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Abstract

Recent object categorization methods use shape information to categorize objects in real

world scenes. The shape is represented by the contour of the objects. This work analyzes

methods to match contours or contour fragments to images.

After a survey on methods of contour and shape matching is given, this work concen-

trates on methods based on the distance transform and methods which create a similarity

image using kernels. Furthermore a possible application of the earth mover´s distance to

the problem at hand is presented.

A methodology to evaluate the methods by matching contour fragments to images is

presented. This methodology is designed to evaluate these methods on how well they

will perform for object categorization methods, without having the need for an actual

implementation of an object categorization algorithm.

The results show, that the best method combines the already known average distance

value of the contour fragment enhanced by orientation planes and the newly introduced

estimation of the variance of the distances.

Keywords: distance transform, contour fragment, boundary fragment, contour match-

ing, object categorization
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Chapter 1

Introduction

In this chapter the problem of comparing contours with images is first motivated by its

application in object categorization. Then the problem and the goals of this work are

defined and finally the major part of this chapter covers related work on the topic.

1.1 Motivation

In recent years two contributions, Opelt et al. [20] and Shotten et al. [26], made use of the

external shape of objects to categorize them. As the extraction of a continuous and closed

shape is difficult (within clutter) to impossible (in case of occlusions), both contributions

used fragments of the object boundary [20] or contour [26], resulting in models of multiple

boundary or contour fragments.

A central part of both contributions is the matching of contours to images. Both used

the chamfer matching method, presented by Borgefors [3], to solve that problem. Opelt

et al. [20] added information about edge orientation using orientation planes, Shotton et

al. [26] introduced an argument distance transform to use edge orientation as additional

matching metric. While adding information about edge orientation to chamfer matching

was an important step, both contributions focused on object categorization, and tried to

improve object categorization by using more sophisticated learning algorithms and object

representations.

The aim of this work is an analysis and improvement of one of the foundations of above

mentioned contributions: The matching of contour fragments to images.

The application of chamfer matching on real world images, as Opelt et al. [20] and

Shotton et al. [26] did in their contributions, yields poor results in terms of localization

1



1.1. Motivation 2

and also w.r.t. the question if there is an object of a particular category at a particular

location. In figure 1.1 an example is shown: Only a slight distortion results in a completely

wrong location for the best hit. The correct hit (red in the center, rear legs of the cow)

would be ranked fifth. To compensate this drawbacks, both contributions [20] and [26]

used advanced learning algorithms. If contour matching could be improved, better results

should be achieved in object categorization.

Figure 1.1: 20 best hits in a cow image. The green hit (left side) is the best hit, the red
one (center) is the ground truth location. The contour fragment is rotated and skewed by
an angle of -5◦. The original image is seen in figure 3.3

.

It is also seen, that in the bottom center of figure 1.1 many hits are located within

clutter, which stems from texture on the ground. Chamfer matching performs bad in

clutter, because the distance to the next edge pixel is low, because there are so many edge

pixels. However, using simple edge detection algorithms, clutter is inevitable (e.g. leaves,

grass, highly textured clothes). Therefore the robustness to clutter is a key property of

contour matching methods.

The second goal of the thesis is to analyse the behaviour of methods, which match

contours to images. Knowing weaknesses of the used methods, makes it easier to com-

pensate them with higher level methods. One characteristic of object categorization is

the intra-class variance. This means, that objects of the same category can actually look

quite different. In the case of using the shape of an object as descriptor, it is beneficial to

know, to which point the contour matching method can capture shape variance, and at

which point of shape variance the object categorization method has to take care of it.
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1.2 Definition of the problem

This work wants to give answers to two questions: First, how is a given contour fragment

matched to an image, and second, how can different methods, solving the first problem,

be compared to each other.

The basic problem is finding a given contour fragment in an image. The contour

fragment is given as a binary image, the image is a greyvalue image and the result should

be some sort of similarity or distance function (the pair similarity/distance will be called

quality from now on). This quality function should tell the quality of match between the

contour fragment and the image on each image location. From the quality function just

the best match, the n best matches or all extrema which fulfill a certain criterion can be

chosen as hits of the contour fragment on the image.

Due to the intra class variance of object categorization, corresponding contours on

objects of the same class are just similar not the same. Therefore, a key requirement is

the ability of the matching metric to reflect that fact. For example the naive approach of

correlating a contour with an edge image would yield a perfect score for a good match,

but when the match becomes non-perfect the score drops rapidly.

Other preferable properties of the resulting quality function are smoothness and a low

number of extrema. If a non-exhaustive search is used, these properties would improve

the time needed to find extrema, and even if an exhaustive search is used, the number of

extrema that have to be checked is reduced, which also leads to a faster runtime.

Beside the intra class variance of object categories, contours are also translated, rotated

and scaled, because of different imaging conditions. Invariance to translation is achieved

by scanning the whole image with a translated contour, resulting in an exact location.

Invariance to large differences in scale and rotation also require a search with a scaled

and/or rotated version of the contour. But methods for matching contours to images

should be robust to small changes in rotation and scale, because exact rotation and scale

are not useful to categorize and localize an object.

To compare different methods for the task of matching contours to images, a measure-

ment has to be found, from which the quality of a certain method can be derived. Such

a measurement should be easily computed from the quality of match between a contour

and an image and easily reproduced by other authors. Furthermore, it should also give

some insight into the properties of the measured methods.
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1.3 Related work

To the end of 1990ies most shape matching was done on already segmented shapes. One

example is the review of Veltkamp and Hagedoorn [29], another one Zhang and Lu [31],

which gives a good overview on shape representation.

Both contributions present shape matching methods which require an already seg-

mented object. There are three groups of methods: Methods which match regions by

shape (e.g. [18, 22, 23, 28]), methods which match closed contours (e.g. [7, 19, 30]) and

methods which can be applied to shape fragments (e.g. [2]).

The requirement of a prior segmentation step eliminates the possibility to use these

methods for an improvement of object categorization algorithms like [20] or [26], as the

segmentation of the object is part of their task.

In the remainder of this section, a more detailed review is given on the methods which

are compared later in the thesis, as well as on the Hausdorff distance and on multilayered

shape representations. The Hausdorff distance was already compared to chamfer matching

in [3] and [10] and found to be inferior to the chamfer distance.

Multilayer shape representations are a different and promising approach to matching

contours to images. A comparison between distance transforms and multilayer shape rep-

resentations within one experimental framework could probably not exploit the advantages

of both groups of methods. Therefore, multilayer shape representations are left out of the

comparison and only mentioned for completeness.

1.3.1 Chamfer Matching

As in the 1970´s the problem of matching maps with aerial pictures arose, chamfer match-

ing was invented by Barrow [1], to solve that problem. It was improved by Borgefors in

[3] and [4]. Basically, the chamfer distance between a contour and the edge map of an

image, is the average minimum distance between the contour pixels and the pixels of the

edge map.

The chamfer distance is efficiently computed by computing the distance transform of

the edge map and then summing up the values of the distance transform along the shifted

contour.

The distance transform of a binary image computes the minimum distance of each

pixel to the “one” - pixels. The underlying distance can be freely chosen, for chamfer

matching the so called chamfer distance is used, which is a good approximation of the

Euclidian distance on rasterized images. It is easily seen, that the distance transform at
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the locations of the “one” - pixels is zero.

Both, Shotton et al. [26] and Opelt et al. [20], use a modified version of chamfer match-

ing in their contributions to object categorization. They improved it by adding orientation

information to the distance. Opelt used an idea originally suggested by Gavrila [15] to

split the original edge image up into orientation channels, where one channel contains only

the edges within a certain orientation range. When computing the chamfer distance, only

the corresponding orientation channels are matched. The final result is then the sum over

all channels.

On the other hand, Shotton et al. introduced the argument distance transform, where

each pixel is assigned the orientation value of the nearest edge pixel. The orientation

distance is the average difference between the orientations of the contour pixels and the

pixels in the edge map. They finally build a weighted sum between the orientation distance

and the chamfer distance.

1.3.2 Edge Potential Functions

Dao et al. [9] introduced the notion of an edge potential function, where each edge pixel

is analog to an electrical charge, and the edge potential function is computed like the

electrical potential function. At the matching step, a template is correlated with the edge

potential function and maxima correspond to good matching locations.

As with the chamfer distance, the edge potential field is a smooth function, however

it is a similarity function in contrast to the distance transform of chamfer matching. A

drawback of similarity functions is the lack of an absolute optimum, in contrast to distance

functions, where the absolute optimum is zero.

1.3.3 Hausdorff Distance

Huttenlocher et al. [17] introduced the Hausdorff distance into the field of shape matching.

The Hausdorff distance is best explained in two steps: First the directed Hausdorff distance

is computed between two contours, from contour A to B and the other way round. In

the second step the larger of the two distances is chosen to be the Hausdorff distance.

The directed Hausdorff distance first computes the minimum distance to the points of B

for each point of A. The maximum of these distances is chosen as the directed Hausdorff

distance.

Huttenlocher et al. also suggested an efficient algorithm to compute the directed

Hausdorff Distance when searching a template in an image under an unknown translation:
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Basically one computes the Voronoi surface (with respect to the underlying norm) of the

image and then translates the template over the Voronoi surface and then chooses the

maximum (or p-Quantile) from the points corresponding to the template edge points.

Knowing that a distance transform is a Voronoi surface, and using the mean instead

of the maximum one can see the relations between chamfer matching and the directed

Hausdorff distance quite easily. Borgefors [3] actually suggested a chamfer distance using

the maximum instead of the average. Other authors [10, 32] came up with similar ideas

but calling it mean Hausdorff distance, or modified Hausdorff distance. Borgefors [3]

and Dubuisson and Jain [10] compared several methods and both contributions reported

that the partial Hausdorff distance (using the maximum value) is inferior to the chamfer

distance (or partial Hausdorff distance using the mean value). Borgefors also reports, that

the same is true for the median.

1.3.4 Earth Mover´s Distance

The Earth Mover´s Distance (EMD) was introduced by Rubner et al. [25] to compare color

histograms. The basic idea is to measure the distance a unit of dirt has to be transported

from a pile to a hole. Interpreting a color histogram as a collection of dirt piles and another

one as a collection of holes, the EMD can be used to compare these two histograms.

