumentation. We achieved this

by removing the already covered probes from the instrumentation and started another

test run. This iterative approach stops after the iteration where no new probes have been

covered.

In this thesis we showed that it is possible to measure code coverage on embedded

systems that are very resource-limited and have very tight real-time constraints. Never-

theless, our solution has some restrictions and there is still room for optimization. We

discuss this in the next section.

7.2 Future Work

The presented results show that it is possible to measure code coverage on resource-limited

embedded systems in a reasonable time. However, as we already mentioned in the previous

section, there is still room for improvement.

After the second iteration the tool always performs a full test suite run. Therefore, a

reduction of the number of iterations would improve the slowdown factor considerably. For

instance, after the third iteration we got at least 93.32% of the possible overall coverage

and at least 99.1% of the possible protocol coverage. Protocol II, III and IV reached

100% of the possible protocol coverage after the first full run of the test suite. Stopping

after the succeeding iteration would half the worst slowdown factor of each protocol. The

worst slowdown factor when stopping after the succeeding iteration is 4.35 (Protocol I -

Execution Nr. 1) and the worst slowdown factor after the first full run of the test suite

(iteration three) is only 2.64 (Protocol III - Execution Nr. 1). Furthermore, after this

iteration the protocol coverage did not increase in a subsequent iteration. This was the

case for each coverage run, no matter which protocol.

7.2. Future Work 79

Another idea for improvement is reducing the number of target memory read outs.

Such a read out retrieves the list of covered instruments from the target. On average, we

have a slowdown factor of 1.35 per test suite run (one run during one iteration) due to

the target memory read outs. For our experiments, we retrieved the coverage data from

the target after every power down of the target. The reason for this is that after a specific

amount of time we cannot guarantee that the data in the RAM is still valid. If we do

this only at every tenth power down we could reduce this overhead tremendously. Maybe

a timer is needed to ensure that the RAM remains consistent. For instance, we could

perform at least one readout if the last one was more than a minute ago.

Since it seems that the test suite does not focus on auxiliary files, instrumenting only

protocol related files and not auxiliary files should also bring a reduction of the number

of iterations. Note that in our experiments it would bring the same reduction as stopping

after the succeeding iteration.

Probes that are only covered due to nondeterministic timing behavior should be covered

in dedicated test cases for to reasons. First, probes should not be covered by luck. Second,

it is not good to run our system an iteration longer for only one probe.

Literature provides a lot of methods to reduce the number of probes for measuring code

coverage [4, 22, 24, 36, 37]. In [40] dominator tree information is used to reduce the number

of needed probes for basic block coverage. In [1], Agrawal proposed a super/mega block

method to reduce the number of probes required by the basic block method. Therefore,

it is still room to reduce the number of probes.

Another point for future work is to extend the system with more powerful test suite

adequacy criteria, for instance condition coverage. Of course the shortcoming of not instru-

menting do-while loops should also be corrected. Both improvements require to modify

the source code in a more invasive way than now, for instance modifying expressions. At

some point also the preprocessor statements should be considered.

In summary, we developed a practical approach and tool for measuring code coverage

on very resource-limited devices. This is witnessed by the fact that NXP Semiconductors

already uses this tool in an industrial context. However, as discussed above, there is still

room for improvements and future work.

Appendix A

C Statement Definitions

Here we give the syntax definition of statements in C. We extracted this definitions from the

C Standard [15]. For more definitions and details please refer to the the C Standard [15].

A.1 Labeled statements

Syntax

labeled-statement:

identifier : statement

case constant-expression : statement

default : statement

A.2 Compound statement

Syntax

compound-statement:

{ block-item-listopt }
block-item-list

block-item

block-item-list block-item

block-item:

declaration

statement

81

82 Chapter A. C Statement Definitions

A.3 Expression statements

Syntax

expression-statement:

expressionopt ;

A.4 Selection statements

Syntax

selection-statement:

if (expression) statement

if (expression) statement else statement

switch (expression) statement

A.5 Iteration statements

Syntax

iteration-statement:

while (expression) statement

do statement while (expression) ;

for (expressionopt ; expressionopt ; expressionopt) statement

for (declaration expressionopt ; expressionopt) statement

A.6 Jump statements

Syntax

jump-statement:

goto identifier ;

continue ;

break expressionopt ;

Appendix B

Selected Source Code Extracts

from the Implementation

Listing B.1: Source code of the Prettifier.

