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Abstract

Due to advanced technologies, the amount of biomedical data has been
increasing drastically. Such large data sets might be obtained from hospitals,
medical practices or laboratories and can be used to discover unknown
knowledge and to find and reflect hypotheses. Based on this fact, knowledge
discovery systems can support experts to make further decisions, explore
the data or to predict future events.

To analyze and communicate such a vast amount of information to the
user, advanced techniques such as knowledge discovery and information
visualization are necessary. Visual analytics combines these fields and sup-
ports users to integrate domain knowledge into the knowledge discovery
process.

This master’s thesis reviews and categorizes state-of-the-art approaches of
knowledge discovery and visual analytics in general and for the biomed-
ical domain. It also reviews the novel biomedical approach of systems
biology which makes use of “omics” data to analyze biological proper-
ties of genomes, proteins and metabolites to understand biological and
pathological processes. There is still a lack of biomedical visual analytics
systems which tightly integrate the user into the knowledge discovery pro-
cess. Moreover, a performed state-of-the-art analysis revealed that most
common visualization techniques for multivariate data are scatter plots,
Parallel Coordinates and heat maps.

Last but not least, an implementation of a clustered heat map is presented
to discuss a practical application of visual analytics.
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Zusammenfassung

Die Menge von medizinischen Daten hat sich in den letzten Jahren drastisch
erhöht. Datenmengen in größerem Ausmaß werden an unterschiedlichen
Orten generiert. Darunter zählen unter anderem Krankenhäuser, Arztpraxen
sowie biomedizinische Labore. Solch große Datenmengen, auch “big data”
genannt, können als Wissensdatenbank genutzt werden, um Hypothesen
zu finden bzw. zu überprüfen. Automatisierte Systeme anlysieren die Da-
tenmenge und unterstützen Experten um Entscheidungen zu treffen, Daten
zu erkunden bzw. Vorhersagen zu treffen.

Um große Informationsmengen zu analysieren, sowie verständlich für
den/die BenutzerIn darzustellen, müssen spezielle Techniken wie Know-
ledge Discovery, Datenvisualisierung und Mensch-Maschine-Interaktion
angewandt werden. Visual Analytics vereint diese Bereiche und im besten
Fall ermöglicht es ExpertInnen das eigene Domänenwissen in den Analyse-
prozess zu integrieren.

Diese Arbeit untersucht state-of-the-art Methoden, welche Visual Ana-
lytics und Knowledge Discovery für biomedizinische Zwecke umsetzt.
Aktuelle wissenschaftliche Arbeiten wurden analysiert und kategorisiert.
Darüberhinaus wurde der Ansatz von Systems Biology untersucht, wel-
cher alle “omics”-Daten (genomics, proteomics, metabolomics) vereint. Dies
ermöglicht pathologische Prozesse zu analysieren und als Ganzes zu verste-
hen. Die Analyse hat ergeben, dass noch ein Mangel an tiefer Benutzerinte-
gration herrscht und dass die meist angewandten Visualisierungsmethoden
für multivariate Daten Scatter Plots, Parallel Coordinates und Heatmaps
sind.

Anschließend wird eine Implementierung einer geclusterten Heatmap dis-
kutiert, um einen praktischen Einsatz von Visual Analytics aufzuzeigen.
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1 Introduction

The amount of data has been increasing rapidly in various domains which
leads to large data sets – so-called “Big Data” [58]. This recent trend can also
be observed in medical and biomedical databases. Hospitals and medical
practices collect information about every patient (patient records) including
data from laboratories. Besides tabular data (e.g., measured values), doctors
and physicians input various types of data such as natural text and images.
As the amount of contained information is steadily increasing, correspond-
ing databases are also becoming of greater value as such large collections
of data can also be used as knowledge bases. Medical research appreciates
new knowledge in this field, but it can also be used to improve clinical
decision making for patient treatment, predict therapy outcomes and to find
biomarkers indicating possible diseases.

As all results and decisions are based on empirical data, this approach is
also called evidence-based medicine [20]. Its fundamental idea, which was
called “medical arithmetic” dates back to the 18th century introduced by
British physicians [143, 144]. In contrast to subjective “clinical judgment”,
evidence-based medicine optimizes decision-making by using knowledge
gained from performed research.

Therefore, such knowledge needs to be made accessible to experts by a
dedicated decision support system (DSS) [134]. This approach is also related
closely to precision medicine (P4 Medicine: Predictive, Preventive, Partici-
patory, Personalized) which aims the improvement of personalized patient
care [105, 56].

While it is already a challenge for digital systems to organize and interlink
such heterogeneous data, it is infeasible for humans to manually understand
and analyze the entire data set as a whole. Therefore, digital systems are
used to analyze large data sets automatically (knowledge discovery). Such
knowledge discovery systems apply data mining techniques to find patterns
and relations within the data set and present results to the user.

As mentioned in Section 2, data mining uses various methods of machine
learning and statistics to generate a model for describing and approximating
relationships and patterns within the observed data set. It is one of the key
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technologies in the knowledge discovery process and such data might be
weakly structured, high dimensional and it is likely to hold sensitive infor-
mation. Thus, prior steps such as data cleansing, data pre-processing are
necessary to ensure results of higher quality [53]. Sophisticated techniques
such as anonymization and pseudonymization must be applied to protect
privacy [19, 79].

While the amount of the data is too large to be comprehended by humans,
it is essential to make the data and discovered patterns more comprehensi-
ble and explorable. To transfer complex information and knowledge from
the knowledge discovery system to the user, a tight interconnection be-
tween these two counterparts has to be established. For that, the research
fields human-computer interaction and especially information visualization are
fundamental.

As the name of human-computer interaction reveals, it is a field of research
to analyze and optimize the interaction between humans and computer
systems. It includes the design, implementation and evaluation of computer
systems to enhance usability, efficiency, effectiveness and satisfaction of the
user.

This thesis primarily focuses on information visualization combined with
knowledge discovery and user involvement within the medical domain. This
combination of analytical reasoning, visual data representations and user
interactions is also called visual analytics [77]. As visual analytics systems
integrate the user into the analytical reasoning process, such systems are
usually not fully automated. This allows experts to steer the knowledge
discovery process and to exert influence on outcome of the analysis with
their individual domain knowledge.

Nowadays, many visual analytics systems focus on a particular data type to
perform further analysis. A even more sophisticated tool interconnects and
analyzes several related data sets at once to extend the analyzed amount
of information. Concerning this approach, a relatively novel biomedical
approach is called systems biology. As explained in Section 6, it aims mod-
eling biological relationships and interactions between several data sets
which contain information about proteins (proteomics), genes (genomics)
and metabolites (metabolomics) [42]. Such data types are commonly called
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“omics” data and it can be used to analyze biological and pathogenic pro-
cesses (e.g., finding biomarkers).

Therefore, the ultimate goal of bioinformatics is to combine several databases
and heterogeneous data types into a single system to get insight into the
whole biological processes (e.g., of the human body). Such a system might
link x-ray scans to tissue samples and molecular data to support biologists
and doctors to investigate several layers of the biological system at once.

In addition to that, Section 7 contains an analysis of recent visual analytics
approaches based on the state-of-the-art review of Turkay et al. [147]. It
reviews current research trends of visual analytics approaches of biomedical
data. Integration level, visualization methods, data type and the class of
analysis has been considered.

The performed analysis revealed, that heat maps are one of the most popular
visualization techniques used for multivariate data. Section 8 discusses an
implementation of a clustered heat map for several visual analytics tasks
on molecular data sets for the Open Source project Scaffold Hunter2. The
implementation supports the user to investigate relations between attributes
of molecules by offering several interaction methods. Moreover, Scaffold
Hunter provides several visualization methods to enhance the users insight
into the data set.

2Scaffold Hunter - http://scaffoldhunter.sourceforge.net/
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2 Data Mining and Knowledge Discovery

The aim of data mining is the extraction of unknown patters out of raw and
complex data to gain new useful knowledge by applying specific data anal-
ysis and discovery algorithms. As data mining is one of the core steps in the
KDD process, pre-steps such as data cleansing and data preprocessing are
necessary to ensure data mining results of higher quality. In addition to that,
prior knowledge about the domain is essential to make right interpretations
of the result. An unexperienced application of data mining might lead to
misinterpretations, unimportant and meaningless patterns [35].

Basically, data mining tasks are classified into verification and discovery. The
aim of verification tasks is to check, whether a specific hypothesis is correct.
Data mining tasks, which are used by discovery systems, aims to find new
patterns autonomously. This type of task can be subdivided into prediction
and description. Predictions intend to predict future behaviors based on the
extracted knowledge from the present data set. Basically, this can be under-
stood as a performed interpolation by using an approximated prediction
model. The purpose of descriptive tasks is to present the extracted knowl-
edge in a human-understandable way. Therefore, description models of
lower complexity are preferable while the internal complexity of prediction
models is irrelevant [35].

2.1 Knowledge Discovery in Databases

Knowledge discovery in Databases (KDD) is a hot topic because the amount
of data has been increasing much quicker than the improvement of analyzing
methods to extract knowledge out of the data. KDD is often being equated
with data mining, but it includes more than just this field. While data
mining is one of the core elements of KDD, it also targets the management
of data (databases), the preparation of the data and selection of algorithms
to perform data mining and the representation and interpretation of the
final result.

Data mining is used to discover new knowledge for prediction and under-
standing by finding patterns within the data.
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Fayyad et al. [37] mentions:

“Knowledge Discovery is the non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable
patterns in data”

To evaluate a pattern, interestingness and usefulness for a given task need
to be considered. The discovered pattern should be valid for new data sets
as well. The understandability of the found pattern is very important if the
final goal of the analysis is more about understanding the data itself than
pure prediction [36].

2.1.1 KDD Process

As depicted in 1, the KDD process gives a global overview of all needed
steps of knowledge discovery in databases [36]:
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Figure 1: The simplified iterative KDD process depicts how new knowledge can be extracted
from multiple data sources [36].

Domain Knowledge This step includes understanding of the domain by
gathering necessary state-of-the-art information and defining a final goal of
the process.

Target Data set Creating a data set by acquainting data from several
sources and unify values. Moreover, making a selection of data and variables
which should be used in the further process.
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Data Cleaning and Preparation In general, large data sets noisy, incon-
sistent and might come from heterogeneous sources, cleansing of the data
is essential. The quality of a performed knowledge discovery is directly
dependent on the quality of the underlying data set [48]. Cleaning includes
handling missing values, removing outliers, smoothing noise and resolving
inconsistency. Missing values can be handled in different ways like simple
removing of the data record, manual filling or using a constant (e.g., mean
value) [48]. Removing the whole record might lead to a too small data set
for further research, so the usage of surrogate values is preferable.

Data cleaning is an essential element of data mining but experts have to be
aware that each manipulation of the data set might lead to a different result
and interpretation of the data. Therefore, the final finding might deviate
even more from the real model.

Data Reduction The data can be reduced by dimensionality reduction
such as Principle Component Analysis (PCA) [167], Multi-Dimensional Scaling
(MDS) [22] and Independent Component Analysis (ICA) [63]. These methods
reduce the complexity by projecting the high dimensional data to a lower
one while preserving the variance of the data [147]. Furthermore, additional
approaches to reduce the number of variables are specific transformation
methods and the assortment of features which represent the data set best.
See Section 2.4 for more detailed information.

2.1.2 Function of Data Mining

This Section includes the selection of a data mining function (classification,
clustering, regression, summarization) and its subsequent application. See
Section 2.2.2 for further details.

Basic components of data mining are [36]:

• Model
The model’s function (e.g., clustering, classification)
Representation of the model (e.g., density function, )

• Preference criteria (usage of goodness-of-fit function to select preferred
parameters)
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• Search algorithm (the algorithm for finding specific models and pa-
rameters, given a model, preference criteria and data)

Data Mining Algorithm A data mining algorithm defines which method
should be used to find patterns. Depending on the type of data mining
problem (e.g., clustering, classification, regression, etc.), an algorithm from
the corresponding class has to be chosen (see Section 2.2.2). In addition to
that, involved data types have to be considered as data mining algorithms
can only handle a specific set of data types (e.g., numerical, nominal). See
Section 2.1.2 for further details.

The resulting model type (e.g., decision tree, neuronal network) is also
defined by the selected algorithm. In case that prediction is the overall goal,
more complex and less interpretable models, which generally fit data more
precisely, are usually preferred.

Data Mining This step performs the actual search for patterns within the
data set by applying the selected data mining algorithm. Depending on
the size of the data set, the application of the data mining algorithm might
take a significant amount of time. Therefore, real-time calculations are not
feasible in many cases and pre-calculations need to be performed instead.

The found model depends on the executed algorithm and it is an empirical
approximation of the real theoretical model. Therefore, the quality of the
trained model directly depends on the quality of the training data set. As
mentioned above, data pre-processing also greatly influences the generated
model and this has to be considered.

