
Alexander Jesner, Bakk. rer. nat.

Secure Program Partitioning for a
Trusted Execution Environment

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Roderick Bloem, Univ.-Prof. M.Sc. Ph.D.

Name of the institute

Institute for Applied Information Processing and Communications

Second Supervisor

Daniel Hein, Dipl.-Ing.

Graz, April 2015

Alexander Jesner, Bakk. rer. nat.

Sichere Programmpartitionierung für eine
vertrauenswürdige Laufzeitumgebung

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

Masterstudium Informatik

eingereicht an der

Technischen Universität Graz

Betreuer

Roderick Bloem, Univ.-Prof. M.Sc. Ph.D.

Institutsname

Institut für Angewandte Informationsverarbeitung und Kommunikationstechnologie

Zweitbetreuer

Daniel Hein, Dipl.-Ing.

Graz, April 2015

ABSTRACT

Classical programming paradigms revolve around running both code operating on con-
fidential data and code operating on „don’t-care-if-public“ data in a single execution
environment. This may lead to security issues and information leakage.

Adding information flow policies to a program and applying certifying compilation
with respect to a lattice-based information flow system as described by Denning [Den76],
allows for writing programs with strong guarantees in terms of data flow. Nevertheless
the code is still executed in a single environment. One possibility to increase the security
is to separate a program into two cooperative parts, where confidential operations are
executed in a special trusted environment and other operations are executed in a normal
environment. Partitioning a program in such a way is usually a manual process.
This thesis aims to automate the separation of programs annotated with information

flow policies. We automatically partition a program into two cooperative parts, with
confidential statements residing in a partial program that is only available on a trusted
environment. Thus, the burden of writing distributed code is taken off the shoulders of
the developer and shifted to the compiler.
In this thesis we introduce the newly developed Bebop Compiler that takes a security-

annotated JIF [Mye99a] program as input, automatically determines a secure partition-
ing from information flow policies, and produces two partial programs that communi-
cate via calls to a runtime. We show in detail how the Bebop Compiler and the Bebop
Runtime Environment work. With the help of two examples we show that the Bebop
Compiler can be used to securely partition real world programs.

V

KURZFASSUNG

Klassische Programmierparadigmen unterscheiden nicht zwischen Code welcher mit sen-
siblen Daten arbeitet, und Code der auf unkritischen Daten operiert. Beides wird in der
selben Laufzeitumgebung ausgeführt. Dies kann Sicherheitsbedenken aufwerfen und zu
Informationslecks führen.

Erweitert man ein Programm um Informationsflussrichtlinien und verwendet einen
Compiler der das Informationsflussmodell nach Denning [Den76] berücksichtigt, kann
man starke Garantien für den Datenfluss im Programm geben. Der Programmcode wird
dennoch in ein und derselben Laufzeitumgebung ausgeführt. Um mehr Sicherheit zu
gewährleisten bietet es sich an, das Programm in zwei voneinander abhängige Teile zu
aufzuteilen. Kritische Operationen können nun in einer vertrauenswürdigen Laufzeitum-
gebung ausgeführt werden, die restlichen Operationen können in einer regulären Lauf-
zeitumgebung ausgeführt werden. Üblicherweise muss diese Aufspaltung manuell vorge-
nommen werden.
Diese Arbeit beschäftigt sich mit der automatisierten Aufspaltung von Programmen

die mit Informationsflussrichtlinien versehen wurden. Wir teilen Programme automatisch
in zwei kooperative Teile, wobei das Teilprogramm für kritische Operationen nur in
einer vertrauenswürdigen Laufzeitumgebung verfügbar ist. Das Schreiben von verteiltem
Programmcode muss nun nicht mehr vom Entwickler übernommen werden sondern kann
auf den Compiler abgewälzt werden.
Wir stellen in dieser Arbeit den neu entwickelten Bebop Compiler vor. Als Eingabe die-

nen mit Informationsflussrichtlinien versehene JIF [Mye99a] Programme. Der Compiler
bestimmt automatisch eine Programmpartitionierung welche die angegebenen Informa-
tionsflussrichtlinien berücksichtigt und produziert zwei Teilapplikationen die mit Hilfe
der Bebop Runtime kommunizieren. Wir gehen in dieser Arbeit näher auf die Funkti-
onsweise des Bebop Compilers ein. An Hand von zwei praxisnahen Beispielen zeigen wir,
dass der Bebop Compiler dazu verwendet werden kann, Programme sicher aufzuspalten.

VII

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present master’s thesis dissertation.

Place Date Signature

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, ande-
re als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in
TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit iden-
tisch.

Ort Datum Unterschrift

ALEXANDER JESNER

SECURE PROGRAM PARTITIONING
FOR A TRUSTED EXECUTION ENVIRONMENT

CONTENTS

Acknowledgements vii

Publication Notice ix

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Description 3

1.3 Contribution 5

1.4 Structure of this Thesis 12

2 PRELIMINARIES 13

2.1 Covert Channels 13

2.2 Information Flow 13

2.3 The Non-Interference Property 14

2.4 Security Policies 14

2.5 Secure Information Flow 14

i

2.6 JIF 15

2.6.1 Principals 15

2.6.2 The acts-for Relation 15

2.6.3 Confidentiality Policies 17

2.6.4 Integrity Policies 21

2.6.5 Labels 23

2.6.6 A Security Enhanced Type System 24

2.6.7 Tracking Implicit Flow 26

2.6.8 Termination Labels 27

2.6.9 Handling Exceptions 28

2.6.10 Authority 28

2.6.11 Methods 29

2.6.12 Downgrading 30

2.6.13 Working with Arrays 31

2.6.14 Polymorphic Labels 32

2.6.15 Java Interoperability 32

2.6.16 Writing JIF Programs 33

2.7 The Polyglot Compiler Framework 33

2.8 Compiler Construction 101 33

2.8.1 Abstract Syntax Tree 33

2.8.2 Compiler Passes 34

2.9 Trusted Execution Environments 34

3 RELATED WORK 35

3.1 Security Enhanced Languages 35

3.2 Focused on Partitioning for Security 36

3.3 Focused on Partitioning for Convenience 37

3.4 Trusted Execution Environments 37

4 THE BEBOP COMPILER 39

4.1 Motivation 39

4.2 Goals 40

ii

4.3 Architecture Overview 42

4.3.1 The Bebop Compilation Pipeline 42

4.3.2 Integration in the Compiler Framework 43

4.3.3 The Input Language 43

4.3.4 The Bebop Compilation Strategy 43

4.3.5 Interacting with the Bebop Runtime Environment 46

4.4 Pre-Processing Phase 46

4.5 Phase One 47

4.5.1 Finding the Placement of a Statement 48

4.5.2 Annotate AST with Placement 48

4.5.3 Extract declassify Sub-Expressions 49

4.5.4 Remove final Modifier from Fields 50

4.5.5 Hoist Local Variables to Fields 51

4.5.6 Derive Placement for Unlabelled Nodes 53

4.5.7 Disambiguate Placement Labels 54

4.5.8 Partitioning Methods 54

4.5.9 Sink Fields to Local Variables 61

4.6 Phase Two 61

4.6.1 Duplicate and Rename 62

4.6.2 Remove Opposite Fields 62

4.6.3 Replace Methods by Stubs 63

4.6.4 Add main Method to Normal Partial Application 65

4.6.5 Remove Entry Point from Trusted Partial Application 65

4.6.6 Rewrite Object Creation 65

4.6.7 Remove Opposite Statements from Constructor 66

4.6.8 Patch Instance ID Fields 66

4.7 Post-Processing Phase 67

4.8 Limitations and Future Work 67

4.9 Chapter Summary 68

5 THE BEBOP RUNTIME 69

5.1 Introduction 69

5.2 Architecture Overview 70

5.2.1 The Runtime Environment 71

5.2.2 The Runtime Library 71

iii

5.3 Hosting Applications 72

5.4 Connecting the Two Worlds 73

5.5 Remote Object Activation 75

5.6 Remote Method Invocation 77

5.7 Executing a Program 79

5.8 Limitations and Future Work 80

5.9 Chapter Summary 81

6 EVALUATION 83

6.1 Compiler Evaluation 83

6.1.1 On Reusing Swift 84

6.2 Runtime Evaluation 84

6.2.1 Extensibility 84

6.2.2 Lightweightness 85

6.2.3 Portability 85

6.2.4 Scalability and Performance 85

6.3 Example: Time-Based One-Time Password Derivation 87

6.3.1 Motivation 87

6.3.2 The Program 87

6.3.3 Partitioning 89

6.4 Example: A Password Guessing Game 90

6.4.1 Motivation 90

6.4.2 The Program 91

6.4.3 Partitioning 92

6.5 Future Evaluations 94

6.5.1 Trusted Maintenance Log 94

6.5.2 Trusted Model Branding 94

6.5.3 Electronic Signature 94

6.5.4 Password Safe 94

iv

7 CONCLUSION AND FUTURE WORK 97

7.1 Conclusion 97

7.1.1 Retrospective 97

7.2 Future Work 98

7.2.1 Extending the Bebop Compiler 99

7.2.2 Extending the Bebop Runtime Environment 99

A SOURCE CODE LISTINGS 101

A.1 Example: Time-Based One-Time Password Derivation 101

A.2 Example: A Password Guessing Game 103

Bibliography 107

v

ACKNOWLEDGEMENTS

I want to thank my supervisors Roderick Bloem and Daniel Hein for their guidance and
their help, and for supporting me in writing this thesis.

Further thanks go to Johannes Winter and Bernd Prünster for their feedback, when
I had the need to discuss technical problems. I also want to thank Christof Sirk for
convincing me to study at the Graz University of Technology.
Last but not least, I want to thank my family for their support throughout the years,

and I want to thank my parents for buying me my first computer.

Alexander Jesner
Graz, Austria, April 2015

vii

PUBLICATION NOTICE

Parts of this thesis have also been submitted to ESORICS 20151. This includes (but
is not limited to) images and descriptions used in chapter 1, the placement labelling
mechanism described in chapter 4 and the Time-Based One-Time Password (TOTP)
example presented in chapter 6.

1http://esorics2015.sba-research.org/

ix

CHAPTER 1

INTRODUCTION

1.1. Background
This thesis is about automatically partitioning a program into two separate parts that
execute in different execution environments. A program is partitioned such that confid-
ential data and critical statements are only executed in an execution environment that
offers stronger security guarantees regarding confidentiality and integrity.

In recent years, security incidents have become a more and more severe problem. In
an all-connected world, password leaks and authentication breaches can easily lead to
severe damage: average users often reuse a password for different services [FH07] and
a broken login of a photo sharing website may thus threaten this user’s online banking
account. Leaked passwords may cause a domino effect [IWS04; Hon12], where not
only the end user may experience financial loss, studies suggest that announcements of
security breaches also have a negative effect on the stock value of companies [CMR04].
This is especially true if the breach includes leakage of confidential data [Cam+03].
When talking about security in this thesis, we focus on data confidentiality and data

integrity.
Security is hard to implement and must already be considered while designing soft-

ware [DS00]. In theory, software systems claim to offer a certain kind of security; in
practice, the implementation is often faulty or unintentionally leaks information. For
example, the NIST National Vulnerability Database (NVD) reports 2,044 incidents of
type „Software Flaws“ in the period of May 2014 to August 2014 [NISa]. Such flaws
can be grouped in categories, e.g. denial of service, unauthorised destruction of data,
unauthorised disclosure of data, etc. [Lan+94]. Recent trends suggest, that information
leakage is increasing in its prevalence, as Figure 1.1 shows.
If information is leaked—either directly or through covert channels—security measures

may be worked around, and the system must be considered broken. As already described

1

2 1. INTRODUCTION

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

100

200

300

Year

N
um

be
r

of
di

sc
lo

su
re

s

0 %

2.5 %

5 %

7.5 %

P
er

ce
nt

ag
e

of
to

ta
li

nc
id

en
ts

Figure 1.1.: Software vulnerabilities of type Information Leak / Disclosure as reported
by the NVD [NISb]. Both, absolute and relative values show an increasing
trend.

above, information leaks may lead to disclosure of confidential information and in turn
may lead to a domino effect.

One possibility to mitigate information leakage in implementations is to avoid leakage
at all, by refusing to compile code that discloses too much information. This process of
certified compilation is achieved with the help of static analysis of the program source
code. The compiler calculates the secure information flow [DD77] over all data in the
program and ensures that an executable output is only produced, if the information flow
is non-interfering [GM82], with respect to annotated security policies which define the
readers and writers of stored information. Both properties are described in detail in
chapter 2.

An extension to calculating the information flow during compilation, is to a-priori
define boundaries in the program that define how much information may be leaked.
This can be achieved by extending the type system to not only store the data type of a
variable, but also a set of security policies that define how much information may flow
into (or flow out of) a variable [VIS96]. The JIF language [Mye99a] is an example of
certified compilation that incorporates a type system that supports security policies and
tracks secure information flow throughout a whole program. JIF itself is an extension
to the Java language.
The correct and secure behaviour of a program also depends—at least partially—on

the environment in which the program is executed. Not all environments offer the same
security guarantees. For example, a server that is locked in a room that is watched by
armed guards is less likely to undergo physical manipulation, than a personal computer in
an average home. Another approach to offer stronger guarantees regarding a program’s
execution is to use special hardware to mitigate manipulation attempts. One example is
the ARM TrustZone [ARM] that physically splits the CPU in a „normal environment“
and a „trusted environment“, where the trusted environment offers stronger security
guarantees.

In this thesis we assume that we have access to a normal environment and to some

1.2. Problem Description 3

kind of trusted environment satisfying the following constraints: Both environments
are capable of running a Java execution environment. The trusted environment offers
higher guarantees in terms of averting data manipulation or control flow disturbance.
For this thesis we do not specify how the trusted environment ensures these guarantees;
we assume that it is possible to execute code in a secure fashion. Furthermore, these two
environments are interconnected and capable of doing secure communication. Examples
are given in section 2.9.

1.2. Problem Description
We claim that many programs are written for a single execution environment only, and
have confidential or critical data interleaved with uncritical data. Attackers might take
advantage of a certain program structure or covert channel stemming from mixing con-
fidential with uncritical data in one program. Paying attention to the flow of information
from variable to variable (explicit flow) and information leaked by conditionally changing
the program flow (implicit flow) must be a number-one goal when designing a secure
system [DD77]. Implicit flow may create a covert channel [Lam73], i.e. information not
intended to be disclosed can be learnt by an attacker. Secure programs should be iden-
tified already at compile time; ideally, insecure programs are rejected by the compiler.
As discussed in section 1.1, not every execution environment offers the same security

guarantees. Running a whole program in a weak environment may raise security con-
cerns. Having the possibility to run parts of the program code in a trusted environment,
the question arises: Is it possible to only run uncritical parts of a program in the normal
environment?
Critical parts should run in a trusted environment and only specific information should

be disclosed to the normal environment. In fact, such techniques are well established
and common for client-server applications. The server is usually considered a trusted
environment, the client is regarded as the normal environment. Unfortunately, the
separation of a program into a client and server part must be done manually. This
may be complicated and time-consuming. Since tracking of the information flow across
program boundaries is hard when done manually, the resulting split program may also
disclose too much information.

Foundations

If we have the possibility to track secure information flow in a single-environment-
program and the possibility to define security policies inside this program, can this
information be used to guide program partitioning? A popular language that incorpor-
ates these features and provides certified compilation is the JIF language [Mye99a]. The
underlying Decentralized Label Model [ML00] defines a lattice of policies and principals;
both are used to define reader and writer sets for variables in a program—this allows
the programmer to explicitly state policies that define who may read and who may write
information. Information in such a security lattice can naturally only become more

4 1. INTRODUCTION

confidential when manipulated [Den76; DD77; BL73; SM06; ML97]. If the property of
integrity is also considered, data can naturally only lose integrity, because this property
is dual to confidentiality [Bib77]. Detailed explanations are given in chapter 2.
Data that has a strict security policy but should be disclosed to a greater set of readers

must undergo a special declassification mechanism [ZM01]. An example would be a
ciphertext that has a strong security policy attached, because its content is influenced
by a secret key. Despite having a strong policy, a ciphertext can be made public because
it is computationally infeasible (given a reasonable cipher) for an attacker to reveal the
plaintext. The strong confidentiality policy must therefore be replaced by a weaker
policy to make the program usable. A declassification mechanism works against what is
called label creep—the problem that after enough operations all variables end up with
having the strongest policy [SM06]. This is due to the nature of the „one-way lattice“
described above.
Since data can only flow against the natural direction of a security lattice at some,

well-defined places in the code (declassification points), is it possible to exploit this
property and automatically partition a program into two or more pieces, such that critical
parts can fully be moved to a trusted environment? In fact, this is possible as projects
like Swift [Cho+07], Jif/split [Zda+02] and others show. Both projects are built on
top of the JIF language; Swift focuses on web applications and uses the Google Web
Toolkit to distribute programs across the web server and the browser. Jif/split focuses
on distribution of programs to multiple hosts with different levels of trust. Both tools
emit Java code when adding necessary runtime calls to a split program.
A detailed introduction to these concepts is given in chapter 2.

Terminology
Throughout this thesis we are using the following terms:

• Partitioning:
1. The partitioning of a program describing what will be in the trusted envir-

onment partial program and what will be in the normal environment partial
program.

2. The process of separating the trusted environment partial program and nor-
mal environment partial program, given an unpartitioned input program

• Original Program/Class/. . . : the unpartitioned JIF program/class/. . . as it was
written by a developer.

• Trusted Environment Partial Program: after the original program was partitioned,
we use this term to refer to the parts of the program that will run in the trusted
environment.

• Normal Environment Partial Program: after the original program was partitioned,
we use this term to refer to the parts of the program that will run in the normal
environment.

1.3. Contribution 5

• Split Program: we use this term to refer to the combination of a trusted environ-
ment partial program and the accompanying normal environment partial program.

Goals for this Thesis
Hardware solutions like the ARM TrustZone are mostly targeted by low-level C pro-
grams. Assuming there is a Java runtime that runs in the TrustZone, can a high-level
Java program be partitioned to run on a device with limited resources? The support-
ing framework should be lightweight and partitioning should focus on only two levels of
trust.

The emission of Java code when weaving runtime calls into a split program may raise
security concerns. The runtime is something that must be trusted by the user and is
therefore part of the trusted computing base. A larger system implies a higher risk
for the user, that there is a defect or an information leak. Some proof (or at least a
guarantee) that the runtime is secure might be asked for.
This thesis aims for the following goals:

• (Objective A) Automatic Bebop takes as input a JIF program and produces as
output two partial programs—one to be run in a trusted environment, one to be
run in a normal environment—that cooperatively rebuild the functionality of the
original program.

• (Objective B) Secure Code emitted by the newly developed compiler should not leak
information via covert channels as defined by Denning. Ideally, the tool also con-
siders security concerns for generated code, that is responsible for communication
between two partial programs.

• (Objective C) Minimal Trusted Computing Base The compiler should strive for
an optimal partitioning with respect to the amount of code placed in one execution
environment, i.e. the trusted environment partial program should be as large as
necessary, but as small as possible.

• (Objective D.1) Confidentiality Confidentiality policies defined by the user shall be
respected when determining a program partitioning.

• (Objective D.2) Integrity Integrity policies defined by the user shall be respected
when determining a program partitioning.

1.3. Contribution

Figure 1.2: The Bebop projects’s logo.

Building on the JIF language and its policy system, we developed a compiler that
automatically partitions a given program into two parts that will execute in environments

6 1. INTRODUCTION

C
od

e
D

at
a

(a) Original class.

C
od

e
D

at
a

(b) Trusted partial class.

C
od

e
D

at
a

(c) Normal partial class.

Figure 1.3.: Classes consist of data and methods. During splitting, code and data is
distributed between a trusted partial class and a normal partial class.

with different levels of trust. The project—named Bebop—consists of a compiler for a
language extension of JIF and builds on the Polyglot compiler infrastructure [NCM03].
Additionally, we developed an accompanying runtime that hosts split programs.
The primary design principles of Bebop build on the assumption that the partitioning

can be achieved with simple remote method invocation—systems like Jif/split employ
a continuation passing approach [SS75b] and thus must rewrite the control flow of the
complete program. We assumed that every method in a class can be assigned a defin-
itive placement, that is all of its statements either „run in trusted environment“ or
„run in normal environment“. Furthermore, we assumed that methods with indefinite
placement—i.e. a method consists of both statements that should run in the trusted
environment and statements that should run in the normal environment—can be parti-
tioned into a set of smaller methods, all of which have definite placement.

For each class written by the user, both environments have a partial class that contains
a subset of the methods and fields of the original class. As shown in Figure 1.3, the data
(fields) and code (methods) of a class are distributed to two separate class files. The sets
of fields and „implemented“ methods in the partial classes are disjoint. For each method
that is implemented in the opposite environment, the compiler creates a method stub
that allows to invoke a remote call.

Compilation Pipeline

Figure 1.4 depicts a typical compile cycle for source code that is to be partitioned.
The system takes one or more source code files as input. The source language is a
small extension to the JIF language as it has one built-in principal that is used when
annotating policies. The JIF compiler is executed in a regular fashion, except the target
code generation is disabled in the first step. The resulting JIF code—if the source code
passes the JIF compilation, i.e. information flow in the program does not violate the
specified policies—is passed to the Bebop Compiler whose functionality is described
below. The Bebop Compiler again emits JIF code annotated with security policies to
ensure the generated code does not leak information. In the next pass, the JIF compiler

1.3. Contribution 7

Input
files

JIF
compiler

Bebop
compiler

JIF
compiler

Java
compiler

Class
files

JIF code
verified JIF code
(valid program)

extended JIF code (normal part)
extended JIF code (trusted part)

normal Java code normal Bytecode
trusted Java code trusted Bytecode

Pre-processing

Post-processing

Phase One & Two

Figure 1.4.: Compile cycle.

is executed again; this time with enabled target code generation. The resulting Java code
is sent to the standard javac compiler and class files are created. The output consists
of two directories, one containing target Java sources and class files for the normal
environment partial program, the other contains the respective trusted environment
files.

The Bebop Compiler
Taking a set of JIF source files as input, the Bebop Compiler first invokes the JIF
compiler to ensure the information flow of the program adheres to the defined security
policies. If this pass succeeds, the single class files are duplicated and renamed with a
suffix of either _N for classes that will be on the normal environment, or _T for classes that
will be on the trusted environment. This is done to have „physically“ different names for
the new classes and therefore have a real separation. Also, keeping two different classes
of the same name would have raised the need to rewrite parts of the underlying Polyglot
compiler infrastructure [NCM03] to support this feature.
In the next pass, a definite placement—that is either Trusted Environment or Normal

Environment or Both—is assigned to each statement and field. The decision is based on
comparing the labels of each node in the Abstract Syntax Tree (AST) (cf. section 2.8 to a
threshold policy that is defined in the compiler. If the policy of the node is less restrictive
than (cf. section 2.6) the threshold policy, then the placement will be Normal Environment,
otherwise the placement is Trusted Environment. This algorithm is executed for each sub-
tree of the AST that makes up a single statement, or field respectively. Statement
sub-trees with mixed placements are either split into multiple statements (introducing
new temporary variables) or are bound to Trusted Environment if no sub-expressions can
be extracted. A detailed description of the algorithm is given in subsection 4.5.8. After
this pass, every statement has a definite placement and only exists in one environment.
The main idea of Bebop is to always start execution of a split program in a defined

8 1. INTRODUCTION

(a) Original. (b) Trusted environment. (c) Normal environment.

Figure 1.5.: Consecutive statements in a method may be affected by different policies
and can end up having different placement. A method can therefore
be seen as an interleaving of statement groups that execute in different
environments.

entry point in the normal environment, and to invoke remote calls to trusted methods
when needed. Optionally, the trusted environment can also call to the normal environ-
ment during the execution of a program; this is e.g. the case if secure information is
declassified during execution of trusted statements and needs to be passed back to the
normal environment. This requires that a method can be entirely placed in one envir-
onment, because single statements cannot exist without a surrounding method. Since
a method may consist of many statements not necessarily sharing the same placement
(see Figure 1.5) a useful definite placement for a method can not be easily derived. A
trivial solution would be to move a method to the trusted environment if at least one
trusted statement is found. The disadvantage is, that this may lead to a non-optimal
partitioning where everything is on the trusted environment. Such a partition is not
desired as normal environments may have limited resources.
A more optimal solution should partition a program with respect to how much code is

moved to one execution environment. To construct an optimal solution, Bebop searches
for groups of consecutive statements sharing the same placement in one method. Such
a group is then moved to a new, synthetic, method and the original statements are re-
placed by a call to this new method. Figure 1.6 illustrates how statement groups are
moved out of a method. The compiler makes sure that data dependencies are synchron-
ised. If a group contains a statement that manipulates the control flow—for example a
continue is moved out of its parenting while statement—code is emitted to synchronise
the control flow change back to the appropriate call site. In subsection 4.5.8 we describe
in detail, how the extraction of statement groups works and how it is made sure that
data dependencies are not broken. After this pass, every method of a class has a def-
inite placement and all statements in the method’s body share this placement. New
additional methods may be present in the class.
The Bebop Compiler is designed to emit a _N and _T target class for each input class.

Those two classes cooperatively re-build the functionality present in the original class.
Class fields are distributed across the two environments, with fields having the placement
Trusted Environment only being present in the trusted environment and vice versa. Class
methods are also distributed in terms of the statement making up their bodies. A method
keeps its statements if the parenting class has the same placement as the method. A
method stub, initiating a remote call to the other environment, is emitted if the class

1.3. Contribution 9

(a) Original method.

call to method

(b) Statements with same placement moved out to a new
method.

Figure 1.6.: Replacing statement groups by remote calls to synthetic methods allows
assigning a definite placement to each method. Methods can then be
distributed between the two environments and called with a remote calling
mechanism.

placement does not match the method placement. The Bebop Runtime Environment
will take care of executing the call, marshalling of the arguments and return value, and
exceptions thrown in the other environment.
Having partitioned a class into a trusted and normal part, the two pieces must some-

how be identified to make up a pair, and it must be ensured that a corresponding object
in the opposite environment is always present. This is needed for remote method in-
vocation, because it must be determined on which remote instance the method should
be called on. During compilation, an additional instance field is introduced that holds
a UUID to uniquely identify an instance. Additionally, code is emitted that intercepts
object creation and makes sure that a remote object is always activated when a local
object is constructed. The runtime makes sure that the remote object is assigned the
same ID and keeps track of objects in a look-up table.

The Bebop Runtime Environment

After successful compilation of a program, both the trusted and normal parts have
turned from a (typically) active to a reactive program. Since execution always starts
in the normal environment, the trusted part only offers a set of remote methods that
can be called. The normal part offers a special entry point that is invoked by the
runtime. Both partial programs must therefore be hosted on a suitable container that
enables communication between the two environments. Additionally, the container on
the normal environment is responsible for bootstrapping the application. A graphical
overview of the system is given in Figure 1.7.
Since one of the goals for the supporting runtime was to be scalable and extensible, the

whole system works with an asynchronous message passing system. The only require-
ment (besides a working Java runtime environment) imposed by the Bebop Runtime En-
vironment is, that the two runtime instances can be connected by a Java InputStream/
OutputStream pair. It does not matter if the underlying stream is a TCP connection (as
in the reference implementation), a Pipe or a special JNI-driven stream that abstracts
the low-level TrustZone TEE API. This allows us to use Bebop for many scenarios,
e.g. in a network where a normal client is connected to a trusted server, or on special

10 1. INTRODUCTION

Tunnel

Trusted Container

Partial Application
(needs security guarantees)

Trusted Environment

Normal Container

Partial Application
(no security requirements)

Entry Point

Normal Environment

Bebop Runtime Library

Runtime Environment

B B

hosted on hosted on

communicate

Figure 1.7.: Bebop Runtime Environment overview.

hardware like the ARM TrustZone.
The runtime also provides an API for remote object activation and remote method

invocation as described in chapter 5. These methods are used by the compiler during
the partitioning process when it emits code that connects two partial programs. Addi-
tional functionality includes helper methods for the compiler to allow easy (un)boxing
of primitive objects, cast and serialisation utilities.
When a remote object is activated—i.e. an instance of an object must be constructed—

the runtime is responsible for translating between normal/trusted class names, instanti-
ation of the object, and execution of the appropriate constructor (if necessary). It also
makes sure that the object’s ID is correctly set. The newly created object, together
with its unique ID, is stored in a look-up table. When methods on a remote object
are invoked, the runtime looks up the instance and dispatches the call. It also handles
marshalling of arguments and return values. On invocation of a remote method, the
runtime also handles possible exceptions and transports it back to the call site.

