
Design of a Flexible UHF RFID TAG

with Security Functionality

Based on an 8-Bit Microcontroller

Krassimir Duschkov
duschkov@student.tugraz.at

Institute for Applied Information
Processing and Communications (IAIK)

Graz University of Technology
Inffeldgasse 16a

8010 Graz, Austria

Master’s Thesis

Assessor: Ao. Univ.-Prof. Dipl.Ing. Dr.techn. Karl-Christian Posch
Supervisor: Dipl.Ing. Dr.techn. Thomas Plos,

Dipl.Ing. Dr.techn. Erich Wenger

Mai, 2015

I hereby certify that the work presented in this thesis is my own work
and that to the best of my knowledge it is original except where indicated
by reference to other authors.

Ich bestätige hiermit, diese Arbeit selbständig verfasst zu haben. Teile
der Diplomarbeit, die auf Arbeiten anderer Autoren beruhen, sind durch
Angabe der entsprechenden Referenz gekennzeichnet.

Krassimir Duschkov

i

Acknowledgements

First of all, I would like to thank Thomas Plos and Erich Wenger. They always took time
to give me support and advice. Thank you for your supervision and patience during the
progress of my work.

Secondly I would like to thank my girlfriend and my family. They kept encouraging
me and gave me the mental support when I needed it. I also would like to thank my
employer Johann Sauseng-Weiss for his sincere appreciation for my education.

Finally I would also like to thank Alex Apostolov for proofreading my thesis.

ii

Abstract

The electronic product code (EPC) is seen as a successor of the bar-code. Together with
the RFID technology it is expected that for the EPC a broad field of applications will
arise in the future. Thus a flexible design of an EPC tag with the possibility of adapting
the functionality in software is desirable.

RFID technologies bring huge advantages in many applications of people’s everyday
lives and countless future applications are imaginable. Involving people’s everyday lives
with an application based on RFID, like the EPC, brings up reasonable security concerns
on such RFID devices. Privacy and authenticity are the two main issues mentioned in the
context of RFID security. Therefore security functionalities play a large role in different
systems based on RFID.

The first version of the EPC Gen2 standard does not provide any security functionality.
An EPC tag based on a flexible design that is adaptable for the security issues in a certain
application would save on many costs for the assimilation of given security features.

This thesis presents a design based on an 8-bit microcontroller that implements the
AVR instruction set of the Atmega128. It has a front-end extension that handles the
fundamental functionality for communication according to the EPC Gen2 standard.

The processing of the tag’s incoming and outgoing data is split to be handled by the
front-end as well as by the software on the microcontroller. The software for the handling
of the basic commands is written in the programming language C, whereas the critical
parts of the software are highly optimized in assembly. This allows one to clock the
microcontroller with a minimal cycle count to execute the command handling. Since low
power is one of the mandatory requirements for RFID devices, a low clock frequency is
important for reducing the power consumption.

Further, the front-end is able to clock the microcontroller dynamically, depending on
the current communication process and data rate. Thus, not only is the required cycle
count reduced, but also the clock frequency can be adapted to the data rate.

In an RFID application the power that is supplied to the tag by a reader depends on
the distance between tag and reader. With larger distance less power is supplied to the
tag. With a power consumption that depends on the data rate, it is possible to deliberate
between the communications distance and the data rate.

In this design the minimal effective clock frequencies are 186.7 kHz for reception and
25 kHz for transmission, assuming the lowest possible data rates, whereas for the highest
possible data rates, the clock frequency results in 896 kHz for reception and 3200 kHz for
transmission.

Further, the handling of additional security features and commands can be imple-
mented easily in software with the tag presented in this thesis. The design of the tag
requires only adaption of the command handling in the software in the programming
language C.

iii

Using the resulting hardware design, a simple authentication scheme is implemented
with a software extension for additional security features allowing the authentication of
the tag to a reader. The conformance of the final design including the authentication
functionality has been verified on a demonstration tag with a Field Programmable Gate
Array (FPGA).

Keywords: Radio Frequency Identification, EPC Gen2 tag, flexible design, standard
microcontroller, security functionality

iv

Kurzfassung

Der Electronic Product Code (EPC) wird als Nachfolger des Barcodes angesehen. Zusam-
men mit der Radio Frequency Identification (RFID) Technologie ist zu erwarten, dass für
den EPC zukünftig ein breites Feld an Anwendungen entstehen wird. Hierfür ist ein fle-
xibles Design eines EPC Tags, mit der Möglichkeit die Funktionalität durch Software zu
adaptieren, vorteilhaft.

Radio-Frequency Identification (RFID) Technologien bringen nicht nur große Vortei-
le in vielen Anwendungen des alltäglichen Lebens, sondern es sind damit auch zahllose
zukünftige Anwendungen vorstellbar. Das Involvieren des alltäglichen Lebens mit Anwen-
dungen basierend auf RFID, wie der Electronic Product Code (EPC), wirft ernsthafte
Bedenken an die Sicherheit von RFID Applikationen auf. Vertraulichkeit (englisch: pri-
vacy) und Authentizität (englisch: authenticity) sind zwei der Hauptaspekte, welche in
diesem Zusammenhang genannt werden. Aus diesem Grund spielen in den verschiedenen
Systemen, die auf RFID basieren, Sicherheitsfunktionen eine große Rolle.

Die erste Version des EPC Gen2 Standards bietet keine Sicherheitsfunktionen. Ein
EPC Tag, basierend auf einem flexiblen Design, welches in Punkto Sicherheit für die
jeweilige Anwendung adaptierbar ist, würde eine Menge Kosten für die Anpassung der
Sicherheitsfunktionen sparen.

Diese Arbeit präsentiert ein Design basierend auf einem 8-Bit Mikrocontroller, welcher
das Atmega 128 Instruction Set implementiert. Es besitzt ein Front-End, das die grundle-
genden Aufgaben der Kommunikation hinsichtlich des EPC Gen2 Standards erledigt.

Die Verarbeitung der empfangenen und gesendeten Daten eines Tags ist sowohl auf
das Front-End, als auch auf die Software des Mikrocontrollers aufgeteilt. Die Software zur
Handhabung der grundsätzlichen Kommandos ist in der Programmiersprache C geschrie-
ben, wohingegen die kritischen Teile der Software in Assembly optimiert sind. Dadurch ist
es möglich den Mikrocontroller mit einer minimalen Anzahl an Zyklen zu takten. Da für
RFID Anwendungen ein niedriger Energieverbrauch entscheidend ist, ist eine minimale
Taktfrequenz ausschlaggebend, um den Energieverbrauch zu reduzieren.

Das Front-End ist in der Lage den Mikrocontroller dynamisch zu takten, abhängig
von dem aktuellen Kommunikationsfluss und der Datenrate. Dadurch wird nicht nur die
Anzahl der benötigten Taktzyklen reduziert, sondern es kann auch die Taktfrequenz an
die Datenrate angepasst werden.

In einer RFID Anwendung ist die Energie, welche durch das Lesegerät an das Tag
übertragen wird, abhängig vom Abstand zwischen dem Tag und dem Lesegerät. Mit
größerem Abstand wird das Tag mit weniger Energie versorgt. Mit einem Energieverbrauch
der abhängig ist von der Datenrate, ist es möglich zwischen Kommunikationsabstand und
Datenrate abzuwägen.

In diesem Design beträgt die minimale effektive Taktfrequenz des Tags für die nied-
rigste Datenrate 186.7 kHz während des Empfangens und 25 kHz während des Sendens,

v

wohingegen für die höchste Datenrate eine Taktfrequenz von 896 kHz zum Empfangen
und 3200 kHz zum Senden benötigt wird.

Ferner kann, mit dem in dieser Arbeit vorgestellten Tag, die Verarbeitung von zusätzlichen
Sicherheitsfunktionen und Kommandos einfach in Software implementiert werden. Auf-
grund des Designs des Tags, ist lediglich eine Anpassung der Software in der Program-
miersprache C für die Verarbeitung von zusätzlichen Kommandos notwendig.

Im endgültigen Design wurde durch einfache Softwareerweiterung eine Funktion zur
Authentifizierung implementiert, welche es ermöglicht, dass ein Tag durch ein Lesegerät
authentifiziert wird. Die Korrektheit der Funktion des letztendlichen Designs inklusive der
Authentifizierungsfunktion konnte an einem Demonstrationstag mit einem Field Program-
mable Gate Array (FPGA) verifiziert werden.

Stichwörter: Radio Frequency Identification, EPC Gen2 Tag, Flexibles Design, Standard
Mikrocontroller, Sicherheits Funktionen

vi

Contents

1 Introduction 1

2 Introduction to RFID 4
2.1 A Brief History of RFID Technology . 4
2.2 RFID Applications . 5
2.3 Security and Privacy Challenges of Tags . 7

2.3.1 Privacy . 7
2.3.2 Authenticity . 8

2.4 Security-Efforts on EPC-Tags . 9

3 Security in Communication 11
3.1 Cryptographic tools . 11

3.1.1 Symmetric Crypto Primitives . 13
3.1.1.1 Block Ciphers . 13
3.1.1.2 Stream Ciphers . 15

3.1.2 Asymmetric Crypto Primitives . 16
3.1.3 Hash Functions . 17

3.2 Advanced Encryption Standard . 18
3.3 Protocols . 22

4 The EPC Gen2 standard 24
4.1 Signaling . 24

4.1.1 Communication from Reader to Tag 24
4.1.2 Communication from Tag to Reader 25
4.1.3 Link Timing . 27

4.2 Mechanisms for Tag Access . 28
4.2.1 Tag Memory . 28
4.2.2 Inventoried Flag and Selected Flag 29
4.2.3 States of a Tag . 29
4.2.4 Managing Tags . 31

4.2.4.1 Selecting Step . 31
4.2.4.2 Inventorying Step . 31
4.2.4.3 Accessing Step . 32

4.3 Possible Extensions and Improvements . 33

vii

5 Architecture 34
5.1 System Overview . 34
5.2 Trade-off between Hardware and Software 35
5.3 Design of the Front-end . 37

5.3.1 Rx-Tx-module . 37
5.3.2 FIFO . 39
5.3.3 Pseudo Random Number Generator 40

5.4 Clock Frequency Constraints . 40
5.5 Optimization Approaches in Software . 42
5.6 Control flow between Hardware and Software 44

5.6.1 Controlling the Front-end . 45
5.6.2 Sensing the front-end . 45
5.6.3 Critical points of operation . 46

6 Implementation and Evaluation 48
6.1 Simulated Model of the System . 49
6.2 Test Case Generation and Appliance . 49
6.3 Extending the Protocol . 50
6.4 Evaluation of the Software . 51

6.4.1 Optimization Results . 51
6.4.2 Clock Requirement . 52

7 Concluding Remarks 58

A Definitions 60
A.1 Acronyms . 60

B Interface Register 62
B.1 Status 1 Register . 62
B.2 Status 2 Register . 63
B.3 Control 1 Register . 64
B.4 Control 2 Register . 65

C Algorithms 67
C.1 Extended Euclidean algorithm . 67

Bibliography 70

viii

List of Figures

2.1 Tracking a Person . 8
2.2 Tag being spied and copied . 9

3.1 Two parties using an encryption scheme . 12
3.2 Substitution-permutation network . 13
3.3 Electronic Code Book . 14
3.4 Cipher Block Chaining . 14
3.5 Output Feedback . 15
3.6 Synchronous Stream Cipher . 15
3.7 Feedback Shift Registers . 16
3.8 Linear Feedback Shift Registers . 16
3.9 SubBytes Transformations . 19
3.10 ShiftRows Transformations . 19
3.11 MixColumns Transformations . 20
3.12 AddRoundKey Transformations . 21
3.13 Types of Protocols . 22
3.14 Types of Protocols . 23
3.15 Types of Protocols . 23

4.1 PIE Symbols . 25
4.2 Interrogator to tag preamble and frame-sync 25
4.3 FM0 Signals . 26
4.4 Miller Signals . 26
4.5 FM0 Preamble . 27
4.6 Miller Preamble . 27
4.7 Link timing . 27
4.8 Actual T1 link timing . 29
4.9 Memory Distribution . 30

5.1 System overview . 34
5.2 System overview . 38
5.3 System overview . 39
5.4 Pseudo Random Number Generator . 40
5.5 Power distribution . 41
5.6 Control flow without delay . 46
5.7 Control flow with delay . 47

6.1 Evaluation of minimal RX-BIT-RATE requirement 56

ix

List of Tables

4.1 Link timing . 28

5.1 Special Command-Detection . 39
5.2 Feedback polynomials for the PRNG . 40

6.1 Comparison of Select command optimization steps 51
6.2 Comparison of ACK command optimization steps 52
6.3 Dependency between TX-WAIT-CYCLES and the RX-BIT-RATE for the

Select command . 53
6.4 Dependency between TX-WAIT-CYCLES and the RX-BIT-RATE for the

Query command . 54
6.5 Required TX-WAIT-CYCLES for the QueryAdjust command 55
6.6 Required TX-WAIT-CYCLES for the QueryRep command 55
6.7 Effective Clock-rate for receiving . 56
6.8 Effective Clock-rate for transmitting . 57

B.1 Status 1 Register . 62
B.2 Status 2 Register . 63
B.3 Control 1 Register . 64
B.4 Control 2 Register . 65

x

Chapter 1

Introduction

The use of RFID reaches back to the 50’s of the last century. Using RFID technology
an object can be uniquely identified through wireless transmission of its identity. An
RFID system basically consists of a tag, which stores the identity of an object, and an
interrogator, that reads the identity through an electromagnetic field. During the process
of communication, the electromagnetic field, transmitted by the interrogator, can also be
used to power the tag.

In many applications like supply-chain management, inventory control and logistics
RFID technologies can help to operate more flexibly and save labor and time (see Weis
[1] and Roberti [2]). But also in other applications like toll collection (see Dong-Liang
et al. [3]), access control (see Weis [1]), contactless payment (see Lacmanovic et al. [4]) or
animal identification (see Jeffries [5]) the use of RFID technology brings many benefits.
Nevertheless, involving RFID in so many aspects of everyday life is of concern to many.
The most frequently mentioned security concerns in the context of RFID are privacy
and authenticity. The security risk within the RFID technology and eventual counter
measurements are mentioned in Juels [6] and Pateriya and Sharma [7].

The main privacy issues are clandestine tracking and inventorying. Since in many
applications, an RFID tag is powered wirelessy over the air, an individual has no control
over the activity of its tags. A tag attached to an object that is worn by a person can be
tracked and eventually linked to the identity of a certain person. Additionally, sensible
data stored on an RFID device is a privacy issue (e.g., an E-passport mentioned in see
Bogari et al. [8]). Authentication issues on the other hand have concerns regarding the
information that is read from a tag. For tags that are used as proof of origin or for
access control it should not be possible to counterfeit them by eavesdropping on the
communication process. Thus modern RFID devices offer minor security functionalities
for the certain application (see Dong-Liang et al. [3] and Juels [6]).

The EPC is an international system for identifying physical objects. Together with
RFID technology it is very likely that EPC tags are going to be a successor of bar-codes.
Further, it is expected that the applications of EPC tags will also spread into a broader
field than it already has. Moreover the different applications will require different security
functionalities (see Juels [6]). Thus it is hard to imagine one standard tag that can meet
all the security requirements arising with different scopes of applications. Likewise, in the
past a suggested security mechanism was erroneous and thus had to be modified, adapted
or redesigned (e.g., Bagheri et al. [9] and Song et al. [10]).

Adapting the design of a tag for a certain application or modifying the security mech-

1

CHAPTER 1. INTRODUCTION 2

anism can have high costs. Since most of the designs have security features that are
implemented in hardware, the functionality of such tags can not be updated and reused.
For these reasons having a tag with a dedicated hardware part, targeted for the EPC Gen2
standard, but with a higher level functionality running on a microcontroller implemented
in software would be an advantage for eventual updates of the functionality. Also it would
be possible to have one hardware design that can be reused for different applications, while
only the software has to be adapted for a new functionality.

This thesis presents a hardware design that is based on a microcontroller that im-
plements a commonly used instruction set, the instruction set of an ATmega128. The
microcontroller is extended by a front-end that is responsible for the communication ac-
cording to the EPC Gen2 standard (see EPCglobal Inc. [11]). Further, this design splits
the processing of the incoming and outgoing messages in a hardware part, handled by the
front-end, and a software part, handled by the microcontroller. The front-end handles
time critical operations and processes the data insofar as the microcontroller can handle
the higher level functionality with an appropriate amount of cycles. Processing the data
only in software would require a lot more cycles compared to the split design in this thesis.
The communication protocol according to the EPC Gen2 standard requires certain timing
constraints to be meet, a higher amount of required cycles would lead to a higher clock
frequency.

A low clock frequency is one of the keys to reducing the power consumption of a
device. Applications using RFID technology are typical low power applications, thus a
low clock frequency is one of the goals in this thesis. To reduce the required cycles for the
software handling, the time critical parts are highly optimized in assembly, whereas the
less complex parts are implemented in the programming language C.

Further the clock frequency that is gated to the microcontroller is adjusted by the
front-end, depending on the data rate of the current reader. Thus with a lower data rate
the required cycles for the command handling are split over a larger time slot which re-
duces the clock frequency and further the power consumption that is needed to meet the
timing constraints. Since the power that is supplied by a reader reduces the larger the dis-
tance gets between the tag and the reader, it is possible to achieve larger communications
distances by reducing the data rate of the communication.

A software model is implemented that reflects the intended hardware design. On the
one hand it is used to evaluate the interface and the data flow between the microcontroller
and the front-end. On the other hand it is used to evaluate the software for the command
handling on the microcontroller.

The following work is structured as follows:
An introduction into RFID and its history is given in Chapter 2. Possible RFID

applications and the concerns of the security of RFID tags are briefly discussed. Moreover,
existing efforts are given on security related to EPC tags.

Chapter 3 gives an introduction into security and cryptography. The basic crypto-
graphic primitives are discussed and some examples are demonstrated.

Since the design of the presented implementation builds on the EPC Gen2 standard,
the standard is summarized in Chapter 4. Critical characteristics that are also important
for the thesis are pointed out.

In Chapter 5 an overview of the concept and the architecture of the system is given.
Further, the trade-offs are discussed between hardware and software for implementation of
the EPC Gen2 standard respectively regarding the cycle count requirement. Optimizations
in software and the effects on the control flow between the front-end and software on the

CHAPTER 1. INTRODUCTION 3

microcontroller are analyzed.
Chapter 6 presents the implementation of a software model for verifying the concept.