Interpretation The interpretation of the result can be enhanced signifi-
cantly by specific visualization methods which transforms the pattern in a
more comprehensible representation for users. Unimportant patterns might
be removed and in case of a total unsatisfiable result, re-execution of the
data ming algorithm with changed parameters or even choosing a different
data mining method might be necessary. This means, that the KDD process
is an iterative approach to find an appropriate method to discover new
knowledge.
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Using Discovered Knowledge and Provenance The usage of discovered
knowledge includes taking further actions based on the knowledge (predic-
tion support), reporting and documentation or finding conflicts with former
knowledge. In addition to that, the expert needs to be able to trace which
data has influenced the final decision (provenance). Due to the continuous
addition of data to the database, a past decision is usually based on a differ-
ent databases. Thus, changes of the data have to be documented as well to
keep decisions traceable [164].

2.1.3 Data Types and Structures

Data from multiple databases is likely to be heterogeneous and individual
data-mining algorithms are usually designed to analyze a specific data
format or type. In general, data can be continuous, discrete or a more
complex type such as text or multimedia data (e.g., photos, body scans,
x-ray data, etc.). Therefore, individual solutions for different data types are
often necessary.

Continuous data contains numerical values with an implicit order. Discrete
data types usually represent categories. Such categories might have an
ordering (so-called ordinary variables. e.g., “low”, “middle”, “high”) or
none (nominal variables: e.g., “animal”, “plant”, “human”). A common and
specific type of discrete data is a binary variable (e.g., “yes” and “no”).

Complex data structures such as graphs, text or even multimedia data
require tailored algorithms to extract valuable information out of the given
data structure, as common data-mining algorithms (e.g, k-means, decision
trees, etc.) are designed to work on tabular data.

2.2 Human Computer Interaction and KDD

A novel approach is Human Computer Interaction and KDD is combining
and emphasizing the research fields human computer interaction (HCI)
and Knowledge discovery in databases (KDD). The ultimate goal of this
approach is to enhance human intelligence by computational power and
intelligence [52].
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2.2.1 Human Computer Interaction

Human-computer-interaction is an essential research field to enhance visu-
alizations. HCI investigates the interaction between people and computers
for a specific task. It includes the design, implementation and evaluation
to improve the system’s usability implying its efficiency, effectiveness and
satisfaction. Thus, HCI cooperates with multiple other research areas such as
psychology, computing, behavior and ergonomics. In this context, efficiency
describes the amount of resources the user needs to achieve a specific task
with (e.g., time, mental effort). Effectiveness defines the accuracy the user
achieves the goal with. Satisfaction represents how well the user felt during
working with the system [29]. Therefore, to improve user experience for
exploring the data, considering HCI is essential.

2.2.2 Combining HCI and KDD

The combination of HCI and KDD aims to delegate final decisions and
judgments to the human intelligence while computers search for potentially
useful and valid patterns within the data set (see KDD process 2.1.1). HCI
focuses on the abilities of the human capacities which can be used to em-
power users to explore the data in a highly interactive and efficient way. In
other words, HCI-KDD tackles this slogan accurately [132]:

“Computers are incredibly fast, accurate, and stupid. Human
beings are incredibly slow, inaccurate, and brilliant. Together
they are powerful beyond imagination.”

2.3 Classes of Data Mining

According to Fayyad et al., data mining tasks can be classified into six
different types [35], namely clustering, classification, association rule mining,
regression and summarization. Mostly, these techniques are derived or re-used
from various research fields (e.g., machine learning, statistics and pattern
recognition).
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2.3.1 Clustering

Clustering algorithms assign every data item to one class of a predefined set
of classes to describe the data. In other words, such algorithms determine
a set of categories or clusters to distinguish and to heap together data
points. Depending on the algorithm, clusters can be mutually exhaustive,
hierarchical or overlapping [35]. k-means, hierarchical clustering or clique are
just a few examples of clustering algorithms. Basically, clustering algorithms
need a similarity and dissimilarity function, also known as distance function,
to distinguish data points. Examples of distance functions are Euclidean
distance or Minkowski distance [168].

2.3.2 Classification

Classification is about learning a function (classifier) which assigns new data
items into one of the predefined classes. The decision is based on the learned
knowledge from a labeled past data set. Thus, classification algorithms are
trained by supervised learning techniques. There exist many applications
of classification in various domains. Basically, algorithms are subdivided
into binary classifications (positive and negative outcome) and multi class
classifications [5]. Some examples of commonly accepted techniques are
Neural Networks [44], Naive Bayes Classifier [123], Decision Trees [126], K-nearest
Neighbor [21] and Support Vector Machines [50].

2.3.3 Association Rule Mining

Association rule mining (also known as Dependency modeling) intends to
find a model which represents major dependencies between variables in
large databases. Two levels of dependency models can be distinguished: the
structural model shows local dependencies of variables while quantitative
models describe the strength of dependency as a numerical value [35, 93].
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2.3.4 Regression

Regression involves the search of a linear and higher dimensional function,
which approximates the given data with a minimal distance error (e.g.,
mean square error). A so-called regression function models the relation
between one or several predictor variables (multiple regression) and a single
dependent response variable. Regressions are usually used for prediction
tasks. However, a low-dimensional regression function can also represent
the dependency in a human-understandable way (e.g, plot) [35, 5].

2.3.5 Summarization

Summarization aims to find a short description of the data which is com-
monly used for interactive exploratory data analysis and report genera-
tions [35]. Chandola et al. describe summarization as follows [17]:

“Summarization is a key data mining concept which involves
techniques for finding a compact description of a dataset. Sim-
ple summarization methods such as tabulating the mean and
standard deviations are often applied for data analysis, data
visualization and automated report generation.”

For summarization, various values can be representative while preserving
the most information. For example the centroid of a cluster of documents is
a good representative of all items within the cluster. Another summarization
approach uses aggregation functions (calculation of maximum, average,
etc.) [4].

2.3.6 Sequential Patterns

The search for sequential patterns aims to find trends or to analyze the
process generating patterns in time-dependent data sets [36].
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2.4 Dimensionality Reduction

Data sets containing several hundred variables are very common. Unfortu-
nately, such high dimensional spaces are not interpretable by humans and
commonly accepted visualizations for multivariate data (e.g., scatter plot
matrix, Parallel Coordinates) are not comprehensible when using more than
20 variables [68]. The reduction of the data sets dimensionality (variables) is
an approach to proceed with a lower amount of variables while preserving
as much information as possible. Every reduction leads to a loss of poten-
tially valuable information contained in variables and hidden structures.
Thus, as structures are based on a subset of variables, the amount of loss
information does not only depend on the count of removed variables. In
general, there exist two approaches for dimensionality reduction, namely
feature selection and feature extraction [117].

Feature selection is generally about selecting the best subset of all features
for a given task by using filters or by applying optimization methods.
Feature extraction transforms the original data to a lower dimensional space
while preserving as much information as possible. Common techniques
are Principle Component Analysis (PCA) which preserves the data variance,
Multi Dimensional Scaling (MDS), preserving dissimilarities within the data,
and Self Organizing Maps (SOM) which aims to keep topological and metric
relationships. As a result, feature transformations might make relations to
the original data set not intuitive. Therefore, another approach are variable
groupings which group similar variables or choose a representative one for
each group. Principle Component Variable Grouping is an example which uses
calculated principle components to group features [117].

To integrate the user into the process, there exist interactive feature reduction
systems such as Visual Hierarchical Dimension Reduction (VHDR) [170]. This
approach constructs a hierarchy based on similarities between variable
pairs.

2.5 Challenges

Data mining faces several challenges which have to be considered by data
analysts [35]: Large databases might contain several hundred fields and
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tables and millions of records. Thus, efficient algorithms are essential. Data
of high dimensionality increases the search space dramatically, which leads
to a higher chance of finding invalid patterns as well. This problem can
be coped with selecting a subset of variables, based on prior knowledge,
or with performing dimensionality reduction (see Section 2.4). Moreover,
underfitting and overfitting of the learned model can also lead to a poor
prediction quality (see Figure 2).

(a) The learned function underfits the target function.

An overfitted model might not fit the general data, since the learned model
might be too complex (see Figure 2c) or it might fit noisy data points
which results in a low quality when applying the model to new data sets.
Therefore, missing and noisy data is a common challenge. Data might also
change over time due to updates. Discovered patterns might not be valid
after a significant change and new ones might appear. In such a case, an
incremental update of patterns is needed. Many data mining algorithms are
designed for attribute-value records, but databases might also contain more
complex structures such as hierarchies or graphs [35]. For that, specialized
algorithms are needed. For descriptive tasks, discovered patterns need to be
understandable and data mining algorithms should be more interactive to
allow the user to cooperate according to prior knowledge.
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(b) The learned function fits the target function.

(c) The learned function overfits the target function.

Figure 2: Three trained functions learned by neural networks with different count of nodes.
The usage of two hidden units leads to an underfitted trained function – the
target function is too complex (a). The learned function fits the target function
best with 8 hidden units (b). A neural network with 40 hidden units results to a
heavily overfitted learned function – the neural network is too complex (c).
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2.6 Selected Data Mining Techniques

2.6.1 Decision Trees

A Decisions Tree (DT) is a popular data-mining technique for prediction and
to classify data records. In general, a DT is a directed-acyclic graph (tree)
representing a collection of nested conditions. Each intermediate tree node
(and root node) holds a condition which usually considers a single attribute.
The condition aims to split the data into subsets while considering the target
class. In other words, starting at the root and following appropriate branches
of conditions leads to a final leaf node which represents a class. DTs can
handle both numerical and categorical attributes to predict a class. While
decision trees are known for their high classification performance, they
can also be interpreted by humans easier in contrast to other classification
techniques (see Figure 7). A tree-like presentation is understandable and
intuitive [92]. To generate a new DT, learning algorithms need to find
attributes which distinguish the classes the most. This approach is being
applied to the resulting subsets in a recursive manner. To avoid learning
noise (so-called overfitting), a stop criteria is needed.

2.6.2 Self-Organizing Map

A Self-Organizing Map (SOM) is a feedforward neuronal network, which
is used to perform unsupervised clustering of numerical data. SOMs were
developed by T. Kohonen in 1982 (thus, a SOM is also called Kohonen Map).
In comparison to other neuronal networks, SOM do not have hidden layers.
Nodes of the output layer have additional neighborhood relations defined
by a link and a distance [83].

Generally, output nodes are arranged in a grid where the shape of a cell
depends on the defined topology of neighborhood (e.g., rectangle, hexagon).
As depicted in Figure 3, each input node is dedicated to one dimension and
each input node is connected to all output nodes (completely connected
neuronal network).

Moreover, a spatial location within the input space is assigned to each node
and therefore, each cell covers a specific area in the input space (see Figure
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Figure 3: Architecture of a Self-Organizing Map of a rectangular neighborhood topology
with 2 input and 9 output nodes.

4. In contrast to feedback networks, neighboring cells compete and adapt to
a given input (self-organizing). Thus, cells can be used as a two-dimensional
decoder for an arbitrary high-dimensional input. In other words, a SOM
maps a high-dimensional input space to a 2D space.

While training, nodes and its neighbors (cells) adapt by moving their spatial
location closer to the input. As a result, greater distances between cells can
be interpreted as cluster boundaries.

2.7 Data Mining Tools

There exist several data mining tools which vary in ease-of-use and com-
plexity. According to the user survey of Rexer Analysis [121], both open
source and commercial products are used in common. Some of the most
popular tools are STATISTICA, KNIME, R, SAS JMP, Rapid Miner, Weka
and IBM SPSS Modeler, while the open source tool R has become the most-
used since 2010. R is usually being used in combination with other tools.
However, the usage of R as primary tool has also increased recently. In
addition to that, STATISTICA, IBM SPSS Modeler, SAS JMP and KNIME
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Figure 4: A two-dimensional SOM (right side) has been trained with a three-dimensional
(uniform) density function as depicted on the left side. (Image source:
Kohonen [83])

received high satisfaction ratings. The complete list can be found in data
miner survey performed by Rexer Analysis in 2013 [121].

R

“R is a language and environment for statistical computing and graphics3.
It is a GNU project which is similar to the S language and environment
which was developed at Bell Laboratories (formerly AT&T, now Lucent
Technologies) by John Chambers and colleagues. R can be considered as a
different implementation of S. There are some important differences, but
much code written for S runs unaltered under R.” [1]

3The R Project for Statistical Computing - http://www.r-project.org/
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Figure 5: Scatter Plot Matrix depicting all dimension of the iris data set [39] (red=setosa,
green=versicolor, blue=virginica) – generated with the command pairs(x, . . . )
provided by the R environment.

The open source tool R offers the user freedom to modify, combine or extend
given functionalities by writing own code using the programming language
S. The R environment provides functions for data manipulation, performing
calculations and generating graphical representations to analyze the data
(see Figure 5). Data manipulations imply import and export functionalities
and operators to perform calculations on arrays and matrices without the
need of explicit loops. The environment can be understood as a coherent
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collection of functions to perform various statistical analysis or data mining.
Moreover, R can be extended via packages or even by linking algorithms
written in Fortran, C or C++.

