
Masterarbeit

Aspects of Test-Driven Development
Pulkit Chouhan

November 2013

Betreuer: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany
Begutachter: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Technische Universität Graz
Institut für Softwaretechnologie

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Acknowledgements

I would like to thank Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany for his
support and patience during all the time I was writing this thesis. Furthermore
thanks to the company BCT Electronics in Salzburg, Austria who allowed me to
work on the practical part of this thesis during my normal working hours.

Also I would like to thank my family for all their support during the whole period
of my studies because without them none of this would have been possible.

Finally, thanks to my friends wo always kept me motivated.

III

Kurzfassung

Testgetriebene Softwareentwicklung hat sich in den letzten Jahren zu einer weit
verbreiteten und angesehenen Form der Entwicklung für Systeme aller Art entwick-
elt. Die Anwendung der testgetriebenen Entwicklung macht jedoch isoliert von
anderen Praktiken der agilen Methoden wenig Sinn und auch das volle Potenzial
lässt sich auf diese Weise bei weitem nicht ausschöpfen. Diese Arbeit versucht
einen Überblick darüber zu geben, warum traditionelle Herangehensweisen oft
scheitern und wie man die testgetriebene Entwicklung in ein Umfeld einbetten
kann, um das Design zu verbessern und die Fehlerhäufigkeit zu senken. Dazu wer-
den Prinzipien der agilen Methoden vorgestellt und auf die Werte eingegangen die
dabei wichtig sind. Es wird erläutert wie Tests zu organisieren und zu schreiben
sind, damit sie ihre Dokumentations- und Spezifikationsfunktion erfüllen können.
Weiters wurde eine Applikation unter den Gesichtspunkten der testgetriebenen
Entwicklung hergestellt und wird in dieser Arbeit kurz näher vorgestellt.

IV

Abstract

Test-Driven Development has been around for several years and has become a
widely known and accepted form of software development for all kinds of systems.
Applying Test-Driven Development isolated from other practices of agile develop-
ment will not harvest from the full potential of this development methodology.
This thesis tries to give an overview of the reasons why traditional development
processes often fail and how to integrate the test-driven approach into the net of
core agile practices to create a simple design and tests that act as documentation
and specification. Principles of test organisation and patterns of test structure
are explained. Furthermore, a application was developed following the principles
of Test-Driven Development and will be briefly described in this paper.

V

Contents

1 Traditional Process Models in Software Development 1
1.1 The Code-and-Fix Model . 3
1.2 The Waterfall Model . 4
1.3 Issues when applying the Waterfall Model 5
1.4 The Spiral Model . 6

2 Test-Driven Development 9
2.1 Agile Software Development . 9

2.1.1 The Agile Team . 12
2.1.1.1 Roles in an Agile Team 12

2.2 Introduction to Test-Driven Development 17
2.2.1 Fearless Development . 19
2.2.2 Behavior-Driven Development 21

2.3 The Typical Test-Driven Development Cycle 23
2.3.1 Refactoring . 24
2.3.2 Emerging Design . 25

2.4 Impact of Test-Driven Development 26
2.4.1 Test-Driven Development and the Influence on Quality of

Software Design . 27
2.5 Unit Tests and Their Organization, Structure and Patterns 30

2.5.1 The Four Phases of an Unit Test 32
2.5.2 Test Smells . 33

2.5.2.1 Code Smells . 34
2.5.2.1.1 Obscure Test 34
2.5.2.1.2 Conditional Test Logic 36
2.5.2.1.3 Hard-to-Test Code 38

VI

2.5.2.1.4 Test Code Duplication 39
2.5.2.1.5 Test Logic in Production 40

2.5.2.2 Behavior Smells 41
2.5.2.2.1 Assertion Roulette 42
2.5.2.2.2 Erratic Test 42
2.5.2.2.3 Frequent Debugging 44
2.5.2.2.4 Slow Tests 44

2.5.2.3 Project Smells 46
2.5.2.3.1 Buggy Tests 46
2.5.2.3.2 Developers Not Writing Tests 46

2.5.3 Test Patterns . 47
2.5.3.1 Fixture Setup Patterns 48

2.5.3.1.1 In-Line Setup 48
2.5.3.1.2 Delegated Setup 49
2.5.3.1.3 Prebuilt Fixture 49
2.5.3.1.4 Lazy Setup 50

2.5.3.2 Result Verification Patterns 50
2.5.3.2.1 State Verification 50

2.5.3.3 Test Double Patterns 52
2.5.3.3.1 Mock Object 52
2.5.3.3.2 Fake Object 53

2.5.3.4 Test Organisation Patterns 53
2.5.3.4.1 Test Code Reuse Patterns 54
2.5.3.4.2 Test Class Structure Patterns 55

2.6 Embedding Test-Driven Development Into a Appropriate Environ-
ment . 56
2.6.1 Risk . 56
2.6.2 Four Values . 58

2.6.2.1 Communication 58
2.6.2.2 Simplicity . 59
2.6.2.3 Feedback . 60
2.6.2.4 Courage . 61

2.7 Building the XP-Mesh Using Core Practices 61
2.7.1 The Planning Game . 62
2.7.2 Short Releases . 64

VII

2.7.3 Metaphor . 64
2.7.4 Simple and incremental Design 65
2.7.5 Refactoring . 65
2.7.6 Continuous Integration . 66
2.7.7 Collective Ownership . 67
2.7.8 Planning . 67
2.7.9 Coding Standards . 68
2.7.10 Pair Programming . 68
2.7.11 On-Site Customer . 68

3 Practical: Test-Driven Development of a VoIP Communication Client 69
3.1 Requirements . 70
3.2 Tools . 71

3.2.1 OCUnit . 71
3.2.2 Continuous Integration with Hudson 72

3.3 Development Phase . 72

4 Concluding Remarks and Future Work 80
4.1 Future Work . 82

VIII

List of Figures

1.1 The Waterfall Model (PWB09, p. 4) 5
1.2 The Spiral Model (Som11, p. 49) 8

2.1 The Agile Manifesto (HD08) . 10
2.2 The Roles in an Agile Team (AL12, p. 66) 14
2.3 The Roles in an Agile Team according to (HD08, p. 162) 16
2.4 The Test-First Development Model (AL12, p. 349) 18
2.5 Two levels of Test-Driven Development (AL12, p. 351) 22
2.6 Lines of Code per Module, Method and Class (JS08, p. 80) 28
2.7 Average line of code coverage (JS08, p. 80) 29
2.8 Return On Investment after introducing Test-Driven Development

(Mes07, p. 20) . 30
2.9 Troubleshooting an Erratic Test(Mes07, p.20). 43
2.10 The XP-Mesh according to (Bec00, p. 70) 62

IX

List of Tables

1.1 Issues in Waterfall model (PWB09, p. 3) 6

X

Abbreviations

XP eXtreme Programming

TFD Test-First Development

TDD Test-Driven Development

ATDD Acceptance Test-Driven Development

BDD Behavior-Driven Development

SUT System Under Test

CBO Coupling Between Objects

XI

1 Traditional Process Models in

Software Development

Traditional process models for developing software (or systems) have been around

since the 1950’s. Scacchi distinguishes two kinds of heavyweight life cycle models(Sca01,

p. 3):

Descriptive Models are used to describe the past. They document how a sys-

tem was developed and are used to gain understanding and to extrapolate

improvements for software development models.

Prescriptive Models defines how a new (software) system should be developed.

They establish ’guidelines or frameworks to organize and structure how soft-

ware development activities should be performed, and in what order’(Sca01,

p. 3).

Both kind of models help organizing the development process of software. This

includes the planning and the scheduling of work in regards of staff, budget and

other resources, choosing the right methodologies to assure software quality.(Sca01,

p. 3)

The term heavyweight is an indicator for the ’degree of formalization of the pro-

cesses and the number of associated (intermediate) results or (intermediate) prod-

1

List of Tables

ucts’. (Fin06, p. 90)

Furthermore, Scacchi identifies a number of activities (or a subset) that most of

the existing life cycle models have in common(Sca01, p. 1-3). The most common

are:

System Initiation/Planning New systems should replace, extend or improve ex-

isting solutions.

Requirement Analysis and Specification This phase identifies the problems that

should be solved by the implemented system (functional requirements) but

also its performance, resource and maintenance characteristics.

Partition and Selection Partition given requirements and specifications into work-

packages which possibly define logical subsystems. For each subsystem, de-

cide whether to buy, reuse or implement it.

Architectural Design Defines the overall design of the whole system and also the

interfaces interconnecting the subsystems.

Detailed Component Design Specification The design of the submodules is de-

fined during this phase.

Component Implementation and Debugging The previously defined specifica-

tions are transformed into source code and their basic functionality is vali-

dated.

Software Integration and Testing In this phase, the overall functionality and

integrity of the implemented system and subsystems is tested against the

previously defined requirements (functional and non-functional) and archi-

tecture.

2

1.1 The Code-and-Fix Model

Documentation Revision and System Delivery Create documents that describe

the system development and allow system support.

Deployment and Installation The implemented system is deployed, installed and

configured (access privileges, diagnostic tests).

Training and Use System users are provided with training and guidance for an

effective usage of the installed system.

Software Maintenance Provide patches to fix bugs, enhance functionality and

improve performance.

As (Fin06, p. 89) points out, each phase may only be entered, if the predecessor

phase has been finished and approved. This makes it necessary to well-define the

results needed for the completion of a phase.

The following subsections will focus on some heavyweight, prescriptive life cycle

models to finally discuss the issues that led to the development of agile method-

ologies.

1.1 The Code-and-Fix Model

This model, already used in the earliest days of software development, basically

consists of only two steps (Boe88, p. 61):

• The actual coding

• Find bugs and fix them

3

1.2 The Waterfall Model

Even the designing phase comes after writing the code. As (Boe88, p. 62) denotes,

this eventually leads to poorly structured code, especially after fixing some bugs.

This flaw makes bugs found late during development very expensive to fix. And

even if the software was well designed, it often failed to match the customer’s

needs. So it was rejected, showing the need for a requirement analysis phase prior

to the design phase(Boe88, p. 62).

1.2 The Waterfall Model

The Waterfall Model, also known as the classic software life cycle or the Linear

Sequential Model, was first described by Walter Royce in 1970 (Gus02; PWB09;

Sca01). Compared to the Code-and-Fix Model, it introduced two important

improvements(Boe88, p. 63):

• Feedback loops and guidelines on how to apply them to minimize rework

• Some kind of prototyping

(Sca01, p.5) denotes that the waterfall model resembles a finite state machine.

This is due to the fact that the evolution of the software happens through the

transition from one phase to another. A lot of projects realized by using the

waterfall model go through the phases Requirements Engineering, Design and

Implementation, Testing, Release and Maintenance(PWB09, p. 4).

Only if a phase (i.e. the documents belonging to this phase (Boe88, p.63)) passes

previously defined requirements, the evolution continues and the development

moves to the next phase. In practice although, often one or more phases tend

to overlap and there even is feedback from one phase to another, turning the

waterfall model into a non-linear process model. (Som11, p. 31)

4

1.3 Issues when applying the Waterfall Model

Figure 1.1: The Waterfall Model (PWB09, p. 4)

1.3 Issues when applying the Waterfall Model

In his paper, (PWB09, p. 2) argues that according to some studies about the wa-

terfall model, one of the main reasons for failing projects is the management of a

large scope. As pointed out in (Som11, p.32), another difficulty is the integration

of the final product and the enormous amount of testing. Because of it’s inflexi-

bility, commitments must be made at a very early stage during the development

process. This life cycle should only be chosen if the requirements are well defined,

understood and unlikely to change. (Som11, p. 32)

Testing is done late when applying the waterfall model. Late testing leads to a

high amount of hard to fix bugs and to reduced code coverage. This late feedback

then leads to quality issues. (PWB09, p. 11)

(Boe88) too emphasises on the difficulties caused by the the fact that all docu-

ments belonging to a phase have to fulfill all completion criteria before finishing

a phase. This causes problems especially in some early and important phases like

requirement analysis and design, because at this stage, the requirements are often

poorly understood but never the less the phase has to be completed before going

5

1.4 The Spiral Model

on to the next phase. Especially for end-user applications this drawback could be

fatal, as requirements keep changing a lot. (Boe88, p. 63)

Table 1.1 shows an overview of some of the issues identified by (PWB09).

ID Issue
1 High effort and costs for writing and approving docu-

ments for each development phase.
2 Extremely hard to respond to changes.
3 When the system is put to use the customer discovers

problems of early phases very late and system does not
reflect current requirements.

4 Problems of finished phases are left for later phases to
solve.

5 Management of a large scope of requirements that have
to be baselined to continue with development.

6 Big-bang integration and test of the whole system in
the end of the project can lead to unexpected quality
problems, high costs, and schedule overrun.

7 Lack of opportunity for customer to provide feedback on
the system.

8 The waterfall model increases lead-time due to that large
chunks of software artifacts have to be approved at each
gate.