The software and the control flow between the software and the front-end are evaluated
with the model. The software that runs on the microcontroller and implements the com-
mand handling according to the EPC Gen2 standard is extended by a custom command
with a security functionality. Conclusions and remarks for further work are given in Chap-
ter 7.

Chapter 2

Introduction to RFID

Radio frequency identification (RFID) is a technology, used for wireless identification of
objects and entities. The system consists of a reader (or interrogator) and a transpon-
der (or tag). The interrogator sends and reads information from the tag by means of
electromagnetic waves. Passive tags are simultaneously supplied with energy by those
electromagnetic waves, during the process of communication.

2.1 A Brief History of RFID Technology

In the 50s and 60s of the 20th century the first predecessors of modern RFID systems
where developed. Actually, during World War II the Identify Friend or Foe (IFF) system
was already used to identify an incoming airplane by radar. For this purpose planes had
mounted special ‘reflectors’, which backscattered a certain signal. Thus on the radar they
were identified as friendly forces.

In the late 60s Electronic Article Surveillance (EAS) tags were realized as 1-bit tags.
In fact, only the presence or absence of the tag was detected. Such tags were used as an
anti-theft measure in merchandise. The cashier in a store was able to turn the tag off. If
a tag attached to a piece of merchandise was still turned on, this denoted that the item
was not paid for.

With the development of the transistor and integrated circuits in the 70s and 80s, the
tags became smaller and the functionality of the system more complex. Toll systems with
tags in vehicles and readers at certain points on roads, bridges or tunnels were established
in many countries. The correspondent tags were mounted on the cars and registered in a
centralized database system. Thus, it was possible to automatically verify which parts of
a road network were passed by a registered vehicle.

The first more contemporary low power applications with RFID tags were tags that
were used as implants to identify animals. Such tags were implemented as passive Low-
Frequency (LF) tags with a transponder frequency set at 125kHz. They were used on
livestock on farms, so that a farmer could not run the risk of giving an animal an overdose
by administering medicine twice. Additionally, tags at large meadows shared amongst
different farmers could allow easy separation of cattle by owner.

In the late 80s and 90s, passive High Frequency (HF) tags, operating with a carrier
of 13.56 MHz, offered a longer operating range than the LF tags. Such tags have been
used in warehouse logistic tracking for goods and also in smart card systems. With the
development of personal computers (PC), the data amounts resulting from large RFID

4

CHAPTER 2. INTRODUCTION TO RFID 5

systems became manageable in a convenient and economical way, which expedite the
expansion of RFID applications (see Landt [12]).

The first Ultra High Frequency (UHF) RFID systems were developed in the 90s, but in
the beginning they were to expensive to get proper acceptance. With the foundation of the
Auto-ID Center at the Massachusetts Institute of Technology the research on UHF systems
increased. The Auto-ID Center developed the electronic product code (EPC) standard,
an universal identifying scheme. This led to founding the EPCglobal Inc in 2003. Since
2004 the EPC Gen2 standard has been developing, and is nowadays the standard for the
most quickly growing field involving RFID technology.

For more information about the history of RFID technology see Landt [12], Violino
[13] and Dong-Liang et al. [3].

2.2 RFID Applications

RFID systems can be distinguished based on the transponder frequencies used:

❼ Low Frequency systems work in the frequency spectrum of 120-140 kHz which is
in general an unregulated spectrum. The tags are mainly passively powered and
have a short operating range (10-20cm). Such systems offer only a low data rate
in comparison to other RFID systems. One major advantage is that they could be
used in a rugged environment like metal, liquid or dirt. So one typical application
for such tags is animal identification where glass encapsulated tags are implanted
into pets (see Weis [1]).

❼ The High Frequency spectrum is the range from 3 MHz to 30 MHz. This is a
strongly regulated part of the frequency spectrum. RFID systems in the HF range
work at a frequency of 13.56 MHz which is specified in the ISO 18000-3 standard (see
ISO/IEC 18000-3 [14]). HF tags have a higher data rate and a greater operating
range (up to one meter for passive tags) than LF tags systems. Typically such
devices are implemented as passive tags and printed onto a foil or packed into a
plastic card used for access control (see Weis [1]).

❼ Ultra High Frequency tags work at a frequency spectrum of 860-960MHz. In the
United States and Canada (902-928MHz) a different frequency spectrum is specified
by the ISO 18000-6 standard (see ISO/IEC 18000-6 [15]) compared to European
countries (865-870MHz). UHF tags have a higher data rate and a longer operating
range than HF tags (three to six meters for passive tags). Such systems are mainly
used in supply chain management (see Weis [1]). This is because of their long
operating range, but also because of the low price per unit (see Weis [1]).

Today, various RFID systems are implemented in a lot of different applications. Only
a few of them shall be mentioned as representatives of the most common applications:

❼ Tracking of Goods
Supply chain management is one of the largest application areas and a good exam-
ple for large systems based on RFID. In this application, the tags are mounted on
the items that shall be tracked throughout the supply chain. Knowing the stage
of a certain item during a supply chain helps with organizing the massive amounts

CHAPTER 2. INTRODUCTION TO RFID 6

of goods in supply chain management. The use of transponders on containers and
different points of active control events can support the complex material flow. Be-
cause of this, the logistics management can operate more flexibly, which saves labor
and time. Finally, this reduces the costs markedly (see Weis [1]). In retail RFID
technology, more precisely the EPC, seems to replace the technology of the barcode.
In comparison to the barcode, where it is only possible to scan a single item at a
time, using RFID technology one reader can scan a bulk of items at once. Moreover,
it is possible to alter the date stored on the tag. This makes the automation of
the systems easier and reduces time, man-power and costs (see Dong-Liang et al.
[3]). Department stores for example could reduce their out-of-stock items by tagging
them with RFID chips (see Roberti [2]). In general EPC is seen as the successor of
the barcode, which not only holds information about the type of good, but also a
serial number, which uniquely identifies the object (see Dong-Liang et al. [3]). EPC
tags attached to items could also be used as an anti-theft measure (see Yuan and
Huang [16]).

❼ Toll Collection
Automated electronic toll collection, is one of the earliest applications based on RFID
technology and is used all over the world. Active tags are attached to vehicles, which
can pass through the toll gate without the need to slow down. This reduces traffic
jams and costs, that come along with human operated toll stations (see Dong-Liang
et al. [3]).

❼ Animal Identification
LF tags are used for farm animals as well as for pets. In large collaborative ranches
RFID tags are used to distinguish the ownership of animals. They are also utilized
to avoid the spread of diseases like mad-cow disease. Therefore the use of RFID
technology is advantageous, because it can help to speed up the process of identifying
and tracking the path taken by farm animals (see Jeffries [5]). When treating animals
with hormones and medicines, the danger of giving an animal an overdose can be
reduced with the usage of RFID tags (see Violino [13]). On modern farms, RFID
readers could be used for automated and individual feeding and surveillance of the
animals, which can cut costs and increase productivity.

❼ Access Control
Plastic cards with integrated tags can be used to grant somebody a specific access.
In big city public transport, such cards are used as electronic tickets. Moreover, ski
resorts issue ski cards for the entrance of a lift or a cable car. Another example
are exhibitions, entertainment venues and stadiums where RFID tags in e-tickets
can reduce the threat of fake tickets (see Weis [1]). At big events like the FIFA
World Cup and the Olympic Games, RFID tickets were used in large amounts, to
additionally give better protection against counterfeit tickets, as in the past. The
same is true for other events like World Expos or concerts where such tickets are in
use (see Dong-Liang et al. [3]).

❼ Contactless Payment
Contactless Payment based on RFID technology can be achieved by different ap-
proaches like credit cards, smart cards, key fobs or mobile phones. Thereby allowing
the electronic money to be either stored on the device itself, or making it possible

CHAPTER 2. INTRODUCTION TO RFID 7

for the device to invoke a transaction from the customer’s account to the seller’s
account. The most important application in this field is the contactless smartcards.
The main international financial cooperations, like Visa, MasterCard and American
Express have implemented contactless RFID systems that are based on the existing
infrastructure for the current payment cards with a magnetic strip (see Lacmanovic
et al. [4]).

RFID technologies enable a lot more applications, besides those mentioned above.
Having in mind the continuing development of RFID technology, especially for EPC tags
in the field of item tagging, one could imagine even more applications for RFID tags, which
could increase efficiency or make everyday life more comfortable. By having items and
goods with RFID tags on them, a household could be managed more efficiently. Devices
like refrigerators, washing machines etc. could work more intelligently, depending on the
information the items have to handle.

2.3 Security and Privacy Challenges of Tags

Having RFID tags in so many aspects of our life, does not only bring benefits. The
possibilities that come along with the applications using RFID technology can go beyond
their original intended assignment. Therefore the use of RFID technology can be a serious
threat for a potential violation of our privacy and confidence in authenticity of the items
or entities using RFID technology. In the context of RFID it is basically possible to
distinguish between two main security issues: privacy and authenticity.

2.3.1 Privacy

RFID tags attached to personal items respond to RFID readers without being noticed by
their owners. Thus an adversary could secretly inventory or track a tag attached to an
owner. Even if the tag has no information about the individual, a random number or ID
could be used to track a certain person (cf. Figure 2.1), once it is associated with that
person (e.g., when buying an item cashless with a smartcard).

A product with an EPC tag may contain not only a serial number, but also informa-
tion about the product itself. So an adversary could gain information about private and
sensitive data of a person. For example if someone is wearing her or his medicine in a
bag, one could gain information about that. With this information an adversary could
guess which medical conditions the person suffers from. As long as there is a continuing
growth in the use of RFID technology and as long as it is not that widespread, it is hard
to imagine all the possible threats that come along (for examples on how RFID could be
used in the future see Juels [6]).

It is also important to mention that in comparison with other technologies, like mobile
phones, where tracking is also a serious concern, the required hardware utilities for tracking
RFID tags are cheaper and easily accessible. For example, to track a mobile phone one
would need access to the network of the operator. The easy access to RFID technologies
makes the threat of these scenarios appear more likely and real.

CHAPTER 2. INTRODUCTION TO RFID 8

��������

��������

	�
�

	�
�

Figure 2.1: Person being tracked, by wearing a tag with a specific ID

But also in RFID applications, where privacy is a basic requirement of the application
itself, many of the current systems have insufficient security functionality. For example,
the E-passport introduced by the International Civil Aviation Organization’s (ICAO),
holds personal information about their owners. Over the years three generation of the
E-passport were released. It was shown that the first two generations had serious security
weaknesses (see Bogari et al. [8]). Bogari et al. [8] mentions that there could also be a
security risk in the third generation of the E-passport.

Thus, there are already a number of organizations which express their concerns about
involving our lives with a technology that doubtlessly could facilitate our lives, but also
bare many risks (see CASPIAN [17]).

2.3.2 Authenticity

At first glance, an uninformed user might think an RFID tag that identifies a good is
proof of origin for the good. In fact this is a bit too frivolous. A basic RFID tag without
any security functionality is not trustworthy at all. The ID of a tag can easily be read by
an adversary’s reader and be programmed into a counterfeit tag. The first version of the
EPC Gen2 standard that is expected to replace the bar code and already in widespread
use, does not offer any instruments to counter such attacks. Minimalistic approaches
towards counter measures, use digital signatures to prove the authenticity of the data on
a tag. However, this is only a protection against fake data on a tag, it does not prevent
the copying of the data to clone the tag. Such counterfeit tags could be used to prove
the authenticity of a fake good that are cheap copies of the original ones. Other possible
applications for counterfeit tags are to prove the identity of an individual and trigger a
certain event, without the real individual being aware of that. For example, a clandestine
reader could spy on the unlocking mechanism of a car, and allow a burglar to open the
car with a fake tag (cf. Figure 2.2).

Other counter measures against counterfeit tags are based on the fact that a tag has
a unique serial number or identifier. In a closed system where a centralized database has
knowledge of the data of all tags at every point in time and place, it is possible to detect
two identical tags. Then the operator of the database would have an indication of forgery.
Nevertheless, systems with such conditions, were it is possible to observe all the existing
tags of the system, are rare. Either it is not possible to observe all the tags at every

CHAPTER 2. INTRODUCTION TO RFID 9

location, or the authentic tag and the fake tag are read at different times, what makes
them indistinguishable.

����������

��	��
���

���������

������

����
���

����������

�������������
������������ ������	��
��������	������

Figure 2.2: In (1) the original car-unlocking tag is being spied on. In (2) the spy broke
the security features of the tag and cloned it

Authenticity is not only a concern in RFID applications. In history there have already
been some investigations into security systems that prove the authenticity of data. Al-
though there should be knowledge about the security risks of some systems, there are a
bunch of solutions on the market that have much too weak protections in place (see Juels
[6] and Pateriya and Sharma [7]). The Digital Signature Transponder (DST) for example
is a device used to authenticate the owner of the device that includes the DST. Amongst
other applications it is implemented in cars unlocking systems and also in tags for contact-
less payment. It is shown that the security functionalities in DST are not strong enough
and vulnerable. The weakness in DST is based on the short key length of 40 bits. In Bono
et al. [18] it is described, how the security of DST can be broken and how it is possible to
start a car or buy gasoline by using a simulated DST device.

2.4 Security-Efforts on EPC-Tags

As privacy and authenticity issues are not something new to RFID systems, there have
been quite a few investigations towards these issues by academic institutes as well as by the
industry. Because costs are the limiting factor for RFID devices, by means of financial costs
as well as costs in power consumption, much research has been conducted to try to find
architectures that would possibly reduce the costs. In Juels [6] there are a few proposals
summarized that do not implement traditional cryptography, but “workarounds” which
extend the functionality of basic tags in a minimalistic way.

The simplest way to avoid clandestine tracking of an EPC tag is to kill the tag when it
is not needed anymore for its original intended use, and thus disable it’s reply to readers.
This might be a solution for many scenarios, but would also preclude some benefits one
could have with an EPC tag that remains active after its original intention. For example
returns, recalls and recycling of goods could be optimized by having some of the original
information of a tag available. An other approach is to rename the tag. In Juels [6] several
methods for renaming, changing or (re-)encrypting1 the EPC of a tag, but still leaving it

1Re-encryption stands for the repeated encryption of the ciphertext.

CHAPTER 2. INTRODUCTION TO RFID 10

identifiable, are staged.
However, authenticity is harder to achieve. The EPC Gen2 standard1 does not provide

real mechanisms for tag authenticity, thus cloning a tag does not require much effort.
Various proposals for RFID tags with security are related to the utilization of strong
cryptographic functions like AES. In Man et al. [19] and Ricci et al. [20] it is shown that
such tags can achieve an acceptable low-power consumption.

Nevertheless, achieving authenticity is not only a question of a strong cipher. More-
over, the proper protocol has to be implemented to ensure a secure communication. In
2010 the International Organization of Standardization (ISO) suggested the working draft
ISO/IEC WD 29167-6 (see ISO/IEC WD 29167-6 [21]). Three security protocols are de-
scribed there, which should strengthen the security of the ISO/IEC 18000-6 standard (see
ISO/IEC 18000-6 [15]), and thus the security of EPC tags. One of the protocols, denoted
as Protocol 1, in the working draft ISO/IEC WD 29167-6 (see ISO/IEC WD 29167-6
[21]) is based on an AES-128 cipher, which is generally accepted as a strong cipher. The
goal of Protocol 1 is to allow mutual authentication between an tag and a reader. Not
much later after it was released in Bagheri et al. [9] and Song et al. [10] it was shown
that Protocol 1 is vulnerable to man-in-the-middle (MITM) attacks. In a MITM attack
an adversary eavesdrops on the communication between the parties and manipulates the
messages they send each other. Thereby the parties do not recognize the manipulation
and accept the corrupted message. In the proposed attack against the Protocol 1 an
adversary is able to manipulate the messages in such a way that a tag and a reader would
successfully authenticate each other, but every subsequent command from the reader to
the tag would fail.

This example shows that although an adequate cryptographic primitive is used2, the
security functionality still can fail.

1The 2nd version of the EPC Gen2 standard, which was released during the work on this thesis, has

additional commands that provide a framework for certain security goals.
2‘Adequate’ in comparison to the weak primitive in DST that has a short key length, mentioned in

section 2.3.2.

Chapter 3

Security in Communication

Historically one of the first intentions for security was to hide information during a com-
munication process. Centuries ago, the first security approaches had less scientific back-
ground, but tried to distort the information in a way that an adversary could not under-
stand it. In the beginning of the last century, especially during the world wars, different
nations and their militaries massively investigated new cryptographic techniques. On the
one hand they wanted to invent systems that would protect their communication process,
on the other hand they tried to break the security of their ‘enemies’. Since those inves-
tigations were done by national agencies, the public had limited knowledge and access to
them.

With the development of digital communication in various applications of people’s life
(e.g., phones, e-mail, fax, etc.) security has become the main concern for a lot of people.
Not only communication but also other aspects of our life have become affected by the
development of digital technologies, like E-money, e-voting, e-government etc. Thus in the
end of the last century there was a rising research in security and cryptography.

For more details about security and security applications see Menezes et al. [22], An-
derson [23] and Schneier [24].

3.1 Cryptographic tools

In Menezes et al. [22] cryptography is described as following:

“Cryptography provides techniques for keeping information secret, for deter-
mining that information has not been tampered with, and for determining who
authored pieces of information”

. Further in Menezes et al. [22] and other literature like Schneier [24] the basic objectives
of cryptography are mentioned as1:

❼ Confidentiality. The information should be only accessible by individuals who are
meant to do so.

❼ Authenticity. An individual must be able to verify the origin of a piece of infor-
mation. No adversaries should be able to fake the origin or reuse the information as
their own.

1Other goals can be derived from the listed objectives

11

CHAPTER 3. SECURITY IN COMMUNICATION 12

❼ Integrity. An individual must be able to ascertain that the information has not
been manipulated. No adversary should be able to modify any information by means
of inserting, deleting or substituting certain parts of the data.

❼ Non repudiation. Information once committed by an individual should not be
deniable by the latter afterwards.

