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Abstract

Reconstruction of 3D geometry from 2D images is one of the most fundamental challenges

in computer vision. In the past decade, numerous algorithms have been developed to solve

this problem in an offline fashion. Only recently, the availability of cheap processing power

in the form of GPUs and appropriate parallel algorithms made it possible to tackle this

problem in a novel way and present results to the user in realtime. The aim of this thesis

is to create a system that is capable of interactively reconstructing dense geometry from

a single moving camera. Building on a high quality realtime tracking system, depthmaps

of the scene are computed by means of a dense multiview stereo algorithm. A volumet-

ric representation of geometry is used, where the surface is given implicitly by the zero

level-set of an underlying truncated signed distance function. Reconstruction is based on

robust depthmap fusion using a total variation formulation. The resulting convex energy

functional is solved globally optimal using a fast primal-dual algorithm.

The application developed in this thesis is able to reconstruct arbitrary geometry on-

the-fly with minimal user interaction thanks to a fully automated pipeline. The dense ge-

ometry can serve as starting point for sophisticated AR applications, where pixel-accurate

interaction between computer generated content and the real world is possible.

Keywords. 3D reconstruction, dense reconstruction, realtime, interactive, total vari-

ation, convex optimization, gpu, stereo, tracking, volumetric representation, augmented

reality
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Kurzfassung

Die Rekonstruktion von 3D Geometrie aus 2D Bildern ist eines der fundamentalen

Probleme der digitalen Bildverarbeitung. Im Laufe des letzten Jahrzehnts wurde eine

Vielzahl von Algorithmen entwickelt, welche diese Aufgabenstellung oflline lösen. Erst

die Verfügbarkeit von billiger Rechenleistung in Form von leistungsstarken Grafikkarten

sowie entsprechende parallele Algorithmen ermöglichen eine neuartige Herangehensweise,

bei der die Resultate dem Benutzer in Echtzeit zur Verfügung gestellt werden. Das Ziel

dieser Arbeit ist die Entwicklung eines Systems, welches die interaktive Rekonstruktion

von dichter Geometrie mithilfe einer einzigen Kamera ermöglicht. Ausgehend von einem

hochwertigen Framework für Echzeit Kamera-Tracking werden Tiefenkarten der Szene

mithilfe von Stereo Algorithmen berechnet. Zur Darstellung der 3D Geometrie wird eine

voxelbasierte Methode verwendet, wobei die Oberfläche der Objekte implizit durch das

zero level-set einer vorzeichenbehafteten Distanzfunktion gegeben ist. Der Algorithmus

für die Rekonstruktion basiert auf einer robusten Fusionierung der einzelen Tiefenkarten

mithilfe einer Methode aus der Variationsrechnung. Die dabei verwendete konvexe

Kostenfunktion wird global optimal mit einem neuartigen Primal-Dualen numerischen

Verfahren gelöst.

Das Ergebnis der Arbeit ist eine Anwendung, welche in Echtzeit beliebige Geometrie

rekonstruieren kann. Durch den hohen Grad an Automatisierung ist die Bedienung des

Programms für den Benutzer einfach und intuitiv. Die Geometrie die man erhält kann

als Ausgangspunkt für hochwertige Augmented-Reality Anwendung verwendet werden,

welche die pixelgenaue Interaktion von computergenerierten Inhalten mit der echten Welt

erfordern.

Schlagwörter 3D Rekonstruktion, dichte Geometrie, Echtzeit, interaktiv, Total Vari-

ation, Konvexe Optimierung, GPU, Stereo, Tracking, Volumetrische Darstellung, Aug-

mented Reality
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivation

The aim of 3D reconstruction is to infer the 3D structure of a scene given a set of 2D pro-

jections (images). It is one of the basic problems of computer vision, since the knowledge

of 3D structure is a very strong clue about numerous other problems, including segmenta-

tion, tracking or object detection. Like many problems of early vision, 3D reconstruction

is a so-called inverse problem, which can be seen by looking at the process of image forma-

tion: The 3D world is projected onto the 2D image plane. The information loss during the

projection from 3D to 2D makes the problem ill-posed, meaning existence & uniqueness

of a solution cannot be guaranteed.

The term 3D reconstruction actually refers to a pipeline of processes consisting of the

following components:

1. Intrinsic calibration

2. Image acquisition

3. Pose estimation

1



2 Chapter 1. Introduction

4. Reconstruction

Intrinsic calibration can be done as a pre-computation step. Image acquisition is easily

done at realtime by taking a standard 30fps camera, and realtime camera pose estimation

(i.e. tracking) has seen great progress in recent years, there is very few work on realtime

reconstruction. Mostly this is due to the enormous computational complexity, typical high

quality reconstruction pipelines take an order of hours or days of computational time.

Combining realtime and 3D reconstruction opens up a variety of fascinating applica-

tions, probably the most important of which is augmented reality (AR). The knowledge

of 3D structure enables computer generated content to accurately interact with the real

world. The most obvious example for such an interaction is the occlusion of computer

generated content behind objects of the real world. To get high quality pixel-accurate

occlusions, a key requirement is that the reconstruction is dense, as opposed to a recon-

struction consisting of a sparse point cloud. Since the latter is already achieved in realtime

by state-of-the-art self-localizing systems (e.g. SLAM in mobile robotics), the step to a

full dense scene representation follows naturally. Other application areas include the 3D

modeling community, where a vision driven reconstruction approach can replace expensive

and often complicated laser-based reconstruction systems.

1.2 Contribution

The goal of this thesis is to create a system that is able to reconstruct dense geometry

from a single camera in realtime. Realtime in this context means that the time between

the camera seeing an object and the corresponding reconstruction should be in the range

of seconds, so that the delay in visual feedback does not distract the user. This is accom-

plished by taking state of the art results from different areas of computer vision (camera

calibration, realtime SLAM, dense stereo matching, range image fusion) and adapting and

combining them in a novel way to yield the desired system. An important enabler is the

availability of highly parallel hardware in the form of powerful graphics cards, offering

TeraFLOPS of computational power to the end user at an previously unseen FLOPS per

money ratio. Together with appropriate parallel algorithms, this enables systems where

3D models are computed on the fly merely by filming the object of interest.
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1.3 Thesis Overview

This thesis is structured as follows: Chapter 1 gives an overview of related work and meth-

ods involved with 3D reconstruction. Chapter 2 presents the methodology of the realtime

3D reconstruction system by describing the individual parts of the reconstruction pipeline,

while chapter 3 gives implementation details. Chapter 4 is devoted to an evaluation of the

system, where various key parameters and their impact on the reconstruction result are

investigated. Finally, a conclusion is given in chapter 5.

1.4 Related Work

Outline: This section gives an overview of related work on 3D reconstruction. The

basic building blocks of the reconstruction pipeline are discussed, with special emphasis

on realtime performance. Methods for both internal and external camera calibration are

reviewed, where the latter leads to the problem of pose estimation and, more generally,

SLAM. Next, algorithms for computing dense depth maps from multiple images as well as

methods for fusing multiple depth maps into a single 3D model are presented. Finally, a

detailed description of Parallel Tracking and Mapping (PTAM), a state of the art realtime

SLAM system which forms the basis of the application developed in this thesis, is given.

1.4.1 The Reconstruction Pipeline

As stated in the previous chapter, the task of 3D reconstruction can be split into the

three distinct sub-problems of image acquisition, camera calibration and reconstruction

(see figure 1.1).

Figure 1.1: Basic building blocks of the 3D reconstruction pipeline. Here,
camera calibration includes internal (projection parameters)
as well as external (camera pose) parameters. Images taken
from http://www.eng.cam.ac.uk/news/stories/2005/
digital_pygmalion/

http://www.eng.cam.ac.uk/news/stories/2005/digital_pygmalion/
http://www.eng.cam.ac.uk/news/stories/2005/digital_pygmalion/
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Camera calibration involves finding the internal as well as the external camera pa-

rameters. Reconstruction involves inferring 3D structure from calibrated images. While

numerous algorithms exist for solving these problems individually, very specific require-

ments have to be met for realtime operation.

In realtime operation, image acquisition is done through a live camera. Most consumer

cameras nowadays are able to operate at rates of at least 25Hz, which satisifies the real-

time requirement. To make subsequent tasks easier, a camera with a wide angle lens is

beneficial. Furthermore, camera properties like shutter speed / exposure time, gain, focus,

frame rate etc. should be accessible for the user to adapt for different conditions.

An overview of the mathematical concepts involved with camera calibration is given

in section 1.4.2. Because the camera and therefore the internal calibration parameters

typically do not change at runtime, it is reasonable to decouple internal and external

calibration. Section 1.4.2.1 is devoted to internal calibration methods, external calibration

is addressed in section 1.4.2.2. The task of realtime pose estimation in an unknown

environment leads to the problem of simultaneous localization and mapping (SLAM),

which has been a very active research area in the robot vision community. Corresponding

results are presented in section 1.4.2.3.

Section 1.4.3 deals with the reconstruction process. Aiming at a dense reconstruction,

methods for extracting dense geometry from images are reviewed in 1.4.3.1. To generate

a single 3D model, a fusion step is necessary. Due to the realtime requirement, an online-

type algorithm is needed, meaning it should be possible to add new data without the need

to restart the algorithm. Appropriate methods are discussed in section 1.4.3.2.

1.4.2 Camera Calibration

The intrinsic (internal) camera parameters model the projection of world points onto the

image plane [Hartley and Zisserman, 2003]

x = KX (1.1)

Here, x = (x, y, w)T ∈ P2 are homogeneous image pixel coordinates and X = (X,Y, Z)T ∈
R3 is a point in 3D space. The camera calibration matrix K ∈ R3×3 contains the focal
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length f = (fx, fy)
T and the principal point p = (px, py)

T

K =


fx γ px

0 fy py

0 0 1


The skew factor γ generally is zero. It models the skewing of pixel elements if the x- any

y-axis of the sensor element array are not perpendicular. The linear relationship (1.1)

is called pinhole camera model. Typically, a camera additionally shows distortion from

the lens system, which can me modeled as a non-linear function of the projected image

coordinates [Zhang, 2000, Weng et al., 1992]. Coefficients of the distortion function are

counted among the internal parameters.

The extrinsic (external, exterior) camera parameters describe the pose of the camera

in 3D world. They are given as 3×4 matrix C = [R | t], where R is a 3×3 rotation matrix

and t is a translation vector [Hartley and Zisserman, 2003]. Multiplying by C transforms

a homogeneous 3D point from the world coordinate frame into the camera coordinate

frame.

Xcam = C ·Xworld

By combining the internal and external parameters into the projection matrix P = KC =

K[R | t], the complete relation between the 3D world point X and the 2D image point x

(both in homogeneous coordinates) is given by

x = P ·X

1.4.2.1 Internal Calibration

The process of finding internal and/or external parameters is called camera calibration.

Before proceeding further, a definition of terms seems appropriate, as there is some uncer-

tainty to the meaning of “camera calibration” and “calibrated camera”. When speaking

about camera calibration, it is often understood as restricted to internal calibration, al-

though it is perfectly valid for the term to refer to external calibration. This is due to the

fact that a large number of calibration methods work by estimating the projection matrix

P and subsequently extracting internal parameters from the decomposition P = K[R | t].
These methods therefore calibrate internal and external parameters at the same time. On

the other hand, [Hartley and Zisserman, 2003] define a calibrated camera as “a camera

for which K is known”, leaving open the task of external calibration. This makes sense,
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(a) Known intrinsics (b) Unknown intrinsics

Figure 1.2: Known intrinsic camera parameters allow to measure angles between
rays, which enables reconstruction up to scale (a). If the intrinsic
parameters are unknown, reconstruction is possible up to a projective
transform (b). Figure taken from [Hartley and Zisserman, 2003].

because once the internal parameters are known, subsequent algorithms are free to assume

the pinhole camera model, which, due to its linearity, is convenient. Moreover, the some-

what cumbersome term “external calibration” has long been replaced by more intuitive

terms like pose estimation or camera tracking, especially in realtime operation. We will

therefore adhere to the definition of Hartley and Zisserman and restrict the meaning of

camera calibration to the estimation of internal parameters.

A calibrated camera allows to infer 3D information from 2D images and is thus a

basic requirement for reconstruction. An important point is that the knowledge of the

internal camera parameters enables the measurement of angles between rays of image

points [Hartley and Zisserman, 2003, p. 209]. As a direct consequence, reconstruction

from cameras with known intrinsic parameters is possible up to a similarity transform,

since the reconstruction must respect the angle between rays. On the other hand, if the

intrinsic parameters are not known, reconstruction is possible up to a projective transform,

where the angle between rays is allowed to change (see figure 1.2).

In [Tsai, 1987] a calibration method based on a stepwise solution is presented. First, R

and t are computed, then the focal length and afterwards the distortion coefficients. This

method assumes the principal point to lie in the center of the image, i.e. the coordinates of

the principal point are not among the parameters estimated. The method of [Zhang, 2000]

is still widely used today due to its robustness and simplicity. It is based on modeling

the homography between a planar calibration target and the image plane. The problem is
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first solved analytically in closed form, followed by a non-linear iterative optimization. The

self-calibration method of [Pollefeys et al., 1999] does not require any calibration target.

They showed that if the skew is zero (which is true for almost any real camera), image

correspondences alone are sufficient for reconstruction up to scale.

In all of the above methods, lens distortion is included in the calibration process. The

distortion model is a critical point, since a pure linear camera model is often insufficient for

accurate 3D reconstruction. Especially wide-angle lenses exhibit significant distortion, the

correction of which is mandatory for successful reconstruction. Distortion can roughly be

divided into radial and tangential distortion. An overview of different distortion models

and appropriate calibration methods is given in [Weng et al., 1992], where also exotic

defects like thin prism distortion are considered. It should be noted that with increasing

complexity of the distortion model, the number of distortion coefficients grows. This makes

parameter estimation both harder and numerically less stable, and often it is desirable to

restrict the distortion model to be simple. Indeed it has been reported in [Tsai, 1987,

Zhang, 2000] that distortion is dominated mainly by the radial component. Based on this,

the method of [Devernay and Faugeras, 2001] calibrates only the distortion of the camera.

They motivate their algorithm by a fundamental property of the pinhole camera model:

straight lines in the world are projected as straight lines in the image. By removing lens

distortion such that this property is fulfilled, the camera can be treated as pinhole. Their

distortion model is particularly suited for fish-eye-type wide angle lenses. It is called

FOV-model since it depends only on a single parameter, the field of view.

