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Abstract

We present a method to combine multiple local SLAM maps into combined maps in a

client-server system. The server takes care of all clients and tries to detect overlapping

regions among keyframes committed by clients. The system supports different clients with

different levels of complexity, such as a thin client, which is used for image acquisitions,

or an autonomous SLAM client, which generates its own local map. If clients move,

the combined map is refreshed to keep pace with the client’s local map. Beyond the

combination of client maps, the server system can update clients to improve their local

system using keyframes and poses. Allowing clients to operate in the same context, will

serve as a base for future AR applications. In particular, multiple clients commit their

keyframes and the server generates a per-client reconstruction, as well a combined map.

Afterwards, the clients receive updates in form of new keyframes and poses, to improve

and enlarge their local system.

Keywords. SLAM, Multiuser-SLAM, AR, SfM, multiclient, server reconstruction, map

combination, map expansion
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Kurzfassung

In dieser Arbeit präsentieren wir ein Client-Server System zur Erstellung von 3D

Karten. Benutzer können dabei ein SLAM-System verwenden (mobiler Computer,

Smartphone), um eine lokale 3D Karte zu erzeugen. Während der Erstellung, können

Bilder der beobachteten Szene und weitere Information wie Kamera Posen zum Server

übertragen werden. Das Server-System erstellt für jeden Benutzer eine 3D Karte und

versucht die 3D Karten mehrerer Benutzer zu größeren Karten zu kombinieren. Ist es

möglich zwei oder mehr Benutzer zu kombinieren, werden alle betroffen Benutzer vom

Server aktualisiert, um ihr lokales System zu verbessern oder ihre lokale 3D Karte zu

vergrößern. Lokal verwendete Systeme können von sehr einfach (kein Tracking, es

werden nur Bilder übertragen) bis hin zu sehr komplex (lokales SLAM System, dass

auch Informationen vom Server-System beziehen kann) reichen. Haben nun mehrere

Benutzer eine gemeinsame 3D Karte erstellt, kann diese als Grundlage für verschiedene

AR Applikationen dienen.
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1
Introduction

1.1 Introduction

Creating a 3D reconstruction of the environment through the use of Computer Vision

has become mature recently. Those 3D models can be used for many applications in

architecture, engineering, navigation and robotics. The main classes of algorithms are

those that are (1) named as SfM, while typically run offline and process huge amounts

of visual and sensory data, and those (2) which target real-time applications using more

lightweight algorithms and restrict themselves to certain types of input data.

The first class, Structure from Motion, can use ordered or unordered sets of images

taken by one or multiple cameras. Vision based algorithms, retrieve 3D information from

image correspondences, which are often calculated using natural feature detectors like

SIFT [39]. If uncalibrated cameras are used, the calibration is based on the detected

natural features. Inaccurate camera calibrations lead to inaccurate reconstructions. SfM

is similar to the stereo reconstruction problem. Usually, the 3D reconstruction is a sparse

point-cloud including the camera trajectories. Current approaches mainly operate on

outdoor data towards city-scale reconstructions.

The second class, Simultaneous Localization and Mapping, creates a map of the envi-

ronment and localizes the current view, while using observations of 3D points, within the

created map. The aim is to provide a precise position and orientation to the operating

application, which could feed navigation-systems or any kind of AR-applications. Such

systems have to be incremental to enlarge the reconstruction, when moving towards unob-

served areas. Beyond visual algorithms, sensors like GPS (Global Positioning System) or

LiDAR (Laser detection and Ranging) can be taken into account. Due to the lightweight

nature of these algorithms, algorithmic parts have to be well chosen, to deliver results as

good as necessary, when operated in real-time (e.g. replacing SIFT with a more lightweight

feature detector).

Although the clean separation of approaches into these classes has been blurred re-

cently through the advent of more powerful hardware in the desktop and mobile section,

1
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2 Chapter 1. Introduction

from the algorithmic point of view, distinctive properties and features are still visible. For

the applications in AR, where real-time applicability is constantly a key issue, the second

class has been accepted. SLAM approaches enable users to interact with their environ-

ment at a very intuitive and extensive way, allowing for playing games or interacting in

architecture. However, SLAM systems typically operate in the single user domain, and

adopting operability and applications to the multi-user domain is not straightforward.

When moving applications into the multi-user domain, certain questions become rele-

vant.

How will multiple users communicate?

Can 3D information from one users space be transferred into another users space?

How can different users interact?

Is there a need for a common 3D space?

We are going to tackle some of these questions with our approach. To generate a

common foundation for communication and data exchange, it is necessary to operate

within the same 3D space. User can receive information already transformed into the

local space or users are transformed into the shared space. Peer-to-Peer as well as client-

server approaches look promising. We will show, how to solve some of the named problems,

when using a client-server system, where users can register and collaboratively create a

3D reconstruction. This system will also serve as a common foundation for all users.

1.2 Method

In this work, we present a method for scalable collaborative SLAM. With a key aspect

on combining multiple SLAM maps into bigger ones. Our approach uses a server-client

architecture, without strong dependencies between a server and its clients, which allows the

usage of clients with different levels of complexity. Thin clients may take high resolution

pictures (significantly higher as in current SLAM systems) and commit those, without

further processing for more detailed reconstructions. Fat clients may operate a local SLAM

system and refine their own measurements, using information provided by the server. The

server performs SfM per client and tries to combine clients, by detecting overlapping

regions in images of the observed scene. Our proposed method detects overlaps among

images, using image matching with natural features. To combine two maps, we search for

correspondences between image features and triangulated points, or between triangulated

points of two related maps. Based on this information, we calculate a 3D transformation

to align both maps. We can distinguish between the following cases of possible map

combinations: (i) combining two clients to get a merged map. (ii) combining a client

with a merged map to expand this map. (iii) combining two merged maps to get a bigger

merged map.
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Therefore multiple clients may generate a combined map and update their local infor-

mation, by the information generated by other clients. In detail, the server system holds

an individual data-queue per client, which is updated if the combined map changes (e.g.

a new client is added or the map of a participating client grew). The provided data, like

keyframes and camera positions and orientations, is individually prepared for each client.

Clients can then expand their local maps or improve their tracking performance based

on the received data. For instance, when adding received keyframes to the local SLAM

system, measurements like observations of certain 3D points may be added.

Operating within the same coordinate system, allows Augmented Reality (AR) appli-

cations to share similar information among different clients. The motivation is to generate

merged maps, enlarge them when clients are discovering new areas of the environment,

and let clients know, what is beyond their current view. This enlarges the range of possible

applications considerably over the single-user use case. Imagine a city could be stepwise

reconstructed. Separate parts would be connected by participating clients. New clients

(e.g. tourists) could navigate without the need of creating a map, and could possibly use

annotations provided by other clients. Further, the server information could be updated

over time and the collaborative reconstruction could improve or stay up to date.

Another application could be a simple card game. Each player would view the same

content from his perspective. Annotations or other information would be shared among

the players, and each player could interact with the scene, affecting the other players. The

problem of how to represent information among different clients would disappear, because

each client would participate to the same map. An obvious application is navigation.

Self-driving vehicles could explore different parts of the environment, which would then

be combined to a global representation. Subsequently passing vehicles would then already

know the area and could navigate with less danger.

We provide a scalable SLAM-System, with knowledge from all clients improving the

individual client-performance, in terms of localization and tracking, by allowing clients to

actualize and expand their local information with available updates. Knowledge about

clients operating in the same environment is achieved by detecting, which clients observe

the same scene, and combining their maps and poses. The server system stores generated

maps in a pool and lets clients participate if they reside in the same environment as a cer-

tain map of the pool. The advantages of our system, spread from supporting a big variety

of clients up to improving their performance and serving a common coordinate system for

data exchange. Extending existing clients with our our server system, causes negligible

effects on real-time performance and allows lightweight implementations. Further, clients

can handle incoming poses and keyframes like local ones, which also reduces additional

computational effort. Additionally, our system does not restrict to certain client imple-

mentations and allows clients to decide on their own, when and how much data to pull

from the server.
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1.3 Outline

The rest of this thesis is structured as follows. Chapter 2 explains the mathematical

foundation and mathematical notations of this work, defining the terms camera, pose

and calibration. Subsequently the epipolar geometry of a stereo camera setup and how

the essential and the fundamental matrices are calculated is described in the latter points

of this section. We present algorithms, which are used to calculate poses from point

correspondences. Finally an overview of bundle adjustment, and a description of SO3

and SE3 Lie-groups.

Chapter 3 is divided into two parts. First we give an overview over relevant

work about structure from motion, followed by an description of relevant work in the

area of simultaneous tracking and mapping.

Chapter 4 presents our work and gives a closer look of individual parts of

our system. First, we give a rough overview of the SfM pipeline used in our work and

illustrate example reconstructions. Second, the proposed server system is explained, going

into detail on how to perform various operations, like the detection of overlapping images

or the combination of two maps. Furthermore, differences between the 3 point pose and

scale estimation algorithm and the Horn alignment algorithm are shown, as well the

chosen client-server communication approach. In the remainder of the section, we present

different clients, like a thin client with no SLAM and an autonomous SLAM client. Our

three operational modes for SLAM clients are explained as well. Finally we report de-

tails about the current implementation of the server-system and the client implementation.

Chapter 5 shows details about the executed experiments, where each part

describes one test environment in detail. First, we describe the Carpet scene,

which is used to test the imeplemented merge algorithm for various clients. Then,

we describe the test environments Cardgame and Office. Cardgame is used to

test different client modes, while Office is a general experiment. Finally, we give

additional thoughts on the executed experiments and show some real application examples.

Chapter 6 summarizes the proposed approach and gives an outlook to ongo-

ing work with further examples of possible applications and concluding remarks.



2
Mathematical foundation

This section describes basic mandatory algorithms and related mathematical notations,

which are used in our work. Matrices are denoted as bold capital letters like R and column

vectors are written as bold small letters like x. The italic capital letter I is denoted to

images and we refer to scalars as small italic letters like s. The capital letter X denotes a

3D point and the small letter x denotes a 2D point.

2.1 Camera

A pose defines the rotation and translation of the camera with respect to a given coordinate

system. The pose P, a 3×4 matrix, can transform 3D points of a world coordinate system

into the camera coordinate system. R is a 3× 3 rotation matrix and c (3× 1) defines the

camera center. R and t form P, as shown in equation 2.2. The camera calibration matrix

K, which captures the intrinsic parameters of the camera, is used to project 3D points

from the camera coordinate system onto the image plane of the camera. fx and fy describe

the focal length in x and y direction and px and py are the position of the principal point

in the image plane. For more details about camera representation and calibration, the

interested reader is referred to [26]. A keyframe defines a single image or frame, which is

taken at a certain point of time, in a subsequent chain of frames used for reconstruction.

Due to the orthogonality of the rotation matrix, we can invert the pose using equation

2.4. The inverse pose P−1 is used to transfer a point from the camera coordinate system

into the world coordinate system. Equation 2.5 shows how to project a 3D point X onto

the image plane of the camera, where w is used to normalize x.