Grauman and Darrell [16] introduced the EMD to the field of shape matching. Even

if they match presegmented shapes, the idea of the EMD is worth to be examined within

the scope of this thesis.

1.3.5 Multilayer Shape Representation

Inspired by biological vision, multilayered shape representations are suggested for use in

object categorization. Riesenhuber and Poggio [24] analyze neural mechanisms in the

visual cortex and connect them to computer vision.

A purely computer vision based approach is suggested by Fidler et al. [12]. On the

basis of oriented Gabor filters (an example is given in figure 1.2), which detect short

lines (parts), longer contours are represented as combinations of these parts. Fidler et

al. introduced a layered hierarchy, where a part in each layer is a combination of three

parts of the underlying layer. Layer 1 are the responses of the Gabor filters. For each

combination of three parts, the three parts, their relative locations and orientations, and

the variance of the relative locations are stored. Also, learning the variance of the relative

locations gives a more flexibel model, so that small variations do not lead to different
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parts, but are seen as different instances of the same part.

Figure 1.2: Example of layer 1 Gabor filters as used in [12]

In subsequent works [13, 14] Fidler et al. extended the idea of hierarchical representa-

tions to a framework for object categorization.

1.3.6 Summary

Chamfer Matching and Eletrical Potential Functions are the most promising approaches

for the problem at hand. Both methods solve the problem directly and inherently, as they

take a contour fragment and an edge image as input. In contrast to these two methods are

shape matching methods, which take two shapes as input and compute a distance between

two shapes. To get shapes from an image, it has either to be segmented beforehand or

shapes have to be extracted from the edge image. Both approaches are not reasonable,

because segmenting the image before the matching would solve the object categorization

problem, and extracting shapes from an edge image is computationally infeasible. The set

of shapes to be extracted from a an edge image is a power set of the set of edgels, with

cardinality 2N , N being the number of edgels in the edge image.

The application of the Earth Mover´s Distance to matching contours to images, as

presented in chapter 2, allows the direct compution of the EMD between a contour and

an edge image. Therefore, it is also suited to be applied to the problem at hand.

For these reasons, chamfer matching, electrical potential functions and EMD are re-

viewed in the remainder of this thesis. Matching contours to images based on the Hausdorff

distance has already proven to be inferior to chamfer matching [3] and [10] and multilayer

shape representations, which learn contours by combining small pieces of edges, would

not utilize all their advantages in an experimental framework targeted at methods using

a given contour fragment.





Chapter 2

Methods

This chapter illustrates the different methods employed in matching a contour to an image.

The inputs to the process of matching are a greyscale image and a binary representation

of the contour image. The image is preprocessed to either a gradient image or a binary

edge image. After that the contour fragment is matched to the image. For some methods

this matching process can be split into a contour fragment independent part and a much

cheaper (w.r.t. computational complexity) part, which is dependent on the contour frag-

ment. These methods are the distance transform methods and the methods employing a

kernel to get similarity images. After computing these distance or similarity images, the

contour fragment is matched to them, computing the mean of the distance or similarity

image along the contour. It is also examined, if the computation of higher order statistical

moments would help in the matching of contour fragments to an image.

For the Earth movers distance (EMD), this splitting is not possible, so there are no

means to alter the computation. However, this is not desirable, because the basic idea of

the EMD is different to those which the distance transform and kernel based methods rely

on.

Finally, the above mentioned methods are extended to analyze the influence of infor-

mation about the orientation of edges. It has already been seen [20, 26] that orientation

information improves the detection rate of contour fragments.

2.1 Distance Transform

A distance transform dt(I) of a binary image I gives a two dimensional function, which

gives the minimal distance to all the “ones” in the binary image. Examples are given in

9
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figures 2.1 and 2.2.

Using a distance transform of an image, the distance to the nearest “one” pixel at a

given location can be determined in O(1). In the case of matching a contour fragment cf

to an image, the estimation of the average distance of its pixels to the respective nearest

pixels of the binary image takes only O(length(cf)) time. When matching (see section 2.3

for details) many contour fragments to one image this is cleary advantageous.

The remainder of this section gives a mathematical formulation of the distance trans-

form as well as possible extensions and modifications to it, and finally discusses imple-

mentation details.

Figure 2.1: A circle (to be interpreted as an edge image) on the left side and its distance
transform to the right.

Figure 2.2: This is the edge image (left) and its distance transform (right) of a bike image.
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2.1.1 Definition

The distance transform dtx(I) at location x of an image I is given as

dtx(I) = min
I(y)=1

|x− y|, (2.1)

where y are the locations of the “one” pixels in the image I and | · | depicts an arbitrary

norm. In most applications of the distance transform this norm is the Euclidian distance.

2.1.2 Modifications

Actually there are two possibilities to modify the distance transform as presented above:

On the one hand, the norm used for the distance computation could be changed, on the

other hand, a nonlinear function could be applied to the result of the Euclidian distance

transform.

Modifying the norm when computing the distance transform leads to effects which are

not desirable for most applications. An Lp - norm different to the Euclidian L2 - distance

introduces a dependence on the orientation, which results in different distance transforms

for different rotations of the same edge image (see equation 2.2). This is easily seen if one

looks at the unit distance under different norms in figure 2.3 and the example with a line

in figure 2.4.

dt(I) 6= rot(dt(rot(I, ϕ)),−ϕ) (2.2)

Figure 2.3: The unit circle under the L1, L2 and L∞ norm.

The second option is to apply a nonlinear function to the Euclidian distance trans-

form. Obviously these functions should be continuous and monotonically increasing. With

these properties they only stretch or compress the original Euclidian distance. However,
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Figure 2.4: The center image shows the distance transform using the cityblock distance
(L1 - norm) of the line in the left image. To generate the right image, the line is rotated by
π
4 , the distance transform is computed and the image containing the distance transform
is rotated back so it can be compared to the center image.

combined with the linear matching step they can lead to quite different results.

The easiest nonlinear function is obvioulsy a polynomial f(x) = (xa )p for arbitrary p.

Parameter a controls the point where the polynomial is equal to the linear map. Figure

2.5 shows different polynomials. It is easy to see, that a polynomial condenses distances

between values x < a and stretches them for x > a.

2.1.3 Methods and Implementation

It is obvious, that computing the distance to every “one” pixel and then choosing the

minimum for each location is not the best solution in terms of computational efficiency.

Barrow et al. [1] used a two-pass method for computing the distance transform, called

chamfering. Because of this, Barrow et al. [1] and Borgefors [3] called their contour

matching methods chamfer matching. The basic idea of the chamfering method is the

forwarding of local information to neighbouring pixels. Therefore, this method is linear

w.r.t. the size of the image.

Breu et al. [5] presented a method, also linear w.r.t. the size of the image, which relies

on Voronoi diagrams to compute the distance transform (or nearest-neighbour transform

as Breu et al. call it). This algorithm is actually used to conduct the experiments for the

thesis at hand.

A detailed comparison of methods to compute the distance transform was published

by Paglieroni [21].
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Figure 2.5: Polynomials xp for different p

2.2 Kernel based similarity methods

Dao et al. [9] introduced the idea of edge potential functions. In this section, their basic

idea is explained. Subsequently the transformation of their idea into a mathematical

framework more common in the field of computer vision is described. Finally, different

kernels are presented.

2.2.1 Edge Potential Fields

The basic idea of edge potential fields (EPFs), as presented in [9], is, that each edge pixel

represents an (electrical) charge and a potential field is constructed as the sum of the

effects of all charges, similar to an electrical potential field. The electrical potential field

φ of discrete charges Qi in vacuum is given as

φ(r) =
1

4πε0

∑
i

Qi
‖ wi − r ‖

, (2.3)

where r is the observation point, ε0 the electrical permittivity and wi are the locations of
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the charges, and ‖ · ‖ denotes the Euclidian distance.

Similarly, the EPF at location x is given as

EPF (x) =
1

4πεeq

∑
i

Q(yi)

‖ yi − x ‖
, (2.4)

whereQ(yi) is the charge at location yi and εeq is an equivalent to the eletrical permittivity.

This parameter is of some importance, because it controls the smoothness of the potential

field. A smaller εeq results in a smoother potential field.

One obvious problem of the above equations is the singularity at the location of the

charge. In physics this is obviously not a practical problem, because at small distances

the laws of classic physics get less important to the favour of the laws of quantum physics.

However, in the application of the electrical potential field to edge images, there is a

need to compute an edge potential value for the edge location and this value should be

reasonable for subsequent processing steps, like edge matching. Dao et al. suggested to

clip the EPF at those locations, but did not give any actual values.

The last detail is the choice of a value for the charge Q in an edge image. On binary

images a constant value (like one) is the obvious choice. However, Dao et al. [9] also

suggested to use the magnitude of the gradient at the edge location as value for the charge

Q using additional information about the strength of an edge.

2.2.2 EPF to Kernel

Either from the analogy to physics or mathematically, it is obvious that one cannot only

look at a specific location and add up all effects of the charges, but also look at all the

charges, compute their effects and add them up.

EPFs(x) =
1

4πεeq ‖ x ‖
(2.5)

EPF (x) =
∑
i

Qi · EPFs(x− yi) (2.6)

EPF (x) =
∑
i

I(yi) · EPFs(x− yi) (2.7)

Starting from equation 2.4, one can express the effect of one charge with equation 2.5

and sum up all effects in equation 2.6. Rewriting equation 2.6 leads to equation 2.7, which

expresses the computation of the EPF as a convolution of the image with a single kernel.
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Viewing the EPF in this way not only helps in implementing it, but it is also a key step

to understand the algorithm of Dao et al.: An EPF is the convolution of the edge image

with a kernel constructed of a 1
r2

function, r =‖ x ‖ being the distance to the charge. As

a last detail this kernel represents a low pass filter.

Now having this idea of convolving the edge image with a low pass filter, one could

think of other filter kernels than this 1
r2

filter.

2.2.3 Possible realizations of kernels

Possible realizations of a kernel are the standard kernel described in equation 2.5, the well

known Gaussian kernel, as well as kernels using a linear and constant fall off function.

