Master Thesis

New Pichia pastoris platform strains for protein expression

<u>Student:</u>Viktorija Vidimče (Викторија Видимче) <u>Supervisor:</u> Glieder, Anton, Ao.Univ.-Prof. Mag.rer.nat.Dr.rer.nat.

> Institute of Molecular Biotechnology Graz University of Technology

> > Graz, June 2012

Danksagung:

(Diese Seite wird händisch geschrieben)

Благодарност

(Diese Seite wird händisch geschrieben)

Abstract

Pichia pastoris is a methylotrophic yeast widely used for industrial production of heterologous proteins. Proper protein folding which often depends on post translational modifications is of crucial importance for producing active recombinant protein. This master thesis was focused on a genes coding for enzymes involved in protein posttranslational modification.

First of all, DNA sequence analysis of all genes amplified from Pichia pastoris CBS7435 was performed, and the results were compared with the existing sequences in GenDB. This comparison did not show any unexpected results, but showed some sequence mismatches revealed by the much more accurate new generation sequencing methods.

Four FLP (recombinase) PpPDI promoter specific P_{AOXI} -replacement cassettes were designed. In principle a previously generated FLP-recombinase cassette was used. It was redesigned and modified for gene replacement use, instead of its original knock-out function. These resulted in four P_{AOXI} -replacement cassettes all carrying the recombinase gene, a gene for zeocin resistance, the AOX promoter (P_{AOXI}), and a 500 bp long sequence which was homologous to the PDI genes. In addition, new Pichia pastoris $\Delta KU70$ strains carrying genes for model proteins were designed. As model proteins CalB (Candida antartica lipase B), and HRP (horseradish peroxidase) were used. Out of over 250 clones screened for each construct, one single copy and one multi copy clone was chosen for each protein.

Furthermore two knock-out cassettes were designed, both of them of ends-out type. The first one carried homologous sequences of the upstream and downstream region of PpOCH1, and the second one of PpHOC1. In addition, two new Pichia pastoris strains (CSB7435 and Δ KU70) carrying an HNL5 gene were designed. HNL5 codes for hydroxynitrile lyase, an isoenzyme from Prunus dulcis^{*}. Out of over 250 clones screened for each strain, two multi copy clones were chosen for knockout cassette transformation. However, no transformation resulted in a knockout clone, which opened a broad discussion, leading to new strategies for the generation of an OCH1 or HOC1 knockout.

^{*} Prunus dulcis is also known as Prunus amygdalus.

Index

<i>1</i> .	Introduction to Pichia pastoris	8
	1.1 Brief overview of Pichia pastoris phylogenetic determination	9
	1.2 Historical overview of Pichia pastoris becoming industry-relevant yeast	10
	1.3 Methanol utilization (MUT) pathway in Pichia pastoris	11
	1.3.1 Pichia pastoris alcohol oxidases	11
	1.4 Pichia pastoris as industrial protein production host	12
	1.5 Pichia pastoris related scientific research areas	14
2.	Recombination in Pichia pastoris	16
	2.1 Homologous recombination in general	17
	2.2 Single site homologous recombination in <i>Pichia pastoris</i>	19
	2.3 Double site homologous recombination in <i>Pichia pastoris</i>	20
	2.4 FLP site-specific recombination system derived from Saccharomyces cerevisiae	
	2µm plasmid	22
	2.5 Non-homologous recombination in general	23
3.	Introduction to protein disulfide isomerases (PDIs)	25
	3.1 Protein folding-disulfide bonds (-S-S-) formation	26
	3.2 General description of protein disulfide isomerases	27
	3.3 Protein disulfide isomerases reaction mechanism	28
	3.4 Brief comparison of protein disulfide isomerases from different organisms	30
	3.4.1 <i>Pichia pastoris</i> protein disulfide isomerases	31
4.	Introduction to protein glycosylation	33
	4.1 Posttranslational protein glycosylation	34
	4.2 Brief overview of <i>Pichia pastoris N</i> -glycosylation pathway	36
	4.3 Pichia pastoris strain containing human-like N-glycosylation pattern	37
5.	Objectives	39
6.	Instruments and associated equipment	40
	6.1 Centrifuges and associated materials	40
	6.2 Shakers and incubators	40
	6.3 Polymerase chain reaction (PCR) thermocyclers	40
	6.4 Photometers, plate readers and associated materials	40
	6.5 Gel electrophoresis and associated materials and devices	40
	6.6 Electroporation materials	41
	6.7 Reaction tubes	41
	6.8 Pipettes and pipette tips	41
	6.9 Microplates	41
	6.10 Other materials and devices	42
7.	Materials	43
	7.1 Media and buffers	43
	7.1.1 Escherichia coli media	43
	7.1.2 Pichia pastoris media	43
	7.1.2.1 Stocks	43
	7.1.2.2 Media for cultivation in 96-deep well plates	43
	7.1.2.3 Media for genomic DNA isolation from yeasts	43
	7.1.3 Buffers	44
	7.1.3.1 Buffer solutions for enzyme characterization	44
	7.2 Other chemicals and solutions	44
	7.3 Enzymes	44
	7.3.1 Restriction enzymes	44
	7.3.2 DNA polymerases	45

	7.4 Chemicals	45
	7.5 Existing strains	46
	7.6 Existing plasmids	46
	7.7 Primers	51
	7.7.1 Existing primers	52
	7.7.2 Primers designed in this thesis	53
8.	Kits, protocols and Methods	58
	8.1 DNA isolation	58
	8.1.1 Genomic DNA isolation and determination of its quality and quantity	58
	8.1.2 Plasmid isolation	58
	8.2 DNA purification	58
	8.3 Polymerase chain reaction (PCR)	59
	8.3.1 Standard PCR and overlap extension PCR (OE-PCR)	59
	8.3.2 Colony PCR	59
	8.4 Two steps site directed mutagenesis method	60
	8.5 Agarose gel electrophoresis	60
	8.6 Standard ligations	60
	8.7 Cloning to the pJet1.2/blunt ends vector	61
	8.8 Transformation	61
	8.8.1 Transformation to <i>Escherichia coli</i>	61
	8.8.2 Transformation to <i>Pichia pastoris</i>	61
	8.9 Micro-scale cultivation in 96-deep well plates	61
	8.10 Photometric enzyme activity assays	62
	8.10.1 HRP microtiter plate activity assay	62
	8.10.2 CalB microtiter plate activity assay	62
	8.10.3 HNL microtiter plate activity assay	62
	8.11 Green fluorescence protein (GFP) fluorescence measurement	63
9.	Bioinformatics' programs and web tools	63
	9.1 Programs	63
	9.2 Web tools	63
10.	Pichia pastoris PDI-specific P_{AOXI} -replacement cassettes	64
	10.1 Project aim	65
	10.2 Project strategy	65
	10.2.1 <i>Pichia pastoris</i> protein disulfide isomerase genes (<i>PpPDIs</i>)	65
	10.2.2 Amplification, cloning and sequencing of <i>PpPDIs</i>	68
	10.2.3 Design of <i>PpPDI</i> -specific P_{AOXI} -replacement cassettes	71
	10.2.3.1Evaluation of efficiency of the cassette variant A	74
	10.2.3.2Results and discussion	75
	10.2.3.3Design of cassette variant B	77
	10.3 Design of <i>P. pastoris</i> reporter strains carrying genes coding for model proteins	
	CalB and HRP	80
	10.3.1 Design of expression vectors carrying <i>CalB</i> and <i>HRP</i> gene	80
	10.3.2 Transformation of <i>CalB</i> and <i>HRP</i> expression vectors to <i>P. pastoris</i> Δ KU70	82
	10.3.3 Screening results of <i>Pichia pastoris</i> Δ KU70 <i>CalB</i> and Δ KU70 <i>HRP</i> reporter	
	strains	82
	10.4 Conclusion	85
11	Design of 1,6-manosyltrasferase knockout strains of Pichia pastoris	86
	11.1 Project aim and strategy	87
	11.2 Sequence analysis of <i>PpOCH1</i> and <i>PpHOC1</i> genes	87
	11.3 Design of <i>PpOCH1</i> and <i>PpHOC1</i> knockout cassettes	91
	11.4 Design of expression vector carrying gene coding for model protein HNL	92
	11.4.1 Design of <i>Pichia pastoris</i> reporter strain carrying gene coding for model	
	protein HNL	94
	11.4.2 Screening results of Pichia pastoris CBS7435 HNL reporter strain	94
	11.5 Transformation of PpOCH1 and PpHOC1 knockout cassettes to	

	P. pastoris HNL reporter strain	97
	11.5.1 Results and discussion	98
	11.5.2 Design and screening of <i>P. pastoris</i> Δ KU70 HNL reporter strain	98
	11.6 Results, discussion and further perspectives	102
12	References	103
	Appendix 1: CalB activity assay – screening results	108
	Appendix 2: HRP activity assay – screening results	111
	Appendix 3: DNA sequences of relevance for this thesis	114
	Appendix 4: Amino acid sequences of relevance for this thesis	122
	Appendix 5: DNA multiple sequence alignments	123
	Appendix 6: Amino acid multiple sequence alignments	136
	Appendix 7: Most frequently used abbreviations within this thesis	137
	Appendix 8: List of new designed strains	138

7

1. Introduction to Pichia pastoris

- 1.1 Brief overview of Pichia pastoris phylogenetic determination
- 1.2 Historical overview of Pichia pastoris becoming industryrelevant yeast
- 1.3 Methanol utilization (MUT) pathway in Pichia pastoris1.3.1 Pichia pastoris alcohol oxidases
- 1.4 Pichia pastoris as industrial protein production host
- 1.5 Pichia pastoris related scientific research areas

1.1 <u>Brief overview of *Pichia pastoris* phylogenetic</u> <u>determination</u>

Almost 30 years ago, Koichi Ogata discovered yeast species able to metabolize methanol (MeOH) and utilize it as sole carbon and energy source, and he defined them as methylotrophic yeasts¹. At this time the determination of yeasts was based upon their phenotypic differences, such as the ability to grow on certain carbon and nitrogen compounds.

In the 1980's, Kurtzman introduced a new way to determine phylogenetic relations between organisms, based on their nuclear DNA (nDNA) relatedness. Later, numerous studies have reported about other phylogenic determination methods such as rRNA and rDNA sequence analysis. According to rRNA/rDNA phylogenetic sequence analysis of D1/D2 domain of 5S, 18S and 26S, all ascomycetous yeasts are divided in three major lineages: the hamiascomycetes, the euacsomycetes and the archiascomycetes². After all known methylotrophic yeasts have been analysed for divergence in partial sequences of nuclear large subunit (LSU) and nuclear small subunit (SSU) of ribosomal RNA (rRNA), the following three genera have been proposed and described: *Komagataella, Ogataea* and *Pichia*^{2,3}. Although genetic determination methods have been used in all these studies, their results did not make a stable phylogenetic basis. However, they have indicated the beginning of a new era in taxonomy, where gene sequence analysis presents the most exact way to phylogenetic determination of living organisms.

Recently, two new strains, *Komagataella phaffii* and *Komagataella pseudopastoris* have been described within the genus *Pichia*. Their phenotypic similarity with *Pichia pastoris*^{*}, strain which is widely used in biotechnology, initiated additional sequence analysis, after which *Pichia pastoris* was defined as legitimate synonym of *Komagataella phaffii*^{** 4,3}.

Pichia pastoris is homothallic ascomycetous yeast and belongs to the Saccharomycetaceae family $(http://www.ncbi.nlm.nih.gov/Taxonomy/)^1$. Usually this yeast exists as haploid, but diploid generations can be achieved by growing the cells on nitrogen-limited media¹.

All known *Pichia pastoris* strains had been stored in the ARS Culture Collection, also known as Northern Regional Research Laboratories Collection. They are all derivatives of the wild-type strain, registered as NRRL-Y 11430 (http://nrrl.ncaur.usda.gov/)⁵. In the Centraalbureau voor Schimmelcultures this strain has been deposited as CBS7435⁶, as well as ATCC 76273, and CECT 11047 (http://www.uniprot.org/taxonomy/4922).

Recently performed genome sequencing projects of *Pichia pastoris* CBS7435 strain, displayed a leap forward in the understanding of the biology of this methylotroph. Within the 9,35Mbp high-quality genome sequence, 5007 coding domain sequences (CDS) located on four chromosomes have been automatically annotated⁶. Of all the predicted gene sequences, 83,62% are single exon genes, 12,42% contain a single intron, 2,86% contain 2 introns, 0,84%

^{*} This yeast was also used as experimental organism within this master thesis.

^{**} The name Pichia pastoris is more common used synonym of Komagataella phaffii.

contain 3 introns, 0,18% contain 4 introns, and 0,008% of all contain up to 5 introns⁶. Within this project also the *P. pastoris* mitochondrial genome was sequenced, and manually annotated; it was the first mitochondrial genome of a methylotrophic yeast to be sequenced⁶.

1.2 <u>Historical overview of *Pichia pastoris* becoming</u> <u>industry-relevant yeast</u>

The demand for high amounts of different proteins in the world market continuously increases. However, only a limited number of these proteins can be produced at high yields by their natural host organisms. Therefore, different microorganisms, including *P. pastoris*, are being used as production hosts for heterologous proteins.

The *Pichia* story has started in the 1970s in the Phillips Petroleum Company. This company developed all media and protocols for growing of *P. pastoris* as methylotrophic yeast, with the main focus on production of single cell proteins (SCP) meant to be used as high-protein animal feed¹. Unfortunately, very soon after the initial research work with *P. pastoris* has been done, methanol costs have been dramatically increased by oil crises. As a result of that, further development of *P. pastoris* related processes had to be suspended for an indefinite period of time. However, years later the company signed an agreement with the Salk Institute Biotechnology/Industrial Associates, Inc. (SIBIA, La Jolla, CA) and the research work on this yeast continued¹. It led to the development of vectors, strains and protocols for molecular manipulation of *P. pastoris*.

At that time the scientific attention was attracted by the strong alcohol oxidase 1 promoter (P_{AOXI}). Besides its strength, there is one other desired feature, namely its ability to be tightly regulated, a feature that made P_{AOX} the most implemented promoter for driving the industrial heterologous protein production in *P. pastoris*. In addition, this methylotroph prefers a respiratory rather than a fermentative growth, which enables high cell density production environment (>130g/l dry cell weight)^{7,1}.

A basic *P. pastoris* expression kit is available from Life Technologies, licensed from Research Corporation Technologies RCT (Tuscon, AZ, USA) who commercialized the products of Phillips Petroleum⁸. A new FTO (freedom to operate) system was established by TU Graz together with VTU Technology and ACIB GmbH and is available from TU Graz. This system is based on the wild type strain CBS 7435.

1.3 <u>Methanol utilization (MUT) pathway in *Pichia* <u>pastoris</u></u>

Like in all presently known methylotrophic yeasts, <u>m</u>ethanol <u>ut</u>ilization (MUT) in *P*. *pastoris* takes place in two different cell compartments: in the peroxisomes and in cytosol.

Based on the recent *P. pastoris* genome sequencing study, a more detailed metabolic network of the MUT pathway has been published⁶. Altogether there are nine genes coding for enzymes directly involved in this pathway, and they belong to seven different enzyme families⁶. Within this group of nine enzymes, two pairs of isoenzymes have been identified, namely AOX1 and AOX2, and DAS1 and DAS2. Having two *DAS* genes involved in MUT pathway makes *P. pastoris* unique among all methylotrophs⁶. It is also important to be mentioned that all nine genes are differently controlled. Although all of their promoters are methanol inducible, those promoting genes included in assimilation pathways are repressed by glucose, while those included in dissimilation pathways are not⁹.

The promoter of the *AOX1* gene is the most used promoter for *P. pastoris* protein expression and also preferred for my studies due to its properties and FTO situation.

1.3.1 *Pichia pastoris* **alcohol oxidases**

During the past decades scientists working with *P. pastoris* have designed many different mutated strains relevant for specific scientific and industrial tasks. As a result of that, nowadays three methanol utilization *P. pastoris* phenotypes are widely used. Mut⁺ (<u>m</u>ethanol <u>ut</u>ilization <u>plus</u>) with intact *AOX1* and *AOX2* genes, Mut^s (<u>m</u>ethanol <u>ut</u>ilization <u>s</u>low) with disruption in *AOX1* gene, and Mut⁻ (<u>m</u>ethanol <u>ut</u>ilization <u>minus</u>) where both, *AOX1* and *AOX2* genes are disrupted⁸. As a consequence of above mentioned gene disruptions these three different strain phenotypes show different growing rates. Namely, Mut⁺ grows at wild type rate, Mut^s grows slower and Mut⁻ is unable to grow on methanol medium⁸.

1.4 Pichia pastoris as industrial protein production host

P. pastoris exhibits a propensity for homologous recombination between its genomic and foreign or synthetic DNA sequence¹. Inserted vectors show high stability in the genome⁸. These particular features allowed *P. pastoris* to become an easy manipulated host for heterologous protein production.

In general, the approach of inserting heterologous gene sequences into *P. pastoris* genome can be briefly described with following steps:

- 1. Design of *P. pastoris* codon optimized shuttle vector which contains at least one copy of the heterologous gene and the marker gene (usually gene for antibiotic resistance),
- 2. Transformation of the transition host cell (usually *Escherichia coli*) with circular shuttle vector,
- 3. Transformation of *P. pastoris* host strain with linearized shuttle vector,
- 4. Screening for desired protein activity (usually with spectrophotometric screening assays, capillary electrophoresis or dot blot technologies).

The heterologous genes inserted in *P. pastoris* can be under the control of P_{AOXI} , constitutive promoter, or synthetic promoter (Table 1). The following reasons explain the need of different promoter variants:

- Depending on the nature of the protein to be expressed, weak expression is in some cases preferred in order to ensure proper protein folding¹ and to avoid possible cytotoxicity,
- Protein overexpression can in some cases induce new bottlenecks in the cell metabolic pathways²,
- MeOH inducible promoters are undesired in the biotechnological production of food, since this compound is toxic to the humans¹.

Promoter designation	P GAP	P FLD1	P PEX8	Р үрт1
Gene description	glyceraldehyde 3- phosphate dehydrogenase	gluthathione-dependent formaldehyde dehydrogenase	peroxisomal matrix protein	guanosine triphosphatase (GTP-ase)
Promoter type	strong constitutive	MeOH and methylamine inducible	MeOH inducible	moderate constitutive
Important features	no MeOH demand, not recommended for driving expression of cytotoxic protein	methylamin = nontoxic and inexpensive nitrogen source	recommended for driving expression of cytotoxic proteins	recommended for driving expression of cytotoxic proteins

Table 1: Brief depiction of four (P_{GAP} , P_{FLDI} , P_{PEX8} , and P_{YPTI}) *P. pastoris* promoters used for driving heterologous gene expression^{11,1,8}.

The copy number of heterologous gene sequences inserted in *P. pastoris* can vary. In general no standard correlation between gene copy number and protein yield has been

defined¹². Depending on the protein to be expressed and also depending on the promoter which is being used for driving the expression, drastic variation in the expressed protein level has been observed. Therefore screening studies for strains carrying different gene copy number are necessary to be done in order to find the optimal strain for industrial use.

The capability of *P. pastoris* for expression of intracellular and extracellular (secreted) proteins is generally known. The intracellular expressed proteins can also be targeted into the peroxisomes (cube-shaped cell organelles also called microbodies)¹³. Herewith possible cytotoxicity by the heterologous protein can be avoided. Only few proteins are naturally secreted by *P. pastoris*, thus the majority of the secreted proteins (sometimes over 80%) in the fermentation medium is the heterologous one^{14,15}.

Unfortunately, there are also cellular and environmental factors negatively affecting industrial heterologous protein production with *P. pastoris*. For instance, secreted heterologous proteins in high cell density fermentation medium are easily degraded by *P. pastoris* proteases. One way to overcome this problem is the use of protease-deficient strains such as SMD-1163 (*his4 pep4 prb1*), SMD-1165 (*his 4 prb1*), and SMD-1168 (*his4 pep4*)¹, ^{8,16}. However the lower viability and growth rate of this strains make them useful only in cases where no other solution is available¹.

In addition it has to be mentioned that there are no secreted proteins by *P. pastoris*. Thus protease activity in the culture medium seems to come from lysed cells growing under physiological and physical stress.

A viable solution to increase product yield consists of the adjustment of fermentation parameters, such as pH and temperature. *P. pastoris* shows efficient growth rate in the pH range from 3.0 to 7.0, an interval wide enough to allow significant process adjustments^{14,8}. Increase of the product yield has been shown also by lowering the temperature in the fermentation from 30° C down to 20° C⁸.

The cultivation process of *P. pastoris* (using P_{AOXI}) in bioreactors can in general be divided in three phases. The first one is the growth phase (or batch phase) where the culture grows in salt medium on non-fermentable carbon sources (C-sources). The second phase (transition phase) is characterized by addition of the same C-substrate on the cell growthlimiting rate in order to prepare the culture for the next phase. In the third phase (induction phase), an appropriate amount of methanol is added, and the methanol utilization pathway and the expression of foreign gene are induced¹⁷. An important fact is that some C-sources such as glycerol, glucose, and ethanol repress the P_{AOXI} , which decreases the heterologous protein yield^{17,9}. However, for other C-sources such as sorbitol, mannitol, trehalose, and alanine no repression to the P_{AOXI} has been observed⁹. In general, *P. pastoris* requirements for the growth and production medium include glycerol and methanol (if a methanol inducible promoter is used) as main substrates, and minerals, biotin, salt, and trace elements⁷. All these compounds are inexpensive which makes the industrial use of this yeast interesting. The medium is also free of toxins and pyrogens¹⁸. During the fermentation, adequate monitoring and control of the fermentation parameters are also necessary in order to achieve maximal product yields. Directed by this need, bioprocess development continuously aims to improve of the existing and development of new monitoring methods.

Another process – based method to increase the yield of intact heterologous proteins consists of the addition of amino acid-rich supplements to the fermentation medium. This is an effect of partial saturation of the existing proteases in the fermentation medium by the amino acid suplements¹⁴.

All above mentioned features contributed to turn this methylotrophic yeast into a more and more attractive tool for biotech and pharmaceutical companies. It is already a host strain for industrial production of over 400 different heterologous proteins^{14,7}.

1.5 Pichia pastoris related scientific research areas

Nowadays, the growth of all biotech companies is characterized by high demand for production of new proteins with customized features. And even thought that the technology for the use of *P. pastoris* is already mature, there are still very important topics waiting to be more precisely described.

In the year 1995 only 4% of total recombinant proteins reported by PubMed^{*} have been produced in *P. pastoris*. Up to year 2009 this number increased to $17\%^{19}$.

Many publications regarding *P. pastoris* state that this yeast is also important for basic molecular biology studies. To avoid any confusion, strict distinction has to be made between two *P. pastoris* oriented research areas. In the first one, *P. pastoris* represents model organism for studying all gene- and protein-linked processes inside the cell. Only proper understanding of the molecular basis of this organism can facilitate its fast and effective manipulation. In the second area *P. pastoris* is host cell for expression of high yields of desired protein, but the research interest is focused on protein itself. Both areas are connected since the most of hypothesis made in the first area arise from case studies already done in the second area and vice versa. However, incomparability of the case studies due to varying cultivation conditions is being observed. Thus comparison of case studies results is not always of scientific relevance.

One of the most important research topics concerning *P. pastoris* as model organism is the biogenesis of the peroxisomes. After methanol induction, the number of peroxisomes dramatically increases and they can take up to 80% of the cell volume²⁰. Peroxisomes play a role in storing the heterologously expressed proteins, hence protecting the cell from possible toxicity produced by the same. Additional, being stored in the peroxisomes, expressed proteins are unavailable for the proteases, and they are protected from proteolytic degradation²¹. Short amino acid sequences located either at the C-terminus or at the N-terminus of an expressed protein, are responsible for the peroxisomal protein targeting. They are called peroxisome targeting sequences (PTS)²¹. The fact that different PTS exist for the peroxisome matrix proteins, makes an assumption of existing different mechanisms for protein targeting to the peroxisomes²¹.

As already said, differently regulated promoter variants are of great importance for the industrial use of this yeast (Paragraph 1.4). This opens a new research topic, identification of regulatory regions within promoter sequences, understanding of their regulation on molecular level, and design of new synthetic promoters⁹.

Also other topics which influence the expression efficiency of *P. pastoris* have been defined. For instance, an *AOX1*- case study has shown that the composition and the length of the 5'- untranslated region (5'-UTR) influences the heterologous protein expression¹². For that reason, and in order to maintain optimal protein expression, it has been suggested to keep the 5'-UTR sequence as similar as possible to that of *AOX1* mRNA¹². It is also important to avoid AUG triplets in the 5'-UTR in order to ensure exact start codon (AUG) recognition by RNA polymerase¹². Another important parameter is the A+T composition of cDNA. Since AT-rich regions characterize termination sequence regions, their occurrence in a gene coding domain should be therefore avoided if possible, because it can induce premature transcription termination¹².

^{*} PubMed is a free database offering primarily abstracts and references from life sciences. (http://www.ncbi.nlm.nih.gov/pubmed/)

With protein secretion, the cell lysis step is avoided and it makes downstream processes quite easier and cheaper, and also increases the yield of the expressed protein. The *Saccharomyces cerevisiae* pre-pro α -mating factor (AMF) signal sequence, is standardly used secretion signals in this methylotrophic yeast^{8,12}. However not all proteins can be secreted in *P. pastoris*. There is a supposition that using a protein's natural secretion signal, promotes its efficient secretion. Because of that, different heterologous sequences are being evaluated in *P. pastoris*, and it has been shown that additional optimization is usually needed depending on the protein to be secreted. For this reason, detection of new *P. pastoris* secretion signal sequences, description of their transport mechanisms, and definition of their sequence optimization possibilities, are other currently popular research topics.

Another popular research topic is the recombination in the genome of P. pastoris (Chapter 1.4). Also protein folding and posttranslational modifications such as glycosylation are being studied intensively (Chapter 1.2 and 1.3). These two topics are of enormous importance for both, producing of correctly folded proteins and increasing the yield of the product.

For all the above mentioned problems (limitations), strategies in order to enhance the production are being improved by the research groups working with *P. pastoris* all over the world. And all of these research studies should help to make this yeast more predictable production host, thereby saving resources and time spent for trial and error experiments.

2. <u>Recombination in Pichia pastoris</u>

- 2.1 Homologous recombination in general
- 2.2 Single site homologous recombination in Pichia pastoris
- 2.3 Double site homologous recombination in Pichia pastoris
- 2.4 FLP site-specific recombination system derived from Saccharomyces cerevisiae 2µm plasmid
- 2.5 Non-homologous recombination in general

2.1 Homologous recombination in general

Different environmental conditions can induce DNA double-strand breaks (DSBs) in the cell genome. The cell possesses evolutionary developed DNA repair mechanisms, such as non-homologous DNA end-joining (NHEJ), as well as enzymes called telomerases⁵² (paragraph 2.5). But, homologous recombination (HR) is able to induce DSBs repair in the cell as well, by that ensuring genome stability⁵². HR happens between DNA regions shearing high percentage of sequence similarity. During this process DNA sequences are integrated or replaced⁵³ (Figure 2). Thereby, several recombinases catalyze HR in meiosis or in mitosis, but there are also helicases which regulate the HR negatively⁵². In the eukaryotic cells, all proteins that play role in HR are products of *RAD52* group of genes, and are highly conserved^{52,54}.

Figure 1:⁵³ DNA homologous recombination process.

Gene replacement ("gene conversion"), and gene exchange ("crossing over") processes are depicted in the upper and down part of the picture, respectively. The orange colored AB-line and the green colored ab-line present two homologous DNA sequences.

After entering the cell and the cell nucleus, homologous DNA sequences initiate a HR cell response⁵². On the one of the DSB sites, DNA is cut by 5'-3' exonucleases and the results are two single-strand 3'-OH DNA overhangs^{52,54}. These overhangs are intruded into the homologous DNA and form D-loop⁵². Starting from the 3'-OH end, complement DNA strand is being synthesized, and finally annealed to the D-loop and connected to the second DSB⁵². This is how two Holliday junctions (HJs) are formed, after what both, crossover as well as non-crossover products occure⁵². This process is called double-strand break repair (DSBR)⁵² (Figure 2).

Two other HR processes, called synthesis-dependant strand annealing (SDSA) and single-strand annealing (SSA) have also been described⁵². In the SDSA, instead of D-loop, the initial homologous DNA strand anneals to the second DSB, and thereby no HJs are formed⁵².

The product of SDSA are always non-crossover sequences⁵². In SSA mechanism, repeated DNA-sequences, located upstream and downstream of DSB join together, by that deleting the sequence from between⁵².

Figure 2:⁵² Pathways of DNA double-strand break repair (DSBR) by homologous recombination (HR).

a) After double-strand break (DSB) formation, 3' single-strand DNA (ssDNA) overhangs, needed for the HR machinery are formed. Strand invasion followed by DNA synthesis occur subsequent. **b**) Synthesis-dependent strand annealing (SDSA) pathway, where non-crossover reaction product is synthesized. **c**) Double-strand break repair (DSBR) pathway, where crossover or non-crossover reaction product is synthesized.

Nowadays, HR induced by transformation of linear homologous DNA sequence into the cell, is widely used method for *in vivo* gene manipulations, and is also known as targeted insertion mutagenesis⁵⁴. Thereby, linear DNA integration sequences (linear DNA integration cassettes) of two different types exist, and they are termed as "ends-in vector" and "ends-out vector"^{54,55} (Figure 3).

The green colored part termed as "selection" and yellow colored "target" part are both located on the vector and represent selection gene and homologous sequence, respectively. The orange colored "target" part represents the genome target sequence, which is homologous with the yellow "target". The x-pointed lines depict crossing over event.

During the integration of an ends-in vector, the gap formed in the middle is filled in using the host DNA sequence as a template⁵⁴. Thereby, two crossing over events between the genomic target sequence and respective homologous flanking regions on the vector, result in duplication of the target sequence in the genome⁵⁴. Duplication occurs also during the integration of ends-out vector, but in this case no gap is formed⁵⁴. Designed truncations or mismatches in the flanking ends of both, ends-in and ends-out vectors, could be used for targeted gene disruptions. In general, the ends-out vectors are preferred, because they show higher mitotic stability in comparison with ends-in vectors, and circular plasmids⁵⁴.

HR has been first analyzed and defined in the yeast *S. cerevisiae*⁵². For this experiment, linear plasmid containing *S. cerevisiae* homologous DNA sequence has been transformed in the cell, and successfully integrated in yeast genome⁵². Little knowledge about the homologous recombination processes in *P. pastoris* has been obtained from basic molecular studies. Since the classical yeast system *S. cerevisiae* has been analyzed and described in detail, most of the recombination strategies used for its genetic manipulation have been simply adjusted for other yeast, including *P. pastoris*⁵⁴.

2.2 <u>Single site homologous recombination in *Pichia pastoris*</u>

A common method of targeted mutagenesis in *P. pastoris* is the gene insertion through single site homologous recombination. With this method, circular and linearized plasmids carrying *P. pastoris* homologous sequences are integrated in the genome. Thereby the resulted transformants (clones) show high mitotic stability, even without selection pressure⁵⁶.

Observed at the molecular level, single site homologous recombination includes a crossing over event occurring between plasmid or expression cassette sequence complement to some part of *P. pastoris* genome. In this way, the whole plasmid or expression cassette is integrated in the *P. pastoris* genome at the desired locus (usually *AOX1* locus) (Figure 4). Thereby, the probability of spontaneous achievement of multi copy clones is $1-10\%^{56}$. Besides other factors, the copy number of genome inserted sequences is also defined by DNA sequence size (bp) and amount (μ g) used for the transformation. However, although higher DNA amount results usually in higher copy number, it influences the stability and viability of the cell, and therefore the possible copy number is not unlimited.

It is important to be mentioned that in *P. pastoris* single site homologous recombination occurs with much higher probability in comparison with double site homologous recombination and no part of the genome sequence is $lost^{56}$.

Figure 4:⁵⁶ **Single site homologous recombination of linearized plasmid in** *P. pastoris. P. pastoris* was transformed with circular plasmid, or plasmid linearized in the 3` AOX1 region, and after a single crossing over event it becomes integrated in the genome at the AOX1 locus. (*HIS4* represents a marker gene; crossing over events are marked with ×)

2.3 <u>Double site homologous recombination in *Pichia* <u>pastoris</u></u>

Double site homologous recombination is another way for genetic manipulation of *P. pastoris*. In this method, *P. pastoris* was transformed with a linear expression cassette carrying two homologous flanking ends. Observed at the molecular level, two crossing over events happen and they result in gene replacement⁵⁶ (Paragraph 2.1). Thereby the part of the genome

which ends with sequences complementary to the expression cassette flanking ends, is deleted (Figure 5).

Figure 5:⁵⁶ Double site homologous recombination of linearized plasmid or linear expression cassette in *P. pastoris.**

After transformation, two crossing over events happen, and the part of the genome located between P_{AOXI} and 3`AOX1 gets deleted and replaced with the gene of interest. This figure depicts the deletion of PpAOX1 gene which results in a new phenotype, the *P. pastoris* Mut^s strain. (*HIS4* represents a marker gene; crossing over events are marked with \times)

Double site homologous recombination method is widely used for design of gene *knock-out* and *knock-in* strains. Different transformation experiments have shown positive correlation between the length of flanking ends and the transformation efficiency in *P. pastoris*⁵⁷ (Chart 1).

^{*} This process is also called omega insertion, simply because its' depiction has the shape of the Greek letter omega (Ω) .

Chart 1:⁵⁷ Correlation between targeting fragment length (flanking ends length) and transformation efficiency in %, in *P. pastoris*.

2.4 <u>FLP site-specific recombination system derived</u> <u>from Saccharomyces cerevisiae 2µm plasmid</u>

Site specific recombination is a process well known from both prokaryotes and eukaryotic organisms^{58,59}. It is also called "conservative recombination", because no DNA is synthesized or degraded during this process⁶⁰. Site-specific recombination can be seen as a special type of homologous recombination, because it is independent of the endogenous recombination machinery of the host cell⁶¹.

Different recombinase systems are common in circular, and double stranded yeast plasmids, since they provide the plasmid amplification mechanism⁵⁹. The yeast *Saccharomyces cerevisiae* for instance, synthesizes recombinase termed FLP ("flip"), which is located on the 2µm plasmid in the cell, and between two identical DNA target sequences, termed FRT^{58,60,61}. FRT target sequences are each 34 bp long, built of two identical 13 bp regions, which are separated by one 8 bp long region (so called "core region")⁶⁰ (Figure 6). This core region is the site of crossover recombination event⁶⁰. The 13 bp flanking regions are rich on AT nucleotides⁶⁰. They can be oriented in the same or in the opposite direction (inverted)⁶⁰. When FRT target sequences lay in the same direction, recombinase cut out the DNA sequence in between, and the so called "reaction of excision" happens^{58,61}. In contrast, positioning of the FRT target sequences in opposite direction results in DNA inversion⁶¹.

Figure 6: FLP target DNA sequence called FRT.

The two 13 bp long identical flanking regions of each FRT, oriented in the same direction, are colored yellow, and the 8 bp long core regions are colored green. The black arrows show the recombinase restriction sites. The DNA sequence between the red lines is deleted during the recombination.⁶²

The catalytic mechanism of FLP protein has been reported almost 25 years ago. During the recombination event FLP brakes the junction on the last nucleotide at the 5'-terminus of the core region⁵⁹. In this way two 8 bp long single stranded DNA nicks are produced^{58,62}. At the next reaction step, the recombinase binds covalently to the free 3'-terminus^{58,63}. It has been reported that this is a 3'-phosphothyrosine linkage, connecting the DNA and the recombinase⁵⁸. For that reason, FLP recombinase has been classified to the topoisomerase enzyme-family, which includes enzymes able to use reversible DNA-tyrosine bonds as reaction intermediates^{58,62}. For its catalytic activity, no co-factors or other proteins are required⁶¹. It has been assumed that at least two or more FLP molecules bind symmetrically to the both FRT sites and support the cleavage and religation of the DNA strands.⁶² The FLP protein is also responsible for the proper DNA strand motions in order to ensure optimal positions for the formation of all four new phosphodiester bonds.⁶³

In comparison to the site-specific recombinases, which usually bind to specific DNA fold, FLP is able to bind to supercoiled, relaxed, circular and linear DNA sequences⁶⁰. FLP is also able to catalyze the recombination between intra- as well as intermolecular sequences⁶⁰. Mutational studies provided in order to determine possible hot-spots within the FRT sequence, have shown decrease of FLP activity in all clones caring a mutation in the core region⁵⁹. However one mutation within the flanking ends increased the FLP activity⁵⁹.

The FLP recombinase system is well described, and commonly used for insertion, deletion, inversion, as well as translocation of DNA sequences in different organisms, such as bacteria and yeasts, and also in animal cells^{59,64,65}. In *P. pastoris*, FLP is a commonly used mechanism for the elimination of prokaryotic sequences and genes of resistance from its genome, and also for gene deletion studies⁶⁵.

Another site specific recombination system which was successfully applied in *P. pastoris* was the Cre-lox system.⁶⁶ This is a recombinase system of the bacteriophage P1 and its mechanism is quite similar to that of FRT.⁶³

2.5 Non-homologous recombination in general

Non-homologous recombination (NHR), also called illegitimate integration, is a process where DNA sequences which share no or very low sequence similarity are recombined⁵⁴. NHR possesses its own protein machinery, and shows a quite different reaction mechanism from those of HR^{54} .

Additional to NHR, the non-homologous end-joining (HNEJ) represents a cell mechanism for DSBs repair in the genome⁵⁴. One of the proteins detected to contribute to this mechanism is termed as Ku-protein in mammalian cells, or HDF (high affinity DNA-binding

factor) protein in yeast *S. cerevisiae*⁶⁷. Ku is a heterodimer, which binds with high affinity to the linear DNA duplex, but it does not bind to circular DNA⁶⁸. It is built of two subunits called Ku70 and Ku80, and bound to the telomeric DNA⁶⁸. Both monomers make a ring around the DNA, and so Ku participates in HNEJ with its capability to orient the DNA strand in the right direction for further processing and ligation⁶⁸. Before the ligation can start, polymerases fill in the gaps and nucleases trim the excess strands⁶⁸.

NHR and HR compete for every introduced foreign DNA sequence in the cell⁵⁴. For this reason, researchers designed strains which are not able to do NHR, in order to ensure higher HR transformation rate. These are usually knock-out strains, such as *P. pastoris* Δ KU70 strain (Näätsaari et al., manuscript submitted).

3. Introduction to protein disulfide isomerases (PDIs)

- 3.1 Protein folding-disulfide bonds (-S-S-) formation
- 3.2 General description of protein disulfide isomerases
- 3.3 Protein disulfide isomerases reaction mechanism
- 3.4 Brief comparison of protein disulfide isomerases from different organisms
 - 3.4.1 Pichia pastoris protein disulfide isomerases

3.1 <u>Protein folding - disulfide bonds (-S-S-)</u> <u>formation</u>

Proteins' native configuration is determined by their amino acid (AA) sequence. Folding processes performed *in vitro* have shown that proteins can fold spontaneously in water solution^{22,23}. However, inside the cell these processes are assisted by folding enzymes and helping proteins called chaperones²². Chaperons are helping-proteins, which possess a capability to vary the protein folding velocity, and also to control the exactness of disulfide bonds formation²⁴.

Except for secreted proteins, which are mainly folded in the endoplasmic reticulum (ER) lumen, for all other proteins it is usual to be folded inside the organelle of their residence²².

The folding process begins on the nascent protein chain, since elongation is slower than folding²². This phase is called "co-translational folding" and takes place in the $cytosol^{22}$.

For secreted proteins, the folding process continues in ER lumen, since their folding pattern usually includes disulfide bonds between cysteine (Cys) residues. Namely, ER lumen provides a more oxidizing environment and different reaction conditions than the cytosol. It shows approximately neutral pH values, and high concentration of Ca²⁺ and, these conditions favor the disulfide bonds formation²². At the beginning of a protein folding process within ER, some of the Cys residues are mispaired²⁴. Thus, structures without correct tertiary and quaternary structure, and with high hydrophobic surface are formed²³. These intermediates form rapidly, possess significant secondary structure, and is called "molten globule" or "compact intermediate"^{23,22}. The later reactions in the folding process are slower, and include disulfide bonds formation and isomerisation, reactions catalyzed by protein disulfide isomerases (PDIs)^{24,22}. The disulfide bonds are of high importance for secreted proteins, because they provide higher protein stability in extracellular environment²⁵. It is important to be mentioned, that also enzymes different than PDIs, are included in protein folding process in ER^{22,23}. For instance, peptidyl-prolyl isomerases (PPIs), detected in both, prokaryotic and eukaryotic cells, catalyze *cis-trans* isomerisation of peptide bond N-terminal to proline (Pro) residues, and also play a role of chaperones in the cell^{26,23}. Also sugar moiety transferases, which predominantly play a role in protein N-glycosylation, are important for correct protein folding²². In particular, they support proper positioning of defined protein domains, and favor or disfavor certain hydrophilic and hydrophobic interactions in ER^{22} (Chapter 1.3).

Protein folding is finished by protein subunits rearrangement and assembling of monomers in homo- or heterooligomers, which is a concentration-dependent process²².

Different steps of the secretory pathway in *P. pastoris* have been supposed to become bottlenecks of overexpression of heterologous proteins. One speculation is that in some cases ER is overburdened by the huge amount of proteins inside, which results in production of misfolded proteins, and induces cell stress response²⁴.

In general, there are two non-natural cell states, the so called metabolic and environmental stress²⁷. The metabolic stress is caused by cell abuse during heterologous protein expression²⁷. In cases where no natural protein conformation is reached inside ER, the cell activates endoplasmic reticulum associated protein degradation (ERAD) mechanism,

transporting the protein back to the cytosol and degrading it²⁷. Thus ERAD can be seen as typical metabolic stress response of the cell²⁷. The environmental stress is caused by fermentation conditions, which can vary in comparison to the natural ones²⁷.

The protein quality control (also called 'architectural editing') provided by protein PDIs, as well as ERAD, is as well important to be mentioned since it guaranties that only proteins with proper configuration will enter the secretion downstream steps²².

3.2 <u>General description of protein disulfide</u> <u>isomerases</u>

Almost 40 years after their discovery, PDIs still occupy researcher's attention²⁸. Together with glutaredoxin (Grx), they belong to the thioredoxin (Trx) superfamily of thiol/disulfide exchange enzymes, which are characterized by a thioredoxin fold and - CXXC/S- active site motif^{29,30}. This thioredoxin motif contains two Cys residues, which shuttle between dithiol and disulfide form, during catalysis of the redox reaction^{30,31}. The main difference between Grx and PDI is their localization inside the cell. Grx is predominantly localized in the cytoplasm, but it has also been found in mitochondria and nucleus²⁹. In contrast, PDIs are soluble proteins found in ER lumen^{29,28}.