Evaluation
We developed a compiler infrastructure that allows to partition a program into two co-
operative parts that execute in different environments. We provide an accompanying
runtime—as defined in (Objective E)—that hosts the partial programs and manages com-
munication between the two parts. The runtime API is annotated with JIF policies and
emitted glue-code is JIF compliant. Furthermore, the Bebop Runtime Environment is

1.3. Contribution 11

lightweight and does not depend on additional libraries or toolkits. Although initially
targeted, support for integrity policies (Objective D.2) was neglected because this would
exceed the scope of this thesis. Future work may fill this gap.
We evaluated the compiler on the basis of two examples: a key derivation example

that employs a time-based one-time password algorithm, and a log-in example that reads
a password from a trusted channel and compares the password in a trusted environment.
The Bebop Compiler produced a partitioning (Objective A) that moved critical code like
the password compare or the key derivation to a trusted environment while leaving un-
critical code like printing results to the user on the normal environment (Objective C). The
example programs were annotated with confidentiality policies that were respected by the
Bebop Compiler (Objective D.1). Intermediate code (before post-processing) shows that
calls to the Bebop Runtime Environment are annotated with security policies (Objective
B); the intermediate code is printed in Appendix A.
Evaluation of the Bebop Runtime Environment was done by means of message through-

put and shows that the Bebop Runtime Environment is suited well to the kind of work-
loads that we think are to be expected for programs the Bebop Compiler is able to
partition. Properties like extensibility were achieved by software design decisions: the
use of message passing enables us to easily extend the Bebop Runtime Environment. The
Bebop Runtime Environment shows good portability, has a small footprint, is extensible
and scales well (Objective F).
A detailed evaluation of the developed tools is given in chapter 6.

Limitations and Future Work
• Integrity properties are neglected.

• The Bebop Language does not support method calls, and declassify statements
and expressions in constructors.

• JIF’s polymorphic label mechanism (cf. section 2.6) is not supported.

• Method parameters used may be only of primitive types.

• Recursive methods are not supported.

• The RemoteCallingContext may not be synchronised correctly if an exception is
encountered during execution of a remote method.

• The RemoteCallingContext may grow very large, if many parameters must be
synchronised.

• The runtime’s ObjectStore currently lacks a mechanism to clear out destroyed
(or orphaned) objects.

• The control flow of a program is currently not secured against manipulation.

• There is currently no native TEE support due to lack of a Java port.

A detailed listing and explanation of all limitations is given in chapter 4 and chapter 5.

12 1. INTRODUCTION

1.4. Structure of this Thesis
After this introduction, chapter 2 will give a presentation of the theoretical backgrounds
of secure information flow and the Decentralized Label Model. Additionally, the policy
model of JIF is described in detail and examples are given. Related work is discussed
in chapter 3. In chapter 4, we give a detailed description of the implemented Bebop
Compiler. It is shown how the compiler determines the placement of partitioned code,
how it partitions classes, and what runtime glue-code is emitted. The Bebop Runtime
Environment and the remote method invocation architecture is explained in chapter 5.
Afterwards, an evaluation of the implemented system is done on basis of two sample
programs; results are printed in chapter 6. The final chapter 7 draws conclusions based
on the preceding chapters and gives an outlook on future work.

CHAPTER 2

PRELIMINARIES

2.1. Covert Channels
A computer program usually processes some kind of input information and transforms
it to output information. By doing so, the program creates a channel, such that said
information can flow out to be read by the user. If the flow of information is intended,
the channel is called legitimate [Lam73]. On the other hand, the behaviour of the
program may reveal information about its internals, not intended to be read by the user.
Such covert channels [Lam73] may have severe impact on the security. There are many
different types of covert channels, depending on on what an attacker is able to observe.
Having physical access to a computation device allows for a wider range of attacks.

2.2. Information Flow
Looking at a sequence of statements in a computer program, one can find that informa-
tion flows through the program. Information, for instance, enters a function through its
parameters, is manipulated, and a value derived from this information is returned by the
function. A flow occurs if at least some—not necessarily all—information is transferred.
Information flow can either be determined statically—i.e. by looking at the program
code—or dynamically—i.e. by executing the program and tracking memory access.
For static information flow, two kinds of information flow are distinguished [DD77].

For a statement b = f(a) the flow is called explicit, because the execution of f hap-
pens in any case. For a statement if(c)b = f(a) the flow is called implicit, because the
execution of f depends on the value of a condition c. Since the value of c is in general
not statically available, it cannot be a-priori decided if f will execute or not.
Implicit flow expresses the property that all values depending on the evaluation of a

13

14 2. PRELIMINARIES

conditional expression at runtime, can reveal information about what the value of the
condition was. In the example in Listing 2.2, the variable granted is only assigned
constant values, although, information about the variable password can be learnt. List-
ing 2.1 showcases explicit flow. Intuitively, information flow is explicitly visible, because
information stored in the variable password is transferred to x.

Listing (2.1) Explicit flow

password = " tiger ";
x = password ;

Listing (2.2) Implicit flow
granted = false ;
if (password == " tiger ")

granted = true ;

Figure 2.1.: Comparison of explicit and implicit information flow.

Implicit information flow can be a covert channel, if no information is intended to be
transferred (cf. section 2.1).

2.3. The Non-Interference Property

Non-interference states that any high-confidential data processed by a program must not
interfere with low confidentiality data [GM82; SM06]. This means that if a variable with
low confidentiality policy (cf. section 2.4) is influenced by a high-confidential value, the
contents of the low variable must not be displayed to a principal with only low clearance.

2.4. Security Policies

Policies are a basic concept, used to describe security requirements of a system. Goguen
and Meseguer define a security policy as: „The purpose of a security policy is to declare
which information flows are not to be permitted. Giving such a security policy can be
reduced to giving a set of noninterference assertions.“ [GM82]. Policies therefore control
what changes to the state of a system can be observed by a specific user.

2.5. Secure Information Flow

Secure information flow as defined by Denning [Den76] means that no unauthorized
flow of information is possible. If a variable with low security policies depends on a
high security condition, an attacker may learn confidential information. This is due to
implicit information flow, cf. section 2.2.
A program is considered secure if no unintended information flows occur (information

flow control) and if the program can be certified statically by a compiler [DD77].

2.6. JIF 15

Example

Considering a system with a highly confidential variable account_balance. When check-
ing if a customer is eligible for a credit, information about the balance implicitly flows
to the low security variable creditworthiness. A clerk with only low clearance learns
information about a customer’s financial status.

if (account_balance > 100000) {
creditworthiness = "good";

} else if (account_balance > 50000) {
creditworthiness = " average ";

} else {
creditworthiness = "bad";

}

2.6. JIF
This section gives an introduction to the security model of the JIF language. The
JIF language [Mye99b; Mye99a] is an extension to the Java language and aims provide
mechanisms to certify programs in terms of secure information flow. It is based on
the Decentralized Label Model developed by Myers and Liskov [ML97; ML98; ML00].
JIF derives from approximately Java 1.4. All concurrency related features of the Java
language (threading) are disabled.
Policies for confidentiality and integrity are defined and ordered in terms of restrict-

iveness. Labels as a compound type containing confidentiality and integrity policies
are introduced. All entities—that are principals, policies and labels—can be placed on
security lattices that allow easy comparison and combination of those entities.

2.6.1. Principals

In JIF, a principal is defined as: „an entity with some power to observe and change
certain aspects of the system“ [Cho+09]. It is JIF’s primary mechanism to express
users, groups, processes, etc. that are present in a system. Principals can delegate their
power to other principals via the acts-for relation. Thus, principals in a system form a
hierarchy and can be ordered in terms of authoritative power.

2.6.2. The acts-for Relation

A principal a is said to act for principal b, a � b, if b empowers a to act on their behalf
[ML00]. If a � b, a’s set of privileges is extended by the set of privileges of b. The
acts-for relation either delegates all privileges, or none at all.

Definition 1 (Poset) A partial ordering is a binary relation v : L×L→ {true, false}.
A partially ordered set (poset) is a set L with a partial ordering v, (L,v). [NNH99]

16 2. PRELIMINARIES

The acts-for relation fulfils the following properties:

• The relation is reflexive: a � a.

• The relation is antisymmertic: if a � b and b � a it follows that a = b, and

• The relation is transitive: if a � b and b � c it follows that a � c.

The acts-for relation � in combination with a set of principals P induces a partial
order in terms of authoritative power and P is therefore a partially ordered set, (P,�).
Note: this definition of the acts-for relation excludes cyclic acts-for relations between

principals, that is a � b ∧ b � a with b 6= a, as this violates the antisymmetric property
of the partial order. Although, it is possible to allow cycles of this kind—the definition of
the relation must then be adapted to work on equivalence classes of principals [Mye99b].

Definition 2 (Bounds) A subset K ⊆ L has an upper bound u ∈ L if ∀k ∈ K : k v u.
A subset K ⊆ L has a lower bound l ∈ L if ∀k ∈ K : l v k. Let U be a set of upper
bounds for K and let L be a set of lower bounds for K. The least upper bound (LUB,
join, t), if it exists, is defined as u0 ∈ U : ∀u ∈ U : u0 v u. The greatest lower bound
(GLB, meet, u), if it exists, is defined as l0 ∈ L : ∀l ∈ L : l v l0. [NNH99]

The acts-for relation can be used to model groups of principals with different author-
isations. Figure 2.2 gives an example of a hierarchical principal structure modelled with
the acts-for relation. In a principal hierarchy, there is a top principal > that acts for
any principal, ∀p ∈ P : > � p. Likewise there is a bottom principal ⊥ that any principal
can act for, ∀p ∈ P : p � ⊥ [ML00].
For any subset of principals S ⊆ P a principal u ∈ P is an upper bound of S if ∀s ∈ S :

u � s. Such an upper bound always exists because of the top principal >. Analogous,
there is a lower bound l ∈ P for all s ∈ S such that s � l. This is always satisfied
by the bottom principal ⊥. The least upper bound for a set G ⊆ P is denoted by the
join operator: tG = lub(G). The greatest lower bound is denoted by the meet operator:
uG = glb(G).

Definition 3 (Lattice) A partially ordered set (L,v) where all subsets have a least
upper bound and a greatest lower bound is called a (complete) lattice (L,v,t,u,⊥,>).
The greatest element is > = tL and the least element is ⊥ = uL. [NNH99]

The least element ⊥ is defined by ⊥ = uP = glb(P). Using the definition of the GLB,
∀p ∈ P : p � ⊥. Similarly, the top element > = tP = lub(P) that is: ∀p ∈ P : > � p.
This is consistent with the definition of the bottom and top principal given above.

Examples

1. In Figure 2.2 the CEO carl can act for all executives, carl � executives, and
can therefore also act for the group of all employees, carl � employees. In terms

2.6. JIF 17

>

carlalice

bobdon

ed

executives

employees

⊥

Figure 2.2: Amodel of a privilege hier-
archy with the acts-for re-
lation (�). In this ex-
ample, carl � bob, and
don � ed, and so forth.

of access management with user groups, every principal is a group and a singleton
at the same time. Principal carl’s privileges are extended by all privileges of
executives and all privileges of employees.

2. The least upper bound for the principals employees and executives in Figure 2.2
is given by lub({employees, executives}) = employees t executives. Using
the definition of the t operator we get ∀p ∈ P : u � p with u being the smallest
upper bound. Let U be the set of upper bounds for employees and executives,
U = {p : p � employees ∧ p � executives} = {executives, carl,>}. Looking at
the ordering > � carl � executives, the least element is given by the principal
executives.

3. The greatest lower bound for bob and don is given by the greatest element that
both bob and don can act for: bob u don = ⊥.

2.6.3. Confidentiality Policies
Concerns over confidentiality are expressed in terms of reader policies. The notation
〈owner → readers〉 states that the principal owner grants all principals in the set
readers the right to read certain values. The policy pol = 〈· → ·〉 is called a confidenti-
ality policy, the set of all defined confidentiality policies is denoted by C. It is convenient
to construct a set of reading principals for a given policy:

Definition 4 (Reader set) Let (P,�) be a partially ordered set of principals, let o ∈ P
be the owner of a read policy, let R ⊆ P be the set of principals entitled by o to read a
value, 〈o→ R〉 ∈ C. Furthermore let r be a member of R, and let P(P) be the power set of
P. The function readers : P×C→ P(P)—if evaluated by a principal p—yields a set of all
principals that are allowed to read a value under a certain policy. readers(p, 〈o→ R〉) =
{x ∈ P : if o � p then (x � o or ∃r ∈ R : x � r) else (true)}.

A principal p evaluating a confidentiality policy adheres to the following rules:

1. If the owner o of the policy does not act for p, the principal p ignores the policy
and access to the value is granted to all principals, o 6� p⇒ readers(p, pol) = P. A

18 2. PRELIMINARIES

Table 2.1.: Various reader sets of policies owned by >. The principal hierarchy is
taken from Figure 2.2. Since ∀p ∈ P : > � p, the policy is respected by
every principal and the reader sets are thus equal for all principals.

Policy readers(p, policy)

1 〈> → ⊥〉 P
2 〈> → ed〉 {ed, don, alice,>}
3 〈> → don〉 {don, alice,>}
4 〈> → alice〉 {alice,>}
5 〈> → bob〉 {bob, alice, carl,>}
6 〈> → carl〉 {carl,>}
7 〈> → employees〉 {employees, executives, bob, alice, carl,>}
8 〈> → executives〉 {executives, carl,>}
9 〈> → >〉 {>}

policy defined by o is only valid for principals „below o“ in the principal hierarchy.
Another principal q that o does not act for, may specify different confidentiality
concerns (or none at all).

2. If o � p the reader set consists of all principals that can act for the owner of the
policy, or for one of the specified readers, o � p ⇒ readers(p, pol) = {x ∈ P : x �
o or x � r}.

Confidentiality policies can be compared in terms of being „at most as restrictive as“
[ML00]. A confidentiality policy p1 is less restrictive than policy p2, if p1 allows more
readers than p2. An example for reader sets is given in Table 2.1.

Definition 5 (vC) Let p1 and p2 be confidentiality policies. p1 vC p2 ⇐⇒ ∀p ∈
P : readers(p, p1) ⊇ readers(p, p2). [ML00]

The policy p1 allows more readers—when evaluated for each p—than p2 and is thus
less confidential than p2. An example of reader sets and the corresponding policy lattice
is given in Figure 2.3.

Definition 6 (Preorder) A preorder is a binary relation v : L×L→ {true, false} that
is reflexive and transitive. [Ok10]

The relation vC is reflexive, that is a vC a, and transitive, from a vC b∧b vC c follows
a vC c. vC is hence a preorder. It is not a partial order, because the anti-symmetric
property does not hold: Let a = 〈bob→ alice〉 and let b = 〈bob→ bob〉. Enumerating
the reader sets for all principals (see Table 2.2) it holds that a vC b and b vC a because
the reader sets are equal for all principals. However it does not follow from this that
a = b, because the policies a and b are two different objects. By defining the equivalence
a ∼ b ⇐⇒ a vC b∧b vC a, a partial order over the equivalence classes can be obtained.

2.6. JIF 19

{⊥, e, d, a, b, em, ex, c,>}1

{e, d, a,>}2

{d, a,>}3

{a,>}4

{>}9

{c, a, b, em, ex,>}7

{ex, c,>}8 {c, a, b,>}5

{c,>}6

m
ore

confidential

(a) Reader set lattice.

〈> → ⊥〉1

〈> → e〉2

〈> → d〉3

〈> → a〉4

〈> → >〉9

〈> → em〉7

〈> → ex〉8 〈> → b〉5

〈> → c〉6

m
or
e
co
nfi

de
nt
ia
l

(b) Policy lattice.

Figure 2.3.: Lattice of reader sets ordered by ⊇ and the corresponding policy lattice
under the order vC, for policies defined in Table 2.1.

Table 2.2.: Different policies with equivalent reader sets for all principals.
〈bob→ alice〉 〈bob→ bob〉 〈bob→ carl〉

> P > P > P
alice P alice P alice P
carl P carl P carl P
don P don P don P
bob {>, alice, carl, bob} bob {>, alice, carl, bob} bob {>, alice, carl, bob}
ed P ed P ed P
⊥ {>, alice, carl, bob} bob {>, alice, carl, bob} bob {>, alice, carl, bob}
emps {>, alice, carl, bob} bob {>, alice, carl, bob} bob {>, alice, carl, bob}
execs P execs P execs P

The equivalent policies can be seen as being equal under the relation ∼, [a]∼ = [b]∼, and
a partially ordered set of confidentiality policies can be formed, (C/∼,vC). Policies are
therefore equal, if the reader sets are equal for all principals. An example of a policy
lattice over (C/∼) is given in Figure 2.4.
It holds for all policies p, that p is not more restrictive than the strictest policy 〈> →
>〉 and that the weakest policy 〈⊥ → ⊥〉 is not more restrictive than p: 〈⊥ → ⊥〉 vC
p vC 〈> → >〉.

Conjunction and Disjunction

Definition 7 (t, u) Let p1 and p2 be confidentiality policies. p1tp2 = readers(p, p1)∩
readers(p, p2) and p1 u p2 = readers(p, p1) ∪ readers(p, p2)

Having a strictest and weakest reader policy, there is always an upper and lower bound
for any subset of policies S ⊆ C/∼. The least upper bound t of two confidentiality
policies p1 and p2 is the conjunction of confidentiality policies, p3 = p1 t p2. The policy

20 2. PRELIMINARIES

Figure 2.4: A lattice of confid-
entiality policies.
The topmost dia-
mond can be seen
as single lattice
element since those
policies form an
equivalence class.

〈bob→ >〉

〈bob→ alice〉

〈bob→ bob〉 〈bob→ carl〉

〈bob→ don〉 〈bob→ execs〉

〈bob→ ed〉 〈bob→ emps〉

〈bob→ ⊥〉

m
or
e
co
nfi

de
nt
ia
l

eq
ua

l∼ ∼

∼ ∼

∼∼

vC vC

vC vC

vC vC

p3 allows only readers that are defined in both p1 and p2. The reader set of p3 is the
greatest lower bound of the reader sets of p1 and p2 in the lattice of all possible reader
combinations, that is the power set of P ordered by subset inclusion, (P(P),⊆). Since the
policy lattice and the reader set lattice are duals, there is a dual element in (C/∼,vC)
with p3 = [p1 t p2]∼ = readers(p, p1) u readers(p, p2) = readers(p, p1) ∩ readers(p, p2).
The greatest lower bound operator u expresses disjunction of confidentiality policies.

A policy p4 = p1up2 allows all readers either defined in the reader set of p1 or the reader
set of p2. This corresponds to the least upper bound in the reader set lattice (P(P),⊆),
hence: p4 = [p1 u p2]∼ = readers(p, p1) t readers(p, p2) = readers(p, p1) ∪ readers(p, p2).
The partially ordered set of confidentiality policies (C/∼,vC), the conjunctive and

disjunctive operators, and the weakest and strictest policy, form a lattice (C/∼,vC,u,
t, 〈⊥ → ⊥〉, 〈> → >〉).

Examples

1. Comparing the policies p1 = 〈executives→ bob〉 and p2 = 〈> → carl〉, it holds
that for each principal p ∈ P the reader sets of p1 (see Table 2.3) are larger (⊇)
than the reader sets of p2 (see Table 2.1). The policy p1 is in every case not more
restrictive than p2 and relation p1 vC p2 is therefore valid. Having the policy
p3 = 〈> → employees〉, the reader sets of p1 are not in every case larger than the
reader sets of p3, thus p1 6vC p3.

2. Let p1 = 〈> → executives〉 and p2 = 〈> → alice〉 be reader policies in the
lattice given in Figure 2.3. The conjunction p1 t p2 is given by the intersec-
tion of reader sets, readers(p, p1) ∩ readers(p, p2) which is the equivalence class
[〈> → >〉]∼. The disjunction is given by p1up2 = readers(p, p1)∪ readers(p, p2) =
[〈> → executives〉 u 〈> → alice〉]∼. As defined above, [·]∼ denotes the equival-

2.6. JIF 21

[top]∼

[c]∼ [a]∼

[ex]∼ a u c [d]∼

a u ex [b]∼ c u d [e]∼

b u ex d u ex b u d c u e

[em]∼ d u em e u ex b u e

e u em

[bot]∼

Figure 2.5: The lattice of Figure 2.3 extended by⊔
i,j∈C/∼{i, j} and

d
i,j∈C/∼{i, j}. For

legibility, the policies are assigned
names: a = 〈> → alice〉, b = 〈> →
bob〉, top = 〈> → >〉, and so on.

Table 2.3.: Reader sets for the policy 〈executives→ bob〉.

Principal p ∈ P Respects Policy (o � p) readers(p, policy)

alice no P
bob no P
carl no P
don no P
ed no P
employees yes {a, b, c, ex,>}
executives yes {a, b, c, ex,>}
> no P
⊥ yes {a, b, c, ex,>}

ence class of all policies of the same restrictiveness. Figure 2.5 shows the ordering
of policies in Figure 2.3 extended by mutual conjunction and disjunction of the
policies.

2.6.4. Integrity Policies
Principals writing to variables may change the trustworthiness—or integrity—of the
value. Concerns over writers are expressed in integrity policies. The mapping 〈owner←
writers〉 states that owner grants all principals in the set writers to influence the value
of a variable.

Definition 8 (Writer Set) Let o be the owner of a write policy, let W be the set of
principals entitled by o to write a value, 〈o← W〉 ∈ I, where I is the set of integrity policies.

22 2. PRELIMINARIES

Figure 2.6: A lattice of in-
tegrity policies in
I/∼ ordered by
vI.

〈carl← >〉 〈carl← carl〉

〈carl← alice〉 〈carl← execs〉

〈carl← don〉 〈carl← bob〉

〈carl← ed〉 〈carl← emps〉

〈carl← ⊥〉

hi
gh

er
in
te
gr
ity

eq
ua

l

∼

vI vI

vI vI

vI vI

vI vI

vI

Furthermore, let w be a member of the writer set W. The function writers : P× I→ P(P)
yields a set of all principals that are allowed to change a value under a certain policy.
writers(p, 〈o← W〉) = {x ∈ P : if o � p then (x � o or ∃w : x � w) else (true)}.

Similar to confidentiality policies, integrity policies are only respected by a principal
p evaluating the writer set, iff the owner of the policy is higher up or equal in the
hierarchy than p, in terms of the acts-for relation. Integrity policies can be ordered
by the reflexive and transitive relation vI. The ordering is done in terms of „is more
trustworthy than“. For higher integrity information fewer restrictions apply when being
used in computation, hence this ordering can also be seen as „not more restrictive than“.

Definition 9 (vI) Let p1 and p2 be integrity policies. p1 vI p2 ⇐⇒ ∀p ∈ P :
writers(p, p1) ⊆ writers(p, p2). [ML00]

The weakest—in terms of restrictiveness—integrity policy 〈> ← >〉 forms a lower
bound on the set of integrity policies I. Restrictiveness for use in computation, and
integrity of a value, are dual properties. 〈> ← >〉 is therefore the strictest policy in terms
of write-access to the value, because it limits write-access to only {>}. Analogous, the
most restrictive integrity policy in terms of „restrictions when using the value“, 〈⊥ ←
⊥〉, allows every principal to change a value; more restrictions will apply when the
value is used in computation. The weakest and strictest integrity policies form a lower
and upper bound on the set of integrity policies I and it holds for all policies p ∈ I :
〈> ← >〉 vI p vI 〈⊥ ← ⊥〉. As with confidentiality policies, the preorder vI can be
turned into a partial order by defining integrity policies to be equivalent iff their writer
sets are equivalent for all principals. a ∼ b ⇐⇒ ∀p ∈ P : writers(p, a) = writers(p, b).
Integrity policies are thus defined over the partial order (I/∼,vI). Figure 2.6 gives an
example of equivalence classes of integrity policies, ordered by vI.

2.6. JIF 23

Conjunction and Disjunction

Definition 10 (t, u) Let p1 and p2 be integrity policies. p1 u p2 ⇐⇒ ∀p ∈ P :
writers(p, p1) ∩ writers(p, p2) and p1 t p2 ⇐⇒ ∀p ∈ P : writers(p, p1) ∪ writers(p, p2).

The u operator denotes conjunction of integrity policies, p3 = p1 u p2. Only writers
defined in both p1 and p2 are allowed to influence a value under the policy p3. This
corresponds to the greatest lower bound in the dual lattice of all possible writer sets,
(P(P),⊆). The disjunction of integrity policies is given by p4 = p1 t p2; a principal
allowed to influence a value must be either allowed by p1 or by p2. This is equivalent to
the least upper bound in (P(P),⊆).

Examples

1. Let p1 = 〈carl ← ed〉 and let p2 = 〈carl ← carl〉. The writer sets of p2 are in
every case—that is when evaluated for each principal—smaller (⊆) than the writer
sets of p1, therefore p2 vI p1. The policy p3 = 〈carl ← >〉 has the same writer
sets as p2, thus p2 vI p3 ∧ p3 vI p2 =⇒ p2 ∼ p3. The policies p2 and p3 express
the same restrictiveness in terms of allowed writers and can be seen as equal under
the relation ∼. A lattice reflecting this ordering is given in Figure 2.6.

2. The conjunction of the integrity policies p1 and p2 reduces the authorised principals
to principals defined in both p1 and p2, and is given by the intersection of their
writer sets, p1 u p2 = [〈carl← carl〉]∼. The disjunction allows principals author-
ised by at least one of the policies and is given by the union of the corresponding
writer sets, p1 t p2 = [〈carl← ed〉]∼.

2.6.5. Labels
Having both confidentiality and integrity concerns, it is useful to enforce them simul-
taneously. A label expresses both reader and writer policies. The pair l = {c ∈ C; i ∈ I}
states that for a given value labelled with the label l, the confidentiality policy c and
the integrity policy i must be enforced. The reader set of a label is the reader set of
this label’s confidentiality policy. The writer set is the writer set of the label’s integrity
policy.

As labels express restrictiveness in confidentiality and integrity, they can be ordered
accordingly. A label l1 is not more restrictive than a label l2, if the reader sets of l1 are
always larger than the reader sets of l2 and if the writer sets of l1 are always smaller
than the writer sets of l2.

Definition 11 (v) Let l1 = {c1; i1} and l2 = {c2; i2} be labels. l1 v l2 ⇐⇒ c1 vC
c2 ∧ i1 vI i2.

The ordering v is reflexive and transitive on the set of labels L. Again, equival-
ence of labels can be defined as equivalence of reader and writer sets. {c1; i1} ∼ {c2;

24 2. PRELIMINARIES

{〈> → >〉; 〈> ← ⊥〉}

{〈> → a〉; 〈> ← ⊥〉} {〈> → >〉; 〈> ← b〉}

{〈> → b〉; 〈> ← ⊥〉} {〈> → a〉; 〈> ← b〉} {〈> → >〉; 〈> ← a〉}

{〈> → ⊥〉; 〈> ← ⊥〉} {〈> → b〉; 〈> ← b〉} {〈> → a〉; 〈> ← a〉} {〈> → >〉; 〈> ← >〉}

{〈> → ⊥〉; 〈> ← b〉} {〈> → b〉; 〈> ← a〉} {〈> → a〉; 〈> ← >〉}

{〈> → ⊥〉; 〈> ← a〉} {〈> → b〉; 〈> ← >〉}

{〈> → ⊥〉; 〈> ← >〉}

m
or
e
co
nfi

de
nt
ia
l

hi
gh

er
in
te
gr
ity

Figure 2.7.: Labels ordered by v.

i2} ⇐⇒ ([c1]∼ = [c2]∼) ∧ ([i1]∼ = [i2]∼). The conjunction and disjunction of labels
are given by conjunction and disjunction of the corresponding confidentiality and in-
tegrity policies. {c1; i1} u {c2; i2} = {c1 u c2; i1 u i2} and {c1; i1} t {c2; i2} = {c1 t c2;
i1 t i2}. The ordering v can thus be lifted to a partial order over the equivalence classes.
Since the corresponding reader and writer sets do have a greatest lower and least upper
bound, and a greatest and smallest element, a lattice can be formed, (L/∼,v, {〈⊥ → ⊥〉;
〈> ← >〉}, {〈> → >〉; 〈⊥ ← ⊥〉},t,u).