1 void Prettifier::prettify(SrcFile *file)

2 {

3 vector<Token*>::iterator it = file->_tokens.begin();

4 while(it != file->_tokens.end()) {

5 condStmtSwitch(file, it);

6 }

7 }

8

9 void Prettifier::condStmtSwitch(SrcFile *file,

10 vector<Token*>::iterator &it)

11 {

12 if((*it)->_type == Tif) {

13 it++;

14 handleCondStmt(file, it);

15 handleElse(file, it);

16 } else if((*it)->_type == Twhile ||

17 (*it)->_type == Tfor) {

18 it++;Co

19 handleCondStmt(file, it);

20 } else if((*it)->_type == Tdo) { // do while

21 it++;

22 handleBlockAfterCond(file, it);

23 jumpOverWhiteSpace(it);

24 if((*it)->_type != Twhile) {

83

84 Chapter B. Selected Source Code Extracts from the Implementation

25 puts("ERROR: no while after do!");

26 exit(-1);

27 }

28 it++;

29 } else if((*it)->_type == Tcase) {

30 it++;

31 getNextDotDotPos(it);

32 it++;

33 } else if((*it)->_type == TOBrace) { // a block { ... } without an

34 // if, for, while, etc

35 it++;

36 jumpOverBlock(file, it);

37 } else {

38 it++;

39 }

40 }

41

42 void Prettifier::handleCondStmt(SrcFile *file,

43 vector<Token*>::iterator &it)

44 {

45 getNextOParPos(it);

46 jumpToRelatedCPar(it);

47 handleBlockAfterCond(file, it);

48 }

49

50 void Prettifier::handleElse(SrcFile *file, vector<Token*>::iterator &it)

51 {

52 vector<Token*>::iterator backup_it = it;

53 jumpOverWhiteSpace(it);

54 if((*it)->_type == Telse) {

55 it++;

56 handleBlockAfterCond(file, it);

57 } else {

58 it = backup_it;

59 file->insertToken(it, Telse, "else");

60 file->insertToken(it, TOBrace, "{");

61 file->insertToken(it, TCBrace, "}");

62 }

63 }

64

65 void Prettifier::handleBlockAfterCond(SrcFile *file,

66 vector<Token*>::iterator &it)

67 {

85

68 jumpOverWhiteSpace(it);

69 if((*it)->_type == TOBrace) { // the block/stmt is covered in braces

70 it++;

71 jumpOverBlock(file, it);

72 } else { // insert braces

73 file->insertToken(it, TOBrace, "{");

74 jumpOverStatement(file, it);

75 file->insertToken(it, TCBrace, "}");

76 }

77 }

78

79 void Prettifier::jumpOverStatement(SrcFile *file,

80 vector<Token*>::iterator &it)

81 {

82 while((*it)->_type != TPtVirg) {

83 if((*it)->_type == Tif) {

84 it++;

85 handleCondStmt(file, it);

86 handleElse(file, it);

87 return;

88 }

89 else if((*it)->_type == Twhile ||

90 (*it)->_type == Tfor) {

91 it++;

92 handleCondStmt(file, it);

93 return;

94 }

95 it++;

96 }

97 it++;

98 }

99

100 void Prettifier::jumpOverBlock(SrcFile *file, vector<Token*>::iterator &it)

101 {

102 while((*it)->_type != TCBrace) {

103 condStmtSwitch(file, it);

104 }

105 it++;

106 }

BIBLIOGRAPHY 87

Bibliography

[1] Hiralal Agrawal. Dominators, super blocks, and program coverage. In Conference

Record of the 21st Symposium on Principles of Programming Languages, pages 25–

34. ACM, 1994.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-

ciples, Techniques, and Tools (2nd Edition). Addison-Wesley, 2006.

[3] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge Univer-

sity Press, 2008.

[4] Thomas Ball and James R. Larus. Optimally profiling and tracing programs. ACM

Transactions on Programming Languages and Systems, 16(4):1319–1360, 1994.

[5] Michael Barr and Anthony Massa. Programming embedded systems 2nd Edition-

with C and GNU development. O’Reilly, 2006.

[6] Benjamin M. Brosgol. Non-intrusive code coverage for safety-

critical software. http://embedded-computing.com/articles/

non-intrusive-code-coverage-safety-critical-software/, Novem-

ber 2011. Accessed: 2014-04-25.

[7] John Joseph Chilenski and Steven P. Miller. Applicability of modified condition/deci-

sion coverage to software testing. Software Engineering Journal, 9:193–200(7), 1994.

[8] Yong-Yoon Cho, Jong-Bae Moon, and Young-Chul Kim. A system for performance

evaluation of embedded software. In International Conference on Computational In-

telligence, ICCI 2004, pages 69–72. International Computational Intelligence Society,

2004.

[9] Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J. Zeil. A com-

parison of data flow path selection criteria. In Proceedings of the 8th International

Conference on Software Engineering, ICSE, pages 244–251. IEEE Computer Society,

1985.

