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Abstract

As the amount of information that is available in both, public and private databases, is rapidly
increasing, it steadily becomes harder, to handle all the data, and actually make use of the in-
formation. Additionally, the data that comes as natural language text, like for instance in online
forums, news articles or product reviews can also contain valuable information for certain entities,
but bear the problem, that they can hardly be handled by humans without any further help, due
to the huge quantity, and are also hard to process automatically.

In this work, a system is proposed to deal with the analysis of databases, that contain structured
data and also unstructured data, in the form of natural language text. For that purpose, the typical
OLAP functionality is utilized, which traditionally deals with structured data, and is extended by
the so called Text Cube, developed in Lin et al. (2008), to also make use of natural language data.

However, the Text Cube only defines methods to process available information that is derived from
natural language text, but not how to extract this information. Therefore, automatic taxonomy
extraction is performed on the textual data of the database that shall be analyzed, to extract
additional information that can be utilized.

The database is stored in an RDF datastore, thus making use of semantic web technologies. This
design decision supports the development of a system with a general architecture, such that it
can freely be extended by adding additional information to the database at any time. Finally, the
capabilities of the system are demonstrated by performing the proposed methods on an example
dataset using a prototype implementation.



Kurzfassung

Durch den rasanten Anstieg der verfügbaren Information, zum einen in öffentlichen und zum an-
deren in privaten Datenbanken, wird es zunehmend schwieriger, diese Informationsflut zu bewälti-
gen und auch einen Nutzen aus der verfügbaren Information zu ziehen. Hinzu kommt, dass auch
Daten die in Form von natürlichsprachlichem Text verfügbar sind, zum Beispiel in Online-Foren,
Zeitungsberichten oder Produktrezensionen, wertvolle Information für bestimmte Interessensgrup-
pen beinhalten können. Jedoch ist es durch die große Menge an Daten für Menschen schwierig die
Information zu verarbeiten, und auch die automatische Verarbeitung birgt einige Schwierigkeiten.

In dieser Arbeit wird ein System vorgestellt, das dazu dient Datenbanken zu analysieren, die
sowohl strukturierte Daten als auch unstrukturierte Daten, in Form von natürlichsprachlichem
Text, enthalten. Dafür wird die bekannte OLAP Technologie eingesetzt, die traditionellerweise
dazu dient, strukturierte Daten zu verarbeiten. Diese wird durch den so genannten Text Cube,
der in Lin et al. (2008) eingeführt wurde, erweitert, um auch Textdaten verarbeiten zu können.

Der Text Cube stellt jedoch nur die Methoden bereit, um Information zu verarbeiten, die aus
natürlichsprachlichem Text gewonnen wurde, definiert jedoch nicht, wie man zu diesen Informa-
tionen gelangt. Dafür wird eine Methode eingesetzt, um automatisch Taxonomien aus vorhandenen
Daten zu extrahiert, um diese dann als zusätzliche Information zu verwenden.

Die Datenbank wird für diesen Zweck im RDF Format gespeichert, und nützt damit Technologien
die für das Semantic Web entwickelt wurden. Ein derartiges Design bietet die Möglichkeit, das
System so zu entwickeln, dass die Datenbank jederzeit durch zusätzliche Information erweitert
werden kann. Zum Schluss werden mit der Implementierung eines Prototyps unter Benützung
einer Beispieldatenbank die Möglichkeiten des vortestellten Systems demonstriert.
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1. Introduction

The amount of data available in databases, in both publicly available and internal databases of
enterprises or other organizations, turned out to be subject to exponential growth in recent years
(Bennett, 2006; International Data Corporation, 2010). Apparently, to handle this amount of data
raises a number of technical challenges. One of those challenges is, to actually make use of the
available information in some way. Therefore, a number of techniques has been established, to
tackle this task, which commonly make up the field of data mining.

One of those techniques is Online Analytical Processing (OLAP). It is a well established method
to analyze huge multidimensional datasets. The term OLAP has been coined in 1993 by Edgar
Codd (Codd et al., 1993), although the principle ideas and methods reach back to 1962 (Pendse,
2007). OLAP is well suited to analyze structured data like for instance sales records which contain
information like price, quantity, date and so on.

However, databases can also contain unstructured data, e.g. user comments about products, which
contains potentially valuable information, but cannot easily be handled, especially if it comes in
huge amounts. Therefore, OLAP systems have to be adapted to be able to make use of such
information. To do this, Text Cube was introduced in Lin et al. (2008), which is an extension to
OLAP, which provides methods to integrate natural language data.

Nevertheless, to make use of data that comes as natural language text, this data has to be pro-
cessed in advance as it doesn’t have a well defined structure. Therefore, to provide the contained
information in a way, that it can be utilized by the analyzing methods, the specific information
has to be extracted. There are several subfields of natural language processing, which deal with
the extraction of information from text documents, or text corpora, which could deliver poten-
tially useful information that can be utilized by a Text Cube. Such methods are for instance
sentiment analysis, automatic classification, topic extraction or ontology extraction. An ontology,
in computer science, is a set of concepts, which can have arbitrary relations to each other. A tax-
onomy is a special case of an ontology, where the concepts are only related by is-a relations and
therefore represents a hierarchy. Thus taxonomy extraction is a subfield of ontology extraction.
Taxonomies can be a especially useful if employed in a Text Cube, as hierarchical structures are
a crucial component of OLAP.

The goal in this work is, to combine the methods of automatic taxonomy extraction with Text
Cube, including an appropriate method to store and access the according information. Therefore
the system has to provide the following functionality:

• Datastore: A datastore which provides the possibility to access and update the stored
information.

1



1. Introduction

• Natural Language Processor: A natural language processor, that can access the accord-
ing information from the datastore, and perform ontology extraction and also simple term
extraction. Subsequently, the extracted information has to be written back to the datastore.

• OLAP System: A system that provides OLAP functionality including the Text Cube
methods. Thus, this module also has to be able to communicate with the datastore to
receive the according information.

Structure of the Thesis

In the following three chapters, the fundamental techniques on which the implementation is built
upon are discussed. The first is natural language processing in Chapter 2 which gives an intro-
duction to some basics of that field and into the subfields that are relevant for this work.

In Chapter 3 OLAP is introduced. The basic data structure of OLAP and the operations that can
be performed with it are described. Furthermore, the Text Cube operations, that extend OLAP
such that it can handle textual data is described.

The semantic web technologies that are used for the datastore are described in Chapter 4. These
are RDF, which provides a format to describe resources, and OWL, which allows to define the
semantics of the data.

Subsequently, in Chapter 5 the requirements for the implementation and a conceptual approach
are described, followed by a more detailed description of the implementation of the prototype in
chapter 6, where also the results are demonstrated.

2



2. Natural Language Processing

Natural Language Processing (NLP) has been an active field of research since before 1950 and
is today a well established field of computer science with a big variety of subfields. However,
it is a field that bears many very difficult problems, and therefore, many of these problems are
still unsolved or only partly solved. In this chapter, an introduction to the field of NLP is given
including the discussion of some problems and their state of the art solutions. The focus is on
those problems that are also relevant for the implementation of this work.

2.1. Fields of NLP

When the filed of natural language processing came up the main focus was on machine translation.
The first conference on this topic was held in 1952 at the MIT (Hutchins, 1997). In 1954 a system
was demonstrated in the so called Goregetown-IBM experiment, which was capable of translating a
very limited number of sentences from Russian to English (Hutchins, 2004). Although researchers
then predicted, that automatic machine translation will be a solved problem within five years, it
is still an unsolved problem in general today, almost 60 years later.

NLP also includes a whole variety of other subfields like summarization, question answering,
natural language generation, speech recognition and many more. Some of these subfields have
underlying techniques in common, for instance, many modern approaches to NLP problems are
based on machine learning techniques, as will be discussed in Section 2.2. One subfield that
will be discussed in more detail in the next Section, is Text Mining, as it is the field to which
taxonomy extraction belongs to and is therefore of crucial interest in this work. Furthermore,
some basic tasks like tokenization and part of speech tagging and approaches to solve them are
discussed in Section 2.3, as these are underlying techniques used for the taxonomy extraction in
the implementation.

Text Mining

The goal of Text Mining is to extract previously unknown information from natural language text
(Hearst, 1999; Kroeze et al., 2003). It is related to the field of Data Mining, but in contrast to
data mining, which deals with structured data, text mining in general deals with data that has no
well defined structure.

3



2. Natural Language Processing

Text mining can again be divided into subfields like sentiment analysis, document classification
and others, according to the data that is expected to be extracted from the available data. Here
we want to concentrate on automatic ontology extraction, as it is the most relevant subfield for
this work.

Ontologies are fundamental information structures, which can be used for a variety of tasks like
for instance by software agents to exchange unambiguous messages (e.g. Dileo et al., 2002) or
for document classification (Song et al., 2006). However, it is a very time-consuming and error-
prone task to create ontologies by hand and therefore automatic systems, which can extract
ontologies from a given set of data are desirable. The according data can in general be any set of
documents. Thus in many modern approaches collections of documents from online sources are
used as there is a huge amount of data freely available. In Wong (2008) a system is proposed that
extracts lightweight (domain) ontologies from given corpora. A lightweight ontology can either be
a taxonomy or a thesaurus. The system performs the taxonomy extraction in the following four
phases, given a domain corpus and a general corpus:

• Text Cleaning: As the documents in the corpora can come from any web source, they are
likely to contain noise like spelling errors, abbreviations and improper casings. Thus in the
first phase these issues are concerned to create a clean corpus for the next phase. However,
if the documents in the corpus come from high quality sources, like scientific papers, this
phase can also be omitted.

• Text Processing: In this phase, basic natural language processing tasks like sentence
parsing and noun phrase chunking are performed. The result of this phase is a list of term
candidates, which is the input for the next phase.

• Term Recognition: The domain corpus and the general corpus are now used to determine
domain terms among the term candidates. Therefore the likelihood that a term is relevant
for the domain in question is calculated using the two measures Termhood (Wong et al.,
2007b) and Odds of termhood (Wong et al., 2007a).

• Relation Acquisition: To relate terms, online sources namely Wikipedia and Google
are used as background knowledge. This is done by calculating the distance between two
Wikipedia articles using the categorization system (Wong et al., 2007c) and the normalized
google distance (Cilibrasi and Vitanyi, 2007) for any pair of terms. A relation between two
terms can then be established via a common parent.

The result of this process is a graph, in which the edges represent a is-a relationship between the
nodes and is therefore a taxonomy. Although these processing steps are those of a specific system,
they demonstrate well, how ontology finding is done in general as all approaches have to perform
these steps in some way. However, how this is done, can be very different in different approaches.

Finding Relations of Arbitrary Types

The described system is capable of finding is-a relationships. But concepts of an ontology can
have any kind of relation between them, not only is-a. Therefore, this result is only a first step

4



2. Natural Language Processing

towards the goal of automatic ontology extraction. Thus the process of Relation Acquisition has
to be improved to find more general relations.

For that purpose different methods have already been developed. For instance, the authors in
Sanchez and Moreno (2008) use an approach that uses the web as background knowledge and is
performed in several steps. This is done in a way, that in each step the result of the previous step is
utilized as a base for the current step. Thus firstly, an ontology with only taxonomic relationships
is created, as described in Sánchez and Moreno (2006). To find non-taxonomic relationships, the
verbs that occur with the identified concepts are investigated. Therefore, the verbs get filtered and
classified, to find those which are closely related to the domain of the ontology. The remaining
verbs are then used to relate the concepts and thus yielding a more sophisticated ontology.

A different approach to find general relations that uses clustering techniques is demonstrated in
Rosenfeld and Feldman (2007). There, relation candidates are represented by tuples c ∈ E ×E of
an entity set E. Each sentence in which an element occurs is said to be a context of that element.
Thus the elements of a tuple have a common context if they occur in the same sentence. For the
clustering, features of the relation candidates are required, which are derived from surface patterns.
Such patterns are generated by using all contexts of all entities, which means, that equal or similar
sequences of tokens that occur in a number of contexts yield the patterns for the features. If a
number of features has been generated this way, each relation candidate can be associated with a
feature vector. The clustering is then performed on these vectors. After the clustering, elements
that belong to the same cluster represent the same relation. In the experiments on the NYT95
corpus a precision of 0.930 was achieved with a total of 307 correctly identified relations.

These approaches can yield good results if the relations between the concepts are explicitly con-
tained in the processed corpus. If this is not the case, some useful relations can easily be overlooked.
Thus it can be beneficial, to use some further background knowledge to overcome these limitations.
In Wong et al. (2009) Wikipedia is used as such a background knowledge. However, the relations
found with the described method are again not of any type, but limited to hierarchical, associative
and polysemous relations.

2.2. Machine Learning and Statistics in NLP

Most modern approaches of NLP, reaching from low-level to high-level tasks, involve machine
learning and statistical methods of some kind. Reasons for that are, that natural language is not
well structured, ambiguous and redundant and therefore simple algorithms with fixed rules and
grammars are often not well suited to process the data and extract information. Furthermore,
in natural language, the same information can be expressed in a myriad of ways, which requires
information extraction methods to be very flexible.

5



2. Natural Language Processing

Machine Learning Techniques commonly used in NLP

Among others, the following popular machine learning techniques are also widely used in NLP,
and are also involved in some of the solutions of the tasks discussed in Section 2.3:

• Hidden Markov Models (HMM): A HMM is used to estimate the probability of a
sequence of states, where the sequence is distributed according to a markov process. The
states are not directly visible (hidden), but observations which are dependent on the states
(by output probabilities) are given. To establish the model, the transition probabilities
between the states and the output probabilities have to be calculated. For this purpose, a
set of labeled training data is needed. This method is used, for instance, in Shen and Sarkar
(2005) for noun phrase chunking or in Brants (2000) for part-of-speech tagging.

• Supprot Vector Machines (SVM): SVMs can be used to assign sample vectors to one of
two classes. The classifier is established by finding the hyperplane in the feature space, that
best separates the classes according to the samples in the training set, while maximizing the
distance between the samples and the hyperplane. The hyperplane is then used to separate
the classes. This is used, for instance, in Abacha and Zweigenbaum (2011) for relation
extraction or in Joachims (1998) for text classification.

• Maximum Entropy Classifiers: With this method, the classifier is established by max-
imizing the entropy of the underlying probability distribution on the training set. For this
purpose, the information in the training set is considered as testable information. This
means, that the probability distribution has to be chosen such that it is consistent with this
information. This method is used, for instance, in Tsuruoka and Tsujii (2005) for part-of-
speech tagging or in Chen et al. (2008) for subjectivity analysis.

• Clustering: Clustering is an unsupervised learning technique, as it creates clusters of given
items, according to their distance to each other. Thus, items which are close to each other
according to some metric are assigned to the same cluster. There are different approaches to
find clusters of a given set of items like for instance k-Means1 or the k-nearest neighbor algo-
rithm (Fix and Hodges, 1951). Clustering methods are used, for instance, in Rosenfeld and
Feldman (2007) for term-relation finding or in Fodeh et al. (2011) for document clustering.

Background Knowledge

Furthermore it can be useful to use background knowledge to improve the accuracy and efficiency
of learning and classification algorithms. For instance, in Majewski and Szymanski (2008) this
was done for text categorization by involving background knowledge acquired form ConceptNet2

which provides information in the form of a semantic network. There is also a number of other
knowledge bases available, which provide structured data like for instance OpenCyc3, WordNet4

1http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.html
2http://csc.media.mit.edu/conceptnet
3http://opencyc.org/
4http://wordnet.princeton.edu/
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2. Natural Language Processing

or DBpedia5. These knowledge bases can provide information from a variety of domains, however,
if such background knowledge can be utilized strongly depends on the application.

2.3. Basic Tasks of NLP

For many tasks in NLP the input data comes as text corpora. A text corpus in general is a
collection of any kind of textual documents like for instance scientific papers, news articles, web
forum postings or web pages. Apparently, the incoming data has to be processed in some way
in order to manipulate it on a higher level in an NLP system. This part of the whole process is
usually called text preprocessing and involves tasks like sentence segmentation, tokenization, part-
of-speech tagging and others, depending on the corpus and on the data that is needed for further
processing. In this Section, approaches to perform the mentioned tasks and also noun phrase
chunking are discussed, as they are necessary for the taxonomy extraction in the implementation.

2.3.1. Segmentation and Tokenization

Segmentation in general is the task of separating the input into single units. In NLP a common
task of segmentation is to separate the sentences of a given document. This task is not as simple
as it might appear at the first glimpse. The basic approach is to look for characters that mark
the end of a sentence like “.”, “?” or “!”. However, apparently these characters do not necessarily
indicate the end of a sentence. Especially the period often indicates an abbreviation instead of
the end of a sentence, or it can even be both at the same time. Furthermore, multiple periods like
“. . . ” do not mean that multiple sentences end at these positions. Because of such ambiguities of
delimiting characters, sophisticated methods have been developed to perform the task of sentence
splitting. Different approaches involve rule-based classifiers or classifiers that have been trained
using supervised or unsupervised methods.

In Clough (2001) a rule based approach, based on Mikheev (1999), that has been implemented in
Perl is demonstrated. The goal there was to achieve a high accuracy on a wide range of corpora
with an easy to use and modifiable tool. An advantage of rule-based approaches is, that they
don’t need to be trained on any training set and they can achieve a good performance concerning
processing speed. The rules of the particular implementation in Clough (2001) are based on
assumptions like:

• Sentences are bounded by one of [.!?]

• Periods that are followed by a whitespace and a capital letter mark sentence boundaries

• Periods followed by a digit do not mark sentence boundaries

• Periods followed by other punctuation marks are probably not sentence boundaries

5http://dbpedia.org/
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and some more assumptions of that kind. The according rules can then easily implemented. The
implementation has been tested on the British National Corpus (BNC) and on the Brown Corpus.
An accuracy for the correct disambiguation of periods of 98.59% has been achieved on BNC and
of 97.61% on the Brown Corpus.