9 When iterating a phase the iteration takes considerable
effort for rework.

Table 1.1: Issues in Waterfall model (PWB09, p. 3)

1.4 The Spiral Model

The spiral model (see figure 1.2) is a so called risk-driven software process frame-

work first proposed by Boehm in 1988, trying to incorporate the strengths of some

other models and avoiding their drawbacks. (Boe88, p. 61)

The idea behind this model is that each cycle of the spiral represents a process

6

1.4 The Spiral Model

(i.e. sequence of steps) that has to be applied to each level of elaboration of the

product (Boe88, p. 61). The radial dimension "represents the cumulative cost

incurred in accomplishing the steps up to date"(Boe88, p. 65) and the angular

dimension "represents the progress in completing each cycle of the spiral."(Boe88,

p. 65)

Each quarter of the model stands for a ordered phase. At the beginning of each

cycle, it is necessary to define the objectives to work on and how to implement

those objectives (first quarter). Each alternative way of realising an objective

needs to be evaluated in regards of uncertainty leading to the identification of

sources of project risks. Evaluating and finding solutions for minimizing those

risks is the next step of the cycle (second quarter).(Boe88, p. 65).

(Som11, p. 49) describes the next two steps as follows:

Development and Validation The third phase of a development cycle (or the

third quarter) consists of choosing and applying a development model (e.g.

throwaway prototyping, development based on formal transformations, . . .).

Planning In the final phase, the current state of the project is reviewed if further

development is necessary, the next cycle is planned.

7

1.4 The Spiral Model

Figure 1.2: The Spiral Model (Som11, p. 49)

8

2 Test-Driven Development

As the previous chapter showed, it has become neccassary to establish a new way

of software development to ensure high quality of the product while keeping the

developers motivated.

2.1 Agile Software Development

As already showed, the inflexibility of the traditional development models made

it necessary to come up with a solution that provided the missing flexibility but

still remained structured and methodological.

For this reason, in February 2001 seventeen experienced software developers1

gathered in Utah to define common principles of software development from a

agile perspective which they called the agile manifesto (see figure 2.1).

Individuals and Interactions over Processes and Tools According to (HD08, p.

5), this principle’s message is to focus on the people involved in the develop-

ment of an system rather than investing a lot of effort into adapting to new

methodologies and tools. The way a team (i.e the members of that team)
1Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Mar-
tin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian
Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas

9

2.1 Agile Software Development

Figure 2.1: The Agile Manifesto (HD08)

communicate, interact and discuss will have a high impact on the project’s

success and is therefore of very high priority.

Working Software over Comprehensive Documentation Only those documents

should be created, which are essential to the development process. The cre-

ated documents have to be accessible for all stakeholders involved in the

collaborative workspace. Furthermore, the coding should begin as soon as

possible to gain domain knowledge (not only for the developers, but also for

the customer). As one can see, the coding at a very early stage is contra-

dictional to heavy weight development models with high amount of process

ceremony as it is essential for them to document and understand all the

requirements before coding, to ensure quality (HD08).

Customer Collaboration over Contract Negotiation Close contact to the cus-

tomer is embraced to allow them to understand and support changes that

come along with software projects. Also, this interaction will encourage

developers to base their work on the information provided by the customer

(HD08).

10

2.1 Agile Software Development

Responding to Change over Following a Plan Agile development provides an

context that allows all stakeholders of a project to cope with changes that

occur during development, enabling the team to still deliver high quality.

This pillar of the agile manifesto is based on the fact that even customers

don’t know all of the requirements at the beginning of the development of a

product. Requirements are gradually refined and better understood as the

development evolution continues (HD08).

The agile manifesto, which is backed up by twelve underlying principles, can

be applied to different agile methods such as: Scrum, Extreme Programming,

Feature-Driven Development etc. (HD08). The principles are as follows (BFC09):

• Welcome changing requirements, even late in development. Agile processes

harness change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

• Business people and developers must work together daily throughout the

project.

• Build projects around motivated individuals. Give them the environment

and support they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.

• Working software is the primary measure of progress.

• Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

11

2.1 Agile Software Development

• Continuous attention to technical excellence and good design enhances agility.

• Simplicity–the art of maximizing the amount of work not done–is essential.

• The best architectures, requirements, and designs emerge from self-organizing

teams.

• At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

2.1.1 The Agile Team

The agile team is a paramount part of the context in which the process of Test-

Driven Development should be embedded. This section will focus on this as-

pect, giving an overview of the roles played by the members, their rights and

responsibilities. It will also show how teams should be composed to support agile

development.

2.1.1.1 Roles in an Agile Team

One key factor of each agile development method are the roles specified by the

method. Some others are practices, values, techniques and tools(DH04, p. 157).

(AL12, p. 61) defines a role as a part a team member plays in a given situation (e.g.

team lead, stakeholder etc.). Along with the role come rights that can be claimed

by the member assigned that role. Finally, a role assigns specific responsibilities

to each team member. The team member holding a role does not have to execute

all the activities related to his or her role. Those activities can be delegated to

somebody else. The responsibility of the role holder is to ensure that the delegated

aspect of the role is carried out properly (HD08, p. 29). Furthermore, there are

12

2.1 Agile Software Development

some rights and responsibilities that each person involved with a agile projects

has regardless of the roles he or she has been assigned. A subset of those are

(AL12, p. 63):

• The right to

– be supported

– decide how to invest one’s resources

– have the estimates for the required activities respected

– be treated with respect

– have a safe working environment

• The responsibility to

– optimize the usage of resources

– guide and coach other team members

– avoid and deny work outside the current iteration

– share information

Roles are not the position of a team member inside the organization. A person

with the role of a stakeholder could be the head of department outside the project

(AL12, p. 63). Roles often found in agile teams are the stakeholder, product

owner, team member, team lead, architecture owner (AL12, p. 66). These roles

are also called primary roles (see figure 2.2).

Stakeholder A stakeholder is everybody affected by the outcome of the project:

13

2.1 Agile Software Development

Figure 2.2: The Roles in an Agile Team (AL12, p. 66)

users, senior manager, support, etc.. Generally stakeholders can be divided

into groups of end users, principals (they pay for the system and put it to

use), partners (operational staff) and insiders (people from the development

team). (AL12, p. 67)

Product Owner The product owner is responsible for representing the needs and

desires of the stakeholders (the customer) to the development team and

manage a list of work items which will be realised to implement the product.

The product owner reacts as the interface between the agile team and the

stakeholders (AL12, p. 67). Also, this person hast to present the finished

work to the stakeholders.

14

2.1 Agile Software Development

Team Member Everybody with this role assigned will work on testing, analysing,

designing, programming and planning activities throughout the project.

(AL12, p. 68)

Team Lead The main responsibility of the team lead is to enable the team mem-

bers to perform technical management activities, acting as a servant-leader

and allowing them to self organize as a team. He or she acts as a agile coach

helping the members to deliver results for the commitments made with the

product owner. (AL12, p. 73)

15

2.1 Agile Software Development

Figure 2.3: The Roles in an Agile Team according to (HD08, p. 162)

16

2.2 Introduction to Test-Driven Development

(HD08) identified finer granulated roles with very similar responsibilities (see

figure 2.3).

2.2 Introduction to Test-Driven Development

Test-Driven Development is a methodology based on the principle of Test-First

Programming. It first appeared as a part of Kent Beck’s eXtreme Programming

approach and is still used heavily in the XP context. Test-First Programming (see

Figure 2.5) means writing functional tests on a very low level before writing actual

production code, giving developers instant feedback on how new functionality (or

any changes for that matter) interferes with existing code (EMT05). Furthermore,

the Test-First philosophy provides some other advantages as (EMT05):

Task-orientation Forcing developers to spilt a problem into smaller, manageable

parts, providing gradual and measurable progress.

Quality Assurance Often running the developed tests gives the development

team the security of having a executable product at any time

Low-level Design Unit tests drive the decision which classes and methods need

to be created, named and the interfaces they offer.

17

2.2 Introduction to Test-Driven Development

Figure 2.4: The Test-First Development Model (AL12, p. 349)

(Mes07) denotes that if tests are written after production code, the likelihood

of not having to change the production code is very low because the defects are

found very late in the development cycle. It is also very challenging to write

tests after developers think they have finished their work. With the test-first

philosophy however, the product is designed for testability inherently because the

the code developed is written to past the test. Some other advantages are that

only enough code is written to pass the test resulting in minimalistic number

18

2.2 Introduction to Test-Driven Development

of line of code. Also, verification is more naturally when following the test-first

paradigm. For example instead of using string representations for comparing the

state of a object, one would evaluate the correct attributes of that object instead.

Beck (Bec02, p. 127) denotes that no programmer will test after writing produc-

tion code. This has to do with what he calls ‘no time for testing‘ death spiral.

Pressure coming from above is connected negatively to the process of writing tests.

Writing tests on the other side too is connected negatively to stress from above.

This means that a developer who does not write tests from the beginning will

get more pressure because his code is not working as expected. But if code does

not work as expected, pressure will rise, leading to even less tests because the

developer will have to fix the old problems first.

If the developer adheres to the test-first paradigm however, writing tests before

writing the production code will assure that that the code delivered will pass the

tests, reducing pressure from above.

Test-Driven Development extends the idea of Test-First Programming by adding

the activity of refactoring (AL12, p. 349). Refactoring is seen as a structured

way to improve code quality over time by applying small changes, retaining the

semantics of the business logic(AL12, p. 349).

2.2.1 Fearless Development

As (Bec00) mentions, Test-Driven Development is a way not to terminate fear

completely but to reduce and manage it. He calls Test-Driven Development a

technique to be aware ‘of the gap between decision and feedback during program-

ming‘ (Bec00). Instead of being tentative, grumpy, less communicative and shying

away from feedback, Test-Driven Development helps developers to learn quickly,

19

2.2 Introduction to Test-Driven Development

communicate more clearly and look out for feedback. In their article (JM07)

denote the fact, that no developer creates code without bugs. Especially when

first writing the production code and later testing manually. When working with

legacy systems that grew over time, developers often tend to avoid even minor

changes due to the fact that those systems are often poorly understood and even

small changes could lead to a unpredictable house of cards. (JM07)

Test-Driven Development fights this uncertainty by a growing collection of tests,

called the regression suite. This allows developers to become more confident in

the code and so be more relaxed as each line of code is (ideally) backed up by tests.

When tests are written after coding, developers tend to give only a shallow look on

what actually broke the code, making testing a dull and boring activity. (JM07).

When working with Test-Driven Development on a higher lever (called Acceptance

Test-Driven Development) this methodology helps finding requirements, improve

communication and bring clearance (JM07).

Design is improved due to the fact that writing tests first forces the developer to

think about the new capability he or she is going to implement in regards of the

interfaces, input, usage and behaviour (JM07).

A further fear reducing aspect of Test-Driven Development is the fact that the

software grows not revolutionary but evolutionary, taking the burden from the

developers shoulder to completely understand the system that is going to be

implemented. Instead, at the beginning, it is sufficient to have and understand

a simple architecture and a simple design to finish the early iterations and have

a functioning prototype as mentioned in section 2.1 (JM07). (Bec00) denoted,

that the smaller the evolution is (i.e. the less code a unit test covers) the better

a developer understands what he or she is implementing.

20

2.2 Introduction to Test-Driven Development

2.2.2 Behavior-Driven Development

(AL12) identifies two levels of Test-Driven Development. Behavior-Driven Devel-

opment and as the second level traditional developer Test-Driven Development.

Behavior-Driven Development focuses on JIT specifying of detailed requirements

and their validation. Developer Test-Driven Development aims to provided a de-

tailed design and implementation of those specified requirements of the first stage

and validate the implementation. Behavior-Driven Development is also known as

(Adz11):

• Agile Acceptance Testing

• Example-Driven Development

• Behavior-Driven Development

• Specification By Example

21

2.2 Introduction to Test-Driven Development

Figure 2.5: Two levels of Test-Driven Development (AL12, p. 351)

BDD helps answering the question ‘How do i know when I am done‘ with a spe-

cific user story or a feature(AL12, p. 351). (Rog04) defines acceptance tests as

tests that are owned and defined by the customer to verify the completeness and

correctness of a user story. Behavior-Driven Development is seen as an effective

communication tool due to it’s nature because the tests are written by the cus-

tomer. As development continues, developers start using the acceptance tests as

the team’s common domain language. Because the acceptance tests (also known

as customer tests) need to be understood before implemented, they assure on

22

2.3 The Typical Test-Driven Development Cycle

going communication between the customer and the development team thereby

improving clearance and refinements of the requirements (Rog04).

Through automation, BDD can become part of regression testing, just like the

tests of developer Test-Driven Development.

2.3 The Typical Test-Driven Development Cycle

Beck (Bec02) defines the ‘rhythm‘ of Test-Driven Development as a list of 6

activities that need to performed again and again. These activities are:

• Quickly add a test

• Execute all tests and see how the new one fails

• Adapt the production code

• Execute all tests again and if they pass go to the next step. Else, go to the

previous step

• Refactor to remove duplication and run tests to see if anything is broken

The test added in the first step should reflect what the developer expects from the

new pieces of code. The test is supposed to tell a story and the interfaces used in

the test only describe how the developer wishes them to look like. It is important

to remember, that the tests are allowed to change and be refactored as the whole

system grows. Change, in fact is welcomed and embraced. The interfaces used

in tests will be adapted when a simpler or more robust version of them makes

sense. When the tests are executed they will fail. Simply because the interfaces

and classes referenced in the test might not even exist yet. The goal of the third

23

2.3 The Typical Test-Driven Development Cycle

activity is to make the tests pass as soon as possible. For that, the developer

might use some hard coded test stubs that return the desired value. After all the

tests pass, it is time to start writing the real code, remove duplications, refactor.