A cell targets its ER resident soluble proteins to the right cell compartment using different targeting sequences. In this way it determines which of the ER resident proteins retain in the lumen and which have to be retrieved from the downstream secretory organelles³². For instance, the C-terminally located tetrapeptide (-K/HDEL) causes protein retrieval from Golgi apparatus (Golgi)³². These sequences are recognized by membrane receptor proteins of the organelles³². It is known that also Ca²⁺ concentration plays a role in the ER protein retention mechanism³².

PDIs contained in the ER catalyze the oxidation of thiol groups between Cys residues in proteins, but they also play a role of chaperones²⁸. Some disulfide bonds form spontaniously, and mispaired Cys residues, as well as early misfolded proteins are produced²⁴. Depending on the redox conditions, PDIs can reduce already formed disulfide bonds in proteins, thus performing folding pattern controlling processes, and protein isomerisation²⁴. This capability of PDIs comes from the misfolded proteins' hydrophobic surface²⁸ (Figure 7). Namely, early misfolded proteins have mainly hydrophobic surfaces²⁸. Since PDIs surface is also mostly hydrophobic, driven by the favorable hydrophobic interactions, reduction and isomerisation can easily happen²⁸. In addition, quite flexible PDI conformation enables proteins with different size to be properly refolded²⁸. Recent studies have shown that different PDIs in the cell posses different product specificity, which can be seen as an explanation of the cell need of synthesizing different PDIs³¹.

Crystallographic studies of yeast PDIs have shown that they contain four thioredoxin domains (**a**,**a**',**b**, and **b**') and an acidic C-terminus, which carries an ER-retention signal (-K/HDEL)^{28,32}. In particular, two thioredoxin domains (**a** and **a**') show catalytic activity, but two of them (**b** and **b**') are catalytically inactive²⁸. Both active sites are placed opposite to each other, separated by 28Å long hydrophobic area²⁸ (Figure 7). Even structurally very similar, these two domains (**a** and **a**') differ from each other by their redox state²⁸. Namely, cysteine residues inside the active center of the **a** domain are connected with each other by disulfide bond, thus they are oxidised²⁸. In contrast, cysteine residues inside the active center of the **a**' domain are in reduced state²⁸. This feature is crucial for the redox activity of PDIs.

Another crucial feature is the different orientation of both Cys residues within one thioredoxin active center of PDI²⁹. The Cys residue nearer to the PDI N-terminus (-<u>C</u>XXC-) is oriented toward enzyme surface, and reacts as nucleophile²⁹. The second Cys residue (-CXX<u>C</u>-) is located deeper inside the active center, thus being able to react with the N-terminus Cys (-<u>C</u>XXC-) only²⁹. The nature of two amino acids staying between the active Cys residues (-C<u>XX</u>C-), and the amino acid sequence surrounding the active center are also factors having an influence on thioredoxin redox potential²⁹; enzymes containing thioredoxin are able to catalyze protein folding by extremely different redox potential²⁹.

Figure 7: ²⁸ **Depiction of hydrophobicity and hydrophilicity distribution on the PDI surface.** According to the normalized consensus hydrophobicity scale of the exposed residues, the green marked regions are hydrophobic and gray regions are hydrophilic. Down left and right show the **a-** and **a'-** domain, respectively. Their active centers are colored in red.

Expression of heterologous proteins with a high number of Cys residues can be hindered by a folding bottleneck in the ER: thus, the more dithiols to be oxidized, the higher PDI concentrations are required²⁴.

3.3 Protein disulfide isomerases reaction mechanism

In the ER lumen, glutathione (GSH) contributes to reaching the optimal redox conditions by counterbalancing the flow of oxidizing equivalents through ER membrane-associated oxidoreductases³³ (Figure 8). The oxidoreductases are included in direct disulfide bonds transfer to ER PDIs³³. Further, PDIs are responsible for the transfer of oxidizing equivalents derived from the ER membrane proteins, to the secretory protein (substrate protein)²⁹.

PDI catalyses oxidation by performing a disulfide exchange reaction between thioredoxin Cys residues from the PDI active center, and Cys residues located inside the substrate protein³¹ (Figure 9).

Following formula explains the chemical reaction steps of thiol-disulfide exchange reaction³⁴:

$R_1S^{-} + R_2SSR_3 \rightarrow R_2S^{-} + R_1SSR_3$

 $\mathbf{R_xS}^{-}$ represents an thiolate anion, and $\mathbf{R_xSSR_y}$ disulfide bound amino acid residues³⁴. Thioldisulfide exchange reaction can happen between Cys residues of different proteins, but also within the same protein, which is then called disulfide reshuffling³⁴. For every disulfide bond formation, two thiol-disulfide reactions happen, where after the first one, a mixed disulfide intermediate is formed, between the protein and the redox equivalent³⁴, thus a distance between the Cys residues influence the rate of this reaction³⁴. This reaction depends furthermore on pH, electrostatic environmental conditions, and pKa of the thiol groups³⁴. Disulfide bonds destabilize the nascent protein chain by imposing distance and angle between C^B and S^{γ} atoms of the joined cysteine residues, and by that reduce their entropy³⁴. They also support stabilization of folded proteins by enhancement of interactions between hydrophobic protein domains³⁴.

Figure 8:³³ Redox balance in the lumen of endoplasmic reticulum.

Ero1 is an ER membrane bound protein responsible for the transfer of oxidizing equivalents from the cytosol to PDI in the ER lumen. GSH = reduced glutathione; GSSG = oxidized glutathione;

Figure 9:³³ **Depiction of disulfide bond formation in the ER lumen.**

Erol is ER membrane bound protein responsible for transfer of oxidizing equivalents from cytosol to PDI in ER lumen. The figure shows only the thioredoxin domains of PDI. Disulfide bond forms by thiol-disulfide exchange reaction between PDI and the substrate protein (SP).

3.4 <u>Brief comparison of protein disulfide isomerases</u> <u>from different organisms</u>

Although enzymes responsible for disulfide bonds formation occur in all organisms, depending on the cell type their main features vary drastically. For instance, these enzymes in bacterial cells are located in the cytosol. Two bacterial enzyme-systems, DsbA-DsbB and DcbC-DsbD are responsible for secreted protein folding and isomerisation, respectively²⁵. In contrast, in yeast cells, both, oxidation and isomerisation are a performed by PDIs²⁵.

In the yeast *Saccharomyces cerevisiae*, besides *PDI1*, four other homologous genes coding for ER PDIs have been detected: *MPD1*, *MPD2*, *EUG1*, and *EPS1*^{35,25}. Since there is an evidence that *PDI1* deletion is lethal for *S. cerevisiae*, further deletion studies have been provided in order to define the functions of *ScPDI1*homologs^{35,36}. The study by Nørgaard, P. et al. has shown that only *MPD1*, has the same capability as *PDI1*, being able to catalyze all folding reactions essential for the cell³⁵. In *S. cerevisiae*, an active site motif containing only one Cys residue (monothiol; -<u>C</u>GFS-) has also been identified³⁰.

The short comparison of mammalian and yeast PDIs shows a difference in the location of the two non-active Cys residues: in mammalian cells they are located in the **b'** domain, while in yeast cells in the **a** domain²⁵.

3.4.1 Pichia pastoris protein disulfide isomerases

The first *P. pastoris* PDI (**Pp*PDI), analyzed and reported in 2001, includes two double-cysteine redox-active sites, and belongs to the thioredoxin superfamily of protein-thiol oxidoreductases³⁶. Within 517 AA long *Pp*PDI, two redox-active domains (-CGHC-) have been detected, separated from each other by 338 AA long domain³⁶. Also two potential glycosylation sites, one N-terminal putative signal sequence, and C-terminal ER-retrieval sequence have been detected³⁶ (Figure 10).

Figure 10:³⁶ DNA and AA sequences showing the most important domains within *Pp*PDI1.

```
661
CTTCTTCTTCCTTCCTATCTAAGAatgcaattcaactggggtattaaaactgtggcaag
720

1
M_Q_F_N_W_D_I_K_T_V_A_S_12

721
tattttgtccgctctcacactagcacaagcaagtgatcaggagggtattgctccagagga
780

13
I_L_S_A_L_T_L_A_Q_A_S_D_Q_E_A_I_A_P_E_D_32
32

781
ctctccatgtcgtcaaattgactgaagccacttttgagtctttcatcaccagtaatcctca
840

33
S_H_V_V_K_L_T_E_A_T_F_E_S_F_I_T_S_N_P_H_52
```

a) Potential signal sequence (underlined domain).

841 cgttttggcagagttttttgccccttggtgtggtcactgtaagaagttgggccctgaact													act	900							
53	V	L	А	Е	F	F	А	Р	W	С	G	Н	С	Κ	К	L	G	Ρ	Е	L	72

b) The first active center domain (-APWCGHCH-), containing the conserved thioredoxin motif (-CGHC-) is located between 59 and 66 AA.

1081	tgt	cag	cta	tat	gct	aaa	gca	gag	ttt	acc	ccc	tgt	cag	tga	aat	caa	tgc	aac	caa	aga	1140
133	V	S	Y	М	L	Κ	Q	S	L	Р	Ρ	V	S	Е	I	Ν	A	Т	К	D	152
1141	ttt	aga	cga	cac	aat	cgc	cga	ggc	aaa	aga	gcc	cgt	gat	tgt	gca	agt	act	acc	gga	aga	1200
153	L	D	D	т	I	A	E	A	К	E	P	V	Ι	V	Q	V	L	P	E	D	172
1201	tge	atc	caa	ctt	gga	atc	taa	cac	cac	att	tta	cgg	agt	tgc	cgg	tac	tct	cag	aga	gaa	1260
173	Α	S	Ν	L	Ε	s	Ν	Т	Т	F	Y	G	V	A	G	Т	L	R	Е	К	192
1261	att	cac	ttt	tgt	ctc	cac	taa	gtc	tac	tga	tta	tgc	caa	aaa	ata	cac	tag	cga	ctc	gac	1320
193	F	Т	F	V	S	т	К	S	Т	D	Y	А	К	к	Y	т	S	D	S	т	212

c) Two potential glycosilation sites (N-148 and N-179).

1861 taaagatgttetagteaagtaetaegeeeettggtgtggteaetgtaagagaatggetee 1920 393 K D V L V K Y Y A P W C G H C K R M A P 412

d) The second active center domain (-APWCGHCH-) containing the conserved thioredoxin motif (-CGHC-) is located between 401 and 408 AA.

2161 agcactcagaccagtcgaggaagaaaaggaagctgaagaagatgaggcgaga 2220 493 A L R P V E E E K E A E E E A E S E A D 512 2221 cgctcacgacgagctttaaGAATGTCCGGGGTTTCTATATTTACTGTAACTAGGTTTTAT 2280 513 A H D E L * 517

e) Yeast tipical ER retriveal sequence (-HDEL).

^{*} An abbreviation *Pp* will be used for *Pichia pastoris* from now on.

Since an absolutely correct folding of heterologous proteins is of crucial relevance for all therapeutic proteins (biopharmaceuticals and biosimilars) and for activity of most disulfide bridge containing enzymes, many case studies have been enquiring how PDI influences the overexpression of heterologous proteins in *P. pastoris*.

For instance, ancrod (a snake venom serine protease) has been expressed in *P. pastoris* by co-overexpression of *Pp*PDI1, and the results have shown a twofold increase of the secretion during the bioreactor cultivation³⁷. In this case, *Pp*PDI1 in *P. pastoris* genome was under the control of the constitutive *Pp* P_{GAP}^{37} . In another case study, a different strategy for co-overexpression of *PpPDI* gene has been used. Heterologous expression of the *Necator americanus* secretory protein (Na-ASP1) in *P. pastoris* has been tested, simultaneously co-overexpressing the *PpPDI* gene which was integrated with varying copy numbers²⁴. Within this study, a positive correlation between PDI copy number and secreted Na-ASP1 has been observed²⁴.

4. Introduction to protein glycosylation

- 4.1 Posttranslational protein glycosylation
- 4.2 Brief overview of Pichia pastoris N-glycosylation pathway
- 4.3 Pichia pastoris strain containing human-like Nglycosylation pattern

4.1 Posttranslational protein glycosylation

Protein glycosylation is the most common protein modification³⁸. It has been found in both prokaryotes and eukaryotes. Within the eukaryotic cells it is a highly conserved pathway³⁹. All carbohydrates are covalently bound to the proteins, and different proteins in the cell are characterized by certain glycosylation pattern³⁸. Protein glycosylation is of high relevance for the cell: it enables proper protein folding, which is necessary for achieving proper protein activity¹⁵, and all properties of the proteins, such as size, conformation, surface solubility and charge, are influenced by the oligosaccharides contained in their glycosylation pattern³⁸.

There are two types of protein glycosylation in the cell, *O*- and *N*-glycosylation. *O*-glycosylation is characterized by a covalent bond between *N*-acetylgalactosamine (GalNAc) and threonine (Thr; T), or serine (Ser; S) hydroxyl (-OH) group^{40,38}. *N*-glycosylation, in contrast, is characterized by a covalent bond between *N*-acetylglucosamine (GlcNAc) and specific asparagine (Asn; N) amino acids in the protein chain^{15,38}. Asn-Xaa^{*}-Thr/Ser (-N-X-T/S-) is the amino acid consensus sequence for *N*-glycosylation in yeast⁴⁰, with the carbohydrate binding to the amide nitrogen of Asn⁴⁰.

There are three main classes of *N*-glycosylated proteins in eukaryotes: complex, high mannosylated, and hybrid. They all share the same pentasaccharide structure, with two GlcNAc and three mannose (Man) moieties, which is called "core part"³⁸. The rest of the polysaccharide chain is called "antenna", and it differs among all three groups of *N*-glycoproteins³⁸ (Figure 11). Complex *N*-glycoproteins can contain more antennas, and additional GlcNAc, galactose and sialic acid, but they do not contain more than those three Man moieties, located in the core part³⁸. Highly mannosylated as hyper mannosylated *N*-glycoproteins, contain a high number of Man moieties, but they do not contain any other carbohydrate in their antenna part³⁸. In contrast, hybrid *N*-glycoproteins can contain more Man residues, but also other carbohydrate moieties within their antenna³⁸.

Although the glycosylation patterns differ between different cell types, the *N*-glycosylation pathway always takes place in the same cell organelles, namely in ER and in Golgi. More precisely, it takes place on the both sides of ER, and is catalyzed by cytoplasm-oriented and lumen-oriented glycosyltransferases³⁹.

The core part synthesis starts on the cytosolic site of the ER membrane (ER surface)³⁹. Its initial reaction is the assembly of N-acetyl-glucosamine-phosphate and a membrane-bound lipid career molecule, called dolichyl monophosphate (Dol^{**}-P)³⁹. The resulted product, *N*-acetylglucosamine- pyrophosphatidyldolichol (GlcNAc-PP-Dol) is further changed by the addition of one N-acetylglucosamine (GlcNAc) and five Man residues, and a heptasaccharide intermediate, Man₅GlcNAc₂-PP-Dol is formed³⁹. Before further reaction steps occur, Man₅GlcNAc₂-PP-Dol is transferred into the ER lumen, where progressive addition of Man

^{* (}Xaa; X) – means that theoretically any amino acid can stay in the middle of the consensus sequence, but frequently found residues are proline and aspartate³⁸.

^{**} Dolichol (Dol) is an polyisoprenol, in yeast cells commonly built of 14 isoprene units³⁹.

and glucose (Glc) residues results in $Glc_3Man_9GlcNAc_2$ -PP-Dol³⁹. In the final step of the core synthesis, $Glc_3Man_9GlcNAc_2$ is covalently bound to a specific *N*-residue of nascent protein chain, by catalytic support of oligosaccharide transferase comlex^{38,39}. Soon after that, three Glc and one Man residues are trimmed, and the resulting $Man_8GlcNAc_2$ polysaccharide is transported to the Golgi⁴¹. Up to the point where $Man_8GlcNAc_2$ enters the Golgi, all glycosylation steps are the same in yeast and mammalian cells. However, further *N*-glycosylation steps, within the Golgi, differ drastically between yeast and mammalians.

Mammalian glycoproteins are mainly of complex type. After entering the Golgi, $Man_8GlcNAc_2$ is trimmed by several α -1,6 mannosidases to $Man_5GlcNAc_2$, whose core enables addition of different carbohydrates and further branching^{42,43}. In the next step, the chain is extended by addition of β -1,2-linked GlcNAc, a reaction catalyzed by *N*-acetylglucosaminyl transferase I (GnT-I)^{43,42}. After that, two Man residues are eliminated by mannosidase II (Man-II), and second β -1,2-linked GlcNAc is added by GnT-II^{42,43}. The further chain extension includes addition of galactose and sialic acid, reactions which are catalyzed by galactosyltransferases and sialyltransferases, respectively^{42,43}.

Yeast cells, in contrast, do not terminate the glycosylation with the sialic acid⁴⁴. Instead of that, a negative charge of the N-glycan is achieved by addition of phosphate, glucuronic acid or pyruvate⁴⁴. They synthesize mainly high mannosylated (hypermannosylated) proteins, which can also contain Gal residues⁴⁴. One yeast species, known to produce hybrid-proteins, by addition of extra GlcNAc moieties is *Kluyveromyces lactis*⁴⁴.

Because of that, metabolic engineering is necessary to be performed in order to adapt yeast cells for production of proteins with humanized glycosylation for therapeutic application (Paragraph 4.3).

Figure 11:³⁸ Main glycosylation classes.

The common part for all glycosylated proteins is termed CORE, and the protein specific patterns are termed ANTENNA. a) Complex – contains only Man moieties. b) High mannose – contains high number of Man moieties, but no other carbohydrates. c) Hybrid – can contain more than three Man moieties, and also other carbohydrates.

4.2 <u>Brief overview of *Pichia pastoris* N-glycosylation</u> <u>pattern</u>

As already mentioned in this thesis, the capability of *P. pastoris* to secret heterologous proteins is of high relevance for its industrial use. It makes downstream processing of expressed heterologous proteins easier and cheaper, and it ensures protein glycosylation, since ER and Golgi, where protein glycosylation generally happens, are parts of the secretory pathway¹⁵.

As well as many other pathways in yeasts, also *N*-glycosylation has been first described for *S. cerevisiae*. This knowledge has been used later as comparison basis in studies analyzing the common glycosylation patterns in *P. pastoris*.

Figure 12:⁴⁴ *N*-linked outer chain extension in *P. pastoris*.

As already said in the last paragraph, when secreted proteins leave ER, they are "half glycosylated" carrying Man₈GlcNAc₂ polysaccharide, which is a precursor for their further glycol-modifications.

The glycosylation pathway continues within Golgi in *P. pastoris* by α -1,6 mannose extension⁴¹. Thereby, the initial step for the hypermannosylation is catalyzed by an α -1,6 mannosyltransferase, encoded by *PpOCH1* gene^{41,42} (Figure 12). It is a transferring reaction of Man residue from GDP-Man to the α -1,3-linked core Man residue on the lower arm of the Man₈GlcNAc₂^{41,44}. α -1,6 mannose extension formed by this reaction represents a substrate for further Man residues addition, catalyzed by different transferases in *P. pastoris*⁴¹.

Interesting to be mentioned is that phosphate residues have been detected in many of the *P. pastoris N*-glycoproteins⁴⁴. It has been found that the *PNO1*gene is responsible for phosphomannosylation of *N*-glycoproteins and that it promotes the glycosylation of core residues, but not of the outer sugar chain⁸.

4.3 <u>Pichia pastoris strain containing human-like</u> <u>glycosylation pattern</u>

Glycosylation plays an important role in cell and tissue distribution of proteins as well as in blood clearance in humans⁴². As mentioned above, the human *N*-glycosylation pattern is characterized by a terminal sialic acid residue⁴². Pharmaceutical kinetic studies have shown that glycoproteins having galactose, *N*-acetylglucosamine or Man terminal residues persist shorter in blood then glycoproteins with terminal sialic acids⁴². On the other hand, yeast glycoproteins can contain phosphate residues, β -mannose or α -1,3 mannose, which activate immunogenic reactions in human cells⁴². For instance, there are three genes (*MNN1*, *MNT2* and *MNT3*) coding for α -1,3-mannosyltransferases in *S. cerevisiae*.^{44,45,46} *ScMNN1* is a Golgi located protein, and takes part in both *N*-glycosylation and *O*-glycosylation, while *ScMNT2* and *ScMNT3* are included only in *O*-glycosylation.* (http://www.ncbi.nlm.nih.gov/) The *N*linked oligosaccharides added to *P. pastoris* proteins vary in size, having structures from Man₈GlcNAc₂ to Man₁₄GlcNAc₂, and proteins with more than 30 Man residues have been

^{*} Information source: http://www.ncbi.nlm.nih.gov/.

detected^{47,15}. However there is no evidence of alpha-1,3 terminal linked mannose moieties in *P. pastoris* proteins, and this feature favored the use of *P. pastoris* over *S. cerevisiae* for the industrial production of pharmaceutical proteins.^{48,40,49} More precisely, *P. pastoris* contains only one gene coding for α -1,3-mannosyltransferase, which is called *RHK1* and is thought to be included in the core part synthesis in the endoplasmic reticulum.^{**}

For all these reasons Chinese hamster ovary (CHO) cells, have been proven to be more suitable for production of therapeutic glycoproteins⁴¹. On the other hand, the fact that yeast cells are easier for handling in bioreactors indicates the importance and necessity of heterologous expressed therapeutic proteins to be human-like glycosylated. For that reason, in parallel to the successfully increased yields of heterologous proteins produced in *P. pastoris*, scientists have also concentrated on quality improvements of synthesized proteins. They have opened a new applied research topic, trying to design yeast cells with human-type *N*glycosylation pathway. In the last decade a research group of Gerngross et al. designed a *P. pastoris* strain containing a fully humanized *N*-glycosylation pathway.

Since the *P. pastoris* glycosylation machinery produces hypermannosylated proteins containing up to 40 Man residues, the first engineering step consisted in trying to stop further addition of Man residues^{41, 42}. With this aim, inactivation of *PpOCH1* gene by gene disruption has been done similar to the strategy applied for *S. cerevisiae*.^{42,50}. In the second step, an HDEL-tagged α -1,2 mannosidase from the filamentous fungi *T. reesei*, has been overexpressed^{43,42}. This enzyme is able to eliminate terminal α -1,2 mannose residues, and the reaction results in formation of Man₅GlcNAc₂^{42,43}. Further glycosylation of Man₅GlcNAc₂ seems to be more difficult task for the cell, because the most *P. pastoris* endogenous glycosyltransferases are not able to use this *N*-glycoprotein as a substrate⁴³. For this reason, in the next step a gene for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) transporter has been integrated in *P. pastoris* genome, thus producing for the first time hybrid glycoproteins (GlcNAcMan₅GlcNAc₂) in this yeast⁴¹. Within the further steps, mannosidase II and *N*-acetylglucosaminyl transferase II (GnT-II) genes have been introduced, and the endogenous gene *ALG3* has been deleted, which resulted in the formation of first complex glycoproteins (GlcNAc₂Man₃GlcNAc₂) in *P. pastoris*⁴¹.

The most difficult engineering step has been the introduction of all genes responsible for synthesis and addition of sialic acid in *P. pastoris*⁵¹. Generally, the following features make yeasts unable for sialylation:

- 1. they are not able to synthesize β -1,4 galactose terminated substrates,
- 2. they are not able to synthesize activated sugar cystidine monophosphate (CMP)-sialic acid,
- 3. they are not able to synthesize transport molecule for CMP-sialic acid,
- 4. they are not able to synthesize sialyltransferase, needed for the final step where CMP-sialic acid is added to galactose⁵¹.

However, based on earlier research work, Hamilton et al. have designed the first *P*. *pastoris* strain capable of synthesizing complex sialylated glycoproteins⁴¹. Engineered *P*. *pastoris* strains and plasmids for heterologous protein production with fully adjusted human *N*-glycosylation pattern are already available made by the new patented technology.

^{**} Information source: https://gendb.cebitec.uni-bielefeld.de/

5 **Objectives**

The industrial use of *P. pastoris* for production of pharmaceutical proteins shows a continuously increasing course in the last two decades. In parallel, the number of research groups working with this methylotroph grows as well. Thereby almost every improvement is patented, and thus not of common usage.

In contrast, the results of this master thesis were planed as a contribution to the *P. pastoris* strain collection (*P. pastoris* pool), established at the Institute of Molecular Biotechnology (IMBT) at Graz University of Technology (TUG). The basic idea of the *P. pastoris* pool was to make collection of patent free strains with adjusted industrially relevant features. With this aim, both research topics within this master thesis were chosen according to actual lacks in the biotechnological protein production using *P. pastoris* as production host.

The first research project was focused on *P. pastoris* protein disulfide isomerases (*PpPDIs*). *PpPDI1* gene has been patented since more than fifteen years. However, the recent *P. pastoris* sequencing study, done at our institute, indicated the existence of three additional genes coding for enzymes with potential protein disulfide isomerase catalytic activity.

PDIs play a role in protein folding processes in the cell (Chapter 1.2). Since proper protein folding is of crucial relevance for the protein activity, one of the possibilities to avoid misfolding of heterologous proteins is the co-overexpression of *PDIs* in the cell. For that reason, the aim of this thesis was the design of *PpPDI*-specific P_{AOXI} -replacement cassettes. Also single and multi copy *P. pastoris* strains carrying *CalB* and *HRP* genes should be designed as reporter strains within this master thesis. The four newly designed recombination cassettes, as well as *P. pastoris* strains, should be used in the future for further research work. My final aim was to replace the *PpPDI* natural promoters with the strong *AOX1* promoter (P_{AOXI}) in order to overexpress the same. Disulfide bonds contained in CalB (*Candida antartica* lipase B) and HRP (horseradish peroxidase) make them suitable model proteins, for testing the influence certain *PDI* co-overexpression has on their folding, since it was known from previous experiments that PDI over-expression enhances active enzyme production.

Within the second research project, my interest was focused on *P. pastoris* genes coding for α -1,6 mannosyltransferase. Namely, the first known gene coding for this enzyme in *P. pastoris* was *OCH1*. Disruptions of this gene resulted in non-hypermannosylated secreted proteins, suitable for additional glycosylation manipulations (Chapter 1.3). However, there is one more gene supposed to code for an enzyme with α -1,6 mannosyltransferase activity in *P. pastoris*. Its sequence was automatically annotated as *HOC1* within the recent *P. pastoris* sequencing study, but nothing is yet known about its structure and activity. Therefore, the aim of the second project was the design of *P. pastoris OCH1* and *HOC1* knock-out strains. For this reason, *OCH1* and *HOC1* specific knock-out cassettes should be designed.

Within this project a new *P. pastoris* strain carrying *HNL* gene should be also designed as a reporter strain to verify possible glycosylation effects. *HNL5* codes for hydroxynitrile lyase isoenzyme 5 from *Prunus amygdalus* and is known as high mannosylated protein, and is thereby an adequate model protein for this project.

My first aim was to design a *P. pastoris* strain for secretion of low mannosylated proteins. However, this aim was based on our hypothesis that *OCH1* deletion has the same effect as *OCH1* disruption. One additional aim was to gain information how *HOC1* deletion reflects on the protein glycosylation.

6 **Instruments and associated equipment**

6.1 Centrifuges and associated materials

- Centrifuge 5810 R/Eppendorf AG, Hamburg, Germany
- Centrifuge 5415 R/Eppendorf AG, Hamburg, Germany
- AvantiTM centrifuge J-20 XP/Beckman CoulterTM, Inc, Vienna Austria
- JA-10 Rotor, fixed angle/Beckman CoulterTM, Inc, Vienna Austria
- Nalgene® Labware 500 ml PPCO Centrifuge Bottles/Thermo Fisher Scientific, Rochester, NY, USA

6.2 Shakers and incubators

- Titramax 1000 (1,5 mm)/Heidolph Instruments, Schwabach, Germany
- Thermomixer comfort (1.5 ml)/Eppendorf AG, Hamburg, Germany
- Multitron II incubator shaker (25 mm)/Infors AG, Bottmingen-Basel, Switzerland
- RS 306 rotary shaker (50 mm)/Infors AG, Bottmingen-Basel, Switzerland
- Binder drying oven/Binder GmbH, Tuttlingen, Germany

6.3 Polymerase chain reaction (PCR) thermocyclers

- GeneAmp®PCR System 2700/Applied Biosystems, Foster City, CA, USA
- Mastercycler® personal/Eppendorf AG, Hamburg, Germany

6.4 Photometers, plate readers and associated materials

- DU 800 Spectrophotometer/Beckman coulter Inc, Fullerton, CA, USA
- Spectramax Plus 384/Molecular Devices, Ismaning/München, Germany
- Semi-micro cuvette 10x4x45 mm, Polystyrene/Sarstedt Aktiengesellschaft & Co., Nümbrecht, Germany
- NanoDrop 2000c Spectrophotometer/peqlab Biotechnologie GmbH, Polling, Austria

6.5 Gel electrophoresis and associated materials and devices

- Biozym LE Agarose/Biozym Biotech Trading GmbH, Vienna, Austria
- 6x Orange DNA Loading Dye/Fermentas GmbH, St. Leon-Rot, Germany
- GeneRulerTM 1kb DNA-Ladder/Fermentas GmbH, St. Leon-Rot, Germany
- Power PacTM Basic (power supply)/Bio-Rad Laboratories, Vienna, Austria
- Sub-cell GT/Bio-Rad Laboratories, Vienna, Austria
- GelDoc-It[™] Imaging Systems/UVP®, Cambridge, UK

- BioImaging Systems Gel HR Camera 6100 Series/UVP®, Cambridge, UK
- Chroma 43 mittelwellig 302 nm/Laborgeräte Vetter GmbH, Wiesloch, Germany

6.6 Electroporation materials

- Gene PulserTM/Bio-Rad Laboratories, Vienna, Austria
- Electroporation cuvette 2 mm/Bridge BioscienceTM, Rochester, NY, USA

6.7 Reaction tubes

- Micro-centrifuge tubes, 1.5 ml with lid/Greiner Bio GmbH, Frickenhausen, Germany
- PP-Tube, sterile, cap, 12 ml/ Greiner Bio GmbH, Frickenhausen, Germany
- PP-Tube, sterile, 15 ml/Greiner Bio GmbH, Frickenhausen, Germany
- PP-Tube, sterile, +/- support skirt, 50 ml/Greiner Bio GmbH, Frickenhausen, Germany

6.8 Pipettes and pipette tips

- Denville XL 3000iTM (10 μl, 20 μl, 200 μl, 1000 μl)/Denville Scientific (Europe), P.O. Box 2108, Westbourne, UK
- Eppendorf Research® pipette (adjustable volume), 0.1-2.5 μl/ Eppendorf AG, Hamburg, Germany
- Biohit Proline® multichannel pipettor, 8 channels, 5-50 µl/Biohit Plc., Helsinki, Finland
- Biohit Proline
 multichannel electronic pipettor, 8 channels 50-1200 μl/Biohit Plc., Helsinki, Finland
- Pipette tips, micro P10/Greiner Bio-One GmbH, Frickenhausen, Germany
- Pipette tips 200/Greiner Bio-One GmbH, Frickenhausen, Germany
- Pipette tips 1000/Greiner Bio-One GmbH, Frickenhausen, Germany
- Filter pipette tips 10 µl/Greiner Bio-One GmbH, Frickenhausen, Germany
- Filter pipette tips 200 µl/Greiner Bio-One GmbH, Frickenhausen, Germany
- Filter pipette tips P1000/Greiner Bio-One GmbH, Frickenhausen, Germany

6.9 Microplates

- PS-Microplate 96-well, flat bottom/Greiner Bio-One GmbH, Frickenhausen, Germany
- MicroAmp® Optical 96-Well Reaction Plate/Applied Biosystems, Foster City, CA, USA
- MicroAmp® Optical Adhesive Covers/Applied Biosystems, Foster City, CA, USA
- 96-well footprint deep well plate, PP/Bel-Art Products, Pequannock, NJ, USA
- Cover for deep well plate/Bel-Art Products, Pequannock, NJ, USA

6.10 Other materials and devices

- Rotilabo® syringe filters, CME, sterile, Ø 33 mm, 0.22 μm pore size /Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Vortex-Genie 2/Scientific Industries Inc., Bohemia, NY, USA
- Sartorius BL 120S scale/ Sartorius Stedim Biotech GmbH, Göttingen, Germany
- inoLab® pH720 pH meter/WTW, Weilheim, Germany
- SenTix 21 PLUS® pH electrode/WTW, Weilheim, Germany
- MR 3000 magnetic stirrer/Heidolph, Schwabach, Germany
- Arium® basic ultrapure water system/Sartorius Stedim Biotech GmbH, Göttingen, Germany
- Petri plates/Greiner Bio GmbH, Frickenhausen, Germany
- Desalting membranes/Millipore, USA
- Pipettes 5ml, 10ml, 25ml/Greiner Bio GmbH, Frickenhausen, Germany
- Adhesive foils/Greiner Bio GmbH, Frickenhausen, Germany

7 <u>Materials</u>

7.1 Media and buffers

7.1.1 Escherichia coli media

- Low Salt Luria Bertani (LB) (agar): 10 g/l Bacto[™] tryptone, 5 g/l Bacto[™] yeast extract, 5 g/l NaCl, (15 g/l agar), autoclaved. If needed, antibiotics are added to a final concentration of 100 mg/l ampicillin, 25 mg/l zeocin[™], 50 mg/l kanamycin.
- SOC medium: 20 g/l BactoTM tryptone, 0.58 g/l NaCl, 5 g/l BactoTM yeast extract, 2 g/l MgCl₂, 0.18 g/l KCl, 2.46 g/l MgSO₄, 3.81 g/l α-D(+)-glucose monohydrate, autoclaved

7.1.2 Pichia pastoris media

7.1.2.1 Stocks

- 500x B: 10 mg / 50 ml d-Biotin, filter sterilized
- 10x D: 220 g/l α -D(+)-glucose monohydrate, autoclaved
- 10x YNB: 134 g/l Difco™ yeast nitrogen base w/o amino acids, autoclaved
- 10x S: 200 g/l D-sorbitol, autoclaved

7.1.2.2 Media for cultivation in 96-deep well plates

- Yeast extract, peptone, dextrose (YPD) (agar): 10 g/l BactoTM yeast extract, 20 g/l BactoTM peptone, 900 ml dH₂O, (15 g/l agar), autoclaved. After autoclaving, adding 100 ml 10x D. If needed, antibiotics are added to a final concentration of 100 mg/l zeocinTM, 300 mg/l geneticin.
- BMD1%, 1 l: 50 ml 10X D, 200 ml 10x PPB, 100 ml 10x YNB, 2 ml 500x B, 650 ml dH_2O
- BMM2, 1 l: 10 ml MeOH, 200 ml 10x PPB, 100 ml 10x YNB, 2 ml 500x B, 690 ml dH₂O
- BMM10, 1 l: 50 ml MeOH, 200 ml 10x PPB, 100 ml 10x YNB, 2 ml 500x B, 650 ml dH_2O

7.1.2.3 Media for genomic DNA isolation from yeasts

- Yeast lysis buffer: 4 ml Triton X-100, 20 ml 10% SDS, 4 ml 0.5 M NaCl, 0.4 ml 0.5 M EDTA, 2.0 ml 1.0 M Tris, pH 8.0, 169.6 ml dH₂O
- TE buffer: 10 mM Tris-HCl, pH 7.5, 1 mM EDTA, pH 8.0

7.1.3 Buffers

7.1.3.1 Buffer solutions for enzyme characterization

- 50 mM NaOAc (sodium acetate): 4.1 g/l NaC₂H₃O₂, pH 4.5 adjusted with 100 % acetic acid
- 20x ABTS stock: 440 mg 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, add 50 mM NaOAc to 50 ml
- p-nitrophenol butyrate stock: 42µl pNPB 98% were added to 458µl DMSO
- 300mM Tris/HCl buffer: pH 7.0
- 1M citrate phosphate buffer: pH 5.0 (210.13g citric acid mono-hydrate in 11 dH₂O, 228.23g K₂HPO₄. 3 H₂O in 11 dH₂O)
- 0.1M phosphate-citrate buffer: pH 3.0 (21.013g citric acid mono-hydrate in 11 dH₂O, 22.823g K_2 HPO₄. 3 H₂O in 11 dH₂O)
- 0.06M mandelonitrile solution: 80mg mandelic acid nirile in 10ml 0.1M phosphate-citrate buffer

7.2 Other chemicals and solutions

- 10x dNTP mix: 20 mM each: dATP, dTTP, dCTP, dGTP
- dATP / dCTP / dTTP / dGTP, 100 mM/Fermentas GmbH, St. Leon-Rot, Germany
- 50x TAE buffer: 242 g Tris base, 57.1 ml glacial acetic acid, 100 ml 0.5M EDTA, add dH_2O to a final volume of 11
- BEDS: 10 mM bicine-NaOH, pH 8.3, 3 % (v/v) ethylene glycol, 5 % (v/v) DMSO, 1 M sorbitol, filter sterilized
- 1M DTT: 154,25g in 11 dH₂O

7.3 Enzymes

7.3.1 Restriction enzymes

- BamHI 10u/μl, 10xUnique buffer, 5'G↓*GATCC3'/Fermentas GmbH, St. Leon-Rot, Germany
- BamHI 1FDU/μl, 10xFastDigest[®] Buffer, 10xFastDigest[®] Green Buffer, 5'G↓ *GATCC3'/Fermentas GmbH, St. Leon-Rot, Germany
- EcoRI 10u/µl, 10xUnique buffer, 5'G↓AATTC3'/Fermentas GmbH, St. Leon-Rot, Germany
- EcoRI 1FDU/ μ l, 10xFastDigest® Buffer, 10xFastDigest® green Buffer, 5'G \downarrow AATTC3'/Fermentas GmbH, St. Leon-Rot, Germany

^{*} \downarrow represents the enzyme restriction site.

- NotI 10u/µl, 10xOrange buffer, 5'GC \downarrow GGCCGC3'/Fermentas GmbH, St. Leon-Rot, Germany
- NotI 1FDU/μl, 10xFastDigest® Buffer, 10xFastDigest® Green Buffer, 5'G↓ AATTC3'/Fermentas GmbH, St. Leon-Rot, Germany
- NcoI 10u/µl, 10xTango buffer, 5'C \downarrow CATGG3'/Fermentas GmbH, St. Leon-Rot, Germany
- NcoI 1FDU/µl, 10xFastDigest[®] Buffer, 10xFastDigest[®] Green Buffer, 5'C↓ CATGG3'/Fermentas GmbH, St. Leon-Rot, Germany
- SmiI(SwaI) 10u/µl, 10xOrange buffer, 5'ATT ↓ AAAT3'/Fermentas GmbH, St. Leon-Rot, Germany
- SwaI(SmiI) 1FDU/μl, 10xFastDigest[®] Buffer, 10xFastDigest[®] green Buffer, 5'G↓ AATTC3'/Fermentas GmbH, St. Leon-Rot, Germany

7.3.2 DNA polymerases

- Phusion® High-Fidelity DNA-Polymerase 2 u/µl, 5x HF reaction buffer or 5x GC buffer/Finnzymes Oy, Espoo, Finland
- GoTaq® Polymerase 5 u/µl, 5x Green GoTaq® Buffer/Promega GmbH, Madison, WI, USA
- PfuUltraTM High-Fidelity DNA-Polymerase 2.5u/μl, 10× PfuUltraTM HF reaction buffer/Stratagene, La Jolla, CA

7.4 Chemicals

- ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) diammonium), from Sigma-Aldrich Handels GmbH, Vienna, Austria
- α -D(+)-glucose monohydrate, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Ampicillin, product of Sigma-Aldrich Handels GmbH, Vienna, Austria
- Aqua bidest. "Fresenius", product of Fresenius Kabi Austria GmbH, Graz, Austria
- BactoTM peptone, product of Becton Dickinson and Company, Sparks, MD, USA
- BactoTM tryptone, product of Becton Dickinson and Company, Sparks, MD, USA
- BactoTM yeast extract, product of Becton Dickinson and Company, Sparks, MD, USA
- Benzaldehyde cyanohydrin (mandelonitrile), from Sigma-Aldrich Handels GmbH, Vienna, Austria
- Citronensäure, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- D-biotin, product of Fluka Chemia AG, Basel, Switzerland
- DifcoTM yeast nitrogen base w/o amino acids, product of Becton Dickinson and Company, Sparks, MD, USA
- Dimethyl sulfoxide (DMSO), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Dithiothreitol (DTT), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- D-sorbitol, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Ethanol abs., product of Merck KGaA, Darmstadt, Germany
- Ethidium bromide (\geq 98 %), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Geneticin disulfate (G418 sulfate), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- HCl (37%), product of Merck KGaA, Darmstadt, Germany

- K₂HPO₄, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Kanamycin, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- KH₂PO₄, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- LB agar, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Methanol (\geq 99.8 %), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Na₂HPO₄, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- NaOAc (NaC₂H₃O₂, sodium acetate), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- NaOH, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Phenol:chloroform:isoamylalcohol (25.24:1), product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- p-nitrophenol butyrate, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- Tris, product of Carl Roth GmbH + Co. KG, Karlsruhe, Germany
- ZeocinTM, product of InvivoGen-Eubio, Vienna, Austria

7.5 Existing strains

- <u>Name:</u> *Escherichia coli* Top 10F' (IMBT-TUG^{*} strain collection number: 1482) / Source: Invitrogen Corporation, San Diego, USA
- Name: *Pichia pastoris* CBS7435 (IMBT-TUG strain collection number: 3132) / Source: *Pichia pastoris* wild type
- <u>Name:</u> *Pichia pastoris* Mut^S (IMBT-TUG strain collection number: 3445) / Source: Based on *P. pastoris* CBS7435, engineered at Graz University of Technology (Näätsaari et al., manuscript in preparation)
- <u>Name:</u> *Pichia pastoris* ΔKU70 (IMBT-TUG strain collection number: 3499) / Source: Based on *P. pastoris* CBS7435, engineered at Graz University of Technology (Näätsaari et al., manuscript in preparation)

7.6 Existing plasmids

Following six existing plasmids were used within this thesis: pPpT4_SmiI, pPpKan_SmiI, pPpT4_SmiI_Cycle3GFP, pPpT4_SmiI_HRPC1ASayn #0, pPpT4_SmiI_CalB #1, pGAPZ A-PaHNL5_alpha, and pJet1.2blunt_ends. Two existing recombination cassettes were also used: FLIPPER_pAOX1 and HIS_Flipper_old_FRT. Both cassettes exist in pJet1.2 cloning vector.

^{*} IMBT-TUG is an abbreviation for the Institute of Molecular Biotechnology at Graz University of Technology.