In Kiss and Strunk (2006) an approach is described, that uses an unsupervised technique to detect
sentence boundaries. The focus in this approach is to detect if a period marks an abbreviation or
not, where if it does, it can still mark the end of a sentence at the same time. The system works
in two stages, first the Type-Based Classification Stage which yields an initial annotation of the
periods, and second the Token-Based Classification Stage, which yields the final annotation. In
both stages, likelihood ratios are used to detect abbreviations:

• Type-Based Classification Stage: In this stage, the likelihood of an period being an
abbreviation marker depends on three properties: (i) abbreviations occur with a final period
(this assumption is not always true, but in cases where it is wrong, there is no period to
disambiguate), which means, that a word that is followed by a period more frequently than
expected is likely to be an abbreviation, (ii) abbreviations tend to be short and (iii) many
Abbreviations contain additional internal periods. The probabilities for these properties can
be calculated by investigating the according occurrences in the corpus. A candidate is then
considered as an abbreviation marker, if the product of these measures is greater that a
certain threshold.

• Token-Based Classification Stage: In this stage, the likelihood of a period being an
abbreviation marker is determined by the investigation of the tokens which surround the
period. For that purpose, three heuristics are used to improve the results of the previous
stage: (i) The Orthographic Heuristic investigates if the word after the period is uppercase
or lowercase and compares that to other occurrences of that word, and decides if the period
marks the end of a sentence based on these observations. (ii) The Collocation Heuristic states
that a period between two words that form a collocation is likely to mark an abbreviation
instead of a sentence boundary. (iii) The Frequent Sentence Starter Heuristic investigates
how often certain words occur after a sentence boundary according to the result in the
previous stage. Thus periods which are followed by words which have a high likelihood of
being sentence starters are more likely to be sentence boundaries.

The system has been tested on corpora in several languages and compared to other state-of-the-
art systems. Although the results of the system on specific corpora are slightly inferior to those
of the best systems known (e.g. an error rate of 1.02% was achieved on the Brown Corpus), the
accuracy among different languages and domains is very stable. Furthermore only the corpus itself
is required for the classification but no further data like abbreviation lists or training sets.

Tokenization

A further step is to tokenize the sentences into single words, which is again a segmentation problem.
Several methods, using a variety of techniques reaching from rule based to statistical, have been
developed to solve this task (e.g. Kaplan, 2005; Graña et al., 2002; Grefenstette and Tapanainen,
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1994). Like sentence segmentation, the task is not as easy as it seems at the first glimpse, as there
is a number of issues that have to be addressed (Schmid, 2008) like for instance:

• Periods and other punctuation marks: As punctuation marks like “.”, “,”, “:”, “!” and
others can have several meanings, they can either be considered as a token on their own, or
as a part of another token.

• Multi word expressions: For expressions like “et cetera” or dates like “Sep. 2, 1983” it
might be useful to consider them as one token, instead of splitting it up in several tokens.

• Clitics: Expressions like “don’t” or “I’m” actually consist of two words and should therefore
be split accordingly.

How such issues are dealt with can also depend on the application in which the resulting data is
used. This also makes it hard to evaluate and compare the results of different tokenization systems,
as discussed in Habert et al. (1998). The problem is, that there is no formal basis which describes
exactly what a token is. Thus the comparison and evaluation only makes sense, if application
specific issues are taken into account.

2.3.2. Part-of-Speech Tagging

In Part-of-Speech Tagging (POS-tagging) each word or token is assigned with its corresponding
part of speech. The difficulty of this problem lies in the multiple meanings a word can have. For
instance, consider the word “hurry” in the sentences “She is in a hurry.” and “She told him to
hurry.”. In the first sentence, “hurry” is a noun and in the second sentence, it is a verb, where
in both cases it is spelled equally. Thus a POS-tagger has to make a decision, based on where
in a sentence the word occurs. A number of methods have been developed to solve this task
which are based on techniques like HMMs (e.g. Brants, 2000), SVMs (e.g. Giménez and Márquez,
2004), Maximum Entropy Classifiers (e.g. Stanford Tagger6) and others. A list of state of the
art POS-taggers is maintained at the website of the Association for Computational Linguistics
(ACL)7.

Classifiers using Hidden Markov Models

A classifier which uses HMMs for instance, makes its decision based on the likelihood of one certain
type of word following another type of word. If we again take the example sentence “She told him
to hurry.” then the classifier might consider “hurry” as a verb, because the probability that “to”
is followed by a verb is higher than that it is followed by a noun.

Applying Tagsets

As a result of the tagging process, each token shall be marked with the according tag in a form
like: “She/PRP told/VBD him/PRP to/TO hurry/VB ./.”, where the tags can vary on different
systems. In the example, PRP stands for pronoun, VBD for past tense verb, VB for verb in

6http://nlp.stanford.edu/software/tagger.shtml
7http://www.aclweb.org/aclwiki/index.php?title=POS_Tagging_%28State_of_the_art%29
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base form, TO for “to” as preposition and “.” for sentence terminator, as defined in the Penn
Treebank Tagset8. As it can be seen in the example, the tags can differ for different word forms,
like singular and plural or present and past tense (VB vs. VBD) and also punctuation marks
are tagged according to their meaning. Thus the number of tags in different tagsets can differ.
For instance the tagset of the Brown Corpus contains 82 tags, while the Penn Treebank Tagset
contains 45 tags (including punctuation tags). Therefore, like in the case of different tokenization
methods, the appropriate method/tagset depends on the application and further processing.

2.3.3. Noun Phrase Chunking

The goal of text chunking is to divide sentences into smaller non-overlapping structures, such
that the parts of each structure semantically belong together (Abney, 1991). Thus Noun Phrase
Chunking (NP-chunking) is a subtask of text chunking.

There is no formal definition of the structure of a noun phrase (NP), but in general, a NP consists
of a head noun with some optional modifiers like9:

• Noun phrases: modifiers that are again NPs, e.g. “Take care with the kitchen knife.”,
where the noun “kitchen” is part of the NP “kitchen knife”.

• Adjective phrases: where an adjective phrase modifies the head noun, e.g. “He showed
her the new laptop.”.

• Prepositional phrases: phrases formed by a preposition and a prepositional component
following the NP, e.g. “The girl in the red dress looked at you.”.

• Verb phrases: where the modifier is a verb phrase e.g. “The man reading the newspaper
is the boss.”.

• Relative clauses: subordinate clauses, usually beginning with a relative pronoun as mod-
ifiers for the NP, e.g. “He is the actor who won three oscars.”.

When applying an NP-chunker, usually base NPs are the desired output. These are NPs that
do not contain other NPs or NP postmodifiers. Consider the example sentence (from the Brown
Corpus):

At [the same time], [he] remains fairly pessimistic about [the outlook] for [imports], given [continued
high consumer and capital goods inflows].

Here the NPs are marked by square brackets. If the two NPs “the outlook ” and “imports” are joined
as “the outlook for import”, the result would again be an NP, but not a base NP. In Ramshaw
and Marcus (1995), the authors considered text chunking as a labeling task, as the chunks do not
intersect and can therefore be labelled accordingly. This notation was adopted by many authors
since, and is the common method today.

8http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
9http://www.suite101.com/content/the-grammatical-noun-phrase-modifier-in-english-a107027
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State of the Art

Modern approaches for NP-chunking are using a variety of techniques like SVMs, Conditional
Random Fields or HMMs. Like for POS-taggers, ACL also maintains a list for state of the art
NP-chunking methods at its website10.

2.3.4. Handling Noisy Text Corpora

Many modern natural language processing systems, especially text mining systems, have to deal
with data that comes from the internet, like forum postings, emails, blogs or recessions. The
advantage of that kind of data is, that there is a huge amount of it available and it can contain
information about recent events. However, this comes at the cost of a poor quality of the data, as
the writing style on the internet is usually informal and contains spelling errors, improper casings,
ad-hoc abbreviations and other flaws of that kind. Thus before processing this data, it is useful
to perform some kind of text cleaning during the preprocessing phase.

Cleaning email data

In Tang et al. (2005), the authors investigated the effect of text cleaning of emails which are used
for text mining. The analysis of the emails showed, that 98.4% contained noise (errors) that can
influence the result of the text mining process. The approach contained non-text filtering (e.g.
headers and signatures), paragraph normalization, sentence normalization and word normalization,
where the classification into correct/incorrect samples was done using SVMs. In the experiments
the authors compared the performance of term (base NP) extraction on cleaned and uncleaned
data. Depending on the dataset an improvement on the F1-measure of up to more than 40% was
achieved, which indicates the importance of text cleaning.

Correcting spelling errors

In Wong et al. (2006) a system is introduced that uses Integrated scoring for spelling error cor-
rection, abbreviation expansion and case restoration in dirty text (ISSAC) and thus addresses the
main sources of noise of online text data. The spelling error correction is based on GNU Aspell11

by Kevin Atkinson and is used as the base for the error correction. Additionally to the suggestions
of Aspell, ISSAC considers possible abbreviations and capitalizations for detected errors. The sug-
gestions are then ranked by a score, which involves edit distance between the candidate and the
erroneous word, significance of the candidate and other factors. The system has been tested on
a dataset consisting of chat records from 247Customer.com, and the results have been compared
to those of using only the suggestions of Aspell. The error correction using only Aspell achieved
an accuracy of about 74.39%, which is already a significant improvement. However, including the
additional suggestions and the scoring algorithm, an accuracy of 96.56% was achieved.

Thus, if dealing with noisy text corpora, it is worth considering text cleaning as it can improve
the final results significantly.

10http://www.aclweb.org/aclwiki/index.php?title=NP_Chunking_%28State_of_the_art%29
11http://aspell.net/
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2.4. NLP Toolkits

To aid the development of NLP systems, a number toolkits is available. On the one hand, there
are libraries for special purposes like for instance YamCha12 (Kudo and Matsumoto, 2001) for
text chunking. On the other hand there are general purpose toolkits, which provide a variety of
methods for many NLP tasks, some even including a set of text corpora to help developing and
testing. A list of tools and related software can for instance be found at the ACL web page13.
Two toolkits, namely NLTK and GATE, will be introduced in this Section, as they were also used
for the implementation in this work.

2.4.1. Natural Language Toolkit (NLTK)

The Natural Language Toolkit14 (NLTK) provides a collection of python packages which contain
methods for tasks reaching from low-level like tokenization or POS-tagging to high-level like clas-
sification and clustering. Furthermore it contains a set of corpora, like for instance the Brown
Corpus, which is very useful for developing and testing. An advantage of the implementation
in python is, that it is platform independent easy to use and comprehensible. Furthermore, the
interactive mode of the python console makes it easy to experiment with the tools and quickly
learn and understand the basics of NLP.

In the following, an example is provided, that demonstrates the usage of NLTK. For this purpose,
an example posting of the dataset which was used in this work will be imported and the basic
operations, similar to those performed in the actual implementation, will be performed on it.

Firstly, the posting is saved into a string variable. As the postings come from an online forum,
they can contain HTML tags. These can simply be removed using the nltk.clean_html(...)

method.

pos t ing = """<div id="inte l l iTXT">
. . . : <br/>No I don ’ t th ink a placement i s l i k e l y or at l e a s t not
. . . : one that would be l a r g e enough or at a p r i c e that would s i g n i f i c a n t l y
. . . : hurt HDR’ s sp in these cur rent c i r cumstances .<br/> <br/>There ’ s no
. . . : need to r a i s e more funds un t i l HDR dec ide s what equ i ty to keep and
. . . : t h e r e f o r e knows i t s funding requi rements .<br/> </div>
. . . : " " "

post ing_pla in = n l tk . u t i l . clean_html ( pos t ing )

Now the next step is to tokenize the sentences. To do that, the Punkt tokenizer (Kiss and Strunk,
2006) is loaded and executed with the plain text as input:

sent_token ize r=n l tk . data . load ( ’ t o k en i z e r s /punkt/ eng l i s h . p i ck l e ’ )
s en t s = sent_token ize r . t oken i z e ( post ing_pla in )

12http://chasen.org/~taku/software/yamcha/
13http://www.aclweb.org/aclwiki/index.php?title=Uncategorized_software
14http://www.nltk.org/
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s en t s
[ "No I don ’ t th ink a placement i s l i k e l y or at l e a s t not one that would [ . . . ] " ,
"There ’ s no need to r a i s e more funds un t i l HDR dec ide s what equ i ty to [ . . . ] " ]

And in the next step, each sentence is tokenized, using the method nltk.word_tokenize(...):

sents_token ized = [ n l tk . word_tokenize ( sent ) f o r sent in s en t s ]

sents_token ized [ 0 ]
[ ’No ’ , ’ I ’ , ’ do ’ , "n ’ t " , ’ think ’ , ’ a ’ , ’ placement ’ , ’ i s ’ , ’ l i k e l y ’ , ’ or ’ , ’ at ’ ,

[ . . . ] ’ in ’ , ’ these ’ , ’ current ’ , ’ c i rcumstances ’ , ’ . ’ ]

With the tokenized sentences, the POS-tagging can now be performed:

sents_tagged = [ n l tk . pos_tag ( sent ) f o r sent in sents_tokenized ]
sents_tagged [ 0 ]
[ ( ’No ’ , ’DT’ ) , ( ’ I ’ , ’PRP’ ) , ( ’ do ’ , ’VBP’ ) , ("n ’ t " , ’RB’ ) , ( ’ think ’ , ’VB’ ) ,
( ’ a ’ , ’DT’ ) , ( ’ placement ’ , ’NN’ ) , ( ’ i s ’ , ’VBZ’ ) , ( ’ l i k e l y ’ , ’ JJ ’ ) ,
( ’ or ’ , ’CC’ ) , ( ’ at ’ , ’ IN ’ ) , ( ’ l e a s t ’ , ’ JJS ’ ) , ( ’ not ’ , ’RB’ ) , ( ’ one ’ , ’CD’ ) ,
( ’ that ’ , ’WDT’ ) , ( ’ would ’ , ’MD’ ) ( ’ be ’ , ’VB’ ) , ( ’ l a rge ’ , ’ JJ ’ ) ,
( ’ enough ’ , ’RB’ ) , ( ’ or ’ , ’CC’ ) , ( ’ at ’ , ’ IN ’ ) , ( ’ a ’ , ’DT’ ) , ( ’ p r i c e ’ , ’NN’ ) ,
( ’ that ’ , ’WDT’ ) , ( ’ would ’ , ’MD’ ) , ( ’ s i g n i f i c a n t l y ’ , ’RB’ ) , ( ’ hurt ’ , ’VB’ ) ,
( ’HDR’ , ’NNP’ ) , (" ’ s " , ’POS’ ) , ( ’ sp ’ , ’NN’ ) , ( ’ in ’ , ’ IN ’ ) , ( ’ these ’ , ’DT’ ) ,
( ’ current ’ , ’ JJ ’ ) , ( ’ c i rcumstances ’ , ’NNS’ ) , ( ’ . ’ , ’ . ’ ) ]

NLTK doesn’t come with a built in NP-chunker, but it provides several possibilities to quickly
implement one. For simplicity, in this example a RegEx parser is used. Other possibilities would
be, for instance, unigram chunkers or classifier-based chunkers for which NLTK also provides the
basic methods and interfaces.

grammar = "NP: {<[CDJNP].∗>∗(<NN[PS]?>|<CD>|<PRP>)}"
par s e r = n l tk . RegexpParser ( grammar )
r e s u l t = par s e r . parse ( sents_tagged [ 0 ] )

Now the result contains the following noun phrases:

( ’NP’ , [ ( ’No ’ , ’DT’ ) , ( ’ I ’ , ’PRP’ ) ] )
( ’NP’ , [ ( ’ a ’ , ’DT’ ) , ( ’ placement ’ , ’NN’ ) ] )
( ’NP’ , [ ( ’ one ’ , ’CD’ ) ]
( ’NP’ , [ ( ’ a ’ , ’DT’ ) , ( ’ p r i c e ’ , ’NN’ ) ] )
( ’NP’ , [ ( ’HDR’ , ’NNP’ ) , (" ’ s " , ’POS’ ) , ( ’ sp ’ , ’NN’ ) ] )
( ’NP’ , [ ( ’ these ’ , ’DT’ ) , ( ’ current ’ , ’ JJ ’ ) , ( ’ c i rcumstances ’ , ’NNS’ ) ] )

The first NP is not correct because “No” does actually not belong to it, but the other NPs are
correct and also all the NPs contained in the processed sentence were found.

As can be seen, all the steps towards NP-chunking were quite easy and straightforward using
NLTK, which demonstrates that the use of such toolkits can be a great help in developing NLP
systems.
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2.4.2. General Architecture for Text Engineering (GATE)

GATE15 is an extensive Java based infrastructure that comes in several ways. Thus its components
can for instance be integrated in an application using GATE Embedded16, or it can be used as a
standalone tool using the GATE Developer17 GUI. Either way, GATE provides a wide range of
componens like parsers, taggers, information retrieval tools, machine learning plugins and others.