Examples

1. Figure 2.7 shows how various labels containing policies for principals >, ⊥, alice,
and bob from Figure 2.2, are ordered by v.

2.6.6. A Security Enhanced Type System

In traditional programming languages, a value is associated with a type that determines
the meaning of the stored bit sequence. This data type determines, how a value may be
used in further computation and how to apply certain operations. Not only the data type
of a value needs to be taken care of, also concerns about confidentiality and integrity
must be taken into account when operating on a value or with values derived from it.
Especially the flow of information must be considered, when building a secure system
[DD77]. A security enhanced type system extends the type of a value to incorporate
not only the value’s data type, but also the associated security policies. Type checking
then allows for statical reasoning about secure information flow in a computer program
[VIS96].

2.6. JIF 25

Definition 12 (Labelled Type) A labelled type for a value x consists of a data type
T and a policy label {c; i}: T{c; i} x.

Assignment Typing Rule

An expression of labelled type S{cs; is} is assignable to a variable of type T{ct; it}, only
if S is a subtype of T, S ≤ T, and if the security policies cs, is are not more restrictive
than the policies ct, it, that is {cs; is} v {ct; it}, for the current principal hierarchy P.
Given an environment γ : varname → type, that defines a mapping from a variable

name to its associated labelled type, assignment can more formally be expressed as:

γ, P ` x : T{ct; it}
γ, P ` e : S{cs; is} {cs; is} v {ct; it} ∧ S ≤ T
γ, P ` x← e

The data type part and the label part of a labelled type can be treated independently
during type checking. The condition S ≤ T needs little explanation, since this typing
rule is incorporated in every object-oriented language. The v relation decays into two
relations, one for confidentiality and one for integrity. The condition cs vC ct states that
it is valid to store public information under policy cs to a more secret variable under
policy ct. No information is leaked by assigning a higher confidentiality classification to a
piece of information. Similarly, is vI it states that it is valid to store trusted information
under policy is to an untrusted assignment target under policy it. Trusted values can
always be used and operated on in an untrusted environment. This is commonly referred
to as write up in the integrity lattice and read down in the confidentiality lattice [SS94].

The process of storing a value with a certain label to a variable (or another value)
with a label at least as restrictive, is called relabelling. For a relabelling to be successful,
the policies must not become less restrictive, otherwise type checking fails. A set of rules
describing allowed iterative relabellings can be found [Mye99b]:

Confidentiality Relabelling Rule

1. Removing a reader from a policy. The reader sets become smaller and the policy
is thus more restrictive.

2. Adding a policy for another owner. More confidentiality policies must be enforced.
This results in a join (least upper bound) of the policies and is thus more restrictive.

3. Adding a reader that acts for an already defined reader. This does not change the
reader set as an implicitly defined reader becomes defined explicitly. The reader
being acted for can also be removed which results in a replacement by a principal
with a higher clearance.

4. Replacing the owner by a principal that acts for the owner. All principals acting
for the owner are already implicitly readers. Replacing the owner by a principal
higher up in the hierarchy removes the old owner from the reader set; the new
owner was already a reader. The policy becomes more restrictive.

26 2. PRELIMINARIES

5. Adding a principal that acts for the owner to the reader set. This does not change
the reader set as an implicitly defined reader becomes defined explicitly.

Integrity Relabelling Rule

1. Adding a writer to a policy. Adding a principal to the writer set lowers the integrity
and is therefore more restrictive (in terms of vI).

2. Removing a policy. An owner no longer imposes restrictions on the integrity of a
value, hence the writer set become larger and the value requires more restrictions
in future computation.

3. Adding identical policies with a weaker owner. A policy 〈o ← W〉 can be added if
there already exists a policy 〈p ← W〉 with p � o. The newly added policy allows
more writers (because of the weaker owner) and is thus more restrictive.

4. Replacing a writer by a principal the writer acts for. This adds a new principal to
the writer set. The old writer is now implicitly defined.

5. Removing principals that act for the owner from the writer set. Explicitly defined
writers become defined implicitly.

When a value is computationally derived from one or more operands, the assignment
target must ensure, that the policy of each operand is enforced correctly. The target
must therefore enforce the security concerns of all operands.

Binary Operations Typing Rule

γ, P ` e1 : E{cs; is}
γ, P ` e2 : E{cu; iu}
γ, P ` (e1 op e2) : E{cs t cu; is t iu}

The weakest policy enforcing both the policies of e1 and e2, is the least upper bound
(or join) of those policies in their corresponding lattice. Any label that is stricter than
the join could be legally used for the intermediate result of the binary operation, but
this is not useful in practice. Similar rules apply to operations involving more operands.

2.6.7. Tracking Implicit Flow
Implicit information flow, as described in section 2.2, can lead to severe information
leaks. It is therefore important to correctly enforce security policies for values affected
by implicit flow. JIF employs a technique called program counter labelling.
Every statement (and every intermediate expression) in a program is associated with

a program counter (PC) label. Every time the control flow is changed depending on a
conditional expression, the PC label for all statements inside of all branches is extended
to also enforce the policies imposed on the conditional value, pc = pc t ec. Then,

2.6. JIF 27

for every statement in the program, the label of the involved expression is joined (t)
with the current PC label. This assigns the least possible label enforcing all, the PC
policies and all policies of all operands, to the intermediate value of the expression. Since
constant values and literals do not define policies—this is they are labelled with the least
possible policy {〈⊥ → ⊥〉; 〈> ← >〉}—their effective label after the join is always the
PC label. Listing 2.3 gives an example of implicit flow tracking.

Listing 2.3: Implicit flow tracking with PC labels.
Boolean{〈> → ⊥〉; 〈> ← ⊥〉} granted = false ;
String{〈> → >〉; 〈> ← >〉} correctPassword = " tiger ";
String{〈> → >〉; 〈> ← >〉} inputPassword = readPassword ();

// {PC} = {〈⊥ → ⊥〉; 〈> ← >〉}
// The PC label starts with the least policy possible .

if (inputPassword . equals (correctPassword)) {
// {PC} = {PC} t { inputPassword } t { correctPassword } = {〈> → >〉; 〈> ← >〉}
granted = true ;
// { granted } ← {PC} t {true}
// Literals and constants have no restrictions on their own ,
// but end up having the same label as their PC.
// {〈> → ⊥〉; 〈> ← ⊥〉} 6v {〈> → >〉; 〈> ← >〉} t {〈⊥ → ⊥〉; 〈> ← >〉}
// Assignment is not allowed because { granted } is too weak.

}

2.6.8. Termination Labels
When expressions and statements are evaluated, information can be learnt by observing
if the evaluation terminates normally, or throws an exception. The if-statement in
Listing 2.4 demonstrates possible terminations. If the variable amount is positive, a
NullPointerException may be thrown, depending on the value of account. If amount
is zero or negative, the alternative branch is taken, and it is used in division. This may
lead to an ArithmeticException if the value is exactly 0. It may also be the case, that
no exception is thrown and the if-statement terminates normally.
A label is assigned to each termination path, reflecting the security concerns of all

involved operands. If the if-statement terminates with a NullPointerException the
label assigned to the thrown exception object is pc t amount t account. The label
assigned to a thrown ArithmeticException object is pct amount. A non-exceptional
termination of the statement is assigned the label pc t amount t account. The re-
spective labels assigned to the termination paths are called normal termination label
and exceptional termination label, the label assigned to the value an expression evalu-
ates to is called normal value. [Cho+09].

Listing 2.4: Termination labels.
if (amount > 0) {

account . balance -= amount ;
} else {

28 2. PRELIMINARIES

a = 500/ amount ;
}

2.6.9. Handling Exceptions

Throwing an exception from a context that is considered secure, may leak information
to the context that catches the exception. Java distinguishes between two types of
exceptions. Checked exceptions that must be either caught inside of the method they
arise or must be explicitly declared to be re-thrown to the caller of the method, and
runtime exceptions that are unchecked and (if not caught) handled by the Java runtime.
To avoid covert channels, JIF requires all exceptions to be checked.

Since information flows from a possibly more secure context inside the try block to the
receiver of the exception, label checking must be employed. The exceptional termination
label of the statement that throws an exception must therefore be less restrictive than
the label of the exception declared in the catch clause, L1 v pc t S or L2 v pc t S.
Control flow mechanics of a try-catch-finally are identical to Java. Execution is

started in the try block which either terminates successfully or throws an exception. If
it throws an exception and a suitable catch clause exists, control is transferred to the
catch. After the catch, or a successfully terminated try, control is transferred to the
finally block. If no suitable catch clause exists for a thrown exception, it must have
been declared to be re-throwable in the method signature (throws clause); execution is
then transferred from the failing try to the finally block; afterwards, the exception is
re-thrown to the caller of the method.

try {
S;
...

} catch (Exception1 {L1} e1) {
...

} catch { Exception2 {L2} e2) {
...

} finally {
...

}

2.6.10. Authority

Code executed in JIF runs on behalf of a set of principals, this is referred to as authority.
For a set of statements, principals in the authority delegate authoritative power to
JIF. Special operations like downgrading of security policies (see below) require the
accordance of the principal that owns the policy, or a principal that is allowed to act for
the owner.
Authority can be defined per class, enabling its methods to declare that they need the

authority of one of the principals defined for the class:

2.6. JIF 29

class C authority (alice , bob) {
void m() where authority (alice) {

...
}

}

Another variant of defining the authority is to declare that a method may only be
called from a call site that has the authority of a principal. The class does not have to
declare any authority:

class C {
void m() where caller (carl) {

...
}

}

2.6.11. Methods
Declaration of methods in JIF is similar to Java. Additional policies can be declared to
make sure a method does not leak information.

To restrict calling of methods that may leak information, a begin-label can be specified
in JIF. This restricts the call to the method, such that the program counter label of the
call site is less restrictive than the begin-label of the method, pc v begin-label. The
begin-label defaults to 〈> → >〉.

void m{〈alice→ bob〉; 〈carl← don〉}() {
...

}

The (non-exceptional) termination of a method may leak information to an attacker.
To bound what can be learnt by an observer, JIF supports end-labels, that state that
the program counter label at the call site must be stricter than the end-label of the
called method, end-label v pc. The end-label defaults to to least upper bound of all
exceptions thrown or to 〈⊥ ← ⊥〉 if no exceptions are thrown.

void m() : {〈alice→ bob〉; 〈carl← don〉} {
...

}

All method parameters can express a bound on the information that may be learnt,
by using a labelled type for method parameters. If no label is stated, the default label
〈> → >〉 is assumed.

void m(int a, string{〈alice→ bob〉; } b) {
...

}

30 2. PRELIMINARIES

Similarly, the information transferred by a method return value can be bounded by
using a labelled type. If no return label is specified, it defaults to the least upper bound
of all method parameters and its end-label.

int{〈> → carl〉; 〈bob← emps〉} m() {
...

}

Exceptions declared to be thrown by a method may also leak information and can
therefore be bounded by using labelled types for the exceptions.

void m() throws E{〈alice→ bob〉; 〈carl← don〉} {
...

}

Additionally, methods can declare constraints regarding the authority, see above.

2.6.12. Downgrading
Since security lattices, as described above, force labels of a variable to always become
stricter, a mechanism for disclosure of information is needed. In JIF this is called
downgrading. An example for safe disclosure of information that depends on confidential
information is the disclosure of a ciphertext (given encryption was done with a reasonable
cipher). The ciphertext naturally depends on a secret key, that is usually labelled with
a strict policy.
JIF knows two mechanisms to downgrade labels, both of which require the authority

of the current method to contain the owner of the policy that is to be weakened:

Downgrading of Confidentiality

To weaken the confidentiality policy of an expression, JIF offers a special declassify
expression that allows for relabelling of a confidentiality policy. The label of expression
in the example is downgraded from L to NL. This means that the label of expression
is temporarily (for the time of assignment) replaced by the new label NL. Default label
checking rules, as described above, are used to check if the assignment is valid. After
the assignment, the label of expression is changed back to L.

new_expresion = declassify (expression , L to NL);

Additionally, a declassify statement exists. This is used to downgrade confidentiality
policies of the program counter label (pc) for a sequence of statements.

declassify (L to NL) {

2.6. JIF 31

S1;
S2;
...

}

Both, the declassify expression and the declassify statement require the new label to
not alter the integrity policies.

Downgrading of Integrity

To weaken the integrity policies of an expression, the endorse expression is used. The
relabelling works similar to relabelling of confidentiality policies, described above.

new_expresion = endorse (expression , L to NL);

Additionally there is an endorse statement that allows for downgrading of the program
counter label (pc).

endorse (L to NL) {
S1;
S2;
...

}

As with declassify, endorse must only change the integrity policies of a label.

Typing Judgements

Downgrading can be expressed more formally in terms of typing judgements used during
label checking. Since the downgrade expression (or statement) requires the current
authority to contain the owner of the policy to be downgraded, a downgrade can be
stated as:

A ` LA = (
⊔

p∈A〈p↔ p〉)
L vX NL u LA ∧ L ∼X̄ NL

A ` downgrade L to NL

Where A is the current authority and 〈· ↔ ·〉 depicts either a confidentiality policy
〈· → ·〉 when declassifying, or an integrity policy 〈· ← ·〉 when endorsing. vX denotes
the corresponding binary relation vC for confidentiality or vI for integrity. ∼X̄ denotes
the equivalence relation for the policy type opposite to X.

2.6.13. Working with Arrays
Arrays can be regarded as a set of single elements that are contained in a structure. Due
to this, an array in JIF has two labels attached. One label for the base type of the array
(LB), and one for the structure itself (LA).

32 2. PRELIMINARIES

T{LB}[]{LA} array ;

In JIF, assignment of (complete) arrays is only permitted if the policy of the array
base types is equivalent. The following example shows, why this restriction must be
imposed:

Listing 2.5: Assignment of arrays.
int{〈b→ b〉}[] x;
int{〈a→ a〉}[] y;
int{〈> → >〉}[] z;

x = new int [3];
y = x; // prohibited by JIF
z = y; // prohibited by JIF

z[0] = 42;
// Store a confidential value to z.
// Since y and x are aliases of z, an attacker could read the
// confidential value ’42’ via the array x that defines
// less restrictive policies than z.
System .out. println (x[0]); // would print ’42’

2.6.14. Polymorphic Labels

Building reusable data structures raises the requirement to use generic labels in a class.
The generic labels may then be substituted by a specific label, depending on the usage
of the class. JIF supports parametrised classes that take a label or principal parameter
and allows for a generic label definition.
A class can declare label and principal parameters that must be stated when an

instance of the class is created.

public class C[label L, label M, principal P] {
private int{L; M} x;
private int{〈P→ ⊥〉; M} y;

}

C[〈alice→ bob〉, 〈carl← don〉, ed] c = new C();

2.6.15. Java Interoperability

For interoperation with existing Java classes, the concept of signatures was introduced
in JIF. A signature allows for definition of security policies for already existing library
methods. A special JIF file must be provided that defines the information flow behaviour
for a method, by declaring policies for input parameters, method begin and end labels,
the return value, and exceptions. No method body is provided.

2.7. The Polyglot Compiler Framework 33

During label checking, JIF uses flow behaviour of the signature file to calculate if a
program is leaking information. At run time, JIF references the original implementation
of the library method.

2.6.16. Writing JIF Programs

When writing JIF programs in an IDE or a text editor, labels have the following notion:

int{alice ->bob; carl <-don;*->_} x;

Type-labels are enclosed in curly braces, the arrows are expressed as digraph, > is written
as * and ⊥ is written as _.

2.7. The Polyglot Compiler Framework

The Polyglot compiler framework [NCM03] is an extensible compiler framework that acts
as a compiler front end to the Java language. It was designed to be highly customisable
and allows for rapid prototyping of new programming languages.
Polyglot provides a complete infrastructure to cover all phases of a compiler, from

lexical analysis until code generation. Polyglot compiles programs to Java code which
are then passed to a standard Java compiler.
The JIF language described above is based on Polyglot.

2.8. Compiler Construction 101

This section gives an overview of some important compiler construction terms used in
later chapters.

2.8.1. Abstract Syntax Tree

An Abstract Syntax Tree (AST) is a very important data structure used in compiler
construction. It is a tree that describes the structure of expressions. Every (nested)
operator in an expression can be expressed as a node in a tree. The operands to the op-
erator are represented as child nodes of the operator node. Using appropriate operators
and operands, “any programming construct can be handled” [Aho+07, §2.5.1].
Analysing or transforming a program usually includes operations on the AST. The

AST must be traversed in some specific order. A common traversal strategy is depth-
first; it first evaluates the children of a node, before the node itself is evaluated [Aho+07].

AST transformations yield new ASTs. At the end of the optimising phase, an AST
can be translated into intermediate code.

34 2. PRELIMINARIES

MethodCallExpr

add

NumericLiteral
5

MethodCallExpr

subtract

NumericLiteral
3

NumericLiteral
2

Figure 2.8.: An example of an AST generated from the expression in Listing 2.6.

Example

Parsing the following method call statement may produce for example an AST as shown
in Figure 2.8. The AST structure depends on operator precedence.

Listing 2.6: Parsing a method call expression.
add (5, subtract (3, 2))

2.8.2. Compiler Passes
Compiler construction distinguishes between multi-pass and single-pass compilers. A
single-pass compiler traverses the AST only once. A multi-pass compiler traverses the
AST several times, where each pass takes as input the output of the previous pass.
This allows for incremental improvement (or transformation) of a program. Multi-pass
compilers are more flexible and allow for better optimisations but usually use up more
resources during compilation. [Bor90]

2.9. Trusted Execution Environments
A Trusted Execution Environment is an execution environment that provides special
guarantees in terms of integrity and confidentiality. Code and data present in this
environment is protected from manipulation (integrity) and is protected from malicious
access from unprivileged readers (confidentiality). A trusted execution environment can
thus be used used to isolate the execution of critical code. [Vas+12]
Furthermore, trusted execution environments offer special mechanisms to provide

trusted communication with peripherals, e.g. a trusted IO to read characters from a
keyboard. Such communication mechanisms are commonly referred to as trusted path
[Yee02].
A prominent example for a hardware implementation of a trusted execution environ-

ment is the ARM TrustZone [ARM].

CHAPTER 3

RELATED WORK

3.1. Security Enhanced Languages
The basic works on security lattices date back to the 1970s and build mostly on the
work of Denning [Den76] and Bell/LaPadula [BL73]. Those works focus solely on con-
fidentiality polices. A similar approach for integrity policies was done by Biba [Bib77].
Simultaneous enforcement of both confidentiality and integrity was discussed in literat-
ure several times [San93].
JIF is an extension to the Java [AGH96] language and builds on the work of My-

ers [Mye99b; Mye99a]. It is an implementation of the Decentralized Label Model by
Myers and Liskov [ML97; ML98; ML00]. JIF implements information flow control as
defined by Denning and offers certified compilation. JIF extends the Java type system
and attaches confidentiality and integrity labels to a variable [VIS96] and applies the
Decentralized Label Model [ML97; ML98; ML00] to infer security labels and determine
secure information flow as defined by Denning [DD77; Den76]. It makes sure that a
program only compiles if the property of non-interference [GM82] is met. This means
that no information is leaked with respect to the defined policies.
JIF was successfully used to implement large real-world software as for example the

JPmail email client [HAM06] or Civitas [CCM08], a secure remote voting system based
on distributed cryptography.

Bebop uses JIF as input language. Denning-style information flow control and JIF
itself are described in detail in chapter 2.
Flow Caml [SR03] is an extension to the OCaml language. It supports labelled types

similar to JIF, but takes the idea of a secure type system to λ-calculus [PS03]. Flow
Caml lacks run-time checks provided by JIF, but employs better type inference so it
needs fewer annotations than JIF. Flow Caml could have been an alternative to JIF as
Bebop’s secure input language.

35

36 3. RELATED WORK

3.2. Focused on Partitioning for Security

The Swift project [Cho+07] is built upon JIF and was designed to automatically perform
program partition with respect to secure information flow. Swift focuses on the domain
of secure web applications and largely builds upon a dual system comprised of a server
and client principal. Additionally it its possible to define custom principals and design
program functionality around these by using the actsfor-relation [ML00]. Partitioned
code is executed as Java code on the server and translated to client-side JavaScript
code with the help of Google Web Toolkit. Partitioning used in Swift was previously
explored by the Jif/split project [Zda02; Zda+02] which separates Java programs to run
on different hosts with different levels of trust. Swift is similar to Bebop: both use JIF as
input language and partition programs for two target environments. As described above,
Swift focuses on web applications and heavily relies on the Google Web Toolkit. Bebop
was designed to target lightweight environments as for example the ARM TrustZone and
Bebop does not rely on large third-party libraries. Swift directly emits Java code. One
of the objectives of Bebop was, to emit JIF code with attached policies when emitting
runtime-related code.
Using Swift to achieve the goals of this thesis would have have been an option, but

would conflict with some of the objectives defined in chapter 1. Swift does not emit JIF
code, it emits Java code. Furthermore, the Google Web Toolkit is tightly integrated into
the system and would need to be replaced by a non-Web mechanism. Based on these
restrictions we decided to start Bebop from scratch.
Fabric [Liu+09] is an extension to JIF and allows security enforced distributed com-

putation on many worker nodes. The security model is very similar to Swift, but Fabric
focuses on transactions and remote procedure calls between many nodes with different
trust. The partition process, i.e. distributing methods to different hosts, has to be done
manually. Fabric’s goals are different to the goals of Bebop: Fabric aims to provide a
way to establish secure grid-computing, where Bebop aims to partition programs auto-
matically.
Another area of interest is privilege separation—the automatic partitioning of pro-

grams in (large) parts that run under the user’s rights, and (small) parts that need
elevation. Due to the principle of least privilege [SS75a], program parts that run with
special rights should be as small as possible, to prevent possible damage. Privtrans
[BS04] allows for annotating C programs to enforce security policies. In a C-to-C com-
pilation process programs are automatically partitioned into a monitor, that runs with
elevated rights, and a slave that runs with user rights. The approach is successfully
applied to OpenSSH, which previously was also separated manually [PFH03] to prevent
privilege escalation. Building on the idea of privilege separation, libraries like Privman
[Kil03] seek to ease the development of Unix applications written in C. Although, de-
cision what has to be executed with which rights has to be completely defined manually.
The solutions described above focus on partitioning programs that run on a single host
but under different processes with different access rights.
The ProgramCutter project [Wu+13] is using a dynamic data dependency analysis that

3.3. Focused on Partitioning for Convenience 37

tracks data flow between functions. A graph based approach is used to automatically
separate program parts that use privileged system calls from program parts that can run
in unprivileged mode. Instead of static analysis, ProgramCutter uses execution traces
to determine the data flow in a program. The tool partitions a program into multiple
processes that are executed on a single host. Bebop calculates a program partitioning
automatically, depending on the annotated security policies. Bebop is generic and allows
to run split program on different hosts that communicate via an encrypted connection.

3.3. Focused on Partitioning for Convenience
Many projects focus on easing the development and hardening of web applications.
Hop [SGL06] is a higher-order language focusing on rich interactive web user inter-

faces. The LISP-like language allows for writing code in a main stratum and a GUI
stratum and automatically partitions the program in server code and JavaScript client
code. The partitioning decision is more or less based on the strata and not derived
from information flow. Hop employs its strata-based program partitioning to enforce
separation of user interface from business logic. This differs from the goals of Bebop,
which bases the partitioning on secure information flow and to partition a program with
respect to different levels of trust.
The Links language [Coo+07] is a functional language and has similar goals as Hop. It

allows the programmer to write web application code that is automatically partitioned
into business logic parts that run on a server, and presentation parts that run on a client.
It recently got extended by the Fable/SELinks [SCH08] project. Fable is a labelled type
system for defining security concerns, similar to JIF. It allows to define security policies
to control information flow in a program. SELinks is an implementation of the Fable
system into the Links language. It allows to write Links programs annotated with
security policies and it ensures that the policies are enforced. SELinks—just as the
Links language—aims to partition web applications. Bebop aims to target applications
that run in isolated, trusted execution environments, e.g. the ARM TrustZone.
Dynamic partitioning [CM10] seeks to decide at runtime where to execute code. A

cloud-based server and a (mobile) device share the same code. The device reasons about
the partitioning on the basis of its capabilities and processing power. It is possible to
pin methods to a location due to security reasons or the need for sensors on devices.
Separation is done on a per-method basis. Dynamic partitioning focusses on optimally
using the resources of a device, whereas Bebop focusses on security. Also, Bebop is able
to partition applications on a per-statement basis.

3.4. Trusted Execution Environments
The ARM TrustZone [ARM] offers hardware support for separating a CPU into a trus-
ted and normal part. Its use with high-level languages is not yet well integrated into
recent partitioning tools. Although there exist projects to incorporate the .NET runtime
into the TrustZone [San+11; San+14] to provide a more convenient and safer (because

38 3. RELATED WORK

managed) way to develop trusted applications, program partitioning must be done by
the programmer.
ANDIX [Fit14] is a trusted operation system. It provides a trusted execution envir-

onment by using features of the ARM TrustZone. ANDIX would be a perfect trusted
execution environment for the use with Bebop. Unfortunately, Java was not yet ported
to ANDIX.

CHAPTER 4

THE BEBOP COMPILER

4.1. Motivation
Two-step authentication is a commonly used mechanism to improve the security of web
logins. The algorithm derives a one-time token from a secret that is shared between the
web application and the user.

The secret must be stored in a secure way. Typically, the creation of a TOTP token is
executed on a smartphone; Google Authenticator1 is one example for such an application.
If the smartphone is equipped with an ARM TrustZone CPU, one possible solution would
be, to store the shared secret in trusted storage.
Writing programs that use trusted execution environments is intricate. To execute the

TOTP algorithm the developer of the application must now write two programs. One
program that runs in the trusted environment and derives the token from the shared
secret, and one program that runs in the normal world and displays the derived token
to the user.
Manually partitioning an application is cumbersome and may be error prone. We aim

to partition applications in an automatic way, based on security policies that are defined
by the developer.

Listing 4.1: A schematic version of a TOTP component.
1 function TOTP
2 (trusted) user = authenticateUser ()
3 (?) secret = readSharedSecret (user)
4 (?) token = deriveToken (secret)
5 (normal) printToken (declassify (token))
6 end

1https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2

39

40 4. THE BEBOP COMPILER

Listing 4.1 shows a schematic program that implements user authentication and de-
rives a TOTP token from a shared secret that is stored in trusted I/O. We indicate
attached security policies by writing (trusted) or (normal). Policies of type (?) are
not defined by the developer but are inferred later. Information flow analysis determ-
ines that the policy in lines 3 and 4 must be (trusted) since the secret is read from
trusted storage and the token is derived from confidential data. Declassification in line
5 is necessary since token was inferred to be of high confidentiality and the printToken
statement is forced by the developer to be on the normal environment.
Code and data that are labelled with (trusted) should be executed in a trusted en-

vironment. The remaining code and data should be placed in the normal environment.
Bebop automatically partitions the application based on secure information flow and al-
lows the developer to write the algorithm in a straightforward manner. Bebop partitions
on a per-statement level and creates two output programs. Listing 4.2 and Listing 4.3
show a possible partitioning for the TOTP component of Listing 4.1. We evaluate an
extended version of this example in detail in chapter 6.

Listing 4.2: Trusted part
of the TOTP
component.

1 function TOTP_trusted
2 user = authenticateUser ()
3 secret = readSharedSecret (user)
4 token = deriveToken (token)
5
6 end

Listing 4.3: Normal part
of the TOTP
component.

1 function TOTP_normal
2
3
4
5 printToken (token)
6 end

In this chapter we introduce the Bebop Compiler that automatically partitions pro-
grams based on information flow policies.

4.2. Goals
Converting a textual program to an executable program raises the need for a compiler.
To be able to automatically partition programs with respect to their security policies,
we must develop an appropriate compiler. We defined a set of objectives for this newly
developed compiler:

• (Objective A) Automatic The compiler shall take a JIF program as input and
automatically produce two partial programs as output. One partial program is
destined to be executed in a trusted environment, the other partial program is
to be executed in the normal environment. The partial programs must—when
executed in a cooperative fashion—provide the same functionality as the original
program. To enable seamless interaction with JIF, the compiler will be written as
an extension to the Polyglot framework.