The Gaussian kernel, described in equation 2.8 is parametrized by the standard devi-

ation σ. By using only a scalar as parameter, the Gaussian kernel is circular in shape as

can be seen in figure 2.6.

g(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2.8)

Figure 2.6: Example of a Gaussian kernel.

2.3 Matching of contour fragments to distance and similar-

ity images

The result of a distance transform or the convolution of the edge image with a kernel, is

either a distance image or a similarity image. To simplify the further discussion, those

two terms are merged into the term “quality image”. As already said, a quality image is
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the result of splitting the matching process into a contour fragment independent part, and

one which is dependent on the contour fragment.

When matching a contour fragment to a quality image, a matching score is computed

for each location in the image. A better score corresponds to a better match. One of

the more obvious choices to compute a score is to compute the average quality along the

contour. A simple method to achieve this, is the cross correlation between the the contour

fragment c and the quality image q averaged by the length N of the contour. The score

of the match m is given as

m(x, y) =
1

N

U∑
u=1

V∑
v=1

q(x+ u, y + v)c(u, v), (2.9)

where U , V are the size of the bounding rectangle of the contour. In this case the cross

correlation is equivalent to summing up all quality values “below” the contour, because

the contour is a binary image. This is also the notation of Barrow et al. [1] and Borgefors

[3, 4]. The above - in the context of Barrow and Borgefors - means, that the average

distance between the contour pixels and the “one” pixels in the edge image should be

minimal.

Another view would be a statistical one. Seeing all the quality values “below” the

contour fragement as a distribution of qualities, the mean quality could be computed.

Now there is not only the mean value, but many more features which could be used to

classify a distribution. Borgefors already discussed the mean, median, root mean square

and maximum in [3].

Continuing this line of thought, the variance could be an interesting feature, at least

supporting the mean, as it could be believed that matches with small variance in quality

are better than ones with big variance.

2.4 Earth movers distance

The Earth movers distance (EMD) was introduced by Rubner et al. [25]. Their initial idea

was to suggest a better way to match histograms. In their paper two ideas are presented:

The first idea was not only to match corresponding bins of a histogram, but to try to

compare the histograms as a whole, which was the EMD. The second idea was not to

compute a histogram with fixed sized bins, but to cluster the data to so called signatures,

which optimized the trade-off between efficiency and expressiveness. Converting the edge
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image and the contour fragment to signatures, it is easy to compute the EMD between

the contour fragment and the edge image.

2.4.1 Signatures

Rubner et al. [25] introduced signatures to achieve two things: A better expression of

the data, and a more memory efficient representation. The former means that the loss of

information is minimized, and the latter a reduction in memory space. If one works with

greyvalue images, these two concerns may not be relevant, because it is relatively cheap

w.r.t. memory to store a perfect representation of a histogram. If someone works with

color histograms, as Rubner et al. did, saving a perfect representation of an image would

be more costly in terms of memory. Even if in a color image not all of the 16.7 million

colors will be used, the number of colors exceeds 100,000 most of the time.

To overcome these problems, Rubner et al. suggested to cluster the data and to

generate signatures which are represented as sets of pairs s = (x, w), where w is the weight

at location x. By that, a complete signature S is given as S = {sj = (xj , wj)}, j = 1 . . . N ,

where N is the number of pairs.

2.4.2 Computing the EMD between signatures

To compute the distance between two signatures, Rubner [25] called one signature “dirt

piles” and the other one “holes”. The EMD is the minimum work needed to move the dirt

from the piles into the holes. Work is just the product of dirt by ground distance. Where

ground distance is the distance between the location of the pile xp and the location of the

hole xh (‖ xp − xh ‖).

Before the minimum work - or earth movers distance - can be computed, the best

way to move the dirt piles into the holes has to be found. This is called the transporta-

tion problem. It describes the problem for transporting goods from suppliers (piles) to

consumers (holes).

To better understand the EMD formulation, a short overview to the transportation

problem (see also figure 2.7) as given in [25] is presented: Let I be a set of suppliers and

J a set of consumers, and cij the cost of transporting one unit of goods from supplier

i ∈ I to consumer j ∈ J , then the goal is to find a flow fij which minimizes the overall

transportation cost C
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Figure 2.7: An example of a transportation problem from [25].

C =
∑
i∈I

∑
j∈J

cijfij , (2.10)

subject to following constraints,

fij ≥ 0 i ∈ I, j ∈ J (2.11)∑
i∈I

fij = yj j ∈ J (2.12)

∑
j∈J

fij ≤ xi i ∈ I, (2.13)

where yj is the total capacity of consumer j, and xi is the total supply of supplier i.

Goods should only be transported from suppliers to consumers (constraint 2.11), each

consumer’s needs should be satisfied (constraint 2.12), and the supply of a supplier must

not be exceeded (constraint 2.13). As consequence of these constraints the total supply

must exceed the total consumption

∑
j∈J

yj ≤
∑
i∈I

xi. (2.14)

Applying the transportation problem to signatures is quite straightforward: One sig-

nature is the supplier and the other one is the consumer. To satisfy condition 2.14, the

signature with the smaller total weights is the consumer. By solving the transportation

problem, the optimal flow is found. Then the earth movers’s distance is given by
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EMD(I,J ) =

∑
i∈I
∑

j∈J cijfij∑
i∈I
∑

j∈J fij
=

∑
i∈I
∑

j∈J cijfij∑
j∈J yj

(2.15)

The denominator is a normalization factor to even out the influence of the signature

total weight. Signatures with smaller total weight would be favoured (having a smaller

distance) otherwise.

2.4.3 Applying EMD to edge images

The basic idea to apply the EMD to edge images is quite simple: The edge image and the

contour are both converted to signatures and the EMD is computed. To convert an edge

image (or the edge image representation of the contour fragment) to a signature, each

pixel p will be represented by its location x and its weight w. The signature of an edge

image E with N edge pixels is then defined as

E = {pi = (xi, wi)} i = 1 . . . N. (2.16)

The weight is either w = 1 if the edge information is used only, or the actual magnitude

of the gradient at that edge pixel.

Finally, two details have to be mentioned: When shifting the contour over the image,

the signature corresponding to the contour has to be computed at every step. It is obvious

that this can be done very efficiently, because the signature locations only have to be

updated with the relative movement of the patch. The second detail is a performance

issue: Solving the transportation problem with the simplex algorithm [8] needs polynomial

time in the average case w.r.t. the number of signatures. Matching the contour to the

whole image, which has around 5,000 to 10,000 edge pixels, is computationally infeasible.

Therefore, the shifted contour patch is only matched to the corresponding portion of the

image.

2.5 Edge orientation

As already pointed out by Shotton et al. [26] and Opelt et al. [20], the edge orientation is

a good way to improve the matching of contours to images. The basic idea is to compare

the orientations of the contour and the edge in the image, to obtain a fitter cue if this

would be a good match. The methods of Shotton et al. and Opelt et al. and a way to

include edge orientation information into kernels for similarity images is described. To
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illustrate the different methods, an edge image containing a circle is used as an example.

In figure 2.8 the circle and the orientation of the pixels are shown.

Figure 2.8: Orientation of edgels on a circle, given in radians.

2.5.1 Oriented Chamfer Matching

Shotton et al. [26] suggested a method called oriented chamfer matching. They augment

the original chamfer matching term with an additive orientation matching term. In their

work, the matching score m(x, y) from equation 2.9 is being augmented by the orientation

score mo(x, y). The combined score mc(x, y) is then

mc(x, y) = m(x, y) + λmo(x, y), (2.17)

where λ is used to control the sensitivity of the combined score to the orientation score.

To compute the orientation score, Shotton et al. [26] just compare the orientation of the

contour fragment edge pixel with that of the nearest image edge pixel. An efficient way

to do this, is the argument distance transform ADT (x). It works similar to the standard

distance transform
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ADT (x) = arg min
p∈E
‖ x− p ‖2, (2.18)

where E is the set of edge pixels in the image. An example of the ADT is seen in figure

2.9. Using the ADT , the orientation score mo between the the edge image E and the

contour C can be computed

mo(x) =
1

N

∑
p∈C
|o(p)−ADTE(p + x)|, (2.19)

where N is the length of the contour and o(p) the orientation of edgel p.

Figure 2.9: Argument distance transform of a circle, angle given in radians.

2.5.2 Orientation planes

Opelt et al. [20] used a method originally suggested by Gavrila [15]. The idea is to split up

a contour or edge image into several images (called orientation planes), where each plane

only contains the pixels of a certain range of orientation. In figure 2.10 an example is given,

in which a circular contour is split up into orientation planes using Opelts parameters.

Opelt et al. used eight orientation planes with an overlap of five degrees. Therefore, each

orientation plane covers 180/8+2∗5 = 22.5 degrees. The boundaries for orientation plane

i are
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bl = 22.5i− 5

bu = 22.5(i+ 1) + 5, (2.20)

where i starts at zero, bl is the lower boundary and bu the upper boundary.

Figure 2.10: A circle decomposed into eight orientation planes with five degrees overlap.

To match the contour to the edge image, only the corresponding orientation planes are

matched. To obtain the final result, the matching results for each orientation plane are

added up.

2.5.3 Oriented kernels

Obviously, both of the above mentioned methods can also be used in combination with

kernel based similarity images. But with kernels, the orientation information can be

incorporated directly into the kernel and does not need to be applied later on. The key

idea is to generate a separate oriented kernel for each edge pixel, instead of using a uniform

kernel. In section 2.2.3 one Gaussian kernel was introduced (see equation 2.8). Although

two dimensional, it has only one scalar σ which results in a circular, isotropic Gaussian

kernel. Using a full covariance matrix allows to create all possible Gaussian distributions.

