Master Thesis

New Pichia pastoris platform strains for protein expression

Student:Viktorija Vidimče (Викторија Видимче)

Supervisor:
Glieder, Anton, Ao.Univ.-Prof. Mag.rer.nat.Dr.rer.nat.

Institute of Molecular Biotechnology
Graz University of Technology

Graz, June 2012

Danksagung:

(Diese Seite wird händisch geschrieben)

Благодарност

(Diese Seite wird händisch geschrieben)

Abstract

Pichia pastoris is a methylotrophic yeast widely used for industrial production of heterologous proteins. Proper protein folding which often depends on post translational modifications is of crucial importance for producing active recombinant protein. This master thesis was focused on a genes coding for enzymes involved in protein posttranslational modification.

First of all, DNA sequence analysis of all genes amplified from Pichia pastoris CBS7435 was performed, and the results were compared with the existing sequences in GenDB. This comparison did not show any unexpected results, but showed some sequence mismatches revealed by the much more accurate new generation sequencing methods.

Four FLP (recombinase) PpPDI promoter specific $P_{A O X I}$-replacement cassettes were designed. In principle a previously generated FLP-recombinase cassette was used. It was redesigned and modified for gene replacement use, instead of its original knock-out function. These resulted in four $P_{\text {Aoxı-replacement cassettes all carrying the recombinase gene, a gene }}$ for zeocin resistance, the AOX promoter ($P_{\text {AOXI }}$), and a 500 bp long sequence which was homologous to the PDI genes. In addition, new Pichia pastoris $\triangle K U 70$ strains carrying genes for model proteins were designed. As model proteins CalB (Candida antartica lipase B), and HRP (horseradish peroxidase) were used. Out of over 250 clones screened for each construct, one single copy and one multi copy clone was chosen for each protein.

Furthermore two knock-out cassettes were designed, both of them of ends-out type. The first one carried homologous sequences of the upstream and downstream region of PpOCH1, and the second one of PpHOC1. In addition, two new Pichia pastoris strains (CSB7435 and 4KU70) carrying an HNL5 gene were designed. HNL5 codes for hydroxynitrile lyase, an isoenzyme from Prunus dulcis*. Out of over 250 clones screened for each strain, two multi copy clones were chosen for knockout cassette transformation. However, no transformation resulted in a knockout clone, which opened a broad discussion, leading to new strategies for the generation of an OCH1 or HOCl knockout.

[^0]
Index

1. Introduction to Pichia pastoris 8
1.1 Brief overview of Pichia pastoris phylogenetic determination 9
1.2 Historical overview of Pichia pastoris becoming industry-relevant yeast 10
1.3 Methanol utilization (MUT) pathway in Pichia pastoris 11
1.3.1 Pichia pastoris alcohol oxidases 11
1.4 Pichia pastoris as industrial protein production host 12
1.5 Pichia pastoris related scientific research areas 14
2. Recombination in Pichia pastoris 16
2.1 Homologous recombination in general 17
2.2 Single site homologous recombination in Pichia pastoris 19
2.3 Double site homologous recombination in Pichia pastoris 20
2.4 FLP site-specific recombination system derived from Saccharomyces cerevisiae $2 \mu \mathrm{~m}$ plasmid 22
2.5 Non-homologous recombination in general 23
3. Introduction to protein disulfide isomerases (PDIs) 25
3.1 Protein folding-disulfide bonds (-S-S-) formation 26
3.2 General description of protein disulfide isomerases 27
3.3 Protein disulfide isomerases reaction mechanism 28
3.4 Brief comparison of protein disulfide isomerases from different organisms 30
3.4.1 Pichia pastoris protein disulfide isomerases 31
4. Introduction to protein glycosylation 33
4.1 Posttranslational protein glycosylation 34
4.2 Brief overview of Pichia pastoris N-glycosylation pathway 36
4.3 Pichia pastoris strain containing human-like N-glycosylation pattern 37
5. Objectives 39
6. Instruments and associated equipment 40
6.1 Centrifuges and associated materials 40
6.2 Shakers and incubators 40
6.3 Polymerase chain reaction (PCR) thermocyclers 40
6.4 Photometers, plate readers and associated materials 40
6.5 Gel electrophoresis and associated materials and devices 40
6.6 Electroporation materials 41
6.7 Reaction tubes 41
6.8 Pipettes and pipette tips 41
6.9 Microplates 41
6.10 Other materials and devices 42
7. Materials 43
7.1 Media and buffers 43
7.1.1 Escherichia coli media 43
7.1.2 Pichia pastoris media 43
7.1.2.1 Stocks 43
7.1.2.2 Media for cultivation in 96-deep well plates 43
7.1.2.3 Media for genomic DNA isolation from yeasts 43
7.1.3 Buffers 44
7.1.3.1 Buffer solutions for enzyme characterization 44
7.2 Other chemicals and solutions 44
7.3 Enzymes 44
7.3.1 Restriction enzymes 44
7.3.2 DNA polymerases 45
7.4 Chemicals 45
7.5 Existing strains 46
7.6 Existing plasmids 46
7.7 Primers 51
7.7.1 Existing primers 52
7.7.2 Primers designed in this thesis 53
8. Kits, protocols and Methods 58
8.1 DNA isolation 58
8.1.1 Genomic DNA isolation and determination of its quality and quantity 58
8.1.2 Plasmid isolation 58
8.2 DNA purification 58
8.3 Polymerase chain reaction (PCR) 59
8.3.1 Standard PCR and overlap extension PCR (OE-PCR) 59
8.3.2 Colony PCR 59
8.4 Two steps site directed mutagenesis method 60
8.5 Agarose gel electrophoresis 60
8.6 Standard ligations 60
8.7 Cloning to the pJet1.2/blunt ends vector 61
8.8 Transformation 61
8.8.1 Transformation to Escherichia coli 61
8.8.2 Transformation to Pichia pastoris 61
8.9 Micro-scale cultivation in 96-deep well plates 61
$8.10 \quad$ Photometric enzyme activity assays 62
8.10.1 HRP microtiter plate activity assay 62
8.10.2 CalB microtiter plate activity assay 62
8.10.3 HNL microtiter plate activity assay 62
8.11 Green fluorescence protein (GFP) fluorescence measurement 63
9. Bioinformatics' programs and web tools 63
9.1 Programs 63
9.2 Web tools 63
10. Pichia pastoris PDI-specific $P_{A O X I}$-replacement cassettes 64
10.1 Project aim 65
10.2 Project strategy 65
10.2.1 Pichia pastoris protein disulfide isomerase genes (PpPDIs) 65
10.2.2 Amplification, cloning and sequencing of PpPDIs 68
10.2.3 Design of PpPDI-specific $P_{A O X I}$-replacement cassettes 71
10.2.3.1Evaluation of efficiency of the cassette variant A 74
10.2.3.2Results and discussion 75
10.2 .3 .3Design of cassette variant B 77
10.3 Design of P. pastoris reporter strains carrying genes coding for model proteins CalB and HRP 80
10.3.1 Design of expression vectors carrying $C a l B$ and $H R P$ gene 80
10.3.2 Transformation of CalB and HRP expression vectors to P. pastoris $\Delta \mathrm{KU} 70$ 82
10.3.3 Screening results of Pichia pastoris $\Delta \mathrm{KU} 70$ CalB and $\Delta \mathrm{KU} 70$ HRP reporter strains 82
10.4 Conclusion 85
11 Design of 1,6-manosyltrasferase knockout strains of Pichia pastoris 86
11.1 Project aim and strategy 87
11.2 Sequence analysis of $\mathrm{PpOCH1}$ and PpHOCl genes 87
11.3 Design of PpOCHI and PpHOCl knockout cassettes 91
11.4 Design of expression vector carrying gene coding for model protein HNL 92
11.4.1 Design of Pichia pastoris reporter strain carrying gene coding for model protein HNL 94
11.4.2 Screening results of Pichia pastoris CBS7435 HNL reporter strain 94
11.5 Transformation of PpOCH1 and PpHOC1 knockout cassettes to
P. pastoris HNL reporter strain 97
11.5.1 Results and discussion 98
11.5.2 Design and screening of P. pastoris \triangle KU70 HNL reporter strain 98
11.6 Results, discussion and further perspectives 102
12 References 103
Appendix 1: CalB activity assay - screening results 108
Appendix 2: HRP activity assay - screening results 111
Appendix 3: DNA sequences of relevance for this thesis 114
Appendix 4: Amino acid sequences of relevance for this thesis 122
Appendix 5: DNA multiple sequence alignments 123
Appendix 6: Amino acid multiple sequence alignments 136
Appendix 7: Most frequently used abbreviations within this thesis 137
Appendix 8: List of new designed strains 138

1. Introduction to Pichia pastoris

1.1 Brief overview of Pichia pastoris phylogenetic determination
1.2 Historical overview of Pichia pastoris becoming industryrelevant yeast
1.3 Methanol utilization (MUT) pathway in Pichia pastoris
1.3.1 Pichia pastoris alcohol oxidases
1.4 Pichia pastoris as industrial protein production host
1.5 Pichia pastoris related scientific research areas

1.1 Brief overview of Pichia pastoris phylogenetic determination

Almost 30 years ago, Koichi Ogata discovered yeast species able to metabolize methanol (MeOH) and utilize it as sole carbon and energy source, and he defined them as methylotrophic yeasts ${ }^{1}$. At this time the determination of yeasts was based upon their phenotypic differences, such as the ability to grow on certain carbon and nitrogen compounds.

In the 1980's, Kurtzman introduced a new way to determine phylogenetic relations between organisms, based on their nuclear DNA (nDNA) relatedness. Later, numerous studies have reported about other phylogenic determination methods such as rRNA and rDNA sequence analysis. According to rRNA/rDNA phylogenetic sequence analysis of D1/D2 domain of $5 \mathrm{~S}, 18 \mathrm{~S}$ and 26 S , all ascomycetous yeasts are divided in three major lineages: the hamiascomycetes, the euacsomycetes and the archiascomycetes ${ }^{2}$. After all known methylotrophic yeasts have been analysed for divergence in partial sequences of nuclear large subunit (LSU) and nuclear small subunit (SSU) of ribosomal RNA (rRNA), the following three genera have been proposed and described: Komagataella, Ogataea and Pichia ${ }^{2,3}$. Although genetic determination methods have been used in all these studies, their results did not make a stable phylogenetic basis. However, they have indicated the beginning of a new era in taxonomy, where gene sequence analysis presents the most exact way to phylogenetic determination of living organisms.

Recently, two new strains, Komagataella phaffii and Komagataella pseudopastoris have been described within the genus Pichia. Their phenotypic similarity with Pichia pastoris ${ }^{*}$, strain which is widely used in biotechnology, initiated additional sequence analysis, after which Pichia pastoris was defined as legitimate synonym of Komagataella phaffii**4,3.

Pichia pastoris is homothallic ascomycetous yeast and belongs to the Saccharomycetaceae family (http://www.ncbi.nlm.nih.gov/Taxonomy/) ${ }^{1}$. Usually this yeast exists as haploid, but diploid generations can be achieved by growing the cells on nitrogenlimited media ${ }^{1}$.
All known Pichia pastoris strains had been stored in the ARS Culture Collection, also known as Northern Regional Research Laboratories Collection. They are all derivatives of the wildtype strain, registered as NRRL-Y 11430 (http://nrrl.ncaur.usda.gov/) ${ }^{5}$. In the Centraalbureau voor Schimmelcultures this strain has been deposited as CBS7435 ${ }^{6}$, as well as ATCC 76273, and CECT 11047 (http://www.uniprot.org/taxonomy/4922).

Recently performed genome sequencing projects of Pichia pastoris CBS7435 strain, displayed a leap forward in the understanding of the biology of this methylotroph. Within the $9,35 \mathrm{Mbp}$ high-quality genome sequence, 5007 coding domain sequences (CDS) located on four chromosomes have been automatically annotated ${ }^{6}$. Of all the predicted gene sequences, $83,62 \%$ are single exon genes, $12,42 \%$ contain a single intron, $2,86 \%$ contain 2 introns, $0,84 \%$

[^1]contain 3 introns, $0,18 \%$ contain 4 introns, and $0,008 \%$ of all contain up to 5 introns ${ }^{6}$. Within this project also the P. pastoris mitochondrial genome was sequenced, and manually annotated; it was the first mitochondrial genome of a methylotrophic yeast to be sequenced ${ }^{6}$.

1.2 Historical overview of Pichia pastoris becoming industry-relevant yeast

The demand for high amounts of different proteins in the world market continuously increases. However, only a limited number of these proteins can be produced at high yields by their natural host organisms. Therefore, different microorganisms, including P. pastoris, are being used as production hosts for heterologous proteins.

The Pichia story has started in the 1970s in the Phillips Petroleum Company. This company developed all media and protocols for growing of P. pastoris as methylotrophic yeast, with the main focus on production of single cell proteins (SCP) meant to be used as high-protein animal feed ${ }^{1}$. Unfortunately, very soon after the initial research work with P. pastoris has been done, methanol costs have been dramatically increased by oil crises. As a result of that, further development of P. pastoris related processes had to be suspended for an indefinite period of time. However, years later the company signed an agreement with the Salk Institute Biotechnology/Industrial Associates, Inc. (SIBIA, La Jolla, CA) and the research work on this yeast continued ${ }^{1}$. It led to the development of vectors, strains and protocols for molecular manipulation of P. pastoris.

At that time the scientific attention was attracted by the strong alcohol oxidase 1 promoter ($P_{A O X I}$). Besides its strength, there is one other desired feature, namely its ability to be tightly regulated, a feature that made $P_{A O X}$ the most implemented promoter for driving the industrial heterologous protein production in P. pastoris. In addition, this methylotroph prefers a respiratory rather than a fermentative growth, which enables high cell density production environment ($>130 \mathrm{~g} / \mathrm{l}$ dry cell weight $)^{7,1}$.

A basic P. pastoris expression kit is available from Life Technologies, licensed from Research Corporation Technologies RCT (Tuscon, AZ, USA) who commercialized the products of Phillips Petroleum ${ }^{8}$. A new FTO (freedom to operate) system was established by TU Graz together with VTU Technology and ACIB GmbH and is available from TU Graz. This system is based on the wild type strain CBS 7435.

1.3 Methanol utilization (MUT) pathway in Pichia

pastoris

Like in all presently known methylotrophic yeasts, methanol utilization (MUT) in P. pastoris takes place in two different cell compartments: in the peroxisomes and in cytosol.

Based on the recent P. pastoris genome sequencing study, a more detailed metabolic network of the MUT pathway has been published ${ }^{6}$. Altogether there are nine genes coding for enzymes directly involved in this pathway, and they belong to seven different enzyme families ${ }^{6}$. Within this group of nine enzymes, two pairs of isoenzymes have been identified, namely AOX1 and AOX2, and DAS1 and DAS2. Having two DAS genes involved in MUT pathway makes P. pastoris unique among all methylotrophs ${ }^{6}$. It is also important to be mentioned that all nine genes are differently controlled. Although all of their promoters are methanol inducible, those promoting genes included in assimilation pathways are repressed by glucose, while those included in dissimilation pathways are not ${ }^{9}$.

The promoter of the $A O X 1$ gene is the most used promoter for P. pastoris protein expression and also preferred for my studies due to its properties and FTO situation.

1.3.1 Pichia pastoris alcohol oxidases

During the past decades scientists working with P. pastoris have designed many different mutated strains relevant for specific scientific and industrial tasks. As a result of that, nowadays three methanol utilization P. pastoris phenotypes are widely used. Mut ${ }^{+}$(methanol
 disruption in AOXI gene, and Mut (methanol utilization minus) where both, AOXI and $A O X 2$ genes are disrupted ${ }^{8}$. As a consequence of above mentioned gene disruptions these three different strain phenotypes show different growing rates. Namely, Mut ${ }^{+}$grows at wild type rate, Mut ${ }^{\mathbf{s}}$ grows slower and Mut ${ }^{-}$is unable to grow on methanol medium ${ }^{8}$.

1.4 Pichia pastoris as industrial protein production host

P. pastoris exhibits a propensity for homologous recombination between its genomic and foreign or synthetic DNA sequence ${ }^{1}$. Inserted vectors show high stability in the genome ${ }^{8}$. These particular features allowed P. pastoris to become an easy manipulated host for heterologous protein production.

In general, the approach of inserting heterologous gene sequences into P. pastoris genome can be briefly described with following steps:

1. Design of P. pastoris codon optimized shuttle vector which contains at least one copy of the heterologous gene and the marker gene (usually gene for antibiotic resistance),
2. Transformation of the transition host cell (usually Escherichia coli) with circular shuttle vector,
3. Transformation of P. pastoris host strain with linearized shuttle vector,
4. Screening for desired protein activity (usually with spectrophotometric screening assays, capillary electrophoresis or dot blot technologies).

The heterologous genes inserted in P. pastoris can be under the control of $P_{\text {AOXI }}$, constitutive promoter, or synthetic promoter (Table 1). The following reasons explain the need of different promoter variants:

- Depending on the nature of the protein to be expressed, weak expression is in some cases preferred in order to ensure proper protein folding ${ }^{1}$ and to avoid possible cytotoxicity,
- Protein overexpression can in some cases induce new bottlenecks in the cell metabolic pathways ${ }^{2}$,
- MeOH inducible promoters are undesired in the biotechnological production of food, since this compound is toxic to the humans ${ }^{1}$.

Promoter designation	$P_{\text {GAP }}$	$P_{\text {FLDI }}$	$P_{\text {PEXB }}$	$P_{\text {YPTI }}$
Gene description	glyceraldehyde 3- phosphate dehydrogenase	gluthathione-dependent formaldehyde dehydrogenase	peroxisomal matrix protein	guanosine triphosphatase (GTP-ase)
Promoter type	strong constitutive	MeOH and methylamine inducible	MeOH inducible	moderate constitutive
Important features	no MeOH demand, not recommended for driving expression of cytotoxic protein	methylamin $=$ nontoxic and inexpensive nitrogen source	recommended for driving expression of cytotoxic proteins	recommended for driving expression of cytotoxic proteins

Table 1: Brief depiction of four ($P_{G A P}, P_{F L D I}, P_{P E X 8}$, and $\left.P_{Y P T I}\right)$ P. pastoris promoters used for driving heterologous gene expression ${ }^{11,1,8}$.

The copy number of heterologous gene sequences inserted in P. pastoris can vary. In general no standard correlation between gene copy number and protein yield has been
defined ${ }^{12}$. Depending on the protein to be expressed and also depending on the promoter which is being used for driving the expression, drastic variation in the expressed protein level has been observed. Therefore screening studies for strains carrying different gene copy number are necessary to be done in order to find the optimal strain for industrial use.

The capability of P. pastoris for expression of intracellular and extracellular (secreted) proteins is generally known. The intracellular expressed proteins can also be targeted into the peroxisomes (cube-shaped cell organelles also called microbodies) ${ }^{13}$. Herewith possible cytotoxicity by the heterologous protein can be avoided. Only few proteins are naturally secreted by P. pastoris, thus the majority of the secreted proteins (sometimes over 80%) in the fermentation medium is the heterologous one ${ }^{14,15}$.

Unfortunately, there are also cellular and environmental factors negatively affecting industrial heterologous protein production with P. pastoris. For instance, secreted heterologous proteins in high cell density fermentation medium are easily degraded by P. pastoris proteases. One way to overcome this problem is the use of protease-deficient strains such as SMD-1163 (his4 pep4 prb1), SMD-1165 (his 4 prbl), and SMD-1168 (his4 pep4) ${ }^{1,}$ ${ }^{8,16}$. However the lower viability and growth rate of this strains make them useful only in cases where no other solution is available ${ }^{1}$.

In addition it has to be mentioned that there are no secreted proteins by P. pastoris. Thus protease activity in the culture medium seems to come from lysed cells growing under physiological and physical stress.

A viable solution to increase product yield consists of the adjustment of fermentation parameters, such as pH and temperature. P. pastoris shows efficient growth rate in the pH range from 3.0 to 7.0 , an interval wide enough to allow significant process adjustments ${ }^{14,8}$. Increase of the product yield has been shown also by lowering the temperature in the fermentation from $30^{\circ} \mathrm{C}$ down to $20^{\circ} \mathrm{C}^{8}$.

The cultivation process of P. pastoris (using $P_{A O X I}$) in bioreactors can in general be divided in three phases. The first one is the growth phase (or batch phase) where the culture grows in salt medium on non-fermentable carbon sources (C-sources). The second phase (transition phase) is characterized by addition of the same C-substrate on the cell growthlimiting rate in order to prepare the culture for the next phase. In the third phase (induction phase), an appropriate amount of methanol is added, and the methanol utilization pathway and the expression of foreign gene are induced ${ }^{17}$. An important fact is that some C -sources such as glycerol, glucose, and ethanol repress the $P_{A O X I}$, which decreases the heterologous protein yield ${ }^{17,9}$. However, for other C-sources such as sorbitol, mannitol, trehalose, and alanine no repression to the $P_{A O X I}$ has been observed ${ }^{9}$. In general, P. pastoris requirements for the growth and production medium include glycerol and methanol (if a methanol inducible promoter is used) as main substrates, and minerals, biotin, salt, and trace elements ${ }^{7}$. All these compounds are inexpensive which makes the industrial use of this yeast interesting. The medium is also free of toxins and pyrogens ${ }^{18}$. During the fermentation, adequate monitoring and control of the fermentation parameters are also necessary in order to achieve maximal product yields. Directed by this need, bioprocess development continuously aims to improve of the existing and development of new monitoring methods.

Another process - based method to increase the yield of intact heterologous proteins consists of the addition of amino acid-rich supplements to the fermentation medium. This is an effect of partial saturation of the existing proteases in the fermentation medium by the amino acid suplements ${ }^{14}$.

All above mentioned features contributed to turn this methylotrophic yeast into a more and more attractive tool for biotech and pharmaceutical companies. It is already a host strain for industrial production of over 400 different heterologous proteins ${ }^{14,7}$.

1.5 Pichia pastoris related scientific research areas

Nowadays, the growth of all biotech companies is characterized by high demand for production of new proteins with customized features. And even thought that the technology for the use of P. pastoris is already mature, there are still very important topics waiting to be more precisely described.

In the year 1995 only 4% of total recombinant proteins reported by PubMed ${ }^{*}$ have been produced in P. pastoris. Up to year 2009 this number increased to $17 \%{ }^{19}$.

Many publications regarding P. pastoris state that this yeast is also important for basic molecular biology studies. To avoid any confusion, strict distinction has to be made between two P. pastoris oriented research areas. In the first one, P. pastoris represents model organism for studying all gene- and protein-linked processes inside the cell. Only proper understanding of the molecular basis of this organism can facilitate its fast and effective manipulation. In the second area P. pastoris is host cell for expression of high yields of desired protein, but the research interest is focused on protein itself. Both areas are connected since the most of hypothesis made in the first area arise from case studies already done in the second area and vice versa. However, incomparability of the case studies due to varying cultivation conditions is being observed. Thus comparison of case studies results is not always of scientific relevance.

One of the most important research topics concerning P. pastoris as model organism is the biogenesis of the peroxisomes. After methanol induction, the number of peroxisomes dramatically increases and they can take up to 80% of the cell volume ${ }^{20}$. Peroxisomes play a role in storing the heterologously expressed proteins, hence protecting the cell from possible toxicity produced by the same. Additional, being stored in the peroxisomes, expressed proteins are unavailable for the proteases, and they are protected from proteolytic degradation ${ }^{21}$. Short amino acid sequences located either at the C-terminus or at the N -terminus of an expressed protein, are responsible for the peroxisomal protein targeting. They are called peroxisome targeting sequences (PTS ${ }^{21}$. The fact that different PTS exist for the peroxisome matrix proteins, makes an assumption of existing different mechanisms for protein targeting to the peroxisomes ${ }^{21}$.

As already said, differently regulated promoter variants are of great importance for the industrial use of this yeast (Paragraph 1.4). This opens a new research topic, identification of regulatory regions within promoter sequences, understanding of their regulation on molecular level, and design of new synthetic promoters ${ }^{9}$.

Also other topics which influence the expression efficiency of P. pastoris have been defined. For instance, an AOXI- case study has shown that the composition and the length of the 5^{\prime} - untranslated region (5^{\prime} 'UTR) influences the heterologous protein expression ${ }^{12}$. For that reason, and in order to maintain optimal protein expression, it has been suggested to keep the 5^{\prime}-UTR sequence as similar as possible to that of $A O X 1 \mathrm{mRNA}^{12}$. It is also important to avoid AUG triplets in the 5^{\prime}-UTR in order to ensure exact start codon (AUG) recognition by RNA polymerase ${ }^{12}$. Another important parameter is the A+T composition of cDNA. Since AT-rich regions characterize termination sequence regions, their occurrence in a gene coding domain should be therefore avoided if possible, because it can induce premature transcription termination ${ }^{12}$.

[^2]With protein secretion, the cell lysis step is avoided and it makes downstream processes quite easier and cheaper, and also increases the yield of the expressed protein. The Saccharomyces cerevisiae pre-pro α-mating factor (AMF) signal sequence, is standardly used secretion signals in this methylotrophic yeast ${ }^{8,12}$. However not all proteins can be secreted in P. pastoris. There is a supposition that using a protein's natural secretion signal, promotes its efficient secretion. Because of that, different heterologous sequences are being evaluated in P. pastoris, and it has been shown that additional optimization is usually needed depending on the protein to be secreted. For this reason, detection of new P. pastoris secretion signal sequences, description of their transport mechanisms, and definition of their sequence optimization possibilities, are other currently popular research topics.

Another popular research topic is the recombination in the genome of P. pastoris (Chapter 1.4). Also protein folding and posttranslational modifications such as glycosylation are being studied intensively (Chapter 1.2 and 1.3). These two topics are of enormous importance for both, producing of correctly folded proteins and increasing the yield of the product.

For all the above mentioned problems (limitations), strategies in order to enhance the production are being improved by the research groups working with P. pastoris all over the world. And all of these research studies should help to make this yeast more predictable production host, thereby saving resources and time spent for trial and error experiments.

2. Recombination in Pichia pastoris

2.1 Homologous recombination in general

2.2 Single site homologous recombination in Pichia pastoris
2.3 Double site homologous recombination in Pichia pastoris
2.4 FLP site-specific recombination system derived from

Saccharomyces cerevisiae $2 \mu \mathrm{~m}$ plasmid
2.5 Non-homologous recombination in general

2.1 Homologous recombination in general

Different environmental conditions can induce DNA double-strand breaks (DSBs) in the cell genome. The cell possesses evolutionary developed DNA repair mechanisms, such as non-homologous DNA end-joining (NHEJ), as well as enzymes called telomerases ${ }^{52}$ (paragraph 2.5). But, homologous recombination (HR) is able to induce DSBs repair in the cell as well, by that ensuring genome stability ${ }^{52}$. HR happens between DNA regions shearing high percentage of sequence similarity. During this process DNA sequences are integrated or replaced ${ }^{53}$ (Figure 2). Thereby, several recombinases catalyze HR in meiosis or in mitosis, but there are also helicases which regulate the HR negatively ${ }^{52}$. In the eukaryotic cells, all proteins that play role in HR are products of RAD52 group of genes, and are highly conserved ${ }^{52,54}$.

Figure 1: ${ }^{53}$ DNA homologous recombination process.
Gene replacement ("gene conversion"), and gene exchange ("crossing over") processes are depicted in the upper and down part of the picture, respectively. The orange colored AB -line and the green colored ab-line present two homologous DNA sequences.

After entering the cell and the cell nucleus, homologous DNA sequences initiate a HR cell response ${ }^{52}$. On the one of the DSB sites, DNA is cut by $5^{\prime}-3$ ' exonucleases and the results are two single-strand $3^{\prime}-\mathrm{OH}$ DNA overhangs ${ }^{52,54}$. These overhangs are intruded into the homologous DNA and form D-loop ${ }^{52}$. Starting from the 3^{\prime} - OH end, complement DNA strand is being synthesized, and finally annealed to the D-loop and connected to the second DSB 52. This is how two Holliday junctions (HJs) are formed, after what both, crossover as well as noncrossover products occure ${ }^{52}$. This process is called double-strand break repair (DSBR) ${ }^{52}$ (Figure 2).

Two other HR processes, called synthesis-dependant strand annealing (SDSA) and single-strand annealing (SSA) have also been described ${ }^{52}$. In the SDSA, instead of D-loop, the initial homologous DNA strand anneals to the second DSB, and thereby no HJs are formed ${ }^{52}$.

The product of SDSA are always non-crossover sequences ${ }^{52}$. In SSA mechanism, repeated DNA-sequences, located upstream and downstream of DSB join together, by that deleting the sequence from between ${ }^{52}$.

Figure 2: ${ }^{52}$ Pathways of DNA double-strand break repair (DSBR) by homologous recombination (HR).
a) After double-strand break (DSB) formation, 3 ' single-strand DNA (ssDNA) overhangs, needed for the HR machinery are formed. Strand invasion followed by DNA synthesis occur subsequent. b) Synthesis-dependent strand annealing (SDSA) pathway, where non-crossover reaction product is synthesized. c) Double-strand break repair (DSBR) pathway, where crossover or non-crossover reaction product is synthesized.

Nowadays, HR induced by transformation of linear homologous DNA sequence into the cell, is widely used method for in vivo gene manipulations, and is also known as targeted insertion mutagenesis ${ }^{54}$. Thereby, linear DNA integration sequences (linear DNA integration cassettes) of two different types exist, and they are termed as "ends-in vector" and "ends-out vector" ${ }^{54,55}$ (Figure 3).

Figure 3: ${ }^{54}$ Two types of linear integration cassettes.
The green colored part termed as "selection" and yellow colored "target" part are both located on the vector and represent selection gene and homologous sequence, respectively. The orange colored "target" part represents the genome target sequence, which is homologous with the yellow "target". The x-pointed lines depict crossing over event.

During the integration of an ends-in vector, the gap formed in the middle is filled in using the host DNA sequence as a template ${ }^{54}$. Thereby, two crossing over events between the genomic target sequence and respective homologous flanking regions on the vector, result in duplication of the target sequence in the genome ${ }^{54}$. Duplication occurs also during the integration of ends-out vector, but in this case no gap is formed ${ }^{54}$. Designed truncations or mismatches in the flanking ends of both, ends-in and ends-out vectors, could be used for targeted gene disruptions. In general, the ends-out vectors are preferred, because they show higher mitotic stability in comparison with ends-in vectors, and circular plasmids ${ }^{54}$.

HR has been first analyzed and defined in the yeast S. cerevisiae ${ }^{52}$. For this experiment, linear plasmid containing S. cerevisiae homologous DNA sequence has been transformed in the cell, and successfully integrated in yeast genome ${ }^{52}$. Little knowledge about the homologous recombination processes in P. pastoris has been obtained from basic molecular studies. Since the classical yeast system S. cerevisiae has been analyzed and described in detail, most of the recombination strategies used for its genetic manipulation have been simply adjusted for other yeast, including P. pastoris ${ }^{54}$.

2.2 Single site homologous recombination in Pichia pastoris

A common method of targeted mutagenesis in P. pastoris is the gene insertion through single site homologous recombination. With this method, circular and linearized plasmids carrying P. pastoris homologous sequences are integrated in the genome. Thereby the resulted transformants (clones) show high mitotic stability, even without selection pressure ${ }^{56}$.

Observed at the molecular level, single site homologous recombination includes a crossing over event occurring between plasmid or expression cassette sequence complement to some part of P. pastoris genome. In this way, the whole plasmid or expression cassette is integrated in the P. pastoris genome at the desired locus (usually AOX1 locus) (Figure 4). Thereby, the probability of spontaneous achievement of multi copy clones is $1-10 \%{ }^{56}$. Besides other factors, the copy number of genome inserted sequences is also defined by DNA sequence size (bp) and amount ($\mu \mathrm{g}$) used for the transformation. However, although higher DNA amount results usually in higher copy number, it influences the stability and viability of the cell, and therefore the possible copy number is not unlimited.

It is important to be mentioned that in P. pastoris single site homologous recombination occurs with much higher probability in comparison with double site homologous recombination and no part of the genome sequence is lost ${ }^{56}$.

Figure $4:{ }^{56}$ Single site homologous recombination of linearized plasmid in P. pastoris.
P. pastoris was transformed with circular plasmid, or plasmid linearized in the 3 AOXI region, and after a single crossing over event it becomes integrated in the genome at the AOX1 locus. (HIS4 represents a marker gene; crossing over events are marked with \times)

2.3 Double site homologous recombination in Pichia pastoris

Double site homologous recombination is another way for genetic manipulation of P. pastoris. In this method, P. pastoris was transformed with a linear expression cassette carrying two homologous flanking ends. Observed at the molecular level, two crossing over events happen and they result in gene replacement ${ }^{56}$ (Paragraph 2.1). Thereby the part of the genome
which ends with sequences complementary to the expression cassette flanking ends, is deleted (Figure 5).

Figure 5: ${ }^{56}$ Double site homologous recombination of linearized plasmid or linear expression cassette in P. pastoris. ${ }^{*}$
After transformation, two crossing over events happen, and the part of the genome located between $P_{A O X I}$ and 3 AOX1 gets deleted and replaced with the gene of interest. This figure depicts the deletion of PpAOXI gene which results in a new phenotype, the P. pastoris Mutt strain.
(HIS4 represents a marker gene; crossing over events are marked with \times)

Double site homologous recombination method is widely used for design of gene knock-out and knock-in strains. Different transformation experiments have shown positive correlation between the length of flanking ends and the transformation efficiency in P. pastoris ${ }^{57}$ (Chart 1).

[^3]

Chart 1: ${ }^{57}$ Correlation between targeting fragment length (flanking ends length) and transformation efficiency in $\%$, in P. pastoris.

2.4 FLP site-specific recombination system derived from Saccharomyces cerevisiae $2 \mu \mathrm{~m}$ plasmid

Site specific recombination is a process well known from both prokaryotes and eukaryotic organisms ${ }^{58,59}$. It is also called "conservative recombination", because no DNA is synthesized or degraded during this process ${ }^{60}$. Site-specific recombination can be seen as a special type of homologous recombination, because it is independent of the endogenous recombination machinery of the host cell ${ }^{61}$.

Different recombinase systems are common in circular, and double stranded yeast plasmids, since they provide the plasmid amplification mechanism ${ }^{59}$. The yeast Saccharomyces cerevisiae for instance, synthesizes recombinase termed FLP ("flip"), which is located on the $2 \mu \mathrm{~m}$ plasmid in the cell, and between two identical DNA target sequences, termed FRT ${ }^{58,60,61}$. FRT target sequences are each 34 bp long, built of two identical 13 bp regions, which are separated by one 8 bp long region (so called "core region") ${ }^{60}$ (Figure 6). This core region is the site of crossover recombination event ${ }^{60}$. The 13 bp flanking regions are rich on AT nucleotides ${ }^{60}$. They can be oriented in the same or in the opposite direction (inverted) ${ }^{60}$. When FRT target sequences lay in the same direction, recombinase cut out the DNA sequence in between, and the so called "reaction of excision" happens ${ }^{58,61}$. In contrast, positioning of the FRT target sequences in opposite direction results in DNA inversion ${ }^{61}$.

Figure 6: FLP target DNA sequence called FRT.
The two 13 bp long identical flanking regions of each FRT, oriented in the same direction, are colored yellow, and the 8 bp long core regions are colored green. The black arrows show the recombinase restriction sites. The DNA sequence between the red lines is deleted during the recombination. ${ }^{62}$

The catalytic mechanism of FLP protein has been reported almost 25 years ago. During the recombination event FLP brakes the junction on the last nucleotide at the 5 'terminus of the core region ${ }^{59}$. In this way two 8 bp long single stranded DNA nicks are produced ${ }^{58,62}$. At the next reaction step, the recombinase binds covalently to the free 3^{\prime} terminus ${ }^{58,63}$. It has been reported that this is a 3^{\prime}-phosphothyrosine linkage, connecting the DNA and the recombinas ${ }^{58}$. For that reason, FLP recombinase has been classified to the topoisomerase enzyme-family, which includes enzymes able to use reversible DNA-tyrosine bonds as reaction intermediates ${ }^{58,62}$. For its catalytic activity, no co-factors or other proteins are required ${ }^{61}$. It has been assumed that at least two or more FLP molecules bind symmetrically to the both FRT sites and support the cleavage and religation of the DNA strands. ${ }^{62}$ The FLP protein is also responsible for the proper DNA strand motions in order to ensure optimal positions for the formation of all four new phosphodiester bonds. ${ }^{63}$

In comparison to the site-specific recombinases, which usually bind to specific DNA fold, FLP is able to bind to supercoiled, relaxed, circular and linear DNA sequences ${ }^{60}$. FLP is also able to catalyze the recombination between intra- as well as intermolecular sequences ${ }^{60}$. Mutational studies provided in order to determine possible hot-spots within the FRT sequence, have shown decrease of FLP activity in all clones caring a mutation in the core region ${ }^{59}$. However one mutation within the flanking ends increased the FLP activity ${ }^{59}$.

The FLP recombinase system is well described, and commonly used for insertion, deletion, inversion, as well as translocation of DNA sequences in different organisms, such as bacteria and yeasts, and also in animal cells ${ }^{59,64,65}$. In P. pastoris, FLP is a commonly used mechanism for the elimination of prokaryotic sequences and genes of resistance from its genome, and also for gene deletion studies ${ }^{65}$.

Another site specific recombination system which was successfully applied in P. pastoris was the Cre-lox system. ${ }^{66}$ This is a recombinase system of the bacteriophage P1 and its mechanism is quite similar to that of FRT. ${ }^{63}$

2.5 Non-homologous recombination in general

Non-homologous recombination (NHR), also called illegitimate integration, is a process where DNA sequences which share no or very low sequence similarity are recombined ${ }^{54}$. NHR possesses its own protein machinery, and shows a quite different reaction mechanism from those of HR^{54}.

Additional to NHR, the non-homologous end-joining (HNEJ) represents a cell mechanism for DSBs repair in the genome ${ }^{54}$. One of the proteins detected to contribute to this mechanism is termed as Ku-protein in mammalian cells, or HDF (high affinity DNA-binding
factor) protein in yeast S. cerevisiae ${ }^{67}$. Ku is a heterodimer, which binds with high affinity to the linear DNA duplex, but it does not bind to circular DNA ${ }^{68}$. It is built of two subunits called Ku 70 and Ku80, and bound to the telomeric DNA ${ }^{68}$. Both monomers make a ring around the DNA, and so Ku participates in HNEJ with its capability to orient the DNA strand in the right direction for further processing and ligation ${ }^{68}$. Before the ligation can start, polymerases fill in the gaps and nucleases trim the excess strands ${ }^{68}$.

NHR and HR compete for every introduced foreign DNA sequence in the cell ${ }^{54}$. For this reason, researchers designed strains which are not able to do NHR, in order to ensure higher HR transformation rate. These are usually knock-out strains, such as P. pastoris $\Delta \mathrm{KU} 70$ strain (Näätsaari et al., manuscript submitted).

3. Introduction to protein disulfide isomerases (PDIs)

3.1 Protein folding-disulfide bonds (-S-S-) formation
3.2 General description of protein disulfide isomerases
3.3 Protein disulfide isomerases reaction mechanism
3.4 Brief comparison of protein disulfide isomerases from different organisms
3.4.1 Pichia pastoris protein disulfide isomerases

3.1 Protein folding - disulfide bonds (-S-S-) formation

Proteins' native configuration is determined by their amino acid (AA) sequence. Folding processes performed in vitro have shown that proteins can fold spontaneously in water solution ${ }^{22,23}$. However, inside the cell these processes are assisted by folding enzymes and helping proteins called chaperones ${ }^{22}$. Chaperons are helping-proteins, which possess a capability to vary the protein folding velocity, and also to control the exactness of disulfide bonds formation ${ }^{24}$.

Except for secreted proteins, which are mainly folded in the endoplasmic reticulum (ER) lumen, for all other proteins it is usual to be folded inside the organelle of their residence ${ }^{22}$.

The folding process begins on the nascent protein chain, since elongation is slower than folding ${ }^{22}$. This phase is called "co-translational folding" and takes place in the cytosol ${ }^{22}$.

For secreted proteins, the folding process continues in ER lumen, since their folding pattern usually includes disulfide bonds between cysteine (Cys) residues. Namely, ER lumen provides a more oxidizing environment and different reaction conditions than the cytosol. It shows approximately neutral pH values, and high concentration of Ca^{2+} and, these conditions favor the disulfide bonds formation ${ }^{22}$. At the beginning of a protein folding process within ER, some of the Cys residues are mispaired ${ }^{24}$. Thus, structures without correct tertiary and quaternary structure, and with high hydrophobic surface are formed ${ }^{23}$. These intermediates form rapidly, possess significant secondary structure, and is called "molten globule" or "compact intermediate" ${ }^{, 23,22}$. The later reactions in the folding process are slower, and include disulfide bonds formation and isomerisation, reactions catalyzed by protein disulfide isomerases (PDIs) ${ }^{24,22}$. The disulfide bonds are of high importance for secreted proteins, because they provide higher protein stability in extracellular environment ${ }^{25}$. It is important to be mentioned, that also enzymes different than PDIs, are included in protein folding process in $\mathrm{ER}^{22,23}$. For instance, peptidyl-prolyl isomerases (PPIs), detected in both, prokaryotic and eukaryotic cells, catalyze cis-trans isomerisation of peptide bond N -terminal to proline (Pro) residues, and also play a role of chaperones in the cell ${ }^{26,23}$. Also sugar moiety transferases, which predominantly play a role in protein N -glycosylation, are important for correct protein folding ${ }^{22}$. In particular, they support proper positioning of defined protein domains, and favor or disfavor certain hydrophilic and hydrophobic interactions in ER ${ }^{22}$ (Chapter 1.3).

Protein folding is finished by protein subunits rearrangement and assembling of monomers in homo- or heterooligomers, which is a concentration-dependent process ${ }^{22}$.

Different steps of the secretory pathway in P. pastoris have been supposed to become bottlenecks of overexpression of heterologous proteins. One speculation is that in some cases ER is overburdened by the huge amount of proteins inside, which results in production of misfolded proteins, and induces cell stress response ${ }^{24}$.