1.4.2.2 Pose Estimation with Known Intrinsic Parameters

Estimating the external parameters of the camera is known as pose estimation. It con-

sists of determining the rotation R and translation t of a calibrated (in the sense of

[Hartley and Zisserman, 2003]) camera, given a set of correspondences xi ↔ Xi between

image points xi and world points Xi. Although there exist a great number of algo-

rithms to estimate pose from uncalibrated cameras [Hartley, 1995, Pollefeys et al., 1999,

Koch et al., 2000, Lhuillier and Quan, 2005], we will focus on the case where the internal

parameters are known. This simplifies the task, because instead of estimating the full pro-

jection matrix P , which has 11 degrees of freedom (DOF), only the camera pose matrix

C = [R | t] with 6 DOF needs to be computed. For this, a minimum number of 3 point

correspondences are needed. Therefore, the term perspective 3-point problem (P3P), or,

more general, perspective n-point problem (PnP) was coined in [Fischler and Bolles, 1981].
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They showed geometrically that P3P gives up to four solutions, whereas P4P can be solved

uniquely in case the four points are coplanar. If the four points are nonplanar, they pro-

pose to reduce the problem to distinct P3P and find the consensus between the solutions.

They further generalized this method of consensus-finding for the overdetermined case

n ≥ 5, and the resulting random sample and consensus (RANSAC) algorithm has since

become one of the most important methods for robust parameter fitting.

Although the pose estimation problem itself is very old, research is still active. In recent

times, the analytic methods for computing solutions of P4P and P5P [Horaud et al., 1989,

Quan and Lan, 1999] have been replaced by non-iterative algorithms to robustly esti-

mate pose using a large number of point correspondences [Moreno-Noguer et al., 2007,

Schweighofer and Pinz, 2008].

All of the above methods for estimating pose assume that correspondences between

world points Xi and image points xi are given a priori. The question that now arises

naturally is how to establish these correspondences, and ultimately how to compute 3D

world points solely from 2D images.

Given the images of two cameras looking at a 3D point X, there exist constraints

on the corresponding 2D projections x1 in the first image and x2 in the second im-

age. These constraints are captured by the epipolar geometry, which models the ge-

ometric relation between world points and corresponding image points for two views

[Hartley and Zisserman, 2003]. The fundamental matrix F ∈ R3×3 is the mathemati-

cal representation of the epipolar geometry. It is independent from scene structure, hence

Figure 1.3: Epipolar geometry: The camera centers C1, C2 and the world point
X define the epipolar plane π. The epipolar line l2 defined by an
image point x1 is given by l2 = Fx1. The epipole e1 is the projection
of the camera center C2 into the first image. The image points x1, x2
fulfill the epipolar constraint xT2 Fx1 = 0. Image adapted from http:
//en.wikipedia.org/wiki/Epipolar_geometry

http://en.wikipedia.org/wiki/Epipolar_geometry
http://en.wikipedia.org/wiki/Epipolar_geometry
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it can be computed from image points alone.

The 3D world point X is seen by two cameras, giving rise to the image points x1

in the first image and x2 in the second image respectively (see figure 1.3). The camera

centers C1 of the first camera and C2 of the second camera together with the point X

define the epipolar plane π. Given only the 2D coordinates of the image point x1, it is

impossible to deduce the 3D position of X, since its depth is not known. However, it must

lie on the viewing ray defined by C1 and x1. Corresponding points in the second image

lie on the so-called epipolar line, which is defined by the intersection of the epipolar plane

and the image plane. A point x1 in the first image therefore defines a line in the second

image. Note that this relation is indeed independent from scene structure, i.e. it does not

matter where along the viewing ray the 3D point actually is. Mathematically, the relation

between point x1 and epipolar line l2 is given through the fundamental matrix:

l2 = Fx1

In projective geometry, a point x lies on a line l if xT l = 0. This directly leads to the

epipolar constraint between corresponding image points:

xT2 l2 = xT2 Fx1 = 0 (1.2)

The projection of every 3D point along the viewing ray defined by C1 and x1 must lie on the

epipolar line l2 in the second image. Vice versa, if the locations of x1 and x2 are known,

the 3D point X can be found by computing the intersection of the viewing rays. This

process is known as triangulation. However, in real systems the epipolar constraint (1.2)

generally is not fulfilled due to measurement noise, imperfect camera lenses etc. Hence,

viewing rays in general do not intersect, and the position of the 3D world point has to be

computed using some robust estimation method. In [P. A. Beardsley and Murray, 1994],

the authors suggest to compute the midpoint of the common perpendicular between the

two rays. A more sophisticated method is given in [Hartley and Sturm, 1997], where the

true reprojection error is minimized by solving a sixth-order polynomial. An overview of

triangulation algorithms is given in [Hartley and Zisserman, 2003].

1.4.2.3 Simultaneous Localization and Mapping (SLAM)

We have reviewed means to compute camera pose if 3D scene points are known, and

to compute 3D scene points if the camera pose is known. In an unknown environment,
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neither 3D points nor camera pose are given a priori, which creates the following dilemma:

In order to compute the camera pose (localization), one needs information about the 3D

scene. Vice versa, in order to construct the 3D scene (mapping), one needs to know the

camera pose. The problem of simultaneously estimating the location and building a map

of the environment is known as SLAM in the robot vision community, where it is a key

requirement for autonomous robot movement in an unknown environment. It is solved

by a joint estimation of both the robot pose and observed landmark (map) positions in

a single probabilistic formulation [Csorba, 1997, Durrant-Whyte and Bailey, 2006]. The

problem is usually represented as state-space model with additive gaussian noise, where

the state consists of both the robot and the landmark position. The goal is to estimate

the joint posterior probability

P (xk,m | Z0...k, U0...k, x0)

where xk is the robot location and orientation (pose) at time k, m is the set of all landmarks

(the map), Z0...k are the landmark observations, U0...k are the robot control inputs and

x0 is the initial state. The joint posterior probability is computed from the action model

P (xk | xk−1, uk) and sensor model P (zk | xk,m). The action model describes the robot pose

in terms of a state transition probability distribution on the robot state xk. By assuming

a markov process, the state at time k depends only on the immediate preceding state at

k− 1 and the control input uk. The sensor model describes the probability of making the

observation zk, given the robot pose xk and the current map m. In [Smith et al., 1990]

these quantities are computed using an extended Kalman Filter. Action and sensor model

are represented as xk = f(xk−1, uk) + εk and zk = h(xk,m) + δk, where εk and δk are zero-

mean gaussian noise processes with covariance Qk (robot motion noise) and Rk (landmark

noise) respectively. By linearizing f(·) and h(·) using a first order Taylor expansion,

the standard Kalman Filter can be applied. The probabilistic approach results in the

characteristic uncertainty ellipses for the robot pose and landmarks, which reduce as the

robot explores the scene. Due to the way the Kalman Filter works, all landmarks and

covariance matrices have to be recalculated each time an observation is made. Although

some shortcuts have been proposed to make the calculations efficient for maps of up to

thousands of landmarks [Guivant and Nebot, 2001, Leonard et al., 1999], the approach

remains computationally expensive.

FastSlam [Montemerlo et al., 2002] models the probability functions as a set of discrete

points (particle filtering). It can represent arbitrary distributions and non-linear state
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transition functions directly, however it still is computationally costly.

The principles of SLAM, although originally developed for mobile robots, can be ap-

plied in pure vision systems as well. The sensor in this case is a camera, and landmarks are

either provided by hand-made markers or directly extracted from the images (i.e. natural

features). Due to the fact that only visual inputs are used, such systems are often called

Visual SLAM (VSLAM). The restriction of not using other sensors than the camera makes

the problem challenging. Whereas on a robot, motion cues are available from odometry

data and often active range sensors provide accurate depth measurements, a VSLAM sys-

tem has to deduce all data from images alone. Challenges include the high input rate

from a live camera, motion blur from rapid camera movement, the lack of direct depth

measurement and the ambiguities of reliable marker detection.

Fast VSLAM was introduced in [Davison, 2003], where the trajectory of a single camera

was tracked in realtime using SLAM algorithms. Reliable camera pose tracking is a key

requirement for AR applications, which call for the immediate availability of accurate

camera positions. The method of [Davison, 2003] was subsequently improved for large

environments and correct handling of loop closures in [Davison et al., 2007]. However, the

latter work still uses the probabilistic approach found in the original SLAM algorithms.

For accurate camera tracking, it would be desirable to incorporate a geometric constraint

(i.e. the reprojection error) into the algorithm. Bundle adjustment is a well known

algorithm to accomplish this. It works by minimizing the reprojection error of 3D points

into a number of camera views, i.e. refining the coordinates of all 3D points and all

camera pose parameters simultaneously. Due to the large computational effort, bundle

adjustment is commonly found in offline structure-from-motion (SfM) pipelines. In a

seminal work, [Klein and Murray, 2007] presented a system for realtime parallel camera

tracking and mapping (PTAM), which uses bundle adjustment for globally optimizing both

camera positions and 3D world points w.r.t. the reprojection error. Due to its unmatched

accuracy, speed and robustness, PTAM has since been used in a variety of projects calling

for high quality realtime camera tracking. It also forms the basis of the system developed

in this thesis, therefore a more detailed description of PTAM is given in section 1.4.4.

1.4.3 Reconstruction

Reconstruction aims at computing a complete 3D model from a number of images of the

scene taken from different viewpoints. Being one of the core problems of computer vision,

it has always been a very active research area producing a great variety of algorithms.
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Figure 1.4: A screenshot of the map built by PTAM running in a small room.
Recognizable are two perpendicular walls, one of them containing a
door to another room. Even though the map contains more than
10.000 points, the reconstruction is still sparse.

Some basic principles of reconstruction have already been presented in section 1.4.2.2: The

process of triangulation computes positions of 3D points based on the epipolar geometry

between two views. Indeed, this technique is used in VSLAM systems for building the

map. Due to limited processing power, the map maintained by VSLAM systems typically

consists of sparse point features (see figure 1.4). This does not fit our needs since we aim

at a full dense reconstruction. Simply making the map dense seems not to be feasible,

although [Klein and Murray, 2008] experimented with edge features (edgelets) in addition

to point features, resulting in improved 3D structure of the map. Therefore, different

means for extracting 3D geometry from images are needed.

1.4.3.1 Range Image Generation

Range images (depthmaps) contain for every pixel a depth value, which corresponds to

the position of a world point in 3D space w.r.t. the camera frame. Depthmaps can

be efficiently computed from stereo images, and a multitude of algorithms exist, see

[Scharstein and Szeliski, 2002] for an extensive overview. Most stereo algorithms do not

compute depth directly, but rather a dense disparity field. The term disparity represents

the (horizontal) displacement of image pixels due to the 3D scene structure. Depth is

recovered from disparity by the relation z = bf
d , where z denotes depth, d is the dis-

parity, b the baseline between the camera centers and f the focal length. Computing

disparity amounts to solving the correspondence problem: For a given pixel in the first

image, what is the corresponding pixel in the second image? Most stereo algorithms as-
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C1 C2

X1

X2

(a) Two cameras viewing an object.

d2

d1

C1,2

(b) The two cameras and viewing rays
overlaid. Projections from the 3D point
X1 (red viewing rays) have less displace-
ment than the projections from X2 (blue
rays).

Figure 1.5: Stereo matching: Disparity is inverse proportional to the depth of
points in the scene.

sume rectified images, which simplifies the search for correspondences. The rectification

procedure [Fusiello et al., 2000] guarantees that all epipolar lines are horizontal (see figure

1.6). Hence, instead of searching along arbitrary directions, one can search row-wise for

correspondences. Common to most stereo algorithms is the construction of a disparity

space image (DSI). It consists of the aggregated cost according to some similarity measure

over the disparity space, which is typically sampled at pixel or sub-pixel accuracy. The

goal of stereo matching is to find for every pixel the minimum cost in the DSI.

According to [Scharstein and Szeliski, 2002], stereo matching algorithms can be clas-

sified into local and global methods. Local methods use sophisticated similarity mea-

sures and aggregation schemes to compute the DSI, the best match is usually found

by just taking the minimum cost along the viewing ray. Global methods on the other

hand try to minimize a global energy consisting of a dataterm, i.e. a (simple) simi-

larity measure between pixels, and a regularization term which enforces some kind of

smoothness constraint on the solution. In general global methods give better results,

but are often hard to compute, relying on expensive discrete optimization techniques

like Graph-Cut [Boykov et al., 2001, Kolmogorov and Zabih, 2001] or Belief Propagation
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(a) General stereo (b) Rectified stereo

Figure 1.6: In general stereo (a) the epipolar lines induced by the intersection of
the plane π and the image plane are not horizontal. The rectification
procedure computes a homography to transform both images onto
a common plane (b). As a result, epipolar lines are horizontal and
parallel.

[Banno and Ikeuchi, 2009]. A continuous alternative are variational methods. These are

formulated in the continuous domain and can be efficiently computed on parallel hardware

[Pock et al., 2008], although this approach is still not realtime capable. In recent times,

local methods have made significant improvements and are now able to deliver results on

par with global methods. [Zhang et al., 2008, Rhemann et al., 2011] use adaptive weights

for the filter kernel to account for the fact that the center pixel and the surrounding pix-

els of the support window are generally on different surfaces. The algorithm presented in

[Bleyer et al., 2011] additionally considers the orientation of the center pixel by estimating

a 3D plane and projecting the support window onto that plane.

Often it is desirable to use more than two images for range image generation. Addi-

tional images increase the robustness and quality of the resulting depthmap, because they

give additional information about the 3D structure of the scene. Disparity-based methods

can not easily be generalized to multiple views due to the way disparity is defined. For

multiple views, the objective has to be independent of the baseline, i.e. the camera posi-

tion. This is not the case for disparity, as disparity is inherently defined by the distance

between the cameras. [Okutomi and Kanade, 1993] present a multiple baseline stereo sys-

tem that splits the task of multiview stereo into distinct two image stereo calculations and

combines the individual result. This approach suffers from large computational complex-

ity of O(n2) w.r.t. the number of input images, since every pairwise combination of input

images is run through the two-view stereo algorithm. The well known planesweep method

of [Collins, 1996] arguably was the first multiview stereo algorithm with complexity O(n).
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It works by computing homographies between image planes, where the planes move along

the viewing direction of a dedicated reference view. Planesweep does not assume recti-

fied images, which reduces the amount of preprocessing. A drawback of this method is

the discrete sampling of the depth range, resulting in staircasing effects if the sampling

is too coarse. The work of [Strecha et al., 2003] tackles the problem of multiview stereo

by a PDE-based formulation that diffuses depth data based on the local matching con-

fidence between all views. Their method is well suited for wide-baseline stereo and can

deal with occlusions and lighting changes. However, a sparse set of intial depth values is

needed to start the algorithm, this is usually taken from a camera calibration step (bundle

adjustment and triangulation of 3D points). [Stuehmer et al., 2010] present a continu-

ous variational formulation that optimizes directly for depth. Their approach is based

on optical flow and can be easily generalized for multiple views. They achieve realtime

performance by implementing the optimization on the GPU.