As an example, here it is shown how use GATE Embedded to perform NP-chunking with ANNIE
(A Nearly-New Information Extraction System) which is distributed with GATE. The task is
performed using a pipeline of ANNIE modules, namely a tokenizer, a sentence splitter, a POS-
tagger and a NP-chunker. These can easily be set up in a few lines of code within the corresponding
Java module:

// load the ANNIE plug−in :
Gate . g e tCr eo l eReg i s t e r ( ) . r e g i s t e r D i r e c t o r i e s (

new F i l e (Gate . getPluginsHome ( ) , "ANNIE") . toURI ( ) . toURL( ) ) ;
Gate . g e tCr eo l eReg i s t e r ( ) . r e g i s t e r D i r e c t o r i e s (

new F i l e (Gate . getPluginsHome ( ) , "Tagger_NP_Chunking") . toURI ( ) . toURL( ) ) ;

// c r e a t e a s e r i a l ana lyze r c o n t r o l l e r to run ANNIE:
c o n t r o l l e r = ( S e r i a lAna l y s e rCon t r o l l e r ) Factory . c reateResource (

" gate . c r e o l e . S e r i a lAna l y s e rCon t r o l l e r " , Factory . newFeatureMap ( ) ,
Factory . newFeatureMap ( ) , "ANNIE") ;

// c r e a t e p ro c e s s i ng r e s ou r c e s and add to c o n t r o l l e r
// Tokenizer :
Process ingResource pr = ( Process ingResource )

Factory . c reateResource (" gate . c r e o l e . t o k en i s e r . De fau l tToken i se r ") ;
c o n t r o l l e r . add ( pr ) ;
// Sentence S p l i t t e r :
pr = ( Process ingResource )

Factory . c reateResource (" gate . c r e o l e . s p l i t t e r . S en t en c eSp l i t t e r ") ;
c o n t r o l l e r . add ( pr ) ;

[ . . . ]

The controller can then be linked with a corpus on which the task should be performed. If it is
executed, the corpus is annotated corresponding to the executed modules. In this case the corpus
is annotated with tokens, sentences, parts of speech and noun phrases and thus the corresponding
parts can be extracted from the corpus and used for further processing.

2.5. Summary

As was demonstrated in this Chapter, NLP bears a number of interesting and challenging problems,
reaching from low level tasks like segmentation to higher level tasks like information extraction.
15http://gate.ac.uk/
16http://gate.ac.uk/family/embedded.html
17http://gate.ac.uk/family/developer.html
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Although research in this area has been done for several decades, computers are still only capable
of performing very limited tasks of NLP with satisfying results. This is due to the fact, that natural
language doesn’t have a well defined structure which describes how information is expressed but in
contrast usually provides myriads of ways to express the same thing and is also often ambiguous.
Thus, also tasks which seem very simple at the first glimpse, turn out to contain difficulties that
are hard to tackle.

Nevertheless, thanks to the effort of a lively community of researchers, many problems are well
studied today and some solutions are known and are also applied in practice. Furthermore, the
available tools today support the research and development in this area, such that it is easier to
concentrate on specific problems instead of being forced to creating all solutions from scratch.

By the introduction into NLP, the first of the three fundamental techniques which are crucial for
the implementation was described. Another important technique is OLAP, which is also used in
the implementation and is therefore introduced in the next Chapter.
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The goal of Online Analytical Processing (OLAP) is to support decision makers by providing
methods to analyze databases. The basic data structure and operations which can be performed
with OLAP are described in this Chapter. Furthermore, an extension to OLAP called Text Cube
is described. This extension provides mechanisms to integrate natural language data, in addition
to structured data, into the analyzing process.

3.1. Multidimensional Data Analysis with OLAP

The term OLAP was originally introduced in Codd et al. (1993), where the authors investigated
multidimensional data analysis and defined 12 rules an OLAP system should maintain. As these
rules were considered to be too application specific, in Pendse and Creeth (1995) the authors
introduced a more comprehensible set of five rules to state the requirements for an OLAP system:

• Fast: The system hast to process the queries fast, within a few seconds at most, to guarantee
a steady workflow for the analyst.

• Analysis: All relevant analysis operations for the particular application have to be sup-
ported. Furthermore, the access to these operations should be provided in a way, that also
users, which are not programming experts, can cope with it.

• Shared: The system has to implement security mechanisms to provide confidentiality. For
multiuser systems this also means, that a system has to handle concurrent read and write
access.

• Multidimensional: The system has to provide the data in a multidimensional represen-
tation. This can be seen as the most important requirement, as it enables the analysis
operations which make up OLAP.

• Information: All data that is necessary for the analysis has to be provided by the system.
Thus, information must not be inaccessible due to technical limitations of the system.

Therefore, to check if a given system satisfies these rules is called the FASMI test (Fast Analysis
of Shared Multidimensional Information).

Thus, a central aspect of OLAP is, that the data is organized as a set of points in a multidimen-
sional space, such that the dataset can be represented as a set of points within a hypercube. The
datapoints represent the rows of a fact table, e.g. sales records, with product, price, quantity, and
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date as dimensions. This data structure with the typical OLAP operations on it is explained in
the next Section (3.2). The goal of this structure is, to provide the data in a way, such that it can
be viewed from different aspects, and navigated through efficiently.

Given the requirements for OLAP, the multidimensional approach provides several advantages
compared to a relational database with SQL as query language. Although in principle, the infor-
mation that can be queried from a multidimensional database can also be queried using SQL on
a relational database, the analyzing process can become a quite tedious task using that approach.
This is because the user shall be able to receive the answer to a query in a short time (a few
seconds, at most) even if the query is complex. Subsequently, it shall be possible to alter and
refine the query and again receive the answer quickly. Furthermore, queries have to be easy to
formulate, such that the analyst doesn’t have to be a database expert. These requirements can
be fulfilled much easier with an multidimensional database than with a relational database.

Analysis Approaches

There are two main approaches of how to analyze the data in an OLAP system, namely the
hypothesis driven approach and the discovery driven approach. A comparison of these approaches
and the original definition of the discovery driven approach can be found in Sarawagi et al. (1998).
With the hypothesis driven approach, the analyst first makes up a hypothesis, and then analyzes
the data to check if the hypothesis holds or not. The goal there is, to find anomalies in the data
to discover problems or opportunities for improvements.

In the discovery driven approach, firstly exceptions are precomputed. Exceptions intuitively are
values, which remarkably exceed the typical variance of the according dimension values. With
this information, the analyst can be supported when navigating through the data cube to find
anomalies more efficiently. This can especially be helpful, if the cube has many dimensions. In
Giacometti et al. (2009), a method is described, to further improve the discovery driven approach,
by recommending queries to the analyst, based on previous investigations.

3.2. OLAP Cube

The OLAP Cube is the central data model in OLAP, on which the analyzing operations are per-
formed. As the number of dimensions is arbitrary, the model can actually be seen as a hypercube
which contains cells to which the data points belong to. A cell represents a value or a range of
values for each dimension of the cube. Thus, each cell contains the set of data points, where the
dimension values of the points match the values of the cell. The values, which are then displayed
in these cells are called measures. The measures can be aggregated with appropriate functions,
which are typically sum, or also average, median or other values. The aggregation function is
supposed to accurately summarize the underlying data, thus it is important choose an appropriate
function. In Horner et al. (2004), for instance, the authors investigated how to handle potentially
inaccurate aggregation functions.

An important characteristic of dimensions is, that they can be structured hierarchically. For
instance, a geographic dimension could be structured into cities, which belong to states, which
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belong to countries, which belong to regions. Thus, the cells in the OLAP cube can represent
different levels of such hierarchies of a dimension.

The typical OLAP operations that can be applied on the cube are described in the following
subsection.

Operations

There is a number of operations on the OLAP cube, which utilize the hierarchical structure of the
dimensions, to efficiently navigate through the data. These operations are:

• Drill up/down: These operations concern the hierarchy level of the according dimension.
Thus, if drill up is performed, the values of the dimension become more general and therefore
the cells in the cube, belonging to this dimension represent a higher level in the hierarchy.
For instance, drill up on a geographical dimension, which is currently on level cities, will
then be on level states. Thus, the data points which have city values which belong to the
same state values will subsequently belong to the same cell in the cube, according to this
dimension. Drill down is the reverse operation of drill up.

• Slice: The slice operation restricts a dimension to a certain value of that dimension. E.g.
on a geographical dimension with country values, a slice operation could be performed with
the value Austria. Thus, all datapoints of the resulting cube (or slice) have the value Austria
in this dimension.

• Dice: A repeated application of the slice operation is called dice, as this creates a smaller
cube which represents a subset of the original cube.

• Pivot/Rotate: As for a cube, with more than two dimensions, not all dimensions can be
displayed at the same time. The view of the cube, concerning the displayed dimensions, can
be changed with the pivot (aka rotate) operation.

3.3. Types of OLAP

The different types of OLAP concern the way the data is stored. The main types are Relational
OLAP (ROLAP) and Multidimensional OLAP (MOLAP), which are described in the following
subsections.

There also exist a number of other types1 like for instance Mobile OLAP, Web OLAP or Desktop
OLAP, which are supported by some implementations. However, these types are not widely
supported and do therefore not represent main OLAP techniques.

1http://olap.com/w/index.php/Types_of_OLAP_Systems
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Multidimensional OLAP and Relational OLAP

In MOLAP, the data is actually stored in a multidimensional database. This has the advantage,
that it is in an optimal format for OLAP, and therefore, the OLAP operations can be performed
efficiently.

In contrast, ROLAP stores the data in a relational database. This has the advantage, that big
databases can be stored more efficiently. However, if the typical OLAP operations are performed
on a relational database, the performance is slower than on multidimensional databases, as they
are not optimized for such queries.

A survey of these techniques can be found in Pedersen and Jensen (2001). The main aspects where
these approaches of data storage differ can be summarized as follows:

• Query Speed: As the data structure of MOLAP is optimized for the kind of queries that
are performed with OLAP, it outperforms ROLAP concerning query speed. This especially
comes into account if a sequence of complex queries has to be computed.

• Scalability: Because relational databases are supposed to scale well on very large data sets
and are implemented accordingly, ROLAP has an advantage in this aspect. Especially, the
computation of dimensions with very high cardinality can become slow in MOLAP systems.
Furthermore, a well structured relational database doesn’t contain redundancies, while in a
multidimensional database, this can not always be guaranteed and therefore the data cube
can require a lot of storage space.

• Precomputation: In contrast to ROLAP, MOLAP has to precompute the data cube such
that views of different hierarchy levels can subsequently be queried efficiently. This also has
got to do with scalability, because the precomputation of a large dataset can become quite
time intensive.

Therefore, the MOLAP approach is well suited for relatively small datasets, which are queried
frequently, while ROLAP scales better on big datasets which are not accessed by a very large
number of according queries.

Hybrid OLAP

To achieve a tradeoff between the advantages and disadvantages of these two types, there also
exists a hybrid type called Hybrid OLAP (HOLAP). With this approach, a subset of the data can
be stored in a multidimensional format, which increases query performance on this data, while
the remaining data stays in a relational format. Thus a fast query performance on data, which is
frequently used, can be achieved, while the size of the cube is kept relatively small.
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3.4. Text Cube

The Text Cube was originally introduced in Lin et al. (2008). As modern databases often involve
textual data, e.g. the database of an online store might contain user comments about products, it
makes sense to try to utilize this data in an analysis process. For this purpose, the Text Cube uses
term hierarchies as additional dimensions to an OLAP cube. Furthermore, information retrieval
(IR) measures, namely term frequency and inverted index, are supported by the Text Cube.

While IR measures are relatively easy to implement, the term hierarchies imply, that such hierar-
chies have to be created in advance. As different datasets might contain very different terms, which
are relevant, especially if the datasets are from different domains, specialized term hierarchies are
required for each dataset. Thus, in the implementation in this work, an automatic taxonomy ex-
traction was applied on the dataset in advance, to find such hierarchies and subsequently include
them in the OLAP system to utilize the additional capabilities of the Text Cube.

Text Cube Operations

With the extracted text data and the term hierarchies, the following additional operations can be
defined:

• Pull-up: This operation can be performed on dimensions that represent term hierarchies,
and is similar to the drill up operation. The reason for the need of a specialized operation
on the term hierarchies is, that the leaf nodes are not necessarily all at the same level, thus
the levels have to be defined differently. Therefore, only the lowest and the highest levels
are defined initially. If pull-up is performed on a given level, other than the root level, with
a certain node (term) of that level, the parent of that node is added to the new level, and
all its descent nodes are removed. Thus, the result is a higher level.

• Push-down: Push-down is the reverse operation of pull-up. Thus, this operation yields a
lower level, by removing a node, which has child nodes, and adding its children to the new
level.

• Keyword search: This operation restricts the datapoints to those, that contain the speci-
fied keywords in an according textual dimension. Thus, the resulting cube contains a subset
of the datapoints of the original cube.

• Term frequency: For a given cube, term frequency yields a list of terms, which occur in
the according textual dimension of the datapoints, for each cell of the cube. The lists are
ordered by the number of occurrences of the corresponding terms. Thus, for instance, the n

most frequent terms can be queried for each cell.

With these operations, an analyst has additional possibilities to investigate a given dataset, as
additional information can be utilized.
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3.5. Summary

OLAP provides a powerful tool to analyze multidimensional databases. This analysis can help
decision makers to discover problems and new opportunities by investigating business relevant
data that is contained in the database of the according enterprise. To aid this analyzing process,
the OLAP cube provides efficient methods to navigate through big datasets.

The different types of OLAP, which define how the data is stored, allows to adjust an OLAP
system to the needs of the application. Additionally to the traditional OLAP approach, which
is only capable of handling structured data, Text Cube extends the OLAP model to make use of
textual data. Thus, additional data can be utilized which provides further possibilities to analyze
according databases.

The methods which were described in this Chapter have also been implemented in the prototype.
The database, which provides the data for the OLAP system is implemented such that it makes
use of semantic web technologies, which are described in the next Chapter.
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In this Chapter, an introduction to the basic techniques on which the Semantic Web is built upon
is given. Most of these techniques have been standardized by the W3C in about the last decade
and have been taken up by researchers and industry to implement tools and products that make
use of these techniques. Such tools have also been used in the implementation to develop an RDF
data store, which is described in Chapter 6.

4.1. Semantic Web

The concept of a semantic web was originally introduced by Tim Berners-Lee (Berners-Lee et al.,
2001). The goal is, to add structured data to the web, which can be read and processed by
computers. The idea is to make the data available like in a database, such that it is possible to
answer questions like “Who was the first person who climbed all mountains which are higher than
8000m? ” or to enable software agents to automatically perform tasks like “Make an appointment
at a nearby dentist in the next week.”, where the agent would additionally have to take care of
other tasks already in the calendar.

Such things can not easily be done if the information in the web comes as natural language or
media files only, as the structure that comes with hypertext, only enables browsers to display web
pages in a way which is suitable for humans. But this does not enable the computer to extract
information from the data. To address this issue, the Resource Description Framework (RDF)
was introduced to provide a format that can represent structured data. How this is done will be
explained in the next Section (4.2).

Furthermore, it is important that providers of information do agree on a common set of vocabulary
such that datasets which represent the same type of information are always recognized as such.
For that purpose, ontologies are used, which define relations between terms and map the data to
the according semantics. This is also described in more detail in the following sections.

4.2. Resource Description Framework (RDF)

RDF is one of the core technologies of the semantic web and was originally introduced and specified
by the W3C1 (Carroll and Klyne, 2004). It provides the basic concepts to represent data in

1http://www.w3.org/
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a general way such that arbitrary entities with their according attributes and relations can be
represented. In the following subsections the data structure of RDF and according serialization
formats will be described in more detail.

4.2.1. RDF Structure (Graph Model)

In RDF each entity (resource) is identified by a URI and its properties are defined by triples of the
form (subject, predicate, object), where the predicate defines the property which maps the value
of object to the subject. Each of the elements in the triple can be a URI, where the object can
also be a literal which are used to identify values like numbers or dates. Thus, an entity can be
associated with any number of properties or related to other entities by defining the according set
of triples. The result can then be seen as a directed graph, where the nodes represent entities and
values (subject and object) and the edges represent the relations (predicate). An example is given
in Figure 4.1.

Figure 4.1.: Here the colored nodes represent resources and the white nodes represent literals. For instance
the resource http://example.org/lotr is associated to another resource http://example.org/john
via the property identified by http://example.org/author. This relationship can also be seen as
a triple consisting of subject=http://example.org/lotr, predicate=http://example.org/author and
object=http://example.org/john.

Literals and Datatypes

As mentioned before, the object of a triple can not only be a URI but also a literal. A literal
can either be plain, thus being a string with an optional language tag, or it can be a typed literal
which is a string with an additional datatype URI. Datatypes are important for programs that are
intended to automatically process the data as they need to know how to interpret a given literal.
As RDF itself only comes with one special built-in datatype, namely the XMLLiteral, which is
defined as the set of all valid XML strings, all other datatypes have to be specified externally.
The intention is, that common datatypes, like those defined by the XML Schema (Malhotra and
Biron, 2004) should be used.

Furthermore, if datatypes are needed that are not covered by any existing definitions they can be
defined, where the definition must contain the lexical space, the value space and a lexical-to-value
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mapping:

• lexical space: The set of strings that correspond to the values of the datatype.

• value space: The set of values which the datatype can take.

• lexical-to-value mapping: A mapping from the elements in the lexical space to the cor-
responding elements in the value space such that each lexical value maps to exactly one
element in the values space.

Blank Nodes

Blank nodes are a special type of nodes which do not have a URI. Thus, these nodes are not
accessible from outside the database they belong to, but must nevertheless be uniquely identifiable
inside the database. The purpose of such nodes is illustrated in Figure 4.2.

Figure 4.2.: Here the resource http://example.org/people/bob is associated with an address via a blank
node. Such blank nodes can be introduced if multiple objects (here: zip-code, city and street) which
belong to a common concept (address) have to be associated with one subject. If this intermediate node
is not intended to be referred to directly from outside, it doesn’t need a URI, thus it can be created as
a blank node.

4.2.2. Serialization Formats

The originally specified format to serialize the abstract model of an RDF graph is RDF/XML
(Beckett, 2004). This is an XML based format that allows to represent the RDF graph in a
machine readable way.