In general, there are two non-natural cell states, the so called metabolic and environmental stress ${ }^{27}$. The metabolic stress is caused by cell abuse during heterologous protein expression ${ }^{27}$. In cases where no natural protein conformation is reached inside ER, the cell activates endoplasmic reticulum associated protein degradation (ERAD) mechanism,
transporting the protein back to the cytosol and degrading it ${ }^{27}$. Thus ERAD can be seen as typical metabolic stress response of the cell ${ }^{27}$. The environmental stress is caused by fermentation conditions, which can vary in comparison to the natural ones ${ }^{27}$.

The protein quality control (also called ''architectural editing'') provided by protein PDIs, as well as ERAD, is as well important to be mentioned since it guaranties that only proteins with proper configuration will enter the secretion downstream steps ${ }^{22}$.

3.2 General description of protein disulfide isomerases

Almost 40 years after their discovery, PDIs still occupy researcher's attention ${ }^{28}$. Together with glutaredoxin (Grx), they belong to the thioredoxin (Trx) superfamily of thiol/disulfide exchange enzymes, which are characterized by a thioredoxin fold and -CXXC/S- active site motif ${ }^{29,30}$. This thioredoxin motif contains two Cys residues, which shuttle between dithiol and disulfide form, during catalysis of the redox reaction ${ }^{30,31}$. The main difference between Grx and PDI is their localization inside the cell. Grx is predominantly localized in the cytoplasm, but it has also been found in mitochondria and nucleus ${ }^{29}$. In contrast, PDIs are soluble proteins found in ER lumen ${ }^{29,28}$.

A cell targets its ER resident soluble proteins to the right cell compartment using different targeting sequences. In this way it determines which of the ER resident proteins retain in the lumen and which have to be retrieved from the downstream secretory organelles ${ }^{32}$. For instance, the C-terminally located tetrapeptide (-K/HDEL) causes protein retrieval from Golgi apparatus $(\mathrm{Golgi})^{32}$. These sequences are recognized by membrane receptor proteins of the organelles ${ }^{32}$. It is known that also Ca^{2+} concentration plays a role in the ER protein retention mechanism ${ }^{32}$.

PDIs contained in the ER catalyze the oxidation of thiol groups between Cys residues in proteins, but they also play a role of chaperones ${ }^{28}$. Some disulfide bonds form spontaniously, and mispaired Cys residues, as well as early misfolded proteins are produced ${ }^{24}$. Depending on the redox conditions, PDIs can reduce already formed disulfide bonds in proteins, thus performing folding pattern controlling processes, and protein isomerisation ${ }^{24}$. This capability of PDIs comes from the misfolded proteins' hydrophobic surface ${ }^{28}$ (Figure 7). Namely, early misfolded proteins have mainly hydrophobic surfaces ${ }^{28}$. Since PDIs surface is also mostly hydrophobic, driven by the favorable hydrophobic interactions, reduction and isomerisation can easily happen ${ }^{28}$. In addition, quite flexible PDI conformation enables proteins with different size to be properly refolded ${ }^{28}$. Recent studies have shown that different PDIs in the cell posses different product specificity, which can be seen as an explanation of the cell need of synthesizing different PDIs^{31}.

Crystallographic studies of yeast PDIs have shown that they contain four thioredoxin domains ($\mathbf{a}, \mathbf{a}, \mathbf{b}$, and \mathbf{b}^{\prime}) and an acidic C-terminus, which carries an ER-retention signal ($\mathrm{K} / \mathrm{HDEL})^{28,32}$. In particular, two thioredoxin domains (a and \mathbf{a}^{\prime}) show catalytic activity, but two of them (b and \mathbf{b}^{\prime}) are catalytically inactive ${ }^{28}$. Both active sites are placed opposite to each other, separated by $28 \AA$ long hydrophobic area ${ }^{28}$ (Figure 7). Even structurally very similar, these two domains (a and \mathbf{a}^{\prime}) differ from each other by their redox state ${ }^{28}$. Namely, cysteine residues inside the active center of the a domain are connected with each other by disulfide bond, thus they are oxidised ${ }^{28}$. In contrast, cysteine residues inside the active center of the \mathbf{a}^{\prime} domain are in reduced state ${ }^{28}$. This feature is crucial for the redox activity of PDIs.

Another crucial feature is the different orientation of both Cys residues within one thioredoxin active center of PDI^{29}. The Cys residue nearer to the PDI N-terminus ($-\underline{\mathbf{C} X X C}-$) is oriented toward enzyme surface, and reacts as nucleophile ${ }^{29}$. The second Cys residue (-CXXC-) is located deeper inside the active center, thus being able to react with the N -terminus Cys (-CXXC-) only ${ }^{29}$. The nature of two amino acids staying between the active Cys residues (-CXXC-), and the amino acid sequence surrounding the active center are also factors having an influence on thioredoxin redox potential ${ }^{29}$; enzymes containing thioredoxin are able to catalyze protein folding by extremely different redox potential ${ }^{29}$.

Figure 7: ${ }^{28}$ Depiction of hydrophobicity and hydrophilicity distribution on the PDI surface.
According to the normalized consensus hydrophobicity scale of the exposed residues, the green marked regions are hydrophobic and gray regions are hydrophilic. Down left and right show the a- and a'domain, respectively. Their active centers are colored in red.

Expression of heterologous proteins with a high number of Cys residues can be hindered by a folding bottleneck in the ER: thus, the more dithiols to be oxidized, the higher PDI concentrations are required ${ }^{24}$.

3.3 Protein disulfide isomerases reaction mechanism

In the ER lumen, glutathione (GSH) contributes to reaching the optimal redox conditions by counterbalancing the flow of oxidizing equivalents through ER membraneassociated oxidoreductases ${ }^{33}$ (Figure 8). The oxidoreductases are included in direct disulfide bonds transfer to ER PDIs ${ }^{33}$. Further, PDIs are responsible for the transfer of oxidizing equivalents derived from the ER membrane proteins, to the secretory protein (substrate protein) ${ }^{29}$.

PDI catalyses oxidation by performing a disulfide exchange reaction between thioredoxin Cys residues from the PDI active center, and Cys residues located inside the substrate protein ${ }^{31}$ (Figure 9).

Following formula explains the chemical reaction steps of thiol-disulfide exchange reaction ${ }^{34}$:

$$
\mathbf{R}_{1} \mathbf{S}^{-}+\mathbf{R}_{2} \mathbf{S S R}_{3} \rightarrow \mathbf{R}_{2} \mathbf{S}^{-}+\mathbf{R}_{1} \mathbf{S S R}_{3}
$$

$\mathbf{R}_{\mathbf{x}} \mathbf{S}^{-}$represents an thiolate anion, and $\mathbf{R}_{\mathbf{x}} \mathbf{S S} \mathbf{R}_{\mathbf{y}}$ disulfide bound amino acid residues ${ }^{34}$. Thioldisulfide exchange reaction can happen between Cys residues of different proteins, but also within the same protein, which is then called disulfide reshuffling ${ }^{34}$. For every disulfide bond formation, two thiol-disulfide reactions happen, where after the first one, a mixed disulfide intermediate is formed, between the protein and the redox equivalent ${ }^{34}$, thus a distance between the Cys residues influence the rate of this reaction ${ }^{34}$. This reaction depends furthermore on pH , electrostatic environmental conditions, and pKa of the thiol groups ${ }^{34}$. Disulfide bonds destabilize the nascent protein chain by imposing distance and angle between C^{β} and S^{γ} atoms of the joined cysteine residues, and by that reduce their entropy ${ }^{34}$. They also support stabilization of folded proteins by enhancement of interactions between hydrophobic protein domains ${ }^{34}$.

Figure 8: ${ }^{33}$ Redox balance in the lumen of endoplasmic reticulum.
Ero1 is an ER membrane bound protein responsible for the transfer of oxidizing equivalents from the cytosol to PDI in the ER lumen. GSH = reduced glutathione; GSSG = oxidized glutathione;

Figure 9: ${ }^{33}$ Depiction of disulfide bond formation in the ER lumen.
Erol is ER membrane bound protein responsible for transfer of oxidizing equivalents from cytosol to PDI in ER lumen. The figure shows only the thioredoxin domains of PDI. Disulfide bond forms by thiol-disulfide exchange reaction between PDI and the substrate protein (SP).

3.4 Brief comparison of protein disulfide isomerases from different organisms

Although enzymes responsible for disulfide bonds formation occur in all organisms, depending on the cell type their main features vary drastically. For instance, these enzymes in bacterial cells are located in the cytosol. Two bacterial enzyme-systems, DsbA-DsbB and DcbC-DsbD are responsible for secreted protein folding and isomerisation, respectively ${ }^{25}$. In contrast, in yeast cells, both, oxidation and isomerisation are a performed by PDIs ${ }^{25}$.

In the yeast Saccharomyces cerevisiae, besides PDII, four other homologous genes coding for ER PDIs have been detected: MPD1, MPD2, EUG1, and EPS1 ${ }^{35,25}$. Since there is an evidence that PDIl deletion is lethal for S. cerevisiae, further deletion studies have been provided in order to define the functions of $S c$ PDI 1 homologs ${ }^{35,36}$. The study by Nørgaard, P. et al. has shown that only MPD1, has the same capability as PDII, being able to catalyze all folding reactions essential for the cell ${ }^{35}$. In S. cerevisiae, an active site motif containing only one Cys residue (monothiol; - $\underline{\text { ChGS-}}$-) has also been identified ${ }^{30}$.

The short comparison of mammalian and yeast PDIs shows a difference in the location of the two non-active Cys residues: in mammalian cells they are located in the b' domain, while in yeast cells in the a domain ${ }^{25}$.

3.4.1 Pichia pastoris protein disulfide isomerases

The first P. pastoris PDI (${ }^{*}$ PpPDI), analyzed and reported in 2001, includes two double-cysteine redox-active sites, and belongs to the thioredoxin superfamily of protein-thiol oxidoreductases ${ }^{36}$. Within 517 AA long PpPDI, two redox-active domains (-CGHC-) have been detected, separated from each other by 338 AA long domain ${ }^{36}$. Also two potential glycosylation sites, one N -terminal putative signal sequence, and C-terminal ER-retrieval sequence have been detected ${ }^{36}$ (Figure 10).

Figure 10: ${ }^{36}$ DNA and AA sequences showing the most important domains within Pp PDII.

a) Potential signal sequence (underlined domain).

```
8 4 1 ~ c g t t t t g g c a g a g t t t t t t g c c c c t t g g t g t g g t c a c t g t a a g a a g t t g g g c c e t g a a c t ~ 9 0 0 ~
    53 V L L A A E F F F A
```

b) The first active center domain (-APWCGHCH-), containig the conserved thioredoxin motif (-CGHC-) is located between 59 and 66 AA.

c) Two potential glycosilation sites ($N-148$ and $N-179$).

d) The second active center domain (-APWCGHCH-) containig the conserved thioredoxin motif (-CGHC-) is located between 401 and 408 AA.

2161	agcactcagaccagtcgaggaagaaaaggaagctgaagaagaagctgaaagtgaggcaga 2220																
493	A	L	R	P	V	E	E	E	K	E	A	E	E	E	A	E	S

e) Yeast tipical ER retriveal sequence (-HDEL).

[^4]Since an absolutely correct folding of heterologous proteins is of crucial relevance for all therapeutic proteins (biopharmaceuticals and biosimilars) and for activity of most disulfide bridge containing enzymes, many case studies have been enquiring how PDI influences the overexpression of heterologous proteins in P. pastoris.

For instance, ancrod (a snake venom serine protease) has been expressed in P. pastoris by co-overexpression of $P p$ PDI1, and the results have shown a twofold increase of the secretion during the bioreactor cultivation ${ }^{37}$. In this case, P PPDI1 in P. pastoris genome was under the control of the constitutive $P p P_{G A P}{ }^{37}$. In another case study, a different strategy for co-overexpression of PpPDI gene has been used. Heterologous expression of the Necator americanus secretory protein (Na-ASP1) in P. pastoris has been tested, simultaneously cooverexpressing the PpPDI gene which was integrated with varying copy numbers ${ }^{24}$. Within this study, a positive correlation between PDI copy number and secreted Na-ASP1 has been observed ${ }^{24}$.

4. Introduction to protein glycosylation

4.1 Posttranslational protein glycosylation
4.2 Brief overview of Pichia pastoris N-glycosylation pathway
4.3 Pichia pastoris strain containing human-like N glycosylation pattern

4.1 Posttranslational protein glycosylation

Protein glycosylation is the most common protein modification ${ }^{38}$. It has been found in both prokaryotes and eukaryotes. Within the eukaryotic cells it is a highly conserved pathway ${ }^{39}$. All carbohydrates are covalently bound to the proteins, and different proteins in the cell are characterized by certain glycosylation pattern ${ }^{38}$. Protein glycosylation is of high relevance for the cell: it enables proper protein folding, which is necessary for achieving proper protein activity ${ }^{15}$, and all properties of the proteins, such as size, conformation, surface solubility and charge, are influenced by the oligosaccharides contained in their glycosylation pattern ${ }^{38}$.

There are two types of protein glycosylation in the cell, O - and N -glycosylation. O glycosylation is characterized by a covalent bond between N -acetylgalactosamine (GalNAc) and threonine (Thr; T), or serine (Ser; S) hydroxyl (-OH) group ${ }^{40,38} . N$-glycosylation, in contrast, is characterized by a covalent bond between N-acetylglucosamine (GlcNAc) and specific asparagine (Asn; N) amino acids in the protein chain ${ }^{15,38}$. Asn-Xaa*-Thr/Ser (-N-X-T/S-) is the amino acid consensus sequence for N-glycosylation in yeast ${ }^{40}$, with the carbohydrate binding to the amide nitrogen of Asn^{40}.

There are three main classes of N -glycosylated proteins in eukaryotes: complex, high mannosylated, and hybrid. They all share the same pentasaccharide structure, with two GlcNAc and three mannose (Man) moieties, which is called "core part" ${ }^{38}$. The rest of the polysaccharide chain is called "antenna", and it differs among all three groups of N glycoproteins ${ }^{38}$ (Figure 11). Complex N -glycoproteins can contain more antennas, and additional GlcNAc, galactose and sialic acid, but they do not contain more than those three Man moieties, located in the core part ${ }^{38}$. Highly mannosylated as hyper mannosylated N glycoproteins, contain a high number of Man moieties, but they do not contain any other carbohydrate in their antenna part ${ }^{38}$. In contrast, hybrid N-glycoproteins can contain more Man residues, but also other carbohydrate moieties within their antenna ${ }^{38}$.

Although the glycosylation patterns differ between different cell types, the N glycosylation pathway always takes place in the same cell organelles, namely in ER and in Golgi. More precisely, it takes place on the both sides of ER, and is catalyzed by cytoplasmoriented and lumen-oriented glycosyltransferases ${ }^{39}$.

The core part synthesis starts on the cytosolic site of the ER membrane (ER surface) ${ }^{39}$. Its initial reaction is the assembly of N -acetyl-glucosamine-phosphate and a membrane-bound lipid career molecule, called dolichyl monophosphate ($\left.\mathrm{Dol}^{* *}-\mathrm{P}\right)^{39}$. The resulted product, N -acetylglucosamine- pyrophosphatidyldolichol (GlcNAc-PP-Dol) is further changed by the addition of one N -acetylglucosamine ($\mathrm{GlcNAc} \mathrm{)} \mathrm{and} \mathrm{five} \mathrm{Man} \mathrm{residues}$, intermediate, $\mathrm{Man}_{5} \mathrm{GlcNAc}_{2}$-PP-Dol is formed ${ }^{39}$. Before further reaction steps occur, Man ${ }_{5} \mathrm{GlcNAc}_{2}-\mathrm{PP}-\mathrm{Dol}$ is transferred into the ER lumen, where progressive addition of Man

[^5]and glucose (Glc) residues results in $\mathrm{Glc}_{3} \mathrm{Man}_{9} \mathrm{GlcNAc}_{2}-\mathrm{PP}-\mathrm{Dol}^{39}$. In the final step of the core synthesis, $\mathrm{Glc}_{3} \mathrm{Man}_{9} \mathrm{GlcNAc}_{2}$ is covalently bound to a specific N-residue of nascent protein chain, by catalytic support of oligosaccharide transferase comlex ${ }^{38,39}$. Soon after that, three Glc and one Man residues are trimmed, and the resulting $\mathrm{Man}_{8} \mathrm{GlcNAc}_{2}$ polysaccharide is transported to the Golgi ${ }^{41}$. Up to the point where $\mathrm{Man}_{8} \mathrm{GlcNAc}_{2}$ enters the Golgi, all glycosylation steps are the same in yeast and mammalian cells. However, further N glycosylation steps, within the Golgi, differ drastically between yeast and mammalians.

Mammalian glycoproteins are mainly of complex type. After entering the Golgi, $\mathrm{Man}_{8} \mathrm{GlcNAc}_{2}$ is trimmed by several $\alpha-1,6$ mannosidases to $\mathrm{Man}_{5} \mathrm{GlcNAc}_{2}$, whose core enables addition of different carbohydrates and further branching ${ }^{42,43}$. In the next step, the chain is extended by addition of $\beta-1,2$-linked GlcNAc, a reaction catalyzed by N-acetylglucosaminyl transferase I (GnT-I) ${ }^{43,42}$. After that, two Man residues are eliminated by mannosidase II (ManII), and second $\beta-1,2$-linked GlcNAc is added by GnT-II ${ }^{42,43}$. The further chain extension includes addition of galactose and sialic acid, reactions which are catalyzed by galactosyltransferases and sialyltransferases, respectively ${ }^{42,43}$.

Yeast cells, in contrast, do not terminate the glycosylation with the sialic acid ${ }^{44}$. Instead of that, a negative charge of the N -glycan is achieved by addition of phosphate, glucuronic acid or pyruvate ${ }^{44}$. They synthesize mainly high mannosylated (hypermannosylated) proteins, which can also contain Gal residues ${ }^{44}$. One yeast species, known to produce hybrid-proteins, by addition of extra GlcNAc moieties is Kluyveromyces lactis ${ }^{44}$.

Because of that, metabolic engineering is necessary to be performed in order to adapt yeast cells for production of proteins with humanized glycosylation for therapeutic application (Paragraph 4.3).

Figure 11: ${ }^{38}$ Main glycosylation classes.
The common part for all glycosylated proteins is termed CORE, and the protein specific patterns are termed ANTENNA. a) Complex - contains only Man moieties. b) High mannose - contains high number of Man moieties, but no other carbohydrates. c) Hybrid - can contain more than three Man moieties, and also other carbohydrates.

4.2 Brief overview of Pichia pastoris N-glycosylation

pattern

As already mentioned in this thesis, the capability of P. pastoris to secret heterologous proteins is of high relevance for its industrial use. It makes downstream processing of expressed heterologous proteins easier and cheaper, and it ensures protein glycosylation, since ER and Golgi, where protein glycosylation generally happens, are parts of the secretory pathway ${ }^{15}$.

As well as many other pathways in yeasts, also N -glycosylation has been first described for S. cerevisiae. This knowledge has been used later as comparison basis in studies analyzing the common glycosylation patterns in P. pastoris.

Figure 12: ${ }^{44} \mathrm{~N}$-linked outer chain extension in P. pastoris.

As already said in the last paragraph, when secreted proteins leave ER, they are "half glycosylated" carrying Man ${ }_{8} \mathrm{GlcNAc}_{2}$ polysaccharide, which is a precursor for their further glycol-modifications.

The glycosylation pathway continues within Golgi in P. pastoris by $\alpha-1,6$ mannose extension ${ }^{41}$. Thereby, the initial step for the hypermannosylation is catalyzed by an $\alpha-1,6$ mannosyltransferase, encoded by $\mathrm{PpOCH1}$ gene ${ }^{41,42}$ (Figure 12). It is a transferring reaction of Man residue from GDP-Man to the $\alpha-1,3$-linked core Man residue on the lower arm of the $\mathrm{Man}_{8} \mathrm{GlcNAc}_{2}{ }^{41,44}$. $\alpha-1,6$ mannose extension formed by this reaction represents a substrate for further Man residues addition, catalyzed by different transferases in P. pastoris ${ }^{41}$.

Interesting to be mentioned is that phosphate residues have been detected in many of the P. pastoris N-glycoproteins ${ }^{44}$. It has been found that the $P N O 1$ gene is responsible for phosphomannosylation of N-glycoproteins and that it promotes the glycosylation of core residues, but not of the outer sugar chain ${ }^{8}$.

4.3 Pichia pastoris strain containing human-like glycosylation pattern

Glycosylation plays an important role in cell and tissue distribution of proteins as well as in blood clearance in humans ${ }^{42}$. As mentioned above, the human N-glycosylation pattern is characterized by a terminal sialic acid residue ${ }^{42}$. Pharmaceutical kinetic studies have shown that glycoproteins having galactose, N-acetylglucosamine or Man terminal residues persist shorter in blood then glycoproteins with terminal sialic acids ${ }^{42}$. On the other hand, yeast glycoproteins can contain phosphate residues, β-mannose or $\alpha-1,3$ mannose, which activate immunogenic reactions in human cells ${ }^{42}$. For instance, there are three genes (MNN1, MNT2 and MNT3) coding for $\alpha-1,3$-mannosyltransferases in S. cerevisiae. ${ }^{44,45,46} S c M N N 1$ is a Golgi located protein, and takes part in both N -glycosylation and O -glycosylation, while $\mathrm{ScMNT2}$ and $S c M N T 3$ are included only in O-glycosylation. ${ }^{*}$ (http://www.ncbi.nlm.nih.gov/) The N linked oligosaccharides added to P. pastoris proteins vary in size, having structures from $\mathrm{Man}_{8} \mathrm{GlcNAc}_{2}$ to $\mathrm{Man}_{14} \mathrm{GlcNAc}_{2}$, and proteins with more than 30 Man residues have been

[^6]detected ${ }^{47,15}$. However there is no evidence of alpha-1,3 terminal linked mannose moieties in P. pastoris proteins, and this feature favored the use of P. pastoris over S. cerevisiae for the industrial production of pharmaceutical proteins. ${ }^{48,40,49}$ More precisely, P. pastoris contains only one gene coding for $\alpha-1,3$-mannosyltransferase, which is called RHK1 and is thought to be included in the core part synthesis in the endoplasmic reticulum.**

For all these reasons Chinese hamster ovary (CHO) cells, have been proven to be more suitable for production of therapeutic glycoproteins ${ }^{41}$. On the other hand, the fact that yeast cells are easier for handling in bioreactors indicates the importance and necessity of heterologous expressed therapeutic proteins to be human-like glycosylated. For that reason, in parallel to the successfully increased yields of heterologous proteins produced in P. pastoris, scientists have also concentrated on quality improvements of synthesized proteins. They have opened a new applied research topic, trying to design yeast cells with human-type N glycosylation pathway. In the last decade a research group of Gerngross et al. designed a P. pastoris strain containing a fully humanized N -glycosylation pathway.

Since the P. pastoris glycosylation machinery produces hypermannosylated proteins containing up to 40 Man residues, the first engineering step consisted in trying to stop further addition of Man residues ${ }^{41,42}$. With this aim, inactivation of $\mathrm{PpOCH1}$ gene by gene disruption has been done similar to the strategy applied for S. cerevisiae. ${ }^{42,50}$. In the second step, an HDEL-tagged $\alpha-1,2$ mannosidase from the filamentous fungi T. reesei, has been overexpressed ${ }^{43,42}$. This enzyme is able to eliminate terminal $\alpha-1,2$ mannose residues, and the reaction results in formation of $\mathrm{Man}_{5} \mathrm{GlcNAc}_{2}{ }^{42,43}$. Further glycosylation of $\mathrm{Man}_{5} \mathrm{GlcNAc}_{2}$ seems to be more difficult task for the cell, because the most P. pastoris endogenous glycosyltransferases are not able to use this N-glycoprotein as a substrate ${ }^{43}$. For this reason, in the next step a gene for uridine diphosphate N -acetylglucosamine (UDP-GlcNAc) transporter has been integrated in P. pastoris genome, thus producing for the first time hybrid glycoproteins ($\mathrm{GlcNAcMan}_{5} \mathrm{GlcNAc}_{2}$) in this yeast ${ }^{41}$. Within the further steps, mannosidase II and N-acetylglucosaminyl transferase II (GnT-II) genes have been introduced, and the endogenous gene $A L G 3$ has been deleted, which resulted in the formation of first complex glycoproteins $\left(\mathrm{GlcNAc}_{2} \mathrm{Man}_{3} \mathrm{GlcNAc}_{2}\right)$ in P. pastoris ${ }^{41}$.

The most difficult engineering step has been the introduction of all genes responsible for synthesis and addition of sialic acid in P. pastoris ${ }^{51}$. Generally, the following features make yeasts unable for sialylation:

1. they are not able to synthesize $\beta-1,4$ galactose terminated substrates,
2. they are not able to synthesize activated sugar cystidine monophosphate (CMP)sialic acid,
3. they are not able to synthesize transport molecule for CMP-sialic acid,
4. they are not able to synthesize sialyltransferase, needed for the final step where CMP-sialic acid is added to galactose ${ }^{51}$.
However, based on earlier research work, Hamilton et al. have designed the first P. pastoris strain capable of synthesizing complex sialylated glycoproteins ${ }^{41}$. Engineered P. pastoris strains and plasmids for heterologous protein production with fully adjusted human N glycosylation pattern are already available made by the new patented technology.
[^7]
5 Objectives

The industrial use of P. pastoris for production of pharmaceutical proteins shows a continuously increasing course in the last two decades. In parallel, the number of research groups working with this methylotroph grows as well. Thereby almost every improvement is patented, and thus not of common usage.

In contrast, the results of this master thesis were planed as a contribution to the P. pastoris strain collection (P. pastoris pool), established at the Institute of Molecular Biotechnology (IMBT) at Graz University of Technology (TUG). The basic idea of the P. pastoris pool was to make collection of patent free strains with adjusted industrially relevant features. With this aim, both research topics within this master thesis were chosen according to actual lacks in the biotechnological protein production using P. pastoris as production host.

The first research project was focused on P. pastoris protein disulfide isomerases (PpPDIs). PpPDII gene has been patented since more than fifteen years. However, the recent P. pastoris sequencing study, done at our institute, indicated the existence of three additional genes coding for enzymes with potential protein disulfide isomerase catalytic activity.

PDIs play a role in protein folding processes in the cell (Chapter 1.2). Since proper protein folding is of crucial relevance for the protein activity, one of the possibilities to avoid misfolding of heterologous proteins is the co-overexpression of PDIs in the cell. For that reason, the aim of this thesis was the design of PpPDI-specific $P_{A O X I}$-replacement cassettes. Also single and multi copy P. pastoris strains carrying CalB and HRP genes should be designed as reporter strains within this master thesis. The four newly designed recombination cassettes, as well as P. pastoris strains, should be used in the future for further research work. My final aim was to replace the PpPDI natural promoters with the strong AOX1 promoter ($P_{A O X I}$) in order to overexpress the same. Disulfide bonds contained in CalB (Candida antartica lipase B) and HRP (horseradish peroxidase) make them suitable model proteins, for testing the influence certain PDI co-overexpression has on their folding, since it was known from previous experiments that PDI over-expression enhances active enzyme production.

Within the second research project, my interest was focused on P. pastoris genes coding for $\alpha-1,6$ mannosyltransferase. Namely, the first known gene coding for this enzyme in P. pastoris was OCH 1 . Disruptions of this gene resulted in non-hypermannosylated secreted proteins, suitable for additional glycosylation manipulations (Chapter 1.3). However, there is one more gene supposed to code for an enzyme with $\alpha-1,6$ mannosyltransferase activity in P. pastoris. Its sequence was automatically annotated as HOC1 within the recent P. pastoris sequencing study, but nothing is yet known about its structure and activity. Therefore, the aim of the second project was the design of P. pastoris OCHI and HOCl knock-out strains. For this reason, $\mathrm{OCH1}$ and HOCl specific knock-out cassettes should be designed.

Within this project a new P. pastoris strain carrying $H N L$ gene should be also designed as a reporter strain to verify possible glycosylation effects. HNL5 codes for hydroxynitrile lyase isoenzyme 5 from Prunus amygdalus and is known as high mannosylated protein, and is thereby an adequate model protein for this project.

My first aim was to design a P. pastoris strain for secretion of low mannosylated proteins. However, this aim was based on our hypothesis that $\mathrm{OCH1}$ deletion has the same effect as OCH disruption. One additional aim was to gain information how HOCl deletion reflects on the protein glycosylation.

6 Instruments and associated equipment

6.1 Centrifuges and associated materials

- Centrifuge 5810 R/Eppendorf AG, Hamburg, Germany
- Centrifuge 5415 R/Eppendorf AG, Hamburg, Germany
- Avanti ${ }^{\text {TM }}$ centrifuge J-20 XP/Beckman Coulter ${ }^{\mathrm{TM}}$, Inc, Vienna Austria
- JA-10 Rotor, fixed angle/Beckman Coulter ${ }^{\text {TM }}$, Inc, Vienna Austria
- Nalgene® Labware 500 ml PPCO Centrifuge Bottles/Thermo Fisher Scientific, Rochester, NY, USA

6.2 Shakers and incubators

- Titramax 1000 ($1,5 \mathrm{~mm}$)/Heidolph Instruments, Schwabach, Germany
- Thermomixer comfort (1.5 ml)/Eppendorf AG, Hamburg, Germany
- Multitron II incubator shaker (25 mm)/Infors AG, Bottmingen-Basel, Switzerland
- RS 306 rotary shaker (50 mm)/Infors AG, Bottmingen-Basel, Switzerland
- Binder drying oven/Binder GmbH, Tuttlingen, Germany

6.3 Polymerase chain reaction (PCR) thermocyclers

- GeneAmp®PCR System 2700/Applied Biosystems, Foster City, CA, USA
- Mastercycler® personal/Eppendorf AG, Hamburg, Germany

6.4 Photometers, plate readers and associated materials

- DU 800 Spectrophotometer/Beckman coulter Inc, Fullerton, CA, USA
- Spectramax Plus 384/Molecular Devices, Ismaning/München, Germany
- Semi-micro cuvette $10 \times 4 \times 45 \mathrm{~mm}$, Polystyrene/Sarstedt Aktiengesellschaft \& Co., Nümbrecht, Germany
- NanoDrop 2000c Spectrophotometer/peqlab Biotechnologie GmbH, Polling, Austria

6.5 Gel electrophoresis and associated materials and devices

- Biozym LE Agarose/Biozym Biotech Trading GmbH, Vienna, Austria
- 6x Orange DNA Loading Dye/Fermentas GmbH, St. Leon-Rot, Germany
- GeneRuler ${ }^{\text {TM }} 1 \mathrm{~kb}$ DNA-Ladder/Fermentas GmbH, St. Leon-Rot, Germany
- Power Pac ${ }^{\text {TM }}$ Basic (power supply)/Bio-Rad Laboratories, Vienna, Austria
- Sub-cell GT/Bio-Rad Laboratories, Vienna, Austria
- GelDoc-It ${ }^{\text {TM }}$ Imaging Systems/UVP®, Cambridge, UK
- BioImaging Systems Gel HR Camera 6100 Series/UVP®, Cambridge, UK
- Chroma 43 mittelwellig $302 \mathrm{~nm} /$ Laborgeräte Vetter GmbH, Wiesloch, Germany

6.6 Electroporation materials

- Gene Pulser ${ }^{\mathrm{TM} / \text { Bio-Rad Laboratories, Vienna, Austria }}$
- Electroporation cuvette $2 \mathrm{~mm} /$ Bridge Bioscience ${ }^{\mathrm{TM}}$, Rochester, NY, USA

6.7 Reaction tubes

- Micro-centrifuge tubes, 1.5 ml with lid/Greiner Bio GmbH, Frickenhausen, Germany
- PP-Tube, sterile, cap, $12 \mathrm{ml} /$ Greiner Bio GmbH, Frickenhausen, Germany
- PP-Tube, sterile, $15 \mathrm{ml} /$ Greiner Bio GmbH, Frickenhausen, Germany
- PP-Tube, sterile, +/- support skirt, $50 \mathrm{ml} /$ Greiner Bio GmbH, Frickenhausen, Germany

6.8 Pipettes and pipette tips

- Denville XL 3000iim ($10 \mu \mathrm{l}, 20 \mu \mathrm{l}, 200 \mu \mathrm{l}, 1000 \mu \mathrm{l}$)/Denville Scientific (Europe), P.O. Box 2108, Westbourne, UK
- Eppendorf Research® pipette (adjustable volume), 0.1-2.5 μ 1/ Eppendorf AG, Hamburg, Germany
- Biohit Proline ${ }^{\circledR}$ multichannel pipettor, 8 channels, $5-50 \mu 1 /$ Biohit Plc., Helsinki, Finland
- Biohit Proline ${ }^{\circledR}$ multichannel electronic pipettor, 8 channels 50-1200 μ //Biohit Plc., Helsinki, Finland
- Pipette tips, micro P10/Greiner Bio-One GmbH, Frickenhausen, Germany
- Pipette tips 200/Greiner Bio-One GmbH, Frickenhausen, Germany
- Pipette tips 1000/Greiner Bio-One GmbH, Frickenhausen, Germany
- Filter pipette tips $10 \mu \mathrm{l} /$ Greiner Bio-One GmbH, Frickenhausen, Germany
- Filter pipette tips $200 \mu 1 /$ Greiner Bio-One GmbH, Frickenhausen, Germany
- Filter pipette tips P1000/Greiner Bio-One GmbH, Frickenhausen, Germany

6.9 Microplates

- PS-Microplate 96-well, flat bottom/Greiner Bio-One GmbH, Frickenhausen, Germany
- MicroAmp® Optical 96-Well Reaction Plate/Applied Biosystems, Foster City, CA, USA
- MicroAmp® Optical Adhesive Covers/Applied Biosystems, Foster City, CA, USA
- 96-well footprint deep well plate, PP/Bel-Art Products, Pequannock, NJ, USA
- Cover for deep well plate/Bel-Art Products, Pequannock, NJ, USA

6.10 Other materials and devices

- Rotilabo ${ }^{\circledR}$ syringe filters, CME, sterile, $\varnothing 33 \mathrm{~mm}, 0.22 \mu \mathrm{~m}$ pore size /Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Vortex-Genie 2/Scientific Industries Inc., Bohemia, NY, USA
- Sartorius BL 120S scale/ Sartorius Stedim Biotech GmbH, Göttingen, Germany
- inoLab® pH720 pH meter/WTW, Weilheim, Germany
- SenTix 21 PLUS® ${ }^{\text {pH }}$ electrode/WTW, Weilheim, Germany
- MR 3000 magnetic stirrer/Heidolph, Schwabach, Germany
- Arium® basic ultrapure water system/Sartorius Stedim Biotech GmbH, Göttingen, Germany
- Petri plates/Greiner Bio GmbH, Frickenhausen, Germany
- Desalting membranes/Millipore, USA
- Pipettes $5 \mathrm{ml}, 10 \mathrm{ml}, 25 \mathrm{ml} /$ Greiner Bio GmbH, Frickenhausen, Germany
- Adhesive foils/Greiner Bio GmbH, Frickenhausen, Germany

7 Materials

7.1 Media and buffers

7.1.1 Escherichia coli media

- Low Salt Luria Bertani (LB) (agar): $10 \mathrm{~g} / \mathrm{l}$ Bacto ${ }^{\mathrm{TM}}$ tryptone, $5 \mathrm{~g} / \mathrm{l}$ Bacto ${ }^{\mathrm{TM}}$ yeast extract, $5 \mathrm{~g} / \mathrm{l} \mathrm{NaCl}$, ($15 \mathrm{~g} / \mathrm{l}$ agar), autoclaved. If needed, antibiotics are added to a final concentration of $100 \mathrm{mg} / \mathrm{l}$ ampicillin, $25 \mathrm{mg} / \mathrm{l}$ zeocin ${ }^{\mathrm{TM}}, 50 \mathrm{mg} / \mathrm{l}$ kanamycin.
- SOC medium: $20 \mathrm{~g} / 1$ Bacto $^{\mathrm{TM}}$ tryptone, $0.58 \mathrm{~g} / \mathrm{l} \mathrm{NaCl}, 5 \mathrm{~g} / \mathrm{l} \mathrm{Bacto}{ }^{\mathrm{TM}}$ yeast extract, $2 \mathrm{~g} / \mathrm{l}$ $\mathrm{MgCl}_{2}, 0.18 \mathrm{~g} / \mathrm{l} \mathrm{KCl}, 2.46 \mathrm{~g} / \mathrm{l} \mathrm{MgSO}_{4}, 3.81 \mathrm{~g} / \mathrm{l} \alpha-\mathrm{D}(+)$-glucose monohydrate, autoclaved

7.1.2 Pichia pastoris media

7.1.2.1 Stocks

- $500 \times \mathrm{B}: 10 \mathrm{mg} / 50 \mathrm{ml}$ d-Biotin, filter sterilized
- 10x D: $220 \mathrm{~g} / \mathrm{l} \alpha-\mathrm{D}(+)$-glucose monohydrate, autoclaved
- 10x YNB: $134 \mathrm{~g} / \mathrm{l}$ Difco ${ }^{\text {TM }}$ yeast nitrogen base w/o amino acids, autoclaved
- 10x S: $200 \mathrm{~g} / \mathrm{l}$ D-sorbitol, autoclaved

7.1.2 2 Media for cultivation in 96-deep well plates

- Yeast extract, peptone, dextrose (YPD) (agar): $10 \mathrm{~g} / 1$ Bacto $^{\mathrm{TM}}$ yeast extract, $20 \mathrm{~g} / \mathrm{l}$ Bacto ${ }^{\mathrm{TM}}$ peptone, 900 ml dH 2 O , ($15 \mathrm{~g} / \mathrm{l}$ agar), autoclaved. After autoclaving, adding 100 ml 10 x D. If needed, antibiotics are added to a final concentration of $100 \mathrm{mg} / \mathrm{l} \mathrm{zeocin}{ }^{\mathrm{TM}}$, $300 \mathrm{mg} / \mathrm{l}$ geneticin.
- BMD1\%, 1 1: $50 \mathrm{ml} 10 \mathrm{X} \mathrm{D}, 200 \mathrm{ml} 10 \mathrm{x}$ PPB, 100 ml 10 x YNB, $2 \mathrm{ml} 500 \mathrm{x} \mathrm{B}, 650 \mathrm{ml}$ $\mathrm{dH}_{2} \mathrm{O}$
- BMM2, 1 l: $10 \mathrm{ml} \mathrm{MeOH}, 200 \mathrm{ml}$ 10x PPB, $100 \mathrm{ml} 10 \mathrm{x} \mathrm{YNB}, 2 \mathrm{ml} 500 \mathrm{x} \mathrm{B}, 690 \mathrm{ml} \mathrm{dH}_{2} \mathrm{O}$
- BMM10, $1 \mathrm{l}: 50 \mathrm{ml} \mathrm{MeOH}, 200 \mathrm{ml} 10 \mathrm{x}$ PPB, 100 ml 10 x YNB, 2 ml 500 x B, 650 ml $\mathrm{dH}_{2} \mathrm{O}$

7.1.2.3 Media for genomic DNA isolation from yeasts

- Yeast lysis buffer: 4 ml Triton $\mathrm{X}-100,20 \mathrm{ml} 10 \%$ SDS, $4 \mathrm{ml} 0.5 \mathrm{M} \mathrm{NaCl}, 0.4 \mathrm{ml} 0.5 \mathrm{M}$ EDTA, 2.0 ml 1.0 M Tris, $\mathrm{pH} 8.0,169.6 \mathrm{ml} \mathrm{dH}_{2} \mathrm{O}$
- TE buffer: 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,1 \mathrm{mM}$ EDTA, pH 8.0

7.1.3 Buffers

7.1.3.1 Buffer solutions for enzyme characterization

- 50 mM NaOAc (sodium acetate): $4.1 \mathrm{~g} / \mathrm{l} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{pH} 4.5$ adjusted with 100% acetic acid
- 20x ABTS stock: 440 mg 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, add 50 mM NaOAc to 50 ml
- p-nitrophenol butyrate stock: $42 \mu \mathrm{pNPB} 98 \%$ were added to $458 \mu \mathrm{l}$ DMSO
- 300mM Tris/HCl buffer: pH 7.0
- 1 M citrate phosphate buffer: pH 5.0 (210.13 g citric acid mono-hydrate in $11 \mathrm{dH}_{2} \mathrm{O}$, $228.23 \mathrm{~g} \mathrm{~K}{ }_{2} \mathrm{HPO}_{4} .3 \mathrm{H}_{2} \mathrm{O}$ in $11 \mathrm{dH}_{2} \mathrm{O}$)
- 0.1 M phosphate-citrate buffer: pH 3.0 (21.013 g citric acid mono-hydrate in $11 \mathrm{dH}_{2} \mathrm{O}$, $22.823 \mathrm{~g} \mathrm{~K}_{2} \mathrm{HPO}_{4} .3 \mathrm{H}_{2} \mathrm{O}$ in $11 \mathrm{dH}_{2} \mathrm{O}$)
- 0.06 M mandelonitrile solution: 80 mg mandelic acid nirile in 10 ml 0.1 M phosphate-citrate buffer

7.2 Other chemicals and solutions

- 10x dNTP mix: 20 mM each: dATP, dTTP, dCTP, dGTP
- dATP / dCTP / dTTP / dGTP, 100 mM/Fermentas GmbH, St. Leon-Rot, Germany
- 50x TAE buffer: 242 g Tris base, 57.1 ml glacial acetic acid, 100 ml 0.5 M EDTA, add $\mathrm{dH}_{2} \mathrm{O}$ to a final volume of 11
- BEDS: 10 mM bicine- $\mathrm{NaOH}, \mathrm{pH} 8.3,3 \%(\mathrm{v} / \mathrm{v})$ ethylene glycol, 5% (v / v) DMSO, 1 M sorbitol, filter sterilized
- 1M DTT: $154,25 \mathrm{~g}$ in $11 \mathrm{dH}_{2} \mathrm{O}$