K =

fx 0 px
0 fy py
0 0 1

 (2.1)

P = [R|t] (2.2)

5
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6 Chapter 2. Mathematical foundation

t = −R ∗ c (2.3)

P−1 = [RT | −RT ∗ t] (2.4)

(
x

w

)
= K ∗P ∗

(
X

1

)
(2.5)

2.2 Epipolar Geometry

The epipolar geometry describes the relations of a stereo image pair I1, I2 of the same

scene. Further, the epipolar lines l and l′ are the projection of one epipole into the other

image and the corresponding epipoles e and e′ are the intersection of the baseline with the

image plane, as shown in figure 2.1. The Fundamental Matrix F, is used when uncalibrated

cameras are used and maps a point of one image to the corresponding epipolar line in the

other image l′ = Fx, which follows from x′TFx = 0. The Essential Matrix E is the

calibrated version of F and defined by E = KTFK, where K is the camera calibration

(see equation 2.1). In the case of different cameras, both camera calibrations have to be

taken into account. Epipoles are defined by the intersection of the baseline and the image

plane.

Figure 2.1: Epipolar geometry showing image correspondeces x and x′, the epipoles e and e′ with
corresponding epipolar line l and l′. Image from [26].

2.3 Stereo reconstruction

The epipolar geometry is used to verify image point correspondences and to discard out-

liers. Points are triangulated by solving equation 2.6 for X using the singular value

Reference:
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decomposition (SVD, see [25]). X defines a 3D point, P and K define the pose and the

camera calibration, and xi and xi
′ are the corresponding image points of each image.

xi
′ ⇔ xi,

xi = KPXi

xi
′ = K′P′Xi

}
⇒ AX = 0, A = UDVT (2.6)

For each further keyframe, one may get more observations (xi, xi
′, xi
′′, . . . ) for a certain

3D point (X). It is very likely to happen, that results of solving equation 2.6 may vary

with increasing number oft points. To compensate for this behaviour, a so called bun-

dle adjustment step is needed to optimize 3D point positions and camera positions and

orientations. A more detailed explanation of the bundle adjustment follows in section 2.7.

2.4 5-Point-Pose

The 5PP algorithm estimates the relative rotation and translation of a camera with respect

to the other given one, using five or more 2D-2D point correspondences. Over the last

years many solutions have appeared to this problem. More recent approaches are shown

by Nistér [42], Stewenius et al. [52] and a fast iterative approach is shown by Hedborg and

Felsberg [27]. Figure 2.2 shows five point correspondences from two images with their 3D

points. The idea is to solve equation 2.7, where x′ and x are corresponding 2D points, K1

and K2 define the camera calibration matrices and E is the essential matrix.

x′(K−12 )TEK−11 x = 0 (2.7)

Figure 2.2: Five point pose estimation. Image from [52].

The following five steps show the basic idea of Stewenius approach.

(i) The linear equations of the epipolar constraint are used to parametrise the essential

matrix, with three unknows.

(ii) Rank and trace constraints are used to build ten polynomial equations in the three

unknowns.

(iii) the Gröbner basis is computed.

(iv) A 10× 10 action matrix is computed.
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(v) The eigenvectors of the action matrix are computed. Back-substitute to (i) to obtain

the solution for the essential matrix.

2.5 3-Point-Pose

3PP is used to estimate the camera pose relative to a given set of 3D points. Therefore, at

least three 2D-3D point correspondences are needed, which are used to form three arbitrary

rays to determine the pose. Three point correspondences are not sufficient for a definitely

solution and deliver up to four different solutions. At minimum four point correspondences

are needed for a unique result. A possible algorithm, as shown by Nistér et al. in [43] is

performed in six steps, which includes line up of rays and points in their canonical position.

Followed by the calculation of plane and polynomial coefficients. Extracting the roots of

the polynomial and back-substituting them, will deliver the pose of the camera in the

given 3D point set.

The POSIT algorithm, introduce by DeMenthon and Davis [16], takes 2D-3D cor-

respondences and camera parameters and returns rotation and translation of the pose.

Figure 2.3 shows the orthographic projection as used in the algorithm.

When using four points it boils down to equation 2.8, where s is the scale, K and P

are the camera calibration and the camera pose, and x and X are 2D-3D correspondeces,

as shown by Bujnak et al. [11].

s ∗ x = KPX (2.8)

Figure 2.3: Three point pose estimation. Scaled orthographic projection as used in the POSIT
algorithm. Image from [16].
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2.6 Horn alignment

Horn Alignment uses 3D-3D point correspondences to calculate the transformation be-

tween two sets of points, including scale e.g. 3D points of a point cloud A corresponding

to 3D points of point cloud B. There are at least four point correspondences required,

to determine the rotation matrix R, the translation vector t and the scaling parameter

s. In particular, the algorithm initially calculates the centroids of each point-set, using

equation 2.9. The scale can then be directly calculated from cA and cB, where ||·|| defines

the euclidean distance (see equation 2.10). R is determined by calculating the singular

value decomposition on the outer product of all correspondences, and afterwards multi-

plying with the calculated SVD components, as shown in equation 2.13. Note that, before

calculating the SVD, one point set has to be scaled by s or s−1, according on how s is

calculated in equation 2.10. The translational vector can be calculated by using the cen-

troids following equation 2.14. A closed form solution of the algorithm is shown by Horn

[30].

cA =
1

N
∗

N∑
i=1

XAi , cB =
1

N
∗

N∑
i=1

XBi (2.9)

s =
1

N
∗

N∑
i

||XAi − cA||
||XBi − cB||

(2.10)

L =

N∑
i=1

XAi × s ∗XBi (2.11)

UDVT = SV D(L) (2.12)

R = LVDVT (2.13)

t = cA −R ∗ cB (2.14)

The resulting rotation matrix R, the translation vector t and the scaling s are a

transformation between two 3D spaces. Using this we can easily align two pointclouds. 3D

points can be transformed using equation 2.16. Poses can be transformed using equation

2.17. In equation 2.15 0 denotes a 3D vector of zeros.

M =

[
R t ∗ s
0T 1

]
(2.15)

X′ = s ∗ (R ∗X + t) (2.16)
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P′ = P ∗M−1 (2.17)

2.7 Bundle adjustment

Bundle adjustment is a non-linear optimization technique, which is often used in 3D

reconstructions or SLAM systems to improve point and pose estimates. Incorporating all

calculations at once, Nistér and Engels give a good description in their work [21], on how

to refine data, achieved by a static camera and an object placed on a turning table in

front. Without bundle adjustment, the received circular positioned poses would be on a

deformed circle, caused by incremental errors and computational inaccuracy. Applying

bundle adjustment after each added frame, they could achieve poses, placed on a perfect

circle around the object (see figure 2.4). However, key for good bundle adjustment results,

is the initialization as bundle adjustment can not compensate for poor initializations.

Further, it improves the overall performance, by improving each initialization of a new

pose, by correcting all previous ones. The basic idea is to minimize the re-projection error1

over all known frames. Further approaches to bundle adjustment are shown in [3, 38]. An

actively developed project is the Ceres Solver [2], which includes a big selection of different

solvers and is rather fast.

Figure 2.4: Bundle adjustment. The top row shows the object placed on a turning table. The
middle and last row show camera poses with and without bundle adjustment. Image from [21].

1Difference between measurement of a point and the projection of its 3D-point onto the image plane of
a certain camera.
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2.8 Lie-Algebra

Because this is a very big field in mathematics, which is used for operations among ge-

omtrical bodies, we concentrate on the specific groups SO3 and SE3. SO3 describes the

group of orthogonal rotation matrices and allows to represent a 3×3 rotation matrix as an

unique 3× 1 vector. SE3 expands SO3 while adding a translation vector to the rotation.

Regarding to SLAM and SfM systems we can use SE3 to represent a pose. One advantage

is to reduces the amount of stored data. Further, we can lossless transform back and forth

between the notations. An advantage over euler angles is, that rotation is unique and does

not require a e.g. XYZ notation like euler angles. More about Lie-Algebra can be found

in Knapp’s work [36] and [44, 47].

P = [R|t] (2.18)

SE3(P) =



tx
ty
tz
rx
ry
rz


(2.19)
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3
Related Work

In the following we will review related work from the area of SfM and SLAM, and will

discuss closely related approaches on solving the multi-user problem in detail.

3.1 Structure from motion

Over the last years different approaches to SfM have been established. We list some of

them, which appear relevant to our work. Images used as input for SfM systems may have

various sources, including big image databases with unsorted images like Flickr1, (sequen-

tial) images retrieved by UAVs (Unmaned Areal Vehicle) or any other image acquisition

device. Such devices range from smartphones, optical cameras to cameras with integrated

depth sensors. Reconstructions reach from small scale like an office to world-sized as it

is done in the Google StreetView2 project. Since it was a far way to UAVs, early works

show already high sophisticated algorithms for scene reconstruction. Amstrong et al. show

in their work a two step process on how to generate euclidean reconstructions from un-

calibrated images [6]. In particular, they recover structure up to affine ambiguity from

two views and use one or more additional views to determine the intrinsic parameters of

the camera. Further, Baillard et al. [7] show how to automatically reconstruct piecewise

planar models from multiple views. They utilize inter-image homographies to validate and

estimate best planes for the reconstruction. 3D model acquisition from extended image

sequences is performed by Beardsley et al. [9], where token based matches across an image

triplet are used to compute a 3D structure.

Snavely et al. show, how to browse thousands of images and how to visualize them

in a sparse 3D model, using an incremental approach [50]. In detail, they add one image

at the time and optimize with bundle adjustment, as shown later in [51]. Further, their

system performes well on images of major landmarks, but fails to reconstruct from images,

which are not connected to the initial reconstruction, resulting in the usage of a smaller

1Flickr, https://www.flickr.com/
2https://www.google.com/maps/views/streetview
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14 Chapter 3. Related Work

subset of large photo collections. Using large unsorted datasets, leads to slowdowns in the

later reconstruction, therefore they consider to somehow pre-order images. Based on this

work Snavely created the bundler3 software, which can handle unordered image collections,

using the SBA (Sparse Bundle Adjustment) introduced by Lourakis and Argyros [38]. SBA

is a software package, that utilizes the sparsity of the jacobians in bundle adjustment to

gain computational savings. The bundle software has become the standard reconstruction

tool for the scientific community to compare novel SfM approaches to.

Further, Agarwal et al. show in Building Rome in a Day [1] how to remove sequen-

tial bottlenecks and how to maximize parallelism, while processing 150K images on 500

compute cores, allowing reconstructions of whole cities. Their approached system scales

with the problem and also with the available computational resources, which becomes

important, when trying to process datasets with millions of images. Due to the analysis of

online datasets, they discovered that there is a high probability of matching images taken

by single users. This fact is utilized in the proposed skeletal algorithm. One drawback

is, the challenging problem of starting with finished reconstructions, and enlarging them

with new images from online databases.

Irschara et al. use calibrated cameras for large-scale reconstruction, with the goal to

serve a wiki-based system for information retrieval [31]. By applying the wiki principle

(collaborative intelligence, articles (models) get better if more users participate), they

avoid using online databases like Flickr as used in other works, but they tend to use

user based participations, to generate a photo-realistic model of an urban environment.

Generated models can be maintained and gradually refined by adding new images.

Pollefeys et al. adapt current state of the art algorithms towards GPU, to achieve

rael-time performance demonstrated on urban video sequences [4, 45]. In particular, they

operate on video streams with acquired GPS information. Because of the large dynamic

range of outdoor environments, the system has to estimate the global camera gain for

future frames, and has to compensate for it. The focus of the system is on redundancy

between frames (redundant information may be seen across tens of frames). Based on this,

a 2D tracker tracks features over frames for possible 3D points before reconstruction. The

final result are ground-based and dense geo-registered models.