The starting point to compute the covariance matrix are two vectors, one points into the



2.6. Searching for good hits 23

direction of the edge, the other one perpendicular to it. The covariance matrix is easy to

construct, if these two vectors are interpreted as its eigenvectors. Starting with the basic

definition of an eigenvector e and its eigenvalue λ of matrix A

Ae = λe, (2.21)

and knowing the two eigenvectors e(1), e(2) and setting their corresponding eigenvalues

λ1, λ2, a system of linear equations can be constructed,
e
(1)
1 e

(1)
2 0 0

0 0 e
(1)
1 e

(1)
2

e
(2)
1 e

(2)
2 0 0

0 0 e
(2)
1 e

(2)
2




c11

c21

c12

c22

 =


λ1e

(1)
1

λ1e
(1)
2

λ2e
(2)
1

λ2e
(2)
2

 , (2.22)

where cij are the elements of the covariance matrix. Solving this system of linear equations

is straight forward and the covariance matrix C is found. Using this covariance matrix, a

Gaussian kernel can be constructed

g(x) =
1

2π|C|
1
2

e−
1
2
xTC−1x, (2.23)

where | · | denotes the determinant of a matrix. Equation 2.23 constructs a Gaussian kernel

which is centered at x = 0 and is only aimed at two dimensional kernels. An example of

such a kernel is given in figure 2.11.

2.6 Searching for good hits

Finally, one wants to know at which location the contour fragment matches best to the

image contours. At first, local extrema are searched: Either minima for distance images,

or maxima for similarity images. At these locations, the contour fragment has the best

local match w.r.t. a certain matching score as described above. The second step would be

the selection of either the best n local extrema, or local extrema satisfying some threshold

criterion.

To find the local extrema, the Matlab implementation of the algorithm described in

[27] is used.



2.6. Searching for good hits 24

Figure 2.11: Example of an oriented Gaussian kernel with λ1
λ2

= 5 and an angle of π
4 .



Chapter 3

Experimental Setup

In chapter 2, methods for matching a contour fragment to an image were presented. The

thesis at hand seeks to answer the question, which of these methods is the best for object

categorization. This chapter discusses how to answer such a question.

The choice of the experimental data is discussed in the first section of this chapter.

Choosing the right images is crucial to prove the point of the work. There are no artificial

images, only images used in proven databases. The second part of the experimental data

are the contour fragments. For the purpose of a perfect match, the contour fragments

are extracted from the chosen images and then transformed to simulate different viewing

geometries and intraclass variance.

The detailed explanation of the experiments is discussed in section 3.2. This section

explains how the methods from chapter 2 are combined to produce actual results.

Finally the results of the experiments have to be evaluated and measurements of quality

are presented in section 3.3. These are used to compare the different methods and give an

answer to the question which method (or combination of methods) best matches a contour

fragment to an image.

3.1 Experimental data

This section discusses the choice of the experimental data. The experimental data for the

thesis at hand consist of the contour fragments and the images to match them. The first

part presents the images which are chosen. The second part discusses the generation of

the contour fragments to be matched to the images.

25
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Name Figure Dimensions Relative amount of edgels

Bike 3.2 640x480 9.63 %

Car 3.1 640x480 7.31 %

Cow 3.3 500x375 7.89 %

Person1 3.4 640x495 3.78 %

Person2 3.5 360x480 4.70 %

Table 3.1: Basic information on the images.

3.1.1 Images

Five images were chosen manually to conduct the experiments. The Car, Bike and Person2

images are from the Graz02 database, the Cow and Person1 from the Pascal VOC 2009

database [11]. The chosen images are taken in the real world, have low (Person1) to high

(Bike) clutter, the objects are of different sizes but are clearly visible.

After converting them to grayscale images the edges are extracted using the Canny

edge detector [6]. The five images and their edge images are shown in figures 3.1 - 3.5 and

an overview of their basic properties is given in table 3.1.
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Figure 3.1: Car original and edge image.

Figure 3.2: Bike original and edge image.

Figure 3.3: Cow original and edge image.
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Figure 3.4: Person1 original and edge image.

Figure 3.5: Person2 original and edge image.
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3.1.2 Contour fragments

Object categories contain many objects, which are similar but not equal. Therefore, the

methods from chapter 2 should also be insensitive to small variations. Even if a contour

fragment does not fit perfectly, it should have a good quality of match. To test this

behaviour, a contour fragment is extracted from an image and then the contour fragment

is distorted by an affine transformation. An affine transformation in two dimensions can

be parametrised by a scale factor in each dimension, a shearing between the coordinate

axis, a rotation and translation. The translation will always set to zero, because the used

methods would just find the contour fragment at the translated location. The construction

of the transformation is done as follows:

T =

(
sx 0

0 sy

)(
cosα sinα

− sinα cosα

)(
0 m

0 0

)
. (3.1)

sx sy are the scale factors in x and y direction, α is the rotation angle and the shearing

will be expressed by m = arctanφ, φ being the angle of shearing.

Two sets of transformed contour fragments are generated: The first set with the pa-

rameters

sx, sy ∈ {0.75, 1, 1.25, 1.5} (3.2)

α, φ ∈ {−10, −5, 0, +5, +10},

leads to 400 transformed contour fragments. An example set (Cow400) is shown in figure

3.12. The second set using the parameters

sx, sy ∈ {0.75, 1, 1.25, } (3.3)

α, φ ∈ {−5, 0, +5, },

leads to 81 transformed contour fragments. An example set (Cow81) is shown in fig-

ure 3.11. To denote which set of contour fragments is used for a specific experiment,

the amount of contour fragments is added to the experiments. E.g. Cow81 denotes the
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Name Ground truth location

Bike 284, 153

Car 131,134

Cow 301, 208

Person1 151, 183

Person2 120, 147

Table 3.2: Ground truth location of the contour fragments (x,y coordinates).

experiments on the cow image using the set with 81 contour fragments.

The selected contour fragements are shown in figures 3.6 - 3.10, imposed on the edge

images in green. The ground truth locations of the contour fragments are given in table

3.2. The upper-left corner of the bounding rectangle to the contour fragment is used as

location of the respective contour fragment.

Figure 3.6: The contour fragment (green) selected from the bike image.

3.2 Experiments

Using the methods from chapter 2, 16 methods or combinations of methods were chosen

to be tested on the data.

The first group of methods are the methods based on the distance transform and
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Figure 3.7: The contour fragment (green) selected from the car image.

Figure 3.8: The contour fragment (green) selected from the cow image.
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Figure 3.9: The contour fragment (green) selected from the first person image.

Figure 3.10: The contour fragment (green) selected from the second person image.
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Figure 3.11: The set of 81 contour fragments from the cow image, the red one is the one
extracted from the image. In the top - down direction the skew and rotation are changed,
in the left - right direction the scale is changed.

correlating the quality image with the contour fragment to obtain a mean distance from the

contour fragment to the edge image. Correlating the contour fragment with the distance

transform is denoted as “DT” in the remainder of this work. DT is equivalent to the

chamfer matching presented by Borgefors [3]. Squaring the distance transfrom before the

correlation step will be denoted as “DT2”. Using orientation planes while computing the

linear distance transform is denoted as “DT OP”, using orientation planes on the squared

distance transfrom as “DT2 OP”. The method suggested by Shotton et al. [26], combining

the distance transform with an argument transform is denoted as “DT Shot”.

Using kernel based methods to compute the quality image and then correlating it

with the contour fragment are the second group of methods. The standard kernel (see

equation 2.7) using ε = 0.05 is denoted as “StdKern1” and using ε = 0.025 is denoted

as “StdKern2”. Combining the standard kernel using ε = 0.025 and orientation planes is
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Figure 3.12: The set of 400 contour fragments from the cow image, the red one is the one
extracted from the image. In the top - down direction the skew and rotation are changed,
in the left - right direction the scale is changed.
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denoted as “StdKern2 OP”. Each orientation plane is convolved with the standard kernel

and the final similarity image is the sum of all convolutions. Using the oriented Gaussian

kernel (see section 2.5.3) is denoted as “GaussKern”.

Computing the variance instead of the mean of the distance transform is the third

group of experiments. Two experiments are conducted using only the variance of the

distance transform and variance of the distance transform on orientation planes. The

former is denoted as “Var” and the latter as “Var OP”.

Another group of experiments is created by combining the DT OP and DT2 OP meth-

ods with the variance (Var). The first two experiments (denoted “DT OP Var Add” and

“DT2 OP Var Add”) were generated by adding up two results, using a normalizing factor

of λ = 0.02 for the variance part:

DT OP Var Add = DT OP + λV ar (3.4)

DT2 OP Var Add = DT2 OP + λV ar

(3.5)

Another two experiments were generated by multiplying DT OP and DT2 Op with

Var, generating “DT OP Var Mult” and “DT2 OP Var Mult”:

DT OP Var Mult = DT OP ∗ V ar (3.6)

DT2 OP Var Mult = DT2 OP ∗ V ar

(3.7)

Finally, the Earth Movers Distance (see section 2.4) is denoted as “EMD”. Due to

implementation issues (maximum size of signatures) no experiments were conducted for

the Car and Person2 datasets.

Using the above and the two sets of contour fragments for each image, namely the set

with 400 contour fragments and the one with 81 contour fragments (as explained in section

3.1.2), a total of 150 experiments is conducted. One experiment tests the combination of

a set of contour fragments, the image from which the contour fragment originates, and

one of the aforementioned methods.
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3.3 Measurements of quality

This section discusses the means to compare the different methods. The main focus is on

the properties of the local extrema. As described in section 2.6, only local extrema are

used to search hits for a contour fragment in the quality image.

All measures of quality are first evaluated for one of the N results of matching a

contour fragment (either N = 81 or N = 400) to an image and then averaged over all N

results. For the WAGE, ExtCnt, B10AvgD and B10MinD this averaging function is the

mean, and for Rank and RankNorm the median was used.

3.3.1 Weighted average distance of global extrema to ground truth lo-

cation (WAGE)

For each match, the location of the global quality extremum e is found and its distance

to the ground truth location lgt is computed. The weighted average d of these distances

is the WAGE. The weight s is the matching score at the respective global extremum and

N is the count of matches.

d =
1∑N
i=1 si

N∑
i=1

si (ei − lgt) (3.8)

The lower this measure is, the better is the algorithm. However, in reality not only the

globally best match will be used for object categorization. Therefore the weighted average

distance between the global extremum and the ground truth location is more of analytic

interest.

The weighting should emphasize the global extrema with a good matching score.

3.3.2 Amount of local extrema (ExtCnt)

The amount of local extrema includes every local extremum in the matching score. No

critera (e.g. threshold, minimum distance to other extrema) are applied to filter the

extrema. A low number of local extrema helps an object categorization algorithm to

compute the result faster and more stable.