7.3 Enzymes

7.3.1 Restriction enzymes

- BamHI 10u/ μ 1, 10xUnique buffer, 5 'G \downarrow *GATCC3'/Fermentas GmbH, St. Leon-Rot, Germany
- BamHI $1 \mathrm{FDU} / \mu \mathrm{l}$, $10 x$ FastDigest ${ }^{\circledR}$ Buffer, $10 x$ FastDigest ${ }^{\circledR}$ Green Buffer, 5'G \downarrow * GATCC3'/Fermentas GmbH, St. Leon-Rot, Germany
- EcoRI 10u/ μ l, 10xUnique buffer, $5^{\prime} G \downarrow$ AATTC3'/Fermentas GmbH, St. Leon-Rot, Germany
- EcoRI 1FDU/ $\mu \mathrm{l}$, 10xFastDigest ${ }^{\circledR}$ Buffer, 10xFastDigest ${ }^{\circledR}$ green Buffer, $5^{\prime} \mathrm{G} \downarrow$ AATTC3'/Fermentas GmbH, St. Leon-Rot, Germany

[^8]- NotI $10 \mathrm{u} / \mu \mathrm{l}$, 10xOrange buffer, $5^{\prime} \mathrm{GC} \downarrow$ GGCCGC3'/Fermentas GmbH, St. Leon-Rot, Germany
- NotI 1FDU/ 1 , 10xFastDigest ${ }^{\circledR}$ Buffer, $10 x F a s t D i g e s t ~{ }^{\circledR}{ }^{~}$ Green Buffer, 5'G \downarrow AATTC3'/Fermentas GmbH, St. Leon-Rot, Germany
- NcoI $10 \mathrm{u} / \mu \mathrm{l}$, 10xTango buffer, $5^{\prime} \mathrm{C} \downarrow$ CATGG3'/Fermentas GmbH, St. Leon-Rot, Germany
- NcoI 1FDU/ μ 1, $10 x$ FastDigest ${ }^{\circledR}$ Buffer, $10 x F a s t D i g e s t ® ~ G r e e n ~ B u f f e r, ~$ 5'C \downarrow CATGG3'/Fermentas GmbH, St. Leon-Rot, Germany
- $\operatorname{SmiI}(S w a I) 10 u / \mu l, 10 x O r a n g e ~ b u f f e r, ~ 5 ' A T T ~ \downarrow A A A T 3 ' / F e r m e n t a s ~ G m b H, ~ S t . ~ L e o n-R o t, ~$ Germany
- SwaI(SmiI) 1FDU/ μ 1, 10xFastDigest ${ }^{\circledR}$ Buffer, 10xFastDigest ${ }^{\circledR}$ green Buffer, $5^{\prime} \mathrm{G} \downarrow$ AATTC3'/Fermentas GmbH, St. Leon-Rot, Germany

7.3.2 DNA polymerases

- Phusion® High-Fidelity DNA-Polymerase $2 \mathrm{u} / \mu \mathrm{l}$, 5 x HF reaction buffer or 5 x GC buffer/Finnzymes Oy, Espoo, Finland
- GoTaq® Polymerase $5 \mathrm{u} / \mu \mathrm{l}$, 5 x Green GoTaq${ }^{\circledR}$ Buffer/Promega GmbH, Madison, WI, USA
- PfuUltra ${ }^{\mathrm{TM}}$ High-Fidelity DNA-Polymerase $2.5 u / \mu \mathrm{l}$, $10 \times$ PfuUltra $^{\mathrm{TM}}$ HF reaction buffer/Stratagene, La Jolla, CA

7.4 Chemicals

- ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) diammonium), from Sigma-Aldrich Handels GmbH, Vienna, Austria
- $\alpha-\mathrm{D}(+)$-glucose monohydrate, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Ampicillin, product of Sigma-Aldrich Handels GmbH, Vienna, Austria
- Aqua bidest. "Fresenius", product of Fresenius Kabi Austria GmbH, Graz, Austria
- Bacto ${ }^{\mathrm{TM}}$ peptone, product of Becton Dickinson and Company, Sparks, MD, USA
- Bacto ${ }^{\mathrm{TM}}$ tryptone, product of Becton Dickinson and Company, Sparks, MD, USA
- Bacto ${ }^{\mathrm{TM}}$ yeast extract, product of Becton Dickinson and Company, Sparks, MD, USA
- Benzaldehyde cyanohydrin (mandelonitrile), from Sigma-Aldrich Handels GmbH, Vienna, Austria
- Citronensäure, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- D-biotin, product of Fluka Chemia AG, Basel, Switzerland
- Difco ${ }^{\mathrm{TM}}$ yeast nitrogen base w/o amino acids, product of Becton Dickinson and Company, Sparks, MD, USA
- Dimethyl sulfoxide (DMSO), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Dithiothreitol (DTT), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- D-sorbitol, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Ethanol abs., product of Merck KGaA, Darmstadt, Germany
- Ethidium bromide ($\geq 98 \%$), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Geneticin disulfate (G418 sulfate), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- $\mathrm{HCl}(37 \%)$, product of Merck KGaA, Darmstadt, Germany
- $\mathrm{K}_{2} \mathrm{HPO}_{4}$, product of Carl Roth $\mathrm{GmbH}+\mathrm{Co}$. KG, Karlsruhe, Germany
- Kanamycin, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- $\mathrm{KH}_{2} \mathrm{PO}_{4}$, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- LB agar, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Methanol ($\geq 99.8 \%$), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- $\mathrm{NaOAc}\left(\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right.$, sodium acetate), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- NaOH , product of Carl Roth $\mathrm{GmbH}+\mathrm{Co}$. KG, Karlsruhe, Germany
- Phenol:chloroform:isoamylalcohol (25.24:1), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- p-nitrophenol butyrate, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Tris, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Zeocin ${ }^{\mathrm{TM}}$, product of InvivoGen-Eubio, Vienna, Austria

7.5 Existing strains

- Name: Escherichia coli Top 10F' (IMBT-TUG* strain collection number: 1482) / Source: Invitrogen Corporation, San Diego, USA
- Name: Pichia pastoris CBS7435 (IMBT-TUG strain collection number: 3132) / Source: Pichia pastoris wild type
- Name: Pichia pastoris Mut 5 (IMBT-TUG strain collection number: 3445) / Source: Based on P. pastoris CBS7435, engineered at Graz University of Technology (Näätsaari et al., manuscript in preparation)
- Name: Pichia pastoris \triangle KU70 (IMBT-TUG strain collection number: 3499) / Source: Based on P. pastoris CBS7435, engineered at Graz University of Technology (Näätsaari et al., manuscript in preparation)

7.6 Existing plasmids

Following six existing plasmids were used within this thesis: pPpT4_SmiI, pPpKan_SmiI, pPpT4_SmiI_Cycle3GFP, pPpT4_SmiI_HRPC1ASayn \#0, pPpT4_SmiI_CalB \#1, pGAPZ A-PaHNL5_alpha, and pJet1.2blunt_ends. Two existing recombination cassettes were also used: FLIPPER_pAOX1 and HIS_Flipper_old_FRT. Both cassettes exist in pJet 1.2 cloning vector.

[^9]

Figure 13: pPpT4_SmiI plasmid. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic $A O X 1$ promoter upstream region); PAOX1_Syn (synthetic AOX1 promoter region); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); Zeocin_Syn (gene coding for zeocin resistance); AODTT (AOD terminator); SwaI (SmiI), EcoRI, NotI, BamHI, NcoI, and PstI are the restriction sites for the respective restriction enzymes.

Figure 14: pPpKan_SmiI plasmid. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic $A O X 1$ promoter upstream region); PAOX1_Syn (synthetic AOX1 promoter region); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); KanMX6 (gene coding for kanamycin/geneticin resistance); AODTT (AOD terminator); SwaI (SmiI), EcoRI, NotI, BamHI, NcoI, and PstI are the restriction sites for the respectively restriction enzymes.

Figure 15: pPpT4_SmiI_Cycle3GFP plasmid. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic AOX1 promoter upstream region); PAOX1_Syn (synthetic AOX1 promoter region); Cycle3GFP (synthetic gene coding for green fluorescence protein); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); Zeocin_Syn (gene for zeocin resistance); AODTT (AOD terminator);

Figure 16: pPp-T4_SmiI HRPC1ASayn \#0 plasmid. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic AOX1 promoter upstream region); PAOX1_Syn (synthetic AOX1 promoter region); Alpha-factor_SS (S. cerevisiae secretion signal sequence); HRPC1ASyn\#0 (synthetic gene coding for Horseradish peroxidase); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); Zeocin_Syn (gene for zeocin resistance); AODTT (AOD terminator); The restriction enzymes (sites) SwaI (SmiI) and BamHI were used for plasmid linearization, and EcoRI and NotI for cloning of HRPCIASyn\#O.

Figure 17: pPp-T4_SmiI CaIB \#1 plasmid. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic AOX1 promoter upstream region); PAOX1_Syn (synthetic AOX1 promoter region); Alpha-factor_SS (S. cerevisiae secretion signal sequence); CalB (gene coding for Candida antartica lipase); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); Zeocin_Syn (gene for zeocin resistance); AODTT (AOD terminator); The restriction enzymes (sites) SwaI (SmiI) and BamHI were used for plasmid linearization, and EcoRI and NotI for cloning of CalB.

Figure 18: pGAPZ A-PaHNL5 alpha plasmid. pUC_origin (pUC origin of replication); Gap_promoter (constitutive promoter of P. pastoris gene coding for glyceraldehyde 3-phosphate); alpha factor (secretion signal sequence); PaHNL5 (Prunus amygdalus gene coding for hydrolynitrile lyase); AOX1_TTS (synthetic terminator); Tef1_promoter (eukaryotic promoter); EM7_promoter (synthetic prokaryotic promoter); Zeocin (gene coding for zeocin resistance); CYC1_TT (S. cerevisiae iso-1cytochrome c terminator);

Figure 19: pJet1.2blunt ends cloning vector. Rep pMB1 (replicon from pMBI plasmid); bla_AmpR (gene for ampicillin resistance); eco47IR (lethal gene for positive selection of recombinants which is disrupted by the inserted sequence); PlacUV5 (modified $\mathrm{P}_{\text {lac }}$ promoter); $\mathrm{P}_{-} \mathrm{T} 7$ (T7_RNA polymerase promoter); and MCS (the space between 328bp and 422bp is the multiple cloning site);

Figure 20: Existing FRT recombination cassette (FLIPPER_PAOX1) has been cloned in pJet1.2blunt_ends cloning vector. The cassette contains following parts: $\mathrm{P}(\mathrm{AOX})(1)$ (P. pastoris alcohol oxidase 1 promoter), FRT (recombinase target sequences), FLP_recombinase (gene coding for S. cerevisiae $2 \mu \mathrm{~m}$ plasmid recombinase), CYC_TT (S. cerevisiae iso-1-cytochrome c terminator), P(ILV5) (eukaryotic promoter), EM72 (synthetic prokaryotic promoter), Zeocin (gene coding for zeocin resistance), AOD_TT (AOD terminator).

Figure 21: Existing FRT recombination cassette (HIS4_Flipper_old_FRT). The cassette contains following parts: 5^{-}and $3^{`}$ HIS4 integration sequence (homologous sequences to P. pastoris HIS locus), FRT (recombinase target sequences), $\mathrm{P}(\mathrm{AOX})(1)$ (P. pastoris alcohol oxidase 1 promoter), FLP_recombinase (gene coding for S. cerevisiae $2 \mu \mathrm{~m}$ plasmid recombinase), CYC_TT (S. cerevisiae iso-1-cytochrome c terminator), P(ILV5) (eukaryotic promoter), EM72 (synthetic prokaryotic promoter), Zeocin (gene coding for zeocin resistance), AOD_TT (AOD terminator).

7.7 Primers

From all used primers within this master thesis, 37 were primers existing at the Institute of Molecular Biotechnology at Graz University of Technology, and 146 were newly designed. All the primers were designed with Vector NTI^{\circledR} (Bioinformatics software package from Invitrogen, USA) and purchased from Integrated DNA Technologies, BVBA, Leuven, Belgium.

7.7.1 Existing primers

Primer designation	Primer name	
$\mathbf{p - 0 7 - 3 5 2}$	AOXSyn1fw	GGATCCAATTCCCGCTTTGACTGCCTGAAATCTCC
$\mathbf{p - 0 7 - 3 5 3}$	AOXSyn2fw	GGAACCTAATATGACAAAAGCGTGATCTCATCC
$\mathbf{p - 0 7 - 6 0 4}$	EM72_Nco_rv	ACCCATGGTTTAGTCCTCCTTACACC
$\mathbf{p - 0 7 - 6 2 8}$	1FRTFseq	GGTGCACCTGTGCCGAAACG
$\mathbf{p - 0 7 - 6 2 9 ~}$	2FRTRseq	GTTCCGTTATGTGTAATCATCCAAC
$\mathbf{p - 0 7 - 6 3 6}$	2RnewCYC	CAAAGGAAAAGGGGGCCTGTTTATATGCGTCTATTTATGTAG
$\mathbf{p - 0 7 - 6 3 7 ~}$	CYC1F	ACATAAATAGACGCATATAAACAGGCCCCTTTTCCTTTGTCGATATC
$\mathbf{p - 0 7 - 6 3 8 ~}$	CYC1R	GAAACAAGACATTACTGAAGTCGACAACTAAACTGGAATGTGAGG
$\mathbf{p - 0 8 - 1 3 4 ~}$	P(AOX)F	GAAGTTCCTATACTTTCTAGAGAATAGGAACTTCAGATCTAACATCC AAAGACGAAAGGG
$\mathbf{p - 0 8 - 1 3 6 ~}$	FLPF	CAACTAATTATTGAAACGATGCCACAATTTGATATATTATGTAAAAC ACCACCTAAGG
$\mathbf{p - 0 8 - 1 5 1 ~}$	pucPstfw	AAACTGCAGGTACCACTGAGCGTCAGACCCC
$\mathbf{p - 0 8 - 4 8 3 ~}$	pJET1.2Fw	CGACTCACTATAGGGAGAGCGGC
$\mathbf{p - 0 8 - 4 8 4 ~}$	pJT1.2Rv	AAGAACATCGATTTTCCATGGCAG
$\mathbf{p - 0 8 - 6 9 0 ~}$	ILV5_fw	GCGAACAAATTAAGAGATAATCTCG
$\mathbf{p - 0 8 - 6 9 1 ~}$	AODTT_fw	CGGATGTTTTATTATCTATTTATGC
$\mathbf{p - 0 8 - 6 9 2 ~}$	PUC_rv	GCAGAGCGAGGTATGTAGGC
$\mathbf{p - 0 8 - 6 9 4 ~}$	Kan_rv	CTCATCTGTAACATCATTGGCAAC
$\mathbf{p - 0 8 - 8 4 9 ~}$	AOXSyn_end_fw	CAGAAGGAAGCTGCCCTGTC
$\mathbf{p - 0 9 - 0 8 0 ~}$	KanMX6_fw	GCTCGATGAGTTTTTCTAACC
$\mathbf{p - 0 9 - 1 3 2 ~}$	GFP_AscI_rv	TTTGGCGCGCCTTACTTGTACAATTCATCCATGCC
$\mathbf{p - 0 9 - 1 5 5 ~}$	Kan_fw	GCCAATGATGTTACAGATGAGATGG
$\mathbf{p - 0 9 - 1 5 6 ~}$	Kan_Mitte_fw	GCAATCACGAATGAATAACGG
$\mathbf{p - 0 9 - 1 9 4 ~}$	AOXTTR	TGAAGCCTGCATCTCTCAG
$\mathbf{p - 0 9 - 3 0 4 ~}$	Kanll_rev	TATCGGTCTGCGATTCCGACTCGTC
$\mathbf{p - 0 9 - 3 3 7 ~}$	Zeocin_rv	PaHNL_V317ASynl_fw
$\mathbf{p - 0 9 - 5 1 1 ~}$	GGAACTACCATCATTAACGCAGG	
$\mathbf{p - 0 9 - 5 1 2 ~}$	PAHNL_V317ASynil_fw	CACCTAATCCTATTGAAGCATCTGTTG
$\mathbf{p - 1 0 - 6 3 2 ~}$	KanMXXintfw	gatcgcgtatttcgtctcg
$\mathbf{p - 1 0 - 6 3 3 ~}$	KanMXintrv	cgactgaatccggtgagaatg
$\mathbf{p - 1 0 - 5 9 5 ~}$	pILV5rv	GAAAATTTTTTCGGATAATTTTTTAAAGCGAG

Table 2: List of existing primers, used in this thesis.

7.7.2 Primers designed in this thesis

Primer designation	Primer name	Primer sequence ($\mathbf{5}^{-} \mathbf{- 3}$)
p-09-514	pdi_1_upstr_fw_	gtggttgtgttacttctgatage
p-09-515	pdi_1_term_rv_	cgtattgcgegaagtgatge
p-09-516	pdi_2_upstr_fw_	gatgaggagcttatagacg
p-09-517	pdi_2_gen_rv_	cttcaacgagcttagcaacctg
p-09-518	pdi_3_upstr_fw_	ccgecaaacagggctgctgacte
p-09-519	pdi_3_term_rv_	gatagaccaggeggagtgcaagttc
p-09-520	pdi_4_upstr_fw_	gcgatatgtaacctttgacgtagcc
p-09-521	pdi_4_term_rv_	cctgctacacgagacaattccg
p-10-052	pdi_1_vor_prom_rv_	gectgtggaaagaactgtagaga
p-10-053	pdi_1_prom_fw_	cctttcttctgtgctgtcaacte
p-10-054	pdi_2_vorn_rv_	gtattatatctcccagcaacg
p-10-055	pdi_2_prom_fw_	ggtgcaaagagctggagatgg
p-10-056	pdi_3_prom_rv_	caggetcccaagggacttgge
p-10-057	pdi_3_prom_fw_	cttggatggttacttgagtaacgtcg
p-10-058	pdi_4_upstr_rv_	gcctettggtggtgtacttggg
p-10-059	pdi_4_upstr_fw_	cgtctgtacttcaacctcatctcc
p-10-127	pdi_4_seq_3_fw	gcccacaaacccataaag
p-10-128	pdi_4_seq_2_fw	gactttgaggataacag
p-10-129	pdi_4_seq_1_fw	gacttctgtaatgage
p-10-130	pdi_3_seq_4_rv	ctcaccttccacaac
p-10-131	pdi_3_seq_3_fw	ggttggaaggtgaagtgc
p-10-132	pdi_3_seq_2_fw	ggaagggaatggactcg
p-10-133	pdi_3_seq_1_fw	gttgagttgatagccge
p-10-134	pdi_2_seq_2_fw	cttctgtttecttecate
p-10-135	pdi_2_seq_1_fw	cgtattgecacttccatc
p-10-136	pdi_1_seq_4_fw	gstgaggttgaggtcc
p-10-137	pdi_1_seq_3_fw	gaatagaacacgaacactg
p-10-138	pdi_1_seq_2_fw	gcaccaccttacaccac
p-10-139	pdi_1_seq_1_fw	ggtggacgaagaagttcc
p-10-245	a_rv_pdi_1_	GCTAAACTGCTCCCACCATTG
p-10-246	b_rv_pdi_1_	TACCTGCGGGACTTTCTAACACG
p-10-247	c_fw_pdi_1_	GTTCTACGACCTCTGATGACCTG
p-10-248	d_rv_pdi_1_	CAGTGAGAAAGTGGTGTAAGGTGG
p-10-249	e_rv_pdi_1_	GITCGITCATCGGGCAGTTCTITC
p-10-250	f_rv_pdi_1_	AATGCTITGGCTCTGTCTITG
p-10-251	g_rv_pdi_1_	TCTGCCTCTCCTGCGATGAATTTC

Table 3-7: List of new primers, designed in this thesis.

Primer designation	Primer name	Primer sequence ($5^{\prime}-3^{\prime}$)
p-10-252	h_fw_pdi_1_	GCTGCTGCTGCCGATATTATTAAACC
p-10-253	a_rv_pdi_2	ATCAGTGGCGAATGGCGGTGC
p-10-254	b_fw_pdi_2	TAGTAGTAGTAGCACCGCCATTCG
p-10-255	c_rv_pdi_2	TTTGGAGAAGAGATGGAAGTGGC
p-10-256	d_rv_pdi_2	GCTCAACTGGTCCTGTCCTTTCTC
p-10-257	e_rv_pdi_2	TCTTCTATTGGTGCTTGATGTGGG
p-10-258	f_fw_pdi_2	ATCCCACATCAAGCACCAATAG
p-10-259	a_rv_pdi_3_	TCTATTTTTGGTTTGGTCTGCTTC
p-10-260	b_rv_pdi_3_	CAACACCAAATCACACAAGTCAAC
p-10-261	c_rv_pdi_3_	ACGTAAAAAGAAGAAGCAATGCAC
p-10-262	7_fw_pdi_3_	AATGTGGTTGGAAGGTGAAGTGC
p-10-263	d_fw_pdi_3_	CGAATGAATCCAGAGTATGAAAAGC
p-10-264	e_fw_pdi_3_	GTTCAATCTTTCCCGACTATCCTG
p-10-265	f_rv_pdi_3_	TAATGACAAAACCAGAACAGCAGG
p-10-266	g_rv_pdi_3_	GAAACTCCTCCATAAATCTACTTG
p-10-267	a_rv_pdi_4_	CGAAAAAGTCCCCAAATCTCACAG
p-10-268	b_rv_pdi_4_	GAACAACATCCCAACACCGTC
p-10-269	c_rv_pdi_4_	ATCCGTTTTAGTTCAGTCAATGG
p-10-270	d_rv_pdi_4_	CGAAAAAAGCAATCCAAGAAGAAGG
p-10-271	e_rv_pdi_4_	TCAAAACAGGAAACCCGACTACC
p-10-272	f_fw_pdi_4_	GGGTATGCCAACAAGAGGGTC
p-10-273	g_fw_pdi_4_	GGAAATGACGGTGTTGGGATGTTG
p-10-309	pdi_1_term_fw	tgaagaagaagctgaaagtgagge
p-10-310	pdi_1_term_rv	ccgettagttctettcttcaccttg
p-10-311	pdi_2_term_fw	gaaaagcgaagaagggcaagaagg
p-10-312	pdi_2_term_rv	tectcatcatccagtaacgaagce
p-10-313	pdi_3_term_fw	aatctcacatgetccggccacac
p-10-314	pdi_3_term_rv	tgtgtatggaggatgttgatgecg
p-10-315	pdi_4_term_fw	gatgttgaggagtctggggaagc
p-10-316	pdi_4_term_rv	gaagctccacaaaatctccacaatac
p-10-533	pAox_FRT_fw	atagtectgtcgggtttcgecac
p-10-534	pAox_FRT_rv	gttcetattctctagaaagtataggaacttccgtttcaataattagttg
p-10-535	GFP_FRT_fw	atactttctagagaataggaacttcaaacgatggctagcaaaggagaag
p-10-536	GFP_FRT_rv	cacgaagtcaaaatggetcaccactge
p-10-561	GFP_FRT_mut_rv	gttcttctccttgctagccatcgtttgaagttcctattctctagaaagtatagga acttccgtttcaataat tagttgtttttg

Table 3-7: List of new primers, designed in this thesis.

Primer designation	Primer name	Primer sequence ($5^{-}-3^{\prime}$)
p-10-562	GFP_FRT_mut_fw	caaaaaacaactaattattgaaacggaagttcctatactttctagagaatagg aacttcaaacga tggctagcaaaggagaagaac
p-10-575	GFP_FRT_mut_1-Kozak_rv	gttcttctccttgctagccatgaagttcctattctctagaaagtataggaacttc cgtttcaataattagt tgtttttg
p-10-576	GFP_FRT_mut_1-Kozak_fw	caaaaaacaactaattattgaaacggaagttcctatactttctagagaatagg aacttcatggct agcaaaggagaagaac
p-10-581	pdi_4_pAOX_long_rv_	GTCATCAAGCTCTTCAGCATAATATCTTGCCAGAG
p-10-582	pdi_4_pAOX_long_fw_	caaaaaacaactaattattgaaacgatgaagtcgttactgctacttc
p-10-583	pdi_3_pAOX_long_rv_	GCAATCTITTGCAATATCCACACCACGAAGCAG
p-10-584	pdi_3_pAOX_long_fw_	gatcaaaaaacaactaattattgaaacgatgaaaatattaagtgcattgc
p-10-585	pdi_2_pAOX_long_rv_	AGCTGGGTCTTCTCAGAATTTCCCAGGG
p-10-586	pdi_2_pAOX_long_fw_	caaaaaacaactaattattgaaacgatgaagttactatcettgg
p-10-587	pdi_1_pAOX_long_rv_	GCTTCAGCATATGATTTGAAGGTGGATCCG
p-10-588	pdi_1_pAOX_long_fw_	caaaaaacaactaattattgaaacgatgcaattcaactggaatattaaaac
p-10-589	pAOX_FRT_long_rv_	CGTTTCAATAATTAGTTGTTTTTTGATCTTCTCAA GTTGTCG
p-10-590	pAOX_FRT_long_fw_	ctagaagaataggaacttcagatctaacatccaaagacgaaag
p-10-591	EM72_elim_rv_	CCTTTCGTCTTTGGATGTTAGATCTGAAGTTCCTAT TCTTCTAGAAAG
p-10-592	EM72_elim_fw_	ccaaatatcgtctccacaaaaaaataaactcacctctgetgttcc
p-10-593	pILV5_long_rv_	$\begin{aligned} & \text { GTGAGTTTATTTTTTTGTGGAGACGATATTTGGAA } \\ & \text { GAG } \end{aligned}$
p-10-594	pILV5_long_fw_	gaagttcetatactttctagagaataggaacttcagatctaacatce
p-10-670	pILV5_kurz_rv_	TTTGTGGAGACGATATTTGGAAGAG
p-10-671	pILV5_kurz_fw_	gaagttectatactttetagag
p-10-734	OCH_2_gene_rv	TCTCAAAATACCCATTCGAGTTGG
p-10-735	OCH_2_gene_fw	cttacaggcaatgcaacgttettc
p-10-736	OCH1_gene_rv	ATATTGGAACGTCCCCCAGTTG
p-10-737	OCH1_gene_fw	gtttacattgaccagatgatttgge
p-10-800	OCH1_249_upstr_fw	GTTTACATTGACCAGATGATTTGGCTTTTTCTCTGT TCAATTCAC
p-10-801	OCH1_249_upstr_rv	GTCCTCGTTTCGAAGTACCTAGGGCTGATGATATTT GCTACGAAC
p-10-802	OCH1_249_downstr_fw	GCGAGGTCACTCAGTCAGAAAGCTAGAGTAAAAT AGATATAGCGAG
p-10-803	OCH1_249_downstr_rv	ATATTGGAACGTCCCCCAGITGCTTTAGGGTATCTT CATC
p-10-804	OCH1_636_upstr_fw	CTTACAGGCAATGCAACGTTCTTCTCCGGATGG

Table 3-7: List of new primers, designed in this thesis.

Primer designation	Primer name	Primer sequence ($5^{-}-3^{\prime}$)
p-10-805	OCH1_636_upstr_rv	$\begin{aligned} & \text { TCGTTTCGAAGTACCTAGCTTGGACAGTAAGAGAG } \\ & \text { AATCG } \end{aligned}$
p-10-806	OCH1_636_downstr_fw	CAGATAGCGAGGTCACTCAGTCGAGAATTAATCGC C
p-10-807	OCH1_636_downstr_rv	\qquad
p-10-812	AOX_Linker_rv_	$\begin{aligned} & \text { CGTGAAGTCCTCGTTTCGAAGTACCTAGCGTTTCA } \\ & \text { ATAATTAG } \end{aligned}$
p-10-813	FRT_Linker_fw_	gtcagatagcgaggtcactcagtcgaagttectatactttctag
p-10-824	HNLwt_end_fw	ATTGTGTTAGCGGCATGAAGAAGC
p-10-825	HNLwt_middle_fw	CTTTTGACAATAATGGAACGCGAC
p-10-827	alpha_new_end_fw	tactactattgecagcattgetge
p-10-840	KanMX_fw	ctaggtacttcgaaacgaggacttcac
p-10-841	KanMX_rv	GACTGAGTGACCTCGCTATCTGACTG
p-10-842	Rec_mit_fw	cggaagaagcagataagggaaatagccac
p-10-843	Rec_mit_rv	GATCTCCCAGATGCTTTCACCCTCAC
p-10-844	Linker_FRT_rv_	CGTGAAGTCCTCGTTTCGAAGTACC
p-10-845	Linker_FRT_fw_	gtcagatagcgaggtcactcagtcg
p-10-866	CycTT_ILV5_long	attecagttagitgtcgacttcagtaatgtcttgtttetttg
p-10-867	FRT_Zeo_rv_long	CCTTTCGTCTTTGGATGTTAGATCTGAAGTTCCTAT TCTCTAGAAAG
p-10-868	OCH1_249_colony_fw	cgectggtagggatgcaatacaagg
p-10-869	OCH1_636_colony	TCTCCCAGTGAAGACAATAATATATGGG
p-10-870	pILV_nat_rv	CCCATTTTGTGGAGACGATATTTGGAAGAGAAGGG
p-10-871	pILV_KanMX_nat_fw	cettetcttccaaatatcgtctccacaaaatgggtaaggaaagac
p-10-888	PDI_4.4._rv_seq	GTCCGTGAGTTCCCATATCGTACC
p-10-889	PDI_4.2._rv_seq	CTGGATTACATCATCCTTTGGAGTG
p-10-890	PDI_4.1._rv_seq	GCTTGTGCTAGTGTGAGAGCGGAC
p-10-891	AOD_TT_end_fw	tggggaaacttggatctgattacc
p-11-021	249_up_2500_long_fw	ctgattggggatattctagttacagcactaaacaactggcgatac
p-11-022	249_down_2500_long_rv	ATTGAGTATATGGGCACTTGCCCCTTTATTTATGA CTTGGG
p-11-023	636_up_2500_long_fw	gctatgtcagtctctgettctgaatctgaggagtttatccc
p-11-024	636_down_2500_long_rv	TAAGTTCAGCTCATAATTCCTCTGTTATCCATTGC CAATTAGACC
p-11-025	249_KanMX_direkt_ovlap_rv	GTGAGTCTTTTCCTTACCCATGGCTGATGATATTTG CTACG

Table 3-7: List of new primers, designed in this thesis.

Primer designation	Primer name	Primer sequence ($5^{-}-3^{\prime}$)
p-11-026	249_KanMX_direkt_ovlap_fw	gcagtttcatttgatgctcgatgagttttctaaagaaagctagag
p-11-027	636_KanMX_direkt_ovlap_rv	CGTGAGTCTTTTCCTTACCCATCTTGGACAGTAAG AGAGAATC
p-11-028	636_KanMX_direkt_ovlap_fw	gatgetcgatgagttttctaagagaattaatcgccaaaatc
p-11-061	249_up_seq_ 2500 _fw	gtcaaaccaacgtaaaaccetctgg
p-11-060	249_up_seq2_2500_fw	cccatagatctgcctgacagcc
p-11-059	249_down_seq_ 2500 _rv	GATGAGCAAATCCCAGCTCAGTG
p-11-058	249_down_seq2_2500_rv	CATCTTGGGCAGAATAATGACCACG
p-11-057	636_up_seq_ 2500 _fw	ggcaacattgatcacaacgtcg
p-11-056	636 up_seq2_2500_fw	gtagatagtgggaaaccettcceac
p-11-055	636_down_seq_2500_rv	GAGCGGGTCCAGTTGCCTCTAC
p-11-054	636_down_seq2_2500_rv	CAAACTTCACTGTGGACCGGATAGAC
	249_lok_fw_	gctectgacgtaggectagaacagg
	249_lok_rv_	CGTCTGGTTTAGAAGACAGGCCG
	249 _gen_fw_	atggcgaaggcagatggcag
	249 _gen_rv_	TTAGTCCTTCCAACTTCCTTCAAATG
	636_lok_fw_	cctgttcceatttgtcaccattage
	636_lok_rv_	GCTCAGAAACCACTCCCAGAACCTAC
	636_gen_fw_	gaaagatgtgaagtttcttgttggcg
	636 _gen_rv_	TCAAGATTGGGTGACCAGGCTTC

Table 3-7: List of new primers, designed in this thesis.

8 Kits, protocols and methods

8.1 DNA isolation

8.1.1 Genomic DNA isolation and determination of its quality and quantity

In order to isolate genomic DNA (gDNA) from P. pastoris, following protocol was applied (cf. Hoffman et al.). A single colony of the desired strain was inoculated to $7-10 \mathrm{ml}$ sterile YPD medium and incubated over night at $28{ }^{\circ} \mathrm{C}$, 110 rpm . The grown culture $\left(\mathrm{OD}_{600}<\right.$ 10) was centrifuged for 5 min at 500 xg , the pellet was re-suspended in $500 \mu \mathrm{l}$ sterile $\mathrm{dH}_{2} \mathrm{O}$ and transferred to a sterile micro-centrifuge tube. The cells were spun down and the pellet was resuspended in 200μ l yeast lysis buffer. 200μ l phenol:chloroform:isoamyl alcohol (25:24:1) plus approximately 300 mg acid-washed glass beads were added and the suspension was vortexed for 4 min . After addition of $200 \mu \mathrm{l}$ TE buffer, the suspension was centrifuged for 5 min at $16,100 \times \mathrm{g}$ and the aqueous phase was transferred to a new micro centrifuge tube. The DNA was precipitated by addition of 1 ml ice cold absolute EtOH and incubation for 10 min at -20 ${ }^{\circ} \mathrm{C}$, spun down and air dried. The DNA pellet was re-suspended in $400 \mu \mathrm{l}$ TE plus $5 \mu \mathrm{l} 2$ $\mathrm{mg} / \mathrm{mL}$ RNaseA and incubated for $>4 \mathrm{~h}$ at $37^{\circ} \mathrm{C} .10 \mu \mathrm{l} 4 \mathrm{M}$ ammonium acetate and 1 ml absolute EtOH were added and the DNA was precipitated as described above. The DNA pellet was washed with 70% ice cold EtOH , spun down and air dried. The DNA was dissolved in a final volume of $50 \mu 1 \mathrm{dH}_{2} \mathrm{O}$.

8.1.2 Plasmid isolation

For plasmid isolation, GeneJET ${ }^{\text {TM }}$ Plasmid Miniprep Kit (Fermentas GmbH, St. LeonRot, Germany) was used according to the manufacturer's recommendations, except for the following deviations: cells were abraded from $1 / 2$ or $1 / 4$ an agar plate with a sterile toothpick, and plasmid elution was done with $50 \mu 1$ deionized $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{dH}_{2} \mathrm{O}\right)$.

8.2 DNA purification

DNA purification was done with the Wizard ${ }^{\circledR}$ SV Gel and PCR Clean-Up System (Promega GmbH, Mannheim, Germany). Applied deviation from the manufacturer's recommendations was the elution of DNA with $18-20 \mu 1 \mathrm{dH}_{2} \mathrm{O}$.

8.3 Polymerase chain reaction (PCR)

8.3.1 Standard PCR and overlap extension PCR (OE-PCR)

Standard PCRs were performed with Phusion® High-Fidelity DNA-Polymerase, according to the manufacture's recommendation. The annealing temperature was by default chosen to be $4-5{ }^{\circ} \mathrm{C}$ below the primer DNA melting temperature $\left(T_{m}\right) . T_{m}$ for the primers shorter than 24 bp was calculated with Vector $\mathrm{NTI}^{\circledR}{ }^{\circledR}$ (Bioinformatics software package from Invitrogen, USA), and for the primers longer than 24bp, Tm from the manufacturer's certificate was taken. All primers were used in a final concentration of 400 nM , dNTPs in a final concentration of $200 \mu \mathrm{M}$. The elongation time was calculated in dependence of the expected PCR product length, considering a processivity of 1 kb per $10-30$ s of the Phusion ${ }^{\circledR}$ HighFidelity DNA-Polymerase. For the OE-PCRs, in the first 17 cycles, template overlapping regions played a role of primers connecting the fragments in appropriate order. Primers in a final concentration of 800 nM were added after the $17^{\text {th }}$ cycle, for the next 18 cycles. OE-PCRs were performed with 2-3 templates, and their ratio was determined using the following formula:
$\mathrm{ng}($ shorter fragment $)=\mathrm{kb}($ shorter fragment $) \mathrm{x} \mathrm{ng}$ (longer fragment) $/ \mathrm{kb}$ (longer fragment)
ng = nano gram
$\mathrm{kb}=$ kilo base
Every PCR included at least one negative control, where no template was added. 35 cycle of following PCR-program were preformed for all PCRs: $98^{\circ} \mathrm{C}$ ($30^{`}$)- $98^{\circ} \mathrm{C}\left(10^{`}\right)-51-$ $58^{\circ} \mathrm{C}\left(20^{-}\right)-72^{\circ} \mathrm{C}\left(10-106^{\circ}\right)-72^{\circ} \mathrm{C}\left(2^{`}\right)-4^{\circ} \mathrm{C}$ (storage).

8.3.2 Colony PCR

Single colonies from YPD (antibiotic)-agar plates were picked and suspended in $20 \mu 1$ $\mathrm{dH}_{2} \mathrm{O}$, and heated at $95^{\circ} \mathrm{C}$ for 10 min . After that the samples were centrifuged for $4-8 \mathrm{sec}$ at maximal speed (13.200 rpm) and $5 \mu \mathrm{l}$ from the supernatant were used as a template. All primers were used in a final concentration of 400 nM , dNTPs in a final concentration of $200 \mu \mathrm{M}$. The elongation time was calculated in dependence of the expected PCR product length, considering a processivity of 1 kb per 1 min of the GoTaq® polymerase. Every PCR included at least one negative control, where no template was added, and one positive control using genomic DNA from P. pastoris CBS7435 as a template. 35 cycles of following PCR-program were preformed for all PCRs: $95^{\circ} \mathrm{C}\left(30^{`}\right)-95^{\circ} \mathrm{C}\left(10^{`}\right)-51-58^{\circ} \mathrm{C}\left(20^{`}\right)-72^{\circ} \mathrm{C}\left(1-3^{`}\right)-72^{\circ} \mathrm{C}\left(7^{`}\right)-4^{\circ} \mathrm{C}$ (storage).

8.4 Two steps site directed mutagenesis method

Two steps site directed mutagenesis was performed with PfuUltra ${ }^{\text {TM }}$ High-Fidelity DNA-Polymerase, according to the manufacture's recommendation. All primers were used in a final concentration of 400 nM , and dNTPs in a final concentration of $200 \mu \mathrm{M}$. The circular plasmid to be mutated was used as template in concentration of $50 \mathrm{ng} / \mu$. The elongation time was calculated in dependence of the expected PCR product length (plasmid size), considering a processivity of 1 kb per 1 min of the PfuUltra ${ }^{\mathrm{TM}}$ High-Fidelity DNA-Polymerase. 18 cycles of following PCR-program were preformed: $95^{\circ} \mathrm{C}\left(30^{`}\right)-95^{\circ} \mathrm{C}\left(10^{-`}\right)-52^{\circ} \mathrm{C}\left(1^{`}\right)-76^{\circ} \mathrm{C}\left(4,3^{`}\right)-$ $72^{\circ} \mathrm{C}$ (7°)- $4^{\circ} \mathrm{C}$ (storage). T_{m} for the mutagenesis primers used in this experiment was calculated using following formula:

$$
T_{m}=81.5+0.41(\% \mathrm{GC})-675 / \mathrm{N}-\% \text { mismatches }
$$

$\mathrm{N}=$ primer length in bp, without the bases to be inserted
The PCR products were digested with DpnI in order template plasmid to be eliminated and additional E. coli TOP10F` electro-competent cells were transformed with these PCR products.

8.5 Agarose gel electrophoresis

1%-agarose gels were made with agarose and 1xTAE buffer and approximately $2 \mu 1$ $\operatorname{EtBr}(\geq 98 \%$ ethidium bromide). For preparative-gels, DNA samples were mixed with $6 x$ Loading Dye, and for control-gels they were mixed with 1x Loading Dye. Electrophoresis for preparative-gels was run for $80-100 \mathrm{~min}$ at a voltage of $80-90 \mathrm{~V}$ and for control-gels for 3550 min at a voltage of $110-120 \mathrm{~V}$. In general, small DNA fragments need shorter running time and large DNA fragments have to be run longer in order to get nicely separated bands. After every run of preparative-gel, the samples were cut out of the gel at the Chroma 43. All samples on the gels were analyzed with the GelDoc-It ${ }^{\mathrm{TM}}$ Imaging System. As standard, $5 \mu \mathrm{l}$ of $0.1 \mu \mathrm{~g} / \mu \mathrm{l}$ GeneRuler ${ }^{\mathrm{TM}} 1 \mathrm{~kb}$ DNA Ladder were used.

8.6 Standard ligations

Ligation of an insert to a vector was done at $16^{\circ} \mathrm{C}$ over night or at $22^{\circ} \mathrm{C}$ for $2-4$ hours, with T4 DNA Ligase ($400 \mathrm{u} / \mu \mathrm{l}$, 10xT4 DNA Ligase Reaction Buffer/New England BioLabs® ${ }^{\circledR}$ Inc., Ipswich, MA, USA) according to the manufacturer's recommendations. The ratio of the fragments to be ligated was calculated using following formula:
ng (insert) $=\mathrm{kb}$ (insert) x ng (vector) $/ \mathrm{kb}$ (vector)
ng = nano gram
$\mathrm{kb}=$ kilo base

8.7 Cloning to the pJET1.2/blunt ends vector

The CloneJET ${ }^{\text {TM }}$ PCR cloning Kit (Fermentas GmbH, St. Leon-Rot, Germany) was used for cloning PCR products to the pJET1.2/blunt ends vector according to the manufacturer's recommendations. The incubation time for ligation was $20-25 \mathrm{~min}$ at room temperature (RT) with a molar vector: insert ratio of $1: 3$. Desalting was done for $45-60 \mathrm{~min}$ against $\mathrm{dH}_{2} \mathrm{O}$ at room temperature prior to electroporation.

