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Abstract

Sensorimotor rhythm (SMR) based brain-computer interfaces (BCI) enable the user to control
devices by motor imagery, which is the mental rehearsal of hand or feet movement. Ultimately,
the BCI should lead to an assistive device for people with severe motor impairments.

Typically, BCI systems require a lengthy period of calibration and user training which can last
several months for people with severe motor impairments. This can be exhausting and fatiguing
for the user as the training tasks are usually (1) monotonous and (2) without any feedback to
encourage the subject. Moreover, frequently those BCI systems lack of sufficient performance
to provide decent assistance to the user. Hence, new ways to reduce user training and improve
performance have to be found.

This thesis proposes a two class SMR based BCI system, which performs recurrent updates
of its parameters during runtime to boost overall performance. Therefore, it is able to provide
accurate, positive, visual feedback to the user after just 4 minutes of calibration.

To maximize the discriminability of logarithmic band-power features, common spatial patterns
(CSP) along with a filterbank were used. The features were classified by a Random Forest
classifier. The system recurrently updated the CSP and classifier models. To reduce the influence
of trials contaminated with physiological or non-physiological noise, every training step was
preceded by statistical outlier rejection.

In a supporting online study, all 9 novice, able-bodied volunteers performed significantly better
than chance with an overall peak accuracy of 84.9 ± 10.3%. This outperforms the performance
of state of the art BCI systems, which perform ususally with an peak accuracy of 75 ± 15%.
Due to the high performance of the system, it may be an expedient solution in creating an
assistive device for people with severe motor impairments.



Kurzfassung

Sensorimotorisch rhythmus-basierte Brain Computer Interfaces (BCI) ermöglichen ihrem Be-
nutzer die Kontrolle von Geräten allein durch die Kraft einer Bewegungsvorstellung. Diese BCI
Systeme sollen letztendlich einem bewegungstechnisch stark eingeschränktem Menschen als un-
terstützendes Hilfsmittel zur Seite stehen, um so mit seiner Umwelt zu interagieren.
Üblicherweise benötigen BCI Systeme ausgedehnte Trainings -und Kalibrierungsperioden, die
mehrere Monate andauern können. Die Trainingsparadigmen sind meist recht monoton gestal-
tet und geben kein Feedback, um die Aufmerksamkeit des Benutzers auf sich zu ziehen. De-
mentsprechend passiert es häufig, dass die Leistung dieser Systeme unter den Erwartungen
bleibt. Daher müssen andere Ansätze gefunden werden um Trainings -und Kalibrierungsperio-
den zu verkürzen und die Leistung dieser Systeme zu steigern.
Diese Diplomarbeit legt ein 2 Klassen BCI System dar, welches auf Bewegungsvorstellungen
beruht. Um die Leistung des Systems zu steigern werden zu vordefinierten Zeitpunkten die
Parameter des Systems neu berechnet, was dazu führt, dass das System in der Lage ist, bereits
nach etwa 4 Minuten akkurates, positives visuelles Feedback zu geben.
Um die Trennbarkeit der logarithmischen Bandpower Features zu maximieren, wurde ein ”Com-
mon Spatial Patterns” Filter zusammen mit einer Filterbank implementiert. Die daraus resul-
tierenden Features werden mit einem ”Random Forest” klassifiziert. Das System updated das
Filtermodel und den Algorithmus in fixen Abständen. Um den Einfluss von physiologischen und
nicht physiologischen Störungen in den Bewegungsvorstellungen des Benutzers zu minimieren
wurden vor jedem Update die Daten mittels statistischer Methoden untersucht und abnorme
Daten ausgeschlossen.
Die Leistung des Systems wurde mittels einer unterstützenden Studie an 9 näıven, gesunden
Freiwilligen festgestellt. Alle Personen lagen mit ihrer Leistung deutlich über dem Zufallslevel
mit Spitzenwerten von bis zu 84.9 ± 10.3% (median 78.0%). Diese Leistung liegt deutlich über
jener von vergleichbaren modernen BCI Systemen, deren Spitzenwerte bei 75 ± 15 % liegen.
Aufgrund dieser bemerkenswerten Leistung könnte das System einen Lösungsweg für bewegung-
stechnisch stark eingeschränkte Menschen darstellen.
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Online optimization of Man-Machine interaction

1
Introduction

A Brain-Computer-Interface (BCI) is a device which enables the user to interact with its sur-
rounding only by thought (e.g. imagination of a motor task) or attention to a stimuli (e.g.
focussing on an external stimulus). In the end, a BCI should ease, or even allow a user with
severe motor impairment not only to interact, but to communicate with its environment.
Since the initial steps in this field of science in the early seventies [1], BCI systems have signif-
icantly evolved, including not only a narrow banded field of a few neuroscientists, but a vast
interdisciplinary community with annual publications in the hundreds [2]. With the growth
of the community the variety of different approaches to measure and classify brain activities
multiplied.

When recording brain activities, two primary approaches are considered: Invasive measure-
ment, which implies invasive brain surgery for placing electrodes directly on the designated
cortex areas (electrocorticography (ECoG)), and non-invasive approaches, where the skin of the
user is not penetrated. For recording brain activities non-invasivly, a number of methods are
available, where electroencephalography (EEG) is the most common and widely spread in the
BCI community.
Neurons in the brain generate and transfer action potentials, called spikes. The spikes itself
generate post synaptic potentials (PSP) which are pooled into compound action potentials and
can be measured by the EEG on the scalp.
While spikes have amplitudes up to 70 mV, the compound action potentials measured on the
scalp are damped by the skullcap and organic matter resulting in a range of 10 to 500 µV .
Because of this exceptional weak signal strength, the measured EEG signal is highly vulnerable
to any kind of interferences and noise, leading to a very small signal to noise ratio. Dealing with
these interferences, also called artefacts, is a major issue for every BCI system.
Nevertheless, several advantages do make the EEG a good candidate for data acquisition in the
field of BCI: The EEG is a non-invasive method (1), so no penetration of the skin or extensive
surgery is required. All necessary electrodes are placed on the scalp of the user and the sys-
tem can be operable within minutes. The EEG offers a high temporal resolution (2) - voluntary
changes in the brain activity can be measured within milliseconds. The EEG equipment requires
comparatively low investment (3) - although the price range for multiple electrode systems is
unbounded, standard BCI equipment can be purchased for the price of middle-class car.

The measured brain signals must contain components which can be voluntary modulated by

– 7 –



1 Introduction

a user, in order to interact with its environment through a BCI system. Among the investigated
phenomena [3], one class deals with different motor imageries (MI), which may be seen as a
mental rehearsal of a motor act without executing it. These imageries cause oscillatory changes
(power de/increase) in the α (8 - 12Hz) and β bands (13-30 Hz) over defined brain areas [4]. The
phenomena is called event-related synchronisation (ERS) or power increase and event-related
desynchronisation (ERD) or power decrease, and occurs subjected to the used Motor Imagery, in
different locations of the brain. Figure 1.1 shows the sensory homunculus which represents the
relative amount of cerebral cortex surface given to every sensory and motor input and output of
the human nervous system [5]. ERD/ERS is known since the early seventies, and is explained
in detail in [6].

Figure 1.1: Mapping of body parts according to the motor(l.) and somatosensory cortex: Foot and leg are to
find medial, hand, face and mouth are to be found lateral [5]

The basis of every BCI system, is shown in figure 1.2. The BCI system acts as a closed loop
system which directly engages the subject by giving feedback to the input of the user, therefore
a high time resolution (milliseconds) for real-time application is imperative. Signal acquisition
may be done - as already described before - invasive or non-invasive.
Preprocessing involves amplifying the signal as well as clean it of all kind of interferences, noise
or artefacts. The final stage of the Preprocessing step should deliver a signal which is optimized
for extraction of features feasible for describing brain activities.
The main task of the features is to describe the change in the brain activity by the voluntary
modulation of the user. The better the features describe the different voluntary modulated brain
signals, e.g. different motor imageries, the more promising is the ability to actively control an
application using the BCI for the user. For sensory motor rhythms (SMR), like the previous
described ERS/ERD, the power information of the signals in the range of mu and beta rhythms
seems to be a valid approach. Nevertheless a substantial amount of feature extraction methods
are investigated, and can be found in [3] and [7]. The classifier is assigned to discriminate be-
tween the voluntary modulated brain activities of the user, using the features extracted from
the signal in the previous step. Usually, a large amount of individual training data hast to be
recorded for each subject in order to perform in the desired accuracy ranges. Depending on
the selected brain activity, the training data may persist over more than one session or in most
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1 Introduction

cases, has to be redone with every new session. Classification algorithms are common in a vast
number of technical branches, so the potential for investigating procedures used in other fields
of research is high and encouraging.
The decisions made by the classifier are the input for the application interface, which controls
any sort of application allowing the user to interact with its environment using only pre-defined
brain activity. The variety in applications is endless, starting from assistive devices for patients
with locked-in syndrome or tetraplegics up to e.g. a new input device for the entertainment
industry respective computer games [8] [9].

Figure 1.2: Schematic of the general BCI approach

Although state of the art BCI systems use this general template as basis, each has its own
innovations to the general system. In 2012 Faller et al. [10] published their approach on an
auto calibrating and adapting BCI for MI tasks. The system is based on a standard BCI system
using bandpower features [11] (α-band and β-band for three Laplace channels [12] ) and linear
discriminant analysis (LDA) as classifier.
Conventional BCI systems usually run a lengthy (at least 30 minutes) period of gathering train-
ing data for the classifier, without giving any feedback before entering a stage where the subject
can interact with the BCI. Training period and the preceding interaction period are in a sequen-
tial order. Faller et al extended the standard BCI (”Online System”) by an independent block
called ”Optimizer Instance”, where recurrent updates of the classifier using the gathered data
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1 Introduction

of the ”Online System”, are calculated and sent back to the Online System.
This enables the system to provide positive reinforced feedback within minutes of training in-
stead of a lengthy training period. Results level in on a peak average of 75 percent over 12 able
bodied, naive users.
Steyrl et al. [13], [14] investigated in 2012 the usefulness of a more sophisticated classifica-
tion method for BCI systems, called Random Forests. He proposes that due to the non-linear
behaviour of the EEG patterns, a BCI system would benefit from a more sophisticated, even
non-linear classifier model, instead of the commonly used Linear Discriminat Analysis (LDA)
classifier. To confirm the hypothesis, a supporting study was done resulting in 76 percent over
12 abled naive users.

Both BCI approaches contain elements which seem innovative and beneficial for further use,
but are implemented in a standard BCI system. While Faller et al. use a parallel ”Optimizer
Instance”, their system uses a linear classifier. In reverse, Steyrl et al. use a sophisticated
classifier, but relies on lengthy training periods without recurrent updates of an ”Optimizer
Instance”.
The idea is to design a new BCI system which makes use of not only their investigations towards
an Optimizer and a non-linear classifier, but to extend it even further by using sophisticated
preprocessing methods, namley filterbank common spatial pattern (CSP) [15]. The result would
be a new BCI system with a battery of sophisticated methods, which replace all well established
and published standard methods.
The aim of this work is to investigate, whether or not a combination of these technologies can
be achieved in an expedient way. To evaluate the performance of the approach, a supporting
study is considered the most convincing way.
Section 2 starts with a conceptual overview of the the system, and will provide theoretical
approaches to the applied technologies, as well as supplemental information of the supporting
study. Section 3 will present the findings and results gathered in the supporting study, Section 4
discusses the result in detail and point out issues and features for future investigations. Section
5 concludes the thesis. The appendix holds all critical implementation details and analysing
scripts.
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2
Methods

2.1 Concept Design

Figure 2.1 displays the concept of the signal processing chain of the proposed system. It should
act a as a two class BCI system which uses different motor imageries, motor imagery of the
right hand and motor imagery of both feet, as control signals. As input for the system acts
a multichannel EEG signal. To boost the discriminability between the classes, a battery of
common spatial patterns filter in combination with a bandpass filterbank (FCSP) is used before
calculating logarithmic bandpower features. These features are classified by a Random Forest
classifier. The classifier delivers a the classlabel, (”right hand” or ”both feet”) which can be
used to calculate feedback for the user. Recurrent updates to the classifier and the FCSP should
ensure that the system improves in performance over time.

The idea is to keep the period, where the user does not get feedback, as short as possible.
Long training periods with no feedback do wear off the user’s attention and motivation. By
keeping this period short and delivering feedback to the user as soon as possible, motivation
and attention can be kept up. Moreover, based on the feedback the user gets, he should be able
actively train the motor imageries, and in turn the system adapt better to the user’s input.
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2 Methods

Figure 2.1: Concept overview: Signal chain of the proposed system

2.2 Preprocessing and Feature extraction

2.2.1 Filters and Filterbank

As already mentioned in the introduction, physiological arguments suggest to investigate µ and
β bands. These are especially relevant for extraction of motor imagery activity.
Therefore, the acquired EEG signal is fed into a so called ”Filterbank” which essentially is a
conglomeration of IIR bandpass filters. The bandpass-filters are designed as IIR filters of order
6, second order filter coefficients have been scaled for reducing chance of overflow. To cover µ
and β bands, 15 filters are used which are arranged narrow-banded and in an overlapping way.
Table 2.1 shows the individual pass ranges for each filter. In figure 2.2 the filter characteristic,
which can be applied to every filter used, is shown.

bandpass 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lower cut-off [Hz] 6 7 8 9 10 11 12 14 17 20 23 26 29 32 35

higher cut-off [Hz] 8 9 10 11 12 13 14 19 22 25 28 31 34 37 40

Table 2.1: cut-off frequencies of the bandpass filterbank

The narrow banded filters allow investigations in relatively small areas of the designated
mu and beta bands, the overlapping of the frequencies compensate for the slope of the filter.
An additional beneficial factor of this narrow-banded design is that the influence of artefacts,
which can and will occur during measurements on human subjects is greatly reduced. Artefacts
are induced by muscle activity (EMG), eye-movement (EOG), teeth grinding, sweat or even
shivering and can take a great negative influence in the performance of a BCI. The topic of
artefacts will be further investigated in the optimizer section.
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2 Methods

(a) Magnitude (blue) and Phase (green) response (b) Magnitude Response, Passband Ripple

Figure 2.2: Stable Magnitude and Phase Response of one of the bandpass filters of the filterbank. 2.2(a)
Both Stopband Atten. lie around -44.7dB ; 2.2(b) Passband-Ripple > 0.01 dB, Frequency is
normalized between 0 and 1, Sample Rate: 256Hz

2.2.2 Common Spatial Patterns

To boost class separability, the common spatial pattern (CSP) method is applied on each filter
output of the filterbank individually. The main motivation is to prepare the filterbank signals
to get an optimized class separability when calculating the final features.
CSP is based on a decomposition of the raw EEG signals into spatial patterns, which are
extracted from two classes. The classical CSP approach is only defined for two classes. It max-
imizes the variance of the spatially filtered signals under one condition, while minimizing it for
the other condition [16],[17].