The cryptographic primitives for achieving those goals can be basically distinguished
in three different groups:

❼ Symmetric Crypto Primitives

❼ Asymmetric Crypto Primitives

❼ Hash Functions or Unkeyed Primitives

For the first two groups the concept of an encryption scheme (or cipher) is essential.
Although for the purpose of a hash function it is not required, also many hash function are
based on a cipher. According to Menezes et al. [22], an encryption scheme is a set of en-
cryption transformations Ee and corresponding decryption transformations Dd, depending
on the key pair (e, d), with the property Dd = E−1e . Further an encryption transformation
Ee is a certain bijection from the plaintext (or message) m to the ciphertext c, depending
on the key e. A decryption transformation is a bijection from the ciphertext c to the
plaintext m, depending on the key d. The keys e and d are elements of a defined set,
the so called key space. A cipher complies Dd(Ee(m)) = m for all possible messages.
Figure 3.1 gives an overview over an encryption scheme.

��������	�

���������

�������	�

	
�����

���������

�	����

��������	�

������ ������

�
�������

��������
�������

Figure 3.1: Schematic of an encryption scheme used by two parties and an adversary.
Adapted from Menezes et al. [22].

Independent of the primitive, for a secure scheme it is important that the transfor-
mations Ee, Dd and the key space can be known in public. Security should be based on
the secrecy of the used key pair (e, d). The approach security through obscurity, where
the security is based on the secrecy of the implementation of the transformations, is very
controversial in cryptology (e.g. Yu and Brune [25]).

CHAPTER 3. SECURITY IN COMMUNICATION 13

3.1.1 Symmetric Crypto Primitives

In symmetric encryption schemes, the key d can be easily derived from the key e and vice
versa (in most schemes e=d). Before the communication between two parties start, they
have to agree on a key over a secured channel. An adversary should not be able to reorder,
delete, insert or read the information from a secured channel.

Symmetric encryption schemes that operate bit wise on the plaintext are called stream
ciphers. Encryption schemes that operate on parts of the plaintext, so called blocks, are
called block ciphers.

3.1.1.1 Block Ciphers

Block ciphers operate on a fixed amount of data. They map parts of the plaintext, with
the block length n to a ciphertext of the same length. This mapping could be seen as a
simple substitution function, where whole character blocks are substituted by blocks of
the same size. This substitution function should be variable, depending on a secret key
with the key length k. This characteristic would also apply to block ciphers in asymmetric
cryptography.

Symmetric block ciphers divide the data into smaller parts, which are then subse-
quently combined and transformed. These transformations are mostly based on substitu-
tion and permutation and build so called substitution-permutation (SP) networks. Since
the phase of substitution and permutation builds an internal function that is repeated nu-
merous times, ciphers based on this principle are also defined as an iterated block cipher.
Figure 3.2 shows the principle of an iterated substitution-permutation network.

���

�

���

�

���

�

�

���

��� ��� ���

��� ��� ���

��
�

��
�

��
�

���

�

���

�

���

�

�

���

��� ��� ���

��� ��� ���

�����	
�	�����

����
�	
�	�����

�������

�������

Figure 3.2: An iterated substitution-permutation (SP) network.

Since the plaintext often is much larger than the block size of an block cipher, it has
to be split into blocks of the according size. When enciphering those blocks, identical

CHAPTER 3. SECURITY IN COMMUNICATION 14

plaintext blocks would lead to identical ciphertext blocks. This could be a weakness
to attacks that are based on the frequency distribution of characters and strings in the
plaintext. Thus a proper mode of operation should be used that links the particular
ciphertext blocks.

Applying the cipher block by block, as depicted in Figure 3.3, is called an Electronic
Code Book (ECB) mode. Here, no kind of chaining or feedback of the particular blocks is
used and thus identical plaintext blocks lead to identical ciphertext blocks. In the Cipher
Block Chaining (CBC) mode, as depicted in Figure 3.4, a certain ciphertext block is linked
with the succeeding plaintext block. For the first encryption step an initial value is needed.
In Output-Feedback (OFB) mode , as depicted in Figure 3.5 an initial value is encrypted
in the first step. Then the output of the current step is taken as input for the next step.
The plaintext block is only linked with the output of the block cipher. Thus, in comparison
to the CBC mode, the stream that is applied on the plaintext, can be precalculated.

�
� �

��

��

��

��

�

��

��

���� � ���

Figure 3.3: Electronic Code Book (ECB) mode

� �

��

�� ��

�

��

��

	

	 	

�� ��

Figure 3.4: Cipher Block Chaining (CBC) mode

CHAPTER 3. SECURITY IN COMMUNICATION 15

�

��

�� �� ��

��

	

�� ��

�
	

�
	

Figure 3.5: Output Feedback (OFB) mode

In the 1970s the Data Encryption Standard (DES) algorithm was the first commercial
symmetric cipher to be widely used. But early on, there were serious concerns about the
security of this algorithm, mainly because of its short key length of only 56 bits. Also the
design criteria of DES, which was designed by IBM, were kept secret for a long time. In
the 1990s, when differential cryptanalysis was invented, the choice for the specific DES
characteristics could be approved. The original designers admitted that they knew about
the differential cryptanalysis techniques back in the 1970’s. Nevertheless, already in the
90s so called cracking machines were developed which can apply an exhaustive key search
in a few days (see Schneier [24]). Thus the National Institute of Standards and Technology
(NIST) announced a contest, where it choose an algorithm out of several proposals for the
new Advanced Encryption Standard (AES), which is discussed in Section 3.2.

3.1.1.2 Stream Ciphers

A stream cipher usually operates bit-wise on the plaintext. The Vernam Cipher is a very
simple and effective implementation of a stream cipher. For every bit of the plaintext an
exclusive-or operation (XOR) is applied with a bit from a key stream sequence. If this
key stream is truly random and never used again, than the Vernam Cipher is called a
one-time-pad. For practical reasons a random stream is not feasible, and thus the stream
is produced by an algorithm that is called the keystream generator.

���������	
��������

� ��

��

��

���������

��

�

	�

	�
�

���������	
��������

��

��

����

����������

����

�

	�

	�
�

Figure 3.6: General scheme of a synchronous stream cipher with the key e, the ciphertext
ci, the plaintext mi, the keystream si and the internal state zi

If the key stream is generated independently of the plaintext and of the ciphertext,
than it is called a synchronous stream cipher. According to the general scheme of a

CHAPTER 3. SECURITY IN COMMUNICATION 16

synchronous stream cipher in Figure 3.6, in the Vernam Cipher the output function h
would be an XOR operation.

A very popular mechanism that is used for key stream generators are feedback shift
registers (FSR). A special case are the linear feedback shift registers (LFSR). A Feedback
Shift Register (FSR) consists, as the name says, of a shift register and feedback function.
The feedback function states how the next bit that is shifted into the register bank depends
on the current values of the registers. If the feedback function is a linear polynomial, then
it is called a Linear-Feedback-Shift-Register (LFSR). This polynomial is then called the
connection polynomial.

Figure 3.7 illustrates a general FSR. According to Menezes et al. [22] Figure 3.8 illus-
trates a LFSR with the connection polynomial C(D) = 1 + c1D + c2D

2 + . . . + cNDN .
Assuming that the initial state of the registers b0, b1, b2, ..., bN−1 in Figure 3.8 is (s0, s1,
s2, ..., sN−1) the resulting output stream for the LFSR is s = s0, s1, s2, s3,... and would be
determined by sk = c1sk−1+c2sk−2+c3sk−3+ . . .+cNsk−N for k ≥ N. The secret key in a
LFSR would be represented by the initial state of the registers or by the initial state of the
registers and the connection polynomial, more precisely by its coefficients (c1, c2, ...cN),
together (see Menezes et al. [22]).

��������	�
���

���� ���� ���� �� �����

	

�����	������

����
�����

Figure 3.7: Scheme of a general FSR

��������	�
���

���� ���� ���� �� �����

	� 	� 	� 	��� 	�

������

���

����
�����

Figure 3.8: Scheme of a general LFSR with the connection polynomial C(D) = 1+ c1D+
c2D

2 + . . .+ cNDN

3.1.2 Asymmetric Crypto Primitives

In asymmetric encryption schemes the encryption transformation has the property that
knowing Ee, the encryption key e and the ciphertext c it is infeasible to find the message m

CHAPTER 3. SECURITY IN COMMUNICATION 17

such that Ee(m)=c. Further, this means that it is infeasible to determine the decryption
key d using the encryption key e. Before the communication between two parties starts,
the receiving party has to transmit the encryption key e over any (eventually unsecured)
channel to the transmitting party. The decryption key d remains a secret that is only
known by the receiving party. Thus asymmetric encryption schemes are also known as
public-key schemes. The encryption key e and the decryption key d are then called public
key and private key.

For the purpose of an asymmetric encryption scheme a trapdoor one-way function is
needed. A function y = f(x) is a one-way function when it is easy to calculate the function
y = f(x), but it is computationally infeasible for essentially all y to find any x such that
f(x) = y. The trapdoor is a certain piece of information that makes it feasible to find any
x, given any y. In an asymmetric encryption scheme the one-way function y = f(x) would
correspond to the encryption transformation c = Ee(m) with the key e. The trapdoor
would be the decryption key d that is needed to compute the decryption m = Dd(c).
Many of these trapdoor one-way functions, and thus the asymmetric encryption schemes,
are based on computational problems, such as the integer factorization problem. The
integer factorization problem says that for any positive integer n, finding its prime factors
(p1, p2, ..., pn), such that n = pe11 × pe22 × ...× penn with ei ≥ 1 is computationally hard.

One of the most widely used encryption scheme in public-key encryption is the RSA
cryptosystem. RSA is named after its inventors R. Rivest, A. Shamir and L. Adleman
who proposed this encryption scheme in Rivest et al. [26]. In RSA the key pair e, d for
encryption and decryption is derived as follows.

1. Generate two large prime numbers p and q, with almost the same amount of digits.

2. Calculate the products n = p× q and Φ(n) = (p− 1)× (q − 1).

3. Choose an integer e (public exponent), with 1 < e < Φ and gcd(e,Φ) = 1.

4. Calculate the (unique) integer d, with 1 < d < Φ, such that e×d ≡ 1(modΦ), using
the extended Euclidean algorithm (see C.1).

5. The public key is (n, e). The private key is (n, d). Also the parameters p, q and Φ(n)
should be kept secret, since they can be used to calculate d

The integer e is also called the encryption exponent, the integer d is called the decryp-
tion exponent. Given the public key (n, e) and the plaintext m the ciphertext c can be
calculated as:

c ≡ Ee(m) ≡ me mod n (3.1)

The plaintext m can be recovered, using the private key (n, d), as:

p ≡ Dd(c) ≡ cd mod n (3.2)

3.1.3 Hash Functions

A hash function h(x) is a function that maps data x with arbitrary length to data y with
fixed (usually smaller) length. The smaller data with fixed length is called the hash value
(or image). If the hash value is n-bit long, then the probability of computing a certain
hash value y for a given message x shall be 2−n. There are three properties stated in
Menezes et al. [22] which should be fulfilled by a proper hash function.

CHAPTER 3. SECURITY IN COMMUNICATION 18

❼ pre-image resistance - It is computationally infeasible, given a certain hash value y,
to find an input x, the so called pre-image, such that y=h(x)

❼ 2nd pre-image resistance It is computationally infeasible, given any input x1, to find
any second input x2, the so called 2nd pre-image, which has the same output as x1,
i.e. to find x2 6= x1 such that h(x2) = h(x1).

❼ collision resistance - It is computationally infeasible to find two inputs (x1,x2), such
that h(x1)=h(x2)=y. Finding such two inputs (x1,x2) would be called a collision. (In
comparison to the 2nd pre-image resistance here both inputs are freely selectable)

The usual idea of a hash function is to give a representative image, a so called finger-
print, of the input data. Assuming that a hash function has the mentioned properties, the
fingerprint can be used instead of the original data, as it is uniquely identifiable with the
input data. The most common use of hash functions is as part of digital signatures or for
data integrity. In most digital signatures a long message is hashed in the first step and af-
terwards the hash value is signed. The purpose for this is that signing the original message
would require a higher computational effort for many of the digital signature schemes. If
a party wants to verify the message, it also has to hash the original message in the first
step. Then the party uses the verification transformation, which takes the hash value and
the signature as input, to verify the message. This saves time and computational costs,
since a message could be of arbitrary length. For security reasons it is important that it
is infeasible to find a collision. Otherwise a party could calculate two different messages
with the same hash value, sign the message x1, and later claim that it signed message x2
since the hash value would be the same.

For data integrity it is important to assure that a certain piece of data was not ma-
nipulated. Therefore the data that should be protected is hashed at a certain point in
time. The integrity of this hash value has to be protected with a proper technique, e.g.
through an authentic communication channel. If a party wants to check if the data was
manipulated, it first calculates the hash value of the data that is transmitted through a
potentially unsecured channel and then compares it to the original hash. Hash functions
used for data integrity and digital signatures typically do not have any kind of keys, thus
called unkeyed hash functions.

3.2 Advanced Encryption Standard

In 2001 the NIST chose the Rijndael cipher (see Daemen and Rijmen [27]) for the new
Advanced Encryption Standard AES. For the design of the AES cipher, security as well
as efficiency were equal criteria. Though the original proposal specified also other key
and block sizes, AES works on a block size of 128 bit with keys lengths of 128, 192 or
256 bits. Depending on the key length, the AES cipher has either 10, 12 or 14 rounds of
computation.

AES works on an internal state S, which equates to a 4×4 byte array and starts with
the plaintext as the initial state. After an initial round every other round has four different
transformations. Each of it has its own function. These transformations could be assigned
to one of the following three layers, which provide a certain resistance against linear and
differential attacks (see Daemen and Rijmen [27]):

❼ The linear mixing layer should maximize the diffusion over the rounds. This
applies to the ShiftRows and MixColumns transformations of AES.

CHAPTER 3. SECURITY IN COMMUNICATION 19

❼ The non-linear layer should maximize the nonlinear degree. This applies to the
SubBytes transformation of AES.

❼ The key-addition layer makes every round dependable on the secret key. This
applies to the AddRoundKey transformation of AES.

The SubBytes transformation in Figure 3.9 replaces every byte from the byte array
(the internal state) with a byte from a lookup table. The lookup table corresponds to a
multiplicative inverse over the galois field GF(28) combined with an affine transformation.

�� �� ��

�� �� �� ��

�� 		

 ��

�� �� ��

�� �� �� �

�� �� �� ��

 	� 	 �

�� �� �� ��

��

Figure 3.9: Example of the SubByte transformation on the internal state S.

Figure 3.10 shows how the ShiftRows transformation operates on the internal state S.
This transformation leads to a high diffusion over the columns.

�� �� ��

���� �� ��

		
�	
 ��

�� �� ��

�� �� ��

�� �� �� ��

		
� 	
 ��

�� �� � �

����

�

�

�

Figure 3.10: Example of the ShiftRows transformation on the internal state S.

The MixColumns transformation in Figure 3.11 is based on a matrix transformation
over the galois field GF(28). It leads to a high diffusion over the state through a single
column.

CHAPTER 3. SECURITY IN COMMUNICATION 20

Algorithm 1 AES round transformation

1: procedure Round(State,RoundKey)
2: SubByte(State)
3: ShiftRows(State)
4: MixColumns(State)
5: AddRoundKey(State,RoundKey)
6: end procedure

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

� �

��

�	

�

�� 	�

�

�

� ��

��

��

	� �

��

��

��

�� �� �	

���� �� ��

 ��� �	

�� �
 ����

�

��

�

��

�

��

�	

�

��

Figure 3.11: Example of the MixColumns transformation on the internal state S.

The AddRoundKey transformation, shown in Figure 3.12, applies an XOR operations
on the internal state with the round key. Every round key is computed out of the previous
round key (the first round key is computed out of the secret key) by an particular key
schedule. This key schedule, as described in Daemen and Rijmen [27, sec. 4.3], can be
done independently and prior to the other transformations. Given these transformations,
an AES round can be defined as stated in Algorithm 1.

CHAPTER 3. SECURITY IN COMMUNICATION 21

Algorithm 2 AES cipher

1: procedure AES(State,ExpandedKey[RoundCount+ 1])
2: AddRoundKey(State,ExpandedKey[0])
3: for i = 1 to RoundCount do
4: Round(State,ExpandedKey[i])
5: end for
6: SubByte(State)
7: ShiftRows(State)
8: AddRoundKey(State,ExpandedKey[RoundCount+ 1])
9: end procedure

��

��

��

��

��

	�

	

��

��

	�

	

��

��

	�

	�

	�

	�

	�

��

��

��

��

�

�	 ��

��

��

�� �

��

��

	�

�� ��

���������

�

��

��

��

�� ��

��

��

�� �	

��

��

�� ��

�

��

��

Figure 3.12: Example of the AddRoundKey transformation on the block state

Depending on the key size, AES has 10, 11 or 12 round transformations. The last round
transformation is different in comparison to the others, as the MixColumns transforma-
tions is skipped. Also before the first round transformation, an AddRoundKey transforma-
tion is applied, because starting the cipher with the SubByte, ShiftRows and MixColumns
transformation without applying any secret key is cryptographically worthless and would
only produce computational overhead. Assuming that the round keys are precalculated
from the original cipher key the whole cipher is stated in Algorithm 2. The array Expand-
edKey is an array of 16-byte words, representing a block of the round key as shown in
Figure 3.12 and containing the particular round keys. For more details about the round
transformations and the key schedule see Daemen and Rijmen [27].

CHAPTER 3. SECURITY IN COMMUNICATION 22

3.3 Protocols

The proper use of cryptographic primitives, which assure certain goals for different appli-
cations, is specified in protocols. In Schneier [24] a protocol is called

“...a series of steps, involving two or more parties, designed to accomplish a
task”

This means that a protocol has a sequence with a defined beginning and an end. The
steps involve either a computation or a transmission or a reception of a certain message.
A protocol requires at least two communication parties, since communication without a
partner does not make sense. The parties have to follow some rules in a defined order to
perform the protocol, and thus finish it as appointed. Finally, the protocol has to achieve
something, like a proof or an exchange of information, otherwise it is useless.

Other important characteristics for a protocol are also that (i) everyone involved has
to know all the steps of the protocol, (ii) everyone has to agree on the protocol, (iii) the
protocol has to be unambiguous and (iv) the protocol must have a defined action for every
possible situation.