Figure 13: pPpT4_SmiI plasmid. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic *AOX*1 promoter upstream region); PAOX1_Syn (synthetic *AOX*1 promoter region); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); Zeocin_Syn (gene coding for zeocin resistance); AODTT (*AOD* terminator); SwaI (SmiI), EcoRI, NotI, BamHI, NcoI, and PstI are the restriction sites for the respective restriction enzymes.

Figure 14: pPpKan_Smil plasmid. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic *AOX*1 promoter upstream region); PAOX1_Syn (synthetic *AOX*1 promoter region); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); KanMX6 (gene coding for kanamycin/geneticin resistance); AODTT (*AOD* terminator); SwaI (SmiI), EcoRI, NotI, BamHI, NcoI, and PstI are the restriction sites for the respectively restriction enzymes.

Figure 15: pPpT4_Smil_Cycle3GFP plasmid. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic *AOX*1 promoter upstream region); PAOX1_Syn (synthetic *AOX*1 promoter region); Cycle3GFP (synthetic gene coding for green fluorescence protein); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); Zeocin_Syn (gene for zeocin resistance); AODTT (*AOD* terminator);

Figure 16: pPp-T4_Smil HRPC1ASayn #0 plasmid. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic *AOX*1 promoter upstream region); PAOX1_Syn (synthetic *AOX*1 promoter region); Alpha-factor_SS (*S. cerevisiae* secretion signal sequence); HRPC1ASyn#0 (synthetic gene coding for Horseradish peroxidase); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); Zeocin_Syn (gene for zeocin resistance); AODTT (*AOD* terminator); The restriction enzymes (sites) SwaI (SmiI) and BamHI were used for plasmid linearization, and EcoRI and NotI for cloning of *HRPC1ASyn#0*.

Figure 17: pPp-T4_SmiI CalB #1 plasmid. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic *AOX*1 promoter upstream region); PAOX1_Syn (synthetic *AOX*1 promoter region); Alpha-factor_SS (*S. cerevisiae* secretion signal sequence); CalB (gene coding for *Candida antartica* lipase); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); Zeocin_Syn (gene for zeocin resistance); AODTT (*AOD* terminator); The restriction enzymes (sites) SwaI (SmiI) and BamHI were used for plasmid linearization, and EcoRI and NotI for cloning of *CalB*.

Figure 18: pGAPZ A-PaHNL5 alpha plasmid. pUC_origin (pUC origin of replication); Gap_promoter (constitutive promoter of *P. pastoris* gene coding for glyceraldehyde 3-phosphate); alpha factor (secretion signal sequence); PaHNL5 (*Prunus amygdalus* gene coding for hydrolynitrile lyase); AOX1_TTS (synthetic terminator); Tef1_promoter (eukaryotic promoter); EM7_promoter (synthetic prokaryotic promoter); Zeocin (gene coding for zeocin resistance); CYC1_TT (*S. cerevisiae* iso-1-cytochrome c terminator);

Figure 19: pJet1.2blunt ends cloning vector. Rep pMB1 (replicon from pMBI plasmid); bla_AmpR (gene for ampicillin resistance); eco47IR (lethal gene for positive selection of recombinants which is disrupted by the inserted sequence); PlacUV5 (modified P_{lac} promoter); P_T7 (T7_RNA polymerase promoter); and MCS (the space between 328bp and 422bp is the multiple cloning site);

Figure 20: Existing FRT recombination cassette (FLIPPER_PAOX1) has been cloned in pJet1.2blunt_ends cloning vector. The cassette contains following parts: P(AOX)(1) (*P. pastoris* alcohol oxidase 1 promoter), FRT (recombinase target sequences), FLP_recombinase (gene coding for *S. cerevisiae* 2µm plasmid recombinase), CYC_TT (*S. cerevisiae* iso-1-cytochrome c terminator), P(ILV5) (eukaryotic promoter), EM72 (synthetic prokaryotic promoter), Zeocin (gene coding for zeocin resistance), AOD_TT (*AOD* terminator).

Figure 21: Existing FRT recombination cassette (HIS4_Flipper_old_FRT). The cassette contains following parts: 5'- and 3' HIS4 integration sequence (homologous sequences to *P. pastoris* HIS locus), FRT (recombinase target sequences), P(AOX)(1) (*P. pastoris* alcohol oxidase 1 promoter), FLP_recombinase (gene coding for *S. cerevisiae* 2µm plasmid recombinase), CYC_TT (*S. cerevisiae* iso-1-cytochrome c terminator), P(ILV5) (eukaryotic promoter), EM72 (synthetic prokaryotic promoter), Zeocin (gene coding for zeocin resistance), AOD_TT (*AOD* terminator).

7.7 Primers

From all used primers within this master thesis, 37 were primers existing at the Institute of Molecular Biotechnology at Graz University of Technology, and 146 were newly designed. All the primers were designed with Vector NTI[®] (Bioinformatics software package from Invitrogen, USA) and purchased from Integrated DNA Technologies, BVBA, Leuven, Belgium.

Primer	Primer name	Primer sequence (5`-3`)
designation		
p-07-352	AOXSyn1fw	GGATCCAATTCCCGCTTTGACTGCCTGAAATCTCC
p-07-353	AOXSyn2fw	GGAACCTAATATGACAAAAGCGTGATCTCATCC
p-07-604	EM72_Nco_rv	ACCCATGGTTTAGTCCTCCTTACACC
p-07-628	1FRTFseq	GGTGCACCTGTGCCGAAACG
p-07-629	2FRTRseq	GTTCCGTTATGTGTAATCATCCAAC
p-07-636	2RnewCYC	CAAAGGAAAAGGGGCCTGTTTATATGCGTCTATTTATGTAG
p-07-637	CYC1F	ACATAAATAGACGCATATAAACAGGCCCCTTTTCCTTTGTCGATATC
p-07-638	CYC1R	GAAACAAGACATTACTGAAGTCGACAACTAAACTGGAATGTGAGG
p.08.134	PLAONE	GAAGTTCCTATACTTTCTAGAGAATAGGAACTTCAGATCTAACATCC
p-00-134	r(AOA)r	AAAGACGAAAGG
n 08 136	FIDE	CAACTAATTATTGAAACGATGCCACAATTTGATATATTATGTAAAAC
p-08-130	I'LFI'	ACCACCTAAGG
p-08-151	pucPstfw	AAACTGCAGGTACCACTGAGCGTCAGACCCC
p-08-483	pJET1.2Fw	CGACTCACTATAGGGAGAGCGGC
p-08-484	pJET1.2Rv	AAGAACATCGATTTTCCATGGCAG
p-08-690	ILV5_fw	GCGAACAAATTAAGAGATAATCTCG
p-08-691	AODTT_fw	CGGATGTTTTATTATCTATTTATGC
p-08-692	PUC_rv	GCAGAGCGAGGTATGTAGGC
p-08-694	Kan_rv	CTCATCTGTAACATCATTGGCAAC
p-08-849	AOXSyn_end_fw	CAGAAGGAAGCTGCCCTGTC
p-09-080	KanMX6_fw	GCTCGATGAGTTTTTCTAACC
p-09-132	GFP_AscI_rv	TTTGGCGCGCCTTACTTGTACAATTCATCCATGCC
p-09-155	Kan_fw	GCCAATGATGTTACAGATGAGATGG
p-09-156	Kan_Mitte_fw	GCAATCACGAATGAATAACGG
p-09-194	AOXTTR	TGAAGCCTGCATCTCTCAG
p-09-304	Kanll_rev	TATCGGTCTGCGATTCCGACTCGTC
p-09-337	Zeocin_rv	CTGCGGAGATGAACAGGGTAA
p-09-511	PaHNL_V317ASynl_fw	GGAACTACCATCATTAACGCAGG
p-09-512	PAHNL_V317ASynll_fw	CACCTAATCCTATTGAAGCATCTGTTG
p-10-632	KanMXintfw	gatcgcgtatttcgtctcg
p-10-633	KanMXintrv	cgactgaatccggtgagaatg
p-10-595	pILV5rv	GAAAATTTTTTCGGATAATTTTTTAAAGCGAG

7.7.1 Existing primers

Table 2: List of existing primers, used in this thesis.

7.7.2 Primers designed in this thesis

Primer	Primer name	Primer sequence (5 [°] -3 [°])		
designation				
p-09-514	pdi_l_upstr_fw_	gtggttgtgttacttcctgatagc		
p-09-515	pdi_l_term_rv_	cgtattgcgcgaagtgatgc		
p-09-516	pdi_2_upstr_fw_	gatgaggagctttatagacg		
p-09-517	pdi_2_gen_rv_	cttcaacgagcttagcaacctg		
p-09-518	pdi_3_upstr_fw_	ccgccaaacagggctgctgactc		
p-09-519	pdi_3_term_rv_	gatagaccaggcggagtgcaagttc		
p-09-520	pdi_4_upstr_fw_	gcgatatgtaacctttgacgtagcc		
p-09-521	pdi_4_term_rv_	cctgctacacgagacaattccg		
p-10-052	pdi_1_vor_prom_rv_	gcctgtggaaagaactgtagaga		
p-10-053	pdi_1_prom_fw_	cctttctctctgtgctgtcaactc		
p-10-054	pdi_2_vom_rv_	gtattatatctcccagcaacg		
p-10-055	pdi_2_prom_fw_	ggtgcaaagagctggagatgg		
p-10-056	pdi_3_prom_rv_	caggeteecaagggaettgge		
p-10-057	pdi_3_prom_fw_	cttggatggttacttgagtaacgtcg		
p-10-058	pdi_4_upstr_rv_	gcctcttggtggtgtacttggg		
p-10-059	pdi_4_upstr_fw_	egtetgtaetteaaceteatetee		
p-10-127	pdi_4_seq_3_fw	gcccacaaacccataaaag		
p-10-128	pdi_4_seq_2_fw	gactttgaggataacag		
p-10-129	pdi_4_seq_1_fw	gactttctgtaatgagc		
p-10-130	pdi_3_seq_4_rv	ctcaccttccacaac		
p-10-131	pdi_3_seq_3_fw	ggttggaaggtgaagtgc		
p-10-132	pdi_3_seq_2_fw	ggaagggaatggactcg		
p-10-133	pdi_3_seq_1_fw	gttgagttgatagccgc		
p-10-134	pdi_2_seq_2_fw	cttctgtttccttccatc		
p-10-135	pdi_2_seq_1_fw	cgtattgccacttccatc		
p-10-136	pdi_1_seq_4_fw	ggtgaggttgaggtcc		
p-10-137	pdi_1_seq_3_fw	gaatagaacacgaacactg		
p-10-138	pdi_1_seq_2_fw	gcaccaccttacaccac		
p-10-139	pdi_1_seq_1_fw	ggtggacgaagaagtetee		
p-10-245	a_rv_pdi_1_	GCTAAACTGCTCCCACCATTG		
p-10-246	b_rv_pdi_1_	TACCTGCGGGACTTTCTAACACG		
p-10-247	c_fw_pdi_1_	GTTCTACGACCTCTGATGACCTG		
p-10-248	d_rv_pdi_1_	CAGTGAGAAAGTGGTGTAAGGTGG		
p-10-249	e rv pdi 1	GTTCGTTCATCGGGCAGTTCTTTC		
p-10-250	f rv pdi 1	AATGCTTTGGCTCTGTCTTTG		
p-10-251	g rv pdi 1	TCTGCCTCTCCTGCGATGAATTTC		

Primer	Primor namo	Primor soquence (5, 3)
designation	I fimer name	Timer sequence (5 -5)
p-10-252	h_fw_pdi_1_	GCTGCTGCTGCCGATATTATTAAACC
p-10-253	a_rv_pdi_2_	ATCAGTGGCGAATGGCGGTGC
p-10-254	b_fw_pdi_2_	TAGTAGTAGTAGCACCGCCATTCG
p-10-255	c_rv_pdi_2_	TTTGGAGAAGAGATGGAAGTGGC
p-10-256	d_rv_pdi_2_	GCTCAACTGGTCCTGTCCTTTCTC
p-10-257	e_rv_pdi_2_	TCTTCTATTGGTGCTTGATGTGGG
p-10-258	f_fw_pdi_2_	ATCCCACATCAAGCACCAATAG
p-10-259	a_rv_pdi_3_	TCTATTTTGGTTTGGTCTGCTTC
p-10-260	b_rv_pdi_3_	CAACACCAAATCACAAGTCAAC
p-10-261	c_rv_pdi_3_	ACGTAAAAAGAAGAAGCAATGCAC
p-10-262	7_fw_pdi_3_	AATGTGGTTGGAAGGTGAAGTGC
p-10-263	d_fw_pdi_3_	CGAATGAATCCAGAGTATGAAAAGC
p-10-264	e_fw_pdi_3_	GTTCAATCTTTCCCGACTATCCTG
p-10-265	f_rv_pdi_3_	TAATGACAAAACCAGAACAGCAGG
p-10-266	g_rv_pdi_3_	GAAACTCCTCCATAAATCTACTTG
p-10-267	a_rv_pdi_4_	CGAAAAGTCCCCAAATCTCACAG
p-10-268	b_rv_pdi_4_	GAACAACATCCCAACACCGTC
p-10-269	c_rv_pdi_4_	ATCCGTTTTAGTTCAGTCAATGG
p-10-270	d_rv_pdi_4_	CGAAAAAGCAATCCAAGAAGAAGG
p-10-271	e_rv_pdi_4_	TCAAAACAGGAAACCCGACTACC
p-10-272	f_fw_pdi_4_	GGGTATGCCAACAAGAGGGTC
p-10-273	g_fw_pdi_4_	GGAAATGACGGTGTTGGGATGTTG
p-10-309	pdi_1_term_fw	tgaagaagaagctgaaagtgaggc
p-10-310	pdi_1_term_rv	ccgcttagttctcttcttcaccttg
p-10-311	pdi_2_term_fw	gaaaagcgaagaagggcaagaagg
p-10-312	pdi_2_term_rv	tcctcatcatccagtaacgaagcc
p-10-313	pdi_3_term_fw	aateteacatgeteeggeeacae
p-10-314	pdi_3_term_rv	tgtgtatggaggatgttgatgccg
p-10-315	pdi_4_term_fw	gatgttgaggagtctggggaagc
p-10-316	pdi_4_term_rv	gaageteeacaaaateteeacaatae
p-10-533	pAox_FRT_fw	atagteetgtegggtttegeeae
p-10-534	pAox_FRT_rv	gttcctattctctagaaagtataggaacttccgtttcaataattagttg
p-10-535	GFP_FRT_fw	atactttctagagaataggaacttcaaacgatggctagcaaaggagaag
p-10-536	GFP_FRT_rv	cacgaagtcaaaatggctcaccactgc
p-10-561	GFP_FRT_mut_rv	gttetteetettgetagecategtttgaagtteetattetetagaaagtatagga aetteegttteaataat tagttgttttttg

Primer designation	Primer name	Primer sequence (5°-3°)
p-10-562	GFP_FRT_mut_fw	caaaaaacaactaattattgaaacggaagttcctatactttctagagaatagg aacttcaaacga tggctagcaaaggagaagaac
p-10-575	GFP_FRT_mut_1-Kozak_rv	gttetteteetttgetagecatgaagtteetattetetagaaagtataggaaette egttteaataattagt tgtttttg
p-10-576	GFP_FRT_mut_1-Kozak_fw	caaaaaacaactaattattgaaacggaagtteetataetttetagagaatagg aaetteatgget agcaaaggagaagaac
p-10-581	pdi_4_pAOX_long_rv_	GTCATCAAGCTCTTCAGCATAATATCTTGCCAGAG
p-10-582	pdi_4_pAOX_long_fw_	caaaaaacaactaattattgaaacgatgaagtcgttactgctacttc
p-10-583	pdi_3_pAOX_long_rv_	GCAATCTTTTGCAATATCCACACCACGAAGCAG
p-10-584	pdi_3_pAOX_long_fw_	gatcaaaaaacaactaattattgaaacgatgaaaatattaagtgcattgc
p-10-585	pdi_2_pAOX_long_rv_	AGCTGGGTCTTCTCAGAATTTCCCAGGG
p-10-586	pdi_2_pAOX_long_fw_	caaaaaacaactaattattgaaacgatgaagttactatccttgg
p-10-587	pdi_1_pAOX_long_rv_	GCTTCAGCATATGATTTGAAGGTGGATCCG
p-10-588	pdi_1_pAOX_long_fw_	caaaaaacaactaattattgaaacgatgcaattcaactggaatattaaaac
p-10-589	pAOX_FRT_long_rv_	CGTTTCAATAATTAGTTGTTTTTTGATCTTCTCAA GTTGTCG
p-10-590	pAOX_FRT_long_fw_	ctagaagaataggaacttcagatctaacatccaaagacgaaag
p-10-591	EM72_elim_rv_	CCTTTCGTCTTTGGATGTTAGATCTGAAGTTCCTAT TCTTCTAGAAAG
p-10-592	EM72_elim_fw_	ccaaatatcgtctccacaaaaaaataaactcacctctgctgttcc
p-10-593	pILV5_long_rv_	GTGAGTTTATTTTTTTGTGGAGACGATATTTGGAA GAG
p-10-594	pILV5_long_fw_	gaagtteetataetttetagagaataggaaetteagatetaaeatee
p-10-670	pILV5_kurz_rv_	TTTGTGGAGACGATATTTGGAAGAG
p-10-671	pILV5_kurz_fw_	gaagtteetataetttetagag
p-10-734	OCH_2_gene_rv	TCTCAAAATACCCATTCGAGTTGG
p-10-735	OCH_2_gene_fw	cttacaggcaatgcaacgttcttc
p-10-736	OCH1_gene_rv	ATATTGGAACGTCCCCAGTTG
p-10-737	OCH1_gene_fw	gtttacattgaccagatgatttggc
p-10-800	OCH1_249_upstr_fw	GTTTACATTGACCAGATGATTTGGCTTTTTCTCTGT TCAATTCAC
p-10-801	OCH1_249_upstr_rv	GTCCTCGTTTCGAAGTACCTAGGGCTGATGATATTT GCTACGAAC
p-10-802	OCH1_249_downstr_fw	GCGAGGTCACTCAGTCAGAAAGCTAGAGTAAAAT AGATATAGCGAG
p-10-803	OCH1_249_downstr_rv	ATATTGGAACGTCCCCCAGTTGCTTTAGGGTATCTT CATC
p-10-804	OCH1_636_upstr_fw	CTTACAGGCAATGCAACGTTCTTCTCCGGATGG

Primer designation	Primer name	Primer sequence (5°-3°)
p-10-805	OCH1_636_upstr_rv	TCGTTTCGAAGTACCTAGCTTGGACAGTAAGAGAG AATCG
p-10-806	OCH1_636_downstr_fw	CAGATAGCGAGGTCACTCAGTCGAGAATTAATCGC C
p-10-807	OCH1_636_downstr_rv	TCTCAAAATACCCATTCGAGTTGGTTGTCAGAGGG G
p-10-812	AOX_Linker_rv_	CGTGAAGTCCTCGTTTCGAAGTACCTAGCGTTTCA ATAATTAG
p-10-813	FRT_Linker_fw_	gtcagatagcgaggtcactcagtcgaagttcctatactttctag
p-10-824	HNLwt_end_fw	ATTGTGTTAGCGGCATGAAGAAGC
p-10-825	HNLwt_middle_fw	CTTTTGACAATAATGGAACGCGAC
p-10-827	alpha_new_end_fw	tactactattgccagcattgctgc
p-10-840	KanMX_fw	ctaggtacttcgaaacgaggacttcac
p-10-841	KanMX_rv	GACTGAGTGACCTCGCTATCTGACTG
p-10-842	Rec_mit_fw	cggaagaagcagataagggaaatagccac
p-10-843	Rec_mit_rv	GATCTCCCAGATGCTTTCACCCTCAC
p-10-844	Linker_FRT_rv_	CGTGAAGTCCTCGTTTCGAAGTACC
p-10-845	Linker_FRT_fw_	gtcagatagcgaggtcactcagtcg
p-10-866	CycTT_ILV5_long	attccagtttagttgtcgacttcagtaatgtcttgtttcttttg
p-10-867	FRT_Zeo_rv_long	CCTTTCGTCTTTGGATGTTAGATCTGAAGTTCCTAT TCTCTAGAAAG
p-10-868	OCH1_249_colony_fw	cgcctggtagggatgcaatacaagg
p-10-869	OCH1_636_colony	TCTCCCAGTGAAGACAATAATATATGGG
p-10-870	pILV_nat_rv	CCCATTTTGTGGAGACGATATTTGGAAGAGAAGGG
p-10-871	pILV_KanMX_nat_fw	ccttctcttccaaatatcgtctccacaaaatgggtaaggaaaagac
p-10-888	PDI_4.4rv_seq	GTCCGTGAGTTCCCATATCGTACC
p-10-889	PDI_4.2rv_seq	CTGGATTACATCATCCTTTGGAGTG
p-10-890	PDI_4.1rv_seq	GCTTGTGCTAGTGTGAGAGCGGAC
p-10-891	AOD_TT_end_fw	tggggaaacttggatctgattacc
p-11-021	249_up_2500_long_fw	ctgattgggggatattctagttacagcactaaacaactggcgatac
p-11-022	249_down_2500_long_rv	ATTGAGTATATGGGGCACTTGCCCCTTTATTTATGA CTTGGG
p-11-023	636_up_2500_long_fw	gctatgtcagtctctgcttctgaatctgaggagtttatccc
p-11-024	636_down_2500_long_rv	TAAGTTCAGCTCATAATTCCTCTGTTATCCATTGC CAATTAGACC
p-11-025	249_KanMX_direkt_ovlap_rv	GTGAGTCTTTTCCTTACCCATGGCTGATGATATTTG CTACG

Primer designation	Primer name	Primer sequence (5 ⁻³)		
p-11-026	249_KanMX_direkt_ovlap_fw	gcagtttcatttgatgctcgatgagtttttctaaagaaag		
p-11-027	636_KanMX_direkt_ovlap_rv	CGTGAGTCTTTTCCTTACCCATCTTGGACAGTAAG AGAGAATC		
p-11-028	636_KanMX_direkt_ovlap_fw	gatgetegatgagtttttetaagagaattaategeeaaaate		
p-11-061	249_up_seq_2500_fw	gtcaaaccaacgtaaaaccctctgg		
p-11-060	249_up_seq2_2500_fw	cccatagatctgcctgacagcc		
p-11-059	249_down_seq_2500_rv	GATGAGCAAATCCCAGCTCAGTG		
p-11-058	249_down_seq2_2500_rv	CATCTTGGGCAGAATAATGACCACG		
p-11-057	636_up_seq_2500_fw	ggcaacattgatcacaacgtcg		
p-11-056	636_up_seq2_2500_fw	gtagatagtgggaaaccetteceac		
p-11-055	636_down_seq_2500_rv	GAGCGGGTCCAGTTGCCTCTAC		
p-11-054	636_down_seq2_2500_rv	CAAACTTCACTGTGGACCGGATAGAC		
	249_lok_fw_	gctcctgacgtaggcctagaacagg		
	249_lok_rv_	CGTCTGGTTTAGAAGACAGGCCG		
	249_gen_fw_	atggcgaaggcagatggcag		
	249_gen_rv_	TTAGTCCTTCCAACTTCCTTCAAATG		
	636_lok_fw_	cctgttcccatttgtcaccattagc		
	636_lok_rv_	GCTCAGAAACCACTCCCAGAACCTAC		
	636_gen_fw_	gaaagatgtgaagtttctttgttggcg		
	636 gen rv	TCAAGATTGGGTGACCAGGCTTC		

8 Kits, protocols and methods

8.1 DNA isolation

8.1.1 Genomic DNA isolation and determination of its quality and quantity

In order to isolate genomic DNA (gDNA) from *P. pastoris*, following protocol was applied (cf. Hoffman et al.). A single colony of the desired strain was inoculated to 7-10ml sterile YPD medium and incubated over night at 28 °C, 110rpm. The grown culture ($OD_{600} < 10$) was centrifuged for 5 min at 500 x g, the pellet was re-suspended in 500µl sterile dH₂O and transferred to a sterile micro-centrifuge tube. The cells were spun down and the pellet was re-suspended in 200µl yeast lysis buffer. 200µl phenol:chloroform:isoamyl alcohol (25:24:1) plus approximately 300mg acid-washed glass beads were added and the suspension was vortexed for 4 min. After addition of 200µl TE buffer, the suspension was centrifuged for 5 min at 16,100 x g and the aqueous phase was transferred to a new micro centrifuge tube. The DNA was precipitated by addition of 1ml ice cold absolute EtOH and incubation for 10 min at -20 °C, spun down and air dried. The DNA pellet was re-suspended in 400µl TE plus 5 µl 2 mg/mL RNaseA and incubated for > 4 h at 37 °C. 10 µl 4 M ammonium acetate and 1ml absolute EtOH were added and the DNA was precipitated as described above. The DNA pellet was washed with 70 % ice cold EtOH, spun down and air dried. The DNA was dissolved in a final volume of 50µl dH₂O.

8.1.2 Plasmid isolation

For plasmid isolation, GeneJETTM Plasmid Miniprep Kit (Fermentas GmbH, St. Leon-Rot, Germany) was used according to the manufacturer's recommendations, except for the following deviations: cells were abraded from 1/2 or 1/4 an agar plate with a sterile toothpick, and plasmid elution was done with 50µl deionized H₂O (dH₂O).

8.2 DNA purification

DNA purification was done with the Wizard® SV Gel and PCR Clean-Up System (Promega GmbH, Mannheim, Germany). Applied deviation from the manufacturer's recommendations was the elution of DNA with $18-20\mu l dH_2O$.

8.3 Polymerase chain reaction (PCR)

8.3.1 Standard PCR and overlap extension PCR (OE-PCR)

Standard PCRs were performed with Phusion® High-Fidelity DNA-Polymerase, according to the manufacture's recommendation. The annealing temperature was by default chosen to be 4-5 °C below the primer DNA melting temperature (T_m). T_m for the primers shorter than 24bp was calculated with Vector NTI[®] (Bioinformatics software package from Invitrogen, USA), and for the primers longer than 24bp, Tm from the manufacturer's certificate was taken. All primers were used in a final concentration of 400nM, dNTPs in a final concentration of 200 µM. The elongation time was calculated in dependence of the expected PCR product length, considering a processivity of 1kb per 10-30s of the Phusion® High-Fidelity DNA-Polymerase. For the OE-PCRs, in the first 17 cycles, template overlapping regions played a role of primers connecting the fragments in appropriate order. Primers in a final concentration of 800nM were added after the 17th cycle, for the next 18 cycles. OE-PCRs were performed with 2-3 templates, and their ratio was determined using the following formula:

ng (shorter fragment) = kb (shorter fragment) x ng (longer fragment) / kb (longer fragment)

ng = nano gram kb = kilo base

Every PCR included at least one negative control, where no template was added. 35 cycle of following PCR-program were preformed for all PCRs: $98^{\circ}C$ (30°)- $98^{\circ}C$ (10°)- 51- $58^{\circ}C$ (20°)- $72^{\circ}C$ (10- 106°)- $72^{\circ}C$ (2°)- $4^{\circ}C$ (storage).

8.3.2 Colony PCR

Single colonies from YPD (antibiotic)-agar plates were picked and suspended in 20μ l dH₂O, and heated at 95°C for 10min. After that the samples were centrifuged for 4-8sec at maximal speed (13.200rpm) and 5µl from the supernatant were used as a template. All primers were used in a final concentration of 400nM, dNTPs in a final concentration of 200µM. The elongation time was calculated in dependence of the expected PCR product length, considering a processivity of 1kb per 1min of the GoTaq® polymerase. Every PCR included at least one negative control, where no template was added, and one positive control using genomic DNA from *P. pastoris* CBS7435 as a template. 35 cycles of following PCR-program were preformed for all PCRs: 95°C (30[°])- 95°C (10[°])- 51-58°C (20[°])- 72°C (1-3[°])- 72°C (7[°])- 4°C (storage).

8.4 Two steps site directed mutagenesis method

Two steps site directed mutagenesis was performed with PfuUltraTM High-Fidelity DNA-Polymerase, according to the manufacture's recommendation. All primers were used in a final concentration of 400nM, and dNTPs in a final concentration of 200 μ M. The circular plasmid to be mutated was used as template in concentration of 50ng/ μ l. The elongation time was calculated in dependence of the expected PCR product length (plasmid size), considering a processivity of 1kb per 1min of the PfuUltraTM High-Fidelity DNA-Polymerase. 18 cycles of following PCR-program were preformed: 95°C (30^{\circ})- 95°C (10^{\circ})- 52°C (1^{\circ})- 76°C (4,3^{\circ})- 72°C (7^{\circ})- 4°C (storage). T_m for the mutagenesis primers used in this experiment was calculated using following formula:

 $T_m = 81.5 + 0.41(\% \text{GC}) - 675/\text{N} - \%$ mismatches

N = primer length in bp, without the bases to be inserted

The PCR products were digested with DpnI in order template plasmid to be eliminated and additional *E. coli* TOP10F` electro-competent cells were transformed with these PCR products.

8.5 Agarose gel electrophoresis

1 %-agarose gels were made with agarose and 1xTAE buffer and approximately 2μ l EtBr (\geq 98 % ethidium bromide). For preparative-gels, DNA samples were mixed with 6x Loading Dye, and for control-gels they were mixed with 1x Loading Dye. Electrophoresis for preparative-gels was run for 80-100min at a voltage of 80-90V and for control-gels for 35-50min at a voltage of 110-120V. In general, small DNA fragments need shorter running time and large DNA fragments have to be run longer in order to get nicely separated bands. After every run of preparative-gel, the samples were cut out of the gel at the Chroma 43. All samples on the gels were analyzed with the GelDoc-ItTM Imaging System. As standard, 5µl of 0.1µg/µl GeneRulerTM1kb DNA Ladder were used.

8.6 Standard ligations

Ligation of an insert to a vector was done at 16 °C over night or at 22°C for 2-4 hours, with T4 DNA Ligase (400u/ μ l, 10xT4 DNA Ligase Reaction Buffer/New England BioLabs® Inc., Ipswich, MA, USA) according to the manufacturer's recommendations. The ratio of the fragments to be ligated was calculated using following formula:

ng (insert) = kb (insert) x ng (vector) / kb (vector)

ng = nano gram kb = kilo base

8.7 Cloning to the pJET1.2/blunt ends vector

The CloneJETTM PCR cloning Kit (Fermentas GmbH, St. Leon-Rot, Germany) was used for cloning PCR products to the pJET1.2/blunt ends vector according to the manufacturer's recommendations. The incubation time for ligation was 20-25min at room temperature (RT) with a molar vector: insert ratio of 1:3. Desalting was done for 45-60min against dH_2O at room temperature prior to electroporation.

8.8 Transformations

8.8.1 Transformation to Escherichia coli

DNA (approximately 100ng, maximum volume of 10-20µl) and electro-competent cells (80 µl *E. coli* Top 10F') were mixed and incubated for 15min on ice. After that the cell suspension was transferred to electro cuvettes and pulsed with 2.5kV, 200 ω , and 25µF for 4,1-4,6sec. 500µl SOC medium were added immediately and the cell suspension was mixed briefly by slowly pipetting up and down. The cell suspension was incubated for 45-60min at 37 °C and 500rpm. 20µl, 120µl and the rest of the cell suspension (cells concentrated through brief centrifugation) were plated on LB-agar plates containing the appropriate antibiotic. Incubation of the plates was done at 37 °C for approximately 24h (over night).

8.8.2 Transformation to Pichia pastoris

Transformation of *P. pastoris* was done as described by Lin-Cereghino et al. Competent cells were prepared by inoculating a single colony of the respective strain to 7-10ml YPD medium and grown over night at 28 °C, 110rpm. From the over night-culture, a main culture was grown from $OD_{600} = 0.3$ to a final OD_{600} of 0.8-1.0 (again in YPD medium). The cells were harvested by centrifugation at 4000rpm for 5min. After that, 9ml ice cold BEDS and 1ml 1M DTT were added to the cell pellet and the suspension was mixed briefly by hand for 5min, and centrifuged for 5min at 4000rpm. After centrifugation, the cells from the cell pellet were re-suspended in 1ml ice cold BEDS. 80μ l of these electro-competent cells were mixed with 500ng to 2μ g DNA (maximum volume of 20μ l) and incubated for 15min on ice. After that, the cell suspension was transferred to electro cuvettes and pulsed with 1.5kV, 200 ω , 25μ F, and 1000 μ l 1M sorbitol were added immediately after the pulse. The cell suspension was mixed briefly by slowly pipetting up and down. The cells were incubated for 2h and 28 °C for regeneration, and then plated on YPD-agar plates containing the appropriate antibiotic(s). Aliquots of 50 μ l, 150 μ l, 300 μ l and the rest of the cell suspension (cells concentrated through brief centrifugation) were plated and incubated at 28 °C for approximately 48-72h (2 - 3 days).

8.9 Micro-scale cultivation of *Pichia pastoris* in 96-deep well plates

In order to screen for positive *P. pastoris*, micro-scale cultivation in 96-deep well plates (DWP) was done similar to the protocol described by Weis et al. All DWPs were filled up with 300µl BMD1% per well, and each well was inoculated with cells from a single colony.

Three wells per DWP were inoculated with single colonies of strains used as a negative control, and 3-6 wells per DWP were inoculated with single colonies from strains used as a positive control. The DWPs were incubated at 28 °C, 320rpm, 80% humidity for 5 days (for the short protocol) or 7 days (for the long protocol). The induction for the short protocol was done after approximately 48h by adding 250µl BMM2 per well and after approximately 60h and 72h by adding 50µl BMM10 per well each time. The induction for the long (standard) protocol was done after approximately 60h by adding 250µl BMM2 per well and after approximately 72h, 84h and 96h by adding 50µl BMM10 per well each time. The cultivation was stopped 48h after the start of induction, and the cells were harvested by centrifugation at 4000rpm for 5min. For the photometric screening assays used in this thesis, samples were taken from the supernatant.

8.10 Photometric enzyme activity assays

8.10.1 HRP enzyme activity assay

After harvesting the cells from the micro-scale cultivation, 15µl supernatant from each well of the DWPs were transferred to microtiter plates mixed with 140µl ABTS (2,2'-Azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) assay solution (1ml 20xABTS stock: 19ml 50mM NaOAc pH 4.5, and 1.75 µl 30 % (v/v) H_2O_2) and the absorbance at 405nm and 25°C was followed over 5min using the plate-reader (Spectramax Plus384, Molecular Devices, Sunnyvale, CA, USA).

8.10.2 CalB enzyme activity assay

After harvesting the cells from the micro-scale cultivation, 20μ l supernatant from each well of the DWPs were transferred to microtiter plates. After that, 100μ l substrate-solution (p-nitrophenol butyrate stock: 42μ l pNPB 98% added to 458μ l DMSO) were mixed with 10ml of 300mM Tris/HCl pH 7.0 buffer. The substrate-solution autolyzes and for that reason aliquots of the same were stored at -20° C. 180μ l of the substrate-mixture were added to the 20μ l supernatant and the absorbance at 405nm and 25°C was followed over 5min using plate-reader (Spectramax Plus384, Molecular Devices, Sunnyvale, CA, USA).

8.10.3 HNL enzyme activity assay

This assay for analyzing the enzymatic activity of HNL was done according to Weis, R. et al., FEMS Yeast Research, 2004. After harvesting the cells from the micro-scale cultivation, 20μ l supernatant from each well of the DWPs were transferred to microtiter plates and mixed with 130μ l of 1M citrate phosphate buffer pH 5.0. Shortly before the measurement was started, 50μ l racemic 0,06M mandelonitrile solution (80mg racemic mandelonitrile, dissolved in 0.1M citrate phosphate buffer pH 3.0, 15mM final concentration), the absorbance at 280nm and 25°C was followed over 5min using plate-reader (Spectramax Plus384, Molecular Devices, Sunnyvale, CA, USA).

8.11 Green fluorescence protein (GFP) fluorescence measurement

GFP was produced intracellular in *P. pastoris* Mut^s strain. After micro scale cultivation was finished, GFP expression was measured with a plate reader (Spectramax Plus384, Molecular Devices, Sunnyvale, CA, USA), as follows:

- 200μ l of undiluted suspended cell culture from each plate well were transferred to microtiter plates for measuring the optical density (OD₆₀₀) of the cells;

- after that, $200\mu l$ of suspended culture from each well were transferred to microtiter plates and mixed briefly;

- endpoint fluorescence measurement of the cell suspensions was provided by excitation maximum at 395nm, emission maximum at 507nm, and cutoff at 495nm;

9 Bioinformatics' programs and web tools

9.1 Programs

- The results of photometric screening assays were analyzed using SoftMax Pro 4.8/Molecular Devices, Ismaning, Germany.
- The DNA sequencing results were analyzed using DNASTAR Lasergene[®], USA (SeqMan and EditSeq).
- The plasmid and cassettes maps, as well as the primers, were designed using Vector NTI[®] Bioinformatics software package from Invitrogen, USA.

9.2 Web tools

- Multiple sequence alignments were provided by ClustalW2: http://www.ebi.ac.uk/Tools/msa/clustalw2/
- Sequences searches were provided by BLAST (Basic Local Alignment Search Tool) -NCBI:

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=mega Blast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRAMS=blastp &PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome

- Pichia pastoris DNA sequences were taken from GenDB: http://www.cebitec.uni-bielefeld.de/groups/brf/software/gendb_info/
- DNA sequencing results: https://shop.lgcgenomics.com/

10. <u>Pichia pastoris PDI-specific P_{AOX1}-replacement cassettes</u>

- 10.1 Project aim
- **10.2** Project strategy
 - 10.2.1 Pichia pastoris protein disulfide isomerase genes (PpPDIs)
 - 10.2.2 Amplification, cloning and sequencing of PpPDIs
 - 10.2.3 Design of Pichia pastoris PDI-specific P_{AOX1} replacement cassettes
 - 10.2.3.1 Evaluation of efficiency of the cassette variant A
 - 10.2.3.2 Results and discussion

10.2.3.3 Design of cassette variant B

- 10.3 Design of Pichia pastoris reporter strains carrying genes coding for model proteins CalB and HRP
 - 10.3.1 Design of expression vectors carrying CalB and HRP gene
 - 10.3.2 Transformation of CalB and HRP expression vectors to E. coli and P. pastoris
 - 10.3.3 Screening results of Pichia pastoris △KU70 CalB and HRP reporter strains
- 10.4 Conclusion

10.1 Project aim

The aim of this project was to design four PpPDI-specific P_{AOXI} -replacement cassettes. The replacement of the natural PpPDI promoter with PpP_{AOXI} should result in PpPDI overexpression. Additionally, four *P. pastoris* Δ KU70 strains carrying genes coding for the proteins CalB and HRP were designed to evaluate the effect of PpPDI overexpression.

10.2 Project strategy

10.2.1 *Pichia pastoris* protein disulfide isomerase genes (*PpPDIs*)

In the recently performed genome sequencing project of *P. pastoris* CBS7435, four genes coding for protein disulfide isomerase have been detected and annotated as it follows: PP7435_Chr4-0183 (CCA40358.1), PP7435_Chr1-0128 (CCA36295.1), PP7435_Chr1-0470 (CCA36622.1), and PP7435_Chr4-0107 (CCA40283.1). They vary in the length. PP7435_Chr4-0183 is 876bp, PP7435_Chr1-0128 897bp, PP7435_Chr1-0470 1110bp, and PP7435_Chr4-0107 1554bp long.

Unlike the length, the GC content does not differ drastically between all four gene sequences, with a minimum of 39% in PP7435_Chr1-0470 and a maximum of 43% in PP7435_Chr4-0107. All four genes do not contain introns, and all of them contain two thioredoxin domains, with the exception of PP7435_Chr4-0183, which contains three. All four expressed PDIs are supposed to be located in the lumen of the endoplasmic reticulum and to catalyze the rearrangement of -S-S- bonds in proteins (Table 8).

Gene designation (GenDB)	PP7435_Chr4-0107	PP7435_Chr1-0128	PP7435_Chr1-0470	PP7435_Chr4-0183
NCBI Accession number	CCA40283.1	CCA36295.1	CCA36295.1 CCA36622.1	
Start/Stop codon	ATG/TAA	ATG/TAG	ATG/TAA	ATG/TAG
Length [bp]	1554	897	1110	876
GC content [%]	43,308	42,029	39,189	41,438
Introns	no	no	no	no
AA sequence length	517	298	369	291
Conserved domains	2 thioredoxin domains	2 thioredoxin domains 2 thioredoxin domain		3 thioredoxin domains
Subsellular leastion	lumen of endoplasmic	lumen of endoplasmic	lumen of endoplasmic	lumen of endoplasmic
Subcenular location	reticulum	reticulum reticulum		reticulum
Cono product	prolul 1 hudrovulace	not described	protein disulfide	protein disulfide
Gene product	protyr +-trydroxylase	not described	isomerase family A	isomerase family A
EC number	C number 5.3.4.1 not described		5.3.4.1	5.3.4.1
Cone description	protein disulfide	not described	protein disulfide	protein disulfide-
Gene description	isomerase	not described	isomerase 1	isomerase A4

Table 8: Main observations about P. pastoris PDIs made in the genome sequencing project.

A multiple sequence alignment of all four *PDI* coding domains was provided using ClustalW2. It revealed DNA sequence similarities of 55% to 67% (Table 9; Appendix 3). The multiple sequence alignment of the 3000bp long upstream and 1000bp long downstream region, showed sequence similarities between 48% and 52% (Table 10 and 11; Appendix 5). Also a multiple sequence alignment of the AA sequences of all four PDIs was performed. It showed low sequence similarity of 17% to 22% (Table 12; Appendix 6).

SeqA 🔶	Name 🔶	Length 🔶	SeqB 🔶	Name 🔶	Length 🔶	Score 🖨
1	CCA40283.1	1554	2	CCA36295.1	897	67.0
1	CCA40283.1	1554	3	CCA36622.1	1110	60.0
1	CCA40283.1	1554	4	CCA40358.1	876	64.0
2	CCA36295.1	897	3	CCA36622.1	1110	60.0
2	CCA36295.1	897	4	CCA40358.1	876	55.0
3	CCA36622.1	1110	4	CCA40358.1	876	57.0

Table 9: Summary of DNA multiple sequence alignment of all four *PpPDIs*.

SeqA 🔶	Name 🔶	Length 🔶	SeqB 🔶	Name 🔶	Length 🔶	Score 🔶
1	CCA40283.1	3000	2	CCA36295.1	3000	49.0
1	CCA40283.1	3000	3	CCA36622.1	3000	50.0
1	CCA40283.1	3000	4	CCA40358.1	3000	50.0
2	CCA36295.1	3000	3	CCA36622.1	3000	51.0
2	CCA36295.1	3000	4	CCA40358.1	3000	50.0
3	CCA36622.1	3000	4	CCA40358.1	3000	51.0

Table 10: Summary of DNA multiple sequence alignment of 3000 bp upstream region of all four *PpPDIs*.