The root element of an RDF/XML document usually is <rdf:RDF> which can contain namespace
definitions (this element can also be omitted if it would contain only one child). For instance, for
the graph of Figure 4.1 this could be:

<?xml ve r s i on ="1.0"?>
<rd f :RDF xmlns : rd f="http ://www.w3 . org /1999/02/22− rdf−syntax−ns#"

xmlns : ex="http :// example . org/">
. . .

with the two defined namespaces for rdf and ex. The properties of the resources are described
with the <rdf:Description> element, where the according resource is defined with its URI in the
about attribute. The according properties can then be embedded as children of that element or
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for string literals also as attributes. For instance, a subset of the nodes and edges of the example
in Figure 4.1 could be serialized as:

1 <rd f : Desc r ip t i on rd f : about="http :// example . org / l o t r "
2 ex : t i t l e ="The Lord o f the Rings">
3 <rd f : type rd f : r e s ou r c e="http :// example . org /book" />
4 <ex : author>
5 <rd f : De sc r ip t i on rd f : about="http :// example . org / john" />
6 </ex : author>
7 </rd f : Descr ipt ion>
8
9 <rd f : Desc r ip t i on rd f : about="http :// example . org / john"

10 ex : name="J .R.R. Tolkien " />

In this example, the attribute ex:name of the description about http://example.org/john in
line 10 could also have been placed inside the description tag in line 5. Thus the way an RDF
graph is serialized is not unique.

Typed literals can be associated with their type via the rdf:datatype attribute, for instance:

<rd f : De sc r ip t i on rd f : about="http :// example . org / john">
<ex : name rd f : datatype="http ://www.w3 . org /2001/XMLSchema#s t r i n g "
>J .R.R. Tolkien </ex : s i z e >

</rd f : Descr ipt ion>

Here the literal “J.R.R. Tolkien” is associated with the datatype string.

Furthermore if a resource is of a certain type, like in the example http://example.org/lotr

is of the type http://example.org/book, then the description tag for the resource can also be
replaced by a tag with the according type, for instance:

<ex : book rd f : about="http :// example . org / l o t r ">
<ex : t i t l e >The Lord o f the Rings</ex : t i t l e >

</ex : book>

By defining the additional namespace xml:base=“http://example.org/” the attribute
rdf:about=“http://example.org/id” can also be abbreviated to rdf:ID=“id”.

These are the basic concepts to serialize an RDF graph with RDF/XML (the complete definition
can be found in Beckett, 2004). Another way to serialize a graph is with Notation 3 (N3) as
described in the following.

Notation 3 (N3)

N32 was introduced to provide a more convenient and readable alternative to RDF/XML. Docu-
ments written in N3 usually start with namespace declarations. These are defined by the keyword
@prefix followed by a identifier and a colon and the URI of the namespace within angular brack-
ets. This statement, like all other statements in N3, is terminated by a “.” and also URIs are
always written in angular brackets. For instance, for the example in Figure 4.1 this could be:
2http://www.w3.org/TeamSubmission/n3/
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@pref ix ex : <http :// example . org/> .
@pref ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@pref ix : <#> .

where the last prefix defines the current document, thus an element of the current document
can be referred to by a colon followed by the name of the element. Other elements within these
namespaces can be referred to by the specified name followed by a colon and the name of the
element. E.g. rdf:type would refer to the URI
http://www.w3.org/1999/02/22-rdf-syntax-ns#type.

Triples can then be defined by statements of the form “subject predicate object.” where each
of subject, predicate and object can be a URI (or an abbreviation using the names of the defined
namespaces). The object can also be a literal which is written in double quotes. For instance, a
few statements of the graph in Figure 4.1 would be:

ex : l o t r rd f : type ex : book .
ex : l o t r ex : author ex : john .
ex : l o t r ex : t i t l e "The Lord o f the Rings" .

If several statements are made belonging to the same subject, this can be abbreviated by wrinting
the subject only once and separating the predicate/object pairs by semicolons, e.g.

ex : f l t rd f : type ex : book ; ex : author ex : simon ;
ex : t i t l e "Fermat ’ s l a s t Theorem" .

Thus N3 provides a way to serialize RDF graphs, which is more convenient to read and write
manually, compared to RDF/XML.

4.2.3. RDF and RDF Schema Vocabulary

The vocabulary of RDF is (intendedly) quite limited. Therefore, RDF Schema (RDFS) defines a
further set of vocabulary to describe and structure resources (Guha and Brickley, 2004).

Classes and Properties

In RDF everything is a resource, thus an instance of rdfs:Resource, which is the class of every-
thing and is a superclass of all other classes. Classes are used to group objects together and are
recursively defined such that rdfs:Class is an instance of rdfs:Class (and also rdfs:Resource

is an instance of rdfs:Class). Other classes defined by RDFS are rdfs:Literal which is the
class of all literals and rdfs:Datatype which is the class of all datatypes (literals and datatypes
as described in Section 4.2.1 (Literals and Datatypes).

Another important class of RDF is rdf:Property as a set of other classes is derived from it in
RDFS. Properties describe the relations between subjects and objects, thus they are the predicates
in the triples. The subclasses of rdf:Property in RDF(S) are:
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• rdf:type - defines that a subject is an instance of the class defined by the object.

• rdfs:domain - a triple P rdfs:domain C specifies the domain for property P. Thus for a
triple S P O, the subject S has to be of class C.

• rdfs:range - a triple P rdfs:range C specifies the range for property P. Thus for a triple
S P O, the object O has to be of class C.

• rdfs:subClassOf - defines that one class is a subclass of another class. Thus hierarchies of
classes can be created.

• rdfs:subPropertyOf - defines that one property is a subproperty of another property. Thus
if P1 rdfs:subPropertyOf P2 and A P1 B then also (implicitly) A P2 B.

• rdfs:label - defines a label for a resource in a human readable way.

• rdfs:comment - defines a human readable comment (description) for a resource.

Containers

RDF(S) also describes some basic container classes with the according properties to define which
resources belong to a container. These are subclasses of rdfs:Container. The membership of
a resource to a container is defined by the property rdfs:member. The different subclasses of
rdfs:Container provide mechanisms to define ordered and unordered containers.

Thus with the extended set of vocabulary, RDF gains additional expressiveness to describe re-
sources. The full set of RDF(S) vocabulary can be found in the according W3C recommendation
in Guha and Brickley (2004). In Section 4.3 the Web Ontology Language is described which is
built upon RDFS and provides further expressiveness to describe resources and their relations.

4.2.4. Query Languages

Query languages provide the possibility to query data from an RDF graph, similar to query lan-
guages on relational databases. For RDF, a number of query languages exist which are supported
by a variety of implementations in different programming languages (a survey of different query
languages can be found at the W3C website3).

The query language that was defined by the W3C is called SPARQL (SPARQL Protocol and RDF
Query Language) which is an official W3C recommendation (Prud’hommeaux and Seaborne, 2008).

4.2.4.1. SPARQL Queries

The syntax of SPARQL queries is similar to that of N3. The first part of a query is usually a
set of definitions of prefixes in the form of PREFIX name: <URI> to define the used vocabularies.
The next thing is the keyword that defines the type of the query, like SELECT (the other types

3http://www.w3.org/2001/11/13-RDF-Query-Rules/
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of queries are described later). The keyword SELECT is followed by a set of variables, which are
marked by an initial “?”. This is followed by the keyword WHERE followed by a set of statements
between curly brackets. The statements are triples where each of subject, predicate and object
can be a variable. For instance, a query on the graph of the example in Figure 4.1 that should
return all resources of type ex:book would be:

PREFIX ex : <http :// example . org/>
SELECT ?b
WHERE { ?b a ex : book . }

where a in the triple is a short form for rdf:type. The resultset would then consist of all possible
bindings of the variable ?b which are in the example ex:lotr and ex:flt.

Literal values can be queried by putting the according value between double quotes and appending
the type by ˆˆ<DATATYPE_URI>. E.g. to query all books with author “Simon Singh” (of type
xsd:string) this would be:

SELECT ?b
WHERE {

?b ex : author ?a .
?a ex : name "Simon Singh"^^<http ://www.w3 . org /2001/XMLSchema#st r i ng > . }

which would return a result set with the one element ex:flt.

To restrict the values of a variable the keyword FILTER can be applied. The condition of FILTER
depends on the datatype of the according variable, e.g. if the string variable ?name should be fil-
tered using a regular expression such that only values that start with “Simon” should be considered,
this can be done by FILTER regex(?name, “ˆSimon”).

Triples in the where clause can also be made optional by using the keyword OPTIONAL thus variables
can be unbound in the result set. To match alternative sets of triples the keyword UNION can be
used, e.g. if all bindings for a variable ?x for alternative properties P1 and P2 with value “value”
should be found this can be done by:

SELECT ?x
WHERE { {?x P1 " value " .} UNION {?x P2 " value " .} }

The result set can also be ordered according to a variable using the keyword ORDER. Furthermore
it can be limited with the keyword LIMIT and an offset can be applied using the keyword OFFSET.
If multiple solutions according to a variable should be suppressed, the keyword DISTINCT can be
put in front of that variable in the select clause.

Other types of Queries

In addition to the select query, which returns a set of bindings for the queried variables, three
other types of queries exist. The difference between the types lies in the results they produce:

• Construct Queries: The result of a construct query is an RDF graph. Thus a graph
pattern is given in the construct clause such that each proper binding of the pattern is in
the resulting graph.
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• Ask Queries: Ask queries return a boolean value. If the specified pattern of triples has a
solution then true is returned, else false.

• Describe Queries: The result of a describe query is also an RDF graph. Therefore, for all
valid bindings of the given variables all according descriptions (<rdf:Description> about
the according resource) are returned.

4.3. Web Ontology Language (OWL)

The Web Ontology Language (OWL) is also a standard defined by the W3C (McGuinness and
van Harmelen, 2004). It is built upon RDF(S) and its purpose is to add further vocabulary with
according semantics to gain additional expressiveness. The basic components are described in
Section 4.3.1. There are three sublanguages of OWL, namely OWL Lite, OWL DL and OWL Full.
The differences between the sublanguages are in the expressiveness, decidability and completeness,
which is described in more detail in Section 4.3.2. The current version is OWL 2 (Krötzsch
et al., 2009), which is based on and compatible with the previous versions, but adds further
expressiveness.

4.3.1. Components and Semantics

The vocabulary added by OWL mainly concerns three components, namely classes, properties
and individuals. If resources are described with this vocabulary, it is possible to automatically
reason over a created ontology such that implicit knowledge can be derived. Implementations of
reasoners are introduced in Section 4.4.

Classes

Classes are, like in RDFS, collections of things that share some properties. The set of resources
that belong to a class is called the extension of that class. There are six possibilities to define a
class:

1. Class Identifier: simply defines a class by giving it a name, e.g.
<owl:Class rdf:ID="Book" /> defines a class named Book.

2. Enumeration: enumerating the individuals that belong to the class. This class then con-
tains exactly the individuals of that list. E.g. (note: all individuals in OWL are instances
of owl:Thing):

<owl : Class rd f : ID="Gender">
<owl : oneOf rd f : parseType="Co l l e c t i o n">

<owl : Thing rd f : about="http :// example . org /Female" />
<owl : Thing rd f : about="http :// example . org /Male" />

</owl : oneOf>
</owl : Class>
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where the attribute rdf:parseType=“Collection” defines that the children of the according
element form a list.

3. Property restriction: defines an anonymous class by restricting the values or cardinality
of a property. E.g. a class with value restrictions:

<owl : Re s t r i c t i on >
<owl : onProperty rd f : r e s ou r c e="http :// example . org /hasGenre" />
<owl : someValuesFrom rd f : r e s ou r c e="http :// example . org /Fantasy" />

</owl : Re s t r i c t i on >

defines a class of individuals that have genre Fantasy.

4. Intersection, Union and Complement: defines a new class by performing the according
set theoretic operations on the given class(es). E.g.

<owl : Class rd f : ID="Edib lePlant">
<owl : i n t e r s e c t i o nO f rd f : parseType="Co l l e c t i o n">

<owl : Class rd f : ID="Plant " />
<owl : Re s t r i c t i on >

<owl : onProperty rd f : r e s ou r c e="http :// example . org / i sEd i b l e " />
<owl : hasValue rd f : dataType="&xsd ; boolean">true </owl : hasValue>

</owl : Re s t r i c t i on >
</owl : i n t e r s e c t i onOf >

</owl : Class>

defines the class EdiblePlant by the intersection of the class Plant and the class of all things
that are edible.

Furthermore, three additional statements about classes are possible. The first one, namely
rdfs:subClassOf, has already been described in the according section about RDFS. The oth-
ers are:

• equivalentClass: this states that two classes share exactly the same extension. This does
not mean, that the concepts described by the classes must be equal or that they must have
the same properties, but only that they contain the same individuals.

• disjointWith: this states that the two sets of individuals which belong to the two classes
(the class extensions) are disjoint.

Properties

There are two main types of properties in OWL, namely owl:ObjectProperty, where the range is a
set of individuals, and owl:DatatypeProperty, where the range is a datatype. Both are subclasses
of rdf:Property, thus all the constructs of RDFS like rdfs:domain or rdfs:subPropertyOf also
apply to OWL properties.

Additionally the following statements can be made about properties:

• owl:equivalentProperty: states that two properties have the same subject/object pairs
associated with them.
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• owl:inverseOf : states that two properties have the same subject/object pairs associated
with them, but with subject and object swapped. Thus the properties in this case have to
be of type owl:ObjectProperty.

• owl:TransitiveProperty: if a property is of that type, then for subject/object pairs (a, b)
and (b, c) with that property, the property also holds for (a, c).

• owl:SymmetricProperty: if a property is of that type, and a subject object pair (a, b)

has that property, then also (b, a) has that property.

• owl:FunctionalProperty: this type of property restricts the cardinality such that for
subject/object pair (a, b) with this property, the pair (a, c) cannot also have this property.

• owl:InverseFunctionalProperty: this is the inverse of a functional property. Thus if
an object b is associated to a subject a via a inverse functional property, b cannot also be
associated to a subject c via the same property.

Individuals

Individuals are instances of classes and are referred to by an URI. Generally, different URIs do
not necessarily refer to different concepts, thus with OWL, several statements about the identity
of individuals can be made.

To state that two URIs actually represent the same concept, the property owl:sameAs can be used.
This is for instance useful, if two ontologies shall be mapped to each other. In contrast, it can
also be stated, that two URIs represent different concepts using the property owl:differentFrom.
For a set of URIs where all represented concepts are pairwise disjoint, OWL provides the class
owl:AllDifferent which can be instantiated with a list of individuals which are all pairwise
disjoint, e.g.:

<owl : A l lD i f f e r en t >
<owl : dist inctMembers rd f : parseType="Co l l e c t i on">

<Book rd f : about="http :// example . org /FermatsLastTheorem" />
<Book rd f : about="http :// example . org /LordOfTheRings" />
<Book rd f : about="http :// example . org /ComputersAndIntractabi l i ty " />

</owl : dist inctMembers>
</owl : A l lD i f f e r en t >

4.3.2. Sublanguages

As mentioned earlier, OWL defines three sublanguages, where OWL Full contains the full set of
OWL concepts without restrictions, and is thus the sublanguage with the greatest expressiveness.
Furthermore, each proper RDF document is also a valid OWL Full document, which is not true for
OWL DL and OWL Lite. However, the expressiveness of OWL Full comes with the drawback, that
neither is a computation on the data guaranteed to finish in finite time, nor can it be guaranteed,
that all valid conclusions can be drawn (completeness and decidability).
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Therefore, OWL DL (the name is derived from description logic) sacrifices some expressiveness
to gain completeness and decidability. The vocabulary of OWL DL is the same as that of OWL
Full, but comes with some constraints on the usage of some concepts and also most of the RDF(S)
vocabulary is restricted in OWL DL. Thus, for instance, an individual cannot be a class at the
same time. Therefore, OWL DL is appropriate if completeness and decidability is required while
the full expressiveness is not necessary.

For OWL Lite, the constraints of OWL DL also apply, and furthermore a subset of the OWL
vocabulary is restricted. OWL Lite still provides the possibility to create class hierarchies and
simple property definitions and is considered as the minimal useful subset of language features4.

4.3.3. Existing Ontologies

To bring the semantic web to its full potential, it is necessary to widely agree on a common set
of vocabulary. For this purpose, a number of ontologies (or vocabularies) has been developed,
which are used in many different systems. These reach from general ontologies to very specialized
domain ontologies.

General Ontologies - DC and FOAF

An early vocabulary was the so called Dublin Core5 (DC). This was originally developed in 1995,
thus even before RDF was developed. To date it is internationally standardized (by ISO6, IETF7

and ANSI/NISO8), used in many applications and also available in RDF format. It defines
15 general terms to describe a resource, which can be for instance a document, website, video
file or physical object. The vocabulary provides terms to describe the content (e.g. dc:title,
dc:description), creators (e.g. dc:creator, dc:contributor) and other metadata about the
resource. Another wide spread ontology is FOAF9 (Friend-Of-A-Friend) which also makes use of
DC (among others). The main purpose of this ontology is to relate people and their activities of dif-
ferent social networks. Some basic terms of the vocabulary are for instance the class foaf:Person,
of which the instances describe real (or imaginary) persons or the property foaf:homepage, which
relates something (e.g. a person or a project) with its homepage.

FOAF is also used in many applications and also investigated in several research papers. For
instance, in Golbeck and Rothstein (2008) the authors investigated the intersection of FOAF data
in different social networks, and found out that a significant amount of data from the different
networks could be merged, which demonstrates a potential application of semantic web data. A
very different application which makes use of FOAF is introduced in Banford et al. (2010). This
application makes use of smartphones with Bluetooth to detect co-present users of a network. If
users are detected, which haven’t yet been introduced to each other but have friends in common,
the system can notify the users about each other.