1.4.3.2 Fusion

Depthmaps allow to reconstruct dense geometry by projecting every pixel at its associated

depth in space. If the camera pose matrix C and the camera calibration matrix K are

known, a homogeneous pixel coordinate x = (x, y, 1)T is projected into 3D world by

X = C−1zK−1x,

where z is the depth of pixel coordinate x according to the depthmap. The inverse of the

3 × 4 camera pose matrix C is calculated by C−1 = [R−1 | (−R−1t)], where the 3 × 3

rotation matrix R and the translation vector t are from the decomposition C = [R | t].
Note that since R is an orthogonal matrix, its inverse can be calculated by transposition

R−1 = RT .

To obtain a full 3D model, multiple depthmaps from different viewpoints around the

object of interest are required. Typically depthmaps suffer from noise and outliers, there-

fore a robust fusion step is required to integrate the information into a single 3D model.

According to [Curless and Levoy, 1996], requirements for such an algorithm include the

following properties:

• Incremental updating: As the camera explores the scene, new data becomes avail-

able. Clearly, restarting the algorithm from scratch every time new data arrives is

not efficient, so incremental updates are a key requirement. Partial reconstruction
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results also provide an important cue on where to move the camera next to improve

the 3D model.

• Ability to fill gaps: Depending on the robustness of the stereo algorithm there might

be missing data in the depthmaps. Especially textureless regions are a hard challenge

for similarity-based stereo algorithms, resulting in missing depth information. The

fusion algorithm should be able to handle missing data, i.e. fill gaps where no depth

information is available.

• Robustness: In realtime operation, errors like camera noise, camera pose uncertainty

and limitations of the stereo matching algorithm will result in erroneous range data,

which have to be dealt with in a robust manner to produce meaningful results.

• No restriction on topological type: The fusion algorithm should allow arbitrary genus

of the 3D surface.

An important point is the representation of geometry. Basically there exist two differ-

ent approaches, mesh-based and volumetric [Seitz et al., 2006]. Polygon meshes describe

geometry as a set of connected planar facets. They can be stored and rendered efficiently.

However, incremental updates are difficult due to the organizational overhead of removing

duplicate points, updating connectivity information etc. Volumetric approaches describe

geometry by means of a regularly sampled 3D grid consisting of individual elements (vox-

els). This technique is able to represent surfaces of arbitrary topology, which makes it a

popular choice for reconstruction algorithms.

A well-studied algorithm for volumetric reconstruction is the voxel occupancy method

of [Martin and Aggarwal, 1983], where the goal is to decide for each voxel if it is filled

or empty. This is usually done using silhouette information from multiple images.

[Laurentini, 1994] showed that algorithms based on silhouette intersection cannot fully

reconstruct nonconvex objects, i.e. objects with the same silhouette but different interior.

For this reason, the result of voxel occupancy methods is not the true 3D shape, but

rather an approximation called the visual hull.

To overcome this limitation, techniques based on photo consistency were developed.

Space carving [Kutulakos and Seitz, 2000, Slabaugh et al., 2003] and voxel coloring

[Seitz and Dyer, 1997] exploit the photo consistency constraint between image pixels

of different camera positions to decide whether a voxel is visible or not. This decision

however is “hard” in the sense that it cannot be undone later on, which makes the
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handling of ambiguous or incorrect data difficult. Also, each voxel is processed

independently, which means there is no way to enforce any kind of spatial coherence.

[Kolmogorov and Zabih, 2002] formulate the problem in an energy minimization frame-

work. They construct an energy functional consisting of a dataterm using a photo con-

sistency measure, a visibility term that decides if a voxel is masked by already-known

geometry and a robust smoothness term which allows for discontinuities while enforcing

spatial coherence on the solution. The energy functional is minimized using a graph cut

algorithm.

[Curless and Levoy, 1996] use a volumetric representation and employ a signed dis-

tance function which measures for every voxel the distance to the surface. Using a

continuous signed distance function instead of discrete voxel states simplifies the inte-

gration of multiple overlapping and noisy range images. The final surface is extracted

by computing the zero level set of the signed distance function. In the original paper,

depth values are obtained from a laser range finder. This approach was extended in

[Zach et al., 2007, Zach, 2008], where the problem is cast as minimization of an energy

functional and range data is calculated directly from the images using a multiview stereo

algorithm. Additionally, a robust regularization is used to further improve the robustness

of the method.

For further information on dense multiview reconstruction algorithms we refer to the

extensive overview of [Seitz et al., 2006].

1.4.4 Parallel Tracking and Mapping

In this work, we use Parallel Tracking and Mapping (PTAM) [Klein and Murray, 2007]

for tracking camera positions in realtime. PTAM marked a significant change in the

design of VSLAM systems, because it did not rely on the usual probabilistic formulation

of the SLAM problem. Instead, it uses high quality batch techniques for minimizing a

geometrically motivated reprojection error (Bundle Adjustment). The main idea of PTAM

is to split tracking and mapping into two threads. This is in contrast to probabilistic

SLAM, where tracking and mapping are tightly coupled, i.e. they are performed together

at each frame. Especially mapping is computationally costly and suffers from the limited

amount of computation time available. If those duties are split apart, each of them can be

tailored to its specific needs: The tracking thread can be made robust and fast, mapping

on the other hand can be made as accurate and rich as possible, taking potentially orders

of magnitude longer than the tracking thread.
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Camera model and world geometry PTAM uses a right hand coordinate system for

world geometry. The camera model is the FOV-model of [Devernay and Faugeras, 2001].

Camera pose is encoded as 3 × 4 matrix, which describes the transformation from the

global world coordinate frame to the camera coordinate frame. The full relation between

world points and image pixels is given by x = CamProj(CCWX), where x = (x, y, 1)T are

homogeneous image pixel coordinates, CamProj(·) denotes the non-linear camera model

including lens distortion, CCW is the camera pose matrix (CW denoting the transformation

direction “to Camera from World”) and X = (X,Y, Z,W )T is a homogeneous 3D world

point.

Initialization Before running PTAM, a map needs to be initialized. This step is user

aided, after selecting a starting frame through a key press, a number of features is tracked

while the camera is translated sideways. Selecting a second frame yields a stereo pair.

The tracked features provide point correspondences, which enable the five-point algorithm

to estimate the epipolar geometry, and 3D map points can be triangulated (see section

1.4.2.2). PTAM uses a pre-calibrated camera, which enables the reconstruction of the

initial map points up to scale (see section 1.4.2.1). Targeting AR applications, metric

reconstruction is not necessary and the scale of the map is set to an arbitrary fixed value

by assuming a baseline of 10cm between the stereo images and scaling the whole map

accordingly. Afterwards, the world is transformed such that the dominant plane of the

map lies at z = 0.

Tracking The tracking threads runs at 30Hz and performs a two-stage tracking proce-

dure. First, a prior camera pose is estimated from a simple motion model. Map points

are projected into the image and a small number of points is searched for and used to

update the camera pose. Using the improved pose estimate, a large number of features is

searched for and the camera pose is further refined. Searching is done using an 8×8 image

patch which is pre-warped according to the camera pose estimate coming from the motion

model. FAST corners are computed in a circular region around the predicted position and

zero-mean SSD is used to select the best matching position. In addition, a four-level image

pyramid is constructed for every frame and feature search is done at the appropriate scale.

Given a number of reprojected world points, the camera pose is updated by minimizing

a robust objective function of the reprojection error.
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Mapping Starting with the map built by the stereo initialization procedure, world points

are added continuously as the camera explores the scene. A key concept of PTAM are so

called keyframes. These are special frames from the live video stream used for constructing

the map. By using only a subset of all available camera frames it is possible to use high

quality bundle adjustment for optimizing the map. Keyframes are selected by the tracking

thread based on tracking quality, distance to the nearest keyframe and time since the last

keyframe was added. This ensures that keyframes are distributed evenly in space and

avoids a stationary camera corrupting the map. Keyframes generated by the tracking

thread have to be processed as fast as possible by the mapping thread to ensure fast

map growing. Therefore, a queue of keyframes is kept between the tracking and mapping

threads and the tracker stops generating keyframes if the queue length exceeds a certain

value.

Triangulating new map points requires point correspondences between images (see

section 1.4.2.2). These are found by selecting the closest keyframe from the map as second

view and performing feature search along the epipolar lines. If correspondences have been

found, new map points are triangulated and added to the map.

The map is optimized using bundle adjustment. Bundle adjustment iteratively refines

camera pose matrices µi and world points pi by minimizing

{µ2 . . . µN , p1 . . . pM} = argmin
µ,p

N∑
i=1

∑
j∈Si

Obj

(
|eji|
σji

, σT

)

eji is the reprojection error of map point pj (which is taken from the set of image mea-

surements Si) into image i with camera pose µi (the camera pose µ1 of the first keyframe

is a fixed datum and excluded from optimization). σji are associated standard deviations

and Obj(·, σT ) is the Tukey biweight objective function with an estimate of the distri-

bution standard deviation σT . For minimization, the well known Levenberg-Marquard

algorithm is used. Unfortunately, this approach does not scale well with increasing num-

ber of keyframes. In the original paper, the authors reported runtimes of tens of seconds

for a map with 150 keyframes on an Intel Core 2 Duo 2.66 GHz processor. Therefore,

a local bundle adjustment is used to quickly integrate new keyframes and map points

into the map: Upon addition of a keyframe, bundle adjustment using just the 5 nearest

keyframes is performed, which converges much faster than a full global bundle adjustment

using all keyframes and map points. The mapping thread uses a priority model for the

following tasks:
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• Add keyframes: This involves computation of FAST-corners and triangulation of new

map points. Adding keyframes has top priority, and any other task is interrupted if

a new keyframe arrives.

• Local bundle adjustment: If the queue of keyframes to be added is empty, local

bundle adjustment is performed. This updates newly added keyframes and map

points.

• Global bundle adjustment: If the mapping thread is idle (i.e. the camera does

not explore), global bundle adjustment using all keyframes and all map points is

performed.

1.4.5 Realtime Dense Reconstruction

We now revisist the reconstruction pipeline introduced in chapter 1.4.1 again, adding more

specific requirements:

• Internal calibration

• Image acquisition

• External calibration (camera pose tracking)

• Reconstruction

– Extract dense geometry from images

– Integrate individual results into a single model

In this chapter we have reviewed methods and algorithms to individually solve the above

tasks. However, very few work has been done to bring them together in a realtime envi-

ronment.

[Stuehmer et al., 2010] use keyframes from the PTAM framework to calculate dense

depthmaps in realtime. They employ a variational approach based on optical flow to

robustly estimate depth using multiple views. The resulting geometry is limited to 2.5D,

because a fusion of individual depthmaps is not addressed in the work.

The live dense reconstruction system of [Newcombe and Davison, 2010] also uses

PTAM for tracking the camera pose in realtime. They generate a base mesh from the

sparse point features of the map maintained by PTAM. This base mesh is subsequently

refined using dense depth information obtained via variational optical flow. The problem
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of this method is that the base mesh is created once and cannot change topology later

on. Thus, if a concavity in scene geometry is not captured by the initial base mesh, it

cannot be recovered later in the dense refinement step. This thesis addresses these issues

and aims at a full 3D reconstruction of arbitrary geometry.

Recently, Newcombe et al. presented their follow-up work of the live dense recon-

struction system. They created a system called Dense Tracking and Mapping (DTAM)

[Newcombe et al., 2011a], which can be seen as an improved version of PTAM. The differ-

ence is that unlike PTAM, where sparse 3D point features are used for camera tracking,

DTAM tracks the camera position off a dense model of the world. This model is cre-

ated using a simple multiview stereo algorithm to extract depth from up to hundreds of

small baseline images from the live camera stream. Dense tracking results in significantly

improved tracking performance, especially under difficult conditions like motion blur or

camera defocus. In such cases PTAM is unable to track the camera, whereas DTAM,

thanks to the overwhelming amount of data stemming from the dense approach, does not

loose tracking.

Another approach which is closely related to our work is KinectFusion of

[Newcombe et al., 2011b]. They use Microsoft Kinect as a cheap depth sensor to

reconstruct dense geometry. As in our own work, they use a truncated signed distance

function to implicitly represent geometry in a volumetric way. Because depth data from

Kinect is relatively accurate, a sophisticated fusion method is not needed. Instead,

a simple weighted average of the signed distance function over the voxel grid gives

astonishing results. Camera tracking is done off the dense model of the world, similar to

DTAM.
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Outline: The methodology for realtime dense reconstruction is presented. We give an

overview of the system before describing the individual parts. These include camera pose

tracking, selection of keyframes for dense stereo matching, multiview stereo algorithms

and the integration of multiple depthmaps into the final 3D model. Finally the method

for visualizing results is presented.

2.1 System Overview

Our realtime system operates on a live camera stream. We use PTAM to track camera

pose in realtime. PTAM splits tracking and mapping into two threads running on two

cores of the CPU. We follow this idea and introduce a third thread which is responsible

for reconstructing the scene. This multithreaded approach enables asynchronous execu-

tion of PTAM and the reconstruction task. Furthermore, PTAM is not interrupted by

the computation-intensive reconstruction when the system is run on a CPU with at least

3 cores. This requirement is easily met by todays high-end desktop PC systems, where

Quadcore CPUs are standard. Figure 2.1 depicts an overview of the system. The recon-

23
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CPU 1 Tracking

CPU 2 Mapping

CPU 3 Reconstruction

User Feedback

User Feedback

SLAM

Figure 2.1: The method consists of a realtime tracking system which uses two
threads and a third thread responsible for reconstructing scene ge-
ometry. On a multicore CPU, this approach minimizes interruptions
and enables smooth GUI interactions even on heavy load.

struction process makes heavy use of the massive parallel computing resources provided

by modern graphics cards by offloading calculations onto the graphics processing unit

(GPU). For reconstruction, we consciously choose algorithms with inherent data paral-

lelism to make optimal use of the computational power provided by the GPU. Our system

requires 2 GPUs to run optimally. The reason for this is that a GPU is not designed

for multitasking. Normally this is not a problem, because typical GPU calculations are

finished quickly in (at most) tens of milliseconds. The calculations required for reconstruc-

tion on the other hand take an order of magnitude longer, lasting for seconds. This results

in freezes of the GUI. Therefore, we require 2 GPUs, one for rendering the GUI and one

for carrying out the reconstruction related calculations. Note that rendering the GUI does

not require extensive computational power, so one GPU can be low-end. Running our

application on a single-GPU system is possible, but results in suboptimal user experience

due to short freezes and stuttering.