During the whole process, the developer is backed up by the tests. Test-Driven

Development is in some cases the opposite of the more formal, architecture-driven

approach, where designing and planning first, before writing any code, has the

highest priority. (Bec02, p. 11f)

2.3.1 Refactoring

Refactoring is one of the main practices in Test-Driven Development. It helps

changing and improving the design of a system towards simplicity and clearness

by removing duplication and complexity. The aim is to perform small steps which

in the end might sum up to a whole new design. Structures (loops, branches,

methods and even classes) that are similar, can be made identical to eliminate

one of them. One should always start the refactoring by isolating the part that

has to change. One possible way to do that is by extracting code into an extra

method, an object or a method object. Of course, the developer will have to

write a test first before performing these extractions. Refactoring by isolation

and extracting will lead to a higher abstraction level, decreasing the complexity.

(Bec02, p. 181f)

When noticing control flows that are getting too complex (for example by too

many method calls), the developer might consider not calling the method, but

instead perform the steps of the method at the position where it is called. A

method that has a very complicated signature could be instead turned into a

object (method object). For this, a class is created with the parameters of the

method as fields. After creating the method object, the execution of the object’s

24

2.3 The Typical Test-Driven Development Cycle

encapsulated logic is triggered at any point. (Bec02, p. 185ff)

2.3.2 Emerging Design

The aim of software development is to create a system composed by coherent,

flexible components that work also in larger environments. By achieving that, it

is possible to make the system adaptable to new requirements. Test-Driven De-

velopment supports the developer to create such a system by forcing him to write

the test first and not think too much about how exactly the implementation will

look like. If the intention of the test is unclear and hard to read, the requirements

and the bigger picture of the system have not been understood yet properly. By

keeping the tests simple and understandable (see 2.5), the scope of each test is

automatically limited. Another factor that helps to decouple the components is

that the dependencies for a test must be passed on to it. This means, if a very

complex fixture (see 2.5.1) is needed to run a test, then the context dependency

of a component might be too high, making it less coherent. (FP10, p. 57)

(FP10, p. 58) suggest that with Test-Driven Development, the interface that the

components use to communicate with each other are far more important than the

class structure. The interfaces allow the objects to collaborate and deliver the

required functionality. The main goal during Test-Driven Development should be

a design, that heavily enables maintaining. Subsequently, as the system grows,

code must be distributed over objects, packages, programs and even systems. All

distribution and splitting must be backed up by tests, that verify the correct

functionality of the system. There are two heuristics that are used in Test-Driven

Development to accomplish the structuring of code. (FP10, p. 47f)

Separation of Concerns As little code as possible should be changed when one

tries to alter the systems behavior. This is the main reason to keep code

25

2.4 Impact of Test-Driven Development

that performs similar tasks and has similar responsibilities together as close

as possible. This pattern will allow the developer to find the important

places for code changes quickly. (FP10, p. 48)

Higher Levels of Abstraction To avoid duplication and decrease complexity, a

higher level of abstraction is needed. Functionality and responsibilities

should be combined instead of implemented twice and distributed over a

large number of components. (FP10, p. 48)

If these two concepts are applied strictly, they will cause the system to have an

’anticorruption layer’. This means that the parts responsible for the business

domain are separated and isolated from the outside world (the dependencies).

The business domain components are connected by so called bridges. These are

the interfaces (and the interfaces’ implementation) which the components use to

communicate with each other. (FP10, p. 48)

2.4 Impact of Test-Driven Development

It is widely assumed that Test-Driven Development leads to less faulty, maintain-

able, less coupled and better documented code (JS08, p. 77). This section will

focus on how Test-Driven Development influences design, architecture and the

quality of software products and will look into the evaluation of this software

development practice. There are some misconception about Test-Driven Devel-

opment. The first one is that Test-Driven Development is equal to automated

testing. And the second one, that Test-Driven Development means writing all

tests upfront. Which is not true. When applying the test-first approach, one

only writes small, rapid tests for the components being developed at the moment

(JS08, p. 77). Tests like system and integration tests still need to be written

26

2.4 Impact of Test-Driven Development

afterwards. The main goal of Test-Driven Development is to improve the design

and architecture of software, assuring each developer that the changes made on

the source code level did not brake the current design. It is a development strat-

egy, not a testing strategy. By having to write the tests first, a developer is forced

to think about the interfaces and the business logic before writing code (JS06, p.

1).

2.4.1 Test-Driven Development and the Influence on Quality

of Software Design

Ideally, software should be easy to modify, maintain, enhance and reuse. Those

are the internal quality indicators of software design (JS06, p.2). An external

factor is for example the defect rate. (JS06) set up a number of hypothesis about

the Test-First and the Test-Last approach and conducted a experiment to test

them. They created three teams of developers. One following the the Test-First

approach and the other one following the Test-Last approach. The last team did

not write test at all. As a result the Test-First Team (TFT) was able to finish far

more requested features than the Test-Last team (TLT) and the No-Test Team

(NTT) and even complete a graphical user interface. At the same time TFT did

not invest most effort into developing the features. Generally speaking, they had

to spend less time on a line of code then the other two teams. (JS06, p.4)

When looking at the code size and test density, the results in (JS06) display

significant differences in the amount of line of codes per method and also in the

amount of code per feature. The NTT had to write far more code to provide

the same functionality and features as the TFT and TLT. (JS08) come to very

similar results regarding the number of line of code per module, method and per

class (see figure 2.6).

27

2.4 Impact of Test-Driven Development

Figure 2.6: Lines of Code per Module, Method and Class (JS08, p. 80)

They denote, that in each study, the test-first approach resulted in in smaller

modules, methods and classes, decreasing the complexity of code and thereby

making it easier to read and maintain (JS08, p.82). When comparing test coverage,

the Test-First approach will lead to a higher rate of code coverage by unit tests

and to more assertions than the Test-Last approach (JS06, p.4).

Systems developed with no tests at all or with tests written last, tend to be more

procedural than systems developed with the Test-First approach. Test-Last code

tends to have a lot of business logic stuffed into a single class and into single

methods which results in increasing complexity. Test-First systems on the other

side, have the tendency to distribute responsibility among several classes and

methods, leading to object-oriented design. (JS06, p.4)

28

2.4 Impact of Test-Driven Development

Complexity can be measured in independent paths through code (cyclomatic com-

plexity), nested block depth and CBO. Another unit for complexity is the amount

of parameters for methods. Test-Driven Development often results in systems

with a higher amount of classes than systems developed without the Test-First

paradigm. There are concerns that this fact could lead to higher CBO rates.

But no significant CBO higher values could be found in several studies. (JS06,

p.4),(JS08, p.82)

Figure 2.7: Average line of code coverage (JS08, p. 80)

The same holds for the nested block depth and the other metrics, which leads to

the assumptions that test-first programmers write simpler and better structured

code. The programmers themselves seem to have similar perceptions about Tet-

Driven Development. A vast majority of them report that they think the Test-

First approach leads to simpler designs and fewer defects. They have higher

confidence in the software they developed (JS06, p.7). This fact helps reducing

fear during development, which is a major part of the Test-Driven Development

paradigm (see 2.2.1).

29

2.5 Unit Tests and Their Organization, Structure and Patterns

2.5 Unit Tests and Their Organization, Structure

and Patterns

As described in the previous sections, the heart of Test-Driven Development are

the unit tests. This section will focus on the attributes of unit tests and also

on how they can be organized in regards of structure and patterns. Tests are

created and maintained to provide a better understanding of the SUT, improve

overall quality and to reduce risk. They should be easy and fast to run, write and

maintain (Mes07).

Figure 2.8 shows the typical effort and the return of investment of automated tests

during the development of a software system. One can see, that the initial effort

of introducing Test-Driven Development is high as the developers might have to

learn new techniques but at the end this methodology provides large effort saving

potential, given that the tests are maintained and organized in a structured way.

Figure 2.8: Return On Investment after introducing Test-Driven Development
(Mes07, p. 20)

In the context of Test-Driven Development, tests represent also the documen-

tation of the system being developed. As (Mes07) mentions, tests provide the

30

2.5 Unit Tests and Their Organization, Structure and Patterns

developer (or any other stakeholder for that matter) with a understanding of the

system for which otherwise they would have to spend a lot of time reviewing and

introspecting the code. The simple reason for this fact is that unit tests describe

what a system or a part of the system does by specifying what the result should

be but not necessarily how the system does it.

Without proper automated tests (or at least some kind of tests) it is impossible

to say if a change that has been introduced did break something. This is often an

issue with legacy systems. The more code coverage tests provide the smaller is

the possibility of breaking something without noticing it. And if the modification

broke something, tests provide information where the defect is located. But one

has to be careful not to cause harm by creating tests. This could happen when for

example test logic is embedded in production code (see 2.5.2). If done correctly,

unit tests and therefore Test-Driven Development will lead to, or at least support,

fearless development (see 2.2.1). (Mes07)

Unit tests should adhere to some basic rules (Mes07). These are:

High Degree of Automation The higher the degree of automation is, the easier

the tests can be run.

Self checking Developers are informed when a test fails, reducing the manual

effort if everything passes.

Repeatable Each time a test is run under the same circumstances, the result

should be identical.

Expressive The intent of the person who wrote the test should be clear.

Separation of concerns As mentioned previously, test logic and production logic

must be kept separately at all times. Furthermore, each test should only

31

2.5 Unit Tests and Their Organization, Structure and Patterns

focus on a single concern, allowing a better location of defects.

2.5.1 The Four Phases of an Unit Test

(Mes07) identifies four typical phases that that each unit test should have. These

are as follows

• Fixture Setup

• Exercise SUT

• Verify result

• Fixture teardown

Fixture setup is the phase where is the context for the test is created and config-

ured. This environment is called fixture. This could happen simply by calling the

appropriate methods in the system that is going to be tested. The second phase is

the actual execution or interaction with the SUT. In the third phase the result is

evaluated and verified. The final destroys the fixture and put the SUT back into

the state before fixture setup. Listing 2.1 shows a very simple unit test including

each phase. Of course, it is possible to put the setup and teardown phase into

separate methods (this would also decrease the number of duplicate test code).

Separating a test into four phases allows the developer to know exactly which

part of the system is being currently tested. (Mes07)

Each four-phase test is implemented by a test method executing each of the phases

(see listing 2.1);

32

2.5 Unit Tests and Their Organization, Structure and Patterns

public void t e s t F i x t u r e I n l i n e ()

throws Exception {

// Fix ture se tup

StationManagementFacade facade = new

StationManagementFacade () ;

BigDecimal s t a t i o n I d = facade . c r ea t eTe s tS ta t i on ("HBF")

;

try {

// Exerc i se system

L i s t t ra in sAtDes t ina t i on1 =

facade . getFTrainssByOrig inAirport (

s t a t i o n I d) ;

// Ver i f y outcome

a s s e r tEqua l s (0 , t r a in s sAtDes t i na t i on1 . s i z e ()) ;

} f ina l ly {

// Fix ture teardown

f acade . removeStation (s t a t i o n I d) ;

}

}

Listing 2.1: A simple four-phase test

2.5.2 Test Smells

(Mes07) defines a test smell as something that is a symptom of a problem. Because

a test smell is a symptom, it does not describe where the problem might be

originating from (as it could have multiple sources). There are two major kinds

of test smells. Code smells that indicate a error inside the test code and behavior

33

2.5 Unit Tests and Their Organization, Structure and Patterns

smells, which could lead to a wrong outcome of a test during execution.

Most of the available literature focuses on how a test should be written. This

section will give an insight into some error prone ways to design, write and refactor

tests. At the same time, one or more possible solutions will be provided for each

smell.

2.5.2.1 Code Smells

Code smells in the context of tests are recognized by developers when they main-

tain their test code. Code smells tend to affect cost of tests and they also are a

sign that behavior smells will follow.

2.5.2.1.1 Obscure Test

As mentioned previously, tests act as documentation for the system being de-

veloped. On the other side, they are supposed to be a executable specification.

This leads to a problem, because the granularity needed for both of the goals con-

tradict each other. Tests that are too detailed or to little detailed could be hard

to read and understand. A further problem could be that a test needs to much

information to describe what is being tested. This symptom is called obscure test.

Because obscure tests are heard to read, they increase the costs of maintaining

test code and also can’t act as documentation. The second issue with obscure

tests is that the might lead to buggy tests and even hide errors in the production

code. The main cause for obscure test might be a lack of motivation to regularly

maintain test code, keep it clean and simple and the knowledge that the code

written for tests is as important as the actual production code. Test code can

be kept clear and simple by refactoring it regularly. As mentioned earlier, the

34

2.5 Unit Tests and Their Organization, Structure and Patterns

cause of obscure tests can be too much or too little information inside a single

test. There are several other causes for a obscure test.(Mes07, p.186)

Mystery Guest A mystery guest is a test where the human reader is not able to

see the purpose of a test because vital information is placed outside the test.

The state of the SUT before running the actual test is the pre-condition

for that test. Responsible for creating this state is the phase of Fixture

Setup. The assertions made inside a test are responsible for verifying the

post-condition of a SUT. A mystery guest depends on information that is

located outside the test, making it difficult to understand the purpose of

the test. When a test is difficult to understand without having to look up

information outside the test, then it misses its purpose as documentation.