STATISTICA

STATISTICA4 is a suite of analytical software, which is split up into multiple
products and developed by StatSoft since 1984 [136]. It offers functionalities
to perform data analysis and management, data mining and statistics, and
data visualization. According to Rexer Analysis, users report an outstanding
overall satisfaction regarding the usage of STATISTICA. After R, it is the
second most preferred primary tool for data analysis [121]. Fortunately,
STATISTICA supports the integration of R to combine both systems.

Rapid Miner

Rapid Miner5 is a commercial product (developed by the same-named
company Rapid Miner) based on the open source software called YALE (Yet
Another Learning Environment). It is implemented in Java and commonly
used for industrial, educational and research purposes.

Moreover, it is designed to perform data mining experiments visually with-
out the need of writing additional code and it supports both local and
cloud based calculations (see Figure 6 and Figure 7). The product Rapid
Miner Studio is free to use with several limitations (memory, supported data
sources, etc.). For different limitation levels including the product Rapid
Miner Server, annual fees are charged. However, Rapid Miner has shown
significant increase of popularity in recent years and according to the survey
of Rexer Analysis in the year 2013, more data analysts use it as their primary
analytic tool [121].

4STATISTICA - http://www.statsoft.com/
5Rapid Miner - https://rapidminer.com/
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Figure 6: Graphical representation of the data mining process. The first step loads the iris
data set (data access). The second step filters duplicates (data pre-processing).
The last step trains a decision tree with the given data (data mining). The final
result of the process is a trained decision tree model which can be applied to
other data sets.

SAS

The Statistical Analysis System6 (SAS), developed by SAS Institute, aims
to enhance users to perform advanced and predictive analytics. The suite
consists of more than 200 software components and it is one of the most
popular tools with a high satisfaction rate. 9% of interviewed data analysts
report SAS to be their primary analytics tool [121]. It offers both a graphical
interface for standard users and a dedicated programming language (SAS
programming language) to access more advanced functions and freedom.

KNIME

Similar to several other graphical data mining tools, the open platform
KNIME7 (the Konstanz Information Miner) supports users to design a mod-
ular data pipeline in a graphical manner. Such a pipeline consists of elements
which are interconnected to each other to define a data flow. Each element
(pipeline step) defines a specific task of the overall process. For example,

6SAS - http://www.sas.com/en_us/software/analytics/stat.html
7KNIME - https://www.knime.org/

35

http://www.sas.com/en_us/software/analytics/stat.html
https://www.knime.org/


Figure 7: Rapid Miner enables users to design data mining processes in a graphical manner.
Some trained models such as Decision Trees or Neuronal Networks can be
visualized and investigated. The depicted exemplary Decision Tree, which is
trained by using the iris data set, classifies three different species of Iris flowers.

such steps can be loading of data from a source, data pre-processing (e.g.,
removing duplicates, filling missing values, etc.), training a model, applying
a trained model to data, calculating statistics or a visualization of the data
or result (see Figure 8).

The environment is developed and supported by KNIME.com AG and aims
primarily teaching and research purposes. It is written in Java and it is
realized as an Eclipse plug-in (Eclipse Foundation). It can be easily extended
by modules which implement new algorithms, visualization or other steps
of the data pipeline [10]. Moreover, KNIME includes many extensions to
enable the environment to include modules from other tools (e.g., Weka, R,
Matlab, etc.).
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Read iris.csv Assign colors

Train model

Apply modelSplit data 60/40 Compute confusion matrix
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Figure 8: An example workflow of KNIME. It loads the iris data set, assigns individual
colors to each species, splits the data set, trains a Decision Tree and applies the
other data to the trained model. A Scatter Plot- and Scorer module show the final
results and statistics.

IBM SPSS Modeler

The SPSS Modeler is a proprietary software for data analysis developed
by IBM8. Users can design data-mining processes in a graphical way as
explained in 2.7. Moreover, the SPSS Modeler offers a generic model learner
which tries to find the best model automatically. This might be a fast and
convenient solution to obtain first results.

WEKA

The Waikato Environment for Knowledge Analysis9 (WEKA) is a popular
data mining tool and it offers a broad collection of features and algorithms.
It is developed at the University of Waikato, New Zealand and published
under the GNU General Public License [47].

8IBM SPSS Modeler - http://www-03.ibm.com/software/products/en/

spss-modeler
9WEKA - http://www.cs.waikato.ac.nz/ml/weka/
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Figure 9: The ”WEKA GUI Chooser” which is the initial user interface when starting
WEKA.

WEKA offers a solid collection of data processing and machine learning
algorithms. As depicted in Figure 9, the start window offers the user multiple
modes to access these features. The “Explorer” is the main window. It
consists of several panels which represent a single data-mining steps (see
Figure 10 and Figure 11). The “Experimenter” supports users to execute and
compare several experiments in a more convenient way. “KnowledgeFlow”
offers the user to design and execute a graphically represented data-mining
pipeline. Very similar to the approach of KNIME described in 2.7, algorithms
and tasks can be connected to set up an individual pipeline. Last but not
least, “Simple CLI” provides a command line to access features without the
usage of the graphical user interface.

The Data Miner Survey 2013 of Rexer Analysis reports a high popularity of
WEKA as secondary analytical tool [121].
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Figure 10: The “Explorer” is the main graphical interface of WEKA. This screenshot shows
the explorer with the loaded iris data set. It offers various features such as
attribute selection, classification and regression, clustering and visualizations to
explore the data set. After applying a data-mining algorithm, the trained model
can be saved.

Figure 11: To analyze the data graphically, 2D Scatter Plots and Scatter Plot matrices are
offered by WEKA.
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3 Visualization

The general goal of visualization is to provide a comprehensible and more
abstract visual presentation of complex data to enable users to perform
detailed investigations and to gain better insight into it [73]. This goal can
be subdivided into explanatory and exploratory purposes. Visualizations
have been used in human history in various ways. A famous example
is Charles Minard’s depiction of Napolean’s invasion of Russia in 1812

(see Figure 13). It shows six types of data on a single map (the number
of troops, temperature, distance, location relative to date, latitude and
longitude).

Large data sets are likely to contain high dimensional data and humans
are limited to perceive multiple attributes at once. Therefore, it is essen-
tial to consider which information is important to the user and to avoid
overwhelming amount of irrelevant information.

Overview Zoom Filter
Details
on

Demand

Figure 12: Shneiderman’s mantra for visualization systems.

As depicted in Figure 12, many designs of visualization systems are influ-
enced by Shneiderman’s mantra [131, 73]:

“Overview first, Filter and zoom, Details on demand”

It emphasizes how user interfaces should be designed so that users do
not lose overview of the overall context or do not suffer from information
overload.
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Figure 13: “Minard” by Charles Minard (1781-1870). Depiction of Napolean’s invasion of
Russia [104].
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3.1 Categories of Visualization

In general, visualizations can be classified into scientific visualization, informa-
tion visualization. Scientific visualization is about rendering data sets linked
to time and space. Therefore, it often uses 3D renderings with additional (ab-
stract) visual elements to depict the data (e.g., vectors, tensor data, volumes,
etc.) [49].

Information visualization is usually about presenting abstract data which
does not have references to the real-world dimensions space and time
(e.g., business data, documents, software, etc.). Such data can be highly
dimensional and due to it’s abstract structure, it requires specific visual
methods.

Some literature define a third categorization to organize the types of vi-
sualizations, namely geovisualization. Geovisualization has its roots in car-
tography and it refers to visualizations of geospatial data which includes
attaching information to various maps [67].

In addition to that various sub-categories of visualizations exist. Some
examples are software-, music-, biomedical-, social- or flow visualization.

3.2 Psychology of Perception

3.2.1 Pre-attentive Features

While statistics, machine learning and related research areas rely on com-
putational power, visualization utilizes the human perception capabilities
to communicate the content of the data. As shown in Figure 14, so-called
pre-attentive features do not need cognitive effort for recognition [158, 142].
These properties make visualizations a powerful and appropriate tool to
explore huge data sets faster.
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(a) Color (b) Orientation

(c) Size (d) Enclosure

(e) Curvature (f) Shape

Figure 14: Pre-attentive features enable users to perceive differences in a glance without
additional cognitive effort (popout effect). As an example, the change of color
(a), orientation (b), size (c), enclosure (d), curvature (e) and shape (f) are strong
pre-attentive features.
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According to Ware [158], pre-attentive features can be categorized into the
following categories:

• Line orientation
• Line lenght
• Line width
• Size
• Curvature
• Spatial grouping
• Blur
• Added marks
• Numerosity (one, two, etc.)
• Color

Hue
Intensity

• Motion
Flicker
Direction

• Spatial position
Two-dimensional position
Stereoscopic depth

• Convex/concave shape from shading

3.2.2 The Gestalt Laws

The Gestalt Laws are another theory which is relevant for visualization
systems [75]. It implies that humans tend to perceive simple structures
and shapes as shown in Figure 15. In addition to that, it says that the
overall structure is more dominant than single parts (see Figure 15b and
15c). Nevertheless, pre-attentive features such as colors are even more
dominant.
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(a) The law of simplicity. (b) The law of proximity. (c) The law of continuity.

Figure 15: The Gestalt Laws tell that humans tend to perceive simple structures, grouped
elements and continuous lines (a subset of all laws) [75]. The shown black area
is perceived as two separate triangles (a). Due to alternating proximity, three
columns are perceived in (b). The arrangement of circles in (c) let users perceive
two continuous lines.

3.3 Visualization Stages

According to Ware [158], the general visualization process includes four
stages (see Figure 16):

• Collection of data
• Preprocessing of data
• Mapping from data to a visual presentation
• Human perception and cognition

The stage collection of data includes storage, management and acquaintance
of data to build a uniform basis for further processing. Next, Preprocessing
of data describes the process of transforming and reducing the data. Data
reduction is needed to limit the processed data to the current selection or
context. Transformations can simplify the data format which makes it easier
to work on it in the next stage. Mapping from data to a visual presentation maps
the preprocessed data to a graphical representation. To maximize efficiency,
the representation should make usage of pre-attentive features to outsource
the users comprehension effort to the human perception system. Finally,
the stage Human perception and cognition describes the processing of visual
information of the human brain. To explore the data set and investigate
further details, the analyst might change visualization settings or the current
selection. This directly effects the mapping stage and in some cases even the
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Data Data 
transformation

Graphics engine
visual mappings

Visual and cognitive 
processing

Data exploration

View manipulation
Data gathering Social

environment

Figure 16: A depiction of the iterative visualization process. After preprocessing and trans-
forming the raw data, a graphical mapping is performed and the result is shown.
The user perceives the graphical representation and interprets it. The users final
interpretation is highly depended on the users current domain knowledge. For
further explorations, user interactions to change the view or data are essential.

preprocessing stage. Therefore, the general visualization process is iterative,
while being coupled to the user.

3.4 Design of a Visualization System

A sophisticated visualization system meets several requirements to satisfy
target users. The main purpose of a visualization is to support users to
understand and explore the data for a given task. Therefore, the general
functionality for usage and exploration of the data space requires to be
relatively easy to use for main target users. To design functionalities to
explore further details of the data, Shneiderman’s mantra “Overview first,
Filter and zoom, Details on demand” [131] should be considered well.
Moreover, multiple data representations might increase effectiveness for
different types of users or tasks [78].

According to Kerren et al. [78], the following questions need to be an-
swered by performing a detailed investigation, to meet the above-mentioned
requirements:

• Who will be the users of the visualization?
• What is the data that will be viewed?
• What tasks can be performed with the data?

47



Visual design
User analysis, 

Requirements analysis 
and Task analysis

Implementation Visualization validation

Figure 17: The design cycle is a generic approach to ensure quality of the design and
implementation of visualization systems [78].

• What are some of the insights that the visualization will allow?

These questions imply user analysis, requirement analysis and task analysis.
These analyzes are usually performed at the beginning of the project and
after each visualization validation (discussed in Section 3.4.2). As depicted
in Figure 17, this procedure results in an iterative design cycle. However,
these steps are not necessary separated and the design cycle functions as a
general guideline to develop visualization systems.

Moreover, it is essential to consider usability and the design of visualizations
is strongly connected to the design of general interfaces. Thus, usability tests
can be performed to find problems and to measure the general satisfaction of
users citeAndrews2006. Problems might be the wrong type of visualization
or even a too detailed representation of the data, which does not meet the
users expectations to fulfill a specific task [78].

3.4.1 User Model and Requirements

An investigation of the user’s mental model of the given data within the
given context helps to derive and design a user model and find an appropri-
ate visualization. A user model is an approximation of the mental model of
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a target user or even a group of users. The mental model of a user depends
on the users individual domain knowledge, experience and expectations. It
usually changes over time cause of gaining new knowledge or forgetting
specific details. Moreover, the user might have wrong or outdated knowl-
edge. Therefore, a designed user model does usually not match a user’s
mental model. However, the user model is the basis to derive a well defined
visualization for a given task. If there are multiple users with different
mental models of the same data, multiple user models and visualizations
should be derived [78].

A proper definition of user requirements is essential to design a sophisti-
cated visualization system. Its definition should contain the user needs and
expectations of the visualization and corresponding interactions. Moreover,
detailed investigation should be done on current activities and problems
users deal with (including the strategy to solve it) [78].