In Schneier [24], depending on the function of the involved parties, it is distinguished
between three types of protocols:

Arbitrated protocols. In an arbitrated protocol, as shown in Figure 3.13, a disinter-
ested, trusted third party, the so called arbitrator, is required. Disinterested means
that the arbitrator has no allegiance to any party involved in the protocol. Trusted
means that all parties involved in the protocol trust that the arbitrator is acting cor-
rectly and honestly. Arbitrators in the real world are lawyers, public notaries and
banks, and help parties that do not trust each other. Using an arbitrated protocol
has always an extra delay and the arbitrator could become a bottleneck, since the
third party has to deal with every transaction. Further, the arbitrator is required to
complete the protocol, although he does not participate in every step of the proto-
col. Also, if the arbitrator is subverted, no one can trust him anymore. Having an
arbitrator produces additional costs.

������� �������

��	
������

Figure 3.13: Three basic types of protocols.

Adjudicated protocols. In an adjudicated protocol, as shown in Figure 3.14, basically
an arbitrated protocol is split into two parts. The non arbitrated part is executed
when the parties are completing the protocol. The arbitrated part is executed only
when there is a dispute. The arbitrator then is called an adjudicator, which in
the real world would be represented by a judge. Two parties can enter a contract
without a judge, but only call him when someone suspects cheating. So in a first
instance an arbitrated protocol relies on the parties being honest, but in a dispute

CHAPTER 3. SECURITY IN COMMUNICATION 23

the protocol provides an evidence for cheating and, depending on the protocol, also
an identification of the cheater. Adjudicated protocols do not prevent cheating, but
they can detect it. This shall discourage cheating, since in a proper protocol the
detection is inevitable.

������� ������� �	
�	�����

���	��� ���	���

Figure 3.14: Three basic types of protocols.

Self-enforcing protocols. In a self-enforcing protocol, as shown in Figure 3.15, there
is no need of an arbitrator or adjudicator. The protocol is designed in such a way,
that no third party is needed to complete the protocol or to resolve a dispute. If
one of the parties is somehow cheating, the other party detects this immediately and
thus aborts the protocol. Self-enforcing protocols would be the preferred type of
protocols but they cannot be established for every possible situation where security
is needed

������� �������

Figure 3.15: Three basic types of protocols.

Chapter 4

The EPC Gen2 standard

The electronic product code (EPC) is an international system used for identifying physical
objects. Not only products, as the name suggests, but also animals, documents, industrial
plants and even locations can be uniquely identified.

The EPC Gen2 standard EPCglobal Inc. [11] is a UHF standard for communication
with a carrier frequency between 860 MHz and 960 MHz. It complies with the ISO 18000-
C standard that defines the air interface for RFID devices in the mentioned frequency
spectrum. The standard describes and defines the physical layer, the protocol and the
commands for communication between an interrogator and a tag. Section 4.1 gives an
overview how data is communicated between an interrogator and a tag. In Section 4.2
the mechanisms for a read and write access to the tags data are described. The following
Sections are based on EPCglobal Inc. [11] and represent an excerpt that is relevant for the
further work.

4.1 Signaling

In the physical layer, frequencies, modulation, coding and other communication parame-
ters are defined. The communication between the interrogator and tag operates in half-
duplex, which means that the tag does not simultaneously listen for commands from the
reader and backscatters responses. Further, the system works as an Interrogator-Talks-
First (ITF) system. In such a system, a tag responds only if it has previously received a
valid command from the interrogator.

4.1.1 Communication from Reader to Tag

The reader uses a Double-Sideband Amplitude Shift Keying (DSB-ASK), a Single-Sideband
Amplitude Shift Keying (SSB-ASK) or a Phase-Reversal Amplitude Shift Keying (PR-
ASK) data modulation technique for sending signals to the tag. The signals are encoded
in the Pulse Interval Encoding (PIE) format. Figure 4.1 shows the envelope for the data-0
and data-1 encoding for the modulation of the carrier frequency.

The distinctive characteristic of this encoding format is that a data-0 and a data-1
symbol do not have the same length. In this standard the Tari value is the reference time
interval for a data-0 length. A data-1 symbol has 1.5 - 2 times the length of a data-0
symbol.

Each command is preceded by a preamble or a frame-sync before the first data bit.

24

CHAPTER 4. THE EPC GEN2 STANDARD 25

������

������

���	
���		������		���	
���

��� ���	
���		�		
���

�� ��

Figure 4.1: PIE symbols used to encode data-0 and data-1 for the interrogator to tag
communication. Figure adapted from EPCglobal Inc. [11]

The frame-sync holds the RTcal value, which is a calibration value for the reader to
tag communication and specifics the length of a data-1 symbol compared to the data-0
symbol. It represents the sum of both symbol lengths.

The preamble holds, in addition to the preamble, also the TRcal value, which is a
calibration value for the tag to reader communication.

A preamble is preceded only before a Query command. For all other commands a
frame-sync is preceded. The envelopes for these are shown in Figure 4.2. For further
explanation of the values see EPCglobal Inc. [11].

���������	�
�����	��������

�������������

��������

�� ��

��������� ������
�������������� �!
����"

���������	�
�����	��������

�������������

��������

�� ��

��������� ������
�������������� �!
����"

��

���
�����	��
����	����
����

���
����������� �!�
���"

��������	

�������

Figure 4.2: Preamble and frame-sync for the interrogator to tag communication. Figure
adapted from EPCglobal Inc. [11]

4.1.2 Communication from Tag to Reader

The tag responds to the reader, by receiving an unmodulated signal from the latter and
thereby changing its reflection coefficient at a certain clock rate. This produces sidebands
that differ from the original carrier. The clock rate, the tag uses for changing its reflection
coefficient, is called the Backscatter-Link frequency (BLF). It is calculated out of the
TRcal value and the DR parameter of the Query command.

CHAPTER 4. THE EPC GEN2 STANDARD 26

BLF =
1

Tpri

=
DR

TRcal
(4.1)

The data is modulated either in FM0 or Miller format. The format is selected by the
interrogator through theM parameter of the Query command. Figure 4.3 shows sequences
for the FM0 format. In this format, an edge between each symbol is present.

�

�

�

�

��������	
�

��

��

������������

��

��

��

��

��

��

Figure 4.3: Examples on how to encode data-0 and data-1 in FM0 format for the tag to
interrogator communication. Figure adapted from EPCglobal Inc. [11]

In the Miller format the phase is inverted either in the middle of a data-1 symbol,
or between two data-0 symbols. Figure 4.4 shows the sequences for the Miller format at
different cycles per bit.

�

�

����������	
�������

�

� ��

����������	
����������

�

�

�����������
�������

�

�

�����������
����������

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�

�

�����������
�������

�

�

�����������
����������

��

��

��

��

��

��

��

��

Figure 4.4: Examples on how to encode data-0 and data-1 in Miller format for the tag to
interrogator communication at different cycles per bit. Figure adapted from EPCglobal
Inc. [11]

CHAPTER 4. THE EPC GEN2 STANDARD 27

In both, the FM0 and the Miller format, each data sequence ends with an unused
data-1 symbol, which in EPCglobal Inc. [11] is stated as “dummy 1”. Each answer begins
with a preamble sequence. The preamble depends on the current setting of the TRext
flag, which is set for every inventory round by the initiating Query command. Figure 4.5
and Figure 4.6 show the preamble for FM0 and Miller encoding.

��������	
�������������

��������	
�������������

�� �� ��

�� �� ������

��������������	
��������

Figure 4.5: Preamble for the tag to interrogator communication in FM0 format. Figure
adapted from EPCglobal Inc. [11]

������� � �	 	 	 	 ������� � �	 	 	 	

������� � �	 	 	 	

�
�

�
�

�
�

	������ � �	 	 	 	

	������ � �	 	 	 	

	������ � �	 	 	 	

�
�

�
�

�
�

�����

�����

�����

�����������	
�������������

�����������	
�������������

Figure 4.6: Preamble for the tag to interrogator communication in Miller format at
different cycles per bit. Figure adapted from EPCglobal Inc. [11]

4.1.3 Link Timing

Table 4.1 lists the timing requirements for the interrogator to tag communication, which
is illustrated in Figure 4.7.

����� ����������	�
� �

���� ������������������

�� �� ��������������

	��

�� �� �� ���� ��

��

���	�

Figure 4.7: Link timing. Figure adapted from EPCglobal Inc. [11]

Especially the time T1, the time from the ending of an interrogator transmission to
the beginning of a tag response or receiving a new command, is a very critical value in
this protocol.

CHAPTER 4. THE EPC GEN2 STANDARD 28

The time T1 is quite short in comparison to the logical decisions, that have to be
calculated for a specific command. In the worst case it is 2.5 times the lowest possible
Tari value, which is 2.5×6.25=15.63➭s.

Moreover the effects on the tag and its response, depend on a valid command. Since
the data length is important for a valid command, the required processing can not be
made until another incoming symbol can be excluded. In worst case after the last valid
symbol of a command, an invalid data-1 symbol could follow.

So, as illustrated in Figure 4.8, the minimum time for receiving a falling edge from
a data-1 symbol has to be waited for until a command can be assumed finished with a
valid amount of symbols. This delay of recognizing the end of a command is important in
Section 5.6.3.

Since a memory write operation on a tag would take more than the specified T1 time,
a command that causes a memory write operation is allowed to exceed T1.

Table 4.1: Link timing parameters. Table adapted from EPCglobal Inc. [11]

Parameter Description

T1

Minimum max(RTcal,10Tpri ×(1- |FT |) - 2➭s) Time from the interrogator transmission to the tag re-
sponse (specifically, the time from the last rising edge
of the last bit of the interrogator transmission to the
first rising edge of the tag response)

Nominal max(RTcal,10Tpri)

Maximum max(RTcal,10Tpri ×(1+|FT |) + 2➭s)

T2

Minimum 3.0Tpri Interrogator response time required if a tag is to de-
modulate the interrogator signal, measured from the
end of the last (dummy) bit of the tag response to the
first falling edge of the interrogator transmission

Nominal

Minimum 20.0Tpri

T3

Minimum 0.0Tpri

Time an interrogator waits, after T1, before it issues
another command

Nominal

Minimum

T4

Minimum 2.0 RTcal

Minimum time between interrogator commandsNominal

Minimum

4.2 Mechanisms for Tag Access

In the data-link layer, the commands for setting up the access and communication with
one or more tags are defined. It also specifies the logical memory of a tag and how to
access it.

4.2.1 Tag Memory

The memory is logically divided into four banks. The logical distribution of the four
banks is shown in Figure 4.9. The RESERVED memory holds the kill and/or the access
password. The EPC memory includes the EPC, which identifies the object to which the
tag is attached. It also contains the StoredCRC, which is a CRC-16 value over the EPC

CHAPTER 4. THE EPC GEN2 STANDARD 29

����������	

��������
���

�������������
��������
�����

��

���������	

��������	���
�
�����

����	���	���
������	

��	������	�
��
����

������������	������

Figure 4.8: The actual time from the moment a command can be considered as valid to
the moment the tag has to respond or be ready to receive a new command.

and the StoredPC. The StoredPC holds different parameters relating to the memory. The
TID memory holds the ISO/IEC 15963 Class Identifier and other vendor-specific data.
The USER memory holds user-specific data.

4.2.2 Inventoried Flag and Selected Flag

The communication between interrogator and tag is initiated with a Query command,
which starts a new inventory round. A tag participates in an inventory round during one
of four sessions. The Query command indicates in which session the inventory round is
started. For every session a tag has an Inventoried flag, that could be set either to A or
to B. It also has a Selected flag, that could be asserted (SL) or deasserted (∼SL). These
flags are modified with the reception of a Select command with the proper parameter.

If a Query command starts a new inventory round in the same session as the previous
one, then the tags that participated during the last inventory round, may invert their
Inventoried flag for the particular session form A→B or B→A.

4.2.3 States of a Tag

A tag shall always be in one of 7 states. A tag shall also have a slot counter, which is set
to a random value at a Query or QueryAdjust command. The slot counter is decremented
at a QueryRep command.

The behavior of the tag and its response to a command depend on the current state
and the value of the slot counter.

❼ Ready state. The Ready state is the initial state of a tag. Regardless of the
previous state, a tag always returns into the Ready state after it loses power. The
only exception is a killed tag, where the tag permanently remains in the Killed
state.

When receiving a Query command with parameters that apply to the current flags
of the tag, a random value is loaded into the slot counter. If the value of the slot
counter is non zero, the tag moves to the Arbitrate state. If the value is zero, a
tag moves to the Reply state.

CHAPTER 4. THE EPC GEN2 STANDARD 30

����

���

��	

�����
��

���������

���������

������	�	������

��	��������

�������	������

���
���

��	������

���

������ !�"�	#$%������

���

������ !�"�	#$������

&''�((�� (()���������

&''�((�� (()���������

���

*�!!�� (()���������

*�!!�� (()���������

$�������+�,!�'-��

���

��. �/.

�. /.

%�. %/.

��. �/.

��. �/.

�. /.

��. �/.

�. /.

%�. %/.

%�. %/.

%%�. %%/.

��. �/.

0�, 1�,

0�, 1�,

0�, 1�,

0�, 1�,

Figure 4.9: Logical distributions of the tag memory divided into four banks. Adapted
from EPCglobal Inc. [11]

❼ Arbitrate state. Tags in the Arbitrate state participate in the current inventory
round because their flags matched the parameters of the last Query command. How-
ever, the slot counter is still non-zero. If a tag receives a QueryRep or a QueryAdjust
command that sets the slot counter zero, the tag transitions to the Reply state. On
a Select command or a non-matching Query command, a tag returns to the Ready
state.

❼ Reply state. In the Reply state a tag waits for a valid ACK command. If this
is not received within a specified time, or an invalid ACK command is received, the
tag transitions back to the Arbitrate state. On a valid ACK command the tag
transitions to the Acknowledged state.

❼ Acknowledged state. If a tag does not receive a valid command within a certain
time, it transitions back to the Arbitrate state. If a tag with a non-zero access
password receives a valid Req RN command, it transitions to the Open state. Oth-
erwise, if the tags access password is zero, it transitions to the Secured state.

❼ Open state. In the Open state, an interrogator that transmits valid access com-
mands to a tag has access to its memory. Only the Lock command is not executable

CHAPTER 4. THE EPC GEN2 STANDARD 31

in the Open state. For the time between tag response and interrogator transmission
(T2 in Table 4.1), there are no constrains while the tag is in the Open state.

❼ Secured state. In the Secured state, an interrogator can access the tag and
its memory with all access commands. For the time between tag response and
interrogator transmission (T2 in table4.1), there are no constrains while the tag is
in the Secured state.

❼ Killed state. A tag in Kill state is disabled. It sends no answer to the interrogator.
Only on the transition to the Kill state it responds to the interrogator, to confirm
the transition. The tag remains in Kill state even after it loses the power supply.

4.2.4 Managing Tags

The management of tags is divided into three steps - selecting, inventorying and accessing.
For the selecting step there is only the Select command. With this command the

tags, to which the interrogator desires access, are selected. The Select command can be
repeated several times until all desired tags have been selected.

In the inventorying step an inventory round is started with a Query command in one
of the four sessions. With additional commands a single tag can be identified and prepared
for further access.

In the accessing step the tags and their memory are accessed with appropriate read and
write commands. For the validation of some interrogator commands and some responses
from a tag, the tag needs to do a cyclic redundancy check. A tag should be able to
calculate both, a 16-bit CRC-16 value and a 5-bit CRC-5 value.

4.2.4.1 Selecting Step

With the Select command those tags are chosen, who shall participate in a subsequent
inventory round. With the parameters Target and Action of the Select command the
Selected flag and the four Inventoried flags can be set to a specific value. The parameters
MemBank, Pointer and Length specify the memory location that shall be compared with
the parameterMask. All tags, that match the comparison, change their flags appropriately.

Since the Select command performs a read operation on large parts of the tags memory,
the handling of this command requires comparatively many resources. In addition to that,
the EPC Gen2 standard allows a bit pointer in the Pointer parameter. Thus the order
of the data for the comparison against the tags memory is not byte wise aligned. This
requires a reordering by shift operations to match the data against the byte-wise aligned
EPC data. Also the Mask parameter must not have a data amount that is a multiple
of 8 bit. For these reasons the handling of the Select command has a more complex
implementation than for other commands.

4.2.4.2 Inventorying Step

The inventory round is started with a Query command. The parameters DR, M and
TRext are relevant for the modulation of the tags answer. Depending on them, the tag
is configured in a certain way for the specific inventory round. The Session parameter
indicates in which session the inventory round is started. The parameters Sel and Target
indicate which tags participate in the inventory round. The parameter Q is used to specify
the number of digits for the random number, which is loaded into the tag’s slot counter.

CHAPTER 4. THE EPC GEN2 STANDARD 32

If a tag loads zero in the slot counter, it backscatters a 16-bit Random or Pseudo-Random
Number (RN16) as answer to the interrogator. Otherwise, it does not respond.

On aQueryRep command, whose session parameter match the current inventory round,
the tag decrements its slot counter. If the slot counter is zero, the tag responds with a
RN16.

If a tag gets the QueryAdjust command, which session parameter matches the current
inventory round, it loads a new random value into the slot counter. The UpDn parameter
specifies if the number of digits for the new random number is increased or decreased, or
if it remains the same. If a tag loads zero into the slot counter, it backscatters a RN16 to
the interrogator as response.

When an interrogator gets a RN16 response, it confirms this with an ACK command.
The tags response to the ACK command implies the full or a truncated EPC, depending
on the Truncate parameter of the last Select commands in the previous select step. The
truncated answer to an ACK command depends also on the Pointer and Length Parameter
of the SELECT command. Since the Pointer parameter is a bit pointer and the Length
Parameter is not byte-wise aligned, the EPC data that is backscattered has to be reordered
by shift operations to be set into the right order for the transmission. Thus also like the
SELECT command, the computation of the answer for the ACK command requires a
more complex handling than for other commands.

After a valid ACK command the tag is in the Acknowledged state, and the access
to the tags memory using access commands is possible. After a NAK command, a tag
transitions back to the Arbitrate state without affecting its flags.

Since the purpose of those commands is to pick up one tag out of plenty, it requires
them to be repeated several times by an interrogator until a single tag is selected. One can
assume therefore, that those commands are designed with an accordingly short command
length in comparison to the other commands. The design even abdicates a CRC checksum,
except for the Query command, where a CRC-5 checksum is used. All other commands
implement a CRC-16 checksum.

Nevertheless, if one of the “Query” commands leads to a slot counter equal to zero,
this provokes different operations on the tag that have to be finished within the time T1

in Table 4.1. Therefore these commands are seen as the most critical in this standard.