An example for a mystery guest would be test that relies on some external

resources (for example a csv file or the contents of a database) for fixture

setup or for result verification. Changing the external resource could to

lead unpredictable test behavior. A possible solution to mystery guests

could be creating a fixture freshly for each test by an in-line setup (this

would include creating the information which then acts as the contents of a

file or a database within the fixture instead of reading them from an external

resource). To avoid putting too much details inside the fixture, it is possible

to use creation methods (Mes07, p.186-188).

Eager Test An eager test tries to validate and verify too much functionality

inside a single test. It could be very difficult to tell apart the fixture from

the actual testing. This behavior might be acceptable when the tests are

executed step by step by an human who can decide when to abort a test.

A solution to this problem could be writing single condition tests (Mes07,

p.185).

General Fixture When trying to write a fixture that ‘fits all‘, it is possible to end

35

2.5 Unit Tests and Their Organization, Structure and Patterns

up with a fixture is too large for the currently executed test. This smell not

only leads to difficult to understand relationship between the test and the

fixture but also affects the performance of test automation. Large fixtures

also tend to not be usable as documentation anymore. A possible solution

would be to write an minimalistic fixture which can be used and extended

by the tests (Mes07, p.190-192).

Irrelevant Information When setting up the fixture in-line a test, it is important

to keep the complexity of the fixture in mind. Very long and complex fixture

logic tends to obscure the pre-conditions of a test. The same goes for the

verification logic of a test. The cause for this smell could be hard coded test

data or a general fixture which then needs to be customized. Once more,

the impact of irrelevant information might be hard to read test which then

can’t act as documentation (Mes07, p.190-192).

2.5.2.1.2 Conditional Test Logic

A sign for test logic that is too complicated is the presence of test code that

might never be executed and is therefore considered a code smell. Conditional

test logic tends to make tests more complicated than they actually are. Symp-

toms of this smell are loops and if statements inside a test. The extra complexity

introduced by conditional test logic could lead to the project level smell of high

maintenance cost. When using conditional test logic, one can’t be as confidence

about the outcome as with single path executions. Another issue with multiple

paths of execution is lack of complete deterministic behavior each time the test

is executed. It can also lead to tests that are verifying the wrong behavior and

it becomes more and more difficult to catch bugs the more branches and loops

the test contains. The reason for the existence of conditional test logic might

be the missing ability of the SUT to deliver valid data for verification when the

36

2.5 Unit Tests and Their Organization, Structure and Patterns

test is executed. So the developers try to steer away the execution of the SUT

from those parts. Another reason for the existence of conditional test logic is the

verification of collections of objects (thus the loops) or the verification of complex

objects. Conditional test logic leads to obscure tests. (Mes07, p.200)

Conditional test logic might also be the result of (Mes07, p.200ff):

Flexible Tests A test tries to verify parts of the SUT depending on under which

circumstances it is run. This factor the execution path depends on could

be anything from the time of the day to a specific value of a variable. The

origin of this smell is the fact that it not always possible to make the SUT

independent from its surroundings. A possible solution for this smell could

be writing separate tests for each case.

Conditional Verification Logic This is very similar to flexible tests. But in this

case not the execution path of the test depends on some kind of variable

but instead the verification. For example, the state of a field is only verified

when it met a previous condition.

Complex Teardown When a test is finished it needs to clean up after itself. Oth-

erwise the next test could find the SUT in a corrupted state (especially when

a common fixture is used). If a test uses multiple resources, each resource

needs to be put back into a valid state. This can become very complex.

The smell of complex teardown can be avoided by for example using fresh

fixtures for each test or a automated teardown.

Multiple Test Conditions Trying to verify results for a set of input values will

create multiple test conditions inside a single test. An example for this

smell would be assertions inside a loop, depending on the value of the loop

counter. This might cause very difficult to locate failed assertions.

37

2.5 Unit Tests and Their Organization, Structure and Patterns

2.5.2.1.3 Hard-to-Test Code

An mentioned in 2.2.1 Test-Driven Development helps backing up changes and

modifications simply by using tests to verify the changes made, thereby reducing

risk and fear. The greater the percentage of test coverage is, the more confident

the developer can be about the changes made. On the other side though, writing

tests is also added effort to the development cycle. So the aim should be a code

base which can be easily tested. Sometimes this can be very difficult because

of the structure of the code or the project. Especially GUI-code, code for multi-

threaded and highly coupled software is difficult to test during development time.

There could also be parts of the system that should be developed test-driven but

simply are not visible to the tests (for example classes with a private constructor

can not be easily instantiated). These problems demonstrate that hard-to-test

code can make it sometimes impossible to get the desired amount of test cover-

age for enabling fearless development. (Mes07, p.209) The following list gives an

more detailed overview of the circumstances leading to hard-to-test code (Mes07,

p.210-2012).

Highly Coupled Code Code is highly coupled when unit tests for a class can

not be written without also creating and testing several other classes. So

it is not possible to run the test in isolation which violates the principle

of unit tests. Test-Driven Development is a way to fight a high degree of

coupling because it helps improving the design step by step and backing up

each design modification by passing tests. As a result of this approach the

developer gets a far less coupled code.

Asynchronous Code A symptom of asynchronous code are classes that can not

be testes directly because the unit to be tested would return to the caller

immediately. The execution of the test has to be coordinated with the state

38

2.5 Unit Tests and Their Organization, Structure and Patterns

of the SUT which sometimes is impossible. These attributes lead to higher

complexity not only during the test execution phase but also during the

verification phase. Asynchronous Code can also lead to tests that need very

long time to finish (or can even be non-deterministic). This will decrease

the motivation of the developers to follow the test-driven paradigm because

long running tests will increase the level of frustration. A solution to this

smell is to seperate the the logic which needs to be developed and tested

from the execution mechanism of the concurrent or asynchronous parts.

Untestable Test Code The occurrence of obscure tests and/or conditional test

logic will sometimes make it unclear if the test is even correct leading to

potential buggy tests and causing high costs during maintenance. Overly

complicated tests could be simplified by moving parts of the body into

separate methods.

2.5.2.1.4 Test Code Duplication

Test code duplication happens when a test or a part of a test is repeated sev-

eral times implicitly or explicitly. Tests could, for example, have the same fixture

or verify the same results again and again or even execute expensive parts of the

SUT several times, such as complex network or database operations. This is a

disadvantage not only in regards of maintainability (because each time when the

logic needs to be changed in one test, it has to be changed in all duplicating tests

too)but could also lead to long execution time which will again increase frustra-

tion levels among the developers causing them to write less tests. Even worse,

when the design of the SUT changes (for example new method signatures), all

the tests will fail at once. This example shows that test duplication could lead to

fear during development time and as a result could keep developers from changing

and improving the SUT because they would have to alter a lot of existing test

39

2.5 Unit Tests and Their Organization, Structure and Patterns

code. (Mes07, p.213)

Duplicated test code if often introduced by ‘cut-and-paste‘ reuse because it seems

to be an easy method of saving time. This mindset could be caused by missing

refactoring skills or time pressure. Test code duplication can be avoided by using

so-called extraction methods. This means putting all of the shared code into a

separate place. This also works for reoccurring fixture, teardown and verification

code. Another reason for test duplication are developers who try to ‘reinvent

the wheel‘ simply because they might not know that somebody else might have

written a similar or identical test or parts of a test. Using extracted methods

with good names will also minimize this smell. (Mes07, p.214f)

2.5.2.1.5 Test Logic in Production

In some cases, the SUT contains parts that are only there to enable testing.

These parts could be used to get access to the internal state of the SUT which

otherwise would not be possible. They might also be used to alter the state of

the SUT during testing. This structure leads to parts of the system that behave

completely different in the testing environment as in production. An example for

misplaced test code are so called test hooks. They decide if the production logic

or the path designed for testing should be executed. Listing 3.4 shows a code

fragment leading to this code smell. A reason for the introduction of test code in

the production environment is often the desire to make the behavior of the SUT

more deterministic during testing situations. This could be for example some kind

of database access. A possible solution to this problem might be provided by the

strategy pattern to encapsulate code designed for testing situations. Another form

of test logic in production code are methods only used strictly by tests. These

extra methods will make the SUT more complex and harder to understand and

might be caused by the application of Test-Driven Development. This problem

40

2.5 Unit Tests and Their Organization, Structure and Patterns

can be avoided for example by extending the class which needs to be developed

or tested and putting the extra internal logic in a subclass. The final cause for

test logic in production code might be a dependency the production code has on

some parts of the test logic. A symptom of this smell might be the fact that that

the product can’t be built without including the referenced parts of the test code.

The danger here is that test code might be executed in a non-deterministic way

leading to unpredictable results. (Mes07, p.217-221)

i f (t e s t i n g) {

return hardCodedCannedData ;

} else { // the r e a l l o g i c . . .

return gatheredData ;

}

Listing 2.2: Meszaros2007]A test hook in production code.(Mes07, p.217)

2.5.2.2 Behavior Smells

Behavior smells will be notices more likely than code smells because they lead

to non-compiling test code or failing tests. A common pattern among behavior

smells are tests that used to pass but suddenly fail when executed another time.

This pattern is called a fragile test (Mes07, p.13). Obviously, this pattern could be

in fact a desired behavior to tell the developers that the changes they introduced

broke the SUT. But that’s is not what is described by the word fragile test because

they even break when the code stays the same and only the circumstances change.

41

2.5 Unit Tests and Their Organization, Structure and Patterns

2.5.2.2.1 Assertion Roulette

When inspecting the output of a failed test, it is very difficult or even impos-

sible to tell exactly which assertion failed. It gets even more difficult when the

failure can not be reproduced, making it impossible to tell if the failure origi-

nated from defective code or some environmental issues. Assertion roulette can

be caused by:

Eager Tests see paragraph 2.5.2.1.1

Missing Assertion Message When executing tests it is important to create out-

put so that the reader of the tests result will be able to find exactly those

tests and assertions that caused the failure. Assertion messages are even

more important when the same kind of assertion is made several times in a

row (e.g. sequential equality assertions). A possible solution to this cause

can be simply adding at least simple assertion messages to the tests (Mes07,

p.226f).

2.5.2.2.2 Erratic Test

Tests which sometimes pass and sometimes don’t are so called erratic tests. Their

result depends on when, where or even by whom they are executed. As one can

see, this behavior is not acceptable when working in a team using Test-Driven

Development. Simply removing such a test is not a option as it would result in

source code not backed up by tests, which is not helpful when trying to reduce

fear during development phase. Leaving it unchanged will cause failing test in a

non-deterministic way. Finding out why a test sometimes fails is a difficult task.

One has to collect data especially about the environment and the state of the SUT

for both cases, when it passes and when it fails. Figure 2.9 describes a simple

42

2.5 Unit Tests and Their Organization, Structure and Patterns

process to find the reason for an erratic test. (Mes07, p.228)

Figure 2.9: Troubleshooting an Erratic Test(Mes07, p.20).

There are several hints that point the developer to erratic tests. For example

could some tests be depending on each other. They are called interacting tests.

A test that used to pass and fails after a test is added to the suite or removed

from it is a very specific hint for interacting tests. The same goes for tests that

only fail if another test failed first. A common source for interaction between test

is often a shared fixture. In a more general way, one could say that tests interact

each time they share a common resource, for example a database. A possible

solution for this dilemma would be using separate resources for each test, or at

least provide a fresh fixture for each test. And if a resource has to be shared, it

should be immutable or each test should leave the resource in the same state it

found it in. (Mes07, p.231f)

Another cause for erratic test is resource leakage. A symptom for this smell are

tests that keep getting slower or even fail. The reason for the decrease in speed if

often a too greedy test or the usage of finite resources. Greedy in this context could

also mean that needed resources are not freed after usage. A possible solution is a

43

2.5 Unit Tests and Their Organization, Structure and Patterns

guaranteed fixture teardown after the test has finished. Also, a test should never

optimistically assume it would receive a resource when needed. Instead, the test

should check if the resource is really available before continuing with its execution

or even set up the resource during fixture phase. (Mes07, p.232f)

2.5.2.2.3 Frequent Debugging

When it is necessary to use manual debugging very often to find the cause for

a failed test, (Mes07, p.248) suggests that it might be because of insufficient de-

fault localization. A test is supposed to tell where it failed and why. Not doing

so might be a hint that a unit test is not detailed enough or there is a lack for

an integration test, that would point out integration problems. Tests with too

low granularity are often a reason of sloppy Test-Driven Development where unit

tests were written for higher-level components but not for each method and for

each line of code existing in the class. Another reason for this are often tests that

are not run frequently enough, which is also against the Test-Driven Development

philosophy. If the tests a run after each change, the error would show up much

faster. Frequent debugging has a negative impact on the development process, as

it slows down the development. As a consequence the productivity decreases and

the results are far less predictable as they could be. A way to avoid frequent de-

bugging is to really stick to the paradigms of Test-Driven Development. (Mes07,

p.248f)

2.5.2.2.4 Slow Tests

Unit tests are supposed to run fast so that they are executed often (i.e. at each

change) by the developers. So if a test runs very slow, it directly reduces the

productivity of the developer executing the test in that this person is blocked by

44

2.5 Unit Tests and Their Organization, Structure and Patterns

running tests. A possible solution to speed up tests might me using a common

fixture. But this approach may lead to other difficulties like erratic tests (see

2.5.2.2.2). Another solution might be using fake objects which run faster than

the real ones. A way to find bottlenecks are profilers or just recording the start

and end time of each test. (Mes07, p.250f)

Reasons for slow tests include:

Slow Component Usage A slow component is a component with high latency.