8.8 Transformations

8.8.1 Transformation to Escherichia coli

DNA (approximately 100 ng , maximum volume of $10-20 \mu \mathrm{l}$) and electro-competent cells ($80 \mu \mathrm{l}$ E. coli Top 10F') were mixed and incubated for 15 min on ice. After that the cell suspension was transferred to electro cuvettes and pulsed with $2.5 \mathrm{kV}, 200 \omega$, and $25 \mu \mathrm{~F}$ for $4,1-$ $4,6 \mathrm{sec} .500 \mu \mathrm{l}$ SOC medium were added immediately and the cell suspension was mixed briefly by slowly pipetting up and down. The cell suspension was incubated for $45-60 \mathrm{~min}$ at $37{ }^{\circ} \mathrm{C}$ and $500 \mathrm{rpm} .20 \mu \mathrm{l}, 120 \mu \mathrm{l}$ and the rest of the cell suspension (cells concentrated through brief centrifugation) were plated on LB-agar plates containing the appropriate antibiotic. Incubation of the plates was done at $37^{\circ} \mathrm{C}$ for approximately 24 h (over night).

8.8.2 Transformation to Pichia pastoris

Transformation of P. pastoris was done as described by Lin-Cereghino et al. Competent cells were prepared by inoculating a single colony of the respective strain to $7-10 \mathrm{ml}$ YPD medium and grown over night at $28^{\circ} \mathrm{C}, 110 \mathrm{rpm}$. From the over night-culture, a main culture was grown from $\mathrm{OD}_{600}=0.3$ to a final OD_{600} of 0.8-1.0 (again in YPD medium). The cells were harvested by centrifugation at 4000 rpm for 5 min . After that, 9 ml ice cold BEDS and 1 ml 1 M DTT were added to the cell pellet and the suspension was mixed briefly by hand for 5 min , and centrifuged for 5 min at 4000 rpm . After centrifugation, the cells from the cell pellet were re-suspended in 1 ml ice cold BEDS. $80 \mu \mathrm{l}$ of these electro-competent cells were mixed with 500 ng to $2 \mu \mathrm{~g}$ DNA (maximum volume of $20 \mu \mathrm{l}$) and incubated for 15 min on ice. After that, the cell suspension was transferred to electro cuvettes and pulsed with $1.5 \mathrm{kV}, 200 \omega$, $25 \mu \mathrm{~F}$, and $1000 \mu 11 \mathrm{M}$ sorbitol were added immediately after the pulse. The cell suspension was mixed briefly by slowly pipetting up and down. The cells were incubated for 2 h and $28{ }^{\circ} \mathrm{C}$ for regeneration, and then plated on YPD-agar plates containing the appropriate antibiotic(s). Aliquots of $50 \mu \mathrm{l}, 150 \mu \mathrm{l}, 300 \mu \mathrm{l}$ and the rest of the cell suspension (cells concentrated through brief centrifugation) were plated and incubated at $28^{\circ} \mathrm{C}$ for approximately 48-72h (2-3 days).

8.9 Micro-scale cultivation of Pichia pastoris in 96-deep well plates

In order to screen for positive P. pastoris, micro-scale cultivation in 96 -deep well plates (DWP) was done similar to the protocol described by Weis et al. All DWPs were filled up with $300 \mu \mathrm{l}$ BMD 1% per well, and each well was inoculated with cells from a single colony.

Three wells per DWP were inoculated with single colonies of strains used as a negative control, and 3-6 wells per DWP were inoculated with single colonies from strains used as a positive control. The DWPs were incubated at $28^{\circ} \mathrm{C}, 320 \mathrm{rpm}, 80 \%$ humidity for 5 days (for the short protocol) or 7 days (for the long protocol). The induction for the short protocol was done after approximately 48 h by adding $250 \mu \mathrm{l}$ BMM2 per well and after approximately 60 h and 72 h by adding 50μ l BMM10 per well each time. The induction for the long (standard) protocol was done after approximately 60 h by adding $250 \mu 1$ BMM2 per well and after approximately $72 \mathrm{~h}, 84 \mathrm{~h}$ and 96 h by adding $50 \mu \mathrm{l}$ BMM10 per well each time. The cultivation was stopped 48 h after the start of induction, and the cells were harvested by centrifugation at 4000 rpm for 5 min . For the photometric screening assays used in this thesis, samples were taken from the supernatant.

8.10 Photometric enzyme activity assays

8.10.1 HRP enzyme activity assay

After harvesting the cells from the micro-scale cultivation, $15 \mu 1$ supernatant from each well of the DWPs were transferred to microtiter plates mixed with $140 \mu \mathrm{l}$ ABTS ($2,2^{\prime}$-Azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) assay solution (1 ml 20xABTS stock: 19 ml 50 mM NaOAc pH 4.5 , and $1.75 \mu \mathrm{l} 30 \%(\mathrm{v} / \mathrm{v}) \mathrm{H}_{2} \mathrm{O}_{2}$) and the absorbance at 405 nm and $25^{\circ} \mathrm{C}$ was followed over 5min using the plate-reader (Spectramax Plus384, Molecular Devices, Sunnyvale, CA, USA).

8.10.2 CalB enzyme activity assay

After harvesting the cells from the micro-scale cultivation, $20 \mu 1$ supernatant from each well of the DWPs were transferred to microtiter plates. After that, $100 \mu 1$ substrate-solution (pnitrophenol butyrate stock: $42 \mu \mathrm{l}$ pNPB 98% added to $458 \mu \mathrm{l}$ DMSO) were mixed with 10 ml of 300 mM Tris $/ \mathrm{HCl} \mathrm{pH} 7.0$ buffer. The substrate-solution autolyzes and for that reason aliquots of the same were stored at $-20^{\circ} \mathrm{C} .180 \mu 1$ of the substrate-mixture were added to the $20 \mu \mathrm{l}$ supernatant and the absorbance at 405 nm and $25^{\circ} \mathrm{C}$ was followed over 5 min using plate-reader (Spectramax Plus384, Molecular Devices, Sunnyvale, CA, USA).

8.10.3 HNL enzyme activity assay

This assay for analyzing the enzymatic activity of HNL was done according to Weis, R. et al., FEMS Yeast Research, 2004. After harvesting the cells from the micro-scale cultivation, $20 \mu 1$ supernatant from each well of the DWPs were transferred to microtiter plates and mixed with $130 \mu \mathrm{l}$ of 1 M citrate phosphate buffer pH 5.0 . Shortly before the measurement was started, $50 \mu \mathrm{l}$ racemic $0,06 \mathrm{M}$ mandelonitrile solution (80 mg racemic mandelonitrile, dissolved in 0.1 M citrate phosphate buffer $\mathrm{pH} 3.0,15 \mathrm{mM}$ final concentration), the absorbance at 280 nm and $25^{\circ} \mathrm{C}$ was followed over 5 min using plate-reader (Spectramax Plus384, Molecular Devices, Sunnyvale, CA, USA).

8.11 Green fluorescence protein (GFP) fluorescence measurement

GFP was produced intracellular in P. pastoris Mut $^{\mathrm{s}}$ strain. After micro scale cultivation was finished, GFP expression was measured with a plate reader (Spectramax Plus384, Molecular Devices, Sunnyvale, CA, USA), as follows:

- $200 \mu 1$ of undiluted suspended cell culture from each plate well were transferred to microtiter plates for measuring the optical density $\left(\mathrm{OD}_{600}\right)$ of the cells;
- after that, $200 \mu 1$ of suspended culture from each well were transferred to microtiter plates and mixed briefly;
- endpoint fluorescence measurement of the cell suspensions was provided by excitation maximum at 395 nm , emission maximum at 507 nm , and cutoff at 495 nm ;

9 Bioinformatics' programs and web tools

9.1 Programs

$>$ The results of photometric screening assays were analyzed using SoftMax Pro 4.8/Molecular Devices, Ismaning, Germany.
$>$ The DNA sequencing results were analyzed using DNASTAR Lasergene ${ }^{\circledR}$, USA (SeqMan and EditSeq).
$>$ The plasmid and cassettes maps, as well as the primers, were designed using Vector NTI ${ }^{\circledR}$ Bioinformatics software package from Invitrogen, USA.

9.2 Web tools

> Multiple sequence alignments were provided by ClustalW2: http://www.ebi.ac.uk/Tools/msa/clustalw2/
$>$ Sequences searches were provided by BLAST (Basic Local Alignment Search Tool) NCBI:
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn\&BLAST_PROGRAMS=mega Blast\&PAGE_TYPE=BlastSearch\&SHOW_DEFAULTS=on\&LINK_LOC=blasthome http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp\&BLAST_PROGRAMS=blastp \&PAGE_TYPE=BlastSearch\&SHOW_DEFAULTS=on\&LINK_LOC=blasthome
$>$ Pichia pastoris DNA sequences were taken from GenDB:
http://www.cebitec.uni-bielefeld.de/groups/brf/software/gendb_info/
$>$ DNA sequencing results:
https://shop.lgcgenomics.com/

10. Pichia pastoris PDI-specific $\boldsymbol{P}_{\text {AOXI }}$-replacement cassettes

10.1 Project aim

10.2 Project strategy

$$
\begin{array}{ll}
\text { 10.2.1 } & \text { Pichia pastoris protein disulfide isomerase genes } \\
& \text { (PpPDIs) }
\end{array}
$$

10.2.2 Amplification, cloning and sequencing of PpPDIs

$$
\begin{array}{ll}
\text { 10.2.3 } & \text { Design of Pichia pastoris PDI-specific } P_{A O X 1}- \\
& \text { replacement } \quad \text { cassettes }
\end{array}
$$

10.2.3.1 Evaluation of efficiency of the cassette variant A
10.2.3.2 Results and discussion
10.2.3.3 Design of cassette variant B
10.3 Design of Pichia pastoris reporter strains carrying genes coding for model proteins CalB and HRP

10.3.1 Design of expression vectors carrying CalB and HRP gene

10.3.2 Transformation of CalB and HRP expression vectors to E. coli and P. pastoris

10.3.3 Screening results of Pichia pastoris $\mathbf{4 K U 7 0}$ CalB and
HRP reporter strains
10.4 Conclusion

10.1 Project aim

The aim of this project was to design four $P p P D I$-specific $P_{A O X I}$-replacement cassettes. The replacement of the natural $P p P D I$ promoter with $P p P_{A O X I}$ should result in $P p$ PDI overexpression. Additionally, four P. pastoris \triangle KU70 strains carrying genes coding for the proteins CalB and HRP were designed to evaluate the effect of $P p$ PDI overexpression.

10.2 Project strategy

10.2.1 Pichia pastoris protein disulfide isomerase genes (PpPDIs)

In the recently performed genome sequencing project of P. pastoris CBS7435, four genes coding for protein disulfide isomerase have been detected and annotated as it follows: PP7435_Chr4-0183 (CCA40358.1), PP7435_Chr1-0128 (CCA36295.1), PP7435_Chr1-0470 (CCA36622.1), and PP7435_Chr4-0107 (CCA40283.1). They vary in the length. PP7435_Chr4-0183 is 876bp, PP7435_Chr1-0128 897bp, PP7435_Chr1-0470 1110bp, and PP7435_Chr4-0107 1554bp long.

Unlike the length, the GC content does not differ drastically between all four gene sequences, with a minimum of 39% in PP7435_Chr1-0470 and a maximum of 43% in PP7435_Chr4-0107. All four genes do not contain introns, and all of them contain two thioredoxin domains, with the exception of PP7435_Chr4-0183, which contains three. All four expressed PDIs are supposed to be located in the lumen of the endoplasmic reticulum and to catalyze the rearrangement of -S-S- bonds in proteins (Table 8).

Gene designation (GenDB)	PP7435_Chr4-0107	PP7435_Chrl-0128	PP7435_Chrl-0470	PP7435_Chr4-0183
NCBI Accession number	CCA40283.1	CCA36295.1	CCA36622.1	CCA40358.1
Start/Stop codon	ATG/TAA	ATG/TAG	ATG/TAA	ATG/TAG
Length [bp]	1554	897	1110	876
GC content [\%]	43,308	42,029	39,189	41,438
Introns	no	no	no	no
AA sequence length	517	298	369	291
Conserved domains	2 thioredoxin domains	2 thioredoxin domains	2 thioredoxin domains	3 thioredoxin domains
Subcellular location	lumen of endoplasmic reticulum			
Gene product	prolyl 4-hydroxylase	not described	protein disulfide isomerase family A	protein disulfide isomerase family A
EC number	5.3.4.1	not described	5.3.4.1	5.3.4.1
Gene description	protein disulfide isomerase	not described	protein disulfide isomerase 1	protein disulfide- isomerase A4

Table 8: Main observations about P. pastoris PDIs made in the genome sequencing project.

A multiple sequence alignment of all four PDI coding domains was provided using ClustalW2. It revealed DNA sequence similarities of 55% to 67% (Table 9; Appendix 3). The multiple sequence alignment of the 3000bp long upstream and 1000bp long downstream region, showed sequence similarities between 48% and 52% (Table 10 and 11; Appendix 5). Also a multiple sequence alignment of the AA sequences of all four PDIs was performed. It showed low sequence similarity of 17% to 22% (Table 12; Appendix 6).

SeqA $\stackrel{\text { - }}{ }$	Name \leqslant	Length $\stackrel{\text { - }}{ }$	SeqB $\stackrel{\text { - }}{ }$	Name \leqslant	Length $\stackrel{\text { 人 }}{ }$	Score ${ }^{-}$
1	CCA40283.1	1554	2	CCA36295.1	897	67.0
1	CCA40283.1	1554	3	CCA36622.1	1110	60.0
1	CCA40283.1	1554	4	CCA40358.1	876	64.0
2	CCA36295.1	897	3	CCA36622.1	1110	60.0
2	CCA36295.1	897	4	CCA40358.1	876	55.0
3	CCA36622.1	1110	4	CCA40358.1	876	57.0

Table 9: Summary of DNA multiple sequence alignment of all four PpPDIs.

SeqA -	Hame -	Length -	SeqB -	Hame -	Length -	Score -
1	CCA40283.1	3000	2	CCA36295.1	3000	49.0
1	CCA40283.1	3000	3	CCA36622.1	3000	50.0
1	CCA40283.1	3000	4	CCA40358.1	3000	50.0
2	CCA36295.1	3000	3	CCA.36622.1	3000	51.0
2	CCA36295.1	3000	4	CCA40358.1	3000	50.0
3	CCA36622.1	3000	4	CCA40358.1	3000	51.0

Table 10: Summary of DNA multiple sequence alignment of 3000 bp upstream region of all four PpPDIs.

SegA -	Name \leqslant	Length -	Seq B -	Hame $\stackrel{\text { - }}{ }$	Length -	Score -
1	CCA.40283.1	1000	2	CCA36295.1	1000	49.0
1	CCA40283.1	1000	3	CCA36622.1	1000	52.0
1	CCA.40283.1	1000	4	CCA40358.1	1000	50.0
2	CCA36295.1	1000	3	ССА36622.1	1000	50.0
2	CCA36295.1	1000	4	CCA40358.1	1000	48.0
3	CCA36622.1	1000	4	CCA40358.1	1000	50.0

Table 11: Summary of DNA multiple sequence alignment of 1000 bp downstream region of all four PpPDIs.

SeqA -	Hame -	Length -	SeqB -	Name -	Length -	Score -
1	CCA40283.1	517	2	CCA36295.1	298	22.0
1	CCA40283.1	517	3	CCA36622.1	369	18.0
1	CCA40283.1	517	4	CCA40358.1	291	14.0
2	CCA36295.1	298	3	CCA36622.1	369	19.0
2	CCA36295.1	298	4	CCA40358.1	291	15.0
3	CCA36622.1	369	4	CCA40358.1	291	17.0

Table 12: Summary of DNA multiple sequence alignment of all four PpPDIs.

10.2.2 Amplification, cloning and sequencing of PpPDIs

All four PDI genes from Pichia pastoris CBS7435 strain (PP7435_Chr4-0107, PP7435-Chr1-0128, PP7435_Chr1-0470, and PP7435_Chr4-0183) were amplified together with their natural promoter and terminator. Thereby, the promoter and terminator region were approximately 3000 bp and 500 bp long, respectively. For that aim, genomic DNA (gDNA) from P. pastoris CBS7435 strain was isolated according to the protocol of Hoffman et al. Since each PpPDI-sequence to be amplified was longer than 4000bp, they were amplified as three shorter pieces by using three different primer pairs. After that, the three pieces were joined together by OE-PCR. (Table 13; Figure 22-25)

Cassettes located gene	PP7435_Chr4-0107	PP7435_Chrl-0128	PP7435_Chrl-0470	PP7435_Chr4-0183
Cassette length [bp]	5365	4754	4880	4763
Primer used for whole cassette amplification	$\mathrm{p}-09-514 / \mathrm{p}-10-310$	$\mathrm{p}-09-516 / \mathrm{p}-10-312$	$\mathrm{p}-09-518 / \mathrm{p}-10-056$	$\mathrm{p}-09-520 / \mathrm{p}-10-058$
Length of fragment part 1 [bp]	1884	1516	1723	1731
Primer used for fragment part 1	$\mathrm{p}-09-514 / \mathrm{p}-10-052$	$\mathrm{p}-09-516 / \mathrm{p}-10-054$	$\mathrm{p}-09-520 / \mathrm{p}-10-057$	$\mathrm{p}-09-521 / \mathrm{p}-10-059$
Length of fragment part 2 [bp]	3235	2888	3266	2730
Primer used for fragment part 2	$\mathrm{p}-09-515 / \mathrm{p}-10-053$	$\mathrm{p}-09-517 / \mathrm{p}-10-055$	$\mathrm{p}-10-313 / \mathrm{p}-10-314$	$\mathrm{p}-10-315 / \mathrm{p}-10-316$
Length of fragment part 3 [bp]	588	633	457	680
Primer used for fragment part 3	$\mathrm{p}-10-309 / \mathrm{p}-10-310$	$\mathrm{p}-10-311 / \mathrm{p}-10-312$	$\mathrm{p}-09-518 / \mathrm{p}-10-314$	$\mathrm{p}-09-520 / \mathrm{p}-10-316$
Length of OE-region 1 [bp]				

Table 13: Primer pairs used for amplification of the Pp PDI cassettes and cassette fragments including the their lengths and the lengths of the overlap extension (OE) regions.

Figure 22: Whole amplified PP7435_Chr4-0107 sequence, including the overlap extension regions 1 and 2 (OER1 and OER2) and the three primer pairs which were used.

Figure 23: Whole amplified PP7435_Chr1-0128 sequence, including overlap extension regions 1 and 2 (OER1 and OER2) and the three primer pairs which were used.

Figure 24: Whole amplified PP7435_Chr1-0470 sequence is shown, including overlap extension regions 1 and 2 (OER1 and OER2) and the three primer pairs which were used.

Figure 25: Whole amplified PP7435_Chr4-0183 sequence is shown, including overlap extension regions 1 and 2 (OER1 and OER2) and the three primer pairs which were used.

After PCR amplification of all sequences and their rejoining, they were ligated into pJet1.2/ blunt ends cloning vector using T4-DNA ligase. E. coli TOP10F electro-competent cells were transformed with this plasmid, and plated on LB-ampicillin plates. After that, pJet plasmids from each strain were isolated using GeneJET ${ }^{\text {TM }}$ Plasmid Miniprep Kit. The ligated PpPDI sequences were amplified from the plasmids and sent for sequencing. Using respective forward and reverse primer (Table 14), both DNA strands of all PDI sequences were fully sequenced. Terminator regions were sequenced using standard pJet sequencing primers: p-08483_fw and p-08-484_rv. All samples were sequenced by LGC Genomics Company (Berlin, Germany) using Sanger Technology.

PP7435_Chr4-0107	PP7435_Chrl-0128	PP7435_Chrl-0470	PP7435_Chr4-0183
p-09-514 fw	p-09-516 fw	p-09-518 fw	p-09-520 fw
p-09-515 rv	p-09-517 rv	p-09-519 rv	p-09-521 rv
$\mathrm{p}-10-052 \mathrm{r}$	$\mathrm{p}-10-054 \mathrm{rv}$	$\mathrm{p}-10-056 \mathrm{r}$	$\mathrm{p}-10-058 \mathrm{rv}$
p-10-053 fw	p-10-055 fw	p-10-057 fw	p-10-059 fw
p-10-136 fw	p-10-134 fw	$\mathrm{p}-10-130 \mathrm{rv}$	p-10-127 fw
p-10-137 fw	p-10-135 fw	p-10-131 fw	p-10-128 fw
p-10-138 fw	$\mathrm{p}-10-253 \mathrm{rv}$	p-10-132 fw	p-10-129 fw
p-10-139 fw	p-10-254 fw	p-10-133 fw	$\mathrm{p}-10-267 \mathrm{v}$
p-10-245 rv	$\mathrm{p}-10-255 \mathrm{r}$	p-10-259 rv	$\mathrm{p}-10-268 \mathrm{v}$
$\mathrm{p}-10-246$ rv	$\mathrm{p}-10-256$ rv	$\mathrm{p}-10-260$ rv	$\mathrm{p}-10-269$ rv
p-10-247 fw	$\mathrm{p}-10-257 \mathrm{rv}$	$\mathrm{p}-10-261 \mathrm{r}$	$\mathrm{p}-10-270$ rv
$\mathrm{p}-10-248 \mathrm{r}$	p-10-258 fw	p-10-262 fw	$\mathrm{p}-10-271 \mathrm{r}$
$\mathrm{p}-10-249 \mathrm{r}$	p-10-311 fw	p-10-263 fw	p-10-272 fw
$\mathrm{p}-10-250$ rv	$\mathrm{p}-10-312 \mathrm{r}$	p-10-264 fw	p-10-273 fw
$\mathrm{p}-10-251 \mathrm{r}$	/	$\mathrm{p}-10-265 \mathrm{r}$	p-10-315 fw
p-10-252 fw	/	$\mathrm{p}-10-266 \mathrm{rv}$	p-10-316 rv
p-10-309 fw	1	$p-10-313$ fw	,
p-10-310 rv	1	p-10-314 rv	,

Table 14: Primers used for sequencing of four PpPDI genes including their promoter and terminator regions.

The obtained sequences were compared with the corresponding NCBI sequences. Thereby, several mismatches have been detected:

- for the gene PP7435_Chr1-0128 (CCA36295.1): 19bp downstream of the gene stop codon, the sequence contains 13 T instead of 11 T as recorded in NCBI;
- for the gene PP7435_Chr1-0470 (CCA36622.1): 509bp downstream of the gene start codon, the sequence contains 9 T instead of 8 T as recorded in NCBI;

Interestingly, all P. pastoris CBS7435 sequences stored in NCBI have been obtained using new generation sequencing method (454 Life Sciences, Roche). Küberl et al. have already reported mismatches found in homo-polymer stretches by comparison of the sequences obtained using 454 Illumina and Sanger (LGC Genomics, Germany) ${ }^{6}$ technology. This can also explain the sequence mismatches detected within the PpPDIs, since all mismatches were located in poly-T regions.

10.2.3 Design of PpPDI-specific $P_{A O X I}$-replacement cassettes

Based on existing FLP-recombinase knockout cassettes (Figure 20 and 21), two variants (variant A and B) of PpPDI-specific $P_{A O X 1}$-replacement cassettes were initially designed in silico (Figure 26 and 27). The differences between these two cassette variants could theoretically have an influence on the transformation rate, the strength of the promoter and also the expression of the desired PpPDI. Namely, the cassette variant A contains one $P_{A O X I}$ and is approximately 1 kb shorter than the cassette variant B. This should theoretically be an advantage for the transformation. On the other hand, in the cassette variant A one FRT sequence stays between the $P p P_{A O X I}$ and the $P p P D I$ after recombination, and could negatively influence the promoter and also the PDI expression. For that reason cassette variant B was designed. It contains two $P_{A O X I}$ and after recombination one of the two $P_{A O X I}$ stayed in the genome and is connected to the PDI directly, without any additional sequences in between.

Variant A was built out of four parts (part I-IV) (Figure 26). Part I contained only the $P p P_{A O X I}$. Part II contained the FRT-target sequence, recombinase ($F L P$) gene and Cyc terminator. Part III contained the P. pastoris/E. coli codon optimized synthetic zeocin resistance gene, placed under the control of PpILV5 promoter and PpAod terminator. Part IV contained again a FRT-target sequence and 500bp long $P p P D I$-specific homologous sequence (start codon plus 500bp downstream region).

Variant B was built out of three parts (part I-III) (Figure 27). Part I contained the FRT target sequence and recombinase (FLP) gene, placed under the control of $P p P_{A O X I}$ and CycTT. Part II contained the P. pastoris/E. coli codon optimized synthetic zeocin resistance gene, placed under the control of PpILV5 promoter and PpAod terminator. Part III contained the FRT target sequence, $P p P_{A O X I}$, and 500 bp long $P p P D I$-specific homologous sequence, as described above.

Figure 26: PpPDI-specific $\boldsymbol{P p}_{\boldsymbol{P}} \boldsymbol{P}_{\text {AXI }}$-replacement cassette / Variant A. The upper part of the figure shows the recombination cassette including all four parts (Part I-IV). The middle part shows the part of the cassette which should be deleted after MeOH induction and recombinase expression. The bottom part of the figure shows the parts of the cassette (Part I and Part II) staying in the genome after FRT recombination process. pAOX1 ($P P_{P A O X I}$); FRT (FRT target sequence); Recombinase (gene coding for FLP* Recombinase); CycTT** (S. cerevisiae iso-1-cytochrome c terminator); pILV5 (eukaryotic promoter); Zeocin (gene coding for zeocin resistance); AodTT (AOD terminator); PDI homologous sequence (500bp long sequence homologous to the 500bp upstream region of each PpPDI);

[^10]

Figure 27: PpPDI-specific $\boldsymbol{P p}_{\boldsymbol{P}} \boldsymbol{P}_{\text {AOxI }}$-replacement cassette / Variant B. The upper part of the figure shows the recombination cassette including all four parts (Part I-IV). The middle part shows the part of the cassette deleted after MeOH induction and recombinase expression. The lowest part of the figure shows the parts of the cassette (Part I and Part II) staying in the genome after FRT recombination process. FRT (FRT target sequence); pAOX1 ($P P_{P_{A O X I}}$); Recombinase (gene coding for FLP Recombinase); CycTT (S. cerevisiae iso-1-cytochrome c terminator); pILV5 (eukaryotic promoter); Zeocin (gene coding for zeocin resistance); AodTT (AOD terminator); PDI homologous sequence (500bp long sequence homologous to the 500bp upstream region of each PpPDI);

After transformation the cassette should integrate into the P. pastoris genome according to the homologous sequence used (PDI locus). The obtained clones should be cultivated and induced with MeOH for the FLP-recombinase to be expressed. FLPrecombinase catalyzes the recombination of both FRT target sequences (Paragraph 2.4). After recombination, part I and part II should be excised from the P. pastoris genome, and the $P p P_{A O X I}$ should be integrated upstream of the start codon of each PpPDI (Figure 26 and 27).

Since it is known that shorter recombination cassettes integrate easier in genome, the cassette variant A which is shorter, was favored. However, by using cassette variant A, one FRT target sequence stays between $P p P_{A O X I}$ and the 500 bp long $P p P D I$-specific homologous sequence after FRT recombination. Since it was not known if this FRT will influence the strength of the promoter or not, a cassette validation experiment was done first.

10.2.3.1 Evaluation of efficiency of the cassette variant A

For the evaluation of the efficiency of cassette variant A , green fluorescent protein (GFP) was used as reporter protein. The existing plasmid pPpT4_SmiI_Cycle3GFP was mutated according to the "Two Steps Site Directed Mutagenesis" protocol from Stratagene.

The first mutagenesis approach included insertion of a FRT target sequence between the Kozak consensus sequence of $P_{A O X 1 \text { syn }}$ and the start codon of GFP (ATG) (Figure 28), similar to the existing FRT-recombinase cassette (FLIPPER_pAOX1).

| 1001 | TTGACAAGCT TTTGATTTTA ACGACTTTTA ACGACAACTT GAGAAGATCA AAAAACAACT AATTATTGAA ACGGAAGITC CTATACTTTC TAGAGAATAG |
| :--- | :--- | :--- | :--- | :--- |
| | AACTGTTCGA AAACTAAAAT TGCTGAAAAT TGCTGTTGAA CTCTTCTAGT TTTTTGTTGA TTAATAACTT TGCCTTCAAG GATATGAAAG ATCTCTTATC |
| 1101 | GAACTTCATG GCTAGCAAAG GAGAAGAACT TTTCACTGGA GTTGTCCCAA TTCTTGTTGA ATTAGATGGT GATGTTAATG GGCACAAATT TTCTGTCAGT |
| | CTTGAAGTAC CGATCGTTTC CTCTTCTTGA AAAGTGACCT CAACAGGGTT AAGAACAACT TAATCTACCA CTACAATTAC CCGTGTTTAA AAGACAGTCA |

Figure 28: Region of mutagenesis (the gray-green-yellow-gray colored mutagenesis primer) including one Kozak sequence. FRT target sequence is colored yellow, Kozak sequence is colored green, and the rests of the mutagenesis primer are colored gray.

The second mutagenesis approach included insertion of two Kozak consensus sequences located upstream and downstream of the FRT target sequence of $P_{\text {Aoxisyn }}$ (Figure 29).

| 1001 | TTGACAAGCT TTTGATTTTA ACGACTTTTA ACGACAACTT GAGAAGATCA AAAAACAACT AATTATTGAA ACGGAAGTTC CTATACTTTC TAGAGAATAG |
| :--- | :--- | :--- | :--- | :--- |
| | AACTGTTCGA AAACTAAAAT TGCTGAAAAT TGCTGTTGAA CTCTTCTAGT TTTTTGTTGA TTAATAACTT TGCCTTCAAG GATATGAAAG ATCTCTTATC |
| 1101 | GAACTTCAAA CGATGGCTAG CAAAGGAGAA GAACTTTTCA CTGGAGTTGT CCCAATTCTT GTTGAATTAG ATGGTGATGT TAATGGGCAC AAATTTTCTG |
| | CTTGAAGTTT GCTACCGATC GTTTCCTCTT CTTGAAAGT GACCTCAACA GGGTTAAGAA CAACTTAATC TACCACTACA ATTACCCGTG TTTAAAAGAC |

Figure 29: Region of mutagenesis (the gray-green-yellow-gray colored mutagenesis primer) including two Kozak sequences. FRT target sequences are colored yellow, Kozak sequence is colored green, and the rests of the mutagenesis primer are colored gray.

Mutagenesis primer containing one FRT (p-10-561 and p-10-562), or two FRTs (p-$10-575$ and p-10-576) were used. E. coli TOP10F electro-competent cells were transformed wuth the mutated plasmids (Figure 30). The cells were plated on LB-zeocin plates and incubated according to the standard protocol. After that, 3 randomly chosen clones were streaked out, and incubated for another 24h. From these 3 clones, plasmids were isolated using GeneJET ${ }^{\text {TM }}$ Plasmid Miniprep Kit. As the insertion of only 34 or 68 bp , which is the length of one or two FRTs, is too small to be detected on an agarose gel, plasmids were sent for sequencing without prior control restriction step. One positive (sequence verified) clone of each transformation was then linearised with SmiI over night, and P. pastoris Mut ${ }^{s}$ electrocompetent cells were transformed with it. In parallel, pPpT4_SmiI_Cycle3GFP unmutated plasmid was also linearised over night with SmiI, and P. pastoris Mut ${ }^{\text {s }}$ electro-competent cells were transformed, and plated on YPD-zeocin plates. After that, 90 clones from the first transformation (carrying plasmids with one FRT), 45 clones from the second transformation
(carrying plasmids with two FRTs), and 144 clones from the third transformation (carrying unmutated plasmid) were cultivated in deep well plates (DWPs). Thereby one half of each DWP was inoculated with clones carrying mutated and the other half with the clones carrying unmutated plasmid.

Figure 30: pPpT4_SmiI_Cycle3GFP_FRT1/2 represents both, plasmid carrying one and two FRT sequences. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic AOX1 promoter upstream region); PAOX1_Syn (synthetic AOX1 promoter region); Site of mutagenesis (sequence containing one or two FRT target sequences); Cycle3GFP (synthetic gene coding for green fluorescence protein); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); Zeocin_Syn (gene for zeocin resistance); AODTT (AOD terminator);

10.2.3.2 Results and discussion

For calculation of the final values, the measured fluorescence values were normalized by OD_{600} values. The average negative control was subtracted in addition. The final values for clones carrying plasmids with integrated FRT target sequences were than compared with that for clones carrying pPpT4_SmiI_Cycle3GFP empty plasmid (Figure 31, 32 and 33).

All clones carrying 1 or 2 FRTs showed drastically lower fluorescence values than clones carrying an unmutated reporter plasmid. More precisely, in DWP1, the highest measured value for clones carrying unmutated plasmid was 5149,34 RFU (relative fluorescence units), while clones carrying plasmid with one FRT was 316,80 RFU only. Approximately the same ratio was seen for the DWP2 and DWP3.Comparing low producer clones for all three DWPs, the control plasmid based strains reached the level of 500 RFU , while for the clones carrying one or two FRTs, only 50 and 30RFU were measured, respectively. The average ratios of the activity of clones carrying unmutated plasmid and clones carrying plasmids with FRT vary between 10,5 and 8,5 for clones with one and two FRtarget sequences, respectively.

Figure 31: GFP fluorescence measurement screening results of DWP No.1. The green colored clones carry PpT4-GFP-AOX1Syn (unmutated plasmid), and the red colored clones carry PpT4-GFPAOX1Syn with integrated one FRT target sequence (mutated plasmid). From 93 clones screened in total, only one was negative, showing activity in the range of the negative control.

Figure 32: GFP fluorescence measurement screening results of DWP No.2. The green colored clones carry PpT4-GFP-AOX1Syn (unmutated plasmid), and the red colored clones carry PpT4-GFPAOX1Syn with integrated one FRT target sequence (mutated plasmid). From 93 clones screened in total, three clones were negative, showing activity in the range of the negative control.

Figure 33: GFP fluorescence measurement screening results of DWP No.3. The green colored clones carry PpT4-GFP-AOX1Syn (unmutated plasmid), and the red colored clones carry PpT4-GFPAOX1Syn with integrated two FRT target sequences (mutated plasmid). From 93 clones screened in total, seven clones were negative, showing activity in the range of the negative control.

From these results, a clear conclusion could be made, namely that a 34bp long FRT target sequence placed upstream of the target gene has a dramatically negative influence on expression level, (8 times less fluorescence). Also an insertion of a suitable Kozak consensus sequence right before the start codon did not improve the situation. A possible explanation for this can be found in the nature of the FRT target sequence. The two complement flanking ends of the FRT can join together, thereby making 13 bp long hairpin, and a loop of 8 bp . This intramolecular DNA base pairing might result in diverging of DNA and Polymerase.

Since the final aim of using this cassette is overexpression of the desired PpPDI, the cassette variant A as shown in this approach, is not convenient for this aim. For that reason, further work was focused on developing the cassette variant B.

10.2.3.3 Design of cassette variant B

The task within this part of the project was the redesign of the existing FRTrecombinase cassette (HIS4_Flipper_old_FRT) into PpPDI-specific $P_{A O X I}$-replacement cassette variant B (Figure 34; see also Figure 27). For that aim, the eight different cassettes' parts were separately amplified using PCR, and joined together using OE-PCR.

Figure 34：Construction of PpPDI－specific $\boldsymbol{P p}_{\boldsymbol{P}} \boldsymbol{A O X X I}$－replacement cassette／Variant B．PpPDI－ specific homologous region，presents the homologous 3 ＇－flanking end of the cassette．It is specific for each PDI and it varies in size from 528 to 813 bp ．OER is the abbreviation for overlap extension region， and shows the site of connection of the separately amplified cassettes＇parts．

The first part，$P p P_{A O X I}$（FRT－pAOX1），was amplified using the primer p－10－594（fw） and p－10－589（rv），and pPpKan＿SmiI plasmid as a template．It was 973 bp long，and contained one FRT target sequence on the 5 ＇－terminus．

The second part，FLPrecombinase－CYCTT，was amplified using the overlapping primer p－08－136（fw）and p－07－638（rv）．This part was 1809bp long，and it was amplified from a pJet plasmid carrying the FLIPPER＿PAOX1 cassette．

The third part，PILV5（ $P p P_{\text {ILV5 }}$ promoter），was amplified from P．pastoris CBS7435 genomic DNA，using p－10－866（fw）and p－10－593（rv）primer，and it was 619 bp long．

The fourth part，Zeocin－AODTT，was amplified from the pJet 1.2 plasmid carrying the FLIPPER＿PAOX1 cassette．To do so，two overlapping primer，p－10－592（fw）and p－10－867（rv） were used．The p－10－592（fw）primer was designed to contain homologous sequences from both，PILV5 and Zeocin in order to ensure overlapping regions for joining PILV5 and Zeocin and deleting the prokaryotic promoter EM72 from the existing HIS4＿Flipper＿old＿FRT cassette （Figure 35 ）．EM72 is an unnecessary prokaryotic promoter sequence integrated into the ILV5 promoter and was therefore deleted．The total length of the fourth part was 919 bp ．

2	
3	－－－－CCAAATATCGTCTCCACAAA－－－－－－－－－－－－－－20 20
1	CCGAAAAAATTTTCTTCCCTTCTCTTCCAAATATCGTCTCCACAAATCTAGAGTGTTGAC 600
2	－－AAAATA－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－4 593
3	－－－AAAATA－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－ 27
1	ACTTTATACTTCCGGCTCGTATAATACGACAAGGTGTAAGGAGGACTAAACCATGGCTAA 660 ＊市草草
2	ACTCACCTCTGCTGTTCCAGTCCTGACTGCTCGTGATGTTGCTGGTGCTGTTGAGTTCTG 653
3	ACTCACCTCTGCTGTTCC－－46
1	ACTCACCTCTGCTGTTCCAGTCCTGACTGCTCGTGATGTTGCTGGTGCTGTTGAGTTCTG 720

Figure 35：Primer p－10－592（sequence number 3 in this figure）was used for deletion of EM72 prokaryotic promoter from the existing cassette．The sequence number 1 depicts the end of the $P p P_{I L V 5}$ and the beginning of the Zeocin coding domain（where EM72 is already deleted）．The sequence number 2 depicts the preexisting part of the cassette including EM72 prokaryotic promoter．

PpPDI-specific homologous region were different for all four cassettes. They were amplified from P. pastoris CBS7435 genomic DNA (Table 15). After all parts of the cassettes were separately amplified, they were connected by several sequential steps of OE-PCR. In a first step the $P p P_{A O X I}$ and Recombinase-CycTT parts were connected using the primer p-10813(fw) and p-07-638(rv). Since $P p P_{A O X I}$ was two times in each cassette, primer p-10-813(fw) ends with a linker sequence at its 5^{\prime}-terminus, in order to avoid a double primer binding site in the final OE-PCR step. In the second OE-PCR step, the $P p P_{\text {ILV5 }}$ and Zeocin-AODTT parts were connected using the primer p-10-866(fw) and p-10-867(rv). Within the third OE-PCR step, $P p P_{A O X I}$ part was connected with each $P p P D I$-specific part. During the final OE-PCR step $P p P_{A O X I}-$ Recombinase-CycTT, $P p P_{\text {ILV }}$-Zeocin-AODTT, and $P p P_{A O X I}-P p P D I$-specific parts were connected.

All amplified parts (fragments) were purified using preparative agarose gel electrophoresis, and Wizard® SV Gel and PCR Clean-Up System from Promega. Their sizes were controlled using 1kbDNA-ladder as standard, and their concentrations were measured by NanoDrop spectrophotometer. The whole cassettes were ligated with pJet 1.2/blunt ends cloning vector. After that E. coli TOP10 F electro-competent cells were transformed with the plasmid, and plated on LB-ampicillin plates.

Cassettes located gene	PP7435_Chr4-0107	PP7435_Chrl-0128	PP7435_Chrl-0470	PP7435_Chr4-0183
Length of the PDI specific homologous region	813	528		548
Primer used for the PDI specific homologous region amplification	$\mathrm{p}-10-588 / \mathrm{p}-10-587$	$\mathrm{p}-10-586 / \mathrm{p}-10-585$	$\mathrm{p}-10-584 / \mathrm{p}-10-583$	$\mathrm{p}-10-582 / \mathrm{p}-10-581$
Primer used for the third OE-PCR step of cassette construction	$\mathrm{p}-10-594 / \mathrm{p}-10-587$	$\mathrm{p}-10-594 / \mathrm{p}-10-585$	$\mathrm{p}-10-594 / \mathrm{p}-10-583$	$\mathrm{p}-10-594 / \mathrm{p}-10-581$
Primer used for the final OE-PCR step (whole cassette amplification)	$\mathrm{p}-10-813 / \mathrm{p}-10-587$	$\mathrm{p}-10-813 / \mathrm{p}-10-585$	$\mathrm{p}-10-813 / \mathrm{p}-10-583$	$\mathrm{p}-10-813 / \mathrm{p}-10-581$

Table 15: Overview of OE-PCR details connected to the PpPDI-specific promoter replacement cassette construction.

Regarding the construction of $P p P D I$-specific $P_{A O X I}$-replacement cassettes, difficulties occurred during the final OE-PCR step. Namely, as $P_{A O X I}$ was used two times in one cassette, the forward primer ($\mathrm{p}-10-594$) was binding more strongly to the second $P_{\text {AOXI }}$, resulting in high concentration of a short incorrect band instead of the band of full length cassette. However, this problem could be solved by T_{m} gradient OE-PCR optimization. The second and less expected difficulty was that after sequencing the full length cassettes point mutations were found in almost each of them. For this reason, additional PCRs and OE-PCRs, as well as restrictions and ligations were done in order to eliminate these.

10.3 Design of Pichia pastoris reporter strains carrying genes coding for model proteins CalB and HRP

To evaluate the effect of PpPDI up-regulation Candida antartica lipase (CalB) and Horseradish peroxidase (HRP) were used as model proteins. For that reason, within this thesis four new P. pastoris $\Delta \mathrm{KU} 70$ strains were designed, two of them carrying a CalB, and the other two carrying an $H R P$ gene. For each model protein one single copy and one multi copy strain were chosen from the obtained screening landscapes.

Since PpPDI-specific $P_{A O X I}$-replacement cassettes contain a Zeocin resistance gene, in order to achieve a second selection basis, the model proteins were inserted into pPpKan_SmiI plasmid which carries a kanamycin resistance gene.