The system requires minimal user interaction. After initialization of the tracking

system (see section 1.4.4), the volume of interest is specified. This is done through a GUI-

based tool (see section 3.5), where we concentrated on intuitive handling. After setting

up the volume, the reconstruction process is fully automated.

2.2 Tracking

PTAM is used for tracking the camera pose in realtime. No changes were made to the key

components of the tracking system (see section 3.1). In its map, PTAM maintains a list of

keyframes. Keyframe image data is stored directly from the live camera as-is. The images
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exhibit significant lens distortion, which must be corrected because the algorithms used

for reconstruction assume a linear pinhole camera. The camera model used by PTAM is

(a) Distorted image (b) Undistorted image

Figure 2.2: Camera image showing lens distortion (a) and the corrected image
(b). In the corrected image, the edge of the desk is straight.

the FOV model of [Devernay and Faugeras, 2001]. It is given by

xd = xu
1

rω
arctan

(
2r tan

ω

2

)
(2.1)

where xu = (xu, yu, 1)T are normalized (i.e. undistorted, at camera z = 1 plane) camera

coordinates, xd are the distorted coordinates, r =
√
x2
u + y2

u is the radius from the image

center and ω is the distortion parameter obtained from a camera calibration step. Given a

distorted image, we calculate normalized camera coordinates by projecting discrete pixel

raster coordinates x̂u = (x, y, 1)T onto the camera z = 1 plane by

xu = K−1x̂u

with the camera calibration matrix K. Then, distorted coordinates are computed accord-

ing to (2.1) and pixel values are interpolated from the distorted image at the back-projected

positions x̂d = Kxd.

2.3 Depthmap Generation

Keyframes from PTAM are used to generate depthmaps of the scene. The accuracy of the

camera pose is critical for calculating depthmaps, therefore we do not use pose estimates

from the live camera stream but rely on keyframes. Keyframes are optimized using bundle
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adjustment, resulting in high quality of the associated camera pose (see figure 2.3).

(a) Image 1 (b) Image 2

(c) Detail image 1 (d) Detail image 2 (e) Detail image 1 (f) Detail image 2

Figure 2.3: Epipolar geometry from PTAM keyframe camera matrices. Shown
are selected points (a) and their corresponding epipolar lines (b). As
depicted in the details (c)-(f), PTAM delivers sub-pixel accuracy.

2.3.1 Keyframe Selection

Because it is not guaranteed that the camera is always looking at the volume of interest,

a selection mechanism to decide whether a keyframe should be used for reconstruction

is needed. Keyframe selection is based upon the percentage of image rays intersecting

the volume. This guarantees that only images whose 3D points potentially lie inside the

volume are used for reconstruction.

Let S be the set of all pixel coordinates in an image, we compute the subset Sintersect ⊆
S of pixels whose viewing rays intersect the volume. The image is used for reconstruction

if
|Sintersect|
|S|

≥ γ (2.2)

is fulfilled for a threshold γ ∈ [0, 1], which is proportional to the desired percentage of

viewing rays intersecting the volume. For calculating Sintersect, each pixel coordinate x is

projected into 3D space by X = C−1K−1x, where C is the camera pose matrix associated
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(a) 2D image of intersection (b) 3D image of intersection

Figure 2.4: Result of the intersection test using a 16× 16 grid (a). Viewing rays
of yellow pixels intersect the volume (purple box), red pixels do not.
(b) shows the same scene in 3D.

with the image. Next, the camera position Ccam is calculated from the pose matrix by

Ccam = −R−1t, where R and t are from the decomposition C = [R | t]. The two points

Ccam and X define the viewing ray for pixel x. To determine if a viewing ray intersects

the volume, we calculate the intersection of the viewing ray and the planes that define the

volume. To this end, it is advantageous to use the Plücker matrix representation of a line.

It is given by

L = ABT −BAT ,

where L is a 4×4 matrix representing the line and A,B are homogeneous points on the line.

Using this representation, the intersection Xintersect of a line L and a plane π = (a, b, c, d)T

is given by Xintersect = Lπ. By checking if X is inside1 the volume boundaries, we decide

if the viewing ray intersects the volume or not. To get a good estimate of the percentage

of viewing rays intersecting the volume, it is not necessary to calculate intersections for

every viewing ray. Instead, we sample image pixel coordinates based on a 16 × 16 grid,

which results in a much smaller set S and consequently a drastically reduced number of

computations. See figure 2.4 for an exemplary result.

If (2.2) is fulfilled, the keyframe is marked for reconstruction. It is subsequently used

as reference view for a multi-view stereo matching algorithm, which produces a depthmap.

Once a reference view has been selected, the task remains to find good keyframes

(sensor views) for the multi-view stereo algorithm. This selection is based on proximity

1For coordinate comparison, we apply an ε ≈ 10−6 to account for limited numerical accuracy
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to the reference view and on the angle between the optical axes (i.e. viewing direction)

of the reference and the sensor view. First, the 10 nearest keyframes to the reference

frame are searched for in the list of keyframes. Next, the angle between the optical axes is

computed. The optical axis v is defined by the vector between the camera position Ccam

and the projection of the principal point p into 3D space by P = C−1K−1p. The angle

is then computed as αi = arccos (〈vref , vi〉) , i = 1 . . . 10 (see figure 2.5). A keyframe is

Figure 2.5: Sensor view selection is based on the euclidean distance between cam-
era positions (di) and the angle between the optical axes (αi)

selected as sensor view if α is between two user-defined thresholds, i.e. βmin ≤ α ≤ βmax.

By setting e.g. βmin = 0◦ and βmax = 15◦, one can ensure that sensor views have sufficient

overlap with the reference view. The sensor keyframes are sorted according to their α and

sent to the depthmap generation stage.

2.3.2 Planesweep

The images obtained from the keyframe selection step have a completely arbitrary config-

uration in 3D space. The stereo algorithm should therefore not assume any preconditions

(e.g. rectified images etc.) and should have the following properties:

• Multiview: While the algorithm should deliver decent results when run with two

images only, it should be possible to easily use multiple images.

• Robustness against large baseline: Because the configuration of keyframes depends

on the user, sometimes it is not possible to find small-baseline keyframes for a given
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reference view. Robustness in case of large baselines (i.e. large occlusions) is there-

fore required.

• Robustness against illumination changes: Arbitrary camera movement from the user

results in illumination changes, e.g. if the camera looks at a lamp or outside a

window.

• Fast computation: For the use in a realtime environment, the algorithm needs to be

fast. Unfortunately this rules out many high quality graph-cut based algorithms.

The planesweep algorithm [Collins, 1996] suits these needs. Furthermore, it is easy to

parallelize, as shown in the work of [Cornells and Van Gool, 2005]. As its name implies,

planesweep works by sweeping a family of planes through 3D space. The planes are parallel

to the image plane of the reference view at different depths (i.e. down the z-axis of the

reference coordinate frame). At every depth, there exists a homography from each of the

sensor views onto the plane (see figure 2.6). The idea of planesweep is that if the plane

Figure 2.6: By sweeping a family of planes through 3D-space and computing pix-
elwise similarities of the reference view and the sensor views mapped
onto the planes, a depth value for each pixel is computed. Figure
adapted from [Cornells and Van Gool, 2005]

passes through the surface of the object, the pixel values of the reference view and the

sensor views mapped onto the plane match (under the assumption of lambertian surfaces).

The algorithm consists of computing the similarity between the reference view and the

sensor view mapped onto the plane at different depths, and assigning each pixel the depth
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where the similarity is maximal.

The homography induced by the planes is computed the following way: Assuming a

camera at the origin, i.e. C1 = [I | 0], a plane π = (nT , 1) and a second camera C2 = [R | t],
the homography induced by the plane is computed by calculating the intersection of the

viewing ray of a point x = (x, y, z)T and the plane π, and back-projecting the intersection

point into the second camera. Because C1 is at the origin, 3D points on the viewing ray

of x are given by X = (xT , µ), where µ parametrizes points on the ray. We wish to find

the intersection of the ray with the plane, that is, the point X for which πTX = 0 holds.

This determines µ to −nTx, and the intersection point X = (xT ,−nTx)T is transformed

by C2 to

x′ = [R | t]X = Rx− tnTx = (R− tnT )x (2.3)

The homography is thus given by H = R − tnT (see [Hartley and Zisserman, 2003, p.

327]). If the two images are from the same camera, we can apply the internal calibration

matrix K to get the homography from image pixel coordinates of the first view to image

pixel coordinates of the second view H = K(R− tnT )K−1.

In the generic case we have Cref = [Rref | tref ] and Csens = [Rsens | tsens] as the camera

matrices of the reference camera view and a sensor view respectively. The planes π(d)

are defined in the coordinate frame of the reference view, i.e. π(d) = (nT ,−d)T where

n = (0, 0, 1)T is the unit vector along the z-axis and d is the distance (the depth) from the

reference view. This setup can be reduced to the case derived in previous paragraph by

calculating the relative rotation and translation Rrel, trel between the two cameras, which

can then be plugged into (2.3). A canonical representation of the plane π(d) is obtained

by dividing by −d, i.e. π(d) =
(
nT

−d , 1
)

. The relative rotation and translation are given by

Rrel =RsensR
−1
ref (2.4)

trel =tsens −Rreltref (2.5)

The homography for the generic case thus computes to

H = K

(
Rrel −

treln
T

−d

)
K−1, (2.6)

where n = (0, 0, 1)T , and d parametrizes the plane depth. The planesweep algorithm

requires some additional information about scene geometry. Planes π(d) are generated for

znear ≤ d ≤ zfar, which means that depth values are restricted to lie between znear and zfar.
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The values of znear and zfar are calculated by projecting the corner points of the volume

into the reference coordinate frame and determining the minimum/maximum depth value.

An important parameter is the depth resolution dstep, i.e. the sampling of the inter-

val [znear, zfar]. A coarse sampling results in poor depth accuracy, while a fine sampling

increases the computational load. Because the geometric accuracy of the reconstruction

is already inherently limited by the voxel size, we use the voxel resolution as basis for

determining the depth resolution (see section 4.2.1).

Using normalized cross-correlation (NCC) as similarity measure makes the algorithm

robust against lighting changes. The NCC is given by the following formula

c =
1

n

∑
x,y∈W

(I1(x, y)− Ī1)(I2(x, y)− Ī2)

σ1σ2
,

where I1, I2 are the two images, Ī1, Ī2, σ1, σ2 are the mean and standard deviation re-

spectively and W is the window used for the calculation (e.g. 5 × 5). To speed up the

calculation, we use precomputed sum images, which makes the run-time less dependent

on the window size. Using larger windows on the one hand increases robustness, on the

other hand results tend to get blurred at depth discontinuities.

The final depth value is extracted by a simple Winner-Takes-All (WTA) scheme. As

the planes move along the z-axis, the best correlation value is recorded for every pixel

and updated if a better match is found. The depth for each pixel is the depth of the

plane at which the best match was found. This approach requires additional memory of

size M × N , where M,N are the width and height of the camera image. This is cheap

in comparison to more sophisticated depth extraction scheme, where typically the whole

cost volume needs to be stored in memory.

Figure 2.7 shows results of the planesweep using different window sizes, where one can

clearly notice the noise stemming from the WTA approach. To improve depthmap quality,

an optional TV-`1 image denoising was implemented. The energy functional for TV-`1

image denoising is given by

min
u

{∫
Ω
g |∇u|+ λ

∫
Ω
|u− f |dx

}
(2.7)

where u is the unknown denoised image, f is the noisy input, x = (x, y)T ∈ Ω are image

pixel coordinates and Ω ⊆ R2 is the image domain. The nabla operator is understood in the

distributional sense, which enables gradient calculations for non-smooth functions. TV-
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(a) 3 × 3 window (b) 7 × 7 window (c) 11 × 11 window

Figure 2.7: Results for 4-view planesweep using different NCC-windows.

regularization has the property of preserving sharp edges while simultaneously smoothing

homgenous regions, whereas the `1 dataterm provides robustness against outliers and is

particularly suited for impulse-like noise. In addition, we employ a g-weighting of the

regularization term, where g is computed from the input image gradient magnitude (i.e.

edges) as g = exp(−α|∇I|). This means that the denoising process respects edges in the

input image, which further improves results (see figure 2.8). To solve (2.7), the first order

primal-dual algorithm of [Chambolle and Pock, 2011] is used.

(a) Raw depthmap, 5 × 5 NCC window (b) TV-`1 denoised depthmap

Figure 2.8: Depthmap before and after TV-`1 denoising. Parameters were set to
λ = 0.3, α = 20, 100 iterations.

2.3.3 Total Generalized Variation Multiview Stereo

As the accuracy of the depthmaps is critical for reconstruction quality, we implemented an

alternative method to generate depthmaps from multiple views. It is based on variational

optical flow, where the pixel displacement between two views is parametrized by the depth
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of the 3D point on the corresponding viewing ray (see figure 2.9). The advantage of this

method is that multiple views can be incorporated easily. Whereas disparity is defined

between two images and it is cumbersome to transform a given disparity into a pixel

correspondence for a third view, a 3D point parametrized by its depth is easily projected

into as many views as one likes, assuming the pose of the camera views is known (i.e. the

relative rotation and translation can be computed).

Figure 2.9: The pixel correspondence problem is formulated by parametrizing 3D
points on the viewing ray by their depth and back-projecting them
into the second image.

This was introduced first by [Stuehmer et al., 2010] and we have extended their

method to use a more sophisticated regularizer, namely Total Generalized Variation

(TGV) [Bredies et al., 2010]. Total Generalized Variation does not suffer from the

staircaising effect of Total Variation. The staircasing effect stems from the fact that Total

Variation favors piecewise constant (i.e. zero-order) functions, whereas TGV of order k

is able to reconstruct functions of order k − 1. A sensible choice for the computation

of depthmaps is second-order TGV, which means that piecewise linear functions can

be reconstructed. This circumvents the discrete depth steps of planesweep caused by

discretization of the depth range, because linear functions are able to smoothly describe

slanted surfaces.
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The model for TGV multiview stereo is given by

min
u

{
TGV 2

α (u) +

∫
Ω

N∑
i=1

λi|Ii(f(x, u))− Iref(x)|dx

}
, (2.8)

where the first term (regularization term) denotes second order TGV with weighting fac-

tors α, the second term is the data term, x = (x, y)T ∈ Ω are pixel coordinates and Ω ⊆ R2

is the image domain. The dataterm measures pixel similarities obtained by projecting a

pixel coordinate x from the reference view into 3D space at depth u, yielding the point

X(x, u). This point is subsequently transformed into the coordinate frame of the second

camera and back-projected onto the image plane, yielding the corresponding point x′.