SeqA 🔶	Name 🔶	Length 🔶	SeqB 🔶	Name 🔶	Length 🔶	Score 🔶
1	CCA40283.1	1000	2	CCA36295.1	1000	49.0
1	CCA40283.1	1000	3	CCA36622.1	1000	52.0
1	CCA40283.1	1000	4	CCA40358.1	1000	50.0
2	CCA36295.1	1000	3	CCA36622.1	1000	50.0
2	CCA36295.1	1000	4	CCA40358.1	1000	48.0
3	CCA36622.1	1000	4	CCA40358.1	1000	50.0

Table 11: Summary of DNA multiple sequence alignment of 1000 bp downstream region of all four *PpPDIs*.

SeqA 🜲	Name 🔶	Length 🖨	SeqB 🜲	Name 🔶	Length 🖨	Score 🗢
1	CCA40283.1	517	2	CCA36295.1	298	22.0
1	CCA40283.1	517	3	CCA36622.1	369	18.0
1	CCA40283.1	517	4	CCA40358.1	291	14.0
2	CCA36295.1	298	3	CCA36622.1	369	19.0
2	CCA36295.1	298	4	CCA40358.1	291	15.0
3	CCA36622.1	369	4	CCA40358.1	291	17.0

Table 12: Summary of DNA multiple sequence alignment of all four *PpPDIs*.

10.2.2 Amplification, cloning and sequencing of *PpPDI*s

All four *PDI* genes from *Pichia pastoris* CBS7435 strain (PP7435_Chr4-0107, PP7435-Chr1-0128, PP7435_Chr1-0470, and PP7435_Chr4-0183) were amplified together with their natural promoter and terminator. Thereby, the promoter and terminator region were approximately 3000bp and 500bp long, respectively. For that aim, genomic DNA (gDNA) from *P. pastoris* CBS7435 strain was isolated according to the protocol of Hoffman *et al.* Since each *PpPDI*-sequence to be amplified was longer than 4000bp, they were amplified as three shorter pieces by using three different primer pairs. After that, the three pieces were joined together by OE-PCR. (Table 13; Figure 22-25)

Cassettes located gene	PP7435_Chr4-0107	PP7435_Chr1-0128	PP7435_Chr1-0470	PP7435_Chr4-0183
Cassette length [bp]	5365	4754	4880	4763
Primer used for whole				
cassette amplification	p-09-514 / p-10-310	p-09-516/p-10-312	p-09-518 / p-10-056	p-09-520 / p-10-058
Length of fragment part 1				
[bp]	1884	1516	1723	1731
Primer used for fragment				
part l	p-09-514 / p-10-052	p-09-516/p-10-054	p-09-520 / p-10-057	p-09-521 / p-10-059
Length of fragment part 2				
[bp]	3235	2888	3266	2730
Primer used for fragment				
part 2	p-09-515 / p-10-053	p-09-517 / p-10-055	p-10-313 / p-10-314	p-10-315 / p-10-316
Length of fragment part 3				
[bp]	588	633	457	680
Primer used for fragment				
part 3	p-10-309/p-10-310	p-10-311 / p-10-312	p-09-518/p-10-314	p-09-520/p-10-316
Length of OE-region 1 [bp]	202	66	375	190
Length of OE-region 2 [bp]	140	217	191	188

Table 13: Primer pairs used for amplification of the PpPDI cassettes and cassette fragments including the their lengths and the lengths of the overlap extension (OE) regions.

Figure 22: Whole amplified PP7435_Chr4-0107 sequence, including the overlap extension regions 1 and 2 (OER1 and OER2) and the three primer pairs which were used.

Figure 23: Whole amplified PP7435_Chr1-0128 sequence, including overlap extension regions 1 and 2 (OER1 and OER2) and the three primer pairs which were used.

Figure 24: Whole amplified PP7435_Chr1-0470 sequence is shown, including overlap extension regions 1 and 2 (OER1 and OER2) and the three primer pairs which were used.

Figure 25: Whole amplified PP7435_Chr4-0183 sequence is shown, including overlap extension regions 1 and 2 (OER1 and OER2) and the three primer pairs which were used.

After PCR amplification of all sequences and their rejoining, they were ligated into pJet1.2/ blunt ends cloning vector using T4-DNA ligase. *E. coli* TOP10F` electro-competent cells were transformed with this plasmid, and plated on LB-ampicillin plates. After that, pJet plasmids from each strain were isolated using GeneJETTM Plasmid Miniprep Kit. The ligated *PpPDI* sequences were amplified from the plasmids and sent for sequencing. Using respective forward and reverse primer (Table 14), both DNA strands of all *PDI* sequences were fully sequenced. Terminator regions were sequenced using standard pJet sequencing primers: p-08-483_fw and p-08-484_rv. All samples were sequenced by LGC Genomics Company (Berlin, Germany) using Sanger Technology.

PP7435_	Chr4-0107	PP7435_	Chr1-0128	PP7435_	Chr1-0470	PP7435_	Chr4-0183
p-09-514	fw	p-09-516	fw	p-09-518	fw	p-09-520	fw
p-09-515	rv .	p-09-517	IV	p-09-519	rv	p-09-521	IV
p-10-052	rv .	p-10-054	IV	p-10-056	rv	p-10-058	IV
p-10-053	fw	p-10-055	fw	p-10-057	fw	p-10-059	fw
p-10-136	fw	p-10-134	fw	p-10-130	rv	p-10-127	fw
p-10-137	fw	p-10-135	fw	p-10-131	fw	p-10-128	fw
p-10-138	fw	p-10-253	IV	p-10-132	fw	p-10-129	fw
p-10-139	fw	p-10-254	fw	p-10-133	fw	p-10-267	IV
p-10-245	rv	p-10-255	IV	p-10-259	rv	p-10-268	rv
p-10-246	rv .	p-10-256	IV	p-10-260	IV	p-10-269	IV
p-10-247	fw	p-10-257	rv	p-10-261	rv	p-10-270	rv
p-10-248	rv .	p-10-258	fw	p-10-262	fw	p-10-271	IV
p-10-249	rv .	p-10-311	fw	p-10-263	fw	p-10-272	fw
p-10-250	rv .	p-10-312	IV	p-10-264	fw	p-10-273	fw
p-10-251	rv .	1		p-10-265	rv	p-10-315	fw
p-10-252	fw	1		p-10-266	rv	p-10-316	IV
p-10-309	fw	1		p-10-313	fw	1	
p-10-310	rv .	1		p-10-314	IV	1	

Table 14: Primers used for sequencing of four *PpPDI* genes including their promoter and terminator regions.

The obtained sequences were compared with the corresponding NCBI sequences. Thereby, several mismatches have been detected:

- for the gene PP7435_Chr1-0128 (CCA36295.1): 19bp downstream of the gene stop codon, the sequence contains 13T instead of 11T as recorded in NCBI;

- for the gene PP7435_Chr1-0470 (CCA36622.1): 509bp downstream of the gene start codon, the sequence contains 9T instead of 8T as recorded in NCBI;

Interestingly, all *P. pastoris* CBS7435 sequences stored in NCBI have been obtained using new generation sequencing method (454 Life Sciences, Roche). Küberl *et al.* have already reported mismatches found in homo-polymer stretches by comparison of the sequences obtained using 454 Illumina and Sanger (LGC Genomics, Germany)⁶ technology. This can also explain the sequence mismatches detected within the *PpPDIs*, since all mismatches were located in poly-T regions.

10.2.3 Design of *PpPDI*-specific *P*_{AOX1}-replacement cassettes

Based on existing FLP-recombinase knockout cassettes (Figure 20 and 21), two variants (variant A and B) of *PpPDI*-specific P_{AOXI} -replacement cassettes were initially designed *in silico* (Figure 26 and 27). The differences between these two cassette variants could theoretically have an influence on the transformation rate, the strength of the promoter and also the expression of the desired *PpPDI*. Namely, the cassette variant A contains one P_{AOXI} and is approximately 1kb shorter than the cassette variant B. This should theoretically be an advantage for the transformation. On the other hand, in the cassette variant A one FRT sequence stays between the *PpPAOXI* and the *PpPDI* after recombination, and could negatively influence the promoter and also the *PDI* expression. For that reason cassette variant B was designed. It contains two P_{AOXI} and after recombination one of the two P_{AOXI} stayed in the genome and is connected to the *PDI* directly, without any additional sequences in between.

Variant A was built out of four parts (part I-IV) (Figure 26). Part I contained only the PpP_{AOXI} . Part II contained the FRT-target sequence, recombinase (*FLP*) gene and Cyc terminator. Part III contained the *P. pastoris/E. coli* codon optimized synthetic zeocin resistance gene, placed under the control of *PpILV5* promoter and *Pp*Aod terminator. Part IV contained again a FRT-target sequence and 500bp long *PpPDI*-specific homologous sequence (start codon plus 500bp downstream region).

Variant B was built out of three parts (part I-III) (Figure 27). Part I contained the FRT target sequence and recombinase (*FLP*) gene, placed under the control of PpP_{AOXI} and CycTT. Part II contained the *P. pastoris/E. coli* codon optimized synthetic zeocin resistance gene, placed under the control of *PpILV5* promoter and *Pp*Aod terminator. Part III contained the FRT target sequence, PpP_{AOXI} , and 500 bp long *PpPDI*-specific homologous sequence, as described above.

Figure 26: *PpPDI*-specific *PpP*_{AOXI}-replacement cassette / Variant A. The upper part of the figure shows the recombination cassette including all four parts (Part I-IV). The middle part shows the part of the cassette which should be deleted after MeOH induction and recombinase expression. The bottom part of the figure shows the parts of the cassette (Part I and Part II) staying in the genome after FRT recombination process. pAOX1 (*PpP*_{AOX1}); FRT (FRT target sequence); Recombinase (gene coding for FLP* Recombinase); CycTT** (*S. cerevisiae* iso-1-cytochrome c terminator); pILV5 (eukaryotic promoter); Zeocin (gene coding for zeocin resistance); AodTT (AOD terminator); PDI homologous sequence (500bp long sequence homologous to the 500bp upstream region of each *PpPDI*);

^{*} NCBI accession number: J01347.1 / FLP and FRT present *S. cerevisiae* 2-micron plasmid derived recombinase system.

^{**} NCBI accession number: L26347.1 / Presents S. cerevisiae iso-1-cytochrome c terminator.

Figure 27: *PpPDI*-specific *PpP*_{AOXI}-replacement cassette / Variant B. The upper part of the figure shows the recombination cassette including all four parts (Part I-IV). The middle part shows the part of the cassette deleted after MeOH induction and recombinase expression. The lowest part of the figure shows the parts of the cassette (Part I and Part II) staying in the genome after FRT recombination process. FRT (FRT target sequence); pAOX1 (*PpP*_{AOXI}); Recombinase (gene coding for FLP Recombinase); CycTT (*S. cerevisiae* iso-1-cytochrome c terminator); pILV5 (eukaryotic promoter); Zeocin (gene coding for zeocin resistance); AodTT (AOD terminator); PDI homologous sequence (500bp long sequence homologous to the 500bp upstream region of each *PpPDI*);

After transformation the cassette should integrate into the *P. pastoris* genome according to the homologous sequence used (PDI locus). The obtained clones should be cultivated and induced with MeOH for the FLP-recombinase to be expressed. FLP-recombinase catalyzes the recombination of both FRT target sequences (Paragraph 2.4). After recombination, part I and part II should be excised from the *P. pastoris* genome, and the PpP_{AOXI} should be integrated upstream of the start codon of each *PpPDI* (Figure 26 and 27).

Since it is known that shorter recombination cassettes integrate easier in genome, the cassette variant A which is shorter, was favored. However, by using cassette variant A, one FRT target sequence stays between PpP_{AOXI} and the 500 bp long PpPDI-specific homologous sequence after FRT recombination. Since it was not known if this FRT will influence the strength of the promoter or not, a cassette validation experiment was done first.

10.2.3.1 Evaluation of efficiency of the cassette variant A

For the evaluation of the efficiency of cassette variant A, green fluorescent protein (GFP) was used as reporter protein. The existing plasmid pPpT4_SmiI_Cycle3GFP was mutated according to the "Two Steps Site Directed Mutagenesis" protocol from Stratagene.

The first mutagenesis approach included insertion of a FRT target sequence between the Kozak consensus sequence of $P_{AOXIsyn}$ and the start codon of *GFP* (ATG) (Figure 28), similar to the existing FRT-recombinase cassette (FLIPPER_pAOX1).

1001	TTGACAAGCT	TTTGATTTTA	ACGACTTTTA	ACGACAACTT	GAGAAGATCA	AAAAACAACT	AATTATTG <mark>AA</mark>	ACGGAAGTTC	CTATACTTC	TAGAGRATAG
	AACTGTTCGA	AAACTAAAAT	TGCTGAAAAT	TGCTGTTGAA	CTCTTCTAGT	TTTTTGTTGA	TTAATAAC <mark>TT</mark>	TGC CTTCAAG	GATATGAAAG	ATCTCTTATC
1101	GAACTTC ATG	GCTAGCAAAG	GAGAAGAACT	TTTCACTGGA	GTTGTCCCAA	TTCTTGTTGA	ATTAGATGGT	GATGTTAATG	GGCACAAATT	TTCTGTCAGT
	CTTGAAGTAC	CGATCGTTTC	CTCTTCTTGA	AAAGTGACCT	CAACAGGGTT	AAGAACAACT	TAATCTACCA	CTACAATTAC	CCGTGTTTAA	AAGACAGTCA

Figure 28: Region of mutagenesis (the gray-green-yellow-gray colored mutagenesis primer) including one Kozak sequence. FRT target sequence is colored yellow, Kozak sequence is colored green, and the rests of the mutagenesis primer are colored gray.

The second mutagenesis approach included insertion of two Kozak consensus sequences located upstream and downstream of the FRT target sequence of $P_{AOXIsyn}$ (Figure 29).

1001	TTGACAAGCT	TTTGATTTTA	ACGACTTTTA	ACGACAACTT	GAGAAGATCA	AAAAACAACT	AATTATTG <mark>AA</mark>	ACGGAAGTTC	CTATACTTTC	TAGAGAATAG
	AACTGTTCGA	AAACTAAAAT	TGCTGAAAAT	TGCTGTTGAA	CTCTTCTAGT	TTTTTGTTGA	TTAATAAC <mark>TT</mark>	TGC CTTCAAG	GATATGAAAG	ATCTCTTATC
1101	GAACTTCAAA	CG ATGGCTAG	CAAAGGAGAA	GAACTTTTCA	CTGGAGTTGT	CCCAATTCTT	GTTGAATTAG	ATGGTGATGT	TAATGGGCAC	AAATTTTCTG
	CTTGAAG <mark>TTT</mark>	GC TACCGATC	GTTTCCTCTT	CTTGARARGT	GACCTCAACA	GGGTTAAGAA	CAACTTAATC	TACCACTACA	ATTACCCGTG	TTTAAAAGAC

Figure 29: Region of mutagenesis (the gray-green-yellow-gray colored mutagenesis primer) including two Kozak sequences. FRT target sequences are colored yellow, Kozak sequence is colored green, and the rests of the mutagenesis primer are colored gray.

Mutagenesis primer containing one FRT (p-10-561 and p-10-562), or two FRTs (p-10-575 and p-10-576) were used. *E. coli* TOP10F[•] electro-competent cells were transformed wuth the mutated plasmids (Figure 30). The cells were plated on LB-zeocin plates and incubated according to the standard protocol. After that, 3 randomly chosen clones were streaked out, and incubated for another 24h. From these 3 clones, plasmids were isolated using GeneJETTM Plasmid Miniprep Kit. As the insertion of only 34 or 68bp, which is the length of one or two FRTs, is too small to be detected on an agarose gel, plasmids were sent for sequencing without prior control restriction step. One positive (sequence verified) clone of each transformation was then linearised with *Smi*I over night, and *P. pastoris* Mut^s electro-competent cells were transformed with it. In parallel, pPpT4_SmiI_Cycle3GFP unmutated plasmid was also linearised over night with SmiI, and *P. pastoris* Mut^s electro-competent cells were transformed, and plated on YPD-zeocin plates. After that, 90 clones from the first transformation (carrying plasmids with one FRT), 45 clones from the second transformation

(carrying plasmids with two FRTs), and 144 clones from the third transformation (carrying unmutated plasmid) were cultivated in deep well plates (DWPs). Thereby one half of each DWP was inoculated with clones carrying mutated and the other half with the clones carrying unmutated plasmid.

Figure 30: pPpT4_SmiI_Cycle3GFP_FRT1/2 represents both, plasmid carrying one and two FRT sequences. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic *AOX*1 promoter upstream region); PAOX1_Syn (synthetic *AOX*1 promoter region); Site of mutagenesis (sequence containing one or two FRT target sequences); Cycle3GFP (synthetic gene coding for green fluorescence protein); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); Zeocin_Syn (gene for zeocin resistance); AODTT (*AOD* terminator);

10.2.3.2 Results and discussion

For calculation of the final values, the measured fluorescence values were normalized by OD_{600} values. The average negative control was subtracted in addition. The final values for clones carrying plasmids with integrated FRT target sequences were than compared with that for clones carrying pPpT4_SmiI_Cycle3GFP empty plasmid (Figure 31, 32 and 33).

All clones carrying 1 or 2 FRTs showed drastically lower fluorescence values than clones carrying an unmutated reporter plasmid. More precisely, in DWP1, the highest measured value for clones carrying unmutated plasmid was 5149,34 RFU (relative fluorescence units), while clones carrying plasmid with one FRT was 316,80 RFU only. Approximately the same ratio was seen for the DWP2 and DWP3.Comparing low producer clones for all three DWPs, the control plasmid based strains reached the level of 500 RFU, while for the clones carrying one or two FRTs, only 50 and 30RFU were measured, respectively. The average ratios of the activity of clones carrying unmutated plasmid and clones carrying plasmids with FRT vary between 10,5 and 8,5 for clones with one and two FR-target sequences, respectively.

Figure 31: GFP fluorescence measurement screening results of DWP No.1. The green colored clones carry PpT4-GFP-AOX1Syn (unmutated plasmid), and the red colored clones carry PpT4-GFP-AOX1Syn with integrated one FRT target sequence (mutated plasmid). From 93 clones screened in total, only one was negative, showing activity in the range of the negative control.

Figure 32: GFP fluorescence measurement screening results of DWP No.2. The green colored clones carry PpT4-GFP-AOX1Syn (unmutated plasmid), and the red colored clones carry PpT4-GFP-AOX1Syn with integrated one FRT target sequence (mutated plasmid). From 93 clones screened in total, three clones were negative, showing activity in the range of the negative control.

Figure 33: GFP fluorescence measurement screening results of DWP No.3. The green colored clones carry PpT4-GFP-AOX1Syn (unmutated plasmid), and the red colored clones carry PpT4-GFP-AOX1Syn with integrated two FRT target sequences (mutated plasmid). From 93 clones screened in total, seven clones were negative, showing activity in the range of the negative control.

From these results, a clear conclusion could be made, namely that a 34bp long FRT target sequence placed upstream of the target gene has a dramatically negative influence on expression level, (8 times less fluorescence). Also an insertion of a suitable Kozak consensus sequence right before the start codon did not improve the situation. A possible explanation for this can be found in the nature of the FRT target sequence. The two complement flanking ends of the FRT can join together, thereby making 13 bp long hairpin, and a loop of 8 bp. This intramolecular DNA base pairing might result in diverging of DNA and Polymerase.

Since the final aim of using this cassette is overexpression of the desired *PpPDI*, the cassette variant A as shown in this approach, is not convenient for this aim. For that reason, further work was focused on developing the cassette variant B.

10.2.3.3 Design of cassette variant B

The task within this part of the project was the redesign of the existing FRTrecombinase cassette (HIS4_Flipper_old_FRT) into *PpPDI*-specific P_{AOXI} -replacement cassette variant B (Figure 34; see also Figure 27). For that aim, the eight different cassettes' parts were separately amplified using PCR, and joined together using OE-PCR.

Figure 34: Construction of *PpPDI*-specific PpP_{AOXI} -replacement cassette / Variant B. PpPDI-specific homologous region, presents the homologous 3'-flanking end of the cassette. It is specific for each PDI and it varies in size from 528 to 813bp. OER is the abbreviation for overlap extension region, and shows the site of connection of the separately amplified cassettes' parts.

The first part, PpP_{AOXI} (FRT-pAOX1), was amplified using the primer p-10-594(fw) and p-10-589(rv), and pPpKan_SmiI plasmid as a template. It was 973bp long, and contained one FRT target sequence on the 5'-terminus.

The second part, FLPrecombinase-CYCTT, was amplified using the overlapping primer p-08-136(fw) and p-07-638(rv). This part was 1809bp long, and it was amplified from a pJet plasmid carrying the FLIPPER_PAOX1 cassette.

The third part, PILV5 (PpP_{ILV5} promoter), was amplified from *P. pastoris* CBS7435 genomic DNA, using p-10-866(fw) and p-10-593(rv) primer, and it was 619bp long.

The fourth part, Zeocin-AODTT, was amplified from the pJet1.2 plasmid carrying the FLIPPER_PAOX1 cassette. To do so, two overlapping primer, p-10-592(fw) and p-10-867(rv) were used. The p-10-592(fw) primer was designed to contain homologous sequences from both, PILV5 and Zeocin in order to ensure overlapping regions for joining PILV5 and Zeocin and deleting the prokaryotic promoter EM72 from the existing HIS4_Flipper_old_FRT cassette (Figure 35). EM72 is an unnecessary prokaryotic promoter sequence integrated into the ILV5 promoter and was therefore deleted. The total length of the fourth part was 919 bp.

2 3 1	CCGAAAAAATTTTCTTCCCTTCTCTCCAAATATCGTCTCCACAAA586 20 CCGAAAAAATTTTCTTCCCTTCCTTCCAAAATATCGTCTCCACAAATCTAGAGTGTTGAC 600 ******************
2	AAAATAAAAATAA 593
3	AAAATAAAAATAA 27
1	ACTTTATACTTCCGGCTCGTATAATACGACAAGGTGTAAGGAGGACTAAACCATGGCTAA 660
2	ACTCACCTCTGCTGTTCCAGTCCTGACTGCTCGTGATGTTGCTGGTGCTGTTGAGTTCTG 653
3	ACTCACCTCTGCTGTTCC 45
1	ACTCACCTCTGCTGTTCCAGTCCTGACTGCTCGTGATGTTGCTGGTGCTGTTGAGTTCTG 720

Figure 35: Primer p-10-592 (sequence number 3 in this figure) was used for deletion of EM72 prokaryotic promoter from the existing cassette. The sequence number 1 depicts the end of the PpP_{ILV5} and the beginning of the *Zeocin* coding domain (where EM72 is already deleted). The sequence number 2 depicts the preexisting part of the cassette including EM72 prokaryotic promoter.

PpPDI-specific homologous region were different for all four cassettes. They were amplified from *P. pastoris* CBS7435 genomic DNA (Table 15). After all parts of the cassettes were separately amplified, they were connected by several sequential steps of OE-PCR. In a first step the PpP_{AOXI} and *Recombinase*-CycTT parts were connected using the primer p-10-813(fw) and p-07-638(rv). Since PpP_{AOXI} was two times in each cassette, primer p-10-813(fw) ends with a linker sequence at its 5'-terminus, in order to avoid a double primer binding site in the final OE-PCR step. In the second OE-PCR step, the PpP_{ILV5} and *Zeocin*-AODTT parts were connected using the primer p-10-866(fw) and p-10-867(rv). Within the third OE-PCR step, PpP_{AOXI} part was connected with each PpPDI-specific part. During the final OE-PCR step PpP_{AOXI} -*Recombinase*-CycTT, PpP_{ILV5} -Zeocin-AODTT, and PpP_{AOXI} -*PpPDI*-specific parts were connected.

All amplified parts (fragments) were purified using preparative agarose gel electrophoresis, and Wizard® SV Gel and PCR Clean-Up System from Promega. Their sizes were controlled using 1kbDNA-ladder as standard, and their concentrations were measured by NanoDrop spectrophotometer. The whole cassettes were ligated with pJet1.2/blunt ends cloning vector. After that *E. coli* TOP10 F[°] electro-competent cells were transformed with the plasmid, and plated on LB-ampicillin plates.

Cassettes located gene	PP7435_Chr4-0107	PP7435_Chr1-0128	PP7435_Chr1-0470	PP7435_Chr4-0183
Length of the PDI specific				
homologous region	813	528	548	589
Primer used for the PDI specific				
homologous region amplification	p-10-588 / p-10-587	p-10-586 / p-10-585	p-10-584 / p-10-583	p-10-582 / p-10-581
Primer used for the third OE-PCR				
step of cassette construction	p-10-594 / p-10-587	p-10-594 / p-10-585	p-10-594 / p-10-583	p-10-594 / p-10-581
Primer used for the final OE-PCR				
step (whole cassette amplification)	p-10-813 / p-10-587	p-10-813 / p-10-585	p-10-813 / p-10-583	p-10-813 / p-10-581

Table 15: Overview of OE-PCR details connected to the *PpPDI*-specific promoter replacement cassette construction.

Regarding the construction of PpPDI-specific P_{AOXI} -replacement cassettes, difficulties occurred during the final OE-PCR step. Namely, as P_{AOXI} was used two times in one cassette, the forward primer (p-10-594) was binding more strongly to the second P_{AOXI} , resulting in high concentration of a short incorrect band instead of the band of full length cassette. However, this problem could be solved by T_m gradient OE-PCR optimization. The second and less expected difficulty was that after sequencing the full length cassettes point mutations were found in almost each of them. For this reason, additional PCRs and OE-PCRs, as well as restrictions and ligations were done in order to eliminate these.

10.3 Design of *Pichia pastoris* reporter strains carrying genes coding for model proteins CalB and HRP

To evaluate the effect of *PpPDI* up-regulation *Candida antartica* lipase (CalB) and *Horseradish* peroxidase (HRP) were used as model proteins. For that reason, within this thesis four new *P. pastoris* Δ KU70 strains were designed, two of them carrying a *CalB*, and the other two carrying an *HRP* gene. For each model protein one single copy and one multi copy strain were chosen from the obtained screening landscapes.

Since *PpPDI*-specific P_{AOXI} -replacement cassettes contain a *Zeocin* resistance gene, in order to achieve a second selection basis, the model proteins were inserted into pPpKan_SmiI plasmid which carries a kanamycin resistance gene.

10.3.1 Design of expression vectors carrying *CalB* and *HRP* gene

pPpT4_Smil_CalB and pPpT4_Smil_HRPC1A plasmids were isolated from *E. coli* using GeneJETTM Plasmid Miniprep Kit from Fermentas. *CalB* and *HRP* genes together with α -factor signal sequence for secretion, were cut from the plasmids using restriction enzymes *EcoRI* and *NotI. EcoRI* cuts both plasmids one time, at the α -factor 5'-terminus. *NotI* cuts also one time, at *CalB* and *HRP* 3'-terminus, respectively. In addition, an empty pPpKan plasmid was cut with the same restriction enzymes, *EcoR* I and *Not* I. The DNA sequence for the α -factor signal sequence for secretion together with *CalB* was a 1235 bp long fragment, and the fragment containing α -factor together with HRP was 1206 bp long. The empty pPpKan plasmid cut with EcoR I and Not I was 3964 bp long. After ligation of the fragments, six possibly positive clones carrying CalB and two carrying HRP were cut for size control with Fast Digest restriction enzymes EcoRI and BamHI. Subsequently, two plasmids of correct size were sent for sequencing. Following primers were used for sequencing of both, pPpKan_Smil_CalB and pPpKan_Smil_HRPC1A p-08-849 and p-09-194 (Figure 36 and 37). For both constructs a positive clone was found.

Figure 36: pPpKan_SmiI_CalB #1 is derived from pPpKan_SmiI by insertion of α -factor (alpha-factor secretion signal sequence) and *CalB* gene, through restriction with EcoR I and Not I and ligation using T4DNA ligase.

Figure 37: pPpKan_SmiI_HRPC1A #0 is derived from pPpKan_SmiI by insertion of α -factor (alpha secretion signal sequence) and *HRP* gene, through restriction with EcoR I and Not I and ligation using T4DNA ligase.

10.3.2 Transformation of *CalB* and *HRP* expression vectors to *P. pastoris* ΔKU70

Plasmids pPpKan_SmiI_CalB and pPpKan_SmiI_HRPC1A were linearised with *Smi*I over night. After that, *P. pastoris* Δ KU70 electro-competent cells were transformed with 1-2µg by electroporation, and plated on YPD-geneticin plates. 6 DWPs were inoculated with transformants. *P. pastoris* Δ KU70 strain was used as negative control on each plate. As control strains for CalB screening *P. pastoris* Mut^s pPpT4_SmiI_CalB clones A9 (low activity level) and E9 (high activity level) were used. For the HRP screening *P. pastoris* Mut^s pPpT4_SmiI_C1AHRP clones H12 (low activity level) and H5 (high activity level) were used.

10.3.3 Screening results of *P. pastoris* ΔKU70 *CalB* and *HRP* reporter strains

After cultivation, all DWPs were screened for positive clones using CalB and HRP photometric activity assays. Thereby clones from both the lowest and the highest activity level were chosen and rescreened. This was done in order to prove if the overexpression of the desired *PDI* has the same effect on the expression level of the model protein in the single copy and the multi copy clones.

For the screening for clones with CalB activity, from 87 wells inoculated with single colonies in DWP_A, DWP_B, DWP_1, and DWP_3, enzyme activity was measured for 72, 57, 46, and 86 clones, respectively. For the DWP_4 and DWP_8, 41 of inoculated 59 wells, and 35 of inoculated 43 wells contained clones secreting CalB. The final values were calculated by reducing each value with the average value of the negative control of each DWP. (Landscapes in Appendix 1) Seven clones showing highest activity were chosen and rescreened (Figure 38). Also five randomly chosen clones from the lowest activity level were rescreened (Figure 39). The aim of the rescreen was to define the most stable clones with high and low activity. Thereby, the rescreen was performed with eight biological replicates for each clone, inoculated in vertical lines of the DWPs. This inoculation order seemed to be necessary in order to avoid measuring errors which could occur due to different oxygen distribution. The cultivation media and protocol were the same as that used for the screening.

Figure 38: Rescreen of seven clones showing highest activity (F8, B2, D6, E8, E12 and F3). The orange colored bars present the clones used as positive control: $PpMut^s$ _CalB_E9 as high activity and $PpMut^s$ _CalB_A9 as low activity clone. The yellow colored bar presents the most stable clone showing high activity ($Pp\Delta KU70$ _CalB_E12), which were chosen to be used for the further experiments.

Figure 39: Rescreen of five clones showing low activity (D2, H1, E9_#1, D11 and B9). The orange colored bars present the clones used as positive control: $PpMut^s$ _CalB_E9 as high activity and $PpMut^s$ _CalB_A9 as low activity clone. The yellow colored bar presents the most stable clone showing low activity ($Pp\Delta KU70$ CalB_E9_#1), which were chosen to be used for the further experiment.

For the screening for clones with HRP-activity, from 67 wells inoculated with single colonies in DWP_D, DWP_2, and DWP_5, enzyme activity was measured by 51, 25, and 27 clones, respectively. For the DWP_C and DWP_6, 78 of inoculated 87 wells, and 51 of inoculated 73 wells contained clones secreting HRP. The final values were calculated by reducing each value with the average value of the negative control of each DWP. (Landscapes in Appendix 2) Six clones were chosen for rescreening, three with the highest activity and three randomly chosen low activity clones (Figure 40). Again, the aim of the rescreen was to define the most stable clones with high and low activity. The rescreen was done in the same way as described for rescreen of clones with CalB activity.

Figure 40: Landscape of photometric HRP rescreen of the most stable single and multi copy clones. The orange colored bars present the clones used as positive control: $PpMut^{s}$ _HRP_H5 as high activity and $PpMut^{s}$ _HRP_H12 as low activity clone. The yellow colored bars present the most stable clones showing low ($Pp\Delta KU70$ _HRP_H11) and high activity ($Pp\Delta KU70$ _HRP_D7), which were chosen to be used for the further experiments.

Cloning of *CalB* and *HRP* expression vectors to *P. pastoris* Δ KU70 gave expected results. The *Pp* Δ KU70 strain grows slower than the wild type (CBS7435). For that reason 48h after the transformation the *Pp* Δ KU70 colonies were still too small to be picked. On the other hand, approximately 72h after the transformation it was difficult to distinguish between the positive clones and the background. The background consisted of the so called satellite colonies, which are not positive but are able to grow in the certain radius of each positive clone, where the antibiotic in the medium got degraded. For that reason 48h after the transformation the coming colonies were labeled on the outside of the plate bottom. Thus the positive colonies were easily separated from their satellite colonies. After the first rescreen, standard deviations of more than 20% were seen for all rescreened clones, which implied a possible cultivation or measurement mistake (the results of the first rescreen are not shown in the text). For that reason, another rescreen experiment was done. This time, the eight biological replicates of each colony were inoculated in vertical lines of the DWPs. This sample order

ensured equal aeration of all biological replicates and identical activity measurement using an 8-channel pipette. After these optimizations, activity standard deviations lower than 20% were detected, which is in general acceptable percentage for micro scale cultivation of *P. pastoris* strains. Three of four clones used as positive control (*Pp*Mut^s CalB A9, *Pp*Mut^s CalB E9 and PpMut^s_HRP_H5) showed standard deviation higher than 20%. However, this fact did not influence the screening and rescreening experiments, since the positive control strains are $PpMut^{s}$ and they could not be directly compared with $Pp\Delta KU70$ strains. They were used in this thesis for approximately comparison of the single copy and multi copy expression level of the selected clones, and also in order to confirm that the assays work properly. After the rescreen, four clones shoving best reproducibility were chosen for further experimental work. $Pp\Delta KU70$ CalB E12 clone was chosen as high activity CalB clone with standard deviation of only 5,76%. This clone is very possible a single copy clone, as it is known that single copy CalB strains show highest enzyme activity⁶⁹. However, without copy number determination this is only speculation. From the lowest activity level on the landscape, clone $Pp\Delta KU70$ CalB E9 #1 with standard deviation of 7.19% was chosen. For HRP, since the enzyme activity to a certain extent correlates to the gene copy number, the chosen $Pp\Delta KU70$ HRP H11 and $Pp\Delta KU70$ HRP D7 are assumed to be single and multi copy clones, showing 10,22% and 19,20% standard deviation of their activities.

10.4 Conclusion

Since the construction of the *PpPDI*-specific P_{AOXI} -replacement cassettes was more time-consuming than it was though at the beginning, the transformation of the cassettes to the reporter strains ($Pp\Delta KU70$ CalB E12, $Pp\Delta KU70$ CalB E9 #1, $Pp\Delta KU70$ $Pp\Delta KU70$ HRP H11 and $Pp\Delta KU70$ HRP_D7) will be a part of another project. Actually, after cassette integration in a proper PpPDI locus, and AOX1 promoter insertion, it will be possible to analyze the influence of the *PpPDI* overexpression on the expressed heterologous proteins (CalB and HRP) in the four reporter strains. As it has been shown in many casestudies, co-expression of PDI can have positive, negative, and no impact on heterologous protein expression. One explanation for that could be the different substrate specificity among the PDIs. It would be also interesting to know if the impact of PpPDI co-expression on heterologous protein expression varies depending on the gene copy number of the reporter strains. For these reasons, the reporter strains designed within this thesis were chosen from the lowest and highest activity level, and carry different reporter genes (CalB and HRP). Further experiments should direct us to the final aim of this project, which was the construction of P. pastoris patent free platform strains for production of higher yield of correctly folded heterologous proteins.

11. <u>Design of 1,6-manosyltrasferase knockout strains of Pichia</u> <u>pastoris</u>

- 11.1 Project aim and strategy
- 11.2 Sequence analysis of PpOCH1 and PpHOC1 genes
- 11.3 Design of PpOCH1 and PpHOC1 knockout cassettes
- 11.4 Design of expression vector carrying gene coding for model protein HNL
 - 11.4.1 Design of Pichia pastoris reporter strain expressing HNL
 - 11.4.2 Screening results of HNL reporter strain
- 11.5 Transformation of PpOCH1 and PpHOC1 knockout cassettes to P. pastoris HNL reporter strain
 - 11.5.1 Results and discussion
 - 11.5.2 Design and screening of P. pastoris ΔKU70 HNL reporter strain
- 11.6 Conclusion and further perspectives

11.1 Project aim and strategy

The aim of this project was to design *P. pastoris OCH1 and P. pastoris HOC1* knockout strains. *OCH1* and *HOC1* are genes coding for α -1,6 mannosyltransferases in *P. pastoris*. As model protein for analyzing the protein glycosylation in the knockout strains, *P. pastoris* CBS7435 and *P. pastoris* Δ KU70 strains carrying the *PaHNL5 (Prunus amygdalus* hydroxynitrile lyase 5) gene were first designed. The knockout cassettes contain *OCH1* and *HOC1* locus homologous flanking ends on the 3` and 5` end, so the gene deletion should occur through double site homologous recombination.

11.2 Sequence analysis of *PpOCH1* and *PpHOC1* genes

According to GenDB and the NCBI database, two genes code for α -1,6 mannosyltransferase in *P. pastoris* CBS7435 (wild type) strain. The first one, called *OCH1*, is located on chromosome are (PP7435_Chr1-0258) and codes for a 404 amino acids long α -1,6 mannosyltransferase. The second one is called *HOC1* (PP7435_Chr3-0582). It is located on chromosome three and codes for a 286 amino acids long α -1,6 mannosyltransferase. The %GC content vary between 41,1% for *PpHOC1* and 43,7% for *PpOCH1*. *PpOCH1* contains no introns, in contrast to *PpHOC1* which has one 130bp long intron. Both, OCH1 and HOC1 belong to the enzyme class EC 2.4.1.

According to the analysis and comments made within the recent *P. pastoris* CBS7435 genome sequencing project, inside the cell the gene product of *OCH1* is anchored to the endoplasmic or Golgi membrane and the product of *HOC1* is a Golgi membrane protein.^{*}

Providing DNA multiple sequence alignment of *PpOCH1* and *PpHOC1* coding domains, sequence similarity of 57% has been observed (Figure 41). The multiple sequence alignment of the 1000bp long upstream and downstream regions, showed a sequence similarity of 49% and 50%, respectively (Figure 41; Appendix 5). The multiple sequence alignment of the amino acid sequences of *Pp*OCH1 and *Pp*HOC1 showed a low sequence similarity of 25% (Figure 41; Appendix 6).

Alignment 1: Multiple sequence alignment of the coding domain sequences of *PpOCH1* and *PpHOC1*.

CLUSTAL 2.1 multiple sequence alignment

CCA36419.1	ATG-0	GCGAAGG	CAGATG-	-GC	CAGTTTO	CTC	CTAC	ГА-ТА	ATCO	CTC-	-ACAAT	CCA-	-CC	'CA	G	53
CCA39540.1	ATGT	ACGAA	-AGATG1	ſĠ₽	AAGTTT-	CT	TTGT	TGGCG	ATT	TCT'	TGCAGC	'GCGA'	TCG	CG	G	56
	* * *	* * * *	****	*	****	**	*	*	* *	* *	* *	*	*	*	*	

^{*} Information source: https://gendb.cebitec.uni-bielefeld.de/

CCA36419.1 CCA39540.1	AAGGTATTACTTCTACATGGCTATATTCGCCGTTTCTGTCATTTGCGTTTTGTACGGA TCGGTATGATTTCCCTTCA-GACCAAAAACAGATATAGATATTCAATTGAAACTCG ***** * *** * ** * * * * * * * * * * *	111 111
CCA36419.1 CCA39540.1	CCCTCACAACAATTATCATCTCCCAAAAATAGACTATGATCCATTGACGCTCCGATCACTTCCCTTCCAACACCCTGAACACCACCCCCTAATGCAACAA-CAGCT***** * *** * *** * *** * *** * *** * *** * **	171 155
CCA36419.1 CCA39540.1	GATTTGAAGACTTTGGAAGCTCCTTCACAGTTGAGTCCAGGCACCGTAGAAGATAATCTT GTTTAGAAAAGTAATTTGGCTCACGGTTGGACTCATA-ACGGTGATATT * ** *** * * * * * * * *** *** ** ** **	231 203
CCA36419.1 CCA39540.1	CGAAGACAATTGGAGTTTCATTTTCCTTA-CCGCAGTTACGAACCTTTTCCCCAACATAT -GGTAATAATAAAGATTTCATCCAGCAAGTCCACCGCCACAGACCTTCAGAAAGTAT * * *** * *** * * * * * * * * * * * *	290 259
CCA36419.1 CCA39540.1	TTGGCAAACGTGGAAAGTTTCTCCCTCTGAT-AGTTCCTTTCCGAAAAACTTCA T-GAAGAATGCCAATATTTTACCGCAGGACGTGATCAATTACAATAGCAGAAAAGTAACG * * ** * * * * ** * * * * * * * * * *	343 318
CCA36419.1 CCA39540.1	AAGACTTAGGTGAAAGTTGGCTGCAAAGGTCCCCAAATTATGATCATTTTGTGATACC GATGAACTCGCTTCAAAGCTGGACGAGATTCAAAAGAAGTATCTCTCGAAGCA * *** * **** *** * ** * *** * *** * *** *	401 371
CCA36419.1 CCA39540.1	CGATGATGCAGCATGGGAACTTATTCACCATGAATACGAACGTGTACCAGA AGATGATAGAATTAGCAAGCTCGAAGCTGAACGGGCAGATCTACTGGAACAGGTTAGA ****** *** *** *** *** *** *** *** ***	452 429
CCA36419.1 CCA39540.1	AGTCTTGGAAGCTTTCCACCTGCTACCAGAGCCCATTCTAAAGGCCGATTTTTTCAGGTA TTTCTAAGGAACCCCCCTGCAGGATCAAGTTTAAGAGAAAAATTGGCTTA *** * * * * * ** **** ** ** * * * * *	512 479
CCA36419.1 CCA39540.1	TTTGATTCTTTTGCCCGTGGAGGACTGTATGCTGACATGGACACTATGTTATTAAAACC TCTGTTTCCTTATAATGAAAACGGCAAATTC-CCTGCTTA-TATATGGCAAAC- * ** *** ** * * * * * * * * * * * * *	572 530
CCA36419.1 CCA39540.1	AATAGAATCGTGGCTGACTTTCAATGAAACTATTGGTGGAGTAAAAAAACAATGCTGG- -ATGGAAGTATGGCTTGAATGACGATCGGTTTGGAGAAAAGTTCAAAGAAGGC ** *** *** **** * **** ** ** *** *** *	629 582
CCA36419.1	GTTGGTCATTGGTATT-GAGGCTGATCCTGATAGACCTGATTGGCACGACTGGTATGCTA	688
CCA39540.1	GAAACTCAGTGGGCTTCGAAGAATCCTGGTTTCGTTCATGAGTTGTTT * *** *** ** ** * ***** * * ** ** ** **	630
CCA36419.1 CCA39540.1	GAAGGATACAATTTTGCCAATGGGCAATTCAGTCCAAACGAGGACACCCAGCACTGCGTG -AACGATGATACTTCCGGTGTGTTTA-TTCACCATCTGTATATC ** *** ** ** ** ** ** ** ** ** ** ** **	748 672
CCA36419.1 CCA39540.1	AACTGATTGTAAGAGTTGTCAGCACGACTTTACGGAAAGAGAAAAGCGGTTACTTGAACA AATGTTCCAGAAGTGATCAAAGCATACGAGCTGCTTCCC-AACA ** ** * *** *** * *** * **** ****	808 715
CCA36419.1 CCA39540.1	TGGTGGAAGGAAAGGATCGTGGAAGTGATGTGATGGACTGGACGGGTCCAGGAATATTTA TAATCTTGAAAATGGACTTCTT * *** ** ** * *** **	868 737
CCA36419.1 CCA39540.1	CAGACACTCTATTTGATTATATGACTAATGTCAATACAACAGGCCACTCAGGCCAAGGAA CAGATATTTGGTTTTATACGCCAAG **** ****** ** ***	928 762
CCA36419.1 CCA39540.1	TTGGAGCTGGCTCAGCGTATTACAATGCCTTATCGTTGGAAGAACGTGATGCCCTCTCTG GGAGGTGTCTATGCAGACGTTGATACTATGCCTCTTCAG **** ** ** ** * * * ** * ** ** ** **	988 801
CCA36419.1 CCA39540.1	CCCGC-CCGAACGGAGAGATGTTAAAAGAGAAAGTCCCAGGTAAATATGCACAGCAGGTT CCTGTACCAAACTGGATTCCTGAAAATGTCTCCCCCAAA-AAGCATCGGGAT ** * ** *** * *** * *** *** *** *** **	1047 851

CCA36419.1 CCA39540.1	GTTTTATGGGAACAATTTACCAACCTGCGCTCCCCCAAATTAATCGACGATATTCTT 110 GATC-ATTGGAATACAAAACGATGCTAACAATCCAGATTGGAAAAAGAT-TACGT 904 * * ** **** *** *** * *** * *** * *** *	04 4
CCA36419.1 CCA39540.1	ATTCTTCCGATCACCAGCTTCAGTCCAGGGATTGGCCACAGTGGAGCTGGAGATTTGAAC 110 ACATCGTCTACAATTTTCCAATTGGT-GTATTCAAGCGAAGCCTGG 949 * * ** ** ** ** ** *** *** *** *** ** *	54 9
CCA36419.1 CCA39540.1	CATCACCTTGCATATATTAGGCATACATTTGAAGGAAGTTGGAAGGACTAA 1215 TCACCCA-ATCTTGA963 ***** ** ** **	

Alignment 2: Multiple amino acid sequence alignment of *Pp*OCH1 and *Pp*HOC1.