3.4.2 Evaluation of Visualization Systems

An evaluation of the system is important to find needs of users and usability
problems to enhance the visual system. Evaluations assist to check whether
requirements are met and if target users accept the new visualization. In
addition to that, the user can give hints for further improvements. Flexibility,
freedom and usability commonly lead to a more successful system [15, 78].

In general, an evaluation of a system should imply the analysis of its
interaction methods, usability and visualization [6]. As depicted in Figure 18,
evaluations of a human-centered design involve users in early stages to
ensure a higher final quality. In each iteration, evaluations are performed in
each phase for the concept design, detailed design and implementation.

Evaluation methods can be divided into analytical methods and empirical
methods [78]. Analytical methods include all methods to find problems
without users. For that, experts investigate the design for possible problems
and report these. Examples of analytical methods are heuristic evaluations,
cognitive walk-through and early concept evaluation.

On the other side, empirical methods imply all methods, which observe
users to measure parameters such as efficiency, effectiveness, satisfaction
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Imple-
mentation

Concept
DesignEvaluation

Detailed
Design

Analysis

Figure 18: The evaluation cycle for a human-centered design emphasizes that the design
and implementation has to be evaluated in each iteration [78].

and learnability. It is the most commonly used method, but its drawback is,
that the system needs to be implemented to perform the evaluation.

3.5 Types of Interaction

Besides the actual visual representation of the data, user interactions are the
second important part of visualizations systems. In contrast to a static repre-
sentation, interaction techniques allow the user to navigate and explore the
data set and change its presentation [75]. Yi et al summarized the most com-
mon interaction methods of information visualization techniques [171].
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Selection

Selection of items implies a graphical highlighting to support the user to
track selected data points while exploring the data space 19. Depending on
the type of representation, selections are depicted in different ways (e.g.,
change of color, enclosure, etc.). A selection can also be combined with
further operations.

Figure 19: Selected data points are colored red for highlighting.

Exploration

Interaction methods to explore the whole data space are needed because
the complete data set cannot be visualized in many cases. Reasons for that
can be the size of the data, the size of the display or natural limitations of
the human perception capabilities. Therefore, methods are needed to allow
the user to change the currently viewed subset (see Figure 20). Common
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Figure 20: This gray scale heat map visualizes all attributes (rows) of all elements (columns)
as a colored matrix. Selected elements are highlighted with red color. Often, the
data set is too large to show all values simultaneously on the display. Therefore,
a subset of the whole data set is shown and user interactions (e.g., panning,
scaling) are used to explore the data.

methods are panning and direct walk. When changing the state of view to a
new one, smooth animations support users to understand the relation to its
previous view state.

Reconfiguration

A reconfiguration of a visualization describes the change of the perspective
on the data. In other words, the data is being rearranged in some way. For
example, this can be achieved by performing a sorting or by reconfiguring
the view itself (e.g., changing the attribute of an axis of a scatter plot).

Encoding

An encoding enables the user to change the entire representation of the data
by changing the visualization method itself (e.g., changing a histogram to a
pie chart). An additional representation can emphasize different aspects of
the same data set and therefore, users can gain deeper insight and further
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Figure 21: A tree map is a space filling visualization to represent hierarchies. One dimension
of data set has been mapped to the color of the corresponding area. Selected
elements are highlighted with a red borders. (generated with Scaffold Hunter
[163]).

understanding. For example, the tree map depicted in 21 visualizes the
same data set as the scatter plot in Figure 19 does.

Abstraction / Elaboration

Abstraction and elaboration methods are used to adjust the level of detail
of a representation. In a common user scenario, the user wants to get an
overview of the whole data at the beginning. Then, depending on the
users goal, he or she might want to explore the data space in a more
detailed way. This function involves the first, second and last phase of
Shneiderman’s mantra for visualization systems called Overview, Zoom and
Details on Demand, respectively (see Figure 12). As shown in Figure 22, a
practical method for this type of interactions are semantic zoom and geometric
zoom.

Weaver states [161]:
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(a) When zoomed out, less details are shown: This scaffold
tree does not show detailed representations of its nodes
(molecules) to avoid information overflow. In addition to
that, nodes are too small to depict more details in a legible
way and rendering performance is increased.

“Semantic zoom is a form of details on demand that lets the user
see different amounts of detail in a view by zooming in and out.”

Filter

Filter provide users an opportunity to change the presented data set by defin-
ing conditions without changing the actual visualization method. When
applying new conditions, the original data stays unchanged but only a
subset of the data, which applies to the defined conditions, is shown. Dy-
namic query control, by using sliders to set value limits, is an example for
a common filter interaction. Filter interactions represent the third stage of
Shneiderman’s mantra.

Connecting

Connecting interactions enable users to comprehend relations between
different views and related elements. Several visualization systems use
multiple views in parallel to enhance insight (multiple encodings). When
selecting an element in one view, the element will be highlighted in all other
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(b) When zoomed in, a more detailed representation is
shown: Nodes of the scaffold tree are rendered as
molecules instead of filled rectangles.

Figure 22: Semantic zoom is a technique to adjust the level of detail according to the
geometric zoom level. When zoomed out, less detail is shown to not distract the
user with too many details. This helps to get a better overview more easily (a).
When zoomed in, less elements are shown but they can be rendered in a more
detailed way (b).

views as well (compare Figures 19,20 and 21). This particular connecting
interaction is called linking and brushing. Another approach is highlighting
all neighboring (or similar) elements of a selected element to emphasize
relations between data points.

3.6 Selected Examples

3.6.1 Heat Map

A heat map is table-based visualization technique and basically, it is a
rectangular map consisting of rows and columns. It is a very popular
visualization method and its purpose is to visualize a data matrix. For
that, each cell of the heat map represents the appropriate value of the data
matrix by color shading (see Figure 23). The color is determined by a color
mapping function and it supports the user to comprehend and compare a
huge amount of values more efficiently [165].
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Figure 23: An example illustrating the basic principle of a heat map. Due to an applied
color mapping function, each cell is shaded according to the appropriate value
in the data matrix (low values are green, high values are red). Due to the use of
colors, the observer recognizes high values in the center and above the center at
a glance.

Thus, the main advantage of heat maps is the ability to visualize large data
matrices on a single display (see Figure 20). Cells may be scaled down to
the size of a single pixel and thus, the higher the resolution of the display,
the larger the data matrix can be visualized as a whole.

Even if the matrix does not fit into the display (or the user prefers a larger
cell size), heat maps allow several interactions to explore the data. The most
common interactions are zooming and panning for further exploration. For
coloring cells, different color mapping functions may be used to highlight
different aspects. A more advanced feature is interchanging rows or columns
to change the order. This might be done automatically or manually.

Selections need to be handled in a special way, because a selection of a
single cell would mean the selection of a single property of one element.
Thus, depending whether rows or columns represent selectable elements,
the appropriate dimension needs to be selected as a whole. Selections can
be highlighted by shading, drawing a border (see Figure 20) or by depicting
an indicator along the border of the heat map.
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3.6.2 Self-Organizing Map

As described in Section 2.6.2, a Self-Organizing Map represents a data
space of an arbitrary high dimension by a two-dimensional grid. The neigh-
borhood relations within the grid are being preserved during training.
Therefore, the grids properties can be used to visualize the high dimen-
sional data as a two-dimensional matrix. A known drawback of a planar 2D
grid is, that nodes along the edge of the grid do not have the same count
of neighbors as central nodes. Thus, the represented information of these
nodes tends to be less. To tackle this problem, borderless manifolds (e.g.,
torus) should be used and to visualize its surface, a tiled representation of
the minifold can be used [155, 151].

There exist multiple types of SOM visualizations. The most common is the
so-called U-Matrix.

Neighbour distance plot

2

4

6

8

Figure 24: A colored U-Matrix visualization of a trained 12x12 SOM grid generated with
R. The iris data set was used to train the SOM and distances are represented
by cell colors. White and yellow indicates long distances between neighboring
nodes and red indicates a high density of neighboring nodes. Thus, joint areas
indicating long distances are interpreted as cluster borders.
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U-Matrix The U-Matrix visualizes the distance of a node to all its neigh-
bors (U-height) [152]. In other words, it visualizes the allocation of the input
data in an abstract way using distance information.

Let Nm be the set of neighbors of a node m, w(n) the associated vector
of node n and d(w(n), w(m)) a distance function to calculate the distance
between both given vectors, then

U-height(m) = ∑
n∈Nm

d(w(n), w(m))

As depicted in Figure 24 and 25, a large U-height indicates that trained nodes
are located far away from each other, whereas a low U-height represents
small distances to neighbor nodes. A small distance to a nodes neighborhood
represents a high density of training data points within its surrounding
area (cell). In Figure 24, a cluster boundary is shown by a yellow and white
elongated area. The gray scale SOM visualization in Figure 25 indicates
cluster boundaries by gray areas.

To depict a U-Matrix, a Heat map (using gray levels) or a landscape visual-
ization is commonly used. Considering the landscape method, a U-Matrix
has several properties [152]:

• A “mountain range” (large U-height values) represents a border of
two clusters.
• A “valley” (low U-height values) indicates a cluster center.
• A “sinkhole” indicates outliers.
• Data points are typically in depressions.

P-Matrix Compared to the U-Matrix, the P-Matrix uses density values
instead of distances. Therefore, the data density (P-height), within a prede-
fined volume (e.g., Pareto sphere) is calculated for each node, where the
volume is centered at the nodes position in the data space [152]. A large
P-height represents a high density, whereas a low P-height represents a
sparse environment. Considering these properties, the P-Matrix is a comple-
mentary (and compatible) visualization to the U-Matrix. Let n be a node of
the SOM grid, w(n) the associated vector of node n and p(n, X) an empirical
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Figure 25: A gray scale U-Matrix visualization of a 40x40 SOM grid generated with Rapid
Miner. The color of each node indicates its corresponding class, which is defined
by the labeling of the data records (blue = iris-setosa, green = iris-versicolor, red
= Iris-virginica). After performing an unsupervised training of the SOM with
the iris data set, the U-Matrix yields the cluster border between the iris-setosa
(blue) and the other types very clearly (bright areas represent longer distances
between nodes). However, the cluster border between the classes iris-versicolor
(green) and iris-verginica (red) has not been found.

density estimation of the node n in the input space X, then:

P-height(n) = p(w(n), X)

Spread of values Another common visualization of SOM is a color-coded
matrix (heat map) representing a single dimension [155]. The cells color
depicts the value of the appropriate attribute (see Figure 27). Thus, the
distribution of values can be investigated over the whole allocated data space.
When combined with other matrices, which depict different dimensions,
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Sepal.Length
Sepal.Width

Petal.Length
Petal.Width

Figure 26: A representation of all trained SOM nodes interpreted as code book vectors.
After a sufficient training, the SOM spans all values of the training set and
this particular visualization supports the understanding of the distribution of
values within the input space. In each cell, a segment plot is shown to depict
all values of its corresponding code book vector. In the bottom left corner, all
four dimensions are of high values. In contrast to that, the upper right corner
represents low values of all dimensions. The bottom right corner depicts high
values of the dimension sepal width (yellow) and low values of all remaining
dimensions.

correlations and relations between dimensions can be analyzed. In addition
to that, Figure 26 depicts all codebook vectors by using segment plots in a
single matrix.
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Figure 27: Heat maps depicting the value distribution of 4 dimensions over the whole SOM
grid. Each matrix depicts a single attribute of the iris data set. Concerning the
depicted SOM grid, values of the attribute sepal length decreases diagonally from
the bottom left corner to the upper right corner (a), whereas the sepal width
decreases from bottom right corner to the upper left corner (b). The petal width
and petal length are of a similar distribution, where low values are concentrated
on the right side (c,d).
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4 Visual Analytics

There exist commonalities between the general processes of visualization
and knowledge discovery in databases. Both processes are iterative and
visualization is a key element of KDD to communicate the discovered knowl-
edge to the user. Whereas the term information visualization describes the
general visual presentation of data, KDD requires complex user interactions,
which do not only affect the visualization itself. The user requires immersive
insight and control of both the visualization and the data mining process to
improve the ability to explore the data. This exceeds the definition of general
information visualization, because this term does not necessarily imply data
analytics. However, the demand for such interactive analytical solutions has
been rising recently. Therefore, a new field called visual analytics has been
announced. It combines several fields of data analytics, human-computer
interaction and visualization for improved decision making and analysis
(see Figure 28).

Visual Analytics

Interaction

Information
Analytics

Cognitive & 
Perceptional Science

Presentation, production 
& dissemination

Data Management &
Knowledge Presentation

Cognitive & 
Perceptional Science

Knowledge 
Discovery

Statistical Analysis

Geospatial Analysis

Scientific Analysis

Figure 28: The scope of visual analysis by Keim et al. emphasizes all research field which
are involved in visual analytics [77].
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4.1 The Visual Analytics Process

The visual analytics process implies the selection of automated data min-
ing algorithms combined with an appropriate visual presentation [73, 75].
Therefore, it is a combination of traditional data mining and information
visualization (see Figure 29). To emphasize the process, Keim extended
Schneiderman’s mantra as follows [77]:

“Analyse First – Show the Important – Zoom, Filter and Analyse
Further – Details on Demand”.