Under the assumption of lambertian surfaces, the pixel gray values of x and x′ match if

the the 3D point X(x, u) lies exactly on the surface (see figure 2.9). The dataterm hence

consists of simple pixelwise absolute differences of gray values. To use multiple views, the

absolute differences of N projections are simply summed up.

While TGV is a convex functional, the dataterm of (2.8) is highly non-convex, as it

contains the objective u as an argument of the image Ii and the transformation f(x, u).

We will now examine the transformation f(x, u) in more detail. It is given by

f(x, u) = KTuK−1x (2.9)

The term uK−1x is the projection of a pixel coordinate x = (x, y, 1)T into 3D space at

depth u using the camera intrinsic calibration matrix K. This 3D point in the coordinate

frame of the reference view is then subjected to the homogeneous transformation T =

[R | t], which is the relative rotation and translation between the reference view and

the sensor view (see (2.4)). Once the 3D point is transformed into the coordinate frame

of the sensor view, it is back-projected onto the image plane by multiplication with the

intrinsic calibration matrix, yielding the corresponding point x′. The dataterm of (2.8) is

convexified by using a first order Taylor linearization

I(f(x, u)) ≈ I(f(x, u0) + (u− u0)
dI(f(x, u)

du

∣∣∣∣
u0

Using the chain rule, one finds that

dI(f(x, u)

du
= ∇I(f(x, u))

df(x, u)

du
,
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which means that the derivative of I w.r.t. u can be found by calculating the normal

image gradient (e.g. by forward differences) and scaling the gradient by a differential

vector obtained from the derivative of the transformation (2.9) w.r.t. u. Intuitively, this

derivative is the direction in the image that results from a variation of u of the 3D point

X(x, u), i.e. it points along the epipolar line. Since all components of (2.9) are known,

the derivative can be computed analytically to

df(x, u)

du
=

 fx
dX̂(u)

du
·Ẑ(u)−X̂(u)·dẐ(u)

du

Ẑ(u)2

fy
dŶ (u)
du
·Ẑ(u)−Ŷ (u)·dẐ(u)

du

Ẑ(u)2

 ,
where X̂(u), Ŷ (u) and Ẑ(u) are the components of the 3D point X̂(x, u) transformed into

the coordinate frame of the second view. Their derivatives are given by

dX̂(u)

du
= r11

1

fx
(x− px) + r12

1

fy
(y − py) + r13

dŶ (u)

du
= r21

1

fx
(x− px) + r22

1

fy
(y − py) + r23

dẐ(u)

du
= r31

1

fx
(x− px) + r32

1

fy
(y − py) + r33,

where r11 . . . r33 are the entries of the relative rotation matrix between the two views, and

px, py and fx, fy are the principal point and the focal length respectively. By combining

the individual terms, we rewrite (2.8) as

min
u

{
TGV 2

α (u) +

∫
Ω

N∑
i=1

λi|ρi(x, u, u0)|dx

}
, (2.10)

where the dataterm ρi(x, u, u0) is defined as

ρi(x, u, u0) = Ii(f(x, u0))− Iref (x) + (u− u0)∇Ii(f(x, u))
dfi(x, u)

du

∣∣∣∣
u0

Total Generalized Variation of order k and weighting factors α is defined as

TGV k
α (u) = sup

{∫
Ω
udivkv dx s.t. ‖divlv‖∞ ≤ αl, l = 0, . . . , k − 1

}
Formulated this way, TGV is hard to optimize because of the constraints on the divergence

of v. While there exist simple algorithms for the first-order constraint, i.e. ‖v‖∞ ≤ 1,
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the higher order constraint on the l-divergence of v is much more difficult to deal with

and has usually to be fomrulated as an additional optimization problem. Fortunately, in

[Bredies et al., 2010] the authors give a recursive primal formulation of the TGV semi-

norm. For second order TGV, it can be written conveniently as

TGV 2
α (u) = min

u1
α1‖Du− u1‖M + α0‖Du1‖M (2.11)

where M(Ω,Rn) denotes the space of Radon measures on Ω.

Combining (2.10) and (2.11) yields the complete model for TGV multiview stereo

min
u,u1

{
α1‖Du− u1‖M + α0‖Du1‖M +

∫
Ω

N∑
i=1

λi|ρi(x, u, u0)|dx

}
(2.12)

Note that the optimization problem now consists of two variables u and u1, whereby

u1 comes from the recursive formulation of the TGV regularizer. (2.12) is optimized

using the first order primal-dual algorithm of [Chambolle and Pock, 2011]. This algorithm

requires the problem to be cast as a min-max saddle point problem. We therefore start

by transforming (2.12) to its primal-dual formulation using Fenchel duality

min
u,u1

max
p,q,r

α1〈Du− u1, p〉+ α0〈Du1, q〉+ λ〈ρ(x, u0, u), r〉

s.t. ‖p‖∞, ‖q‖∞, ‖r‖∞ ≤ 1,
(2.13)

where p, q, r are the dual variables. For simplicity, we will derive the optimization

procedure for the stereo case (i.e. N = 1) and afterwards show how to extend it for

multiple views. A nice side effect of the dualization is that none of the terms of (2.13)

depends exclusively on the primal variables u, u1, they are all functions of a primal and a

dual variable. As a result, one of the proximal operators needed for the application of the

first-order primal-dual algorithm reduces to the identity.



2.3. Depthmap Generation 37

The update iterations are given by

pn+1 = Π‖p‖∞≤1 {pn + σα1(∇ūn − ūn1 )}

qn+1 = Π‖q‖∞≤1 {qn + σα0∇ūn1}

rn+1 = Π‖r‖∞≤1 {rn + σλ(It + (u− u0)Iu)}

un+1 = un − τ(−α1div pn+1 + λIur
n+1)

un+1
1 = un1 − τ(−α1p

n+1 − α0div qn+1)

ūn+1 = 2un+1 − un

ūn+1
1 = 2un+1

1 − un1

where we used the simplifications It = I(f(x, u0))−Iref (x) and Iu = ∇I(f(x, u))df(x,u)
du

∣∣
u0

.

The operation Π‖p‖∞≤1(·) stems from the proximal operator for the dual variables and is

a simple projection onto the unit ball given by the following explicit formula

p = Π‖p̃‖∞≤1(p̃) ⇔ pij=
p̃ij

max{1, |p̃ij |}

We choose the timesteps τ, σ according to [Chambolle and Pock, 2011].

The extension to multiple views involves multiple dual variables ri (one for each view),

which are summed up in the primal update stepr
n+1
i = Π‖ri‖∞≤1

{
rni + σλ(Iti + (u− u0)Iui )

}
i = 1 . . . N

un+1 = un − τ(−α1div pn+1 + λ
∑N

i=1 I
u
i r

n+1
i )

To account for large changes in depth, the procedure is implemented in a coarse-to-

fine framework. Starting at a low resolution, a solution is computed which is then used

as initialization for the next level. The whole method is very sensitive to the baseline

between camera views. A large baseline results in occlusions, which hurts the algorithm.

The implementation of a simple occlusion detection scheme based on map uniqueness

[Brown et al., 2003] helps, but results still depend on a “suitable” configuration of camera

views in 3D space. Figure 2.10 shows results of the algorithm for different number of sensor

views. While the depthmaps are more dense and contain less outliers than the planesweep

results, one can notice that depth edges are in some cases more blurred. The runtime of

this method strongly depends on the algorithm parameters (number of iterations, number

of warps, scale factor . . . ), for high quality settings as depicted in figure 2.10, it easily
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(a) 1 view (b) 3 views (c) 5 views

Figure 2.10: Results for TGV multiview stereo. In contrast to the planesweep
results, the depthmaps are dense and contain less outliers.

takes twice as long as planesweep. Note that this still is very fast in comparison to most

other state of the art stereo algorithms, additionally many of the latter are not capable of

using multiple views.

2.4 Depthmap Fusion

Once the individual depthmaps have been computed, they are integrated into a common

3D model. To do this, we follow the method of [Zach, 2008, Zach et al., 2007]. Their

work in turn is based on the idea of [Curless and Levoy, 1996], who represent the surface

implicitly as the zero level set of an underlying truncated signed distance function (TSDF).

This function is defined as u : Ω→ [−1, 1] where Ω ⊆ R3. Every voxel is assigned a value,

which measures its signed distance to the true surface. The value zero means that the

surface goes exactly through the voxel, −1 means the voxel is part of solid geometry and

+1 means “nothing”, i.e. the voxel is part of free space. This representation is ideally

suited to incrementally build up the scene geometry, as well as to implement smoothness

constraints.

First, depthmaps are converted to signed distance fields fi as depicted in figure 2.11.

Each pixel is projected at a 3D point X according to the depth and voxels along the line

of sight are assigned values in the interval [−1, 1]. Note that all voxels along the line of

sight between the camera and the surface are assigned a positive value. The reasoning is

that if there were another object in the line of sight, the camera would not be able to see

the surface point X, thus we safely can assume that all voxels between the camera and the

surface are visible. On the other hand, voxels along the line of sight behind the surface

are assigned a value until a distance threshold η is met. This accounts for the fact that we

cannot make any a priori assumptions on the thickness of the surface, it could be a thin
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Figure 2.11: Each pixel of the deptmap projects to a 3D point X. Voxels of the
distance fields fi store the truncated signed distance value from the
surface.

sheet of paper or a solid wall. The parameter η therefore in a way controls the amount of

detail representable by the method.

The individual distance fields fi are fused together by the following variational model

min
u

{∫
Ω
|∇u|+ λ

∫
Ω

K∑
i=1

|u(x)− fi(x)|dx

}
(2.14)

The first term (regularization term) enforces smoothness of the solution by minimizing the

length of the level sets of u, i.e. it seeks to minimize the surface area of the reconstructed

geometry. The dataterm consists of the `1-distance of u to all individual distance fields,

it robustly penalizes outliers and noise. An obvious limitation of this formulation is the

fact that storing the distance fields fi has a memory complexity of O(K), where K is the

number of distance fields. This quickly becomes infeasible even on machines with lots of

memory. We therefore follow the idea of [Zach, 2008], who proposed to use a histogram

compression which is able to reduce the memory complexity to O(1), i.e. constant memory

footprint. The compression is motivated by the insight that it is not necessary to store

the exact value of the TSDF to recover the zero level. Rather, each voxel maintains a

histogram consisting of N bins which approximates the probability density function of

u at that voxel. The TSDF is sampled at discrete positions di, and the exact value is

replaced by the nearest di . Since the number of bins is constant, this allows to store an

arbitrary number of signed distance fields with constant memory footprint.
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The model then reads

min
u

{∫
Ω
|∇u|+ λ

∫
Ω

N∑
i=1

h(x, i)|u(x)− di|dx

}
(2.15)

where N is the number of histogram bins and di are the corresponding sampled values

of the signed distance function. h(x, i) denotes the histogram count of bin i, i.e. how

often the value di occurred in the distance fields at voxel x. Note that this model allows

for incremental updates, if new depthmaps are available the histogram bins are updated

(h(x, i) changes), and the minimization algorithm adapts to the new data. Furthermore,

it is convex, which means it is possible to find the global solution independent from any

initialization.

For minimization we use the first-order primal-dual algorithm of

[Chambolle and Pock, 2011]. The primal-dual formulation of (2.15) is given

by

min
u

max
‖p‖∞≤1

{
−
∫

Ω
udiv p+ λ

N∑
i=1

∫
Ω
h(x, i)|u(x)− di|dx

}
, (2.16)

where p : Ω→ R3 is the dual variable. The algorithm consists of alternatingly performing

gradient descend steps in u and gradient ascend steps in p. The update iterations are

given by un+1 = proxhist (un − τ(−div pn))

pn+1 = prox‖p‖∞≤1

(
pn + σ∇(2un+1 − un)

) (2.17)

The timesteps τ, σ are chosen to fulfill the convergence criterion τσ‖div‖2 < 1. An elemen-

tary requirement of the primal-dual algorithm is that the proximal operators are “easy”

to compute. For the dual variable p, the constraint ‖p‖∞ ≤ 1 is modeled by indicator

functions of a convex set. Hence, the prox operator reduces to a projection of the following

form

p = prox‖p̃‖∞≤1 ⇔ pij =
p̃ij

max{1, |p̃ij |}

The prox operator for the primal variable u is given by the solution of the following

optimization problem

proxhist(ũ(x)) = arg min
u

{
‖u− ũ(x)‖2

2τ
+ λ

N∑
i=1

h(x, i)|u− di|

}
, (2.18)

which consists of a quadratic distance term plus the histogram term. In
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[Li and Osher, 2009] the authors give an explicit formula for computing the global

solution of problems of the form arg minx
∑N

i=1wi|x − ui| + F (x), where F (x) is strictly

convex. It is easy to see that this is exactly the case for (2.18), whereby F (u) = ‖u−ũ(x)‖2
2τ .

The solution is defined as

proxhist(ũ) = median {d1, ..., dN , p0, ...., pN}

where di are the distances related to the according histogram bin i and the pi, i = 1...N

are computed as

pi = ũ+ τλWi , Wi = −
i∑

j=1

h(x, i) +
N∑

j=i+1

h(x, i)

The idea behind the computation of the pi is to split (2.18) into individual linear subprob-

lems and extract the global solution as the median of the solutions of the subproblems. If

ulin ∈ (di, di+1), the linear subproblem of (2.18) is given by

arg min
ulin

{
‖ulin − ũ‖2

2τ
− λWiulin

}
The optimality condition for ulin is given by

ulin − ũ
τ

− λWi = 0

and solving for ulin yields

ulin = pi = ũ+ τλWi

2.5 Visualization

Due to the iterative nature of both the fusion algorithm and the whole system, an efficient

way to visualize results is needed. A full recalculation of a triangle based mesh of the

current reconstruction seems unfeasible, since the reconstruction changes almost contin-

uously. Rather, the implicit representation of geometry is used directly. We employ a

CUDA based raycaster which is capable of visualizing iso-levels of the truncated signed

distance function. The codebasis of the raycaster was given to us kindly by Markus Stein-

berger, it is taken from his master’s thesis [Steinberger, 2010]. The method is based on

[Hadwiger et al., 2005]. For a virtual camera pose Cv, the viewing ray rv of each pixel is



42 Chapter 2. Method

(a) Slice through geometry (b) Slice of the TSDF

(c) Closeup, with values of the TSDF

Figure 2.12: Visualization of the TSDF. The raycaster finds the voxels containing
the µ-level set by marching through the volume along the viewing
ray of each pixel. The surface is recovered by setting µ = 0.

marched until the appropriate value is encountered. Surface normals are computed from

the derivative of the TSDF, which is approximated by central differences. Because the

ratio of the distance between adjacent viewing rays at a certain depth and the voxel size

depends on the virtual camera position, we optionally offer trilinear interpolation to get a

smooth value of the TSDF for a given position along the viewing ray. The raycasting pro-

cess is ideally suited for parallelization, because all rays can be computed independently

from each other.