• (Objective B) Secure The compiler shall emit JIF code for the partial programs. JIF
can then be used to verify security policies for the partial programs and security

4.2. Goals 41

policies for the emitted runtime interaction.

• (Objective C) Minimal Trusted Computing Base When determining a program
partitioning, a non-trivial partitioning should be generated. This means, that—
if possible—not the whole program should be moved to the trusted environment.
Only critical statements should run in the trusted environment. The trusted envir-
onment partial program should be as large as necessary, but as small as possible.

• (Objective D.1) Confidentiality The end user should be able to define confidentiality
policies for the information flow in the program. The compiler shall respected the
policies and determine a program partitioning that does not violate these policies.

• (Objective D.2) Integrity The end user should be able to define integrity policies
for the information flow in the program. The compiler shall respected the policies
and determine a program partitioning that does not violate these policies.

We developed the Bebop Compiler that reads input programs written in the Bebop
Language (cf. subsection 4.3.3) and produces a split program that will execute in two
different execution environments (Objective A). The partial programs generated are parti-
tioned in a way that respects defined security policies, such that critical statements are
only executed in a trusted environment. The remaining statements are executed in a
normal environment. The compilation strategy strives for an optimal partitioning with
respect to the amount of code placed to the trusted environment. We avoid that the
program as a whole is executed only in a trusted environment, because this environment
may have limited resources. The Bebop Compiler therefore meets (Objective C).

The Bebop Compiler uses the JIF compiler to determine secure information flow of a
program and to make sure that policies are satisfied. The annotated policies are used
to determine a program partitioning during compilation. The Bebop Compiler focusses
on confidentiality policies (Objective D.1) only, integrity policies are left for future work;
hence we failed to meet (Objective D.2). The Bebop Compiler, like the JIF compiler, is
written as an extension to the Polyglot compiler framework.
We make sure that generated partial programs are still secure in terms of secure

information flow. We again use the JIF compiler to check the output of the Bebop
Compiler for policy violations and information leaks. Assuming that JIF is correct, this
gives a guarantee that the program is still secure (Objective B).

To support the Bebop Compiler, we developed an accompanying runtime environment
and runtime library that are described in detail in chapter 5.
In this chapter we describe how the Bebop Compiler works. We give an overview of the

underlying architecture and state what transformations are made to the input program.
We show how the Bebop Compiler integrates into the Polyglot compiler framework and
how it interacts with the JIF compiler. For each transformation of the input program
we describe in detail why it must be done and how it is carried out.

42 4. THE BEBOP COMPILER

Input
files

JIF
compiler

Bebop
compiler

JIF
compiler

Java
compiler

Class
files

JIF code
verified JIF code
(valid program)

extended JIF code (normal part)
extended JIF code (trusted part)

normal Java code normal Bytecode
trusted Java code trusted Bytecode

Pre-processing

Post-processing

Phase One & Two

Figure 4.1.: A complete compile cycle for the Bebop Compiler.

4.3. Architecture Overview
The Bebop Compiler is written as an extension to the Polyglot compiler framework
that is described in short in section 2.7. This chapter gives an overview of the general
architecture of the Bebop Compiler.

4.3.1. The Bebop Compilation Pipeline

Compiling a file includes several steps that must be executed. Figure 4.1 gives an
overview of the high-level compiler parts that are involved during compilation of an
input file.

As a first step, we pass input files to the JIF compiler to make sure that the input
satisfies the specified policies. The JIF compiler parses the file, generates an AST and
type checks the AST to make sure the program is valid and adheres to the specified
policies. The valid JIF code is then passed to the Bebop Compiler. The Bebop Compiler
applies its partitioning strategies and generates two outputs, one trusted environment
partial program and one normal environment partial program.
These partial programs are again passed to the JIF compiler to make sure that applied

transformations and added code still lead to a program that does not violate policies.
This is an important step since we defined in our goals that code emitted by the Bebop
Compiler must be secure. By emitting JIF code we can use the JIF compiler to check if
security policies are satisfied.
If the JIF compilation succeeds, its outputs are passed to a Java compiler which creates

bytecode files as an output. For each input class one trusted and one normal .class file
is created.
The Bebop Compiler consists of various small steps—called passes—grouped into two

phases of compilation. Figure 4.2 gives a more detailed overview of the passes that
are executed in the Bebop Compiler. Each of these passes is described in detail in the

4.3. Architecture Overview 43

following sections.

4.3.2. Integration in the Compiler Framework
The Bebop Compiler depends on the JIF compiler to determine secure information flow.
The JIF language allows to specify security policies for a program. The JIF compiler
makes sure that these policies are not violated and that information flow is secure. The
security model of JIF revolves around a security enhanced type system that is described
in section 2.6.

We wrote the Bebop Compiler as an extension to the Polyglot compiler framework.
Since JIF is already a Polyglot extension, it makes sense to also base our compiler on
the Polyglot framework. Figure 4.3 gives an overview.

We use the JIF compiler in the pre- and post-processing steps of the Bebop compilation
pipeline, described in subsection 4.3.1. We use it to make sure that the input program
satisfies the specified security policies and to make sure that code generated by the
Bebop Compiler does not leak information. We also use the JIF language as base for
the Bebop Language. The Bebop Language is a small extension to the JIF language.

4.3.3. The Input Language
We require input programs to the Bebop Compiler to be written in a special language we
call the Bebop Language. The Bebop Language is a small extension to the JIF language
described in section 2.6.
The only difference to JIF is, that the Bebop Language knows a default principal

named trusted. JIF only knows the default principals > and ⊥; other principals must
be created during runtime. The newly added principal allows us to express policies for
our trusted environment and it is used to define a threshold label, as described below.
Using only the principals > and ⊥ would not be sufficient. Especially downgrading is
problematic since JIF does not allow > to be in the authority of a method. To support
downgrading for two principals, the newly introduced principal trusted is necessary.
The Swift project used a similar approach [Cho+07].
Scanner and parser for the Bebop Language are generated from the extended JIF

grammar files and are announced to the Polyglot infrastructure when the Bebop Com-
piler extension is loaded.

4.3.4. The Bebop Compilation Strategy
The main responsibility of the Bebop Compiler is to produce split programs. Since in
Java (and therefore in JIF) programs consist of a set of classes, the Bebop Compiler
focusses on partitioning a class in two parts. One part is destined to run in a trusted
environment, the other part will run in the normal environment.
Given an AST of an input class C consisting of a set of fields F1, . . . , Fn and a set of

methods M1, . . . , Mm, we derive a placement for each statement in each method by taking
into account the policy information stored in the type system. Attaching a placement

44 4. THE BEBOP COMPILER

•4.5.2 Annotate AST
with Placement

• 4.5.3 Extract declassify Sub-
Expressions

•4.5.4 Remove final
Modifier from Fields

• 4.5.5 Hoist Local Variables to
Fields

•4.5.6 Derive Placement
for Unlabelled Nodes

• 4.5.7 Disambiguate Placement
Labels

•4.5.8 Partitioning Methods

• 4.5.9 Sink Fields to Local
Variables

•4.6.1 Duplicate and Rename • 4.6.1 Duplicate and Rename

•4.6.2 Remove Opposite Fields • 4.6.2 Remove Opposite Fields

•4.6.3 Replace Methods by Stubs • 4.6.3 Replace Methods by Stubs

•4.6.5 Remove Entry Point from
Trusted Partial Application • 4.6.4 Add main Method to Nor-

mal Partial Application

•4.6.6 Rewrite Object Creation • 4.6.6 Rewrite Object Creation

•4.6.7 Remove Opposite State-
ments from Constructor

• 4.6.7 Remove Opposite State-
ments from Constructor

•4.6.8 Patch Instance ID Fields • 4.6.8 Patch Instance ID Fields

• JIF

Input file

•JIF • JIF

•javac • javac

T Class file N Class file

P
re

P
ha

se
O

ne
P

ha
se

T
w

o
P

os
t

T N

Figure 4.2.: The sequence of passes executed during compilation of a Bebop program.
Phase One and Phase Two are the core of the Bebop Compiler.

4.3. Architecture Overview 45

Polyglot
Framework

JIF
Extension

Bebop
Extension

javac
Java Compiler

F
ro

nt
en

d
B

ac
ke

nd

Figure 4.3.: The Bebop Compiler is—like JIF—an extension to the Polyglot compiler
framework.

(a) Original. (b) Trusted environment. (c) Normal environment.

Figure 4.4.: Policies affect the placement of statements. Consecutive statements with
same placement can be grouped and executed in different environments.

label of either „trusted environment“ or „normal environment“ to each statement requires
several passes over the AST, as described in section 4.5. Placement labels are stored to
AST nodes and are not to be confused with policy labels that extend the type system,
as described in section 2.6.

Having placement information for each statement, we can then inspect the statements
inside of methods and group consecutive statements with similar placement into state-
ment groups. A method can be seen as an interleaving of statement groups executing in
different environments, as Figure 4.4 depicts.
We decompose a method into several new methods, each consisting of a statement

group. The original method contains calls to „orchestrate“ the calling of method groups.
Figure 4.5 gives a visual representation of the process.
Creating small new methods, where all statements have the same placement, allows

us to assign the same placement to the method itself. This enables us to assign methods
to one specific execution environment.
The Bebop Compiler produces two classes as output. The class CT is destined to

be executed in the trusted environment, the class CN is destined to be executed in the
normal environment. Both classes still contain all methods M1, . . . , Mm, and they contain
additional (synthetic) methods that were created when moving out statement groups.
In partial classes for the normal environment the methods labelled „trusted environ-

ment“ are replaced by method stubs that contain remote method invocation calls to the
trusted environment, as described in subsection 4.6.3. The same process is applied to

46 4. THE BEBOP COMPILER

(a) Original method.

call to method

(b) Statements with same placement moved out to a new
method.

Figure 4.5.: Statement groups are moved to new methods and the original statement
group is replaced by a call to the new method. This allows us to assign
a definite placement to methods. Methods with definite placement can
be distributed between the two execution environments.

methods labelled „normal environment“ of partial classes for the trusted environment.
Fields are distributed between the trusted and normal environment. The fields con-

tained in CN are a subset of the original set of fields available, FN ⊆ {F1, . . . , Fn}. The
same holds for the trusted-class CT, FT ⊆ {F1, . . . , Fn}.
Data flow from and to fields is restricted by the annotated security policies. Secure

information flow imposes restrictions on the program. This allows us to distribute fields
to separate classes, since data dependencies influence secure information flow and vice
versa. The only point where secure information flow is „circumvented“ is when declas-
sification occurs. Such cases are treated in a special way. The partitioning process is
described in detail in the following sections.

4.3.5. Interacting with the Bebop Runtime Environment

Partitioning a program and running it on different execution environments raises the
need for additional mechanisms that execute partial programs and enable communica-
tion between partial programs. Code generated by the Bebop Compiler is designed to
interact with the Bebop Runtime Environment that provides such mechanisms. The
Bebop Runtime Environment is described in detail in chapter 5. Interaction with the
Bebop Runtime Environment is achieved by using JIF method signatures as described
in subsection 2.6.15.

4.4. Pre-Processing Phase

Figure 4.6: Pre-processing steps in-
clude scanning, parsing
and using JIF to make
sure the unsplit program
is correctly typed and se-
cure.

• JIF

Input file

4.5. Phase One 47

For every input file of a program, we first must execute the scanning and parsing steps.
We use the previously described Bebop grammar to generate a scanner and a parser with
the help of JFlex and CUP, as intended by the Polyglot infrastructure. After successful
parsing, the initial AST is created.
In the next step we must check that the program is correctly typed and that language

rules are followed. Since the Bebop Language is only a small extension to the JIF
language, we use JIF to execute this step. We use all JIF passes, but exclude the code
generation step.
If all JIF passes execute successfully, we have made sure that the input program

satisfies the language rules and that information flow adheres the specified policies. The
AST in this state could be used for code generation of a JIF program. Since we have
made sure that we are dealing with valid input, control is now handed back to the Bebop
Compiler.

4.5. Phase One

•4.5.2 Annotate AST
with Placement

• 4.5.3 Extract declassify
Sub-Expressions

•4.5.4 Remove final
Modifier from Fields

• 4.5.5 Hoist Local Vari-
ables to Fields

•4.5.6 Derive Placement
for Unlabelled Nodes

• 4.5.7 Disambiguate Place-
ment Labels

•4.5.8 Partition-
ing Methods

• 4.5.9 Sink Fields to Local
Variables

Figure 4.7: All passes that happen
in Phase One of the
compilation pipeline.

We call the first set of Bebop-specific passes that are executed Phase One. In Phase
One we transform the input AST in preparation for the partitioning into two classes
that happens in Phase Two. The passes 4.5.2, 4.5.6 and 4.5.7 determine a placement
for each AST node. The passes 4.5.3, 4.5.4 and 4.5.5 transform the AST to make it
more „splittable“. This includes for example introduction of temporary variables for
sub-expressions or hoisting (i.e. increasing the scope) of local variables to fields. The
pass 4.5.8 partitions methods into smaller methods that can be assigned to a specific
execution environment. The pass 4.5.9 applies an optimisation. Figure 4.7 shows the
sequence of passes executed. The following subsections describe the passes in detail.

48 4. THE BEBOP COMPILER

4.5.1. Finding the Placement of a Statement
We must determine a placement for every statement in each method. We use a multi-
pass approach to infer a statement from policy information stored in the AST. The
sections 4.5.2, 4.5.6 and 4.5.7 describe the passes that are involved when determining a
placement for a statement.

4.5.2. Annotate AST with Placement
In this pass, we assign a placement annotation to every node of the AST.

To determine a definite placement for every statement of a method in a later pass,
we first must determine a placement for every sub node of each statement node in the
AST. The placement of subnodes of a statement node determines the placement of a
statement node. Placements of statements determine the placement of a method.
Five possible placement qualifiers exist:

• Trusted Environment,

• Normal Environment,

• Both,

• Either,

• Undecided

Placement for sub nodes of method nodes and for field nodes is determined by taking
policy information into account. If a policy label exists for an AST node we compare the
label against a threshold label. A threshold label acts as a barrier between the trusted
environment and the normal environment. If a label L1 is stricter than or equal to the
threshold label T, that is T vC L1, then we assign Trusted Environment as a placement.
Likewise, if a label L2 is weaker than the threshold label T, that is T 6vC L2, we assign
the placement Normal Environment. Thresholding is possible because the policy lattice
effectively degrades to a chain due to the limitation of possible principals in the Bebop
Language, cf. Figure 4.8.
The current implementation of the Bebop Compiler focuses solely on confidentiality

concerns. Thus we only respect the confidentiality part of a policy label. The threshold
label T is defined as T := 〈trusted → trusted〉. Figure 4.8 gives an overview what
placement is implied by a specific policy.
We assign the placement Both if the node is either:

• a constructor

• a call to a constructor,

The placement Either is assigned to nodes that adapt their placement in a later pass.
The placement for such nodes depends on the placement of surrounding nodes. Either is

4.5. Phase One 49

 〈⊥ → >〉, 〈> → ⊥〉,
〈trusted→ ⊥〉, 〈⊥ → trusted〉,

〈⊥ → ⊥〉

∼

[
〈trusted→ >〉,

〈trusted→ trusted〉

]
∼

〈> → trusted〉

〈> → >〉

T
ru

st
ed

E
nv

ir
on

m
en

t
N

or
m

al
E

nv
ir

on
m

en
t

Figure 4.8: The lattice shows the effective
confidentiality policies and the
derived placement.

for example assigned to nodes of type TypeNode, ID, . . . In a later pass we clear these
ambiguities and relabel such nodes accordingly, see subsection 4.5.7.
If no policy can be found for a given AST node and it is not of a special type, we

assign the placement Undecided. In a later pass we then try to derive a placement for all
nodes that were labelled Undecided, see subsection 4.5.6.

4.5.3. Extract declassify Sub-Expressions

In this pass we extract all declassify sub-expressions and assign their value to a new
temporary local variable.
The security lattice described in section 2.6 is a one way lattice, allowing values to

only become stricter. To make a value less strict, a downgrading mechanism must be
used. For expressions, the declassify expression allows to re-label the confidentiality
policy of an expression.
We must treat declassify expressions in a special way. The outer statement—e.g.

a method call—may be placed on the normal environment. The inner declassify
expression produces as a result a value that will most likely be placed on the normal
environment, depending on the label. The parameters of the declassify expression are
most likely bound to the trusted environment, depending on the label. Since partitioning
of methods works on a per-statement base, we must move the declassify sub-expression
out of the original statement, before executing the partitioning. Otherwise, the original
statement will not be splittable. We assign the declassify sub-expression to a new
temporary variable and use this temporary variable as new sub-expression in the original
statement. The following example illustrates this:

public void m{trusted ->_}() where caller (trusted) {
String {trusted ->} v = " Secret ";
n(declassify (v, {trusted ->_}));

}

50 4. THE BEBOP COMPILER

MethodDecl

void m()
Undecided

TypeNode

void
Undecided

Id
m

Either

Block

{...}
Undecided

LocalDecl
String v = "Secret"

Trusted Environment

TypeNode

String
Either

Id
v

Either

StringLiteral

"Secret"
Either

Eval

eval(n(declassify(v)))
Undecided

Call

n(declassify(v))
Undecided

Id
n

Either

DeclassifyExpr

declassify(v)
Trusted Environment

Local
v

Trusted Environment

Id
v

Either

LabelNode

{trusted->_}
Either

Figure 4.9.: A simplified AST of method m from the example in subsection 4.5.3

public void n(String {trusted ->_} v) {
// do something

}

Before execution of this pass, the (simplified) AST for method m looks like Figure 4.9.
The label derived for the DeclassifyExpr node by the previous pass is still marked as Trus-
ted Environment since the special semantics for the declassify expression are introduced
in this pass.
After extraction of the declassify sub-expression, the AST looks like Figure 4.10.

The newly introduced temporary variable now has the correct placement Normal Environ-
ment.

4.5.4. Remove final Modifier from Fields

In this pass we remove the final modifier from all fields in a class. This is necessary
because partitioning constructors may move assignment to the final field out of the
constructor.

4.5. Phase One 51

MethodDecl

void m()
Undecided

TypeNode

void
Undecided

Id
m

Either

Block

{...}
Undecided

LocalDecl
String v = "Secret"

Trusted Environment

TypeNode

String
Either

Id
v

Either

StringLiteral

"Secret"
Either

LocalDecl

String tmp = declassify(v)
Normal Environment

TypeNode

String
Either

Id
tmp
Either

DeclassifyExpr

declassify(v)
Trusted Environment

Local
v

Trusted Environment

LabelNode

{trusted->_}
Either

ge
ne

ra
te

d

Eval

eval(n(tmp))
Undecided

Call

n(tmp)
Undecided

Id
n

Either

Id
v

Either

Local
tmp

Normal Environment

Id
tmp
Either

Figure 4.10.: The pass introduced a new LocalDecl that holds the DeclassifyExpr sub-
tree. The original statement now uses the new temporary variable as
sub-expression.

Moving assignment of final fields out of the constructor has two effects: first, it tricks
the Java compiler into thinking that the field is not definitely assigned; second, it pro-
duces assignments to final fields outside of the constructor, which are illegal. This
violates the Java Language Specification §8.3.1.2 [Gos+14] that requires final fields to
be definitely assigned in the constructor, resulting in a compile-time error. Since we
are only moving statements to another method that is guaranteed to execute before the
constructor ends, we remove the final modifier. The fields become effectively final, cf.
§4.12.4 of the Java Language Specification.
Since fields are effectively final, the final modifier could be re-introduced in a later

pass, after the partitioning has been executed. This would require inlining of synthetic
methods that are called from the constructor. This is an optimisation and may be
targeted by future work.

4.5.5. Hoist Local Variables to Fields

In this pass we replace all local variables of all methods by fields.

52 4. THE BEBOP COMPILER

Partitioning a method into a set of smaller methods and calling those methods may
lead to data dependency issues. Consider the following example:

public void m() {
int some_N_value ;
int some_T_value ;
int another_N_value ;

some_N_value = 5;
some_T_value = 10;
another_N_value = some_N_value ;

}

Assume for now, that policies are chosen in a way that the variables some_N_value
and another_N_value are bound to the normal environment, and that the variable
some_T_value is bound to the trusted environment. A possible normal environment
partial program would be:

public void m() {
m_1 ();
m_2 ();
m_3 ();

}

// Runs on N
public void m_1 () {

int some_N_value ; // Declared local
some_N_value = 5;

}

// Runs on T
public void m_2 () {

...
// Remote call
...

}

// Runs on N
public void m_3 () {

int another_N_value ;
another_N_value = some_N_value ; // Error : ’some_N_value ’ not found

}

We now face the problem that we must somehow transfer all data that m_3 depends
on from m_1 to m_3 after m_2 returned from the trusted environment. One possibility
would be to pass data as method parameters, but this leads to cumbersome data syn-
chronisation code generation. Another possibility is to turn all local variables to fields,
using random suffixes to avoid name-clashes. Since JIF explicitly forbids concurrency
features of the Java language, we cannot run into interleaving problems. This easy form
of data synchronisation has one major disadvantage: Due to hoisting a method does not
have stack variables any more and hence recursive methods will not work.
We find that the simplicity of data synchronisation outweighs the lack of recursion for

4.5. Phase One 53

the first version of the Bebop Compiler. Future work may consider changing the data
synchronisation mechanism such that recursive methods are supported.

4.5.6. Derive Placement for Unlabelled Nodes

In this pass, we try to replace all Undecided placement labels by a more specific placement.
The previous placement labelling pass does not always derive a useful placement for

AST nodes. Specifically, nodes labelled Undecided must be relabelled. In this pass we
visit all nodes below a method node and derive a better placement from information
stored in surrounding nodes.
At the end of this pass, all sub nodes of a method node have a placement of either

Trusted Environment, Normal Environment, Either or Both. We refer to these three placements
as useful during this section.

General Inference Rules

When relabelling nodes, we traverse the AST in-order. Hence, the bottom-most nodes
in the tree are evaluated first. On the way to the leaf-nodes—when we enter a node—we
store placement information of all parent nodes that were entered on the way to the leaf.
On the way up—when we leave a node—we relabel if necessary. This implies that child
nodes are mutated before their parents.
Traversal of the tree starts at method nodes. Nodes that lie outside of this sub-tree

do not need exact labelling—such as class nodes, since classes must be present on both
execution environments—or do already have a definite placement, such as fields.
On all nodes in the relevant sub-tree, the following relabel rules are applied.

• Nodes that already have a placement of Trusted Environment, Normal Environment, Either
or Both are not changed.

• Parent nodes are labelled Normal Environment, only if all non-Either children are la-
belled Normal Environment. We exclude nodes labelled Either here, because they adapt
their label to the surrounding nodes in a later pass.

• If at least one child node is labelled Trusted Environment, the parent node is labelled
Trusted Environment too. This reflects the idea that an expression that contains at
least one high confidential (or high integrity) factor forces all derived expressions
to also be high confidential (of high integrity).

• Parent nodes are labelled Both, only if all children are labelled Both.

• Parent nodes are labelled Either, only if all children are labelled Either. This is a
fall-back rule. If none of the previous rules matched, we carry the Either placement
up in the AST.

54 4. THE BEBOP COMPILER

Handling Block and ProcedureDecl Nodes

Block and ProcedureDecl nodes need special treatment. A Block node is the AST’s
representation of a lexical scope, i.e. it is the parent node of all statements inside of
curly braces ({...}). We label a Block or ProcedureDecl Trusted Environment, only if all
non-Both children are labelled Trusted Environment. Otherwise the Block or ProcedureDecl
will be labelled Normal Environment.
This relabelling reflects the idea that the parent of a set of statements is only moved

to the trusted environment if all its children are to be placed to the trusted environment.
This semantic keeps the code for the trusted environment smaller, resulting in a better
partitioning with respect to the code size in the trusted environment.

Handling try-catch Statements

try-catch-finally statements need special treatment. If either the try-Block, one
of the catch-Blocks or the finally-Block are labelled Normal Environment, we relabel
the parenting Try node to Normal Environment. This lifts the try-catch-finally control
structure to the normal environment but allows us to place the bodies of the try, catch
or finally clauses to be placed to a different environment. try and finally Blocks
take the placement of their children, as described above. Otherwise, the whole Try node
is moved to the trusted environment.

4.5.7. Disambiguate Placement Labels
In this pass we try to find a definite placement of either Trusted Environment, Normal Envir-
onment or Both. We call this process disambiguation.

For disambiguation, we visit all sub nodes of each method node and replace placement
labels Either by the placement label of the parent node. If the parent node does not have
a definite placement, we recursively search for a parent node with definite placement.

4.5.8. Partitioning Methods
In this pass, we actually partition methods into smaller parts that can be assigned to a
specific execution environment.
For each method in a class, we first determine all statement groups that make up

the method. A statement group is a set of consecutive statements that have the same
placement. A statement group may span over basic block boundaries. A method is a
sequence of statement groups with alternating placement.
Statement groups can be moved to a new method each, until every method has a

definite placement, i.e. all statements in a method will completely run in one specific
execution environment. Calls to these new methods replace the statement group in the
original method, see Figure 4.11.
If a method consists of only one statement group we assign the placement of the

statement group to the method and we are done. If more statement groups exist, we
apply the steps described in the following sections.

4.5. Phase One 55

(a) Original method.

call to method

(b) Statements with same placement moved out to a new
method.

Figure 4.11.: Replacing statement groups by remote calls to synthetic methods allows
assigning a definite placement to each method. Methods can then be dis-
tributed between the two environments and called with a remote calling
mechanism.

Building New Methods for Moved Statement Groups

For each statement group that is moved out of a method, we must introduce a new
method that will contain the statement group.
In the first step we create a new method declaration for a randomly named method

with one parameter of type CallingContext and with a return type of void. The
CallingContext is used to transfer data dependencies over different execution envir-
onments. Furthermore we assign a begin label to the new method. If the parenting
statement of the statement group that is processed is a declassify statement, we use
the label D that corresponds to the inner environment of the declassify statement
and the begin label of the original method M and assign the calculated label D tM.
Otherwise, we copy the begin label of the parenting method. The end label of the new
method is determined by JIF. We scan all statements of the current statement group
and declare a throws clause for every exception that is thrown. Additional JIF method
constraints are copied from the original method.

private void partialMethod { beginLabel }(bebop . runtime . CallingContext { __ctx }
↪→ __ctx) : { endLabel } [throws Exception1 , ...] [where caller (trusted)]
↪→ {

...
}

All statements of the method group are added as method body. We check each state-
ment if control flow changes must be synchronised as described in section 4.5.8.
Since we move out complete statements from one method to another, data dependen-

cies may no longer be fulfilled in the new method, i.e. we try to use variables that are
no longer present because they are declared and/or assigned to in another method now.
To compensate for this, we must transfer all necessary data from the original method to
the new method. In section 4.5.8 we describe the CallingContext that stores all this
data. In our new method we now must extract the data and declare the appropriate
local variables. We add this code at the top of the new method.

56 4. THE BEBOP COMPILER

// Declare local
T fieldName ;

// For each field / local that must be synchronised , emit:
fieldName = (T)

↪→ declassify (__ctx .load(bebop . runtime . BoxHelper .box(fieldName)), ..);

Depending on the generated synchronisation code, we may additionally declare a
NullPointerException, ArrayIndexOutOfBoundsException, and/or ClassCastException
to be thrown by the new method.
After execution of the statements from the statement group, data may have been

produced that must be synchronised back to the call site. For each variable that is used
after the call to the new method, we must emit synchronisation code at the bottom of
the new method.

// For each field / local that must be synchronised , emit:
__ctx . store (" fieldName ", bebop . runtime . BoxHelper .box(fieldName));

Finally, the placement label for the new method is set to the placement of the state-
ment group that was moved out of the original method.