Data
Computational

Model K
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l
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g
e

Mining
Hypotheses

Interpretation
and

Verification

Data
Visual
Model

Mapping
Hypotheses

Pattern
Extraction

Feedbackkloop

Figure 29: A comparison of analytic prosesses between conventional data mining (top) and
information visualization (bottom) [75].

Moreover, an essential part of the overall visual analytics process is the
sense-making loop [73]. As depicted in Figure 30, the visualization process
is iterative, where the user interface acts as link between data and user.

Formal definition: Keim et al. presented a formal definition of the visual
analytics process [77]:

The data might be acquired from multiple data sources. In case of m data
sources, a heterogeneous data set S = S1, . . . , Sm is given, where each
Si, i ∈ (1, . . . , n) has attributes Ai1, . . . , Aik. As the ultimate goal of data
analytics is gaining a new insight I, the process can be understood as a
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Figure 30: Depiction of the generic visualization process by Wijk [154]. Circles represent
processes which transform inputs. It emphasizes the iterative user interaction
with the visualization to explore the data.

transformation F : S → I. In general, an insight I can be derived either
directly from one or more visualizations V or from assumed hypotheses H
derived from automated analysis methods. The transformation function f
consists of multiple elements f ∈ {DW , VX, HY, UZ}.

DW : S→ S, W ∈ {T, C, SL, I} describes the serial application of basic data
pre-processing tasks DT(DC(DSL(DI(S)))), where DI is a data-integration
function, DSL performs data selection tasks, DC cleans the data and DT
performs data transformations.

VX, X ∈ {S, H} represents the visualization function to generate a set of
visualizations from either the data itself (VS : S→ V) or from a hypothesis
(VH : H → V).

HY, Y ∈ {S, H} describes the generation of a hypothesis which can be
derived from the data (HS : S→ H) or from a visualization (HV : V → H).
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Figure 31: The formal process of visual analytics [77]

The user interaction function UZ, Z ∈ {V, H, CV, CH} is an essential part of
the overall process. User interactions can manipulate only the visualization
UV : V → V or the derived hypothesis UH : H → H. In addition to that,
further insight I can be provided by either the visualization UCV : V → I or
the current hypothesis UCH : H → I (see Figure 31).

4.2 Categorization of Visual Analytics

Visual analytics techniques can be categorized in several ways. The catego-
rization used by Bertini et al. [11] emphasizes whether the visualization or
the analytical part plays the major role. For that, they used three categories,
namely: computationally enhanced visualization, visually enhanced mining and in-
tegrated visualization and mining. Turkay et al. [147] presented a 2-dimensional
classification scheme. The first categorization distinguishes the type of an-
alytical task which is classified in summarizing information, finding groups
& classification and investigating relations & prediction. The second one cat-
egorizes the applied visualization technique according to its integration
level of analytical and computational tools: visualization as a presentation
medium, semi-interactive use of computational methods and tight integration of
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interactive visual and computational tools. The transition between these levels is
seamless. However, an investigation of state-of-the-art methods by applying
this 2D categorization revealed, that there is still a lack of fully integrated
methods.

4.3 Quality Metrics

Quality metrics are used to rate representations regarding to its usefulness
for the user. In other words, quality metrics measure the relevance of a
given representation and its settings. It can be used to find interesting
projections, to reduce clutter or adjust the abstraction level of the data rep-
resentation [114]. For example, when considering a clustering problem, a
2D projection (e.g., scatter plot) of a high dimensional data which shows
separated clusters, is more relevant to the user (due to ease of cluster iden-
tification) than 2D projections, which show interleaved clusters (different
dimensions for the x-axis and y-axis). Therefore, with the support of metrics,
visual analytics systems can recommend highly rated representations to the
user automatically [8].

Source
Data

Visual
Structures

Views
Target
Data

Quality-Metrics-Driven Automation

View
TransformationVisual Mapping

Data
Transformation

User
Rendering

Figure 32: The visualization pipeline extended with a quality metrics measurement in each
stage. Quality metrics are calculated in both data space and image space. The
user can control and adjust the metrics system via user interactions.

As depicted in Figure 32, quality metrics can be calculated in any stage of the
visualization pipeline while being under control of the user. Calculations are
performed in both data and image space [12, 137]. Examples of measured
values are correlations, outlier metrics, image quality (e.g., clutter) and
feature preservation.
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(a) An unsorted scatter plot matrix.

(b) A sorted scatter plot matrix.

Figure 33: (a) Dimensions of the scatter plot matrix are unsorted and therefore, correlations
are harder to perceive. (b) Sorted dimensions support the user to recognize
specific types of correlations more easily. (Image source: Behrischa et al. [8]).

There already exist several approaches for using quality metrics, namely the
optimization of the projection, ordering, abstraction, visual mapping and
the view itself.

As mentioned above, optimizing the projection includes finding the best com-
bination of dimensions for the x-axis and y-axis to enhance the comprehen-
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siveness of the presentations for a given task. Ordering optimization describes
finding a sorting of the data which results to a better representation in the
current view. Automatic adjustment of the abstraction level can enhance the
understandability of a visualization. An example is the reduction of the data
while preserving the overall structure (e.g., reducing the count of lines in a
Parallel Coordinates plot). Furthermore, finding a better visual mapping from
data features to visual features (e.g., colors, shapes) is another approach
to enhance insight. A view optimization adjusts parameters of the view to
emphasize interesting structures of the data set (see Figure 33).

As the system is not able to know what the user exactly does want to
explore, some current approaches enable the user to interact with the quality
measurement [12]. For that, a threshold selection changes parameters of the
metrics calculation and a metrics selection combines or enables/disables
individual quality metrics.

4.4 Selected Examples

4.4.1 Clustered Heat Map

A clustered heat map (CHM) is an extended version of a normal heat map
which is discussed in Section 3.6.1. A CHM uses hierarchical clustering to
order its rows or columns – or even both rows and columns. As clustering
allocates similar elements next to each other, it supports to find patterns
and relations within the data set (see Figure 34).

To define a similarity relation, a distance function (metric) needs to be
defined. Some examples of common distance functions are Euclidean dis-
tance, Squared Euclidean distance, Minkowski distance [168] and Manhattan
distance [85].

Moreover, a hierarchical clustering does also need a linkage criteria to define
the distance of two sets. Common linkage criteria are single-linkage [133],
complete linkage [23], mean linkage (also called Unweighted Pair Group Method
with Arithmetic Mean) [135] or centroid linkage (also called Unweighted Pair-
Group Method using Centroids) [71].
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Figure 34: This clustered heat map uses clustered rows and columns to order both dimen-
sions. Clustering supports users to identify relationships and patterns within
the multivariate data set. Adjacent dendrograms on the top and to the left depict
the cluster hierarchy. (Image source: Hui et al. [61]).

Dendrograms A dendrogram is a tree-like visual presentation of a hier-
archy. As shown in Figure 34, the dendrogram on the left side represents
the result of a clustering of all rows. Each element is treated as a single
cluster and the height of a cluster represents the dissimilarity of both cluster
members. Dendrograms are also commonly used as stand-alone visualiza-
tions for clustered elements (e.g., molecules, proteins, etc.) to investigate
differences and similarities.
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Configuration of Clustering To control the clustering process, the user can
configure the clustering parameters (distance function, linkage criteria) to
achieve different ordering of rows and columns. In addition to that, the
user might select a sub-cluster of the dendrogram to perform a subsequent
clustering on it. This enables the expert to analyze the multivariate data
combined with the support of clustering techniques.

4.4.2 Interactive Decision Trees

Several approaches exist to construct decision trees interactively to support
experts to contribute their domain knowledge to the creation process [7,
153, 159]. Ankerst et al. [7] and Ware et al. [159] introduced methods to
support users to create decision trees based on visualized data using circle
segments and scatter plots respectively. Both approaches are based on
drawing separating elements (e.g., lines) to split the data in a graphical
manner. The separation is interpreted as a new predicate resulting to a
new node being attached to the decision tree. The user might perform
another split on several subsequent data sets to enhance the classification
performance. An advantage of this approach is that users do not tend to
cause overfitting and performance evaluations showed that users are able to
create decision trees of almost the same classification performance as trees
generated automatically by algorithms [7].

Another approach was introduced by Elzen et al. [153]. It supports users to
create, optimize, prune and analyze decision trees. Therefore, the visualiza-
tion of the decision tree itself has been enhanced instead of visualizing the
data (see Figure 35). In addition to that, each node of the tree visualizes the
data set, which is being divided by the node’s predicate, in a compact way
by using distinct colors for each class.

Areas within a horizontal bar depict the quantity of elements of each class
and a stream graph plots the distribution of all elements over the attribute’s
value range. Each colored stream represents a class and the overall graph
supports users to determine whether an additional division of the data set is
reasonable. Furthermore, a histogram depicts the amount of elements of each
class on both sides of the split point. These combined visualizations, which
are shown in every tree node, enable analysts to investigate the classification
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Figure 35: The Baobabview is a visual analytics solution using interactive decision
trees [153]. An unique color is assigned to each class and compared to standard
trees, it depicts the amount of class members of each data subset applied to a
particular tree node. Besides the condition, each node visualizes the distribution
of all classes by using a stream graph to increase comprehensibility of the condi-
tions impact on the data set. Node links consist of colored sub-threads where
each thread represents one class and its thickness is coherent to the count of its
class members. (Image source: Elzen et al. [153])

performance of the corresponding predicate. This visualizations function as
decision support for further interactive adjustments. To examine the overall
classification performance of the decision tree, a visual confusion matrix is
provided. It depicts the count of misclassifcations in a graphical manner.
Moreover, node links are represented as a bundle of colored streams and
multiple tree layouts are used for further investigations. For example, a
clustering and placement of all tree leaves on the same level enable analysts
to identify which classes are easier to classify (represented by a low count
of leaves). The thickness of each stream is relative to the amount of data
entries of the corresponding class to depict the amount of elements.
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4.4.3 Visual Cluster Analysis with Interactive Kohonen Maps

The Visual Cluster Analysis with Interactive Kohonen maps by Schreck et al.
is a visual analytics approach to involve user knowledge in the training pro-
cess of Kohonen maps [129]. The standard training of SOMs only supports
the configuration of certain learning parameters (e.g., learning rate, neigh-
borhood topology, count of iterations, grid size, etc.) before the training has
been started. The training process of a SOM is an unsupervised method and
the final outcome depends on the data and the random initial state of the
grid. Thus, the final result might conflict with the users expectations based
on the present domain knowledge. Therefore, it would be an advantage to
allow users to steer the learning process.

Figure 36: Visual clustering of trajectory data with five fixed user-defined trajectories [129].
(Image source: Schreck et al. [129])

In detail, the approach aims to cluster normalized trajectory data. An
advantage of this particular data type is, that it can be visualized compactly
by drawing the corresponding path (see Figure 36). The user can define an
initial state manually and in addition to that, the user can pause, modify and

73



resume the learning process at any time. When stopped, learning parameters
and even individual trajectories can be modified. In case of having a non-
satisfying result (e.g., poor classification performance or significant drift
from user expectations), the approach also offers an undo function to rewind
the learning process to a certain degree. To allow finer granularity, individual
learning parameters can be set and modified for a single cell.

This approach can also be applied to other data types and the combination
of all these functions enables the user to steer and modify the learning
process of a Self-Organizing Map in a detailed way. However, too many
configurations might lead to a low classification performance.

4.5 Open Problems

In general, visualizations still face several challenges and open problems [73].
First of all, the quality of the analyzed data must be sufficient to realize
a visualization representing reliable knowledge. Obviously, even highly
sophisticated visualizations cannot compensate data of low quality leading
to a wrong result.

Another challenge is the scalability of such systems concerning the volume
and dimensionality of the data. Specific data sets require tailored visualiza-
tions and nowadays, there is no generally accepted framework for a given
problem. Therefore, there does no encompassing evaluation of visualization
techniques exist.

One of the main problems are usability issues which are still recognized
as an optional add-on. Most visualizations techniques can only unfold
their effectiveness in combination with sophisticated realizations of human-
computer interactions. Moreover, specialized data presentations often re-
quire much knowledge about statistics resulting in a steep learning curve.
Many systems are based on statistical and stochastic results, but several
approaches lack of informing users about the certainty of the presented
result.

Regarding visual analysis, HCI plays even a more important role as the
user wants to explore the data space and the result of the analysis. Inter-
actions might adjust the underlying analytical process leading to further
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calculations. As mentioned before, there is a lack of a seamless integration
of such complex analytical process. In addition to that, as the data set is
usually of huge size, depending on its size, standard algorithms might
take several hours or even days to finish all performed calculations. These
circumstances do not allow any reasonable user interactions. Therefore, spe-
cialized infrastructures and adopted algorithms which support adjustments
are essential [147].