A common example is the usage of a database. The average respond time

for a database action like reading or writing takes up to 50 times longer

than running the same operations against a in-memory data structure. So

instead of using real databases for the unit tests, Meszaros suggests so called

Test Doubles which run much faster. (Mes07, p.250f)

General Fixture Rebuilding the same (complex) fixture again and again by each

test can lead to slow tests. In general, a fresh fixture is suggested because

it reduces or removes interconnectivity between tests. So if it is absolutely

necessary to use a shared fixture instead of a fresh general fixture, the shared

fixture should be at least immutable to avoid unwanted side effects. But

even with immutability, shared fixtures might lead to erratic tests. (Mes07,

p.255)

Asynchronous Test Asynchronous Test sometimes take long to finish because

they contain intended waiting periods to assure that some other process

finished successfully. One single delay might not cause a long delay, but

if added up, these tests could cause a significant increase in test duration.

A way to avoid this problem is to test the asynchronous parts of the SUT

synchronously. One could do that by extracting the logic inside the asyn-

chronous parts into extra testable components. (Mes07, p.255f)

45

2.5 Unit Tests and Their Organization, Structure and Patterns

2.5.2.3 Project Smells

Project smells indicate that something is wrong on a project level. Still, they

originate in one or more behavior or code smells. Project smells are a tool espe-

cially used by project managers to find faults in functionality, quality, usage of

resources or project costs without having to write tests them self. (Mes07, p.13)

2.5.2.3.1 Buggy Tests

When applying Test-Driven Development, the tests reduce fear by providing as-

surance to the developers that the system works as required if all the tests pass.

It is difficult though to prove that the tests themself are correct. A symptom for

this smell are tests that fail not because of wrong production code but because

the tests are wrong. Another symptom of buggy tests is production code that

passes during development but fails in the production environment. False nega-

tive and false positive test can lead to unpredictable behavior. The main causes

for buggy tests are fragile tests, obscure tests (see 2.5.2.1.1) or hard-to-test code

(see 2.5.2.1.3). To avoid buggy tests, it must be assured that developers have

enough time to learn to write good unit tests, refactor production code and test

code and write the tests before writing production code. (Mes07, p.260ff)

2.5.2.3.2 Developers Not Writing Tests

Covering each line of production code by test code is an essential paradigm of

the test-first approach. Not following this rule will lead to bugs that will be get-

ting into the production environment. This behavior will cause the developed

system to be in test debt and will lead to inefficiency and higher costs to add new

functionality, remove bugs or maintain code. Finally, test debt will cause a fall

46

2.5 Unit Tests and Their Organization, Structure and Patterns

back to non-agile development. (Mes07, p.263)

The reasons for test debt often are:

Not Enough Time Developers not having enough time to write tests before writ-

ing production code often is a result of a too tight schedule or supervisors

who don’t understand the importance of the test-first approach.

Hard-to-Test Code see 2.5.2.1.3

To eliminate a project smell like this, is is necessary to have a person on the team

with a greater view on the whole system. It is very difficult for a single developer

to tell if each other member of the team has been writing tests before writing the

production code. Most of the time they won’t be able to tell if the whole source

code base is even backed up by tests at all. If the reason for missing tests is a

shortage of time, it is the duty of the managers to ensure that enough time is

available for the developers to first write the tests, then the production code and

refactor the created code to improve quality.

2.5.3 Test Patterns

Because the tests in Test-Driven Development act as documentation, they must

be able to make it obvious to the reader, what exactly they are testing. Because

they also are the specification of the SUT, it is of paramount importance, that

they are easily to understand because only then they can be used to verify the

proper behavior of the SUT. To do that, Meszaros suggests to always split them

into four parts (Mes07, p.358), calling this pattern the Four-Phase Test (see 2.5):

• Fixture

47

2.5 Unit Tests and Their Organization, Structure and Patterns

• Exercise

• Verify

• Teardown

2.5.3.1 Fixture Setup Patterns

Two kinds of fixtures can be distinguished. The first one is the fresh fixture.

This type of fixture creates its own SUT-state by assembling it for its private use,

decreasing the odds for a erratic test and helping to see the tests as documentation.

The idea is to use a fixture only once during the run of a single test. Tests must

not rely on any assumptions made about the state of the SUT created by any

other fixture. This approach will also avoid tests depending or interacting on

each other. (Mes07, p.311f)

2.5.3.1.1 In-Line Setup

The first pattern for fresh fixtures is the In-Line Setup. That means that the

constructors of the object are called directly by the tests in-line. It is important

to put the fixture code at top of each single test, so they are more readable and

support the documentation function of the test. Obviously, this pattern is most

applicable when the test logic is not too complex. Otherwise it is better to extract

the fixture code and put it into a own method. In-Line Setup can also be used

when starting to write the tests for pieces of code that are yet to be developed.

When the tests and the production code become more sophisticated, the fixture

parts can still be executed. This would mean applying the steps of Test-Driven

Development to the tests and not only to the actual code. (Mes07, p.408ff)

48

2.5 Unit Tests and Their Organization, Structure and Patterns

2.5.3.1.2 Delegated Setup

As already mentioned, parts of or the whole fixture can be extracted and put

into separate methods. The fixture then is created by calling those methods.

This pattern is called Delegated Setup. One of the principles of Test-Driven De-

velopment is to never duplicate code. When applying the In-Line Setup pattern,

this principle can be easily violated at least for the test (leading to the same

drawbacks one gets when having duplicate code in production code). The Dele-

gated Setup pattern allows the developers to hand over the creation of objects to

dedicated methods to avoid duplication and still allowing the tests to act as docu-

mentation. By moving the responsibility of object creation to dedicated methods,

the smell of fragile tests can be minimized. (Mes07, p.411ff)

2.5.3.1.3 Prebuilt Fixture

The Prebuilt Fixture pattern is used for shared fixtures. Shared fixtures for

tests are often used if a fresh fixture for each test would be too time- or resource

consuming. By sharing the state of a system, tests can be executed significantly

faster (Mes07, p.317). Although shared fixture often help speeding up tests, they

also have some disadvantages. They can lead to dependencies and interactions

between tests, rendering them useless as documentation and specification. They

can lead to erratic, obscure and fragile tests because they will have to satisfy the

requirements for all the tests they provide the fixture for (Mes07, p.318).

Applying the Prebuilt Fixture pattern means creating the fixture before executing

the tests and sharing it among the tests. Example for such a fixture would be

copying all the information needed from a database to the memory prior running

the tests. (Mes07, p.429f)

49

2.5 Unit Tests and Their Organization, Structure and Patterns

2.5.3.1.4 Lazy Setup

Each tests is able to set up the fixture if the one it relies on is not ready. This

pattern is called Lazy Setup. The initialisation still only happens once. All tests

executed after the fixture creator will still use the shared fixture. A difficulty

when applying the Lazy Setup pattern is to decide if the fixture can be torn down

yet or not (maybe there are still tests left to run). (Mes07, p.435ff)

2.5.3.2 Result Verification Patterns

Result verification has the purpose to check the correct behaviour of the tested

piece of code. Because of that, this phase of the test acts as specification for the

system to be developed. Therefore the tests have to be self-checking. Self-checking

means that the tests themself will verify the the outcome of the execution of the

code to be tested. Only because of this feature it is possible to run Test-Driven

Development cost-effective and to execute the tests frequently. When verifying,

one has to distinguish between state verification and behavior verification. For

state verification, some specific parts of the SUT are executed and afterwards the

SUT’s state if examined. Verifying behavior on the other side is more complex

because of the dynamic nature of the SUT (some paths might be executed, others

might not). Behavior is verified by observing outgoing method calls of the SUT.

(Mes07, p.107ff)

This section will introduce state verification patterns since they are the primary

way in Test-Driven Development to verify the correctness of the SUT.

2.5.3.2.1 State Verification

50

2.5 Unit Tests and Their Organization, Structure and Patterns

As already mentioned, self-checking means that tests have to verify the outcome

of the execution of the tested code during their own execution. Therefore a test

compares the final or the temporary state of the SUT after execution with a de-

fined value. This pattern is called State Verification. State Verification is often

used when developers are interested only in the outcome of a test execution, not

how the SUT created that state. (Mes07, p.462f)

The state verification pattern comes in two variations. Those are, according to

(Mes07, p.463f):

Procedural State Verification This variation expects the developer to simply

use assert methods sequentially to verify that each part of a object or a

system hast the expected value. Obviously, this simple approach also has

the disadvantage that it could make a test obscure and thereby hard to read

because complete verification might result in a large number of assertion-

method calls.

Expected State Specification When applying Expected State Verification, one

has to create and populate objects with the desired values. Using equal-

ity assertions, the received values from the SUT then are compared with

the desired values. The pre-configured objects are called Expected State

Specification. This approach will make the tests more readable. To in-

crease readability, creation methods should be used to extract the object

creation from the actual test. Of course, to perform result verification by

using pre-configured objects, those types have to implement some kind of

‘equals‘-method which then is called by the unit testing framework.

51

2.5 Unit Tests and Their Organization, Structure and Patterns

2.5.3.3 Test Double Patterns

Often in Test-Driven Development, a developer has to test code, which depends

on other parts of the system, which are not developed yet or simply unavailable.

To achieve that, there exist several so called Test Double patterns, which allow

the non-existing components to be replaced by test-specific equivalents. That

equivalent is called test double. Obviously, the interface used for test doubles

can later on be developed to productive parts of the whole system. During the

fixture phase, a test double can easily replace the real (but unfinished) object.

Developers should be aware that the production code later on will probably differ

from the test double. (Mes07, p.462f) This is the point where the advantages of

Test-Driven Development become visible again. Because the API stays the same

and only the implementation changes, developers and managers can keep working

on the unfinished parts of the system independently and without fear, because

the will have the assurance that everything is working as expected, as long as the

tests pass after removing the test doubles.

2.5.3.3.1 Mock Object

A Mock Object is a way to verify the behavior of a SUT. Because it is a vari-

ation of the Test Double patterns, it has to provide the same API as the real

object will. Before usage, a mock object has to be configured by telling it which

values it should return depending on the parameters passed on to it. The mock

object can also be configured to check which method calls occurred and which

did not, making it a strong tool for behavior verification. After creating and

configuring the mock object, it hast to be installed into the SUT so it is used

instead of the real object. It is a powerful tool to notice unwanted side effects like

unwanted method calls. A disadvantage might be the fact, that the values for the

52

2.5 Unit Tests and Their Organization, Structure and Patterns

parameters handed over to the mock object have to be predicted and the actual

values handed over during runtime have to meet those predictions. Otherwise the

test will fail. Because mock objects need to be created and configured before the

relevant parts ot a test are executed, they might decrease the readability of a test,

turning it into a obscure test. (Mes07, p.544ff)

2.5.3.3.2 Fake Object

A Fake Object is an actual, but very simple implementation of the component

that is needed for the test. One could say, that it might be the very early version

of a component developed using Test-Driven Development. It might be also called

a lightweight implementation of the component to be developed. Often, a fake

object simply returns a pre-defined value regardless of what the input is. Fake

objects are typically created during fixture. As with mock objects, fake objects

too are used when the real implementation of a component is not available or

would be too resource consuming to create and configure. The Fake Object pat-

tern is not limited to objects and can also be applied to databases or any kind of

web-service. (Mes07, p.551ff)

2.5.3.4 Test Organisation Patterns

As the system that is developed, grows, also the tests will grow. Ideally, no

single line of code should be untested. To use the tests as documentation and

specification, they need to be easily findable, readable and maintainable. There

are generally two requirements for the organisation of tests: the tests available

for the whole system or single components should be runable easily. At the same

time tests belonging to similar parts of the system should be kept close to each

other. This section will introduce a few patterns widely used to achieve these

53

2.5 Unit Tests and Their Organization, Structure and Patterns

goals. (Mes07, p.592)

2.5.3.4.1 Test Code Reuse Patterns

Patterns for test code reuse will ensure that test code is not duplicated. Test

code duplication is inevitable as the amount and complexity of the tests and the

system to develop rise. Duplication will lead to well known and severe problems

already known from traditional object-oriented software development. The first

pattern to fix test code duplication are Test Utility Methods. Each piece of logic

that occurs more than once, it packed into subroutines which then can be called

from any tests. Utility methods can be used for object creation, to retrieve ob-

jects from a shared fixture, for encapsulation of parts of the SUT which are no

necessary for the current test and for custom assertions and verification. Test

Utility Methods will always reduce the amount of code in a test. Sometimes this

could make a test harder to read. Therefore, it is important to give the meth-

ods speaking names to ensure that the test can still be used as documentation.

(Mes07, p.599ff)

Another variation for test code reuse is the Parameterized Test pattern. Tests

often perform the same tests but with slightly different input. Normally, this fact

will result will in a large amount of duplicated test code. To avoid duplication,

the parts that are the same are extracted into a subroutine and can be called

with different parameters. A parameterized differs from the previously mentioned

utility method in that it will perform all four phases of a test (fixture, execution

of the SUT, verification and tear-down). Again, this approach will help to avoid

obscure tests. (Mes07, p.607f)

54

2.5 Unit Tests and Their Organization, Structure and Patterns

2.5.3.4.2 Test Class Structure Patterns

With a increasing number of tests and production components like classes, one

must decide where to put the tests for each component of the production system.