4http://www.w3.org/TR/owl-ref/#OWLLite
5http://dublincore.org/documents/dces/
6http://www.iso.org/iso/search.htm?qt=15836&searchSubmit=Search&sort=rel&type=simple&published=on
7http://www.ietf.org/rfc/rfc5013.txt
8http://www.niso.org/standards/z39-85-2007/
9http://www.foaf-project.org/
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Domain Ontologies

There also exist a number of domain-specific ontologies like for biology, geography or medicine
which are used by specific tools. The Cell Cycle Ontoloy10 (CCO) for instance, is used to describe
the cell division process and involves a variety of other related ontologies. BioPAX11 is a language
for biological pathway data, which also uses an OWL based format to exchange data. Thus it
provides mechanisms to exchange, aggregate and visualize data from different databases.

Therefore, the potential utility of ontologies and the techniques to realize them is not limited to
any certain domain, but can be applied in many fields and for a variety of different purposes.

4.4. Semantic Web Tools and Programming Libraries

To date, a variety of tools is available to aid the development and usage of semantic web related
techniques. On the W3C RDF website12 for instance, a list of currently more than 170 RDF
relevant tools is available. Among these are both commercial and non commercial tools which
support all common platforms and programming languages. The purposes of the tools reach
from triple stores with according implementations of query languages, to reasoners and ontology
browsers.

Two such tools were used in the development of the prototype in this work, namely Sesame
and Protégé. Sesame13 provides an open source Java implementation of an RDF triple store. It
provides several ways to set up and access repositories including according query language support.
Furthermore, its functionality can be extended with plugins, for instance to integrate reasoners or
to link it with other tools.

Protégé14 is a Java based open source tool for ontology construction. It provides a GUI for
entering classes, properties and individuals, mechanisms to import and export ontologies into
various formats and for other related tasks. Additionally it can be extended with plugins, which
for instance provide graphical visualizations for ontologies or to integrate reasoners. There also
exists a plugin to access Sesame repositories from Protégé.

Reasoners

As the definition of OWL is related to logic, it is possible to perform reasoning tasks on ontologies.
Therefore, a number of implementations of reasoners are available like for instance FaCT++15 or
Pellet16, which are open source implementations in C++ and Java respectively, or RacerPro17,

10http://www.semantic-systems-biology.org/cco/
11http://www.biopax.org/
12http://www.w3.org/RDF/
13http://www.openrdf.org/
14http://protege.stanford.edu/
15http://owl.man.ac.uk/factplusplus/
16http://clarkparsia.com/pellet
17http://www.racer-systems.com/products/racerpro/index.phtml
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which is a commercial reasoner (but free for research and teaching). Such implementations are
usually focused on OWL DL, as it is complete and decidable, thus all true statements can be
inferred, and all computations are guaranteed to finish in finite time. Furthermore, the imple-
mentation of a reasoner is not a trivial task, thus different implementations of reasoners follow
different design goals like scalability, efficiency or completeness. In Bock et al. (2008) for instance,
the authors benchmarked different reasoners with main focus on query response time and found
out, that the reasoners have according strengths and weaknesses. Thus, if a reasoner is used in an
application, it makes sense to investigate, which reasoner best fulfills the requirements.

In contrast to query languages like SPARQL, which are only capable of finding explicitly stated
knowledge, reasoners can also derive implicit knowledge, by applying logical rules of inference.
Thus typical tasks for reasoners are for instance to check the consistency of ontologies and classes
or deriving implicitly stated superclasses of a class.

4.5. Summary

The semantic web technologies provide the basis for the shift from a web, where the content
is interpretable only by humans, to a web where also computers can “understand” the available
information. For that purpose, the framework for knowledge representation RDF and the web
ontology language OWL, which allows to define the semantics of the stored data, have been
specified. If these techniques are utilized, it is possible to automatically reason over the given
knowledge, to combine knowledge bases or to perform other tasks which are not possible with the
common knowledge representation in the web. This does however not mean, that the semantic
web technologies are intended to replace the current techniques, but to replenish them.

The semantic web technologies have already been applied in a number of projects like for instance
DBpedia18, FOAF and many more and also a variety of tools has been implemented which support
these technologies.

In the implementation RDF and OWL are used to set up a datastore, which is one of the three main
modules of the prototype. As now the three fundamental techniques that are used in the imple-
mentation have been introduced, the requirements for the implemented system and the conceptual
approach is described in the next Chapter, followed by a detailed description of the implementation
in Chapter 6.

18http://dbpedia.org/
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The techniques that were discussed in the previous chapters shall now be brought together to set
up a new system that combines their strengths. As the Text Cube can make use of taxonomic
dimensions but does not define how to achieve them, an automatic taxonomy extraction shall be
used for that purpose. Furthermore, semantic web technologies can be utilized to provide a flexible
datastore, that can easily be extended by additional information at any time.

Thus the goal is to implement a system that provides OLAP and Text Cube functionality in a
way that extracted information can easily be integrated. Such information has to be provided by
automatic taxonomy extraction that is performed on the available textual data. The database
has to be stored in a format such that it is extensible and provides an uncomplicated possibility
to add new information to an existing database. The requirements are defined by the following
points:

• Datastore: The datastore has to provide the possibility to extend an existing database with
additional information at any time. The method to store and access the data should also be
extensible in a way, that data from several sources can be aggregated. Methods to import
and export data, especially data that can be used by OLAP, have to be provided. Thus, a
simple way has to be provided, to identify the data, that is relevant for OLAP, while the
original data must not be altered.

• Natural Language Processing: NLP has to be performed, such that the methods defined
by Text Cube can be utilized. Therefore, the relevant data from a specific database has to
be queried and the following information has to be extracted:

– Term frequency: The term frequency for the documents in the database has to be
extracted, to be able to run information retrieval queries on the documents which are
stored in the database.

– Taxonomies: An automatic taxonomy extraction has to be performed to extract ad-
ditional information from NL data that can be utilized by the OLAP system.

• OLAP and Text Cube: The functionality defined by OLAP and Text Cube has to be
supported. Thus the data that is stored in the datastore, including the data that has been
extracted by NLP, has to be imported and brought into an appropriate format to perform
the OLAP and Text Cube operations.
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5.1. Conceptual Approach

The implementation consists of three main parts, namely a datastore, a natural language processor
and an OLAP engine. This Section gives an overview, of how the techniques, described in the
previous chapters, are brought in to realize the system.

5.1.1. Datastore using Semantic Web Technologies

To be able to access databases in a general and convenient way, an RDF representation was used.
The main reason for that is, that RDF allows to create a general representation for the OLAP
dimensions, using a simple ontology, as described in 6.3.2. This enables the possibility to map
any database, which is available in RDF format to the ontology, and thus being able to query the
data with predefined SPARQL queries. Therefore, the database itself doesn’t need to be altered
but can be imported into the OLAP system using these queries. Furthermore, the other modules
of the system don’t need to know the structure of a specific database, but can query the needed
data by utilizing the mapping and the predefined queries.

The RDF representation also makes the framework extensible. In the prototype, a separate RDF
repository is used, which is however not the only way a database could be accessed. Some data
warehousing systems, like for instance Virtuoso1 provide the possibility to aggregate data of several
different sources and represent it as a single database in the desired format. Thus, for instance, if
some data is available partly in an SQL database and partly as RDF data, the whole dataset can
be aggregated and be mapped to a single RDF representation, which can in turn be mapped to
the OLAP ontology. Similarly, if the data was stored in a relational database and mapped to an
RDF representation via the D2R Server2, this representation could again easily be mapped to the
OLAP ontology.

5.1.2. Natural Language Processing

Natural language processing is used to extract two types of information, firstly term frequency of
the documents to be able to run information retrieval queries, and secondly taxonomy extraction.

Term Extraction

Term extraction is a fundamental task in NLP and therefore several NLP frameworks can be used
to perform it as they provide the according methods. Thus a module was implemented that makes
use of such methods. The steps this module performs are to query the textual data from the RDF
repository, to perform the term extraction and to write back the extracted data.

1http://virtuoso.openlinksw.com/
2http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/
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Taxonomy extraction

The first step for the taxonomy extraction is to perform NP-chunking on the given documents.
The resulting set of NPs, which represents a set of concepts, is then a starting point for the
relation finding. The reason why NPs are used instead of simple terms is that NPs are more likely
to represent more specific concepts as they are a composition of a number of simple terms.

The reason why only taxonomies are extracted instead of more general ontologies is that the result
should be fed into the OLAP system, and therefore only hierarchical structures can be utilized.

The relations are extracted by querying the Wikipedia categorization system, based on the idea
in Wong (2008). This has several reasons. First of all, Wikipedia is a huge source of background
knowledge which also contains very new knowledge, due to the collaborative effort of the big
community that maintains it. Furthermore, the relations are correct with high probability as they
are entered and checked repeatedly by humans. Also the variety of topics of many different fields
is important for this approach, because the system should be able to extract taxonomies from any
domain, even without knowing the domain of the processed corpus in advance. The reason for that
is, that for input data like the Australian Stock Forum Data, that was used in the experiments,
the documents can be of a whole variety of domains. For instance, in the used dataset discussions
about medicine companies might contain very different domain specific terms than discussions
about mining companies. This is also an additional challenge in finding domain specific terms.

The last step of the taxonomy extraction, which is performed to increase the quality of the tax-
onomies, is pruning. Pruning is a technique, that is used on tree-like structures, which serves
several purposes, depending on the application. For instance, in Recio-Garcia and Wiratunga
(2010), taxonomy pruning is performed for disambiguation. Furthermore, it is also commonly
performed on decision trees to prevent overfitting (e.g. Witten and Frank, 2005; Han and Kam-
ber, 2006). Here the pruning steps deal with nodes, that do probably not fit to the according
taxonomy and shall therefore be removed.

5.1.3. OLAP Engine

The OLAP engine is capable of importing the data, that is queried from the repository, and
performing several analyzing operations on it. Among these methods are typical OLAP methods
like slice or drill up/down. Furthermore, it is capable of performing the Text Cube methods
pull-up, push-down on extracted taxonomies and information retrieval queries on extracted terms.

As the OLAP engine is a separate module, any data that is in the database or has previously been
extracted can be passed on to it. Thus, additionally to the conventional analyzing approach of
OLAP, a document driven analyzing approach is possible, where the datapoints represent docu-
ments with their extracted features as dimension values.
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5.2. Related Work

Based on the idea of Text Cube and related ideas several research projects have been developed
in recent years. In Zhang et al. (2009) for instance, a model called topic cube is proposed which
integrates a topic hierarchy into OLAP as an additional text dimension. This idea combined with
others was also further developed in Yu et al. (2009). There a model called iNextCube is proposed,
which further extends the data cube model.

Thus, there is also the possibility to integrate other types of information that can be extracted from
natural language text into the Text Cube. This could be for instance the information extracted
by sentiment analysis (e.g. Pang and Lee, 2008; O’Hare et al., 2009; Choi et al., 2009), document
classification (e.g. Ko and Seo, 2009; Salles et al., 2010; Song et al., 2006) or named entity
recognition (e.g. Kozareva, 2006; Whitelaw et al., 2008).

Another cube model which is used for information retrieval is proposed in Janet and Reddy (2010)
and Janet and Reddy (2011), where the index to retrieve the documents is stored in a cube.

The ontology/taxonomy extraction in this work is mainly based on the ideas in Wong (2009).
However, there are also many other research groups that work on that topic which follow different
approaches. Big differences in these approaches lie in their type, semi-automatic (e.g. Carvalheira
and Gomi, 2007) or automatic (e.g. Guo, 2007) and how they extract terms and relate terms,
where for instance Sanchez and Moreno (2008) and Rosenfeld and Feldman (2007) follow very
different approaches, both with their strengths and weaknesses.

Also several related issues of data storage or data warehousing are addressed in a number of
research papers. E.g. Merritt (2002) and Boussaid et al. (2008) deal with data warehousing using
web technologies or with data from the web. In Ding (2007) issues about provenance and searching
in RDF data are discussed. There are also several commercial products, like for instance Virtuoso,
which provide RDF stores and also possibilities to aggregate data from several sources.
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In this Chapter, the implementation of the prototype is presented. First a short overview of
the system architecture is given in Section 6.1, followed by a more detailed description of the
implemented components in the following sections. Finally, the results, and the capabilities of the
prototype are demonstrated in Section 6.5.

6.1. System Overview

The implemented system consists of three main parts which are responsible for data storage,
natural language processing and OLAP respectively. The interplay of these modules can be seen
in Figure 6.1.

The Data Store contains the RDF repository, which is implemented using the Sesame library,
which comes with an integrated SPARQL processor. To be able to access the data from outside,
the data store also provides an HTTP server, which handles requests containing SPARQL queries
to read the database, and requests containing N3 data to update the database. The SPARQL
queries which are used to access the data are described in Section 6.3.4. These queries make
use of a special OLAP ontology, to which an imported database has to be mapped, to access all
relevant data for the NL processor and OLAP engine without the need to know the specific data
fields. Thus, the same queries can be used for any database. The OLAP ontology and an example
mapping is described in Section 6.3. The data store also provides a method to export the data in
an XML format that can be read by the OLAP engine.

The NL processor is responsible for term extraction and taxonomy extraction. Two libraries are
used for the basic operations to perform these tasks, namely GATE and NLTK. To access the data,
the mentioned HTTP server, provided by the data store, and the predefined SPARQL queries are
used. Thus, all text data in the database can be queried and subsequently processed. The result
is then passed to the repository in N3 format, again via the HTTP server.

The OLAP Engine can import all the mapped and extracted information that is contained in the
database. This information is stored in an OLAP cube on which the OLAP operations, including
the Text Cube operations, can be performed.
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Figure 6.1.: Here the three main modules of the system and their interplay can be seen. The Data Store
contains the Sesame RDF repository and the interface to access it via HTTP requests. Furthermore it
provides a mechanism to export the data as XML so that it can be imported by the OLAP Engine. The
NL Processor communicates with the data store via the HTTP interface by sending SPARQL queries
to read the repository and by sending N3 data, to update the repository.
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6.2. Natural Language Processing

The NLP tasks that have been performed were firstly term extraction, where in the following, term
is used synonymously for simple term, which means terms consisting of only one token. Secondly,
noun phrase extraction was performed and consequently relation finding between the noun phrases
to create taxonomies.

The subtasks are performed by a number of different modules. The module that performs NP-
chunking is written in Java and makes use of GATE Embedded as a programming library. As it is
written in Java, it can directly access the datastore where it makes use of the predefined queries
described in 6.3.4. The other tasks are performed by a number of Python modules, which partly
make use of NLTK and access the datastore, to query and update the data, using the HTTP
interface and also the predefined queries. In the following subsections, the single steps to perform
the NLP tasks are described in detail.

6.2.1. Term Extraction

The first step is to fetch the data from the repository, which is done using the queries explained
in chapter 6.3.4. Then for each text field, which will in the algorithm be referred as documents,
the following algorithm is performed, using the according methods from NLTK as indicated:

1 f o r each document :
2 c l ean HTML tags # nl tk . clean_html ( t ext )
3 token i z e the document # nl tk . word_tokenize ( t ex t )
4 remove non−alpha tokens
5 remove stopwords
6 stem the tokens # por t e r . stem ( token )
7 c a l c u l a t e the word f requency
8 f o r each token :
9 wr i t e accord ing RDF data to r epo s i t o r y

The cleaning of the HTML tags (line 2) is necessary because the text data can come from web
sources, which is also the case for the example dataset. If there are no HTML tags in the text, this
function doesn’t change the document. In the following steps, the document is split into its tokens,
and unwanted tokens like stopwords or numbers are filtered out. Before the term information is
written to the RDF repository, the words get stemmed using the porter stemmer (van Rijsbergen
et al., 1980).

With that process, the data for the information retrieval queries, as explained in Section 6.4.2.4,
is extracted and can be used by the OLAP system.

6.2.2. Noun Phrases

In the prototype, GATE modules were used to extract the noun phrases. After the extraction
process, the noun phrases were filtered, to keep only those which are potentially useful in the
ontology building process. These steps are explained in more detail in the following subsections.
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6.2.2.1. Chunking

Using GATE, the process of NP chunking is performed in three main steps (with the according
GATE modules in brackets):

1. Sentence splitting (gate.creole.splitter.SentenceSplitter)

2. POS-tagging (gate.creole.POSTagger)

3. Chunking (mark.chunking.GATEWrapper)

The sentence splitter searches for typical sentence delimiters like “.” or “?” and splits the text
according to them. It also considers multiple delimiters like “?!” or recognizes if a “.” is not used
as a sentence delimiter but for instance in a floating point number.

The POS-tagger uses the resulting sentences and annotates each token in the sentence with part
of speech tags like “CC” for coordinating conjunction or “NN” for noun. The tags are set according
to rules which have been acquired by training on a labeled dataset.

For the chunking, the method described in Ramshaw and Marcus (1995) is used in the according
GATE module. As a result, the noun phrases of each sentence are tagged, and can therefore be
used for further processing. The exact documentation of these modules can be found on the GATE
website1.

6.2.2.2. Filtering

As the set of extracted noun phrases which is returned by the chunking process can be very large,
it is necessary to filter the noun phrases, to reduce their number and only keep those, which are
potentially useful for ontologies. Furthermore, if noun phrases come from an online database, like
in the example dataset, where the content is generated in an informal way, as the input is not
checked for correctness, the data can contain noise, like typing errors, which has to be filtered.

In the implementation the following filters have been applied, where the last two (Commons and
Dictionary) filter noun phrases, that might be properly formed, but are not considered to be useful
in the ontology building process:

• Stopwords: If a NP starts with one or more stopwords, these stopwords are removed
from the NP. This is, to not get different versions of the same NP if it occurs with several
determiners like “a” or “the”.