4.6 Outlook

As one of the main problems are usability issues, further research about
Human Computer Interaction is required. Future visual analytics systems
might integrate the overall process more seamlessly and focus on the ques-
tions “What is interesting?”. The answer depends on the whole context
including the current task, the users preferences and knowledge, etc. There-
fore, the computer needs to interpret and understand the current context
and adjust to it in an appropriate way [147]. Novel approaches in this field
are Programming by Feedback [128] and Attention Routing [147]. Both
approaches try to adapt to the users behavior and perform appropriate
adjustments to offer the user more interesting results.
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5 Application of KDD in Biomedical Domain

This Section discusses necessary working steps to realize a visualization
of biomedical data to allow knowledge discovery and decision support for
experts (illustrated in Figure 37). This analysis is based on multiple studies,
which present different approaches to extract new knowledge from medical
data sets [94, 145, 173].

Data Acquisition
Data

Preparation Data Mining Decision-makingVisualization

Figure 37: This Figure illustrates the general process of an application of KDD in the
biomedical domain. Data can be acquired from multiple biomedical databases
and a strong emphasis is put on data security, anonymity in the data preparation
phase and on all subsequent steps.

5.1 Data Acquisition

Useful data sets can be obtained from multiple sources such as public
sources offered by companies or research institutes (open data), biomed-
ical research (e.g., biobank, gene bank), patient databases in hospitals or
laboratories [79]. Therefore, the data might contain various images (e.g.,
scans, photos, etc.), physician’s observations and reports, laboratory data
and patient interviews [19].

According to Cios et al., heterogeneous data can be categorized into several
classes [19]:

• Heterogeneity of medical data
• Ethical, legal, and social issues
• Statistical philosophy
• Special status of medicine
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“Omics” Data

Commonly, biomedical data sets are generalized by the term “omics” data
which covers many research fields of biology (e.g, genomics, proteomics,
metabolomics, microbiomics, etc.) [53]. For example, the largest biobank in
Europe is located in Graz at the Medical University of Graz [62]:

“It houses nearly 6 million samples including formalin-fixed
paraffin embedded (FFPE) tissue samples kept at room tempera-
ture, fresh frozen tissue samples kept in the vapor phase of liquid
nitrogen and samples of body fluids (blood, serum, plasma, buffy
coat, urine, liquor) kept at minus 80

◦C.”

Digital information (e.g, facts about the donor) is attached to each sample,
which results in a huge “omics” data storage.

Patient Records

Patient records, which store treatment histories of diagnoses and prognoses
(implying clinical and laboratory values), are very useful for research and
predicting outcomes of similar future patient cares. As the data was col-
lected for a specific treatment, such records are usually incomplete (missing
parameter values), incorrect (systematic or random noise in the data), sparse
(few or non-representable records) or inexact (inappropriate selection of
parameters for a specific task) for a different task [89]. These circumstances
might require further data acquisitions (e.g., interviews) to increase quality
of the data set for a specific task.

In addition to that, many physicians input a significant amount of informa-
tion about their patients by typing free text. This text, commonly in native
language, might contain keywords or natural language which is highly
unstructured in the sense of data. Therefore, a strong motivation to extract
data out of text automatically has been developed. This problem is being
tackled by biomedical text mining [55].
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Open Data

Another way to obtain useful information is public open data, which can
be reused and redistributed freely by everyone [139]. Open data is a great
opportunity to share medical data internationally for further research. How-
ever, as anonymized open data might be incomplete for a given task, there
is no possibility to obtain further information about the data set [172].
All these heterogeneous data sources provide a huge and complex amount
of information. There already exist approaches for translational medicine to
bridge these sources to build an integrative knowledge base [108].

5.2 Data Preparation

5.2.1 Data Integration

The combination of multiple data sets is often necessary and the data formats
tend to be as diverse as its sources. Therefore, data pre-processing, while
protecting privacy, is needed to obtain a uniformly structured data set for
performing further analysis. Each data source is likely to contain different
records or some sources might be incomplete as discussed in Section 5.2.3.
Values may be continuous or discrete, stored in varied dimensions or even
be acquainted under different measurement standards and conditions. Such
conditions imply technical and environmental aspects (e.g., used equipment,
ambient temperature, etc.) and require particular data transformations [82,
48]. If these influences are not considered carefully, the combined data set
might lead to harmful divergences of values and furthermore to distorted
results of the performed analysis. Logically, the quality of the analysis
directly depends on the quality of the analyzed data.

5.2.2 Protecting Anonymity

Biomedical data sets usually contain personal information which has to be
protected by applying to ethical policies. Third parties must not be able
to identify patients in a single data set or even by linking multiple acces-
sible data sets combined with potential background knowledge (linkage
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attack). To emphasize sensitivity, linkage-relevant attributes are divided into
identifiers and so-called quasi identifiers (QI) [79]. While pure identifiers
uniquely identify a person, a combination of QIs is needed for a confident
identification (e.g., ZIP-code and birthday). Therefore, its consideration
is of high importance when publishing and promoting open data. There
exist multiple approaches to achieve anonymity like anonymization and
pseudonymization.

Anonymization describes, besides the removal of personal information, the
fragmentation of attributes and addition of ambiguity to protect privacy
while retaining the data’s quality for performing knowledge discovery.

Pseudonymization replaces all identifiers with non-related pseudonyms or
hashes. Another approach is the generalization of values (e.g., usage of the
birth year instead of the exact date) which weakens identifiers efficiently
but might influence the data quality for further research as well.

5.2.3 Data Cleansing

Data cleansing includes removing noise, handling and mapping missing
values within the data set to achieve better quality in knowledge discovery.
Therefore, data cleansing is an essential step and it might take up to 80% of
the time of the overall process [31, 95]. Besides the general data cleansing
tasks of the KDD process (see Section 2.1.1), missing data fields can be filled
by performing further manual information acquisitions (e.g., interviews,
phone calls, questionnaires). This approach does only make sense if the
data set is not too large, since manual value filling is very time consuming
and expensive. For larger data sets, automated methods are preferable
and instead of using a constant value, a predictive density distribution
for unobserved values can improve finding an appropriate substitutionary
value. An example is Expectation Maximization (EM). It is a method to
compute a fitting model to predict likely values for missing attributes based
on observed ones [25, 120]. As data cleansing modifies the original data
set, experts need to be aware of the fact, that any modification leads to a
deviated interpretation of the data set.
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5.3 Knowledge Discovery

Knowledge discovery implies the selection and application of data mining
and machine learning algorithms to search for new patterns. Such patterns
support experts to discover new knowledge and unknown relations within
the data set. See Section 2.1 for general information about knowledge
discovery in databases.

5.4 Visualization and User Interaction

The result of the applied algorithm has to be visualized in a comprehen-
sible way to allow experts to investigate the discovered knowledge. The
visualization system should offer sophisticated interaction methods to ex-
plore the data set and adjust granularity. The biomedical domain challenges
visualizations in multiple ways. First, because of the trend to data-centric
medicine, systems have to cope with huge, complex and multidimensional
volumes which are likely to include unstructured and noisy data. Fur-
thermore, precision medicine aims to integrate multiple data sources (e.g,
“omics”-data, etc.) [147]. This fact dramatically increases complexity of the
data set and adds an additional challenge for data analysts and appropriate
visualizations. Many data analyses create a trained model or use statistical
calculations to approximate relations within the data (see Section 2.1 for
further information). As these models are approximations, the visualization
should inform the user about the certainty of the presented result to avoid
misinterpretations (see Section 4.5).

5.5 Supported Decision-making

Users and experts may use the discovered knowledge to make decisions for
further actions or document the result. Generally, decision support systems
represent extracted knowledge from the analyzed data, so it does not offer
a complete solution for a given problem. The main expertise for making
further decisions and solving problems is still the experts experience and
knowledge [53, 134].

81





6 Systems Biology - Visualization of Omics Data

The term “omics” describes the combination of several research fields which
are called genomics, transcriptomics, proteomics and metabolomics [57]. Lately,
these research fields have advanced significantly due to high-throughput
technologies such as microarray technology [51], Next-Generation Sequenc-
ing (NGS) [97] and mass spectrometry [2]. Due to these techniques, a vast
amount of data has been generated and enables experts to perform detailed
research.

Genomics
(gene)

Transcriptomics
(RNA)

Proteomics
(protein)

Metabolomics
(metabolite)

Systems Biology - OMICS

Figure 38: This figure illustrates relations between different types of omics data. Gene data
(genomics) is transcribed to transcriptomics (RNA). RNA can be broken down
to all proteins it consists of (proteomics) and each protein can be described by
motabolites and its corresponding chemical process (metabolomics).

As depicted in Figure 38, all mentioned types of “omics” data depend on
each other in a sequential manner. Genomics is the study of all genes in an
organism and genes holding DNA can be transcribed to RNA transcripts.
The study of RNA within an organism (transcriptomics) uses these transcripts
to perform research on a more detailed level.

Systems biology is an approach to put all together and aims to understand
interactions and relations between all “omics” research fields as a whole
(high-dimensional biology). This complex approach supports experts to
understand physiological and disease processes in a new way. It can im-
prove personalized diagnosis, prognosis and drug therapies for patient
treatment as well. In addition to that, it can also be used for biomarker dis-
covery, drug discovery or developing new approaches to prevent or predict
diseases [57].
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(a) (b)

Figure 39: Two Parallel Coordinates plots depicting expression data for genes. (a) Depiction
of expression data for 9 genes where hkb (green) and hb (orange) is highlighted.
(b) A Parallel Coordinate plot comparing five genes. A configurable brush is
used to highlight all cells expressing eve and ftz at a level between 0% and 20%.
(Image source: Rübel et al. [125]).

Moreover, systems biology is about modeling biological relationships and in-
teractions between proteins (proteomics), genes (genomics) and metabolites
(metabolomics). Therefore, biological networks are established. Examples of
common networks are:

• Gene regulatory networks
• Cell signaling networks
• Protein - protein interaction networks
• Metabolic networks

Multiple representations and data formats for biological networks exist. One
of the most common formats for systems biology is SBML [59] (Systems
Biology Markup Language) which is based on XML and able to represent
metabolic networks, cell signaling networks etc. Another common represen-
tation format is BioPax (Biological Pathway Exchange) to depict molecular
and cellular pathways [43] in a RDF/OWL-based format [24]. As networks
are represented as graphs, graphs are still a hot research topic to improve
visualizations and interactions [54].
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6.1 Genomics

In general terms, genomics is the research field of genes and gene expres-
sions (DNA). Microarray techniques are one of the key technologies which
significantly advanced genomics. As microarray data sets usually are of high
dimensionality, visualization methods for high dimensional data are used
to depict the multivariate data. In addition to that, dimensionality reduction
(see Section 2.4) may be applied to simplify the data set before using it
for further analysis [157]. The most common visualization techniques are
scatter plots, Parallel Coordinates plots [65, 30] and heat maps [42].

Figure 40: Illustration of heat maps depicting microarray data for 12 genes and 5 cancer
samples. Up-regulated gene expressions are shown in red and down-regulated
ones in green. (a) The input data is shown as a standard heat map. (b) Cancer
samples (rows) and genes (columns) have been reordered by clustering. Adjacent
dendrograms represent the cluster result. (c) Selective depiction of high and
low expressions. (d) Selected depiction of genes controlled by a threshold value.
(Image source: Kim et al. [80]).
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As Gehlenborg et al. [42] mentions:

“The initial goal in analyzing expression profiles is usually to
find a set of genes or, less typically, proteins that share a related
pattern of expression—for example, genes that are up- or down-
regulated in a certain genotype, disease model or human disease,
or in response to a drug treatment.”

As shown in Figure 39, Parallel Coordinate plots are a flexible way to
analyze multivariate gene data. It supports users to find correlations between
samples and expression levels. Conditions (brushes) are used to highlight a
specific subset of the data (see Figure 39b).

A disadvantage of the Parallel Coordinate plot is that the order of the axes
influences the graphical representation significantly. To avoid too many
intersections, a limited amount of samples may be used. Morover, quality
metrics (see Section 4.3) can support the system to find a more preferred
order.

Figure 40 shows various examples of using heat maps to analyse microarray
gene expression data. A clustering of rows and columns leads to an ordered
matrix, which simplifies the investigation of relations and values. In addition
to that, threshold values can be used to hide uninteresting values and
highlight a specific range of values [80].