Because tests are documentation and specification at the same time, they must

be organized in a way, so that they provide a big picture easily. The test organ-

isation will also have a big impact on how the fixtures for the tests are designed

and executed. A popular pattern for this issue is the Testcase Class per Class

Pattern. A Testcase Class will contain all the tests for a single class of the SUT.

This approach is usually the best choice when the development begins and the

number of classes in the SUT is little. This pattern usually comes naturally when

applying Test-Driven Development. (Mes07, p.617ff)

Another way to organise the tests is to group them by feature. This pattern is

called Testcase Class per Feature. It is a more systematic approach than to just

put all the tests for a class into a single testcase class. Instead, the developers have

to decide which feature is verified by a test and group the tests depending on that

decision. Grouping tests by the feature they verify, increases the specification role

of tests in Test-Driven Development. A variation of this pattern is the Testcase

Class per Method pattern, where tests are grouped based on the method they

verify. This pattern is chosen often when a method needs to be tested with

different parameters values. Another variation would be combining the tests

depending on a user story. (Mes07, p.624ff)

55

2.6 Embedding Test-Driven Development Into a Appropriate Environment

2.6 Embedding Test-Driven Development Into a

Appropriate Environment

Test-Driven Development is a practice highly embraced and introduced to a large

audience in Kent Beck’s ‘Extreme Programming Explained‘ (Bec00). This section

will show how Test-Driven Development is embedded into the XP methodology

and benefits when surrounded by the principles and strategies defined by (Bec00).

2.6.1 Risk

On of the biggest challenges in the business of software development is the man-

agement of risk. Some examples denoted by (Bec00) and (Yli) are:

Schedule Slips Having to tell the stakeholders that the product won’t be ready

in time.

Project cancellation Project is cancelled before it was finished

Defect Rate The developed solution is never really used because of too much

bugs in the final product.

Poorly Understood Requirements The solution developed does not solve the

problems it was supposed to solve.

Changing Requirements Over time requirements can change. This could lead to

a situation where the requirements identified at the beginning are no longer

valid.

Missing Resources and Staff Turnover As agile development aims to create a

56

2.6 Embedding Test-Driven Development Into a Appropriate Environment

working and growing product each iteration of the development process, it

might be difficult to have the required people and other resources available

in time.

On a more abstract level, schedule slips can be addressed by shorter release cycles,

limiting the scope of each slip. Each release should use one-to-four week iterations

and within an iteration tasks should be scheduled for one-to-three days. Project

cancellation can be avoided by asking the customer to choose those features for a

release which make the biggest impact in term of business sense. This approach

ensures that there is less to go wrong before going into production. Features

chosen by the customer with the highest priority should be implemented first.

When handling the defect rate, both perspectives of the stakeholders (customer

and developers view) are considered by following the test-first approach and using

acceptance tests written by the customer (see 2.2.2). Poorly understood require-

ments are one of the main reasons for failing software development projects (see

1). To handle this risk the customer should be a part of the core team at devel-

opment site to continuously specify, clarify and also refine the requirements. As

already mentioned, short release cycles should be preferred when applying Test-

Driven Development or agile development in general. This leads to evolutionary

changes during the development of a single new release in which the customer is

welcomed to introduce new functionality as a substitute for not yet implemented

functionality allowing to handle the risk of changing requirements and still keep-

ing the amount of work predictable as new functionality is not simply added to

the workload but substituted for a planned but not yet implemented functionality.

The issue of missing resources and staff turnover is solved by giving the develop-

ers the responsibility for estimating the time they will need to complete a new

functionality or feature. Giving them feedback about the time effectively taken

enables them to improve future time estimates and avoid frustration caused by

impossible to meet estimates. These actions, combined with the right communi-

57

2.6 Embedding Test-Driven Development Into a Appropriate Environment

cation culture and help for new team members decreases team fluctuation and

leads to a higher job satisfaction. (Bec00)

2.6.2 Four Values

Personal goals have the disadvantage of often conflict with social goals which

are defined with a longer time period in mind then shot-term personal goals.

Therefore, a set of common values is required to give guidance to each member

of a team when making decisions. (Bec00)

In XP and therefore Test-Driven Development, those values are:

• Communication

• Simplicity

• Feedback

• Courage

2.6.2.1 Communication

A lot of problems in software development can be traced back to missing or wrong

communication, making it the first value of XP. Communication failures do not

happen by accident but instead often are a result of circumstances that lead to bad

communication. For example a programmer could be punished by the team leader

of manager for mistakes made by that programmer and, as a result, keep bad news

to him in the future. The aim is to establish the right amount of communication

(i.e. keep the important information flowing) by introducing practices that won’t

58

2.6 Embedding Test-Driven Development Into a Appropriate Environment

work without communication. One of those practices is Test-Driven Development

as the created unite tests are not only a specification but also provide documenta-

tion for the piece of code they specify and thereby enable communication. Other

communication supporting activities are pair programming and task estimation.

(Bec00; AL12)

2.6.2.2 Simplicity

The first step of introducing and keeping simplicity to the project is to ask the

developers, what the simplest thing might be, that would work in the particular

situation. Simplicity demands a specific way of thinking. That is, the developer

should not start wondering about the things that need to be implemented in

future. XP follows the paradigm that it is better to implement the simplest

solution available at the moment and to invest some extra effort if something

more sophisticated is needed, than to implement a more advanced solution which

may never be used. (Bec00)

The first value, communication, and simplicity are supposed to mutually support

each other. The simpler a solution is, the less communication is needed. If a

system is complex, communication helps in decreasing its complexity thereby

making it simpler. (Bec00)

(MS10) list some of the benefits that come along with increased simplicity. These

are:

• Better, more robust components.

• Better interoperation between components

• Better user comfort

59

2.6 Embedding Test-Driven Development Into a Appropriate Environment

• Better production processes

• Better maintenance and support

Test-Driven Development drives simplicity by forcing developers and customers

to be clear about the software being implemented, as the first group has to write

tests before starting to code, clarifying the interfaces and their usage. And the

latter group is involved in specifying the requirements (e.g. by writing acceptance

test).

2.6.2.3 Feedback

When talking about feedback, one has to consider the time scale it is given for.

There is feedback that works at the scale of minutes and days. In terms of

Test-Driven development and unit tests, feedback is given minute-by-minute as

programmers create and run unit tests for each piece of change they establish,

always having exact information about the state of the whole system. (Bec00)

The customer receives feedback through time estimations written by programmers

for each new feature (i.e. story) they create. The whole team gets feedback from

the instance that is responsible for tracking the completion state of tasks, allowing

the team to see if they will likely finish the tasks in time. When looking at

feedback from the point of view of acceptance tests, it works also for weeks and

months, as customers write the acceptance tests or functional tests for all their

use cases. As those tests fail or pass, the customer has a very detailed feedback

about the current state of the system. If the current status conflicts with the

planned schedule, adjustments can be made. (Bec00)

Following this guideline, it is possible to put a system into production at a very

early stage, as the most important features are implemented first, giving develop-

60

2.7 Building the XP-Mesh Using Core Practices

ers and customers feedback about the decisions they made. Feedback supports

the values of communication and simplicity. In the case of unit tests, feedback

would be the results of the executed tests, making it simple to communicate about

the quality of changes made or newly implemented. (Bec00)

2.6.2.4 Courage

Courage in the context of Test-Driven Development means making tough decisions

even at a very advanced project state. Beck describes a case where a company

found a architectural flaw that would cause the test score to decrease. Fixing some

of the code would keep braking another part of the code. So the team decided

to fix the underlying flaw in the architecture. This lead immediately to half the

tests failing. But after some days of working, they were again heading toward

completion. Another means of courage would be throwing code away that is not

performing as expected or using development time to evaluate and implement

design alternatives even if at the end only one design and its implementation

stays in the project. As XP promotes a hill-climbing algorithm for design and

development, it is likely to reach a local optima, where small changes would have

only a small impact, but large changes would result in bigger benefits. This could

mean throwing away large chunks of code. (Bec00)

2.7 Building the XP-Mesh Using Core Practices

The activities that define software development need to be structured to deliver

good economic performance and quality. To achieve this, Beck introduces about a

dozen practices and their relationships, which will be referenced as the XP-Mesh

in this paper (figure 2.10).

61

2.7 Building the XP-Mesh Using Core Practices

Figure 2.10: The XP-Mesh according to (Bec00, p. 70)

2.7.1 The Planning Game

Software development consist of two dimensions: the business aspects and the

technical aspects. The aim is to find the right balance between those two dimen-

sions, agreeing on an compromise about the possible and desirable(Bec00).

Components of the business aspect are (Bec00):

Scope Finding the right amount of functionality to implement during a specific

amount of time, to be valuable in production.

Priority Decide which features need to be implemented first.

Composition of releases How much needs to be done so the software is a valu-

able addition to the business.

62

2.7 Building the XP-Mesh Using Core Practices

Dates of releases When should the software be presented or published.

Technical considerations contain (Bec00):

Estimates Try to estimate the time needed for each feature.

Consequences Provide information about the consequences that technical deci-

sions have (e.g. in regards of productivity).

Process How exactly should the software be developed.

Detailed Scheduling Reduce overall risk of the whole project by implementing

the most important segments first.

The technical considerations provide the data on which the business decisions are

based on. The goal is to start with a real simple plan and refine it (just like the

requirements) as the project evolves. A paramount part of the planning game is

that the customers them self update the plan based on the estimates provided by

the development team, providing them with a rough idea of the solution at the

beginning. To do that, customers need to be at the development site, spotting

potential misunderstandings, changes and opportunities. By planning and design-

ing short releases, any mistakes would cause the product to be off-schedule for a

few weeks or a few months at most. The most important metric for the success

of the planning game is the ratio between calendar time and development time,

providing a benchmark for feedback and communication. (Bec00)

The strategy is to plan what is needed in the concrete context. This could be for

example the next release.

63

2.7 Building the XP-Mesh Using Core Practices

2.7.2 Short Releases

The paradigm to follow when applying Test-Driven Development should be to

make the difference between each release as small as possible. Each release should

contain only those features which provide the most value. The goal is to have a

functioning release available as soon as possible. A prerequisite for short release

intervals is the planning game to identify the most important stories, continuous

integration for permanent available packaging, Test-Driven Development for a low

defect rate and a simple design that is appropriate for this release. (Bec00)

2.7.3 Metaphor

The purpose of an metaphor is to help team members develop a common vocab-

ulary and to be clear about the parts of a system and their relationship. An

example for that would be if a pension calculating system would be seen as a

spreadsheet. It is important to stick to the chosen metaphor in regards of identi-

fying technical entities to guarantee consistency even at a advanced project state.

As Beck points out, metaphor is similar to what could be seen as the architecture

of a system, which is easy to understand and communicate. Metaphors are val-

idated by feedback from the program code and the unit tests as they can tell if

the metaphor is working for development. It is important to refine and improve

the metaphor as development continues and to have a customer who supports

thinking in terms of a metaphor. (Bec00)

64

2.7 Building the XP-Mesh Using Core Practices

2.7.4 Simple and incremental Design

(Bec00) sets up four basic rules to establish the ‘right‘ design of a software system

of a component of a system. A design should: pass all tests (rule 1), must not

contain duplicate logic (this also includes parallel class hierarchies) (rule 2), should

make clear the intention of the developer (rule 3) and contain only the elements

that are really necessary (rule 4). Because the most current design reflects the

newest code status, simplicity of design is only possible when supported by other

practices like refactoring, metaphors and pair programming.

Designing only what is needed at the moment helps fighting uncertainty because

a feature that was already designed could vanish in the next release and also, if

big chunks of a system change, the design could become inappropriate. (Bec00)

2.7.5 Refactoring

Refactoring means changing source code, the design and sometimes even the

architecture of a system. The risk with refactoring is that it could possibly break

the whole system, unless it is surrounded by other practices from the XP-Mesh

such as (Bec00):

• Collective ownership, so anybody can make changes where they are needed.

• Simple design, that supports refactoring by its simplicity.

• Tests, so the developer will know exactly what is broken or is still working.

This also reduces fear because if the tests pass, then the refactoring worked.

• Continuous integration, to make conflicts with other parts of the system

visible in short time.

65

2.7 Building the XP-Mesh Using Core Practices

The aim of refactoring is to reduce complexity (which leads to simpler design),

reduce or eliminate duplication or improve communication by increasing the read-

ability and maintainability of the code.

2.7.6 Continuous Integration

In short, continuous integration means integrating new code and building the

whole system several times a day and after completing each task (Bec00, p. 48).

Beck denotes, that no piece of code should stay unintegrated more than a few

hours and after integration the code must pass 100 percent of tests. A big ad-

vantage of continuous integration is that it allows a single developer’s code to be

visible for everybody else in a short period of time. When something breaks, it

is clear that the developer(s) who broke it, have to make the build pass again.

A consequence of this approach might even result in throwing away a few hours

worth of work and start from scratch. Risk is reduced significantly when applying

continuous integration, because this practice will show collisions between different

parts of code immediately during integration, making it possible to fix them early.

(Bec00, p. 79f)

Continuous Integration also works this well because it is integrated into the XP-

Mesh and tests can be run quickly to show conflicts and errors and programming

is done in pairs (which reduces the overall potential of collisions) and refactoring

allows to change code in smaller chunks, keeping the complexity small. (Bec00,

p. 57)

66

2.7 Building the XP-Mesh Using Core Practices

2.7.7 Collective Ownership

Each member of a team has the right wo change any parts of a system. Without

being guarded by tests, this fact would probably break the system eventually.