10.3.1 Design of expression vectors carrying CalB and HRP gene

Abstract

pPpT4_SmiI_CalB and pPpT4_SmiI_HRPC1A plasmids were isolated from E. coli using GeneJET ${ }^{\text {TM }}$ Plasmid Miniprep Kit from Fermentas. CalB and HRP genes together with α-factor signal sequence for secretion, were cut from the plasmids using restriction enzymes EcoRI and NotI. EcoRI cuts both plasmids one time, at the α-factor 5^{\prime}-terminus. NotI cuts also one time, at CalB and HRP 3'-terminus, respectively. In addition, an empty pPpKan plasmid was cut with the same restriction enzymes, EcoR I and Not I. The DNA sequence for the α factor signal sequence for secretion together with CalB was a 1235 bp long fragment, and the fragment containing α-factor together with HRP was 1206 bp long. The empty pPpKan plasmid cut with EcoR I and Not I was 3964 bp long. After ligation of the fragments, six possibly positive clones carrying CalB and two carrying HRP were cut for size control with Fast Digest restriction enzymes EcoRI and BamHI. Subsequently, two plasmids of correct size were sent for sequencing. Following primers were used for sequencing of both, pPpKan_SmiI_CalB and pPpKan_SmiI_HRPC1A p-08-849 and p-09-194 (Figure 36 and 37). For both constructs a positive clone was found.

Figure 36: pPpKan_SmiI_CalB \#1 is derived from pPpKan_SmiI by insertion of $\boldsymbol{\alpha}$-factor (alphafactor secretion signal sequence) and CalB gene, through restriction with EcoR I and Not I and ligation using T4DNA ligase.

Figure 37: pPpKan_SmiI_HRPC1A \#0 is derived from pPpKan_SmiI by insertion of α-factor (alpha secretion signal sequence) and HRP gene, through restriction with EcoR I and Not I and ligation using T4DNA ligase.

10.3.2 Transformation of CalB and HRP expression vectors to P. pastoris $\Delta K U 70$

Plasmids pPpKan_SmiI_CalB and pPpKan_SmiI_HRPC1A were linearised with SmiI over night. After that, P. pastoris \triangle KU70 electro-competent cells were transformed with $1-2 \mu \mathrm{~g}$ by electroporation, and plated on YPD-geneticin plates. 6 DWPs were inoculated with transformants. P. pastoris $\Delta \mathrm{KU} 70$ strain was used as negative control on each plate. As control strains for CalB screening P. pastoris Mut ${ }^{\text {s }}$ pPpT4_SmiI_CalB clones A9 (low activity level) and E9 (high activity level) were used. For the HRP screening P. pastoris Mut ${ }^{5}$ pPpT4_SmiI_C1AHRP clones H12 (low activity level) and H5 (high activity level) were used.

10.3.3 Screening results of P. pastoris $\Delta K U 70$ CalB and $H R P$ reporter strains

After cultivation, all DWPs were screened for positive clones using CalB and HRP photometric activity assays. Thereby clones from both the lowest and the highest activity level were chosen and rescreened. This was done in order to prove if the overexpression of the desired PDI has the same effect on the expression level of the model protein in the single copy and the multi copy clones.

For the screening for clones with CalB activity, from 87 wells inoculated with single colonies in DWP_A, DWP_B, DWP_1, and DWP_3, enzyme activity was measured for 72, 57, 46, and 86 clones, respectively. For the DWP_4 and DWP_8, 41 of inoculated 59 wells, and 35 of inoculated 43 wells contained clones secreting CalB. The final values were calculated by reducing each value with the average value of the negative control of each DWP. (Landscapes in Appendix 1) Seven clones showing highest activity were chosen and rescreened (Figure 38). Also five randomly chosen clones from the lowest activity level were rescreened (Figure 39). The aim of the rescreen was to define the most stable clones with high and low activity. Thereby, the rescreen was performed with eight biological replicates for each clone, inoculated in vertical lines of the DWPs. This inoculation order seemed to be necessary in order to avoid measuring errors which could occur due to different oxygen distribution. The cultivation media and protocol were the same as that used for the screening.

Figure 38: Rescreen of seven clones showing highest activity (F8, B2, D6, E8, E12 and F3). The orange colored bars present the clones used as positive control: $P p \mathrm{Mut}^{\mathrm{s}}$ _CalB_E9 as high activity and $P p \mathrm{Mut}^{\mathrm{s}}$ _CalB_A9 as low activity clone. The yellow colored bar presents the most stable clone showing high activity ($P p \Delta$ KU70_CalB_E12), which were chosen to be used for the further experiments.

Figure 39: Rescreen of five clones showing low activity (D2, H1, E9_\#1, D11 and B9). The orange colored bars present the clones used as positive control: PpMut ${ }^{\text {s }}$ CalB_E9 as high activity and $P p \mathrm{Mut}^{\mathrm{s}}$ _CalB_A9 as low activity clone. The yellow colored bar presents the most stable clone showing low activity ($P p \Delta \mathrm{KU} 70 _$CalB_E9_\#1), which were chosen to be used for the further experiment.

For the screening for clones with HRP-activity, from 67 wells inoculated with single colonies in DWP_D, DWP_2, and DWP_5, enzyme activity was measured by 51, 25, and 27 clones, respectively. For the DWP_C and DWP_6, 78 of inoculated 87 wells, and 51 of inoculated 73 wells contained clones secreting HRP. The final values were calculated by reducing each value with the average value of the negative control of each DWP. (Landscapes in Appendix 2) Six clones were chosen for rescreening, three with the highest activity and three randomly chosen low activity clones (Figure 40). Again, the aim of the rescreen was to define the most stable clones with high and low activity. The rescreen was done in the same way as described for rescreen of clones with CalB activity.

Figure 40: Landscape of photometric HRP rescreen of the most stable single and multi copy clones. The orange colored bars present the clones used as positive control: $P p$ Mut ${ }^{s}$ _HRP_H5 as high activity and $P p$ Mut ${ }^{s}$ _HRP_H12 as low activity clone. The yellow colored bars present the most stable clones showing low ($P p \Delta \mathrm{KU} 70 _$HRP_H11) and high activity ($P p \Delta \mathrm{KU} \mathrm{H}_{0}$ _HRP_D7), which were chosen to be used for the further experiments.

Cloning of CalB and HRP expression vectors to P. pastoris $\Delta \mathrm{KU} 70$ gave expected results. The $P p \Delta K U 70$ strain grows slower than the wild type (CBS7435). For that reason 48 h after the transformation the $P p \Delta \mathrm{KU} 70$ colonies were still too small to be picked. On the other hand, approximately 72 h after the transformation it was difficult to distinguish between the positive clones and the background. The background consisted of the so called satellite colonies, which are not positive but are able to grow in the certain radius of each positive clone, where the antibiotic in the medium got degraded. For that reason 48 h after the transformation the coming colonies were labeled on the outside of the plate bottom. Thus the positive colonies were easily separated from their satellite colonies. After the first rescreen, standard deviations of more than 20% were seen for all rescreened clones, which implied a possible cultivation or measurement mistake (the results of the first rescreen are not shown in the text). For that reason, another rescreen experiment was done. This time, the eight biological replicates of each colony were inoculated in vertical lines of the DWPs. This sample order
ensured equal aeration of all biological replicates and identical activity measurement using an 8 -channel pipette. After these optimizations, activity standard deviations lower than 20% were detected, which is in general acceptable percentage for micro scale cultivation of P. pastoris strains. Three of four clones used as positive control ($P p \mathrm{Mut}^{\mathrm{s}}$ _CalB_A9, $P p \mathrm{Mut}^{\mathrm{s}}$ _CalB_E9 and $P p \mathrm{Mut}^{\mathrm{s}}$ _HRP_H5) showed standard deviation higher than 20%. However, this fact did not influence the screening and rescreening experiments, since the positive control strains are $P p \mathrm{Mut}^{\mathrm{s}}$ and they could not be directly compared with $\operatorname{Pp} \Delta \mathrm{KU} 70$ strains. They were used in this thesis for approximately comparison of the single copy and multi copy expression level of the selected clones, and also in order to confirm that the assays work properly. After the rescreen, four clones shoving best reproducibility were chosen for further experimental work. $P p \Delta K U 70 _C a l B _E 12$ clone was chosen as high activity CalB clone with standard deviation of only $5,76 \%$. This clone is very possible a single copy clone, as it is known that single copy CalB strains show highest enzyme activity ${ }^{69}$. However, without copy number determination this is only speculation. From the lowest activity level on the landscape, clone Pp \triangle KU70_CalB_E9_\#1 with standard deviation of $7,19 \%$ was chosen. For HRP, since the enzyme activity to a certain extent correlates to the gene copy number, the chosen $P p \Delta \mathrm{KU} 70 _\mathrm{HRP}$ _H11 and $P p \Delta \mathrm{KU} 70 _$HRP_D7 are assumed to be single and multi copy clones, showing $10,22 \%$ and $19,20 \%$ standard deviation of their activities.

10.4 Conclusion

Since the construction of the $P p P D I$-specific $P_{A O X I}$-replacement cassettes was more time-consuming than it was though at the beginning, the transformation of the cassettes to the $P p \Delta \mathrm{KU} 70 \quad$ reporter strains $\left(P p \Delta \mathrm{KU} 70 _\mathrm{CalB}\right.$ E12, $\quad P p \Delta \mathrm{KU70} \mathrm{_CalB} \mathrm{_E9} \mathrm{_} \mathrm{\# 1}$, $P p \Delta$ KU70_HRP_H11 and $P p \Delta$ KU70_HRP_D7) will be a part of another project. Actually, after cassette integration in a proper $\bar{P} p P D I$ locus, and AOX1 promoter insertion, it will be possible to analyze the influence of the $P p P D I$ overexpression on the expressed heterologous proteins (CalB and HRP) in the four reporter strains. As it has been shown in many casestudies, co-expression of PDI can have positive, negative, and no impact on heterologous protein expression. One explanation for that could be the different substrate specificity among the PDIs. It would be also interesting to know if the impact of PpPDI co-expression on heterologous protein expression varies depending on the gene copy number of the reporter strains. For these reasons, the reporter strains designed within this thesis were chosen from the lowest and highest activity level, and carry different reporter genes (CalB and HRP). Further experiments should direct us to the final aim of this project, which was the construction of P. pastoris patent free platform strains for production of higher yield of correctly folded heterologous proteins.

11. Design of 1,6-manosyltrasferase knockout strains of Pichia pastoris

11.1 Project aim and strategy

11.2 Sequence analysis of PpOCH1 and PpHOC1 genes

11.3 Design of PpOCH1 and PpHOC1 knockout cassettes
11.4 Design of expression vector carrying gene coding for model protein HNL
11.4.1 Design of Pichia pastoris reporter strain expressing HNL
11.4.2 Screening results of HNL reporter strain
11.5 Transformation of PpOCH1 and PpHOC1 knockout cassettes to P. pastoris HNL reporter strain

11.5.1 Results and discussion

11.5.2 Design and screening of P. pastoris $\operatorname{AKU} 70$ HNL reporter strain
11.6 Conclusion and further perspectives

11.1 Project aim and strategy

The aim of this project was to design P. pastoris $\mathrm{OCH1}$ and P. pastoris HOC1 knockout strains. OCH1 and HOC1 are genes coding for $\alpha-1,6$ mannosyltransferases in P. pastoris. As model protein for analyzing the protein glycosylation in the knockout strains, P. pastoris CBS7435 and P. pastoris \triangle KU70 strains carrying the PaHNL5 (Prunus amygdalus hydroxynitrile lyase 5) gene were first designed. The knockout cassettes contain $\mathrm{OCH1}$ and HOCl locus homologous flanking ends on the 3^{\wedge} and $5^{`}$ end, so the gene deletion should occur through double site homologous recombination.

11.2 Sequence analysis of $\mathrm{PpOCH1}$ and $\mathrm{PpHOC1}$ genes

According to GenDB and the NCBI database, two genes code for $\alpha-1,6$ mannosyltransferase in P. pastoris CBS7435 (wild type) strain. The first one, called OCH1, is located on chromosome are (PP7435_Chr1-0258) and codes for a 404 amino acids long $\alpha-1,6$ mannosyltransferase. The second one is called HOC1 (PP7435_Chr3-0582). It is located on chromosome three and codes for a 286 amino acids long $\alpha-1,6$ mannosyltransferase. The \%GC content vary between $41,1 \%$ for PpHOCl and $43,7 \%$ for $\mathrm{PpOCH1}$. $\mathrm{PpOCH1}$ contains no introns, in contrast to PpHOCl which has one 130bp long intron. Both, OCH1 and HOC1 belong to the enzyme class EC 2.4.1.

According to the analysis and comments made within the recent P. pastoris CBS7435 genome sequencing project, inside the cell the gene product of $\mathrm{OCH1}$ is anchored to the endoplasmic or Golgi membrane and the product of HOCl is a Golgi membrane protein.*

Providing DNA multiple sequence alignment of $\mathrm{PpOCH1}$ and PpHOCl coding domains, sequence similarity of 57% has been observed (Figure 41). The multiple sequence alignment of the 1000bp long upstream and downstream regions, showed a sequence similarity of 49% and 50%, respectively (Figure 41; Appendix 5). The multiple sequence alignment of the amino acid sequences of PpOCH 1 and PpHOC 1 showed a low sequence similarity of 25% (Figure 41; Appendix 6).

Alignment 1: Multiple sequence alignment of the coding domain sequences of PpOCHI and
PpHOC1.

CLUSTAL 2.1 multiple sequence alignment

CCA36419.1 ATG-GCGAAGGCAGATG-GCAGTTTGCTCTACTA-TAATCCTC--ACAATCCA--CCCAG 53
CCA39540.1 ATGTACGAA---AGATGTGAAGTTT-CTTTGTTGGCGATTTTCTTGCAGCGCGATCGCGG 56

* Information source: https://gendb.cebitec.uni-bielefeld.de/

CCA36419.1 CCA39540.1

CCA36419.1
CCA39540.1

CCA36419.1 CCA39540.1

CCA36419.1 CCA39540.1

CCA36419.1
CCA39540.1

CCA36419.1
CCA39540.1

CCA36419.1
CCA39540.1

CCA36419.1 CCA39540.1

AAGGTATTACTTC--TACATGGCTATATTCGCCGTTTCTGTCATTTGCGTTTTGTACGGA 111 TCGGTATGATTTCCCTTCA-GACCAAAA--ACAGATATAGATATT--CAATTGAAACTCG 111 CССTCACAACAATTATCATCTCCAAAAATAGACTATGATCCATTGACGCTCCGATCACTT 171 CCCTTCCAACA--------CCCTGAA--------CACCACCCCCTAATGCAACAA-CAGCT 155 GATTTGAAGACTTTGGAAGCTCCTTCACAGTTGAGTCCAGGCACCGTAGAAGATAATCTT 231 GTTTAGAAAAGT----AATTTGGCTCACGGTTGGACTCA-------TA-ACGGTGATATT 203 $\star \star \star \star \star *$

CGAAGACAATTGGAGTTTCATTTTCCTTA-CCGCAGTTACGAACCTTTTCCCCAACATAT 290 -GGTAATAATAAAGATTTCATCCAGCAAGTCCACCGCCACAGACCTT---CAGAAAGTAT 259

TTGGCAAACGTGGAAAGTTTCTCCC----TCTGAT-AGTTCCTTT--CCGAAAAACTTCA 343 T-GAAGAATGCCAATATTTTACCGCAGGACGTGATCAATTACAATAGCAGAAAAGTAACG 318

AA--GACTTAGGTGAAAGTTGGCTGCAAAGGTCCCCAAATTATGATCATTTTGTGATACC 401 GATGAACTCGCTTCAAAGCTGGACG---AGATT--CAAA--AGAAGTATCTCTCGAAGCA 371

CGATGATG----CAGCATG---GGAACTTATTCACCATGAATAC--GAACGTGTACCAGA 452 AGATGATAGAATTAGCAAGCTCGAAGCTGAACGGGCAGATCTACTGGAACAGGT--TAGA 429

AGTCTTGGAAGCTTTCCACCTGCTACCAGAGCCCATTCTAAAGGCCGATTTTTTCAGGTA 512 TTTCTAAGGAAC---CCCCCTGC----AGGATCAAGTTTAAGAGAAAAATTGGCT---TA 479

TTTGATTCTTTTTGCCCGTGGAGGACTGTATGCTGACATGGACACTATGTTATTAAAACC 572 TCTGTTTCCTTATAAT----GAAAACGGCAAATTC-CCTGCTTA-TATATGGC--AAAC- 530

AATAGAATCGTGGCTGACTTTCAATGAAACTATTGGT--GGAGTAAAAAACAATGCTGG- 629 $-A T G G A A G T A T G G C T-----T G A A T G--A C G A T C G G T T T G G A G A A A A G T T C A A A G A A G G C 582$

GTTGGTCATTGGTATT-GAGGCTGATCCTGATAGACCTGATTGGCACGACTGGTATGCTA 688 GAAACTCAGTGGGCTTCGAAG--AATCCTGGT----TTCGTT--CATGAGTTGTTT---- 630 $\star \quad \star *$

GAAGGATACAATTTTGCCAATGGGCAATTCAGTCCAAACGAGGACACCCAGCACTGCGTG 748 $-A A C G A T G--A T A C T T C C G G T G T G---T T T A-T T C A-----------C C A T C T G T A T A T C \quad 672$

AACTGATTGTAAGAGTTGTCAGCACGACTTTACGGAAAGAGAAAAGCGGTTACTTGAACA 808
 TGGTGGAAGGAAAGGATCGTGGAAGTGATGTGATGGACTGGACGGGTCCAGGAATATTTA 868 $\begin{array}{ccc}\text { TA-------------ATCTTGAAA--------ATGGACT-----------------TCTT } 737 \\ \star & \star * * * * * * & \star * * * * * *\end{array}$ CAGACACTCTATTTGATTATATGACTAATGTCAATACAACAGGCCACTCAGGCCAAGGAA 928 CAGA-----TATTTGGTTTTAT-----------------------------ACGCCAAG--- 762 $\star *$

TTGGAGCTGGCTCAGCGTATTACAATGCCTTATCGTTGGAAGAACGTGATGCCCTCTCTG 988
$--G G A G G T G T C T A T G C A G A--------------C G T T G-----A T A C T A T G C C T C T T C A G 801$

CCCGC-CCGAACGGAGAGATGTTAAAAGAGAAAGTCCCAGGTAAATATGCACAGCAGGTT 1047 CCTGTACCAAACTG---GATTCCTGAAAATGTCTCCCCAAA-AAGCAT------CGGGAT 851

Alignment 2: Multiple amino acid sequence alignment of $\operatorname{PpOCH1}$ and $P p H O C 1$.

CLUSTAL 2.1 multiple sequence alignment

CCA36419.1 -MAKADGSLLYYNP HNPPRRYYFYMAIFAVSVICVLYGPSQQ---------------LS 43 CCA39540.1 MYERCEVSLLAIFLQRDRGRKVIWLTVGLITVILVIIKISSSKSTATDLQKVLKNANILP 60 :.: *** :. * :: : : : ** *: *.. *.

CCA36419.1 SPKIDYDP--------------------------LTLRSLDLKTLEAPSQLSPGTVEDNL 77 CCA39540.1 QDVINYNSRKVTDELASKLDEIQKKYLSKQDDRISKLEAERADLLEQVRFLRNPPAGSSL 120 . *:*:. .*.: . ** **

CCA36419.1 RRQLEFHFPYRSYEPFPQHIWQTWKVSPSDSSFPKNFKDLGESWLQRSPNYDHFVIPDDA 137 CCA39540.1 REKLAYLFPYNENGKFPAYIWQTWKYGLNDDRFGEKFKEGETQWASKNPGFVHELFNDDT 180 *.: : ***.. ** : ****** . .*. * : : **: .* .:.*.: * : : **:

CCA36419.1 AWELIHHEYERVPEVLEAFHLLPEPILKADFFRYLILFARGGLYADMDTMLLKPIESWLT 197 CCA39540.1 SGVFIHHLYINVPEVIKAYELLPNIILKMDFFRYLVLYAKGGVYADVDTMPLQPVPNWIP 240

CCA36419.1 FNETIGGVKNNAGLVIGIEADPDRPDWHDWYARRIQFCQWAIQSKRGHPALRELIVRVVS 257 CCA39540.1 ENVSP----KSIGMIIGIQNDANNPDWK-----KITYIVYNFP------------IGVFK 279

CCA36419.1 TTLRKEKSGYLNMVEGKDRGSDVMDWTGPGIFTDTLFDYMTNVNTTGHSGQGIGAGSAYY 317
CCA39540.1 RSLVTQS---286
: * . .

CCA36419.1
NALSLEERDALSARPNGEMLKEKVPGKYAQQVVLWEQFTNLRSPKLIDDILILPITSFSP 377
CCA39540.1

CCA36419.1 GIGHSGAGDLNHHLAYIRHTFEGSWKD 404
CCA39540.1

Figure 41: Summary of DNA and amino acids multiple sequence alignment of PpOCH1 (PP7435_Chr1-0258) and PpHOC1 (PP7435_Chr3-0582).
a) Multiple sequence alignment of the coding domain sequences of $\mathrm{PpOCH1}$ and $\mathrm{PpHOC1}$.

$\operatorname{Seq} A-$	Hame -	Length -	Seq $B=$	Hame -	Length -	Score -
1	CCA36419.1	1215	2	CCA39540.1	963	57.0

b) Multiple sequence alignment of the 1000bp upstream region of $\mathrm{PpOCH1}$ and $\mathrm{PpHOC1}$.

SeqA -	Hame \leqslant	Length $\hat{}$	SeqB ${ }^{\text {- }}$	Hame $\hat{*}$	Length ${ }^{*}$	Score ${ }^{\text {- }}$
1	CCA36419.1	1000	2	ССА39540.1	1000	49.0

c) Multiple sequence alignment of the 1000bp downstream region of $\mathrm{PpOCH1}$ and $\mathrm{PpHOC1}$.

SeqA -	Hame $\stackrel{\text { - }}{ }$	Length $\stackrel{\text { - }}{ }$	SeqB ${ }^{\text {- }}$	Hame -	Length $\stackrel{\text { * }}{ }$	Score ${ }^{\text {- }}$
1	ССА36419.1	1000	2	ССА39540.1	1000	48.0

d) Multiple sequence alignment of the amino acid sequences of $\mathrm{PpOCH1}$ and PpHOCl .

SeqA $*$	Hame $*$	Length $*$	SeqB $*$	Name $*$	Length $*$	Score $*$
1	CCA36419.1	404	2	CCA39540.1	286	25.0

The coding domain sequences (CDS) of the genes OCH1 (PP7435_Chr1-0258) and HOC1 (PP7435_Chr3-0582) together with 1000bp upstream and downstream regions were amplified from genomic DNA (gDNA) of P. pastoris CBS7435 (wild type strain) with the primer pairs p-10-737(fw) and p-10-736(rv), and p-10-735(fw) and p-10-734(rv), respectively. The 2258bp and 1994bp long sequences were purified by preparative 1%-agarose gel electrophoresis, and Wizard® SV Gel and PCR Clean-Up System from Promega. After that they were ligated with a pJet1.2/blunt ends cloning vector using T4-DNA ligase. E. coli TOP10F electro-competent cells were transformed with the plasmid by electroporation. Aliquots of $20 \mu \mathrm{l}$ and $120 \mu \mathrm{l}$ of each transformation were plated on LB-ampicillin plates, and incubated for 24 h at $37^{\circ} \mathrm{C}$. After a incubation period, four positive clones were chosen, streaked out on LB-ampicillin plates, and incubated for another 24 h at $37^{\circ} \mathrm{C}$. Plasmids were isolated and sent for sequencing. All samples were sequenced using Sanger Technology by the LGC Genomics Company (Berlin, Germany).

The sequencing results were compared with the sequences contained in NCBI. Thereby following mismatches were detected:

- for the gene PP7435_Chr1-0258 (CCA36419.1), 153bp downstream to the gene start codon, 1 G is contained instead of 1 A as recorded in NCBI. However, this point mutation is silent one and the amino acid proline is not changed (both codes CCA and CCG code for Pro). Both, OCHI and HOCl DNA sequences from CBS7435 and GS115 contained in NCBI show 100% identity.
-for the gene PP7435_Chr1-0258 (CCA36419.1), 244bp downstream to the gene stop codon, the sequence contains 7C instead of 8C as recorded in GenDB;

11.3 Design of $\mathrm{PpOCH1}$ and $\mathrm{PpHOC1}$ knockout cassettes

Plasmids of two clones showing correct sequences were used in the further work for the construction of the knockout cassettes. Both, $\mathrm{PpOCH1}$ and PpHOCl knockout cassettes contain the following three parts: homologous upstream region of $\mathrm{OCH1}$ or HOCl gene, the gene for ampicillin resistance together with the regulatory elements (Pp pILV5 promoter and AODTT terminator), and homologous downstream region of $\mathrm{OCH1}$ or HOCl gene. All parts were amplified using PCR . For the $\mathrm{PpOCH1}$ and PpHOCl upstream regions the primer pairs: $\mathrm{p}-10-800(\mathrm{fw})$ and $\mathrm{p}-10-801(\mathrm{rv})$, and $\mathrm{p}-10-804(\mathrm{fw})$ and $\mathrm{p}-10-805(\mathrm{rv})$ were used, respectively. For the $\mathrm{PpOCH1}$ and PpHOCl downstream regions the primer pairs: $\mathrm{p}-10-802(\mathrm{fw})$ and $\mathrm{p}-10-$ 803(rv), and p-10-806(fw) and p-10-807(rv) were used, respectively. For the amplification of the whole core of the cassette, primers containing junction sequences (Linker 1 and Linker 2) were used (Figure 42).

Figure 42: Linker 1 (28bp) and Linker 2 (24bp). Two junction sequences used as overlapping regions for the connection of the cassette core region with the homologous upstream and downstream regions of $\mathrm{PpOCH1}$ and PpHOCl .

All cassettes' parts were joined together by OE-PCR, and the cassettes were ligated with pJet1.2/blunt ends cloning vector. E. coli TOP F` cells were transformed with these cassettes. The homologous flanking ends were connected with the core of the cassette with OEPCR, where the linker regions were used as overlapping sequences (Figure 43). The cells were plated on LB-ampicillin plates, as aliquots of $20 \mu 1$ and $120 \mu 1$ for each transformation. After an incubation period of approximately 24 h at $37^{\circ} \mathrm{C}$, positive clones were chosen, streaked out on LB-ampicillin plates, and incubated for additional 24 h at $37^{\circ} \mathrm{C}$. Plasmids of four clones of each transformation were isolated using the GeneJET ${ }^{\text {TM }}$ Plasmid Miniprep Kit and sent for sequencing. Two clones carrying knockout cassettes for $\mathrm{PpOCH1}$ and PpHOCl which showed correct sequences, were used for the further P. pastoris transformation.

Figure 43: 1,6-manosyltransferase knockout cassette. Green colored is the Pichia pastoris ILV5 promoter, red colored is the synthetic gene for kanamycin resistance (KanMX), and orange colored is the AOD terminator. The 5 - and $3 `$-flanking ends are 500 bp long, and they are homologous to the upstream and downstream regions of the CDS of PpOCH 1 and PpHOCl , respectively. Linker1 (28bp) and Linker2 (24bp) are short DNA junction sequences.

11.4 Design of expression vector carrying gene coding for model protein HNL

The plant isoenzyme 5 of hydroxynitrile lyase from Prunus amygdalus (PaHNL5) contains 13 potential N-glycosylation motifs. ${ }^{70}$ Previous studies have shown that heterologously expressed secreted PaHNL5 in P. pastoris is highly glycosylated. ${ }^{70}$ (Figure 44) ${ }^{70}$ For that reason, PaHNL5 was chosen to be a model protein within this project since the main goal was to prove the effect of the $\mathrm{OCH1}$ and HOCl deletion on the protein N glycosylation in P. pastoris.

Figure 44: ${ }^{70}$ Protein gel of different samples of glycosylated and deglycosylated PaHNL5 secreted in P. pastoris. At the positions 2, 4, 6 and 8 are different samples of the native form of PaHNL5 secreted in P. pastoris. At the positions 1, 3, 5 and 7 are different samples of PaHNL5 secreted in P. pastoris and additionally EndoH-deglycosylated. The high glycosylated native form of the enzyme shows a smear, while its deglycosylated form shows a clear band in the range of approximately 60 $\mathrm{kDa} .{ }^{70}$

Plasmid carrying $H N L$ gene was isolated (pGAPZA_a_PaHNL5alpha) using GeneJET ${ }^{\text {TM }}$ Plasmid Miniprep Kit. It was cut with BamHI in two fragments, the shorter one (1768bp), and the larger one (2991bp). The fragments were purified using preparative 1% agarose gel electrophoresis, and Wizard® SV Gel and PCR Clean-Up System from Promega. Additionally, the shorter fragment was cut with the restriction enzyme NotI and the larger fragment with EcoRI. The pieces of 577bp and 1348 bp respectively, were purified in the same way, and their sizes were controlled by 1%-agarose gel electrophoresis, using 1 kb DNA ladder as standard. The concentrations were measured with NanoDrop spectrophotometer. In parallel pPpT4_SmiI empty plasmid was isolated and cut with the same restriction enzymes as the fragments, NotI and EcoRI. The restricted plasmid was purified, its size was controlled and its concentration was measured, in the same way as for all other fragments. After that the vector was ligated with both fragments using T4DNA-ligase, for 1 h 30 min at $22^{\circ} \mathrm{C}$, and after ligation the samples were desalted for 60 min against $\mathrm{dH}_{2} \mathrm{O}$ at room temperature prior to electroporation. E. coli TOP10F electro-competent cells were used for transformation and aliquots of $50 \mu 1$ and $150 \mu 1$ were plated on LB-zeocin plates. The plates were incubated for approximately 24 h at $37^{\circ} \mathrm{C}$, and after that three clones were streaked out for additional 24 h at $37^{\circ} \mathrm{C}$. From these three clones plasmids were isolated and a control cut with BamHI (Fast Digest) for 15 min at $37^{\circ} \mathrm{C}$ was done. The size of the plasmid was controlled using 1%-agarose gel and the concentration was measured with NanoDrop spectrophotometer. Plasmids from all three clones were sent for sequencing.

Figure 45: pPpT4_SmiI_PaHNL5_alpha plasmid. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic AOX1 promoter upstream region); PAOX1_Syn (synthetic AOX1 promoter region); alpha factor (secretion signal sequence); PaHNL5 (gene coding for Prunus amygdalus hydroxynitrile lyase 5); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); Zeocin_Syn (gene for zeocin resistance); AODTT ($A O D$ terminator);

11.4.1 Design of a Pichia pastoris HNL reporter strain

The plasmid showing correct sequencing results was linearized, over night and at $30^{\circ} \mathrm{C}$ with SmiI. The linearized plasmid was purified using preparative 1%-agarose gel electrophoresis, and Wizard ${ }^{\circledR}$ SV Gel and PCR Clean-Up System from Promega and P. pastoris CBS7435 was transformed using $1-2 \mu \mathrm{~g}$. Aliquots of $150 \mu \mathrm{l}, 300 \mu \mathrm{l}$ and the rest of the cells were plated on YPD-zeocin plates and incubated for approximately 48 h and 72 h , respectively. After the incubation period, 4 deep-well plates (DWPs) were filled with $300 \mu 1$ sterile BMD1\% medium per well and each well was inoculated with a single colony picked from the transformation plates. Thereby, three wells per DWP were inoculated with a single colony of the P.p. CBS7435 strain, used as negative control. In order to ensure positive control for approximate correlation of the expression level, three wells per plate were inoculated with single colonies of NHL5_V317 α strains. This is a P. pastoris Mut ${ }^{s}$ strain carrying a single copy of a synthetic HNL5 gene, variant cloned with a pPpT4_SmiI cloning vector. All DWPs were cultivated at $28^{\circ} \mathrm{C}$, 110 rpm and 80% humidity, according to the P. pastoris long DWPscultivation protocol.

11.4.2 Screening results of P. pastoris CBS7435 $H N L$ reporter strain

After finishing the micro scale cultivation, all DWPs were screened for positive clones using a photometric HNL activity assay.

Thereby from 90 wells inoculated with single colonies in DWP_1 (Figure 46), 61 in DWP_2 (Figure 47), 90 in DWP_3 (Figure 48), and 90 in DWP_4 (Figure 49), enzyme activity was measured for $90,50,77$, and 82 clones, respectively. The final measure values were calculated by reducing each value with the average value for the negative control for each DWP.

Six clones showing highest activity were chosen and rescreened (Figure 50). The aim of the rescreen was to define the most stable clones with high activity. Thereby, the rescreen was performed with eight replicates for each clone, inoculated in vertical lines of the DWPs. This inoculation order seemed to be necessary in order to avoid measuring errors which could occur due to different oxygen distribution. The cultivation media and protocol were the same as that used for the screening.

Figure 46: Landscape of photometric HNL activity screening of DWP_1 (HNL5a in $\boldsymbol{P} . \boldsymbol{p}$. CBS7435). The yellow colored bar presents the clone used as positive control (HNL5_V317a).

Figure 47: Landscape of photometric HNL activity screening of DWP_2 (HNL5a in $\boldsymbol{P} . \boldsymbol{p}$. CBS7435). The yellow colored bar presents the clone used as positive control (HNL5_V317 α).

Figure 48: Landscape of photometric HNL activity screening of DWP_3 (HNL5a in $\boldsymbol{P} . \boldsymbol{p . C B S 7 4 3 5}$). The yellow colored bar presents the clone used as positive control (HNL5_V317 $)$.

Figure 49: Landscape of photometric HNL activity screening of DWP_4 (HNL5a in $\boldsymbol{P} . \boldsymbol{p . C B S 7 4 3 5}$). The yellow colored bar presents the clone used as positive control (HNL5_V317 α).

Figure 50: Landscape of photometric HNL rescreen of the most stable multi copy clones (HNL5a in P.p.CBS7435). The yellow colored bar presents the clone used as positive control (HNL5_V317a). The orange colored bar represents the clone chosen as reporter strain for the further work (F7_3).

11.5 Transformation of the P. pastoris HNL reporter strain with $\mathrm{PpOCH1}$ and $\mathrm{PpHOC1}$ knockout cassettes

The $\mathrm{PpOCH1}$ and PpHOCl knockout cassettes were amplified from the corresponding plasmids using PCR and following primer pairs: p-10-737 and p-10-736 and p-10-735 and p-10-734, respectively. The PCR products were purified using preparative 1% agarose gel electrophoresis, and Wizard® SV Gel and PCR Clean-Up System from Promega. Their concentrations were measured using a NanoDrop spectrophotometer. Different amounts of the purified knockout cassettes (500 ng to $1,5 \mu \mathrm{~g}$) were used for transformation of electro competent cells of P. pastoris CBS7435 carrying the PaHNL5_alpha gene (clone F7_3). PaHNL5_alpha is a HNL5 gene where the wild signal sequence was replaced by the alpha factor signal sequence. After transformation, aliquots of $50 \mu \mathrm{l}, 150 \mu \mathrm{l}$ and the rest of the cells (cells concentrated by brief centrifugation) were plated on YPD-zeocin/geneticin plates. Also aliquots of $330 \mu 1$ concentrated by brief centrifugation were plated on YPD-zeocin/geneticin plates. All transformation plates were incubated for approximately 48 h at $28^{\circ} \mathrm{C}$ and 80% humidity. After the incubation period deep-well plates (DWP) were filled with $300 \mu 1$ sterile BMD1\% medium per well and inoculated with single colony picked from the transformation plates. This time not every, but every second well of the DWPs was inoculated. Namely, strong background of satellite colonies was seen on the transformation plates which made it difficult to pick the real positive clones. However, the inoculation of every second well increased the distance between each two colonies on the stamp plate and thereby disabled the growth of the
satellite colonies. Three wells per DWP were inoculated with a single colony of P. pastoris CSB7435 strain, used as negative control. After approximately 48 h micro scale cultivation stamp plates of all DWPs were made and incubated for additional 48 h at $28^{\circ} \mathrm{C}$ and 80% humidity. After that colony PCRs were made. One of the primers used for the colony PCRs was binding to the cassettes and the other to the PpOCHI or PPHOCl locus, respectively. These colony PCRs resulted with no products. Colony PCRs were also done using primers which bind inside the knockout cassettes. These resulted in PCR product with right size (the size was controlled on 1%-agarose gel).

11.5.1 Results and discussion

All together, nine transformations were done and their transformation rate varied between 20 and 30 clones per transformation plate. However, after colony PCR of over 150 clones per gene to be knocked out, no knockout strain was detected. All colony PCR products showed bands characteristic for $\mathrm{PpOCH1}$ and PpHOCl locus, indicating with that the knockout cassettes integrated in the genome by non-homologous recombination, and not at the desired OCH or HOC locus. For that reason the project strategy was slightly changed and a new HNL reporter strain was designed. This time the $H N L$ reporter gene was cloned to P. pastoris $\mathbf{~ K K U 7 0 ~ s t r a i n ~ w h i c h ~ i s ~ d e l e t i o n ~ s t r a i n ~ w h e r e ~ n o ~ n o n - h o m o l o g o u s ~ r e c o m b i n a t i o n ~ c a n ~}$ happen or only rarely happens (Paragraph 2.5). Additionally, $\mathrm{PpOCH1}$ and PpHOCl knockout cassettes containing 2500bp upstream and downstream homologous regions were also designed and P. pastoris CBS7435_HNL as well as P. pastoris Δ KU70_HNL electro-competent cells were transformed with the cassettes. Including 2500bp long flanking ends in the knockout cassettes drastically increased their size, and could negatively influence the rate of cassette integration in the genome. However, it is known from different experimental data that the size of the homologous sequences and the efficiency of their integration in P. pastoris genome follow logarithmic function (Paragraph 2.3). For that reason also longer knockout cassettes were designed and P. pastoris CBS7435 HNL as well as P. pastoris \triangle KU70 HNL were transformed with the same.

11.5.2 Design and screening of \boldsymbol{P}. pastoris $\boldsymbol{\Delta K U 7 0}$ HNL reporter strain

The same plasmid carrying the PaHNL5_alpha gene used for design of P. pastoris CBS7435 HNL reporter strain was used also for design of P. pastoris \triangle KU70 HNL reporter strains. It was linearized and P. pastoris $\Delta \mathrm{KU} 70$ electro competent cells were transformed and plated out on LB-zeocin/geneticin plates. The possibly positive clones were picked and cultivated in DWPs and after that they were screened and rescreened using HNL enzyme activity assay. All experimental steps were done in the same way as for the design, screening and rescreen of P. pastoris CBS7435 HNL (Paragraph 11.4.1 and 11.4.2). For the amplification
of the 2500bp long $\mathrm{PpOCH1}$ and PpHOCl upstream and downstream homologous regions, genomic DNA of $P . p$ CBS7435 was used as a template.

For the micro scale (DWPs) cultivation, 90 wells were inoculated with single colonies in DWP_1 (Figure 51), DWP_2 (Figure 52), DWP_3 (Figure 53), DWP_4 (Figure 54). Enzyme activity was measured for $90,89,90$, and 90 clones, respectively. The final measure values were calculated by reducing each value with the average value for the negative control for each DWP. From all DWPs, eight clones showing highest activity were chosen and rescreened (Figure 55).

Figure 51: Landscape of photometric HNL activity screening of DWP_1 (HNL5a in P.p. \triangle KU70). The yellow colored bar presents the clone used as positive control (HNL5_V317 $)$.

Figure 52: Landscape of photometric HNL activity screening of DWP_2 (HNL5a in P.p. $\mathbf{\Delta K U 7 0}$). The yellow colored bar presents the clone used as positive control (HNL5_V317 α).

Figure 53: Landscape of photometric HNL activity screening of DWP_3 (HNL5a in P.p. Δ KU70). The yellow colored bar presents the clone used as positive control (HNL5_V317 α).

Figure 54: Landscape of photometric HNL activity screening of DWP_4 (HNL5a in P.p. Δ KU70). The yellow colored bar presents the clone used as positive control (HNL5_V317 α).

Figure 55: Landscape of photometric HNL rescreen of the most stable multi copy clones (HNL5a in $\mathbf{\Delta K U 7 0}$). The orange colored bar presents the clone used as positive control (HNL5_V317 $)$. The yellow colored bar represents the clone chosen as reporter strain for the further work (C10_3).

11.6 Results, discussion and further perspectives

Three transformations of $\mathrm{PpOCH1}$ and PpHOCl knockout cassettes (cassettes containing 2500bp long homologous regions) to P. pastoris CBS7435_HNL5 reporter strain (clone F7_3) were done and no knockout clones were detected.

For the transformation of the P. pastoris \triangle KU70_HNL reporter strain (clone C10_3), eight transformations were done which resulted in all together 10 clones only. And, again after colony PCR none of these clones displayed on of the desired knockouts ($\triangle O C H 1$ or $\triangle H O C 1$). It is also important to be mentioned that all 10 clones were found in the transformation with the long cassettes and with the highest DNA amount of approximately $1,5 \mu \mathrm{~g}$.

As already said (Paragraph 11.2), $\mathrm{PpOCH1}$ and PpHOCl gene products are ER and Golgi membrane located proteins, and theoretically their inactivation or deletion could disturb the function of these two crucial cell organelles. Also absence of proper glycosylation pattern in the other membrane proteins, caused by $\mathrm{OCH1}$ or HOCl inactivation or deletion could be lethal to the cell. Since P. pastoris \triangle KU70 strain has already been used for design of knockout strains in our research group and it worked with quite high efficiency, the first logical final conclusion can be that the deletions of $\mathrm{PpOCH1}$ as well as PpHOCl are lethal for the cells or that the genomic locus is hardly accessible and even more transformants need to be analyzed.
However, Jacobs et al. has already reported about P. pastoris strain with disrupted PpOCHI gene and about the influence of $\mathrm{PpOCH1}$ disruption on the N -glycosylation pathway in the cell. Also report about PpOCHI deletion has been recently published by Zhang et al.. Unfortunately, this publication is in Chinese language, and thus not accessible for everyone. Taking in consideration these two publications, it seems that the inactivation or deletion of at least PpOCHI is not lethal to the cell. No publications with similar topic were found about the PpHOC1.