Originally developed to discriminate between two different EEGs (normal and abnormal) in
the Nineties [18], the method was soon adapted to fit other needs in the field, as well as for
optimizing procedures in the field of SMR-BCI [18], [19].
Nowadays there exist research groups who specialise in this method by pushing further investi-
gations, modifications and refinements to CSP as can be seen in [16] (CSSSP, Common Sparse
Spectral Spatial Patterns), [20] (SpecCSP, Spectrally Weighted CSP) or [21] (ISSPL, Iterative
Spatio-Spectral Patterns Learning). The CSP algorithm has become most popular in the BCI
field for learning spatial filters for oscillatory processes.

To make optimal use of the algorithm, the following parameters have to be considered:

� Frequency band and time window are known

� band-passed signal is jointly Gaussian within the time window

� Brain patterns between two classes must differ

Theoretical background

For calculating the CSP filter-coefficients let

EN×T . . . single trial (2.1)

where N is the number of channels, T is the number of samples and C is the normalized
Spatial Covariance matrix of E, noting in
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2 Methods

C =
EE′

trace (EE′)
. (2.2)

Now all available trials have to be separated by class, e.g. Hand MI and Feet MI, and averaged:

CH =
1

#Hand
·
∑

i∈Hand

Ci respective CF =
1

#Feet
·
∑

i∈Feet

Ci (2.3)

A composite spatial covariance matrix Cc is created:

CC = CH + CF (2.4)

Since a spatial covariance matrix is per definition positive semi-definite and a square matrix,
the Eigenvalue decomposition of a matrix can be applied on Cc and factorized:

CC = UC · λC · U ′C (2.5)

UC . . . eigenvectors of CC

λC . . . eigenvalues of CC

Notice that UC is the eigenvector matrix and λC is a diagonal matrix containing the eigen-
values. Now the matrices are reordered according to descending eigenvalues.

Figure 2.3: Whitening transformation: Equalizing the variances

To ensure proper scaling, a whitening transformation is applied (see schematic figure 2.3)
which equalizes the variances in the space spanned by UC ,

P = λ
−1
2

C U ′C (2.6)
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meaning that all eigenvalues of P · CC · P ′ equal to one. By simultaneously transforming

SH = PCHP
′ and SF = PCFP

′ (2.7)

SH and SF share common eigenvectors B and due to the whitening/scaling their eigenvalue-
matrix λH,F add up to the identity matrix I.

SH = BλHB
′ and SF = BλFB

′ where λH + λF = I (2.8)

This leads to the fact that the sum of two corresponding eigenvalues is always one, so that
the the eigenvalue with the largest value in SH has the smallest value in SF and vice versa. This
property is fully utilized by the projection of the whitened EEG onto the the eigenvectors in B,

W =
(
B′P

)′
(2.9)

for feature vectors that are optimal for discriminating the two classes. The colums of W−1

represent the desired filter coefficients.

(a) Before CSP Filtering (b) After CSP Filtering

Figure 2.4: A toy example of CSP filtering in 2-D. Two sets of samples marked by red crosses and blue
circles are drawn from two Gaussian distributions. In (a), the distribution of samples before
filtering is shown.In (b), the distribution of samples after the filtering is shown. [22]

Applying CSP to the System

As mentioned before, for every filter output of the filterbank, all in all 15, one individual CSP-
filter is applied. Since the most information, respective the highest variances, lie within the first
and the last couple of vectors of the CSP filter W (see 2.8 and 2.9 )the CSP filter is shrinked,
leaving only the first and the last three columns resulting in a 13 × 6, 13 . . . #EEG Channels
matrix which is applied to the filterbank signal N × 13, N . . . samples.
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2 Methods

Wcsp−matrix =

W1H W2H W3H W11F W12F W13F

...
. . .

...
. . .

W1H W2H W3H W11F W12F W13F

Figure 2.5: Since the first and the last columns contain the most information for class separability, only the
first and the last three colums of the original W - matrix are taken for further use.

2.2.3 Logarithmic Bandpower Features

Since the oscillatory changes of MI affect frequency and amplitude, the common approach of
extracting the power information of the acquired signal seems valid.
Therefore, the output of the CSP - filtered signal is investigated for the power information from
the signal and used as classification feature.

Incoming data samples are squared and a moving average filter over one seconds calculates
the bandpower of the features (see figure 2.6). Afterwards the logarithm is applied.

Figure 2.6: Extract from the Simulink Model: Calculation of the logarithmic bandpower features.

2.3 Classification: Random Forests

Random Forests were proposed by Leo Breiman in 2001 and are a further development of his
previously proposed work on Decision Trees (CART = Classification and Regression Trees) [23]
combined with his proceedings on Bagging Predictors [24] and Tim Kan Ho’s work regarding
Random Subspaces [25].
The technique is quite simple, but with state of the art performance. In 2006, a study conducted
by Caruana et al. [26] investigated the performance of a number of supervised learning algo-
rithms such as DT-based algorithms, Support Vector Machines (SVM), Naive Bayes and others
on eleven prominent binary classification problems. The scores set decision-tree based classifier
far to the front, with Random Forest on second place, only beaten by the approach of Boosted
Trees.

2.3.1 Theoretical Background

Decision Trees

Decision Trees are the basis model of the Random Forest classifier. They are an extraordinary
simple approach to the topic of classification and also regression, yet they can be quite powerful
combined with additional techniques such as Bagging or Boosting. The main idea is to form a
binary tree and minimize the error in each leaf of the tree. Therefore a sequence of binary splits
is chosen of the data to divide it into different leafs, starting from the root node.
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2 Methods

(a) first split (b) second split (c) third split (d) fourth split

Figure 2.7: Schematic of a possible feature space and the splits (pink lines) of a splitting criterion

Figure 2.7 shows a schematic of a possible feature space. The splitting thresholds split the
feature space in rectangular regions. Figure 2.8 shows the growth of the decision tree. Starting
from the root the first split separates the feature space in two regions (see figure 2.7(a)). The
splitting criterion is based on a greedy heuristic and processed in an iterative way (see figures
2.7(b) - 2.7(d)).The final decision for the class is made by a majority vote of the leafs. In figure
2.8 the the process of building up the tree is shown in a detailed scheme.

Figure 2.8: Schematic view of the growth of a tree using the feature space of figure 2.7

The main goal for a classification tree is to minimize the error in the leafs, meaning to get
each region R as pure as possible. With each split the two consecutive regions should be ”purer”
than the single region they descended from. A common way to achieve this is to calculate an
index for ”purity” for each region, which can be perfectly used as splitting criterion.

Consider figure 2.9(a), where a node for classification is schematically represented. Let be

ER = fraction of points xi ∈ R misclassified by a majority vote, then (2.10)

ER =
1

NR
·
∑

1:xi∈R
I(yi 6= Y ) (2.11)

where NR is the total number of features in the observed node, R is the region and Y is the
correct class label. In the case of the region represented in figure 2.9(a), ER = 3

8 . For the next
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split of this node a threshold would have to be found which undercuts the MCR of this region.
This purity measure is called Misclassification Error (MCE).
The second approach is to determine the entropy of the region, by

HR = −
∑
y∈Y

PR(y) · log(PR(y)). (2.12)

The last index approach presented is the Gini-Index, which will be later on used as splitting
criterion by the random forests and is simply calculated by the sum of the probability of the
occurrence of the class multiplied with its inverse probability for each class, so

GR =
∑
y∈Y

PR(y)(1− PR(y)). (2.13)

Figure 2.9(b) shows the three impurity indices as a function of the proportion.

(a) Schematic view of one splitted Region; Purity
indices: ER = 0.375; HR = 0.6616; GR = 0.4688

(b) Impurity measures as a function of the porpor-
tion

Randomisation Processes - Bootstrapping and Random Subspaces

Usually, single decision trees are not accurate enough to be used for classification problems, but
combined with some other techniques, they can potentially become quite powerful to the task.
Bootstrap Aggregation, often also called ”Bagging”, is another technique introduced by Leo
Breiman in 1996 [27]. In principle, the method creates B number of instances of a decision
tree, fabricating a so called ensemble classifier, and induces a majority vote over the results of
each tree. However, this trick applied reclusively wouldn’t lead to a significant improvement in
accuracy. The general error would stay the same because each tree is build with an identical
data set.

Generalisation Error ... PE 6
ρ
(
1− s2

)
s2

(2.14)

Having a closer look on the formula of the generalisation error PE, two factors can be found.
The accuracy s, which can not be modified in a reasonable way, and ρ which describes the mean
value of the correlation of the base classifiers [27]. ρ is the factor which can be tuned by modify-
ing the data set for each decision tree. Instead of giving each tree the full, identical training set

– 18 –



2 Methods

of data, Bootstrap Aggregation selects a randomly chosen set of training data (”get the samples
out of the bag”) for each set, with replacement. Therefore the diversity of the trees is greatly
improved [27],[13].
To improve the diversity even further, the tree-growing process is modified by adding the Ran-
dom Subspace method. When a region R, such as can be seen in figure 2.9(a) undergoes the
process of finding the next splitting criterion, only a randomly chosen subset of features is se-
lected to be considered for the splitting criterion [13].
Both randomisation processes applied to an ensemble of decision trees, called a forest, guarantee
the diversity of the trees and optimize the generalisation error PE (see 2.14).

Assembling the classifier

The ideas of the decision trees and the randomisation processes are now combined into one single
ensemble classifier producing the following algorithm:

1. Foreach Tree b = 1 to B (B . . .number of trees):

(a) Draw a bootstrap sample Z of size N out of the training data (bootstrap step).

(b) Grow a random forest tree Tb to the bootstrapped data, by recursively repeating the
following steps for each node until the minimum node size is reached.

i. Select m variables of the p variables available in the region (random subspace
step).

ii. Pick the variable for the best split according to the Gini-Index.

iii. Split the node in two daughter nodes.

2. Output the ensemble of trees [Tb]
B
1

3. Do a majority vote of the results of the trees and output the result as the classlabel.[27].

Parameters

As can be seen in the previous subsection there are several parameters of the Random Forest
which can be tuned to improve the performance of the classifier. The first and obvious parameter
is the number of trees the ensemble classifier should grow. The other parameter which offers
the possibility of tuning is the number of features chosen by the second randomisation step for
finding a good splitting criterion.
Fortunately, in 2012, Steyrl investigated in his Master Thesis the suitability of Random Forests
for Brain Computer Interfaces, where he analysed of the tuning possibilities of the parameters, so
these findings allow a good estimation of the parameters for using EEG data [14][13]. Therefore it
is chosen to use 1000 trees to ensure on the one hand clear results of the majority vote of the trees,
and on the other hand good computational efficiency allowing sixteen classifications per second.
The number of features chosen by the random subspace method is set to

√
number of features.

2.4 System Model

The system model is based on the approach of Faller et al. Autocalibration and Recurrent
Adaption BCI [10]. It is designed as a distributed system and consists of two main parts, which
are realized in MATLAB Simulink and can be executed on two different machines (PC), or both
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on the same PC using two instances of MATLAB. As can be seen in figure 2.9, the general BCI
approach already seen in chapter 1, is extended by an Optimizer System which can be configured
to retrain the CSP filter and the Random Forest classifier at pre-defined/recurrent timepoints
to enhance their performance. The TCP/UDP/IP Toolbox 2.0.6 by Peter Rydesaeter is used,
which allows communication of two MATLAB instances via TCP or UDP [28].

2.4.1 Software and Libraries

For the implementation, the following Software, tools and libraries have been used:

� MATLAB 2012b [29]

� Random Forest mex implementation for MATLAB [30]

� TCP/UDP/IP Toolbox 2.0.6 [28]

� Fast Serialize [31]

� TOBI SignalServer + Client [32], [33]

� GRAZ-BCI libraries [34]

Figure 2.9: The general BCI approach is extended by a separate optimizer instance.
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2.4.2 Onlinessystem

The Online System itself can be almost directly derived from the standard BCI system commonly
known. It is implemented in MATLAB Simulink, using the Tobi Signalserver and the libraries
for the GRAZ-BCI. Detailed Simulink Models as well as critical code compartments are provided
in the Appendix.
A full schematic can be seen in figure 2.10. The system is designed to operate with thirteen
input channels (which represent a setup of thirteen electrodes), but can be effectively scaled to
work with other configurations. The Online System is realized in Simulink.

Figure 2.10: Detailed Schematic of the Online System

The acquired signal is provided by the Signal Server client [32], processed in real time and
directed to the filterbank where the signal is fed in fifteen independent bandpass filters (Filter-
bank). By processing the signal with fifteen parallel filters, the originally thirteen input channels
multiply to 195, thirteen for each filter. Each filter output is modified by multiplication with the
common spatial pattern (CSP) filter, which is trained individually for each filter. The output
results in six bandpower features for each filtered CSP. Adding these up results in a total of
ninety features.
The Random Forest Classifier classifies the CSP+BP output sixteen times per second and there-
fore delivers 16 predicted classlabels per second. This is an applicable trade-off between classi-
fication accuracy and computational performance.
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Another critical object in the model is the universal Paradigm generator. It provides events
allowing trigger points for the visualisation and the feedback model, as well as the true class
label. The universal Paradigm generator is part of the GRAZ-BCI library and is driven by a
XML file, which can be adapted to provide triggerpoints, time, order and succession.
To ensure concurrent processing between different sample rates (e.g. the basis sample rate for
the model is 256, while the output of the classifier delivers only 16 decisions in the same time),
various rate transitions are placed on critical points (which are not depicted in figure 2.10 ).
The true class label as well as the predicted class label drive the feedback generator which cal-
culates the ”strength” of the feedback.
The visualisation block handels the visualisation and is driven by the universal Paradigm which
triggers the different states of the Paradigm and the feedback block, which determines the
strength of the feedback bar.