A slightly different approach is taken by Strecha et al. in [54], when trying to create a

connected model, by avoiding the reconstruction of loose connected sights, under usage of

the provided image meta-data. Bundle adjustment is applied on smaller clusters to avoid

high memory footprints, instead of operating on whole large-scale maps. If we consider

our system in terms of combining clients, bundle adjustment on smaller clusters might be

a key feature when it comes to save computation time and to lower the memory usage.

Further they are able to update their model when new images arrive.

Vergauwen and Van Gool show, how to create a webbased 3D reconstruction applica-

tion operating with self calibrating cameras [60]. A global image comparison algorithm

3Bundler, http://www.cs.cornell.edu/~snavely/bundler/
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based on normalized cross correlation, is used to rapidly identify pairs of images, which are

very likely to match and be used for 3D reconstruction. Dense matching is used to assure

that enough 3D points can be calculated for a high quality 3D reconstruction. Users are

able to upload their images and to receive a 3D model using the provided application.

Further they show how to realise a queueing system, operating with a compute cluster.

The proposed system was in beta testing at the time of submission (2006) and was used

by several users to create 3D models from cultural heritage related images.

Hoppe et al. shows a scalable and computationally more efficient approach of SfM

[32]. In particular, they propose a view selection strategy, which is based on GPS/IMU

(Inertial Measuring Units), to reduces matching efforts. Additionally a fast and scalable

reconstruction approach, based on global rotation registration and robust bundle

adjustment, is shown. In [12], Hoppe et al. show an online SfM approach, with an surface

extraction for visualization.

The number of approaches described is far from exhaustive. However, there

is a clear trend towards real-time reconstruction recently, which is mainly driven by the

increasing availability of compute clusters and low-cost GPUs. In particular, our mean

SfM server part is based on the work of Hoppe and does currently not use positioning

data. Further, Vergauwen and Van Gool point to a real-time queueing-system and how

to parallelize reconstruction, which is also considered in our work. Strechas approach, to

apply bundle adjustment on clusters of large-scale maps to void big memory footprints

and higher computational efforts, is also considered an optional addition to our system.

3.2 SLAM systems

In this section we point at existing systems, like PTAM, PTAMM or C2TAM, which may

perform in realtime or even in a cloud. PTAM is one of the first applications, allowing

real-time operations, PTAMM added a multi-map system. C2TAM moved the mapping

part to the server and the tracking part to the clients.

More than twenty years ago, navigational problems with robots in known and unknown

environments where first investigated. Since then, various solutions have been proposed.

Smith et al. show how to estimate spatial relationships in [49], and Chatila et al. show

solutions to consistent modelling the environment for mobile robots. Later, Dissanayake

proposed a solution to the SLAM problem in [18] and Montemerlo presented FastSLAM,

as operating SLAM system, which also tackles the loop closure problem [40]. Loop closure

is the problem of detecting revisited areas in a certain map, to avoid recreating already

created parts of the map. Solutions to this problem have been shown by Ho in [28] and

Angeli in [5]. Davison proposed a bayesian based SLAM system in [14], operating with

one camera and robust (re)localization. A comparison between filter based and keyframe

based SLAM systems, is show by Davison et al. in [53], with the conclusion that keyframe

based systems with bundle adjustment outperform filter based ones, in terms of accuracy
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per unit of computing time.

Davison et al. introduced MonoSLAM, which is a probabilistic approach to the SLAM

problem, showing that realtime (drift-free) performance is possible, with pure vision of

a single uncontrolled camera [15]. The central part of the system is a sparse map of

natural landmarks of the environment, which is created at runtime, using a probabilistic

framework. Further, a motion-model for smooth camera movement is applied and solutions

for monocular feature initialization and feature orientation estimation are presented.

Klein and Murray presented PTAM, achieving real-time performance by performing

tracking and mapping in parallel [34]. Key aspect is, that while using a single camera

mapping operations operate on keyframes and no more on each frame, which may often

contain redundant information e.g. still standing versus moving camera. The computation

of a single keyframe has to be finished with the next keyframe, and no longer with the

next frame, allowing instant point triangulations of new features. Mandatory is the dense

initialization of the system, otherwise further tracking may easily fail. In [35], PTAM is

ported to mobile phones and achieves real-time performance, including 3D objects directly

rendered into the tracked scene.

Wendel et al. use the PTAM tracker on UAVs and the mapper on the server [61].

Their aerial vehicle sends keyframes and poses to the server for reconstruction. The

reconstructed scene is visualized on an interactive visualization client, a tablet.

Tan et al. proposed a method to handle dynamic environments,by updating stored

keyframes and projecting features among keyframes, as shown in [57]. They introduce

SIFT with keyframe representation and allow to remove invalid 3D points and keyframes

for occluded objects. Further, their system is more reliable for fast camera movements

and can handle dynamic environments including objects entering and leaving the scene in

realtime.

Newcombe et al. [41] show with DTAM, how to perform SLAM without features, by

estimating depth maps from selected keyframes and improving the estimates with the

underlying video stream. In particular hundreds of images are used to minimize a global

spatially regularised energy functional. Therefore, detailed textured depth maps can be

estimated for selected keyframes, which leads to a surface patchwork with many vertices.

The system is limited to constant brightness and can not hold the performance at dynamic

real world illumination.

RGB-D SLAM uses a low-cost camera, with integrated depth sensor, such as Microsoft

Kinect, to gain depth information of certain points, as shown by Endres et al. [19]. They

localize extracted visual keypoints in 3D within the measured depth-maps. To make the

system more robust (e.g. highly changing scenes), a quality measurement is introduced,

which is used to reject inaccurate measurements.

Izadi et al. proposed KinectFusion [33], a system to create 3D reconstructions in real-

time. 3D points are tracked using only the depth information, retrieved by the Microsoft

Kinect sensor. Additionally, they present novel GPU techniques to allow real-time AR

applications.
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Engel et al. [20] take a different approach, to current state-of-the-art algorithms. In-

stead of using feature points, they use the image intensity to calculate image alignments,

resulting in precise pose estimates. Their system, LSD-SLAM , is capable to operate in

large-scale and complex environments in real-time.

3.3 Multi User SLAM/SfM

The following section describes approaches towards the multi-user domain, which are

relevant for our work. Castle et al. show in [13] with PTAMM, how to handle multiple

maps and multiple cameras, using PTAM as foundation. They describe how to localize

within multiple maps and how to generate them. Further, it is necessary to allow switching

between maps when the user leaves the known area, if maps are not combined and are

held as distinctive ones. When tracking is lost, a camera close to the current position is

selected and is tried to be re-localised among the stored maps. A drawback of the system

is the large memory footprint when growing, which strongly limits scalability.

Riazuelo et al. show with their cloud-based framework [37] different approach to PTAM

and an evolution of PTAMM. C2TAM introduces a server-client architecture, where they

move the mapping task to the server, and they let clients perform the tracking task. Clients

send keyframes to the server for map generation and receive the created map. After each

server side bundle adjustment iteration, clients are updated with new map information.

The server supports operations to fuse maps. If a client gets lost and the local relocation

fails, it can receive filtered keyframes of various maps for localization and, if successful,

retrieve the whole related map. Growing maps rapidly increases the amount of transferred

data, which is a major bottleneck when using clients with limited bandwidths.

Zou et al. show with CoSLAM in [62], how to use multiple cameras to collaborative

create a map and to handle dynamic objects. Dynamic objects are tracked among different

cameras, and their corresponding 3D points are also marked in the map. The created map

can distinct between various types of 3D points, like static points or dynamic points. Fur-

ther, cameras can be split and merged into groups, based on view dependence, according

to their overlap.

Ventura et al. combine in their work [59] a server localization system with a local

SLAM client operating on a mobile phone. In particular, to avoid difficulties arising

through the narrow field-of-view mobile phone cameras, they transmit keyframes to a

server system, which then performs localization based on a pre-made and geo-registered

model of the environment. The SLAM client receives updates in form of pose corrections

and anchor points to refine the local map and limit drifting. The system allows globally

registered tracking in real-time and is not limited to stored maps, however, the server-side

reconstruction is not altered over time.

A system to combine traditional keyframe-based SLAM with panorama (rotation only)

mapping and tracking, is presented by Gauglitz in [58]. Key aspect is to identify the

camera motion and to switch between the two models, based on the introduced geometric
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robust information criterion (GRIC). If tracking is lost, a new track is started and tried

to be stitched to previous tracks by detecting overlapping regions in images, instead of

trying to re-localize the system and possibly rejecting information, which is not used for

re-localization. The result is a combination of a 3D structure and panoramic maps.

Sweeney describes in [56], a method to use SfM and SLAM cooperatively to

enhance each others performance, without implementation. It allows SLAM systems,

to navigate within pre-made 3D models or to discover new areas. Further, multiple

users will be able to extend and enhance reconstructions of urban environments. Those

users will provide visual data to fill coverage gaps and receive 3D information for

local usage. He also mentions, that it is necessary to reduce costs of bundle adjust-

ment for large-scale dense 3D models, however, any proof of concept is still missing to date.

Hook et al. show in [29], different methods for server-client and/or client-

client communication for map exchange, generated with devices, which are capable for

image retrieval and data communication, as well as sensors like GPS or magnetometers.

Exchanged maps between clients and server may be stitched, by identifying common

features in maps and calculating rotation, translation and scale between them, as well as

using other sensors to ease the calculation. Clients may then receive updates, to localize

themselves in the stitched maps. If such a map exceeds the local storage of a client, the

server may handle the map as multiple sub-maps, and update one client with one of

those. Further, they show different data transmission scenarios, like whole maps, reduced

subsets of maps, necessary data, compressed maps or maps with excluded data, which

can be recalculated.

3.4 Comparison to our approach

In contrast to our proposed system, some of the mentioned works point in similar di-

rections. [29, 37, 56, 62] describe server-client architectures and how to combine maps

generated by clients or multiple cameras of the same system. Riazuelos C2TAM puts the

tracking on the clients and the mapping to the server, generating a hard dependency be-

tween clients and server. Instead of trying to update whole maps on clients like Sweeney

and Hook, we let clients decide by their own, what information to get and limit the given

possibilities to poses and keyframes. We also highlight a loose dependency between server

and clients and support different clients with no restriction, except the implementation of

communication methods. PTAMM shows a method, to switch between maps without the

need of stitching, by detecting edge areas of the active map.
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4
Our Approach

This chapter describes our approach. We go through the server system and describe

different clients and relevant scenarios challenging servers and clients. Further we show

in detail, how individual parts of the server work and provide reasonable solutions for

occurring problems.

4.1 SfM Pipeline

As mentioned in the previous section, the used SfM pipeline is based on Hoppe’s work[12].

The keyframe based reconstruction pipeline (see figure 4.1 and 4.2) is capable to generate

a full 3D reconstruction for a set of images and provided camera calibrations. To avoid

side effects of uncalibrated cameras, the system operates with calibrated cameras only,

otherwise an estimation over keyframe pairs was necessary. The 5-Point-Pose algorithm

(see [42] and [52]) is used for initialization and applied between the first two keyframes.