As Weinstein in 2008 [162] mentions:

“In the case of gene expression data, the color assigned to a point
in the heat map grid indicates how much of a particular RNA or
protein is expressed in a given sample. The gene expression level
is generally indicated by red for high expression and either green
or blue for low expression. Coherent patterns (patches) of color
are generated by hierarchical clustering on both horizontal and
vertical axes to bring like together with like. Cluster relationships
are indicated by tree-like structures adjacent to the heat map,
and the patches of color may indicate functional relationships
among genes and samples.”
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Figure 41: Examples of visualized protein interaction networks. (a) A protein interaction
network with more than 400 proteins placed by using a force-directed algorithm.
(b) Simplified graph by removing unimportant nodes. The shape of nodes depicts
different roles. A circle represents a core protein while a diamond represents a
non-core element. (c) Manual replacement of nodes of the network to emphasize
structure and interactions. (d) All core nodes of one type have been collapsed
to a single meta node to simplify the network (e) A representation of stages in
deadenylation-dependent mRNA degradation. The order of the cellular process
is shown by arrows and the color of nodes represents the localization of the
associated protein. Shaded circles represent protein complexes and edge styles
illustrate socia-affinity indices. (Image source: Gehlenborg et al. [42]).
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6.2 Proteomics

An understanding of relations between proteins is essential in systems
biology as biological processes of a cell are controlled by protein interactions.
Data sets containing information about protein interactions are usually large
and complex because a single protein can interact with up to several dozens
proteins [118, 127].

Bu et al. states [14]:

“It is believed that all biological processes are essentially and
accurately carried out through protein–protein interactions.”

As protein–protein interactions are usually visualized by graphs, a complete
representation of all interactions is overwhelming for users. Therefore, tools
try to visualize specific proteins or important subsets at a time (see Figure
41). Due to its high complexity, common tools use very different methods to
visually represent such graphs (no standard method has been recognized
yet) [14, 127]. A drawback of visualized protein interactions is the fact,
that only already-known interactions can be visualized. If the underlying
protein complex purification techniques (e.g., mass spectrometry [2], correlated
messenger RNA expression profiles [60]) does not detect any interaction, it
will not be visualized afterwards. However, protein networks can still be
used to understand and to find biological functions by graph mining. For
example, finding quasi-cliques or quasi-bipartites might reveal unknown
knowledge [14].

6.3 Metabolomics

Metabolomics is about analyzing metabolites and their associated chemical
reactions within a cell. To represent such chemical chain reactions, metabolic
pathways are used. Such pathways are usually represented as acyclic graphs
(see Figure 42).
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Figure 42: A visualization of the KEEG citrate cycle pathway. The corresponding gene
expression data is additionally mapped to the nodes color, size and line thickness.
(Image source: Gerasch et al. [43]).

Gehlenborg et al. [42] explains the general goal of metabolomics:

“The general goal in analyzing metabolite profiles is to gain de-
tailed insight into the molecular mechanisms of cellular metabolic
pathways. The identification of molecules that may be used as
reliable biomarkers of disease is also of great interest.”

6.4 Open Problems and Outlook

A present issue is the fact, that many visual representations are not standard-
ized and therefore, the user faces multiple visual representations of the same
data. Variety of supports different view points, but standardized representa-
tions help a community to maintain the same common mental model. For
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Figure 43: The ultimate goal of systems biology is to link heterogeneous data sets to support
biologists to gain insight into the whole biological system. Such visualizations
might depict X-ray scans, tissues, cellular and molecular data, genomes and
metabolic pathways. (Image source: O’Donoghue et al. [110]).

example, several standardized representations exist for molecules nowadays
(e.g., spheres connected by sticks). Another famous example is the double
helix proposed by Watson and Crick to visualize DNA [160]. However,
systems biology still lacks of well known representations for various other
omics data types [110].

There exist many stand-alone tools to explore a specific type of data but
it does not support the user to link the gained knowledge to other data
sets [156]. Therefore, the ultimate goal of systems biology is to support
biologists to gain insight into whole organisms by linking all abstraction
levels to a single system (e.g., from organs to molecules). This can only be
achieved by an integrative framework which combines several visualizations
of interlinked heterogeneous data sets (see Figure 43).

First approaches do already exist. Ding et al. developed an integrative visual
analytics system to analyze genomic based cancer. Figure 44 shows that
the system combines multiple visualization techniques (graphs, Parallel
Coordinates, heat maps) combined with unsupervised cluster analysis to
compare clinical outcomes. It supports experts to explore multiple gene
expression data sets to find biomarkers.
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Figure 44: This visual analytics approach supports experts to find biomarkers interactively
within data holding genetic information about patients who suffer from cancer.
Clustered mRNA and miRNA expression data is visualized by heat maps in the
top left corner. Between both heat maps, links are used to represent relations
between grouped patient samples. In the top right corner, a plot depicts the
probability of survival after a given time. Moreover, the statistical significance
(p-value) is shown. At the bottom, force-directed graphs visualize similarities of
patient records. (Image source: Ding et al. [28]).
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7 State-of-the-art of Visual Analytics in
Biomedical Domain

This analysis of 73 recent visual analytics papers is based on the state-of-the-
art report of Turkay et al. [147]. It extends the given analysis by classifying all
scientific papers into the categorizations data type and visualization techniques.
Moreover, several additional visual analytics papers are included.

7.1 Dimensions and Categories

All papers are categorized into for 4 dimensions, where the first two are
inherited from the analysis of Turkay et al. [147]:

• Type of analysis
• Level of integration
• Visualization technique
• Data type

Each dimension is divided into the following subcategories:

Type of analysis: Summarizing information, groups & classification, de-
pendence & prediction.

The type of analysis categorizes papers according to analytical task which
the presented approach is supposed to carry out (see Section 4.2).

Level of integration: Visualization as presentation, semi-interactive meth-
ods, tight integration.

The level of integration describes how tightly computational tools and
algorithms are integrated into the visual analytics system to enable the user
to steer the automated analytical process (see Section 4.2).
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sum 4 21 6
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Figure 45: Integration level vs. type of analysis: Most visual analytics systems are of
the integration level semi-interactive methods for both analysis task summarizing
information and groups & classification. There is still a lack of prediction systems
which tightly integrate the user.

Visualization technique: Geometric, table-based, icon/glyph-based, pixel-
based, graph

Visualization techniques are categorized according to Keim et al. [76, 74]
and in addition to that, the category table-based has been added to emphasize
common table-based visualizations such as table lens and heat maps.

Data type: Genomics, proteomics, metabolomics, text, graph, image, mul-
tivariate data

Besides common data types in the biomedical domain (text, image), the
category data type contains all main omics-data types (genomics, proteomics,
metabolomics). For general and novel visual analytic approaches, which do
not target the biomedical domain or graph analysis, the category multivariate
data is used.

7.2 Classifications and Results

Several visualizations combine multiple visualization methods (brushing
and linking) and therefore, a single paper might fall into several categories
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at once. Similar circumstances occur when categorizing approaches by data
type because several biomedical visualizations combine several omics data
sources.

Level of Integration vs. Type of Analysis

The cross section of integration level and type of analysis reveals that most
visual analytics solutions provide a semi-interactive method. In other words,
it allows the user to configure computational tools before the actual visual
exploration of the data. There is still a large lack of predictive and tightly
integrated systems (see Figure 45 and Table 1).

Figure 46 shows, that there exists an increasing trend of performed research
on highly integrated visual analytics systems.
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Figure 46: According to this analysis, research on highly integrated visual analytics ap-
proaches has been increased. For completeness, papers published in the current
year 2015 are included but are not representative.

Data Type vs. Type of Analysis and Level of Integration

Cross intersections with the dimension data type reveal, that most novel
approaches are designed for multivariate data sets (see Figure 47, Ta-
ble 2 and Table 3). The has not been presented for the biomedical domain
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gene prot meta text graph Image multiV

sum 8 6 2 1 1 3 19

class 8 4 1 1 0 0 18

pred 6 2 2 0 0 0 8

Analysis

Data

(a) Type of analysis vs. data type.

gene prot meta text graph Image multiV

pres 5 3 2 1 0 1 2

semi 13 7 3 1 1 2 27

tight 4 2 1 0 0 0 15

Integration

Data

(b) Integration level vs. data type.

Figure 47: Both cross intersections show, that most novel visual analytics systems are
designed for general multivariate data sets. Regarding omics-data, genome and
protein data sets are the most supported data types (due to its multivariate
nature). Tightly integrated systems to mostly exist for general multivariate data
sets. Moreover, there exists a lack of text and image analysis systems.

but can be applied on biomedical data sets. Data sets containing information
about gene expressions and proteins are commonly multivariate data sets,
therefore, a considerable amount of techniques do already exist. Tools which
analyze metabolites use graphs to depict biological pathways. Therefore,
techniques based on multivariate data sets can not be applied.

Level of Integration vs. Visualization Method

An analysis of used visualization techniques reveals, that the most common
methods are geometric/projective visualizations. Common techniques are
for example scatter plots and Parallel Coordinates (also called profile plots).
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geom table icon pixel graph

pres 6 4 1 1 7

semi 40 15 8 2 16

tight 17 6 2 0 6

Integration

Visualization

Figure 48: Integration level vs. visualization technique: There is a clear indicator, that a
major part uses geometric visualization techniques (e.g., scatter plot). In addition
to that, table-based (e.g., heat map)and graph-based techniques are common.
Despite that huge data sets need to be visualized, pixel-based visualization
methods are rarely used.

As shown in Figure 48 and in Table 4, especially tightly integrated systems
integrate such methods often.

Besides geometric techniques discussed above, this analysis reveals that the
table-based technique called heat map is one of the most common visualiza-
tion technique for multivariate data.

These results conform to the statement of Gehlenborg et al. [42]:

“Multivariate data, for instance from gene expression studies, are
very common in systems biology, [...]. The three most commonly
used visualization methods are scatter plots, profile plots and
heat maps.”

Last but not least, graphs are popular to depict found relations within
the multivariate data set, represent hierarchies, analyzed text or biological
pathways.

Commonly, visual analytics systems combine several visualization tech-
niques (linking and brushing) to enhance the users insight. In this case, a
single approach will be categorized into several visualization techniques.
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8 An Implementation of a Clustered Heat Map

This section describes an implementation of a configurable clustered heat
map for the Open Source project called Scaffold Hunter10 [81, 163]. Scaf-
fold Hunter (SH) is a visual analytics tool to explore the chemical space
containing molecules which is commonly required for drug discovery. Scaf-
fold Hunter is freely available under GNU GPL v3 and it is implemented
in Java. The current version Scaffold Hunter 2.4.1 supports the following
visualization methods:

• Scaffold tree
• Table
• Dendrogram
• Scatter plot (2D and 3D)
• Tree map
• Heat map

8.1 Framework and Architecture

Figure 50 shows that the architecture of Scaffold Hunter consists of three
main parts:

• Data integration & management
• Analysis
• Interactive Visualization

Data Integration & Management As depicted in Figure 50, the layer data
integration & management provides all functions to import and access the
data. The central database (eg., MySQL, HSQLDB) is accessed via Hiber-
nate, which abstracts the databases access by an object-relational mapping.
Besides importing new data from various file sources (SDF, CSV and SQL),
several calculations can be performed on the data. Such calculations might
be a computation of fingerprints or a scaffold tree. The support of further

10Scaffold Hunter - http://scaffoldhunter.sourceforge.net/
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Figure 49: An overview of the heat map view and its user interface implemented for the
Open Source project Scaffold Hunter. In the center, the actual heat map visualizes
a data array (molecules vs. molecule properties) by using a three-colored color
mapping. Above the heat map, a dendrogram is shown to depict the hierarchy
of clustered molecules (columns). The sidebar on the left provides functions to
configure the clustering and heat map. Between the left sidebar and the actual
heat map, a legend for each row is shown to depict the rows value range. To
the right of the heat map, the name of a molecule property is shown in each
appropriate row. User interactions such as zoom and panning are supported to
explore the data set.

data sources and calculations can be easily extended by a flexible plugin
system.

Analysis The central component manages data and creates subsets. Such
sets are created by applying filters, performing a substructure search or by
using the current selection defined by the user. A special type of sets is the
result of a clustering. As the whole data set is often too large, subsets are
important to support the user to refine the explorable data space. Moreover,
for several internal data structures and calculations, the library Chemistry
Development Kit is used.
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Figure 50: The architecture of Scaffold Hunter for visual analysis of chemical space. Several
data formats can be used to import data into the central database. On the
molecules data, further calculations can be performed. An integrated subset and
filter management supports users to refine the currently investigated data set.
To analyze the data visually, Scaffold Hunter offers a broad set of interactive
visualizations to analyze the current data set. (Image source: Kriege [86])

Interactive Visualization This component provides a framework to man-
age and integrate new views and appropriate controls seamlessly to the
current system. For large and zoomable user interfaces, the 2D scene graph
library Piccolo2D is used. Batik provides functions to render and store SVG.
In addition to that, the library Guava supports programmers to tackle
common tasks (e.g., numerical functions, null checks, creation of complex
structures, etc.).

The framework provides read-to-use functions for subset management and
current selections (see right sidebar in Figure 49). A new visualization
view only needs to implement all corresponding callbacks. As selection
management is supported by the framework, a synchronization of selections
between all active views is realized (linking and brushing).