It has to be said, that a low amount of extrema is not mandatory for a good matching

performance.
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3.3.3 Average distance of the best ten hits to ground truth location

(B10AvgD)

The average distance of the best ten hits to the ground truth location is computed by first

finding the ten best hits w.r.t. the matching score in each image, and then computing the

mean distance to the ground truth location.

This measure is motivated by Opelt et al. [20], where the ten best matching locations

of a boundary fragment are used to test for a weak classifier. Having a lower average

distance on the best ten hits means that more contour fragments hit the correct location.

3.3.4 Minimum distance of the best ten hits to ground truth location

(B10MinD)

For each match of a contour fragment to an image the hit with the minimal distance to

the ground truth location is chosen out of the best ten hits w.r.t. the matching score. The

mean of all the values for one experiment is the B10MinD.

If this measure is low, at least one out of the ten best hits w.r.t. the matching score

is near the ground truth location. Using this, an object categorization algorithm can use

the ten best hits to have a high probability to match a good contour fragment.

3.3.5 Minimum rank of hits within a distance threshold to the ground

truth location (Rank)

The measure of the average and minimum distances of the best ten hits (B10AvgD and

B10MinD) look at the best ten ranked local minima, and answer the question if it is

feasible that the correct location will be found, if just looking at the ten best matches.

To answer the question, how many matches one should look at, the Rank measure

is suggested: It uses the local extrema within a certain radius around the ground truth

location and returns the rank of the best match w.r.t. the matching score.

To combine the results of the matches of all contour fragments to one value the median

is used. The threshold for the radius is
cfdiag

5 , where cfdiag is the length of the diagonal of

the contour fragment.
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3.3.6 Normalized minimum rank of hits within a distance threshold to

the ground truth location (RankNorm)

As the Rank measure is an absolute measure, it is heavily dependant on the amount of

local extrema. The RankNorm measure is the normalized Rank measure using the ExtCnt

as normalization factor. This shows the relative amount of local extrema outside the radius

threshold with a better matching score than the best one inside.



Chapter 4

Results

In chapter 3, the data and methods used for the experiments were presented, as well as

the evaluation of the results. Please refer back to chapter 3 for abbrevations. The detailed

results are found in appendix A and in this chapter the results are discussed.

This chapter starts with the discussion of the single measures of quality. This subsec-

tion summarizes the results and emphasises results, which are good, bad or unexpected.

A comparison between the experiments using 81 contour fragments and the experiments

using 400 contour fragments concludes the first part of this chapter

The second part is dedicated to a comparison of different methods and experiments.

This is done by ranking the methods w.r.t. to the measures of quality.

4.1 Single results

This section discusses the results of the single measurements of quality. For each measur-

ment of quality, interpretations of the results are given and attention is paid to unexpected

or noticable results.

4.1.1 WAGE

The WAGE values are relativly high for both: The set of experiments containing 81

contour fragments and the one containing 400 contour fragments. For the experiment

with 81 contour fragments the overall minimal value is 35.58 pixels while the maximum

is 259.31 pixels. Using all 400 contour fragments these values change to 74.08 and 304.24

pixels respectively. The main point of these numbers is, that the global extremum in the

matching score is rarely hitting the ground truth location.
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The really high values for the kernel approaches (StdKern1, StdKern2, GaussKern)

in both Bike experiments (table A.8 and A.3) can be explained by the high response to

clutter of these methods in the bottom left area of the image. An example is shown in

figure 4.1.

Figure 4.1: Example of a hit in the clutter, using StdKern1.

In the cow experiments (table A.10 and A.5) the methods incorporating orientation

planes show poor results. This is due to their hits in the middle left area (textiles on the

saddle). An example of one of these hits is shown in figure 4.2.

Matching the same contour fragment to the cow image with the DT method, it is seen

(figure 4.3) that it hits in the clutter caused by the dirt in the middle bottom area of the

image.

If one takes a closer look at these two clutter regions (figure 4.4), it is seen that the

left region contains more vertical edges than the region on the right. The corresponding

contour fragment (figure 3.8) also consists of mostly vertical edges.

The best result is achieved by the StdKern2 OP method on the car dataset (table

A.4). Only twelve of the 81 contour fragments in this experiment were matching at wrong

locations.

Summarizing the results on the WAGE quality measure, it can be said that low values

indicate a good algorithm, as seen with the StdKern2 OP method on the car 81 dataset,
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Figure 4.2: Example of a hit in the clutter using DT OP.

Figure 4.3: Example of a hit in the clutter using DT.

Figure 4.4: Clutter for hits of DT OP on the left, and clutter for hits of DT on the right.
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Dataset Extrema Count

Bike 1550.23

Car 772.65

Cow 650.41

P1 554.07

P2 312.3

Table 4.1: Average Extrema counts on datasets, using 400 contour fragments.

but high values have to be considered with care, because it often depends on the data

where a wrong hit finally ends up. This was clearly seen in the comparison between the

DT and DT OP method on the cow datasets. If those two regions were to be exchanged,

the DT OP method would have scored much better than the DT method.

4.1.2 ExtCnt

The average extrema count depends heavily on the data. The extrema count in the bike

dataset is quite high, while it is quite low for the person2 dataset (table 4.1). The extrema

count correlates with the amount of edge pixels, the inverse size of the contour fragment

and the size of the image.

Almost ten percent of the bike image area are edge pixels and the contour fragment

is quite small, whereas the person2 image has a low amount of edge pixels and a large

contour fragment.

4.1.3 B10AvgD

Inspired by Opelts method, using the best ten hits, it is analyzed if this contributes to a

better result. The first measure to be looked at is the average distance of the best ten hits

to the ground truth location. As can be seen in tables A.3 - A.12, the distances are all

above 100 pixels. These high values indicate that most of the best ten hits are off target.

An example of this is shown in figure 4.5. Most hits, including the best hit, are in the

clutter on the left side, while three hits are at some other random location and the correct

location is hit once.

4.1.4 B10MinD

To further analyze Opelt´s idea, only the minimal distance of the best ten hits is evaluated.

As expected, this measure is much better than the B10AvgD measure. In the example
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Figure 4.5: Best 10 hits on an image using EMD (best hit is green).

seen in figure 4.5, nine of the then best hits are really far away from the ground truth

location, but one hits it nearly perfectly.

The best results in the experiments with 400 contour fragments are a bit above 30

pixels. For large images Opelt accepted a deviation of 30 pixels in the hit accuracy for

contour fragments. The methods which get close to 30 pixels in these experiments are

already suited for the Boundary Fragment Model.

Looking at the results of the experiments using only 81 contour fragments, many

methods achieve results considerably below 30 pixels. These results combined with the

results of subsection 4.1.3 show that there are many hits not related to the object the

contour fragment stem from, but most of the time one hit is actually hitting the ground

truth location. These findings also back up the strategy of getting a good amount of

hits (which are mostly false positives) and then try to find the good one by high level

processing.

4.1.5 Rank

The best ranked hit within a certain distance is the inverse view on the B10MinD. The

results using 400 contour fragments are way above 10 for all images except the car image.

Using only 81 contour fragments the better methods are mostly below 10.

These results indicate that for smaller transformations (experiments with 81 contour

fragments) the rank threshold 10, chosen by Opelt, is viable. For bigger transformations

(400 contour fragments) this is not true and a higher rank threshold should be chosen, if
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it is still possible to distinguish the good hits from the bad hits by high level processing.

4.1.6 RankNorm

Due to the high variance on the extrema count between various methods, one should look

at a normalized version of the best rank. Comparing the methods “DT2 OP Var Add” and

“DT OP Var Mult”, on the Person81 experiment, shows the importance of normalizing the

rank: While the former has a much better best rank (4 vs 12) comparing the normalized

rank reveals that both ranks are around 2.5% of the respective extrema count.

On a more general view it is seen, that the best results from the experiments with

400 contour fragments are ranked within 5% of the extrema count and within 1% of the

extrema count for the experiments using 81 contour fragments.

Depending on the method to distinguish the good hits from the bad hits, it could

be useful to find a certain relative rank threshold t during the learning phase and then

analyze the t−best hits to find the object.

4.1.7 Comparision between 81 and 400 contour fragments

The extracted contour fragments were originally transformed using 400 different affine

transformations (one being the identity transformation). From these 400 contour frag-

ments a subset of 81 contour fragments is chosen to represent a less severe set of distor-

tions.

The main expectation are better results on the set of 81 contour fragments than on

the set of 400 contour fragments. This expectation is met. Furthermore, the results

of the experiments on the data sets containing 81 contour fragments suggest that the

better methods are robust to the class of transformations used for creating the 81 contour

fragments. This can not be said for the experiments using 400 contour fragments.

4.2 Ranking of methods

This section discusses how the different methods perform in relation to each other. After an

explanation how to combine multiple results to one ranking, the influence of orientation

information is analyzed, whether Opelt´s or Shotton´s method performs better and if

squaring the distance increases the quality of the matches. A special look is taken at

the EMD and finally the overall rankings are discussed. The detailed rankings of the

individual methods are given in tables A.13 to A.24.
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4.2.1 Computation of rankings using multiple measures

To compute a ranking from multiple individual measures (e.g. B10MinD and Rank) one

could add up the rankings in the individual measures. By doing that, the information how

well two methods performed relative to each other is lost. For example, the second best

method being just a bit worse than the best method would yield the same result as the

best method being way better than the second best.

To preserve this information the result of a method ri on one particular measure (e.g.

WAGE for DT) is normalized by the sum of the results on that measure in that experiment,

where N is the count of methods:

ri =
ri∑N
i=1 ri

(4.1)

Using this approach, all results are comparable and weighted equally. The basis for a

ranking using multiple measures is now just the sum of the normalized results ri of these

measures.

4.2.2 Influence of orientation information

Both contributions, Opelt et al. [20] and Shotton et al. [26], claimed that information about

the orientation of edges improves the localization of contour fragments. In section 4.2.3

it is argued, that in general the orientation planes are the better method to incorporate

orientation information. Therefore, the DT and DT OP methods are compared to draw a

conclusion about the influence of orientation information.