Further keyframes, are added using the 3-Point-Pose [43] algorithm. All 2D-2D corre-

spondences are calculated using the GPUSIFT implementation, described in [48] verified

using epipolar geometry constraints. 3D points are triangulated based on valid 2D-2D

correspondences between pairs of sequential keyframes. A repetitive bundle adjustment

step (see section 2.7) is applied to minimize the error in the reconstruction and to reduce

drift, which is caused through the incremental nature of the reconstruction approach.

The result of the SfM pipeline is a 3D representation of the observed environment,

including the camera poses. Such a map holds a sparse 3D point cloud, corresponding

features to the 3D points, poses of the used keyframes and the used keyframes themselves.

As described, a keyframe runs through the following steps, to extend a client specific

reconstruction.

1 A Keyframe is added to the pipeline.

2 SIFT features of the added keyframe are extracted.
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Figure 4.1: Keyframe based reconstruction pipeline. Keyframes and camera calibration are
passed to the incremental reconstruction. After adding a new camera a bundle adjustment step is
applied resulting in a sparse 3D point cloud including the camera poses.

(a) (b)

Figure 4.2: Scene Carpet. (a) shows nine out of twelve input keyframes. (b) shows the recon-
structed scene. A densification algorithm like PVMS[24],[23] is applied to the sparse 3D point
cloud.

3 The epipolar geometry is validated, based on the SIFT features.

4 If the keyframe is the second one, 2D-2D correspondences are searched between the

first two keyframes and the 5PP algorithm is used for initialization, otherwise 2D-3D

correspondences between the added keyframe and the stored features are identified,

and the 3PP algorithm is used to add the keyframe to the map. The map is extended

by new 3D points, the corresponding features and the calculated pose.

5 At this point, a new keyframe with corresponding pose is added and the map is

expanded with new 3D points, based on the SIFT features of step 2.

6 The bundle adjustment step optimizes all poses and 3D points.

7 The pipeline waits for new keyframes.

Our proposed server system, which is described in the following section, uses one SfM

pipeline per client, as described above. Therefore, each client uses its own pipeline, which

simplifies the problem of managing multiple reconstructions.
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4.2 Server

The Server keeps track of all clients and tries to detect overlapping regions among

keyframes. The aim is to combine different clients, to produce larger maps. The client

registration process requires the clients to provide their camera calibration information.

Further, clients can commit their initial baseline length for scaling purposes and keyframe

related poses for client-space transformation purposes to support different client setups

and transform between them. Allowing clients to commit their own calibrations and

other information turns our server into a very versatile system and enables the usage of a

wide range of various clients.

A server-side client session is initialized after receiving the camera calibration. Each

session holds a SfM pipeline, including information like initial baseline distance, keyframes

and related poses. After initialization, each client can commit his keyframes and poses

to extend the server-side reconstruction. Figure 4.3 shows the main parts of the server

system, including paths for data exchange with multiple clients. To detect overlaps among

images, two clients are chosen and their keyframes are matched against each other based

on natural features. Either a new map is introduced or an existing one is enlarged.

Maps in the pool keep pace with the client reconstructions and are refreshed, as client

reconstructions grow. Managing stored maps, includes preparing keyframes and poses for

receiving clients and maintaining client related pull queues. The preparation of client data

contains transformation of clients between their coordinate systems and their stored maps.

In particular, stored maps are re-centered to align with a specific client space, or correction

terms are added before sending data. Correction terms are needed to compensate for

deviating systems e.g. when clients employ their own bundle adjustment algorithms. The

following sections will describe the required parts for the server to operate properly.

4.2.1 Detection of image overlaps and merge calculation

The detection of overlaps is a key aspect to our implementation. It decides, upon the

creation of new maps, and when existing ones should be extended. Validations among all

possible client pairs are regularly done. In particular, different strategies are possible to

select a client pair. For instance, if GPS data is available, one could generate client pairs

based on the distance between them. Kreyframe based GPS data, could be used to improve

the validation order of keyframe pairs, according to the distance between keyframes, to

decrease the number needed attempts, until a valid keyframe pair is found. This might

be relevant for city-scale reconstructions, with a large number of participating clients and

many keyframes.

For simplicity, we iterate over all clients and create client pairs according to following

conditions:

(i) Clients are not participating to the same map.

(ii) Clients have a valid reconstruction.
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Figure 4.3: Server structure. C1 ... Cn represent clients. A client commits poses and keyframes,
an initial baseline-distance and the necessary camera calibration (Calib). The generated instance
(C1 within Client management), is than used to detect overlapping regions in images. On success,
a new map will be generated or a new client extends an existing map (Map management). The
Map management will continuously check if participating clients have grown and update their
map. Afterwards the Client Pull Queue is updated and clients can pull new poses and keyframes
to update or improve their own local systems.

(iii) Clients have at least four keyframes committed, to increase the probability of having

enough 3D points in the observed area, based on the selected client pair, the system

selects one committed keyframe of each client for further validation.

A specific keyframe pair of two clients, is only checked once, because the image based

matching will not deliver different results when matched multiple times. By marking

already checked keyframes pairs and excluding them from further checks, the number of

keyframe pairs to check remains small compared to the number of committed keyframes.

If the detection is successful, the server calculates the merge which is needed to combine

two clients, resulting in a new or a larger stored map. Afterwards, the process is repeated,

until all clients are combined. Image matches are searched between the following client

pairs:

(i) Two clients with no map participation.

(ii) Two clients participating to different maps.

(iii) One client with no participation and one client belonging to a certain combined map.

Otherwise the calculation for the current client pair is skipped. The ideal result is, to

generate a single combined map, wherein all clients reside. A more common case, when

it comes to large-scale reconstructions, is, that a group of clients create a combined map,

another group creates another combined map and some clients remain without any par-

ticipation.

The overlap detection is based on feature-based image matching using the GPU im-

plementation of SIFT [39, 48]. Only already extracted features are used for the matching

Reference:

 ()
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operation (features already extracted by the SfM pipeline at the time, when the keyframe

was added). This saves computation time, and for a next step, more important, by main-

taining 2D-3D correspondences within clients. Epipolar geometry is used to verify the

image based matching result. At success, we can obtain 2D-3D or 3D-3D correspondeces

between two clients and use them as input to calculate the merge. Therefore, we provide

two methods. Namely the Horn Alignment which operates on 3D-3D correspondences

and the 3-Point-Pose and Scale Estimation method. Figure 4.5 shows the image based

matching result and related merged clients.

On success of either previous merge attempts, the following scenarios are possible. If

none of the clients participate to a map in the map-pool, a new map is created. If one of

the clients participates to a map, then the map is expanded, using the information of the

other client. If both participate to the same map, no detection of overlapping keyframes

is needed and the next client pair can be processed. Maps are merged, if the clients

participate to different maps.

The map pool stores all combined maps in the form of a list, but it is also

possible to use GPS-like information to order maps according to their real world position,

if fast geo-location depended access is needed (e.g. in city-scale reconstructions). The

obvious reason is, to quickly determine nearby maps for lost clients or initial updates.

Whenever two clients with no map participation are combined, a new map is added to

the pool. Each map in the pool holds a list of involved clients, their transformation to the

client (always the first initial client) of the map, and the size of their actual map, which

is used to quickly determine if a refresh of the merged map is needed. Additionally, each

map can refresh itself with new client information, as described in section 4.2.2.

Horn alignment

We decribe the algorithm in section 2.6, and Horn shows in his work [30] a closed form

solution. The input of the algorithm are two corresponding sets of 3D points, and the

result of the aligment is the transformation between the two input 3D point sets. In our

approach, it is necessary to wrap the Horn algorithm into a RANSAC [22] loop, because

of possible outliers, which would corrupt the result. Using the Horn result, we can easily

transform one client (poses and 3D points) into another clients space (see equations 2.16

and 2.17).

In our specific case, an overlap of at least one frame is needed, to provide

enough 3D points in both clients. The reason is that enough feature points of the

overlapping area have to be seen from both clients ideally in multiple frames for a

correct result. With a large number of potential point-point correspondences and a high

number of entries, the calculation of a merge can take a considerable amount of time.

This influences how fast related clients receive new updates. In edge cases, it can be
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(a) Image matching
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Figure 4.4: Scene Carpet. (a) shows the detected image overlap using SIFT features and (b)
shows the calculated merge between to clients. The green points and frustums stem from the
initial client and all cameras of the blue client have been correctly transformed into the green
clients space.

the difference between tracking and tracking loss, which might disturb a user of an AR

application. An advantage of this method is, that it takes care of the scale by default,

and transformations in both directions are very simple to apply. On the downside, the

quality of the result of the algorithm strongly depends on both estimated sets of 3D

points, which again are based on the accuracy of the detected natural features.

3-Point-Pose and Scale Estimation

In this section we use an extended notation, where the superscript shows the 3D space

e.g. XA refers to a 3D point in the 3D space of a certain client A.

3PP uses 3D-2D correspondences to calculate the transformation between a



4.2. Server 25

set of 3D point and corresponding 2D observations in an image (see section 2.5).

Therefore, the inputs are 3D points of one client (A) with the matching 2D points

(feature points) of the other client (B). In practice, we take detected matches between

two images, which provide 2D-2D point correspondences and search the according 3D

points of one client. The delivered result of the 3PP algorithm is a new Pose (PA
3PP ) of

the involved camera (PB
m) of client B in the 3D space of client A, as shown in equation

4.1, where XA represents the stacked 3D points of client A and xPB
m the stacked 2D

points of the involved camera of client B. 3D points are transformed using equation 4.3,

with the idea to first move the point into the coordinate system of the involved camera

(equation 4.2), and afterwards to transform the point into the 3D space of client A, using

the 3PP result. The aim is to represent 3D points of client B (XB) in the space of client

A (XA). s determines the scale, which is explained later in this section.

PA
3PP = 3PP (XA,xPB

m) (4.1)

XPB
m = PB

m ∗

(
XB

1

)
(4.2)

XA = (PA
3PP )−1 ∗

(
XPB

m ∗ s
1

)
(4.3)

Poses can be transformed using equation 4.4, where PB
1 , . . . ,P

B
n are poses of client B,

which are transformed to the equivalent poses in 3D space of client A (PA
B1, . . . ,P

A
Bn).

The scale parameter only contributes to the 3PP merge result. The idea is similar to the

point tranformation, where we first transform the poses into the coordinate system of the

involved camera(PB
m) and afterwards into the 3D space of the other client.

PA
B1 = PB

1 ∗

[
(PB

m)−1

0T 1

]
∗

[
PA

3PP

0T s

]
...

PA
Bn = PB

n ∗

[
(PB

m)−1

0T 1

]
∗

[
PA

3PP

0T s

] (4.4)

As Nistér mentions in his paper [43], far more than three 3D-2D point correspondences

are needed for robust estimates and to avoid dealing with multiple solutions. However, the

algorithm provides rotation and translation, therefore we have to additionally calculate

the scale s, based on a single 3D-3D correspondence. The scale can be calculated as the

ratio of the distance between a 3D point in space A and the merge result (involved camera

in space of client A) and the distance of the corresponding 3D point in space B and the

involved camera. Equation 4.5 shows, how to determine s where c is the camera center

and ||·|| is the euclidean distance, using a single point correspondence. A single 3D-3D



26 Chapter 4. Our Approach

match would be inaccurate, therefore we can take multiple matches and calculate the

median over all determined scales. Only few matches are sufficient for good estimates, in

our implementation.

s =

∣∣∣∣XA − cA3PP

∣∣∣∣
||XB − cBm||

(4.5)

In our cases 3PP, outperforms Horn, because it uses 3D-2D rather than 3D-3D

correspondences, minimizing the chances of bad estimated 3D points in one set.