The raw signal, the output of the filterbank as well as the trigger events are collected in the
MUX for each timestep and forwared to the COM Interface.
The COM interface is critical for the entire system. It maintains the communication to the
previously addressed Opitimizer System, allowing on the one hand classifier and filter updates for
the CSP, and on the other hand segments and sends trials to the Optimizer System. Segmenting
is the technique of selecting periods of training data, which are defined by the paradigm selected.
Each trial begins with a starting event and has the same length. The COM interface monitors
the incoming data stream from the MUX for such events. When the event occurs, it saves the
incoming data to a buffer for the size of M × Trial length · Sample Rate. After filling up the
buffer, the package is sent to the Optimizer System via TCP/IP. A schematic view of the COM
interface can be seen in figure 2.11.

Figure 2.11: The COM-Interface: Responsible for handling incoming updates and segmenting trial according
to the presets given by the paradigm

The storage facility is liable for the storage of the data for later offline analysis. Everything
non-reproducible is stored in the designated GDF Data file, or in MATLAB files including:
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� Raw EEG Data (GDF)

� True Classlabel (GDF)

� Predicted Classlabel (GDF)

� System to Sim Time (for monitoring eventual delays, GDF)

� Each Classifier and CSP Filter update (MATLAB file)

2.4.3 Optimizer System

The Optimizer System is realized as a MATLAB function, and can be executed on the same PC
as the Online system or on another PC. The pre-requisite is that both computer are connected
via TCP/IP. The Optimizer System acts as a ”always-on” server during a session. The Online
system connects and disconnects to the system according to the number of runs planned for
the session implying that the data collected in previous runs is available for the present and
future runs. This is actually one critical feature in order to calculate ”optimized” updates for
the Online system. There are three main assignments the Optimzer performs:

1. Data management and segment storage

2. Outlier Rejection (Artefact detection)

3. Training of the CSP Filter and the Random Forest Classifier

Similar to the COM Interface of the Online System, the Optimizer operates in states using
flags as triggers. Figure 2.13 displays a basic signal flow chart of the optimizer in the connected
state. It is assumed that the Online System has already connected to the Optimizer and is send-
ing Data-Packages (which could be trial segments or global commands) to the Optimizer. Each
Data-Package contains a flag, which is the indicator on how it is handled in the further process.
Flag zero shuts down the Optimizer and can be sent manually ( usually only needed when the
recording session with the subject is concluded). Flag one indicates the end of a current run
resulting in closing the actual connection to the Optimizer. Each time the Online System is
started, it opens a new connection to the Optimizer independently.
Flag two reports the arrival of a new trial.

Data management and trial storage

Every new arriving trial is stored in the data matrix and labelled according to its class label.
Since the trial is segmented and rid out of the real time data flow of the online system, the
previous trigger points of the universal Paradigm generator mismatch but new can be constructed
since length and gaps between events are perfectly known and therefore no shifts or data loss
happens.
The output of the optimizer strongly relies on the pre configuration of a selection of variables
which define when updating starts or the number of updates:
With reference to the offline tests in [28] the number of initial training starts is set to ten trials
per class. Consecutive updates happens every four new trials per class. Keeping the number
of classes used for retraining equally distributed (although it is not a prerequisite in any form
for classifier training) allows to compare the performance of the system with similar e.g. Faller
2012 [10].
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Outlier Rejection (Artefact detection)

The EEG signal itself is highly vulnerable to a broad variety of noise signals, called artefacts.
These artefacts divide either to non physiological sources, such as power-line noise (50/60Hz)
and moving electrodes, or physiological sources such as potentials induced by eye-movement,
blinking or muscle movement.[6] While the influence of non-physiological sources can be re-
duced to a minimum by proper preparation of the equipment, physiological potentials induced
by eye-movement and blinking , or muscle movement are hard to come by. To illustrate the
effect of artefacts, figure 2.12 shows a variety of common physiological artefacts recorded during
a run. Plot (A) shows a high amplitude pattern caused by multiple blinks. Due to the position
(FP1, frontal area) of the electrode the artefact evolves to its full extend. Plot (B) shows the
effect of eye movement such as ”looking around” or ”eye-rolling” (low frequency patterns). Plot
(C) lists a muscular artefact (EMG) caused by head movement, (D) shows the effect of teeth
grinding (EMG).
Ignoring or not dealing with artefacts in a proper way may result in severe consequences, since
these artefacts modify the shape of the signal (as can be seen in figure 2.12), they take direct
influence on the input of the BCI system and may - in worst case, drive the BCI system itself
rather than actual brain signals [35]. So by not dealing with artefacts in a proper manner the
most advanced and sophisticated classification algorithm may be trained instead of brain signals,
on an unconsciously performed nose itching or eye-rolling.

Figure 2.12: A selection of artefacts in EEG, subject CC02, bandpass-filtered[1,40]; f.l.t.r: (A) EOG: blink-
ing; (B) EOG, eye-rolling; (C) EMG, head-movement; (D) EMG, teeth-grinding

Therefore, a statistical Outlier Rejection is implemented to counter the effects of artefacts
by excluding every trial which is flagged to be contaminated. The described Outlier Rejection
Method is based on the EEG lab toolbox by Delorme et al. [36], and is used similarly by Faller
2012 [10]. For detecting artefacts, the following statistical methods have been applied:

a.) Rejection by amplitude threshold: Standard thresholding is a quite simple and common

– 24 –



2 Methods

way to detect contaminated trials. The trial is rejected if the value of any data point in the
trial exceeded the threshold. Thresholds are set to ±100µV .

b.) Rejection by channel variance: Thresholding by variance of each channel. If the thresh-
old is higher than 5 times the standard variance, the trial is rejected.

c.) Rejection by probability: Most of the artefacts (as can be seen in 2.12) have ”unusual”
behaviour over time which can be found by using the joint probability of the values of the
trial in one column and compared to the probability distribution of all columns.

d.) Rejection by kurtosis: For rejection of unusual probability distributions the kurtosis of
the trial can be determined and compared to a threshold. [37]

As depicted in 2.9, after an arriving trial is stored the Optimizer checks the available data
for the number of trials related to each class. If the conditions for the minimum trials for an
update are fulfilled, the stored Raw data is passed to the Outlier rejection method for artefact
screening. Trials assumed to be tainted are excluded from further processing and the Optimizer
checks the conditions for an update again. If all criteria are met, the training can be executed,
otherwise the Optimizer awaits the next trial.

CSP training + Random Forest

For training the CSP filters the Filterbank data is used. The trials are split up according
to their class labels. Each trial is segmented so that the period from second 4.75 to 7.75 is
selected for training. The resulting filter is squeezed, so that only the first three and the last
three channels, which are supposed to contain maximum class separation information, remain.
For further processing and training the Random Forest classifier, features of the available trials
are calculated. From each trial the features present at second 5.5 are taken for retraining the
classifier. This time point is chosen because the most discriminative components can be found
there on average (see [38]) when operating a BCI using SMR.

Packaging and Sending

Because of the complex data structure of the random forest classifier, serialisation of the data
[31] has to be done in order to send it via TCP/IP [28]. CSP filters and the new classifier are
serialized and sent to the Online system, where the COM Interface applies the updates and
stores them separately for further analysis (see figure 2.11 ).
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Figure 2.13: Optimizer Signal Flow Diagram in connected state.
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2.5 Paradigm and Feedback

The paradigm, which essentially describes the composition of a trial consists of an 8 second
activity period followed by a pause of random length, at least 2 seconds but not longer than 3.
The Paradigm is displayed in figure 2.14:

Figure 2.14: Optimizer Signal Flow Diagram in connected state.

� Second 0: A white cross appears on the screen. The cross stays on screen for the whole
trial.

� Second 2: An audible cue (Beep!) is played to get the subjects attention.

� Second 3: An arrow is displayed on the screen. The arrow randomly points to the right,
indicating the motor imagery of the right hand, or down indicating the motor imagery of
both feet. The subject is instructed to start with the motor imagery as soon as an arrow
appears on the screen.

� Second 4.25: The arrow disappears. If the number of minimum trials per class has
already been reached, the feedback bar-graph appears growing to the right for successful
detection of motor imagery of the right hand, and growing down for successful detection
of motor imagery of the feet.

� Second 8: Feedback bar and cross disappear and the pause begins.

(a) Feedback bar grows to the right (b) Feedback bar grows down

Figure 2.15: Feedback bars
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Feedback is given by a red graph-bar who grows in the direction the cue was pointing before.
The length of the bar is normalized by the number of correct classifications in the past second.

2.6 Experiment Setup

The experiment took place in a controlled laboratory environment. Subject measurement hap-
pened in a shielded box (see 2.16(a)), where the participant was seated comfortably in a leather
chair. The Paradigm was displayed on a screen which was positioned approximately one meter in
front of the subject. For the audible cues, speakers were placed next to the screen (see 2.16(b)).
For safety and surveillance of the behaviour of the subject, a camera was mounted in the box.

(a) Measurement Box (b) Inside the measurement box

Figure 2.16: The experiment took place in a reproducible controlled environment

For data acquisition the active electrode system g.GAMMAsys by g.tec is used, as well as
g.USBamp [39]. The electrode cap is fit with 13 active electrodes which are placed according to
the international ten-twenty system [40]. Table 2.17 show the exact electrode positions as well
as figure 2.17(a).

The output of the electrode system was amplified by a g.USBAmp, which was connected to the
Signal Server. The data itself was recorded with a sampling rate of 256 Hz. Intrinsic methods
of the g.USBamp [33] allowed prefiltering: A 8th order chebyshev bandpass-filter in the range
of 0.5 to 100 Hz was applied, as well as a notch filter with the center at 50Hz. The chebyshev
filter restrains the frequency range, while the notch filter explicitly covers the mains frequency
(50Hz power-line noise).

Electrode 1 2 3 4 5 6 7 8 9 10 11 12 13 GND Ref

FC3 FCz FC4 C5 C3 C1 Cz C2 C4 C6 CP3 CPz CP4 AFz r. Ear lobe

Table 2.2: Electrodes used according to the international ten-twenty system [40]

The electrode cap is fixed on the subjects head by using a chest band instead of a usual chin
band, see 2.17(b). This method is more comfortable for the subject, the advantage is that the
EMG influence of the masticatory apparatus decreases on the EEG.
Instructions for motor imagery are the same for each subject: For Hand MI, the subject should
imagine squeezing a training ball in a continuous way using the right hand, for FEET MI the
subject should imagine pressing its feet iteratively on a box.
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(a) Schematic of the electrode positions (b) Electrode cap and
g.gammaSYS rigged on a
dummy. The electrode cap is
fixed using a chest band.

Figure 2.17: Electrode Positions and Cap fixation demonstrated on a dummy.

2.6.1 Recording Session characteristics

Each recording session lasted no longer than 90 minutes. Preparation of the subject took about
10-15 minutes, detailed explanation of the paradigm and the instructions another fifteen minutes.
The session consisted of 4 runs with 20 pseudo-randomized trials per class (right hand, both
feet) . After the first 10 trials per class which passed the outlier rejection, the Random Forest
classifier and the CSP filter were trained and the system started to give feedback to the subject.
On average, first feedback to the volunteer could be given after 4 minutes. The consecutive
runs got a classifier update at the start of each run, therefore the subject got full feedback after
the first training. The further updates happened after 4 new trials per class passed the Outlier
Rejection.

Figure 2.18: Session Cycle. After each run a short checkup was done to ensure the subjects comfortness and
fitness.
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3
Results

3.1 Preliminary tests using non näıve subjects

minimum accuracy for exceeding chance level

trials per class chance level [%] alpha

70 59.693 > 0.01

Table 3.1: Minimum accuracy for exceeding chance level

To show functionality and first performance tests, preliminary tests with three non-näıve sub-
jects were executed. These subjects used at least once in their lifetime a SMR based BCI.
Figure 3.1 shows the mean accuracy for each subject calculated over the trial period. To over-
come chance level the achieved accuracy had to be higher than 59.7% (see table 3.1). The
blue perpendicular line indicates the time-point of the onset the cue. Table 3.2 lists the peak
accuracies as well as the calculated mean and median over the feedback period. The non-näıve
subjects were able to reach and average peak accuracy of 91.42± 8.66%

Figure 3.2 shows the detection rate of each class as well as the mean accuracy for each subject.

Preliminiary Tests: Right Hand versus Foot

subject peak [%] peak reached at [s] mean(4.5-7.5s) [%] median(4.5-7.5s) [%]

CC02 92.86 5.93 84.36 85.00

BE02 99.29 4.96 96.60 97.86

CV06 82.14 5.34 76.84 77.86

Table 3.2: Preliminary tests: Evaluation Right Hand vs Both Feet
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Figure 3.1: Results of the Preliminary tests: Mean accuracy over the trials right hand versus foot. The
perpendicular blue line represents the onset for the cue.
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Figure 3.2: Preliminary Tests, Detection rates: Each plot contain the probability information of right hand
(pink), both feet (green) and the mean of both classes (accuracy) in gold.

3.2 Performance of näıve subjects

3.2.1 Mean over both classes

For evaluating the performance of the system , 9 novice, healthy volunteers, 8 males, 1 female,
from the age of twenty to thirty were measured. Each subject underwent one single session
which was done uninterrupted. The duration of the session was - including preparation of the
subject- not longer than 90 minutes.

The basis of figures 3.2,3.3, 3.4 and 3.5 is the activity period of eight seconds in each trial.
Figure 3.3 shows the mean accuracy of both classes over all trials. The perpendicular blue line
at second three represents the onset of the cue (arrow right or arrow down, pseudo-randomised)
indicating the start of the motor imagery period. Average peak performance levelled in at
84.84± 10.27%.

Table 3.3 summarizes the calculated accuracies as well as mean and median accuracy over
second 4.5 to 7.5 seconds for each individual subject as well as the mean of peak mean and
median.
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Figure 3.3: Result Plot Mean accuracy over the trials Left versus foot. The blue bar represents the timepoint
of the onset of the cue.

Hand versus Foot: True label versus Predicted label

subject peak [%] peak reached at [s] mean(4.5-7.5s) [%] median(4.5-7.5s) [%]

CO07 86.43 5.70 79.24 80.71

CV04 61.43 4.80 53.84 53.57

CV07 89.29 5.20 81.62 81.43

CW06 90.71 6.06 82.54 83.57

CW04 88.57 4.85 79.26 78.57

CW08 86.43 5.98 82.75 82.86

CS07 98.57 5.57 92.18 93.57

CW07 79.29 5.47 70.44 70.00

CV08 82.86 5.55 76.43 77.86

Averages ± Std. 84.84 ± 10.27 5.46 ± 0.45 77.59 ± 10.62 78.01 ± 11.05

Table 3.3: Evaluation Right Hand vs Both Feet

3.2.2 Detection rates for Right Hand and both Feet Motor Imagery

The detection rate for the class hand is shown in table 3.4 as well as individual peak mean and
median. Two subjects show the peak of the detection clearly before even the cue happened
(signed with an asterisk). This indicates a bias of the classifier towards that particular class.