Invoking Methods for Moved-out Statements

In the original method we replace the moved out statement group with a call to the
newly introduced method.
We create a CallingContext that wraps all necessary data the newly introduced

method needs. The CallingContext is a dictionary-like structure that stores values for
all variables and fields used in the new method. In return, the new method stores control
flow changes and return values to the CallingContext that are evaluated at the call
site, after the call finished.

final bebop . runtime . CallingContext { __ctx } __ctx =
↪→ bebop . runtime . CallingContext . create ();

We store data dependencies that have to be transferred over execution environment
boundaries in the CallingContext. All opposite (i.e. with placement different to the
newly introduced method) fields, local variables or parameters of the original method
that are read in the new method must be transferred to the opposite execution environ-
ment. Similarly, all opposite fields, local variables or method parameters written in the
new method must be transferred back.
We must emit code that stores all fields and local variables with opposite placement

and parameters of the original method that are required in the newly created method
to the CallingContext before emitting a call to the newly introduced method. First
we scan the statements that were moved to a new method and track all the fields, local
variables and parameters that are used. For all fields, local variables and used method

4.5. Phase One 57

parameters of the original method in the moved out statement group, we select those
with opposite placement. Those must be stored to the CallingContext. Required
boxing of primitive types is done via a helper method of the BoxHelper.

// For each field / local that must be synchronised , emit:
__ctx . store (" fieldName ", bebop . runtime . BoxHelper .box(fieldName));

In the next step, we call the newly created method and pass our CallingContext.

partialMethod (__ctx);

After the call—similar to the synchronisation before the call—we must ensure that
fields with opposite placement or parameters of the original method that are written
to, are updated accordingly. We first scan all statements of the new method if fields,
method parameters or local variables are written to. We select those that have opposite
placement and are used after the moved out statements have executed. This includes
traversal of the control flow graph to make sure we do not miss usages that occur in a
loop body before the statement group.
Since the CallingContext may have a stricter label than the target field or local, we

optionally must emit a declassify expression or statement to downgrade to the target
field.

// (Optionally) Declare local if necessary
T fieldName ;

// For each field / local that must be synchronised , emit:
fieldName = (T)

↪→ declassify (__ctx .load(bebop . runtime . BoxHelper .box(fieldName)), ..);

Finally, we must wrap the call to the new method including the synchronisation parts
in a try-catch. Since JIF treats all exceptions as checked exceptions, we may encounter
one or more of the following exceptions:

• a NullPointerException, when the newly created method accesses fields of object
or invokes a call on an object,

• a ClassCastException, any time we load from the CallingContext,

• an ArrayIndexOutOfBoundsException, if we emit synchronisation code for arrays,
as described in section 4.5.8.

We inspect the moved out statements to determine which exceptions can be thrown to
avoid emitting unnecessary catch clauses. Furthermore, if the original method declares
one of the exceptions described above to be thrown, we do not emit a catch clause
either. If possible, we avoid the generation of the try-catch as a whole.

58 4. THE BEBOP COMPILER

If declarations for local variables were emitted, we must move those declarations
(without the initialisation part) before the try statement. This makes sure that the
variables are in scope for statements after the generated call to the new method.
If we move out statements of a method that has been moved out itself, we must pass

all changes to fields and locals, or changes to the control flow to the outer calling context.
We emit code that transfers the contents of one CallingContext to another:

__outer_ctx . assimilate (__ctx);

Synchronising Data Dependencies

For the sake of simplicity, the previous sections understated the synchronisation mech-
anics that must be executed. This section details what is actually happening.
We can identify two different mechanisms that are executed. First is storing to the

CallingContext, second is loading from the CallingContext. The actions are executed
pair-wise, once at the call site, once in the new method.
Note: Bebop is currently only able to synchronise variables of primitive types, see

section 4.8.

Listing 4.4: The CallingContext signature file.
package bebop . runtime ;

public class CallingContext implements java.io. Serializable {
public static native CallingContext {*->_} create ();
public native void store (String {*->} id , Object {*->} o);
public native Object {*->_} load {* - >}(String {*->} id) : {*->_};
...

}

Storing Saving data to the CallingContext is straightforward. As Listing 4.4 depicts,
the store method takes the name of a variable and an object, both annotated with
the strictest confidentiality policy. This allows us to call the method with arguments of
any confidentiality policy, as 〈> → >〉 is always at least as strict as the policy of the
argument and thus the method parameter is „assignable“. Since JIF has no auto-boxing
capabilities, we wrap the object that is to be stored in a method call to the BoxHelper of
our Bebop Runtime Library. The box method either boxes a primitive type or returns
the reference if a non-primitive type is passed. Listing 4.5 gives an overview of the
boxing mechanics.

Listing 4.5: The BoxHelper allows for convenient boxing.
public class BoxHelper {

public static Object {*->_} box(Object {*->} o) { return o; }
public static Byte {*->_} box(byte {*->} b) { return new Byte(b); }

4.5. Phase One 59

public static Integer {*->_} box(int {*->} i) { return new Integer (i); }
...

public static native byte {*->_}[]{* - >_} unboxByteArray (Object o);
public static native int {*->_}[]{* - >_} unboxIntegerArray (Object o);
...

}

The final store statement—emitted for each field that needs to be synchronised—has
the following form:

__ctx . store (" fieldName ", bebop . runtime . BoxHelper .box(fieldName));

Loading Loading data from the CallingContext requires more attention.
In the first step we create a new label L1. If the type of the field we want to load

is labelled, we set L1 = labelof(typeof(field)). If the type of the field is not labelled,
we set L1 = pc, where pc is the current program counter label. If the type was not
labelled, we create a label variable to let JIF derive a label for the type.
If the type of the field is not an array, we can load it from the CallingContext, cast

it to the appropriate type and issue a downgrading. The outer declassify statement
downgrades the program counter. This statement is only generated if L1 was not set to
pc. The declassify expression on the right hand side of the assignment is generated
because the label of __ctx may be stricter than the label of T.

declassify ({ __ctx } to {l1 }) { // optional
T fieldName = declassify ((T) __ctx .load(" fieldName "), { __ctx } to {l1 });

}

If the type of the field that needs to be synchronised is an array, more complex code
is generated. JIF permits assigning of arrays only if the policies are equivalent (due to
aliasing, see subsection 2.6.13). To transfer the content of one array to another, we must
issue a copy loop.
We first emit code to load the array from the CallingContext to a temporary variable.

The outer declassify statement is optional, as described above. Since JIF does not
support casting to arrays, we generate code to work around this limitation. A call to
BoxHelper.unboxType Array is issued, where Type is replaced by the respective type
of the array. The unboxType Array methods internally cast the Object to an array of
Type and return a copy of this array.

declassify ({ __ctx } to {l1 }) { // optional
T[] tmpArray = declassify (bebop . runtime . BoxHelper . unboxIntArray (

↪→ __ctx .load(" fieldName ")), { __ctx } to {l1 });
}

We then emit a declaration for a new array of the same type and length as tmpArray.

60 4. THE BEBOP COMPILER

T[] fieldName = new T[tmpArray . length];

Afterwards, we emit a copy loop that copies single array elements. The access to the
target array may need declassification.

for (int i=0; i < tmpArray . length ; ++i) {
declassify (fieldName [declassify (i, { __ctx } to { fieldName })], { __ctx } to

↪→ { fieldName }) = declassify (tmpArray [declassify (i, { __ctx } to
↪→ { fieldName }], { __ctx } to { fieldName });

}

Synchronising Control Flow Changes

Moving out statements of a method may affect control flow structures in the program.
If the body of a loop contains control flow changing commands like break, continue or
return, the control flow of the program is changed.

If we move parts of a loop body that contains control flow changing statements to
a new method, we must ensure to synchronise control flow changes back to the call
site. This includes replacing the break and continue commands by appropriate runtime
functions—because branching statements without a parenting loop are illegal—and emit-
ting synchronisation code at the call site.
When visiting the AST for a method declaration, we track if we visited a Loop node.

If this is the case we store that an outer loop is present. We scan all statements of the
statement group that is to be moved out if it contains a break or continue statement.
If this is the case and an outer loop is present, we store the control flow change in the
context and replace the statement by a return.

// Before
private void new_synth_method (bebop . runtime . CallingContext __ctx) {

...
break ;
...

}

// After
private void new_synth_method (bebop . runtime . CallingContext __ctx) {

...
__ctx . setDidBreak (); // or __ctx . setDidContinue ()
return ;
...

}

If we encounter a return statement in the newly created method, we must replace it
by appropriate runtime calls to store the return value to the CallingContext, because
the newly created method was declared to return void. Since JIF derives from (ap-
proximately) Java 1.4, we use the box() method of the BoxHelper that provides various
overloads to box primitive types if necessary, but also accepts objects that are „routed

4.6. Phase Two 61

through“.

// Before
private void new_synth_method (bebop . runtime . CallingContext __ctx) {

...
return someValue ;
...

}

// After
private void new_synth_method (bebop . runtime . CallingContext __ctx) {

...
__ctx . setReturnValue (bebop . runtime . BoxHelper .box(someValue));
return ;
...

}

At the call site, we must insert appropriate statements to unpack and return the return
value stored in the CallingContext. We add such statements only if the moved out
statements included a return statement. Values retrieved from the CallingContext
must be cast to the appropriate return type of the original method.

return (SomeType) ret. getReturnValue ();

4.5.9. Sink Fields to Local Variables

In this pass we sink fields of a class back into local variables of a method. Sinking is the
process of moving variables from an outer scope to an inner scope, if the variable is only
used in the inner scope. This is also possible for fields.

Since not all local variables need data synchronisation between method calls, it is
possible to „undo“ the hoisting pass described in subsection 4.5.5 for some of the fields,
after we partition methods into smaller parts. This reduces the amount of fields in a
class and sinks appropriate fields back to a more narrow scope, turning them into stack
variables which are in general „cheaper“ than fields. To achieve this goal, we first analyse
the usage of each field. If it is used in only one method, we are allowed to sink it back
to a local variable.

4.6. Phase Two

The Phase Two of the Bebop compilation cycle finalises the program partitioning.
We take as input in Phase Two an AST of an input class. The AST was already trans-

formed in a way that aids the partitioning process. The main transformation we applied
has partitioned methods into smaller parts that can be assigned a definite placement.
Phase Two now creates classes for each execution environment and applies changes that
wire the program to the Bebop Runtime Environment. Additionally, code that does not

62 4. THE BEBOP COMPILER

•4.6.1 Duplicate and Rename • 4.6.1 Duplicate and Rename

•4.6.2 Remove Opposite Fields • 4.6.2 Remove Opposite Fields

•4.6.3 Replace Methods by Stubs • 4.6.3 Replace Methods by Stubs

•4.6.5 Remove Entry Point from
Trusted Partial Application • 4.6.4 Add main Method to Nor-

mal Partial Application

•4.6.6 Rewrite Object Creation • 4.6.6 Rewrite Object Creation

•4.6.7 Remove Opposite State-
ments from Constructor

• 4.6.7 Remove Opposite State-
ments from Constructor

•4.6.8 Patch Instance ID Fields • 4.6.8 Patch Instance ID Fields

T N

Figure 4.12.: All AST manipulations that happen in Phase Two of the compilation
pipeline.

belong to an environment is removed. Figure 4.12 gives an overview of the passes we
apply. This section describes each pass in detail.

4.6.1. Duplicate and Rename
In this pass we duplicate the AST of the original input class to create two distinct classes
for the two execution environments.

The compiler produces as output two partial programs, one for the trusted environ-
ment and one for the normal environment. Since the two partial programs need slightly
different treatment during compilation, we duplicate the AST for each original class for
further processing. This includes the appropriate duplication of the type objects in the
Polyglot type system. In order to make a clear distinction from the original class, we
rename it with a suffix of either _N for classes destined to reside on the normal envir-
onment or _T for classes destined to reside on the trusted environment. Another reason
for the rename is that the underlying polyglot compiler framework would have needed
rework to support two different types and ASTs sharing the same name.

4.6.2. Remove Opposite Fields
In this pass we remove all fields that have a placement opposite to the placement of the
partial class that is currently processed.
Since code that resides on the normal environment does not depend on fields destined

to be on the trusted environment, we can remove fields labelled Trusted Environment from

4.6. Phase Two 63

the normal environment class, and vice versa. The only exception to this data flow is
the use of a declassify statement or expression. This case is handled separately and
described in subsection 4.5.8.

4.6.3. Replace Methods by Stubs

In this pass we replace methods determined to run on the opposite environment by
method stubs that execute a remote call. We use the term method stub as it is used in
Java RMI nomenclature [Ora14, §3.1], also the basic calling principle is similar to RMI.
Methods with opposite placement must eventually be removed from the environment

we are currently looking at. If we just delete the method, all call sites that issue a call
to this method must be updated, i.e. a remote call must be generated at every call
site. This is an intricate task and not very effective. A better approach is, to keep the
original method declaration, but replace its entire body by a remote call. This change
is transparent to all call sites and less invasive than the previous approach.
Remote method invocation effectively consists of two parts: generated code to issue

a call and runtime support to execute the call. A detailed look at the runtime part is
given in section 5.6.
At first, we must generate a MethodCall object that encapsulates the call information

and the parameters passed to the method stub. The instanceId is either the objects
instance ID (cf. subsection 4.6.8) or a special ID if the called method is static.

final Class {* - >}[]{* - >} types = new Class [] { ArgType1 .class , ArgType2 , ...
↪→ };

final Object {* - >}[]{* - >} args = new Object [] { arg1 , arg2 , ... };

final bebop . runtime .rmi. MethodCall {*->} mc =
↪→ bebop . runtime .rmi. MethodCallFactory . createCall (" remote . TypeName ",
↪→ " methodName ", instanceId , types , args);

We pass the generated MethodCall object to a Bebop Runtime Library method that
passes control to the Bebop Runtime Environment while the local site is blocked in its
execution.

final bebop . runtime .rmi. ReturnValue {*->_} ret =
↪→ bebop . runtime . Runtime . callRemote (mc);

After execution of the method in the remote environment has terminated, we pass
control back to the local environment. A method may terminate in a normal way,
yielding a return value, or in an exceptional way, yielding an exception. We must issue
code to detect if the remote call site threw. Since Java uses checked exceptions, we cannot
just throw a Throwable without declaring it in the method head. We do not want to
alter the method head. Therefore we need some kind of dispatching mechanism to only
throw exceptions that are declared. Since we know at compile time which exceptions
might be thrown, we can check the received Throwable if it is of a certain exception

64 4. THE BEBOP COMPILER

type and issue a cast.

if (bebop . runtime . ThrowHelper . shouldThrow (ret)) {
Throwable {*->_} t = bebop . runtime . ThrowHelper . extractException (ret);

// For each declared exception we generate :
if (t instanceof TEx) { throw (TEx) t; }
...

}

For all arguments passed to the method stub, we must ensure that changes to these
values made during execution of the remote method are synchronised back to the local
environment. This is important to reflect changes made to mutable objects. If a method
parameter is of a primitive type, we need no synchronisation.
Primitive types in Java (cf. §4.2 of the Java Language Specification [Gos+14]) are

passed by-value; their contents are „copied“ during method invocation. Changes made
to primitive values are effectively lost when the scope of a method ends, enabling us to
omit synchronisation.

Parameters typed with a class in the current compilation unit also do not need syn-
chronisation. Since changes in a class can only be made to its fields, we exploit the
property that Normal Environment code does not depend on Trusted Environment fields and
vice versa.
Arrays of primitive types must be synchronised. We load the mutated parameter from

the RemoteCallingContext created during remote execution, see section 5.6. Since JIF
does not allow assignment of arrays, see section 2.6, we generate a copy loop to push
elements of the remote array to its local counterpart. For primitive types we additionally
must issue a call to BoxHelper to work around the problem that JIF does not support
auto-boxing, e.g. bebop.runtime.BoxHelper.unboxByteArray(..). This mechanism
works similar to what is described in section 4.5.8.

final T{*->_}[]{* - >_} tmp = ret. getCallingContext ().load(argIndex);
for (int i=0; i < tmp. length ; ++i) {

arg[i] = tmp[i];
}

A parameter of type CallingContext, introduced during method partitioning de-
scribed in subsection 4.5.8, needs special treatment. If we encounter such a para-
meter, we assimilate its state to the current CallingContext. This allows to reflect
changes in control flow—i.e. continue and break—back to the local site. __ctx is the
CallingContext of the current (local) method.

__ctx . assimilate ((bebop . runtime . CallingContext)
↪→ ret. getCallingContext ().load(argIndex));

If a parameter is of a reference type not in the current compilation unit or it is an
array of non-primitive types, we are currently unable to provide a synchronisation. This

4.6. Phase Two 65

is a known limitation of the Bebop Compiler and may be addressed in future work.
If the method declaration defines a non-void return type, we must emit a return

statement that extracts the return value from the retrieved ReturnValue:

return (TReturn) ret. getReturnValue ();

4.6.4. Add main Method to Normal Partial Application

In this pass we add a main method to the normal environment entry point class.
Java needs a main method to start an application. Additionally, we must initialise the

normal environment container in the main method, before we execute the application’s
EntryPoint.run method.
The entry point of a Bebop application is imposed by the Bebop Runtime Library

interface EntryPoint and its run method. The main method is added to the class
that implements the EntryPoint interface. The responsibility of the main method is
to bootstrap the container and inform the container that the entry point class must
be instantiated and execution of the normal environment partial program must begin.
Bootstrapping of the container is described in detail in section 5.7. The code added to
the entry point class is:

public static void main(String [] args) {
bebop . runtime . NwContainer . bootstrap (args , EntryPointNodeClass . class);

}

4.6.5. Remove Entry Point from Trusted Partial Application

In this pass we remove the EntryPoint interface from the trusted environment.
Since the trusted environment does not define an entry point to start execution, we

can safely remove the interface EntryPoint from the respective entry point class on the
trusted environment.

4.6.6. Rewrite Object Creation

In this pass we change the way objects are instantiated.
Every time an object for a class in the current compilation unit—these are all classes

specified for compilation when the Bebop Compiler is invoked—is instantiated, we must
intercept the instantiation. As described in section 5.5, we need to make sure that
activation of an object in one environment leads to activation of a corresponding object
in the other environment.
We search for all occurrences of object instantiation with the new keyword of classes in

the current compilation unit. We change the new statement to a Bebop Runtime Library
call.

66 4. THE BEBOP COMPILER

// Original instantiation :
T t = new T(ctorArg1 , ctorArg2 , ...);

// Changed instantiation :
Class {* - >}[]{* - >} types = new Class [] { ArgType1 .class , ArgType2 .class , ...

↪→ };
Object {* - >}[]{* - >} args = new Object [] { ctorArg1 , ctorArg2 , ... };
T t = (T) bebop . runtime . Runtime . activateLocalObject (class , types , args);

JIF treats NullPointerExceptions as checked exceptions, therefore the Bebop Runtime
Library call cannot be guaranteed to be non-null by JIF. Since we know that this call
always returns a non-null reference, we changed the behaviour of JIF to treat the Bebop
Runtime Library call in a special way.

4.6.7. Remove Opposite Statements from Constructor

In this pass we remove statements with opposite placement from the constructors.
Constructors are treated differently than ordinary methods. In Bebop, constructors

are not allowed to contain calls to methods, or downgrading expressions or downgrading
statements. We impose this restriction to be able to always initialise a class in each
execution environment. This allows us to simply delete statements that have opposite
placement, if no „forbidden“ statement was found earlier.
Therefore, in a constructor, we either see:

• A field assignment that can safely be removed (if the placement is opposite), since
fields are already distributed to the partial programs.

• A call to another (superclass) constructor. These calls are already marked to be
kept in both partial programs.

4.6.8. Patch Instance ID Fields

In this pass we add an additional instance ID field to each class.
To uniquely identify an object during runtime of the split program, we need an ad-

ditional object ID. We must be able to uniquely identify objects for remote method
invocation, since a call must be invoked on a specific object. A description of the remote
method invocation mechanism is given in section 5.6. For this, we introduced a private
instance field that holds a globally unique UUID wrapped in the Bebop-specific Id class.
The code inserted is:

private bebop . runtime .ID{*->} __bebop_instance_id = bebop . runtime .Id. newId ();

4.7. Post-Processing Phase 67

•JIF • JIF

•javac • javac

T Class file N Class file

T N

Figure 4.13: Post-processing of the ASTs emitted
after Phase Two.

4.7. Post-Processing Phase
After executing all Bebop passes, some post-processing steps must be executed. The
AST emitted by Phase Two is passed (again) to the JIF Label Checker to make sure
information flow is consistent and no policies are violated. If this pass succeeds, we
trigger the JIF code generation pass and emit Java code for each AST. The Java code
is passed to a standard javac compiler by the Polyglot infrastructure.

As a result, we have generated a .java and .class file for each AST. Since ASTs
exist in a Normal Environment and Trusted Environment version for every original input file,
the code generation pass emits two .java and two .class files. The files are spread to
different output directories, depending on the environment they are assigned to.

4.8. Limitations and Future Work
We were not able to finish all the work necessary to build a full-fledged partitioning-
compiler, because this would exceed the time frame for this thesis. Therefore some
restrictions and limitations apply:

• Integrity properties are neglected. Despite being defined as a goal, we skipped
support for integrity policies. In particular, threshold label calculation does not
consider integrity policies, support for the endorse statement and expression are
missing, and runtime policies must be adapted to reflect integrity concerns.

• The Bebop Language does not support method calls, and declassify statements
and declassify expressions in constructors. We made this decision to ease par-
titioning of constructors as described in subsection 4.6.7.

• JIF’s polymorphic label mechanism is not supported. JIF supports mechanisms to
define generic label parameters for classes as described in subsection 2.6.14. We
are currently unable to derive placement information from label parameters. This
is saved for future work.

• Method parameters used may be only of primitive types. Partitioning of standard
Java classes requires support for polymorphic labels. The Bebop Compiler restricts
method parameters to be of primitive type as described in subsection 4.5.8.

68 4. THE BEBOP COMPILER

• It may be the case that final code for a partial class contains method stubs that are
not used at all. Future versions of the compiler shall execut a inter-environment
usage analysis and remove methdos that are orphaned.

• The control flow of a program is currently not secured against manipulation. Fu-
ture work shall add cryptographic methods to ensure that methods cannot be
called in arbitrary order by an attacker.

• Recursive methods are currently not supported. This is due to hoisting of fields
for reentrancy synchronisation as described in subsection 4.5.5. Support for re-
cursive methods can be established by replacing the synchronisation mechanism
by something more sophisticated than hoisting.

4.9. Chapter Summary
We created the Bebop Compiler that is able to partition programs into two cooperative
parts that run in different execution environments. The major goal defined in chapter 1—
building a working compiler—is met, although the Bebop Compiler currently imposes
restrictions on the input program as described in section 4.8.
When we generate code for the partitioning and code to interact with the Bebop

Runtime Environment, we emit JIF code that is annotated with security policies. Be-
fore the program is compiled to Java code, JIF is used to check the information flow
properties. This covers our second major goal: emitted code should not violate security
policies.
Partitioning of programs works on a per-statement mechanism, allowing for a fine

grained distribution of statements across the two execution environments. This enables
us to produce better partitionings in contrast to the trivial solution of putting everything
to the trusted environment. This partitioning criterion was defined in our original goals.
Although the granularity of the partitioning can surely be improved by focussing on
sub-expressions instead of whole statements, the goal can be seen as accomplished.
The original goals defined that we consider both confidentiality and integrity when it

comes to partitioning programs. Due to time constraints we neglected the integrity prop-
erty and focussed only on confidentiality as a first step. Support for integrity properties
is left for future work.

CHAPTER 5

THE BEBOP RUNTIME

5.1. Introduction
The Bebop Compiler described in the previous chapter produces as output two programs
that cooperatively rebuild the functionality of the original input program. The program
that will run in a trusted environment is called trusted environment partial program and
the program that will run in a normal environment is called normal environment partial
program.
The trusted environment partial program cannot be started on its own, since the

program entry point is fixed to be in the normal environment. We therefore need a
runtime that is able to load the trusted environment partial program and handle calls to
(and from) the trusted environment. Similarly, the normal environment partial program
cannot run on its own because it must interact with the trusted environment partial
program. The runtime establishes communication between the two execution environ-
ments and is used by both partial programs when a switch to the opposite execution
environment is needed. Calls to the runtime are woven directly into the partial programs.
We define the following goals for this chapter:

• (Objective E) Remote Method Invocation Provide a runtime that enables com-
munication between two partial programs. The runtime hosts partial programs,
connects the two execution environments and is responsible for dispatching calls
to the other execution environment.

• (Objective F) Flexible The runtime should be lightweight, scalable, extensible, and
should easily be portable to different communication interfaces (Sockets, TrustZone-
TEE, . . .). The runtime will therefore also be suitable for devices with limited
resources.

69

70 5. THE BEBOP RUNTIME

The Bebop Runtime Environment’s main responsibility is to provide ways to start
partial programs, and to establish communication between the two environments. Ad-
ditionally, the Bebop Runtime Library provides utility methods used by the Bebop
Compiler during code generation. This targets (Objective E).
In this chapter we describe the architecture of the Bebop Runtime Environment and

have a detailed look at its components. The concepts of remote object activation and
remote method invocation are explained in detail. We show how the Bebop Runtime
Environment hosts partial programs, and how the execution of a split program works.

5.2. Architecture Overview

Original goals considered when we designed the Bebop Runtime Environment were that
it should be lightweight, scalable, extensible, and should easily be portable to different
communication interfaces. It is preferable to have a lightweight implementation, if the
Bebop Runtime Environment is executed on environments with limited resources. Also
considering the partitioned nature of classes produced by the Bebop Compiler—it raises
the need of special mechanisms for object identification and call dispatch—we decided
to implement a custom runtime instead of building on existing technologies as for ex-
ample Java RMI. Good portability is important if the Bebop Runtime Environment is
used in various combinations of environments with different levels of trust. Examples
are classical client/server scenarios or the use of the ARM TrustZone. We addressed
this issue by having an interchangeable transport layer used for communication, as sec-
tion 5.4 describes. Finally, extensibility and scalability must be considered when building
sustainable software. We based the communication framework of the Bebop Runtime
Environment on the idea of message passing as used in the actor model, since we are
dealing with a reactive system. As argued by [Lie81], message passing enables good ex-
tensibility and modularity and therefore enables us to reach our defined goals. Another
reason for message passing is, that original Object Oriented paradigms revolve tightly
around the idea of objects sending messages to each other, e.g. for calling procedures, as
described in [Hew77]. This strengthens our decision to use the message passing pattern,
as one of the main responsibilities of the Bebop Runtime Environment is remote method
invocation as described in section 5.6. Using the actor model should largely cover what
we defined in (Objective F).

During this chapter, we neglect the notion of „trusted environment“ and „normal
environment“ and focus on the idea of a local environment and a remote environment.
Local refers to the environment we are currently executing in and remote in this context
refers to the opposite environment. This is more convenient when describing the Bebop
Runtime Environment, since it usually does not matter to the runtime if the execution
environment is trusted or normal (except where stated explicitly), but it matters if
resources are local or remote.

5.2. Architecture Overview 71

Tunnel

Trusted Container

Partial Application
(needs security guarantees)

Trusted Environment

Normal Container

Partial Application
(no security requirements)

Entry Point

Normal Environment

Bebop Runtime Library

Runtime Environment

B B

hosted on hosted on

communicate

Figure 5.1.: Bebop Runtime Environment overview.

5.2.1. The Runtime Environment

Having two partial programs that run simultaneously on two different environments
and cooperatively rebuild the functionality of the original program, we must provide an
ecosystem that offers the required functionality. The Bebop Runtime Environment is
the combination of all components necessary to run a split program and is therefore a
meta component.
As Figure 5.1 shows, a trusted environment and a normal environment are connected

by a (secure) tunnel. All communication between the two environments is bound to the
provided tunnel. As described above, partial programs cannot run on their own and are
therefore hosted in special containers (cf. section 5.3) provided by the Bebop Runtime
Environment. Partial programs communicate via message passing; the container thus of-
fers a lightweight message passing implementation. Functionality of the Bebop Runtime
Environment is used by partial programs and the necessary API is provided to the par-
tial programs by the Bebop Runtime Library. Single components of the Bebop Runtime
Environment are described in detail in the following sections.

5.2.2. The Runtime Library

The Bebop Runtime Library is a set of methods that expose functionality of the Bebop
Runtime Environment to a partial program. Calls to the Bebop Runtime Library are
woven into partial programs during compile time by the Bebop Compiler.

72 5. THE BEBOP RUNTIME

The Bebop Runtime Library includes the API used during remote object activation
and remote method invocation, see section 5.5 and section 5.6 respectively. Additionally,
it offers a set of tools used during execution of a partial program:

BoxHelper

The BoxHelper is used when extracting array objects transferred in a remote calling
context, as described later in this chapter. This is necessary as JIF does not support
casting of arrays, see section 2.6.