[10] Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J. Zeil. A for-

mal evaluation of data flow path selection criteria. IEEE Transactions on Software

Engineering, 15(11):1318–1332, 1989.

http://embedded-computing.com/articles/non-intrusive-code-coverage-safety-critical-software/
http://embedded-computing.com/articles/non-intrusive-code-coverage-safety-critical-software/

88

[11] TIS Committee. Tool Interface Standard (TIS) Executable and Linking Format (ELF)

Specification, Version 1.2, 1995.

[12] Intel Corporation. Intel Itanium 2 processor reference manual: For software develop-

ment and optimization. Intel Corporation, May 2004.

[13] Edsger W. Dijkstra. Notes on Structured Programming. Technological University

Eindhoven Netherlands, 1970.

[14] Mathias Ekman and Henrik Thane. Dynamic patching of embedded software. In IEEE

Real-Time and Embedded Technology and Applications Symposium, pages 337–346.

IEEE Computer Society, 2007.

[15] International Organization for Standardization. ISO C Standard 1999. Technical

report, 1999. ISO/IEC 9899:1999 draft.

[16] Robert L. Glass. Loyal opposition - frequently forgotten fundamental facts about

software engineering. IEEE Software, 18(3):112–111, 2001.

[17] Richard G. Hamlet. Theoretical comparison of testing methods. In Symposium on

Testing, Analysis, and Verification, pages 28–37. ACM, 1989.

[18] Steve Heath. Embedded systems design. Newnes, 2002.

[19] J. C. Huang. An approach to program testing. ACM Computing Surveys, 7(3):113–

128, 1975.

[20] Susanne Kandl and Sandeep Chandrashekar. Reasonability of MC/DCfor safety-

relevant software implemented in programming languages with short-circuit evalu-

ation. In Proceedings of the 9th Workshop on Software Technologies for Future

Embedded and Ubiquitous Systems. IEEE Proceedings, 2013.

[21] Brian W. Kernighan and Dennis Ritchie. The C Programming Language, Second

Edition. Prentice-Hall, 1988.

[22] Donald E. Knuth and Francis R. Stevenson. Optimal measurement points for program

frequency counts. BIT Numerical Mathematics, 13(3):313–322, 1973.

[23] Michael Laurenzano, Mustafa M. Tikir, Laura Carrington, and Allan Snavely. PEBIL:

Efficient static binary instrumentation for linux. In IEEE International Symposium

BIBLIOGRAPHY 89

on Performance Analysis of Systems and Software, ISPASS’10, pages 175–183. IEEE

Computer Society, 2010.

[24] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding domina-

tors in a flowgraph. ACM Transactions on Programming Languages and Systems,

1(1):121–141, 1979.

[25] J. Jenny Li, David M. Weiss, and Howell Yee. An automatically-generated run-time

instrumenter to reduce coverage testing overhead. In Proceedings of the 3rd Inter-

national Workshop on Automation of Software Test, AST ’08, pages 49–56. ACM,

2008.

[26] ARM Limited. Embedded Trace Macrocell ETMv1.0 to ETMv3.5, Architecture Spec-

ification. ARM Limited, 2011.

[27] BCC Research LLC. Embedded systems: Technologies and markets, report

ift016d. http://www.bccresearch.com/report/IFT016D.html, 2012. Ac-

cessed: 2014-04-25.

[28] Michael R. Lyu et al. Handbook of software reliability engineering, volume 3. IEEE

Computer Society, 1996.

[29] Michael R. Lyu, Zubin Huang, Sam K. S. Sze, and Xia Cai. An empirical study

on testing and fault tolerance for software reliability engineering. In 14th Interna-

tional Symposium on Software Reliability Engineering, ISSRE, pages 119–132. IEEE

Computer Society, 2003.

[30] Brian Marick. How to misuse code coverage. In Proceedings of the 16th Interational

Conference on Testing Computer Software, pages 16–18, 1999.

[31] Aditya P. Mathur. Foundations of software testing: Fundamental Algorithms and

Techniques. Pearson Education India, 2013.

[32] Joan C. Miller and Clifford J. Maloney. Systematic mistake analysis of digital com-

puter programs. Communications of the ACM, 6(2):58–63, 1963.

[33] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing,

3rd Edition. John Wiley & Sons, 2011.

[34] Tammy Noergaard. Embedded systems architecture, 2nd Edition - a comprehensive

guide for engineers and programmers. Newnes, 2012.

http://www.bccresearch.com/report/IFT016D.html

90

[35] Simeon C. Ntafos. A comparison of some structural testing strategies. IEEE Trans-

actions on Software Engineering, 14(6):868–874, 1988.

[36] Robert L. Probert. Optimal insertion of software probes in well-delimited programs.

IEEE Transactions on Software Engineering, 8(1):34–42, 1982.

[37] C. V. Ramamoorthy, K. H. Kim, and W. T. Chen. Optimal placement of software

monitors aiding systematic testing. IEEE Transactions on Software Engineering,

1(4):403–411, 1975.