Comparing the rankings in the experiments using 81 contour fragments, the DT OP

method perfoms a bit better then the DT method (table A.29). Taking a closer look at

the results, it is seen, that the DT OP performs much better than DT on the Bike, Car

and Person1 data set, a bit worse on the Cow dataset and much worse on the Person2

data set (see tables A.25 and A.26).

On the experiments with 400 contour fragments the DT OP method is placed one

rank worse than the DT method (table A.30). Again, looking at the detailed results, it

is revealed that the Person2 data set is prohibiting a better result of the DT OP method

(see tables A.27 and A.28) .

In section 4.2.3 it is also pointed out, that on the Person2 data set, DT Shot performs

much better than DT OP. Even if DT OP is not improving the result in each experiment,
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information about the orientation does.

4.2.3 Orientation planes or argument distance transform?

In the DT OP method, the standard distance transform is augmented by Opelt´s orien-

tation planes, whereas DT Shot augments the standard distance transform by Shotton´s

argument distance transform. In both sets of experiments, 81 and 400 contour fragments,

DT OP beats DT Shot, by 4 and 3 ranks respectively (see tables A.29 and A.30).

An interesting fact is, that while DT OP performed good on the bike, car, cow and

person1 data sets and bad on the person2 data set, DT shot performs good on the person2

data set, and bad on the other four. The seemingly complementary behaviour should be

analyzed in a further work, using more images, where DT OP is doing well on one half

and DT Shot on the other half. One image is not enough to draw conclusions from.

4.2.4 Squaring the distance

One suggested modification of the standard chamfer matching (DT) is to square the result

of the distance transform (see section 2.1.2).

The major advantage is the reduction of the extrema count. The DT2 method has

fewer extrema in each experiment and the combination with orientation planes (DT2 OP)

leads to the lowest extrema count in all experiments (see tables A.14 - A.20).

In the overall rankings of the experiments with 81 contour fragments (table A.29),

DT2 is slightly better then DT (4th rank vs. 6th rank), but this is only due to the better

extrema count. Adding orientation planes, DT2 OP is ranked 9th, while DT OP is ranked

on 7th place.

Using 400 contour fragments (table A.30), the results are similar, except that DT2 is

ranked on second place. Again, the better result in comparison with DT is due to the

lower extrema count.

4.2.5 EMD

Due to the high requirements in both memory and computing performance, experiments

for the EMD were only conducted for the Cow and Person1 datasets for both 400 and 81

contour fragments, and the Bike dataset for 81 contour fragments.

Despite the computational effort put into the experiments, the suggested method of

applying the EMD to the problem of finding contour fragments in images is not suitable.

For most experiments the EMD is ranked around place 10, the only exceptions made
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for the WAGE in the Person1/400 experiment (table A.19, rank one) and the B10AvgD

measure in the Person1/81 experiment (table A.15, rank two).

4.2.6 Overall rankings

In tables A.29 and A.30 the final rankings using all measures are seen for the experiments

using 81 and 400 contour fragments, respectively.

It is seen that DT OP Var Mult is the best ranked method in both experiments,

followed by DT OP Var Add and DT2 OP Var Mult in the experiments using 81 contour

fragments, and DT2 and DT OP Var Add in the experiments using 400 contour fragments.

A fact to note is the good ranking of the variance method. Expecting only a mediocre

result, because the variance of the distance values only tells how much they change and

not the actual values, it is shown by these experiments, that the variance is better than

the standard chamfer matching algorithm (DT).

Combining it with the DT2 OP results, it is shown, that the variance of distance values

can improve methods which are not so good on their own. Furthermore it is shown, that

the variance adds new and valuable information.

The methods based on the distance transform seem to be better suited to tackle the

problem at hand. In both sets of experiments these methods are ranked on top, whereas

the kernel based methods are ranked at the end of the list. The experiments presented by

Dao et al. [9] were done on images with less clutter, wheras the results presented in this

work suggest that clutter is a serious problem for kernel based methods.

Also EMD is ranked worse than the distance based methods. Beside the bad results

its runtime is another reason not to use it.





Chapter 5

Conclusion

To conclude this master thesis a summary of the presented work is given, as well as a

lookout for possible work in the future.

5.1 Summary

In recent years, object categorization algorithms exploiting contour features were pre-

sented. Two examples are the works by Opelt et al. [20] and Shotton et al. [26]. Both

works rely on the chamfer matching algorithm presented by Borgefors [3] extended by

orientation information. Motivated by the lack of analysis about matching contour frag-

ments to images, this work tries to contribute a piece of knowledge about the properties

of contour fragment matching.

Starting from the distance transform [3] and the edge potential functions [9], aug-

mentations and modifications are presented which generate a multitude of methods to be

evaluated. Some of the modifications are already known in literature (e.g. the orientation

planes [20] and argument distance transform [26]), whereas others are newly introduced

into the context of matching contours to images (e.g. variance of distances, and oriented

gaussian kernel). An adaption of the Earth Mover´s Distance (EMD) is also presented,

as it became a popular choice for computing distances in recent years.

To evaluate methods for matching contours to images, new measurements of the qual-

ity are introduced. These measurements capture properties of the methods which are

related to the success of matching a contour in an image. These measurements are newly

introduced and should help to not only compare methods but also to better understand

them and their effects on different images.
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Finally the most important contribution of this work is the result of the evaluation. It

is seen, that the original distance transform performs quite well, but especially the newly

introduced idea of not only using the mean but also the variance of the distances improved

the matching quality.

The comparison of the B10AvgD and B10MinD measurement shows, that contour

fragments probably will always hit in regions of the image unrelated to the object which

is searched for. This should be taken into account by methods for object categorization

and handled in a proper way.

Clutter is inevitable in real world scenes and it has been shown, that the standard

algorithms are prone to it. Using the variance additional to the mean of the distances in

the distance transform improves the robustness against clutter, but to completely solve

the problem, higher level methods would have to be incorporated.

The evaluation at hand shows the group of methods based on the distance transform

clearly ahead, while the adaption of the EMD and the methods based on the edge potential

functions are not performing as well. The overall best method in this evaluation is the

distance transform augmented by orientation planes and the variance.

5.2 Future work

This work is giving a first look at the problem of matching contour fragments to images.

Besides some answers also new questions are found.

Applying a less severe affine transformation to the contour fragments in the data set

with 81 contour fragments led to an increase of performance over all methods. It is still

to be examined which parameters (scale, rotation, skew) of the affine transformation are

influencing the matching result to which degree. Furthermore the robustness of the match-

ing result w.r.t. to the parameters should be analyzed. Knowledge about the behaviour

of contour matching algorithms (e.g. slow degradation or abrupt break down), when the

contour fragment is not matching perfectly, is of good use when designing a method for

object categorization.

While using affine transformations to create distorted contour fragments to test against

the images is a controlled and reproducable way creating a test data set, extracting contour

fragments from many images of a particular object category could give more insights in to

the actual properties of real world objects. While the affine transformation can capture

the variants of taking an image of an object, it can not capture the variants of objects

within an object category.



5.2. Future work 51

The data for the conducted experiments are five images and one contour fragment

extracted from each image (see section 3.1 for details). These images were chosen within

a context of a general approach. If one has a specific application in mind, the data used

to conduct the experiments should be tailored to that application. Not only do object

categories have different properties (e.g. rigid vs. non-rigid objects) but also the technical

specifications of the imaging system and environmental factors should be considered.

Finally the results of this work should be incorporated into an object categorization

algorithm. If multiple methods are implemented, one could find correspondences between

the quality of the object categorization method and the quality measures presented in

this work. This would render further analysis of methods matching contour fragments to

images more precise.





Appendix A

Data

In this appendix the detailed results are given. In subsections A.1 and A.2 the results of

the individual experiments are given. A single table gives the measurements of qualitiy for

each method for one image-contour set pair. E.g. Bike81 indicates the set of experiments,

where the bike image and the corresponding contour set with 81 contour fragments are

used.

Subsections A.3 and A.4 show how the different methods are ranked to each other

in one measurement of quality. The tables in these subsections allow the comparison of

results in one measurement of quality in all images.

Subsection A.5 integrates the results of all measurements of quality per image and

shows the rankings of the methods. The method of integration is explained in section

4.2.1.

The final subsection A.6 integrates the results of the single images to an overall ranking.

Again using the methods explained in section 4.2.1.

In table A.1 the abbrevations of the methods are explained, the methods are explained

in sections 2 and 3.2.

The abbrevations of the measurements of quality are given in table A.2 and explained

in section 3.3.
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DT Distance transform

DT OP Distance transform with orientation planes

DT2 Distance transfrom squared

DT2 OP Distance transform squared with orientation planes

DT Shot Distance transform with argument distance transform

StdKern1 Standard kernel 1

StdKern2 Standard kernel 2

StdKern2 OP Standard kernel 2 with orientation planes

GaussKern Gaussian kernel

Var Variance of the distances

Var OP Variance of the distances with orientation planes

EMD Earth Mover´s Distance

DT OP Var Add Sum of DT OP and Var

DT2 OP Var Mult Product of DT2 OP and Var

DT2 OP Var Add Sum of DT2 OP and Var

DT OP Var Mult Product of DT OP and Var

Table A.1: Abbrevations of the methods.

WAGE Weighted average distance of global extrema to
ground truth location

ExtCnt Amount of local Extrema

B10AvgD Average distance of the best ten hits to
ground truth location

B10MinD Minimum distance of the best ten hits to
ground truth location

Rank Minimum rank of hits within a distance threshold
to the ground truth location

RankNorm Normalized minimum rank of hits within a
distance threshold to the ground truth location

Table A.2: Abbrevations of the measurements of quality.