4.2.4.3 Accessing Step

Before accessing the tag’s memory with an access command, the reader sends a Req RN
command with the last received RN16. The tag responds to this with a new RN16, which
is called handle subsequently. Then it transitions, depending on the access password, from
the Acknowledged state either to the Open or to the Secured state. The handle will
not be changed for the current inventory round and it is included in every subsequent
access command as a parameter.

Read, Write and Kill commands are valid in the Open state as well as in the Secured
state. Tags accept Lock commands only in the Secured state. For the Write and Kill
command, the data that is sent to the tag, is obscured by an XOR operation with a
random number. Therefore these commands must be preceded by a Req RN command to
get a new RN16.

The Lock command is used to lock and unlock the tags memory for access. An unlocked
memory is accessible from both, the Open and the Secured state. A locked memory is
only accessible from the Secured state. The memory can also be permanently locked

CHAPTER 4. THE EPC GEN2 STANDARD 33

or unlocked. A memory that is permanently unlocked is accessible from both states and
cannot be locked any more. If it is permanently locked, it is not accessible from any State.

A tag is killed in two steps by sending two Kill commands, each containing one half
of the kill password. Before each of these commands a Req RN command is required,
because the kill password has to be obscured with a random number. If a tag is killed, it
remains in the Kill state even after loss of power supply.

All commands of the accessing step have 16 bit long CRC-16 checksum at the end of
the data stream. The last data before the CRC-16 value is the handle. Thus the commands
are distinctly longer than the commands of the inventorying step. This in turn has the
benefit that a tag has more time to handle the outcome of the command.

4.3 Possible Extensions and Improvements

It seems that the described protocol scheme and commands are primarily based on man-
aging tags. One could assume that during the design of the standard, handling a bunch of
tags was more important than security issues. Nevertheless the standard provides protocol
extensions for custom commands. Also an EPC Gen2 tag has an user memory which can
be used for custom data.

In Man et al. [19] and Ricci et al. [20] designs are given that implement a standard ISO
18000-6C baseband processor with additional security functionality. More precisely they
have an additional AES functionality. Unfortunately in Ricci et al. [20] it is not stated
how the AES functionality is harmonized with the EPC Gen2 standard.

As already mentioned in Chapter 3, a cryptographic primitive like the AES cipher
needs a proper protocol to assure the requested security goals. Thus an implementation
of a cryptographic primitive needs a certain flexibility in its applicability, to be usefully
for arbitrary security requests on an RFID tag. In Man et al. [19] the suggested data flow
encloses the protocol of the EPC Gen2 standard, which would make the tag incompatible
with readers that do not implement an AES functionality.

Although, by providing an AES implementation, a custom processor tag with extended
functionality gives a strong cryptographic primitive, it also could be limited in its use, if
this primitive is restricted by its hardware implementation. The range of application of an
EPC Gen2 tag with a security tool would increase, if on one hand the basic commands of
the EPC Gen2 standard would still be applicable, and on the other hand, the additional
functionality would be adaptable to a certain scenario. This leads to the idea of having a
tag, based on a standard microcontroller instead of a custom processor, which is discussed
in Chapter 5.

Chapter 5

Architecture

The idea of this work is to create a flexible implementation of an EPC Gen2 tag that
allows easy modifications for further extensions. As already discussed in the previous
chapters the EPC Gen2 standard does not provide appropriate security techniques. There
are several proposals of EPC Gen2 tags that implement such security extensions. Never-
theless most of those implementations are restricted in their applicability. In this work an
implementation is proposed that is based on a standard microcontroller. Thus the tag is
fully programmable such that additional functionality should be easy to apply.

5.1 System Overview

Figure 5.1 gives an overview of the system. The tag consists of an analog unit and a
digital unit. The analog unit of the front-end modulates and demodulates the carrier. It
also creates the clock signal for the digital unit. The digital unit itself consists mainly of
three further parts: the digital front-end, which is responsible for the command detection
and the low level functionality, the microcontroller, which is responsible for the command
handling and the higher functionality, and at last the memory, which contains the RAM,
the program memory and the EEPROM.

���

������

�	��
���

��
����

����
������

����	

��

��

����
��

�	��
���

���	��

���
	����	
����	�

Figure 5.1: Main parts of the system

34

CHAPTER 5. ARCHITECTURE 35

5.2 Trade-off between Hardware and Software

To ensure high flexibility the digital unit of the tag is based on a standard microcontroller.
More precisely the microcontroller used in this work implements the widely used AVR
instruction set of the Atmega128. This has the benefit of a lot of already existing tools
available for use, like the GCC compiler (see Stallman and Community [28]). Moreover
already optimized software for the AVR instruction set can be reused.

So in theory the additional hardware besides the microcontroller itself, only needs to
act as an interface between the analog frontend and the microcontroller. The minimal
functionality of this interface is to interchange the data between the microcontroller and
the analog front-end and to provide the clock signal for the microcontroller. The front-end
can be seen as a buffer between the serial and the parallel data flow.

Nevertheless handling mostly everything in software, would lead to large code. This
means, that a lot of instructions would have to be processed, to achieve the desired func-
tionality. Thus the minimal clock rate for the microcontroller needed to meet the timing
constrains of the EPC Gen2 standard would increase. Since a higher clock rate leads to
higher power consumption and low power is a basic requirement for a passively powered
RFID tag, it should be considered to swap some of the functionality into the digital front-
end. With some additional logic inside the digital front-end the required code could be
reduced significantly. Thus, the reduced clock rate would potentially save more power
than the additional hardware would produce. For the following parts in the protocol,
swapping them into hardware would be reasonable:

❼ Operations that have to be applied on every transmitted or received bit could be
done ad hoc. For example some commands in the EPC Gen2 standard require a
Cyclic Redundancy Check (CRC). Either a received command has a checksum at its
end, which has to be verified by the tag against the preceding part of the command,
or a checksum has to be added to the end of a transmitted answer to a command.
In both directions this CRC calculation could be handled online in hardware during
the bit-wise transmission and reception of the data. This can be achieved by adding
an appropriate shift register as suggested in EPCglobal Inc. [11].

In software the calculation has to be done byte-wise instead of bit by bit, because
the microcontroller processes data on an 8 bit architecture. With the reception of
the last bit of a command the calculation and verification of the checksum would
require more than one additional instruction. Even if the previously received data
was precalculated to an intermediate value. Furthermore, it would cost additional in-
structions, between every received byte which would potentially lead to the necessity
of a higher clock rate.

If a shift register that is implemented in hardware logic is used, during reception the
verified checksum would be signalized by a valid bit in a status register which has
to be checked by the software. During transmission a control bit would trigger the
adding of the checksum at the end of a response.

❼ Some low-level commands of the EPC Gen2 standard affect only the status and
the configuration of a tag, but do not require a special handling of the transmit-
ted data. These effects also depend on the current status and some of the received
command parameters. Handling this issues in software would take numerous in-
structions, which operate on a bit level, just to update a few bits in a status register.

CHAPTER 5. ARCHITECTURE 36

Additionally, those specific low-level commands of the EPC Gen2 standard have a
comparatively short command length. The QueryRep command for example has
only 4 bits. If such a command is handled in software, the microcontroller would
not be able to precalculate the possible status outcomes, before the command turns
out to be valid.

Furthermore, commands like QueryRep, do not affect the memory of the EPC Gen2
tag. According to the timing constraints such commands would require a higher
clock rate at the end of a command to meet the time T1

1 for the tag response.

Since such status and configuration updates require only a simple logic, it would be
more effective to precalculate them by a hardware implementation in a temporary
register. So the short time and thus the limited amount of instructions resulting
with such short commands could be used for the recurring software parts that are
applied on every received command. This is for example the validation of the received
command itself. If in such a case the software indicates a valid command, a control
bit could be set to signalize the hardware logic in the front-end to take over the
status of temporary register into the real register.

❼ To reduce the clock rate of the microcontroller the operations for a tag response
should start during the reception of the first data block. The first operation always
is to check which command is possible to be received. This command detection
takes additional instructions at the beginning of a command. Especially for the
short commands, those additional instructions would represent a large part of the
actual computation for the response itself. Thus for critical commands the detection
of the command code should be done by hardware and signalized with a status flag
by the digital front-end. In software the bits for those critical commands could then
be polled, beginning with the most critical command.

❼ As mentioned in Chapter 4, a 16 bit random number is needed for the correct imple-
mentation of the EPC Gen2 standard. Thus a (pseudo) random number generator
has to be implemented. In the beginning of a command reception it is not known,
if the random number will be needed for the current response. Nevertheless a num-
ber hast to be ready for every command for the case that it is required if a certain
command is detected. In software this could be handled in two ways. Either the
calculation of the random number is triggered by a request for a proper response
during the command handling, or it is precalculated before and/or during the actual
command detection. In both cases additional instructions are needed, which would
increase the clock rate of the microcontroller during the command handling.

If a pseudo-random generator is implemented in hardware. The calculation of the
random number could be done simultaneously to the command handling in an opti-
mized hardware logic. The random number could then be directly accessible by the
software through a register.

In respect of these points the digital front-end has a more functionality than just an
interface. However, the high-level functionality can still be handled in software with the
microcontroller.

1The time T1 is discussed in Section 4.1.3

CHAPTER 5. ARCHITECTURE 37

5.3 Design of the Front-end

The incoming and outgoing data into and from the digital front-end is shuffled bit-wise
and modulated in a certain code format (see Chapter 4). Thus the front-end has to
decompose the data when it is receiving and compose it into the proper format when it is
transmitting the data. This functionality is achieved with the Rx-Tx-module in the front-
end. The microcontroller used in this work has an 8-bit memory interface and an 8-bit
datapath. Thus the central element for the data flow is a byte-queue with a first-in-first-
out property (hereafter called FIFO), from which the data is pushed into and popped out
of. Both operations can be done either by the microcontroller or by the Rx-Tx-module,
depending on the direction of the data flow. During the reception the data is pushed
into the queue by the Rx-Tx-module and popped out of the queue by the microcontroller.
During the transmission it is the other way round.

Every part of a command or a response is processed through the FIFO. The only
exception is the CRC, which is attached at the end of a tags response. The reason for
this exception is that the CRC is calculated by an additional hardware module in the
front-end and not by the microcontroller in software. When the last data is popped out
of the FIFO, the CRC is passed directly from the CRC shift register to the transmitter
module, which is responsible for the transmission.

The miscellaneous registers of the front-end are directly mapped into the IO-address-
space of the microcontroller. So the transmitted and received data, but also the outsourced
functionality, can be read and written by the IN and OUT instruction of the microcontroller.
Figure 5.2 shows the main parts of the digital front-end. DataWriteXDI, DataReadxDO
and AddrxDI are the signals from the I/O-bus of the microcontroller. DemodxDI and
ModDataOutxDO are the serial input and output signals to the analog front-end.

5.3.1 Rx-Tx-module

The Rx-Tx-module is primarily responsible for the interaction with the analog front-end.
This means that it has to detect an incoming command at the DemodxDI pin. This is
done by a state machine that starts the command detection with the first rising edge on
the DemodxDI pin. If the incoming signal has a valid format, the detected bit values are
shifted into an 8-bit register bank. Every full byte is then pushed into the ”First in, First
out”-Queue (FIFO) until an error, in terms of an invalid format, or the end of a command
is detected.

But there are also functionalities in the module, which are used to assist the software
by analyzing and precalculating the data.

CRC-16 and CRC-5 validation and calculation. When the Rx-Tx-module is enabled
to receive, with every bit shifted into the 8-bit register bank, the same bit is also
shifted into a CRC-16 and a CRC-5 register bank. If a data stream with its
valid checksum is shifted through those banks, the correspondent crc5_valid or
crc16_valid bit is set to a logical one.

On the other hand, when transmitting is enabled, every bit shifted out of the 8-bit
register bank is again shifted into the CRC-16 module. After the last bit of the
response is shifted into the transmitter module, the CRC-16 register bank, holds the
checksum for the response. This is also done during the startup of the tag. A special
flag signalizes if the data pushed into the FIFO should be treated like data to be

CHAPTER 5. ARCHITECTURE 38

�
��

��
��
��

�
�

	

����������

����������

�����������

�����������

�
�
�
��

�
	

�	��������

�

�
�
��

��
�

�
���!���

�
�����"

�����#

$�#%��

&��������

�$�����"

�$���!���

�
��

��
��

�
�
�

�

��'(�'

)���

�
�#

�
�
�
�

	

)
�
�
�

��
��

�
��

�
�

(
�
�

��
�	

�

�
�
�

��
��

�
�

Figure 5.2: Overview of the digital front-end.

transmitted without the process of transmitting itself. This is used to calculated the
StoredCRC value mentioned in Section 4.2.1.

Command detection. One task of the Rx-Tx-module that facilitates the command han-
dling in software, is the command detection. For the time critical commands, the
first incoming bits are checked against the command code of the critical commands
and the correspondent status bit is set, if one of them is detected.

But also the incoming data is put into the right order, to save additional shift
operations on the microcontroller. Therefore some bits of the command code of those
critical commands are thrown away. This means that not all of the command code
is pushed into the FIFO. This avoids the command parameters from being split into
two different bytes, which would increase the number of instructions needed for the
command handling in the software. Table 5.1 lists the time-critical commands and
the bits that are thrown away. Figure 5.3 shows an example of how the parameters
of the Select command are put into a proper byte order for easier handling.

Tag configuration. Some parameters of the Query command configure the timing of
the tag response. Those configurations are stored in appropriate registers in the
Rx-Tx-module. Since the Query command is a command that is detected by the
Rx-Tx-module, the expected outcome for this configuration can be precalculated in
hardware and stored into temporary registers. If a potential Query command turns
out to be valid, the microcontroller signalizes with a control bit, that the values of
the temporary registers shall be transfered into the current configuration register.
Thus the Rx-Tx-module is immediately configured right for a following answer.

CHAPTER 5. ARCHITECTURE 39

Table 5.1: Time-critical commands and the bits that are thrown away.
Command Code Original Length (bits) Bits thrown away New Length (bits)

Query 1000 22 1 21

QueryAdjust 1001 9 1 8

QueryRep 00 4 2 2

ACK 01 18 2 16

Select 1010 >44 (Mask is variable) 4 >40

��������� �	
��� ����� ���� ������
��������������������� ������ ���

��
����	� ����! ����" ����#

 ����! ����" ����#

Figure 5.3: Throwing away the command code bits of the Select command to facilitates
the handling of the parameters.

To reduce power consumption, the different modules are clocked and enabled only
when a calculation step is needed. Additionally the parts that appear in both directions
of communication, are implemented only once and reused for both ways. For example the
CRC-16 register bank can be preset either for verifying the incoming serial stream, or for
calculating the checksum of the outgoing stream. The logical operations are the same in
both directions.

Since the provided clock from the analog front-end is processed through the Rx-Tx-
module, the Rx-Tx-module implements a clock gating submodule that creates a variable
clock for the microcontroller. In Section 5.4, how the different clock rates are applied
through the individual stages of the tag communication is discussed. The incoming clock
from the analog front-end is either divided by a constant, or a constant amount of clock
pulses are gated through for every received or transmitted bit. Thus the clock signal
depends on the data rate for reception and transmission.

5.3.2 FIFO

Even though the Rx-Tx-module and the microcontroller are coordinated through the con-
trol and status registers, they are not synchronous in terms of data exchange. Thus a
First-In-First-Out queue is needed for the data transfer. Two pointers state the current
position of the last and the first byte of the queue. With a pop operation the pointer
for the first byte is increased. A push operation increases the pointer for the last byte.
Additional signals give information if the queue is full, empty or if it contains just one
byte. Thus the microcontroller can poll those signals to avoid reading from an empty and
writing to a full queue.

The input port and the output port of the queue are directly mapped into the IO-
address-space of the microcontroller at the same address. Thus an OUT instruction to this
IO-address writes a byte to the pointer that points at the last byte of the queue (as long
the queue is not full). An IN instruction from the same address reads the byte from the
pointer that points at the first byte (as long the queue is not empty).

CHAPTER 5. ARCHITECTURE 40

5.3.3 Pseudo Random Number Generator

For the 16-bit random number, required for the EPC Gen2 protocol, a Pseudo Random
Number Generator (PRNG) has to be implemented. The PRNG is adapted from the
proposal in Melia-Segui et al. [29]. It basically consists of an LFSR which has multiple
feedback polynomials. The used polynomial depends on a true random bit that should be
part of the analog front-end. The process of choosing a polynomial is implemented as a
rotating wheel. If the random input bit is logical zero, the index for the current polynomial
is increased by one. Otherwise it is increased by two. Figure 5.4 gives an overview over
the PRNG. Table 5.2 shows the used feedback polynomials.

�� ���� ���� ���������

�	
��	��
���
���	�������

�������

Figure 5.4: Basic structure of the PRNG (adapted from Melia-Segui et al. [29])

Table 5.2: 8 possible feedback polynomials are used for the PRNG
Feedback polynomials

p1(x): 1 + x + x5 + x6 + x7 + x11 + x16

p2(x): 1 + x4 + x5 + x6 + x7 + x11 + x16

p3(x): 1 + x + x3 + x4 + x5 + x6 + x7 + x11 + x16

p4(x): 1 + x3 + x5 + x6 + x10 + x11 + x16

p5(x): 1 + x5 + x6 + x11 + x16

p6(x): 1 + x5 + x6 + x10 + x11 + x13 + x16

p7(x): 1 + x4 + x5 + x6 + x10 + x11 + x16

p8(x): 1 + x + x3 + x4 + x5 + x6 + x10 + x11 + x16

5.4 Clock Frequency Constraints

The digital front-end is clocked at a maximal clock rate of 4MHz. This clock rate is cho-
sen considering the minimal cycle time that is needed by the Rx-Tx-module to measure
the timing constraints of the EPC Gen2 standard within the tolerance. Since the micro-
controller consumes most of the power, it should be clocked at a lower frequency. For
different commands and during the different stages of the communication, the required
amount of operations within a certain time varies significantly. To optimize the power
consumption, the microcontroller has to be clocked with an appropriate clock frequency,
avoiding unnecessary idle operations. Thus the clock has to be adjusted in such a way
so that the different operations and precalculations during the command handling on the
microcontroller are split equally over time whilst a command is received. Therefore the

CHAPTER 5. ARCHITECTURE 41

clock has not only to be switched on and off at certain points, but moreover it has to be
dynamically adjustable.