[38] Vijay Janapa Reddi, Alex Settle, Daniel A. Connors, and Robert S. Cohn. PIN: a

binary instrumentation tool for computer architecture research and education. In

Proceedings of the 2004 workshop on Computer architecture education: held in con-

junction with the 31st International Symposium on Computer Architecture, WCAE

’04, New York, NY, USA, 2004. ACM.

[39] Alex Shye, Matthew Iyer, Vijay Janapa Reddi, and Daniel A. Connors. Code coverage

testing using hardware performance monitoring support. In Proceedings of the 6th

International Symposium on Automated Analysis-driven Debugging (AADEBUG),

pages 159–163. ACM, 2005.

[40] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Efficient instrumentation for code

coverage testing. In Proceedings of the International Symposium on Software Testing

and Analysis, ISSTA 2002, pages 86–96. ACM, 2002.

[41] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Efficient online computation of state-

ment coverage. Journal of Systems and Software, 78(2):146–165, 2005.

[42] Zhonglei Wang, Antonio Sanchez, and Andreas Herkersdorf. Scisim: A software

performance estimation framework using source code instrumentation. In Proceedings

of the 7th International Workshop on Software and Performance (WOSP), WOSP ’08,

pages 33–42. ACM, 2008.

[43] Elecia White. Making Embedded Systems: Design Patterns for Great Software.

O’Reilly, 2011.

[44] W. Eric Wong, Sharath Rao, John Linn, and James Overturf. Coverage testing

embedded software on symbian/omap. In Proceedings of the Eighteenth International

Conference on Software Engineering, SEKE’06, pages 473–478, 2006.

BIBLIOGRAPHY 91

[45] Xianming Wu, J. Jenny Li, David M. Weiss, and Yann-Hang Lee. Coverage-based

testing on embedded systems. In Proceedings of the 2nd International Workshop on

Automation of Software Test, AST ’07, pages 31–36. IEEE Computer Society, 2007.

[46] Hong Zhu. A formal analysis of the subsume relation between software test adequacy

criteria. IEEE Transactions on Software Engineering, 22(4):248–255, 1996.

	Introduction
	Background and Motivation
	Problem Definition
	Requirements
	Assumptions

	Contribution
	Structure of this Document

	Preliminaries
	Test Suite Adequacy
	The Subsume Relation
	Statement and Block Coverage
	Function Coverage
	Conditions and Decisions
	Lazy Evaluation
	Infeasibility

	Decision Coverage
	Condition Coverage
	Condition/Decision Coverage
	Multiple Condition Coverage
	Modified Condition/Decision Coverage

	Instrumentation
	Overview
	Binary Instrumentation
	Source Code Instrumentation

	Embedded Systems
	What is an embedded System?
	Peripherals
	Real-Time Systems
	Debugging

	Binary Approach
	Overview
	Idea of the Approach
	Implementation
	SRV-Parser
	RELF
	2-link
	Test
	Coverage Function
	Script

	Restrictions and Change of Strategy

	Source Code Instrumentation Approach
	Overview
	Issues and Approaches
	Instrumentation
	Source Code Navigation
	Prettifying of the Source Code
	Placement of Probes

	Efficient Reporting of Covered Probes
	Error Handling

	Implementation
	Overview
	C-CoCATool
	TS-Parser
	Prettifier
	Instrumenter
	Updater
	Reporter
	Summary

	2-link
	Test Suite Modifications
	Toolchain
	Instrument
	Build
	Deploy
	Test
	Update
	Report

	Summary

	Evaluation
	Test Setup
	Normal Test Setup
	Modified Test Setup

	Results
	Binary Instrumentation Approach
	Source Code Instrumentation Approach

	Discussion
	Protocol I
	Protocol II
	Protocol III
	Protocol IV
	Differences Due to Timing
	Summary

	Related Work
	Commercial Tools for Measuring Code Coverage
	Additional Key Points for the Comparison
	Instrumentation
	Supported Coverage Criteria
	Supported Host Platforms

	Evaluation of the Tools
	VectorCAST/Cover (Vector Software)
	Testwell CTC++ Test Coverage Analyser (Verifysoft Technology)
	BullseyeCoverage (Bullseye Testing Technology)
	LDRAcover (LDRA Software Technology)
	Test Coverage Tools (Semantic Designs)
	Tessy (Razorcat, Hitex)

	Summary of the tool evaluation

	Related Research on Code Coverage for Embedded Systems
	Source Instrumentation
	Binary Instrumentation
	Simulation and Emulation
	Summary

	Conclusion and Outlook
	Summary
	Future Work

	C Statement Definitions
	Labeled statements
	Compound statement
	Expression statements
	Selection statements
	Iteration statements
	Jump statements

	Selected Source Code Extracts from the Implementation
	Bibliography