Collective ownership will cause code that is too complicated to vanish over time,

because everybody hast to understand and be able to talk about the code they

are working on. So as soon as complicated code is found, it will get simplified,

making the overall design less complex. If simplification leads to broken tests,

parts of code might even be thrown away. (Bec00, p. 80f)

Collective ownership works best when combined with continuous integration to

show and fix conflicts, tests to verify everything after changing it and coding

standards to avoid unreadable code (Bec00, p. 56f).

2.7.8 Planning

Planning is a interaction between two participants. The economic side and the

technical side. The technical side are the people who will build the system (and

think about estimates, consequences and scheduling). Business is responsible

for deciding what the purpose of the system should be (scope, priority, dates)

(Bec00, p.72). The scope of the planning game is to roughly determine the scope

of the upcoming iteration should be by balancing business priorities and technical

estimates. In traditional software development, it would not be possible to start

working with such a rough plan. But the XP-Mesh supports this approach in agile

development by having an on-site customer who can update the plan if necessary

and short releases so even big mistakes would cause a delay of a few weeks at

most. (Bec00, p.54)

67

2.7 Building the XP-Mesh Using Core Practices

2.7.9 Coding Standards

Because of collective ownership, each developer is allowed to change any parts of

the code. Without a coding standard it would be far more difficult to read code

easily, decreasing its documentation and communication role. A coding standards

is a set of rules and all developers need to write their code in accordance with

those rules. (Bec00, p.53)

2.7.10 Pair Programming

The main rule of pair programming is that each line of code is written by two

developers (using only one keyboard and mouse). The two people of the pair

take different roles during the time they work together. The person controlling

the input devices has to think about how to implement a specific feature. The

second developer hast to act more strategically and consider if the development

approach is suitable for the whole system, which test cases might be broken and

if the created code can be simplified. The pairs are temporary. Usually they last

for a few hours or a workday. (Bec00, p.51)

Pair Programming works because of the other factors of the XP-Mesh. Coding

standards reduce discussions about coding style. Tests and a simple design ensure

that both participants get a good understanding of the system and won’t break

the build. (Bec00, p.56)

2.7.11 On-Site Customer

The On-Site Customer is supposed to answer questions, solve disputes and make

small-scale decisions.

68

3 Practical: Test-Driven

Development of a VoIP

Communication Client

For the practical part, a small prototype for a VoIP client had to be implemented

for the Company BCT Electronics in Salzburg, Austria. Their core business is the

development and manufacturing of communication terminals. It was established

as a research and development subsidiary of the Commend group. The goal of

the Project was to implement the VoIP client for the iOS platform to allow a user

to connect to the terminals and control them.

The code should be developed using the Test-Driven Development approach. Un-

fortunately, the development could not be embedded in a real agile environment

because the author was the only developer working on this project and also, there

were not enough resources to implement a real agile approach.

This chapter will briefly demonstrate how the code was implemented by the prac-

tices described in the earlier chapters and sections. The main focus will be on how,

starting with tests, Test-Driven Development lead to a object-oriented design with

the help of refactorings.

69

3.1 Requirements

3.1 Requirements

The following initial, very general requirements were provided:

Platform The system should work on iPads with supporting at least iOS version

4.0

ICX Protocol The ICX protocol is a serial protocol developed by Commend and

used for the control of their communication terminals.

Video Streams It should be possible to display several video streams coming

from surveillance cameras that are connected to the communication system

over ICX.

IoIP Protocol For the transfer of audio information, the IoIP protocol had to

be used. This is again an proprietary communication protocol developed

and used by Commend. A implementation in C already existed and was

integrated into the iOS VoIP client by an external contractor. The goal

here was to allow the telephone components of the user interface to use this

existing C implementation.

User Interface The user interface should consist of components which can be

added and removed on demand. The components are: a telephone compo-

nent to call other terminals and control hardware like door locks, parking

gates and so on.

Transfer local camera signal It should be possible to stream the iPad’s camera

signal to any other communication terminal which supports the display of

a video stream

Licence Management The user interface components should be accessible de-

70

3.2 Tools

pending on the licence available for the user.

3.2 Tools

This chapter will introduce two of the tools widely used under the iOS platform

to develop software with the test-first approach.

3.2.1 OCUnit

OCUnit is the unit testing framework included in XCode, the IDE for Mac and

iOS development. It was initially developed by Sen:te. Since it is integrated

directly into XCode, a project supporting unit tests can be created simply by

checking a check-box during project setup (Lee12, p. 35). All of the unit tests for

the practical part of this thesis ware developed for OCUnit. To write a test case

class, one only has to inherit from SenTestCase and import the proper headers.

Assertions can be performed by simply using one the many STAssert*() macros

provided by OCUnit. During runtime, OCUnit detects all subclasses and executes

the tests (together with the setUp and tearDown methods). Test methods must

not have a return value or parameters and must have the prefix ’test’ in lowercase.

A disadvantage is the missing feedback for the developer since there is no kind of

green or red bar indicating if all tests passed or not. Instead the developer must

have a look into the output created by OCUnit to check the results. (Lee12, p.

36ff)

To obtain information about code coverage, on has to simply link against a li-

brary called profile_rt (which is provided by apple) and enable the generation of

coverage information in the project settings.

71

3.3 Development Phase

3.2.2 Continuous Integration with Hudson

Hudson, now knows as Jenkins, a platform independent tool for continuous inte-

gration (see 2.7.6). Jenkins can be configured to observe the source code reposi-

tory for any changes and to perform several actions upon any change that happens

on that repository. On of them is to execute a build job. To start Jenkins, simply

load and start the jenkins.war file. Jenkins supports several version control sys-

tems such as cvs, subversion and git. Jenkins can start the xcode build process

by calling the command line tool xcodebuild, which is provided by apple and

designed to perform a customized build. It is possible to tell Jenkins what should

be done if a build succeeds, fails or anything in between. (Lee12, p. 53ff)

3.3 Development Phase

As mentioned in 3.1, on of the requirements was to support different types of user

interface components. The components could be a range of control or display

elements and some of them even support interaction with the user (like performing

some kind of command or be dragged around on the screen). The metaphor used

for these components is Screen Elements. The screen elements will be represented

by objects of the type UIElement. Each UIElement will be member of a so called

screen. Multiple screens will be allowed and navigation will be accomplished by

gestures. There will be a controller class called VoIPViewController which is

assumed to be implemented for the scope of this paper. VoIPViewController is

responsible for managing all the screen of the application and also recognising

application wide gestures like multi-finger swipes, pinch and zoom. At least one

screen is always available and new UIElement objects will be placed on the screen

currently visible.

72

3.3 Development Phase

@interface UIelementTestClass : SenTestCase

@end

@implementation UIelementTestClass

− (void) testConstructEditWindow {

VoIPViewControl ler ∗ v i ewCont ro l l e r =

[[VoIPViewControl ler a l l o c

]

initWithNibName :

@" VoIPViewControl ler " bundle : n i l] ;

GHAssertNotNil (v i ewContro l l e r , @"WebView : ␣%@" ,

v i ewCont ro l l e r) ;

UIElement ∗ s impleRect = [[UISimpleRectElem a l l o c]

initWithFrame :CGRectMake(120 , 120 , 150 , 200)

andViewControl ler : v i ewCont ro l l e r] ;

GHAssertNotNil (v i ewContro l l e r , @"WebView : ␣%@" ,

v i ewCont ro l l e r) ;

}

@end

Listing 3.1: The first test for a screen element

The first implementation is very simple and will obviously pass the test.

− (id) initWithFrame : (CGRect) frame

andViewControl ler : (UIViewControl ler ∗)

v i ewCont ro l l e r

73

3.3 Development Phase

{

s e l f = [super initWithFrame : frame] ;

i f (s e l f) {

_viewContro l ler = v i ewCont ro l l e r ;

}

return se l f ;

}

Listing 3.2: First implementation of a screen element

Almost each screen element will be a subclass of UIElement. What they all have

in common is that the are UIViews and all are UIElements. This lead to the

decision to keep the parts that are responsible for rendering in the base class and

move the changing parts to the subclasses.

All screen elements need to react upon touch events. Touches on buttons will

trigger some kind of action (like making a phone call) or will perform some kind

of screen manipulation (like adding or removing of other UIElements). Other

touches will cause the application to display of an overview of all screen or change

the mode of the application to either work-mode or edit-mode. The messages sent

to such touch strategy will be either that a touch started, ended or the finger was

moved around the screen. What is already clear at this moment, is the fact that

the only thing that changes for each UIElement object is the way it reacts on

touches. So over time, TouchStrategy will become an interface (called protocol in

Objective-C) with several implementations. Each UIElement will have a field of

type TouchStrategy. As the name already tells, this approach will implement the

Strategy pattern. This pattern was not obvious in the beginning, but became clear

after implementing two different touch algorithms for UIElements. The following

listing is a simplified version of the tests written for the initial TouchStrategy

74

3.3 Development Phase

class.

@interface TouchStrategyTestClass : SenTestCase

@end

@implementation TouchStrategyTestClass

− (void) testTouchBegan {

UIElemen element = UIElement ∗ s impleRect =

[[UISimpleRectElem a l l o c]

initWithFrame :CGRectMake(120 , 120 , 150 ,

200)

TouchStratedy ∗ touchStrategy = [[TouchStratedy a l l o c]

i n i t] ;

GHAssertNotNil (touchStrategy , @"Touch : ␣%@" ,

touchStrategy) ;

[touchStrategy touchesBegan : touches withEvent : event

forElement :

s impleRect] ;

GHAssertTrue ([s impleRect touched] , @" ") ;

− (void) testTouchMoved {

TouchStratedy ∗ touchStrategy = [[TouchStratedy a l l o c]

i n i t] ;

GHAssertNotNil (touchStrategy , @"Touch : ␣%@" ,

touchStrategy) ;

[touchStrategy touchesMoved : touches withEvent : event

forElement :

75

3.3 Development Phase

s impleRect] ;

GHAssertTrue ([s impleRect moving] , @" ") ;

}

− (void) testTouchEnded {

TouchStratedy ∗ touchStrategy = [[TouchStratedy a l l o c]

i n i t] ;

GHAssertNotNil (touchStrategy , @"Touch : ␣%@" ,

touchStrategy) ;

[touchStrategy touchesEnded : touches withEvent : event

forElement :

s impleRect] ;

GHAssertFalse ([s impleRect touched] , @" ") ;

}

@end

Listing 3.3: Initial test for TouchStrategy

The implementation belonging to this tests simply set a field. The base class

is only about receiving the actual message, not what happens inside. Because

it is clear that UIElement is going to need its individual touch strategy, another

strategy class had to be created. In this case, it will be the touch strategy for a

delete button that removes the component it belongs to from the screen and from

the application. The element should be removed from the screen after the touch

ended. As always, the test are created first.

76

3.3 Development Phase

@interface TouchStratedyDeleteButton : SenTestCase

@end

@implementation TouchStratedyDeleteButton

[. . .]

− (void) testTouchEnded {

UIElement ∗ s impleRect =

[[UISimpleRectElem a l l o c] i n i t] ;

TouchStratedyDeleteButton ∗ touchStrategy = [[

TouchStrategyDelete a l l o c]

i n i t] ;

[s impleRect setTouchStrategy : touchStrategy]

GHAssertNotNil (touchStrategy , @"Touch : ␣%@" ,

touchStrategy) ;

[. . .]

[touchStrategy touchesEnded : touches withEvent : event

forElement :

s impleRect] ;

GHAssertFalse ([s impleRect touched] , @" ") ;

// check i f e lement s t i l l p r e sen t

boolean pre sent = [[[[VoIPViewControl ler i n s t anc e]

cur rentScreen]

e lementsCurrent] conta insObject : s impleRect] ;

GHAssertFalse (present , @" ") ;

}

77

3.3 Development Phase

@end

// ac t ua l implementat ion o f touchesEnded

− (void) touchesEnded : (NSSet ∗) touches

withEvent : (UIEvent ∗) event forElement : (

UIElement ∗) element {

UICommonOverlayView ∗ over l ay =

(UICommonOverlayView∗) [e lement superview] ;

NSLog(@" De le t ing ") ;

UIElement∗ elemToDelete = [over l ay under lyingElement] ;

CAAnimation ∗ animation = [I n i t getFl ipAnimation] ;

[elemToDelete removeFromSuperview] ;

[[e lement superview] removeFromSuperview] ;

[[[[VoIPViewControl ler i n s t anc e] cur r entScreen]

e lementsCurrent]

removeObject : elemToDelete] ;

[[VoIPViewControl ler i n s t anc e] s t o r e P r o f i l e] ;

[[[e lement superview] superview]

addAnimation : animation forKey :@"

toogleFromScreen "] ;

}

Listing 3.4: Creating another strategy to handle touches

At this point a developer can already sense that there would be a lot of duplication.

The next step was to extract the parts that stay the same and put the changing

parts into separate implementations. Therefore, TouchStrategy was turned into

78

3.3 Development Phase

a interface containing the declaration of the three methods needed. A reference

to a TouchStrategy is held by each UIElement. This refactoring will be backed

up by the already existing tests, with only little changes needed.