CLUSTAL 2.1 multiple sequence alignment

CCA36419.1 CCA39540.1	-MAKADGSLLYYNPHNPPRRYYFYMAIFAVSVICVLYGPSQQLS MYERCEVSLLAIFLQRDRGRKVIWLTVGLITVILVIIKISSSKSTATDLQKVLKNANILP :.: *** :. * ::::: ::** *: * *.	43 60
CCA36419.1 CCA39540.1	SPKIDYDPLTLRSLDLKTLEAPSQLSPGTVEDNL QDVINYNSRKVTDELASKLDEIQKKYLSKQDDRISKLEAERADLLEQVRFLRNPPAGSSL . *:*: ** **	77 120
CCA36419.1 CCA39540.1	RRQLEFHFPYRSYEPFPQHIWQTWKVSPSDSSFPKNFKDLGESWLQRSPNYDHFVIPDDA REKLAYLFPYNENGKFPAYIWQTWKYGLNDDRFGEKFKEGETQWASKNPGFVHELFNDDT *.:* : *** ** :******. * ::**: .* .:*.: * :: **:	137 180
CCA36419.1 CCA39540.1	AWELIHHEYERVPEVLEAFHLLPEPILKADFFRYLILFARGGLYADMDTMLLKPIESWLT SGVFIHHLYINVPEVIKAYELLPNIILKMDFFRYLVLYAKGGVYADVDTMPLQPVPNWIP : :*** * .****::*:.*** *** *****:*:*:********	197 240
CCA36419.1 CCA39540.1	FNETIGGVKNNAGLVIGIEADPDRPDWHDWYARRIQFCQWAIQSKRGHPALRELIVRVVSENVSPKSIGMIIGIQNDANNPDWKKITYIVYNFPIGVFK* : :. *::***: *.:.***: :* :: ::	257 279
CCA36419.1 CCA39540.1	TTLRKEKSGYLNMVEGKDRGSDVMDWTGPGIFTDTLFDYMTNVNTTGHSGQGIGAGSAYY RSLVTQS::* .:.	317 286
CCA36419.1 CCA39540.1	NALSLEERDALSARPNGEMLKEKVPGKYAQQVVLWEQFTNLRSPKLIDDILILPITSFSP	377
CCA36419.1 CCA39540.1	GIGHSGAGDLNHHLAYIRHTFEGSWKD 404	

Figure 41: Summary of DNA and amino acids multiple sequence alignment of *PpOCH1* (PP7435_Chr1-0258) and *PpHOC1* (PP7435_Chr3-0582).

a) Multiple sequence alignment of the coding domain sequences of *PpOCH1* and *PpHOC1*.

SeqA 🜲	Name 🔶	Length 🔶	SeqB 🜩	Name 🔶	Length 🔶	Score 🜩
1	CCA36419.1	1215	2	CCA39540.1	963	57.0

b) Multiple sequence alignment of the 1000bp upstream region of *PpOCH1* and *PpHOC1*.

SeqA	🔷 Name 🔶	Length 🔶	SeqB 🔶	Name 🔶	Length 🔶	Score 🔶
1	CCA36419.1	1000	2	CCA39540.1	1000	49.0

c) Multiple sequence alignment of the 1000bp downstream region of *PpOCH1* and *PpHOC1*.

SeqA 🔶	Name 🔶	Length 🔶	SeqB 🔶	Name 🔶	Length 🔶	Score 🔶
1	CCA36419.1	1000	2	CCA39540.1	1000	48.0

d) Multiple sequence alignment of the amino acid sequences of *PpOCH1* and *PpHOC1*.

-	SeqA 🔶	Name 🔶	Length 🔶	SeqB 🔶	Name 🔶	Length 🔶	Score 🔶
	1	CCA36419.1	404	2	CCA39540.1	286	25.0

The coding domain sequences (CDS) of the genes *OCH1* (PP7435_Chr1-0258) and *HOC1* (PP7435_Chr3-0582) together with 1000bp upstream and downstream regions were amplified from genomic DNA (gDNA) of *P. pastoris* CBS7435 (wild type strain) with the primer pairs p-10-737(fw) and p-10-736(rv), and p-10-735(fw) and p-10-734(rv), respectively. The 2258bp and 1994bp long sequences were purified by preparative 1%-agarose gel electrophoresis, and Wizard® SV Gel and PCR Clean-Up System from Promega. After that they were ligated with a pJet1.2/blunt ends cloning vector using T4-DNA ligase. *E. coli* TOP10F electro-competent cells were transformed with the plasmid by electroporation. Aliquots of 20µl and 120µl of each transformation were plated on LB-ampicillin plates, and incubated for 24h at 37°C. After a incubation period, four positive clones were chosen, streaked out on LB-ampicillin plates, and incubated for another 24h at 37°C. Plasmids were isolated and sent for sequencing. All samples were sequenced using Sanger Technology by the LGC Genomics Company (Berlin, Germany).

The sequencing results were compared with the sequences contained in NCBI. Thereby following mismatches were detected:

- for the gene PP7435_Chr1-0258 (CCA36419.1), 153bp downstream to the gene start codon, 1G is contained instead of 1A as recorded in NCBI. However, this point mutation is silent one and the amino acid proline is not changed (both codes CCA and CCG code for Pro). Both, *OCH1* and *HOC1* DNA sequences from CBS7435 and GS115 contained in NCBI show 100% identity.

-for the gene PP7435_Chr1-0258 (CCA36419.1), 244bp downstream to the gene stop codon, the sequence contains 7C instead of 8C as recorded in GenDB;

11.3 Design of *PpOCH1* and *PpHOC1* knockout cassettes

Plasmids of two clones showing correct sequences were used in the further work for the construction of the knockout cassettes. Both, *PpOCH1* and *PpHOC1* knockout cassettes contain the following three parts: homologous upstream region of *OCH1* or *HOC1* gene, the gene for ampicillin resistance together with the regulatory elements (*Pp* pILV5 promoter and AODTT terminator), and homologous downstream region of *OCH1* or *HOC1* gene. All parts were amplified using PCR. For the *PpOCH1* and *PpHOC1* upstream regions the primer pairs: p-10-800(fw) and p-10-801(rv), and p-10-804(fw) and p-10-805(rv) were used, respectively. For the *PpOCH1* and *PpHOC1* downstream regions the primer pairs: p-10-802(fw) and p-10-807(rv) were used, respectively. For the amplification of the whole core of the cassette, primers containing junction sequences (Linker 1 and Linker 2) were used (Figure 42).

Figure 42: Linker 1 (28bp) and Linker 2 (24bp). Two junction sequences used as overlapping regions for the connection of the cassette core region with the homologous upstream and downstream regions of *PpOCH1* and *PpHOC1*.

All cassettes' parts were joined together by OE-PCR, and the cassettes were ligated with pJet1.2/blunt ends cloning vector. *E. coli* TOP F[°] cells were transformed with these cassettes. The homologous flanking ends were connected with the core of the cassette with OE-PCR, where the linker regions were used as overlapping sequences (Figure 43). The cells were plated on LB-ampicillin plates, as aliquots of 20μ l and 120μ l for each transformation. After an incubation period of approximately 24h at 37°C, positive clones were chosen, streaked out on LB-ampicillin plates, and incubated for additional 24h at 37°C. Plasmids of four clones of each transformation were isolated using the GeneJETTM Plasmid Miniprep Kit and sent for sequencing. Two clones carrying knockout cassettes for *PpOCH1* and *PpHOC1* which showed correct sequences, were used for the further *P. pastoris* transformation.

Figure 43: 1,6-manosyltransferase knockout cassette. Green colored is the *Pichia pastoris* ILV5 promoter, red colored is the synthetic gene for kanamycin resistance (KanMX), and orange colored is the AOD terminator. The 5'- and 3'-flanking ends are 500bp long, and they are homologous to the upstream and downstream regions of the CDS of *PpOCH1* and *PpHOC1*, respectively. Linker1 (28bp) and Linker2 (24bp) are short DNA junction sequences.

11.4 Design of expression vector carrying gene coding for model protein HNL

The plant isoenzyme 5 of hydroxynitrile lyase from *Prunus amygdalus* (*Pa*HNL5) contains 13 potential N-glycosylation motifs.⁷⁰ Previous studies have shown that heterologously expressed secreted *Pa*HNL5 in *P. pastoris* is highly glycosylated.⁷⁰ (Figure 44) ⁷⁰ For that reason, *Pa*HNL5 was chosen to be a model protein within this project since the main goal was to prove the effect of the *OCH1* and *HOC1* deletion on the protein *N*-glycosylation in *P. pastoris*.

Figure 44:⁷⁰ Protein gel of different samples of glycosylated and deglycosylated *Pa*HNL5 secreted in *P. pastoris*. At the positions 2, 4, 6 and 8 are different samples of the native form of *Pa*HNL5 secreted in *P. pastoris*. At the positions 1, 3, 5 and 7 are different samples of *Pa*HNL5 secreted in *P. pastoris* and additionally EndoH-deglycosylated. The high glycosylated native form of the enzyme shows a smear, while its deglycosylated form shows a clear band in the range of approximately 60 kDa.⁷⁰

Plasmid carrying HNL gene was isolated (pGAPZA α PaHNL5alpha) using GeneJETTM Plasmid Miniprep Kit. It was cut with BamHI in two fragments, the shorter one (1768bp), and the larger one (2991bp). The fragments were purified using preparative 1%agarose gel electrophoresis, and Wizard® SV Gel and PCR Clean-Up System from Promega. Additionally, the shorter fragment was cut with the restriction enzyme NotI and the larger fragment with EcoRI. The pieces of 577bp and 1348bp respectively, were purified in the same way, and their sizes were controlled by 1%-agarose gel electrophoresis, using 1kb DNA ladder as standard. The concentrations were measured with NanoDrop spectrophotometer. In parallel pPpT4 SmiI empty plasmid was isolated and cut with the same restriction enzymes as the fragments, NotI and EcoRI. The restricted plasmid was purified, its size was controlled and its concentration was measured, in the same way as for all other fragments. After that the vector was ligated with both fragments using T4DNA-ligase, for 1h 30min at 22°C, and after ligation the samples were desalted for 60min against dH₂O at room temperature prior to electroporation. E. coli TOP10F electro-competent cells were used for transformation and aliquots of 50µl and 150µl were plated on LB-zeocin plates. The plates were incubated for approximately 24h at 37°C, and after that three clones were streaked out for additional 24h at 37°C. From these three clones plasmids were isolated and a control cut with BamHI (Fast Digest) for 15min at 37°C was done. The size of the plasmid was controlled using 1%-agarose gel and the concentration was measured with NanoDrop spectrophotometer. Plasmids from all three clones were sent for sequencing.

Figure 45: pPpT4_Smil_PaHNL5_alpha plasmid. pUC_ORI (pUC origin of replication); PAOX1_Syn_dBamHI (synthetic *AOX*1 promoter upstream region); PAOX1_Syn (synthetic *AOX*1 promoter region); alpha factor (secretion signal sequence); PaHNL5 (gene coding for *Prunus amygdalus* hydroxynitrile lyase 5); AOX1TT_Syn (synthetic terminator); pILV5 (eukaryotic promoter); pEM72Syn (synthetic prokaryotic promoter); Zeocin_Syn (gene for zeocin resistance); AODTT (*AOD* terminator);

11.4.1 Design of a *Pichia pastoris* HNL reporter strain

The plasmid showing correct sequencing results was linearized, over night and at 30° C with SmiI. The linearized plasmid was purified using preparative 1%-agarose gel electrophoresis, and Wizard® SV Gel and PCR Clean-Up System from Promega and *P. pastoris* CBS7435 was transformed using 1-2µg. Aliquots of 150µl, 300µl and the rest of the cells were plated on YPD-zeocin plates and incubated for approximately 48h and 72h, respectively. After the incubation period, 4 deep-well plates (DWPs) were filled with 300µl sterile BMD1% medium per well and each well was inoculated with a single colony picked from the transformation plates. Thereby, three wells per DWP were inoculated with a single colony of the *P.p.* CBS7435 strain, used as negative control. In order to ensure positive control for approximate correlation of the expression level, three wells per plate were inoculated with single colonies of NHL5_V317\alpha strains. This is a *P. pastoris* Mut^s strain carrying a single copy of a synthetic *HNL5* gene, variant cloned with a pPpT4_SmiI cloning vector. All DWPs were cultivated at 28°C, 110 rpm and 80% humidity, according to the *P. pastoris* long DWPs-cultivation protocol.

11.4.2 Screening results of *P. pastoris* CBS7435 *HNL* reporter strain

After finishing the micro scale cultivation, all DWPs were screened for positive clones using a photometric HNL activity assay.

Thereby from 90 wells inoculated with single colonies in DWP_1 (Figure 46), 61 in DWP_2 (Figure 47), 90 in DWP_3 (Figure 48), and 90 in DWP_4 (Figure 49), enzyme activity was measured for 90, 50, 77, and 82 clones, respectively. The final measure values were calculated by reducing each value with the average value for the negative control for each DWP.

Six clones showing highest activity were chosen and rescreened (Figure 50). The aim of the rescreen was to define the most stable clones with high activity. Thereby, the rescreen was performed with eight replicates for each clone, inoculated in vertical lines of the DWPs. This inoculation order seemed to be necessary in order to avoid measuring errors which could occur due to different oxygen distribution. The cultivation media and protocol were the same as that used for the screening.

Figure 46: Landscape of photometric HNL activity screening of DWP_1 (*HNL5a* in *P.p.***CBS7435**). The yellow colored bar presents the clone used as positive control (HNL5_V317α).

Figure 47: Landscape of photometric HNL activity screening of DWP_2 (*HNL5a* in *P.p.***CBS7435**). The yellow colored bar presents the clone used as positive control (HNL5_V317α).

Figure 48: Landscape of photometric HNL activity screening of DWP_3 (*HNL5a* in *P.p.***CBS7435**). The yellow colored bar presents the clone used as positive control (HNL5_V317α).

Figure 49: Landscape of photometric HNL activity screening of DWP_4 (*HNL5a* in *P.p.***CBS7435**). The yellow colored bar presents the clone used as positive control (HNL5_V317α).

Figure 50: Landscape of photometric HNL rescreen of the most stable multi copy clones (*HNL5a* in *P.p.*CBS7435). The yellow colored bar presents the clone used as positive control (HNL5_V317 α). The orange colored bar represents the clone chosen as reporter strain for the further work (F7_3).

11.5 Transformation of the *P. pastoris* HNL reporter strain with *PpOCH1* and *PpHOC1* knockout cassettes

The *PpOCH1* and *PpHOC1* knockout cassettes were amplified from the corresponding plasmids using PCR and following primer pairs: p-10-737 and p-10-736 and p-10-735 and p-10-734, respectively. The PCR products were purified using preparative 1%agarose gel electrophoresis, and Wizard® SV Gel and PCR Clean-Up System from Promega. Their concentrations were measured using a NanoDrop spectrophotometer. Different amounts of the purified knockout cassettes (500ng to 1,5µg) were used for transformation of electro competent cells of *P. pastoris* CBS7435 carrying the *Pa*HNL5_alpha gene (clone F7_3). PaHNL5_alpha is a HNL5 gene where the wild signal sequence was replaced by the alpha factor signal sequence. After transformation, aliquots of 50µl, 150µl and the rest of the cells (cells concentrated by brief centrifugation) were plated on YPD-zeocin/geneticin plates. Also aliquots of 330µl concentrated by brief centrifugation were plated on YPD-zeocin/geneticin plates. All transformation plates were incubated for approximately 48h at 28°C and 80% humidity. After the incubation period deep-well plates (DWP) were filled with 300µl sterile BMD1% medium per well and inoculated with single colony picked from the transformation plates. This time not every, but every second well of the DWPs was inoculated. Namely, strong background of satellite colonies was seen on the transformation plates which made it difficult to pick the real positive clones. However, the inoculation of every second well increased the distance between each two colonies on the stamp plate and thereby disabled the growth of the

satellite colonies. Three wells per DWP were inoculated with a single colony of *P. pastoris* CSB7435 strain, used as negative control. After approximately 48h micro scale cultivation stamp plates of all DWPs were made and incubated for additional 48h at 28°C and 80% humidity. After that colony PCRs were made. One of the primers used for the colony PCRs was binding to the cassettes and the other to the *PpOCH1* or *PPHOC1* locus, respectively. These colony PCRs resulted with no products. Colony PCRs were also done using primers which bind inside the knockout cassettes. These resulted in PCR product with right size (the size was controlled on 1%-agarose gel).

11.5.1 Results and discussion

All together, nine transformations were done and their transformation rate varied between 20 and 30 clones per transformation plate. However, after colony PCR of over 150 clones per gene to be knocked out, no knockout strain was detected. All colony PCR products showed bands characteristic for PpOCH1 and PpHOC1 locus, indicating with that the knockout cassettes integrated in the genome by non-homologous recombination, and not at the desired OCH or HOC locus. For that reason the project strategy was slightly changed and a new HNL reporter strain was designed. This time the HNL reporter gene was cloned to P. pastoris $\Delta KU70$ strain which is deletion strain where no non-homologous recombination can happen or only rarely happens (Paragraph 2.5). Additionally, *PpOCH1* and *PpHOC1* knockout cassettes containing 2500bp upstream and downstream homologous regions were also designed and P. pastoris CBS7435 HNL as well as P. pastoris Δ KU70 HNL electro-competent cells were transformed with the cassettes. Including 2500bp long flanking ends in the knockout cassettes drastically increased their size, and could negatively influence the rate of cassette integration in the genome. However, it is known from different experimental data that the size of the homologous sequences and the efficiency of their integration in P. pastoris genome follow logarithmic function (Paragraph 2.3). For that reason also longer knockout cassettes were designed and P. pastoris CBS7435 HNL as well as P. pastoris AKU70 HNL were transformed with the same.

11.5.2 Design and screening of *P. pastoris* ΔKU70 HNL reporter strain

The same plasmid carrying the PaHNL5_alpha gene used for design of *P. pastoris* CBS7435 HNL reporter strain was used also for design of *P. pastoris* Δ KU70 HNL reporter strains. It was linearized and *P. pastoris* Δ KU70 electro competent cells were transformed and plated out on LB-zeocin/geneticin plates. The possibly positive clones were picked and cultivated in DWPs and after that they were screened and rescreened using HNL enzyme activity assay. All experimental steps were done in the same way as for the design, screening and rescreen of *P. pastoris* CBS7435 HNL (Paragraph 11.4.1 and 11.4.2). For the amplification

of the 2500bp long *PpOCH1* and *PpHOC1* upstream and downstream homologous regions, genomic DNA of *P.p*CBS7435 was used as a template.

For the micro scale (DWPs) cultivation, 90 wells were inoculated with single colonies in DWP_1 (Figure 51), DWP_2 (Figure 52), DWP_3 (Figure 53), DWP_4 (Figure 54). Enzyme activity was measured for 90, 89, 90, and 90 clones, respectively. The final measure values were calculated by reducing each value with the average value for the negative control for each DWP. From all DWPs, eight clones showing highest activity were chosen and rescreened (Figure 55).

Figure 51: Landscape of photometric HNL activity screening of DWP_1 (*HNL5a* in *P.p.* Δ KU70). The yellow colored bar presents the clone used as positive control (HNL5_V317 α).

Figure 52: Landscape of photometric HNL activity screening of DWP_2 (*HNL5a* in *P.p.* Δ KU70). The yellow colored bar presents the clone used as positive control (HNL5_V317 α).

Figure 53: Landscape of photometric HNL activity screening of DWP_3 (*HNL5a* in *P.p.* Δ KU70). The yellow colored bar presents the clone used as positive control (HNL5_V317 α).

Figure 54: Landscape of photometric HNL activity screening of DWP_4 (*HNL5a* in *P.p.* Δ KU70). The yellow colored bar presents the clone used as positive control (HNL5_V317 α).

Figure 55: Landscape of photometric HNL rescreen of the most stable multi copy clones (*HNL5a* in Δ KU70). The orange colored bar presents the clone used as positive control (HNL5_V317 α). The yellow colored bar represents the clone chosen as reporter strain for the further work (C10_3).

11.6 Results, discussion and further perspectives

Three transformations of *PpOCH1* and *PpHOC1* knockout cassettes (cassettes containing 2500bp long homologous regions) to *P. pastoris* CBS7435_HNL5 reporter strain (clone F7_3) were done and no knockout clones were detected.

For the transformation of the *P. pastoris* Δ KU70_HNL reporter strain (clone C10_3), eight transformations were done which resulted in all together 10 clones only. And, again after colony PCR none of these clones displayed on of the desired knockouts (Δ OCH1 or Δ HOC1). It is also important to be mentioned that all 10 clones were found in the transformation with the long cassettes and with the highest DNA amount of approximately 1,5µg.

As already said (Paragraph 11.2), *PpOCH1* and *PpHOC1* gene products are ER and Golgi membrane located proteins, and theoretically their inactivation or deletion could disturb the function of these two crucial cell organelles. Also absence of proper glycosylation pattern in the other membrane proteins, caused by *OCH1* or *HOC1* inactivation or deletion could be lethal to the cell. Since *P. pastoris* Δ KU70 strain has already been used for design of knockout strains in our research group and it worked with quite high efficiency, the first logical final conclusion can be that the deletions of *PpOCH1* as well as *PpHOC1* are lethal for the cells or that the genomic locus is hardly accessible and even more transformants need to be analyzed.

However, Jacobs et al. has already reported about *P. pastoris* strain with disrupted *PpOCH1* gene and about the influence of *PpOCH1* disruption on the *N*-glycosylation pathway in the cell. Also report about *PpOCH1* deletion has been recently published by Zhang et al.. Unfortunately, this publication is in Chinese language, and thus not accessible for everyone. Taking in consideration these two publications, it seems that the inactivation or deletion of at least *PpOCH1* is not lethal to the cell. No publications with similar topic were found about the *PpHOC1*.

After everything that is mentioned above, it seems that the strategy used in this thesis project was not optimal for deletion of the desired genes.

However, because of the biotechnological importance of design of *P. pastoris* strains with engineered *N*-glycosylation pathway, further perspectives of this project were discussed. One of the ideas was the optimization of the cloning method including the preparation of *P. pastoris* competent cells. Other strategy changes would include the redesign of the knockout cassettes. Namely, elimination of other *P. pastoris* homologous parts from the cassettes, as PpP_{ILV5} should decrease the possibility of cassette integration at non-desired loci. One applicable improvement of the strategy was seen in the use of *PpOCH1* and *PpHOC1* natural promoter and terminator regions instead of PpP_{ILV5} and AODTT, respectively. In this way, the cassettes would be shorter, since the promoter and terminator would at the same time play a role of homologous flanking ends. This could increase the transformation rate and the possibility of cassettes proper integration in the genome. However, for that aim the promoters of *PpOCH1* and *PpHOC1* must be first validated.

Also totally different strategies, like using the recombinase systems could be applied, but this was not a topic of our discussion within this thesis.

12. <u>References:</u>

- 1. Cereghino, J.L. & Cregg, J.M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. *FEMS Microbiology Reviews* **24**, 45-66 (2000).
- 2. Kurtzman, C.P. & Robnett, C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. *Antonie van Leeuwenhoek* **73**, 331-371 (1998).
- 3. Kurtzman, C.P. Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. *Journal of industrial microbiology & biotechnology* **36**, 1435-8 (2009).
- 4. Kurtzman, C.P. Description of Komagataella phaffii sp. nov. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella. *International journal of systematic and evolutionary microbiology* **55**, 973-6 (2005).
- 5. Higgins, D.R. & Cregg, J.M. Introduction to Pichia pastoris. *Methods in molecular biology (Clifton, N.J.)* **103**, 1-15 (1998).
- 6. Küberl, A. *et al.* High-quality genome sequence of Pichia pastoris CBS7435. *Journal of biotechnology* **154**, 312-20 (2011).
- 7. Cereghino, G.P.L., Cereghino, J.L., Ilgen, C. & Cregg, J.M. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. *Current opinion in biotechnology* **13**, 329-32 (2002).
- 8. Macauley-Patrick, S., Fazenda, M.L., McNeil, B. & Harvey, L.M. Heterologous protein production using the Pichia pastoris expression system. *Yeast (Chichester, England)* **22**, 249-70 (2005).
- 9. Hartner, F.S. & Glieder, A. Regulation of methanol utilisation pathway genes in yeasts. *Microbial cell factories* **5**, 39 (2006).
- 10. Ruth, C. & Glieder, A. Perspectives on synthetic promoters for biocatalysis and biotransformation. *Chembiochem*□: a European journal of chemical biology **11**, 761-5 (2010).
- Sears, I.B., O'Connor, J., Rossanese, O.W. & Glick, B.S. A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. *Yeast (Chichester, England)* 14, 783-90 (1998).
- 12. SREEKRISHNA, K. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris*1. *Gene* **190**, 55-62 (1997).

- 13. Cregg, J.M., Madden, K.R., Barringer, K.J., Thill, G.P. & Stillman, C.A. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. *Molecular and cellular biology* **9**, 1316-23 (1989).
- 14. Cregg, J.M., Cereghino, J.L., Shi, J. & Higgins, D.R. Recombinant protein expression in Pichia pastoris. *Molecular biotechnology* **16**, 23-52 (2000).
- 15. Montesino, R., García, R., Quintero, O. & Cremata, J. a Variation in N-linked oligosaccharide structures on heterologous proteins secreted by the methylotrophic yeast Pichia pastoris. *Protein expression and purification* **14**, 197-207 (1998).
- 16. Cregg, J.M. *et al.* Expression in the yeast Pichia pastoris. *Methods in enzymology* **463**, 169-89 (2009).
- Meagher, M.M. & Inan, M. Non-Repressing Carbon Sources for Alcohol Oxidase (AOXI) Promoter of Pichia pastoris Non-Repressing Carbon Sources for Alcohol Oxidase (AOXI) Promoter of Pichia pastoris.
- 18. © 1993 Nature Publishing Group http://www.nature.com/naturebiotechnology. *Group* 11, 6 (1993).
- 19. Sørensen, H.P. Towards universal systems for recombinant gene expression. *Microbial cell factories* **9**, 27 (2010).
- 20. Gellissen, G. Heterologous protein production in methylotrophic yeasts. *Applied microbiology and biotechnology* **54**, 741-50 (2000).
- Faber, K.N., Harder, W., Ab, G. & Veenhuis, M. Review: methylotrophic yeasts as factories for the production of foreign proteins. *Yeast (Chichester, England)* 11, 1331-44 (1995).
- 22. Ews, R. The endoplasmic reticulum as a. Trends in Cell Biology 227-231 (1992).
- 23. © 1992 Nature Publishing Group. Group (1992).
- 24. Inan, M., Aryasomayajula, D., Sinha, J. & Meagher, M.M. Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. *Biotechnology and bioengineering* **93**, 771-8 (2006).
- 25. Xiao, R. *et al.* The contributions of protein disulfide isomerase and its homologues to oxidative protein folding in the yeast endoplasmic reticulum. *The Journal of biological chemistry* **279**, 49780-6 (2004).
- 26. Shaw, P.E. Peptidyl-prolyl isomerases: a new twist to transcription. *EMBO reports* **3**, 521-6 (2002).
- 27. Mattanovich, D., Gasser, B., Hohenblum, H. & Sauer, M. Stress in recombinant protein producing yeasts. *Journal of biotechnology* **113**, 121-35 (2004).

- Tian, G., Xiang, S., Noiva, R., Lennarz, W.J. & Schindelin, H. The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. *Cell* 124, 61-73 (2006).
- 29. Xiao, R., Lundström-Ljung, J., Holmgren, A. & Gilbert, H.F. Catalysis of thiol/disulfide exchange. Glutaredoxin 1 and protein-disulfide isomerase use different mechanisms to enhance oxidase and reductase activities. *The Journal of biological chemistry* **280**, 21099-106 (2005).
- 30. Gallogly, M.M., Starke, D.W. & Mieyal, J.J. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. *Antioxidants & redox signaling* **11**, 1059-81 (2009).
- 31. Jessop, C.E., Watkins, R.H., Simmons, J.J., Tasab, M. & Bulleid, N.J. Protein disulphide isomerase family members show distinct substrate specificity: P5 is targeted to BiP client proteins. *Journal of cell science* **122**, 4287-95 (2009).
- 32. van Vliet, C., Thomas, E.C., Merino-Trigo, A., Teasdale, R.D. & Gleeson, P. a Intracellular sorting and transport of proteins. *Progress in Biophysics and Molecular Biology* **83**, 1-45 (2003).
- 33. Frand, a R., Cuozzo, J.W. & Kaiser, C. a Pathways for protein disulphide bond formation. *Trends in cell biology* **10**, 203-10 (2000).
- 34. Wedemeyer, W.J., Welker, E., Narayan, M. & Scheraga, H.A. Current Topics Disulfide Bonds and Protein Folding *†*. *Current* **39**, (2000).
- 35. Nørgaard, P. *et al.* Functional differences in yeast protein disulfide isomerases. *The Journal of cell biology* **152**, 553-62 (2001).
- 36. Warsame, A., Vad, R., Kristensen, T. & Oyen, T.B. Characterization of a gene encoding a Pichia pastoris protein disulfide isomerase. *Biochemical and biophysical research communications* **281**, 1176-82 (2001).
- Zhang, S.-T. *et al.* Co-overexpression of PpPDI Enhances Secretion of Ancrod in Pichia pastoris. *Applied biochemistry and biotechnology* (2011).doi:10.1007/s12010-011-9192-4
- 38. Charlwood, J., Bryant, D., Skehel, J.M. & Camilleri, P. Analysis of N-linked oligosaccharides: progress towards the characterisation of glycoprotein-linked carbohydrates. *Biomolecular engineering* **18**, 229-40 (2001).
- 39. Helenius, J. & Aebi, M. Transmembrane movement of dolichol linked carbohydrates during N-glycoprotein biosynthesis in the endoplasmic reticulum. *Online* **13**, 171-178 (2002).
- 40. Bretthauer, R.K. & Castellino, F.J. Glycosylation of Pichia pastoris-derived proteins. *Biotechnology and applied biochemistry* **30** (**Pt 3**), 193-200 (1999).

- 41. Hamilton, S.R. & Gerngross, T.U. Glycosylation engineering in yeast: the advent of fully humanized yeast. *Current opinion in biotechnology* **18**, 387-92 (2007).
- 42. Vervecken, W. *et al.* In Vivo Synthesis of Mammalian-Like , Hybrid-Type N-Glycans in Pichia pastoris. *Society* **70**, 2639-2646 (2004).
- 43. Jacobs, P.P., Geysens, S., Vervecken, W., Contreras, R. & Callewaert, N. Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. *Nature protocols* **4**, 58-70 (2009).
- 44. Gemmill, T.R. & Trimble, R.B. Overview of N- and O-linked oligosaccharide structures found in various yeast species. *Biochimica et biophysica acta* **1426**, 227-37 (1999).
- 45. Yip, C.L.A.M. *et al.* Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNNI genes required for complex glycosylation of secreted proteins. *Proteins* **91**, 2723-2727 (1994).
- 46. Romero, P.A. *et al.* Mnt2p and Mnt3p of Saccharomyces cerevisiae are members of the Mnn1p family of α -1, 3-mannosyltransferases responsible for adding the terminal mannose residues of O-linked oligosaccharides. *Glycobiology* **9**, 1045-1051 (1999).
- Grinna, L.S. & Tschopp, J.F. Size distribution and general structural features of Nlinked oligosaccharides from the methylotrophic yeast, Pichia pastoris. *Yeast* (*Chichester, England*) 5, 107-15 (1989).
- 48. Romanos, M. Advances in the use of Pichia pastoris for high-level gene expression. *Current Opinion in Biotechnology* **6**, 527-533 (1995).
- 49. Davidson, R.C. *et al.* Functional analysis of the ALG3 gene encoding the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastoris. *Glycobiology* **14**, 399-407 (2004).
- 50. Nakayama, K., Nagasu, T., Shimma, Y., Kuromitsu, J. & Jigami, Y. OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. *The EMBO journal* **11**, 2511-9 (1992).
- 51. Hamilton, S.R. *et al.* Humanization of yeast to produce complex terminally sialylated glycoproteins. *Science (New York, N.Y.)* **313**, 1441-3 (2006).
- 52. San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. *Annual review of biochemistry* **77**, 229-57 (2008).
- Shibata, T. Functions of homologous DNA recombination. *Science And Technology* 41, 21-23 (2001).
- 54. Klinner, U. & Schäfer, B. Genetic aspects of targeted insertion mutagenesis in yeasts. *FEMS microbiology reviews* **28**, 201-23 (2004).

- 55. Hastings, P.J., Mcgill, C., Shafert, B. & Strathem, J.N. Ends-Out Recombination in Yeast. **558**, (1993).
- 56. Kit, P.E. Expression Kit.
- 57. *Pichia protocols (Google eBook)*. 270 (Humana Press: 1998).at <<u>http://books.google.com/books?id=0qwykqk-lUgC&pgis=1></u>
- 58. Sadowski, P.D. Recombinase of. *Microbiology* 5, 3274-3279 (1985).
- 59. McLeod, M., Craft, S. & Broach, J.R. Identification of the crossover site during FLPmediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. *Molecular and cellular biology* **6**, 3357-67 (1986).
- 60. Sadowski, P. Site-specific recombinases: changing partners and doing the twist. *Journal of bacteriology* **165**, 341-7 (1986).
- 61. Sauer, B. Site-specific recombination: developments and applications. *Current opinion in biotechnology* **5**, 521-7 (1994).
- 62. Gronostajskit, R.M. & Sadowski, P.D. The FLP Recombinase of the Saccharomyces cerevisiae 2pLm Plasmid Attaches Covalently to DNA via a Phosphotyrosyl Linkage. (1985).doi:10.1128/MCB.5.11.3274.Updated
- 63. Inman, R.B. & Coxg, M.M. Protein-based Asymmetry and Protein-Protein Interactions Site-specific Recombination * in FLP. **265**, (1990).
- 64. Andrews, B.J., McLeod, M., Broach, J. & Sadowski, P.D. Interaction of the FLP recombinase of the Saccharomyces cerevisiae 2 micron plasmid with mutated target sequences. *Molecular and cellular biology* **6**, 2482-9 (1986).
- 65. Kii, N.J., Snaith, I.I.Y.M.R. & Murray, J.A.H. tools for gen0me engineering. *Cloning* (1993).
- 66. Marx, H., Mattanovich, D. & Sauer, M. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. *Microbial cell factories* **7**, 23 (2008).
- 67. Gravel, S. Yeast Ku as a Regulator of Chromosomal DNA End Structure. *Science* **280**, 741-744 (1998).
- 68. Walker, J.R., Corpina, R. a & Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. *Nature* **412**, 607-14 (2001).
- 69. Abad, S. *et al.* Real-time PCR-based determination of gene copy numbers in Pichia pastoris. *Biotechnology journal* **5**, 413-20 (2010).
- Weis, R., Gaisberger, R., Gruber, K. & Glieder, A. Serine scanning: a tool to prove the consequences of N-glycosylation of proteins. *Journal of biotechnology* 129, 50-61 (2007).

Appendix 1: CalB activity assay – screening results

Figure 56: Landscape of photometric CalB activity screening of DWP_A. The orange colored bar presents the clone used as positive control with high activity ($PpMut^{s}$ _CalB_E9), and the yellow colored bar presents the clone used as positive control with low activity ($PpMut^{s}$ _CalB_A9).

Figure 57: Landscape of photometric CalB activity screening of DWP_B. The orange colored bar presents the clone used as positive control with high activity ($PpMut^{s}_{CalB_E9}$), and the yellow colored bar presents the clone used as positive control with low activity ($PpMut^{s}_{CalB_A9}$).

Figure 58: Landscape of photometric CalB activity screening of DWP_1. The orange colored bar presents the clone used as positive control with high activity ($PpMut^s_CalB_E9$), and the yellow colored bar presents the clone used as positive control with low activity ($PpMut^s_CalB_A9$).

Figure 59: Landscape of photometric CalB activity screening of DWP_3. The orange colored bar presents the clone used as positive control with high activity ($PpMut^{s}_CalB_E9$), and the yellow colored bar presents the clone used as positive control with low activity ($PpMut^{s}_CalB_A9$).

Figure 60: Landscape of photometric CalB activity screening of DWP_4. The orange colored bar presents the clone used as positive control with high activity ($PpMut^s$ _CalB_E9), and the yellow colored bar presents the clone used as positive control with low activity ($PpMut^s$ _CalB_A9).

Figure 61: Landscape of photometric CalB activity screening of DWP_8. The orange colored bar presents the clone used as positive control with high activity ($PpMut^s_CalB_E9$), and the yellow colored bar presents the clone used as positive control with low activity ($PpMut^s_CalB_A9$).

Appendix 2: HRP activity assay – screening results

Figure 62: Landscape of photometric HRP activity screening of DWP_C. The orange colored bar presents the clone used as positive control with high activity ($PpMut^{s}_{HRP}_{H5}$), and the yellow colored bar presents the clone used as positive control with low activity ($PpMut^{s}_{HRP}_{H12}$).

Figure 63: Landscape of photometric HRP activity screening of DWP_D. The orange colored bar presents the clone used as positive control with high activity ($PpMut^{s}_{HRP_H5}$), and the yellow colored bar presents the clone used as positive control with low activity ($PpMut^{s}_{HRP_H12}$).

Figure 64: Landscape of photometric HRP activity screening of DWP_2. The orange colored bar presents the clone used as positive control with high activity ($PpMut^s_HRP_H5$), and the yellow colored bar presents the clone used as positive control with low activity ($PpMut^s_HRP_H12$).

Figure 65: Landscape of photometric HRP activity screening of DWP_5. The orange colored bar presents the clone used as positive control with high activity ($PpMut^s_HRP_H5$), and the yellow colored bar presents the clone used as positive control with low activity ($PpMut^s_HRP_H12$).

Figure 66: Landscape of photometric HRP activity screening of DWP_6. The orange colored bar presents the clone used as positive control with high activity ($PpMut^s_HRP_H5$), and the yellow colored bar presents the clone used as positive control with low activity ($PpMut^s_HRP_H12$).