Class hand MI: True label versus Predicted label

subject peak [%] peak reached at [s] mean(4.5-7.5s) [%] median(4.5-7.5s) [%]

CO07 85.71 5.70 76.83 80.00

CV04 72.86 0.93* 53.09 51.43

CV07 94.29 4.70 80.62 78.57

CW06 91.43 5.61 80.88 82.86

CW04 84.29 4.85 70.45 70.00

CW08 90.00 4.95 83.60 84.29

CS07 98.57 4.78 93.19 94.29

CW07 81.43 5.47 71.68 71.43

CV08 87.14 0.45* 78.17 78.57

Averages ± Std. 87.30 ± 7.54 76.50 ± 11.05 76.83 ± 11.90

Table 3.4: Evaluation Class Hand MI

The detection rate for class feet is shown in table 3.5, as well as the individual peak, mean
and median values.
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Class FEET MI: True label versus Predicted label

subject peak [%] peak reached at [s] mean(4.5-7.5s) [%] median(4.5-7.5s) [%]

CO07 88.57 5.68 81.65 81.43

CV04 64.29 7.54 54.60 54.29

CV07 91.43 5.34 82.62 81.43

CW06 94.29 6.22 84.20 85.71

CW04 97.14 5.20 88.07 88.57

CW08 90.00 5.78 81.90 82.86

CS07 98.57 5.16 91.18 92.86

CW07 78.57 5.45 69.19 70.00

CV08 88.57 5.70 74.68 77.14

Averages ± Std. 87.93 ± 10.62 78.77 ± 11.16 79.37 ± 11.45

Table 3.5: Evaluation Class Foot MI

Figures 3.4 and 3.5 show the detection rates of both classes as well as the accuracy over both
classes plotted over the trial time for each subject. The blue perpendicular line represents the
onset of the cue.
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Figure 3.4: Detection rates and accuracy plots for each subject: Each plot contains the detection rates of
right hand (pink), both feet (green) and the mean of both classes (accuracy) in gold.
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Figure 3.5: Detection rates and accuracy plots for each subject: Each plot contains the detection rates of
right hand (pink), both feet (green) and the mean of both classes (accuracy) in gold.

3.3 Classifier Statistics

A quite beneficial advantage of the used Random Forest implementation are the intrinsic meth-
ods for analysis [30]. One of these methods can be used to determine the importance of each
feature used for building up the decision trees. The scale for the importance of a feature is the
mean decrease of the Gini index.
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3 Results

Since multiple classifiers are trained with increasing number of trials per class a trend for the
importance of each feature can be displayed. The results are displayed in the colormap as can
be seen in figure 3.7 ff. (a.) .

The number of training points differs per subject. This is the result of the Outlier rejection:
artefact-contaminated trials are dropped.
The second method which was used for evaluation is the ”Out of bag” error estimate (OOB),
which is the estimator of the test set error. For each training sample the decision trees of the
classifier are investigated for the occurrence of this training sample. Those, where the sample did
not occur are selected to build up a new random forest classifier(sub-classifier).A classification
with the sub-classifier(which has fewer decision trees than the its parent) for the sample happens
and the accuracy can be calculated.
This process is similar to a k-fold cross validation [27], apart from the fact that the for each
sample investigated the number of trees the sub-classifier changes. Therefore it is called an
”error-estimate”. The figures 3.7(b) ff. display the OOB-estimate over the update-steps for
each subject.

3.3.1 Preliminiary tests: non näıv subjects
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Figure 3.6: CC02: Feature importance and OOB-Estimate
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Figure 3.7: BE02: Feature importance and OOB-Estimate
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Figure 3.8: CV07: Feature importance and OOB-Estimate

3.3.2 Näıve subjects

To investigate how well the out of the bag error estimation performs, table 3.6 shows a compar-
ison between the overall peak accuracy after 70 trials per class and the OOB estimates of the
accuracy at 30, 50 and 70 trials per class. This time points were chosen because at 30 trials per
class, the feature importance map showed first signs of a rating. 50 trials per class is used by
Steyrl for his training period in his BCI system [29], and 70 trials per class represents the last
training point which all näıve subjects had in common. The average MSE of the difference be-
tween the peak accuracy and the estimate is calculated in order to investigate the performance.
Figure 3.18 shows the oob error rate for all näıve subjects over all training points. The red
dotted line shows the mean value of the error rate.
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Figure 3.9: CO07: Feature importance and OOB-Estimate
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Figure 3.10: CV04: Feature importance and OOB-Estimate
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Figure 3.11: CV06: Feature importance and OOB-Estimate
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Figure 3.12: CW04: Feature importance and OOB-Estimate
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Figure 3.13: CW06: Feature importance and OOB-Estimate
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Figure 3.14: CW08: Feature importance and OOB-Estimate
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Figure 3.15: CS07: Feature importance and OOB-Estimate
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Figure 3.16: CW07: Feature importance and OOB-Estimate
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Figure 3.17: CV08: Feature importance and OOB-Estimate
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3 Results

Comparison of peak accuracy and the estimated accuracy (oob)

True versus Predicted OOB Accuracy Estimates

subject peak [%] 30 TPC [%] ∆30 50 TPC [%] ∆50 70 TPC [%] ∆70

CO07 86.43 88.33 1.90 86.00 0.43 90.71 4.29

CV04 61.43 78.33 16.90 74.00 12.57 73.57 12.14

CV07 89.29 91.67 2.38 94.12 4.83 89.58 0.30

CW06 90.71 88.33 2.38 90.00 0.71 87.86 2.86

CW04 88.57 96.67 8.10 93.00 4.43 93.57 5.00

CW08 86.43 93.33 6.90 93.00 6.57 90.71 4.29

CS07 98.57 96.67 1.90 99.00 0.43 99.29 0.71

CW07 79.29 95.00 15.71 92.00 12.71 90.71 11.43

CV08 82.86 81.67 1.19 85.00 2.14 87.14 4.29

Average MSE 2.86 2.25 2.12

Table 3.6: Comparison of peak accuracy and the estimated accuracy (oob): ∆ describes the difference between
the peak accuracy and the oob estimate at the designated training point. For each training point
(30, 50 70 trials per class) the MSE of the difference between the peak accuracy and the estimate
is calculated.
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Online optimization of Man-Machine interaction

4
Discussion

4.1 Software

The idea of an independent Optimizer instance made it necessary to work with two different
MATLAB instances. One part of the whole system has to run in real time ±100ms for online
data acquisition, paradigm and feedback for the subject, while the second part has to run
asynchronously to the online part, since Outlier Rejection and retraining takes more time with
the increase of the data available for retraining.
For communication between the systems, several methods were screened for the task:

� Interprocess communication (IPC) via shared memory seemed a proper way of
communication but was forfeit since on the one hand creating semaphore/lock logic would
cost a substantial amount of manpower and divert resources from the actual task at hand
and on the other hand, the system would be limited to one single computer.

� Data exchange via files would have been a way to avoid dealing with semaphores and
locks by creating and moving files. The idea was actually implemented in a system but
lacked - as IPC before - the possibility to raise the system in a distributed way.

� Communication via TCP/IP using pnet [28] seemed the most legit way since the whole
optimizer could be allocated on another PC which could work out beneficial for further
more performance demanding improvements. The second aspect was that Faller et al.
used the same approach for Communication [10], [41] which indicated that the approach
seemed viable.

Contrary to Faller et al [10], the traffic between both instances is increased exponentially, since
the trials sent to the Optimizer consist of not only 20, but 225 channels (208 for the filterbanks
and the raw signal, rest for flags and events). Moreover the structure of the Random Forest
classifier was far more complex than Fallers weighted matrix for the LDA classifier. Pnet is
actually not able to send data in form of the MATLAB data-type struct, which is unfortunately
the container format for the Random Forest classifier model. Therefore every new trained clas-
sifier is serialized using Fastserialze [31], before sent and deserialized at the Online System.
The system itself did undergo an extensive period of system tests using soft -and hardware signal
generator to assure functionality. After overcoming all issues, the whole system worked reliable
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4 Discussion

for all subject-measurements.

4.1.1 Optimizer System

Outlier Rejection

The Outlier Rejection dropped in mean 9 of 160 trials for each subject. Detailed rates for each
subject are shown in figure 4.1. Evaluating the performance of an artefact rejection method
is quite a delicate task to do since the basis of clean EEG is ill-defined and mostly based on
hypothesis, as it is for this system:
When looking at the feature importance plots (see figure 3.6 and ff.), it can be seen that the
feature bands important to the Random Forest classifier are narrow banded in a few filterbanks
and are not located in areas characteristic to artefacts. Eye movement is present in low frequency
areas up to 9 Hz, while muscle movements are located in higher frequency areas around 30 to
40 Hz and have a more broad-banded characteristic. Since no features in the low frequency
range of 6-9Hz are considered important and no widespread characteristic appear in the feature
importance maps of subjects with performance rates at 80 plus percent, it can be assumed that
the classifier was not trained by EOG or EMG.
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Figure 4.1: Outlier Rejection: Detailed drop rates for each subject

Nevertheless the statistical outlier rejection method is far from perfect, and based on the
characteristics of the majority of the analysed data. If a user, for instance, blinks in every
reference interval, or performs eye movement - these artefacts influence the the base line, leading
to higher/odd standard derivations, may drive the classifier and mask other artefacts.
This assumption is not as odd as it may sound, since the paradigm is presented visually to the
user. Investigations to resolve this issue are currently done.

4.1.2 Optimizer Performance

With increasing amount of training data available, the time for rejecting outliers and updating
filters and classifier increases. For 150 trials, one complete update cycle on a second generation
Intel Core i5 with 8 Gb RAM lasts about 14-15 seconds. With further increasing number of
trials, the TCP/IP buffer runs the risk of overflowing, since the cycle time increases further and
the need for temporal storing multiple data packages becomes imminent. To prevent this issue
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4 Discussion

in advance and in the aspect of future investigations, the Optimizer was - in contradiction to
Faller et al. [10] - redesigned. Instead of handling just one new data package per update cycle,
the Optimizer is now able to read the full TCP/IP buffer, allowing it to handle all available data
packages per update cycle. This simple adaption enables the system the handling of indefinite
vast amount of trials.

4.2 Hardware and Performance

Preliminary implementations were done on a first generation Intel Core i5 with 8 Gb RAM with
Windows 7 as operating system. Both system instances were running on the same PC. After
extensive functionality and performance tests, the system was migrated to the main PC of the
laboratory, which has as basis a second Generation Intel Core i7 and 8 Gb RAM. Neither on
the development nor on the laboratory system did any performance issues occur.
Moreover it is believed that a notebook with the same basis hardware as the development system
is perfectly capable of providing sufficient performance for running the system, since a number
of performance tests have been absolved on a similar notebook.
This feature is absolutely vital for extensive out of the lab field studies.

4.3 Data analysis

The split between näıve and non-näıve subjects has been done to exclude any kind of training
effects resulting from previous studies. The main idea behind using non-näıve volunteers was to
check whether or not the system is working in general and to uncover unknown issues.
The preliminary tests with the non-näıve volunteers showed not only extraordinary good results
in peak accuracy (see table 3.2) but even high values for mean and median, which indicates
to a long and stable classification period. In figure 3.2 the detection rates for each class are
displayed. All three volunteers show a bias towards the feet class. Highest classification rates
are achieved around 1.5 seconds after the onset of cue.
When looking at the feature importance maps of the three non-näıve volunteers (see figures
3.6(a),3.7(a),3.8(a)) the classifier chooses only a small number of features to be important for
classification. Theses areas of importance are narrow-banded and gain more weight with every
update. These areas lie in typical regions α (11-13 Hz) or medium (15-21 Hz) to high (21-38
Hz) β -band.

Since the results taken from taken non-näıve volunteers were promising, the next logical step
was to test the system on volunteers who never operated a SMR based BCI before. All subjects
performed significantly higher than chance (chance level = 59.6, α = 0.01, see table 3.1) with a
peak accuracy of 84.9 ± 10.3% (median 78.0%). Only two volunteers, CW6 and CV8, showed
a bias towards any class (see figures 3.5(a), 3.5(e)). The feature importance maps looks similar
to those of the non-näıve volunteers; narrow-banded importance areas in alpha and—or beta
rythm regions.
Figure 4.2 shows a comparison between the actual designed BCI system (Schwarz2014), the
BCI systems of Faller 2012 [10] and the Berlin BCI by Blankertz in 2008 [42]. The values for
the boxplot of Faller2012 are taken from the first session. In direct comparison to Faller2012,
Schwarz2014 achieves almost 10 percent higher peak accuracies over all subjects. Furthermore
these accuracies are in a quite smaller range to find (compare the size of both boxes). Both
systems operate with similar parameters: The calibration phase with 10 trials per class is the
same, also the timepoints for recurrent updates. Faller recorded 100 trials per class, Schwarz2014
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Figure 4.2: Comparison between the peak accuracies of the actual BCI system, Faller 2012 [10] and Blankertz
2008 [42]: The red line in the boxes represents the median of the accuracies.

recorded 80 trials per class. Blankertz2008 [42] represents a BCI system which is considered ef-
fective, well-performing and state of the art. Although a direct comparison to Schwarz2014 can
not be done since both paradigms are quite different, both systems seem to operate at the same
performance level, whereas Blankertz2008 used more than 4 times more electrodes (55 in total)
and 140 trials per class for calibration to achieve these results. This fact is of particular interest
for applying a BCI system outside the lab at ”home”, since complexity and duration of montage
or maintenance decrease drastically.

The colormaps (see 3.7(a) ff.) of the feature importance over time provide a quite useful tool
for analysis and creating new assumptions. For all those subjects who performed in the area
of 80 to 90 percent, the important features are located in narrow-banded areas. Furthermore,
the importance of those bands begin to silhouette at around 25 to 30 trials per class against all
other features.