The EPC Gen2 standard allows different data rates for receiving and also for transmit-
ting. Further, during reception, a data-0 bit and a data-1 bit have different time lengths.
Thus the clock should be independent of the current data rate and symbol. If so, with
every received or transmitted bit the microcontroller gets only the amount of cycles that
is needed to process the data.

On the basis of this approach the clock gating module, mentioned in Section 5.3.1,
implements 4 different clock signals. Per default, the incoming clock from the analog
front-end that is subsequently gated to the microcontroller is reduced by a constant factor
and g. If reception is enabled, with every received bit from the front-end a certain amount
of cycles is gated to the microcontroller. This is the so called Number of Cycles per
Received Bit (RX-BIT-RATE). Analog, if transmission is ongoing, the microcontroller is
cycled with the so called Number of Cycles per Transmitted Bit (TX-BIT-RATE), every
time a bit is transmitted by the front-end. Therefore the microcontroller is not clocked
with a constant rate, but rather it depends on the chosen data rates. The last option is
to gate the incoming undivided clock itself. The microcontroller can enable the undivided
clock via a control bit. This bit should be set at the end of a received command before the
reception is finished, when the microcontroller has to validate the command in time for
the response. Further this undivided clock will be stated as HIGH-CLOCK. Because not
every command needs the same amount of clock cycles to calculate the answer, this bit
would be cleared by the microcontroller before the actual transmission starts. Hence the
clock frequency will be reduced to the default frequency during the last part of the time
between reception and transmission. The amount of clock cycles that are gated during
the time T1 (see Section 4.1.3) hereafter is called TX-WAIT-CYCLES. In Section 6.4.2
how the TX-WAIT-CYCLES give a boundary for the incoming clock frequency and how
they depend on the RX-BIT-RATE and the TX-BIT-RATE is discussed. A typical clock
rate distribution looks like Figure 5.5. For the majority of the commands during a typical
communication the HIGH-CLOCK will be just a peak in the power consumption.

��������	
��	�����������	�

�����������

�����

��
�����	���

�����������

��������	��
��	���	���

���

�	���

�	������	�

��������� 	�!

Figure 5.5: Typical power distribution over the time. The highest clock rate will resolve
during the time T1 in Table 4.1.

CHAPTER 5. ARCHITECTURE 42

5.5 Optimization Approaches in Software

The source code for the microcontroller was thought to be written in C. With the highest
optimization level -o3 of the GCC compiler, the source for the critical commands was still
not fast enough. This means that the microcontroller needed an inadmissible amount of
instructions to process the received commands. Thus the critical parts of the software
have to be optimized manually by self-written assembly. The following approaches are
applied to optimize the speed of the source code:

Effective register use. A possible optimization is to avoid operations on the stack. Be-
cause of the precalculations, while receiving a command, many temporary and inter-
mediate values arise. Even with the best optimization the compiler cannot arrange
the temporary results in a way that they remain in a register. Instead, the values are
saved on the stack, which brings additional instructions for moving the temporary
values to and from the stack.

For this kind of optimization no real optimization technique or method is required,
but the manual reordering of the intermediate values for an effective register use
can save many additional instruction cycles by avoiding the use of the stack. For an
example how instruction cycles can be reduced see Listing 5.1 for an inefficient way
to handle an intermediate value, done by the compiler. When an intermediate 16-bit
integer value that is stored on the stack has to be manipulated, the value has to be
popped out of the stack first and afterwards pushed back into it. The ldd and the
std instructions that apply these stack operations need two cycles. Thus every time
the value is manipulated, 8 additional instructions cycles are needed, for saving the
temporary value on the stack.

Listing 5.1: Inefficient stack operation
1 //temporary value is stored on stack

2 //at stackpointer+23

3

4 ldd r26, Y+23

5 ldd r27, Y+24

6 add r26, r20

7 addc r27, r21

8 std Y+23, r26

9 std Y+24, r27

It is not enough to write inline assembly for reordering the registers only in parts of
a computation. The optimized part, written in inline assembly, is still surrounded by
C code. This has the effect that at the beginning and at the end of the self-written
assembler there are still stack operations. Thus, it is necessary to write the whole
part of the handling for a specific command in assembly. With such large code parts,
it is a challenge to manually reorder the instructions in a way that the temporary
variables remain in registers without using the stack.

Avoiding subroutines. Since a call (Subroutine call) and a ret (Subroutine return)
instruction need 4 cycles, the use of subroutines should be avoided. Therefore the
implementation for the whole command handling is written in one main function,
besides the subroutines for the EEPROM memory access. This not only saves the
cycles for the call and ret instructions, but also avoids additional register usage,
since, according to the convention of the compiler, the arguments of a subroutine are

CHAPTER 5. ARCHITECTURE 43

passed through by registers. On the other hand, this approach has the disadvantage,
that the code size increases, because reoccurring code parts are not reused.

Avoiding jumps. The jmp (Jump) and the rjmp (Relative jump) instructions need 2 and
3 cycles and thus they also produce many additional cycles. Especially in combina-
tion with conditional jumps and branches, reordering of the code can save unneces-
sary cycles.

Data type optimization. In some parts of the code 16-bit variables are used. Opera-
tions on these variables are always applied on both bytes. In some cases, only the
low or the high byte is important, but the compiler still handles the whole 16-bit
variable. Thus the instructions on the other byte can be saved. An example for a
data type optimization is shown in Listing 5.2 and Listing 5.3.

Listing 5.2: Operation on a 16-bit variable

1 //lock_lookup_kill += (tmp8_1&0x30)>>4

2

3 mov r20, r26

4 ldi r21, 0x00

5 andi r20, 0x30

6 andi r21, 0x00

7 asr r21

8 ror r20

9 asr r21

10 ror r20

11 asr r21

12 ror r20

13 asr r21

14 ror r20

15 add r24, r20

16 adc r25, r21

In Listing 5.3 the upper 4 bit of the 8-bit variable tmp8_1 in register r26 have
to be added to the 16-bit variable lock_lookup_kill in the registers r24 and r25.
Listing 5.3 shows an optimized version, where only 8 bit are processed instead of 16
bit.

Listing 5.3: Optimized operation on a 16-bit variable

1 //lock_lookup_kill += (tmp8_1&0x30)>>4

2

3 mov r20, r26

4 andi r20, 0x30

5 swap r20

6 add r24, r20

Listing 5.3 also shows a typical optimization that can be applied by analyzing the
outcome of the desired result. Since the andi instruction in line 3 has a result looking
like 00xx0000b instead of the 4 asr (arithmetical shift right) instructions, one swap

(swap nibbles) instruction also brings the desired result (000000xxb).

Loop unrolling As already mentioned, the EPC Gen2 standard allows bit-pointers and
data lengths that are not a multiple of a byte. This leads, during the reception
of a Select command and also during the transmission of a truncated reply to an
Ack command, to the same bottleneck. Possibly large amounts of data have to be

CHAPTER 5. ARCHITECTURE 44

shifted into the right order, depending on the bit-pointer. The AVR instruction set
of the Atmega128 has only bit-wise shift instruction, namely the lsl and the lsr

instruction. Since the number of shifts depends on the Pointer parameter of the
Select command, the shift instructions cannot be done one after another. A loop,
depending on the bit-pointer, has to be used instead. This is shown in Listing 5.4.

Listing 5.4: Variable shift operation1

1 mov r31,r26 //move bit pointer in temporary register

2 rjmp 2f //relative jump to local label 2 forward

3 1: lsr r25 //register that has to be shifted

4 2: dec r31

5 brpl 1b //relative jump to local label 1 backward

This way one shift operation needs 4 instruction cycles (brpl needs two cycles if
condition is true). Worst case the data has to be shifted by 7, so 28 cycles are
needed just for bringing the data into the right order. This can be reduced by
writing extra code for all 8 possibilities the data has to be shifted depending on
the bit-pointer. With some additional optimization the size of this particular code
increases then by a little more than 7 times. However, in the worst case, only 5
instructions are needed for shifting (1 swap, 1 andi and 3 lsl or lsr instructions).
Listing 5.5 shows an outtake of the extra code to handle the different possible values
of the bit-pointer. Thex in the labels BPx in Listing 5.5 represents the number of the
shift instructions that are done by the specific code part.

Listing 5.5: Fixed shift operation

1 BP3: lsr r25

2 lsr r25

3 lsr r25

4 rjmp END

5 BP4: swap r25

6 andi r25,lo8(15)

7 rjmp END

8 ...

9

10 BP7: swap r25

11 andi r25,lo8(15)

12 lsr r25

13 lsr r25

14 lsr r25

15 END: ...

Most optimizations not only reduce the required instructions for a certain functional-
ity, but also decrease the code size. But some approaches like loop unrolling increase
the code size considerably. In Section 6.4.1 the optimization approaches on the final
code are evaluated regarding the clock cycle requirement and the code size.

5.6 Control flow between Hardware and Software

The microcontroller works independent of the current front-end status. To assure the
correct access to the front-end and subsequently the right processing of the Rx-Tx-module,

1
2f and 1b in Listing 5.4 are a so called local label. They denote a jump forward to the next label 2

and a jump backward to the next label 1

CHAPTER 5. ARCHITECTURE 45

various status and control flags are used. These flags are represented by two status byte
registers and two control byte registers. Like the input and output of the FIFO, those
byte registers are directly mapped into the IO-address-space of the microcontroller.

Despite the fact, that the microcontroller and the front-end are independent, they
still have to synchronize with each other. Synchronization here is not meant in terms of
processing the same data at the same time, but in terms of what both expect of each
other. A summary over the registers and their flags is given in Appendix B

5.6.1 Controlling the Front-end

The front-end starts clocking the microcontroller when it is powered by a UHF-signal
and thus it is receiving a command. However, the microcontroller decides if the Rx-Tx-
module of the front-end is enabled to process the command and subsequently push it
into the FIFO. On the other side, when the microcontroller pushes data into the FIFO,
the front-end has to be enabled for transmitting and ignoring further incoming signals.
Therefore the most essential control flags are the rx_enable and the tx_enable flags.

The data, which is processed by the microcontroller for transmission is seen as a high
level data. This means, that the data that is pushed into the FIFO does not include
protocol specific low level information. This additional low level information like header
bits and CRC checksums is handled by the front-end in hardware logic. If additional data
has to be preceded or appended by the front-end, the specific control flags have to be set
in the software, to activate the accordant modules for those functions.

When the front-end detects a potential command that would change the configuration
for the communication, it stores the potential parameter into a temporary register. The
validation of the correctness of the command is done by the microcontroller, thus it has
to set a flag that stores these configuration registers.

To meet the timing constraints for the command response, the microcontroller has two
options to speed up its command handling. One possibility is to raise the clock frequency
from the front-end. If the according flag is set, the highest clock is enabled, independent
of the front-end status. Another option is to force the front-end to push the incoming data
earlier into the FIFO. With the push_after_size control bits, the microcontroller triggers
after how many received bits, the front-end has to push the temporarily stored data from
the serial input of the analog front-end into the FIFO. Thus it can process the incoming
data earlier.

After a received command, the microcontroller has to decide whether to give a response,
or not. The Rx-Tx-module of the front-end internally starts a counter to measure the time
T1, before it starts with the preamble of the response, or it transitions into idling. If this
time is going to be exceeded, because of a memory write operation on the tag, this has
to be signalized by an additional flag, to avoid the transition into idle. The response
itself is pushed byte-wise into the FIFO. With the last byte certain flags have to be set
accordingly, to signalize the end of the response.

5.6.2 Sensing the front-end

The microcontroller uses various flags to be aware of the current state of processing of
the front-end. Some of them have to be polled to initiate a certain operation, like the
cmd_detected flag, which starts the command handling. Others are just checked at a
certain point, like the crc16_valid flag, which verifies the checksum. Detailed information
about the individual status flags is given in Appendix B

CHAPTER 5. ARCHITECTURE 46

������������ 	
���� 	
����� ����	��

��
��
��
��
��
��
�

���������������

��
��
�	

�
�

��
��
�	

�
�

��
��
�	

�
�

��
��
�	

�
�

��
��
�	

�
�

����������������������

��
��
	

��

��
��
	

��

��
��
	

��

��
��
	

��

��
��
��
��
��
��
�	
��
���
��
��
��
��
��
��
�

����

��
��
��

��
��
	

��

��
��
��
��
��
��
��
��

��
��
��
	�
�

��������

����

����������

��
��
��
	�
�

Figure 5.6: Example control flow with avoiding the delay by using the push_after_size

bits.

5.6.3 Critical points of operation

As discussed in Section 4.1.3, there is a certain delay until the rx_eof flag can be set
by the front-end. To avoid this delay, the push_after_size bits are used. When the
microcontroller assumes that for a valid command only, e.g., two bits are left, it sets
the push_after_size bits to the according values. Thus the front-end pushes the last
data earlier into the FIFO and the microcontroller continue its processing as if it was
verified that they were the last bits. So when the current rx_eof flag is set, it has only
to check the last_data_invalid and the fifo_not_empty flag, to verify the correctness of
the command. Figure 5.6 shows an example of the control flow with avoiding the delay by
using the push_after_size bits. Figure 5.7 shows an example of the control flow without
avoiding the delay. In Figure 5.7 one can see, that with the delay the time constrain can
not be fulfilled, although the high clock is present for a longer time.

CHAPTER 5. ARCHITECTURE 47

������������ 	
���� 	
����� ����	��

��
��
��
��
��
��
�

���������������

��
��
�	

�
�

��
��
�	

�
�

��
��
�	

�
�

��
��
�	

�
�

��
��
�	

�
��
��
��
��
�

����������������������

��
��
	

��

��
��
	

��

��
��
	

��

��
��
	

��

��
��
��
��
��
��
��

����

��
��
	

��

��
��
��
��
��
��
��
��

��
��
��
	�
�

����

����������

��
��
��
	�
�

��

Figure 5.7: Example control flow with delay. The time constraints cannot be fulfilled.

Chapter 6

Implementation and Evaluation

In this design a standard microcontroller is expanded with a digital front-end for RFID
communications, according to the EPC Gen2 standard. This front-end is not only used to
execute the communication process instructed by the software from the microcontroller,
but the frontend has also to support the software in terms of reducing the executed instruc-
tions on the microcontroller. Therefore it implements the functionality for time-critical
parts of the EPC Gen2 standard, but also certain functionalities that are reoccurring in
most of the commands and that could be parallelized during the command specific code
execution. Moreover the front-end can regulate the clock rate of the microcontroller to
the minimal required amount, depending on the executed command.

Therefore the front-end and the software on the microcontroller have to be able to
synchronize their execution progress at different points of the communication process. In
turn, this requires an adequate interface and a harmonized software.

For developing and verifying such a design and moreover the interface between the
particular parts, exhaustive tests are necessary. Thus a software model has been written
that simulates the microcontroller and the front-end. This model is able to execute the
source code for the microcontroller. Having such a model makes it possible to apply a
bulky test of the communication process on one hand, and on the other hand the usage
of the model is an easy way to adapt the concept of the front-end and the interface, if it
is required. Additionally with this model it is easier to design and verify new commands,
which extend the protocol of the EPC Gen2 standard.

During the implementation, the software model is used for different steps of develop-
ment:

1. Verifying the functionality of the software for the microcontroller.

2. Verifying the design of the front-end and the interface to the microcontroller.

3. Optimizing the software for the microcontroller.

4. Evaluating the minimal clock rates at different points of the RFID communications
for different commands of the EPC Gen2 standard.

5. Testing and verifying possible extensions.

48

CHAPTER 6. IMPLEMENTATION AND EVALUATION 49

6.1 Simulated Model of the System

To be able to simulate the concept and to develop the code for the microcontroller a model
has to be written. To have a uniform design flow for this model it is important that the
same test cases can be applied to it, as on the actual hardware design.

This model reuses the design of the simulator SimulAVR (for detailed information
about SimulAVR see Roth et al. [30]). SimulAVR is a simulator for a different AVR mi-
crocontroller. The source code is published under GPLv3 [31] license and freely available.

The SimulAVR simulator is designed in a way that it is possible to write own I/O-
modules and add them to the I/O-interface of the microcontroller. Such I/O-modules are
represented by routines, that implement the functionality of the modules. These routines
read from and write to the I/O-bus of the microcontroller and hence communicate with
it.

Nevertheless, the design of the simulator has the limitation that the routine of an
I/O-module is executed only once for every simulated cycle. Thus, it is not possible to
clock the I/O-module at a higher clock rate than the microcontroller. Further, and more
important for the purpose of this project is that in the simulation the front-end module
can not be run at a constant clock rate and thus cycle the microcontroller dynamically, as
it is the intention for the physical design. During the simulation, the microcontroller and
the I/O-modules run at a fixed and constant clock rate, which does not reflect the final
system in this project.

Nevertheless this problem can be handled in a way so that it is not relevant for the
results of the simulation. In the next section, how this can be managed is discussed.

6.2 Test Case Generation and Appliance

The idea for testing the software model is to use the same test scripts that are used for the
Hardware Description Language (HDL) simulation, so the same test cases can be applied
on both models. The HDL model is simulated with so called TCL-scripts. These TCL-
scripts basically operate on the I/O pins of an HDL model. A typical script specifies at
which time an input signal is set to a certain value, and checks the expected values on
the output signals. To make clear and readable test cases, various routines are designed
to compose the sequence of the script. This routines are invoked by an overlaying script
that can be seen as a higher level script, which only specifies the input sequences and the
expected output, without considering the timing values. The timing values are specified
through some configuration values at the beginning of the high level script.

This high level script is also reused for the simulation of the software model. Here the
model of the front-end reads the script and out of its content the model sets its intern
status and the interface to the microcontroller. But instead of applying the input values
at a certain time, the front-end model has to interpret the script in a different way. The
reason for this is that in the simulator it is not possible to have a different clock rate for
the microcontroller and the I/O-modules. Instead, the front-end applies the input values
after a certain amount of executed cycles, depending on the clock rate that would result
out of the configuration TCL-script, and depending on the values for the RX-BIT-RATE
and the TX-BIT-RATE1. Hence this model does not simulate the real time, because the
microcontroller is clocked with a constant and fixed cycle rate.

1RX-BIT-RATE and TX-BIT-RATE are specified in Section 5.4

CHAPTER 6. IMPLEMENTATION AND EVALUATION 50

Moreover, while running at the same clock rate, the front-end counts the cycles until
a certain event is triggered by the microcontroller. The result of this counting is logged in
a file that can be used to evaluate the required cycles for a certain part of the execution.