Further, one client does not need a full reconstruction of the overlapping section and

therefore, 3PP is less restrictive. Imagine that client A and B are moving towards each

other. The Horn alignment, will have to wait until enough points of the overlapping

region have been reconstructed to successfully calculate the merge (fewer points at

edge-regions because of missing follow-up frames e.g. at sharp turns). This could

last a couple of frames until the reconstruction of the affected area grows. The

3PP approach is able to calculate the merge, if one of both clients has some 3D

points of this region. Eventually the initial scale estimate is a bit off, but it can be

re-estimated, with little effort. Further, it is more stable in terms of outliers because it

only remains on one set of estimated 3D points and not of two sets, as the Horn algorithm.

A valid merge calculation generates a so called merged-map, which initially

will include the two clients involved. If another client generates a valid merge calculation

to a participant of a merged-map, the merged-map is extended. A merged-map always

resides in the space of the first client. If new clients are added, they can either be directly

connected to the first participant of the map or to another participants, which then may

be directly or indirectly connected to the first one. The first case is simple: just apply

the merge result as shown above. The second case is more complex, because a chain of

connected clients arises.

For instance, let’s assume that we have three clients A,B and C. B is connected to A

and C to B. The merged-map holds A and B, with A as origin. To add C, we have to

transform it first to B, using the merge result of B-C and subsequently, we have to apply

the merge result of A-B to C, to transform C into A’s space. Figure 4.5 visualizes a typical

scenario of three clients.

4.2.2 Refreshing stored maps

Refreshing stored maps is important, because it serves as a basis for the update

procedure of clients belonging to a certain combined map. Without refresh, client

specific pull-queues can not be filled. When clients explore new areas of their environ-

ment, they simultaneously generate new updates for clients participating to the same map.

During the implementation, we faced two applicable methods. One method
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Figure 4.5: Scene Office. Server map generation. Blue arrows visualize data sent from client
to server and green ones the opposite direction. The number beneath the map pool determines
the number of the current map (1/* )and the amount of participating clients (*/2). (t0) shows
clients A and B connecting to the server and transmitting their data, including multiple keyframes.
After the detected image overlap, a new map is added to the map pool. At (t1) the server system
maintains the map pool, by refreshing it with data from A, B and answering pull requests from
combined clients. Client C is added to the scene and the existing map between A and B is expanded.
(t2) shows, that now pull requests of all clients are answered and the existing map is refreshed,
by all participating clients. (d) shows the final reconstruction from combined information of all
three clients.

is, to discard the actual map and to re-create it including the new committed key frames,

while using the already calculated merge information. The other method is, to execute

delta updates of occurred changes, which includes, the detection of changes in affected

maps. The advantage of the first method is that bundle adjustment of the whole map can

be avoided. In detail, at every refresh, scales between involved clients are re-estimated,

to compensate for the client’s bundle adjustment. Afterwards the map is built from

scratch by merging whole clients into the map. Equivalent 3D points are fused to one

3D point. This approach is not as complex as updating the changes, and is fast enough

when operated as an own thread. Additionally, the refresh procedure could be triggered

when one or more pull-queues are almost empty, to avoid empty queues and to possibly

reduce the the number of refreshes done.

The second method applies bundle adjustment on the whole map and only adopts

new points, using a distance measurement (if an existing point and a new one are close
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enough, they are handled as the same point). Bundle adjustment tends to get slower with

bigger maps and in our case, above a certain map size it would delay the refresh process,

which may be negligible with one or two stored maps, but it would get worse with

more maps. Delaying the refresh process, also delays when pull-queues are refilled and

this translates one to one in later client updates in the case of empty queues before update.

In both cases, maps are only refreshed, if clients grow and the merge result

is used to add new information, where the first attempt always has to work to re-initialize

the combined map, and the second attempt has only to adopt new parts, but also to

apply bundle adjustment on the combined map.

4.2.3 Client pose preparation and offset correction

With the ability to use different clients, we have to handle diverging SLAM-systems.

Therefore we can name several difficulties. (i) Scale, origin and orientation mismatch

between a certain client and server map. (ii) Different bundle adjustment algorithms,

have different influences as maps grow over time. One reason is that the server may

start using a different initialization as the client (e.g. first added server camera looks into

positive z-axis and the related client camera looks into negative z-axis).

The scale problem can be solved, if the the client commits its initial baseline distance,

but it is only a better estimation and could be off after some time of operation according

to the local bundle adjustment. The server can scale the corresponding pose-pair of the

merged-map to the clients baseline distance. If the client commits the first pose, then

the server is able to transform the merged-map, using equation 4.7. Re-centering can

be done with the same equation. Each client resides in its own coordinate system. The

resulting merged-map shares the coordinate system with the first participant. All other

clients reside relative to the first one. To enable pose-processing on each client, the map

has to be re-centered for each client, based on his first pose.

Pdiff =

[
P−1neworigin

0T 1

]
∗

[
Pactualorigin

0T 1

]
(4.6)

Pnew
n = Pactual

n ∗Pdiff (4.7)

The offset correction is needed, because of different SLAM-systems and different bun-

dle adjustment algorithms used. It happens, that above a certain number of cameras, the

systems show different behaviours, in terms of where to estimate the next camera. Also,

poses after bundle adjustment improvements may deviate from the server ones. Clients

can commit poses related to committed keyframes, to inform the server about the lo-

cal circumstances. Having the local information, we can create correspondences between

merged-map poses and specific client ones. In particular, after solving the previous prob-

lems (origin, scale and orientation), we get a new valid pose in client space. Knowing the
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possible difference, we can find the closest known client pose, which is related to the orig-

inal client pose, namely the offset-pose. The closest one is required, because of a possible

growing offset over time. Using equation 4.9, we can determine the correct pose and push

it into the client-pull-queue.

Pdiff =

[
P−1closest

0T 1

]
∗

[
Pclosestlocal

0T 1

]
(4.8)

Pnewcorrected
n = Pnew

n ∗Pdiff (4.9)

Figure 4.6 shows server poses, which are pulled by clients. The client correction

has to be done per client and is only applied to poses. The computational

effort of the applied client-pose-correction is very low, because of the matrix

multiplication, but we have to hold in mind, when working with maps with thousands

of poses, we will have to improve the search for the closest client pose to apply

the offset pose. It could potentially form a bottleneck, when it comes to fill the pull queues.

When operating with autonomous clients, which use different cameras,

keyframes have to be prepared before sending them back to the client. Different cameras

are easily detectable by the provided camera calibration. There are two possible

scenarios. (i) The server sends undistorted keyframes and calibrations and each client

handles the image itself regarding to the used implementation. (ii) The server warps

keyframes specific for each client with their provided camera calibration. Therefore, the

client can handle received keyframes like local ones. In thought of taking load from

clients and allowing them additional computational time for more important tasks, (ii) is

more applicable and existing client systems are easier to adopt.

4.3 Client

Almost every client can be used with our server implementation, ranging from very simple

clients up to systems like PTAM or even more complex ones. Clients have only to imple-

ment the push and pull methods, which are used for communication, and have to transmit

the required data for participation. In our case, we use a very simple client, which is

committing keyframes without any SLAM-system, and a high sophisticated client, which

performs local SLAM. Further, we add three different operating modes for server interac-

tion, differing in how received data is handled and how much external information is used

to improve the local map, including 3D points with related measurements and poses.

4.3.1 Thin Client, no SLAM

A thin client may perform no local SLAM or any kind of 3D related computation. Fur-

ther, it is only used as an image acquisition device. The committed keyframes are used
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Figure 4.6: Client offset correction. Scene Cardgame. Local poses in blue, received poses in
magenta. (a) shows the merged map, based on three clients as created by the server. (b) shows
the local map of client A, including received poses. Comparing (a) and (b), we can see a difference
in scale between server and client. Therefore we need to correct the poses before sending. (c) and
(d) visualize the same information as (b) but from other clients perspective. Received poses are
provided by each other client e.g. A received from B and C.

for reconstruction purposes on the server. A common use-case is to create a map or re-

construction, with higher resolution images. A possible client could be any image or video

capturing handheld device, like a Google Nexus 5, with a camera operating at a resolution

of 3264 × 2448 pixels. Figure 4.2 and 5.3 show example reconstructions based on images

acquired with such a handheld device.
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4.3.2 Fat Client

The used autonomous client performs local SLAM and can operate in real-time. The

SLAM system, is based on optical flow tracking (see [8, 10, 17, 55]), which allows to es-

timate motion in sequential images. Basically, the optical flow tells, which image-points

to select. Based on this information, custom feature points are extracted and used for

triangulation. The local map stores features, 3D points, keyframes, and poses. Relating

to the server, the autonomous client can commit keyframes, related poses, the initial base-

line distance between the first two cameras and the used camera calibration. Further, the

client can decide what to pull: keyframes or keyframes with related poses. Therefore we

implemented three methods.

V1 pulls only keyframes and tries to improve the map, by adding more observations to

already known feature-points.

V2 pulls keyframes with related poses and adds them to the system, if no contradiction

within the existing system occurs.

V3 uses the same information as V2, with the addition, that new points are triangulated

and added to the local map

Client-side bundle adjustment performs first on smaller parts of the map, before fulfilling

the global optimization as described in section 2.7. By pre optimizing clusters of the

actual map, the main bundle adjustment step over the whole map tends to finish very fast.

V1 to V3 differ in how to process received data, like keyframes or poses. A

new keyframe is added when a certain amount of time has passed or when the client has

significantly moved. Therefore, natural features are extracted and added to the map

for tracking. Features, which are not triangulated yet but tracked (a feature, which

has been seen in a previous frame and added to the tracker) are now triangulated and

the resulting 3D points are added to the map. New added features for tracking, may

be triangulated with the next keyframe. Based on the keyframe the actual pose is

calculated. Additionally, the new keyframe and the calculated pose are committed to

the server. In detail, they are added to a send-queue and processed, when the client

has enough computational resources. The transmitted keyframe, will extend the client

specific reconstruction and is used to detect overlapping regions of keyframes among

other clients on the server. The transmitted pose is added to a keyframe related look-up

table, and is used for offset and orientation correction on the server. The following

sections will describe the three operational modes for clients in detail.

4.3.2.1 Client Mode: V1 - Keyframes

V1 describes the simplest of the three methods. Therefore, the client has to commit his

keyframes and to pull new ones. No pose or other server data is required. A received
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keyframe is localized within the map, using the 3PP algorithm. In particular, natural

features are extracted and matched against features of 3D points of the local map, resulting

in 2D-3D correspondences, which serve as input for the 3PP algorithm. This version can

only improve the local map, by adding more observations to known points, rather then

adding new points. New keyframes can only be added to already seen areas of the scene,

because new keyframes are matched against features of existing 3D points. The 3PP

algorithm returns a valid pose for the received keyframe in the local coordinate system.