While most of the volunteers performed in the range of 80 to 90 %, CV04 had a distinct
worse performance of only 61.4 %, which lies only slightly above chance level. When looking
at the feature importance map and compare it to the the best performer, as done in figure 4.3,
well-marked differences can be observed. Compared to CS07, the important features are wide
spread and parted over all filters, and the absolute values of the importance are not even half as
high. If 4.3(b) seen individually, almost no statement or hypothesis can be given. The Outlier
Rejection dropped almost twice as much trials than the usual average of nine trials. Since the
runs were separated by short breaks, feedback from each user regarding personal comfort and
opinions was gathered. Volunteer CV04 named problems to perform a motor imagery in each
scheduled trial, and therefore left some aside. Furthermore CV04 deviated from the requested
motor imagery for booth feet from run three on.

The ”out of the bag” error appeared to be a quite accurate estimation of the peak accuracy,
as can be seen in table 3.6. Three training points, 30,50 and 70 trials per class, were chosen for
investigation. As can be seen, the average mean square error (MSE) results in under 3%. This
allows an estimation towards the overall performance during the run, and may be applicable in
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Figure 4.3: Feature importance maps comparison between best (CV04) (see 4.3(a)) and worst performer
(CS07) ( see 4.3(b): Notice the narrow-banded property of the important features of subject CS07
while the important features of CV04 are widely spread around almost every filter. Moreover is
the maximum mean drecrease in the Gini Index not even half the size in comparison to CS07.

remodelling the BCI to a performance driven system.
Figures 3.7(b)ff. and figure 3.18 show the projection of the OOB estimate over the updating
points for each user. Most reached a local minimum at the beginning or during the third run,
afterwards the OOB error seems to increase in subsequent updates again. This increase coincides
with the the last run of the session. When questioning the designated volunteers, they stated
increased fatigue and a decrease of concentration.

4.4 Classifier Analysis

The Random Forest classifier in its current implementation left a most formidable impression on
the whole project. The provided intrinsic methods extend the implementation to be not only a
classifier, but moreover to a data-analysis toolbox, although only a small number of methods are
used. They concede to establish further and complex hypothesis, as can be seen in the feature
importance plots constructed for the analysis in this particular system, where a large number of
information (and assumptions) had been derivated from.
Since the algorithm is based on decision trees, it is able to discern between more than two classes,
which could be quite beneficial in further advancements of the system.
The OOB estimates allow quite useful and accurate projections of the expected error rate and
can be used to estimate time points, where the system works at optimum parameters and further
adaptation can be renounced.
Another intrinsic feature of the Random Forest classifier is to weight classes individually. Al-
though there was no use for this feature in this system, when introducing a third class, which
might represent a resting state, it could become vital for practical use.

Overall, the algorithm seems a useful and resourceful candidate for the further development
of future BCI systems.
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4.5 Study shortcomings and possible future improvements

When dealing with EEG data as source, artefacts are always an issue who must be dealt with in
order to evaluate the performance of BCI systems. The statistical outlier rejection implemented
in this system removed contaminated trials, meaning that on average, at least 6 percent of all
trials were dropped and are no further use to the investigator. Another approach to handle
artefacts will be instead of dropping artefact contaminated trials, to remove the artefacts them-
selves. This would lead -in this case- to at least 6 percent more data for further investigations
and moreover, lead to a far more stable system when trying to apply the system ”out of the
lab”. There are already systems implemented which profess reliable artefact removal, as can
be seen in [43] and [44], but most of those approaches lack of considerably in performance for
real-time application (at least one second delay.)

Feedback is considered to play an important role in learning how to operate a BCI system.
One of the main goals of this thesis was to provide feedback as soon as possible to the subject.
Nevertheless the first 10 trials per class remain without feedback due to the fact that the CSP
and the Random Forest do need a certain amount of basis data to perform appropriately. Sham-
Feedback, as described in [45] and [46] could be used to encourage the subject even in its first
trials. Of course the feedback must not be as well-marked as the real feedback after 10 trials per
class, but even if the feedback bar grows only to e.g. 30 to 40 percent length, it would suffice
and a seamless transition to real feedback could be established.

As already mentioned in the previous chapter, the length of the session was an issue to some
of the subjects, which resulted in decreased performance in the last run. To counter this effects
two possible approaches are viable for discussion:

a.) Shorten the whole session.

b.) Increase motivation and focus of the subject.

Shortening the session would be the easiest way to avoid this issue, but since fewer trials
would be recorded, the study would drift into statistical insignificance and incomparability to
other approaches. Moreover, in the long run, this kind of system should be designed to enable
its user control over long periods of time. So the increase of focus and motivation of the subject
seems the only legit way.
The solution for this issue may lie in the entertainment industry, or more specifically said, in
modern computer games. With the rapid proceedings in technology, today’s computer games
build up entire worlds with foto-realistic graphical details to keep the attention of the user on
the game. Storyboards and scenarios deepen the experience even further, while simultaneously
the means of handling and interacting simplify to a point where only a few buttons are neces-
sary. This trend of simplifying the handling evolved even further with the upcoming of mobile
devices.
Computer games thrill and mesmerise the user throughout continuous hours, so it seems an ob-
vious move to apply these systems as ”paradigm”, instead of the usual arrows and bars. There
have been already made decisive steps towards this approach [8][9], but most state of the art
systems do still rely on very simple and fatiguing paradigms.
The current system does perform recurrent updates in order to adapt to the new input trials.
The OOB estimates showed a local minima in the third run of most of the subjects - afterwards
it increased again. This might indicate a point where the adaption could end and the system
might work on this level of ”peak” performance. This would make it necessary to change the
character of the system from a recurrent updating to a performance orientated system. The
optimizer could still be in place and gather data, and calculate new classifier and filter modules,
but should only update when e.g. the OOB error is significantly lower than the OOB of the
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actually used one. Of course, further dependencies will have to be identified and dealt with.
The modulation of the system to deal with three or more classes would be another approach to
improve functionality and increase the use of the system even further. The introduction of a
”resting class” would pave the way from a synchronous Interface to an asynchronous approach,
where the user is able to trigger actions not cue based, but at his discretion. In this connection,
the intrinsic feature for weighting individual classes of the Random Forest could be of use: Since
the resting class should be ”active” most of the time, and commands are only short ”disruptions”
of this state, the resting class could get additional weighting, in cotrast to the other ”command”
classes.
So far, all experiments have been executed in a fully controlled, even shielded environment. It
has not been evaluated whether or not the systems performs similar well in a non-laboratory
environment. So, before starting on improving details of the system, it should be tested outside
a controlled environment.
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5
Conclusion

The aim of this work was to investigate the feasibility of the combination of state of the art
technologies to form up an operational two class brain computer interface. The technologies used
were the Filterbank CSP ([17],[22]) to ensure maximum class-separability for the logarithmic
bandpower features and Random Forests for classification ([27], [13], [14]), as well as recurrent
updates for classifier and filter([10], [41]).
The system is able to give feedback to the user within minutes and therefore actively supports
training of right hand and feet motor imagery. To evaluate the performance, a supporting study
using 9 novice users was done were all participants performed not only significantly above chance
level, but acquired a peak accuracy of 84.9 ± 10.3% (median 78.0%).
In comparison, this 13 channel BCI surpasses Faller et al. BCI in peak accuracy by 10 % and
performs well enough to be competitive with the 55 channel Berlin BCI by Blankertz [42]. The
implementation of the system is considered a full success and awaits the next maturation level
and improvements as described in section 4.5.
The ultimate goal should be an expedient solution to help users with severe motor impairment.
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[46] F. Lotte, F. Larrue, and C. Mühl, “Flaws in current human training protocols
for spontaneous brain-computer interfaces: lessons learned from instructional design,”
Frontiers in Human Neuroscience, vol. 7, no. 568, 2013. [Online]. Available:
http://www.frontiersin.org/human neuroscience/10.3389/fnhum.2013.00568/abstract

– 52 –

http://www.frontiersin.org/human_neuroscience/10.3389/fnhum.2013.00568/abstract


Online optimization of Man-Machine interaction

A
Appendix

A.1 Online System - MATLAB/Simulink Implementation Details

The following section depicts the implementation of the Online Sytem and the critical parts of its
implementation. Notice that the Online System is implemented using Simulink. Any provided
code is integrated as S-functions to the model.
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Figure A.1: The Simulink representation of the Online Model. Note that there are section with different
colour representiations. These are indicators for different clock rates which are achieved by
installed rate transitions.
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Figure A.2: Each output of the filterbank has its own csp filter and feature generator.

Figure A.3: The CSP block contains a simple matrix multiplication. The CSP filter itself is calculated at
the Optimizer Instance.

Figure A.4: The generation of the logarithmic bandpower features.

Figure A.5: The Mux merges the incoming signals and provides it to the Com-interface, which is realized as
S-function; Notice the constat, whicj acts as a placeholder for the flag selector.

Figure A.6: Feedback logic for calculating the ”strength” meaning the length/sizing of the feedback bar. (see
figure 2.15
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A.1.1 Code Listings for the Online System

COM-Interface: S-function

1 function [sys , x0, str , ts] = mfMCOptimizer_ST008 ( t, x, u, flag )

2 %

3 % mfSendTrials - Send acquired trials to external optimization algorithm

4 global rtBCI;

5 switch ( flag )

6 %--------------------

7 % Initialization

8 %--------------------

9 case 0

10 rtBCI.mfSendTrials = [];

11 rtBCI.mfSendTrials.AllowMultiSessionTraining = 1;

12 rtBCI.mfSendTrials.SendEnabled = 1;

13 rtBCI.mfSendTrials.DestHostIP = ’127.0.0.1 ’;

14 rtBCI.mfSendTrials.DestHostPort = 12360;

15 rtBCI.mfSendTrials.NUM_TRANSMITTED_SENSORS = 208; %RAW Channels

16 rtBCI.mfSendTrials.NUM_TRANSMITTED_EVENTS = 11; % # Events per Sample

17 rtBCI.mfSendTrials.NUM_SIGNALS_META = 2;

18 rtBCI.mfSendTrials.NUM_TOTAL_SIGNALS = rtBCI.mfSendTrials.NUM_SIGNALS_META +

rtBCI.mfSendTrials.NUM_TRANSMITTED_SENSORS + rtBCI.mfSendTrials.NUM_TRANSMITTED_EVENTS;

19 rtBCI.mfSendTrials.NUM_TOTAL_EVENTS = rtBCI.mfSendTrials.NUM_SIGNALS_META +

rtBCI.mfSendTrials.NUM_TRANSMITTED_EVENTS;

20 rtBCI.mfSendTrials.UpdateEnabled = 1;

21 %

22 if ( strcmpi ( rtBCI.OPERATION_MODE , ’STD_FB ’ ) )

23 rtBCI.mfSendTrials.UpdateEnabled = 0;

24 elseif ( strcmpi ( rtBCI.OPERATION_MODE , ’ADAP_ONL_TRN ’ ) )

25 rtBCI.mfSendTrials.UpdateEnabled = 1;

26 else

27 rtBCI.mfSendTrials.UpdateEnabled = 1;

28 end

29
30 rtBCI.mfSendTrials.iCounter = 0;

31 rtBCI.mfSendTrials.iRecvTime = round ( rtBCI.Model.SampleRate / 8 );

32 rtBCI.mfSendTrials.EV_TRIAL_START = 768; % EventCode

33 rtBCI.mfSendTrials.TRIAL_LENGTH = 9; % sec

34 rtBCI.mfSendTrials.bInTrial = false;

35 rtBCI.mfSendTrials.bStartupEvent = false;

36 rtBCI.mfSendTrials.iCurTrialIdx = 0;

37 rtBCI.mfSendTrials.aTrialPacket = zeros ( rtBCI.mfSendTrials.NUM_TOTAL_SIGNALS ,

rtBCI.mfSendTrials.TRIAL_LENGTH*rtBCI.Model.SampleRate );

38 rtBCI.mfSendTrials.aEventPacket = zeros ( rtBCI.mfSendTrials.NUM_TOTAL_EVENTS , 1 );

39 rtBCI.mfSendTrials.iCurCFRIdx = 0;

40 rtBCI.mfSendTrials.iPacketNumber = 1;

41 rtBCI.counter = 1;

42
43
44 % Open TCP connection

45 if ( rtBCI.mfSendTrials.SendEnabled )

46 % Open connection

47 rtBCI.mfSendTrials.tcpCon = pnet ( ’tcpconnect ’, rtBCI.mfSendTrials.DestHostIP ,

rtBCI.mfSendTrials.DestHostPort );

48 % SET MAXIMUM WRITE -TIMEOUT / Block Simulink for this maximum time!

49 pnet ( rtBCI.mfSendTrials.tcpCon , ’setwritetimeout ’, 1.25 );

50 % SET MAXIMUM READ -TIMEOUT / Block Simulink for this maximum time!

51 pnet ( rtBCI.mfSendTrials.tcpCon , ’setreadtimeout ’, 1.25);

52 if ( rtBCI.mfSendTrials.tcpCon ~= -1 )

53 display ( [’## [’ GetTimeStamp () ’] SendTrials , opened connection [’

num2str(rtBCI.mfSendTrials.tcpCon) ’] to [’ rtBCI.mfSendTrials.DestHostIP ’:’

num2str(rtBCI.mfSendTrials.DestHostPort) ’]’] );

54 fprintf ( ’## Read remaining things on startup [%s]\n\n’, pnet ( rtBCI.mfSendTrials.tcpCon ,

’read’, [], [], ’network ’, [], ’noblock ’ ) );

55 else

56 display ( [’## [’ GetTimeStamp () ’] SendTrials , FAILED to open connection to [’

rtBCI.mfSendTrials.DestHostIP ’:’ num2str(rtBCI.mfSendTrials.DestHostPort) ’]’] );

57 rtBCI.mfSendTrials.SendEnabled = 0;

58 end

59 end

60
61 [sys , x0, str , ts] = mdlInitializeSizes ( );

62 %--------------------

63 % Block output

64 %--------------------

65 case 3

66 rtBCI.mfSendTrials.iCounter = rtBCI.mfSendTrials.iCounter + 1;

67 if ( rtBCI.mfSendTrials.SendEnabled )

68 % Check whether update is enabled and receive update time has

69 % passed

70 if ( rtBCI.mfSendTrials.UpdateEnabled && ( mod ( rtBCI.mfSendTrials.iCounter ,

rtBCI.mfSendTrials.iRecvTime ) == 0 ) )

71 rtBCI.mfSendTrials.iCounter = 0;

72 dRecvBuffer = [];

73 dDataBuffer = [];

74 tic;

75 dRecvBuffer = pnet ( rtBCI.mfSendTrials.tcpCon , ’read’, 1, ’double ’, ’network ’, [], ’noblock ’ );

76 if ( ~ isempty ( dRecvBuffer ) )

77 switch ( dRecvBuffer ( 1 ) )

78 %% Client -Side Packet -CODE 50, receive classifier and parameter update!