Appendix 3: DNA sequences of relevance for this thesis

NCBI Accession number: CCA40283.1 Gene designation (GenDB): PP7435 Chr4-0107 EC number: 5.3.4.1 Gene product: K09580 prlyl 4-hydroxylase, beta polypeptide

gttcaaacct	agcgctaatg	ttttcaggca	tttgttggct	cttttaactg	aagttcctgg	tgtttcctat
gatggagggg	atcaagggct	gattaactat	gtattccaaa	acaaatggtt	gcgcactggt	gatgacacaa
aacggtgtgg	tgtatggtac	aatcttagtt	ttgcgttcaa	tatgacactt	tccaacaact	atgagagtct
tccttcagta	ctgcgaaatc	tcacagacat	caaattggtt	catttcatag	gaattgtgaa	accatggatg
cttaaaccat	cttttgtgaa	cgactttcca	gatggcagtc	ttgacagttt	tgttgcccaa	tggtgggagc
agtttagctc	ttttgagaac	ggtgagtttc	tacctttggt	ttttaagaat	gttgaaagcg	aacgtattga
agaagactcc	catgagacgg	aagaaaaggt	ggacgaagaa	gtctccattt	cagagcctca	ggatgaaacc
actgatttca	agtaccagtt	tggccatcat	tcctttgaag	aacctgcacc	ggtattagat	tattcaactg
agggagaagc	atggaagctt	aatgaagaac	aattgactaa	tcagtgggat	gttgatgcac	cagctgagcc
gctgcctgtc	cctgttgaag	aagacgaacg	cgaagagacg	aaggccgaag	ctgaattgga	ggagctgcta
ccggatattg	ttcagcctga	acctccagca	cctcatgttt	ttccctggga	agcttacaat	gaaaagccga
cacgagtttt	ccatgattac	aggtaaaact	ttaactaaat	ataaggtata	agatagcatc	attttcgtat
ttagctggta	cttagtcgaa	ttttctactg	catggtagcg	tttgatacac	gttgcccatt	cttctcttta
agtgcgatta	actgcttgga	ccggtaagtc	tcgtaatgaa	cgaccgaagt	agtctctatt	aaatcatgga
ggtgggtacg	tgttagaaag	tcccgcaggt	acacaaattc	gcactgcgtt	acatcttcca	cgttgattag
accccatcgg	gttctacgac	ctctgatgac	ctgtccatca	attgtggaga	tctcattttc	agagccaatt
actgcaaacg	gtaaaagact	tcggatatct	tgattcaaag	tcagttcttc	ttcactcaaa	tcttcattgt
cgtacggaaa	aaagtttagg	tcgtgtttct	caaattgagt	gtgcaaaata	cttttaaact	tggtacgctc
ttcggtagtc	aaggtgtcag	ccttagcaat	aacaggaata	acgttcacaa	cagtagtgag	tttggaaaga
acttgtatgt	caaggtttct	cagtccctta	ccgttaggtt	gaatgaagta	aagcacacaa	tgaacccttg
tgtcaggtat	atacctttct	ctctgtgctg	tcaactcttt	tcgcaagtag	gtagagtttt	gctctttgat
atactgcaat	attggttccc	aacatttgtc	attgttgatc	tgatctccaa	aaccaggtgt	gtcaatcacg
ttgagtttca	gattaacgtt	gttttcattg	agaatttggg	aggtgctttt	aatctctaca	gttctttcca
caggctcaaa	agtactttt	cttccgttag	agtccacaag	atgtgtggca	aaaagagtat	tgactagagt
tgacttccca	agcccagatt	gaccaacaag	cataacattg	agctcaaatc	cacgtttaag	gagtctgttt
tcaatttggg	tagtgatagt	atcaaacccc	acataattct	taggttgaac	cacttgactt	gccatagttt
ttgtattatc	tgacgaacaa	aatgaaagag	aataactgta	accaacgcgt	ggacaggtag	gacacagaaa
tcgaggagaa	aggcgattgc	attcgcgact	gtatctttcc	gtgcagctct	attacgagag	tggtgttctt
agtttttccc	tcttcaattt	ctactaaagc	tgctttggta	aagggagaca	tattcggcta	ttgtttactt
tgcgcccaca	gtagcgttaa	gaaacattgt	ttgttcgatt	tattgggctg	ttgataaatt	caattgatta
cgttcgcata	ctagctatca	taaactaagc	accaccttac	accactttct	cactgaagat	tttcgacatc
aaatttctct	tggatcacca	tcaaccttgt	gtctacatgt	ccttgtcttt	gaacctaaat	cagatagccg
tgcgggttgt	gggcatattg	cctcgtattc	cggagattca	cattgccatt	cctaatattt	ttcagcgacg
caccgaagct	tctacagaga	ctcacgatcc	tcgcatacta	gagctgatag	aaaatctaca	ggatgccgag
gttcctccat	tcttcattga	taacggtata	cttaaagcag	caccaaaaaa	gaaggtttct	catatgaaaa
gacgccagaa	attatatggt	ccaggaaaaa	aacaactctc	tttactacaa	aatttgaaca	ggtgtcctgc
ctgcggaaac	tacaaacgat	cacacaccct	ctgcatgcat	tgcgtaggac	aaatcaggag	acattggaac
gactctgttc	ctcaacagga	ggcatttcgt	gaagagtttg	ttaatccttt	ggatgagaag	attctttatc
caggaaagaa	agaactgccc	gatgaacgaa	ctttacgtaa	gaaggagtgg	ctgaagagaa	gaccccgaac
actccctgtt	gaatagaaca	cgaacactgt	aaatagaata	aaagaaaact	tggatagtag	aacttcaatg
tagtgtttct	attgtcttac	gcggctcttt	agattgcaat	ccccagaatg	gaatcgtcca	tctttctcaa
cccactcaaa	gataatctac	cagacatacc	tacgccctcc	atcccagcac	cacgtcgcga	tcacccctaa
aacttcaata	attgaacacg	tactgatttc	caaaccttct	tcttcttcct	atctataaga	atgcaattca
actggaatat	taaaactgtg	gcaagtattt	tgtccgctct	cacactagca	caagcaagtg	atcaggaggc
tattgctcca	gaggactctc	atgtcgtcaa	attgactgaa	gccacttttg	agtctttcat	caccagtaat
cctcacgttt	tggcagagtt	ttttgcccct	tggtgtggtc	actgtaagaa	gttgggccct	gaacttgttt

ctgctgccga	gatcttaaag	gacaatgagc	aggttaagat	tgctcaaatt	gattgtacgg	aggagaagga
attatgtcaa	ggctacgaaa	ttaaagggta	tcctactttg	aaggtgttcc	atggtgaggt	tgaggtccca
agtgactatc	aaggtcaaag	acagagccaa	agcattgtca	gctatatgct	aaagcagagt	ttacccctg
tcagtgaaat	caatgcaacc	aaagatttag	acgacacaat	cgccgaggca	aaagagcccg	tgattgtgca
agtactaccg	gaagatgcat	ccaacttgga	atctaacacc	acattttacg	gagttgccgg	tactctcaga
gagaaattca	cttttgtctc	cactaagtct	actgattatg	ccaaaaaata	cactagcgac	tcgactcctg
cctatttgct	tgtcagacct	ggcgaggaac	ctagtgttta	ctctggtgag	gagttagatg	agactcattt
ggtgcactgg	attgatattg	agtccaaacc	tctatttgga	gacattgacg	gatccacctt	caaatcatat
gctgaagcta	acatcccttt	agcctactat	ttctatgaga	acgaagaaca	acgtgctgct	gctgccgata
ttattaaacc	ttttgctaaa	gagcaacgtg	gcaaaattaa	ctttgttggc	ttagatgccg	ttaaattcgg
taagcatgcc	aagaacttaa	acatggatga	agagaaactc	cctctatttg	tcattcatga	tttggtgagc
aacaagaagt	ttggagttcc	tcaagaccaa	gaattgacga	acaaagatgt	gaccgagctg	attgagaaat
tcatcgcagg	agaggcagaa	ccaattgtga	aatcagagcc	aattccagaa	attcaagaag	agaaagtctt
caagctagtc	ggaaaggccc	acgatgaagt	tgtcttcgat	gaatctaaag	atgttctagt	caagtactac
gccccttggt	gtggtcactg	taagagaatg	gctcctgctt	atgaggaatt	ggctactctt	tacgccaatg
atgaggatgc	ctcttcaaag	gttgtgattg	caaaacttga	tcacactttg	aacgatgtcg	acaacgttga
tattcaaggt	tatcctactt	tgatccttta	tccagctggt	gataaatcca	atcctcaact	gtatgatgga
tctcgtgacc	tagaatcatt	ggctgagttt	gtaaaggaga	gaggaaccca	caaagtggat	gccctagcac
tcagaccagt	cgaggaagaa	aaggaagctg	aagaagaagc	tgaaagtgag	gcagacgctc	acgacgagct
ttaagaatgt	ccggggtttc	tatatttact	gtaactaggt	tttattcttt	tgtatagtcc	aacaaaccat
atggattagc	atcacttcgc	gcaatacgtt	ctagttgccc	acttgctaaa	accaatttag	caatgattca
acagcaatta	ttatcaccat	gactaactgg	aaagcgatat	tgactcccgc	tcaataccaa	gtcctccgtt
tgggcggaac	agaaagaccg	tataccggac	agtatgtgaa	cttcaagaaa	aatggaacct	acttgtgtag
tgggtgtcaa	actccgcttt	acaaaagtgg	cacaaaattt	gattcatctt	gtggttggcc	tgcattctat
gaagcattac	ctggagcagt	taaacgaata	gaagacaatt	cgcttggaat	gcgaagaata	gaaatcagat
gctccaaatg	tgatggacat	cttggccatg	tttttgaggg	tgagggattt	gacactccaa	cagattccag
acattgtgtc	aacagcatca	gcctaaaatt	tcaaggtgaa	gaagagaact	aagcgggggg	aatgactaaa
taaataaagt	aaaaattttg	tttattgacg	ccttttataa	tttgtttcct	tggtctttaa	gaaaactatc
attctggaga	atttctagaa	gatacccatc	agggtccttg	aagaaggcaa	gcttgtcgct	aatctctccc
aatttaaaga	cccattctac	atcattctca	agctctttgg	caagtttggc	gacatccttt	gttttaatgc
ctgtatggcc	atatccaaaa	ggctcagtgg	tgttggtatg	gtaacctttg	aagctggagt	cactttctgt
accccagtta	tgggtcaact	caataataga	ttccctctca	gcttgtggac	gaggtttttc	ctggttttcc
acgtattgat	cgtcatgctc	gtagcccaga	aaatagaggg	tgaacttagc	ttccggaaat	tctctagtag
aataaaqttt	catacctaaa	actt				

NCBI Accession number: CCA36295.1 Gene designation (GenDB): PP7435 Chr1-0128 EC number: / Gene product: putative secreted protein

ctaatcaaac	tcggtttcat	cctgaggttc	attcattaac	ttctgcgacg	atattgagtt	cttattccaa
atotatatoa	tracctratt	ctttcttaca	ctcaqqataa	toccacaaat	atcatcttaa	aactetteaa
acgeaeaeea	ccaccicati	cicicicaca	cccugggcuu	cyccucuuuc	guegueuga	auctettaa
agtcagcatc	tgaatagttt	gagaaatagg	tacctccaca	aagtctcaat	atcaatcgtt	cccagatcaa
agaaaatctc	tccatggttg	aggcatcgca	ttgagctctc	ctataacggg	acttgattaa	ccatcttcca
ccagccttat	tagcaggatc	ctcccaaact	ggcttgattc	cacttttaaa	caaaaagagc	tctgtgccaa
ctggaaggtc	agatactttc	ctcaaattgc	tcaatgattg	ccacaactgt	tcgcatgagt	caatattggt
agtagtagta	gcaccgccat	tcgccactga	tggaaactct	acttgtttaa	cggtctgtaa	atattggtca
agtgtgtttt	gccagtcatt	tctggaagcc	tccgaacttg	tctctttatt	ttcctgttca	gaaggctcag
ctacactacc	agatgtagtt	acgttttcgg	tctccttgcc	cctcacatga	tgccaaaaag	tccaagagta
ttgcattgga	tgaggagcgg	caacttgttt	cgtcgtccga	gatccattga	tatcctcaaa	gaacttggac
attgcagttt	tgggaaacct	ggagaaatat	gttcgaagct	tggtgtcgga	tggacgattt	tcaagttgga
gcgcgcatgc	agagaaaggt	caatgctagt	agcgctaggt	atgccatttg	ttcgccttgt	aggatcaaag
agttgagagt	tggagccggg	taatactgac	cattaattcc	attaattcat	acctatatcg	tttatatacc
aaacttaagc	cagtctagat	cttccgcaat	gtttctattg	ttcggggttg	gacctgcagt	gccagggtct
ttggaatttc	gtctgggacc	gcatgttttg	tcctctggga	agccctcctg	tttgacatca	aaaccagtaa
caacgtgctg	agtttgaaga	ctaagactgg	aaggacgtct	ggcagtctct	ggaaatctct	gctgaaacga
gtttttcaga	ataggggaag	atggtatacc	gcgcttcatt	tggaattctt	ggtgcaaaga	gctggagatg

gagttggaga	acccatgccc	atagtcgttg	ctgggagata	taatacctag	gtctgagtta	attggcgagg
cagcgttcgt	aaaatacgaa	gcaacagcca	ctggttgctg	tgaagtaaaa	ctggaaacag	aggaaggtga
tgccggtata	gatactccag	gattattacc	tgaaagactg	atttgtgact	ttctgcgctt	gaatcctgct
gaatgcgggg	agaacgaagt	atagggagag	tcttgttgtt	gtggcatcat	gggaacggga	atgtttttat
tgctgggacc	cctggaaggc	ttgggcaaaa	tgggaacatt	cttatgcttt	tgagcgttgc	tgttgagact
gttgcctctc	attagataat	aggaatcttg	tgaacctccg	tagggagaaa	atgatacggc	tgttgttgga
agagaattat	tataggggta	aggataaggc	tgttgctgtt	gttgttgtat	ttgcttttga	gtttgagtgc
tatgagaagg	ttgaatatgt	tcatgttgtt	gtggctggaa	ttgaacttgt	tgttgttgct	gttgcatctt
gcagagcccg	tgtgttaaag	aagattgatg	ttgttgtctc	ttggaatttc	gtttcctaat	gacgtccgtt
ttcaaagaca	atggcctcac	agtaccatga	agtttttgga	aaagaccaca	agcattgcac	aacgtattgc
cacttccatc	tcttctccaa	agaggagtct	tttcagtctt	acaatttgag	cattgagttc	ttgttatact
ttcgtcattg	tcagctttgg	gggatgatga	gtcactcata	tctttctgaa	cagtcactgt	tgttgtgata
ctagtagtct	cggaagtagg	tttcgctaac	tgtagtttat	gagaagctcc	gtcactcaag	aattcttgca
aagacttgtc	ttggataata	tcactaaaat	ctcctcccat	accatcttcc	tcaccatcat	cattgctatc
gaacttccac	atcgagttta	gatccaaatt	gttggagtca	tgcaagggac	tatcattcat	agatgagggc
gtaaccatca	ttgaaggttt	tggttttcga	agttcggatt	taaccttgga	atctgagtaa	ctagacggag
ccccagaatt	attttccaac	gaatctggag	aataatacag	gccaggagca	cttgaaataa	tctccgtcaa
atcagcagag	tcatctagtt	gcaattcgga	aaaatgtagt	ttgccagaaa	ggctgtcttg	ttttgtcatc
tqqqttttct	tqqattcatt	tcttaatqtt	ctqttttcaa	ctcqqqqqta	taaatctaqt	aqcttttaq
ccqaaqaata	tacccccat	atggacggcg	aatcttcaaq	atccttcaaa	gatcctgtat	tatttcttct
atttccttcc	atctaaatqa	qqccttaqqq	catataatta	qaqaaaqqac	aqqaccaqtt	qaqcttcaat
actagggtgg	tqtaaaqtaa	aaattttqac	cctcaqqqat	ctccaaqtca	tattaggaga	aqtqttttt
tqqaacaqac	acqaccqqqq	tatttqtqqq	ccaaqactaa	qcaaacqqca	aacqaaatqt	qqqtttqaaa
tggagaagcg	ctgcttgaaa	tgagcagccg	tagaaggttg	gatggcacta	catgtatgaa	ctagaaggcg
ttgaattttc	tagatgtaca	gagggagatc	ttgattgcat	gcgaagcatc	atcatcagaa	tccccttta
tttattttcc	caccotttt	tatcccttt	ctcgctaaat	ctcttccctc	t.cgacagcac	atgaagttac
tatecttooc	acttctggtg	tetttaatat	ctgcggatac	tttctacact	ccaaaqqatq	atgtaatcca
gttgaatget	tataatttca	aggatgtcgt	tttcaactca	aactactctt	caattataa	atttatgct
ccttaatata	gccattgtca	gaacttgaaa	aatcccttca	agaaggcagc	agccgtttcc	aaagactacc
	cgcaattgac	tacatacta	ссязазазсаз	gaagetttge	tctgattacc	gtattcaagg
atttcctacq	atcatggttt	tcagaccccc	caagtttgat	cccacatcaa	gcaccaatag	aagatctggt
actcatacta	atgaggtata	caataatact	agagatacta	agtcaattgt	taaatttaaa	atatctcata
taaagaacta	catcaaacaa	atatcaccca	ataatattaa	ccaaaccctq	agaaatteta	agaagaccca
acttctactt	atacagata	aggecaaacc	tagtacteta	ataaadtcaa	ttaccttaga	ctttttgaat
gacatagagt	ctttttacta	tcctttcaac	gacaaaacga	agaaagcatt	gactacacga	ttagaggagt
atcaacaatc	atttataa	ragaggataa	cttcaccttc	atttaata	ctacatoaaa	atgaaatcca
catttttcat	geeeeegga	ataagetgag	cattagcaag	tttttagggg	agttttcaac	tccctqqaa
ggaggtgtgat	ataaqaqaq	taagtttcta	gaggagatte	acaaaaaat	taaaccccca	agaaaaggggg
agaagggggaaa	geaagagagg	caaaccaaaa	atcaccacca	attatagata	catacceggu	tttttattt
tttttttaat	tettteatte	atatattac	aadttgaata	tttttacaca	attatagaaga	traccetaac
cctagataga	ttcttccaac	taaatttta	tagaatagaa	atcaaacad	ttactaaact	cattagatt
caacqatqtt	agattaacat	ctaacatett	tttatattta	taggtcacct	caatgataget	ttttttattt
aactaactat	tcaacacttc	ataattatt	atacataatt	tetteaaga	actogocaaa	actacaadaa
gaetggetge	gaatttagat	tatagagaga	aggeatgatt	tttaagga	actgggcaaa	agtagtagat
aaagtettge	geeettagee	acceggaccaa	tagtgstgaa	agaggatga	tttttagaa	agtattaggt
tattaaattt	arganata	aayaattyyy	ttttttt	agaggggggga	aatataaata	gagiateega
	tatatagata	calgatatat		gattatta	atagataata	agaataadta
atapatara	attagagaga	ttattaataa	aggaagaag	agtagagaga	aggateter	agatatagat
agatttatt	ttagatagta	ataaaaaat	gaggaagaag	tagaaatga	aayactictyy	tagaagaagaa
acyallicil		accaadayel	taagaaaaaa	acaaacuya	yyayayayada	agaataaat
ttataataad	agucaayadd	ttappagga	atataaaaad	gyaayaayal		taggattag
angangangang	gyuyayuuu	angtangagee	accidadad	actatatat	taggaggagg	atatassaa
aayyayyadC	tagtagatta	aaytaaycaC	geaceccedg	ayıcıayıyc	caayaayaya	gryrdaagg
ryayyyayat	leelygaete	llyaacyyit	cryycreaag	llcallyldC	cayyatytea	yalloya

NCBI Accession number: CCA36622.1 Gene designation (GenDB): PP7435 Chr1-0470 EC number: 5.3.4.1 Gene product: K09584 protein disulfide isomerase family A, member 6

cccatgatct	ggatccatta	ttccagacta	ctgactgtcc	ttcttcattt	gtgaatagaa	aaaatgtgga
attattcatc	ttgaatgaac	tagtgtcaga	aacggtgaaa	ttagtatctg	ccaacgataa	gacattggaa
tctctcaaaa	ggaagatgga	tgaattgctg	atgacggtaa	tgtcttcgcc	aactgttgat	gttagactat
ccacggttcc	attgaattgc	aaaagcctca	ttccctcagt	gttaaaagaa	ttatcggtgt	tgttgatatt
ttgaatagca	acttccaaga	ggttaccttc	gtcattagca	gacagtttac	caccaacata	aagtttacca
tcctgaaaaa	ctaacccatt	cactgtagca	ttctcaagta	aggaggatcc	aagtagattt	atggaggagt
ttccgacaaa	agtattgttt	gataacctta	aagtgtcaaa	atctgtaaag	ttgttgaggg	aatactcaaa
aataccattt	aaaggcactg	tcaaattcaa	ggatctggta	ctattagttg	agttgatagc	cgcatctgca
tcaatgtaca	gtatgtctac	gtacaactga	tatgcggcaa	attccaactc	ggtttctgaa	tttcccggta
tagttgattc	gacctctaag	gtgacatacg	gatgatcttc	caaggttgca	ttgatacgac	cgttgtaaag
aatgtcatac	ttgtcaaaat	cattgttttg	atatattaag	atggatgcga	gttgctcatt	gtcgattcca
ttgtgaagtg	tagcgttgac	aattcctctg	gtgctacatg	agtcggttgc	taaacagcca	ggtgtgtaaa
cataaaattc	gtaatcacca	ggaaaactaa	tatttggata	gaatgtcaca	cccactgtgg	agtctggaat
ttcaccattg	atcaatgata	tggtcgtggt	aatggaccca	tcttcgtggg	gggtccagga	tccaggtgcc
tctacqqata	cactqqaaqa	atgaaactca	aaatcatcac	aggtaggttc	gttgaaactt	tcqttaccat
aaacqtaqat	tcctgattgg	tagatttgaa	gtcctttaag	agcaccgatt	tcattqtaaq	cqqacaatac
ttqqatqqtt	acttgagtaa	cqtcqaqttc	attqtqqaac	tcqaattctt	qqtaatctcc	aqaccacqtt
aqqtaqcctq	ctattctaat	tttqtcatta	aaqacqqtqt	cttcqtatac	atctqaaqaq	tttqcqttct
qaaqaqcqtc	ttccaactqt	qattttqaqa	qqaqtqqaca	ccacqcqtca	caatattcat	attcqttqqt
ttqtqqattc	acatatqtca	aqttcatqat	actqtttqaa	qqqccaqtta	tqaqcctaaa	qtactcqaca
ccataaccct	ctqcaqaaqt	tqattqqaat	aqacqqaqct	tqqatqqaat	tattqtqtqq	tqqaqcataq
ctagccaagt	cccttqqqaq	cctgaaagaa	tccattcatt	gtcttgatcg	qqacaaqtqa	ttgacttggg
qtctqqcqaa	agggttcgt	tqqtacctqc	tattaacaca	tcqqcqatat	taaaacttqt	taqttqatct
qqactqacat	catatatggt	caactcagtt	gagtttgatg	aattqqtqqa	cacattatga	tgaagtaagg
attgattccc	caaqqaqtaa	aagtttccac	cqaaaatcaa	gttctcatca	tcaatgctaa	caattgcgtt
cactgatgcg	ttttcattaa	atcottogaa	gggaatggac	t.cgaagaaga	aagattcata	attaaaacaa
accaaaccaa	aaatagaact	gttcaacgtc	aaatttcccc	caaaatatat	caacttggac	atttaattaa
caaacacqqt	ttgaatagat	ccttgaactt	gattactcca	attttcggtc	aggttcgata	ttgaaacctg
agaagettee	tcgttcactt	ctaggatcag	aggagettea	ttttcttcga	taggaattac	caacacqaaq
ttattcccca	atgagtagga	ctatttatt	ataccattaa	atgtggaaat	gaacgataac	gactcatctt
gacctagtt	gaaaatgeet	aaactette	aatetteett	cctaacagat	atcctatact	gattgatatt
attaggtata	gaaagtccgt	tgaaccatcc	cagcaaagag	atatcatttq	aaaadttgat	cacctaacaa
gagacgatta	ttgagaccag	taggaacaac	aacgccgcca	tagtttcaat	ctgaagttga	cttatatat
ttaatattaa	aagaattaag	ggtcaaaaac	aaaaatcaaa	aacagaataa	aaaactaget	tggaactcga
agtaggagaa	gagaadtoot	gaaaaaagaa	gaggggeeege	gacgttaaag	acctgaactc	tacataaata
caatataatt	gagaagtggt	gaaaaagaa	taatttttt	ttcctccca	gaatgaaaaa	tatcattctc
atttctgage	aaaaacataa	cacaatattt	acctattacc	agatetogat	atgaagatta	cataataaac
acatagagag	tatagettat	acaaaacata	ccagacatta	agaeeeggae	attagaatta	cataacatat
acgragatat	acaacaacaa	tatacatatt	aactaattaa	caacacatta	getgggggete	ttcctcatta
gcgttatat	gcggacagag		ggelgallgg	tattatcasa	catogactoa	ggatggagg
tctgcagtc	getetegetg	cccacatcat	ttaagettag	ataaattta	aaggtcccaa	catcttoaca
catctctcaa	ctttacttaa	tettacataa	ccccaadadc	caaccetcac	caggttett	ttttaccttc
casttatat	ctcctccccc	catttactat	ccaaccactt	gaaagggtgt	atctagata	atgaaatat
taagtgcett	acttettett	tttacattaa	cetttactaa	gatagggeee	ctaccaaca	agaactttga
taacataatt	ctaaatccq	gaaagtacac	cttactcaac	ttttatacca	attactatta	agaattacaaa
cgaatgaatg	cagagetatoa	gaaagtacac	gaagaactga	accasaca	tattatata	gcattgcaag
ccattgatga	taacaaatac	tcaaactaca	tagaaatata	castattaat	gatttccca	castasset
attacacaca	aacaacatat	ctcatcccat	cgaattttct	ggatgagg	acactosaa	cttttcaac
tttttacaccc	aaggacatat	tttaccegat	cyaattitt	ggallaagag	taggattag	ttaattaat
casttastas	ttaactactyy	ataaatta	ttaaaaaaa	cygaaytaaa	reagettacte	attagtaata
taattyatya		gatgattig	ccgggaagga	aggerratt	traggaataa	agatattata
atagaaaag	tattaga	tattataa	ggagaaguta	ttaaggett	atataaaatt	gatattyte
accyyaaacg	atacttaccga	gaaggatgaa	ggugagaala	angetetere	tatagagata	gaagtette
agatttert	gracticada	geaggereag	tagettett	aayatatyda	atagaagtt	gaactyttga
aggillggil	adattigida	algaacaage	atteggettatt	agattage	alggaadtit	yaatttatta
agtageast	agagttagt	yayıyatada		acattaagga	aaaayaccaa	aguttattgg
agtcaacgit	agactigeta	agcaaccatg	tapattacta	ggacaaatic	agugudaaat	accacaagaa
gyucalagaa	aayiiyitga	ayyyayagaa	ugaallCCCC	aacaalgaag	rugagagget	accaaaaatg
cigaatacaa	agelategge	aaacaattca	gaeletgtga	llaaaagadt	gaalatettg	egeaatttta

ttgaggccaa	aactgagtca	aaaccccagt	tattacacca	agagctataa	gtaaatgaaa	aagatacctt
tctagataag	taaataaata	acgctataac	tctaccactg	tagaggcttt	gtagatttct	ggaccaatct
cacatgctcc	ggccacactt	tgccgccccc	taggatggtt	tcttctatga	taggtttgac	attaaagggg
ttacatcttg	ccaaccagat	attagcccca	gacttcaagt	aaatgagaac	atttgctgca	tacttgtgac
ctccgacatg	attgataaaa	tgaacttgca	ctccgcctgg	tctatcatct	ccgagatctc	tgtagagatc
gtgatcacga	aggtgaatgc	acatctcctt	cttaatgata	ggtgcggtga	ttccgcaacg	tttatccctt
gttttatgcg	agcacaagaa	cacataggac	ttgtttgtgt	ctttaacgat	ctcataacct	ttgatttcgg
cgggaatatc	tattggttcc	acttgggtag	tttcgataga	gaaatttgaa	aaaagaatgg	gcactagctc
gtccaatacg	gcatcaacat	cctccataca	caactgcttg	acccatacaa	agtacggaag	aattaaaata
tccccagctg	tctgttcggc	aattcttgga	tccttggcat	tagactgggg	tatggatgat	gtggagactt
taaccgcttt	tggaaccagc	ttggtagatg	aagcccaatg	agagattgat	tttaaaatcg	tgccatcaac
atcagtggcg	tcacgcttcc	aatcggactt	acccgttgga	atgataatgt	gtaaagagta	cggtttagtt
gatttccaaa	ggagatcgtt	tttggagcct	gggtcatctt	tgtaactgtt	tggatacctt	gtgaagcact
cagcggccga	acaagtagcg	gggcactgtg	aaagaggaac	tatttctgag	atctcctcag	ccgcctgggc
ttcgccggat	ttgcccccca	agaacttcga	caaaaaagcc	atactgattg	gacttaagga	tgaaaagcgg

NCBI Accession number: CCA40358.1 Gene designation (GenDB): PP7435 Chr4-0183 EC number: 5.3.4.1 Gene product: K09584 protein disulfide isomerase family A, member 6

ttttcaaatc	tccaacttta	atcgaatcga	agattgtttg	gtatcgattt	ttcacttttg	aaaactggct
gtacaatttc	tggctgggta	gttttcttgt	gactagaagc	tgcaacggag	ccaataatag	tattatacat
tgcatatttt	ttgtgctggt	ttttaaacat	gtgctgagag	cacttgtcag	atttttatga	gcttcctcaa
acttattgtg	aaaacagttg	aggacagcat	tgaggtagag	gtatgcagta	ctgtgagatt	tggggacttt
tcgaaggctc	ggtaaagtag	atgatgctga	aagtaagact	ttctgtaatg	agctggccag	gtcgaacttg
ttcatggtga	agtaaagttt	gaacagtatt	ccagcaaaat	agtagactgc	tattttcttt	gaagttgcaa
gatcagggtt	cttgtcactt	aaacaaattt	tgaacgacct	attgaataca	tcagcaattt	tctccaaagg
tgcccttgaa	tgctcgggag	tggattgatc	acctttgtta	ctattataca	aatttccgac	atatttcagc
tcagtagaaa	ggaggatcag	aagaccgata	atccagtttg	tttcattatc	agcgatacgg	ttgagctggg
aaactagatc	aagacttgtt	tcaaacgcct	ttttgaggtc	tccatgtttg	gtaattgatt	tgagaagcga
tagatatgtt	gagaccaaat	cggtccattt	ttggtcaaca	atccggtttt	gttgcggtaa	tgcgaagttt
gatctttctt	gaagaaggtt	atttggaatg	cttatggaaa	ggagattact	cagtgatgag	ccatcttgaa
accttacagc	ttgagacact	tgttggaagt	actgcagctc	tgacattgaa	ttggaggtcc	aactggagag
agatagattt	gatggtagga	aatgacggtg	ttgggatgtt	gttcccttgg	gacagaatga	tgtttaacga
tgcaattttg	atacaatata	aggatttgat	agacttaaat	ccagtcaatt	acttggagat	ctatccgttt
tacggtgtaa	ggttaaaggt	gcaaaatatc	atttattata	tagcagttgc	attttaaaga	tttacaaatg
gtctcgcttg	aaacaagtaa	agttgacgat	gcaggcaact	taatatccag	tggccaaaat	aaaactgaaa
tgaaatccat	ttgagttgat	taactattca	gttttgatgg	acaaatcatg	ttttgtcaag	cacagccctt
ttctttaacg	tctgtacttc	aacctcatct	ccagatatat	tataaaagtg	aaatataaat	attttaattc
gctatttaca	tttaacccaa	ttcggaaccc	agaatcctta	agatcctatc	aaaaagatcg	cacaccattc
tgtaccgtaa	acaacacaac	attggtatat	ggccgtccca	agtacaccac	caagaggcat	acaatacaag
aaatcgatac	ccattctggc	taacaatgat	gcactcctca	acacccaacc	agtaacccct	gtcacacaac
gacaagttag	cgagtcaaca	ggactgttga	agttttccat	aggcaaaaat	gcggcatctc	cggtgagaga
tggtctcccc	atgtaccttc	cattgaaatc	tgctgtacat	gaggacaagg	aaaacgatat	cctgtttcaa
ctggctaaga	agcaacgaca	ggtggtggac	ctggctcaaa	cattaaagat	agccaaacag	gagcttgcgg
aactggaacg	aaagtaccaa	tccgagttcg	attctagaaa	cccgtcccct	gttcaaaaga	aggatcagaa
tccaccaacg	gcggctaaga	atccattgac	tgaactaaaa	cggatcatgg	agaaaaacaa	tgaaaaaaaa
ccatctgcac	tcaagagcag	gaaaagtttg	ttcaatttgc	aacaagactt	tgaggataac	agagcaatcc
aaaaatccg	cacggatttt	actactctct	cttcgaactt	tttaaatgat	tctaagaaat	ttcagcaggg
ttttgtgaca	aaagccaata	gtttctttaa	caactttaac	acctcaggca	gcaactccgt	agctagcgac
caaaattctt	tggagcgcaa	agcatctgga	agttgcctgt	atgatgttcg	aaagcatgac	gcaaaccaga
cattgatgag	ctctgaagat	gaagatgaag	aagattatgg	cggaaaagca	taccgactag	acttgtagtc
aaatagcata	caaacagcat	caagaccatt	aaatactcgc	ctcaactaaa	aactcgtctt	ccttgattga
ctttactttt	tcgattagat	caccaagcgg	tgtatcaaga	gacgggtact	gtctacgcta	ttcacggtta
gcgtcaacaa	aatgtaaaaa	aaaagaaaaa	aagactgtaa	agcccaactt	acttttgcca	aaaagccaaa

caactcaqtt	ctgctcatct	cttccactqq	cttagcctca	atgtcaatgg	gaatgtcatc	cttgaccacc
tctqtqtcct	tcttcttqqa	ttqctttttc	qatatcqttc	qtcqqctaqa	qqqcttqaaq	qtqqtaaaaa
acattgaata	caatgtagcc	cccacaacga	ggcccacaaa	cccataaaag	aatttcttct	ttacttggtg
taccattgca	atggaagagg	ttgatatatt	taaagaggtc	caaggacccg	tggaagcaaa	ataccttcaa
ttccctaccg	cgattgactt	tctgatgttt	gattagatgg	acaatcagca	aatgtacagt	aaagcgaaat
gaaacgaaat	tgtcacagcg	tttggatgga	cttaatcaag	gacagctagc	aatgccaaga	cagtaactaa
tacactgcat	ttctcttaac	agtactcaac	ttccacactt	cgtcaggttc	tggttcctgg	cccatgcgcg
actcatcccc	cgcctgatga	aatagataaa	tttttgcatc	tatgaacttt	tcactcaaaa	atgaagtcgt
tactgctact	tctattagct	ctctgtcaaa	ctgtctttgg	tacgatatgg	gaactcacgg	acaaaaactt
tgaaaaaaaa	gcttttgggc	agcaaggtat	gtactccttc	gtgtacatct	actcccctta	ttgcaattat
tgtaacgaga	tgacacctca	attcgctgca	ctagctgatt	tatacgacga	caccaagttg	caactattcc
agattaatgg	gtatgccaac	aagagggtct	caaagaaata	cgaggtagtc	gggtttcctg	ttttgaagat
tttttcatct	gatggaaccg	acatggggtc	ttataccggt	gtcagaggca	ctcagaactt	cattgattat
attcatgaag	ttacaggggt	tactccaagc	tttccagact	cttatgtcaa	acagcctact	tcagaggagc
tagaagatat	cataaaagac	actaagaggg	atattctcgt	tgctttttca	cagccttggc	ttagaggctg
ggagttccct	tacacaaact	tttacgaatc	tctggcaaga	tattatgctg	aagagcttga	tgactctttg
actaccttcg	tcagaataga	cgtctccgac	gccaagaatg	ctgagattgt	ttcgaagttt	caagtttcaa
aaactccttc	agttttccat	tttgcctctt	atcgtgaata	ttatgatcaa	acacataagc	ttttcaaaga
agatttgggc	cccgtggaaa	ttgttcaatt	gctagagggt	gctgaggact	tagttactga	gagcattagg
ctgtcaacat	tatcagactc	tcgccacaaa	gatgttgagg	agtctgggga	agcagataat	tcctttgaag
agtatgccca	actaagggaa	ttgtagatag	aagtcttccc	atttgtgaag	gcaagataga	aaccaatcac
atacatttgg	tgtagactag	aatggatcta	tctggttatg	taatcacgat	acctttcgga	attgtctcgt
gtagcaggcg	cgccccttcg	catctcaaat	caacagttgg	caagtgtcac	tttctaagtt	agcactctac
tttaagaaca	aaatgaacat	ctttagaatc	ctaggtaagt	ttccgctctg	ctcaattgaa	gaatcaaacc
caattttcta	accacgcagg	tgatatctct	catttgataa	gcatcttgat	cctaatacat	gctgtatcaa
caacaaagtc	tgctcaaggt	atctcattaa	aaactcaagc	agcttatgtc	gtagtctttg	tgagcaggta
tcttgacctc	tttttcagat	atgtgtcact	ttacaacacg	ctgatgaaac	tcttttcat	tgtctcttcc
atttacgttg	tgtttttgtt	aaatcggtac	aaaaagaaca	gtgaaaagac	caatgatatt	ttcccagtat
ggtatctctt	tggaggagcg	ttcgttttcg	ctttgatctt	caactacgaa	tttagtattg	tggagatttt
gtggagcttc	agtctttggt	tagaaagtgt	tgctatcatt	ccgcaattag	tggttcttca	gagaacggga
gaagctcaat	tactaaccac	acattacata	tttgcacttg	gattatacag	agcgttatac	atccccaatt
ggatctaccg	ttactacaca	gagggtcgca	tggacaagat	tgcagtcatt	tctggtatct	tacagactat
tgtctattct	gactttttct	acatttacta	caagaaagta	gttaagaact	tgaaattcaa	gctgccagaa
tgaacatgga	aatatagaaa	aacaaaagat	agtgtatcaa	taagtatata	tgtgttgcag	gaataaaaat
cagtccttct	tcaaaggata	atattcagtc	ctgacgccat	ctttag		

NCBI Accession number: CCA36419.1 Gene designation (GenDB): PP7435_Chr1-0258 Gene name: *OCH1* EC number: 2.4.1.232 Gene product: K05528 alpha 1,6-mannosyltransferase

ccgctaaaag	acccggaaaa	ccgagagaac	tctggattag	cagtctgaaa	aagaatcttc	actctgtcta
gtggagcaat	taatgtctta	gcggcacttc	ctgctactcc	gccagctact	cctgaataga	tcacatactg
caaagactgc	ttgtcgatga	ccttggggtt	atttagcttc	aagggcaatt	tttgggacat	tttggacaca
ggagactcag	aaacagacac	agagcgttct	gagtcctggt	gctcctgacg	taggcctaga	acaggaatta
ttggctttat	ttgtttgtcc	atttcatagg	cttggggtaa	tagatagatg	acagagaaat	agagaagacc
taatatttt	tgttcatggc	aaatcgcggg	ttcgcggtcg	ggtcacacac	ggagaagtaa	tgagaagagc
tggtaatctg	gggtaaaagg	gttcaaaaga	aggtcgcctg	gtagggatgc	aatacaaggt	tgtcttggag
tttacattga	ccagatgatt	tggctttttc	tctgttcaat	tcacattttt	cagcgagaat	cggattgacg
gagaaatggc	ggggtgtggg	gtggatagat	ggcagaaatg	ctcgcaatca	ccgcgaaaga	aagactttat
ggaatagaac	tactgggtgg	tgtaaggatt	acatagctag	tccaatggag	tccgttggaa	aggtaagaag
aagctaaaac	cggctaagta	actagggaag	aatgatcaga	ctttgatttg	atgaggtctg	aaaatactct
gctgcttttt	cagttgcttt	ttccctgcaa	cctatcattt	tccttttcat	aagcctgcct	tttctgtttt
cacttatatg	agttccgccg	agacttcccc	aaattctctc	ctggaacatt	ctctatcgct	ctccttccaa
gttgcgcccc	ctggcactgc	ctagtaatat	taccacgcga	cttatattca	gttccacaat	ttccagtgtt
cgtagcaaat	atcatcagcc	atggcgaagg	cagatggcag	tttgctctac	tataatcctc	acaatccacc

cagaaggtat	tacttctaca	tggctatatt	cgccgtttct	gtcatttgcg	ttttgtacgg	accctcacaa
caattatcat	ctccaaaaat	agactatgat	ccattgacgc	tccgatcact	tgatttgaag	actttggaag
ctccttcaca	gttgagtcca	ggcaccgtag	aagataatct	tcgaagacaa	ttggagtttc	attttcctta
ccgcagttac	gaaccttttc	cccaacatat	ttggcaaacg	tggaaagttt	ctccctctga	tagttccttt
ccgaaaaact	tcaaagactt	aggtgaaagt	tggctgcaaa	ggtccccaaa	ttatgatcat	tttgtgatac
ccgatgatgc	agcatgggaa	cttattcacc	atgaatacga	acgtgtacca	gaagtcttgg	aagctttcca
cctgctacca	gagcccattc	taaaggccga	tttttcagg	tatttgattc	ttttgcccg	tggaggactg
tatgctgaca	tggacactat	gttattaaaa	ccaatagaat	cgtggctgac	tttcaatgaa	actattggtg
gagtaaaaaa	caatgctggg	ttggtcattg	gtattgaggc	tgatcctgat	agacctgatt	ggcacgactg
gtatgctaga	aggatacaat	tttgccaatg	ggcaattcag	tccaaacgag	gacacccagc	actgcgtgaa
ctgattgtaa	gagttgtcag	cacgacttta	cggaaagaga	aaagcggtta	cttgaacatg	gtggaaggaa
aggatcgtgg	aagtgatgtg	atggactgga	cgggtccagg	aatatttaca	gacactctat	ttgattatat
gactaatgtc	aatacaacag	gccactcagg	ccaaggaatt	ggagctggct	cagcgtatta	caatgcctta
tcgttggaag	aacgtgatgc	cctctctgcc	cgcccgaacg	gagagatgtt	aaaagagaaa	gtcccaggta
aatatgcaca	gcaggttgtt	ttatgggaac	aatttaccaa	cctgcgctcc	cccaaattaa	tcgacgatat
tcttattctt	ccgatcacca	gcttcagtcc	agggattggc	cacagtggag	ctggagattt	gaaccatcac
cttgcatata	ttaggcatac	atttgaagga	agttggaagg	actaaagaaa	gctagagtaa	aatagatata
gcgagattag	agaatgaata	ccttcttcta	agcgatcgtc	cgtcatcata	gaatatcatg	gactgtatag
tttttttt	gtacatataa	tgattaaacg	gtcatccaac	atctcgttga	cagatctctc	agtacgcgaa
atccctgact	atcaaagcaa	gaaccgatga	agaaaaaaac	aacagtaacc	caaacaccac	aacaaacact
ttatcttctc	ccccccaac	accaatcatc	aaagagatgt	cggaaccaaa	caccaagaag	caaaaactaa
ccccatataa	aaacatcctg	gtagataatg	ctggtaaccc	gctctccttc	catattctgg	gctacttcac
gaagtctgac	cggtctcagt	tgatcaacat	gatcctcgaa	atgggtggca	agatcgttcc	agacctgcct
cctctggtag	atggagtgtt	gtttttgaca	ggggattaca	agtctattga	tgaagatacc	ctaaagcaac
tgggggacgt	tccaatatac	agagactcct	tcatctacca	gtgttttgtg	cacaagacat	ctcttcccat
tgacactttc	cgaattgaca	agaacgtcga	cttggctcaa	gatttgatca	atagggccct	tcaagagtct
gtggatcatg	tcacttctgc	cagcacagct	gcagctgctg	ctgttgttgt	cgctaccaac	ggcctgtctt
ctaaaccaga	cgctcgtact	agcaaaatac	agttcactcc	cgaagaagat	cgttttattc	ttgactttgt
taggagaaat	cctaaacgaa	gaaacacaca	tcaactgtac	actgagctcg	ctcagcacat	gaaaaaccat
acgaatcatt	ctatccgcca	cagatttcgt	cgtaatcttt	ccgctcaact	tgattgggtt	tatgatatcg
atccattgac	caaccaacct	cgaaaagatg	aaaacgggaa	ctacatcaag	gtacaagatc	ttcca