Figure 4.7 shows the improved local map and a comparison to a map including false

positives. Because of the image based calculation we can choose very strict thresholds

(number of RANSAC iterations, amount of inliers, RANSAC sample size) for the 3PP

pose estimation. As a consequence, fewer keyframes are used to improve the map, but also

the false positives are reduced. Therefore, the added keyframes are real improvements in

terms of measurements per observed point. By lowering the thresholds, it is easily possible

to corrupt the map by adding false observations to known points (see Figure 4.7, error

case). The computational effort can be high enough to affect real-time performance and

strongly depends on the amount of needed iterations of the RANSAC pose estimation and

number of used 2D-3D correspondences.

4.3.2.2 Client Mode: V2 - Keyframes and related Poses

V2 tries to add incoming keyframes to the existing local map. No RANSAC pose esti-

mation is needed, because the received pose does already fit into the clients coordinate

system. The server pose is verified by projecting 3D points of the overlapping area into the

received keyframe using the server pose, and measuring the re-projection error (euclidean

distance between extracted feature and projected 3D point). If the error is small enough

for a certain number of points, the received pose is valid. The projected 3D points are

2D-3D correspondences between features of the received keyframe and 3D points of the

map, therefore natural features of the received keyframe are extracted and used to find

corresponding 3D points.

In contrast to V1, 2D-3D correspondences are not used as input for the 3PP algorithm.

Valid keyframes and poses are added to the local map. This method allows the client to

improve the local map, without big computational effort. Further, the client can use the

information provided by other clients (e.g. poses) in application-specific context and is

able to spend more computational time for e.g. content visualization.

Figure 4.8 shows the integration of server-poses over time. The main advantage over

V1 is, that the map can be improved with very low computational effort, without affect-

ing the real-time performance at all. In the same time, more received keyframes can be

added, compared to V1. Therefore, the client relies on the servers accuracy of the provided

data. V2 works only, if the client commits the poses related to the committed keyframes.

Differences between client and server poses are caused by independent bundle adjustment

steps, different implementations, and by different feature point detectors. Using commit-
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Figure 4.7: Fat client V1. Scene Cardgame. Local poses in blue, received keyframes in red.
(a) and (b) show the extended local map in different points in time, with reasonable position
estimates. (c) shows the same map with low thresholds and false positives. False positives distract
the system because of wrong added point observations, and decrease the tracking performance. In
this case, fewer correct poses (b) are a better improvement over more partially false poses(c). (d)
shows the representative server poses.
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ted poses, the server can compensate for orientation mismatches and deviating bundle

adjustment systems, to provide poses, which fit well into the local SLAM system without

any contradictions to the existing map.
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Figure 4.8: Fat Client V2. Scene Cardgame. Local poses in blue, received poses in red. (a) shows
local trajectory without server information. (b) and (c) show the extended local map in different
points in time. Comparing (c) and (d) shows, that the received poses (in red) fit well into the
local client system and are similar to the server reconstruction with respect to different bundle
adjustment steps.
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4.3.2.3 Client Mode: V3 - Keyframes and related Poses, Map extension

V3 operates very similiar to V2. Keyframes and poses are used to extend the local SLAM

system, where the client has to rely on estimates, provided by the server. Additionally to

committed keyframes, local poses have to be committed, to improve server-pose-estimates

for received poses (see Offset correction and client data preparation in section 4.2.3). The

advantage over V2 is the additional point-triangulation, which allows map expansion.

Server keyframes are matched against local keyframes and new 3D-points are trian-

gulated, based on these matches. In detail, natural features of the received keyframe are

extracted and used to verify the received pose, as described in section 4.3.2.2 (Client Mode:

V2 ). 2D-3D correspondences are used for pose verification, and 2D-2D correspondences

between the received keyframe and the stored features of the map are used for point tri-

angulation. One received keyframe is matched against all local keyframes. If there are

existing 3D points for matched features based on local keyframes, the new triangulated

points may not be added to the map. This avoids duplicated points and keeps the map

sparse.

Figure 4.9 shows the local map behaviour over time. After some received keyframes,

new points can be triangulated and added to fill unknown parts of the map. The addi-

tional computational effort of point triangulation is negligible, but it will sum up with

an increasing amount of local keyframes because of the need to check received keyframes

against all stored ones. This process could be speed up, when considering received poses in

terms of relative position to local keyframes, to limit the search space. In our experiments,

the caused delay remained within the real-time constraints. Different strategies can be

used to triangulate new points, like how often a received keyframe is used for triangulation

or how to reuse keyframes for additional triangulations as the client moves to expand the

map. In our case, a received keyframe with pose is processed once and is then added

as local keyframe, if valid. Depending on when the triangulation happens, the amount

of added points may vary, because the triangulation is only done once. A more complex

approach is to mark triangulated points in a certain received keyframe, and to start the

triangulation a second time after the local map has changed e.g. more key frames are

added or more points are triangulated. Of course the memory footprint would increase

compared to the simpler way, but more 3D points would be added, and received keyframes

would be used more efficient (how many points can we extract from unseen areas).
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Figure 4.9: Fat Client V3. Scene Cardgame. Local poses in blue, received poses in red. (a)
shows the local trajectory, without server information. (b) and (c) show the extended local map
in different points in time. Note: At t7 not all server poses and keyfrarames are received yet. (d) is
an enlarged region of (c) and shows additional 3D-Points in magenta based on server information
at t7. The amount of new triangulated points in this scene at t7 is about 10 percent of the whole
scene. The new triangulated points (magenta) fill an unknown part of the local map (green points,
top right corner of the reconstruction).
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4.4 Implementation details

4.4.1 Server

The server system is devided into two parts. One part operates as described in section 4.2

and the second part manages the communication using ZeroC-Ice1, which is a CORBA

style remote procedure call system. Further it is very versatile and supports implementa-

tions for different languages, like C/C++/Java and mobile platforms, like Android or

iOS. This concept increases the flexibility of our Multiuser-SLAM server. It could easily

be integrated into the main application, but it would decrease the exchange ability.

Further, the communication part is easily exchangeable with any other suitable technology.

Poses provided by the server and client, are in the form of a 6 × 1 vectors,

as shown in equation 4.10, representing a SE3 group of the Lie-Algebra (see section 2.8).

Using the SE3 group, reduces the amount of data needed to be sent by 50%. It is just a

small improvement, but it is mentionable concerning large maps including many clients.

P =



tx
ty
tz
rx
ry
rz


(4.10)

A merged map holds a list of participating clients, with information about relation-

ships among clients, in particular which client is connected to the initial one. Therefore,

the amount of transformations stored is reduced to one per client reducing the memory

footprint, but slightly increasing the computational effort. A client which is not directly

connected to the initial client, is part of a chain of transformations. Such a chain starts

with a directly connected client and is enlarged, when indirectly connected clients are

added to the map (detected overlap between a directly connected client and a new one).

For those clients the whole chain of transformations is applied to transform them into the

space of the initial client. This allows to fix individual scales at refresh time easily, with-

out the need of recalculating a whole transformation, for one not directly connected client.

Two maps are merged, if an image overlap between clients of different maps

is detected. With a valid merge result, all clients are moved into one map by simply

applying the calculated merge result to the origin of the other map. Because of the

previously mentioned chain of transformations among participating clients, the process

of merging two maps remains simple.

1https://zeroc.com/

https://zeroc.com/
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4.4.2 Client

The fat client can decide in which quality to provide keyframes. Each keyframes can

be compressed, using the libjpeg2. Further, color-images can be reduced to grayscale

images, to reduce the data amount approximately by two thirds, which is helpful given

low bandwidth server uplinks.

Receiving keyframes is exclusively handled by clients. Each client runs an

asynchronous pull loop to get new data from the server. The server does not start

communication actively. Therefore, clients can handle data connections on their own,

without the need to reply to server calls. Further, it allows to load-balance clients and to

only pull data if they have enough resources.

4.4.3 Communication and Events

Loose dependencies between client and server allow for flexible communication. Clients

can decide what to commit and what to pull. The one criteria of participation is to commit

the camera calibration, but this alone will not allow the full exploration of server functions.

Additionally, clients may commit their initial baseline and poses related to keyframes. The

following list will go through possible server events, which may be caused by clients or

internal operations. Figure 4.10 shows example communication, with one server and two

clients, including the occurred server events while interacting with clients.

• Calibration committed: A new client is created with an own reconstruction in-

stance and an image reading thread.

• Initial baseline distance committed: The initial baseline distance is added and

used to scale poses, before adding them to the pull-queue.

• Keyframe committed: The keyframe is read by the image reading thread and

added to the reconstruction instance.

• Pose committed: If the related frame is used in the reconstruction, the pose is

added as local correspondence. If not, it remains in the list and will be checked

again.

• Overlap detected and merge calculation: After detection, the overlap is vali-

dated using epipolar geometry and a merge is calculated. If successful, a new client

is added to an existing map or a new map is initialized using the involved clients.

• Map refresh needed: Maps can regularly check for client changes. If so, new

information is merged into the existing map.

2http://libjpeg.sourceforge.net/

http://libjpeg.sourceforge.net/
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• Pull Request: When receiving a pull-request, the server will serve the next

keyframe or the next pose and add them to a client specific history. The queue

could be sorted in different ways, for instance by distance from the polling client.

send Calib

send Baselinedist

send Calib

send Baselinedist

send KF1, Pose 1

send KF 2, Pose 2

send KF 1, Pose 1

send KF 2, Pose 2

send KF 3, Pose 3

Pull request

Pull request

Pull request

MM-KF 3, MM-Pose 3

null (queue empty)

null (queue empty)

send KF 3, Pose 3

Pull request

MM-KF 4, MM-Pose 4

Pull request

MM-KF 1, MM-Pose 1

send KF 3, Pose 3

Pull request

MM-KF 5, MM-Pose 5

init client A

init client B

Start Sfm 
Thread

Start Sfm 
Thread

Server Init: Client-Manager,
Overlap, MergedMap, Queue

Overlap detected?
Create / Extend Map

Map-Refresh needed?
Refresh, Update Pull Queue

Pull request?
Provide KF/Pose,

remove from Queue

Server Client A Client B

Figure 4.10: Client server communication. Example clients A and B are starting individual
SLAM sessions. The server creates individual sessions for A and B. First pull-requests result in
null, because there was no overlap detected. If a merged-map is created, the per client pull queues
are filled and the pull-request will return a keyframe and/or a pose. Note: Clients can decide what
to pull. The left column shows server-events and reactions, which are triggered either by clients or
by internal threads (e.g. merged-map refresh thread)





5
Results

This chapter describes the scenarios and the experimental results obtained through our

system. Further, we compare thin and fat clients operating in different modes, namely V1,

V2 and V3. Table 5.1 shows our test-setup including two Windows 8 Tablets operating

as fat clients and Table 5.2 defines common abbreviations for this chapter. Section 5.1

shows reconstructions of four thin clients including the merge result. Section 5.2 presents

fat clients operating in different modes and section 5.3 shows a general experiment in an

office like environment.

Device Specification Op. Mode

Desktop PC Manjaro-Linux, Intel i5 4×2.67GHz, 8GB Ram, Nvidia GTX 650 Server
Google Nexus 5 Snapdragon 800, 2GB Ram Thin Client

Samsung XE700T Win8.1, Intel i5 3317U 2×1.70-2.6GHz, 4GB Ram, Intel HD 3000 Auton. Client
Surface Pro 3 Win8.1, Intel i7 4650U 4×1.70-3.3GHz, 8GB Ram, Intel HD 5000 Auton. Client

Table 5.1: Devices used to test our Multiuser-SLAM system.