ThrowHelper

The ThrowHelper offers methods to handle exceptions received from the remote envir-
onment.

SerializationHelper

This class is responsible for serialisation and deserialisation of method arguments that are
to be transported to a remote environment. Arguments are serialised to a ByteBuffer
using standard Java serialisation, that is, the object must implement the Serializable
interface—this is true for the primitive types for method calls, that we currently support.
A ByteBuffer together with information about the type of the object are encapsulated
by a TransportObject that is used in remote communication.

ClassLoadingHelper

The ClassLoadingHelper is the component responsible for loading a Java Class ob-
ject from a given class name. We use Java’s SystemClassLoader in combination with
Class.forName(..) to retrieve an appropriate Class object.

5.3. Hosting Applications
Loading and executing partial programs is the responsibility of a container. The con-
tainer defines the interaction of several components of the Bebop Runtime Environment
as shown in Figure 5.2.
The container establishes a connection to a remote container and instantiates an end-

point that receives incoming messages, see section 5.4 for details about the endpoint.
The container registers message handlers at the endpoint that handle incoming mes-
sages. Every message type has its own message handler. The partial programis a set
of Java class files, present on the file system. Functionality of the partial program is
invoked by message handlers, depending on the desired action. The main actions are
remote object activation as described in section 5.5 and remote method invocation as de-
scribed in section 5.6. The partial program reacts to the messages by executing parts of
the split program, eventually producing results that must be passed back to the remote

5.4. Connecting the Two Worlds 73

Container

Partial Application

Bebop Runtime
Library

Message Handlers

Utilities

EndpointB

B

in
vo

ke
,

ac
ti

va
te

use

use

use

part
of

Figure 5.2: A container hosts a
partial application and
is responsible for es-
tablishing a connection
to a remote container.
Additionally, it initial-
ises the Bebop Runtime
Library and registers
message handlers.

environment. For this purpose, it uses methods provided by the Bebop Runtime Library
and its utility classes; necessary code is woven into the partial program during compile
time.
The normal environment container offers additional mechanics that provide an entry

point for the split program. The container receives the entry point class of the split
program via command line arguments. It loads the class and instantiates it. Afterwards,
the control is passed to the entry point in the normal environment partial program,
effectively starting the split program.
A detailed look at execution of a split program is given in section 5.7.

5.4. Connecting the Two Worlds
One of the design goals of the Bebop Runtime Environment was the interchangeability
of the transport layer to make the Bebop Runtime Environment portable to different
systems. To achieve this goal, the Bebop Runtime Environment is designed to only rely
on an InputStream and OutputStream for communication with a remote environment.
The specific type of the stream does not matter, it may be a network stream, a pipe or
a completely different type of communication.
As Figure 5.3 shows, all communication is tunnelled through the provided streams.

Tunnel

E
nd

po
in

t

Trusted Runtime

E
ndpoint

Normal Runtime

InStream

OutStream InStream

OutStreamB

B B

B

Figure 5.3: The transport
layer consists of
two stream pairs
that connect
the endpoints
of the two
environments.

74 5. THE BEBOP RUNTIME

The sender and receiver on each side of the tunnel are what we call endpoints. An
endpoint’s responsibility is to send messages to a remote environment or to receive
messages from a remote environment. We built message processing in the endpoint in
a completely asynchronous way. Synchronisation is done via message queues that are
processed by tasks. A task is a worker method that is executed in a separate thread;
tasks are respawned automatically once they have finished their work.

Sending Messages

As Figure 5.4 shows, the endpoint exposes three methods that handle sending of mes-
sages. The send method takes a message and puts it into the OutQueue. A Send Task is
waiting for new messages in the queue and relays incoming messages to the OutStream.
The sendAndWaitForReply method puts a given message into the OutQueue and

blocks the calling thread until a response to the given message is received. It polls the
ReplyQueue until a reply to the sent message arrives.
The third method, sendSelf, takes a message and puts it into the InQueue, effectively

mimicking a message received from the remote environment. This is useful if we want
to trigger asynchronous actions on the local endpoint.

Receiving messages

Messages coming from the remote environment are coming from an InStream and are
processed by the Receive Task that polls the stream. Upon arrival of a message, the task
puts the message into the InQueue. The Dispatch Task is polling the InQueue and relays
incoming messages to the appropriateMessage Handler. If the received message is a reply
to a previously sent message, the incoming message is put into the ReplyQueue. Message
handlers execute the actual action that is linked to a message. Message handlers are
registered during initialisation of the endpoint. Depending on the type of the message,
execution of the message handler can be either synchronous or asynchronous.

5.5. Remote Object Activation 75

Endpoint

send

sendAndWaitForReply

sendSelf

OutQueue
Send Task OutStream

ReplyQueue

InQueue

Receive TaskInStream

Dispatch Task

Message Handlers

B

B

poll B

poll

B

B

B poll

B Reply

B

Figure 5.4.: Internals of an endpoint. It is responsible for sending messages to the
opposite environment and for dispatching actions when messages are re-
ceived.

5.5. Remote Object Activation
Every time an object is instantiated in the normal environment, we must create a comple-
menting object in the trusted environment, and vice versa. This ensures that an object is
present in the remote environment if needed for later calls. We call such objects opposite
objects.
In the first step we load a Java class from the given class name, with the help of the

Bebop Runtime Library’s ClassLoadingHelper utility class, see subsection 5.2.2. We
create an instance of the class and invoke the appropriate trusted environment and nor-
mal environment constructors on the newly created instances. We call the instantiation
and initialisation of an object its activation.
As described in subsection 4.6.6, we changed the way objects are created in a program.

Every occurrence of „new X(...)“ is replaced by a call to a special method of the Bebop
Runtime Library that is responsible for object creation. This allows us to intercept object
creation and to execute our remote activation procedures. Figure 5.5 gives a timeline
view of object activation.
Both the trusted and normal object instance must be marked as being related. We

introduced the synthetic field __bebop_instance_id in both objects during compilation,
see subsection 4.6.8. This field holds a UUID to identify an object instance. The ID

76 5. THE BEBOP RUNTIME

Figure 5.5: Activation and
storage of an
object in the
local environ-
ment leads to
activation of a
complementing
object in the
remote environ-
ment.

Object Activation

•Activate local object

•Get object ID

•Register in ObjectStore

•Serialise
constructor arguments

Message Handler

• De-serialise arguments

• Activate
complementing object

• Set remote object ID

• Register in ObjectStore

Local Environment Remote Environment

B

is created when the object is activated in one environment and is sent along with the
activation message to the other environment. The Bebop Runtime Environment makes
sure that the ID field is correctly set when an object is instantiated.
Activated objects are stored to an ObjectStore. This is a dictionary that allows us

to store (and look up) objects by their IDs. This is needed to implement remote method
invocation, because a method must be invoked on the correct object—identified by the
ID that is sent along the remote invocation message.
Object activation on the remote environment works similar, with two subtle differ-

ences. First, all constructor arguments must be de-serialised after being sent in a mes-
sage. Second, the ID of the object is dictated by the ID defined in the message. The
Bebop Runtime Environment must explicitly set the ID sent along the message on the
new object.
As described in section 5.8, the ObjectStore lacks a mechanism to remove unused

objects and may thus grow very large. This is a limitation that shall be targeted by
future work.

5.6. Remote Method Invocation 77

Method Stub

•Serialise
method arguments

•Create „call“ object

Message Handler

• Load class

• Look up
object instance

• De-serialise arguments

• Invoke call

• Synchronise arguments

• Serialise out-values
(or exceptions)

•De-serialise out-values

•Handle return value
(or exceptions)

Local Environment Remote Environment

B

B

Figure 5.6: Calling a remote
method from a local
method stub blocks
the local execution
while the remote
environent executes
the call. Afterwards,
control is passed
back to the original
call site.

5.6. Remote Method Invocation
Since partitioning a program moves parts of its functionality to a non-local site, we
cannot employ ordinary means of method invocation. We must support some form of
remote method invocation to transfer control to a remote site. As described in subsec-
tion 4.6.3, methods with opposite placement are replaced by stubs that initiate a remote
invocation. Figure 5.6 gives an overview of a remote method call.

Invoking a Remote Method

In a remote method stub, the local call site creates a MethodCallMessage that contains
all information necessary to dispatch a call on the remote site. In particular this is:

78 5. THE BEBOP RUNTIME

• the name of the opposite class,

• the name of the method to be called,

• the instance ID of the remote object (or a special ID if the call is static),

• a list of type names to identify the correct method if overloads exist, and

• a list of serialised arguments to the method.
Since all arguments must be transferred „over the wire“, all method parameters must

be Serializable. A helper class of the Bebop Runtime Library is used to encapsulate
arguments for transport, see subsection 5.2.2.

Transferring Control

After creation of a MethodCallMessage, the Bebop Runtime Environment on the local
environment sends the message to the remote environment. Since method calls must be
executed synchronously, the Bebop Runtime Environment blocks the program on the
local call site until a response message is received. This is accomplished with the help
of the Endpoint’s method sendAndWaitForReply, described in section 5.4.

Dispatching Calls on the Remote Site

When the remote environment receives a MethodCallMessage, its MethodCallHandler
is responsible for processing the message. The handler first loads the target class the
call must be invoked on. We use the helper class ClassLoadingHelper provided by the
Bebop Runtime Library, see subsection 5.2.2.
In the next step, we use the instance ID of the message and the ObjectStore to

load the object instance, we must dispatch the call on. Instances are stored in the
ObjectStore upon creation, as described in section 5.5. Static method invocations
must be distinguished. We use a special „empty“ object ID in the message to mark a
call as being static.

We make use of Java Reflection to find the method specified in the message. We
invoke the method on the previously retrieved object (or invoke a static call), and catch
exceptions that may be thrown by the target method.
After a successful invocation, we store all mutable reference type arguments to a

RemoteCallingContext. This ensures that reference types that may have been updated
during the execution of the method are synchronised back to the original call site. A
MethodReturnMessage transfers control back to the original call site. It additionally
contains the return value of the call and all updated arguments.
On exceptional termination of the method invocation, we must transfer the exceptions

back to the original call site. A special MethodReturnMessage is sent to the original call
site, containing the exception. Reference type arguments are not synchronised in this
case, as we make no guarantees if an exception is thrown. This behaviour may cause
inconsistencies in the program state. This is clearly not desirable and is part of the
known limitations to be solved by future work, see section 5.8.

5.7. Executing a Program 79

Return to Local Call Site

The local call site blocks execution and waits until the remote site terminates the call. A
message handler on the local site is waiting for the corresponding MethodReturnMessage
to continue execution. All out-values—that is the return value of the method (if any)
or exceptions thrown—are de-serialised and control is passed back to the method stub.
The message stub then processes the out-values as described in subsection 4.6.3.

5.7. Executing a Program
The execution of a split program is depicted in Figure 5.7. Each container first initialises
the transport layer, where the trusted container is passively waiting for a connection
and the normal container is actively connecting. In the reference implementation, the
transport layer is using TCP network streams, but this can easily be changed as described
in section 5.4.
When a connection has been established, both containers initialise their endpoints; this

includes initialisation of the ObjectStore as described in section 5.5, and registration
of the message handlers that process incoming messages. The most important message
handlers that are registered are processing remote method invocation messages, object
activation messages and a shutdown message handler that terminates a container if the
program exits in the opposite environment. The endpoint runs in a separate thread,
after initialisation is done.
Having a running endpoint, we initialise the rest of the Bebop Runtime Environment

by passing it the endpoint reference. Initialisation of the trusted container is complete
after these steps.
The container for the normal environment needs more initialisation. Since the entry

point of a program always lies in the normal environment, the normal container is re-
sponsible for starting the execution of the split program. We load the provided entry
point class and activate it—that is we create an instance and invoke the JIF con-
structor. The Bebop Runtime Environment requires entry point classes to only contain
one parameterless constructor. Additionally, the entry point class must implement the
EntryPoint interface. As described in previous sections, we must store the activated
entry point object to the local ObjectStore and inform the remote environment that
the complementing object must be activated.
Having an activated entry point object, we trigger execution of the program by calling

the run() method, declared in the EntryPoint interface. After execution of the program,
both containers are shut down.

80 5. THE BEBOP RUNTIME

Figure 5.7: Initialisation of
the containers
that host the
partial applica-
tions. The input
program’s entry
point is invoked
by the nor-
mal container.

Trusted Container
startup

•Wait for connection • Connect

Normal Container
startup

•Initialise Endpoint

• Initialise ObjectStore

•Register message handlers

• Run Endpoint

•Initialise Runtime Library

• • Activate entrypoint
object

• Invoke JIF constructor

• Register entrypoint

• Invoke entrypoint’s
run method

• Container
shutdown

•Container
shutdown

Execution of
hosted application

5.8. Limitations and Future Work
The current implementation of the Bebop Runtime Environment contains limitations
that were not solved in the time frame of this thesis.

• The RemoteCallingContext described in section 5.6 is currently not synchronised
correctly if an exception is encountered during execution of a remote method. Data
synchronisation code must be added to the Bebop Runtime Environment. This will
be targeted in future work.

• The RemoteCallingContext may grow very large, if many parameters must be
synchronised. Future projects should strive to reduce the list of parameters to
those that are really necessary.

• The ObjectStore currently lacks a mechanism to clear out destroyed (or orphaned)
objects. Since the ObjectStore always holds a reference to an object even if it is
not used any more, the garbage collector will never free the memory. This may lead

5.9. Chapter Summary 81

to unnecessary memory consumption. Mechanisms to remove unused or destroyed
objects from the ObjectStore could be investigated in future projects.

• There is currently no native TEE support due to lack of a Java port. The current
reference implementation uses a TCP stream and two Java instances to simulate
the two execution environments. We already prepared the Bebop Runtime Envir-
onment that a TEE „stream“ can be integrated quickly.

5.9. Chapter Summary
As described in the previous sections, we have built an ecosystem that allows us to run a
split program across two different execution environments. The decision to use the actor
model (message passing) turned out to be correct: Extending the functionality of the
Bebop Runtime Environment during its development was straight forward and caused
little to no interference with other components; since the Bebop Runtime Environment
is a reactive system, the natural choice is to use a reactive pattern
The Bebop Runtime Environment provides ways to load and execute partial programs;

this includes ways that allow communication between partial programs. Required func-
tionality to run a split program—such as remote object activation or remote method
invocation—have been implemented and are working.
One weakness of the Bebop Runtime Environment is, that it is not very efficient with

respect to high-speed performance. Since execution performance was not defined as a
goal, we consider this a minor drawback. Due to its modular nature, optimising the
performance of single components of the runtime should be easily possible in future
projects.

CHAPTER 6

EVALUATION

In this chapter we evaluate our work. We evaluate the developed Bebop Compiler and
Bebop Runtime Environment in the first two sections. Afterwards, we present two
sample programs that can be successfully partition with the Bebop Compiler.

6.1. Compiler Evaluation
In chapter 4 we defined a set of objectives our compiler should fulfil. The (Objective A)
described the overall goal of writing a compiler that is able to partition programs, with
respect to security policies defined in the input program.
We developed a compiler that is able to produce split programs. We used an exten-

sion of the JIF language [Mye99a] as input language and we emit two programs that
cooperatively rebuild the functionality defined in the original program. We based our
compiler on the Polyglot framework [NCM03]. Since JIF is based on Polyglot and JIF’s
source code is available, using Polyglot as base for our compiler was the obvious way to
go.
In (Objective B) we defined that our compiler should not directly emit Java code but

should emit the partial programs in JIF code. This enables us to attach security policies
to synthetic code that is produced by the compiler. We can thus express security con-
cerns for the code that is generated in order to communicate with the Bebop Runtime
Environment. This distinguishes our compiler from the similar Swift project [Cho+07],
which directly emits Java code. JIF ensures us that the partitioned user code and the
generated runtime code adhere to the defined policies.
Our compiler strives for an optimal partitioning with respect to the amount of code

placed in one execution environment. In fact, we are able to partition a program on a
per-statement level. The placement of a statement depends on the security policies of

83

84 6. EVALUATION

each sub-expression and is tightly coupled to the information flow policies defined by
JIF.
JIF supports two basic types of policies: confidentiality and integrity policies. Al-

though we initially planned to base the program partitioning on both policy types, we
focussed only on confidentiality (Objective D.1). Incorporating integrity policies as defined
in (Objective D.2) is possible, but the objective was dropped due to time constraints.

We present two very general examples of programs that are partitioned by the Bebop
Compiler in section 6.3 and section 6.4. The examples show, that the goals described
above were met. Although the Bebop Compiler has limitations (cf. section 4.8), it can
be used to generate split programs for real-world scenarios.

6.1.1. On Reusing Swift

When we started this thesis, we investigated if reusing Swift would be an option for us.
Swift targets web applications and emits Java code that is destined to run on a web
server (trusted environment) and JavaScript code that is destined to run in the browser
(normal environment). Much of the data synchronisation is done with the help of Google
Web Toolkit (GWT). Since our project does not target the browser, using GWT is not
an option for us. Work regarding data synchronisation would have had to be done in
any case. Additionally, Bebop emits JIF code for the split programs. We therefore can
define security policies for the runtime interoperation. Swift directly emits Java code.
We would thus have had to change the code generation and probably reimplement parts
of Swift’s runtime.
We decided to start writing Bebop „from scratch“, accepting that the resulting pro-

totype may lack features. This is mainly due to the timely limitations of a master’s
thesis.

6.2. Runtime Evaluation

The Bebop Runtime Environment and the Bebop Runtime Library were designed to be
lightweight, scalable, extensible and easily portable to different communication inter-
faces.

6.2.1. Extensibility

As already argued in chapter 5, we achieved extensibility by using a message passing
approach. New functionality can easily be added by defining appropriate messages and
message handlers. During development, adding (or changing) functionality was painless
and caused less to no side effects. This is largely due to the message passing approach,
that encourages loose coupling.

6.2. Runtime Evaluation 85

6.2.2. Lightweightness

The Bebop Runtime Environment and the Bebop Runtime Library are relatively small:
they consist of only 1,500 lines of Java code (counted with Cloc 1). For comparison,
the OpenJDK 7 Update 10 version of RMI consists of roughly 26,000 lines of Java
code (counted with Cloc)—excluding most of the CORBA parts. Additionally, only
very minimal requirements are imposed on the execution environment, as described in
the following paragraphs. We thus consider the ecosystem for Bebop programs to be
lightweight.

6.2.3. Portability

Portability of the Bebop Runtime Environment is provided by the Java language itself,
as the Java Runtime Environment supports various computer architectures. One of
the objectives for the Bebop Runtime Environment was, to be portable to different
communication infrastructures. One of the scenarios is the ARM TrustZone case, where
communication between the trusted environment and normal environment is one on-
chip with the help of special memory areas and special hardware support. Another case
would be a trusted server and a normal client that communicate via a network socket. We
designed the communication interface in a way that imposes minimum requirements. In
fact, the Bebop Runtime Environment supports all kinds of communication that can be
expressed by Java’s InputStream and OutputStream. The Bebop Runtime Environment
exposes a StreamProvider interface that can easily be used to implement support for
various communication interfaces.
The Bebop Runtime Environment can easily be adapted to various communication

interfaces and implementation scenarios. In our reference implementation used in this
thesis, we use a TCP connection and two Java Runtime Environment instances to emu-
late a trusted environment and normal environment. If we switch to Java’s SSLSockets
for the network streams, the connection is encrypted and Bebop can also be used in
a setup with two distinct PCs. This would be an implementation of the client-server
scenario described above. Support for the ARM TrustZone can be implemented with
the help of JNI. The communication with the TrustZone is done by accessing shared
memory with a special API. A C program could be used to abstract the memory access.
A JNI-wrapper and appropriate Java classes could then expose a pair of streams that can
be used with the Bebop Runtime Environment. While having the TrustZone scenario
in mind during the designing of Bebop, we consider support for the ARM TrustZone as
future work.

6.2.4. Scalability and Performance

To give statements about the scalability of the Bebop Runtime Environment, we analysed
the performance of the Bebop Runtime Environment and how it reacts to increasing

1http://cloc.sourceforge.net/ visited on Nov 20 2014

86 6. EVALUATION

1 256 512 768 1,024

0

200

400

600

Payload Size (KB)

P
ro

ce
ss

in
g

T
im

e
(m

s)

100 Messages 250 Messages 500 Messages

Figure 6.1.: Up to a certain size, the Bebop Runtime Environment handles doubling
of the payload size in constant time. If message payloads are greater than
32 KB, processing time increases and shows linear behaviour.

amount of messages. All performance measurement were executed on a Intel Core i5
3317 CPU using Oracle’s Java 1.8.0 Update 25.
For the first analysis we created messages that carry a random payload with differ-

ent size. We send messages from one JRE instance to another, mimicking the normal
environment and trusted environment. We tested the system with different amounts of
messages that must be processed. We used 100, 250 and 500 simultaneous messages. The
payload was successively increased, ranging from 1 to 1024 KB. We conducted a total of
six measurement runs for each message amount and payload size pair. We dropped the
first run to exclude Java type load and JIT-ing times. We then calculated the average of
the remaining five runs, to get a realistic processing time. Figure 6.1 shows the results.
For messages with a payload of up to 32 KB, the processing time is almost constant,

regardless of the payload. For larger messages, the processing time increases and shows
linear behaviour. Doubling the payload effectively doubles the processing time for pay-
load sizes of 128 KB to 1024 KB.
We assume that in real-world use, messages with small payload will be predominant.

A typical world-change consists of two messages: the remote invocation—that must
transport the method arguments to the remote environment—and the result that must
be returned. We analysed how the amount of simultaneous messages with a fixed 4 KB
payload influences the processing time. Figure 6.2 shows the results. We chose the 4 KB
payload because small messages up to 32 KB can be processed in quasi-constant time
as shown in Figure 6.1. We also assume that method arguments or return values that
must be transported do usually not exceed this limit, because we are currently limited
to primitive types only.
The Bebop Runtime Environment handles the increasing amount very well. The chart

shows that increasing the amount of messages by a factor of 100 increases the processing
times only by a factor of roughly 20.

Our analysis shows, that the Bebop Runtime Environment performs well and shows

6.3. Example: Time-Based One-Time Password Derivation 87

100 2,500 5,000 10,000

50

250

500

750

1,000

Message Count

P
ro

ce
ss

in
g

T
im

e
(m

s)

Figure 6.2.: The processing performance of messages with a random 4 KB payload.
Increasing the amount of messages that must be processed has a linear
impact on the processing time.

a linear behaviour in processing time versus message load. We used payload sizes and
messages that we think are realistic for larger programs. For comparison, in the example
presented in section 6.3, the trusted environment sends 3 messages to the normal envir-
onment. In return, it receives 10 messages from the normal environment. This includes
debug messages.

6.3. Example: Time-Based One-Time Password Derivation
6.3.1. Motivation
Deriving one-time passwords or one-time keys from a secret is a common scenario in
cryptography [Che08]. In this example we use the popular TOTP algorithm [MRa+11]
to derive a one-time password. At the time of writing, Wikipedia lists2 about sixty
major websites/corporations supporting this algorithm, featuring big players like Google,
Facebook, Microsoft, etc.

6.3.2. The Program
We designed a program to derive a one-time password with the TOTP algorithm, printed
in Listing 6.1. The Bebop TEE Toolbox offers a cryptographic primitive that encapsu-
lates the algorithm. The algorithm is only part of the trusted-version of the Toolbox
and produces a one-time password with the policy 〈trusted → trusted〉. We need to
pass it the correct parameters for key derivation—we chose to select parameters that are
compatible with Google Authenticator [Van14]. One-time passwords derived with our
implementation are thus compatible with the login mechanisms of e.g. Gmail [Goo14]
or Github [Git13].

2http://en.wikipedia.org/w/index.php?title=Google_Authenticator&oldid=634678467

88 6. EVALUATION

Our program first asks the user to enter their name and PIN in the trusted environ-
ment to authenticate to the system. This is achieved by acquiring a TrustedToolbox
and calling its read method. Having ARM TrustZone devices in mind, these are able
to handle keyboard input in a special way that is directly passed to the trusted envir-
onment. Asking the user to enter their credentials via this secure channel makes sure
that the credentials are not intercepted. If the PIN was correct, the shared secret is
read from trusted storage in the trusted environment. The program then calculates
a one-time password and prints it to the user on the normal environment. One-time
passwords are typically part of a two-factor authentication and only valid for a certain
period of time. We do not consider printing of the one-time password to the normal
environment a security issue here. Nevertheless, information flow policies force us to
issue a declassification of the generated one-time password, before it can be printed to
the normal environment. This is due to information flow from the shared secret—that
has a strict policy—to the one-time token.

Listing 6.1: A TOTP example written for Bebop.
1 package example ;
2 import bebop .tee. TeeToolboxFactory ;
3 public class TOTP implements bebop . runtime . EntryPoint {
4 public void run{trusted ->_}() : {trusted ->_} where caller (trusted) {
5 // TOTP settings compatible to Google Authenticator
6 long interval = 30;
7 long startTime = 0;
8 int{trusted ->_} digits = 6;
9 String {trusted ->_} hash = " HmacSHA1 ";

10 // Compute TOTP time slice
11 long now = TeeToolboxFactory . getNormalToolbox (). getUnixTimestamp ();
12 long time = now - startTime ;
13 try {
14 if (time >= 0) {
15 time = time / interval ;
16 } else {
17 time = (time - (interval - 1)) / interval ;
18 }
19 } catch (ArithmeticException {trusted ->} ae) {}
20 TeeToolboxFactory . getTrustedToolbox (). println (" Please enter your user name.");
21 String user = TeeToolboxFactory . getTrustedToolbox ().read ();
22 TeeToolboxFactory . getTrustedToolbox (). println (" Please enter your PIN code.");
23 String pin = TeeToolboxFactory . getTrustedToolbox ().read ();
24 String referencePin = TeeToolboxFactory . getTrustedToolbox (). readPin (user);
25 try {
26 if (! pin. equals (referencePin)) { return ;}
27 } catch (NullPointerException {trusted ->} npe) { return ;}
28 byte {trusted - >}[] key = TeeToolboxFactory . getTrustedToolbox (). readSharedSecret (user);
29 // Calculate TOTP token
30 String otp = TeeToolboxFactory . getTrustedToolbox (). generateTotp (key , time , digits , hash);
31 declassify ({ trusted ->} to {trusted ->_}) {
32 String declOtp = declassify (otp , {trusted ->} to {trusted ->_});
33 TeeToolboxFactory . getNormalToolbox (). println ("Your one -time password is: " + declOtp);
34 }
35 }
36 }

The TOTP algorithm uses the current time with a precision of 30 seconds as an input.
We are reading the system time from the normal environment. This is no limitation for
the use of the TOTP algorithm. Since derived tokens are used for two-step verification
during a log-in process, manipulating the time just increases the chance that a wrong
token, which is not accepted by the log-in server, is generated.

6.3. Example: Time-Based One-Time Password Derivation 89

6.3.3. Partitioning
The TOTP algorithm depends on a shared secret. This secret must be kept secure. By
reading it from trusted storage, the Bebop Compiler will place the read on the trusted
environment. Authentication of the user to the system is placed on the trusted envir-
onment since credentials are read from trusted I/O. The one-time token is derived from
a variable with a strict policy and thus will also be placed on the trusted environment.
The public parameters for the algorithm do not need special policies and are placed on
the normal environment. The result of the declassification carries a weak policy and will
thus be placed on the normal environment.
The Bebop Compiler is invoked for the input file:

java polyglot.main.Main
-extclass bebop.BebopExtensionInfo
-D bebop-1.0.0/bebop_out
-d bebop-1.0.0/bebop_out
-sigcp jif-3.4.1/sig-classes:bebop-1.0.0/sig-classes
-sourcepath jif-3.4.1/lib-src
-classpath jif-3.4.1/rt-classes:bebop-runtime-1.0.0/classes
-noserial -simpleoutput -fqcn -globalsolve -e

applications/TOTP/TOTP.jif

The Bebop Compiler produces two executable Java .class files along with the ac-
companying Java source code files. The sources for the trusted part are printed in
Listing A.1, the sources for the normal part are printed in Listing A.2.
Execution of the split program always begins in the normal environment. As described

in chapter 5, execution starts in the added main method that bootstraps the Bebop
Runtime Environment. Figure 6.3 gives a graphical overview of the control flow.
After bootstrapping, the Bebop Runtime Environment passes control to the run

method of the class. The original run method has been partitioned into three parts.
The first part contains the calculation of the TOTP time slice. The user authentica-
tion and derivation of the TOTP token was moved out to a separate method named
__m_run_rigyjj. The method __m_run_rigyjj in the normal environment does not
contain the code to derive the TOTP token. Instead, this method is the local method
stub that initiates control transfer to the trusted environment.
After the token was derived, we print the received TOTP token to the standard out of

the normal environment. This happens in the method __m_run_ov0was that is executed
in the normal environment.
The trusted environment partial application is effectively entered via the method

__m_run_rigyjj, when the normal environment passes control in its __m_run_rigyjj
method stub. This method contains the user authentication and derivation of the TOTP
token. Parameters for the TOTP algorithm are passed to the trusted environment in a
CallingContext because their labels in the original program were 〈trusted→ ⊥〉 and
the Bebop Compiler placed the variables in the normal environment.