A diffuse lighting model is obtained by calculating the diffuse reflection coefficient as

cdiffuse = 〈n, l〉, where n is the surface normal vector computed from the derivative of

the TSDF and l is the light direction. By setting l = rv, one gets a simple “headlight”

illumination model.

To further increase the visual experience, a texture mapping methodology was imple-

mented. It works by determining a grayvalue for each voxel vs of the surface based on

keyframe image data. To this end, the closest keyframes (in terms of euclidean distance)
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CTex
i , i = 1 . . . 5 for a given virtual camera pose are searched for (see figure 2.13), and

each voxel of the 3D surface is projected into these keyframes by xi = KCTex
i ξ(vs). Here,

ξ(·) denotes the mapping from voxel indices to 3D world coordinates, CTex
i are the camera

pose matrices of the 5 closest keyframes and K is the camera intrinsic calibration matrix.

Next, grayvalues are sampled from the keyframe images and the final texture value is com-

puted as the median of the 5 grayvalues and assigned to voxel vs. This approach works

Figure 2.13: Keyframe selection for texture mapping. The current live camera
position is depicted red, the virtual camera is green. Shades of blue
denote the 5 closest keyframes to the virtual camera.

fine as long as there are enough keyframes in close proximity to the virtual camera. How-

ever, as the virtual camera can move unconstrained through 3D space, there might occur

situations where even the closest keyframes are a considerable distance away (see figure

2.14). In this case, surface voxels rendered by the raycaster are occluded in the keyframes

used for texturing. The resulting grayvalues therefore contain wrong information, as can

be seen in figure 2.14f. This problem could be circumvented by the user by moving the

camera close to the virtual camera position, so that more suitable keyframes are avail-

able. Alternatively a more sophisticated texture mapping algorithm could be used, where

for each voxel an appropriate set of texture-keyframes is chosen an additional visibility

checks along the viewing rays are performed. However, this conflicts with the requirement

that the visualization should be fast. As our simple texture mapping method produces

nice results in the majority of cases, implementation of a more sophisticated method is

postponed for future work.
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(a) (b)

(c) (d)

(e) Keyframes are far away from the virtual camera (f) Resulting texture contains artefacts

Figure 2.14: Results of the texture mapping algorithm. If no keyframes are found
close to the virtual camera (green), the resulting texture contains
artifacts .
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Outline: In this chapter implementation details of the system are discussed. The

changes made to PTAM are described, as well as the methods to speed up the planesweep

algorithm. Different approaches for the volume update procedure are presented, and tech-

nical details of the visualization method are given. Finally the whole system and the

interaction of the individual parts is discussed.

3.1 Tracking

PTAM was changed in various places. Mostly this involved adaptions for the GUI and

numerous visualizations for user feedback, e.g. displaying the volume in the live camera

image. An important change was made to the keyframe structure, which was enhanced to

store an undistorted version of the image in addition to the distorted image. This avoids

having to do the undistortion every time the image is used as reference/sensor view for

the multiview stereo algorithm. PTAM uses the distorted image directly and manually

undistorts the feature positions during its tracking stage. For a few hundred positions, this

45
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is faster than undistorting the whole image, which involves a costly interpolation for every

pixel. In our system, we heavily rely on CUDA to use the massive parallel computation

capabilities of todays high end graphics cards. We therefore accelerate the undistortion

procedure by making use of the bilinear interpolation offered by the GPU.

Because the reconstruction system depends on the keyframes generated by PTAM, we

also experimented with the heuristic responsible for keyframe generation. A critical point

for our method is the number of keyframes, thus a straightforward approach might be

to change the heuristic such that more keyframes are generated. However, experiments

showed that this has negative impact on tracking performance, i.e. camera tracking was

lost more often. This is probably due to the mapping component having less time for

global bundle adjustment when keyframes have to be processed more frequently. Experi-

ments showed that the original heuristic was fairly well balanced for typical indoor scenes,

therefore we left the heuristic unchanged.

3.2 Depthmap Generation

Calculating NCC for two images I1, I2 requires evaluation of the following formula

c =
1

n

∑
x,y∈W

(I1(x, y)− Ī1)(I2(x, y)− Ī2)

σ1σ2
, (3.1)

which is computationally expensive because computing the mean Ī1, Ī2 and the standard

deviation σ1, σ2 for a windowsize of N ×M requires N ·M memory reads for each pixel

position (x, y). Using the linearity of the expectation operator, calculation of the standard

deviation can be simplified to

σ2 = E{(I − Ī)2} = E{I2} − (E{I})2, (3.2)

which is further accelerated by computing sum images of I and I2 for the chosen window-

size. The sum images are defined as

Isum(x, y) =
∑
u,v∈W

I(u, v)

for a windowW centered at position x, y. Likewise, for the nominator of (3.1) a sum image

I1 · I2 is computed. Separating the sum filter (i.e. independently filtering row-wise and

column-wise) further reduces the number of memory accesses from N ·M to N +M . Note
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that computation of σ according to (3.2) can be problematic in case the two values E{I2}
and (E{I})2 cancel each other (e.g. in homogeneous image regions). The denominator of

(2.18) is then close to zero and one wrongly gets a very high value for the NCC. Therefore,

we check the value of the denominator and set c = 0 if it is below a threshold.

Whereas the homography which maps the sensor view onto the plane at depth d

(see (2.6)) is computed on the CPU, interpolation, computation of the NCC and depth

extraction by WTA are performed on the GPU. According to experiments, the number of

memory reads has most influence performance. The usage of sum images pays off, even

though this means additional memory writes to store the sum values.

We also experimented with simpler correlation values that are faster to compute (SAD,

SSD), but it turned out that these give inferior results, especially when using less than

three views.

3.3 Fusion

To save memory, we use an 8-bit datatype for storing the volume histogram bins. This

means that each bin can get at most 255 votes, i.e. we assume that a particular voxel is

not seen from more than 255 camera positions. Because PTAM is limited in the number

of keyframes (see section 1.4.4), and additionally not every single keyframe is used for

reconstruction, this assumption seems reasonable.

Computing the signed distance function and updating the volume histogram (see sec-

tion 2.4) can be done in two different ways. One can project each pixel of the reference

view into 3D space at the depth value according to the depthmap to find the voxel con-

taining the surface. Then one walks along the viewing ray and assigns signed distance

values to voxels. On the other hand, one can calculate the distance of every voxel to the

reference camera position and compare this distance to the corresponding depth value of

the depthmap, which is found by projecting the voxel position into the reference view

and interpolating from the depthmap. Both of the above methods assume there is a fixed

bijective mapping from the global world coordinate frame to voxel indices, i.e. memory

locations. We will denote the first method as ray-based since it operates on viewing rays

defined by pixels of the reference view, and the second method as voxel-based. See section

4.2.2 for an evaluation of the differences of the two methods.

Figure 3.1 depicts ray-based histogram update for two adjacent viewing rays, which are

computed by projecting two neighboring pixels into 3D world. Using depth information

from the depthmap, the voxel containing the 3D point is found. This voxel (shown in
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(a) Low voxel resolution (b) High voxel resolution

Figure 3.1: Ray-based histogram update. Every pixel of the reference camera
view is projected into the volume. At low voxel resolution (a) adjacent
viewing rays frequently hit the same voxels, at high resolution many
voxels are not hit at all (b).

magenta and cyan) is assigned the distance value 0. Then, voxels along the viewing rays

are found and their signed distance value is computed. This approach makes optimal use of

the depthmap data: Exactly one viewing ray is computed for each pixel of the depthmap,

and only those voxels along the ray are updated, i.e. the signed distance function only

changes if there actually is new data. However, the method is sensitive to the volume

resolution, i.e. the size of the voxels. At low resolution (see figure 3.1a), adjacent viewing

rays often hit the same voxel, resulting in ambiguous information. At high resolution (see

figure 3.1b), there are voxels between the viewing rays that are not updated at all. If this

gap gets too big, the fusion algorithm cannot close the surface and one gets holes in the

reconstruction.

Voxel-based histogram update (see figure 3.2) works by projecting the position of

every voxel into the reference camera view. From the resulting image coordinate, the

depth value is sampled from the depthmap. The distance of the voxel to the reference

view and the depth value are used to determine the signed distance value for the voxel.

This approach makes optimal use of the volume: Every voxel is updated exactly once.

However, depending on the volume resolution there might be under- or oversampling of

depth data. If the depthmap is undersampled (see figure 3.2a), precious data is lost, if it

is oversampled (see figure 3.2b) one eventually gets artifacts. An experimental evaluation

of different volume resolutions and histogram update methods is given in section 4.2.2.

While ray-based histogram update is more efficient in terms of the number of voxels
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(a) Low voxel resolution (b) High voxel resolution

Figure 3.2: Voxel-based histogram update. Every voxel is projected into the
reference camera view to determine the signed distance to the depth
value from the depthmap. At low voxel resolution (a) information
from the depthmap is not used optimally, at high voxel resolution
depthmap data is oversampled (a).

that need to be changed, it is tricky to implement in parallel on the GPU. Because adjacent

viewing rays can hit the same voxel, the voxel update has to be serialized, i.e. the histogram

bin increment operation has to be atomic. Unfortunately, CUDA does not support atomic

increment for 8-bit datatypes. Therefore, the functionality had to be implemented using

the generic compare-and-swap (CAS) operation as shown in listing 3.1. We will go through

this function in detail, since it is critical for correct histogram update.

Listing 3.1: Atomic increment for 8-bit datatypes

1 __device__ void atomicAdd(unsigned char* data, unsigned int index)

2 {

3 unsigned int* dword_ptr = (unsigned int*)&(data[(index / 4) * 4]);

4 unsigned char byte_pos = index % 4;

5

6 unsigned int readback, old_value, new_value;

7 unsigned char byte_value;

8 do

9 {

10 old_value = *dword_ptr;

11

12 byte_value = (old_value & (0xFF << byte_pos*8)) >> byte_pos*8;

13 byte_value = byte_value < 254 ? ++byte_value : 255;

14
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15 new_value = (byte_value << (byte_pos*8)) |

16 (old_value & ˜(0xFF << (byte_pos*8)));

17

18 readback = atomicCAS(dword_ptr, old_value, new_value);

19 } while (readback != old_value);

20 }

The function arguments unsigned char* data and unsigned int index are the

pointer to the memory block containing the volume data and the (linear) voxel index into

the memory block respectively. Because CAS is available for 32-bit datatypes only, we

start by extracting the 32-bit aligned word which contains the byte that is to be updated,

and the position of the byte in that word (lines 3 and 4). The 8-bit value is extracted

from the 32-bit word and incremented, we saturate at 255 to avoid overflow (lines 12 and

13). Next, the new value of the 32-bit word is calculated, i.e. the value that results from

replacing the incremented 8-bit value in the 32-bit word (line 15, see figure 3.3). Now we

Figure 3.3: Construction of the 32-bit word for atomicCAS().
The old value consists of the concatenation of the four
byte values 158, 27, 238, 84 in their binary representation:
[10011110; 00011011; 11101110; 01010100]bin = 2652630612dec.
After replacing the third byte with the incremented value, the new
32-bit word becomes [10011110; 00011011; 11101111; 01010100]bin =
2652630868dec.

attempt to change the value of the 32-bit word in the volume memory block via compare-

and-swap (line 18). CAS takes three arguments, the first one is a memory location and

the second and third are two numeric values. The value pointed to by the first argument

is compared to the second argument, and if they are the same, the memory is changed

to the new value (the new value is “swapped in”). The comparison and change operation

is atomic, meaning it cannot be interrupted by other threads. The function returns the

value of the memory location before the change. This return value is used to check if the

swap was successful: We expect the return value to be equal to the old 32-bit value (line

19). If it is not, it means that another thread has managed to change the memory location
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in the meantime, i.e. in the time since this thread read the old 32-bit value from memory

(line 10). In this case, we update the old 32-bit value and loop until success.

Voxel-based histogram update does not suffer from this effect, since every voxel is

updated exactly once. It also has a much more regular memory access pattern (coalesced

memory access), whereas ray-based histogram update exhibits a highly irregular memory

access pattern. For these reasons, voxel-based histogram update is faster than ray-based

histogram update, although the number of voxels that need to be accessed is significantly

higher. Note that voxel-based update scales approximately linearly with the number of

voxels (i.e. the volume resolution), while ray-based update only depends on the resolution

of the depthmap.

The minimization algorithm (see section 2.4) is straightforward to implement in par-

allel on the GPU. To numerically approximate the gradient and divergence operators,

forward and backward differences are used respectively. Computing the histogram prox

term (2.18) requires computation of the median of 2N+1 elements, where N is the number

of histogram bins. N elements are the distances related to the sampling of the signed dis-

tance function. These are already sorted by definition, therefore we perform an insertion

sort of the remaining N + 1 elements.

3.4 Visualization

The raycasting procedure described in section 2.5 is accelerated by exploiting the slope of

the truncated signed distance function, i.e. voxels along a viewing ray do not jump from

signed distance value +1 to −1, but we expect at least some voxels with values in between.

Therefore, when marching along the ray, a big stepsize (e.g. 4 times the voxel size) is used

as long as the signed distance value is not within some threshold of the iso-level. Only

when this threshold is met, the stepsize is reduced to get voxel-accurate results (see figure

3.4). This allows efficient traversal of empty space and concentrates computation resources

where they are needed, i.e. near the surface.