79 case 50

80 dDataBuffer = pnet ( rtBCI.mfSendTrials.tcpCon , ’read’, 1, ’double ’, ’network ’, [],

’noblock ’ );

81 if ( ~ isempty ( dDataBuffer ) )
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82 iLen = fix ( dDataBuffer ( 1 ) );

83 tic

84 aDataBuffer = pnet ( rtBCI.mfSendTrials.tcpCon , ’read’, iLen , ’uint8’,’network ’);

85 toc

86 rtBCI.times(rtBCI.counter) = toc;

87 store =aDataBuffer ’;

88 rtBCI.raw_store(rtBCI.counter ,:,:) = length(store);

89 store_it = hlp_deserialize ( store );

90 rtBCI.modelRF.modelRF = [];

91 rtBCI.modelRF.modelRF = store_it;

92 rtBCI.sCSP.csp_filter = [];

93 rtBCI.sCSP.csp_filter = rtBCI.modelRF.modelRF.CSP_matrices;

94 for CSP_idx = 1:rtBCI.bandpass.NUM_FILTERBANK

95 set_param ( [’fallout_model/CSP/sCSP_BP ’ num2str(CSP_idx) ’/sCSP/CSP’ num2str(CSP_idx)] ,

’Value’, mat2str(squeeze(rtBCI.modelRF.modelRF.CSP_matrices (:,:,CSP_idx) )));

96 end

97 fprintf ( ’## package arrived. [%s] TCP -FLAG [%d], [%d] \n’, GetTimeStamp ( ),

dRecvBuffer (1), length(store));

98 sTimestamp = strrep(num2str(fix(clock),’%02d’),’ ’,’’);

99 if rtBCI.modelRF.modelRF.SaveMe == 1

100 save([rtBCI.Subject.sCFRPath ’\’ ’CFR_Run ’ num2str(rtBCI.Subject.iRunNumber) ’_’

num2str(rtBCI.counter) ’_’ num2str(rtBCI.Subject.ID) ’_’ sTimestamp ],

’store_it ’);

101 rtBCI.storeroom(rtBCI.counter ,:,:) = store_it;

102 rtBCI.counter = rtBCI.counter +1;

103 end

104 end

105 otherwise

106 fprintf ( ’\n## [%s] TCP -FLAG [%d] unknown command .\n’, GetTimeStamp ( ), dRecvBuffer (1) );

107 end

108 end

109 end

110 % Do events include startup event? Check if the actual package

111 % contains the startevent: look from u(14 to 25) for startevent. if

112 % yes , sum is greater than 1

113 if ( sum ( u(1+ rtBCI.mfSendTrials.NUM_TRANSMITTED_SENSORS +1:1+...

114 rtBCI.mfSendTrials.NUM_TRANSMITTED_SENSORS +...

115 rtBCI.mfSendTrials.NUM_TRANSMITTED_EVENTS) == rtBCI.mfSendTrials.EV_TRIAL_START ) > 0 )

116 if ( ~ rtBCI.mfSendTrials.bStartupEvent )

117 display ( [’## in the loop’] );

118 rtBCI.mfSendTrials.bInTrial = true;

119 rtBCI.mfSendTrials.bStartupEvent = true;

120 rtBCI.mfSendTrials.iTrialTimeout = 0;

121 end

122 else

123
124 end

125
126 if ( rtBCI.mfSendTrials.bInTrial && ( rtBCI.mfSendTrials.iTrialTimeout < ( rtBCI.Model.SampleRate

* rtBCI.mfSendTrials.TRIAL_LENGTH ) ) )

127 rtBCI.mfSendTrials.iCurTrialIdx = rtBCI.mfSendTrials.iCurTrialIdx + 1;

128 rtBCI.mfSendTrials.aTrialPacket (2:end ,rtBCI.mfSendTrials.iCurTrialIdx) =

u(1: rtBCI.mfSendTrials.NUM_TRANSMITTED_SENSORS +...

129 rtBCI.mfSendTrials.NUM_TRANSMITTED_EVENTS +1) ’;

130 rtBCI.mfSendTrials.iTrialTimeout = rtBCI.mfSendTrials.iTrialTimeout + 1;

131 else

132 % If packet is full send it

133 if ( rtBCI.mfSendTrials.bInTrial && ( rtBCI.mfSendTrials.iCurTrialIdx == (

rtBCI.Model.SampleRate * rtBCI.mfSendTrials.TRIAL_LENGTH ) ) )

134 aClassOccs = [];

135 bCorrectCue = false;

136 for ( iCIdx = 1: length(rtBCI.mfSingleCLEventModifier.ALL_CLASSLABELS) )

137 aClassOccs(iCIdx) = sum ( sum (

rtBCI.mfSendTrials.aTrialPacket(rtBCI.mfSendTrials.NUM_SIGNALS_META +...

138 rtBCI.mfSendTrials.NUM_TRANSMITTED_SENSORS +1:end ,:)...

139 == rtBCI.mfSingleCLEventModifier.ALL_CLASSLABELS(iCIdx) ) );

140 end

141
142 if ( sum ( aClassOccs >= rtBCI.Model.SampleRate ) == 1 )

143 bCorrectCue = true;

144 iCue (1,1) = rtBCI.mfSingleCLEventModifier.ALL_CLASSLABELS(find(aClassOccs >=

rtBCI.Model.SampleRate ));

145 end

146 if ( bCorrectCue )

147 % Add line with true -label to the packet

148 rtBCI.mfSendTrials.aTrialPacket (1,:) = iCue;

149 % rtBCI.mfSendTrials.aEventPacket = [iCue rtBCI.mfSendTrials.aEventPacket ’];

150 % Add line with true -label to the packet

151 rtBCI.mfSendTrials.aTrialPacket (1,:) = iCue;

152 % Send packet

153 tic;

154 % Send Server -Side Packet -CODE 2, indicates incoming trial data packet

155 pnet ( rtBCI.mfSendTrials.tcpCon , ’write’, 2 );

156 % Send number of sensors and number of events

157 pnet ( rtBCI.mfSendTrials.tcpCon , ’write’, [rtBCI.mfSendTrials.NUM_TRANSMITTED_SENSORS

rtBCI.mfSendTrials.NUM_TRANSMITTED_EVENTS] );

158 dTime01 = toc;

159 tic;

160 % Send actual data packet as matrix of true classlabel info , time -idx , channels and events

161 pnet ( rtBCI.mfSendTrials.tcpCon , ’write’, rtBCI.mfSendTrials.aTrialPacket );

162 dTime02 = toc;

163 fprintf ( ’## [%s] Sent data packet [%d] true -label [%d], size [%s] took [%1.3f/%1.3 fs]\n’,

GetTimeStamp ( ), rtBCI.mfSendTrials.iPacketNumber , iCue (1,1),

num2str(size(rtBCI.mfSendTrials.aTrialPacket)), dTime01 , dTime02 );

164 rtBCI.mfSendTrials.iPacketNumber = rtBCI.mfSendTrials.iPacketNumber + 1;

165 else

166 display ( [’## Could not find correct cue!’] );

167 end
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168 else

169 if ( rtBCI.mfSendTrials.bInTrial )

170 display ( [’## Inappropriate packet size [’ num2str(rtBCI.mfSendTrials.iCurTrialIdx) ’]’] );

171 end

172 end

173
174 rtBCI.mfSendTrials.bInTrial = false;

175 rtBCI.mfSendTrials.iTrialTimeout = 0;

176 rtBCI.mfSendTrials.bStartupEvent = false;

177 rtBCI.mfSendTrials.iCurTrialIdx = 0;

178 end

179 end

180
181 sys = [];

182 %--------------------

183 % Destructor

184 %--------------------

185 case 9

186 % Close TCP connection

187 if ( rtBCI.mfSendTrials.SendEnabled )

188 if ( rtBCI.mfSendTrials.AllowMultiSessionTraining )

189 % Only disconnect for next session

190 pnet ( rtBCI.mfSendTrials.tcpCon , ’write’, 1 );

191 else

192 % Disconnect and close server

193 pnet ( rtBCI.mfSendTrials.tcpCon , ’write’, 0 );

194 end

195 % Close connection

196 pnet ( rtBCI.mfSendTrials.tcpCon , ’close’ );

197
198 display ( [’## [’ GetTimeStamp () ’] Disconnected from [’ rtBCI.mfSendTrials.DestHostIP ’:’

num2str(rtBCI.mfSendTrials.DestHostPort) ’]’] );

199 end

200 % Remove all variables from rtBCI

201 rtBCI = rmfield ( rtBCI , ’mfSendTrials ’ );

202
203 %--------------------

204 % Unhandled flags

205 %--------------------

206 case { 1, 2, 4 }

207 sys = [];

208 %--------------------

209 % Unexpected flags

210 %--------------------

211 otherwise

212
213 error ( [’## Unhandled flag [’ num2str(flag) ’]’] );

214
215 end

216
217 end

218
219 %% Block initialization function

220 function [sys , x0, str , ts] = mdlInitializeSizes ( )

221 %

222 % mdlInitializeSizes

223 % Return the sizes , initial conditions , and sample times for the S-function.

224 %

225 sizes = simsizes;

226 sizes.NumContStates = 0;

227 sizes.NumDiscStates = 0;

228 sizes.NumOutputs = 0; % dynamically sized

229 sizes.NumInputs = -1; % dynamically sized

230 sizes.DirFeedthrough = 1; % has direct feedthrough

231 sizes.NumSampleTimes = 1;

232
233 sys = simsizes(sizes);

234 str = [];

235 x0 = [];

236 ts = [-1 0]; % inherited sample time

237 end

Listing A.1: COM-Interface - S-function

A.2 Optimizer System - MATLAB Implementation Details

The implementation of the Optimizer System is purely done in MATLAB, no additional simulink
model is needed.

1 function [] = CSP_RF_Optimizer_ST008 ( sSubject , sSPATIAL_FILTER )

2 %% INPUT PARAMETER CHECK

3 if ( ~ exist ( ’sSubject ’, ’var’ ) || ( nargin < 1 ) )

4 help MCOptimizer_ST008

5 error ( ’## Please provide all necessary input parameters.’ )

6 end

7 close all; pnet ( ’closeall ’ );

8 if ( ~ exist ( ’sStartFromFile ’, ’var’ ) )

9
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10
11 % CONFIGURATION AND INI SETTINGS

12 SAMPLE_RATE = 256;

13 DEBUG_OUTLIER_REJECTION = false;

14 NUMBER_OF_CLASSES = 2;

15 ALL_CLASSLABELS = [ 7 8];

16 ALL_CL_COMBINATIONS = [ 7 8];

17 NUM_SIGNALS_META = 2;

18 NUM_TRANSMITTED_SENSORS = 208;

19 NUM_TRANSMITTED_EVENTS = nan;

20 NUM_SIGNALS_TOTAL = nan;

21 NUM_RAW_CHANNELS = 13;

22 NUM_CHANNELS = 13;

23 NUM_FILTERBANKS =15;

24 pnet_labels = [];

25 stData.X_trn_storeroom = [];

26 stData.aCurCLLabels_storeroom = [];

27 X_trn = [];

28 X_trn_counter = 1;

29 bins = 2:41;

30 ntrees = 1000;

31 mtry = 0;

32 extra_options.importance =1;

33 counter= 1;

34 TRIAL_STEP_SIZE = 4;

35 MINIMUM_TRIALS_PER_CLASS = 10;

36 LAST_MIN_CLASSES = -15;

37 TRIAL_LENGTH = 9;

38 CLEAR_BETWEEN_SESSIONS = 0;

39
40 START_SEG_SAMPLE = 4 * SAMPLE_RATE;

41 END_SEG_SAMPLE = 8 * SAMPLE_RATE;

42 START_REF_SAMPLE = fix ( 1 * SAMPLE_RATE );

43 END_REF_SAMPLE = fix ( 2 * SAMPLE_RATE );

44
45 TRAINING_WINDOW_SIZE = -1; % 40

46
47 sLocalIP = ’127.0.0.1 ’;

48 iLocalPort = 12360;

49 sTimestamp = strrep(num2str(fix(clock),’%02d’),’ ’,’’);

50 sResultPath = [’./rec/RF_Optimizer/’ sSubject ’_’ GetTimeStamp (3) ’/’ sSubject ’_’ sTimestamp ’/’];

51 sResultfile = [sResultPath sSubject ’_’ sTimestamp ’.mat’];

52 sDiary = [’./rec/RF_Optimizer/’ sSubject ’_’ GetTimeStamp (3) ’/’ sSubject ’_’ sTimestamp

’/Diary_ ’ sTimestamp ’.txt’];

53
54 [sTP , sTN , sTE] = fileparts ( sResultfile );

55
56 CreateFolder ( sTP );

57 bFirst = true;

58
59 % Clear client session specific data.