For applying a bulk of different test cases, a C-routine is written, which automatically
creates large TCL-scripts. For different scenarios that should be tested, the parameters of
a command are varied and a script is automatically generated, depending on the expected
result of the command. For these test cases the different random numbers in the EPC
Gen2 protocol are assumed as fixed values, since the behavior of the system should be
predictable.

6.3 Extending the Protocol

Since the tag in this work is designed to be easily expandable in its functionality, adding
a custom command requires minor effort. Actually, only an additional code is needed to
handle a new command, since the low level functionality for handling a command should
be handled by the front-end, like for the other commands.

The EPC Gen2 standard specifies all command codes with a length of 8 bits that are
not used in the current standard as reserved for further use. Thus a custom command
shall have command code with a length of 16 bits. Also, like the other commands in
the accessing step (see Section 4.2.4.3, the new custom command shall have a CRC-16
checksum attached after the actual command. It also shall include the handle value
mentioned in Section 4.2.4.3.

A custom command complying with those conditions is not supposed to be at risk of
exceeding the timing constraints of the protocol. Thus it is likely that the extension of
the current source code that handles the various commands will not need optimization in
assembler, as it is the case for the basic commands of the EPC Gen2 protocol.

As extension of the functionality, a simple authentication scheme is chosen. It shall be
based on the AES-128 as cryptographic primitive. Moreover the necessary cryptographic
computations are done in software. According to the working draft ISO/IEC WD 29167-
10 ISO/IEC WD 29167-10 [32] the authentication command sent by the interrogator has
an 80-bit long challenge and some other parameters. The tag shall add to these 80-bit and
16-bit long constant value and a 32-bit long random value, the so called seed. Together
this data builds a 128-bit long block, which is the input for the AES-128 cipher. The
response to this authentication command shall be the ciphertext output of the AES-128
cipher. The encryption key is stored in the user memory of the EPC tag.

To re-use the source code for the AES-128 cipher, the current seed is calculated also
using the AES-128 cipher. Therefore an initial 128-bit (truly random and secret) seed value
shall be saved in the user memory of the tag. Every subsequent seed value is computed by
taking the current seed value as input for the cipher. The output of the cipher overwrites
the current value. Only the first 16 bits shall be used as a seed for the authentication
command.

Since the AES-128 computation takes a certain time, by means of cycles on the mi-
crocontroller, the response can not be calculated during the time T1. However, the tag
does not need to respond to within T1, since the custom authentication command writes
to the EEPROM for saving the seed.

CHAPTER 6. IMPLEMENTATION AND EVALUATION 51

6.4 Evaluation of the Software

The code that should be executed on the microcontroller to handle the commands accord-
ing to the EPC Gen2 protocol in the first step is written in the programming language
C. This first version is used for verifying the correctness of the intended code but also
for verifying the design of the front-end and its interface. In the second step, after the
verification, the code has to be optimized concerning the optimization approaches in Sec-
tion 5.5. Together with the parameters for the dynamically adjustable clock frequency
during the execution, the required instruction cycles for certain parts of the final code
give boundaries for the minimal clock frequency, which is discussed in Section 6.4.2.

6.4.1 Optimization Results

Like mentioned in Section 5.3.1 the critical commands are the Select, Query, QueryRep,
QueryAdjust and Ack command. To achieve higher optimization and faster code, it is
required to implement those commands in assembly. One side effect of the elementary
optimizations, besides having a faster code in terms of less executed instructions, is that the
code size is also reduced. But at some point, with applying more optimization approaches,
the source code gets less dynamic. This means that certain code parts are processed with
less probability. Thus the code size gets larger again.

Table 6.1: Relation between the code size and the required cycles for the Select command,
depending on the code optimization.

Code Opti-
mization

Relative
Code Size1

RX-BIT-
RATE

additional
cycles

required

Optimization
step 1

±0 bytes
6 4,639

5 4,933

Optimization
step 2

−502 bytes
6 1,213

5 1,482

Optimization
step 3

−4 bytes
6 114

5 321

Optimization
step 4

+602 bytes
6 75

5 289

This effect is very significant for the Select and Ack command. As mentioned in
Section 4.2.4.2 and Section 4.2.4.1, the handling for these two commands requires a re-
ordering of the data through shift operations. For this special handling the approach of
loop unrolling mentioned in Section 5.5 has the largest room for improvement. The re-
lation between the various optimization steps, the code size and the cycle counts needed

1Relative Code Size means the difference in the code size in comparison to optimization step 1

CHAPTER 6. IMPLEMENTATION AND EVALUATION 52

to handle these two commands is shown, for a fixed RX-BIT-RATE, in Table 6.1 and
Table 6.2.

For the evaluation of the Select command the microcontroller is clocked with a fixed
RX-BIT-RATE. The required cycles are worst case values, determined through exhaustive
test cases. In Table 6.1 the following optimization steps are applied:

❼ Optimization Step 1 : The Select command is written in C and compiled with the
optimization level -o3.

❼ Optimization Step 2 : The Select command is written in assembly. All shift opera-
tions that depend on the Pointer parameter are handled in unoptimized loops.

❼ Optimization Step 3 : The Select command is written in assembly. In Repeatedly
executed code the shift operations that depend on the Pointer parameter are unrolled
and handled for each case of the bit pointer separately.

❼ Optimization Step 4 : The Select command is written in assembly. All shift opera-
tions that depend on the Pointer parameter are unrolled and handled for each case
of the bit pointer separately.

Table 6.2: Relation between the code size and the required cycles for the ACK command,
depending on the code optimization.

Code Optimization Relative Code Size Required TX-BIT-RATE

Optimization Step 1 ±0 bytes 28

Optimization Step 2 − 340 bytes 16

Optimization Step 3 +264 bytes 5

For the evaluation of the Ack command in Table 6.2 the microcontroller is clocked with
a fixed RX-BIT-RATE, while the TX-BIT-RATE is varied until the smallest value for a
successful communication is found. The required cycles are worst case values, determined
through exhaustive test cases. The following optimization steps are applied:

❼ Optimization Step 1 : The ACK command is written in C and compiled with the
optimization level -o3.

❼ Optimization Step 2 : The ACK command is written in assembly. All shift operations
that depend on the Pointer parameter are handled in unoptimized loops.

❼ Optimization Step 3 : The ACK command is written in assembly. All shift operations
that depend on the Pointer parameter are unrolled and handled for each case of the
bit pointer separately.

6.4.2 Clock Requirement

The gain of the optimization measures is reflected in the reduction of the highest required
clock frequency. As the front-end gates different clock rates to the microcontroller during
the different stages of the communication process (see Section 4.1.3), the parameters for
these different clock rates have to be evaluated against each other, to find the boundaries
for the maximal required clock frequency.

CHAPTER 6. IMPLEMENTATION AND EVALUATION 53

Code optimization on the handling of the different commands on the microcontroller
have effects on particular parts of the communication process. Thus it is necessary to
distinguish the limiting commands for each parameter of the specific clock rates of the
communication process.

The first version of the code for the microcontroller has shown that for the TX-BIT-
RATE during the transmission of the ACK command is a bottleneck. Generally it is not
reasonable to precalculate the whole answer to a command before the transmission starts.
Moreover only the first byte that has to be transmitted is precalculated before tx_enable

is set. Every other byte can be calculated during the transmission of the previous one.
This approach has to be considered especially for the READ and the ACK command,
since they can have accordingly long answers. The answer to an ACK command can be
truncated. If this is the case, the data, which is read byte wise from the memory, has to
be shifted in the right order depending on the bit pointer. Thus the answer for the ACK
command requires more complex execution than for the READ command. In the final
version of the code the ACK command needs 5 cycles per transmitted bit to precalculate
and push the subsequent byte into the FIFO.

Table 6.3: Dependency between TX-WAIT-CYCLES and the RX-BIT-RATE for the Select
command. The required cycles are the worst case values, determined through exhaustive
test cases.

RX-BIT-RATE TX-WAIT-CYCLES

3 866

4 570

5 282

6 75

7 49

8 38

9 35

10 35

The limiting command for the RX-BIT-RATE during the reception turns out to be the
SELECT command, which has a variable command length, and potentially long command
parameters. The WRITE and READ command have also a variable command length, but
it is not expected to be as long as for the SELECT command, since for these two commands
only the WordPtr parameter can vary in its length. Further the SELECT command has
to also execute the already mentioned shift operations, to bring the received data into the
right order, depending on the bit-pointer.

Since not every piece of information for the command handling can be precalculated
at the time the reception is finished, the microcontroller needs a certain amount of in-
structions after the last data is received. In Section 5.4 this amount was stated as TX-
WAIT-CYCLES. For the SELECT command varying the RX-BIT-RATE has a distinct
influence on the required TX-WAIT-CYCLES, which is shown in Table 6.3 for the final
version of the code. At a certain amount for the RX-BIT-RATE the TX-WAIT-CYCLES
cannot be reduced any more.

Although the Query command has a fixed length it is also a limiting command for the
RX-BIT-RATE and the TX-WAIT-CYCLES, since it causes many operations, depending
on the current status. The dependency between those two factors for the Query command
is shown in table 6.4

CHAPTER 6. IMPLEMENTATION AND EVALUATION 54

Table 6.4: Dependency between TX-WAIT-CYCLES and the RX-BIT-RATE for the
Query command. The required cycles are worst case values, determined through ex-
haustive test cases.

RX-BIT-RATE TX-WAIT-CYCLES

2 99

3 93

4 90

5 82

6 79

7 71

8 67

9 64

10 56

11 53

12 50

13 42

14 39

15 38

16 38

To find a trade-off between the RX-BIT-RATE and the TX-WAIT-CYCLES, a limit for
one of these two values has to be determined. Therefore the QueryAdj and the QueryRep
commands have to be analyzed. This is because during the reception both of these com-
mands are forwarded to the microcontroller within one byte in the FIFO. Thus the micro-
controller cannot do any precalculations during the reception. The calculations required
for these commands are independent on the RX-BIT-RATE. All of the received data is
processed after the reception of the command is finished. Table 6.5 and Table 6.6 give an
overview on how many cycles are required to handle these commands depending on the
state of the tag. These tables show that the QueryAdjust command needs 74 cycles after
the last bit is received in the worst case. Thus when enabling the HIGH-CLOCK (see
Section 5.4) at the end of the reception, the microcontroller has to get at least 74 clock
cycles until the time T1 is finished (see Section 4.1.3). This 74 cycles would correspond to
the TX-WAIT-CYCLES. Since the TX-WAIT-CYCLES are fixed for every command, the
value of 74 cycles can be used as boundary for the other commands to find the trade-off
between the TX-WAIT-CYCLES and the RX-BIT-RATE. In Figure 6.1 one can see that
considering the possibility of 74 TX-WAIT-CYCLES after the last data is received, for
the limiting commands the required RX-BIT-RATE is 7 cycles per bit.

The required amount of TX-WAIT-CYCLES gives the value for the required clock rate,
when the HIGH-CLOCK is enabled. Since the QueryAdj command limits the TX-WAIT-
CYCLES to 74, the value for the HIGH-CLOCK can be calculated out of it. Having in
mind that the lowest possible value for T1 is 15.63➭s, the required clock rate for meeting
the timing constraints for all possible configurations is calculated as follows:

fMax =
74

15.63µs
= 4.7MHz (6.1)

As mentioned in Section 5.4 the front-end is designed to be clocked at a cycle rate of

CHAPTER 6. IMPLEMENTATION AND EVALUATION 55

Table 6.5: Required TX-WAIT-CYCLES for the QueryAdjust command dependent on the
different internal values of the microcontroller and the command parameters. NOTE:
Every RN16 is assumed to be 1234h.

Current state Session
parame-
ter does
match

UpDn
parame-

ter

Current
Q value

new slot
value

required
TX-

WAIT-
CYCLES

all no all all - 18

Ready yes all all - 29

Arbitrate yes 000b 6 0034h 70

Arbitrate yes 011b 6 0014h 74

Arbitrate yes 110b 6 0034h 71

Arbitrate yes 111b 6 - 39

Arbitrate yes 011b 1 0000h 71

Arbitrate yes 011b 0 0000h 71

Acknowledged yes all all - 43

Open, Secured yes all all - 50

Table 6.6: Required TX-WAIT-CYCLES for the QueryRep.
Current state Session

parameter
does
match

resulting
slot
value

required
TX-

WAIT-
CYCLES

all no - 22

Ready yes - 31

Arbitrate yes >0000h 51

Arbitrate yes =0000h 47

Reply yes - 28

Acknowledged yes - 42

Open, Secured yes - 51

4 MHz1. Thus the minimal value for T1 that can be met is given as follows:

T1 =
74

4MHz
= 18, 5µs (6.2)

The time T1 depends directly on two factors of the communication configuration,
namely Tpri (and thus BLF) and RTcal. Further those two factors partially depend on
the same configuration values. Thus the minimal values for Tpri and RTcal still can be
achieved, but not with all possible combinations. For example the maximal BLF of 640kHz
(and thus the minimal Tpri) can still be combined together with the lowest possible Tari
value, but therefore the RTcal value has to be 3× Tari (cf. Figure 4.2)

1For higher cycle rates, a few constants in the design have to be adapted for the front-end to measure

the timings respectively to the cycle rate

CHAPTER 6. IMPLEMENTATION AND EVALUATION 56

��

���

����

�� �� �� �� �� 	�
� ��

�
�
�

�
��

�
�
�
�
�
�
��
��
�
��
��
�
��
�
�
��

���������

������

 !""�#�

����	

 !""�#�

����	
����

 !""�#�

Figure 6.1: Required TX-WAIT-CYCLES depending on the RX-BIT-RATE for the Select,
Query and QueryAdjust command. The QueryAdjust command is handled during the time
T1 in table 4.1, so it has a constant TX-WAIT-CYCLES requirement.

Table 6.7: Effective clock-rate for reception.
Tari[µs] Data-1 length Clock-rate [kHz]

Worst case Nominal Best case

6.5 1.5× data-0 1120 896.00 746.67

12.50 1.5× data-0 560 448.00 373.33

25.00 1.5× data-0 280 224.00 186.67

6.25 2× data-0 1120 746.67 560.00

12.50 2× data-0 560 373.33 280.00

25.00 2× data-0 280 186.67 140.00

Since the EPC Gen2 standard specifies flexible data rates for transmission and recep-
tion, the effective clock rate depends on the particular configuration. Table 6.7 shows the
effective clock rates for receiving with a RX-BIT-RATE of 7 cycles per bit. The data-1
symbol length in Table 6.7 is given as a multiple of the data-0 symbol length. Because of
the different data-0 and data-1 symbol lengths the effective clock rate depends also on the
data itself. In the worst case only data-0 symbols are expected whereas in the best case
only data-1 symbols are expected. In the average case an equal distribution of data-1 and
data-0 symbols is assumed. The factor between the lowest and the highest effective clock
rate is 4.8.

Table 6.8 shows the effective clock rates for transmitting with a TX-BIT-RATE of 5
cycles per bit. Because of the different encoding formats, the factor of 128 between the
highest and the lowest effective clock rate is more significant than in table 6.7.

CHAPTER 6. IMPLEMENTATION AND EVALUATION 57

Table 6.8: Effective clock-rate for transmission.
BLF[kHz] Clock-rate[kHz]

Data encoding format FM0 Miller

M=2 M=4 M=8

40 200.0 100.0 50.0 25.0

107 535.0 267.0 133.8 66.9

160 800.0 400.0 200.0 100.0

256 1280.0 640.0 320.0 160.0

320 1600.0 800.0 400.0 200.0

640 3200.0 1600.0 800.0 400.0

These factors between the lowest and the highest possible data rates have a direct
influence on the power consumption. This allows working in wider ranges of low data rates
and in return high data rates when working in closer ranges, where the electromagnetic
field is stronger.

The HIGH-CLOCK is independent of the data-rate. But since it is switched on and
off at certain points of the source code, it is only active for the maximum required TX-
WAIT-CYCLES count, which is 74.

Chapter 7

Concluding Remarks

The goal of this thesis was to build a design based on a standard microcontroller with
an additional front-end that handles RFID communication according to the EPC Gen2
standard. The microcontroller is based on the AVR instruction set of the Atmega128
with an 8-bit memoryinterface and an 8-bit datapath. The idea was to handle as much as
possible on the microcontroller, to maximize the flexibility of the design.

When analyzing the communication protocol of the EPC Gen2 standard it seems that
it is more suitable for a custom processor design, which is based on a state machine.
Moreover the EPC Gen2 standard describes certain states for a tag, depending on mul-
tiple parameters and values. Most of the computation for the command handling can
be parallelized in a state machine design. Thus handling the commands with software
running on a standard microcontroller needs innately a higher clock rate than with a state
machine. An elaborate software and also interface for the front-end are required to reduce
this clock rate to a minimum.

This is achieved by implementing different clock rates for reception and transmission
to avoid idle operations within certain parts of the source code. Therefore, the software for
the command handling is also highly optimized in terms of required cycles for the critical
commands during reception and transmission. The effect is that the required clock cycles
are reduced to 7 cycles per received bit and 5 cycles per transmitted bit. Nevertheless,
the applied software optimizations lead to a larger code size which is reflected in the large
program memory (more than 50% of the chip area).

The microcontroller is clocked with exactly the amount of cycles it needs to process
the data within the time constraints. This makes the effective clock rate dependent on
the chosen data rates. With the lowest data rate during reception the effective clock is
186.67 kHz on average. With the lowest data rate during transmission the effective clock
is 25kHz when Miller M=8 data encoding is used. Reducing the effective clock rates with
lower data rates allows the tag to work in wider ranges with the interrogator, since it
needs less power. On the other hand a reader is able to use higher data rates within close
distances.

To verify that the design conforms to the EPC Gen2 protocol the whole design was
implemented in real hardware using a demonstration tag with a Field Programmable
Gate Array (FPGA). Therefore an EPC Gen2 reader was plugged in to a computer so
that various communication scenarios could be tested.

The current design offers a fundament for many further implementations and exten-
sions of the EPC Gen2 standard. Different aspects for security within an EPC Gen2 tag

58

CHAPTER 7. CONCLUDING REMARKS 59

can be easily elaborated on and evaluated by additional software. In a practical imple-
mentation based on this design a certain security feature or an update of the EPC Gen2
standard could be applied to an exiting tag by downloading new software.