The raycaster uses the standard OpenGL right-hand coordinate system with the neg-

ative z-axis into the screen, whereas PTAM uses a left-hand system with positive z into

the screen. To convert camera pose matrices between the two, a transformation matrix of
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Figure 3.4: By using big steps when marching along the viewing ray through
empty space, the raycasting procedure is accelerated.

the following form is applied to the OpenGL modelview matrix

T =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


This transformation swaps the y- and z-axis, i.e. it transforms a right-hand system into a

left-hand and vice-versa. This is essential e.g. for exporting the virtual camera pose from

the raycaster to PTAM to find the closest keyframes for texture mapping.

3.5 Reconstruction System

Here we illustrate the whole reconstruction procedure and how the individual parts de-

scribed in the previous chapters work together. The system is started by the user initializ-

ing the tracking system. An automation or upgrading to metric reconstruction by placing

an artificial marker with known dimensions in the scene is postponed for future work.

When PTAM is tracking successfully, the volume of interest needs to be specified. To

this end, we provide a simple GUI where the user can change position, size and resolution

of the volume. Graphical feedback is given directly through the live camera image. Be-

cause moving a 3D volume in a 2D image can be cumbersome, we provide additional cues:

PTAM feature points inside the volume are rendered fully solid, while features outside are

rendered opaque. This way, the user can better judge where the volume boundaries are
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Figure 3.5: GUI-dialog for setting up the volume. To aid the process, feature
points inside the volume are rendered fully solid, while features out-
side are rendered opaque.

and what part of the scene is actually captured by the volume (see figure 3.5).

After setting up the volume, the reconstruction process is fully automated: PTAM

tracks the scene and generates keyframes. For every keyframe, we decide whether it is

going to be used for reconstruction or not (see section 2.3.1), and eventually notify the re-

construction thread. Communication between the tracking and the reconstruction thread

is done through a queue (see figure 3.6). This way, interaction between the two threads is

Figure 3.6: Communication of the tracking and reconstruction threads through
a queue of workload items.

minimized and tracking is not disturbed by the reconstruction. We provide graphical feed-

back on the queue length through the GUI. In case PTAM generates keyframes at a much

higher rate than they are processed by the reconstruction thread, the user can react e.g.

by not moving the camera, so no further keyframes are generated and the reconstruction
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thread can catch up. However, in our experiments this rarely happened, as the workload

items are processed quite quickly and the heuristic responsible for dropping keyframes re-

quires a minimum number of 25 frames (i.e. approximately one second) between keyframe

drops.

The minimization algorithm runs continuously in the background triggered by a timer.

Ideally one would update the visualization every time the solution changes (i.e. every time

an iteration of the minimization algorithm has completed), however this would drastically

increase the computational load. For providing an interactive “online” experience, it

suffices to update the visualization roughly every second. Hence we use a second timer to

trigger visualization updates. Both timing intervals are controllable and can be set to the

users preference.
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Outline: Here we investigate the influence of various system parameters on the recon-

struction result. After explaining the evaluation setup, we look into the different depthmap

generation methods. Next, the parameters of the fusion algorithm are investigated, before

we finally examine the system performance by providing timings of a real world example.

4.1 Evaluation Setup

To get consistent and comparable results, it is necessary to conduct the same camera

movement every time the system is run. Because this is complicated to achieve by hand,

the system is fed from a prerecorded video. PTAM initialization is done at frame-accuracy

by specifying start- and end-frame for the initialization algorithm. This ensures that the

world coordinate frame (which is determined by the initialization, see section 1.4.4) is the

same for every run. Hence the resulting geometry can easily be compared. Two different

test videos were created and used throughout the experiments. Both videos are set in an

indoor office scene, since this is the environment PTAM was created for and delivers best

results.

One video is recorded from a Point Grey Dragonfly2 camera equipped with a 2.8mm

wide angle lens. For a more controlled environment, the second video is created synthet-

55
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ically using POVRay1, a high quality raytracer which is able to produce photo-realistic

results.

(a) (b) (c)

(d) (e) (f)

Figure 4.1: (a)-(c): Images from the City of Sights input video.
(d)-(f): renderings of the groundtruth 3D model used for comparison.

For the live video, the City of Sights model of [Gruber et al., 2010] was used. The

authors provide groundtruth geometry data for comparison. The camera was moved by

hand around the model, thus the video exhibits different kinds of challenges, e.g. fast

and shaky motion, varying lighting conditions etc. (see figure 4.1). The camera is pre-

calibrated, the camera parameters are loaded alongside the video.

The POVRay scene was created manually using freely available models for the POVRay

scene description language. A camera trajectory was defined by specifying samples (i.e.

camera matrices) of a real user camera motion and interpolating between those nodes

using the spline subsystem of POVRay (see figure 4.3). POVRay supports the simulation

of focal blur to get realistic results close to the images of a real camera lens. However,

it turned out that this feature required enormous computational resources. Because the

task of rendering the images of the POVRay scene was already time-limited, we opted

to abandon the focal blur calculation and used the standard built-in anti-aliasing method

instead. Note that the POVRay video lacks effects caused by camera motion (i.e. motion

blur) due to the synthetic nature of image formation.

1http://www.povray.org/

http://www.povray.org/
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: (a)-(c): Images from the POVRay input video.
(d)-(f): renderings of the groundtruth 3D model used for comparison.

Internal camera parameters are calculated from the field of view specified in POVRay.

For a horizontal FOV of 75◦ and image dimensions of 640×480, the normalized2 horizontal

focal length can be calculated as

1

640
· 320

tan(75
2 )

= 0.6516

The normalized vertical focal length then computes to 0.8688. The normalized principal

point is safely assumed to be at the center of the image, i.e. at p = (0.5, 0.5)T .

To create groundtruth for the POVRay video, internal data from the raytracing

process is used, namely the intersection point of the ray with scene geometry. From

this, the distance between camera center and geometry (i.e. depth) can be calculated

for every ray/pixel, which produces a groundtruth depthmap. Pixel coordinates of the

depthmap are back-projected into 3D space using the camera intrinsics and transformed

into the global world coordinate frame using the known camera pose matrix. This gives

a dense point cloud of groundtruth geometry data. Vertex normals are calculated

and a mesh is created from the point cloud using the Poisson surface reconstruction

algorithm [Kazhdan et al., 2006]. Because the point cloud is calculated from dense

groundtruth-depthmaps, the resulting mesh is highly detailed (see figure 4.2).

The POVRay video consists of 3300 frames ≈ 2:11s, the City of Sights video has

2normalized by image dimensions
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Figure 4.3: Part of the camera trajectory of the POVRay Scene. The support
points for spline interpolation are taken from an actual camera move-
ment.

5200 frames ≈ 3:28s. Experiments were carried out on a desktop PC equipped with an

intel Core2Quad Q9450 Quadcore CPU running at 2.66GHz, 4GB of main memory, a

nVidia Geforce GTX 480 for running CUDA calculations and a nVidia Geforce 8600GT

for rendering the GUI. The computer runs a 64-bit Linux operating system.

4.2 Experimental Results

In this section we will investigate the different methods for calculating depthmaps and

their parameters respectively, as well as the fusion algorithm. We will provide qualitative

and quantitative results on how the individual parts of the reconstruction pipeline affect

the final reconstruction result. The realtime quality of the system is apparent from the

fact that the reconstruction result is available as soon as the final frame of the input video

is reached. Only in a few cases some additional iterations of the fusion algorithm were

necessary, e.g. because at the end of the video the solution has not been converged yet.

Note that this test setup is quite challenging, because in a real use case the user might

inspect the reconstruction result from time to time, resulting in periods with no camera

movement. During such “spare-time” periods, both the fusion algorithm as well as the

mapping component of PTAM can improve the solution. This is not the case for our
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video-driven test environment, where new data is arriving at a constant rate and periods

without camera movement do not occur.

For all experiments we use an intersection threshold (see section 2.3.1) of γ = 0.1, and

a baseline angle thresholds (see section 2.3.1) of βmin = 0◦ and βmax = 15◦.

4.2.1 Depthmap Generation

Planesweep As mentioned in section 2.3.2, an important parameter of the planesweep

algorithm is the depth resolution. It is given by the number of planesweep steps, i.e.

the number of discrete depth steps between znear and zfar. The number of steps directly

determines the depth stepsize to dstep = zfar−znear
#steps . A low depth resolution will give inferior

results, while a high resolution increases the computational load. As depicted in figure

(a) 100 depth steps (b) 200 depth steps (c) 400 depth steps

Figure 4.4: Planesweep results for different depth resolutions (4 views, 5 × 5
NCC). Shown are differences to groundtruth, scaled to ±0.05 (to-
tal depth range 0.13− 2.13). At 100 depth steps, one can clearly see
artifacts from the discrete depth sampling. These get less distinct as
the depth resolution is increased and finally fade away at 400 depth
steps.

4.4, a resolution of 100 depth steps yields artifacts. On the other hand, if the volume

resolution is low, this might not hurt. More specifically, if the size of a voxel is bigger (i.e.

very low volume resolution) than the depth stepsize dstep, the error from the coarse depth

sampling does not hurt because it cannot be captured by the volume anyway.

Another important parameter is the number of views. More views give more informa-

tion about 3D scene geometry, therefore we can expect better results when using more

views. We summarize our experiments in figure 4.5. The fidelity measure used is the

percentage of pixels with a depth error grater than an error threshold w.r.t. groundtruth.

While the error threshold for the number of views experiment (figure 4.5b) was already set

to a challenging value of 1% of the total depth range, it turned out that this threshold is
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(a) Error vs. depth resolution
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(b) Error vs. number of views

Figure 4.5: Error rates for different depth resolution and different number of
views respectively. For the depth resolution experiment, the number
of views was fixed to 4, for the number of views experiment, the
depth resolution was fixed at 600 steps. Shown are results before
(blue graph) and after (green graph) TV-`1 denoising.

still too high for the depth resolution experiment (figure 4.5a). Here a threshold of 0.1% of

the total depth range was used. One can see that increasing the depth resolution beyond

300 steps does not improve results while significantly raising the computational load. As

expected, the higher the number of views, the better the results. TV-`1 denoising further

improves error rates by smoothing over small patches with wrong depth information. This

effect can be seen best when using a low number of views.

TGV2 Multiview Range At the core, this algorithm basically solves the same prob-

lem as optical flow algorithms. The difference is that instead of parametrizing the pixel

displacement as a vector (optical flow vector), it is parametrized by the depth of the cor-

responding 3D point. Therefore, the method suffers from the same problems as optical

flow algorithms, namely the difficulty to capture large motions i.e. baselines, and the

loss of fine scale details. As described in section 2.3.3, the algorithm was implemented

using a coarse-to-fine approach to account for this problem. Additionally, a simple oc-

clusion detection algorithm was implemented, to further robustify the method. However,

large baselines still is the biggest problem. This is because of the way PTAM generates

keyframes. While the TGV2 algorithm would like many keyframes close to each other

(small baseline), PTAM does not drop a new keyframe unless there is a minimum baseline

to the closest keyframe. Unfortunately this minimum baseline is in most cases already

very large for the TGV2 algorithm.
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We therefore ran some experiments to gain insight on this matter by fixing the number

of views and varying the baseline between the views. Figure 4.6 depicts the results of this

experiment. The baseline must not be too small in order to get good depth accuracy

and on the other hand must not be too large to minimize the effects of occlusions. If the

baseline gets too large (see figure 4.6a), results start do get blurry and the overall error

increases.
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(a) Baseline vs. Accuracy (b) Ground truth detail

(c) 6 views, max. baseline=4 (d) 6 views, max. baseline=10.6

Figure 4.6: Influence of different baselines on depthmap accuracy. The baseline
in (a) is the maximal baseline between the reference view and any
other view. Note that while the overall error stays low, depthmap
edges become jagged and less exact with increasing baseline.

Another interesting point is how well the algorithm can deal with noisy camera ma-

trices. For the baseline experiment we used “perfect” camera matrices from the POVRay

scene, in the next experiment we will use PTAM keyframe camera matrices. These are

estimates (very good ones although), and it is an interesting question how the TGV2 al-

gorithm will perform here. Figure 4.7 depicts the results for a varying number of views. It

can be seen that the algorithm performs better the more views are available, as expected.

Additionally, the map uniqueness occlusion detection algorithm (see [Brown et al., 2003]),

although very simple, improves results significantly (see figure 4.7a). It should be noted

that while the results of figure 4.7 look quite well, the performance of the TGV2 algo-

rithm depends critically on a “suitable” configuration of keyframes in 3D space. If this
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is not the case, the method produces large patches of wrong depth information due to

the smoothness constraint. Such large patches are difficult to deal with for the fusion

algorithm, eventually it will wrongly construct a surface from such a large patch. This is

not the case for the impulse-like noise produced by the planesweep algorithm. Thus, even

though the planesweep results seem to be of lower quality, the subsequent fusion can deal

better with planesweep depth errors than with TGV2 depth errors.
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(a) Error vs. number of views (b) 1 view

(c) 3 views (d) 4 views (e) 5 views

Figure 4.7: Results for the PTAM dataset. Baselines are relatively small, so re-
sults improve with increasing number of views. Note that the camera
matrices of this dataset are noisy.

4.2.2 Depthmap Fusion

Here we will investigate the effects of ray- and voxel based histogram update (see sec-

tion 3.3). The system is setup as follows: Apart from the histogram update method and

the voxel resolution, the program parameters are set fixed. We then compare the recon-

struction to groundtruth using the Hausdorff distance. Voxel resolutions are computed

according to the physical dimensions of the volume, which are given by (2, 1.5, 0.8)T and

[2, 1.5, 0.6]T for the City of Sights and POVRay scene respectively. The ratios x
y and x

z

are used to calculate voxel resolutions such that voxel sizes are isotropic.
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Table 4.1: Error rates for ray- and voxel-based histogram update

Ray-based update Voxel-based update
Volume resolution max RMS max RMS

192× 144× 80 23.16 2.82 20.75 3.01
320× 240× 128 17.86 2.47 18.29 3.13

City of Sights 448× 336× 176 22.03 2.33 16.27 2.26
576× 432× 224 17.24 2.93 14.91 2.14
704× 528× 288 14.65 2.48 14.88 2.16

192× 144× 64 1.27 0.17 1.32 0.17
320× 240× 96 1.01 0.13 1.03 0.12

POVRay 448× 336× 128 0.87 0.12 0.82 0.09
576× 432× 176 1.05 0.09 0.71 0.07
704× 528× 208 0.96 0.09 0.69 0.07

Results are shown in table 4.1 and depicted in figure 4.8.

(a) max error (b) RMS error

Figure 4.8: City of Sights: RMS and maximum error for ray- and voxel-based
histogram update at different volume resolutions.