• Plurals: If a NP is in the plural form, it is replaced by the singular form, to not get different
versions of the same NP.

• Numbers: NPs that consist only of numbers are removed. Furthermore, NPs that start
with a number and end with a plural “s” are reduced to their singular form.

1http://gate.ac.uk/
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• Commons: NPs that appear frequently in several domains are considered as too general.
For that purpose, the Brown corpus, which is available in NLTK and contains a set of
documents where each document is assigned to one category, has been used. Thus, if a NP
occurs in too many categories (according to a threshold), it is discarded.

• Dictionary: As the relation finding process that is later performed using the extracted
NPs, is done by using a dictionary as background knowledge, NPs are only kept if they are
in that dictionary. In the implementation Wikipedia was used as dictionary, thus only NPs
which have an article in Wikipedia are kept.

The extracted noun phrases that pass these filter rules are then saved to the repository, including
the information to which dimensions of which facts they are related. Therefore this information
can later be used for the ontology building process, which is described in the next subsection.

6.2.3. Ontology Building

The noun phrases, that have been extracted, now serve as the basic concepts of the ontologies
that are created. To build an ontology, it is essential, to relate the concepts in some way. The
focus in this approach lies on finding paths between concepts via their categories, which can again
be in higher categories. Therefore the resulting ontology is a tree where the nodes are associated
with a child-parent relationship. Thus the resulting ontologies are so called lightweight ontologies
or taxonomies, rather than general ontologies, which can have any type of relation between their
nodes.

Therefore the steps of the ontology finding process are:

• Selecting NPs: First, a subset of all available NPs has to be selected on which the rela-
tion finding shall be performed. This is necessary, because bluntly relating all NPs, would
consume too much time, as the number of pairs for n NPs is in O(n2), and for each relation
several online queries to the Wikipedia API have to be performed.

• Relating NPs: To relate the NPs, the categories for each one are extracted from the
Wikipedia categorization system repeatedly. If the sets of categories of two NPs overlap, a
relation between two NPs is found.

• Extracting Taxonomies: If pairs of NPs are related, these relations and their nodes are
used to create a tree, by relating all possible nodes.

• Pruning: As the resulting trees can get too deep or too broad and can have only a small
number of original NPs as their nodes, which can also be ambiguous, some pruning is per-
formed to increase the quality of the resulting taxonomies.

These steps are explained in detail in the following subsections.
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6.2.3.1. Noun Phrase Selection

The goal of the noun phrase selection is to get small subsets of the set of all noun phrases, where
the items of a set are assumed to be related.

The first step is, to associate a score to each NP, according to its number of occurrences and
the number of other NPs that co-occur with that NP. Thus, the score of a noun phrase p is
score(p) = number of NPs that co-occur with p

number of occurenes of p . Therefore, a NP gets a higher score if it has many
co-occurrences, and a lower score if it occurs more often. The motivation for this is, that an NP
which occurs frequently, is considered to be more general than those, that have less occurrences
and is therefore considered to be less “interesting” as a concept in an ontology. On the other hand,
if an NP has many co-occurrences, it is considered to be more likely that a relation between the
NP and one or more of its co-occurrences can be found, and therefore gets a higher score.

If the score for each NP is calculated, the list of NPs gets sorted descendingly according to the score.
The top elements of the resulting list now serve as seed terms to find the previously mentioned
subsets.

Here again the relation between NPs is considered. The relation between two NPs depends on
the number of occurrences of each NP and the number of how often they co-occur. Thus, the
“relatedness” of two NPs p1 and p2 is given by rel(p1, p2) = numco(p1,p2)

num(p1)
∗ numco(p1,p2)

num(p2)
, where

num(p) is the number of occurrences of p and numco(p1, p2) is the number of co-occurrences of
p1 and p2. Thus the maximum value of “relatedness” is 1 if the two NPs always occur together,
and 0 if they never co-occur.

The sets of NPs are then acquired with the following algorithm where n_max is the number of
elements, the final set should have:

1 SET = {NP with the h i ghe s t s co r e which i s not yet in any subset }
2 whi l e s i z e o f SET < n_max :
3 rel_max = 0
4 f o r each p in NP that i s not yet in any s e t :
5 r e l = sum of r e l a t e dn e s s va lue s between p and elements o f SET
6 i f r e l > rel_max :
7 r e l = rel_max
8 candidate = p
9 add candidate to the SET

To further increase the relatedness between the elements of the set, the least related element can
be removed and replaced by a new element, which has a higher sum of relatedness than the old
value. Such elements can exist, because the elements are added one by one and therefore it cannot
be guaranteed, that an added element is still among the highest related elements in the final set.

In the implementation, this algorithm was applied several times with n_max = 25 to get a number
of sets for the relation acquisition process, which is described in the following subsection.
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6.2.3.2. Relation Finding

The relation acquisition process utilizes the categorization system of Wikipedia2 to find relations
between extracted noun phrases. As mentioned before, this is the reason why noun phrases are
only kept in the filtering process if they have an associated article in Wikipedia.

In the categorization system, each article is associated with one or more categories, which in turn
can be subcategories of other more general ones. For instance, the article for RAM is in category
Computer Memory which is in turn in the category Computer Hardware and the article for CPU
is in the category Central processing unit which also is in category Computer Hardware (among
others). Therefore, the concepts RAM and CPU can be related via the path RAM -> Computer

Memory -> Computer Hardware <- Central processing unit <- CPU, where Computer Hard-
ware is the common parent.

Using the Wikipedia API3 the categories of an article can be queried automatically. However,
there are a few technical difficulties that have to be handled:

• Number of queries restriction: It is only allowed to send one query per second to the
API, else the client IP address can be blocked. As the number of necessary queries can
become quite big, especially for ambiguous items, redundant queries should be avoided.

• Non-content categories: The categorization system also contains categories which are
used for maintenance, like Category:Articles needing cleanup, and are not related to the
content of an article. Therefore, categories of that kind must be ignored in the relation
finding process.

• Ambiguous names: Many names or concepts can have several meanings depending on the
context. Thus, if a page title is ambiguous, a disambiguation page is provided, that links
to all possible meanings. However, the API returns all links that are on the page which is
displayed if it is opened in the browser. Therefore, it is not possible to bluntly follow any
link that is returned, but only those where the link title is similar to the original title.

• Redirections: Some articles can be reached via several (similar) titles or capitalizations,
where the content is associated with only one title, and the other titles just get redirected to
that one. Therefore, the API can return a redirection page with the link to the title which
is associated to the content. In that case this redirection has to be followed to obtain the
categories.

• Capitalization: If a page request is sent, the title is transformed into a normalized form.
However, different capitalizations can lead to different results in that process. This can be
a problem, especially for user generated data like in the sample dataset where the input is
not checked for correctness and the writing style is informal. Therefore, if a title can not be
found with a certain capitalization, it can be useful to try several possible versions of it.

2http://en.wikipedia.org/wiki/Special:Categories
3http://en.wikipedia.org/w/api.php
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In the implementation, the function that performs the API calls for a certain item, returns a set
of possible article titles including the associated categories for each.

So the first step to relate pairs of noun phrases is to query their categories to a certain level,
depending on how the maximum length of the resulting path between two noun phrases is set
while also the relation between categories and their parents has to be kept. Thus for two noun
phrases p1 and p2 a relation exists, if their sets of parents (of all levels) parall(p1) and parall(p2)

are not distinct. To find the relations, it is only necessary to follow the paths from the common
parents parall(p1) ∩ parall(p2) to the nodes p1 and p2 which represent the noun phrases.

This process is repeated for all pairs of a given set of noun phrases. The resulting relations are
then used to create taxonomies, which is described in the next subsection.

6.2.3.3. Taxonomy Extraction

If for a set of noun phrases the relations between the pairs of its elements are found, these relations
can be used to create taxonomies, which in turn contain the related noun phrases as leaf nodes.
In fact a single relation can already be seen as a tree with two branches, ending in two leafs which
represent the original noun phrases, where the root is the common parent.

Two such trees can be merged if they have one or more common nodes. In that case, the resulting
graph simply inherits all nodes and edges of the two trees. The new graph is not necessarily a
tree, as can be seen in the example in Figure 6.2.

After repeatedly applying this merge process on all relations and resulting graphs, until no more
graphs can be merged, an initial ontology is achieved. If all nodes of the original relations are
now considered as part of the ontology, the ontology is in general neither connected nor a tree.
Therefore, it can be tried to connect nodes, which have no parents with the same process by which
the noun phrases have been related earlier.

From the resulting graph, it is now possible to extract trees by declaring the nodes, which have
no parents, as roots. For each of these roots, a tree can be extracted by taking only the nodes
where a path from the root to the node exists in the directed graph. Thus the resulting trees can
be seen as taxonomies and can therefore be integrated in the OLAP system.

As some, or even many, of these taxonomies might not contain a significant amount of nodes
which represent original noun phrases, only those are kept, where this number is greater than a
threshold. Furthermore, the resulting taxonomies can be too deep or too broad or have outlying
nodes. For this reason pruning is performed on the trees, to increase the quality of the resulting
taxonomies. The pruning process is described in the next subsection.

6.2.3.4. Pruning

The pruning steps that are performed on the extracted taxonomies deal with outliers, too long
branches or branches that do not end in original noun phrases. In the following, nodes which have
been derived from original noun phrases are denoted as NP-node.
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Figure 6.2.: If two trees are merged (a and b), the result (c) is not necessarily a tree. For this reason,
either a relation between the parent nodes (A and E) has to be found, or a part of the graph must be
omitted when a taxonomy is extracted. Thus the resulting trees can be either d), e) or f) if a relation
between A and E can be found. In that case one of the edges between A/E and C has to be omitted.

Outliers and outlying subtrees: If the distance from an NP-node to the next nearest NP-node
is greater than a threshold, the node is removed, unless another leaf with the same meaning of the
same noun phrase, where this constraint does not apply, exists somewhere else in the tree.

A similar case is if the NP-nodes of a whole subtree are too far away from NP-nodes of outside
the subtree. In that case the whole subtree is removed.

Branches not ending in a noun phrase: Because in practice it can not be guaranteed that
the initial ontologies do not contain loops, the derived taxonomies may contain branches that do
not end in an NP-node. Such branches are removed, as they are useless in the OLAP system.

Ambiguous meanings for the same noun phrase: Because noun phrases can have multiple
meanings, as described earlier, they can also occur in one tree with several meanings. In this case,
only the one meaning is kept, which is closest to other NP-nodes. If the distance for different
meanings id equal, it is up to the user, which one should be kept.

Clipping nodes: As a final pruning step, nodes that have only one child can be removed. Thus
the according children get connected to their parent’s parent. The reason for this step is to make
the taxonomy more convenient to process with pull up/push down methods in the OLAP process,
because these operations on such nodes wouldn’t change the OLAP cube.
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The first three of these tasks are performed repeatedly until no more changes occur. After that
the fourth task is performed. The resulting taxonomy can then be exported in a format, such that
it can be integrated into the OLAP system, as described in chapter 6.3.2, to serve as an additional
dimension.

6.3. Data Storage

In this Section the general OLAP ontology, including the queries which are used to obtain the
data of a mapped database, is described. For the realization of the datastore a Java program
was implemented that uses the Sesame library to create and access RDF triple stores. The
datastore also provides an HTTP interface which handles requests to query and update the data.
Furthermore, it provides methods to export the data as XML files which can in turn be imported
by the OLAP engine.

6.3.1. The Dataset

For the experiments, data from the Australian Stock Forum (HotCopper4) was used. The database
came in XML format and was imported into an RDF repository. An example of the original XML
format is given in the following listing:

<hotcopper date ="2008/11/13 19:12:404" >
[ . . . ]

<post>
<url>post_threadview . asp ? f i d=1&amp ; t i d =50000#124404</ur l>
<thread >50000</thread>
<id >124404</id>
<suspended>None</suspended>
<timestamp >15/08/03 13:00</ timestamp>
<sentiment>None</sentiment>
<d i s c l o s u r e >No Stock Held</d i s c l o s u r e >
<views >201</views>
<stock>QAN − QANTAS AIRWAYS LIMITED</stock>
<reply>Reply to :#124393 from c l a c o s t e </reply>
<user>f rank i edee </user>
<t i t l e >re : qan ( f r ank i ed e e )</ t i t l e >
<message>

<div id="inte l l iTXT">c l a co s t e ,<br/>
<br/> i f i t does take o f f ( pardon the pun) , I ’ ve got a very good idea where

i t s going .<br/>
<br/>I ’ ve a l r eady l e t the guys know that are part o f AMTRADE.<br/>
<br/>http :// data f e eds . com . au/whocares . html</div>

</message>
</post>
[ . . . ]

4http://www.hotcopper.com.au/
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First the datafields have been identified and an ontology that describes the structure has been
created. The data is organized as postings, where each posting belongs to a thread and has the
following datafields:

• url: the URL of the posting

• thread: the thread to which the posting belongs to

• id: a unique number for each posing

• suspended: indicates the status of the author

• timestamp: the time when the posting was created

• stock: the stock of which the posting is about

• sentiment: indicates the sentiment of the author (e.g. buy, sell, etc.)

• disclosure: indicates if the author holds the according stock (optional)

• views: number of how often the posting has been viewed

• reply: the id of the posting to which the posting repies to

• user: the author of the posting

• title: the title of the posting

• message: the content of the posting

Thus the according ontology contains the following classes: Post, Thread, Author, SentimentValue,
Stock, TimeYear, TimeMonth, TimeDay. Actually, the timestamp could have been mapped to the
xsd : dateT ime data type but has been transformed to this representation to have an example for
a hierarchically organized dimension which can be used in the OLAP system later.

The classes belong to the according fields and are related using object properties like for instance
an author is related to a posting via the hasAuthor property. This is in RDF/XML representation:

1 <owl : Class rd f : about="#Post">
2 <rd f s : l abe l >Post</rd f s : l abe l >
3 <owl : equ iva l entC la s s >
4 <owl : Class>
5 <owl : i n t e r s e c t i o nO f rd f : parseType="Co l l e c t i on">
6 <owl : Re s t r i c t i on >
7 <owl : onProperty rd f : r e s ou r c e="#hasAuthor"/>
8 <owl : onClass rd f : r e s ou r c e="#Author"/>
9 <owl : q u a l i f i e dCa r d i n a l i t y rd f : datatype="&xsd ; nonNegat iveInteger

">
10 1
11 </owl : q ua l i f i e dCa rd i n a l i t y >
12 </owl : Re s t r i c t i on >
13 . . .
14 </owl : i n t e r s e c t i onOf >
15 </owl : Class>
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16 </owl : equ iva l entC la s s >
17 </owl : Class>

which means, that an instance of the class Post has exactly one relation to an instance of class
Author.

The values for which no class exists are related to the according classes with data properties. For
instance, the number of views of a posting is associated to the posting via the viewCount property,
which contains an integer value. Again in RDF/XML representation this is:

1 <owl : Re s t r i c t i on >
2 <owl : onProperty rd f : r e s ou r c e="#viewCount"/>
3 <owl : q u a l i f i e dCa r d i n a l i t y rd f : datatype="&xsd ; nonNegat iveInteger">
4 1
5 </owl : q u a l i f i e dCa rd i n a l i t y >
6 <owl : onDataRange rd f : r e s ou r c e="&xsd ; i n t e g e r "/>
7 </owl : Re s t r i c t i on >

A visualization of the resulting ontology is shown in Figure 6.3. In 6.3.3 and 6.3.2 will be described
how this ontology is mapped to the general OLAP ontology.

Figure 6.3.: The ontology of the example dataset. The Post class will later become the Fact in the OLAP
ontology, and the connected classes that contain the related data will become the dimensions.

6.3.2. OLAP Ontology

The OLAP ontology describes a general representation of OLAP facts which are related to several
dimensions. Furthermore, the developed ontology also contains classes to represent terms and
taxonomies which consist of noun phrases that are extracted from the natural language data in
the database and related using the methods described in chapter 6.2. A visualization of the
ontology is shown in Figure 6.4. The classes and relations are described in the next subsections.

50



6. Implementation

Figure 6.4.: The general OLAP ontology. The Fact class is related to the dimensions via the factHas-
Dimension object property. The different types of dimensions are derived from the Dimension class.
The classes FactDimensionTerm and FactDimensionNP connect the facts and the dimensions with the
according terms and noun phrases, respectively.

6.3.2.1. Facts and Dimensions

In the ontology, facts are represented by the class Fact and are related to the dimensions with
the object property factHasDimension. Thus a fact can be related to any number of dimensions
depending on the actual dataset.

The dimensions can be of the following types:

• IntegerDimension: A dimension containing an integer value, like for instance the number
of inhabitants of a country or the quantity of a product in a sales record.

• NumericDimension: A dimension containing a floating point number, like for instance a
temperature.

• EnumDimension: A dimension containing values that can be enumerated but probably
not ordered. These dimensions can be structured hierarchically like for instance a geographic
dimension with the hierarchy: Countries contain States contain Cities. Another case would
be a time dimension where Years contain Months contain Days. The difference here is, that
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the dates can be ordered in contrast to the values in the geographic hierarchy. Thus the
time dimension could also be mapped to an IntegerDimension.

• TextDimension: Dimensions of this type contain natural language text. Therefore, they
can not be used for OLAP directly, but the according information like terms or noun phrases
contained in a certain value has to be extracted first. How extracted terms and noun phrases
are related to the according datafields is explained in the following subsection.

Furthermore, each value is also associated to a certain level of a dimension. In case of non-
hierarchical dimensions, all values have the same level. For other dimensions, the values belong to
exactly one level of the according dimension. In the example of the geographic dimension, there
would be three levels, namely for Countries, States and Cities.