After derivation of the one-time password, the result is declassified and stored to a
CallingContext for transport to the normal environment.

90 6. EVALUATION

Figure 6.3: The Bebop Compiler moved
derivation of the one-time
token completely to the
trusted environment. This
adheres to the confidential-
ity policies stated in List-
ing 6.1.

Entry Point

brun()

bCalculate time slice

b __m_run_rigyjj()

• Read credentials

• Compare PIN

�
End

• Read shared secret

• Derive token

•__m_run_ov0was

•Print token

�
End

Normal Environment Trusted Environment

wrong PIN

The run method of the trusted environment partial program is the opposite method
stub to the run method of the normal environment. It is actually not used, because it is
not called from the normal environment and execution of a split program does not start
in the trusted environment. This method stub has no use and may safely be removed;
this is planned for future releases of the Bebop Compiler.

6.4. Example: A Password Guessing Game
6.4.1. Motivation
In this second example we implemented a simple log-in mechanism. Comparing a pass-
word entered by a user to a stored password is a very common task. Ideally, we want to
be able to make sure, that this process cannot be tampered with. By partitioning the
log-in program into two parts with the critical statements running in a trusted envir-
onment like the ARM TrustZone, manipulation of the log-in process can be mitigated.
Usually, a password is not stored in plaintext but the hash of a password is stored.
For this example we omitted hashing for the sake of simplicity and compare passwords

6.4. Example: A Password Guessing Game 91

directly.

6.4.2. The Program
Listing 6.2 shows the log-in program. We defined the number of tries and the reference
password with high-confidentiality policies. Note: for the sake of simplicity, we stored
the password in plain text. A real-world implementation should never store a password
in plain text. One possibility is, to use a key derivation function like PBKDF2 [Kal00]
to derive a password hash. Future work may extend the Bebop Runtime Environment
to expose more cryptographic primitives.
We read the user password via a trusted input channel and execute a password compar-

ison. Data flow policies ensure that statements responsible for the comparison „inherit“
the security policy of the user password read from the trusted input channel.
The final result of the comparison is printed to the user on the normal environment. A

declassification is necessary, to express we want to „leak“ the information if the password
was correct on purpose.

Listing 6.2: A password compare example written for Bebop.
1 package iaik;
2
3 import bebop .tee. TeeToolboxFactory ;
4
5 public class PwdCmp implements bebop . runtime . EntryPoint {
6 private String {trusted ->} password = " my_secret ";
7 private int{trusted ->} triesLeft = 3;
8
9 public void run{trusted - >}() : {trusted ->_} where caller (trusted) {

10
11 while (triesLeft > 0) {
12 String {trusted ->} p = TeeToolboxFactory . getTrustedToolbox ().read ();
13 triesLeft --;
14
15 if (compare (p)) {
16 declassify ({ trusted ->} to {trusted ->_}) {
17 TeeToolboxFactory . getNormalToolbox (). println ("Your guess was correct .");
18 }
19 return ;
20 }
21
22 declassify ({ trusted ->} to {trusted ->_}) {
23 TeeToolboxFactory . getNormalToolbox (). println (" Wrong password . Try again .");
24 }
25 }
26
27 declassify ({ trusted ->} to {trusted ->_}) {
28 TeeToolboxFactory . getNormalToolbox (). println ("Out of tries . Good bye.");
29 }
30 }
31
32 private boolean {trusted ->_} compare {trusted - >}(String {trusted ->} p) : {trusted ->_} where caller

↪→ (trusted) {
33 try {
34 if (p. equals (password)) {
35 declassify ({ trusted ->_}) {
36 return true ;
37 }
38 }
39 } catch (NullPointerException {trusted ->} npe) {
40 declassify ({ trusted ->_}) {
41 return false ;
42 }
43 }
44
45 declassify ({ trusted ->_}) {
46 return false ;
47 }
48 }

92 6. EVALUATION

49 }

6.4.3. Partitioning
The Bebop Compiler is invoked for the input file:

java polyglot.main.Main
-extclass bebop.BebopExtensionInfo
-D bebop-1.0.0/bebop_out
-d bebop-1.0.0/bebop_out
-sigcp jif-3.4.1/sig-classes:bebop-1.0.0/sig-classes
-sourcepath jif-3.4.1/lib-src
-classpath jif-3.4.1/rt-classes:bebop-runtime-1.0.0/classes
-noserial -simpleoutput -fqcn -globalsolve -e

applications/PwdCmp/PwdCmp.jif

The Bebop Compiler produces two executable Java .class files along with the ac-
companying Java source code files. The sources for the trusted part are printed in
Listing A.3, the sources for the normal part are printed in Listing A.4.
Execution of the program starts in the run method of the normal environment. Con-

trol is immediately passed to the trusted environment where the password is read from a
trusted input channel. The try-counter—that only exists in the trusted environment—is
decremented and the password is compared. Control is passed to either __m_run_igt121()
or __m_run_ti0zoc() on the normal environment and leads to an output informing the
user if the password was correct. If the password was correct, the program terminates.
If the password was wrong, the program on the trusted environment loops, if tries are
left. After all tries are used up, control is passed to the normal environment and the
user is informed that no tries are left. Afterwards the program terminates.
The Bebop Compiler moved all statements affected by high-confidentiality policies to

the trusted environment. Only output that is explicitly declassified has weaker confid-
entiality policies and is placed on the normal environment.

6.4. Example: A Password Guessing Game 93

Entry Point

brun()

b __m_run_e18yh6()

• Read password

• Decrement try-counter

• Compare password

b__m_run_igt121()

•Print „Password OK“

�
End

•

b__m_run_ti0zoc()

•Print „Password Wrong“

•

•Print „Out of tries“

�
End

Normal Environment Trusted Environment

el
se

if equal

out of tries

Figure 6.4.: The Bebop Compiler moved password comparison and handling of the
try-counter to the trusted environment. The results are declassified and
lead to textual output on the normal environment, that informs the user
if the password was correct.

94 6. EVALUATION

6.5. Future Evaluations
We evaluated two of the most prominent usage scenarios of program partitioning in the
examples above. Clearly, many other examples exist that could be evaluated.
Since we have a working partitioning for the two examples presented above, many other

applications qualify as candidates for partitioning. We propose the following scenarios
for evaluation in future work. We expect the examples to be partitionable with Bebop,
because the basic mechanism is similar to the evaluated examples: sending data to the
trusted world, processing it and (optionally) returning a derived result.

6.5.1. Trusted Maintenance Log

This scenario reflects the idea that devices sold by a manufacturer should be able to
write maintenance logs in a secure way. The log data should be stored in the trusted
environment. In normal operation mode, the application on the device generates log
files and statistics necessary for device maintenance. These logs are sent to the trusted
environment and stored in a secure way. The device is not able to read the logs in normal
operation mode.
In maintenance mode, a service technician should be able to read out the accumulated

log files. The technician must therefore authenticate against the trusted environment.

6.5.2. Trusted Model Branding

Many hardware devices undergo „branding“ during the first-time operation. The brand-
ing decides the feature set of a device. The feature set configuration set by the manu-
facturer must be protected against malicious changes by device operators.
This scenario involves secure storage of the device configuration in the trusted envir-

onment. The normal environment should be able to read the configuration, but should
not be able to alter it.
A special upgrade scenario should be considered: a service technician should be able

to change the branding of a device, if a customer paid for it. This involves secure
authentication of the technician.

6.5.3. Electronic Signature

This scenario is an equivalent to signing documents with a digital signature. The private
key should be stored on the trusted environment only. Data is „uploaded“ to the trusted
environment and signed with the private key. Before data is signed, the user should be
required to enter a PIN code through a trusted channel.

6.5.4. Password Safe

A password safe stores (and generates) secure passwords. The user opens the safe with
a master key that should be read from a trusted channel. The user can then generate or

6.5. Future Evaluations 95

retrieve passwords for a specific service. The password safe should print the password
to a trusted display device on the trusted environment.

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1. Conclusion
We explored partitioning of programs with respect to security policies. We assume that
we have a system with two execution environments where one environment has special
security guarantees and is regarded as trusted. An example for a trusted environment
is the ANDIX OS [Fit14]. Partitioning a program into two parts and moving critical
code to a trusted environment enables us to run critical code with higher security guar-
antees. Bebop is similar to projects like Swift [Cho+07], but Swift has a focus on web
development.
We developed the Bebop Compiler to automatically generate split program that can

be executed in two distinct execution environments. Bebop respects security policies
that are annotated in the input source code. We generate two output programs where
one program targets a trusted environment and one program targets a normal environ-
ment. We used the developed compiler to successfully partition programs, as shown in
chapter 6.
To execute split program, we developed the accompanying Bebop Runtime Environ-

ment. The Bebop Runtime Environment is used to bootstrap and execute each split
program. Additionally, the Bebop Runtime Environment provides the mechanisms used
to invoke remote methods, and to synchronise objects and data across two execution
environments. Calls to the Bebop Runtime Library are woven into the split programs
during the compilation process.

7.1.1. Retrospective
If we were to start the development of Bebop again from the beginning, some of our
decisions would be different. A system that employs a two world partitioning essentially

97

98 7. CONCLUSION AND FUTURE WORK

needs a mechanism to classify data (and its flow) as critical or non-critical. Critical
in this sense can either mean of high confidentiality or needs high integrity guarantees.
Using a type system and typing rules—as proposed by Volpano [VIS96] and used in JIF
[Mye99a]—is a very natural way to express the security concerns. However, JIF itself
may be too „powerful“ if the task is to partition a program. The principal hierarchies
and complex label lattices that follow could be replaced by a much simpler high-low
model, as used by Denning [Den76] in her original work on information flow. Using
a high-low model in combination with type inference for security enhanced types may
allow for writing programs in a more straightforward manner than it is with JIF.
Regarding memory aliasing, we think that functional languages may be a better choice

for the input language, since such languages usually only allow assigning to a variable
once. Especially purely functional languages like Haskell offer ways of writing side effect
free code. We think that implicit information flow for such a language may in many
cases be explicitly visible in code due to single assign, if-expressions and similar features.
We think that studying these properties in combination with a security enhanced type
system may lead to interesting results.
Future projects might also consider changing the granularity of the program parti-

tioning. The Bebop Compiler determines a program partitioning on a per-statement
basis. It may be easier to partition on a per-method basis. This would move parts of
the partitioning process back to the developer who would be required to write methods
that can be moved as a whole.

In general we think there are two main directions for future work on program parti-
tioning:

• Formally correct partitioning by adhering to security policies and by strictly track-
ing information flow in a program. We claim that this leads to unintuitive programs
that are hard to write, but can be proven to be secure, and can be partitioned in
a secure way. Especially label creep makes secure programs hard to write.

• Convenient partitioning that allows for input programs that are easy to write but
can not be proven to be secure. This could be achieved by not tracking information
flow but looking at data flow in a program. Also, the compiler could issue warnings
instead of failing compilation. This lets the developer write code in a way they are
used to, but raises awareness for potential information leaks. The developer could
then tweak only important parts of the code. Such a system could for example
employ a per-method partitioning.

7.2. Future Work

Clearly, developing a compiler is a tall order. For our thesis we were not able to imple-
ment all features we would like to have implemented. Some of the implemented features
show room for improvement.

7.2. Future Work 99

7.2.1. Extending the Bebop Compiler
The Bebop Compiler is working, but limitations apply. The most prominent limitation
currently is the lack of support for integrity policies. When determining a program par-
titioning, we currently only consider confidentiality policies. Integrity policies are the
dual [Bib77] security properties that should be considered when partitioning a program.
Support of this feature includes calculation of a threshold label for integrity policies,
considering the label when calculating a partitioning, support for downgrading mechan-
isms like the endorse-statement and endorse-expression, and redefinition of the runtime
policies to also include integrity. Although we initially aimed to also support integrity
policies, we moved this feature to future work.
Currently, we can only derive the placement of a statement if no dynamic or poly-

morphic labels are used. JIF supports label parameters for classes that allow for a
generic definition of the labels used in a class. The Bebop Compiler currently does not
support parametrised classes. Future projects may investigate mechanisms to derive
static placements from label parameters. This will enable the Bebop Compiler to sup-
port more object oriented features of the input language and thus removes restrictions
that apply for method parameters.
A detailed list of limitations of the Bebop Compiler is already given in section 4.8. This

includes restrictions regarding the type of method parameters, restrictions for statements
used in constructors, and optimisations in code generation.

7.2.2. Extending the Bebop Runtime Environment
The Bebop Runtime Environment works well and there are no urgent features that must
be implemented. Although, one drawback of the Bebop Runtime Environment might be
investigated by future projects: Every time objects are created, the remote environment
must also create a corresponding object. All created objects are stored in a dictionary,
together with an ID to support lookup of objects when it comes to dispatching a remote
call. Usually, objects that go out of scope or are no longer reachable are collected by
the garbage collector. Since the object dictionary always holds a reference to the object,
it can no longer be collected. Additionally, the corresponding remote object must be
destroyed as well.
Currently, there is no mechanism to remove objects from the dictionary, and there

is no mechanism to destroy the remote object. This may lead to massive memory
consumption. Future projects should investigate mechanisms to solve this drawback.
Additional minor drawbacks and topics of future interest exist for the Bebop Runtime

Environment. A detailed list of limitations that shall be addressed in future work is
already given in section 5.8. This includes optimisations for remote data synchronisation
and handling of exceptions during execution of remote methods.

APPENDIX A

SOURCE CODE LISTINGS

A.1. Example: Time-Based One-Time Password Derivation

The original input source code for this example is shown in Listing 6.1 in section 6.3.
This section shows the Java code that is emitted after the post-processing phase of the
Bebop Compiler.

Listing A.1: Trusted environment partial program (Java code) for the TOTP example
of Listing 6.1.

1 package example ;
2 public class TOTP_T {
3 public void run () {
4 { final java.lang. Class [] types = new java.lang. Class [] { };
5 final java.lang. Object [] args = new java.lang. Object [] { };
6 final bebop . runtime .rmi. MethodCall mc = bebop . runtime .rmi. MethodCallFactory . createCall (
7 " example . TOTP_N ", "run", this . __bebop_instance_id , types , args);
8 final bebop . runtime .rmi. ReturnValue ret = bebop . runtime . Runtime . callRemote (mc); }
9 }

10 public example . TOTP_T example$TOTP_T$ () {
11 this . jif$init ();
12 {}
13 return this ;
14 }
15 private void __m_run_ov0was (bebop . runtime . CallingContext __ctx) throws java.lang. ClassCastException {
16 { final java.lang. Class [] types = new java.lang. Class [] { bebop . runtime . CallingContext . class };
17 final java.lang. Object [] args = new java.lang. Object [] { bebop . runtime . BoxHelper .box(__ctx) };
18 final bebop . runtime .rmi. MethodCall mc = bebop . runtime .rmi. MethodCallFactory . createCall (
19 " example . TOTP_N ", " __m_run_ov0was ", this . __bebop_instance_id , types , args);
20 final bebop . runtime .rmi. ReturnValue ret = bebop . runtime . Runtime . callRemote (mc);
21 if (bebop . runtime . ThrowHelper . shouldThrow (ret)) {
22 java.lang. Throwable t = bebop . runtime . ThrowHelper . extractException (ret);
23 if (t instanceof java.lang. ClassCastException) {
24 throw (java.lang. ClassCastException) t; }
25 }
26 __ctx . assimilate ((bebop . runtime . CallingContext) ret. getCallingContext ().load("0")); }
27 }
28 private void __m_run_rigyjj (bebop . runtime . CallingContext __ctx)
29 throws java.lang. NullPointerException , java.lang. ClassCastException {
30 java.lang. String hash_4a32pd ;
31 { hash_4a32pd = (java.lang. String) __ctx .load(" hash_4a32pd "); }
32 long time_icqzpb ;
33 { time_icqzpb = ((java.lang.Long) __ctx .load(" time_icqzpb ")). longValue (); }

101

102 A. SOURCE CODE LISTINGS

34 int digits_h0l4de ;
35 { digits_h0l4de = ((java.lang. Integer) __ctx .load(" digits_h0l4de ")). intValue (); }
36 bebop .tee. TeeToolboxFactory . getTrustedToolbox (). println (" Please enter your user name.");
37 java.lang. String user_kr0wbb = bebop .tee. TeeToolboxFactory . getTrustedToolbox ().read ();
38 bebop .tee. TeeToolboxFactory . getTrustedToolbox (). println (" Please enter your PIN code.");
39 java.lang. String pin_s6u46d = bebop .tee. TeeToolboxFactory . getTrustedToolbox ().read ();
40 java.lang. String referencePin_bydygh =

↪→ bebop .tee. TeeToolboxFactory . getTrustedToolbox (). readPin (user_kr0wbb);
41 try {
42 if (! pin_s6u46d . equals (referencePin_bydygh)) { return ; }
43 } catch (final java.lang. NullPointerException npe) { return ; }
44 byte [] key_dkhbgo = bebop .tee. TeeToolboxFactory . getTrustedToolbox (). readSharedSecret (user_kr0wbb);
45 java.lang. String otp_i6i7er = bebop .tee. TeeToolboxFactory . getTrustedToolbox (). generateTotp (
46 key_dkhbgo , time_icqzpb , digits_h0l4de , hash_4a32pd);
47 { java.lang. String declOtp_fqh8fs = otp_i6i7er ;
48 try {
49 final bebop . runtime . CallingContext __ctx_tenuvd = bebop . runtime . CallingContext . create ();
50 __ctx_tenuvd . store (" declOtp_fqh8fs ", bebop . runtime . BoxHelper .box(declOtp_fqh8fs));
51 this . __m_run_ov0was (__ctx_tenuvd);
52 } catch (java.lang. ClassCastException cce_w64sz4) { throw new java.lang. Error (); } }
53 }
54 private bebop . runtime .Id __bebop_instance_id ;
55 public TOTP_T () {
56 super ();
57 }
58 public void jif$invokeDefConstructor () {
59 this . example$TOTP_T$ ();
60 }
61 private void jif$init () {
62 __bebop_instance_id = bebop . runtime .Id. newId ();
63 }
64 }

Listing A.2: Normal environment partial program (Java code) for the TOTP example
of Listing 6.1.

1 package example ;
2 public class TOTP_N implements bebop . runtime . EntryPoint {
3 public void run () {
4 long interval_dyuoqu = 30, startTime_dtkysg = 0; int digits_h0l4de = 6;
5 java.lang. String hash_4a32pd = " HmacSHA1 ";
6 long now_rtzude = bebop .tee. TeeToolboxFactory . getNormalToolbox (). getUnixTimestamp ();
7 long time_icqzpb = now_rtzude - startTime_dtkysg ;
8 try {
9 if (time_icqzpb >= 0) { time_icqzpb = time_icqzpb / interval_dyuoqu ; }

10 else { time_icqzpb = (time_icqzpb - (interval_dyuoqu - 1)) / interval_dyuoqu ; }
11 } catch (final java.lang. ArithmeticException ae) {}
12 try {
13 final bebop . runtime . CallingContext __ctx_ialvmk = bebop . runtime . CallingContext . create ();
14 __ctx_ialvmk . store (" digits_h0l4de ", bebop . runtime . BoxHelper .box(digits_h0l4de));
15 __ctx_ialvmk . store (" time_icqzpb ", bebop . runtime . BoxHelper .box(time_icqzpb));
16 __ctx_ialvmk . store (" hash_4a32pd ", bebop . runtime . BoxHelper .box(hash_4a32pd));
17 this . __m_run_rigyjj (__ctx_ialvmk);
18 {
19 if (__ctx_ialvmk . didReturn ()) { return ;}
20 }
21 } catch (java.lang. ClassCastException cce_fcjr11) { throw new java.lang. Error ();
22 } catch (java.lang. NullPointerException npe_vgl5i9) { throw new java.lang. Error () ;}
23 }
24 public example . TOTP_N example$TOTP_N$ () {
25 this . jif$init ();
26 {}
27 return this ;
28 }
29 private void __m_run_ov0was (bebop . runtime . CallingContext __ctx) throws java.lang. ClassCastException {
30 java.lang. String declOtp_fqh8fs ;
31 { declOtp_fqh8fs = (java.lang. String) __ctx .load(" declOtp_fqh8fs ");}
32 bebop .tee. TeeToolboxFactory . getNormalToolbox (). println ("Your one -time password is: " +

↪→ declOtp_fqh8fs);
33 }
34 private void __m_run_rigyjj (bebop . runtime . CallingContext __ctx)
35 throws java.lang. NullPointerException , java.lang. ClassCastException {
36 { final java.lang. Class [] types = new java.lang. Class [] { bebop . runtime . CallingContext . class };
37 final java.lang. Object [] args = new java.lang. Object [] { bebop . runtime . BoxHelper .box(__ctx) };
38 final bebop . runtime .rmi. MethodCall mc = bebop . runtime .rmi. MethodCallFactory . createCall (
39 " example . TOTP_T ", " __m_run_rigyjj ", this . __bebop_instance_id , types , args);
40 final bebop . runtime .rmi. ReturnValue ret = bebop . runtime . Runtime . callRemote (mc);
41 __ctx . assimilate ((bebop . runtime . CallingContext) ret. getCallingContext ().load("0")); }

A.2. Example: A Password Guessing Game 103

42 }
43 public static void main(java.lang. String [] args) {
44 bebop . runtime . NwContainer . bootstrap (args , example . TOTP_N . class);
45 }
46 private bebop . runtime .Id __bebop_instance_id ;
47 public TOTP_N () {
48 super ();
49 }
50 public void jif$invokeDefConstructor () {
51 this . example$TOTP_N$ ();
52 }
53 private void jif$init () {
54 __bebop_instance_id = bebop . runtime .Id. newId ();
55 }
56 }

A.2. Example: A Password Guessing Game
The original input source code for this example is shown in Listing 6.2 in section 6.4.
This section shows the Java code that is emitted after the post-processing phase of the
Bebop Compiler.

Listing A.3: Trusted environment partial program (Java code) for the password com-
pare example of Listing 6.2.

1 package iaik;
2 public class PwdCmp_T {
3 private java.lang. String password ;
4 private int triesLeft ;
5 public void run () {
6 {
7 final java.lang. Class [] types = new java.lang. Class [] { };
8 final java.lang. Object [] args = new java.lang. Object [] { };
9 final bebop . runtime .rmi. MethodCall mc =

↪→ bebop . runtime .rmi. MethodCallFactory . createCall ("iaik. PwdCmp_N ", "run",
↪→ this . __bebop_instance_id , types , args);

10 final bebop . runtime .rmi. ReturnValue ret = bebop . runtime . Runtime . callRemote (mc);
11 }
12 }
13
14 private boolean compare (final java.lang. String p) {
15 try {
16 if (p. equals (this . password)) {
17 return true ;
18 }
19 } catch (final java.lang. NullPointerException npe) {
20 return false ;
21 }
22 return false ;
23 }
24
25 public iaik. PwdCmp_T iaik$PwdCmp_T$ () {
26 this . jif$init ();
27 { }
28 return this ;
29 }
30
31 private void __m_run_igtl2l (bebop . runtime . CallingContext __ctx) throws

↪→ java.lang. NullPointerException {
32 {
33 final java.lang. Class [] types = new java.lang. Class [] { bebop . runtime . CallingContext . class };
34 final java.lang. Object [] args = new java.lang. Object [] { bebop . runtime . BoxHelper .box(__ctx) };
35 final bebop . runtime .rmi. MethodCall mc =

↪→ bebop . runtime .rmi. MethodCallFactory . createCall ("iaik. PwdCmp_N ", " __m_run_igtl2l ",
↪→ this . __bebop_instance_id , types , args);

36 final bebop . runtime .rmi. ReturnValue ret = bebop . runtime . Runtime . callRemote (mc);
37 if (bebop . runtime . ThrowHelper . shouldThrow (ret)) {
38 java.lang. Throwable t = bebop . runtime . ThrowHelper . extractException (ret);
39 if (t instanceof java.lang. NullPointerException) {
40 throw (java.lang. NullPointerException) t;
41 }
42 }

104 A. SOURCE CODE LISTINGS

43 __ctx . assimilate ((bebop . runtime . CallingContext) ret. getCallingContext ().load("0"));
44 }
45 }
46
47 private void __m_run_ti0zoc (bebop . runtime . CallingContext __ctx) {
48 {
49 final java.lang. Class [] types = new java.lang. Class [] { bebop . runtime . CallingContext . class };
50 final java.lang. Object [] args = new java.lang. Object [] { bebop . runtime . BoxHelper .box(__ctx) };
51 final bebop . runtime .rmi. MethodCall mc =

↪→ bebop . runtime .rmi. MethodCallFactory . createCall ("iaik. PwdCmp_N ", " __m_run_ti0zoc ",
↪→ this . __bebop_instance_id , types , args);

52 final bebop . runtime .rmi. ReturnValue ret = bebop . runtime . Runtime . callRemote (mc);
53 __ctx . assimilate ((bebop . runtime . CallingContext) ret. getCallingContext ().load("0"));
54 }
55 }
56
57 private void __m_run_e18yh6 (bebop . runtime . CallingContext __ctx) {
58 while (this . triesLeft > 0) {
59 java.lang. String p_r37dqb = bebop .tee. TeeToolboxFactory . getTrustedToolbox ().read ();
60 this .triesLeft --;
61 if (this . compare (p_r37dqb)) {
62 try {
63 final bebop . runtime . CallingContext __ctx_ps3bcb = bebop . runtime . CallingContext . create ();
64 this . __m_run_igtl2l (__ctx_ps3bcb);
65 {
66 if (__ctx_ps3bcb . didReturn ()) {
67 __ctx . setReturn ();
68 return ;
69 }
70 }
71 } catch (java.lang. NullPointerException npe_npik0w) {
72 throw new java.lang. Error ();
73 }
74 }
75 final bebop . runtime . CallingContext __ctx_1cqzy3 = bebop . runtime . CallingContext . create ();
76 this . __m_run_ti0zoc (__ctx_1cqzy3);
77 {
78 if (__ctx_1cqzy3 . didBreak ()) {
79 __ctx_1cqzy3 . clearBreak ();
80 break ;
81 }
82 if (__ctx_1cqzy3 . didContinue ()) {
83 __ctx_1cqzy3 . clearContinue ();
84 continue ;
85 }
86 }
87 }
88 }
89
90 private bebop . runtime .Id __bebop_instance_id ;
91
92 public PwdCmp_T () { super (); }
93
94 public void jif$invokeDefConstructor () { this . iaik$PwdCmp_T$ (); }
95
96 private void jif$init () {
97 password = " my_secret ";
98 triesLeft = 3;
99 __bebop_instance_id = bebop . runtime .Id. newId ();

100 }
101 }

Listing A.4: Normal environment partial program (Java code) for the password com-
pare example of Listing 6.2.