After everything that is mentioned above, it seems that the strategy used in this thesis project was not optimal for deletion of the desired genes.
However, because of the biotechnological importance of design of P. pastoris strains with engineered N -glycosylation pathway, further perspectives of this project were discussed. One of the ideas was the optimization of the cloning method including the preparation of P. pastoris competent cells. Other strategy changes would include the redesign of the knockout cassettes. Namely, elimination of other P. pastoris homologous parts from the cassettes, as $P p P_{\text {ILVS }}$ should decrease the possibility of cassette integration at non-desired loci. One applicable improvement of the strategy was seen in the use of $\mathrm{PpOCH1}$ and PpHOCl natural promoter and terminator regions instead of $P p P_{\text {ILV5 }}$ and AODTT, respectively. In this way, the cassettes would be shorter, since the promoter and terminator would at the same time play a role of homologous flanking ends. This could increase the transformation rate and the possibility of cassettes proper integration in the genome. However, for that aim the promoters of $\mathrm{PpOCH1}$ and PpHOCl must be first validated.

Also totally different strategies, like using the recombinase systems could be applied, but this was not a topic of our discussion within this thesis.

12. References:

1. Cereghino, J.L. \& Cregg, J.M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews 24, 45-66 (2000).
2. Kurtzman, C.P. \& Robnett, C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73, 331-371 (1998).
3. Kurtzman, C.P. Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. Journal of industrial microbiology \& biotechnology 36, 1435-8 (2009).
4. Kurtzman, C.P. Description of Komagataella phaffii sp. nov. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella. International journal of systematic and evolutionary microbiology 55, 973-6 (2005).
5. Higgins, D.R. \& Cregg, J.M. Introduction to Pichia pastoris. Methods in molecular biology (Clifton, N.J.) 103, 1-15 (1998).
6. Küberl, A. et al. High-quality genome sequence of Pichia pastoris CBS7435. Journal of biotechnology 154, 312-20 (2011).
7. Cereghino, G.P.L., Cereghino, J.L., Ilgen, C. \& Cregg, J.M. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Current opinion in biotechnology 13, 329-32 (2002).
8. Macauley-Patrick, S., Fazenda, M.L., McNeil, B. \& Harvey, L.M. Heterologous protein production using the Pichia pastoris expression system. Yeast (Chichester, England) 22, 249-70 (2005).
9. Hartner, F.S. \& Glieder, A. Regulation of methanol utilisation pathway genes in yeasts. Microbial cell factories 5, 39 (2006).
10. Ruth, C. \& Glieder, A. Perspectives on synthetic promoters for biocatalysis and biotransformation. Chembiochem \square : a European journal of chemical biology 11, 761-5 (2010).
11. Sears, I.B., O'Connor, J., Rossanese, O.W. \& Glick, B.S. A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast (Chichester, England) 14, 783-90 (1998).
12. SREEKRISHNA, K. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris*1. Gene 190, 55-62 (1997).
13. Cregg, J.M., Madden, K.R., Barringer, K.J., Thill, G.P. \& Stillman, C.A. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Molecular and cellular biology 9, 1316-23 (1989).
14. Cregg, J.M., Cereghino, J.L., Shi, J. \& Higgins, D.R. Recombinant protein expression in Pichia pastoris. Molecular biotechnology 16, 23-52 (2000).
15. Montesino, R., García, R., Quintero, O. \& Cremata, J. a Variation in N-linked oligosaccharide structures on heterologous proteins secreted by the methylotrophic yeast Pichia pastoris. Protein expression and purification 14, 197-207 (1998).
16. Cregg, J.M. et al. Expression in the yeast Pichia pastoris. Methods in enzymology 463, 169-89 (2009).
17. Meagher, M.M. \& Inan, M. Non-Repressing Carbon Sources for Alcohol Oxidase (AOXI) Promoter of Pichia pastoris Non-Repressing Carbon Sources for Alcohol Oxidase (AOXI) Promoter of Pichia pastoris.
18. © 1993 Nature Publishing Group http://www.nature.com/naturebiotechnology. Group 11, 6 (1993).
19. Sørensen, H.P. Towards universal systems for recombinant gene expression. Microbial cell factories 9, 27 (2010).
20. Gellissen, G. Heterologous protein production in methylotrophic yeasts. Applied microbiology and biotechnology 54, 741-50 (2000).
21. Faber, K.N., Harder, W., Ab, G. \& Veenhuis, M. Review: methylotrophic yeasts as factories for the production of foreign proteins. Yeast (Chichester, England) 11, 133144 (1995).
22. Ews, R. The endoplasmic reticulum as a. Trends in Cell Biology 227-231 (1992).
23. © 1992 Nature Publishing Group. Group (1992).
24. Inan, M., Aryasomayajula, D., Sinha, J. \& Meagher, M.M. Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnology and bioengineering 93, 771-8 (2006).
25. Xiao, R. et al. The contributions of protein disulfide isomerase and its homologues to oxidative protein folding in the yeast endoplasmic reticulum. The Journal of biological chemistry 279, 49780-6 (2004).
26. Shaw, P.E. Peptidyl-prolyl isomerases: a new twist to transcription. EMBO reports 3, 521-6 (2002).
27. Mattanovich, D., Gasser, B., Hohenblum, H. \& Sauer, M. Stress in recombinant protein producing yeasts. Journal of biotechnology 113, 121-35 (2004).
28. Tian, G., Xiang, S., Noiva, R., Lennarz, W.J. \& Schindelin, H. The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell 124, 61-73 (2006).
29. Xiao, R., Lundström-Ljung, J., Holmgren, A. \& Gilbert, H.F. Catalysis of thiol/disulfide exchange. Glutaredoxin 1 and protein-disulfide isomerase use different mechanisms to enhance oxidase and reductase activities. The Journal of biological chemistry 280, 21099-106 (2005).
30. Gallogly, M.M., Starke, D.W. \& Mieyal, J.J. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxidants \& redox signaling 11, 1059-81 (2009).
31. Jessop, C.E., Watkins, R.H., Simmons, J.J., Tasab, M. \& Bulleid, N.J. Protein disulphide isomerase family members show distinct substrate specificity: P5 is targeted to BiP client proteins. Journal of cell science 122, 4287-95 (2009).
32. van Vliet, C., Thomas, E.C., Merino-Trigo, A., Teasdale, R.D. \& Gleeson, P. a Intracellular sorting and transport of proteins. Progress in Biophysics and Molecular Biology 83, 1-45 (2003).
33. Frand, a R., Cuozzo, J.W. \& Kaiser, C. a Pathways for protein disulphide bond formation. Trends in cell biology 10, 203-10 (2000).
34. Wedemeyer, W.J., Welker, E., Narayan, M. \& Scheraga, H.A. Current Topics Disulfide Bonds and Protein Folding \dagger. Current 39, (2000).
35. Nørgaard, P. et al. Functional differences in yeast protein disulfide isomerases. The Journal of cell biology 152, 553-62 (2001).
36. Warsame, A., Vad, R., Kristensen, T. \& Oyen, T.B. Characterization of a gene encoding a Pichia pastoris protein disulfide isomerase. Biochemical and biophysical research communications 281, 1176-82 (2001).
37. Zhang, S.-T. et al. Co-overexpression of PpPDI Enhances Secretion of Ancrod in Pichia pastoris. Applied biochemistry and biotechnology (2011).doi:10.1007/s12010-011-9192-4
38. Charlwood, J., Bryant, D., Skehel, J.M. \& Camilleri, P. Analysis of N-linked oligosaccharides: progress towards the characterisation of glycoprotein-linked carbohydrates. Biomolecular engineering 18, 229-40 (2001).
39. Helenius, J. \& Aebi, M. Transmembrane movement of dolichol linked carbohydrates during N -glycoprotein biosynthesis in the endoplasmic reticulum. Online 13, 171-178 (2002).
40. Bretthauer, R.K. \& Castellino, F.J. Glycosylation of Pichia pastoris-derived proteins. Biotechnology and applied biochemistry 30 (Pt 3), 193-200 (1999).
41. Hamilton, S.R. \& Gerngross, T.U. Glycosylation engineering in yeast: the advent of fully humanized yeast. Current opinion in biotechnology 18, 387-92 (2007).
42. Vervecken, W. et al. In Vivo Synthesis of Mammalian-Like, Hybrid-Type N-Glycans in Pichia pastoris. Society 70, 2639-2646 (2004).
43. Jacobs, P.P., Geysens, S., Vervecken, W., Contreras, R. \& Callewaert, N. Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nature protocols 4, 58-70 (2009).
44. Gemmill, T.R. \& Trimble, R.B. Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochimica et biophysica acta 1426, 227-37 (1999).
45. Yip, C.L.A.M. et al. Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNNI genes required for complex glycosylation of secreted proteins. Proteins 91, 2723-2727 (1994).
46. Romero, P.A. et al. Mnt2p and Mnt3p of Saccharomyces cerevisiae are members of the Mnn1p family of $\alpha-1$, 3 -mannosyltransferases responsible for adding the terminal mannose residues of O-linked oligosaccharides. Glycobiology 9, 1045-1051 (1999).
47. Grinna, L.S. \& Tschopp, J.F. Size distribution and general structural features of Nlinked oligosaccharides from the methylotrophic yeast, Pichia pastoris. Yeast (Chichester, England) 5, 107-15 (1989).
48. Romanos, M. Advances in the use of Pichia pastoris for high-level gene expression. Current Opinion in Biotechnology 6, 527-533 (1995).
49. Davidson, R.C. et al. Functional analysis of the ALG3 gene encoding the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastoris. Glycobiology 14, 399-407 (2004).
50. Nakayama, K., Nagasu, T., Shimma, Y., Kuromitsu, J. \& Jigami, Y. OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparaginelinked oligosaccharides. The EMBO journal 11, 2511-9 (1992).
51. Hamilton, S.R. et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science (New York, N.Y.) 313, 1441-3 (2006).
52. San Filippo, J., Sung, P. \& Klein, H. Mechanism of eukaryotic homologous recombination. Annual review of biochemistry 77, 229-57 (2008).
53. Shibata, T. Functions of homologous DNA recombination. Science And Technology 41, 21-23 (2001).
54. Klinner, U. \& Schäfer, B. Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS microbiology reviews 28, 201-23 (2004).
55. Hastings, P.J., Mcgill, C., Shafert, B. \& Strathem, J.N. Ends-Out Recombination in Yeast. 558, (1993).
56. Kit, P.E. Expression Kit.
57. Pichia protocols (Google eBook). 270 (Humana Press: 1998).at [http://books.google.com/books?id=0qwykqk-IUgC\&pgis=1](http://books.google.com/books?id=0qwykqk-IUgC%5C&pgis=1)
58. Sadowski, P.D. Recombinase of. Microbiology 5, 3274-3279 (1985).
59. McLeod, M., Craft, S. \& Broach, J.R. Identification of the crossover site during FLPmediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Molecular and cellular biology 6, 3357-67 (1986).
60. Sadowski, P. Site-specific recombinases: changing partners and doing the twist. Journal of bacteriology 165, 341-7 (1986).
61. Sauer, B. Site-specific recombination: developments and applications. Current opinion in biotechnology 5, 521-7 (1994).
62. Gronostajskit, R.M. \& Sadowski, P.D. The FLP Recombinase of the Saccharomyces cerevisiae 2 pLm Plasmid Attaches Covalently to DNA via a Phosphotyrosyl Linkage. (1985).doi:10.1128/MCB.5.11.3274.Updated
63. Inman, R.B. \& Coxg, M.M. Protein-based Asymmetry and Protein-Protein Interactions Site-specific Recombination * in FLP. 265, (1990).
64. Andrews, B.J., McLeod, M., Broach, J. \& Sadowski, P.D. Interaction of the FLP recombinase of the Saccharomyces cerevisiae 2 micron plasmid with mutated target sequences. Molecular and cellular biology 6, 2482-9 (1986).
65. Kii, N.J., Snaith, I.I.Y.M.R. \& Murray, J.A.H. tools for gen0me engineering. Cloning (1993).
66. Marx, H., Mattanovich, D. \& Sauer, M. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. Microbial cell factories 7, 23 (2008).
67. Gravel, S. Yeast Ku as a Regulator of Chromosomal DNA End Structure. Science 280, 741-744 (1998).
68. Walker, J.R., Corpina, R. a \& Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607-14 (2001).
69. Abad, S. et al. Real-time PCR-based determination of gene copy numbers in Pichia pastoris. Biotechnology journal 5, 413-20 (2010).
70. Weis, R., Gaisberger, R., Gruber, K. \& Glieder, A. Serine scanning: a tool to prove the consequences of N-glycosylation of proteins. Journal of biotechnology 129, 50-61 (2007).

Appendix 1: CalB activity assay - screening results

Figure 56: Landscape of photometric CalB activity screening of DWP_A. The orange colored bar presents the clone used as positive control with high activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _CalB_E9), and the yellow colored bar presents the clone used as positive control with low activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _CalB_A9).

Figure 57: Landscape of photometric CalB activity screening of DWP_B. The orange colored bar presents the clone used as positive control with high activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _CalB_E9), and the yellow colored bar presents the clone used as positive control with low activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _ CalB _A9).

Figure 58: Landscape of photometric CalB activity screening of DWP_1. The orange colored bar presents the clone used as positive control with high activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _CalB_E9), and the yellow colored bar presents the clone used as positive control with low activity ($\mathrm{Pp} \mathrm{Mut}^{\mathrm{s}}$ _CalB_A9).

Figure 59: Landscape of photometric CalB activity screening of DWP_3. The orange colored bar presents the clone used as positive control with high activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _CalB_E9), and the yellow colored bar presents the clone used as positive control with low activity ($\mathrm{Pp} \mathrm{Mut}^{\mathrm{s}}$ _CalB_A9).

Figure 60: Landscape of photometric CalB activity screening of DWP_4. The orange colored bar presents the clone used as positive control with high activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _CalB_E9), and the yellow colored bar presents the clone used as positive control with low activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _ CalB _A9).

Figure 61: Landscape of photometric CalB activity screening of DWP_8. The orange colored bar presents the clone used as positive control with high activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _CalB_E9), and the yellow colored bar presents the clone used as positive control with low activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _ CalB _A9).

Appendix 2: HRP activity assay - screening results

Figure 62: Landscape of photometric HRP activity screening of DWP_C. The orange colored bar presents the clone used as positive control with high activity ($P p \mathrm{Mut}^{5}$ _HRP_H5), and the yellow colored bar presents the clone used as positive control with low activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _HRP_H12).

Figure 63: Landscape of photometric HRP activity screening of DWP_D. The orange colored bar presents the clone used as positive control with high activity ($P p \mathrm{Mut}^{\mathbf{s}}$ _HRP_H5), and the yellow colored bar presents the clone used as positive control with low activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _HRP_H12).

Figure 64: Landscape of photometric HRP activity screening of DWP_2. The orange colored bar presents the clone used as positive control with high activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _HRP_H5), and the yellow colored bar presents the clone used as positive control with low activity ($P p \mathrm{Mut}^{\mathbf{s}}$ _HRP_H12).

Figure 65: Landscape of photometric HRP activity screening of DWP_5. The orange colored bar presents the clone used as positive control with high activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _HRP_H5), and the yellow colored bar presents the clone used as positive control with low activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _HRP_H12).

Figure 66: Landscape of photometric HRP activity screening of DWP_6. The orange colored bar presents the clone used as positive control with high activity ($P p \mathrm{Mut}^{\mathrm{s}}$ _HRP_H5), and the yellow colored bar presents the clone used as positive control with low activity ($P p \mathrm{Mut}^{-}$_HRP_H12).

Appendix 3: DNA sequences of relevance for this thesis

NCBI Accession number: CCA40283.1
Gene designation (GenDB): PP7435 Chr4-0107
EC number: 5.3.4.1
Gene product: K09580 prlyl 4-hydroxylase, beta polypeptide

3000bp upstream reagion / CDS (colored gray) / 1000bp downstream region

Abstract

gttcaaacct agcgctaatg ttttcaggca tttgttggct cttttaactg aagttcctgg tgtttcctat gatggagggg atcaagggct gattaactat gtattccaaa a aacggtgtgg t tccttcagta cttaaaccat cttttgtgaa agtttagctc agaagactcc actgatttca a agggagaagc gctgcctgtc ccggatattg cacgagtttt ttagctggta agtgcgatta ggtgggtacg t accccatcgg actgcaaacg 9 cgtacggaaa a ttcggtagtc a acttgtatgt c tgtcaggtat ataccttt atactgcaat ttgagtttca caggctcaaa tgacttccca tcaatttggg ttgtattatc tcgaggagaa agtttttccc tgcgcccaca gtagcgttaa cgttcgcata aaatttctct tgcgggttgt gggcatattg caccgaagct tctacagaga gttcctccat tcttcattga t gacgccagaa attatatggt c ctgcggaaac tacaaacgat ca gactctgttc ctcaacagga caggaaagaa actccctgtt gaatagaaca tagtgtttct attgtcttac gcggctcttt a cccactcaaa gataatctac cagacatacc t aacttcaata attgaacacg tactgatttc caaaccttct tcttcttcct actggaatat taaaactgtg gcaagtattt tgtccgctct cacactagca tattgctcca gaggactctc atgtcgtcaa attgactgaa gccacttttg ag cctcacgttt tggcagagtt ttttgcccct tggtgtggtc actgtaagaa

Abstract

ctgctgccga gatcttaaag gacaatgagc aggttaagat attatgtcaa ggctacgaaa agtgactatc aaggtcaaag tcagtgaaat caatgcaacc a agtactaccg gagaaattca cctatttgct ggtgcactg gctgaagcta a ttattaaacc t taagcatgcc a aacaagaagt t tcatcgcagg a caagctagtc 9 gccccttggt g atgaggatgc tattcaaggt t tctcgtgacc t tcagaccagt c ttaagaatgt ccggaagaa aaggaagctg atggattagc atcacttcgc acagcaatta ttatcaccat g tgggcggaac agaaagaccg t tgggtgtcaa actccgcttt acaaaagtgg cal gaagcattac ctggagcagt t gctccaaatg tgatggacat cttggccatg t acattgtgtc aacagcatca gcctaaaatt t taaataaagt aaaaattttg tttattgacg attctggaga atttctagaa g aatttaaaga cccattctac a ctgtatggcc atatccaaaa g accccagtta tgggtcaact c acgtattgat cgtcatgctc gtagccaga aataaagttt catacctaaa actt taaagggta acagagccaa agcattgtca aaagatttag acgacacaat ccaacttgga atctaacacc cactaagtct actgattatg ggcgaggaac agtccaaacc t agcctactat t gagcaacgtg g acatggatga a tcaagaccaa g ccaattgtga a acgatgaagt t taagagaatg gttgtgattg tgatccttta t ggctgagttt 9 aagaagaagc aatacgtt ctagttgccc gactaactgg ataccggac agtatgtgaa aaagcgatat cacaaaattt gaagacaatt tttttgaggg t tcaaggtgaa ccttttataa agggtccttg agctctttgg tgttggtatg ttccctctca aaatagaggg ctagtgttta tctatttgga tctatgaga caaaattaa gagaaactc gattgacga atcagagcc gtcttcgat gctcctgctt caaaacttga tcagctggt taaaggaga taactaggt acaaaattt gatacccatc tcattctca gctcagtgg caataataga

NCBI Accession number: CCA36295.1

Gene designation (GenDB): PP7435 Chr1-0128
EC number: /
Gene product: putative secreted protein

3000bp upstream reagion / CDS (colored gray) / 1000bp downstream region

ctggtcaggc tcggtttcat cctgaggttc attcgttggc ttctgcgacg atattgagtt cttattccaa
atgtatatca tcacctcatt ctttcttaca ctcagggtaa t agtcagcatc tgaatagttt g agaaaatctc tccatggttg a ccagccttat tagcaggatc c ctggaaggtc agatactttc c agtagtagta gcaccgccat t agtgtgtttt gccagtcatt t ctacactacc agatgtagtt a ttgcattgga tgaggagcgg c attgcagttt t gcgcgcatgc agagaaaggt c agttgagagt tggagccggg t aaacttaagc cagtctagat c ttggaatttc gtctgggacc gcatgttttg t caacgtgctg agtttgaaga ctaagactgg a
gtttttcaga ataggggaag atggtatacc
tgctcaaatt aaggtgttcc gctatatgct cgccgaggca acattttacg ccaaaaaata ctctggtgag gacattgacg acgaagaaca ctttgttggc cctctatttg acaaagatgt aattccagaa gaatctaaag atgaggaatt tcacactttg gataaatcca gaggaaccca tgaaagtgag tttattcttt acttgctaaa tgactcccgc cttcaagaaa gattcatctt cgcttggaat tgagggattt gaagagaact tttgtttcct aagaaggcaa caagtttggc gtaacctttg gcttgtggac
gattgtacgg atggtgaggt aggagaagga tgaggtccca aaagcagagt ttaccccctg aaagagcccg tgattgtgca gagttgccgg tactctcaga cactagcgac tcgactcctg gagttagatg agactcattt gatccacctt caaatcatat acgtgctgct gctgccgata tagatgccg ttaaattcgg tcattcatga tttggtgagc gaccgagctg attgagaaat attcaagaag agaaagtctt atgttctagt caagtactac ggctactctt tacgccaatg aacgatgtcg acaacgttga atcctcaact gtatgatgga caaagtggat gccctagcac gcagacgctc acgacgagct tgtatagtcc aacaaaccat accaatttag caatgattca tcaataccaa gtcctccgtt aatggaacct acttgtgtag gtggttggcc tgcattctat gcgaagaata gaaatcagat gacactccaa cagattccag aagcgggggg aatgactaaa tggtctttaa gaaaactatc gcttgtcgct aatctctccc gacatccttt gttttaatgc aagctggagt cactttctgt gaggtttttc ctggttttcc ttccggaaat tctctagtag
tctctagtag
gagttggaga acccatgccc atagtcgttg ctgggagata taatacctag cagcgttcgt aaaatacgaa gcaacagcca tgccggtata gatactccag gattattacc gaatgcgggg agaacgaagt atagggagag tgctgggacc cctggaaggc ttgggcaaaa gttgcctctc attagataat aggaatcttg agagaattat tataggggta aggataaggc tatgagaagg ttgaatatgt tcatgttgtt gcagagcccg tgtgttaaag aagattgatg ttcaaagaca atggcctcac agtaccatga cacttccatc tcttctccaa agaggagtct ttcgtcattg tcagctttgg gggatgatga ctagtagtct cggaagtagg tttcgctaac aagacttgtc ttggataata tcactaaaat gaacttccac atcgagttta gatccaaatt gtaaccatca ttgaaggttt tggttttcga ccccagaatt attttccaac gaatctggag atcagcagag tcatctagtt gcaattcgga tgggttttct tggattcatt tcttaatgtt ccgaagaata taccccccat atggacggcg gtttccttcc atctaaatga ggccttaggg ca gctagggtgg tgtaaagtaa aaattttgac tggaacagac acgaccgggg tatttgtggg tggagaagcg ctgcttgaaa tgagcagccg ta ttgaattttc tagatgtaca gagggagatc tttattttcc caccgttttt tgtccccttt tatccttggc acttctggtg tctttggtgt gttgaatgct tataatttca aggatgtcgt ccttggtgtg gccattgtca gaacttgaaa ttcaggtggc cgcaattgac tgcgatgctg atttcctacg atcatggttt tcagaccccc gctcatgcta atgaggtata cagtggtgct a taaagaacta cgtcaagcga gtgtcaccca a gcttctactt 9 gacatagagt atcaacaatc catttttgat ggacctctc agaagggca tttttttgct cctggatgga caacgatgtt 9 gactggctg aaagtcttg aatcatgga tattgagtt cacccataga t ctcaactca acgatttctt ttggctcctt atcaaaagct aggtaaaaa agtcaagaaa ccgaaagtat ttctgatgac ggtgagtttt ttgaagagcc a aaggaggaac ctagatctaa aagtaagcac tgagggagat tcctggactc ttgaacggtt ctggctcaag
ctggttgctg tgaaagactg tcttgttgtt tgggaacatt tgaacctccg tgttgctgtt gtggctggaa ttgttgtctc agtttttgga tttcagtctt gtcactcata tgtagtttat ctcctcccat gttggagtca agttcggatt aataatacag aaaatgtagt ctgttttcaa aatcttcaag catataatta cctcagggat ccaagactaa tagaaggttg ttgattgcat ctcgctaaat ctgcggatac tttcaactca aatcccttca ccgaaaacaa caagtttgat agagatacta ataatattaa tagtgctctg gacaaaacga cttcgccttc cattagcaag gagcacattc atcacgacga aagttgaata tggaatggcg tttgtctttg gtgcatgatt aagggttgaa t tcgtgatgag ttttttttct aattttccaa gaggaagaag caagcaagat tgaagaaaca atctcaagac gcaccotcag
tgaagtaaaa atttgtgact gtggcatcat cttatgcttt tagggagaaa gttgttgtat ttgaacttgt t ttggaatttc aaagaccaca acaatttgag tctttctgaa gagaagctcc accatcttcc tgcaagggac taaccttgga gccaggagca ttgccagaaa ctcgggggta atccttcaaa gagaaaggac ctccaagtca gcaaacggca gatggcacta gcgaagcatc ctcttccctc tttctacact aactactctt agaaggcagc gaagctttgc cccacatcaa agtcaattgt ccaaaccctg ataaagtcaa agaaagcatt gattttggtg tttttagccg gcaggggaat attatagata tttttacaca atcaaacagg taggtcacct tcttcaagga tttgaccgat agagggtgga gacttacctc ggcttcgtta agtcagaagg tacaaactga ggaagaagat catcaaagtc agtctagtgc ttcattgtac
gtctgagtta attggcgagg ctggaaacag aggaaggtga ttctgcgctt gaatcctgct gggaacggga atgtttttat tgagcgttgc tgttgagact atgatacggc tgttgttgga ttgcttttga gtttgagtgc tgttgttgct gttgcatctt gtttcctaat gacgtccgtt agcattgcac aacgtattgc cattgagttc ttgttatact cagtcactgt tgttgtgata gtcactcaag aattcttgca tcaccatcat cattgctatc tatcattcat agatgagggc atctgagtaa ctagacggag cttgaaataa tctccgtcaa ggctgtcttg ttttgtcatc taaatctagt agctttttag gatcctgtat tatttcttct aggaccagtt gagcttcaat tgttaggaga agtgtttttt aacgaaatgt gggtttgaaa catgtatgaa ctagaaggcg gtcgtcaggc tcccctttta tcgacagcac atgaagttac ccaaaggatg atgtaatcca cggttgtgga attttatgct agccgtttcc aaagactacc tctgattacc gtattcaagg gcaccaatag aagatctggt tgagtttgga gtgtctcgta ggaaattctg agaagaccca ttgccttaga ctttttgaat gactacacga ttagaggagt ctacatgaaa atgaaatcca agttttcaac tcccctggaa taaacccgga agaaaagcga catacgaagt tttttatttt attgtagaag tcaccctaac ttgctaagct cgttgaagtt caatgatagg ttttttgttt actgggcaaa gctgcaagaa actttggtaa agtacttggt ttttttcgaa gagtatccga cctctaaata agaatcactt ctggatgatg aggatgacta aagactctgg agatctagat ggagagagaa tccaagaaga tttcaacctc ccagtgacat gaacttcaga taggcattcc taagaagaga gtgtcaaagg caggatgtca gattcga

NCBI Accession number: CCA36622.1
Gene designation (GenDB): PP7435 Chr 1-0470
EC number: 5.3.4.1
Gene product: K09584 protein disulfide isomerase family A, member 6
cccatgatct ggatccatta ttccagacta c attattcatc ttgaatgaac tagtgtcaga a tctctcaaaa ggaagatgga tgaattgctg ccacggttcc attgaattgc aaaagcctca t ttgaatagca acttccaaga tcctgaaaaa ttccgacaaa aataccatt tcaatgtaca tagttgatt aatgtcata ttgtgaagt cataaaatt ttcaccatt tctacggat aaacgtaga aggtagcctg ctgttctggt gaagagcgtc ttccaactgt ttgtggattc acatatgtca ccataaccct ctgcagaagt ctagccaagt cccttgggag gtctggcgaa ggactgacat attgattcc cactgatgcg accaaacca caaacacggt ttgaatagat agaagcttcc tcgttcactt ttattcccca atgagtagga gacctagttt gaaaatgcct attgggtgta gaaagtccgt gagacgatta ttgagaccag ttggtgttgg ggggattgag agtaggagaa gagaagtggt caatgtggtt ggaaggtgaa atttctgagg aaaggcatgg acgtagacag tgtagattct gcgtccatat gcggacagag gcgttggtgt gctcttgttg a tctgcaggtc ggacagccac gatctctcaa ctttgcttaa cgattgtctt ctcctccccc taagtgcatt gcttcttctt tgacgtggtt ctaaagtccg cgaatgaatc cagagtatga ccattgatgc taacaaatac gttcacaccc aaggacatat tttttggagt caactactgg caattgatga ttcaacaata tggatattgc aaaagattgc atcggaaacg ttgttaccga cgactatcct gtacttcaca aggtttggtt aaatttgtca gccggtctaa ttccaggagt agtcaacgtt agacttgcta ggtcatagaa aagttgttga agggagagaa ctgaatacaa agctatcggc aaacaattca
ctgactgtcc ttcttcattt gtgaatagaa aacggtgaaa atgacggtaa ttccctcagt gtcattagca ttctcaagta aagtgtcaaa ggatctggta tatgcggcaa gatgatcttc atatattaag gtgctacatg tatttggata aatggaccea aaatcatcac gtcctttaag attgtggaac aagacggtgt ggagtggaca actgtttgaa agacggagct tccattcatt tgttgacacg gagtttgatg cgaaaatcaa gggaatggac aaatttcccc gattactcca aggagcttca gtgccgttga aatcttcgtt cagcaaagag aacgccgcca gggggtcaga gaggggacgt tggttttttt acctgttgcc ccagacgttg ggctgattgg gcatacatat ttaagcttac ccccaagagc ccaaccactt cctttgctga cttagtgaag gaagaactga tgaaggtgta cgaattttct aagaagaagg ttgggaagga ggagaagtta ggtgagaata atgaaccaat tggcttattt cttaccaatt aacatatcaa tgaattcctc gactctgtga
ttagtatctg tgtcttcgcc gttaaaagaa gacagtttac aggaggatcc atctgtaaag ctattagttg attccaactc caaggttgca atggatgcga agtcggttgc gaatgtcaca tcttcgtggg aggtaggttc agcaccgatt tcgaattctt cttcgtatac ccacgcgtca gggccagtta tggatggaat gtcttgatcg tcggcgatat aattggtgga gttctcatca tcgaaggagg caaaatatat attttcggtc ttttcttcga atgtggaaat cctaacagat atatcatttg tagtttcaat aacagaataa gacgttaaag ttcctgccag agatctggat aggaggacaa caacacgtta tattatcaaa gtaagatttg caaccctcac gaaagggtct ggtcattgag ttttatgccg agccaaagag cgatattgat ggatcaagag cggaagtaaa caggtttatt gccaaagctt ttaaggcgaa aagatatgaa cgtgatccag acattaagga ggacaaattc aacaatgaag ttaaaagact
ccaacgataa aactgttgat ttatcggtgt caccaacata aagtagattt ttgttgaggg agttgatagc ggtttctgaa ttgatacgac gttgctcatt taaacagcca cccactgtgg gggtccagga gttgaaactt tcattgtaag ggtaatctcc atctgaagag caatattcat tgagcctaaa tattgtgtgg ggacaagtga taaaacttgt cacattatga tcaatgctaa aagattcata caacttggac aggttcgata tggggattac gaacgataac gtcctgtact aaaagttgat ctgaagttga aaaactagct acctgaactc gaatcaaaaa atgaagatta gttggggctc cattgttgca catggactga aaggtcccaa caggttattt gtctaggata ctgaccaaca attggtgttc tgatctgatc ggatttccga acagtgaaag tgagccttcg gcagttactg ttggcaatga gtataaagtt tctccagata atggaacttt aaaagaccaa agtgtcaaat ttgagaggct gaatatcttg
aaaatgtgga gacattggaa gttagactat tgttgatatt aagtttacca atggaggagt aatactcaaa cgcatctgca tttcccggta cgttgtaaag gtcgattcca ggtgtgtaaa agtctggaat tccaggtgcc tcgttaccat cggacaatac agaccacgtt tttgcgttct attcgttggt gtactcgaca tggagcatag ttgacttggg tagttgatct tgaagtaagg caattgcgtt gttgaagcag gtttggttga ttgaaacctg caacacgaag gactcatctt gattggtatt cgcctggcaa cttgtgtgat tggaactcga tgcgtgggtg tatcattctc cataataaac cgtaaggtgt ttcctgattg ggatcgagga catcttgaca ttttgccttc atgaaaatat agaactttga gcattgcaag cagattgccg cgatgaaatt ctttttgaac ttagttcaat cttcgtggtg cgatattgtc caatctttco gaactgttga gaatttcaac agtttattgg accacaagaa atcaaaaatg cgcaatttta

Abstract

ttgaggccaa aactgagtca aaaccccagt tattacacca agagctataa tctagataag taaataaata acgctataac tctaccactg tagaggcttt cacatgctcc ggccacactt tgccgccccc taggatggtt tcttctatga ttacatcttg ccaaccagat attagcccca gacttcaagt aaatgagaac ctccgacatg attgataaaa tgaacttgca ctccgcctgg tctatcatct gtgatcacga aggtgaatgc acatctcctt cttaatgata ggtgcggtga gttttatgcg agcacaagaa cacataggac ttgtttgtgt ctttaacgat cgggaatatc tattggttcc acttgggtag tttcgataga gaaatttgaa gtccaatacg gcatcaacat cctccataca caactgcttg acccatacaa tccccagctg tctgttcggc aattcttgga tccttggcat tagactgggg taaccgcttt tggaaccagc ttggtagatg aagcccaatg agagattgat atcagtggcg tcacgcttcc aatcggactt acccgttgga atgataatgt gatttccaaa ggagatcgtt tttggagcct gggtcatctt tgtaactgtt cagcggccga acaagtagcg gggcactgtg aaagaggaac tatttctgag ttcgccggat ttgcccccca agaacttcga caaaaaagcc atactgattg gtaaatgaaa aagatacctt gtagatttct ggaccaatct taggtttgac attaaagggg atttgctgca tacttgtgac ccgagatctc tgtagagatc ttccgcaacg tttatccctt ctcataacct ttgatttcgg aaaagaatgg gcactagctc agtacggaag aattaaaata tatggatgat gtggagactt tttaaaatcg tgccatcaac gtaaagagta cggtttagtt tggatacctt gtgaagcact atctcctcag ccgcctgggc gacttaagga tgaaaagcgg

NCBI Accession number: CCA40358.1
Gene designation (GenDB): PP7435 Chr4-0183
EC number: 5.3.4.1
Gene product: K09584 protein disulfide isomerase family A, member 6

3000bp upstream reagion / CDS (colored gray) / 1000bp downstream region

ttttcaaatc tccaacttta atcgaatcga agattgtttg gtatcgattt ttcacttttg gtacaatttc tggctgggta gttttcttgt gactagaagc t tgcatatttt ttgtgctggt ttttaaacat gtgctgagag ca acttattgtg aaaacagttg aggacagcat tgaggtagag g tcgaaggctc ggtaaagtag atgatgctga aagtaagact ttcatggtga agtaaagttt gaacagtatt ccagcaaaat gatcagggtt cttgtcactt aaacaaattt tgaacgacct tgcccttgaa tgctcgggag tggattgatc acctttgtta tcagtagaaa ggaggatcag aagaccgata atccagtttg aaactagatc aagacttgtt tcaaacgcct t tagatatgtt gagaccaaat cggtccattt t gatctttctt gaagaaggtt atttggaatg c accttacagc ttgagacact t agatagattt gatggtagga a tgcaattttg atacaatata a tacggtgtaa ggttaaaggt g gtctcgcttg aaacaagtaa a tgaaatccat t ttctttaacg tctgtacttc a gctatttaca tttaacccaa t tgtaccgtaa a aaatcgatac gacaagttag cgagtcaaca tggtctcccc atgtaccttc ctggctaaga agcaacgaca g aactggaacg aaagtaccaa t tccaccaacg gcggctaaga a ccatctgcac t aaaaaatccg c ttttgtgaca aaagccaata gtttctttaa caaaattctt tggagcgcaa agcatctgga a cattgatgag ctctgaagat 9 aaatagcata caaacagcat ca ctttactttt tcgattagat caccaagcgg tgtatcaaga gcgtcaacaa aatgtaaaaa aaaagaaaaa aagactgtaa a
tgcaacggag cacttgtcag gtatgcagta ttctgtaatg agtagactgc attgaataca ctattataca tttcattatc tccatgtttg atccggtttt ggagattact tgacattgaa gttcccttgg ccagtcaatt tagcagttgc taatatccag acaaatcatg tataaaagtg agatcctatc agtacaccac acacccaacc aggcaaaaat gaggacaagg cattaaagat cccgtcccct cggatcatgg aacaagactt tttaaatgat acctcaggca atgatgttcg cggaaaagca ctcaactaaa gacgggtact agcccaactt
ttcacttttg aaaactggct ccaataatag tattatacat atttttatga gcttcctcaa ctgtgagatt tggggacttt agctggccag gtcgaacttg tattttcttt gaagttgcaa tcagcaattt tctccaaagg aatttccgac atatttcagc agcgatacgg ttgagctggg gtaattgatt tgagaagcga gttgcggtaa tgcgaagttt cagtgatgag ccatcttgaa ttggaggtcc aactggagag gacagaatga tgtttaacga acttggagat ctatccgttt attttaaaga tttacaaatg tggccaaaat aaaactgaaa ttttgtcaag cacagccctt aaatataaat attttaattc aaaaagatcg cacaccattc caagaggcat acaatacaag agtaacccct gtcacacaac gcggcatctc cggtgagaga aaaacgatat cctgtttcaa agccaaacag gagcttgcgg gttcaaaaga aggatcagaa agaaaaacaa tgaaaaaaaa tgaggataac agagcaatcc tctaagaaat ttcagcaggg gcaactccgt agctagcgac aaagcatgac gcaaaccaga taccgactag acttgtagtc aactcgtctt ccttgattga gtctacgcta ttcacggtta acttttgcca aaaagccaaa

Abstract

caactcagtt ctgctcatct cttccactgg tctgtgtcct tcttcttgga acattgaata caatgtagcc taccattgca ttccctaccg gaaacgaaat tgtcacagcg tacactgcat ttctcttaac actcatcccc cgcctgatga tactgctact tctattagct tgaaaaaaaa gcttttgggc tgtaacgaga tgacacctca agattaatgg gtatgccaac tttttcatct gatggaaccg attcatgaag ttacaggggt tagaagatat cataaaagac ggagttccct tacacaaact actaccttcg tcagaataga aaactccttc agttttccat agatttgggc cccgtggaaa ctgtcaacat tatcagactc agtatgccca actaagggaa atacatttgg tgtagactag gtagcaggcg cgccccttcg tttaagaaca aaatgaacat caattttcta accacgcagg caacaaagtc tgctcaaggt tcttgacctc tttttcagat atttacgttg tgtttttgtt ggtatctctt tggaggagcg gtggagcttc agtctttggt gaagctcaat tactaaccac a ggatctaccg ttactacaca g tgtctattct gactttttct a tgaacatgga aatatagaaa cagtccttct tcaaaggata atattcagtc cttagcctca atgtcaatgg gatatcgttc gtcggctaga ggcccacaaa taaagaggtc gattagatgg cttaatcaag ttccacactt tttttgcatc ctgtctttgg gtactccttc ctagctgatt caaagaaata ttataccggt tttccagact atattctcgt tctggcaaga gccaagaatg atcgtgaata gctagagggt gatgttgagg aagtcttccc tctggttatg caacagttgg ctaggtaagt catttgataa aaactcaagc ttacaacacg aaaaagaaca ctttgatctt tgctatcatt tttgcacttg tggacaagat caagaaagta agtgtatcaa ctgacgccat cccataaaag caaggacccg acaatcagca gacagctagc cgtcaggttc tatgaacttt tacgatatgg gtgtacatct tatacgacga cgaggtagtc gtcagaggca cttatgtcaa tgctttttca tattatgctg ctgagattgt ttatgatcaa gctgaggact agtctgggga atttgtgaag taatcacgat caagtgtcac ttccgctctg gcatcttgat agcttatgtc ctgatgaaac gtgaaaagac caactacgaa ccgcaattag gattatacag tgcagtcatt gttaagaact taagtatata ctttag gaatgtcatc cttgaccacc gggcttgaag gtggtaaaaa aatttcttct ttacttggtg tggaagcaaa ataccttcaa aatgtacagt aaagcgaaat aatgccaaga cagtaactaa tggttcctgg cccatgcgcg tcactcaaaa atgaagtcgt gaactcacgg acaaaaactt actcccctta ttgcaattat caccaagttg caactattcc gggtttcctg ttttgaagat ctcagaactt cattgattat acagcctact tcagaggagc cagccttggc ttagaggctg aagagcttga tgactctttg ttcgaagttt caagtttcaa acacataagc ttttcaaaga tagttactga gagcattagg agcagataat tcctttgaag gcaagataga aaccaatcac acctttcgga attgtctcgt tttctaagtt agcactctac ctcaattgaa gaatcaaacc cctaatacat gctgtatcaa gtagtctttg tgagcaggta tctttttcat tgtctcttcc caatgatatt ttcccagtat tttagtattg tggagatttt tggttcttca gagaacggga agcgttatac atccccaatt tctggtatct tacagactat gctgccagaa gaataaaaat

NCBI Accession number: CCA36419.1
Gene designation (GenDB): PP7435_Chr1-0258

Gene name: $\mathrm{OCH1}$

EC number: 2.4.1.232
Gene product: K05528 alpha 1,6-mannosyltransferase

1000bp upstream reagion / CDS (colored gray) / 1000bp downstream region

ccgctaaaag acccggaaaa ccgagagaac tctggattag cagtctgaaa aagaatcttc actctgtcta gtggagcaat taatgtctta gcggcacttc ctgctactcc gccagctact cctgaataga tcacatactg caaagactgc ttgtcgatga ccttggggtt atttagcttc aagggcaatt tttgggacat tttggacaca ggagactcag aaacagacac agagcgttct gagtcctggt gctcctgacg taggcctaga acaggaatta ttggctttat ttgtttgtcc atttcatagg cttggggtaa t taatattttt tgttcatggc aaatcgcggg ttcgcggtcg g tggtaatctg gggtaaaagg gttcaaaaga aggtcgcctg g tttacattga ccagatgatt tggctttttc tctgttcaat t gagaaatggc ggggtgtggg gtggatagat ggcagaaatg ggaatagaac tactgggtgg tgtaaggatt acatagctag t aagctaaaac cggctaagta actagggaag aatgatcaga gctgcttttt cagttgcttt ttccctgcaa cctatcattt t cacttatatg agttccgccg agacttcccc aaattctctc c gttgcgcccc ctggcactgc ctagtaatat taccacgcga
cgtagcaaat atcatcagcc atggcgaagg cagatggcag cgtagcaaat atcatcagcc atggcgaagg cagatggcag tttgctctac tataatcctc acaatccacc