NCBI Accession number: CCA39540.1 Gene designation (GenDB): PP7435_Chr3-0582 Gene name: *HOC1* EC number: 2.4.1.-Gene product: K05534 mannan polymerase II complex HOC1 subunit

acccttccca	cttagtaagt	tggacgttat	gcataatttt	gggatgtacg	accaaatatt	gcctaaagta
gaataagtaa	tatttcttta	taaatagtaa	tgataatttt	ccatttaatg	gggtactcta	gactgtcatc
aaaaataaat	atatggtgtt	gctatgtagg	ccgtaacacg	gctcttcacc	tgtatggagc	atcggcatct
aaagcgtact	ggatttcctg	ttcccatttg	tcaccattag	caagcaattt	ttccttgtta	tacaacagct
cctctctagt	ttcggtggca	tactcaacgt	taggggtttc	aacaatggca	tcaactggac	aactttcctg
acaataaccg	cagtagatac	acttggtcat	gtcaatgtcg	tacttgtaag	ttcttcggga	accgtcaata
cgttcttcgg	cttcgatggt	gatagcctga	gcaggacaaa	ctgcttcgca	taacttacag	gcaatgcaac
gttcttctcc	ggatggatat	cttctcaaag	cgtgttctcc	tctgaaacgg	ggagaaactg	gacctttttc
aaaagggtag	tagattgtat	atggggcacg	aaagtacatt	tccaaagtga	tataaaggcc	tctaaagatc
tcagacagta	ggtaccattt	ggtggccttg	gaaagagcgc	tttcactgct	ttcttcccac	gtctttggtc
ttgggagtct	gaatccttct	ggatgtgtgc	cttggatcga	accagaagtt	aaagccaatg	tgggtttctg
tgcaatgagt	cccgtcgaaa	acctgcaaac	tggtattctg	tttatggcac	ggcaggaagg	cttcaatgct
agtggtctaa	acattgtgtt	ataaatgtgt	aggtagaaac	ctataagttt	gtgttggggt	tcgataatca
aacttgcctt	gaaggtaatt	ggctaggtgc	ttgttgagtg	tcgcacgtct	cggtatttt	ttacttgtcg
attctctctt	actgtccaag	atgtacgaaa	gatgtgaagt	ttctttgttg	gcgattttct	tgcagcgcga
tcgcggtcgg	tatgatttcc	cttcagacca	aaaacagata	tagatattca	attgaaactc	gcccttccaa
caccctgaac	accaccccct	aatgcaacaa	cagctgttta	gaaaagtaat	ttggctcacg	gttggactca
taacggtgat	attggtaata	ataaagattt	catccagcaa	gtccaccgcc	acagaccttc	agaaagtatt
gaagaatgcc	aatattttac	cgcaggacgt	gatcaattac	aatagcagaa	aagtaacgga	tgaactcgct

tcaaagctgg	acgagattca	aaagaagtat	ctctcgaagc	aagatgatag	aattagcaag	ctcgaagctg
aacgggcaga	tctactggaa	caggttagat	ttctaaggaa	ccccctgca	ggatcaagtt	taagagaaaa
attggcttat	ctgtttcctt	ataatgaaaa	cggcaaattc	cctgcttata	tatggcaaac	atggaagtat
ggcttgaatg	acgatcggtt	tggagaaaag	ttcaaagaag	gcgaaactca	gtgggcttcg	aagaatcctg
gtttcgttca	tgagttgttt	aacgatgata	cttccggtgt	gtttattcac	catctgtata	tcaatgttcc
agaagtgatc	aaagcatacg	agctgcttcc	caacataatc	ttgaaaatgg	acttcttcag	atatttggtt
ttatacgcca	agggaggtgt	ctatgcagac	gttgatacta	tgcctcttca	gcctgtacca	aactggattc
ctgaaaatgt	ctccccaaaa	agcatcggga	tgatcattgg	aatacaaaac	gatgctaaca	atccagattg
gaaaaagatt	acgtacatcg	tctacaattt	tccaattggt	gtattcaagc	gaagcctggt	cacccaatct
tgagagaatt	aatcgccaaa	atcacagagg	atacactgca	acgagccgag	tcaaactcac	tggaactagc
tgacattagc	gaagaaggcg	gcctgtctga	taagaatttg	tccattatgc	aatggacggg	tactggtatt
tttacagatg	ccatatttac	ctattttaat	gactacattc	aaagtagtat	ctataccaaa	gttacttgga
aagaattctc	caaattgaga	aagcccaagc	ttgtcagtga	tgtattggta	ctgccgatta	tcagcttctc
ggccggtgca	ggtagtggaa	aatcgactga	actgaacgat	cccttagcat	tcgtacaaca	ttattttgaa
agattacata	acgacaacca	ctaagggtca	gaaccattta	gattgtctgg	atctatcatt	atggccttgt
ttatagacaa	agaattgtat	cctggactga	agggaagttt	atagagtaat	acccctctga	caaccaactc
gaatgggtat	tttgagataa	tttcccatat	attattgtct	tcactgggag	acttacttct	tctttgtagt
tccggtatcg	gcagcaaact	tatggtggtc	acatcttcca	aacttctcgg	tatagtagaa	ctatttgtgg
ttgatacggt	ctgggtatcg	gtgataatgc	ttgtaataat	ggattttgtg	ggtgtaactg	aagctggtgt
attagtggta	gtggtagtgg	tggttgttac	tgtgctatct	gtaggttctg	ggagtggttt	ctgagccggg
tttaaaattt	tgatctctgt	ggtatcttcg	tctggatttc	gactaaaaaa	tccgccttga	aatacgagtg
gaacaggtaa	acgattgatg	gagcccagaa	gcactgtgtc	caaggaagat	tcatcaaaag	tgaaaggagt
gccatcttcg	tttccatcgt	taagatgaga	acttttggca	aaaaatcaa	tcagaacgtc	atctatttct
atggcgacaa	atccgggatt	gaa				

Appendix 4: Amino acid sequences of relevance for this thesis

NCBI Accession number: CCA40283.1

NCBI Accession number: CCA36295.1

MKLLSLALLV SLVSADTFYT PKDDVIQLNA YNFKDVVFNS NYSSVVEFYA PWCGHCQNLK NPFKKAAAVS KDYLQVAAID CDAAENKKLC SDYRIQGFPT IMVFRPPKFD PTSSTNRRSG AHANEVYSGA RDTKSIVEFG VSRIKNYVKR VSPNNINQTL GNSEKTQLLL VTDKAKPSAL IKSIALDFLN DIESFYYPFN DKTKKALTTR LEEYQQSFSG ESITSPSILV LHENEIHIFD GKLDKLSISK FLAEFSTPLE GPLSKRGKFL EHIRRGIKPG RKAKKGKKGK QTKNHDEL

NCBI Accession number: CCA36622.1

MKILSALLLI FTLAFAEVIE LTNKNFDDVV LKSGKYTLVK FYADWCSHCK RMNPEYEKLA EELKPKSDLI QIAAIDANKY SKYMKVYDID GFPTMKLFTP KDISHPIEFS GSRDSESFLN FLESTTGLKL KKKAEVNEPS LVQSIDDSTI DDLVGKDRFI AVTASWCGYC KRLHPEWEKL AKAFGNDDIV IGNVVTDVVE GENIKAKYKV QSFPTILYFT AGSDEPIRYE SPDRTVEGLV KFVNEQAGLF RDPDGTLNFN AGLIPGVSDK LTNYIKEKDQ SLLESTLDLL SNHEHIKDKF SVKYHKKVIE KLLKGENEFL NNEVERLSKM LNTKLSANNS DSVIKRLNIL RNFIEAKTES KPQLLHQEL

NCBI Accession number: CCA40358.1

MKSLLLLLLA LCQTVFGTIW ELTDKNFEKK AFGQQGMYSF VYIYSPYCNY CNEMTPQFAA LADLYDDTKL QLFQINGYAN KRVSKKYEVV GFPVLKIFSS DGTDMGSYTG VRGTQNFIDY IHEVTGVTPS FPDSYVKQPT SEELEDIIKD TKRDILVAFS QPWLRGWEFP YTNFYESLAR YYAEELDDSL TTFVRIDVSD AKNAEIVSKF QVSKTPSVFH FASYREYYDQ THKLFKEDLG PVEIVQLLEG AEDLVTESIR LSTLSDSRHK DVEESGEADN SFEEYAQLRE L

NCBI Accession number: CCA36419.1

MAKADGSLLY YNPHNPPRRY YFYMAIFAVS VICVLYGPSQ QLSSPKIDYD PLTLRSLDLK TLEAPSQLSP GTVEDNLRRQ LEFHFPYRSY EPFPQHIWQT WKVSPSDSSF PKNFKDLGES WLQRSPNYDH FVIPDDAAWE LIHHEYERVP EVLEAFHLLP EPILKADFFR YLILFARGGL YADMDTMLLK PIESWLTFNE TIGGVKNNAG LVIGIEADPD RPDWHDWYAR RIQFCQWAIQ SKRGHPALRE LIVRVVSTTL RKEKSGYLNM VEGKDRGSDV MDWTGPGIFT DTLFDYMTNV NTTGHSGQGI GAGSAYYNAL SLEERDALSA RPNGEMLKEK VPGKYAQQVV LWEQFTNLRS PKLIDDILIL PITSFSPGIG HSGAGDLNHH LAYIRHTFEG SWKD

NCBI Accession number: CCA39540.1

MYERCEVSLL AIFLQRDRGR KVIWLTVGLI TVILVIIKIS SSKSTATDLQ KVLKNANILP QDVINYNSRK VTDELASKLD EIQKKYLSKQ DDRISKLEAE RADLLEQVRF LRNPPAGSSL REKLAYLFPY NENGKFPAYI WQTWKYGLND DRFGEKFKEG ETQWASKNPG FVHELFNDDT SGVFIHHLYI NVPEVIKAYE LLPNIILKMD FFRYLVLYAK GGVYADVDTM PLQPVPNWIP ENVSPKSIGM IIGIQNDANN PDWKKITYIV YNFPIGVFKR SLVTQS

Appendix 5: DNA multiple sequence alignmets

Alignment 3: Multiple sequence alignment of the coding domain sequences of all four *PpPDIs*.

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	ATGCAATTCAACTGGAATATTAAAACTGTGGCAAGTATTTTGTCCGCTCTCACACTAGCA ATGAAGTCGTTACTGCTACTTCTATTAGCTCTCTGTCA ATGAAGTTACTATCCTTGGCACTTCTGGTGTCTTTGGTGTCTGCG ATGAAAATATTA-AGTGCATTGCTTCTTCTTTTACGTTGGC- *** * * * * * * * * * * * * * *	60 38 45 41
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	CAAGCAAGTGATCAGGAGGCTATTGCTCCAGAGGACTCTCATGTCGTCAA AACT-GTCTTTGGTACGATATGGGAACTCACGGACAA GATACTTTCTACACTCCAAAGGATGATGTAATCCAGTTGAATGCTTA CTTTGCTGAGGTCATTGAGCTGACCAACAA * * * * * * * * * *	110 74 92 71
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	ATTGACTGAAGCCACTTTTGAGTCTTTCATCACCAGTAATCCTCACGTTTTGGCAGA AAACTTTGAAAAAAAAGCTTTTGGGCAGCAA-GGTATGTACTCCTTCGTGTA TAATTTCAAGGATGTCGTTTTCAACTCAAACTACTCTTCGGTTGTGGA GAACTTTGATGACGTGGTTCTAAAGTCCGGAAAGTACACCTTAGTGAA * * * * * * * * * * * *	167 125 140 119
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	GTTTTTTGCCCCTTGGTGTGGTCACTGTAAGAAGTTGGGCCCTGAACTTGTTTCTG CATCTACTCCCCTTATTGCAATTATTGTAACGAGATGACACCTCAATTCGCTGCAC ATTTTATGCTCCTTGGTGTGGCCATTGTCAGAACTTGAA-AAATCCCTTCAAGAAGG GTTTTATGCCGATTGGTGTTCGCATTGCAAGCGAATGAATCCAGAGTATGAAAAGC * * * * ** ** * * * * * * *	223 181 196 175
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	CTGCCGAGATCTTAAAGGACAATGAGCAGGTTAAGATTGCTCAAATTGATTG	283 211 217 202
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	AGAAGGAATTATGTCAAGGCTACGAAATTAAAGGGTATCCTACTTTGAAGGTGTTCCATG AACTATTCCAGATTAATGGGTATGCCAACAAGA ACCTTCAGGTGGCCGCAATTGACTGCGATGCTGCC-GAAAA ATCTGATCCAGATTGCCGCCATTGATGCTAACAAATA * * * ** ** ** * * * *	343 244 257 239
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	GTGAGGTTGAGGTCCCAAGTGACTATCAAGGTCAAAGACAGAGCCAAAGCATTGTCAGCT GGGTCTCAAAGAAATA-CGAGGT	403 266 276 258
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	ATATGCTAAAGCAGAGTTTACCCCCTGTCAGTGAAATCAATGCAACCAAAGATTTAGACG AGTCGGGTTTCCTGTTTTGAAGATTTTTC- -TACCGTATTCAAGGATTTCCTACGATCATGGTTTTCAG- -TACGATATTGATGGATTTCCGACGATGAAATTGTTCAC- * *** ** ** ** ** ** ** ** ** **	463 296 314 296
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	ACACAATCGCCGAGGCAAAAGAGCCCGTGATTGTGCAAGTACTACCGGAAGATGCATCCA ATCTGATGGAACCG ACCCCCCAAGTTTGATCCC ACCCAAGGACATATCTCATCCG * * * * * * * * * *	523 310 333 318
CCA40283.1 CCA40358.1	ACTTGGAATCTAACACCACATTTTACGGAGTTGCCGGTA-CTCTCAGAGAGAAAT ACATGGGGTCTTATACCGGTGTCAGAGGCA-CTCAGAACT	577 349

CCA36295.1	ACATCAAGCACCAATAGAAGATCTGGTGC	362
CCA36622.1	ΑΤΥΥΑΛΤΥΤΥΤΥΤΥΤΑΥΑΤΥΛΑΑGAGACAGTGAAAGCTTTTTTGAACTTTTTGGAGGT	370
001100012112	* ** * * * *	570
CCA/0283 1	ͲϤϪϹͲͲͺͲͲϹͲϹͲϹϤϪͺͺͺϹͲϪϪϹͲϹͺͲϪϹͲϹϪͲͲϪͲϹϹϹϪϪϪϪϪϪϪϽϪϹϪϹͲϪϹϹϹϪϹͲϹϹ	633
CCA40205.1		207
CCA40358.1		202
CCA36295.1	TCA-TGCTAATGAGGTATACAGTGGTGCTAGA	393
CCA36622.1	CAACTACTGGTTTGAAGTTGAAGAAGAAGGCGGAAGTAAATG	412
	* * * * * * *	
CCA40283.1	ACTCCTGCCTATTTGCTTGTCAGACCTGGCGAGGAACCTAGTGTTTACTCTGGTGAGGAG	693
CCA40358.1	ACTCTTATGTCAAACAGCCTACTTCAGAGGAG	429
CCA36295.1	AGTCAATTGATA-CTAAGTCAATTGTTGAG	414
CCA36622.1	AGCCTTCGTTAGTTCAATCAATTGATGAT	441
001100012112	* * * * * * * * *	
CCA40283.1	ТТАСАТСАСАСТСАТТТССТССАСТССАТТСАТАТТСАСТССАААССТСТАТТТ	747
CCA40358 1		456
CCN26205 1		100
CCA30295.1		440
CCA36622.1	TCAACAATAGATGACC-TTGTTGGGAAGG-AC-AGGTTTATT	480
	* ** * * * * * *	
CCA40283.1	GGAGACATTGACGGATCCACCTTCAAATCATATGCTGAAGCTAACATCCCTTTAGCCTAC	807
CCA40358.1	AGGGATATTCTCGTTGCTTTTTCACAGCCTTGGCTTA-	493
CCA36295.1	GCGAGTGTCACCCAA-TAATATTAACCAAACCCTGGGA	483
CCA36622 1	GCAGTTACTGCTTCG-TGGTGTGGATATTGCAAAAGATTGCATCC	524
001100022.1	* * * * *	521
CC7/0202 1		967
CCA40263.1		507
CCA40358.1	GAGGCIGGGAGTICCCTTACACAAACTTTTAC-	525
CCA36295.1	GATTCTGAGAAGACCCAGCTTCTACT	509
CCA36622.1	TGAATGGGAGAAGTTAGCCAAAGCTTTTGGC	555
	* * * * * ***	
CCA40283.1	AAAGAGCAACGTGGCAAAATTAACTTTGTTGGCTTAGATGCCGTTAAATTCGGTA	922
CCA40358 1		550
$CC\lambda_{3}6295$ 1		5/8
CCA30293.1		
CCA36622.1	AAIGAC-GAIAIIGICAICGGAAACGIIGI-IACCGAIGIIGIG	591
aa. 40000 1		0.5.4
CCA40283.1	AGCATGCCAAGAACTTAAACATGGATGAA-GAGAAACTCCCTCTATTTGTCAT-	974
CCA40358.1	CTCTTTGACTACC-T-	577
CCA36295.1	AATTGCCTTAGACTTTTTGAATGACATAGAGTCTTTTTACTATCCT-	594
CCA36622.1	GAAGGTGAGAATATTAAGGCGAAGTATAAAGTTCAATCTTTCCCGACTATCCTG	651
	*** * ** ** **	
CCA40283.1		1014
CCA40358 1		599
CCA40350.1		599
CCA36295.1		035
CCA36622.1	TACTTCACAGCAGGCTCAGATGAACCAATAAGATATGAATCTCCAGATAGAACTGTTGAA	711
	* * * * * * *	
CCA40283.1	GACCAAGGATTGACGAACAAAGATGTGACCGAGCTGATTGAGAAA	1059
CCA40358.1	CGCCAAGTGTTTCGAAG	627
CCA36295.1	GGAGTATCAACAATCGTTT	654
CCA36622 1	GGTTTGGTTAAATTTGTCAATGAACAACCTGCCTTATTTCGTCA	755
001100022.1	* ** ** * *	, 5 5
CCA40283 1	ͲͲϹϪͲϹϹϹϪϹϹϪϹϪϹϹϪϪϽϹϹϪϪͲͲϹͲϹϪϪϪͲϹϪϹϪϹϤϹϪϪͲͲϹϹϪϹϪϪϪͲͲϲϭϪϪϭ	1110
CCATUZOJ.L		TTT2
CCA40358.1	TIAGTTTCAAAAACTC	040
CCA36295.1	TCTGGAGAGAGCATAACTTCGC	6/6
CCA36622.1	TCCAGATGGAACTTT-GAATTTCAA	779
	* * ** **	
CCA40283.1	GAGAAAGTCTTCAAGCTAGTCGGAAAGGCCCACGATGAAGTTGTCTTCGATGAATCTAAA	1179
CCA40358.1	CTTCAGTTTCGTG	676
CCA36295.1	CTTCGATTTTGGTGCTACATGAA	699
CCA36622 1		831
CC1120022.1		001

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	GATGTTCTAGTCAAGTAC-TACGCCCCTTGGTGTGGTCACTGT AATATTATGATCAAACACATAAGCTTTTCAAAAGACCAAAGTTTATGAAATCCA-CAT-TTTTGATGGGAAACT AAAGACCAAAGTTTATTGGAGTCAA-CGT-TAGACTTGCTAAGCAACCATGAACATATCA * * ** * * *	1221 706 728 889
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	AAGA-GAATGGCTCCTGCTTATGAGGAATTGGCTACTCTTTACGCCAATGAT AAGA-AGATTTGGGCCCCGTGGAAATTGTTCAATTGCTAACTCCC -GGATAAGCTGAGCATTAGCAAGTTTTTAGCCGAGTTTTCAACTCCC AGGACAAATTCAGTGTCAAATACCACAAGAAGGTCATAGAAAAGTTGTTGAAGGGA ** * * * * * * * * *	1272 744 774 945
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	GAGGATGCCTCTTCAAAGGTTGTGATTGCAAAACTTGATCACACTTTGAACGATGTCGA- GAGGGTGCTGAGGACTTAGTTACTGAGAGCATTAGGCTGTCAA- CTGGAAGGACCTCTCAGTAAGAGAG-GTAAGTTTCTAGA GAGAATGAATTCCTCAACAATGAAG-TTGAGAG-GCTATCAAAAATGCTGAA * * * * * * * * * * * *	1331 787 812 995
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	CAACGTTGATATTCAAGGTTATCCTACTTTGATCCTTTATCCAGCTGGTGATAAATCC CATTATCAGACTCTCGCCACAAA -GCACATTCGCAGGGGAATTAAACC- TACAAAGCTATCGGCAAACAATTCAGACT- ** ** **	1389 810 836 1024
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	AATCCTCAACTGTA-TGATGGATCTCGTGACCTAGAATCATTGGCTGAGTTTGTAAAGGA GATGTTGAGGAGTCTGGGGAAGCAGA-TAATT CGGAAGAAAAGCGAAGAAGGGCAAG	1448 841 861 1057
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	GAGAGGAACCCACAAAGTGGATGCCCTAGCACTCAGACCAGTCGAGGAAGAAAAGGAAGC CCTTTGAAGAGTATGCCCAACTAAGGGAAT AAGGGCAAGCAAACCAAAAATCACGACGAAT TTATTGAGGCCAAAACTGAGTCAAAACCCCAGTTATTACACCAAGAGC ** * * * * *	1508 871 892 1105
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	TGAAGAAGAAGCTGAAAGTGAGGCAGACGCTCACGACGAGCTTTAA 1554 TGTAG 876 TATAG 897 TATAA 1110 * *	

*

* * *

Alignment 4: Multiple sequence alignment of the 3000bp long upstream regions of all four *PpPDIs*.

CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	GTTCAAACCTAGCGCTAATGTTTTCAGGCATTTGTTGGCTCTTTTA TTTTCAAATCTCCAACTTTAATCGAATCGAAGATTGTTTGGT	46 42 47 59
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	ACTGAAGTTCCTGGTGTTTCCTATG-ATGGAGGGGATCAAGGGCTGATTAAC ATCGATTTTTCACTTTTGAAA-ACTGGCTGTACAATTTCTGGCTGGG -ACGATATTGAGTTCTTATTCCAAATGTA-TATCATCACCTCATTCTTTCTTACAC AAAAATGTGGAATTATTCATCTTGAATGAACTAGTGTCAGAAACGGTGAAA ** * * * * * * * * * *	97 88 101 110
CCA40283.1 CCA40358.1 CCA36295.1	TATGTATTCCAAAACAAATGGTTGCGCACTGGTGATGACACAAAACGGTGTGGTGTATGG TAGTTTTCTTGTGACTAGAAGCTGCAACGGAGCCA-ATAATAGTATTATACATTG TCAGGGTAATGCCACAAAT-GTCGTCTTGAAACTCTTCAAAGTCAGCATCT-G	157 142 152

CCA36622.1	TTAGTATC-TGCCAACGAT-AAGACATTGGAATCTCTCAAAAGGAAGATGGAT-G * * * * * * * * * * *	162
CCA/0202 1		202
CCA40203.1		100
CCA40356.1		197
CCA36622 1		213
CCA30022.1	* * * * * * * * * * *	213
CCA40283.1	GAGAGTCTTCCTTCAGTACTGCGAAATCTCACAGACATCAAAT	245
CCA40358.1	GAGCTTCCTCAAACTTATTGTGAAAACAGTTGAGGACAGCAT	240
CCA36295.1	GTTCCCAGATCAAAGAAAATCTCTCCATGGTTGAGGCAT	236
CCA36622.1	CGGTTCCATTGAATTGCAAAAGCCTCATTCCCTCAGTGTTAAAAGAATTAT * **** * ** ** * * * *	264
CCA40283.1	TGGTTCATTTCATAGGAAT-TGTGAAACCATGGATGCTTAAACCATCTTTTGTGAACGAC	304
CCA40358.1	TGAGGTAGAGGTATGCAGTACTGTGAGATTTTGGGGAC	277
CCA36295.1	CGCATTGAGCTCTCCTATAACGGGACTTGATTAACCAT	274
CCA36622.1	CGGTGTTGTTGATATTTTGAATAGCAACTTCCAAGAGGTTAC * * * * * * * * *	306
CCA40283.1	TTTCCAGATGGCAGTCTTGACAGTTTTGTTGCCCAATGGTGGGAGCAGTTTAGCTCTT	362
CCA40358.1	TTTTCGAAGGCTCCGGTAAAGTAGATGATGCTGAAAGTAAGACTTTC	323
CCA36295.1	CTTCCACCAGCCTTATTAGCAGGATCCTCC	304
CCA36622.1	CTTCGTCATTAGCAGACAGTTTACCACCAACATAAAGTTTACCATC ** * * * * * * * *	352
CCA40283.1	T-TGA-GAAC-GGTGAGTTTCTACCTTTGGTTTTTAAGAATGTTGAAAGCGAACGTATTG	419
CCA40358.1	TGTAATGAGCTGGCCAGGTCGAACTTGTTCATGGTGAA-GTAAA-GT-TTG	371
CCA36295.1	CTTAAACACTTCACTTCA	332
CCA36622.1	C-TGAAAAACTAACCC-ATTCACTGTAGCATTCTCAAGTA * * * * * * * *	390
CCA40283.1	AAGAAGACTCCC-ATGAGACGGAAGAAAAGGTGGACGA-	456
CCA40358.1	AACAGTATTCCA-GCAAAATAGTAGAC-TGCTATTTTCTTTGAAGTTGCAAGAT	423
CCA36295.1	AAAAGAGCTCTGTGCCAACTGGAAGGTCAGATACTTTCCTCAAATTGCTCAATGAT	388
CCA36622.1	AGGAGGA-TCCAAGTAGATTTATGGAGGAGTTTCCGACAAAAGTATTGTTTGATAAC * * ** * * * * * * * * * * *	446
CCA40283 1		504
CCA40358.1	CAGGGTTCTTGTCACTTAAACAAATTTTGAACGAC-CTATTGAATACATCAG	474
CCA36295.1	TGCCACAACTGTTCGCATGAGTCAATATTGGTAGTAGTAGTAGCACCGCCATTCG	443
CCA36622.1	CTTAAAGTGTCAAAATCTGTAAAGTTGTTGAGGGAATACTCAAAAATA * * * * * * * * * * * * * * *	494
CCA40283.1	CCAGTTTGGCCATCATT-CCT-TTGAAGAACCTGCACCGGTATTAGATT	551
CCA40358.1	CAATTTTCTCCAAAGGTGCCC-TTGAATGC-TCGGGAGTGGATT	516
CCA36295.1	CCACTGATGGAAACTCTACTTGTTTAACGGTCTGTAAATATTGGTCAAGTGTGTTTTGCC	503
CCA36622.1	CCATTTAAAGGCACTGT-CAAATTCAAGGATCTGGTACTATTAGTTGAGTTGAT	547
	* * * * * * * * * * * *	
CCA40283.1	ATTCAACTGAGGGAGAAGCATGGAAGCTTAATGAAGAACAATTGACTAATCAG	604
CCA40358.1	GATCACCTTTGTTACTATTATACAAATTTC-CGACATATTTCAGCTCAGTAGAAAG	571
CCA36295.1	AGTCATTTCTGG-AAGCCTCCGAACTTGTCTCTTTATT-TTCCTGTTCAGAAGG	555
CCA36622.1	AGCCGCATCTGC-ATCAATGTAC-AGTATGTCTACGTACAACTGATATGCGGCAAATTCC * * * * * * * * * * * * *	605
CCA40283.1	TGGGATGTTGATGCACCAGCTG-AGCCGCTGCCTGTCCCTGTTGAAGAAGACGAACG	660
CCA40358.1	GAGGAT-CAGAAG-ACC-GATA-ATCCA-GTTTGTTTC-ATTATCAGCGATACG	619
CCA36295.1	CTCAGCTACACTACCAGATGTAGTTACGTTTTCGGTCTCCTTGCCCCTCA	605
CCA36622.1	AACTCGGTTTCTGAATTTCCCGGTATAGTTGATTCGACCTCTAAGGTGACATACG * * * * * * * * * * * * * * * *	660
CCA40283.1	CGAAGAGACGAAGGCCGAAGCTGAATTGGAGGAGCTGCTACCGGATATTGTTCAGCCTGA	720
CCA40358.1	-GTTGAGCTGGGAAACTAGATCAAGACTTGTT-TCAAACGCCTTTTTGAG	667
CCA36295.1	-CATGATGCCAAAAAGTC-CAAGAGTATTGC-ATTGGATGAGG	645
CCA36622.1	-GATGATCTTCCAAGGTTGCATTGATACGACCGTTGTAAAG	700

CCA40283.1	ACCTCCAGCACCTCATGTTTTTC-CCTGGGAAGCTTACAATGAAAAGCCGACACGAGT	777
CCA40358.1	GTCTCCA-TGTTTGGTAATTGAT-T-TGAGAAGCG-ATAGATATGTTGAGACCAAA	719
CCA36295 1		695
		750
CCA30022.1	AAIGICA-IACIIGICAAAAICAIIGIIII-GAIAIAIIAAGAIGGAIGCGAGI	152
	** * * ** ***	
CC7 40000 1		024
CCA40283.1	TTTCCATGATTACAGGTAAAACTTTAACTAAATATAAGGTA-TAAGATAGCATCATTT	834
CCA40358.1	TCGGTCCATTTTTGGTCAACAATCCGGTTTTGT-TGCGGTAATGCGA-AGTTTGATCT	775
CCA36295.1	TGGACATTG-CAGTTTTGGGAAACCTGGAGA-AATATGT	732
CCA36622.1	TGCTCATTGTCGATTCCATTGTGAAGTGTAGCGTTGACAATT	794
	* *** * * * * * *	
CCA40283.1	TCGTATTTAGCTGGTACTTAGTCGAATTTTCTACTGCATGGTAGCGTTTGATACACGTTG	894
CCA40358.1	TTCTTGAAGAAGGTTATTTGGAATGCTTATGGAAAGGAGATTACTCAGTG	825
CCA36295.1	TCGAAGCTTGGTGTCGGATGGA-CGATTTTCAAGTTGGAGCGCGCATGCAGAG	784
CCA36622 1	CCTCTCCCTCCTDCDTCDCTCCCTTCCCTDDDCCCCDCCTCTCCTDDDCDT	843
00130022.1	* * * * * *	015
CCA40283.1	CCCATTCTTCTCTTTA-AGTGCGATTAACTGCTTGGACCGGTAAG-TCTC	942
CCA40358.1	ATGAGCCATCTTGAAACCTTACAGCTTGAGACACTTGTTGGAAGTACTGCAGC-TCTG	882
CCA36295 1	δδδGGTCδδTGCTδGTδGCGCTδ-GGTδTGCCδTTTGTTCGCCTTGTδGCδTCδδ	838
		007
CCA30022.1	* * <td>00/</td>	00/
CCA40283.1	GTAATGAACGACCGAAGTAGTCTCTAT-TAAATCAT-GGAGGTGGGT	987
CCA40358 1		934
CCA10550.1		004
CCA36295.1	AGAGTTGAGAGTTGGAGCCGGGTAATACTGACCATTAATTCCATTAATTCATACCT	894
CCA36622.1	ACACCCACTGTGGAGTCTGG-AAT-TTCACCATTGATCAATGATATGGTC	935
	* * * * * * *	
GG7 40000 1		1040
CCA40283.1	ACG-TGTTAGAAAGTCCCGCA-GGTACACAAATTCGCACTGCGTTACATCTTCCACG	1042
CCA40358.1	ACGGTGTTGGGATGTTGTTCCCTT-GGGACAGAATGATGTTTAACGATGCAATT	987
CCA36295.1	ATATCGTTTATATACCAAACTTAAGCCAGTCTAGATCTTCCGCAATGTTTCTA	947
CCA36622.1	GTGGTAATGGACCCATCTTCGTGGGGGGGTCCAGGATCCA-GGTGCCTCTA	984
	** * * * * *	
CCA40283.1	TTGATTAGACCCCATCGGGTTCTACGACCTCTGATGACCTGTCCATCAATTGT-GGAG	1099
CCA40358.1	TTGATACAATATAAGGATTTGATAGACTTAAATCCAGTCAATTACTTGGAG	1038
$CC\lambda_{3}6295$ 1		007
CCA30299.1		1070
CCA36622.1	CGGATACACTGGAAGAATGAAACTCAAAATCATCACAGGTAGGTTCGT-TGAA	1036
	** * * ***	
CCA40283 1	ՋՋℷ₩ĊŢĊՋͲͲͲͲĊՋՅՃԸĊĊՋՋͲͲՋĊͲĊĊՋℷՋĊĊĊŦℷℷℷՋĊᲞĊͲͲĊĊĊℷͲ	1146
CCA40203.1		1077
CCA40358.1	AGIAAGGIAAAAGGIGCAAAAI	T0//
CCA36295.1	ACCGCATGTTTTGTCCTCTGGGAAGCCCTCCTGTTTGACATCAAAACCAGT	1048
CCA36622.1	ACTTTCGTTACCATAAACGTAGATTCCTGATTGGTAGATTTGAAGTCCTTTAAG	1090
	* * * * * * * * * *	
CCA40283.1	ATCTTGATTCAAAGTCAGTTCTTCTTCACTCAAATCTTCATTGTCGTACG-G	1197
CCA40358.1	ATCATTTATTATATAGCAGTTGCATTTTAAAGATTTACAAATGGTCTCGCTTG	1130
CCA36295.1	AACAACGTGCTGAGTTTGAAGACTAAGACTGGA-AGGACGTCTG-GCAGTCTCTGG	1102
CCN36622 1	$\lambda C \alpha \lambda C C \lambda T T T \alpha \lambda T C C C \lambda C \lambda \lambda T \lambda C T T C \alpha T T C \lambda C T \lambda \lambda C C T - C - C$	11/5
CCA30022.1	* * * * * * * * * * * * * *	1115
CCA40283.1	AAAAAAGTTTAGGTCGTGTTTCTCAA-ATTGAGTGTGCAAAATA	1240
CCA40358 1	ΑΑΑCΑΑGTAAAGTTGACGATGCAGGCAACTTAATATCCACTGGCCAAAATAAAACTGAC	1190
CCA2620E 1		11/1
CCA30295.1	AAAICICIGCIGAAA-CGA-GIIIIICAGAAIAGGGGAAGAIGGI	1145
CCA36622.1	AG'I'I'CATTGTGGAACTCGAATTCTTGGTAATCTCCAGACCACGTTAG	1192
		
CCA40283.1	CTTTTAAACTTGGTACGCTCTTCGGTAGTCAAGGTGTCA-GCCT	1283
CCA40358 1	Ͳርሏሏጿሞሮሮጿሞሞሮጿሮሞሞርጿሞሞጿጿሮሞልሞምሮልሮሞሞሞሞሮጿሞርረጿሮጿላጿኣኣጥሮኣሞሞሞ	1242
CCATUJJU.1		1004
CCA30295.1	-AIACUGUGUTTUATTTUGGAATTUTTGGTGUAAAGAGUTGGAGATGGAGTTGGAGAACCC	1204
CCA36622.1	-GTAGCCTGCTGT-TCTGGTTTTGTCATTAAAGACGGTGTCTTCGTATAC	1240
	* ** * * **	
CCA 40202 1		1200
CCA40203.1	-IAGCAAIAACAGGAAIAACGIICACAACAGTAGTGAGTTTGGAAAG	1329

CCA40358.1	-TGTCAAGCACAGCCCTTTTCTTTAACGTCTGTACTTCAACCTCATCTCCAGATAT	1298
CCA36295.1	ATGCCCATAGTCGTTG-CTGGGAGATATAATACCTAGGTCTGAGTT-AATTGGCGAG	1259
CCA36622.1	ATCTGAAGAGTTTGCGTTCTGAAGAGCGTCTTCCAACTGTGATTTTGAGAGGAGTG	1296
	* * * * * * *	
CCA40283.1	AACT-TGTATGTCAAGGTTTCTCA-GTCCCTTACCGTTA-GGTTGAATGAAG	1378
CCA40358.1	ATTA-TAAAAGTGAAATATAAATATTTTA-ATTCGCTATTTA-CATTTAACCCAA	1350
CCA36295.1	G-CAGCGTTCGTAA-AATACGAAGCAACAGCCACTGGTTGCTGTGAAGTAAAA	1310
CCA36622.1	GACACCACGCGTCACAATATTCATATTCGTTGG-TT-TGTGGATTCACA	1343
	** * * * * * * * *	
CCA40283.1	TAAAGCACAAATGAACCCTTGTGTCAGGT-ATAT-ACCTTTCTCTCTGTGCTG	1430
CCA40358.1	TTCGGAACCCAGAATCCTTAAGATCCTATCAAAA-AGATCGCACACCATTCTGTACCG	1407
CCA36295.1	C-TGGAA-ACAGAGGAAGGTGATGCCGGTATAGATACTCCAGGATTATTA-CC-	1360
CCA36622.1	TATGTCA-AGTTCATGATACTGTTTGAAGGGCCAGTTATGAGCC-	1386
	* * * * * * * *	
CCA40283.1	TCAACTCTTTTCGCAAGTAGGTAGAGTTTTGCTCTTTGATATACTG	1476
CCA40358.1	TAAACAACACAACATTGGTATATGGCCGTCCC-AAGTACACCACCAAGAGGCATACAATA	1466
CCA36295.1	TGAAAGACT-GAT-TT-GTGACTTTCTGCGCTTGAATCCTGCTGAATGCGGGGAGAA	1414
CCA36622.1	TAAAGTACTCGACACC-ATAACCCTCTGCAGAAGTTGATTGGAATAGA	1433
	* ** *	
CCA40283.1	CAATATTGGTTCCCAACATTTGTCATTGTTGATCTGATCTCCAA-	1520
CCA40358.1	CAAGAAATCGATACCCA-TTCTGGCTAACAATGATGCACTCCTCAAC	1512
CCA36295.1	CGAAGTATAGGGAGAGTC-TTGTTGTTGTGGCATCATGGG-	1453
CCA36622.1	CGGAGCTTGGATGGAATTATTGTGTGGTGGAGCATAGCTAGCCAAGTCCCTTGGG-	1488
	* * * * * * * *	
CCA40283.1	AACCAGGTGTGTCAATCACGTTGAGTTT-CAGATTAAC	1557
CCA40358.1	ACCCAACCAGTAACCCCTGTCAC-ACAACGACAAGTTAGCGAGTCAACAGGA	1563
CCA36295.1	AACGGGAATGTTTTTATTGCTGGGACCCCTGGAAGGCTTGGGCAAA	1499
CCA36622.1	AGCCTGAAAGAATCCATTCATTGTCTTGATCGGGACAAGTGATTGACTTGGGGT	1542
	* * * * * * *	
aaa 40000 1		1 6 0 1
CCA40283.1	G'I"I'G'I"I"I'CA'I'I'GAGAA'I"I"I'GGGGAGGTGC'I"I'I'TAA'I'C'I'CTACA-G	1601
CCA40358.1	CTG1TGAAG1TTTCCATAGGCAAAAATGCGGCATCTCCGGTGAGAGATGGTCTCCCCATG	1623
CCA36295.1	ATGG-GAACATTCTTATGCTTTTGAGCGTTGCTGTTGAGACTGT	1542
CCA36622.1	CTGGCGAAAGGGCTTCGTTGGTAC-CTGCTGTTGACAC-GT	1581
	* * * * * * * *	
00140002 1		1650
CCA40283.1		1039
CCA40358.1		16/8
CCA36295.1	TGCCTCTCATTAGATAATAGGAATCTTGTGAACCTCCGTAGGGAGAAAATGATACGGC	1600
CCA36622.1	CGGCGATATTAAAACTTGTTAGTTGATCTGGACTGACATCAT-ATATGGT	1030
CCA40283.1	ΑΑΑΑΑGAGTATTGAC-TAG-AGTTGACTTCCCAAGCCCAGATTGACCAA	1706
CCA40358 1		1737
CCA36295 1		1648
CCA36622 1		1675
CCA30022.1	** ** ** * **	1075
CCA40283.1	CAAGCATAACATTGAGCTCAAATCCACGTTTAAGGAGTCTGTTT	1750
CCA40358.1	CAGGAGCTTTGCGGAACTGGAACGAAAGTACCAATCCGAGTTCGATTCTAGAAACCCCGTCC	1797
CCA36295.1	ͲͲʹ;Ͳͺ––––Ͳ;;ͲͲ;;ϫͲͲͲ;;;ϲͲͲͲ;;Ϸ;;ϫϿ;;	1702
CCA36622 1		1724
	** ** ** * * * *	
CCA40283.1	TCAATTTGGGTAGTGATAGTATCAAACCCCACATAATTCTTAGGTTGAA	1799
CCA40358.1	CCTGTTCAAAAGA-AGGATCAGAATCCACCAACGGCGGCTAAGAA	1841
CCA36295.1	ATGTTGT-TGTGGCTGG-AATTGAACTTGTTGTTGTTGCTGTTGCATCTTGCAGAG	1756
CCA36622.1	TCATCAT-CAATGCTAACAATTGCGTTCACTGATGCGTTTTCATTAAATCCTTGGAAG	1781
	* * * * * *	
CCA40283.1	CCACTTGACTTG-CCATAGTTTTTGT-ATTATCT-GACGAACAAAATGAAAGAGAATAA-	1855
CCA40358.1	TCCATTGACTGAACTAAAACGG-ATCATGGAGAAAAAACAATGAAAAAAAAACCAT	1894
CCA36295.1	CCCGTGTGTT-AAAGAAGATTGATGTTGTTGTCTCTTGGAATTTCGTTTCCTAATGACGT	1815