60 iLastMinClasses = LAST_MIN_CLASSES;

61 iOutRejOffset = 0;

62
63 stData.aSignal = [];

64 stData.aTriggers = [];

65 stData.aTrueLabels = [];

66 stData.bFirstAttempt = 1;

67
68 cOut = BCIClassifier ( );

69 aAllSigOutIdx = [];

70 INI = [];

71 w = [];

72
73 iPacketNumber = 1;

74 iCurrCFRIdx = 0;

75 iCurMinClasses = 0;

76 iOptIdx = 1;

77
78 %% General configuration

79 cOut = set ( cOut , ’sMethod ’, ’ERD’ );

80 cOut = set ( cOut , ’iNSegments ’, 8 );

81 cOut = set ( cOut , ’iValsPerSegment ’, 4 );

82 cOut = set ( cOut , ’dAveraging ’, 1 );

83 cOut = set ( cOut , ’dTrialLength ’, 7 );

84 cOut = set ( cOut , ’dCueTime ’, 2 );

85 cOut = set ( cOut , ’bShowFigures ’, false );

86 cOut = set ( cOut , ’FILTER_ORDER ’, 5 );

87 cOut = set ( cOut , ’sResPath ’, sResultPath );

88
89 stHeader.SampleRate = SAMPLE_RATE;

90 % Set data manually

91 cOut = set ( cOut , ’stHeader ’, stHeader );

92
93 else

94 fprintf ( ’\n## Starting Feature Optimizer from file [%s]\n’, sStartFromFile );

95
96 load ( sStartFromFile );

97
98 whos

99 end

100
101 %% ENABLE DIARY

102 diary ( sDiary ); diary on;

103 fprintf ( ’\n’ );

104
105 %% OPEN SOCKET

106
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107 iSock = pnet ( ’tcpsocket ’, iLocalPort );

108 % Socket opened successfully

109
110
111 if ( iSock ~= -1 )

112 fprintf ( ’## [%s] Successfully started online feature optimizer @ %s:%d\n’, GetTimeStamp (), sLocalIP ,

iLocalPort );

113 iCon = pnet ( iSock , ’tcplisten ’ );

114 bServerRunning = true;

115 % IF TRUE , CLEAR ALL THE DATA SAVED FROM PREVIOUS SESSION

116 if ( CLEAR_BETWEEN_SESSIONS )

117 iLastMinClasses = LAST_MIN_CLASSES;

118
119 stData.aSignal = [];

120 stData.aTriggers = [];

121 stData.aTrueLabels = [];

122 stData.aFeatures = [];

123 stData.bFirstAttempt = 1;

124
125 aAllSigOutIdx = [];

126 INI = [];

127 w = [];

128 iPacketNumber = 1;

129 end

130
131 % OPENING UP THE SERVER CONNECTION

132 while ( bServerRunning && ( iCon ~= -1 ) )

133 [aDestIP , iDestPort] = pnet ( iCon , ’gethost ’ );

134 fprintf ( ’## [%s] NEW client connection @ %d/%d.%d.%d.%d:%d\n\n’, GetTimeStamp (), iCon , aDestIP (1),

aDestIP (2), aDestIP (3), aDestIP (4), iDestPort );

135
136 bClientConnected = true;

137
138 % Send initial classifiers if available

139 if ( isfield ( stData , ’modelRF ’ ) && ( ~isempty ( stData.modelRF ) ) )

140
141 sendtime01 = tic;

142 stData.modelRF.SaveMe = 0;

143 stData.modelRF_serialized = hlp_serialize(stData.modelRF);

144 psize = size(stData.modelRF_serialized);

145 pnet ( iCon , ’write ’, 50 );

146 pnet ( iCon , ’write ’, size ( [stData.modelRF_serialized], 1 ) );

147 pnet ( iCon , ’write ’, [stData.modelRF_serialized],’uint8’ ); % Send Indices and other Information

148 sendtime02= toc(sendtime01);

149 fprintf(’ Initial Classifier sending DONE. Took [%3f] sec \n’, sendtime02);

150 end

151
152 % Client connected

153 while ( bClientConnected )

154 wholeone = tic;

155
156 bMorePackets = true;

157 while ( bMorePackets && ( iCon ~= -1 ) && bClientConnected)

158 aBuffer = pnet ( iCon , ’read’, 1, ’double ’, ’network ’ );

159 if ( ~isempty ( aBuffer ) )

160 switch ( aBuffer ( 1 ) )

161 %% Server -Side Packet -CODE 0, disconnect client connection and close optimization server

162 case 0

163 fprintf ( ’\n## [%s] TCP -FLAG [%d], closing connection , quitting server\n’, GetTimeStamp (

), aBuffer (1) );

164 pnet ( iCon , ’close ’ );

165 pnet ( iSock , ’close’ );

166 bClientConnected = false;

167 bServerRunning = false;

168
169 %% Server -Side Packet -CODE 1, disconnect client connection

170 case 1

171 fprintf ( ’\n## [%s] TCP -FLAG [%d], closing connection\n’, GetTimeStamp ( ), aBuffer (1) );

172 pnet ( iCon , ’close ’ );

173 bClientConnected = false;

174
175 %% Server -Side Packet -Code 2, read trial packet of signal , event and classlabel data

176 case 2

177 aDataBuffer = pnet ( iCon , ’read’, [1 2], ’double ’, ’network ’ );

178 % aDataBuffer = pnet ( iCon , ’read ’, [1], ’double ’, ’network ’,[],’noblock ’ );

179 if ( ~isempty ( aDataBuffer ) )

180
181 NUM_TRANSMITTED_SENSORS = aDataBuffer (1);

182 NUM_TRANSMITTED_EVENTS = aDataBuffer (2);

183
184 % Index vector + classlabels + sensors + events

185 NUM_SIGNALS_TOTAL = NUM_SIGNALS_META + NUM_TRANSMITTED_SENSORS + NUM_TRANSMITTED_EVENTS;

186 aDataBuffer = pnet ( iCon , ’read’, [NUM_SIGNALS_TOTAL TRIAL_LENGTH*SAMPLE_RATE], ’double ’,

’network ’ );

187
188 if ( ~isempty ( aDataBuffer ) )

189 % Add received packet(trial) to the total amount of data

190 stData.aTriggers = [stData.aTriggers size(stData.aSignal ,1) +1];

191 stData.aSignal = [stData.aSignal;

aDataBuffer(NUM_SIGNALS_META +1: NUM_SIGNALS_META+NUM_TRANSMITTED_SENSORS ,:) ’];

192 stData.aTrueLabels = [stData.aTrueLabels aDataBuffer (1,1)];

193
194 if ( TRAINING_WINDOW_SIZE == -1 )

195 iStartIdx = 1;

196 else

197 iStartIdx = max ( iPacketNumber - (TRAINING_WINDOW_SIZE -1), 1 );

198 end

199
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200 aCurTriggers = stData.aTriggers ( 1, iStartIdx:size(stData.aTriggers ,2) );

201 aCurCLLabels = stData.aTrueLabels ( 1, iStartIdx:size(stData.aTriggers ,2) );

202 iActNumClasses = -1;

203
204 % Config OR-params

205 if ( stData.bFirstAttempt )

206 iActNumClasses = NUMBER_OF_CLASSES;

207 aActClasslabels = ALL_CLASSLABELS;

208 else

209 iActNumClasses = 2;

210 end

211
212 [iCurMinClasses , iSingleCountsBeforeOR] = GetClassCounts ( aCurCLLabels ,

aActClasslabels );

213 fprintf ( ’\n## [%s] TCP -FLAG [%d], read packet [%d] [%s], true -label [%d] OptIdx [%d]

Trials %s\n’, GetTimeStamp ( ), aBuffer (1), iPacketNumber ,

num2str(size(aDataBuffer)), aDataBuffer (1,1), iOptIdx ,

mat2str(iSingleCountsBeforeOR) );

214
215 if ( TRAINING_WINDOW_SIZE > 0 )

216 fprintf ( ’## Win size [%d], tot packs [%d/%d] using [%d] triggers [%s]\n’,

TRAINING_WINDOW_SIZE , iPacketNumber , size(stData.aTriggers ,2),

length(iStartIdx:size(stData.aTriggers ,2)),

num2str(iStartIdx:size(stData.aTriggers ,2)) );

217 end

218
219 iPacketNumber = iPacketNumber + 1;

220
221 else

222 fprintf ( ’## [%s] Received empty packet -buffer\n’, GetTimeStamp () );

223 end

224 end

225
226 otherwise

227 fprintf ( ’## [%s] Unknown TCP -FLAG [%d] \n’, aBuffer (1), GetTimeStamp () );

228 end %SWITCH CASE

229 else

230 fprintf ( ’## [%s] Remote connection lost , listening again \n’, GetTimeStamp () );

231
232 bClientConnected = false;

233 end

234
235 if ( bClientConnected && ( iCon ~= -1 ) )

236 bNextID = pnet ( iCon , ’read’, 1, ’double ’, ’network ’,’view’,’noblock ’ );

237 if ( isempty ( bNextID ) || bNextID ~= 2 )

238 bMorePackets = false;

239 end

240 end

241
242
243
244 end % WHILE (bMorePackets)

245 tic;

246 if ( bClientConnected && ( iCon ~= -1 ) )

247 %% Outlier rejection

248 if ( ( iCurMinClasses >= MINIMUM_TRIALS_PER_CLASS ) && ( iCurMinClasses > (

iLastMinClasses + iOutRejOffset + TRIAL_STEP_SIZE ) ) )

249
250 fprintf(’\n## Performing Outlierrejection ... \n ’);

251 ORtime01 = tic;

252 [cOut , aAllSigOutIdx , aOutCHIdc] = PerformReducedOR ( cOut , stData.aSignal(:,

NUM_TRANSMITTED_SENSORS -NUM_RAW_CHANNELS:NUM_TRANSMITTED_SENSORS),

stData.aTriggers , SAMPLE_RATE);

253
254 caAllOutIdc{iPacketNumber} = aAllSigOutIdx;

255 caAllOutCHIdc{iPacketNumber} = aOutCHIdc;

256 caAllWeights{iPacketNumber} = w;

257 caAllINI{iPacketNumber} = INI;

258 ORtime02 = toc(ORtime01);

259 fprintf ( ’ OR time: %3f sec., Rejected [%d] outliers in [%d] trials %s \n’,

ORtime02 , length(aAllSigOutIdx), iPacketNumber , mat2str(aAllSigOutIdx) );

260
261 iOutRejOffset = 2;

262
263 end

264
265 % Reject data from training set.

266 aCurTriggers(aAllSigOutIdx) = [];

267 aCurCLLabels(aAllSigOutIdx) = [];

268
269
270 [iCurMinClasses , iSingleCounts] = GetClassCounts ( aCurCLLabels , aActClasslabels );

271 if ( ( IsAllTrue( iSingleCounts > 0 ) ) & ( iCurMinClasses >= MINIMUM_TRIALS_PER_CLASS )

& ( iCurMinClasses > ( iLastMinClasses + TRIAL_STEP_SIZE ) ) )

272 %% HERE STARTS THE GAAAAUUUUUUUDI

273 traintime01= tic;

274
275 for ( k = 1:size ( ALL_CL_COMBINATIONS , 1 ) )

276
277 iCurClasslabels = ALL_CL_COMBINATIONS(k,:);

278 % Return the indices for the minimum number

279 % of available trials in both classes.

280 aIdxCL1 = find ( aCurCLLabels == iCurClasslabels (1), iCurMinClasses , ’first’ );

281 aIdxCL2 = find ( aCurCLLabels == iCurClasslabels (2), iCurMinClasses , ’first’ );

282 aActIdx = [aIdxCL1 aIdxCL2 ];

283 aActCLLabels = aCurCLLabels(aActIdx);

284 aActTriggers = aCurTriggers ( aActIdx );

285 end
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286 fprintf(’## MinClasses = [%d] \n aActCLLables = [%s] \n aCurCLLabels [%s] \n

aActTriggers = [%s] \n aCurTriggers [%s]’ ,...

287 iCurMinClasses ,mat2str(aActCLLabels),mat2str(aCurCLLabels) ,...

288 mat2str(aActTriggers),mat2str(aCurTriggers));

289
290 fprintf(’ Start training ... \n ’);

291 stData.ClassPos1 = aActTriggers(aActCLLabels == 7);

292 stData.ClassPos2 = aActTriggers(aActCLLabels == 8);

293 stData.ClassData1 = [];

294 stData.ClassData2 = [];

295 stData.helpingHand = [];

296 stData.model_csp_shrink = [];

297 stData.all_scsp_filter = [];

298 stData.Class1counter = 0;

299 stData.Class2counter = 0;

300 stData.fb_counter = 1;

301 stData.aSignal_csp = [];

302
303 for current = 1: NUM_CHANNELS:NUM_TRANSMITTED_SENSORS -NUM_RAW_CHANNELS

304
305 for CurrentTrial1 = 1: length(stData.ClassPos1)

306 stData.helpingHand =[ stData.helpingHand

stData.aSignal(int64(stData.ClassPos1(CurrentTrial1)+...

307 4.75* SAMPLE_RATE): int64(stData.ClassPos1(CurrentTrial1)+...

308 7.75* SAMPLE_RATE -1),current:current +13-1) ’];

309 end

310 stData.Class1counter = stData.Class1counter +1;

311 stData.ClassData1 (:,:,stData.Class1counter) = stData.helpingHand;

312 stData.helpingHand = [];

313
314 for CurrentTrial2 = 1: length(stData.ClassPos2)

315 stData.helpingHand =[ stData.helpingHand

stData.aSignal(int64(stData.ClassPos2(CurrentTrial2)+...

316 4.75* SAMPLE_RATE): int64(stData.ClassPos2(CurrentTrial2)+...

317 7.75* SAMPLE_RATE -1),current:current +13-1) ’];

318 end

319 stData.Class2counter = stData.Class2counter +1;

320 stData.ClassData2 (:,:,stData.Class2counter) = stData.helpingHand;

321 stData.helpingHand = [];

322 end

323
324
325 for idx = 1: NUM_FILTERBANKS

326 % if iCurMinClasses >8

327
328 stData.model_scsp=csp_train(stData.ClassData1 (:,:,idx) ,...