Abstract

cagaaggtat tacttctaca tggctatatt caattatcat ctccttcaca ccgcagttac ccgaaaaact ccgatgatgc cctgctacca tatgctgaca gagtaaaaaa gtatgctag ctgattgtaa aggatcgtg gactaatgt tcgttggaag aatatgcac tcttattct ttgcatata ttaggcatac gcgagatta ttttttttt atccctgac tatcttct ccccatata gaagtctga ctctggtag atggagtgtt gtttttgaca tgggggacgt tccaatatac agagactcct tgacactttc cgaattgaca agaacgtcga gtggatcatg tcacttctgc cagcacagct ctaaaccaga cgctcgtact agcaaaatac taggagaaat cctaaacgaa gaaacacaca acgaatcatt ctatccgcca cagatttcgt atccattgac caaccaacct cgaaaagatg cgccgtttct gtcatttgcg ttttgtacgg accctcacaa ccattgacgc tccgatcact tgatttgaag actttggaag aagataatct tcgaagacaa ttggagtttc attttcctta ttggcaaacg tggaaagttt ctccctctga tagttccttt tggctgcaaa ggtccccaaa ttatgatcat tttgtgatac atgaatacga acgtgtacca gaagtcttgg aagctttcca ttttttcagg tatttgattc tttttgcccg tggaggactg ccaatagaat cgtggctgac tttcaatgaa actattggtg gtattgaggc tgatcctgat agacctgatt ggcacgactg ggcaattcag tccaaacgag gacacccagc actgcgtgaa cggaaagaga aaagcggtta cttgaacatg gtggaaggaa cgggtccagg aatatttaca gacactctat ttgattatat ccaaggaatt ggagctggct cagcgtatta caatgcctta cgcccgaacg gagagatgtt aaaagagaaa gtcccaggta aatttaccaa cctgcgctcc cccaaattaa tcgacgatat agggattggc cacagtggag ctggagattt gaaccatcac agttggaagg actaaagaaa gctagagtaa aatagatata agcgatcgtc cgtcatcata gtcatccaac agaaaaaaac aaagagatgt ctggtaaccc gatcctcgaa ggggattaca tcatctacca cttggctcaa gcagctgctg agttcactcc tcaactgtac cgtaatcttt aaaacgggaa cgtggctgac aatatttaca atctcgttga aacagtaacc cggaaccaaa gctctccttc atgggtggca agtctattga gtgttttgtg gatttgatca ctgttgttgt cgaagaagat actgagctcg ccgctcaact ctacatcaag gaatatcatg gactgtatag cagatctctc agtacgcgaa caaacaccac aacaaacact caccaagaag caaaaactaa catattctgg gctacttcac agatcgttcc agacctgcct tgaagatacc ctaaagcaac cacaagacat ctcttcccat atagggccct tcaagagtct cgctaccaac ggcctgtctt cgttttattc ttgactttgt ctcagcacat gaaaaaccat tgattgggtt tatgatatcg gtacaagatc ttcca

NCBI Accession number: CCA39540.1
Gene designation (GenDB): PP7435_Chr3-0582

Gene name: HOCl

EC number: 2.4.1.-
Gene product: K05534 mannan polymerase II complex HOC1 subunit

1000bp upstream reagion / CDS (colored gray) / 1000bp downstream region

acccttccca cttagtaagt tggacgttat gcataatttt gggatgtacg accaaatatt gcctaaagta gaataagtaa tatttcttta taaatagtaa tgataatttt ccatttaatg gggtactcta aaaaataaat atatggtgtt gctatgtagg ccgtaacacg gctcttcacc tgtatggagc aaagcgtact ggatttcctg ttcccatttg tcaccattag caagcaattt ttccttgtta cctctctagt ttcggtggca tactcaacgt taggggtttc aacaatggca tcaactggac acaataaccg cagtagatac acttggtcat g cgttcttcgg cttcgatggt gatagcctga g gttcttctcc ggatggatat cttctcaaag c aaaagggtag tagattgtat a tcagacagta ggtaccattt ggtggccttg g ttgggagtct gaatccttct ggatgtgtgc c tgcaatgag agtggtctaa aacttgcct attctctctt actgtccaag tcgcggtcgg tatgatttcc cttcagacca aaaacagata caccctgaac accaccccct aatgcaacaa ca taacggtgat attggtaata ataaagattt catccagcaa gtccaccgcc acagaccttc agaaagtatt gaagaatgcc aatattttac cgcaggacgt gatcaattac aatagcagaa aagtaacgga tgaactcgct

Abstract

tcaaagctgg acgagattca aaagaagtat ctctcgaagc aagatgatag aattagcaag ctcgaagctg aacgggcaga tctactggaa caggttagat ttctaaggaa cccccctgca ggatcaagtt taagagaaaa attggcttat ctgtttcctt ataatgaaaa cggcaaattc cctgcttata tatggcaaac atggaagtat ggcttgaatg acgatcggtt tggagaaaag ttcaaagaag gcgaaactca gtgggcttcg aagaatcctg gtttcgttca tgagttgttt aacgatgata cttccggtgt gtttattcac catctgtata tcaatgttcc agaagtgatc aaagcatacg agctgcttcc caacataatc ttgaaaatgg acttcttcag atatttggtt ttatacgcca agggaggtgt ctatgcagac gttgatacta tgcctcttca gcctgtacca aactggattc ctgaaaatgt ctccccaaaa agcatcggga tgatcattgg aatacaaaac gatgctaaca atccagattg gaaaaagatt acgtacatcg tctacaattt tccaattggt gtattcaagc gaagcctggt cacccaatct tgagagaatt aatcgccaaa atcacagagg atacactgca acgagccgag tcaaactcac tggaactagc tgacattagc gaagaaggcg gcctgtctga taagaatttg tccattatgc aatggacggg tactggtatt tttacagatg ccatatttac ctattttaat gactacattc aaagtagtat ctataccaaa gttacttgga aagaattctc caaattgaga aagcccaagc ttgtcagtga tgtattggta ctgccgatta tcagcttctc ggccggtgca ggtagtggaa aatcgactga actgaacgat cccttagcat tcgtacaaca ttattttgaa agattacata acgacaacca ctaagggtca gaaccattta gattgtctgg atctatcatt atggccttgt ttatagacaa agaattgtat cctggactga agggaagttt atagagtaat acccctctga caaccaactc gaatgggtat tttgagataa tttcccatat attattgtct tcactgggag acttacttct tctttgtagt tccggtatcg gcagcaaact tatggtggtc acatcttcca aacttctcgg tatagtagaa ctatttgtgg ttgatacggt ctgggtatcg gtgataatgc ttgtaataat ggattttgtg ggtgtaactg aagctggtgt attagtggta gtggtagtgg tggttgttac tgtgctatct gtaggttctg ggagtggttt ctgagccggg tttaaaattt tgatctctgt ggtatcttcg tctggatttc gactaaaaaa tccgccttga aatacgagtg gaacaggtaa acgattgatg gagcccagaa gcactgtgtc caaggaagat tcatcaaaag tgaaaggagt gccatcttcg tttccatcgt taagatgaga acttttggca aaaaaatcaa tcagaacgtc atctatttct atggcgacaa atccgggatt gaa

Appendix 4: Amino acid sequences of relevance for this thesis

NCBI Accession number: CCA40283.1
MQFNWNIKTV ASILSALTLA QASDQEAIAP EDSHVVKLTE ATFESFITSN PHVLAEFFAP WCGHCKKLGP ELVSAAEILK DNEQVKIAQI DCTEEKELCQ GYEIKGYPTL KVFHGEVEVP SDYQGQRQSQ SIVSYMLKQS LPPVSEINAT KDLDDTIAEA KEPVIVQVLP EDASNLESNT TFYGVAGTLR EKFTFVSTKS TDYAKKYTSD STPAYLLVRP GEEPSVYSGE ELDETHLVHW IDIESKPLFG DIDGSTFKSY AEANIPLAYY FYENEEQRAA AADIIKPFAK EQRGKINFVG LDAVKFGKHA KNLNMDEEKL PLFVIHDLVS NKKFGVPQDQ ELTNKDVTEL IEKFIAGEAE PIVKSEPIPE IQEEKVFKLV GKAHDEVVFD ESKDVLVKYY APWCGHCKRM APAYEELATL YANDEDASSK VVIAKLDHTL NDVDNVDIQG YPTLILYPAG DKSNPQLYDG SRDLESLAEF VKERGTHKVD ALALRPVEEE KEAEEEAESE ADAHDEL

NCBI Accession number: CCA36295.1
MKLLSLALLV SLVSADTFYT PKDDVIQLNA YNFKDVVFNS NYSSVVEFYA PWCGHCQNLK NPFKKAAAVS KDYLQVAAID CDAAENKKLC SDYRIQGFPT IMVFRPPKFD PTSSTNRRSG AHANEVYSGA RDTKSIVEFG VSRIKNYVKR VSPNNINQTL GNSEKTQLLL VTDKAKPSAL IKSIALDFLN DIESFYYPFN DKTKKALTTR LEEYQQSFSG ESITSPSILV LHENEIHIFD GKLDKLSISK FLAEFSTPLE GPLSKRGKFL EHIRRGIKPG RKAKKGKKGK QTKNHDEL

NCBI Accession number: CCA36622.1
MKILSALLLL FTLAFAEVIE LTNKNFDDVV LKSGKYTLVK FYADWCSHCK RMNPEYEKLA EELKPKSDLI QIAAIDANKY SKYMKVYDID GFPTMKLFTP KDISHPIEFS GSRDSESFLN FLESTTGLKL KKKAEVNEPS LVQSIDDSTI DDLVGKDRFI AVTASWCGYC KRLHPEWEKL AKAFGNDDIV IGNVVTDVVE GENIKAKYKV QSFPTILYFT AGSDEPIRYE SPDRTVEGLV KFVNEQAGLF RDPDGTLNFN AGLIPGVSDK LTNYIKEKDQ SLLESTLDLL SNHEHIKDKF SVKYHKKVIE KLLKGENEFL NNEVERLSKM LNTKLSANNS DSVIKRLNIL RNFIEAKTES KPQLLHQEL

NCBI Accession number: CCA40358.1
MKSLLLLLLA LCQTVFGTIW ELTDKNFEKK AFGQQGMYSF VYIYSPYCNY CNEMTPQFAA LADLYDDTKL QLFQINGYAN KRVSKKYEVV GFPVLKIFSS DGTDMGSYTG VRGTQNFIDY IHEVTGVTPS FPDSYVKQPT SEELEDIIKD TKRDILVAFS QPWLRGWEFP YTNFYESLAR YYAEELDDSL TTFVRIDVSD AKNAEIVSKF QVSKTPSVFH FASYREYYDQ THKLFKEDLG PVEIVQLLEG AEDLVTESIR LSTLSDSRHK DVEESGEADN SFEEYAQLRE L

NCBI Accession number: CCA36419.1
MAKADGSLLY YNPHNPPRRY YFYMAIFAVS VICVLYGPSQ QLSSPKIDYD PLTLRSLDLK TLEAPSQLSP GTVEDNLRRQ LEFHFPYRSY EPFPQHIWQT WKVSPSDSSF PKNFKDLGES WLQRSPNYDH FVIPDDAAWE LIHHEYERVP EVLEAFHLLP EPILKADFFR YLILFARGGL YADMDTMLLK PIESWLTFNE TIGGVKNNAG LVIGIEADPD RPDWHDWYAR RIQFCQWAIQ SKRGHPALRE LIVRVVSTTL RKEKSGYLNM VEGKDRGSDV MDWTGPGIFT DTLFDYMTNV NTTGHSGQGI GAGSAYYNAL SLEERDALSA RPNGEMLKEK VPGKYAQQVV LWEQFTNLRS PKLIDDILIL PITSFSPGIG HSGAGDLNHH LAYIRHTFEG SWKD

NCBI Accession number: CCA39540.1
MYERCEVSLL AIFLQRDRGR KVIWLTVGLI TVILVIIKIS SSKSTATDLQ KVLKNANILP QDVINYNSRK VTDELASKLD EIQKKYLSKQ DDRISKLEAE RADLLEQVRF LRNPPAGSSL REKLAYLFPY NENGKFPAYI WQTWKYGLND DRFGEKFKEG ETQWASKNPG FVHELFNDDT SGVFIHHLYI NVPEVIKAYE LLPNIILKMD FFRYLVLYAK GGVYADVDTM PLQPVPNWIP ENVSPKSIGM IIGIQNDANN PDWKKITYIV YNFPIGVFKR SLVTQS

Appendix 5: DNA multiple sequence alignmets

Alignment 3: Multiple sequence alignment of the coding domain sequences of all four PpPDIs.

CLUSTAL 2.1 multiple sequence alignment

CCA40283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA40283.1
CCA40358.1 CCA36295.1 CCA36622.1

CCA4 0283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA4 0283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA40283.1 CCA4 0358.1 CCA36295.1 CCA36622.1

CCA4 0283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1
CCA40358.1

ATGCAATTCAACTGGAATATTAAAACTGTGGCAAGTATTTTGTCCGCTCTCACACTAGCA	60
ATGAAGTC----------GTT---ACTGCTAC-----TTCTATTAGCTCT----CTGTCA	38
ATGAAGTT----------ACTA---TCCTTGGCA---CTTCTGGTGTCTTTGGTGTCTGCG	45
ATGAAAAT----------ATTA--AGT---GCA---TTGCTTCTTCTTTTTACGTTGGC-	
$\star \star * *$	\star

CAAGCAAGTGATC----------AGGAGGCTATTGCTCCAGAGGACTCTCATGTCGTCAA 110 --AACT-GTCTTT----------GGTACGATAT-------GGGAACTCACG----GACAA 74 GATACT----TTCTACACTCCAAAGGATGATGTAATC-----CAGTTGAAT----GCTTA 92 $\begin{array}{cccc}----C T----T T-------------G C T G A G G T C A T T-----G A G C T G A C C----A A C A A ~ \\ * & * & * & * \\ * & * & *\end{array}$

ATTGACTGAAGCCACTTTTGAGTCTTTCATCACCAGTAATCCTCACGTTTTGG---CAGA 167 AAACTTTGAAAAAA-----AAGCTTTTGGGCAGCAA-GGTATGTACTCCTTCG---TGTA 125 TAATTTCAAGGATGT-----CGTTTTCAACTC---AAACT----ACTCTTCGGTTGTGGA 140 GAACTTTGATGACGT-----GGTTCTAAAGTCCGGAAAGT-----ACACCTTAG---TGAA 119

GTTTTTTGCCCCTTGGTGTGGTCACTGTAAGA----AGTTGGGCCCTGAACTTGTTTCTG 223 CATCTACTCCCCTTATTGCAATTATTGTAACG----AGATGACACCTCAATTCGCTGCAC 181 ATTTTATGCTCCTTGGTGTGGCCATTGTCAGAACTTGAA-AAATCCC---TTCAAGAAGG 196 GTTTTATGCCGATTGGTGTTCGCATTGCAAG----CGAATGAATCCAGAGTATGAAAAGC 175

CTGCCGAGATCTTAAAGGACAATGAGCAGGTTAAGATTGCTCAAATTGATTGTACGGAGG 283
TAGCTGA---TTTATACGACGACA----------------CCAAGTTGC-------------- 211

TGGCCGA--------AGAACTGAAG---------------CCAAAGAGTG-------------- 202

AGAAGGAATTATGTCAAGGCTACGAAATTAAAGGGTATCCTACTTTGAAGGTGTTCCATG 343 -------AACTATTCCAG---------ATTAATGGGTATGCCAAC---AAGA---------- 244
------ACCT---TCAGGTGGCCGCAATTGACTGCGATGCTGCC--GAAAA---------- 257
-------ATCTGATCCAGATTGCCGCCATTGA-------TGCTAAC--AAATA------------- 239

GTGAGGTTGAGGTCCCAAGTGACTATCAAGGTCAAAGACAGAGCCAAAGCATTGTCAGCT 403
---------GGGTCTCAAAGAAATA-CGAGGT----------------------------------266
-------------CAAGAAGCTTTGCTCTGAT-------------------------------------276
 * *

ATATGCTAAAGCAGAGTTTACCCCCTGTCAGTGAAATCAATGCAACCAAAGATTTAGACG 463
---------AGTCGGGTTT----CCTGTT----------------TTGAAGATTTTTTC- 296
-TACCGTATTCAAGGATTT----CCTACGA------------------------ 314
-TACGATATTGATGGATTT----CCGACGA------------------TGAAATTGTTCAC- 296

ACACAATCGCCGAGGCAAAAGAGCCCGTGATTGTGCAAGTACTACCGGAAGATGCATCCA 523
------ATC-------------------TGAT---------------GGAA-------CCG 310

ACTTGGAATCTAACACCACATTTTACGGAGTTGCCGGTA-CTCTCAGAG-----AGAAAT 577
ACATGGGGTCTTATACC---------GGTGTCAGAGGCA-CTC-----------AGAACT 349

CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

AC------------ATCA--------AGCACCAATAGAAGATCT--------------GGTGC 362 ATCGAATTTTCTGGATCA--------AGAGACAGTGAAAGCTTTTTGAACTTTTTGGAGT 370 *

TCACTT-TTGTCTCCA--CTAAGTC-TACTGATTATGCCAAAAAATACACTAGCGACTCG 633
TCATTGATTATATTCA--TGAAGTTACAGGGGTTACTCCAAGCTTTCCA-----------G 397
TCA-TGCTAAT--------GAGGTA--TACAGTGGTGCTAGA------------------------393
CAACTACTGGTTTGAAGTTGAAGAA--GAAGGCGGAAGTAAAT---------------------G 412
$\star \star \star \star \star *$

ACTCCTGCCTATTTGCTTGTCAGACCTGGCGAGGAACCTAGTGTTTACTCTGGTGAGGAG 693 ACTCTTA-----------TGTCAAAC----------AGCCTACT--TCA--------GAGGAG 429
------------------GATA-CTA---------AGTCAATT---------------GTTGAG 414

T------TAGATGAGACTCATTTGGTGCACTGGATTGATATTGAGTCCAAACCTCTATTT 747
C------TAGAAGATA-TCAT------------AAAAGACACTAAG------------------456
TT-----TGGAGTGTC-TCGT-----------ATAAAGA-ACTACGTCAA--------------- 446
TCAACAATAGATGACC-TTGTT---------GGGAAGG-AC-AGGTTTAT----------T 480 * ** * *

GGAGACATTGACGGATCCACCTTCAAATCATATGCTGAAGCTAACATCCCTTTAGCCTAC 807 AGGGATATTCTCG---TTGCTTTT---TCACAG----------------CCTTGGCTTA- 493 GCGAGTGTCACCCAA-TAATATTAAC----CAAA----------------CCCTGGGA---- 483 GCAGTTACTGCTTCG-TGGTGTGGATATTGCAAA-----------------AGATTGCATCC 524

TATTTCTATGAGAACGAAGAACAACGTGCTGCTGCTGCCGATATTATTAAACCTTTTGCT 867 ----------GAGGCTGGGA--------------GTTCCC----TTACACAAACTTTTAC- 525
 T--------GAATGGGAGAA--------------GTTAGC---------CAAAGCTTTTGGC 555

AAAGAGCAACGTGGCAA-----AATTAACTTTGTTGGCTTAGATGCCGTTAAATTCGGTA 922

TGTGACAGATAAGGCCA-----AACCTAGTGCTCTG--------------------ATAAAGTC 548 AATGAC-GATATTGTCATCGGAAACGTTGT-TACCG------------------ATGTTGTG 597
** * * * * *

AGCATGCCAAGAACTTAAACATGGATGAA-GAGAAACTC---CCTCT---ATTTGTCAT- 974
---------AAGAGCTT-------GATGA----------C---TCTTT---GACTACC-T- 577
AATTGCCTTAGACTTTTTG----AATGA--CATAGAGTC---TTTTT----ACTATCCT- 594
GAAGG--TGAGAATATTAA----GGCGAAGTATAAAGTTCAATCTTTCCCGACTATCCTG 651
------TCATGATTTGGTGAGCAACAA--GAAGTTTGGAGTTC-------------CTCAA 1014
------TCGTCA-----------------GAA---TAGACGTC--------------TCCGA 599
--TTCAACGACAA---------AACGAAGAAAGCATTGACTAC--------ACGATTAGA 635
TACTTCACAGCAGGCTCAGATGAACCAATAAGATATGAATCTCCAGATAGAACTGTTGAA 711

GACCAAG------------AATTGACGAACAAAGATGTGACCGAGCT----GATTGAGAAA 1059 CGCCAAG------------AAT-----------------GCTGAGAT----TGTTTCGAAG 627
GG---AGT-----------AT----------------CAACAA-------------TCGTTT 654 GGTTTGGTTAAATTTGTCAAT------------------GAACAAGCTGGCTTATTTCGTGA 755

TTCATCGCAGGAGAGGCAGAACCAATTGTGAAATCAGAGCCAATTCCAGAAATTCAAGAA 1119
TT-------------------------------TCA-----AGTTTCAAAAACTC------ 646
TC---------------------------------TGGAGAGAGCAT---AACTTCGC---- 676
TC------------------------------------CAGATGGAACTTT-GAATTTCAA---- 779

GAGAAAGTCTTCAAGCTAGTCGGAAAGGCCCACGATGAAGTTGTCTTCGATGAATCTAAA 1179 ---------CTTCAGTTT------------TCCATT-------TTGCCTCTTAT-----CGTG 676 ---------CTTCGATTT----------------TGGTG----------CTACAT----GAA 699 ---------CGCCGGTCTAATTCCAGGAGTGAGTGATAAACTTACCAATTACATTAAGGAA 831

CCA40283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA4 0358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA4 0358.1 CCA36295.1 CCA36622.1

CCA4 0283.1 CCA40358.1 CCA36295.1 CCA36622.1

GA-----------TGTTCTAGTCAAGTAC-TACGCCCCTTGGTGTGGTCACTGT------- 1221
AA-----------TATTATGATCAAACACATAAGCTTTTCA---------------------- 706
AA--------------TGAAATCCA-CAT-T---TTTGATGGGAAACT--------------- 728
AAAGACCAAAGTTTATTGGAGTCAA-CGT-TAGACTTGCTAAGCAACCATGAACATATCA 889

AAGA-GAAT--GGCTCCTGCT--TATGAGGAATT----GGCTACTCTTTACGCCAATGAT 1272 AAGA-AGATTTGGGCCCCGT-------GGAAATT----GTTCAATTGCTA----------- 744 -GGATAAGCTGAGCATTAGC---------AAGTTTTTAGCCGAGTTTTCA----ACTCCC 774 AGGACAAATTCAGTGTCAAATACCACAAGAAGGTCATAGAAAAGTTGTTG----AAGGGA 945

GAGGATGCCTCTTCAAAGGTTGTGATTGCAAAACTTGATCACACTTTGAACGATGTCGA-1331 GAGGGTGCT------GAGGACTTAGTTAC------TGAGAGCATT----AGGCTGTCAA- 787 CTGGAAG--------GACCTCTCAGTAA--------GAGAG-GT-----AAGTTTCTAGA 812 GAGAATG--------AATTCCTCAACAATGAAG-TTGAGAG-GCTATCAAAAATGCTGAA 995
--CAACGTTGATATTCAAGGTTATCCTACTTTGATCCTTTATCCAGCTGGTGATAAATCC 1389
--CA----------------TTATCAGACTCTCGCC------------------ACAAA---- 810
-GCA------------------CATTCGCAGGGGAAT---------------------TAAACC- 836
TACAA--------------AGCTATCGGCAAACAATT----------------------CAGACT-1024

AATCCTCAACTGTA-TGATGGATCTCGTGACCTAGAATCATTGGCTGAGTTTGTAAAGGA 1448 --------GATGT--TGAGGAGTCTGGGGAAGCAGA-TAATT---------------------- 841
---------CGGA----AGAAAAGCGAAGAA---GGGCAAG------------------------ 861
----------CTGTGATTAAAAGACTGAATATCTTGCGCAATT------------------------1057

GAGAGGAACCCACAAAGTGGATGCCCTAGCACTCAGACCAGTCGAGGAAGAAAAGGAAGC 1508 ---------CCTTTGAAGAGTATGCCC---AACT--------------------AAGGGAAT 871
---------------AAGGGCAAG--C---AAACCAAAA--------ATCACGAC--GAAT 892
$---------T T A T T G A G G C C A A A A C T---G A G T C A A A A C C C C A G T T A T T A C A C C A A G A G C$
$* *$
$*$ 105

TGAAGAAGAAGCTGAAAGTGAGGCAGACGCTCACGACGAGCTTTAA 1554
TGTAG--1876
TATAG--897 89
TATAA---110 110

* *

Alignment 4: Multiple sequence alignment of the 3000bp long upstream regions of all four PpPDIs.

CLUSTAL 2.1 multiple sequence alignment

CCA40283.1
CCA40358.1
CCA3 6295.1
CCA36622.

CCA40283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA4 0283.1
CCA40358.1
CCA36295.
------GTTCAAACCT--AGCGCTAATGTTTTCAGG--CATTTGTTGGCTCTTTTA---- 46
-----TTTTCAAATCTCCAACTTTAATCGAATCGAA--GATTGTTTGGT------------- 42
---CTGGTCAGGCTCGGTT---TCA---TCCTGAGGTTCATTCGTTGGCTTCTGCG---- 47 CCCATGATCTGGATCCATTATTCCAGACTACTGACTGTCCTTC-TTCATTTGTGAATAGA 59

------ACTGAAGTTCCTGGTGTTTCCTATG-ATGGAGGGGAT--CAAGGGCTGATTAAC 97
------ATCGATTTTTC----ACTTTTGAAA-ACTGGCTGTA---CAATTTCTGGCTGGG 88 -ACGATATTGAGTTCTT----ATTCCAAATGTA-TATCATCACCTCATTCTTTCTTACAC 101 AAAAATGTGGAATTATTC---ATCTTGAATGAACTAGTGTCAG---AAACGGT---GAAA 110

TATGTATTCCAAAACAAATGGTTGCGCACTGGTGATGACACAAAACGGTGTGGTGTATGG 157 TAGTTTTCTTGTGACTAGAAGCTGCA-----ACGGAGCCA-ATAATAGTATTATACATTG 142 TCAGGGTAATGCCACAAAT-GTCGTCT-----TGAAACTCTTCAAAGTCAGCATC--T-G 152

CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA4 0283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA4 0358.1 CCA3 6295.1 CCA36622.1

CCA4 0283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA4 0283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA4 0283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA40283.1 CCA4 0358.1 CCA36295.1 CCA36622.1

TTAGTATC-TGCCAACGAT-AAGACAT-----TGGAATCTCTCAAAAGGAAGATGGAT-G 162 \star * * * ** * * *

TACAATCTTAG----TTTTGCGTTC--AATATG--------ACACTTTCCA-ACAACTAT 202 CATATTTTTTG----TGCTGGTTTTTAAACATGTGCTGAGAGCACTTGTCAGATTTTTAT 198 AATAGTTTGAGAAATAGGTACCTCCACAAAGTCT--------CAAT-ATCA----ATC-- 197 AATTGCTGATGACGGTAATGTCTTCGCCAACTGT--------TGAT-GTTAGACTATCCA 213

GAGAGTCTTCCTTCAG--TACTGCGAAATC----------------TCACAGACATCAAAT 245 GAG---CTTCCTCAAACTTATTGTGAAAACA-------------GTTGAGGACAGCA--T 240 --G----TTCC--CAG---ATCAAAGAAA----ATCTCTCCATGGTTGAGG----CA--T 236 CGG----TTCCATTGA---ATTGCAAAAGCCTCATTCCCTCAGTGTTAAAAGAATTA--T 264

TGGTTCATTTCATAGGAAT-TGTGAAACCATGGATGCTTAAACCATCTTTTGTGAACGAC 304 TGAG-------GTAGAGGTATGCAGTACTGTG-------AGA------TTTGGG---GAC 277 CG--------CATTGAGCTCTCCTATAACGGGA---------------CTTGATTAACCAT 274 CGGTG----TTGTTGATATTTTGAATAGCAACT---------------TCCAAGAGGTTAC 306

TTTC--CAGATGGCAGTCTTGACAGTTTTGTTGCCCAATGGTGGGAGCAGTTTAGCTCTT 362 TTTT--CGA-----AGGCTCGGTAAAGTAGATG----ATGCTGAAAGTAA---GACTTTC 323 CTTC--CA----------CCAGC------CTTAT----TAGCAGGAT--------CCTCC 304 CTTCGTCA----------TTAGCAGACAGTTTAC----CACCAACATAAAGTTTACCATC 352

T-TGA-GAAC-GGTGAGTTTCTACCTTTGGTTTTTAAGAATGTTGAAAGCGAACGTATTG 419 TGTAATGAGCTGGCCAGGTCGAACTT---GTTC------ATGGTGAA-GTAAA-GT-TTG 371 C-----AAACTGGCTTGATTC-------CACTT---------TTAAA-----------CA 332 C-TGAAAAACTAACCC-ATTCACTGTAGCATTC---------TCAAG-----------TA 390 * *

AAGAAGACTCCC-ATGAGACGGAAGA----------------AAA-------GGTGGACGA- 456 AACAGTATTCCA-GCAAAATAGTAGAC-TGCTATTTTCTTTGAA------GTTGCAAGAT 423 AAAAGAGCTCTGTGCCAACTGGAAGGTCAGATACTTTCCTCAAA----TTGCTCAATGAT 388 AGGAGGA-TCCAAGTAGATTTATGG---AGGAGTTTCCGACAAAAGTATTGTTTGATAAC 446
----AGAAGTCTC--CATT--TCAG----AGCCTCAGGATGAAACCACTGATTTCAAGTA 504 ---CAGGGTTCTTGTCACT--TAAAC---AAATTTTGAACGAC-CTATTGAATACATCAG 474 TGCCACAACTGTTCGCATGAGTCAATATTGGTAGTAGTAGTAG--CACCGC---CATTCG 443 --CTTAAAGTGTCAAAATCTGTAAA-----GTTGTTGAGGGAA--TACTCA---AAAATA 494

CCAGTTTGGCCATCATT-CCT-TTGAAGAACCTG----CACCGGT--ATTA-----GATT 551 CAATTTTCTCCAAAGGTGCCC-TTGAA-----TG----C-TCGGG--AGTG-----GATT 516 CCACTGATGGAAACTCTACTTGTTTAACGGTCTGTAAATATTGGTCAAGTGTGTTTTGCC 503 CCATTTAAAGGCACTGT-CAAATTCAAGGATCTGGTACTATTAGTTGAGT------TGAT 547 * * * * ** ** ** * *

ATTCAACTGAGGGAGAAGCATGGAAGCTT---AATGAAGAACAATTGACTAATCAG---- 604
GATCACCTTTGTTACTATTATACAAATTTC-CGACATATTTCAGCTCAGTAGAAAG---- 571 AGTCATTTCTGG-A--AGCCTCCGAACTTGTCTCTTTATT-TTCCTGTTCAGAAGG---- 555 AGCCGCATCTGC-ATCAATGTAC-AGTATGTCTACGTACAACTGATATGCGGCAAATTCC 605
---TGGGATGTTGATGCACCAGCTG-AGCCGCTGCCTGTCCCTGTTGAAGAAGACGAACG 660 ---GAGGAT-CAGAAG-ACC-GATA-ATCCA--GTTTGTTTC-ATTATCAGCGAT--ACG 619 --CTCAGCTAC---ACTACCAGATGTAGTTACGTTTTCGGTC--TCCT---TGCCCCTCA 605 AACTCGGTTTCTGAATTTCCCGGTATAGTTGA---TTCGACC--TCTAAGGTGACATACG 660

CGAAGAGACGAAGGCCGAAGCTGAATTGGAGGAGCTGCTACCGGATATTGTTCAGCCTGA 720
-GTTGAGCTGG-----GAAACTAGATC--AAGACTTGTT-TCAAACGCCTTTTTG---AG 667
-CATGATGCCAA----AAAGTC-CAAG---AGTATTGC-ATTGGATGA----------GG 645
-GATGATCTTCC----AAGGTTGCATT---GATACGACCGTTG--TAA----------AG 700 **

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1

ACCTCCAGCACCTCATGT--TTTTC-CCTGGGAAGCTTACAATGAAAAGCCGACACGAGT 777 GTCTCCA-TGTTTGGTAA--TTGAT-T-TGAGAAGCG-ATA--GATATGTTGAGACCAAA 719 AGCGGCA--ACTTGTT----TCGTCGTCCGAGA----TCCATTGATATCCTCAAAGAACT 695 AATGTCA-TACTTGTCAAAATCATTGTTTT-GA----TATATTAAGATGG--ATGCGAGT 752

TT--TCCATGATTACAGGTAAAACTTTAACTAAATATAAGGTA-TAAGATAGCATCATTT 834 TCGGTCCAT--TTTTGGTCAACAATCCGGTTTTGT-TGCGGTAATGCGA-AGTTTGATCT 775 TG--GACAT---------TG-CAGTT---TTGGGA--AACCTG--GAGA-AAT---ATGT 732 TG--CTCAT---------TGTCGATTCCATTGTGA--AGTGTA--GCGTTGAC---AATT 794

TCGTATTTAGCTGGTACTTAGTCGAATTTTCTACTGCATGGTAGCGTTTGATACACGTTG 894 T----TCTTGAAGAAGGTTATTTGGAATGCTTATGGAAAGGAGAT------TACTCAGTG 825 TCGAAGCTTGGTG----TCGGATGGA-CGATTTTCAAGTTGGAGCGC---GCATGCAGAG 784 CC----TCTGGTG----CTACATGAGTCGGTTGCTAAACAGCCAGGT---GTGTAAACAT 843

CCCATTCTT--CT-----CTTTA-AGTGCGATTAACTGCTTGGAC---CGGTAAG-TCTC 942 ATGAGCCAT--CTTGAAACCTTACAGCTTGAGACACTTGTTGGAAGTACTGCAGC-TCTG 882 AAAGGTCAATGCTAGTAGCGCTA-GGTATG--CCATTTGTTCGCC---TTGTAGGATCAA 838 AAAATTCG----TAAT--CACCA-GGAAAA--CTAATATTTGG-------ATAGAATGTC 887

GTAATGAA---------CGACCGAAGTAGTCTCTAT--TAAATCAT-GGAG---GTGGGT 987 ACATTGAATTGGAGGTCCAACTGGAGAGAGATAGAT--TTGATGGTAGGAA---ATG--- 934 AGAGTTGAGAG----TTGGAGCCGGGTAATACTGACCATTAATTCCATTAATTCATACCT 894 ACACCCACTG------TGGAGTCTGG-AAT-TTCACCATTGAT--CAATGAT--ATGGTC 935

ACG-TGTTAGAAAGTC---CCGCA-GGTACACAAATTCGCACTGCGTTACATCTTCCACG 1042 ACGGTGTTGGGATGTTGTTCCCTT-GGGACAGAATGATGTTTAACGATGCAATT------ 987 ATATCGTTTATATACCAAACTTAA--GCCAGTCTAGATCTTCCGCAATGTTTCT-----A 947 GT---GGTAATGGACCCATCTTCGTGGGGGTCCAGG--ATCCA-GGTGCCTCT-----A 984

TTGATTAGACCC--CATCGGGTTCTACGACCTCTGATGACCTGTCCATCAATTGT-GGAG 1099 TTGATACAATAT--AA--GGATTTGATAGACTTAAAT--CCAGTCAATTACTTG---GAG 1038 TTGTT----CGG--GGTTGGACCTG-CAGTGCCAGGGTCTTTGG-AATT--TCGTCTGGG 997 CGGATACACTGGAAGAATGAAACT--CAAAATCA---TCACAGGTAGGT--TCGT-TGAA 1036

A-------TCTCATTTTC---AGAGCCAATTACTGC---AAACGGTAAAAGACTTCGGAT 1146 A-------TCT-ATCC--------GTT--TTACGGT---GTAAGGTTAAAGGTGCAAAAT 1077 ACCGCATGTTTTGTCCTCTGGGAAGCC--CTCCTGTTTGACA---TCAAAACC----AGT 1048 AC------TTTCGTTACCATAAACGTAGATTCCTGATTGGTAGATTTGAAGTCCTTTAAG 1090 * * * * * * * * * **

ATC------TTGATTCAAAGTCAGTTCTTCTTCACTCAAATCTTCA--TTGTCGTACG-G 1197 ATCA-----TTTATTATATAGCAGTTGCATTTTA--AAGATTTACAAATGGTCTCGCTTG 1130 AACAACGTGCTGAGTTTGAA--GACTAAGACTGGA-AGGACGTCTG-GCAGTCT--CTGG 1102 AGCACCGATTTCATTGTAAGCGGACAATACTTGGA-TGGTTACTTGAGTAACGT--C--G 1145 * * * * * * * *

AAA-----AAAGTTTAGGTCGT--GTTTCTCAA-ATTGAGTGTGCAAAATA-----------1240 AAACAAGTAAAGTTGACGATGCAGGCAACTTAATATCCAGTGGCCAAAATAAAACTGAAA 1190 AAAT---CTCTGCTGAAA-CGA--GTTTTTCAGAAT----AGGGGAAGATGGT---------1145 AGTT---CATTGTGGAACTCGA--ATTCTTGGTAATCTCCAGACCACGTTAG---------1192 *
------CTTTTAAACTTGG----TACGCTCTTCGG---TAGTCAAGGT---GTCA-GCCT 1283 TGAAATCCATTTGAGTTGA----TTAACTATTCAG---TTTTGATGGACAAATCATGTTT 1243 -ATACCGCGCTTCATTTGGAATTCTTGGTGCAAAGAGCTGGAGATGGAGTTGGAGAACCC 1204
-GTAGCCTGCTGT-TCTGG---TTTTGTCAT-------TAAAGACGGTGTCTTCGTATAC 1240
-TAGCAATAACAGGAAT-------AACGTTCACAA--CAGTAGTGAGTT----TGGAAAG 1329

CCA40358.1 CCA3 6295.1 CCA36622.1

CCA4 0283.1 CCA4 0358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA 36295.1 CCA36622.1

CCA4 0283.1 CCA4 0358.1 CCA3 6295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA40283.1 CCA4 0358.1 CCA3 6295.1 CCA36622.1

CCA4 0283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1
-TGTCAAGCACAGCCCTTTTCTTTAACGTCTGTACTTCAACCTCATCTC----CAGATAT 1298 ATGCCCATAGT---CGTTG-CTGGGAGATATAATACCTAGGTCTGAGTT-AATTGGCGAG 1259 ATCTGAAGAGTTTGCGTT--CTGAAGAGCGT--CTTCCAACTGTGATTTTGAGAGGAGTG 1296

AACT-TGTATGTCAAG-----GTTTC---TCA-GTCCCTTACCGTTA-GGTTGAATGAAG 1378 ATTA-TAAAAGTGAAATATAAATATT---TTA-ATTCGCTAT--TTA-CATTTAACCCAA 1350 G-CAGCGTTCGTAA-A-----ATACGAAGCAACAGCCACTGG--TTGCTGTGAAGTAAAA 1310 GACACCACGCGTCACA-----ATAT----TCATATTCGTTGG--TT--TGTGGATTCACA 1343

TAAAGCACACAATGAACCCTTG------TGTCAGGT-ATAT-ACCTTTCTCTCTGTGCTG 1430 TTCGGAACCCA--GAATCCTTAAGATCCTATCAAAA-AGATCGCACACCATTCTGTACCG 1407 C-TGGAA-ACAGAGGAAGGTGA------TGCCGGTATAGATACTCCAGGATTATTA-CC- 1360 TATGTCA-A-----GTTCATGA------TACTGTTT--GAAGGGCCAG--TTATGAGCC- 1386

T---CAACTC--TTTTCGCAAGTAGGTA-----GAGTTTTGCTCTTTGA----TATACTG 1476 TAAACAACACAACATTGGTATATGGCCGTCCC-AAGTACACCACCAAGAGGCATACAATA 1466 TGAAAGACT-GAT-TT-GTGACTTTCTGCGCTTGAATCCTGCTGAATGCGG---GGAGAA 1414 TAAAGTACTCGACACC-ATAACCCTCTGCA---GAA----GTTGATT--GG---AATAGA 1433 * **

CAATA--TTGGTTCCCAACATTTGTCATTGTTGATCTGA--------------TCTCCAA- 1520 CAAGAAATCGATACCCA-TTCTGGCTAACAATGATGCAC--------------TCCTCAAC 1512 CGAAGTATAGGGA--GAGTC-TTGT---TGTTGTGGCAT---------------CATGGG-1453 CGGAGCTTGGATG--GAATTATTGTG--TGGTGGAGCATAGCTAGCCAAGTCCCTTGGG-1488 * * * * * ** *
----AACC---AGGTG---------TGTCA--ATCACGTTGAGTTT-CAGATTAAC---- 1557 ACCCAACC---AGTAACCC-----CTGTCAC-ACAACGACAAGTTAGCGAGTCAACAGGA 1563 ----AAC----GGGAATGTTTTTATTGCT------GGGACCCCTGGAAGGCTTGGGCAAA 1499 ----AGCCTGAAAGAATCCATTCATTGTCTTGATCGGGACAAGTGATTGACTTGGG--GT 1542 --GTTG----TTTTCATTG---AGAATTTGGGAGGTGCTTT------TAATCTCTACA-G 1601 CTGTTGAAGTTTTCCATAGGCAAAAATGCGGCATCTCCGGTGAGAGATGGTCTCCCCATG 1623 ATGG-GAACATTCTTAT------GCTTTTGAGCGTTGCTGT------TGA----GACTGT 1542 CTGGCGAAAGGGCTT----------CGTTGGTAC-CTGCTGT-------TGA----CAC-GT 1581