6.3.2.2. Terms and Noun Phrases

Terms and noun phrases are represented in the ontology by the classes Term and NounPhrase. A
term can occur in any number of facts while each occurrence is related to a certain dimension of
type TextDimension. Furthermore, the number of occurrences of a term in a value of TextDimen-
sion is defined with the termCount data property. This enables the possibility to run IR queries
on the database like searching for keywords or calculating the most frequent terms of a certain set
of facts and dimensions. To gather all the necessary information, the class FactDimensionTerm
links the fact, the term, the dimension and the term count for each occurrence of a term in a
dimension of a fact.

Noun phrases are associated with facts in a similar way to the terms but without the number of
occurrences in a certain text value. Furthermore, noun phrases can be structured hierarchically,
similar to values of an EnumDimension. Thus a noun phrase can have the special property
isRootNode, which means, that the according noun phrase is the root of an extracted taxonomy if
this property value is set to true. If a noun phrase is a child of another noun phrase, this is indicated
by the childOfNP object property. With this information, the whole taxonomy can be extracted,
and used as an additional hierarchical structured dimension in the OLAP system. The connection
between a noun phrase, a fact and a dimension is represented by the class FactDimensionNP, in
an analogical way as it is done for terms.

These values can be queried and thus made available for OLAP. How this is done is described in
Section 6.3.4.

6.3.3. Mapping to the OLAP Ontology

As mentioned before, to make a specific dataset available for the OLAP system, it has to be mapped
to the OLAP ontology. Therefore, the first step is to identify the class which represents the OLAP
facts and the associated datafileds which should become OLAP dimensions and furthermore to
specify their type.
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The according classes have then to be mapped to the OLAP classes, which will now be illustrated
using the previously explained Stock-Forum dataset, using the N3 notation. In the example, the
namespaces for the OLAP ontology and the forum data are olapdim and hot respectively.

First the postings become OLAP facts by declaring the Post class as a Fact with the statement:
hot:Post a olapdim:Fact .

Now the following datafields shall become OLAP dimensions:

• thread: IntegerDimension

• views: IntegerDimension

• timestamp: EnumDimension

• stock: EnumDimension

• sentiment: EnumDimension

• disclosure: EnumDimension

• user: EnumDimension

• title: TextDimension

• message: TextDimension

Thus for each of these data fields a dimension has to be created. This is illustrated with the
following examples.

The statement :ViewsDim a olapdim:IntegerDimension. creates a class for dimension views
with name ViewsDim. The level ViewsLevel for this dimension is created with

1 : ViewsLevel a olapdim : DimensionLevel ;
2 olapdim : hasDimension : ViewsDim ; olapdim : subLevelOf : ViewsLevel .

Here the level is declared as a sublevel of itself, which means it is the highest level of a hierarchy.

The next step is to declare the value for the dimension. If the dimension comes from a data
property, like in this case, a new class has to be created. Else the class to which the fact is associated
to becomes the DimensionValue. In this case, an instance ViewCount of DimensionValue is created
and connected to the actual value property viewCount. This is done with the following statements:

1 : ViewCount a olapdim : DimensionValue ; olapdim : hasLeve l : ViewsLevel .
2 hot : viewCount a olapdim : dimensionValue ; r d f s : Domain : ViewCount .

Because viewCount is a data property in the original database which is connected to Post, the
following statement is necessary to connect the fact with the dimension:

1 hot : Post a : ViewCount .
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For dimensions, that are derived from object properties, rather than data properties, this last step
is not necessary.

To also give an example of an EnumDimension which comes from a object property, the declaration
for the stock dimension consists of the following statements:

1 : StockDim a olapdim : EnumDimension .
2 : StockLeve l a olapdim : DimensionLevel ;
3 olapdim : hasDimension : StockDim ; olapdim : subLevelOf : StockLeve l .
4 hot : Stock a olapdim : DimensionValue ; olapdim : hasLeve l : StockLeve l .
5 hot : stockName a olapdim : dimensionValue ; r d f s : Domain hot : Stock .

Despite the time dimension, all other dimensions are created analogical to these examples. The
difference to the time dimension is, that it has three levels and is therefore hierarchically structured.
The basic declaration of the dimension however looks the same:

1 : TimeDim a olapdim : EnumDimension .

But as it has three levels, these are declared with the following statements, for year, month and
day respectively:

1 : TimeYearLevel a olapdim : DimensionLevel ;
2 olapdim : hasDimension : TimeDim ;
3 olapdim : subLevelOf : TimeYearLevel .
4 : TimeMonthLevel a olapdim : DimensionLevel ;
5 olapdim : hasDimension : TimeDim ;
6 olapdim : subLevelOf : TimeYearLevel .
7 : TimeDayLevel a olapdim : DimensionLevel ;
8 olapdim : hasDimension : TimeDim ;
9 olapdim : subLevelOf : TimeMonthLevel .

Furthermore, in the database the values are structured in a way, such that a month is assigned to
a year and a day is assigned to a month. Therefore, values can be children of other values. This
information is mapped to the OLAP ontology by declaring the childOf property for the according
DimensionValue instances:

1 hot : TimeYear a olapdim : DimensionValue ; olapdim : hasLeve l : TimeYearLevel .
2 hot : TimeMonth a olapdim : DimensionValue ;
3 olapdim : hasLeve l : TimeMonthLevel ; olapdim : ch i ldOf hot : TimeYear .
4 hot : TimeDay a olapdim : DimensionValue ;
5 olapdim : hasLeve l : TimeDayLevel ; olapdim : ch i ldOf hot : TimeMonth .

Furthermore, the property which relates two values in the database hierarchically has to be mapped
to the childOf property:

1 hot : hasYear a olapdim : ch i ldOf .
2 hot : hasMonth a olapdim : ch i ldOf .

And finally, the data properties which hold the actual values have to be declared:
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1 hot : yearValue a olapdim : dimensionValue .
2 hot : monthValue a olapdim : dimensionValue .
3 hot : dayValue a olapdim : dimensionValue .

Again, this works analogic for any kind of hierarchically structured dimension.

With such a mapping, all desired values of a database and especially the hierarchies can be queried
using general queries, that only know the OLAP dimension, but don’t have to be modified for
different databases. These queries are shown in the next subsection.

6.3.4. Queries

If a database is mapped properly to the OLAP ontology and the terms and noun phrases are
extracted from the natural language data, the data can be queried with predefined SPARQL
queries and therefore be brought into the OLAP system. The specific queries are explained in the
following subsections.

6.3.4.1. Querying Dimensions

Now the goal is, to query each dataset which is a fact with the according datafileds and their
dimensions and furthermore the information of which type a dimension is. So the first step is to
get all available dimensions or rather their associated dimensionValue including the child-parent
information. This is done with the following SPARQL query:

1 SELECT ?dimVal ? ch i l d ?dim ? l a b e l ? type
2 WHERE {
3 ?dimVal a olapdim : dimensionValue .
4 ?dimVal r d f s : domain ?DV .
5 OPTIONAL {
6 ? ch i l d olapdim : ch i ldOf ?DV .
7 }
8 ?DV olapdim : hasLeve l ? l e v e l .
9 ? l e v e l olapdim : hasDimension ?dim .

10 ?dim a ?dimtype .
11 ?dimtype r d f s : l a b e l ? type .
12 OPTIONAL {
13 ?dim rd f s : l a b e l ? l a b e l .
14 }
15 }

This returns all dimensionValue instances in the variable ?dimVal. The ?child variable is optional
and, if set, holds the instance of DimensionValue, which is a child of the DimensionValue which is
associated with ?dimVal. Furthermore, ?type holds the type of the dimension of the value, which
can therefore be one of IntegerDimension, NumericDimension, EnumDimension or TextDimension
(or rather the label of these dimensions) and ?dim is the dimension defined in the mapping. If
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this query is executed on the database with the mapping, which was introduced in the previous
Section, one row for the year value of the time dimension has the following values:

• ?dim: TimeDim (the dimension for the time, which was defined in the mapping)

• ?dimVal: yearValue (which is the data property for the year in the original database)

• ?child: TimeMonth (which is a DimensionValue and is the child of TimeYear)

• ?label: None (as the label is not set in the example)

• ?type: EnumDimension (which is set as the label of the enum dimension in the OLAP
ontology)

In the next subsection it is explained how this information is used to query the facts and the values
that are related to them.

6.3.4.2. Querying Facts

To simply get the values which are facts can be done with the following query:

1 SELECT ? f a c t
2 WHERE {
3 ? factC a olapdim : Fact .
4 ? f a c t a ? factC .
5 }

This returns a list of all instances of ?factC which is in turn an instance of the Fact class in the
OLAP ontology. Thus, in the example database, where the postings have been defined to be facts
in the mapping by the statement hot:Post a olapdim:Fact ., this returns a list of all instances
of the Post class in the database.

These instances are now related to the according values by the properties that have been mapped
to the dimensionValue properties in the OLAP ontology. Thus, with the result of the query of
the previous Section, the actual value for each dimension for a certain fact can be queried. For
this purpose, another query, where the fact and the dimension is defined, is executed to get the
according value. This is done with the following query, where fact is the URI for the fact, which
is obtained from the previous query, and dim is the URI for the dimensionValue instance, which
was obtained by the query in the previous Section:

1 SELECT ?dim
2 WHERE {
3 {<fact> <dim> ?dim . }
4 UNION
5 {
6 <fact> ? anypred icate ?dimVal .
7 ?dimVal a ?DVC .
8 ?DVC a olapdim : DimensionValue .
9 ?dimVal <dim> ?dim .

10 }
11 }
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Because the values can come from either a data property or an object property, there is always
only one of the possibilities of the UNION satisfied and therefore the proper value is returned.

If such a query is executed for each of the available dimensions, all values for a fact can be obtained.
Another way would be to dynamically construct a query for all dimensions at once, but in the
implementation this turned out to be slower due to the higher complexity of the query.

What remains now is to query the terms and noun phrases which are associated to a certain fact
which is explained in the next subsection.

6.3.4.3. Querying Terms and Noun Phrases

The terms and noun phrases for a fact can be obtained by a single query, as they are associated
to facts via the FactDimensionTerm class or the FactDimensioNP class, respectively.

With the following query the terms for a certain fact can be obtained:

1 SELECT ?term ?dim ? f r e q
2 WHERE {
3 ? fd t a olapdim : FactDimensionTerm .
4 ? fd t olapdim : hasFact <fact> .
5 ? fd t olapdim : termCount ? f r e q .
6 ? fd t olapdim : termDimension ?dim .
7 ? fd t olapdim : hasTerm ?term .
8 }

If this query is executed, the result set contains a row for each term occurrence of that fact, where
the variables ?term, ?dim and ?freq contain the term URI, the dimension URI and the number
of occurrences (integer) respectively. The query for the noun phrases works similarly, only that
it has no property for the number of occurrences but additional statements to make sure that a
noun phrase is part of an taxonomy, as others can not be utilized in the OLAP system. These
statements are:

1 ?np olapdim : childOfNP ? parent .
2 ?np olapdim : hasRoot ? root .

Thus, the noun phrase with the URI ?np must be a child of another noun phrase.

To query all nodes of extracted taxonomies, first the root nodes are queried, which is simply done
by selecting all instances of NounPhrase where the isRootNode property is set to true. Then, for
each root node, all child nodes can be obtained with:

1 SELECT ?np ? l a b e l
2 WHERE {
3 ?np a olapdim : NounPhrase .
4 ?np rd f s : l a b e l ? l a b e l .
5 ?np olapdim : childOfNP <nounphrase> .
6 }
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where nounphrase is the parent of the returned noun phrases. If this query is applied recursively,
until no more children are returned, a whole taxonomy can be obtained. Therefore, this process
has to be done for each root node.

With the queries which have been described in this Section, all information can be extracted from
the repository, and therefore be made available for the OLAP system. How the system uses that
information for the typical OLAP function is described in chapter 6.4.

6.3.4.4. Querying Text Data for NLP

Terms and noun phrases fist have to be extracted from the according data in the dataset to make
them available for the OLAP system. Therefore, all the datafields that contain natural language
data have to be queried to pass the data on to the module of the system, which is responsible for
the NLP tasks.

As datafields that contain NL-text are of type TextDimension, this can be done using similar
queries to those described before. It only has to be ensured that the information, to which fact
and dimension some text data belongs, is kept. Thus, for a fact with URI facturi, the text data
with the according dimensions can be obtained with the query:

1 SELECT ? text ?dim
2 WHERE {
3 ?dim a olapdim : TextDimension .
4 <f a c t u r i > ?dimval ? t ext .
5 ? l e v e l a olapdim : DimensionLevel .
6 ? l e v e l olapdim : hasDimension ?dim .
7 ?dimVal a olapdim : DimensionValue .
8 ?dimVal olapdim : hasLeve l ? l e v e l .
9 ? dimval a olapdim : dimensionValue .

10 ?dimval r d f s : Domain ?dimVal .
11 }

where ?dim has to be a TextDimension as stated in the first line of the WHERE -block, and ?text
is a value that is associated with the specified fact. The remaining lines ensure, that the value
?text is the associated dimensionValue for the dimension ?dim.

6.4. OLAP Engine

The following subsections describe the implementation of the OLAP engine and the according
methods and how they are performed in detail. This part of the system is implemented as a
separate C++ program, that can import the XML files that are created by the datastore.
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6.4.1. OLAP Cube

As the values of these dimensions define the cells in the cube, the dimensions of a cell can be seen
as a set of constraints, which filter the facts which belong to the cell if applied to the set of all
possible facts. Typically, the dimensions of the cube are hierarchically structured dimensions, such
that the drill up/down methods, can be applied. But with the constraint interpretation it is also
possible to add numeric dimensions to the cube and restrict the values of the according cells to
certain values or intervals. The disadvantage of allowing such dimensions is, that the computation
can become more complex and furthermore that the drill up/down methods can not be applied
on these dimensions. However, to allow these dimensions can help to analyze the dataset because
it offers additional possibilities to materialize the cube.

6.4.2. Implemented OLAP and Text Cube Methods

In this subsection, the OLAP methods and aggregation functions, which have been implemented
in the prototype, are described.

6.4.2.1. Aggregation Functions

Aggregation functions are functions like sum or average, that are applied on cells of the cube on
a dimension which holds the appropriate type of value.

The following aggregation functions for numeric dimensions have been implemented in the proto-
type:

• sum: the sum of the values of a certain dimension

• avg: the average of the values of a certain dimension

• min: the minimum value of a certain dimension

• max: the maximum value of a certain dimension

where all of these functions can be applied to dimensions of type IntegerDimension and Numer-
icDimension, which have been defined in the OLAP ontology in chapter 6.3.2. Therefore, the
according dimensions represent possible measures in the cube. Furthermore, two aggregation
functions for text dimensions have been implemented:

• most frequent terms: This aggregation function calculates the most frequent terms of a
textual dimension for each cell of a cube.

• keyword search: Given a set of keywords, this function returns all documents of a cell that
satisfy the keywords.
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6.4.2.2. Drill up/down

The drill up and drill down functions can be performed on hierarchically structured dimensions.
Therefore, each value vi of a dimension d is associated with exactly one level lk of that dimension.

Drill up: Given a cube C with dimension d which is currently on level lk means, that dimension
d of C consists of values which belong to lk. If lk is not already the highest level in the hierarchy,
each value has exactly one parent. If drill up is performed on d, all values of lk are removed and
replaced by their parents, which therefore are of level lk−1.

Drill down: This is the reverse operation to drill up. Therefore, performing drill down on
dimension d with level lk removes all values of lk and adds all their children instead. Thus, all
values are now of level lk+1.

The drill up and down functions therefore provide a method to view the dataset on different levels
of detail with respect to a certain dimension.

6.4.2.3. Slice

With slice, the values of a certain dimension in a cube can be restricted such that the cube can
be viewed in further ways.

Slice: Given the set Vd of current values of a dimension d of cube C. Slice can be performed on
a v ∈ Vd and reduces the according dimension d to only the value v. Thus, the resulting cube
contains only facts that have value v of dimension d.

6.4.2.4. Term Queries

On a set of facts, two types of term queries can be performed:

• Keyword search: Given a set F of facts and a textual dimension d, where each fact fi ∈ F

has a number of terms Td(i) associated with dimension d and a set Q of search terms. If
the search is performed, the resulting set R consists of the facts, that have all terms t ∈ Q

associated with dimension d, thus R = {fi ∈ F | ∀t ∈ Q : t ∈ Td(i)}.

• Most frequent terms: Given a set F of facts, a textual dimension d and set T = {t |
∃f ∈ F : t ∈ Td(i)} (with Td(i) as before) which contains all terms that are associated with
dimension d and facts in F . Let nt(f, d) be the number of occurrences of term t in dimension
d of fact f and Nt(F, d) =

∑
f∈F nt(f, d) the sum of all occurrences of t in set F . Then

the most frequent terms query returns the elements t ∈ T , sorted descendingly according to
Nt(F, d).
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6.4.2.5. Pull-Up and Push-Down

The pull-up and push-down methods can be applied on dimensions, that are derived from extracted
taxonomies, as follows:

• pull-up: Given a level L of nodes n1, . . . , nk and let par(n) be the parent node of n and
des(n) the descent nodes of n. If pull up is performed on node ni ∈ L, the new level Lnew

is achieved by removing all descent nodes of par(n) from L and adding par(n) to the set.
Thus, Lnew = {n | n ∈ L ∧ n 6∈ des(par(ni))} ∪ par(n).

• push-down: Push-down is the reverse function of pull-up. Thus, given a level L with nodes
n1, . . . , nk, push-down on node ni removes ni and adds chld(ni), the set of children of ni, to
the new level Lnew = {n | n ∈ L \ {ni}} ∪ chld(ni).