Abbrev. Explanation

tn Particular point in time
#KF Number of Keyframes
#PT Number of 3D Points
#OB Number of Observations

Table 5.2: Abbreviations used across the result section.

5.1 Scene Carpet

The Carpet scene is mainly used to verify the implemented merging approach, and to show

the server capability of reconstructing a scene with higher resolution images as typically

used in SLAM systems. As thin client serves a Google Nexus 5 and the committed images

have a resolution of 3264 × 2448 pixels. Figure 5.3 and 5.2 show densified 3D point clouds

41
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and the input images used. Table 5.3 describes clients and their amount of participation

to the merged map. Similarly, figure 5.1 highlights how clients participate to the merged

map. Reconstructions with higher resolution images have longer computation times and

a very high memory consumption, compared to reconstructions based on images acquired

using SLAM systems, however, they deliver a 3D model with higher level of detail. In

figure 5.2, no relevant scale or transformation issues are observable.

Figure 5.1: Scene Carpet. Highlighting participating clients. At this point in time, not all
committed keyframes have been processed on the server. From left to right (cyan to blue): Clients
A to D

Figure 5.2: Scene Carpet. Reconstruction (densified with PVMS) from four merged clients.



5.1. Scene Carpet 43

(a) Client A

(b) Client B

(c) Client C

(d) Client D

Figure 5.3: Scene Carpet. (a) to (d) show some of the used input images on the left and client
specific reconstructions (densified with PVMS) on the right and .
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Client Merge-Order #committed Keyframes

A 3 9
B 0 12
C 1 9
D 2 7

Table 5.3: Scene Carpet. Clients and their share in the map.

Client Merge-Order #committed Keyframes

A 0 22
B 1 11
C 2 21

Table 5.4: Scene Cardgame. Clients and their participation.

5.2 Scene Cardgame

The Cardgame scene may be a possible real-world application. In this particular scenario

three clients observe a game of Magic the Gathering with two players (static scene). In

possible AR applications, cards could be augmented with 3D models or the whole en-

vironment could change during to the game. All clients act as Fat Clients in the three

proposed operational modes. In all modes, the clients pull the same keyframes (related

to them) from the server and try to improve or expand their local map accordingly. Ta-

ble 5.4 shows the merge order and the number of committed keyframes. The clients are

spatially arranged from left to right like B-A-C, with frame-sized overlapping areas, while

this arrangement resembles a possible real-world scenario. Based on the reconstruction

of the whole scene as shown in figure 5.2, information can easily be distributed amongst

clients.

5.2.1 Client Mode: V1 - Keyframes

V1 only uses received keyframes to improve the local map. The keyframe is matched

against the map and the pose is calculated. The used thresholds (RANSAC parametrisa-

tion for pose estimation) are rather strict, to avoid false positives. As described in Table

5.5, only five keyframes could be added to the current map, assuring that the calculated

pose is almost correct. Therefore, we see an increased number of observations (nearly

2000 at t5), which implies improved tracking quality. The number of 3D points remains

the same, because the external keyframes are only matched against existing features and

not used for triangulation of new areas. Skipped keyframes remain in the list for later

addition.

This method performs good, in terms of adding more observations to known 3D points.

The draw is, that the computational effort is to high for only adding new observations.

Therefore we look forward to V2.
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t0 t1 t2 t3 t4 t5
#KF 23 24 25 26 27 28
#PT 1463 1463 1463 1463 1463 1463
#OB 13803 13878 14129 14468 14957 15452

Table 5.5: Scene Cardgame. Client A, V1. Changes over time. 3D-Points stay the same, new
observations added.

5.2.2 Client Mode, V2 - Keyframes and related Poses

V2 operates very similarly to V1. The major difference is, that V2 relies on the server

calculation. It assumes, that the server provides the correctly transformed poses for each

particular client, which is the case. The computational effort is lower as in V1 and the

amount of added keyframes and poses in the same amount of time is significant higher.

Further, the problem of false positives, in terms of added keyframes with inaccurate or

simply wrong pose estimates disappears. In this case, the server assures to provide the

correct poses, by applying scale-, orientation-, origin- and offset-correction.

Table 5.6 shows the described behaviour. The increase in number of observations

is around 9000. Again, the number of 3D points remains the same because no further

triangulation is done between received and stored keyframes. We already can say, that

V2 outperforms V1 because of the bigger versatility, with the single drawback of strongly

relying on the provided poses. New keyframes are easier to add due to no or very weak

dependency of points already included in the local map (No RANSAC for pose estimation

needed). Figure 5.4 shows a clear difference between V1 and V2. V2 adds twice as much

keyframes as V1. Important to note is that new keyframes are added close to the borders

of the local scene, enabling the client to rapidly extend its map when moving further. The

slight increase of 3D points in table 5.6 between t0 and t3, is caused by the asynchronous

processing of the client and is not related to the received information.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
#KF 23 27 29 31 37 40 42 44 45 46 47
#PT 1465 1465 1467 1471 1471 1471 1471 1471 1471 1471 1471
#OB 13710 13911 15794 16627 20431 21713 21754 21799 22392 22405 22417

Table 5.6: Scene Cardgame. Client A, V2. Changes over time. 3D-Points stay the same, new
Observations added.

5.2.3 Client Mode, V3

In terms of keyframes and poses, the result is similar to V2. Due to numerical deviations

and iterative bundle adjustment, the results are not exactly the same. With the possibility

of expanding the local map, V3 has more areas of application. For instance, one client

stands still, consuming any kind of augmented content and an other client is expanding

the combined map, in which both participate. Instantly the first client gets updates and

enlarge its local map. If it decides to move, the tracking, can then be done seamlessly, with
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little or no additional computational effort of its own SLAM-system. In this experiment

the client has gone through its sequence and afterwards received the external poses and

keyframes. However, we can turn it around, pre-load the external information at the

beginning of the sequence, to observe that a majority of the points is generated by external

frames for a specific area.

Table 5.7 shows increasing number of 3D points and observations, as new keyframes

are added. Our implementation of V3 triangulates only once, as a keyframe arrives, and

adds the keyframe and the new 3D points to the map. Another possible strategy is, to

mark received keyframes for more triangulation approaches, until almost all detected

natural features are used for 3D points, especially in edge regions of the local map. This

would increase the amount of added 3D points, based on external and local keyframes.

Further it would support the growth of the scene beyond the knowledge of a client,

allowing faster tracking when leaving the known scene.

Comparing the three proposed methods, we can say V2 and V3 are most

usefull where V1 could help clients with tracking difficulties and without the ability to

operate in mode V2 or V3. Otherwise, V2 and V3 are superior to V1 with V3, at a

bigger computational effort. Further, V3 extended the map as described, by adding

more 3D points, without drastically influencing real-time performance. If keyframes are

processed one at a time, V3 delivers acceptable real-time performance when performed

on the Microsoft Surface Pro 3.

t0 t1 t2 t3 t4 t5 t6 t7
#KF 24 28 34 37 39 41 42 43
#PT 1462 1462 1590 1590 1590 1590 1590 1590
#OB 15180 15180 20233 21010 21972 22466 22466 22466

Table 5.7: Scene Cardgame. Client A, V3. Changes over time. New 3D points added at t2.
Increased observations as seen in V2.

5.2.4 Server reconstruction

The Cardgame scene is reconstructed with 720p images acquired by three clients. The

reconstruction is in grayscale because the clients committed only grayscale images to save

bandwith. Figure 5.5 and 5.6 show the client and server reconstructions with some related

input images. Further, our server system was able to detect correct image overlaps and to

calculate valid merges. Bundle adjustment is only applied to the individual client parts

and not on the merged map. Additionally, figure 5.6 shows reduced holes of client C, with

information of client A. Visualising the growth over time, shows that external keyframes

integrate very well into the local map and help to improve the tracking. Especially, figure

5.4 image (c) shows new 3D points in magenta, which extend the scene and will speed up

tracking, if the client moves into this area.
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Figure 5.4: Autonomous client mode comparison. Scene Cardgame. Local poses in blue, received
keyframes/pose in red. (a) and (b) received the same keyframes from the server. V1 estimated
the poses and V2 used the server estimate. (c) shows the server map.

5.3 Scene Office

The Office scene is our third test environment and mainly used as showcase. Clients

operate as autonomous clients in V3. The clients are spatial placed along a U-shaped

desk in an order like C-A-B with A as initial client. Figure 5.7 compares the local client

to the server reconstruction and Figure 5.8 shows the growth of one client over time.

Figure 5.9 shows the reconstruction including some committed keyframes and Figure 5.10
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(a) Client C

(b) Client A

(c) Client B

Figure 5.5: Scene Cardgame. (a) to (c) some of the used input images on the left and client
specific reconstructions (densified with PVMS) on the right.
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Figure 5.6: Scene Cardgame. Server reconstruction (densified with PVMS) of combined clients.

compares the trajectory recorded with an external tracker system, to the resulting server

reconstruction. Our reconstructed trajectory based on keyframes is very similar to the

recorded one with deviations mainly with respect to scale.
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(a) Client V3
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Figure 5.7: Scene Office. (a) shows the client and including external poses. (b) shows the
server reconstruction. At this point in time the client has no processed all received keyframes.
The differences in scale regarding to the 3D points, is due to different systems with different
initializations e.g. initial distance to the first triangulated point.

5.4 Application Cases

In this section we describe various application cases and discuss one in detail, for which

our system could serve as an enabling solution. This cases may operate with annotations,
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Figure 5.8: Scene Office. Fat client A, V3. Map growth over time. Starting at top left with no
external keyframes until bottom right, where almost all external keyframes have been added.
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(a) Client A

(b) Client B

(c) Client C

(d) Merged map

Figure 5.9: Scene Office. Reconstructions (densified with PVMS) and keyframes. (a) to (c)
show clients A, B and C where spatial arrangement is B-A-C. Left shows some of the commuted
keyframes and right the reconstruction. (d) shows the merged map of all three clients from two
different views (front and above).
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Figure 5.10: Scene Office. Camera pose comparison. (a) shows the reconstructed server tra-
jectory based on committed client keyframes and (b) shows the trajectory of an external tracker.
Comparing (a) and (c), shows very similar trajectory. Small deviations are related to the fact,
that (b) was recorded as a single recording and (a) represents parts of the recording committed by
three different clients. Red, green and blue represent clients. The green line in (a) deviates on the
left side from the green line in (b), because of the loop-playback used.

which allow to mark specific points in the collaborative map. Annotations are created by

clients and mapped into the collaborative map, for a possible update of all clients. The

server is used to transform annotations taken by one client, into valid 3D spaces of other

clients.

Case (i) describes a typical household situation: one recognizes in the morning, that

the milk is empty, but he is in a hurry to catch his train. When standing in front of the

fridge with an empty bottle of milk, it is possible to place a virtual model of the bottle

near the virtual fridge, so that the flatmate, once he or she gets up, recognizes it and buys

a new one.

Case (ii) takes place in a (partially) empty flat, where a couple is currently moving

in, but they are not sure how to place their new furniture, or even which furniture to

buy. Software like Sweet Home 3D1 is a home furnishing tool, which allows to define the

space and to place objects within, but without any reconstruction or immersion, and one

has to do all measurements for walls, windows and doors on his own. Using an approach

like our proposed system as a basis allows them to register the whole furniture to the

collaborative map and deliver it to all clients. One advantage is, that the registration

is against the collaborative map and not against one client. Therefore, the server can

1http://www.sweethome3d.com/

http://www.sweethome3d.com/
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transform annotations to all needs, because clients are in the same space. Ones a client

is localized within the map, the map could be enlarged or refined and furniture would be

correctly visualized.