These snippets are shortened versions of the tests and the production code im-

plementation to demonstrate how the process of refactoring and designing works

with Test-Driven Development.

79

4 Concluding Remarks and Future

Work

This thesis examined the different aspects of Test-Driven Development and how

they have to be combined to deliver a satisfying end product to the customer.

The first chapter covered how traditional development processes approach soft-

ware development and why they often fail. The main reasons is the focus on

formal guidelines and inflexibility towards new changes in the specification and

requirements. Because of the missing possibility to go back to the requirement

analysis phase in a lot of sequential development processes, the development team

will run into big problems if the requirements are not fully understood before the

coding phase begins. Even partly iterative processes will run into this problem be-

cause they often provide iterative behavior only for the phases after requirements

analysis.

The second chapter demonstrates the aspects of Test-Driven Development. It

begins by addressing the topic of agile development and examines the roles of

the members of a agile team. The role of fear during the development process is

examined and the focus is laid on why it blocks successful development. Then, the

thesis goes on to describe how Test-Driven Development tackles this issue. The

next section looks into a traditional Test-Driven Development cycle and works

out the role of refactoring and how it helps to achieve object-oriented, coherent

80

3.3 Development Phase

and simple deign. The influence of Test-Driven Development is discussed in the

next chapter by referencing two papers which examined a lot of different studies

and conducted their own studies. These thesis comes to the conclusion that Test-

Driven development leads to significant simpler, more coherent code and also

decreases the error rate, which is a important external quality indicator.

It is of paramount importance to organise and write tests in a way they can act as

documentation and specification. There are different kinds of ‘smells‘ that should

be avoided. Each smell can be on the level of the project, the behavior of the

system or the code itself. Code smells indicate that tests are erroneous, obscure or

too complicated to read. They make it hard for the tests to act as documentation.

The smells on higher levels can lead to tests being ignored or not written. These

smells can cause severe problems in the actual production system.

The final part of the section about the organisation of tests introduces some of

the widely used test pattern in modern Test-Driven Development. These patterns

are categorized into fixture patterns, verification patterns and test organisation

patterns. Fixture patterns describe different ways to create the context for a test.

Test Double patterns allow the developer to write tests for parts of the system

that are either no developed yet or are not accessible for the testing environment.

Test Organisation pattern describe how to structure tests classes and how to write

test code that can be reused.

The last section of the second chapter discusses the right environment to get the

most out of TestDriven Development. Beginning with the role of fear in software

development it then continues to give insight to the four values of agile develop-

ment and how to build the XP-Mesh using twelve core practices. Without these

practices surrounding Test-Driven Development it is hardly possible to harvest

the full potential of it.

81

4.1 Future Work

Finally, the last chapter is a short overview of the implementation phase of a VoIP

client for the iOS platform that was developed using the test-driven approach.

Some of the used tools are introduced and it is shown how, through abstraction

and refactoring, it is possible to obtain object-oriented, simple design. For that,

the thesis describes the development process for the user interface components

and the logic that handles touch related events like gestures and multi-finger

touches.

4.1 Future Work

Although Test-Driven Development has been around for several years, there are

still problems that are a challenge to address with this kind of development prac-

tice. An area of future research will be making tests independent from factors

that are not controllable by the developer.

It is also difficult to develop graphical user interfaces purely with the test-first

approach. although there has been a lot of improvement in the last few years.

Finally, it is still a problem to write test for software that is going to support

asynchronus calls and/or is going to be heavily multi-threaded.

82

Bibliography

[Adz11] Adzic, G.: Specification By Example. Hanning, 2011

[AL12] Ambler, Scott ; Lines, Mark: Disciplined Agile Delivery. IBM Press,

2012

[Bec00] Beck, K.: Extreme Programming Explained. 2nd. Addison-Wesley,

2000

[Bec02] Beck, K.: Test Driven Development: By Example. Addison-Wesley

Professional, 2002

[BFC09] Beck, Kent ; Fowler, Martin ; Cockburn, Alistair: Principles

behind the Agile Manifesto. http://http://agilemanifesto.org/principles.

html. Version: 2009

[Boe88] Boehm, Barry W.: A Spiral Model of Software Development and

Enhancement. In: IEEE Computer 21 (1988), Nr. 5, 61-72. http:

//weblog.erenkrantz.com/~jerenk/phase-ii/Boe88.pdf

[DH04] Dubinsky, Yael ; Hazzan, Orit: Roles in Agile Software Development

Teams. In: Eckstein, Jutta (Hrsg.) ; Baumeister, Hubert (Hrsg.):

Extreme Programming and Agile Processes in Software Engineering,

83

http://http://agilemanifesto.org/principles.html
http://http://agilemanifesto.org/principles.html
http://weblog.erenkrantz.com/~jerenk/phase-ii/Boe88.pdf
http://weblog.erenkrantz.com/~jerenk/phase-ii/Boe88.pdf

Bibliography

5th International Conference, XP 2004, Garmisch-Partenkirchen, Ger-

many, June 6-10, 2004, Proceedings Bd. 3092, Springer, 2004 (Lecture

Notes in Computer Science). – ISBN 3–540–22137–9, S. 157–165

[EMT05] Erdogmus, Hakan ; Morisio, Maurizio ; Torchiano, Marco:

On the Effectiveness of the Test-First Approach to Programming.

In: IEEE Trans. Software Eng. 31 (2005), Nr. 3, S. 226–237.

http://dx.doi.org/http://dx.doi.org/10.1109/TSE.2005.37. – DOI

http://dx.doi.org/10.1109/TSE.2005.37

[Fin06] Fink, Kerstin ; Ploder, Christian (Hrsg.): Wirtschaftsinformatik

als Schlüssel zum Unternehmenserfolg. Deutscher Universitäts-Verlag,

2006 http://books.google.at/books?id=ChvaewMMmiYC&pg=

PA90&dq=heavyweight+software+model&hl=de&sa=X&ei=

UAxPUf2-Dc3DswaZuoDgBA&redir_esc=y#v=onepage&q=

heavyweight%20software%20model&f=false

[FP10] Freeman, S. ; Pryce, N.: Growing Object-Oriented Software, Guided

by Tests. Addison-Wesley, 2010 (Addison-Wesley Signature Series)

[Gus02] Gustafson, David: Schaum’s Outline of Theory and Problems of

Software Engineering. 2002 (Schaum’s Outline Series)

[HD08] Hazzan, Orit ; Dubinsky, Yael: Agile Software Engineering. Springer,

2008

[JM07] Jeffries, Ron ; Melnik, G.: Guest Editors’ Introduction: TDD–

The Art of Fearless Programming. In: Software, IEEE 24 (2007),

Nr. 3, S. 24–30. http://dx.doi.org/10.1109/MS.2007.75. – DOI

10.1109/MS.2007.75. – ISSN 0740–7459

84

http://dx.doi.org/http://dx.doi.org/10.1109/TSE.2005.37
http://books.google.at/books?id=ChvaewMMmiYC&pg=PA90&dq=heavyweight+software+model&hl=de&sa=X&ei=UAxPUf2-Dc3DswaZuoDgBA&redir_esc=y#v=onepage&q=heavyweight%20software%20model&f=false
http://books.google.at/books?id=ChvaewMMmiYC&pg=PA90&dq=heavyweight+software+model&hl=de&sa=X&ei=UAxPUf2-Dc3DswaZuoDgBA&redir_esc=y#v=onepage&q=heavyweight%20software%20model&f=false
http://books.google.at/books?id=ChvaewMMmiYC&pg=PA90&dq=heavyweight+software+model&hl=de&sa=X&ei=UAxPUf2-Dc3DswaZuoDgBA&redir_esc=y#v=onepage&q=heavyweight%20software%20model&f=false
http://books.google.at/books?id=ChvaewMMmiYC&pg=PA90&dq=heavyweight+software+model&hl=de&sa=X&ei=UAxPUf2-Dc3DswaZuoDgBA&redir_esc=y#v=onepage&q=heavyweight%20software%20model&f=false
http://dx.doi.org/10.1109/MS.2007.75

Bibliography

[JS06] Janzen, David S. ; Saiedian, Hossein: On the influence of test-driven

development on software design. In: In Nineteenth Conference on Soft-

ware Engineering Education & Training, 2006, S. 141–148

[JS08] Janzen, David ; Saiedian, Hossein: Does Test-Driven Development

Really Improve Software Design Quality? In: IEEE Softw. 25 (2008),

März, Nr. 2, 77–84. http://dx.doi.org/10.1109/MS.2008.34. – DOI

10.1109/MS.2008.34. – ISSN 0740–7459

[Lee12] Lee, G.: Test-Driven IOS Development. Addison Wesley Profes-

sional, 2012 (Developer’s Library). http://books.google.at/books?id=

Ji5OYAAACAAJ. – ISBN 9780321774187

[Mes07] Meszaros, G.: xUnit Test Patterns - Refactoring Test Code. Addison-

Wesley, 2007 (The Addison-Wesley Signature Series)

[MS10] Margaria, Tiziana ; Steffen, Bernhard: Simplicity as a Driver for

Agile Innovation. In: IEEE Computer 43 (2010), Nr. 6, S. 90–92. http:

//dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2010.

177. – DOI http://doi.ieeecomputersociety.org/10.1109/MC.2010.177

[PWB09] Petersen, Kai ; Wohlin, Claes ; Baca, Dejan: The Waterfall

Model in Large-Scale Development. In: Bomarius, Frank (Hrsg.)

; Oivo, Markku (Hrsg.) ; Jaring, Päivi (Hrsg.) ; Abrahamsson,

Pekka (Hrsg.): Product-Focused Software Process Improvement, 10th

International Conference, PROFES 2009, Oulu, Finland, June 15-17,

2009. Proceedings Bd. 32, Springer, 2009 (Lecture Notes in Business

Information Processing). – ISBN 978–3–642–02151–0, 386-400

[Rog04] Rogers, R. O.: Acceptance Testing vs. Unit Testing: A Developer

s Perspective. In: Zannier, Carmen (Hrsg.) ; Erdogmus, Hakan

85

http://dx.doi.org/10.1109/MS.2008.34
http://books.google.at/books?id=Ji5OYAAACAAJ
http://books.google.at/books?id=Ji5OYAAACAAJ
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2010.177
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2010.177
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2010.177

Bibliography

(Hrsg.) ; Lindstrom, Lowell (Hrsg.): Extreme Programming and Agile

Methods - XP/Agile Universe 2004, 4th Conference on Extreme Pro-

gramming and Agile Methods, Calgary, Canada, August 15-18, 2004,

Proceedings Bd. 3134, Springer, 2004 (Lecture Notes in Computer Sci-

ence). – ISBN 3–540–22839–X, S. 22–31

[Sca01] Scacchi, W.: Process Models in Software Engineering. Version: 2nd,

2001. http://www.ics.uci.edu/~wscacchi/Papers/SE-Encyc/

Process-Models-SE-Encyc.pdf. In: Encyclopedia of Software En-

gineering. 2nd. John Wiley and Sons, 2001

[Som11] Sommerville, Ian: Software Engineering. 9th. Addison-Wesley, 2011

[Yli] Ylimannela, Ville: A MODEL FOR RISK MANAGEMENT IN AG-

ILE SOFTWARE DEVELOPMENT.

86

http://www.ics.uci.edu/~wscacchi/Papers/SE-Encyc/Process-Models-SE-Encyc.pdf
http://www.ics.uci.edu/~wscacchi/Papers/SE-Encyc/Process-Models-SE-Encyc.pdf

	Traditional Process Models in Software Development
	The Code-and-Fix Model
	The Waterfall Model
	Issues when applying the Waterfall Model
	The Spiral Model

	Test-Driven Development
	Agile Software Development
	The Agile Team
	Roles in an Agile Team

	Introduction to Test-Driven Development
	Fearless Development
	Behavior-Driven Development

	The Typical Test-Driven Development Cycle
	Refactoring
	Emerging Design

	Impact of Test-Driven Development
	Test-Driven Development and the Influence on Quality of Software Design

	Unit Tests and Their Organization, Structure and Patterns
	The Four Phases of an Unit Test
	Test Smells
	Code Smells
	Obscure Test
	Conditional Test Logic
	Hard-to-Test Code
	Test Code Duplication
	Test Logic in Production

	Behavior Smells
	Assertion Roulette
	Erratic Test
	Frequent Debugging
	Slow Tests

	Project Smells
	Buggy Tests
	Developers Not Writing Tests

	Test Patterns
	Fixture Setup Patterns
	In-Line Setup
	Delegated Setup
	Prebuilt Fixture
	Lazy Setup

	Result Verification Patterns
	State Verification

	Test Double Patterns
	Mock Object
	Fake Object

	Test Organisation Patterns
	Test Code Reuse Patterns
	Test Class Structure Patterns

	Embedding Test-Driven Development Into a Appropriate Environment
	Risk
	Four Values
	Communication
	Simplicity
	Feedback
	Courage

	Building the XP-Mesh Using Core Practices
	The Planning Game
	Short Releases
	Metaphor
	Simple and incremental Design
	Refactoring
	Continuous Integration
	Collective Ownership
	Planning
	Coding Standards
	Pair Programming
	On-Site Customer

	Practical: Test-Driven Development of a VoIP Communication Client
	Requirements
	Tools
	OCUnit
	Continuous Integration with Hudson

	Development Phase

	Concluding Remarks and Future Work
	Future Work