6.5. Results

In this Section the outcome of the taxonomy extraction using the previously described dataset
is shown. Subsequently, the integration of the extracted information, namely taxonomies and
term frequency, into the Text Cube is demonstrated. Furthermore, the operations that are made
possible by integrating this additional information are shown.

6.5.1. Taxonomy Extraction

The first step of the taxonomy extraction is to extract the NPs from the dataset. Therefore,
NP-chunking using GATE was performed on a set of about 50,000 postings. From the extracted
NPs, those are considered as potential candidates for taxonomy concepts, which have a page in
Wikipedia associated with them, and are not filtered by any other rules described in Section
6.2.2.2. After the according filtering process about 11,000 NPs remained as concept candidates.

After the filtering process, small subsets (clusters) of the NPs are calculated as described in Section
6.2.3.1. The hypothesis is, that a significant number of the NPs of a cluster, which are selected
by this process, are of the same domain and can therefore be related to each other. As can be
seen in the following examples, the resulting clusters do in fact tend to contain elements of a
certain domain, although the number of elements that do not fit to the others is varying. The
good clusters can then be used for the relation finding process, as described in Section 6.2.3.2.

This i s an example f o r a good c l u s t e r , where most o f the NPs are from the
medical domain :
[ ’ g l axosmi thk l ine ’ , ’ neuramin idase_inh ib i tors ’ , ’ rsv ’ , ’ smallpox ’ ,
’ i n f e c t i o u s_d i s e a s e s ’ , ’ common_cold ’ , ’ hepat i t i s_b ’ , ’ sankyo ’ , ’ immunotherapy ’ ,
’ i n co rpora t i on ’ , ’ e r ad i ca t i on ’ , ’ coupl ing ’ , ’ s up e r i o r i t y ’ , ’ lung ’ , ’mechanism ’ ,
’ prote in ’ , ’ platform_technology ’ , ’ manufacturer ’ , ’ t i s s u e ’ , ’ scotch ’ ,
’ ant igen ’ , ’ d end r i t i c_c e l l s ’ , ’ v i ra l_prote in ’ , ’ adjuvants ’ , ’ hbv ’ ]

This i s another qu i t e s e n s i b l e example , as most o f the terms are r e l a t e d to the
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IT domain :
[ ’ cache ’ , ’ ku_band ’ , ’ narrowband ’ , ’ c on f i gu r a t i on s ’ , ’ ka_band ’ , ’ e f f e c t i v e ’ ,
’ oceania ’ , ’ a s i a s a t ’ , ’ microso f t_of f i ce_2003 ’ , ’ ver izon ’ , ’ microso f t_software ’ ,
’ l o r a l ’ , ’ in formation_technology ’ , ’ c onnec t i v i ty ’ , ’ analogue ’ , ’ sme ’ , ’ page_3 ’ ,
’ on l ine_adver t i s ing ’ , ’ competitive_advantage ’ , ’ s e cu r i t y_se rv i c e s ’ , ’ shanghai ’ ,
’ sta ’ , ’ dividend_payout_ratio ’ , ’ neg l i g ence ’ , ’wedo ’ ]

The f o l l ow i ng c l u s t e r i s probably not we l l s u i t ed f o r r e l a t i o n f i nd i n g .
Although i t conta in s s e v e r a l e lements that are o f the domain economy , i t a l s o
conta in s s e v e r a l e lements that don ’ t seem to f i t p roper ly :
[ ’ dennis ’ , ’ nominee ’ , ’ arrogance ’ , ’ nyt ’ , ’ a s soc ia ted_pres s ’ , ’ f i d e l i t y ’ ,
’ susan ’ , ’ coo ’ , ’ hordes ’ , ’ pension ’ , ’ high_time ’ , ’ r id ’ , ’ real_change ’ ,
’ f r a t e r n i t y ’ , ’ economist ’ , ’ businessweek ’ , ’ na t i ona l_as soc i a t i on ’ , ’ bu f f e t t ’ ,
’ case_study ’ , ’ adv i se r ’ , ’ embarrassment ’ , ’ advisory_board ’ , ’ proxy_fight ’ ,
’ qwest ’ , ’ s tan ford ’ ]

The first of the example clusters is used for the relation finding, as most of the elements it contains
are related to the medical domain and therefore they can be expected to yield a sensible taxonomy.
In Figure 6.5 the initial taxonomy is shown. As can be seen, it still contains undesirable nodes
and branches which are handled by pruning the taxonomy as described in Section 6.2.3.4. The
resulting taxonomy can be seen in Figure 6.6.

The resulting taxonomy can now be exported in N3 format, such that it can be added to the
RDF repository. This automatically adds the additional dimension which is represented by the
according taxonomy. The operations that can be performed on this dimension are also shown in
the following Section.

6.5.2. Text Cube

The Text Cube now offers both, the traditional OLAP functionality and the additional function-
ality defined by Text Cube. Thus, a possible application of the traditional OLAP functions on
the example dataset could be for instance to instantiate the cube by using the time dimension for
year 03 and the stock dimension by using some of its values. A possible aggregation function is
now to count the number of datapoints of each cell. This can be seen in Figure 6.7.

If now slice is performed on value VCR - VENTRACOR LIMITED of the stock dimension followed and
a drill down on the time dimension the values of the time dimension correspond to the months
of the according year. An aggregation function can for instance also be applied on the views
dimension to get the average number of views of the postings in each cell. The result of these
operations can be seen in Figure 6.8.

As the Text Cube also defines information retrieval functionality, it is now possible for a list of
keywords to firstly find those cells that contain documents that satisfy the list, and secondly to
find the specific documents of the cube or a cell which satisfy the list. Thus, instead of performing
a keyword search on the text only, the documents can be restricted, such that they satisfy certain
requirements, like in the example being about stock VCR - VENTRACOR LIMITED and for dates as
before. In Figure 6.9 the number of documents that satisfy the keywords patient, heart and device
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can be seen. If now the documents of a specific cell are of interest, the cube can be sliced to that
cell and a keyword search that returns the relevant documents can be performed like in Figure
6.10 for stock as before and date 08-03. Therefore, not the whole set of documents has to be
searched, and less non relevant documents are returned, due to the restrictions on the dimensions.

With the previously extracted Health taxonomy, the dataset additionally has the dimension defined
by the taxonomy to those dimensions described in 6.3.3. Thus, the cube can now for instance be
instantiated by considering the two dimensions Health and time. As aggregation function, the five
most frequent terms shall be calculated for each resulting cell, which yields the result displayed in
Figure 6.11.

If push down is now performed on Health, and then again on Diseases and disorders, the Health di-
mension contains the values Category:Health effectors, Category:Health fields, Category:Infectious
diseases and Category:Eradicated diseases which yields the result displayed in Figure 6.12 (again
with the most frequent terms as aggregation function).

Thus, a new dimension can easily be added, as it gets automatically queried when the dataset is
imported into the OLAP engine. Furthermore, the most frequent terms as aggregation function
provide a powerful extension for a document driven analysis with little structured information.
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Figure 6.5.: Here an example of a not yet pruned taxonomy is shown. In the graphic it is split up into two
trees at he colored node to fit on the page. The rectangular nodes represent original NPs, while the other
nodes represent categories which were queried from Wikipedia. The labels of the NPs correspond to the
titles of the associated Wikipedia articles. As can be seen, the taxonomy contains many undesirable
elements like outliers or branches not ending in a original NP. In Figure 6.6 the same taxonomy after
the pruning process is shown.
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Figure 6.6.: Here the taxonomy of Figure 6.5 is shown after the pruning process. Again the rectangular
nodes represent original NPs. As can be seen, in this taxonomy, the issues that are addressed in the
pruning process are resolved.
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Figure 6.7.: Here the cube is displayed, considering some values of the stock and time dimensions. The
aggregation function is the number of the datapoints in an according cell.

(a) Cube with number of facts as aggregation function.

(b) Cube with average number of views as aggregation function.

Figure 6.8.: After a drill down on the time dimension and a slice on VCR - VENTRACOR LIMITED, the cube
of Figure 6.7 has the cells shown in these examples. In subfigure 6.8a the aggregation function is the
number of facts and in 6.8b it is the average number of views for each posting. The reason why not all
months of the according year are shown is, that the used dataset doesn’t contain datapoints with the
according values.

Figure 6.9.: This example shows how many documents of each cell satisfy a given list of keywords.

Figure 6.10.: Here the documents of a cell, that satisfy a certain list of keywords are listed (here these are
the ids of the according postings). The keywords for the example were patient, heart and device.

66



6. Implementation

Figure 6.11.: This example makes use of the previously extracted taxonomy. The second dimension is the
time dimension. The aggregation function is most frequent terms. The reason for the first cell being
empty is, that it doesn’t contain any facts. These are again the stemmed versions of the terms and the
numbers denote the number of occurrences of the preceding term.

Figure 6.12.: This example shows the cube of Figure 6.11 after performing two push down operations.
These are again the stemmed versions of the terms and the numbers denote the number of occurrences
of the preceding term.
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The work on the thesis was a good opportunity to gain some insights into the fields that were
treated in this work. In this Chapter, the most relevant things that came up in the phases of
literature review, implementing and testing are discussed.

7.1. Literature Review and Academic Writing

As the implemented system consists of three main components - the datastore, the OLAP engine
and the natural language processor - it was necessary to get into three fields of computer science,
namely NLP, OLAP and semantic web technologies. Among those, the semantic web technologies
are relatively easy to get into, as they are defined by a number of specifications of the W3C and
therefore all necessary information is freely available and relatively easy to find. Furthermore,
a broad spectrum of according software is available, such that it is quite straightforward, to set
up an experimenting environment. However, as the semantic web technologies are relatively new,
many available tools and libraries are not quite technically mature.

The fields of NLP and OLAP were actually not too easy to get into. Especially NLP is a field,
that requires quite a lot of effort. As research in NLP has now been done for decades, the amount
of literature is overwhelming. This makes it hard for a non-expert to get into it and find the
literature, that is relevant for a specific task. Furthermore, even very basic problems of NLP, like
segmentation or POS-tagging, are very hard to tackle, as these problems cannot be well defined
formally. Thus, to really understand these problems in detail, it becomes necessary to understand
the theories behind them, which would however consume too much time and thus, some solutions
just have to be taken for granted.

The subfield of ontology extraction also bears the problem, that the quality of an ontology cannot
easily be evaluated. This makes it hard to compare different approaches or to find the approach,
that is best suited for a specific application.

The writing of the thesis turned out to be a quite time consuming task. This wasn’t really
unexpected, however, to write in a way, that it is scientifically and formally correct and to properly
include relevant citations requires quite some effort.
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7.2. Implementation and Testing

An important aspect of the implementation was, to carefully plan the interplay between the com-
ponents of the system. As the prototype was developed using different programming languages for
the different components, appropriate formats and interfaces for the data exchange were necessary.
Therefore, data formats like XML or JSON came in handy, as there are libraries for all common
programming languages available to process them.

Although Python was new to the author, it provided a good environment for the development of the
NLP modules and to test the interface of the datastore and the according queries. Its advantages
are, that it is easy to learn and intuitive and is also supported on all common platforms. The easy
development of Python scripts proved to be especially useful for the implementation of algorithms
which were newly developed, like for instance the NP clustering and taxonomy building, and
therefore, have to be altered and adjusted repeatedly. However, for this kind of development, it
has to be taken special care that the resulting module well fits into the whole system. Else it can
become quite hard to maintain a proper structure for the framework.

What turned out to be more tricky than expected was to work with the Wikipedia API. Although
it allows to automatically query all the available data, there are some issues that make it un-
necessarily hard to get the desired data. The categorization system for instance contains content
categories and maintenance categories, but doesn’t provide an easy way to differ between these
types. Furthermore, the Wikipedia data dump didn’t contain all information it actually should
have and was also not well documented and therefore wasn’t useful at all.

The utilization of semantic web technologies for the datastore did not only work out well but
was also a good way to get practice with these techniques. Thus, it was quite straightforward
to establish the mapping from the example database to the general OLAP ontology, which is an
important issue in the application of the proposed system.

The testing of the OLAP and Text Cube functionality gave some first practical insights into this
technique. Especially the functionality that is enabled by the Text Cube operations opens up
interesting new perspectives as it is a powerful extension to common IR techniques. This also
motivates to further investigate how the potential of these new techniques can fully be utilized.
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The synergy of OLAP with text mining opens up some quite interesting new possibilities and
challenges. An initial question is, how to store and organize the data, such that all potentially
useful information can be accessed and how new information can be integrated.

For this purpose, the semantic web technologies turned out to be an appropriate choice, as they are
designed in a way such that data of different sources can easily be merged and can therefore be made
accessible in a homogeneous way. The available open source tools to set up RDF repositories and to
develop ontologies were also very useful for the implementation of a prototype and experimenting
with it.

To define a general schema for OLAP, such that the facts of a database can be described with the
according dimensions, the general OLAP ontology and a mapping from a target database to that
ontology was developed. This schema also provides the possibility to add additional dimensions at
any time, as was demonstrated by integrating an extracted taxonomy. This can be done without
the need to alter the original database and in principle for any kind of extracted information as
long as it can be interpreted as an OLAP dimension.

Therefore, the taxonomy extraction can be seen as one possibility to add additional information,
rather than the only way to extend the OLAP cube. However, the hierarchical structure of
taxonomies suggest that it is a reasonable choice to try to use them as additional dimensions.

Although the single steps that were taken to extract taxonomies are relatively simple, the process
delivered quite good results and still bears potential for improvements. A strength of this approach
is, that it doesn’t need preparation for a specific domain, or to define in advance of which domain
the extracted taxonomies are. Furthermore, the only step that was performed manually, was to
pick a cluster of NPs on which the relation finding process should be performed. This is one of
the aspects that could still be improved. This could for instance be done by finding measures to
rate the quality of a cluster and subsequently pick the best clusters automatically.

To use Wikipedia as background knowledge, turned out to well support the generality of the
approach, as it contains many articles of very different domains. Nevertheless, using Wikipedia
bears some technical difficulties. One problem is, that the API only allows one query per second,
else the client IP address might get blocked. This restriction dramatically slows down the relation
finding process, because as many terms are ambiguous, they require several queries to get all
categories. Furthermore, categories in general have more than one parent category and therefore
the number of necessary queries can become quite big. However, if the number of queries is kept
as low as possible by querying only potentially useful NPs and not performing redundant queries,
these issues can be handled quite well.
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Thus, the proposed framework provides a reasonable way to implement database analyzing tech-
niques for both, structured and unstructured data, which is also supported by the experiments
with the implemented prototype.

Future Work

For the different parts of the system there are still a number of ideas that could be implemented
and also several interesting questions are still open. The questions and extensions to the system,
that seem most obvious, are discussed below.

Data Storage and Processing Speed

One open question is, how the single components scale for very large datasets and how updates
of the dataset can be handled efficiently. For the datastore the question here is, how much data
current implementations of RDF stores can handle and how fast they can process queries. As this
technique is relatively new, compared for instance to relational databases, the implementations
should probably not yet be expected to be technically mature. For instance, in the implementation
it made a big difference if several simple queries or one more complex query was performed to
fetch the same data. Here the simple queries turned out to be much faster. Thus, experiments
with larger datasets would be useful to investigate such issues.

The OLAP engine could quite easily be improved, such that it can dynamically insert new dat-
apoints, instead of importing the whole dataset at once from XML files. However, as currently
the whole data is kept in main memory, the question is, if and how some data can be swapped to
HDD if the dataset becomes too big to keep in memory, while still providing a short latency for
OLAP operations.

Taxonomy Extraction

An important aspect of the taxonomy extraction is the quality of the underlying documents. If
they come from online sources, which are likely to contain noise, text cleaning would be a useful
preprocessing step, although, for large datasets, this can also become a computation intensive
task.

Another aspect which would also be interesting for further investigation is how well the extracted
taxonomies cover the dataset. For instance, if a number of very specific taxonomies is extracted,
which cover only a small set of data points each, but together they cover most of the dataset,
the domains of the taxonomies could be used for classification of the underlying documents or to
create a kind of meta taxonomy. In both cases the result could be used as an additional dimension.
Another possibility, to achieve more general taxonomies, is to adjust the NP selection such that
NPs with a higher number of occurrences get a higher score. Then the resulting taxonomies should
cover more facts as they would contain more general concepts.
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The amount of background knowledge for the relation finding process could also be further in-
creased by using additional sources, like for instance WordNet, OpenCyc or ConceptNet. This
would replenish the available knowledge of Wikipedia and also compensate some of the issues
discussed earlier.

Extraction of further Information

One of the greatest strengths of the framework is, that any kind of information, that can be
interpreted as an OLAP dimension, can easily be integrated in the analyzing process. There
are mainly two ways which would deliver additional information. The first one is to use another
database that contains relevant information that can be related to the facts of the original database.
The second way is to apply further data mining techniques to the available (text)data to extract
additional information.

If several text mining techniques are applied, such that each yields another dimension, also a shift
to a purely document centered analysis is thinkable. This would be especially useful if no or not
enough structured information is available.

Nevertheless, it should be kept in mind, that there are some differences between a Text Cube and
the traditional OLAP cube. As a document can have several values in a textual dimension, it does
not necessarily belong to only one cell of the cube, but might be contained in several cells. Thus
it might be sensible to investigate the impact of that issue on the analyzing process.

User Interface

An aspect that was beyond the scope of this work, but is very important nevertheless, is to provide
a proper user interface such that the whole potential of the OLAP engine can be utilized. As the
implemented OLAP engine provides many ways to instantiate a cube and to calculate different
views on the dataset it is also important that an analyst can efficiently access all these possibilities.

Concluding it can be said, that the general architecture of the proposed system provides a good
basis for a database analysis application that still provides much potential that awaits to be utilized
in future work.
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