CCA36622.1	GGAATGGACTCGAAGGAGGAAGAT-TCATAGTTGAAGCAGACCAAACCAA	1836
CCA40283 1		1903
CCA40358 1		1954
CCA36295.1	CCGTTTTCAAAGACAATGGCCTCACAGTAC-CATGAAGTTTTTGGAAAAGA	1865
CCA36622.1	AACTGTTCAACGTCAAATTTCCCCCCAAAATATATCAACTTGGACGTTTGGT	1887
0010002211	*** * * * * * * * * ***	1007
CCA40283.1	CGATTGCATT-CGCGACTGTATCTTTCCGTGCAGCTCTATTACGAGAGTG-GTG	1955
CCA40358.1	CAATCCAAAAAATC-CGCACGGATTTTACTACTCTCTCTT-CGAACT	1999
CCA36295.1	CCACAAGCATTGCACAA-CGTATTGCCACTTCCATCTCTTCTCCAAAGAGGAGTC	1919
CCA36622.1	TGACAAACACGGTTTGAATAGATCCTTGAACTTGATTACTCCAA * * * ** * * * * *	1931
CCA40283.1	TTCTTAGTTTTTCCCTCTTCAATTTCTACTAAAGCTGCTTTG	1997
CCA40358.1	TTTTAAATGATTCTAAGAAATTTCAGCAGGGTTTTGTG	2037
CCA36295.1	TTTTCAGTCTTACAATTTGAGCATTGAGTTCTTGTTATACTTTCGTCATTGTCAGCTTTG	1979
CCA36622.1	TTTTCGGTCAGGTTCGATATTGAAACCT-GAGAAGCTTCC-TCGTTCACTTCTA ** * * * * * * * * * * * * * *	1983
CCA40283.1	GTAAAGGGAGACATATTCGGCT-ATTGTTTACT-TTG-CGCCCACAGTAGC	2045
CCA40358.1	ACAAAAGCCAATAGTTTCTTTAACAACT-TTAACACCTCAGGCAGCAAC	2085
CCA36295.1	GGGGATGATGAGTCACTCATATCTTTCTGAACAGTCACTGTTGTTGTGA-TACTAGTAGT	2038
CCA36622.1	GGATCAGAGGAGCTTCATTTTCTTCGATGGGGATTACCAACACGA-AGTTATTC * * * * * * * * * * * *	2036
CCA40283 1		2099
CCA40358 1	TCCGTAGCTAGCGACCAAAAATTC-TTTGGAGCGCCAAAGCATCTGG-AAGTTGCCTGTATG	2143
CCA36295.1	CTCGG-AAGTAGGTTTCGCTAACTGTAGTTTA-TGAGAAGCTCCGTCACTC	2087
CCA36622.1	CCCAATGAGTAGGACTGTTTTATTGTGCC-GTTGAATGTGGAAATGAACGAT	2087
	* * * * ** **	
CCA40283.1	ACGTTCGCATACTAGC-TATCATAAACTAAGCACCACCTTACACCACTTTCTCA	2152
CCA40358.1	ATGTTCGAAAGCATGACGCAAACCAGACATTGATGAGCTCTGAAG	2188
CCA36295.1	AAGAATTCTTGCAAAGACTTGTCTTGGATAATATCACTAAAATCTCCTCCCATA	2141
CCA36622.1	AACGACTCATCTTGACCTAGTTTGAA-AATGCCTAAACTCTTTGAATCTTCGTTCCTA * ** * * * * * * * * *	2144
CCA40283.1	CTGAAGATTTTCGACATCAAATTTCTCTTGGATCACC	2189
CCA40358.1	ATGAAGATGAAGAAGATTATGGCGGAAAAGC	2219
CCA36295.1	CCATCTTCCTCACCATCATCATTGCTATCGAACTTCCA-C	2180
CCA36622.1	ACAGATGTCCTGTACTGATTGGTATTATTGGGTGTAGAAAGTCCGTTGAACCGTCCCAGC * * * * * * * * * * *	2204
CCA40283.1	ATCAACCTTGTGTCTACATGTCCTTGTCTTTGAACCTAAATCA	2232
CCA40358.1	ATACCGACTAGACTTGTAGTCAAATAGCATACAAACAGCATCAAGACCATTA	2271
CCA36295.1	ATCGAGTTTAGATCCAAATTGTTGGA-GTCATGCAAGGGACTATCATTCATAGATGAGGG	2239
CCA36622.1	AAAGAGATATCATTTGAAAAGTTGATCGCCTGGCAAGAGACGATTATTGAGACCAGTAGG * * *	2264
CCA40283.1	GATAGCCGTGCGGGTTGTGGGGCATATTGCCTCGTATTCCGGAGATTCACATT	2284
CCA40358.1	AATACTCGCCTCAACTAAAAACTCGTCTTCCTT-GATTGACTTT	2314
CCA36295.1	CGTAACCATCATTGAAGGTTTTGGTTTTCGA-AGTTCGGATTT	2281
CCA36622.1	AACAACAA-CGCCGCCATAGTTTCAATCTGA-AGTTGACTTGTGTGATTT * * * * ** **	2312
CCA40283.1	GCCATTCCTAATATTTTTCAGCGACGCACCGAAGCT-TCTA	2324
CCA40358.1	ACTTTTTCGATTAGATCACCA-AGCGGTGTATCAAGAGACGGGTACTGTCTA	2365
CCA36295.1	AACCTTGGAATCTGAGTAACTAGA-CGGAGCCCCAGAATTATTTT	2325
CCA36622.1	GGTGTTGGGGGGGATTGAGGGGTCAAAAACGGGGGGTCAGAAACAGAATA-AAAAACTAGCTT ** * * * * * * * * * * * *	2371
CCA40283 1	<u> </u>	2380
CCA40358.1	C-GCTATTCACGGTTAGCGTCAACAAAATGTAAAAAAAAAA	2420
CCA36295.1	CCAACGAATCTGGAGAATAATACAGGCCAGGAGCACTTGAAATAATCTC-CGTCAA	2380
CCA36622.1	GGAACTCGAAGTAGGAGAAGAGAGAGGTGGTGAAAAA-AGAAGAGGGGACGTGACGT	2428

CCAHUZUJ.I	GITCCTCCATTCTTCATTGATAACGGTATACTTAAAGCAGCACCAAAAAAGAAG	2434
CCA40358.1	AGCCCAACTTACTTTTGCCAAAAAGCCAAACAACTCA	2457
CCA36295.1	ATCAGCAGAGTCATC-TAGTTGCAATTCGGAAAAATGTAGTT-TGCCAGAAA-GGCT	2434
CCA36622.1	AGACCTGAACTCTGCGTGGGTGCAATGTGGTTGGAAGGTGAAGTGCAAGGTATGGTT	2485
	* * * * * * * *	
CC7/0283 1	CTTTCTCATATCAAAACACCCACAAATTATCCTCCA	2/72
CCA40203.1		24/3
CCA40356.1		2497
CCA36295.1	GICHIGITHIGICATCIGGGITHICHIGGATICATTICHIAAIGHICIGIHITCAACICG	2494
CCA36622.1	TTTTTTTTCCTGCCAGGAATCAAAAATATCATTCTCTCT * ** * * * *	2526
aa. 40000 1		0 - 0 0
CCA40283.1	GGAAAAAAACAACTCTCTTTTACTACAAAATTTGAACAGGTGTCCTGC	2520
CCA40358.1	TGGGAATGTCATCCTTGACCACCTCTGTGTCCTTC	2532
CCA36295.1	GGGGTATAAATCTAGTAGCT-TTTTAGCCGAAGAATATACCCCCCATATGGACGGCGAAT	2553
CCA36622.1	GAGGAAAGGCATGGCAGAATATTTACCTGTTGCCAGAT ** * * * * * * * * * * * *	2564
a a 10000 1		0564
CCA40283.1	CTGCGGAAACTACAAACGATCACACACCCCTCTGCATGCATTGCG	2564
CCA40358.1	TTCTTGGATTGCTTTTTCGATATCGTTCGTCGGCTAGAGGGCTTGAA	2579
CCA36295.1	CTTCAAGATCC-TTCAAAGATCCTGTATTATTTCTTCTGTTTCCTTCCATCTAAATGAGG	2612
CCA36622.1	CTGGATATGAAGATTACATAATAAACACGTAGACAGTGTAGATTCTG * * * * * * * * * *	2611
CCA40283.1	TAGGACAAATCAGGAGACATTGGA-ACGACTCTGTTCCT-CAACAGGAGGCAT	2615
CCA40358.1	GGTGGTAAAAAACATTGAATACAATGTAGCCCCCACAACGAGGCCCAC	2627
CCA36295.1	CCTTAGGGCATATAATTAGAGAAAGGACAGGACCAGTTGAGCTTCAATGCTAGGGTG-GT	2671
CCA36622.1	CGAGGCGTGCCAGACGTTGAGGAGGACAAGTTGGGGCTCCGTAAGGTGTGC	2662
	* * * * * * * *	
CCA40283 1		2666
CCA40358 1		2671
CCA36295 1		2710
CCN26622 1		2710
CCAS00ZZ.I	GICCAIAIGCGGACAGAGIGIACCIAIIGGCIGAIIGGCAACA	2705
	* * * * * * * * *	
	* * * * * * * * *	
CCA40283.1	* * * * * * * * * * * * * * * * * * *	2722
CCA40283.1 CCA40358.1	* * * * * * * * * * * * * * * * * * *	2722 2723
CCA40283.1 CCA40358.1 CCA36295.1	* * * * * * * * * * * * * * * * * * *	2722 2723 2750
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	* * * * * * * * * * * * * * * * * * *	2722 2723 2750 2742
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	* * * * * * * * * * * * * * * * * * *	2722 2723 2750 2742
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1	* * * * * * * * * * * * * * * * * * *	2722 2723 2750 2742 2760
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1	* * * * * * * * * * * * * * * * * * *	2722 2723 2750 2742 2760 2781
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36295.1	* * <td>2722 2723 2750 2742 2760 2781 2786</td>	2722 2723 2750 2742 2760 2781 2786
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779</td>	2722 2723 2750 2742 2760 2781 2786 2779
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779</td>	2722 2723 2750 2742 2760 2781 2786 2779
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA36622.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779 2813</td>	2722 2723 2750 2742 2760 2781 2786 2779 2813
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA36622.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779 2813 2828</td>	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA40358.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2828</td>	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2828
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA40358.1 CCA36295.1 CCA36295.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2824</td>	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2824
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833</td>	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833</td>	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA40283.1 CCA40283.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2864</td>	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2864
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA40283.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2864 2864</td>	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2864 2864
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA40358.1 CCA40358.1 CCA40358.1 CCA40358.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2864 2864 2883 2892</td>	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2864 2864 2883 2892
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA40283.1 CCA36622.1 CCA40358.1 CCA40358.1 CCA40358.1 CCA36295.1 CCA36622.1	* * * * * * * * * * * * * * * * <	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2824 2833 2864 2883 2892 2884
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA40358.1 CCA40358.1 CCA40358.1 CCA40358.1 CCA36295.1 CCA36622.1	* * * * * * * * * * * * * * * * * *	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2864 2883 2892 2884
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA40283.1 CCA40283.1 CCA40283.1 CCA40283.1 CCA40283.1	* * * * * * * * * * * * * * * * * * * * * AGAAAGAACTGCCCGATGAACGAACTTTACGTAAGAAGGAGTGGCTGAAG-AGAAGA TGTAGGAGATGATATATTTTAAAGAGGTCCAAGGACCCGTGGAAGCAAAATA TGTTAGGAGAAGTGTTTTTTTGGAACAGACACCGCCGGGG CGTTAC-ATTGTTGCATTCCTGATTGGCGTTGGTGTGCC * * * * * * * * * * * * * * * * * * * * * * * * * * * * *	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2864 2883 2892 2884 2892 2884 2916
CCA40283.1 CCA36295.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA36622.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA40283.1 CCA40283.1 CCA40283.1 CCA40283.1 CCA40283.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2824 2864 2883 2892 2884 2892 2884</td>	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2824 2864 2883 2892 2884 2892 2884
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1 CCA40283.1 CCA40358.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA36622.1 CCA40283.1 CCA36622.1 CCA40283.1 CCA36622.1 CCA40283.1 CCA36622.1 CCA40283.1 CCA36622.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2824 2864 2883 2892 2884 2892 2884 2916 2929 2941</td>	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2824 2864 2883 2892 2884 2892 2884 2916 2929 2941
CCA40283.1 CCA36295.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA40283.1 CCA36622.1 CCA40283.1 CCA36622.1 CCA40283.1 CCA36622.1 CCA40283.1 CCA36622.1	* * * * * * * * * * * * * * * * * *	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2844 2833 2864 2883 2892 2884 2916 2929 2941 2932
CCA40283.1 CCA36295.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA36295.1 CCA36622.1 CCA36622.1 CCA40283.1 CCA40283.1 CCA36622.1 CCA40283.1 CCA36622.1 CCA40283.1 CCA36622.1 CCA40283.1 CCA36622.1	* * <td>2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2892 2884 2892 2884 2916 2929 2941 2932</td>	2722 2723 2750 2742 2760 2781 2786 2779 2813 2828 2844 2833 2892 2884 2892 2884 2916 2929 2941 2932

CCA40358.1 CCA36295.1 CCA36622.1	GC-CCATG-CGCGACTCATCCCC TTATTTTCCCA-CCGTTTTTTG- TTGCCTTCCGA-TTGTCTTCTCC	-CGCCTGATGAAATAGA ICCCCTTTCTCGCTA ICCCCCCGTTTGCTGTC	TA2 -A CA	AATTTTTGCAT -ATCTCTT -ACCACTT	2979 2985 2980
	* *	* *	*	*	
CCA40283.1 CCA40358.1 CCA36295.1 CCA36622.1	CTTCTTCTTCTTCCTATCTATAAGA- CTATGAACTTTTCACTCAAAA CGCTCTCGACAGCAC GAAAGGGTCTGTCTAGGATA-	3000 3000 3000 3000			
	** *				

Alignment 5: Multiple sequence alignment of the 1000bp long downstream regions of all <u>four *PpPDIs*</u>.

CCA40283.1	GAATGTCCGGGGTTTCTATATTTACTGTAACTAGGTTTTATTCTTTTGTATAGTCC	56
CCA40358.1	ATAGAAGTCTTCCCATTTG-TGAAGGCAAGATAGA	34
CCA36622.1	GTAAATGAAAAAGATACCTTTCTAGATA-AGTAAATAAATAACGCTATAACTC	52
CCA36295.1	ATACATACGAAGTTTTTTATTTTTTTTTTTTGCTTC	35
	* * * * * *	
CCA40283.1	AACAAACCATATGGATT-AGCATCACTTCGCGCAATACGTTCTAGTTGCCCA-C	108
CCA40358.1	AACCAATCACATACATTTGGTGTAGACTAGAATGGATCTATCTGGTTATGTA-A	87
CCA36622.1	TACCA-CTGTAGAGGCTTTGTAGATTTCTGGACCAATCTCACATGCTCCGGCCACACT	109
CCA36295.1	TTTCATTCATATATTTACAAGTT-GAATATTTTTACACAATTGTAGAAG * * * * *	83
CCA40283.1	TTGCTAAAACCAATTTAGCAATGATTCAACAGCAATTATTATCACCA	155
CCA40358.1	TCACGATACCTTTCGGAATTGTCTCGTGTAGCAGGCGCGCCCCTTCGCATCTCAA	142
CCA36622.1	TTGCCGCCCCCTAGGATGGTTTCTTCT-ATGATAGGTTTGACATTAAAG	157
CCA36295.1	TCACCCTAACCCTGGATGGATTCTTCCAACTGAAGTTTTCTGGAATGGCGA	134
	* * * * * * * * * * * *	
CCA40283.1	TGACTAACTGGAAAGC-GATATTGA-CTCCCGCTCAATACCAAGTCCTCCGTTTG	208
CCA40358.1	ATCAACAGTTGGCAAGT-GTCACTTTCTAAGTTAGCACTCTACTTT	187
CCA36622.1	GGGTTACATCTTGCCAACCAGATATTAG-CCCCAGACTTC	196
CCA36295.1		173
001100220012	* * ** ** * * *	1,0
CCA40283.1	GGCGGAACAGA-AAG-ACCGTATACCGGACAGTATGTGAACTTCAAGAAAAATG	260
CCA40358.1	AAGAACAAA-ATG-AACATCTTTAGAATCCTAGGTAAGTTTCCGC	230
CCA36622.1	AAGTAAATGAG-AACATTTGCTGCATACT-TGTGACCTCCGACATGATTGATAAAA	250
CCA36295.1	GGGTTGACATCTAACGTCTTTTTGTCTTTGTAGGTCACCTCAATGATA	221
	* * * * * * * *	
CCA40283.1	-GAACCTACTTGTGTAGTGGGTGTCAAACTCCGCTTTACAAAAGTGG-CA	308
CCA40358.1	TCTGCTCAATTGAAGAATCAAACCCAATTTTCTAACCACGCA	272
CCA36622.1	TGAACTTGCACTCCGCCTGGTCTATCATCTCCGAGATCTCTGTAGAG-ATCGTGATCA	307
CCA36295.1	-GGTTTTTTGTTTGACTGGCTGTTCAAGA-CTTCGTAGTTTATTGTGCA	268
	* * * * * * * *	
CCA40283.1	CAAAATTTGATTCATC-TTGTGGTTGG-CCTGCATTCTATGAAGCATTA	355
CCA40358.1	GGTGATATCTCTCATT-TGATAAGCAT-CTTG-ATCCTAATACATGCTG	318
CCA36622.1	CGAAGGTGAATGCACATCTCCTTCTTAATGATAGGTGC-GGTG-ATTCCGCAACGT-TTA	364
CCA36295.1	TGATTTC-TTCAAGGAACTGGGCAAAGCTGCAAGAAAAAGTCTTG	312
	** * ** * ** * * *	
CCA40283.1	CCTGGAGCAGTTAAACGAATAGAAGACAATTCGCTTGGAATGCGAAGAATA	406
CCA40358.1	TATC-AACAACAAAGTCTGCTCAAGGTATCTCATTAAAAACTCAAGCAGCT	368
CCA36622.1	TCCCTTGTT-TTATGCGAGCACAAGAACACATAGGACTTGTTTGTGTCTTTAACGATC	421
CCA36295.1	CGCCTTTAGCTTCTGGACCAAAAGGGTTGAATTTGACCGATACTTTGGTAAAG	365

CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1	GAAATCAGATGCTCCAA-ATGTGA-TGGA-CATCTTGGCCATGTTTTTGAG TATGTCGTAGTCTTTGTGAGCAGG-TATCTTGACCTCTTTTTCAGA TCATAACCTTTGA-TTTCGGCGGGAATATCTATTGGTTCCACTTGGGTAGTTTCGA TACTTGGTAATCATGGAGATGCTTCTGCAAGAATTGGGTCGTGATGAGA * * * * * * * * * * * *	454 413 476 414
CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1	GGTGAGGGATTTGACACTCCAACAGATTCCAGACATTGTGTCAACAGCATCA TATGTGTCACTTTACAACACGCTGATGAAACTCTTTTTCATTGTCTCTTCCATTT TA-GAGAAATTTGAAAAAAGAATGGGCACTAGCTCGTCCAATACGGCATCAACATCC GAGGGTGGATTTTTTCGAAGAGTATCCGATATTGAGTTTCGCCCACTA * * ** * * * * * * * * * * *	506 468 532 462
CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1	GCCTAAAATTTCAAGGTGAAGAAGAGAACTAAGCGGGGGGGAATGACTAAATAAAACGTTGTGTTTTTGTTAAATCGGTACAAAAAGAACAGTGAAAAGACCAATGATATTTTCCATACACAACTGCTTGACCCATACAAAGTACGGAAGAATTAAAATATCCCATGATATATTTTTTTTTCTGACTTACCTCCCTCTAAATAAGAATCACTTCACC****	560 526 582 517
CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1	TAAAGTAAAAATTTTGTTTATTGACGCCTTTTATAATTTGTTTCCTTGGTCTTTAAG CCCAGTATGGTATCTCTTTTGGAGGAGCGTTCGTTT-TCGCTTTGATCTTCAAC CCCAGCTGTCTGTTCGGCAATTCTTGGATCCTTGGCATTAGAC CATAGATATCTACATGAAGGCTCAGAAATTTTCCAAGGCTTCGTTACTGGAT ** * * * * * * * * * * * * * *	617 578 625 569
CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1	AAA-ACTATCATTCTGGAGAATTTC-TAGAAGATACCCATCAGGGTCCTTGAAGA TACGAA-TTTAGTATTGTGGAGATTTTG-TGGAGCTTCAGTCTTTGGTTAGA TGGGGT-ATGGATGATGTGGAGACTTTAACCGCTTTTGGAAC GATGAGGATGACTACTCAACTCAGCTTGACAGAATTCTTGCTCGGAGG * * * ** * * * * * * * * * * * * *	670 628 666 617
CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1	AGGCAAGCTTGTCGCTAATCTCTCCCCAATTTAAAGACCCATTCTACATCATTC AAGTGTTGCTA-TCATTCCGCAATTAGTGGTTCTTCAGAGAACGGGA CAGCTTGGTAGATGAAGCCCAATGAGAGATTGATTTTAAAATCGTG AAGAAGAGTCAGAAGGAAGACTCTGGAGATCTAGATACGATTTCTTTTGGCTCCTTA * * * * * * * * * * * * *	723 674 712 674
CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1	TCAAGCTCTTTGGCAAGTTTGGCGACATCCTT-TGTTTTAATGCCTGTATGGC G-AAGCTCAATTACTAACCACACATTACATATTTGCACTTGGAT-TATACAGAGCGTT CCATCAAC-ATCAGTGGCGTCACGCTTCCAATCGGACTTACCCGTTGGAAT TCAAAAGCTCAAGCAAGATTACAAACTGAGGAGAGAAATCCAAGAAGAAGG * ** * * * * * * * * *	775 730 762 726
CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1	CATATCCAAAAGGCTCAGTGGTGTTGGTATGGTAACCTTTGAAGCTGGA ATACATCCCCAATTGGATCTACCGTTACTACACAGAGGGGTCGCATGGACAAGATTGCA GATAATGTGTAAAGAGTACGGTTTAGTTGATTTCCAAAGGAGAATCGTTTTTGGAGCCTGG TAAAAAAAGTCAAGAAACCGAAAGTATTGAAGAAACAGGAAGAAGATTTTCAACCTCCCA * * * * * * * * *	824 788 822 786
CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1	GTCACTTTCTGTACCCCAGTTATGGGTCAACTCAATAATAGATTCCC GTCATTTCTGGTATCTTACAGACTATTGTCTATTCTGACTTTTTCTACATTTAC GTCATCTTT-GTAACTGTTTGGATACCTTGTGAAGCACTCAG GTGACATTTCTGATGACGGTGAGTTTTTTTGAAGAGCCCATCTCAAGAC-CATCAAAGTCGA ** ** * * * * * * * * * * * * * * * *	871 842 863 845
CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1	TCTCAGCTTGTGGACGAGGTTTTTCCTGGTTTTCCACGTATTGAT TACAAGAAAGTAGTTAAGAACTTGAAATTCAAGCTGCCAGAATGAACAT CGGCCGAACAAGTAGCGGGGCACTGTGAAAGAGGAACTAT ACTTCAGATAGGCATTCCAAGGAGGAACCTAGATCTAAAAGTAAGCACGCAC * * * * * * * *	916 891 903 897
CCA40283.1 CCA40358.1 CCA36622.1 CCA36295.1	CGTCATGCTCGTA-GCCCAGAAAATAGAGGGTGAACTTAGCTTCCGGAAAT- GGAAATA-TAGAA-AAACAAAAGATAGTGTATCAATAAGTATATATGTGTTGCAGGAATA TTCTGAGATCTCCTCAGCCGCCTGGGCTTCGCCGGATTTGCCCCCCAAGAAC- CCTCAGAGTCTAGTGCTAAGAAGAAGAGGGGTGTCAAAGGTGAGGGGAGATTCCTGGAC * * * * *	966 949 955 951
CCA40283.1 CCA40358.1	CATACCTAGTAGAATAAAGTTTCATACCTAAAACTT AAAATCAGTCCTTCTTCAA-AGGATAATATTCAGTCCTGACGCC-ATCTTTA	1000 999

CCA36622.1		TTCGA	ACAAAAA	AGCCAT	TACTGAT	TGGACTTAA	GGATGAAAAGC	G 999
CCA36295.1		TCT	rgaacggt1	FCTGGCTCA	GTTCAT	TGTACCAGG	ATGTCAGATTC	G 999
		* *	*	*	*	*	*	
CCA40283.1	-							
CCA40358.1	G 1000							
CCA36622.1	G 1000							
CCA36295.1	A 1000							

Alignment 6: Multiple sequence alignment of the 1000bp long upstream regions of *PpOCH1* and *PpHOC1*.

CCA36419.1 CCA39540.1	CCGCTAAAAGACCCGGGAAAACCGAGAGAACTCTGGATTAGCAGTCTGAAAAAG 5 ACCCTTCCCACTTAGTAAGTTGGACGTTATGCATAATTTTGGGATGTACGACCAAA 5	53 56
	** ** * * *** * *** * ** ** ** **	
CCA36419.1	AATCTTCACTCTGTCTAGTGGAGCAATTAATGTCTTAGCGGCACTT	99
CCA39540.1	TATTGCCTAAAGTAGAATAAGTAATATTTCTTTATAAATAGTAATGATAATT ** ** ** ** ** ** ** ** ** **	L08
CCA36419.1	CCTGCTACTCCGCCAGCTACTCCTGAATAGATCACATACTGCAAAGACTGCTTGTCGATG 1	L59
CCA39540.1	TTCCATTTAATGGGGTACTCTAGACTGTCATCAAAAA-TAAATATATG 1 * * * * * * * * * * * * * * * * *	155
CCA36419.1	ACCTTGGGGTTATTTAGCTTCAAGGGCAATTTTTGGGACATTTTGGACACAGGAGACTCA 2	219
CCA39540.1	GTGTTGCTATGTAGGCCGTAACACGGCTCTTCACCTGTAT-GGAGCATCG 2 ** * *** *** * * * * * * * * * * * *	204
CCA36419.1	GAAACAGACACAGAGCGTTCTGAGTCCTGGTGCTCCTGAC-GTAGGC-CTAGAACAGGAA 2	277
CCA39540.1	GCATCTAAAGCGTACTGGATTTCC-TGTTCCCATTTGTCACCATTAGCA-AGCAA 2 * * * * * ***** *** * ** ** ** ** ** **	257
CCA36419.1	TTATTGGCT-TTATTTGTTTGTCCATTTCATAGGCTTGGGGTAATAGATAGATG	330
CCA39540.1	TTTTTCCTTGTTATACAACAGCTCCTCTC-TAGTTTCGGTGGCATACTCAACGTTAGGGG 3 ** ** * **** * * * * *** * *** * *** * *** *	316
CCA36419.1	ACAGAGAAATAGAGAAGACCTAATATTTTTTGTTCATGGCAAATCGCGGGTTCGC	385
CCA39540.1	TTTCAACAATGGCATCAACTGGACAACTTTCCTGACAATAACCGCAGTAGATACAC 3 * *** * *** * *** * *** * *	372
CCA36419.1	GGTCGGGTCACACACGGAGAAGTAATGAGAAGAGCTGGTAATCTGGGGTAAAAG	139
CCA39540.1	TTGGTCATGTCAATGTCGTACTTGTAAGTTCTTCGG-GAACCGTCAATACGTTCTTC 4 **** **** * ** *** * * ** * ** * *	128
CCA36419.1	GGTTCAAAAGAAGGTCGCCTGGTAGGGATGCAATACAAGGTTGTCTTGGAGTTTACATTG	199
CCA39540.1	GGCTTCGATGGTGATAGCCTGAGCAGGACAAA-CTGCTTCGCATAACTTA ** * * * * *** * * * * * * * * * * * * * * * * *	177
CCA36419.1	ACCAGATGATTTGGC-TTTTTCTCTGTTCAATTCACATTTT-TCAGCGAGAATC 5	551
CCA39540.1	CAGGCAATGCAACGTTCTTCTCCGGATGGATATCTTCTCAAAGCGTGTTCTCCTC 5	532
CCA36419.1	-GGATTGACGGAGAAA-TGGCGGGGT-GTGGGGTGGATAGATGGCAGAA 5	597
CCA39540.1	TGAAACGG-GGAGAAACTGGACCTTTTTCAAAAGGGTAGTAGATTGTATATGGGGCACGA 5 * * * ****** *** *** *** *** *** ***	591
CCA36419.1	ATGCTCGCAATCACCGCGAAAGAAAGACTTTATGGAATAGA-ACTACTGG 6	546
CCA39540.1	AAGTACATTTCCAAAGTGATATAAAGGCCTCTAAAGATCTCAGACAGTAGGTACCATTTG 6 * * * * ** ** ** *** *** *** * * * *	551
CCA36419.1	GTGGTGTAAGGATTACATAGCTAGTCCAATGGAGTCCGTTGGAAAGGTAAG	597
CCA39540.1	GTGGCCTTGGAAAGAGCGCTTTCACTGCTTTCTTCCCACGTCTTTGGTCTTGGAGAGTCTG 7 **** ** ** ** *** *** *** *** *** **	/11

CCA36419.1	AAGAAGCTAAAACCGGCTAAGTAACTAGGGAAGAATGATCAGACTTT 744
CCA39540.1	AATCCTTCTGGATGTGTGCCTTGGATCGAACCAGAAGTTAAAGCC-AATGTGGGTTTC 768
	** ** * ** ** ** ** * *** * **
CCA36419.1	GATTTGATGAGGTCTGAAAATACTCTGCTG-CTTTTTCAGTTGCTTTTTCCCTGCAAC 801
CCA39540.1	TGTGCAATGAGTCCCGTCGAAAACCTGCAAACTGGTATTCTGTTTATGGCACGGCAG- 825 * ***** *
CCA36419.1	CTATCATTTTCCTTTTCATAAGCCTGCCTTTTCTGTTTTCACTTATATGAGTTCCGCCGA 861
CCA39540.1	GAAGGCTTCAATGCTAGTGGTCTAAACATTGTGTTATAAAT-GTGTAGGTA 875
CCA36419.1	GACTTCCCCAAATTCTCTCTGGAACATTCTCTA-TCGCTCTCCTTCCAAGTTGCGCC 918
CCA39540.1	GAAACCTATAAGTT-TGTGTTGGGGTTCGATAATCAAACTTGCCTTGAAGGTAAT 929 ** * ** ** * * *** *** *** ** ** ** **
CCA36419.1	CCCTGGCACTGCCTAGTAATATTACCACGCGACTTA-TATTCAGTTCCACAATTTCCA 975
CCA39540.1	TGGCTAGGTGCTTGTTGAGTGTCGCACGTCTCGGTATTTTTTTACTTGTCG 980
CCA36419.1	GTGTTCGTAGCAAATATCATCAGCC 1000
CCA39540.1	ATTCTCTCTTACTGTC-CAAG 1000

Alignment 7: Multiple sequence alignment of the 1000bp long downstream regions of *PpOCH1* and *PpHOC1*.

CCA36419.1 CCA39540.1	-AGAAAGCTAGAGTAAAATAG-ATATAGCGAGATTAGA-GAATGAATACCTTCTT GAGAATTAATCGCCAAAATCACAGAGGATACACTGCAACGAGCCGAGTCAA-ACTCACT- **** ** ** ** ** ** ** ** ** ** ** ** *	52 58
CCA36419.1 CCA39540.1	CTAAGCGATCGTCCGTCATCATAGAATATCATGGACTGTATAGTTTTTTTTGTAC GGAACTAGCTGACATTAGCGAAGAAGGCGGCCTGTCTGATAAGAATTTGTCCAT-T * * * * *** * *** * *** * *** *** ***	109 113
CCA36419.1 CCA39540.1	ATATAATGATTAAACGGTCATCCAACATCTCGTTGACAGATCTCTCAGTACGCGAAATCC ATGCAATGGACGGGTA-CTGGTATTTTTACAGATGCCATATTTACCTATTTA ** **** *** * * * * * * * * * * * * *	169 165
CCA36419.1 CCA39540.1	CTGACTATCAAAGCAAGAACCGATGAAGAAAAAAAAAA	226 207
CCA36419.1 CCA39540.1	ACAAACACTTTATCTTCTCCCCCCCCAACACCAATCATCA	286 260
CCA36419.1 CCA39540.1	ACCAAGAAGCAAAAACTAACCCCCATATAAAAAACATCCTGGTAGATAATGCTGGTAACC -CCGATTATCAGCTTCTCGGCCGGTGCAGGTAGTGGAAAATCGACTGAACT ** * * ** ** ** ** * * * * * * *** ***	344 310
CCA36419.1 CCA39540.1	CGCTCTCCTTCCATATTCTGGGCTACTTCACGAAGTCTGACCGGTCTCAG GAACGATCCCTTAGCATTCGTACAACATTATTTTGAAAGATTACATAACGACAACCACTA ** ** * * *** * * ** ** * * * * * * *	394 370
CCA36419.1 CCA39540.1	TTGATCAACATGATCCTCGAAATGGGTGGCAAGATCGTTCCAGACCTGCCTCCTCTGGTA AGGGTCAGAACCATTTAGATTGTCTGGATCTATCATTATGGCCTTGTTTATA * *** * ** * * * * ** *** *** *** ***	454 422
CCA36419.1 CCA39540.1	GATGGAGTGTTGTTTTTGACAGGGGATTACAAGTCTATTGATGAAGATACC-CTAA GACAAAGAATTGTATCCTGGACTGAAGGGAAGTTTATAGAGTAATACCCCTCTGACA ** ** **** * *** * *** *	509 479

CCA36419.1 CCA39540.1	AGCAACTGGGGGACGTTCCAATATACAGAGACTCCTTCATCTACCAGTGTTTTGTGCA ACCAACTCGAATGGGTATTTTGAGATAATTTCC-CATATATTATTGTCTTCACTG * ***** * ** ** ** * ** * *** * *** **	567 533
CCA36419.1 CCA39540.1	CAAGACATCTCTTCCCATTGACACTTTCCGAATTGACAAGAACGTCGACTTGGC GGAGAC-TTACTTCTTCTTGTAGTTCCGGTATCGGCAGCAAACTTATGGTGGTCACATC **** * **** ** * ** * * * * * * * * *	621 592
CCA36419.1 CCA39540.1	-TCAAGATTTGAT-CAATAGGGCCCTTCAAGAGTCTGTGGATCA TTCCAAACTTCTCGGTATAGTAGAACTATTTGTGGTTGATACGGTCTGGGTATCGGTGAT ** * * ** * * * * * * * * * * * * * *	663 652
CCA36419.1 CCA39540.1	TGTCACTTCTGCCAGCACAGCTGCAGCTGCTGCTGTTGTTGTCGCTAC AATGCTTGTAATAATGGATTTTGTGGGTGTAACTGAAGCTGGTG-TATTAGTGGTAGTGG *** * * ** * * * * * * * * * * * * *	711 711
CCA36419.1 CCA39540.1	CAACGGCCTGTCTTCTAAACCAGACGCTCGTACTAGCAAAATACAGTTCACTCCCGAA TAGTGGTGGTTGT-TACTGTGCTATCTGTAGGTTCTGGGAGTGGTTTCTGAG * ** *** *** * * * * * * * * * * * * *	769 762
CCA36419.1 CCA39540.1	GAAGATCGTTTTATTCTTGACTTTGTTAGGAGAAATCCTAAACGAAGAAA CCGGGTTTAAAATTTTGATCTCTGTGGGTATCTTCGTCTGGATTTCGACTAAAAAA * * **** *** * *** *** *** *** * ***	819 817
CCA36419.1 CCA39540.1	CACACATCAACTGTAC-ACTGAGCTCGCTCAGCACATGAAAAACCATACGAATCATTCTA TCCGCCTTGAA-ATACGAGTGGAACAGGTAAACGATTGATGGAGCCCA-GAAGCACTGTG * * * * * * * * * * * * * * * * * * *	878 875
CCA36419.1 CCA39540.1	TCCGCCACAGATTTCGTCGTAATCTTTCCGCTCAACTTGATTGGGTTTATGTCCAAGGAAGATT-CATCAAAAGTGAAAGGAGTGCCATCTTCGTTTCCATCGTTAAG** <tr< td=""><td>929 931</td></tr<>	929 931
CCA36419.1 CCA39540.1	ATATCGATCCATTGACCAACCAACCTCGAAAAGATGAAAACGGGAACTACATCAA-GGTA ATGA-GAACTTTTGGCAAAAAAATCAATCAGAACGTCATCTATTTCTATGGCG ** ** * *** * ** ** ** ** ** ** ** ** *	988 983
CCA36419.1 CCA39540.1	CAAGATCTTCCA- 1000 ACAAATCCGGGATTGAA 1000 * *** * *	

Appendix 6: Amino acid multiple sequence alignments

Alignment 8: Multiple amino acid sequence alignment of all four *Pp*PDIs.

CCA40283.1 CCA36295.1 CCA36622.1 CCA40358.1	MQFNWNIKTVASILSALTLAQASDQEAIAPEDSHVVKLTEATFESFITSNPHVLAEFF MKLLSLALLVSLVSADTFYTPKDDVIQLNAYNFKDVVFN-SNYSSVVEFY MKILSALLLLFTLAFAEVIELTNKNFDDVVLK-SGKYTLVKFY MKSLLLLLALCQTVFGTIWELTDKNFEKKAFGQQGMYSFVYIY . * * ::** ::	58 49 42 44
CCA40283.1 CCA36295.1 CCA36622.1 CCA40358.1	APWCGHCKKLGPELVSAAEILK-DNEQVKIAQIDCTEEKELCQGYEIKGYPTLKVFHG-E APWCGHCQNLKNPFKKAAAVSK-DYLQVAAIDCDAAENKKLCSDYRIQGFPTIMVFRP-P ADWCSHCKRMNPEYEKLAEELKPKSDLIQIAAIDANKYSKYMKVYDIDGFPTMKLFTPKD SPYCNYCNEMTPQFAALADLYDDTKLQLFQINGYANKRVSKKYEVVGFPVLKIFSS-D : :*.:*:: * : : : : : : : : : : : : : :	116 107 102 101
CCA40283.1 CCA36295.1 CCA36622.1 CCA40358.1	VEVPSDYQGQRQSQSIVSYMLKQSLPPVSEINATKDLDDTIAEAKEPVIVQVLPEDASNL KFDPTSSTNRRSG	176 120 142 118
CCA40283.1 CCA36295.1 CCA36622.1 CCA40358.1	ESNTTFYGVAGTLREKFTFVSTKSTDYAKKYTSDSTPAYLLVRPGEEPS-VYSGEELDET AHANEVYSGARDTKSIVEFGVSRIKNYVKRVSPNNINQTLGN-SEKTQL-LLVTDKAKPS QSIDDSTIDDLVGKDRFIAVTASWCGYCKRLHPEWEKLAKAFGNDDIVIGNVVTDVVEGE DYIHEVTGVTPSFPDSYVKQPTSEELEDIIKDTKRDILVAFSQ	235 178 202 161
CCA40283.1 CCA36295.1 CCA36622.1 CCA40358.1	HLVHWIDIESKPLFGDIDGSTFKSYAEANIPLAYYFYENEEQRAAAADIIKPFAKEQRGK ALIKSIALDFLNDIESFYYPFNDKTKKALTTRLEEYQQSFSGE NIKAKYKVQSFPTILYFTAGSDEPIRYESPDRTVEGLVKFVNEQAGLFRDP PWLRGWEFPYTNFYESLARYYAEELDDSLTTFVRIDVSDAKN- . : : . : .	295 221 253 203
CCA40283.1 CCA36295.1 CCA36622.1 CCA40358.1	INFVGLDAVKFGKHAKNLNMDEEKLPLFVIHDLVSNKKFGVPQDQELTNKDVTELIEKFI S DGTLNFNAG	355 222 262
CCA40283.1 CCA36295.1 CCA36622.1 CCA40358.1	AGEAEPIVKSEPIPEIQEEKVFKLVGKAHDEVVFDESK-DVLVKYYAPWCGHCKRMAPAY ITSPSILVLHENEIHIFDGKLDKLSISKFLAEFSTPLEGPLSKRG LIPGVSDKLTNYIKEKDQSLLESTLDLLSNHEHIKDKFSVKYHKKVIEKLLKGENEF AEIVSKFQVSKTPSVFHFASYREYYDQTHKLFKEDLGPVEIVQLLEGAEDL ::	414 267 319 254
CCA40283.1 CCA36295.1 CCA36622.1 CCA40358.1	EELATLYANDEDASSKVVIAKLDHTLNDVDNVDIQGYPTLILYPAGDKSNPQLYDGSRDL LNNEV VTES	474 324 258
CCA40283.1 CCA36295.1 CCA36622.1 CCA40358.1	ESLAEFVKERGTHKVDALALRPVEEEKEAEEEAESEADAHDEL 517 -KFLEHIRRGIKPGRKAKKGKKGKKGKQTKNHDEL 298 ERLSKMLNTKLSANNSDSVIKRLNILRNFIEAKTESKPQLLHQEL 369 IRLSTLSDSRHKDVEESGEADNSFEEYAQLREL 291 : **	

Appendix 7: Most frequently used abbreviations within this thesis

Abbreviation	Explanation
DWP	96-well footprint deep well plate
AOX1	alcohol oxidase gene 1
AOX2	alcohol oxidase gene 2
CalB	Candida antartica lipase B
CBS	Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands
DNA	deoxyribonucleic acid
ER	endoplasmatic reticulum
FRT	recombinase target sequence
gDNA	genomic DNA
HNL	hydrolynitrile lyase
НОС	<i>P. pastoris</i> gene coding for α -1,6 mannosyltransferase
HRP	horseradish peroxidase
МеОН	methanol
MUT	methanol utilization
Mut	methanol utilization minus phenotype
Mut ⁺	methanol utilization plus phenotype
Mut ^S	methanol utilization slow phenotype
ОСН	<i>P. pastoris</i> gene coding for α -1,6 mannosyltransferase
OD ₆₀₀	optical densitiy measured at 600nm
OE-PCR	overlap extension PCR
PCR	polymerase chain reaction
PDI	Protein disulfide isomerase
ΔΚU70	P. pastoris KU70 deletion strain
	All other terms are introduced and defined in the text.

Appendix 8: List of new designed strains

1. PDI4_up_gen_down_pJet/KlonC	(No. 3972)
2. PDI3_up_gen_down_pJet/KlonA	(No. 3973)
3. PDI2_up_gen_down_pJet/Klonb	(No. 3974)
4. PDI1_up_gen_down_pJet/KlonA	(No. 3975)
5. HNL_wt_pPT4/KlonB	(No. 3976)
6. HRP_C1_#0_pPKan/Klon2	(No. 3977)
7. CalB#1_pPKan/KlonB	(No. 3978)
8. HNL_wt_CBS7435_F7_3	(No. 3979)
9. HNL_wt_ΔKU70_C10_3	(No. 3980)
10.CalB_ AKU70_E12_4	(No. 3981)
11.CalB_ AKU70_E9_1	(No. 3982)
12.HRP_C1_ AKU70_H11_C	(No. 3983)
13.HRP_C1_ ΔKU70_D7_C	(No. 3984)
14.PDI_4.1_FRT_cass_pJet_TOP10 F'	(No. 6533)
15.PDI_4.2_FRT_cass_pJet_TOP10 F'	(No. 6534)
16.PDI_4.3_FRT_cass_pJet_TOP10 F'	(No. 6535)
17.PDI_4.4_FRT_cass_pJet_TOP10 F'	(No. 6536)
18.OCH249_pJet_TOP10 F'	(No. 6537)
19.OCH636_pJet_TOP10 F'	(No. 6538)