The EPC Gen2 standard specifies a comparatively large command length for custom
commands, so it is to be expected that for further source code extensions the critical and
limiting commands for the effective clock rate of the microcontroller will remain the same.
Nevertheless, one could consider swapping certain functionality into hardware. Therefore
two approaches shall be mentioned. One approach would be an extension of the instruction
set of the microcontroller. Another approach would be to preprocess the incoming data
or to aftertreat the outgoing data inside the front-end, which, because of its modular
design, should not require great modifications of the front-end or the interface to the
microcontroller. However such extensions shall remain as a topic of further investigations
and research.

Appendix A

Definitions

A.1 Acronyms

AES Advanced Encryption Standard.

BLF Backscatter-Link frequency.

CBC Cipher Block Chaining.
CRC Cyclic Redundancy Check.

DES Data Encryption Standard.
DSB-ASK Double-Sideband Amplitude Shift Keying.

ECB Electronic Code Book.
EPC Electronic Product Code.

FIFO ”First in, First out”-Queue.
FSR Feedback Shift Register.

HDL Hardware Description Language.
HF High Frequency.

ISO International Organization of Standardiza-
tion.

ITF Interrogator-Talks-First.

LF Low-Frequency.
LFSR Linear-Feedback-Shift-Register.
LSB Least Significant Bit.

NIST National Institute of Standards and Technol-
ogy.

OFB Output-Feedback.

60

Acronyms 61

PIE Pulse Interval Encoding.
PR-ASK Phase-Reversal Amplitude Shift Keying.
PRNG Pseudo Random Number Generator.

RFID Radio-Frequency Identification.
RN16 16-bit Random or Pseudo-Random Number.
RX-BIT-RATE Number of Cycles per Received Bit.

SSB-ASK Single-Sideband Amplitude Shift Keying.

TX-BIT-RATE Number of Cycles per Transmitted Bit.
TX-WAIT-CYCLES Constant Amount of Clock Cycles between

Reception and Transmission.

UHF Ultra High Frequency.

Appendix B

Interface Register

B.1 Status 1 Register

Bit number 7 6 5 4

Name tx_mod_stop fifo_not_empty rx_eof cmd_detected

Bit number 3 2 1 0

Name query_adj_cmd query_cmd ack_cmd query_rep_cmd

Table B.1: Flags in the status 1 register

The flags in the status 1 register, as shown in table B.1, are set and cleared by the
frontend to invoke the right handling by the microcontroller. Some of them are cleared
by the microcontroller to ensure a correct control flow of the frontend. Their function in
particular is:

❼ tx_mod_stop

This flag has two functions. When the tx_enable flag is set by the microcontroller,
the frontend sets the tx_mod_stop flag, when the last bit is transmitted and the
modulation is finished. When the crc_enable flag is set by the microcontroller, the
frontend sets the tx_mod_stop flag, when the CRC-16 is calculated over all the data
pushed in the FIFO. Furthermore it tells the microcontroller that the calculated
CRC-16 is already pushed into the FIFO.

❼ fifo_not_empty

This flag is set if there is minimum one byte in the FIFO and cleared if it is empty.

❼ rx_eof

It is set by the frontend, when the last received bit is pushed into the FIFO. The
frontend clears the rx_eof flag either if the time T1 in table 4.1 is over and tx_enable

is set, or if rx_enable is cleared and tx_enable is not set.

❼ cmd_detected

If receiving is enabled, this flag is set if a command is detected by the frontend.
Either it is one of the five special commands and hence an additional flag for the
specific command is set, or it is one of the other miscellaneous commands and no
additional flag is set (except for the NAK command). Thus the flag is set at latest
when the fourth bit signal is received.

62

APPENDIX B. INTERFACE REGISTER 63

❼ query_adj_cmd

This flag is set together with the cmd_detected flag, if the detected command was
the QueryAdjust command

❼ query_cmd

This flag is set together with the cmd_detected flag, if the detected command was
the Query command

❼ ack_cmd

This flag is set together with the cmd_detected flag, if the detected command was
the Ack command

❼ query_rep_cmd

This flag is set together with the cmd_detected flag, if the detected command was
the QueryRep command

B.2 Status 2 Register

Bit number 7 6 5 4

Name RFU RFU last_data_

invalid

fifo_full

Bit number 3 2 1 0

Name nak_cmd select_cmd crc16_valid crc5_valid

Table B.2: Flags in the status 2 register

The flags in the status 2 register, as shown in table B.2, are set and cleared only by
the frontend. Their function in particular is:

❼ last_data_invalid

If EOF is detected during reception the front-end checks if it received the expected
amount of data. This amount is signalized via the push_after_size bits in the
control 2 register by the microcontroller. If the amount was incorrect, the last_

data_invalid flag is set. It is cleared again, during the polling of a new incoming
command (whit the rising edge of the rx_enable flag)

❼ fifo_full

This flag is set if theFIFO is full and no other byte can be pushed into it. It is
cleared if at least one push is possible.

❼ nak_cmd

This flag is not set together with the cmd_detected flag. Another four data symbols
are required to detect the NAK command and thus to set this flag.

❼ select_cmd

This flag is set together with the cmd_detected flag, if the detected command was
the Select command

❼ crc16_valid

Every received bit is shifted into a shift register, that calculates the CRC-16. This

APPENDIX B. INTERFACE REGISTER 64

register is preset to the value FFFFh when the rx_enable flag is set. If within a
shift operation the value in the register is 1D0Fh, the last 16 bits are a valid CRC-16
value over the bits received before the last 16 bits and the crc16_valid flag is set.
This can also occur randomly in the middle of a data stream, so this flag only makes
sense, if the rx_eof was set.

❼ crc5_valid

Every received bit is shifted into a shift register, that calculates the CRC-5. This
register is preset to the value 010012 when the rx_enable flag is set. If within a shift
operation the value in the register is 000002, the last 5 bits are a valid CRC-5 value
over the bits received before the last 5 bits and the crc5_valid flag is set. This can
also occur randomly in the middle of a data stream, so this flag only makes sense, if
the rx_eof was set.

B.3 Control 1 Register

Bit number 7 6 5 4

Name write_mem stored_crc_

enable

tx_header_

value

add_tx_header

Bit number 3 2 1 0

Name add_tx_crc tx_conf_store rx_enable tx_enable

Table B.3: Flags in the control 1 register

The flags in the control 1 register, as shown in table B.3, are set and cleared by the
microcontroller to enable and adjust different functions of the front-end. Their function
in particular is:

❼ write_mem

This flag is set by the microcontroller, if the tag has to write to the memory, as a
response to a command. This may be provoked by a Write,Lock or Kill command.
If the flag is set, the frontend may exceed the T1 value in table 4.1 according to [11].
It is also used to set the intern TRext value of the frontend (see [11]).

❼ stored_crc_enable

This flag is used to tell the front-end that it shall calculate the CRC-16 over the
data being pushed into the FIFO. The data will not be transmitted.

❼ tx_header_value

If this flag is set, the preceding header bit is 12 for the transmitted data. Otherwise
the header bit is 02. This flag is only valid if the add_tx_header bit is set.

❼ add_tx_header

This flag shall be set with the tx_enable flag, if the data to be transmitted has to be
preceded by a header bit. The value of the header bit is given by the tx_header_value
flag.

❼ add_tx_crc

This flag is set, if a CRC-16 has to be added to the transmitted data. The frontend

APPENDIX B. INTERFACE REGISTER 65

starts to transmit the value in the CRC-16 shift register, when the FIFO is empty
and the tx_eof flag is set.

❼ tx_conf_store

This flag is used to save the configurations values of the frontend. It is set by
the microcontroller after detecting a valid Query command for just one cycle. If
the frontend detects a possible Query command, it extracts the DR,M and TRext
parameter and stores these temporarily, while receiving the rest of the command.
When the tx_conf_store is set, it overwrites the old configuration values with the
temporary ones.

❼ rx_enable

This flag is set to enable receiving by the frontend. Otherwise no data will be pushed
into the FIFO. It has to be cleared before the time T1 in table 4.1 is over.

❼ tx_enable

This flag is set to enable transmission by the frontend. It has to be set before the time
T1 in table 4.1 is over. When the flag is set, the front-end starts transmitting the
preamble. When finished with the preamble it starts transmitting the data pushed
into the FIFO.

B.4 Control 2 Register

Bit number 7 6 5 4

Name hi_clk push_after_size

Bit number 3 2 1 0

Name tx_eof last_byte_size

Table B.4: Flags in the control 2 register

The flags in the control 2 register, as shown in table B.4, are set and cleared by the
microcontroller to enable and adjust different function of the front-end. Their function in
particular is:

❼ hi_clk

If this flag is set, the microcontroller requests the highest clock from the front-end.

❼ push_after_size

These three bits represent the number of the received bits, after which the front-end
should push currently received data into the FIFO. If the number is 0002, then the
full byte is waited for until the data is pushed into the FIFO.

❼ tx_eof

If the tx_enable flag is set, this flag is set by the microcontroller to tell the front-end
that no more data will be transmitted, than the one pushed into the FIFO. If the
crc_enable flag is set, this flag is tells the front-end, that the data for the CRC-16
calculation, has been completely pushed into the FIFO.

❼ last_byte_size

These three bits represent the size of the valid bits of the last byte in the FIFO,
beginning with the Least Significant Bit (LSB).

APPENDIX B. INTERFACE REGISTER 66

– 0002 → 1 bit is valid

– 0012 → 2 bits are valid

– 0102 → 3 bits are valid

– 0112 → 4 bits are valid

– 1002 → 5 bits are valid

– 1012 → 6 bits are valid

– 1012 → 7 bits are valid

– 1112 → 8 bits are valid

These bits are used in both directions. When the microcontroller pushes the last
data into the FIFO and sets the tx_eof flag, it also sets these bits accordingly. On
the other side, when the front-end pushed the last received data into the FIFO and
sets the rx_eof flag, it also sets these bits accordingly.

Appendix C

Algorithms

C.1 Extended Euclidean algorithm

The extended Euclidean algorithm for two non-negative integers a and b with a≥b delivers
d=gcd(a,b) and x,y such that a×x+b×y=d and can be executed as follows:

1. If b = 0 then set d ← a, x ← 1, y ← 0 ; finish

2. Set x1 ← 0, x 2 ← 1, y1 ← 1, y2 ← 0.

3. While b > 0 do:

(a) q ← ⌊a/b⌋, r ← a - q×b, x ← x2 - q×x1, y ← y2 - q×y1.

(b) a ← b, b ← r, x2 ← x1, x1 ← x, y2 ← y1, y 1 ← y.

4. Set d ← a, x ← x2, y ← y2; finish

67

Bibliography

[1] S. A. Weis, “Rfid (radio frequency identification): Principles and applications,” 2007.
[Online]. Available: http://www.eecs.harvard.edu/cs199r/readings/rfid-article.pdf
(Cited on pages 1, 5 and 6.)

[2] M. Roberti, “Epc reduces out-of-stocks at wal-mart,” 2005. [Online]. Available:
http://www.rfidjournal.com/articles/view?1927/2 (Cited on pages 1 and 6.)

[3] W. Dong-Liang et al., “A brief survey on current rfid applications,” vol. 4, 2009, pp.
2330–2335. (Cited on pages 1, 5 and 6.)

[4] I. Lacmanovic, B. Radulovic, and D. Lacmanovic, “Contactless payment systems
based on rfid technology,” in MIPRO, 2010 Proceedings of the 33rd International
Convention, May 2010, pp. 1114–1119. (Cited on pages 1 and 7.)

[5] A. Jeffries, “Internet of cows: technology could help track disease, but ranchers
are resistant,” May 2013. [Online]. Available: http://www.theverge.com/2013/
5/10/4316658/internet-of-cows-technology-offers-ways-to-track-livestock-but (Cited
on pages 1 and 6.)

[6] A. Juels, “Rfid security and privacy: A research survey,” JOURNAL OF SELECTED
AREAS IN COMMUNICATION (J-SAC), vol. 24, no. 2, pp. 381–395, 2006. (Cited
on pages 1, 7 and 9.)

[7] R. Pateriya and S. Sharma, “The evolution of rfid security and privacy: A research
survey,” in Communication Systems and Network Technologies (CSNT), 2011 Inter-
national Conference on, June 2011, pp. 115–119. (Cited on pages 1 and 9.)

[8] E. Bogari, P. Zavarsky, D. Lindskog, and R. Ruhl, “An analysis of security weaknesses
in the evolution of rfid enabled passport,” 2012, pp. 158–166. (Cited on pages 1 and 8.)

[9] N. Bagheri, M. Safkhani, P. Peris-Lopez, and J. E. Tapiador, “Comments on ”security
improvement of an rfid security protocol of iso/iec wd 29167-6”.” IEEE Communica-
tions Letters, vol. 17, no. 4, pp. 805–807, 2013. (Cited on pages 1 and 10.)

[10] B. Song, J. Y. Hwang, and K.-A. Shim, “Security improvement of an rfid security
protocol of iso/iec wd 29167-6.” IEEE Communications Letters, vol. 15, no. 12, pp.
1375–1377, 2011. (Cited on pages 1 and 10.)

[11] EPCglobal Inc., “Uhf class 1 gen 2 standard v. 1.2.0,” Oct. 2008. [On-
line]. Available: http://www.gs1.at/images/stories/Produkte/GS1 EPCglobal/EPC
Standards/UHF C1 Gen2/GS1 EPC uhfc1g2 1 2 0-standard-20080511.pdf (Cited
on pages 2, 24, 25, 26, 27, 28, 30, 35 and 64.)

68

BIBLIOGRAPHY 69

[12] J. Landt, “The history of rfid,” IEEE Potentials, vol. 24, no. 4, pp. 8–11, 2005. (Cited
on page 5.)

[13] B. Violino, “The history of rfid technology,” RFID Journal, 2005. [Online]. Available:
http://www.rfidjournal.com/articles/view?1338/2 (Cited on pages 5 and 6.)

[14] ISO/IEC 18000-3, “Information technology – radio frequency identification for item
management – part 3: Parameters for air interface communications at 13,56 mhz,”
2013. [Online]. Available: http://www.iso.org/iso/catalogue detail.htm?csnumber=
53424 (Cited on page 5.)

[15] ISO/IEC 18000-6, “Information technology – radio frequency identification for item
management – part 6: Parameters for air interface communications at 860 mhz to
960 mhz general,” 2013. [Online]. Available: http://www.iso.org/iso/home/store/
catalogue ics/catalogue detail ics.htm?csnumber=59644 (Cited on pages 5 and 10.)

[16] Z. Yuan and D. Huang, “A novel rfid-based shipping containers location and identi-
fication solution in multimodal transport,” in Electrical and Computer Engineering,
2008. CCECE 2008. Canadian Conference on, May 2008, pp. 000 267–000 272. (Cited
on page 6.)

[17] CASPIAN, “Position statement on the use of rfid on consumer products,” 2003.
[Online]. Available: https://w2.eff.org/Privacy/Surveillance/RFID/RFID Position
Statement.pdf (Cited on page 8.)

[18] S. C. Bono, M. Green, A. Stubblefield, A. Juels, A. D. Rubin, and M. Szydlo,
“Security analysis of a cryptographically-enabled rfid device,” in Proceedings of
the 14th conference on USENIX Security Symposium - Volume 14, ser. SSYM’05.
Berkeley, CA, USA: USENIX Association, 2005, pp. 1–1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251398.1251399 (Cited on page 9.)

[19] A. Man, E. Zhang, V. Lau, and C. Tsui, “Low power vlsi design for a rfid passive tag
baseband system enhanced with an aes cryptography engine,” 2007, pp. 1–6. (Cited
on pages 10 and 33.)

[20] A. Ricci, M. Grisanti, I. De Munari, and B. Ciampolini, “Design of a 2 ➭w rfid
baseband processor featuring an aes cryptography primitive,” 2008, pp. 376–379.
(Cited on pages 10 and 33.)

[21] ISO/IEC WD 29167-6, “Information technology – automatic identification and data
capture techniques – part 6: Air interface for security services and file management
for rfid at 860-960mhz,” 2011. [Online]. Available: http://www.iso.org (Cited on
page 10.)

[22] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied Cryptog-
raphy, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 1996. (Cited on pages 11,
12, 16 and 17.)

[23] R. J. Anderson, Security Engineering: A Guide to Building Dependable Distributed
Systems, 2nd ed. Wiley, 2008. (Cited on page 11.)

[24] B. Schneier, Applied cryptography: protocols, algorithms, and source code in C, 2nd ed.
New York: Wiley, 1996. (Cited on pages 11, 15 and 22.)

BIBLIOGRAPHY 70

[25] J. Yu and P. Brune, “No security by obscurity - why two factor authentication
should be based on an open design,” in Security and Cryptography (SECRYPT),
2011 Proceedings of the International Conference on, July 2011, pp. 418–421. (Cited
on page 12.)

[26] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120–126,
1978. (Cited on page 17.)

[27] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” NIST Web page, March 1999.
[Online]. Available: http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.
pdf (Cited on pages 18, 20 and 21.)

[28] R. M. Stallman and G. D. Community, Using The Gnu Compiler Collection: A Gnu
Manual For Gcc Version 4.3.3. Paramount, CA: CreateSpace, 2009. (Cited on
page 35.)

[29] J. Melia-Segui, J. Garcia-Alfaro, and J. Herrera-Joancomarti, “Multiple-polynomial
lfsr based pseudorandom number generator for epc gen2 rfid tags,” in IECON 2011
- 37th Annual Conference on IEEE Industrial Electronics Society, Nov 2011, pp.
3820–3825. (Cited on page 40.)

[30] T. A. Roth et al., “Simulavr - an avr simulator,” Feb. 2012. [Online]. Available:
http://www.nongnu.org/simulavr/ (Cited on page 49.)

[31] “Gnu general public license,” Free Software Foundation, 2007. [Online]. Available:
http://www.gnu.org/licenses/gpl.html (Cited on page 49.)

[32] ISO/IEC WD 29167-10, “Information technology – automatic identification and
data capture techniques – part 10: Air interface for security services crypto suite
aes128,” 2011. [Online]. Available: http://www.iso.org (Cited on page 50.)

[33] C. Meiß, “Rfid - logistics and supply chain management,” RFID Systems and Tech-
nologies (RFID SysTech), pp. 1–7, 2007. (Not cited.)

[34] T. A. Roth et al., “Simulavr - an avr simulation framework,” Feb. 2012.
[Online]. Available: http://download.savannah.gnu.org/releases/simulavr/manual-1.
0.pdf (Not cited.)