(a) max error (b) RMS error

Figure 4.9: POVRay: RMS and maximum error for ray- and voxel-based his-
togram update at different volume resolutions.

Note that the dataterm for voxel-based update is stronger, because much more voxels

are changed for each depthmap than with ray-based update. For this reason, different
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(a) Ray, 192 × 144 × 80 (b) Ray, 448 × 336 × 176 (c) Ray, 704 × 528 × 288

(d) Voxel, 192 × 144 × 80 (e) Voxel, 448 × 336 × 176 (f) Voxel, 704 × 528 × 288

(g) Color coding

Figure 4.10: Color-coded error images of the reconstruction for ray- and voxel-
based histogram update at different volume resolutions. The color
coding is shown in (g). Note that according to [Gruber et al., 2010],
the typical construction accuracy of the model is 3mm.

settings for the data fidelity parameter λ were used. The values for λ were tuned by hand

to give the best results for each method respectively.

While ray-based histogram update performs well at low volume resolutions, voxel-

based update wins at high resolutions. An explanation for this is that voxel-based update

better scales with the volume resolution. Every voxel is projected into the reference frame

and updated, whereas ray-based update might miss voxels between rays (see section 3.3).

The weaker dataterm of ray-based update also means that the maximum error is higher

(see figure 4.8a), i.e. the reconstruction contains more outliers. This can be seen in figure

4.10, where color-coded images of the reconstruction are depicted. The color encodes the

vertex error w.r.t. groundtruth (see figure 4.10g). According to [Gruber et al., 2010], the

construction/placement accuracy of the paper model is within ±3mm. Therefore the color

coding does not start at an error of zero but rather at 2.5mm.

Similar results are found for the POVRay scene, see figure 4.9. Due to the synthetic

nature of image formation, the unit of error can not be connected to a physical meaningful

entity, it represents the internal world coordinate system used by POVRay.

For the following experiments the volume resolution was fixed at 448 × 336 × 208 for
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(a) Ray, 192 × 144 × 64 (b) Ray, 448 × 336 × 128 (c) Ray, 704 × 528 × 208

(d) Voxel, 192 × 144 × 64 (e) Voxel, 448 × 336 × 128 (f) Voxel, 704 × 528 × 208

(g) Color coding

Figure 4.11: Color-coded error images of the reconstruction for ray- and voxel-
based histogram update at different volume resolutions.

the City of Sights scene and 448 × 336 × 176 for the POVRay scene respectively. The

voxel-based histogram update method is used, since it gives generally better results.

4.2.3 Realtime 3D Reconstruction

In this section we investigate the impact of the following system parameters on the recon-

struction result.

• Number of histogram bins

• Depthmap generation method

• Keyframe calculation delay

Number of Histogram Bins Figure 4.12 depicts the RMS error for different number

of histogram bins. Interestingly, increasing the number of bins does not improve results

substantially. It seems that the differences in RMS error depicted in figure 4.12 are already

due to measurement noise. Further in-depth investigations on this matter are required,

open questions include e.g. how to change the slope of the TSDF with varying number of

histogram bins. The results further support the motivation of the histogram compression

(see section 2.4) scheme: In order to reconstruct the zero level set of the TSDF, it is not
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(a) RMS error City of Sights (b) RMS error POVRay

Figure 4.12: RMS Error for different number of histogram bins. Besides having an
impact on memory footprint and calculation performance, it seems
that more than 6-8 bins are not necessary.

(a) 2 bins (b) 8 bins (c) 12 bins

Figure 4.13: Color-coded error images of the reconstruction for different number
of histogram bins. Note the blocky artifacts in (a) due to the extreme
low number of bins. The color coding is the same as in figure 4.10.

necessary to store the exact value, it suffices to sample the TSDF at discrete positions.

Note that the RMS error is not necessarily a good measure of the perceived reconstruction

quality, as can be seen in figure 4.13. When using 2 bins only, the reconstruction exhibits

blocky artifacts. These vanish when using more bins. Taking into account both the RMS

error and the color coded difference image, it seems that a number of 6-8 histogram bins

is a good tradeoff between speed and reconstruction accuracy.

Depthmap Generation Method Next, we test the different methods for depthmap

generation. The volume resolution is fixed as in the previous paragraph and we use a

number of 8 histogram bins throughout the experiments. Parameters are set as shown

in table 4.2. When using planesweep, we additionally run the system with and without

TV-`1 depthmap denoising (see section 2.3.2).

Results are shown in table 4.2 and depicted in figure 4.14. Planesweep TV-`1 denoising

helps lowering the RMS error. As in the previous paragraph, we also look at the color
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Table 4.2: Parameters for planesweep and TGV2 multiview range

Planesweep TGV2 Multiview Range

#depthsteps = 250 λ = 10
NCC windowsize = 5× 5 #warps = 17
TV-`1 λ = 0.3 #iterations = 30
TV-`1 iterations = 100 Scalefactor = 0.9
TV-`1 edge weight α = 20 Occlusion detection = On

Table 4.3: Error rates for Planesweep and TGV2 depthmap generation

Error
Scene Method max RMS

Planesweep 18.71 2.15
City of Sights Planesweep without TV-`1 15.17 2.23

TGV2 Multiview Range 28.25 2.27

Planesweep 0.88 0.10
POVRay Planesweep without TV-`1 0.97 0.126

TGV2 Multiview Range 1.12 0.14

(a) City of Sights (b) POVRay

Figure 4.14: RMS and maximum error for different depthmap generation algo-
rithms.

coded difference image of the reconstruction. It turns out that TV-`1 denoising helps in

terms of surface completeness, as can be seen in figure 4.15. The surface of figure 4.15a is

more complete than the surface of figure 4.15b, which means that depthmap smoothing

indeed is an important step. Similar results are found for the POVRay scene. TGV2

multiview range performs well for large surfaces, e.g. the front of the Berlin Dome or the

ground plane, but sometimes cannot fully recover geometry such as the tower in figure

4.15c.
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(a) Planesweep (b) Planesweep without TV-`1 denoising

(c) TGV2 Multiview Range

(d) Planesweep (e) TGV2 Multiview Range

Figure 4.15: Color coded difference images for different depthmap generation al-
gorithms.

Keyframe Calculation Delay After keyframes are generated by PTAM and before

they are tested for reconstruction usage (see section 2.3.1), there is a user defined delay.

The reasoning behind this is to give the mapping component of PTAM some time to

perform local bundle adjustment on the newly created keyframe (see section 1.4.4), thus
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improving the accuracy of the keyframe camera matrix. The accuracy of the camera matrix

is of critical importance for the depthmap generation stage (see section 2.3). Additionally,

applying a delay makes it possible that “future” keyframes are used as sensor view for the

current keyframe. As an example, assuming increasing keyframe numbers it is possible

for the reference keyframe with id 20 to use keyframes 21 and 23 as sensor views if the

calculation is delayed. Thus, potentially more views are available for a given reference

view, improving depthmap quality. For this experiment, volume resolution and number

of histogram bins are set as in the previous paragraph, planesweep with TV-`1 denoising

is used as depthmap generation method. Results are shown in table 4.4 and depicted in

Table 4.4: Error rates for different keyframe calculation delays

Error
Delay [ms] max RMS

City of Sights 0 17.74 2.48
7000 18.7 2.15

POVRay 0 0.88 0.11
7000 0.88 0.11

(a) City of Sights (b) POVRay

Figure 4.16: RMS and maximum error for different keyframe calculation delays.
Delaying the calculation gives improvements in reconstruction accu-
racy.

figure 4.16. Delaying the calculation results in a small but consistent improvement of the

reconstruction quality. Similar results are found for the POVRay scene, see figure 4.17c

and 4.17d.

Full System and Performance In this paragraph we show an exemplary run of the

system and provide intermediate results. This highlights the realtime quality of the appli-

cation, the reconstruction literally is on-the-fly, with minimal delay between the camera

seeing the object and the corresponding reconstruction. We also provide performance
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(a) Delay 0ms (b) Delay 7000ms

(c) Delay 0ms (d) Delay 7000ms

Figure 4.17: Color coded difference images for different keyframe calculation de-
lays. Because potentially more sensor views are available when de-
laying depthmap generation, the reconstruction result is better.

timings of the individual parts of the reconstruction pipeline. System parameters are set

as shown in table 4.5. Note that although the list of parameters consists of more than

16 entries, the only important parameters that have to be specified by the user are the

volume resolution and the fusion data fidelity parameter λ. All other parameters can be

left at their default value, which works for almost any scene. Table 4.6 shows performance

timings. One can see that calculating depthmaps ist the most expensive operation, taking

slightly less than a second in the worst case of 4 views. This means that new informa-

tion is fully integrated into the reconstruction result in about 1 seconds time, resulting in

interactive user experience. Figure 4.18 shows some results of the system, including times-

tamps. As long as the camera has not seen a specific part of the scene, obviously there is

no reconstruction. With the camera exploring, missing parts are added within seconds of

time, see figure 4.18b, 4.18c and figure 4.18d, 4.18e. The texture mapping algorithm (see

section 2.5) works nicely, although some artifacts can be seen, e.g. in figure 4.18i.
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Table 4.5: Parameters for full system evaluation

Parameter Value

Scene City of Sights, 3467 frames, ≈ 2:18s
Volume resolution 448× 336× 160
Number of histogram bins 8
Histogram update method Voxel-based
Keyframe calculation delay 7000ms
Depthmap algorithm Planesweep
Planesweep depth steps 250
Planesweep NCC windowsize 5× 5
Planesweep TV-`1 λ 0.3
Planesweep TV-`1 iterations 100
Planesweep TV-`1 edge weight α 20
Depthmap fusion λ 0.03

Table 4.6: System performance

Operation Time [ms]

Planesweep 1 view 245
Planesweep 2 views 400
Planesweep 3 views 600
Planesweep 4 views 815
Histogram update (voxel-based) 15
Depthmap fusion (1 iteration) 80
Raycasting (point sampling) 1
Raycasting (trilinear interpolation) 5
Raycasting (trilinear interpolation
and texture mapping) 6

Total (worst case) 916
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(a) 0:20s (b) 0:35s (c) 0:55s

(d) 1:20s (e) 1:35s (f) 1:50s

(g) Textured result (h) Textured result (i) Textured result

(j) Textured result (k) Textured result (l) Textured result

Figure 4.18: Results of the system. Note that at 0:35s large parts of the scene
are already reconstructed. Missing parts are due to the camera not
(yet) having scene that part of the scene. The images of the textured
result are taken at 2:00s.
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5.1 Summary

In this master’s thesis an application for interactively reconstructing dense geometry from

a single moving camera was developed. It has bee shown that it is possible to reconstruct

arbitrary geometry on-the-fly, simply by pointing a camera at the object of interest. The

method builds on current state of the art results from various research areas of computer

vision, and adapts and combines them in a novel way to yield the desired system.

We used PTAM, a high quality realtime camera tracking method, as starting point for

our work. An overview of PTAM was given alongside other related work in section 1.4.

The methodology of the realtime reconstruction system is presented in chapter 2.

Section 2.3 is devoted to the generation of depthmaps, where two different approaches

were discussed. Both methods make heavy use of the parallel computation capabilities of

todays high performance graphics cards to meet the realtime requirement.

The robust fusion of depthmaps is addressed in section 2.4. We used a volumetric

approach where the surface is represented implicitly by the zero level-set of a truncated

signed distance function. Fusion is based on a variational formulation, and we showed how

the resulting convex energy functional can be solved in a global optimal way on the GPU.

In section 2.5, the approach for visualizing results is described. Again, a GPU-based

raycaster is used to achieve realtime performance.

73
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Chapter 3 gives various implementation details, with special emphasis on the different

methods how to update the volume histogram in section 3.3. Performance considerations

are explained and we showed how the GPU is used to accelerate the different parts of the

reconstruction pipeline.

Finally, a comprehensive system evaluation was done in chapter 4. The different parts

of the reconstruction pipeline were analyzed individually, before the whole system was

evaluated.

We want to point out that the evaluation results should be understood as performance

hints only. The important point of an interactive system is after all to have a “human in

the loop”. Reconstruction results are highly dependent on the user moving the camera,

user decisions about camera movement in turn depend on the constant stream of feedback

the user gets from the system. A static evaluation as has been done in this work can not

capture such a feedback loop.

5.2 Outlook

The realtime reconstruction system is limited by various factors. One of the most im-

portant is the tracking system, if tracking fails all subsequent parts of the reconstruction

pipeline can not be done. Therefore, improving tracking performance is the most obvious

starting point for future enhancements. The loose coupling between tracking and recon-

struction makes this task easy. Our system does not make any assumptions about the

tracking system, thus the tracker can easily be replaced by more powerful alternatives in

the future.

Another limitation is the volumetric representation of geometry, which requires large

amounts of memory. Even high end GPUs are restricted to the reconstruction of relatively

small indoor scenes and objects. To enable the dense reconstruction of large (outdoor)

environments, new methods and algorithms need to be developed.

The reconstruction quality of our system critically depends on the quality of the input

depthmaps. While there exist many state of the art high quality stereo algorithms, most

of these are not suited for realtime use. The planesweep algorithm used in this thesis

is fast, but fails in untextured regions. Reconstruction of untextured scenes is thus not

possible with our system. The TGV2 mutiview range algorithm to some extent overcomes

this problem, but on the other hand looses fine details and is not well suited for large

baselines. Here, several improvements can be made. It seems that instead of trying to

get as much information as possible from very few views with sophisticated methods, it is
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better to simply use more input data and relatively simple and fast algorithms. Using a live

camera, one has a tremendous amount of data (30 frames per second), which potentially

can be used. It will be interesting to develop fast, realtime-capable algorithms that make

use of this data.





Appendix A

Acronyms and Symbols

List of Acronyms

AR Augmented Reality

CAS Compare-and-Swap

CPU Central Processing Unit

DOF Degrees of Freedom

DSI Disparity Space Image

DTAM Dense Tracking and Mapping

FAST Features from accelerated segment test

FLOPS Floating-point Operations per Second

FOV Field of View

GPU Graphics Processing Unit

GUI Graphical User Interface

NCC Normalized Cross Correlation

PDE Partial Differential Equation

PnP Perspective n-Point Problem

PTAM Parallel Tracking and Mapping

RANSAC Random Sample and Consensus

SAD Sum of absolute differences

(T)SDF (Truncated) Signed Distance Function

SfM Structure from Motion

(V)SLAM (Visual) Simultaneous Localization and Mapping

SSD Sum of squared differences
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T(G)V Total (Generalized) Variation

WTA Winner Takes All
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