The synchronization of selections is realized by an observable set. This
set contains all currently selected molecules and when the set is being
changed, all observers (views) will be notified. When a view is notified, it
will highlight all selected molecules in its representation space. In case of a
heat map, each column of the map represents one molecule and therefore,
the corresponding column will be highlighted.
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8.2 Scope of the Implementation

This section explains what I have implemented to realize an interactive
clustered heat map for Scaffold Hunter. Section 8.1 describes that the ar-
chitecture of SH consists of three main parts, namely data integration &
management, analysis and interactive visualization. Besides several small code
extensions, the whole implementation of the heat map is located in the
latter layer. SH provides a generic framework to implement a new data view.
Every view needs to inherit from the generic view class which manages
all essential interfaces and callbacks for data access and global features to
preserve consistency. Two essential global features are selection manage-
ment (for linking and brushing) and subset management (to create subsets
by using filters or manual selection). All controls for these two features are
shown in the right sidebar of every data view (Figure 49). New views do not
have to implement or adjust these functions. In contrast to the right sidebar,
the left one is a placeholder for individual user interface elements to control
the data view. Therefore, all required elements have to be implemented or
ported from other views. The property list in the left sidebar and additional
elements, which are needed to configure the heat map (e.g., color coding,
sorting) are new components.

I ported the clustering configuration, clustering execution management
and the rendering component (canvas) of the dendrogram view to render
the dendrogram above the heat map. In addition to that, the clustering
is also used to cluster properties and for that, several generalizations and
dependency resolutions were needed.

All other components (between the left and right sidebar) are completely
new. These parts include the actual heat map, a rendering of color legend
for each row on the left side of the heat map and the rendering of property
names (including an optional vertical dendrogram tree) on the right side.
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Figure 51: Semantic zoom: When zoomed in, values are rendered in each cell to show
additional information.

8.3 Clustered Heat Map

8.3.1 Interactions

In addition to all user interactions mentioned in Figure 52, the clustered
heat map supports the following user interactions:

• Panning
• Zoom
• Resizing
• Selection
• Tagging molecules
• Detail view and tooltip

Figure 52: The heat map view supports several user interactions. From left to right: hide
left and right sidebar, horizontal zoom in and zoom out, vertical zoom in and
zoom out, zoom to overview, zoom to fit selection.
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Figure 53: Selections are highlighted as red dendrogram leaves and columns with red bor-
ders and a transparent red overlays. (Image source: Scaffold Hunter manual11).

Panning Panning is important when the heat map is larger then the actual
display. Horizontal and vertical panning can be performed by dragging the
heat map or using the corresponding scroll bar. Vertical panning can also
be carried out by using the mouse wheel on both adjacent legends on the
left and right side.

Zoom By using the mouse wheel over the heat map, a horizontal zoom in
or zoom out is performed. An additional press of the Ctrl-key performs a
vertical zoom. Moreover, the dendrogram above the heat map performs a
horizontal zoom when using the mouse wheel.

Figure 51 shows that the heat map uses semantic zoom to adjust the level of
detail according to the zoom level.

Resizing Besides hiding the left and right panel, it is possible to resize
the heat map canvas panel by moving the borders between heat map and
dendrogram or legends. This enables the user to distribute the available
space to several graphical elements.

11Scaffold Hunter - http://scaffoldhunter.sourceforge.net/
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Figure 54: Scaffold Hunter supports users to tag single molecules with a flag to find it in
other data views. (Image source: Scaffold Hunter manual12).

Selection In the heat map view, a molecule can be selected by clicking on
a column or on a dendrogram node. The dendrogram also enables users to
select a whole subtree of the dendrogram. As shown in Figure 53, selected
molecules are highlighted as red dendrogram leaves and corresponding
columns have additional red borders. Each selected column is additionally
highlighted with a red overlay.

Tagging Molecules The framework of Scaffold Hunter provides a feature
to tag molecules to support the user to recognize tagged molecules easily
within other visualizations (linking And brushing). A molecule can only be
tagged via the dendrogram view as shown in Figure 52.

Detail View and Tooltip A detail view of the currently hovered molecule
is shown in the left sidebar. When pointing at a column of the heat map or a
dendrograms node for 3 seconds, a tooltip window will be shown. It shows
all properties of the current molecule and it is a global feature of Scaffold
Hunter.

12Scaffold Hunter - http://scaffoldhunter.sourceforge.net/
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8.3.2 Configuration

Sorting of columns and rows Before a heat map can be rendered, a clus-
tering of all molecules of the selected subset has to be performed. For that,
a clustering configuration is shown. The Scaffold Hunter framework pro-
vides several parameters to configure a clustering. Basic parameters are
the type of clustering (normal exact clustering or heuristic clustering), the
linkage (e.g., complete linkage, group average linkage, single linkage, etc.) and
the distance function (e.g., Euclide, Tanimoto, Jaccard). Besides these param-
eters, a set of properties containing all properties which shall be used for
distance calculation, need to be selected. This allows an even more specific
clustering.

In addition to that, it is possible to configure the ordering of rows manually
while columns have to be clustered anyway. All properties are shown in a
list in the left side bar. It is possible to exclude individual properties to be
shown as a row in the rendered heat map by unchecking it in the properties
list. For manual ordering, items in the list can be moved and reorder by
drag and drop.

Color Mapping The heat map view provides several possibilities to con-
figure the color mapping function for each row individually (per property)
or as a global function applied to each row. As shown in Figure 55, the
assignment of an individual color mapping function to each heat map row
enables the user to configure individual color ranges to highlight specific
properties. The heat map supports three different mapping functions: a
two-colored gradient mapping, a three-colored gradient mapping and an
interval mapping.
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Figure 55: Individual color mapping functions are used to highlight specific properties in
the heat map.
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9 Contribution and Benefit

This master’s thesis reviews state-of-the-art approaches for visual analyt-
ics in the biomedical domain. As visual analytics combines knowledge-
discovery, visualization and human-computer-interaction, I examined each
research field separately to collect broad and fundamental knowledge.

Knowledge Discovery: I reviewed the complete knowledge discovery pro-
cess and analyzed its application in the biomedical domain. As data min-
ing is the core technique of every knowledge discovery process, I discuss
all related classes. Common data mining classes are clustering, classifica-
tion, association rule mining, regression, summarization and searching of
sequential patterns. As multivariate data usually is of very high dimen-
sionality, dimensionality reduction is discussed as a pre-processing step.
Moreover, biomedical data might contain personal information about pa-
tients and therefore, techniques for privacy protection (e.g., anonymization
and pseudonymization) are essential. In addition to that, selected exam-
ples of practical knowledge discovery are discussed (decision trees and
self-organizing maps).

Decision trees are an efficient and intuitive technique to perform classifica-
tions. Besides its high classification performance, it is easy to interpret by
humans because decisions trees can be visualized as trees.

High-dimensional data sets always challenge low-dimensional visualizations
to depict the data in a representative way. For that, a discussion about self-
organizing maps shows a sophisticated approach to represent such data
sets by two-dimensional visualizations.

This review of a knowledge discovery process supports experts to under-
stand major obstacles and common techniques to design a sophisticated
knowledge-based system.

Last but not least, I reviewed and discussed several commonly-used data
mining tools.
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Visual Analytics: The next major part of this thesis is a review of current
visualization and visual analytics methods. For that, fundamental and
psychological aspects, the design and architecture of visualizations are
discussed. Psychological aspects include pre-attentive features such as color,
size and other visual properties which generate a so-called “pop-out” effect
to the human visual perception. The design of visualizations is generally
conducted by Shneiderman’s mantra “Overview first, Filter and zoom,
Details on demand”. Moreover, I discussed the influence of the users mental
model on the final design of a visualization. As human-computer-interaction
is also of high importance to improve the users insight, general interaction
methods for visualization systems are discussed.

In addition to that, I discussed the iterative process visual analytics between
the system and the user. The more the user can interact and steer the
analytical process, the higher the integration of the user is. Quality metrics
are a technique to judge visualization settings to support the automated
visual analytics system to find highly relevant visualizations for the user.

Selected examples of visual analytics systems include a clustered heat map,
interactive decision trees and a visual cluster analysis based on interactive
Kohonen maps.

Analysis of state-of-the-art Papers: I performed an extended analysis of
73 state-of-the-art papers based on the review of Turkay et al. [147]. There
is still a lack of highly integrative visual analytics systems – especially in
the biomedical domain. However, the analysis shows an increasing trend of
performed research in this field can be identified. The analysis shows clearly,
that a major part of visual analytics systems is designed to analyze multi-
variate data. In addition to that, geometric, table-based and graph-based
visualizations are the most common techniques to represent multivariate
data. Regarding geometric techniques, the most common ones are scatter
plots, Parallel Coordinates and heat maps are the most popular table-based
visualization technique.

Analysis of Systems Biology: I analyzed the novel approach of bioinfor-
matics, which aims to combine all omics-data types. The most common
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visualization for genomics and proteomics are geometric visualization tech-
niques. For metabolomics, graph-based visualizations are used to depict
biological pathways.

Implementation of a Clustered Heat Map: I implemented a clustered
heat map for Scaffold Hunter to support experts to perform visual analytics
on molecular data. In this thesis, I discussed the architecture and imple-
mentation while focusing on research field of visualization and interaction
techniques. It is a semi-integrated approach, because the user configures
the clustering and heat map before the actual heat map is shown. While
exploring the data, the clustering result can not be changed but various
interaction methods such as brushing-and-linking and semantic zoom are
available.
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10 Outlook

There is still a huge demand for specialized and highly integrative visual
analytics approaches in the biomedical domain. Many highly integrative
approaches are general approaches, but it can also be applied on particular
sub-fields of bio-medicine. Therefore, there is a need of further research
on specialized applications which integrate the users knowledge to the
analytical process.

As many approaches support a single data type, there is even a larger lack
of solutions, which integrate multiple data sets to analyze them in parallel.
Based on this analysis, an even broader and more detailed investigation of
current research would reveal how many systems already support multiple
data sets.

As users input therapy outcomes as natural text and a lot of medical knowl-
edge is located in books, the automated analysis of text is still a hot topic
and needs further research. In addition to that, new approaches for graph
analysis and graph mining are needed to analyze complex graphs (hairballs)
in a comprehensible way.

However, systems biology aims to combine multiple data sets to analyze
multiple layers of a biological system at once. The ultimate goal of such
biomedical systems is to understand biological or pathological processes as
a whole. Such a system would interlink all related data sets (e.g., images,
text, measured values, scans) and offer visual analytics to support experts to
explore the data while integrating personal domain knowledge (see Section
6.4). Such sophisticated visual analytics systems will boost evidence-based
medicine to a new level.
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Hériché, C. B. Nielsen, C. North, A. J. Olson, J. B. Procter, D. W.
Shattuck, et al. Visualizing biological data – now and in the future.
Nature methods, 7:S2–S4, 2010.

[111] S. Oeltze, H. Doleisch, H. Hauser, P. Muigg, and B. Preim. Interactive
visual analysis of perfusion data. Visualization and Computer Graphics,
IEEE Transactions on, 13(6):1392–1399, 2007.

[112] C. Partl, A. Lex, M. Streit, D. Kalkofen, K. Kashofer, and D. Schmal-
stieg. enroute: Dynamic path extraction from biological pathway maps
for in-depth experimental data analysis. In Biological Data Visualization
(BioVis), 2012 IEEE Symposium on, pages 107–114. IEEE, 2012.

[113] J. Parulek, C. Turkay, N. Reuter, and I. Viola. Visual cavity analysis in
molecular simulations. BMC bioinformatics, 14(Suppl 19):S4, 2013.

[114] W. Peng, M. O. Ward, and E. A. Rundensteiner. Clutter reduction
in multi-dimensional data visualization using dimension reordering.
In Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on,
pages 89–96. IEEE, 2004.

[115] A. Perer and B. Shneiderman. Integrating statistics and visualization
for exploratory power. 2009.

[116] H. Piringer, W. Berger, and J. Krasser. Hypermoval: Interactive visual
validation of regression models for real-time simulation. In Computer
Graphics Forum, volume 29, pages 983–992. Wiley Online Library, 2010.
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[120] A. R. Razavi, H. Gill, H. Åhlfeldt, and N. Shahsavar. A data pre-
processing method to increase efficiency and accuracy in data mining.
In Artificial Intelligence in Medicine, pages 434–443. Springer Berlin
Heidelberg, 2005.

[121] K. Rexer. Rexer analytics 2013 data miner survey. http:

//www.rexeranalytics.com/Data-Miner-Survey-2013-Intro.html,
2013. Accessed: 2014-11-27, report requested per e-mail.

[122] S. Rinzivillo, D. Pedreschi, M. Nanni, F. Giannotti, N. Andrienko,
and G. Andrienko. Visually driven analysis of movement data by
progressive clustering. Information Visualization, 7(3-4):225–239, 2008.

[123] I. Rish. An empirical study of the naive bayes classifier. In IJCAI 2001
workshop on empirical methods in artificial intelligence, volume 3, pages
41–46. IBM New York, 2001.

[124] O. Rubel, G. H. Weber, M.-Y. Huang, E. W. Bethel, M. D. Biggin,
C. C. Fowlkes, C. L. Luengo Hendriks, S. V. Keranen, M. B. Eisen,
D. W. Knowles, et al. Integrating data clustering and visualization
for the analysis of 3d gene expression data. Computational Biology and
Bioinformatics, IEEE/ACM Transactions on, 7(1):64–79, 2010.
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