Case (iii) is like the other cases, but to a bigger scale. It is often difficult to find

the correct corridor in an DIY-store, because of the high shelves. Such a store could

have its own (non-perfect) reconstruction. When entering the store, our client would be

merged into the existing reconstruction, and information about what products are in which

corridor, would be easily accessible. The user could then e.g. filter the information for

different bolts and screws. On the clients visualization, we would highlight the related

corridors and on a more complex application, the user could be guided to shelves of the

concerned items. Further, screws of specific sizes could be annotated to decrease the time

needed to find the searched ones.

All cases have in common, to share information between clients, with respect to the

collaborative map and with respect to a certain client. Information is added by clients, for

other clients. Because of the collaborative map, the server can easily translate between dif-

ferent clients, and compensate for different client implementations. The following section

will discuss case (i) in more detail.

5.4.1 AR scenario - The forgotten milk

As previously described, the task is to annotate the fridge or any space close by, and

to visualize the annotation between all clients. In particular, we use two clients on a

usual kitchen scene. Figure 5.11 shows the scene including the rendering of the milk

carton. An annotation can be created by a client and committed to the server, or can be

directly created by the server. In both cases clients will receive updates about annotations.

Transformations between fat clients and the server with high accuracy in placement and

orientation turn out to be difficult. The problem is mainly regarded to the individual

bundle adjustment algorithms used by clients and the server.

The annotation is more accurate at the beginning of the sequence when only a few

keyframes are captured and will deviate in position and orientation when more keyframes

are added on. The client-side, as well the server-side, BA algorithms move points and

poses for optimization and change the 3D structure of each reconstruction. Annotations

remain on the same 3D coordinates, but the underlining 3D reconstruction changes. This

effect is shown in the second row of figure 5.11, where the milk carton is on the left side

of the cup for client A and almost on the right side for client B. Figure 5.12 shows the

deviation between client A and the server and figure 5.13 for client B and the server. The

deviation remains small for the first few keyframes and grows over time. Due to individual

systems with different algorithms and loose server dependencies of our proposed system,

the accuracy for use cases like annotations is limited. The described problem affects only

client-server transformation, which need to remain accurate over time e.g. annotating a

cup of tea. The collaborative reconstruction remains valid, as shown in figure 5.14.
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Figure 5.11: Annotation in two client spaces. The left column shows representative keyframes of
client A and the right column of client B. The annotation is registered against the merged map and
updated to clients. Comparing the position of the milk bottle, we observe inaccurate placements
caused by deviating server and client systems.

5.4.2 Discussion

With each new keyframe the optimization slightly changes the reconstruction and the

positions and orientations of the poses, which will lead to bigger deviations. If we tighten

the client-server dependencies, we can eliminate this behaviour by applying one of three

possible methods, namely pose alignment and 3D point update, aligning of 3D structures

and anchor points to fix pose-3D-point distances.
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C1 local

Figure 5.12: Local poses of client A are shown in red. The corresponding server poses transformed
into the local space of client A are shown in blue. The annotation is shown in magenta and the
local 3D points in black. The movement starts on the top right towards the lower end of the image.
Within the first few keyframes the client and server poses match with little to no error. After some
bundle adjustment iterations we can see, that the systems are deviating, and the poses are no more
aligned. This also holds for the 3D points. The annotated 3D position is transformed correct, but
the 3D structure of client A has moved over time. Note: The annotation should be at the black
dots below its current position.
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Figure 5.13: Local poses of client B are shown in green and the corresponding server poses
transformed into the local space of client B are shown in blue. The annotation is shown in magenta
and the local 3D points of client B are shown in black. We see fewer server poses (blue), because at
this point in time not all server poses have been processed. The client movement starts on the far
right towards the left lower side of the image. With each added keyframe the deviation between
server and client poses grew, leading to an in-precise placement of the annotation. Note: The
annotation should be placed left to the points below the annotation. As described, the deviation
is manly caused by individoual systems with different algorithms e.g. bundle adjustment

5.4.2.1 Pose alignment and 3D point update

The idea behind this method is, that the server corrects client poses and the client corrects

local 3D points related to these poses. Due to the bigger capabilities and more precise

algorithms of the server, the poses calculated by the server are more accurate. Therefore,

the server could prepare pose updates, which notify clients about corrected pose positions

and orientations. In this case, the client has to re-position and re-orient local poses with

the received ones. If local poses are moved affected 3D points become inaccurate, because
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(a) top view

(b) side view

Figure 5.14: Annotation registered in the merged map. Client A with red poses and client B
with green poses have collaboratively created the merged map by committing their keyframes to
the server. 3D points are in black and the annotation is shown in magenta. (a) shows the top
view and (b) the view from the side.
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of the new pose position. Those 3D points have to be corrected in position. We can assume,

based on the bundle adjustment and the more accurate server poses, that the influence

of the optimization would be reduced, because a new keyframe would have more accurate

predecessors, which it could rely on. Advantages of this method are more accurate client

poses and negligible effort for the server. Disadvantages include increased communication

effort (pose update after each bundle adjustment) and increased computational effort for

the client, which could affect real-time performance, if on every update a majority of the

points and the poses had to be corrected. Changes to the majority of poses seem to be

uncommon, assuming that the server computation is correct and only new client poses and

3D points have to be fixed. The Horn algorithm can be used to perform this alignment,

but it will fail when poses are positioned co-linear, which creates a further disadvantage.

5.4.2.2 Aligning of 3D structures

This approach tries to align two 3D point clouds. After alignment, the reconstructions of

the server and the client are identically placed and therefore annotations could be placed

more precise. In particular, the server would serve as reference and send the reconstruction

or parts of it to the client. Afterwards, the client tries to align the local reconstruction

with the received one. Iterative closest point algorithms, as shown by Rusinkiewicz et al.

[46] can be used to perform the alignment. This method should be more precise, but also

use a high bandwidth based on the amount of 3D points needed for a good alignment. ICP

algorithms can be computational expensive and seriously affect real-time performance on

the client. Further, both considered point clouds are homogeneous and do not guarantee a

successful alignment (basicaly, there are no one-to-one 3D point correspondences between

those point clouds). The deviations between two 3D point cloud representing the same

environment, can be to large causing ICP algorithms to fail or deliver bad results.

5.4.2.3 Anchor points to fix client-server drift

The basic idea behind anchor points is to provide a set of corresponding 2D and 3D points,

which will remain constant while the bundle adjustment performs the optimization. This

point set can be determined and provided by the server, allowing the server to strongly

influence the client map. Of coarse, the provided 3D points are chosen from the merged

map, forcing clients to align their poses and points with the server. Ventura et al. show,

how to use such anchor points for alignment between server and client [59]. For good

results, it is necessary that the server bundle adjustment uses the same anchor-points, or

provided ones are updated when changed. We can already guess, that this method has

low impact on client side real-time performance, because it basically adds constraints to

the bundle adjustment. Of course, an increased amount of data has to be transmitted.

In our case, the anchor-points method looks the most promising, because it has low

impact on the real-time performance, when compared to the other methods. All methods
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seem to solve the client-server deviation problem, and will need tighter dependencies to

the server while using more bandwidth.

5.5 Discussion

All tested indoor environments worked very well. If an image overlap leads to an valid

epipolar geometry, the merge can correctly be calculated. Refreshing the stored maps

with new client information did not introduce errors. In terms of performance, our

presented system is very parallelizable. Each clients SfM pipeline, the image overlap

detection and the map management can be split up into individual threads. Further, the

search strategy used in the overlap detection, could be replaced with an tree search based

one, which would allow to parallelize the algorithm itself and additionally, information of

client movement or position could be taken into account, to speed up the search process.

According to the overlap detection, the verification of a single image pair takes a couple

of milliseconds.

Based on the strict merge validation, merge errors could be avoided. When

lowering the thresholds. For instance of a valid epipolar geometry, it is possible to

generate false merge information. Otherwise our approach is very robust on the tested

scenes. Problems may occur for clients, which use weak features for image matching on

images with repetitive patterns.

Our annotation extension has room for improvements as mentioned in previ-

ous sections. To transform annotations to the merge-map space, the first clients camera

is used. It may be better to use the closest camera for the transformation, if the

annotation is far away from the first camera to increase accuracy. Annotations made in

the merged map space, are accurate in position, but will face deviation problems when

different clients are used. The system is capable to handle multiple annotations per client

and to provide updates for other clients.
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Conclusion

6.1 Conclusion and future work

We presented a method to combine various clients, which operate within the same en-

vironment to generate a combined map. Clients can collaboratively generate maps and

navigate within the same context, which allows for sharing annotations for AR related

applications. The created maps can be combined to even bigger ones, if clients close the

gaps between existing maps. Further, we do not restrict to specific clients and allow the

server system to handle different clients and compensate for deviations among their local

systems. Combined maps can be managed and expanded by new or by already participat-

ing clients. Our server system is capable to perform transformations, to combine clients,

to generate a merged map. Additionally, the server can react to different client systems

and compensate for deviating bundle adjustment implementations and cases like different

orientations.

Three operational modes for a specific SLAM client were presented, namely V1

(keyframes only), V2 (keyframes and poses) and V3 (keyframes and poses with

triangulation). This allowed different usage scenarios for improving the local system. Our

autonomous client decides on his own, how to add external server information. V2 and

V3 seem to be more useful in AR specific applications. V1 could improve the tracking

of one client, which is not capable to operate in mode V2 or V3. Our results show a

pleasant performance among various indoor scenes, with V3 giving the most benefit.

Our contributions of this work are: (i) A server system to collect and combine data

from various clients to large maps and how to distribute the results in a very loose way,

and (ii) how to use the received data in local SLAM systems to improve the performance

in terms of mapping and tracking, without noticeable affecting their real-time constraints.

The next steps of our work are the design of an AR application to show

context sharing over multiple clients. Further, to try different strategies for client

updates, namely in which order clients would receive their specific updates. Also,
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additional strategies for detecting image overlaps between clients are considered e.g.

tree based approaches, which consider additional information, like position data. Large

scale tests, which go beyond the computational capabilities of a desktop pc, would be

interesting, as well as outdoor environments.

This work shows, that there is a plausible need for such a system to allow different

clients to operate in the same AR environment. We can imagine, from an applications

point of view, to create an operating system for different independent AR applications. For

instance, one has an AR related app for furniture placement. While placing the furniture,

a map of the room would be generated. Instead of loosing the map after shutting down,

the map would reside on the server system. After turning off the furniture app, one would

start an AR environment-related game. Instantly, the client would get updates and the

whole processing capability of the device could go into the game, without the need of

initially creating a map. If ones friend would like to join the game, he also would get the

updates and both would reside within the same AR context and continual actualize each

other.

Further, the server system could support different modes, in terms what kind of up-

dates to provide for different kinds applications like, keyframes, keyframes and poses,

transformation to move the client into the combined-map-coordinate system, the whole

map including 3D points or even 3D reconstructions for visualization purposes. Clearly,

there is a need for such a system in AR related applications.
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