TTCTTTCCACAGGCTCAAAAGTACTTTTTCTTCCG-TTAGAGTCCACAAGATG-TGTGGC 1659 TACCTTCCAT----TGAAATCTGCTGTACATGAGG-ACAAGGAAAACGATATCCTGTTTC 1678 TGCCTCTCATTAGATAATAGGAATCTTGTGAACC--TCCGTAGGGAGAAAATGATACGGC 1600 CGGC--------GATATTA--AAACTTGTTAGTTGATCTGGACTGACATCAT-ATATGGT 1630

AA------AAAGAGTATTGAC-TAG-AGTTGACTT--CCCAAGCCC---AGATTGACCAA 1706 AACTGGCTAAGAAGCAACGAC-AGGTGGTGGACCTGGCTCAAACATTAAAGATAGCCAAA 1737 TGTTGTTGGAAGAGAATTATTATAGGGGTAAGGAT-----AAGGCT----GTTG---CTG 1648	CAAC-TCAGTTGAGT-TTGATGAATTGGTGGACAC------ATTA-T----GATG---AAG	
	675	

CAAG----CATAACATTG-------AGCTCAAATCCACGTTTAA-----GGAGTCTGTTT 1750 CAGGAGCTTGCGGAACTGGAACGAAAGTACCAATCCGAGTTCGATTCTAGAAACCCGTCC 1797 TTGT----TGTTGTATTTGCTTTTGAGTTTGAGTGCTATGAGAAGGTT--GAATATGTTC 1702 TAAG----GATTG-ATTCCCCAAGGAGTAAAAGTTTCCACCGAAAATC--AA----GTTC 1724

TCAATTTGGGTAGTGATAGTATCAAACCCCAC--ATA----ATTCTTAGGTT-----GAA 1799 CCTGTTCA---AAAGA-AGGATCAGAATCCACCAACG----GCGGCTAAG--------AA 1841 ATG--TTGT-TGTGGCTGG-AATTGAACTTGTTGTTG--TTGCTGTTGCATCTTGCAGAG 1756 TCA--TCAT-CAATGCTAACAATTGCGTTCACTGATGCGTTTTCATTAAATCCTTGGAAG 1781

CCACTTGACTTG-CCATAGTTTTTGT-ATTATCT-GACGAACAAAATGAAAGAGAATAA- 1855 TCCATTGACTGAACTAAAAC----GG-ATCATG--GAGAAAAACAATGAAAAAAAACCAT 1894 CCCGTGTGTT-AAAGAAGATTGATGTTGTTGTCTCTTGGAATTTCGTTTCCTAATGACGT 1815

CCA36622.1 GGAATGGACTCGAAGGAGGAAGAT-TCATAGT----TGAAGCAGACCAAACCAAAAATAG 1836

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA4 0283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA3 6295.1 CCA36622.1

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA4 0283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA4 0283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1 CCA4 0358.1 CCA36295.1 CCA36622.1

CTGTAACCAAC-GCGTGGACAGGTAGGACA-----CAGAAA----TCGAGGAGAA--AGG 1903 CTGCACTCAAGAGCAGGAAAAGTTTGTTCAATTTGCAACAAGACTTTGAGGATAACAGAG 1954 CCGTTTTCAAAGACA--A--TGGCCTCACAGTAC-CATGAAGTTTTT--GGAAA---AGA 1865 AACTGTTCAACGTCA--AATTTCCCCCAAAATAT--ATCAA---CTT--GGACGTTTGGT 1887

CGATT----GCATT-CGCGACTGTATCTTTCCGTGCAGCT--CTATTACGAGAGTG-GTG 1955 CAATCCAAAAAATC-CGCA--CGGATTTTACTAC---TCT--CTCTT-CGAA------CT 1999 CCACA---AGCATTGCACAA-CGTATTGCCACTTCCATCT--CTTCTCCAAAGAGGAGTC 1919 TGACA---AACACGGTTTGA----ATAGATCCTTGAACTTGATTACTCCAA----------1931

TTCTTAGTT-------TTTCCCTCTTCAATTTCTACTAAAGCTGC------------TTTG 1997 TTTTAAATG------ATTC--TAAGAAATTTCAGC--AGGGTTT------------TGTG 2037 TTTTCAGTCTTACAATTTGAGCATTGAGTTCTTGTTATACTTTCGTCATTGTCAGCTTTG 1979 TTTTCGGTC----AGGTTCGATATTGAAACCT-GAGAAGCTTCC-TCGT--TCACTTCTA 1983

GTAAAGGGAGA------CATATTCGGCT-ATTGTTTACT-TTG-CGCCC---ACAGTAGC 2045 ACAAAAGCCAA------TAGTTTCT-----TTAACAACT-TTAACACCTCAGGCAGCAAC 2085 GGGGATGATGAGTCACTCATATCTTTCTGAACAGTCACTGTTGTTGTGA-TACTAGTAGT 2038 GGATCAGAGGAGC--TTCATTTTCTTC--GATGGGGATTACCAACACGA-AGTTATT--C 2036
------GTTAAGAAACATTGTTTGTTCGATTTATTGGGCTGTTGATAAATTCAATTGATT 2099 TCCGTAGCTAGCGACCAAAATTC-TTTGGAGCGCAAAGCATCTGG-AAGTTGCCTGTATG 2143 C------TCGG-AAGTAGGTTTCGCTAACTGTA---GTTTA-TGAGAAGCTCCGTCACTC 2087 C------CCAATGAGTAGGACTGTTTTATTGTGCC-GTTGAATGTGGAAATGAACGAT-- 2087

ACG--TTCGCATACTAGC-TATCATAAACTAAGC----ACCACCTTACACCACTTTCTCA 2152 ATG--TTCGAA----AGCATGACGCAAACCAGAC----A-----TTGATGAGCTCTGAAG 2188 AAGAATTCTTGCAAAGACTTGTCTTGGATAATATC---ACTA---AAATCTCCTCCCATA 2141 AACGACTCATCTT--GACCTAGTTTGAA-AATGCCTAAACTCTTTGAATCTTCGTTCCTA 2144

CTGAAGATTT-----TCGACATCAAATTTC--------------TCTTGGAT-----CACC 2189 ATGAAGAT----------GAAG--AAGATTA---------------TGGCGGAA-----AAGC 2219 CCA--TCTTC----CTCACCATCATCATTG-------------CTATCGAAC--TTCCA-C 2180 ACAGATGTCCTGTACTGATTGGTATTATTGGGTGTAGAAAGTCCGTTGAACCGTCCCAGC 2204

AT--CAAC----CTTG--TGTCTACATGTCCT---------TGTCTTTGAACCTAAATCA 2232 ATACCGACTAGACTTG--TAGTCAAATAGCATACAAA----CAGCATCAAGACCA--TTA 2271 ATCGAGTTTAGATCCAAATTGTTGGA-GTCATGCAAGGGACTATCATTCATAGATGAGGG 2239 AAAGAGATATCATTTGAAAAGTTGATCGCCTGGCAAGAGACGATTATTGAGACCAGTAGG 2264 *

GATAGCCGTGCGGGTTGTGGGCATATTGCCTCGTATTCCGGAGATTCAC--------ATT 2284
AATACTCGCCTCAACTAAAAA--------CTCGTCTTCCTT-GATTGAC--------TTT 2314
CGTAACCATCATTG--AAGGT---------TTTGGTTTTCGA-AGTTCG--------GATTT 2281 AACAACAA-CGCCGCCATAGT---------TTCAATCT--GA-AGTTGACTTGTGTGATTT 2312

GCCATTCCTAA---TATTTTTC---AGCGACGCAC-----CGAAG--------CT-TCTA 2324 ACTTTTTCGAT---TAGATCACCA-AGCGGTGTAT-----CAAGAGACGGGTACTGTCTA 2365 AACCTTGGAAT--CTGAGTAACTAGA-CGGAGCCC-----CAGAAT--------TATTTT 2325 GGTGTTGGGGGGATTGAGGGTCAAAAACGGGGGTCAGAAACAGAATA-AAAAACTAGCTT 2371

CAGAGACTCACGATCCTCGCATACTAGAGCTGATAGAAAATCTACAGGATGC--CG--AG 2380 C-GCTATTCACGGTTAGCGTCAACAAAATGTAAAAAAAAAGA-AAAAAAGAC--TGT-AA 2420 C--CAAC--GAATCTGGAGAATAATACAGGCCAGGAGCACTTGAAATAATCTC-CGTCAA 2380 G--GAACTCGAAGTAGGAGAAGAGAAGTGGTGAAAAA-AGAAGAGGGGACGTGACGTTAA 2428

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1

CCA40283.1

GTTCCTCCATTCTTCATTG--ATAACGGTAT----ACTTAAAGCAGCACCAAAAAAGAAG 2434 AGCCCAACTTACTT--TTG--CCAA----------------AAAGC-----CAAACAACTCA 2457 ATCAGCAGAGTCATC-TAGTTGCAATTCGG---AAAAATGTAGTT-TGCCAGAAA-GGCT 2434 AGACCTGAACTCTGCGTGGGTGCAATGTGGTTGGAAGGTGAAGT---GCAAGGTATGGTT 2485

GTTT--CT----CATAT-----------GAAAAGACGCCAGAAATTATATGGTCCA---- 2473 GTTCTGCT----CATCT------------CTTCCACTGGCTTAGCCTCAATG-TCAA---- 2497 GTCTTGTTTTGTCATCTGGGTTTTCTTGGATTCATTTCTTAATGTTCTGTTTTCAACTCG 2494 TTTTTTTCCTGCCA-------------GGAATCA------AAAATATCATTCTCATTTCT 2526

GGAA---AAA---AACAACTCTCTTTAC--------TACAAAATTTGAACAGGTGTCCTGC 2520 TGGG---AAT---GTCATC---CTTGAC-------CACC---TCTG------TGTCCTTC 2532 GGGGTATAAATCTAGTAGCT-TTTTAGCCGAAGAATATACCCCCCATATGGACGGCGAAT 2553 GAGG---AAA---GGCA-------TGGC----AGAATATTTACCT------GTTGCCAGAT 2564

CTGCGGAAAC----TACAAACG----ATCACACACCCT--------CTGCATGCATTGCG 2564 TTCTTGGATTGCTTTTTCGAT-----ATCGTTCGTCGG--------CTAGAGGGCTTGAA 2579 CTTCAAGATCC-TTCAAAGATCCTGTATTATTTCTTCTGTTTCCTTCCATCTAAATGAGG 2612 CT---GGATA----TGAAGATTACATAATAAACACGTAGA------CAGTGTAGATTCTG 2611

T---AGGACAAATCAGGAGACATTGGA-ACGAC----TCTGTTCCT-CAACAGGAGGCAT 2615 G---GTGGTAAA-----AAACATTGAATACAAT----GTAGCCCCCACAACGAGGCCCAC 2627 CCTTAGGGCATATAATTAGAGAAAGGACAGGACCAGTTGAGCTTCAATGCTAGGGTG-GT 2671 C---GAGGCGTGC---CAGACGTTGAGGAGGACAAGTTGGGGCTCCG---TAAGGTGTGC 2662
---TTCGT-----GAA-GAGTTTGTTAATCCTTTGGATGAGAAGATTCTTTATCCAGGAA 2666
AAACCCAT-----AAAAGAATTTCTTCTTTACTTGG--------TGTACCATT--GCAA 2671
G--TAAA-----GTAAAAATTTTGACCCTCAGG-GA---------TCTCCAAGT----CA 2710
G--TCCATATGCGGACAGAGTGTACCTATTGGCTGA----------TTGGCAA------CA 2705

AGAAAGAACTGCCCGATGAACGAACTTTACGTAAG---AAGGAGTGGCTGAAG-AGAAGA 2722 TGGAAGAGGT---TGATATA-----TTTAAAGAGGTCCAAGGACCCGTGGAAGCAAAATA 2723 TGTTAGGAGA----AGTGTT-----TTTTTGGAAC----AGACACGACCGGGG--------- 2750 CGTTAC-ATT----GTTGCA-----TTCCTG--AT-----TGGCGTTGGTGTGC--------- $_{\star} 2742$

CCCCGAAC----------------ACTCCCTG----TTGAATAGA-ACACG--AACACTGT 2760 CCTTCAATTCCCTACCGCGATTGACTTTCTGATGTTTGATTAGATGGACA--ATCAGCAA 2781 ----------------------TATTTGTGGGCCAAGACTAAGCAAACGGCAA-ACGAA 2786 -------------------------TCTTGTTGAAACAGGGATGCATACATATTATTATCAA 2779

AAATAGAATAAA----AGAAAACTTGGAT--AGTAGAACT-TCAATGTAGTGTTTCTATT 2813 ATGTACAGTAAA----GCGAAAT---GA---AACGAAATTGTCA---CAGCGTTTGGATG 2828 ATGTGGGTTTGAAATGGAGAAGCGCTGCTTGAAATGAGCAGCCG--TAGAAGGTTGGATG 2844 ACATGGACTGAGGATCGAGGATC--TGC--AGGTCGGACAGCCA--CCCGACATCGTTTA 2833 * *

GTCTTA--CGCGGCTCTTTAGATTGCAA-TCCCCAGAATGGAATCG------TCCATCTT 2864 GACTTAATCAAGGA----CAGCTAGCAA-TGCCAAGACAGTAACTAATACACTGCATTTC 2883 GCACTA--CATGTAT---GAACTAGAAGGCGTTGA-ATTTTC-TAGATGTA-CAGA---- 2892 AGCTTA--CGTA-------AGATTTGAAGGTCCCAACATCTTGACAGATCTC-TCAACTTT 2884
-_-_--TCTCA-ACC-CACTCAAAGATAATCTACCAGACATACCTACGCCCTCCATCCCA 2916 ------TCTTA-ACAGTACTCAA-------CTTCCACACTTCGTCAGGTTCTGGTTCCTG 2929 GGGAGATCTTG-ATTGCATGCGAA--------GC--ATCGTCGTCAGGCTCCCCTTTTAT 2941 GCTTAATCTTACATAACCCCAAGA--------GCCAACCCTCACCAGGTT----ATTTTT 2932

GCACCACGTCGCGA-TCACCCCTAAAACTTCAATAATTGAACACGTACTGATTTCCAAAC 2975

CCA40358.1
CCA36295.1
CCA36622.1

CCA40283.1
CCA40358.1 CCA36295.1 CCA36622.1

GC-CCATG-CGCGACTCATCCCC----CGCC--TGATGAAATAGATA--AATTTTTGCAT 2979
---TTATTTTCCCA-CCGTTTTTTG-TCCCC--TTTCTCGCTA---A---ATCTCT---T 2985 ---TTGCCTTCCGA-TTGTCTTCTCCTCCCC--CCGTTTGCTGTCCA---ACCACT---T 2980 * *

CTTCTTCTTCTTCCTATCTATAAGA- 3000 CTATGAACTTTTC--ACTCAAAA--- 3000 C------CCTCTC-----GACAGCAC 3000 GAAAGGGTCTGTC-----TAGGATA- 3000

Alignment 5: Multiple sequence alignment of the 1000bp long downstream regions of all four PpPDIs.

CLUSTAL 2.1 multiple sequence alignment

CCA40283.1
CCA40358.1
CCA36622.1
CCA36295.1

CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1

CCA4 0283.1 CCA40358.1 CCA36622.1
CCA36295.1

CCA40283.1 CCA40358.1 CCA36622.1
CCA36295.1

CCA40283.1 CCA40358.1
CCA36622.1 CCA36295.1

CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1

CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1

CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1

AACAAACCATATGGATT-AGCATCACTTCGCGCAATACGT------TCTAGTTGCCCA-C 108 AACCAATCACATACATTTGGTGTAGACTAGAATGGATCTA------TCTGGTTATGTA-A 87 TACCA-CTGTAGAGGCTTTGTAGATTTCTGGACCAATCTCACATGCTCCGGCCACAC--T 109 TTTCATTCATAT--ATT---TACAAGTT-GAATATTTTTA------CACAATTGTAGAAG 83

TTGCTAAAACCAATTTAGCAATGATTCA----ACAGCAA---------TTATTATCACCA 155 TCACGATACCT--TTCGGAATTGTCTCGT---GTAGCAGGCGCGCCCCTTCGCATCTCAA 142 TTGCCGCCCCC----TAGGATGGTTTCTTCT-ATGATAGGT-------TTGACATTAAAG 157 TCACCCTAACC----CTGGATGGATTCTTCCAACTGAAGTT-----TTCTGGAATGGCGA 134
---TGA--CTAACTGGAAAGC-GATATTGA-CTCCCGCTCAATACCAAGTCCTCCGTTTG 208 A--TCA--ACAGTTGGCAAGT-GTCACT---TTCTAAGTTAGCAC-------TCTACTTT 187 GGGTTA--CATCTTGCCAACCAGATATTAG-CCCCAG--------------------ACTTC 196 ---TCAAACAGGTTGCTAAGC--TCGTTGAAGTTCAA------------------CGATGTT 173 * * *

GGCGGAACAGA-AAG-ACCGTATACCGGACAGTATGTGAACTTCAAGAAAAATG------ 260
A--AGAACAAA-ATG-AACATCTTTAGAATCCTAGGTAAGTTTCCGC--------------- 230
A----AGTAAATGAG-AACATTTGCTGCATACT-TGTGACCTCCGACATGATTGATAAAA 250
G----GGTTGACATCTAACGTCTTTTTG--TCTTTGTAGGTCACCTCAATGATA------- 221
-GAACCTAC---TTGTGTAGTGGGTGTCAAACTCCG---CTTTACA----AAAGTGG-CA 308 ----TCTGC---TCAATTGAAGAAT--CAAACCCAA---TTTTCTA----ACCACG--CA 272 TGAACTTGCACTCCGCCTGGTCTAT--CATCTCCGAGATCTCTGTAGAG-ATCGTGATCA 307 -GGTTTT-----TTGTTTGACTGGC----TGTTCAAGA-CTTCGTAGTTTATTGTG--CA 268

CAAA-----------ATTTGATTCATC-TTGTGGTTGG-CCTGCATTCTATGAAGCATTA 355 GGTG------------ATATCTCTCATT-TGATAAGCAT-CTTG-ATCCTAATACATGCTG 318 CGAAGGTGAATGCACATCTCCTTCTTAATGATAGGTGC-GGTG-ATTCCGCAACGT-TTA 364 TG--------------ATTTC-TTCAAGGAACTGGGCAAAGCTGCAAG--AAAAAGTCTTG 312

C--CTGGAGCAGTTAAACGAATAGAAGA---CAA----TTCGCTTGGAATGCGAAGAATA 406 T--ATC-AACAACAAAGTCTGCTCAAGG---TAT----CTCATTAAAAACTCAAGCAGCT 368 T--CCCTTGTT-TTATGCGAGCACAAGAACACATAGGACTTGTTTGTGTCTTTAACGATC 421 CGCCTTTAGCTTCTGGACCAA---AAGGGTTGAA----TTTGACCGATACTTTGGTAAAG 365

CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1

CCA40283.1 CCA40358.1

GAAATCAGATGCTCCAA-ATGTGA-TGGA-CATCT--TGGCCATGTTT-------TTGAG 454 TATGTCGTAGTCTT-----TGTGAGCAGG-TATCT--TGACCTCTTTT-------TCAGA 413 ----TCATAACCTTTGA-TTTCGGCGGGAATATCTATTGGTTCCACTTGGGTAGTTTCGA 476 TACTTGGTAATCATGGAGATGCTTCTGCAAGAATTG--GGTCGTGATG---------AGA 414

GGTGAGGGATTT---GACACTCCAACAGA--T---TCCAGACATTGTGTCAACAGCATCA 506 TATGTGTCACTTTACAACACGCTGATGAAACT---CTTTTTCATTGTCTCTTC--CATTT 468 TA-GAGAAATTT---GAAAAAAGAATGGGCACTAGCTCGTCCAATACGGCATCAACATCC 532 GAGGGTGGATTT--------TTTCGAAGAGTAT-----CCGATATTGAGTTTCGCCCACTA 462 GCCTAAAATTTC----AAGGTG--AAGAAGAGAACTAAGCGGGGGGAATGACTAAATAAA 560 ACGTTGTGTTTTTGTTAAATCGGTACAAAAAGAAC--AGTGAAAAGACCAATGATATTTT 526 TCCATACACAACTGCTTGACCC--ATACAAAGTAC-----GGAAGAATTAA---AATATC 582 CCATGATATATTTTTTTTTCTG--ACTTACCTCCCTCTAAATAAGAATCACTT---CACC 517 *

TAAAGTAAAAATTTTGTTTATTGACGCCTTTTATAATTTGTT---TCCTTGGTCTTTAAG 617 CCCAGTATGGTATCTCTTTGGAGGAGCGTTC----GTTT-TC---GCTTTGATCTTCAAC 578 CCCAGC----TGTCTGTTCGGCAA----TTC------TTGGA---TCCTTGGCATTAGAC 625 CATAG----ATATCTACATGAAGG----CTCAGAAATTTTCCAAGGCTTCGTTACTGGAT 569 ---AAA-ACTATCATTCTGGAGAATTTC-TAGAAGATACCCATCAGGGTCCTTGA--AGA 670 TACGAA-TTTAGTATTGTGGAGATTTTG-TGGAG------CTTCA--GTCTTTGGTTAGA 628 TGGGGT-ATGGATGATGTGGAGACTTT-----AA--------CC---GCTTTTGG--AAC 666 GATGAGGATGACTACTCAACTCAGCTTGACAGAA-------TTCT---TGCTCGG--AGG 617

AGGCAAGCTTGTC----GCTAATCTCTCCCAATTTAAA---GACCCATTCTACATCATTC 723 AAG------TGTT----GCTA-TCATTCCGCAATTAGT---GGTTCTTCAGAGAACGGGA 674 CAGC-------TT----GGTAGATGAAGCCCAATGAGA---GATTGATTTTAAAATCGTG 712 AAGAAGA---GTCAGAAGGAAGACTCTGGAGATCTAGATACGATTTCTTTTGGCTCCTTA 674

TCAA--GCTCTTTGGCAAGTTTGGCG--ACATCCTT-TGTTTTAATGCCTGTATGGC--- 775 G-AA--GCTCAATTACTAACCACACATTACATATTTGCACTTGGAT-TATACAGAGCGTT 730 CCA-----TCAAC-ATCAGT--GGCGT--CACGCTTCCAATCGGACTTACCCGTTGGAAT 762 TCAAAAGCTCAA--GCAAG------ATTACAAACTGAGGAGAGAGAATCCAAGAAGAAGG 726
---CATATCCAAAAGGCTCAGTGGTGTTGGTAT------GGTAACCTT--TGAAGCTGGA 824 ATACATCCCCAATTGGATC--TACCGTTACTACACAGAGGGTCGCATGGACAAGATTGCA 788 GATAATGTGTAAAGAGTACGGTTTAGTTGATTTCCAAAGGAGATCGTTTTTGGAGCCTGG 822 TAAAAAAAGTCAAGAAACCGAAAGTATTGAAGAAACAGGAAGAAGATTTTCAACCTCCCA 786

GT--CACTTTCTGTACCCCA---GTTATGG----GTCAACTCAA----TAATAGATTCCC 871 GT--CATTTCTGGTATCTTACAGACTATTG----TCTATTCTGACTTTTTCTACATTTAC 842 GT--CATCTTT-GTAACT-----GT--TTG----GATACCTTG-----TGAAGCACTCAG 863 GTGACATTTCTGATGACGGTGAGTTTTTTGAAGAGCCATCTCAAGAC-CATCAAAGTCGA 845 ** ** * * * * * * *

T--CTCAGCTTGTGGAC-----GAGGTTTT----TCCTGGTTTTCCACGTATTGAT----- 916 T--ACAAGAAAGTAGTT-----AAGAACTTGAAATTCAAGCTGCCAGAATGAACAT---- 891 CGGCCGAACAAGTAGCG-----GGGCACTG-----------TGAAAGAGGAACTAT----- 903 ACTTCAGATAGGCATTCCAAGGAGGAACCT--------AGATCTAAAAGTAAGCACGCAC 897

CGTCATGCTCGTA-GCCCAGAAAATAGAG--------GGTGAACTTAGCTTCCGGAAAT- 966 GGAAATA-TAGAA-AAACAAAAGATAGTGTATCAATAAGTATATATGTGTTGCAGGAATA 949 TTCTGAGATCTC---CTCAGCCGCCTGGGCTTC----GCCGGATTTGCCCCCCAAGAAC- 955 CCTCAGAGTCTAGTGCTAAGAAGAGAGTGTCAAA---GGTGAGGGAGATTCCTGGAC--- 951

```
        * * * *
```

 -------------TCTCTAGTAG------AATAAAGTTT--CATACCTAA-----AACTT-- 1000
 AAAATCAGTCCTTCTTCAA-AG-----GATAATATT---CAGTCCTGACGCC-ATCTTTA 999
 | CCA40358.1 | G 1000 |
| :--- | :--- |
| CCA36622.1 | G 1000 |
| CCA36295.1 | A 1000 |

Alignment 6: Multiple sequence alignment of the 1000bp long upstream regions of PpOCH1 and PpHOC1.

CLUSTAL 2.1 multiple sequence alignment

CCA3 6419.1
CCA3 9540.1
CCA 36419.1
CCA3 9540.1

CCA36419.1
CCA39540.1

CCA36419.1 CCA39540.1

CCA36419.1 CCA39540.1

CCA36419.1 CCA39540.1

CCA36419.1
CCA39540.1

CCA36419.1 CCA39540.1

CCA36419.1 CCA39540.1

CCA36419.1 CCA39540.1

CCA36419.1 CCA39540.1

CCA36419.1
CCA39540.1

CCA36419.1
CCA39540.1
-------CCGCTAAAAGACCCGGAAAACCGAGAGAACTCTGGATTAGCAGTCTGAAAAAG 53ACCCTTCCCACTTAGTAAGTTGGACGTTATGCATAATTTTGGGAT----GTACGACCAAA 56
$\star \star \star \star \star \quad * \quad \star * *$
AATCTTCACTCTGTCTA--GTGGAGCAATTAATGTCT-

\qquad
TAGCGGCACTT 99 TAT--------TGCCTAAAGTAGAATAAGTAATATTTCTTTATAAATAGTAATGATAATT 108 CCTGCTACTCCGCCAGCTACTCCTGAATAGATCACATACTGCAAAGACTGCTTGTCGATG 159 TT--CCATTTAATGGGGTACTCTAGACT--GTCAT------CAAAAA-TAAATAT--ATG 155

ACCTTGGGGTTATTTAGCTTCAAGGGCAATTTTTGGGACATTTTGGACACAGGAGACTCA 219 GTGTT---GCTATGTAGGCCGTAACACGGCTCTT----CACCT---GTAT-GGAGCATCG 204 ** * *** *** * * * ** ** * * **** **

GAAACAGACACAGAGCGTTCTGAGTCCTGGTGCTCCTGAC-GTAGGC-CTAGAACAGGAA 277 GCATC-----TAAAGCGTACTGGATTTCC-TGTTCCCATTTGTCACCATTAGCA-AGCAA 257
 TTATTGGCT-TTATTTGTTTGTCCATTTCATAGGCTTGGGGTAATA------GATAGATG 330 TTTTTCCTTGTTATACAACAGCTCCTCTC-TAGTTTCGGTGGCATACTCAACGTTAGGGG 316

ACAGAGAAATAGAGAAGACCTAATATTTTTTGTTCATGGCAA--ATCGCGG---GTTCGC 385 TTTCAACAATGGCATCAACTGGACAACT----TTCCTGACAATAACCGCAGTAGATACAC 372
--GGTCGGGTCA----CACACGGAGAAGTAATGAGAAGAGCTGGTAATCTGGGGTAAAAG 439 TTGGTCATGTCAATGTCGTACTTGTAAGTTCTTCGG-GAACCGTCAATACGTTCTTC--- 428

GGTTCAAAAGAAGGTCGCCTGGTAGGGATGCAATACAAGGTTGTCTTGGAGTTTACATTG 499 GGCTTCGATGGTGATAGCCTGA-------GCAGGACAAA-CTGCTTCGCA---TAACTTA 477

ACCAGATGATTTGGC-TTTTTCTCTGTTCAATTCACATTTT-TCAGCGAGAATC------ 551 --CAGGCAATGCAACGTTCTTCTCCG---GATGGATATCTTCTCAAAGCGTGTTCTCCTC 532
-GGATTGACGGAGAAA-TGGC-----------GGGGT-GTGGGGTGGATAGATGGCAGAA 597 TGAAACGG-GGAGAAACTGGACCTTTTTCAAAAGGGTAGTAGATTGTATATGGGGCACGA 591 * * * ******* ***
**** $* * * * * * * * \quad * * * *$

ATGCTCGCAATCACCGCGA----AAG------AAAGACTTTATGGAATAGA-ACTACTGG 646 AAGTACATTTCCAAAGTGATATAAAGGCCTCTAAAGATCTCAGACAGTAGGTACCATTTG 651 * * * ** * ** *** ***** * * * *** ** * *

GTGG---TGTAAGGA----TTACATAGCTAG--TCCAATGGAGTCCGTTGGAAAGGTAAG 697 GTGGCCTTGGAAAGAGCGCTTTCACTGCTTTCTTCCCACGTCTTTGGTCTTGGGAGTCTG 711 **** ** ** ** ** ** *** *** * * * ** **

CCA36419.1	AA--------GAAG-----CTAAAACCGGCTAAGTAACTAGGGAAGAATGATCAGACTTT 744
CCA39540.1	AATCCTTCTGGATGTGTGCCTTGGATCGAACCAGAAGTTAAAGCC-AATG--TGGGTTTC 768
CCA36419.1	GATTTGATGAGGTCTGAAAATACTCTGCTG-CT--TTTTCAGTTGCTTTTTCCCTGCAAC 801
CCA39540.1	TGTGCAATGAGTCCCGTCGAAAACCTGCAAACTGGTATTCTGTT--TATGGCACGGCAG- 825 * ***** * * * * **** ** * *** *** * * * * ***
CCA36419.1	CTATCATTTTCCTTTTCATAAGCCTGCCTTTTCTGTTTTCACTTATATGAGTTCCGCCGA 861
CCA39540.1	
CCA36419.1	GACTTCCCCAAATTCTCTCCTGGAACATTCTCTA-TCG--CTCTCCTTCCAAGTTGCGCC 918
CCA39540.1	GAAACCTATAAGTT-TGTGTTGGGG--TTCGATAATCAAACTTGCCTTGAAGGTAAT--- 929
CCA36419.1	CCCTGGC--ACTGCCTAGTAATATTACCACGCGACTTA-TATTCAGTTCCACAATTTCCA 975
CCA39540.1	-- TGGCTAGGTGCTTGTTGAG--TGTCGCACGTCTCGGTATTT--TTTTAC--TTGTCG 980
CCA36419.1	GTGTTCGTAGCAAATATCATCAGCC 1000
CCA39540.1	ATTCTCTC--TTACTGTC-CAAG-- 1000
	** * * ** **

Alignment 7: Multiple sequence alignment of the 1000 bp long downstream regions of PpOCH1 and PpHOC1.

CLUSTAL 2.1 multiple sequence alignment

CCA36419.1
CCA39540.1

CCA36419.1
CCA39540.1

CCA36419.1 CCA39540.1

CCA36419.1
CCA39540.1

CCA36419.1
CCA3 9540.1

CCA36419.1 CCA39540.1

CCA36419.1 CCA39540.1

CCA36419.1 CCA39540.1

CCA36419.1
CCA39540.1
-AGAAA-----GCTAGAGTAAAATAG-ATATAGCGAGATTAGA-GAATGAATACCTTCTT 52 GAGAATTAATCGCCAAAATCACAGAGGATACACTGCAACGAGCCGAGTCAA-ACTCACT- 58
**** ** * * * * * ** *** * * * ** ** * ** ** **

CTAAGCGATCGTCCGTCATCATAGAATATCATGGACTGT---ATAGTTTTTTTTTTGTAC 109 ----GGAACTAGCTGACATTAGCGAAGAAGGCGGCCTGTCTGATAAGAATTTGTCCAT-T 113

ATATAATGATTAAACGGTCATCCAACATCTCGTTGACAGATCTCTCAGTACGCGAAATCC 169 ATGCAATG----GACGGGTA-CTGGTATTT---TTACAGATGCCATATTTACCTATTTTA 165 CTGACTA---TCAAAGCAAGAACCGATGAAGAAAAAAACAACAGTAACCCAAACACCACA 226 ATGACTACATTCAAAGTA-GTATCTAT-----------ACCAAAGTTACTTGGA-------- 207

ACAAACACTTTATCTTCTCCCCCCCCAACACCAATCATCAAAGAGATGTCGGAACCAAAC 286 AAGAATTCTCCAAATTGAGAAAGCCCAA----GCTTGTCAGTGATGTATTGGTACTG--- 260

ACCAAGAAGCAAAAACTAACCCCATATAAAAACATCCTGGTAGATAAT--GCTGGTAACC 344 -CCGATTATCAGCTTCTCGGCCGGTGCAGG-------TAGTGGAAAATCGACTG--AACT 310 ---CGCTCTCCTTCCAT--ATTCTGGGCTACTTCACGAAGTC---TGAC--CGGTCTCAG 394 GAACGATCCCTTAGCATTCGTACAACATTATTTTGAAAGATTACATAACGACAACCACTA 370

TTGATCAACATGATCCTCGAAATGGGTGGCAAGATCGTTCCAGACCTGCCTCCTCTGGTA 454 AGGGTCAGAACCAT--TTAGATTGTCTGGATCTATCATTATGGCCTTGTTT------ATA 422 GATGGAGTGTTGTTTTT--GACAGGGGATTACAAGTCTATTGATGAAGATACC-CTAA-- 509 GACAAAGAATTGTATCCTGGACTGAAGGG---AAGTTTATAGAGTAATACCCCTCTGACA 479 ** ** **** * *** * * **** *** ** ** * ** ** *

CCA36419.1	AGCAACTGGG--GGACGTTCCAATATACAGAGACTCCTTCATCTACCAGTGTTTTGTGCA	567
CCA39540.1	ACCAACTCGAATGGGTATTTTGAGATA-----ATTTCC-CATATATTATTGTCTTCACTG * ***** * ** ** * *** * * * *** ** * *** **	533
CCA36419.1	CAAGACATCTCTTCCCATTGACACTTTCCGAATTGACAAGAACGTCGACTTGGC	621
CCA39540.1	GGAGAC-TTACTTCTTCTTTGTAGTTCCGGTATCGGCAGCAAACTTATGGTGGTCACATC **** * **** ** * ** * * ** * ** ** * ***	592
CCA36419.1	-TCAAGATTT---GAT-CAATAGGGCCCTTCAAGA--------GTCTGTGGATCA-----	663
CCA39540.1	TTCCAAACTTCTCGGTATAGTAGAACTATTTGTGGTTGATACGGTCTGGGTATCGGTGAT ** * * ** * * * *** * ** * ***** * ***	652
CCA36419.1	----TGTCAC------TTCTGCCAGCACAGCTGCAGCTGCTGCTGTTGTTGTCGCTAC	711
CCA39540.1	AATGCTTGTAATAATGGATTTTGTGGGTGTAACTGAAGCTGGTG-TATTAGTGGTAGTGG	711
CCA36419.1	CAACGGC--CTGTCTTCTAAACCAGACGCTCGTACTAGCAAAATACAGTTCACTCCCGAA	769
CCA39540.1	TAGTGGTGGTTGT-TACTGTGCTATCTGTAGGTTCTGGGAG--------TGGTTTCTGAG	762
CCA36419.1	GAAGATC----GTTTTATTCT------TGACTTTGTTAGGAGAAATCCTAAACGAAGAAA	819
CCA39540.1	CCGGGTTTAAAATTTTGATCTCTGTGGTATCTTCGTCTGGA-----TTTCGACTAAAAAA	817
CCA36419.1	CACACATCAACTGTAC-ACTGAGCTCGCTCAGCACATGAAAAACCATACGAATCATTCTA	878
CCA39540.1	TCCGCCTTGAA-ATACGAGTGGAACAGGTAAACGATTGATGGAGCCCA-GAAGCACTGTG	875
CCA36419.1	TCCGCCACAGATTTCGTCGTAATCT-------TTCCGC--TCAACTTGATTGGGTTTATG	929
CCA39540.1	TCCAAGGAAGATT-CATCAAAAGTGAAAGGAGTGCCATCTTCGTTTCCATCG---TTAAG	931
CCA36419.1	ATATCGATCCATTGACCAACCAACCTCGAAAAGATGAAAACGGGAACTACATCAA-GGTA	988
CCA39540.1	ATGA-GAACTTTTGGCAAAAAAATC-------AATCAGAACGTCATCTATTTCTATGGCG	983
CCA36419.1	CAAGATCT----TCCA- 1000	
CCA39540.1	ACAAATCCGGGATTGAA 1000	
	* ***	

Appendix 6: Amino acid multiple sequence alignments

Alignment 8: Multiple amino acid sequence alignment of all four PpPDIs.
CLUSTAL 2.1 multiple sequence alignment

CCA4 0283.1
CCA36295.1
CCA36622.1
CCA40358.1

CCA40283.1
CCA3 6295.1
CCA36622.1
CCA40358.1

CCA40283.1
CCA36295.1
CCA36622.1
CCA40358.1

CCA40283.1
CCA3 6295.1
CCA36622.1
CCA40358.1

CCA40283.1
CCA36295.1
CCA36622.1
CCA40358.1

CCA40283.1
ESLAEFVKERGTHKVDALALRPVEEEKEAEEEAESEAD--AHDEL 517
CCA36295.1 -KFLEHIRR---------GIKPGRKAKKGKKGKQTKN----HDEL 298
CCA36622.1 ERLSKMLNTKLSANNSDSVIKRLNILRNFIEAKTESKPQLLHQEL 369
CCA40358.1 IRLSTLSDS------------RHKDVEESGEADNSFEEYAQLREL 291

Appendix 7: Most frequently used abbreviations within this thesis

Abbreviation	Explanation
DWP	96-well footprint deep well plate
AOX1	alcohol oxidase gene 1
AOX2	alcohol oxidase gene 2
CalB	Candida antartica lipase B
CBS	Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands
DNA	deoxyribonucleic acid
ER	endoplasmatic reticulum
FRT	recombinase target sequence
gDNA	genomic DNA
HNL	hydrolynitrile lyase
HOC	P. pastoris gene coding for $\alpha-1,6$ mannosyltransferase
HRP	horseradish peroxidase
MeOH	methanol
MUT	methanol utilization
Mut ${ }^{-}$	methanol utilization minus phenotype
Mut ${ }^{+}$	methanol utilization plus phenotype
Mut ${ }^{\text {S }}$	methanol utilization slow phenotype
OCH	P. pastoris gene coding for $\alpha-1,6$ mannosyltransferase
OD_{600}	optical densitiy measured at 600 nm
OE-PCR	overlap extension PCR
PCR	polymerase chain reaction
PDI	Protein disulfide isomerase
\KU70	P. pastoris KU70 deletion strain
	All other terms are introduced and defined in the text.

Appendix 8: List of new designed strains

1. PDI4_up_gen_down_pJet/KlonC
2. PDI3_up_gen_down_pJet/KIonA
3. PDI2_up_gen_down_pJet/Klonb
4. PDI1_up_gen_down_pJet/KIonA
5. HNL_wt_pPT4/KlonB
6. HRP_C1_\#0_pPKan/Klon2
7. CalB\#1_pPKan/KlonB
8. HNL_wt_CBS7435_F7_3
9. HNL_wt_4KU70_C10_3
10.CaIB_ Δ KU70_E12_4
11.CalB_ Δ KU70_E9_1
12.HRP_C1_ $\Delta K U 70 _H 11 _C$
13.HRP_C1_ $\mathbf{~ K K U 7 0 _ D 7 _ C ~}$
14.PDI_4.1_FRT_cass_pJet_TOP10 F'
15.PDI_4.2_FRT_cass_pJet_TOP10 F'
16.PDI_4.3_FRT_cass_pJet_TOP10 F'
17.PDI_4.4_FRT_cass_pJet_TOP10 F' 18.OCH249_pJet_TOP10 F ${ }^{\text {6 }}$
19.OCH636_pJet_TOP10 F ${ }^{\text {6 }}$
(No. 3972)
(No. 3973)
(No. 3974)
(No. 3975)
(No. 3976)
(No. 3977)
(No. 3978)
(No. 3979)
(No. 3980)
(No. 3981)
(No. 3982)
(No. 3983)
(No. 3984)
(No. 6533)
(No. 6534)
(No. 6535)
(No. 6536)
(No. 6537)
(No. 6538)

[^0]: * Prunus dulcis is also known as Prunus amygdalus.

[^1]: * This yeast was also used as experimental organism within this master thesis.
 ** The name Pichia pastoris is more common used synonym of Komagataella phaffii.

[^2]: * PubMed is a free database offering primarily abstracts and references from life sciences. (http://www.ncbi.nlm.nih.gov/pubmed/)

[^3]: * This process is also called omega insertion, simply because its' depiction has the shape of the Greek letter omega (Ω).

[^4]: * An abbreviation $P p$ will be used for Pichia pastoris from now on.

[^5]: * $(\mathrm{Xaa} ; \mathrm{X})$ - means that theoretically any amino acid can stay in the middle of the consensus sequence, but frequently found residues are proline and aspartate ${ }^{38}$.
 ** Dolichol (Dol) is an polyisoprenol, in yeast cells commonly built of 14 isoprene units ${ }^{39}$.

[^6]: * Information source: http://www.ncbi.nlm.nih.gov/.

[^7]: ** Information source: https://gendb.cebitec.uni-bielefeld.de/

[^8]: ${ }^{*} \downarrow$ represents the enzyme restriction site.

[^9]: * IMBT-TUG is an abbreviation for the Institute of Molecular Biotechnology at Graz University of Technology.

[^10]: * NCBI accession number: J01347.1 / FLP and FRT present S. cerevisiae 2-micron plasmid derived recombinase system.
 ${ }^{* *}$ NCBI accession number: L26347.1 / Presents S. cerevisiae iso-1-cytochrome c terminator.