A.1 Evaluation from 81 contour fragments

This section shows the results of the experiments with 81 contour fragments. Each table

corresponds to one image.
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WAGE ExtCnt B10AvgD B10MinD Rank RankNorm

DT 85,92 2576,8 140,53 13,93 4 0,0016

DT OP 42,48 694,48 124,23 10,65 1 0,0014

DT2 84,64 1632,3 138,36 13,4 4 0,0025

DT2 OP 57,12 339,37 150,88 10,84 2 0,0059

DT Shot 215,04 2609,6 249,31 100,31 42 0,0161

StdKern1 304,96 1668,6 287,87 236,45 471 0,2823

StdKern2 302,96 1292,9 294,17 256,15 625 0,4834

StdKern2 OP 98,16 2425,1 102,15 15,47 3 0,0012

GaussKern 256,72 918,81 253,05 102,48 37 0,0403

Var 83,68 2305,7 139,9 11,45 4 0,0017

Var OP 154,8 2083,9 195,02 37,66 27 0,0130

EMD 140,08 3088,9 193,47 12,04 10 0,0032

DT OP Var Add 44,8 1111,8 117,85 9,73 1 0,0009

DT2 OP Var Mult 58,8 1813,6 103,49 8,53 2 0,0011

DT2 OP Var Add 56,56 412,89 148,91 10,88 2 0,0048

DT OP Var Mult 71,04 1961,4 105,03 8,68 2 0,0010

Table A.3: Results: Bike81

WAGE ExtCnt B10AvgD B10MinD Rank RankNorm

DT 67,52 1171,5 120,88 26,17 1 0,0009

DT OP 40,96 520,21 111,89 19,61 1 0,0019

DT2 77,6 535,74 123,43 21,88 1 0,0019

DT2 OP 78,48 274,59 130,88 22,72 1 0,0036

DT Shot 69,68 1193,7 120,6 30,2 1 0,0008

StdKern1 182,8 1004,5 183,49 128,16 47 0,0468

StdKern2 184,32 599,95 190,11 159,05 91 0,1517

StdKern2 OP 47,44 1769,5 127,48 26,31 1 0,0006

GaussKern 195,36 611,99 189,03 78,52 15 0,0245

Var 81,92 862,58 122,57 27,09 1 0,0012

Var OP 98,96 922,99 123,09 34,44 1 0,0011

EMD

DT OP Var Add 41,84 674,73 107,87 19,76 1 0,0015

DT2 OP Var Mult 69,6 647,73 108,18 25,61 1 0,0015

DT2 OP Var Add 76,96 354,14 128,9 21,64 1 0,0028

DT OP Var Mult 66,48 730,43 112,86 22,71 1 0,0014

Table A.4: Results: Car81
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WAGE ExtCnt B10AvgD B10MinD Rank RankNorm

DT 112,5 821,46 147,34 62,02 32 0,0390

DT OP 223,44 299,84 234,13 85,71 14 0,0467

DT2 102,19 514,94 151,78 64,78 30 0,0583

DT2 OP 255,06 181,3 234,88 105,14 30 0,1655

DT Shot 118,19 832,07 128,33 93,65 171 0,2055

StdKern1 112,25 389,56 123,78 105,25 124 0,3183

StdKern2 112,25 389,56 123,78 105,25 124 0,3183

StdKern2 OP 155,25 1778,4 155,73 107,07 97 0,0545

GaussKern 113,44 304,49 142,9 104,53 55 0,1806

Var 118,44 925,43 156,54 66,19 18 0,0195

Var OP 235,38 699,14 237,43 128,6 74 0,1058

EMD 259,31 1606,7 241,54 127,86 75 0,0467

DT OP Var Add 198,06 554,27 234 73,55 11 0,0198

DT2 OP Var Mult 197,44 704,23 220,66 67,39 14 0,0199

DT2 OP Var Add 236,81 239,25 239,64 106 30 0,1254

DT OP Var Mult 135,13 804,81 181,27 59,89 11 0,0137

Table A.5: Results: Cow81

WAGE ExtCnt B10AvgD B10MinD Rank RankNorm

DT 110,85 583,83 156,34 51,52 96 0,1644

DT OP 107,2 294,72 203,82 17,6 1 0,0034

DT2 122,58 345,95 175,29 49,32 77 0,2226

DT2 OP 173,23 136,33 188,8 24,55 4 0,0293

DT Shot 168,37 601,09 214,7 58,23 176 0,2928

StdKern1 296,29 700,5 245,89 128,09 305 0,4354

StdKern2 267 340,23 265,19 156,72 212 0,6231

StdKern2 OP 191,84 1840,5 201,83 92,15 533 0,2896

GaussKern 175,9 547,51 211,38 60,09 148 0,2703

Var 139,81 573,14 189,83 50,65 33 0,0576

Var OP 204,21 521,84 169,9 36,16 33 0,0632

EMD 138,44 1217 161,2 61,63 208 0,1709

DT OP Var Add 145,72 405,46 196,08 22,4 3 0,0074

DT2 OP Var Mult 205,59 427,06 181,5 33,29 9 0,0211

DT2 OP Var Add 172,5 178,65 188,02 24,58 4 0,0224

DT OP Var Mult 145,07 472,84 180,27 37,43 13 0,0275

Table A.6: Results: Person1 81
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WAGE ExtCnt B10AvgD B10MinD Rank RankNorm

DT 82,32 273,9 95,78 23,57 3 0,0110

DT OP 104,88 209,57 112,77 61,29 120 0,5726

DT2 73,2 150,22 104,99 25,34 3 0,0200

DT2 OP 104,58 113,11 110,92 59,82 95 0,8399

DT Shot 81,54 288 103,04 24,86 4 0,0139

StdKern1 95,58 613,96 114,09 75,98 137 0,2231

StdKern2 105,3 341,51 105,27 76,78 151 0,4422

StdKern2 OP 120,6 1079,8 126,35 85,96 82 0,0759

GaussKern 125,7 377,54 114,27 37,98 14 0,0371

Var 72,96 292,02 103,71 22,08 2 0,0068

Var OP 102,3 355,01 106,65 67,87 235 0,6619

EMD

DT OP Var Add 93,54 255,22 107,19 49,19 37 0,1450

DT2 OP Var Mult 90 201,2 101,38 30,67 8 0,0398

DT2 OP Var Add 99,54 139,05 106,46 56,58 81 0,5825

DT OP Var Mult 82,62 243,78 99,85 37,43 3 0,0123

Table A.7: Results: Person2 81

A.2 Evaluation from 400 contour fragments

This section shows the results of the experiments with 400 contour fragments. Each table

corresponds to one image.

WAGE ExtCnt B10AvgD B10MinD Rank RankNorm

DT 119,2 2748,4 173,03 33,22 56,5 0,0206

DT OP 90,4 701,17 144,19 22,8 187 0,2667

DT2 126,24 1529,3 176,82 38,33 44 0,0288

DT2 OP 95,28 340,57 167,51 28,9 203,5 0,5975

DT Shot 242,64 2509,8 260,41 133,3 327 0,1303

StdKern1 304,24 1661,9 280,4 223,81 719 0,4326

StdKern2 300,64 1259,6 288,24 238,14 656 0,5208

StdKern2 OP 107,6 2463,4 105,77 26,16 14 0,0057

GaussKern 259,68 903,39 261,79 142,24 317,5 0,3515

Var 123,2 2167 180,22 44,25 53 0,0245

Var OP 197,12 1895,7 209,75 69,43 291,5 0,1538

EMD

DT OP Var Add 79,6 1102,7 140,45 22,08 204,5 0,1855

DT2 OP Var Mult 88 1704,5 133,55 24,8 30 0,0176

DT2 OP Var Add 92,48 416,26 113,2 28,8 211,5 0,5081

DT OP Var Mult 86,72 1849,7 137,65 24,44 21,5 0,0116

Table A.8: Results: Bike 400
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WAGE ExtCnt B10AvgD B10MinD Rank RankNorm

DT 106,24 1090,1 134,82 57,24 8 0,0073

DT OP 79,76 570,54 124,55 33,99 1 0,0018

DT2 112 478,57 137,95 51,25 7 0,0146

DT2 OP 105,2 282,75 137,51 43,09 4,5 0,0159

DT Shot 102 1111,3 135,76 55,73 9 0,0081

StdKern1 32,96 1290,9 173,34 122,94 65,5 0,0507

StdKern2 139,76 690,63 176,38 142,53 97 0,1405

StdKern2 OP 74,08 2078,9 126,12 30,71 1 0,0005

GaussKern 56,88 741,89 179,83 88,45 25,5 0,0344

Var 116,72 782,94 141 58,37 10,5 0,0134

Var OP 116,32 898,14 132,31 56,9 23,5 0,0262

EMD

DT OP Var Add 87,84 631,47 123,77 35,31 2 0,0032

DT2 OP Var Mult 108,8 587,86 130,02 54,04 6 0,0102

DT2 OP Var Add 106,16 345,72 135,21 42,12 4 0,0116

DT OP Var Mult 105,84 668,99 131,88 52,41 6 0,0090

Table A.9: Results: Car 400

WAGE ExtCnt B10AvgD B10MinD Rank RankNorm

DT 125,13 741,63 140,69 81,27 60,5 0,0816

DT OP 255,25 301,41 242,16 122,34 39 0,1294

DT2 129,5 449,61 143,93 82,65 47 0,1045

DT2 OP 261,25 172,41 238,97 124,22 50,5 0,2929

DT Shot 118,94 754,34 128,89 99,45 146 0,1935

StdKern1 17,06 460,28 132,24 104,32 106 0,2303

StdKern2 17,06 459,87 132,24 104,32 106 0,2305

StdKern2 OP 153,5 1838,5 154,51 110,2 146 0,0794

GaussKern 19,56 328,69 140,9 102,75 57 0,1734

Var 139,13 819,55 147,86 82,28 46,5 0,0567

Var OP 242 651,11 238,89 144,09 105 0,1613

EMD 240,38 1467,8 220,69 126,53 107,5 0,0732

DT OP Var Add 246,63 529,5 245,76 115,87 29 0,0548

DT2 OP Var Mult 236,31 619,8 222,36 94,01 47,5 0,0766

DT2 OP Var Add 254,94 229,43 241,83 126,6 44 0,1918

DT OP Var Mult 173,63 708,81 176,2 79,2 40,5 0,0571

Table A.10: Results: Cow 400
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WAGE ExtCnt B10AvgD B10MinD Rank RankNorm