329 stData.ClassData2 (:,:,idx),’standard ’);

330 % else

331 %

stData.model_scsp=csp_train(stData.ClassData1 (:,:,idx),stData.ClassData2 (:,:,idx));

332 % end

333
334 stData.model_csp_filter = [stData.model_scsp (: ,1:3)

stData.model_scsp (:,end -2:end)];

335 stData.all_send_filter (:,:,idx) =stData.model_csp_filter;

336 % stData.all_scsp_filter = [stData.all_scsp_filter stData.model_csp_filter ’];

337
338 end

339
340 for current = 1: NUM_CHANNELS:NUM_TRANSMITTED_SENSORS -NUM_RAW_CHANNELS

341
342 stData.aSignal_csp = [stData.aSignal_csp

stData.aSignal(:,current:current+NUM_CHANNELS -1)*

stData.all_send_filter (:,:,stData.fb_counter)];

343 stData.fb_counter = stData.fb_counter +1;

344
345 end

346 stData.fb_counter = 1;

347 % Calculate power of CSP filtered signals

348 stData.aSignal_csp_BP = (stData.aSignal_csp .^2);

349 % Moving average

350 a = 1;

351 b = 1/ SAMPLE_RATE*ones(1, SAMPLE_RATE);

352 stData.aSignal_csp_BP_filt = filter(b,a,stData.aSignal_csp_BP);

353 % Feature Extraction of the designated segements

354
355 for current = 1: length(aActCLLabels)

356 stData.segment =

(stData.aSignal_csp_BP_filt(aActTriggers(current)+5.5* SAMPLE_RATE -1,:));

357 X_trn = [X_trn stData.segment ’];

358
359 end

360 stData.modelRF = classRF_train(log10(X_trn ’),aActCLLabels ’,ntrees ,mtry ,extra_options);

361 stData.modelRF.CSP_matrices = stData.all_send_filter;

362 stData.modelRF.analysis_stuff.or = aAllSigOutIdx;

363 stData.modelRF.analysis_stuff.true_cl = stData.aTrueLabels;

364 stData.modelRF.analysis_stuff.iCurMinClasses = iCurMinClasses;

365 X_trn = [];

366
367 traintime02 =toc(traintime01);

368 fprintf(’ Training done. Took [%3f] sec - Sending ... \n’, traintime02);

369 if ( pnet ( iCon , ’status ’ ) > 0 )

370
371 sendtime01 = tic;

372 stData.modelRF.SaveMe = 1;

373 stData.modelRF_serialized = hlp_serialize(stData.modelRF);

374 psize = size(stData.modelRF_serialized);

375 pnet ( iCon , ’write ’, 50 );
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376 pnet ( iCon , ’write ’, size ( [stData.modelRF_serialized], 1 ) );

377 pnet ( iCon , ’write ’, [stData.modelRF_serialized],’uint8’ ); % Send Indices and

other Information

378 sendtime02= toc(sendtime01);

379 fprintf(’ Sending DONE. Took [%3f] sec \n’, sendtime02);

380
381 end

382 iLastMinClasses = iCurMinClasses;

383
384 iOutRejOffset = 0;

385 end

386 end

387
388 toc(wholeone)

389 end

390
391 % Wait for new client connection

392 if ( bServerRunning )

393 iCon = pnet ( iSock , ’tcplisten ’ );

394 end

395 end

396
397 fprintf(’############# SAVE Temporary. \n’);

398 tic

399 save ( [’./rec/TMP_’ sSubject ’_’ GetTimeStamp (2) ’.mat’], ’-v7.3’ );

400
401 toc

402 display ( ’ ’ );

403 end

404
405 diary off;

Listing A.2: Optimizer- MATLAB implementation
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A.3 Scripts for analysing the acquired Data

A.3.1 Calculation of the mean Accuracy

1 clear all;

2
3
4 color_vec = {’k’, [0 0.4 0], [0.69 0 0], [0 0.4 0.4] , [0.85 0.85 0], ’m’, ’b’, [0.4 0.4 0.4], [0.54 0.27

0] ,[0.25 0.25 0],[1, 0.36 0.14]};

5
6 idx= 15

7
8 aData.true_vs_predicted.accuracy_peak = [];

9 aData.true_vs_predicted.accuracy_fb_mean = [];

10 aData.true_vs_predicted.accuracy_fb_median = [];

11
12 aData.true_vs_avg.accuracy_peak = [];

13 aData.true_vs_avg.accuracy_fb_mean = [];

14 aData.true_vs_avg.accuracy_fb_median = [];

15
16 figure

17 line ([3,3], [0,1], ’Linewidth ’, 3)

18 %

19 for idx = 1: length(data_folder_vec)-1

20
21 disp (’Initiating Fallout Analysis ...’);

22
23 data_path = [’..\rec\fallout\’ data_folder_vec{idx} ’\*.gdf’]

24
25 % Parameter

26
27 trial_length = 8; % sec.

28 before_cue = 3;

29 after_cue = 5;

30 number_training_lables = 10;

31 iCurclasslables =[ 7 8];

32 %% Loading data

33
34 disp(’Loading Data’);

35
36 [signals , header , events ,files] = gdf_multiread(data_path);

37
38 disp(’done.’)

39
40 %Insert zeros instead of NaNs

41 disp(’Insert zeros instead of NaNs ...’)

42 for current_signal = 1: length(signals)

43 tmp = signals{current_signal };

44 tmp(isnan(tmp)) = 0;

45 signals{current_signal} = tmp;

46 end

47 clear tmp

48 disp(’done.’)

49
50 %% Resample slow signals

51 disp(’Resample slow signals ...’)

52 predicted_class_256Hz = resample(signals {14,1} ,16,1);

53 true_class_256Hz = resample(signals {15,1},16 ,1);

54 average_class_256Hz = resample(signals {16,1} ,16,1);

55 sys_sim_256Hz = resample(signals {17,1},8,1);

56 disp(’done.’)

57
58 %% classlables

59 disp(’classlables ...’)

60 positions = [];

61 classlables = [];

62
63 for current =1: length(events.event_code)

64 if events.event_code(current)==7

65 positions =[positions ,events.position(current)];

66 classlables =[ classlables ,7];

67 elseif events.event_code(current)==8

68 positions =[positions ,events.position(current)];

69 classlables =[ classlables ,8];

70 end

71 end

72
73 disp(’done.’)

74
75 disp(’Accuracy ...’)

76 SR=events.sample_rate;

77 accuracy = NaN(1, SR*trial_length);

78
79
80
81 aIdxCL1 = find ( classlables == iCurclasslables (1), number_training_lables , ’first ’ );

82 aIdxCL2 = find ( classlables == iCurclasslables (2), number_training_lables , ’first ’ );

83 aIdxCL = [aIdxCL1 aIdxCL2 ];

84
85
86 acc_lables = classlables;

87 acc_lables(aIdxCL) = [];

88 acc_trigger = positions;

89 acc_trigger(aIdxCL) = [];
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90 accuracy_all = NaN(length(acc_lables), SR*trial_length);

91 % TVP

92 %

93 for current =1: length(acc_lables)

94
95 tmp = round(predicted_class_256Hz(acc_trigger(current) -...

96 uint32(before_cue*SR):acc_trigger(current)+uint32(after_cue*SR) -1,:));

97 accuracy(acc_lables(current) == tmp) = 1;

98 accuracy(acc_lables(current) ~= tmp) = 0;

99
100 accuracy_all(current ,:) = accuracy;

101
102 end

103
104 accuracy_mean = mean(accuracy_all ,1);

105 accuracy_std = std(accuracy_all ,1);

106
107 accuracy_peak = max(accuracy_mean);

108 disp([’Peak accuracy:’ num2str(accuracy_peak)])

109
110 accuracy_fb_mean = mean(accuracy_mean (1152:1920));

111 disp([’Mean accuracy over feedback period:’ num2str(accuracy_fb_mean)])

112
113 accuracy_fb_median = median(accuracy_mean (1152:1920));

114 disp([’Median accuracy over feedback period:’ num2str(accuracy_fb_median)])

115
116 fileID = fopen(’results.txt’,’at’);

117 if fileID ~= -1

118 fprintf(fileID ,’%s & %.3f & %.3f & %.3f \r\n’, subject{idx}, accuracy_peak , accuracy_fb_mean ,

accuracy_fb_median)

119 fclose(fileID)

120 end

121
122 aData.true_vs_predicted.accuracy_peak = [aData.true_vs_predicted.accuracy_peak accuracy_peak ];

123 aData.true_vs_predicted.accuracy_fb_mean = [aData.true_vs_predicted.accuracy_fb_mean accuracy_fb_mean ];

124 aData.true_vs_predicted.accuracy_fb_median = [aData.true_vs_predicted.accuracy_fb_median

accuracy_fb_median ];

125
126 % Plot mean accuracy

127 hold all

128 grid on

129 disp(’Plot mean accuracy ...’)

130 figure (1)

131 plot ((1: length(accuracy_mean))/SR,smooth(accuracy_mean ,45), ’Linewidth ’, 2, ’Color’, color_vec{idx})

132 set(gca , ’XLim’, [0 8], ’YLim’, [0 1], ’FontSize ’, 14)

133 title(’Hand versus Foot: Mean accuracy ’)

134 disp(’done.’)

135 xlabel(’time [sec.]’)

136 ylabel(’accuracy ’)

137 hleg1 = legend(legend_subject ,’Location ’, ’NorthEastOutside ’);

138
139 end

140
141 disp([’True versus Predicted: Peak:’ mat2str(mean(aData.true_vs_predicted.accuracy_peak))...

142 ’ Mean:’ mat2str(mean(aData.true_vs_predicted.accuracy_fb_mean)) ’Median: ’

mat2str(mean(aData.true_vs_predicted.accuracy_fb_median))]);

Listing A.3: Calculation the mean accuracy over the trial period

A.3.2 Calculation Random Forest Analysis

1 %% Analysis of the FALLOUT RF Classifier %%

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3
4 clear all;

5
6 clc

7 disp (’## Initiating Fallout RF - Analysis ...’);

8 data_folder_vec = {}

9 subject = {};

10
11 figure

12 hold all

13 %

14 sub_idx =15;

15 %

16 for sub_idx = 1: length(data_folder_vec)-1

17
18
19 path = [’../ rec/fallout/’ data_folder_vec{sub_idx} ’/classifier/’];

20 % path = (’../rec/fallout/savetest_20140225/classifier /’);

21
22 %% Here Starts the Gaudi!

23 disp(’ Loading Data.’);

24 files = dir([path ’*.mat*’]);

25
26 % All importance data per subject is saved in one COLUMN for each

27 % classifier. 15 columns means 15 classifiers were trained

28
29 for file_idx = 1: length(files)

30 all_rf_cfr{file_idx} = load([ path files(file_idx).name]);
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31 importance_vec (:,file_idx) = all_rf_cfr{file_idx }. store_it.importance (:,4);

32 mintrials_vec (:,file_idx) = all_rf_cfr{file_idx }. store_it.analysis_stuff.iCurMinClasses;

33 oob_vec(:,file_idx) = all_rf_cfr{file_idx }. store_it.errtr (1000 ,1);

34 end

35
36 disp(’Done!’);

37
38 %EACH FILTER IS DISPLAYED IN A ROW OVER TPC

39 % FIFTEEN ROWS MEAN FIFTEEN FILTER!

40 disp(’ Calculate Feature Importance.’);

41 for current = 1:1: size(importance_vec ,2)

42 counter = 1;

43 for idx= 1:6: size(importance_vec ,1)

44 importance_bands(current ,counter) = 1/6 * sum(importance_vec(idx:idx+6-1, current)) ;

45 counter=counter +1;

46 end

47
48 end

49
50 importance_bands = flipud(importance_bands ’);

51
52
53 figure

54 imagesc(importance_bands)

55
56 set(gca ,’YTick’ ,1:15, ’YTickLabel ’,{’ 35-40 Hz’, ’ 32-37 Hz’,’ 29-34 Hz’,’ 26-31 Hz’,’ 23-28 Hz’,’ 20-25

Hz’,’ 17-22 Hz’,’ 14-19 Hz’,’ 12-14 Hz’ ,...

57 ’ 11-13 Hz’,’10-12 Hz’,’ 09-11 Hz’,’08-10 Hz’, ’07-09 Hz’,’06-08 Hz’ });

58 set(gca ,’XTick’ ,1:length(mintrials_vec),’XTickLabel ’, mintrials_vec , ’FontSize ’, 13)

59 ylabel(’Filterbanks ’)

60 xlabel(’Trials per Class’)

61 str_title = [ ’Subject ’ subject{sub_idx} ’: Feature Importance ’ ];

62 colorbar ()

63 title(str_title)

64 disp(’Done!’);

65
66 disp(’ Calculate OOB over TPC’);

67 figure

68
69 plot (1: length(oob_vec), oob_vec)

70 set(gca ,’XTick’ ,1:length(mintrials_vec),’XTickLabel ’, mintrials_vec)

71 xlabel(’Trials per Class’)

72 ylabel(’OOB error rate’)

73 %

74
75
76 str_title_oob = [ ’Subject ’ subject{sub_idx} ’: OOB Error’ ];

77 % figure

78 plot( 1: length(oob_vec),oob_vec ’, ’LineWidth ’, 2)

79 set(gca ,’XTick’ ,1:length(mintrials_vec),’XTickLabel ’, mintrials_vec , ’FontSize ’, 13)

80 title(str_title_oob)

81 xlabel(’Trials per class’)

82 ylabel(’Out of the Box error’)

83 oob.oob{sub_idx} = oob_vec;

84 grid on;

85
86
87 clear mintrials_vec

88 clear importance_bands

89 clear importance_vec

90 clear idx

91 clear oob_vec

92 end

Listing A.4: Feature importance maps and OOB estimate

A.3.3 Outlier calculations

1 %% Analysis of the FALLOUT RF Classifier %%

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3
4 clear all;

5
6 clc

7 disp (’## Initiating Fallout RF - Analysis ...’);

8 sub_selector = 1;

9 % sub_selector = 0;

10 if sub_selector == 1

11 data_folder_vec = {};

12 subject = {};

13 naiv_stamp = { };

14 legend_subject = {};

15 else

16 data_folder_vec = {};

17 subject = {};

18 legend_subject = {};

19 naiv_stamp = { };

20 end

21 legend_text = {’mean’};

22
23
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24 figure

25 hold all

26 line ([0 4],[ 7.6667 7.6667] ,’Color’, [1 0 0,], ’Linewidth ’, 3, ’LineStyle ’, ’--’);

27
28
29
30
31 %

32 for sub_idx = 1: length(data_folder_vec)

33
34
35 path = [’../ rec/fallout/’ data_folder_vec{sub_idx} ’/classifier/’];

36 % path = (’../rec/fallout/savetest_20140225/classifier /’);

37
38 %% Here Starts the Gaudi!

39 disp(’ Loading Data.’);

40 files = dir([path ’*.mat*’]);

41
42 % All importance data per subject is saved in one COLUMN for each

43 % classifier. 15 columns means 15 classifiers were trained

44
45 for file_idx = 1: length(files)

46 all_rf_cfr{file_idx} = load([ path files(file_idx).name]);

47 importance_vec (:,file_idx) = all_rf_cfr{file_idx }. store_it.importance (:,4);

48 mintrials_vec (:,file_idx) = all_rf_cfr{file_idx }. store_it.analysis_stuff.iCurMinClasses;

49 oob_vec(:,file_idx) = all_rf_cfr{file_idx }. store_it.errtr (1000 ,1);

50 or{:,file_idx} =all_rf_cfr{file_idx }. store_it.analysis_stuff.or;

51 end

52
53 all_or(:,sub_idx) = numel(or{end});

54 bar(sub_idx ,numel(or{end}))

55 clear or

56
57
58
59 end

60
61 set(gca , ’Xtick ’ ,1:3, ’Xticklabel ’, subject ,’FontSize ’, 14)

62 str_title = [ ’Outlier Rejection ’ ];

63
64 title(str_title)

65 disp(’done.’)

66 xlabel(’Subjects ’)

67 ylabel(’Rejected Outliers ’)

68 hleg1 = legend(legend_text ,’Location ’, ’NorthEast ’);

Listing A.5: Calculation of the Outliers and Graphical representation
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