1 package iaik;
2
3 public class PwdCmp_N implements bebop . runtime . EntryPoint {
4 public void run () {
5 final bebop . runtime . CallingContext __ctx_vahqk7 = bebop . runtime . CallingContext . create ();
6 this . __m_run_e18yh6 (__ctx_vahqk7);
7 {
8 if (__ctx_vahqk7 . didReturn ()) {
9 return ;

10 }
11 }
12 {
13 bebop .tee. TeeToolboxFactory . getNormalToolbox (). println ("Out of tries . Good bye.");

A.2. Example: A Password Guessing Game 105

14 }
15 }
16
17 private boolean compare (final java.lang. String p) {
18 {
19 final java.lang. Class [] types = new java.lang. Class [] { java.lang. String . class };
20 final java.lang. Object [] args = new java.lang. Object [] { bebop . runtime . BoxHelper .box(p) };
21 final bebop . runtime .rmi. MethodCall mc =

↪→ bebop . runtime .rmi. MethodCallFactory . createCall ("iaik. PwdCmp_T ", " compare ",
↪→ this . __bebop_instance_id , types , args);

22 final bebop . runtime .rmi. ReturnValue ret = bebop . runtime . Runtime . callRemote (mc);
23 try {
24 return ((java.lang. Boolean) ret. getReturnValue ()). booleanValue ();
25 } catch (java.lang. NullPointerException npe_yhgetb) {
26 throw new java.lang. Error ();
27 }
28 }
29 }
30
31 public iaik. PwdCmp_N iaik$PwdCmp_N$ () {
32 this . jif$init ();
33 { }
34 return this ;
35 }
36
37 private void __m_run_igtl2l (bebop . runtime . CallingContext __ctx) throws

↪→ java.lang. NullPointerException {
38 {
39 bebop .tee. TeeToolboxFactory . getNormalToolbox (). println ("Your guess was correct .");
40 }
41 return ;
42 }
43
44 private void __m_run_ti0zoc (bebop . runtime . CallingContext __ctx) {
45 {
46 bebop .tee. TeeToolboxFactory . getNormalToolbox (). println (" Wrong password . Try again .");
47 }
48 }
49
50 private void __m_run_e18yh6 (bebop . runtime . CallingContext __ctx) {
51 {
52 final java.lang. Class [] types = new java.lang. Class [] { bebop . runtime . CallingContext . class };
53 final java.lang. Object [] args = new java.lang. Object [] { bebop . runtime . BoxHelper .box(__ctx)
54 };
55
56 final bebop . runtime .rmi. MethodCall mc =

↪→ bebop . runtime .rmi. MethodCallFactory . createCall ("iaik. PwdCmp_T ", " __m_run_e18yh6 ",
↪→ this . __bebop_instance_id , types , args);

57 final bebop . runtime .rmi. ReturnValue ret = bebop . runtime . Runtime . callRemote (mc);
58 __ctx . assimilate ((bebop . runtime . CallingContext) ret. getCallingContext ().load("0"));
59 }
60 }
61
62 public static void main(java.lang. String [] args) {
63 bebop . runtime . NwContainer . bootstrap (args , iaik. PwdCmp_N . class);
64 }
65
66 private bebop . runtime .Id __bebop_instance_id ;
67
68 public PwdCmp_N () { super (); }
69
70 public void jif$invokeDefConstructor () { this . iaik$PwdCmp_N$ (); }
71
72 private void jif$init () { __bebop_instance_id = bebop . runtime .Id. newId (); }
73 }

BIBLIOGRAPHY

[AGH96] Ken Arnold, James Gosling and David Holmes. The Java programming lan-
guage. Vol. 2. Addison-Wesley Reading, 1996.

[Aho+07] Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, & Tools (2nd Edition). Boston, MA, USA:
Pearson Education, Inc., 2007. isbn: 0321491696.

[ARM] ARM Ltd. TrustZone. url: http://www.arm.com/products/processors/technolo

gies/trustzone/index.php (visited on 11/09/2014).

[Bib77] Kenneth J Biba. Integrity considerations for secure computer systems. Tech.
rep. DTIC Document, 1977.

[BL73] D Elliott Bell and Leonard J LaPadula. Secure computer systems: Mathem-
atical foundations. Tech. rep. DTIC Document, 1973.

[Bor90] Richard Bornat. Understanding and Writing Compilers: A do-it-yourself
guide. Macmillan Publishing Co., Inc., 1990. url: http://www.eis.mdx.ac.uk/

staffpages/r_bornat/books/compiling.pdf.

[BS04] David Brumley and Dawn Song. „Privtrans: Automatically Partitioning
Programs for Privilege Separation“. In: Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13. SSYM’04. San Diego, CA:
USENIX Association, 2004, pp. 5–5. url: http://dl.acm.org/citation.cfm?

id=1251375.1251380.

[Cam+03] Katherine Campbell, Lawrence A Gordon, Martin P Loeb and Lei Zhou.
„The economic cost of publicly announced information security breaches:
empirical evidence from the stock market“. In: Journal of Computer Security
11.3 (2003), pp. 431–448.

107

http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.eis.mdx.ac.uk/staffpages/r_bornat/books/compiling.pdf
http://www.eis.mdx.ac.uk/staffpages/r_bornat/books/compiling.pdf
http://dl.acm.org/citation.cfm?id=1251375.1251380
http://dl.acm.org/citation.cfm?id=1251375.1251380

[CCM08] Michael R. Clarkson, Stephen Chong and Andrew C. Myers. „Civitas: To-
ward a Secure Voting System“. In: Proceedings of the 2008 IEEE Symposium
on Security and Privacy. SP ’08. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 354–368. isbn: 978-0-7695-3168-7. doi: 10.1109/SP.2008.32.
url: http://dx.doi.org/10.1109/SP.2008.32.

[Che08] Lily Chen. „Recommendation for Key Derivation Using Pseudorandom Func-
tions“. In: NIST Special Publication SP 800-108 (2008).

[Cho+07] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian
Zheng and Xin Zheng. „Secure Web Applications via Automatic Partition-
ing“. In: SIGOPS Oper. Syst. Rev. 41.6 (Oct. 2007), pp. 31–44. issn: 0163-
5980. doi: 10.1145/1323293.1294265. url: http://doi.acm.org/10.1145/1323293.

1294265.

[Cho+09] Stephen Chong, Andrew C. Myers, K. Vikram and Zheng Lantian. Jif Ref-
erence Manual. Feb. 2009. url: http://www.cs.cornell.edu/jif/doc/jif-

3.3.0/manual.html.

[CM10] Byung-Gon Chun and Petros Maniatis. „Dynamically Partitioning Applic-
ations Between Weak Devices and Clouds“. In: Proceedings of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social Networks and
Beyond. MCS ’10. San Francisco, California: ACM, 2010, 7:1–7:5. isbn:
978-1-4503-0155-8. doi: 10.1145/1810931.1810938. url: http://doi.acm.org/

10.1145/1810931.1810938.

[CMR04] Huseyin Cavusoglu, Birendra Mishra and Srinivasan Raghunathan. „The
effect of internet security breach announcements on market value: Capital
market reactions for breached firms and internet security developers“. In:
International Journal of Electronic Commerce 9.1 (2004), pp. 70–104.

[Coo+07] Ezra Cooper, Sam Lindley, Philip Wadler and Jeremy Yallop. „Links: Web
Programming Without Tiers“. In: Proceedings of the 5th International Con-
ference on Formal Methods for Components and Objects. FMCO’06. Ams-
terdam, The Netherlands: Springer-Verlag, 2007, pp. 266–296. isbn: 3-540-
74791-5, 978-3-540-74791-8. url: http://dl.acm.org/citation.cfm?id=1777707.

1777724.

[DD77] Dorothy E. Denning and Peter J. Denning. „Certification of programs for
secure information flow“. In: Commun. ACM 20.7 (July 1977), pp. 504–
513. issn: 0001-0782. doi: 10.1145/359636.359712. url: http://doi.acm.org/

10.1145/359636.359712.

[Den76] Dorothy E. Denning. „A lattice model of secure information flow“. In: Com-
mun. ACM 19.5 (May 1976), pp. 236–243. issn: 0001-0782. doi: 10.1145/

360051.360056. url: http://doi.acm.org/10.1145/360051.360056.

108

http://dx.doi.org/10.1109/SP.2008.32
http://dx.doi.org/10.1109/SP.2008.32
http://dx.doi.org/10.1145/1323293.1294265
http://doi.acm.org/10.1145/1323293.1294265
http://doi.acm.org/10.1145/1323293.1294265
http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html
http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html
http://dx.doi.org/10.1145/1810931.1810938
http://doi.acm.org/10.1145/1810931.1810938
http://doi.acm.org/10.1145/1810931.1810938
http://dl.acm.org/citation.cfm?id=1777707.1777724
http://dl.acm.org/citation.cfm?id=1777707.1777724
http://dx.doi.org/10.1145/359636.359712
http://doi.acm.org/10.1145/359636.359712
http://doi.acm.org/10.1145/359636.359712
http://dx.doi.org/10.1145/360051.360056
http://dx.doi.org/10.1145/360051.360056
http://doi.acm.org/10.1145/360051.360056

[DS00] Premkumar T. Devanbu and Stuart Stubblebine. „Software Engineering for
Security: A Roadmap“. In: Proceedings of the Conference on The Future of
Software Engineering. ICSE ’00. Limerick, Ireland: ACM, 2000, pp. 227–
239. isbn: 1-58113-253-0. doi: 10.1145/336512.336559. url: http://doi.acm.

org/10.1145/336512.336559.

[FH07] Dinei Florencio and Cormac Herley. „A Large-scale Study of Web Pass-
word Habits“. In: Proceedings of the 16th International Conference on World
Wide Web. WWW ’07. Banff, Alberta, Canada: ACM, 2007, pp. 657–666.
isbn: 978-1-59593-654-7. doi: 10.1145/1242572.1242661. url: http://doi.acm.

org/10.1145/1242572.1242661.

[Fit14] Andreas Gregor Fitzek. „Development of an ARM TrustZone aware oper-
ating system ANDIX OS“. MSc Thesis. 2014.

[Git13] GitHub Inc. Two-factor Authentication. Sept. 2013. url: https://github.

com/blog/1614-two-factor-authentication (visited on 25/11/2014).

[GM82] Joseph A Goguen and José Meseguer. „Security Policies and Security Mod-
els“. In: IEEE Symposium on Security and Privacy. IEEE Computer Society.
1982, pp. 11–20.

[Goo14] Google Inc. Google 2-Step Verification. 2014. url: https://www.google.com/

landing/2step/ (visited on 25/11/2014).

[Gos+14] James Gosling, Bill Joy, Guy Steele, Gilda Bracha and Alex Buckley. The
Java® Language Specification. 2014. url: http://docs.oracle.com/javase/

specs/jls/se8/html/.

[HAM06] Boniface Hicks, Kiyan Ahmadizadeh and Patrick Mcdaniel. „From Lan-
guages to Systems: Understanding Practical Application Development in
Security-typed Languages“. In: In Proceedings of the 22nd Annual Com-
puter Security Applications Conference (ACSAC 2006). 2006, pp. 11–15.

[Hew77] Carl Hewitt. „Viewing control structures as patterns of passing messages“.
In: Artificial intelligence 8.3 (1977), pp. 323–364.

[Hon12] Mat Honan. „How Apple and Amazon security flaws led to my epic hacking“.
In: wired.com, August 6 (2012). url: http://www.wired.com/2012/08/apple-

amazon-mat-honan-hacking/.

[IWS04] Blake Ives, Kenneth R. Walsh and Helmut Schneider. „The Domino Effect
of Password Reuse“. In: Commun. ACM 47.4 (Apr. 2004), pp. 75–78. issn:
0001-0782. doi: 10.1145/975817.975820. url: http://doi.acm.org/10.1145/

975817.975820.

[Kal00] Burt Kaliski. „PKCS# 5: Password-Based Cryptography Specification Ver-
sion 2.0“. In: Internet Requests for Comments, Internet Engineering Task
Force (IETF), RFC 2898 (2000).

109

http://dx.doi.org/10.1145/336512.336559
http://doi.acm.org/10.1145/336512.336559
http://doi.acm.org/10.1145/336512.336559
http://dx.doi.org/10.1145/1242572.1242661
http://doi.acm.org/10.1145/1242572.1242661
http://doi.acm.org/10.1145/1242572.1242661
https://github.com/blog/1614-two-factor-authentication
https://github.com/blog/1614-two-factor-authentication
https://www.google.com/landing/2step/
https://www.google.com/landing/2step/
http://docs.oracle.com/javase/specs/jls/se8/html/
http://docs.oracle.com/javase/specs/jls/se8/html/
http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/
http://dx.doi.org/10.1145/975817.975820
http://doi.acm.org/10.1145/975817.975820
http://doi.acm.org/10.1145/975817.975820

[Kil03] Douglas Kilpatrick. „Privman: A Library for Partitioning Applications“. In:
USENIX Annual Technical Conference, FREENIX Track. 2003, pp. 273–
284.

[Lam73] Butler W. Lampson. „A Note on the Confinement Problem“. In: Commun.
ACM 16.10 (Oct. 1973), pp. 613–615. issn: 0001-0782. doi: 10.1145/362375.

362389. url: http://doi.acm.org/10.1145/362375.362389.

[Lan+94] Carl E. Landwehr, Alan R. Bull, John P. McDermott and William S. Choi.
„A Taxonomy of Computer Program Security Flaws“. In: ACM Comput.
Surv. 26.3 (Sept. 1994), pp. 211–254. issn: 0360-0300. doi: 10.1145/185403.

185412. url: http://doi.acm.org/10.1145/185403.185412.

[Lie81] Henry Lieberman. A Preview of Act 1. Tech. rep. DTIC Document, 1981.

[Liu+09] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye and Andrew
C. Myers. „Fabric: A Platform for Secure Distributed Computation and
Storage“. In: Proceedings of the ACM SIGOPS 22Nd Symposium on Oper-
ating Systems Principles. SOSP ’09. Big Sky, Montana, USA: ACM, 2009,
pp. 321–334. isbn: 978-1-60558-752-3. doi: 10.1145/1629575.1629606. url:
http://doi.acm.org/10.1145/1629575.1629606.

[ML00] Andrew C. Myers and Barbara Liskov. „Protecting Privacy Using the De-
centralized Label Model“. In: ACM Trans. Softw. Eng. Methodol. 9.4 (Oct.
2000), pp. 410–442. issn: 1049-331X. doi: 10.1145/363516.363526. url: http:

//doi.acm.org/10.1145/363516.363526.

[ML97] Andrew C. Myers and Barbara Liskov. „A Decentralized Model for Informa-
tion Flow Control“. In: SIGOPS Oper. Syst. Rev. 31.5 (Oct. 1997), pp. 129–
142. issn: 0163-5980. doi: 10.1145/269005.266669. url: http://doi.acm.org/

10.1145/269005.266669.

[ML98] A.C. Myers and B. Liskov. „Complete, safe information flow with decent-
ralized labels“. In: Security and Privacy, 1998. Proceedings. 1998 IEEE
Symposium on. May 1998, pp. 186–197. doi: 10.1109/SECPRI.1998.674834.

[MRa+11] D M’Raihi, S Machani, M Pei and J Rydell. „TOTP: Time-Based One-
Time Password Algorithm“. In: Internet Requests for Comments, Internet
Engineering Task Force (IETF), RFC 6238 (2011).

[Mye99a] Andrew C. Myers. „JFlow: Practical Mostly-static Information Flow Con-
trol“. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’99. San Antonio, Texas, USA:
ACM, 1999, pp. 228–241. isbn: 1-58113-095-3. doi: 10.1145/292540.292561.
url: http://doi.acm.org/10.1145/292540.292561.

[Mye99b] Andrew C Myers. „Mostly-static decentralized information flow control“.
PhD thesis. Massachusetts Institute of Technology, 1999.

110

http://dx.doi.org/10.1145/362375.362389
http://dx.doi.org/10.1145/362375.362389
http://doi.acm.org/10.1145/362375.362389
http://dx.doi.org/10.1145/185403.185412
http://dx.doi.org/10.1145/185403.185412
http://doi.acm.org/10.1145/185403.185412
http://dx.doi.org/10.1145/1629575.1629606
http://doi.acm.org/10.1145/1629575.1629606
http://dx.doi.org/10.1145/363516.363526
http://doi.acm.org/10.1145/363516.363526
http://doi.acm.org/10.1145/363516.363526
http://dx.doi.org/10.1145/269005.266669
http://doi.acm.org/10.1145/269005.266669
http://doi.acm.org/10.1145/269005.266669
http://dx.doi.org/10.1109/SECPRI.1998.674834
http://dx.doi.org/10.1145/292540.292561
http://doi.acm.org/10.1145/292540.292561

[NCM03] Nathaniel Nystrom, Michael R. Clarkson and Andrew C. Myers. „Polyglot:
An Extensible Compiler Framework for Java“. In: Proceedings of the 12th
International Conference on Compiler Construction. CC’03. Warsaw, Po-
land: Springer-Verlag, 2003, pp. 138–152. isbn: 3-540-00904-3. url: http:

//dl.acm.org/citation.cfm?id=1765931.1765947.

[NISa] NIST. National Vulnerability Database. url: https://web.nvd.nist.gov/view/

vuln/search- results?adv_search=true&cves=on&pub_date_start_month=4&pub_

date_start_year=2014&pub_date_end_month=7&pub_date_end_year=2014 (visited on
11/09/2014).

[NISb] NIST. National Vulnerability Database. url: https://web.nvd.nist.gov/view/

vuln/statistics-results?adv_search=true&cves=on&cwe_id=CWE-200&pub_date_

start_month=0&pub_date_start_year=2003&pub_date_end_month=11&pub_date_end_

year=2013 (visited on 11/09/2014).

[NNH99] F. Nielson, H.R. Nielson and C. Hankin. Principles of Program Analysis.
Springer, 1999. isbn: 9783540654100.

[Ok10] Efe A. Ok. Order Theory and its Applications. New York University, Dec.
2010. url: https://files.nyu.edu/eo1/public/Book-PDF/Contents%20(ORDER).pdf.

[Ora14] Oracle Inc. Java Remote Method Invocation. 2014. url: https://docs.oracle.

com/javase/7/docs/platform/rmi/spec/rmiTOC.html (visited on 15/11/2014).

[PFH03] Niels Provos, Markus Friedl and Peter Honeyman. „Preventing Privilege
Escalation“. In: Proceedings of the 12th Conference on USENIX Security
Symposium - Volume 12. SSYM’03. Washington, DC: USENIX Association,
2003, pp. 16–16. url: http://dl.acm.org/citation.cfm?id=1251353.1251369.

[PS03] François Pottier and Vincent Simonet. „Information Flow Inference for
ML“. In: ACM Trans. Program. Lang. Syst. 25.1 (Jan. 2003), pp. 117–158.
issn: 0164-0925. doi: 10.1145/596980.596983. url: http://doi.acm.org/10.

1145/596980.596983.

[San+11] Nuno Santos, Himanshu Raj, Stefan Saroiu and Alec Wolman. „Trusted
Language Runtime (TLR): Enabling Trusted Applications on Smartphones“.
In: Proceedings of the 12th Workshop on Mobile Computing Systems and Ap-
plications. HotMobile ’11. Phoenix, Arizona: ACM, 2011, pp. 21–26. isbn:
978-1-4503-0649-2. doi: 10.1145/2184489.2184495. url: http://doi.acm.org/

10.1145/2184489.2184495.

[San+14] Nuno Santos, Himanshu Raj, Stefan Saroiu and Alec Wolman. „Using ARM
Trustzone to Build a Trusted Language Runtime for Mobile Applications“.
In: Proceedings of the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ASPLOS ’14. Salt
Lake City, Utah, USA: ACM, 2014, pp. 67–80. isbn: 978-1-4503-2305-5. doi:
10.1145/2541940.2541949. url: http://doi.acm.org/10.1145/2541940.2541949.

111

http://dl.acm.org/citation.cfm?id=1765931.1765947
http://dl.acm.org/citation.cfm?id=1765931.1765947
https://web.nvd.nist.gov/view/vuln/search-results?adv_search=true&cves=on&pub_date_start_month=4&pub_date_start_year=2014&pub_date_end_month=7&pub_date_end_year=2014
https://web.nvd.nist.gov/view/vuln/search-results?adv_search=true&cves=on&pub_date_start_month=4&pub_date_start_year=2014&pub_date_end_month=7&pub_date_end_year=2014
https://web.nvd.nist.gov/view/vuln/search-results?adv_search=true&cves=on&pub_date_start_month=4&pub_date_start_year=2014&pub_date_end_month=7&pub_date_end_year=2014
https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&cwe_id=CWE-200&pub_date_start_month=0&pub_date_start_year=2003&pub_date_end_month=11&pub_date_end_year=2013
https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&cwe_id=CWE-200&pub_date_start_month=0&pub_date_start_year=2003&pub_date_end_month=11&pub_date_end_year=2013
https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&cwe_id=CWE-200&pub_date_start_month=0&pub_date_start_year=2003&pub_date_end_month=11&pub_date_end_year=2013
https://web.nvd.nist.gov/view/vuln/statistics-results?adv_search=true&cves=on&cwe_id=CWE-200&pub_date_start_month=0&pub_date_start_year=2003&pub_date_end_month=11&pub_date_end_year=2013
https://files.nyu.edu/eo1/public/Book-PDF/Contents%20(ORDER).pdf
https://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmiTOC.html
https://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmiTOC.html
http://dl.acm.org/citation.cfm?id=1251353.1251369
http://dx.doi.org/10.1145/596980.596983
http://doi.acm.org/10.1145/596980.596983
http://doi.acm.org/10.1145/596980.596983
http://dx.doi.org/10.1145/2184489.2184495
http://doi.acm.org/10.1145/2184489.2184495
http://doi.acm.org/10.1145/2184489.2184495
http://dx.doi.org/10.1145/2541940.2541949
http://doi.acm.org/10.1145/2541940.2541949

[San93] Ravi S. Sandhu. „Lattice-based access control models“. In: Computer 26.11
(1993), pp. 9–19.

[SCH08] Nikhil Swamy, Brian J. Corcoran and Michael Hicks. „Fable: A Language
for Enforcing User-defined Security Policies“. In: Proceedings of the 2008
IEEE Symposium on Security and Privacy. SP ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 369–383. isbn: 978-0-7695-3168-7. doi:
10.1109/SP.2008.29. url: http://dx.doi.org/10.1109/SP.2008.29.

[SGL06] Manuel Serrano, Erick Gallesio and Florian Loitsch. „Hop: a language for
programming the web 2.0“. In: OOPSLA Companion. 2006, pp. 975–985.

[SM06] A. Sabelfeld and A. C. Myers. „Language-based Information-Flow Security“.
In: IEEE J.Sel. A. Commun. 21.1 (Sept. 2006), pp. 5–19. issn: 0733-8716.
doi: 10.1109/JSAC.2002.806121. url: http://dx.doi.org/10.1109/JSAC.2002.

806121.

[SR03] Vincent Simonet and Inria Rocquencourt. „Flow Caml in a Nutshell“. In:
Proceedings of the first APPSEM-II workshop. 2003, pp. 152–165.

[SS75a] Jerome H. Saltzer and Michael D. Schroeder. „The protection of information
in computer systems“. In: Proceedings of the IEEE 63.9 (1975), pp. 1278–
1308.

[SS75b] Gerald Jay Sussman and Guy L Steele Jr. „Scheme: An Interpreter for
Extended Lambda Calculus“. In: AI Memo No. 349 (1975).

[SS94] Ravi S Sandhu and Pierangela Samarati. „Access Control: Principles and
Practice“. In: Communications Magazine, IEEE 32.9 (1994), pp. 40–48.

[Van14] Robbie Vanbrabant. How Google Authenticator Works. Sept. 2014. url:
http : / / garbagecollected . org / 2014 / 09 / 14 / how - google - authenticator - works/

(visited on 10/11/2014).

[Vas+12] Amit Vasudevan, Emmanuel Owusu, Zongwei Zhou, James Newsome and
Jonathan M McCune. Trustworthy Execution on Mobile Devices: What se-
curity properties can my mobile platform give me? Springer, 2012.

[VIS96] Dennis Volpano, Cynthia Irvine and Geoffrey Smith. „A Sound Type System
for Secure Flow Analysis“. In: J. Comput. Secur. 4.2-3 (Jan. 1996), pp. 167–
187. issn: 0926-227X. url: http://dl.acm.org/citation.cfm?id=353629.353648.

[Wu+13] Yongzheng Wu, Jun Sun, Yang Liu and Jin Song Dong. „Automatically
Partition Software into Least Privilege Components using Dynamic Data
Dependency Analysis“. In: Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on. IEEE. 2013, pp. 323–333.

[Yee02] Ka-Ping Yee. User Interaction Design for Secure Systems. Springer, 2002.

112

http://dx.doi.org/10.1109/SP.2008.29
http://dx.doi.org/10.1109/SP.2008.29
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1109/JSAC.2002.806121
http://garbagecollected.org/2014/09/14/how-google-authenticator-works/
http://dl.acm.org/citation.cfm?id=353629.353648

[Zda+02] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom and Andrew C. Myers.
„Secure Program Partitioning“. In: ACM Trans. Comput. Syst. 20.3 (Aug.
2002), pp. 283–328. issn: 0734-2071. doi: 10.1145/566340.566343. url: http:

//doi.acm.org/10.1145/566340.566343.

[Zda02] Stephan Arthur Zdancewic. „Programming languages for information secur-
ity“. PhD thesis. Cornell University, 2002. url: http://www.cis.upenn.edu/

~stevez/papers/Zda02.pdf.

[ZM01] Steve Zdancewic and Andrew C. Myers. „Robust Declassification“. In: Pro-
ceedings of the 14th IEEE Workshop on Computer Security Foundations.
CSFW ’01. Washington, DC, USA: IEEE Computer Society, 2001, pp. 5–.
url: http://dl.acm.org/citation.cfm?id=872752.873524.

113

http://dx.doi.org/10.1145/566340.566343
http://doi.acm.org/10.1145/566340.566343
http://doi.acm.org/10.1145/566340.566343
http://www.cis.upenn.edu/~stevez/papers/Zda02.pdf
http://www.cis.upenn.edu/~stevez/papers/Zda02.pdf
http://dl.acm.org/citation.cfm?id=872752.873524

	Acknowledgements
	Publication Notice
	Introduction
	Background
	Problem Description
	Contribution
	Structure of this Thesis

	Preliminaries
	Covert Channels
	Information Flow
	The Non-Interference Property
	Security Policies
	Secure Information Flow
	JIF
	Principals
	The acts-for Relation
	Confidentiality Policies
	Integrity Policies
	Labels
	A Security Enhanced Type System
	Tracking Implicit Flow
	Termination Labels
	Handling Exceptions
	Authority
	Methods
	Downgrading
	Working with Arrays
	Polymorphic Labels
	Java Interoperability
	Writing JIF Programs

	The Polyglot Compiler Framework
	Compiler Construction 101
	ast
	Compiler Passes

	Trusted Execution Environments

	Related Work
	Security Enhanced Languages
	Focused on Partitioning for Security
	Focused on Partitioning for Convenience
	Trusted Execution Environments

	The Bebop Compiler
	Motivation
	Goals
	Architecture Overview
	The Bebop Compilation Pipeline
	Integration in the Compiler Framework
	The Input Language
	The Bebop Compilation Strategy
	Interacting with the Bebop Runtime Environment

	Pre-Processing Phase
	Phase One
	Finding the Placement of a Statement
	Annotate AST with Placement
	Extract declassify Sub-Expressions
	Remove final Modifier from Fields
	Hoist Local Variables to Fields
	Derive Placement for Unlabelled Nodes
	Disambiguate Placement Labels
	Partitioning Methods
	Sink Fields to Local Variables

	Phase Two
	Duplicate and Rename
	Remove Opposite Fields
	Replace Methods by Stubs
	Add main Method to Normal Partial Application
	Remove Entry Point from Trusted Partial Application
	Rewrite Object Creation
	Remove Opposite Statements from Constructor
	Patch Instance ID Fields

	Post-Processing Phase
	Limitations and Future Work
	Chapter Summary

	The Bebop Runtime
	Introduction
	Architecture Overview
	The Runtime Environment
	The Runtime Library

	Hosting Applications
	Connecting the Two Worlds
	Remote Object Activation
	Remote Method Invocation
	Executing a Program
	Limitations and Future Work
	Chapter Summary

	Evaluation
	Compiler Evaluation
	On Reusing Swift

	Runtime Evaluation
	Extensibility
	Lightweightness
	Portability
	Scalability and Performance

	Example: Time-Based One-Time Password Derivation
	Motivation
	The Program
	Partitioning

	Example: A Password Guessing Game
	Motivation
	The Program
	Partitioning

	Future Evaluations
	Trusted Maintenance Log
	Trusted Model Branding
	Electronic Signature
	Password Safe

	Conclusion and Future Work
	Conclusion
	Retrospective

	Future Work
	Extending the Bebop Compiler
	Extending the Bebop Runtime Environment

	Source Code Listings
	Example: Time-Based One-Time Password Derivation
	Example: A Password Guessing Game

	Bibliography