DT 140,7 541,8 156,66 56,92 171 0,3156

DT OP 166,03 267,96 191,25 30,76 11 0,0411

DT2 147,66 312,82 170,15 55,54 106 0,3389

DT2 OP 199,44 129,2 171,59 32,57 15 0,1161

DT Shot 185,77 559,53 201,06 64,45 231 0,4128

StdKern1 137,3 7334,9 223,73 111,91 315 0,0429

StdKern2 107,77 4832,4 253,24 128,87 236,5 0,0489

StdKern2 OP 106,07 6823,3 203,4 95,05 528 0,0774

GaussKern 152,19 5798,1 203,41 59,88 165 0,0285

Var 149,03 509,2 183,77 57,84 102,5 0,2013

Var OP 175,9 491,48 159,42 41,39 56 0,1139

EMD 139,97 1163,9 157,84 63,33 278 0,2389

DT OP Var Add 174,28 371,95 173,73 39,06 21 0,0565

DT2 OP Var Mult 204,7 385,16 169,18 49,78 60,5 0,1571

DT2 OP Var Add 199,84 170,29 167,76 33,27 16 0,0940

DT OP Var Mult 180,99 426,27 173,31 51,37 77,5 0,1818

Table A.11: Results: Person1 400

WAGE ExtCnt B10AvgD B10MinD Rank RankNorm

DT 84,9 249,55 98,26 40,43 13 0,0521

DT OP 107,7 200,98 118,15 70,71 132 0,6568

DT2 81,84 134,6 103,44 39,65 22 0,1634

DT2 OP 106,56 103,52 116,76 69,65 103,5 0,9998

DT Shot 86,64 265,22 102,91 41,18 54 0,2036

StdKern1 110,22 593,83 116,6 78,34 181 0,3048

StdKern2 116,76 316,44 110,99 82,74 178 0,5625

StdKern2 OP 126,6 1097,7 128,18 92,43 142 0,1294

GaussKern 128,52 365,84 112,29 49,57 45 0,1230

Var 87,24 263,41 98,82 37,37 16 0,0607

Var OP 105,18 324,27 107,68 73,83 230 0,7093

EMD

DT OP Var Add 98,76 234,26 106,21 58,52 68,5 0,2924

DT2 OP Var Mult 98,7 184,58 99,78 46,56 54 0,2926

DT2 OP Var Add 102,12 129,1 113,2 66,73 101 0,7823

DT OP Var Mult 94,62 221,14 97,91 40,99 29,5 0,1334

Table A.12: Results: Person2 400
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A.3 Individual Rankings for results from 81 contour frag-

ments

This section shows the ranks of the methods for each measurement. This ranks are not to

be confused with the measurement Rank. The rankings reflect the results in section A.1.

Bike Car Cow Person1 Person2

DT 9 5 4 2 4

DT OP 1 1 12 1 12

DT2 8 9 1 3 2

DT2 OP 4 10 15 10 11

DT Shot 13 7 6 8 3

StdKern1 16 13 2 16 8

StdKern2 15 14 2 15 13

StdKern2 OP 10 3 9 12 14

GaussKern 14 15 5 11 15

Var 7 11 7 5 1

Var OP 12 12 13 13 10

EMD 11 16 4

DT OP Var Add 2 2 11 7 7

DT2 OP Var Mult 5 6 10 14 6

DT2 OP Var Add 3 8 14 9 9

DT OP Var Mult 6 4 8 6 5

Table A.13: Rankings: WAGE, 81 contour fragments
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Bike Car Cow Person1 Person2

DT 14 13 12 12 8

DT OP 3 3 3 3 5

DT2 7 4 7 5 3

DT2 OP 1 1 1 1 1

DT Shot 15 14 13 13 9

StdKern1 8 12 5 14 14

StdKern2 6 5 5 4 11

StdKern2 OP 13 15 16 16 15

GaussKern 4 6 4 10 13

Var 12 10 14 11 10

Var OP 11 11 9 9 12

EMD 16 15 15

DT OP Var Add 5 8 8 6 7

DT2 OP Var Mult 9 7 10 7 4

DT2 OP Var Add 2 2 2 2 2

DT OP Var Mult 10 9 11 8 6

Table A.14: Rankings: ExtCnt, 81 contour fragments

Bike Car Cow Person1 Person2

DT 8 6 5 1 1

DT OP 5 3 12 12 12

DT2 6 9 6 4 6

DT2 OP 10 12 13 8 11

DT Shot 12 5 3 14 4

StdKern1 15 13 1 15 13

StdKern2 16 15 1 16 7

StdKern2 OP 1 10 7 11 15

GaussKern 14 14 4 13 14

Var 7 7 8 9 5

Var OP 12 8 14 3 9

EMD 11 16 2

DT OP Var Add 4 1 11 10 10

DT2 OP Var Mult 2 2 10 6 3

DT2 OP Var Add 9 11 15 7 8

DT OP Var Mult 3 4 9 5 2

Table A.15: Rankings: B10AvgD, 81 contour fragments
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Bike Car Cow Person1 Person2

DT 10 8 2 10 2

DT OP 4 1 7 1 11

DT2 9 4 3 8 4

DT2 OP 5 6 10 3 10

DT Shot 13 11 8 11 3

StdKern1 15 14 11 15 13

StdKern2 16 15 11 16 14

StdKern2 OP 11 9 14 14 15

GaussKern 14 13 9 12 7

Var 7 10 4 9 1

Var OP 12 12 16 6 12

EMD 8 15 13

DT OP Var Add 3 2 6 2 8

DT2 OP Var Mult 1 7 5 5 5

DT2 OP Var Add 6 3 13 4 9

DT OP Var Mult 2 5 1 7 6

Table A.16: Rankings: B10MinD, 81 contour fragments

Bike Car Cow Person1 Person2

DT 8 1 9 10 2

DT OP 1 1 3 1 12

DT2 8 1 6 9 2

DT2 OP 3 1 6 3 11

DT Shot 14 1 16 12 5

StdKern1 14 15 14 15 13

StdKern2 15 16 14 14 14

StdKern2 OP 7 1 13 16 10

GaussKern 13 13 10 11 7

Var 8 1 5 7 1

Var OP 12 1 11 7 15

EMD 11 12 13

DT OP Var Add 1 1 1 2 8

DT2 OP Var Mult 3 1 3 5 6

DT2 OP Var Add 3 1 6 3 9

DT OP Var Mult 3 1 1 6 2

Table A.17: Rankings: Rank, 81 contour fragments
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Bike Car Cow Person1 Person2

DT 6 3 5 9 2

DT OP 5 10 7 1 12

DT2 8 9 9 11 5

DT2 OP 11 12 12 6 15

DT Shot 13 2 14 14 4

StdKern1 15 14 15 15 10

StdKern2 16 15 15 16 11

StdKern2 OP 4 1 8 13 8

GaussKern 14 13 13 12 6

Var 7 5 2 7 1

Var OP 12 4 10 8 14

EMD 9 6 10

DT OP Var Add 1 7 3 2 9

DT2 OP Var Mult 3 8 4 3 7

DT2 OP Var Add 10 11 11 4 13

DT OP Var Mult 2 6 1 5 3

Table A.18: Rankings: RankNorm, 81 contour fragments



A.4. Individual Rankings for results from 400 contour fragments 64

A.4 Individual Rankings for results from 400 contour frag-

ments

This section shows the ranks of the methods for each measurement. This ranks are not to

be confused with the measurement Rank. The rankings reflect the results in section A.2.

Bike Car Cow Person1 Person2

DT 8 8 5 2 2

DT OP 4 2 15 6 11

DT2 10 10 6 3 1

DT2 OP 6 5 16 12 10

DT Shot 12 4 4 10 3

StdKern1 15 14 2 16 12

StdKern2 14 13 2 15 13

StdKern2 OP 7 1 8 11 14

GaussKern 13 15 1 5 15

Var 9 12 7 4 4

Var OP 11 11 12 8 9

EMD 11 1

DT OP Var Add 1 3 13 7 7

DT2 OP Var Mult 3 9 10 14 6

DT2 OP Var Add 5 7 14 13 8

DT OP Var Mult 2 6 9 9 5

Table A.19: Rankings: WAGE, 400 contour fragments
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Bike Car Cow Person1 Person2

DT 15 13 12 11 8

DT OP 3 4 3 3 5

DT2 7 3 7 4 3

DT2 OP 1 1 1 1 1

DT Shot 14 14 13 13 10

StdKern1 8 12 5 14 14

StdKern2 6 5 5 5 11

StdKern2 OP 13 15 16 16 15

GaussKern 4 7 4 12 13

Var 12 10 14 10 9

Var OP 11 11 10 9 12

EMD 15 15

DT OP Var Add 5 8 8 6 7

DT2 OP Var Mult 9 6 9 7 4

DT2 OP Var Add 2 2 2 2 2

DT OP Var Mult 10 9 11 8 6

Table A.20: Rankings: ExtCnt, 400 contour fragments

Bike Car Cow Person1 Person2

DT 8 7 4 1 2

DT OP 6 2 15 11 14

DT2 9 11 6 6 6

DT2 OP 7 10 13 7 13

DT Shot 12 9 1 12 5

StdKern1 14 13 2 15 12

StdKern2 15 14 2 16 9

StdKern2 OP 1 3 8 13 15

GaussKern 13 15 5 14 10

Var 10 12 7 10 3

Var OP 11 6 12 3 8

EMD 10 2

DT OP Var Add 5 1 16 9 7

DT2 OP Var Mult 3 4 11 5 4

DT2 OP Var Add 2 8 14 4 11

DT OP Var Mult 4 5 9 8 1

Table A.21: Rankings: B10AvgD, 400 contour fragments
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Bike Car Cow Person1 Person2

DT 8 11 2 9 3

DT OP 2 2 12 1 11

DT2 9 6 4 8 2

DT2 OP 7 5 13 2 10

DT Shot 12 9 6 13 5

StdKern1 14 14 8 15 13

StdKern2 15 15 8 16 14

StdKern2 OP 5 1 10 14 15

GaussKern 13 13 7 11 7

Var 10 12 3 10 1

Var OP 11 10 16 5 12

EMD 14 12

DT OP Var Add 1 3 11 4 8

DT2 OP Var Mult 4 8 5 6 6

DT2 OP Var Add 6 4 15 3 9

DT OP Var Mult 3 7 1 7 4

Table A.22: Rankings: B10MinD, 400 contour fragments

Bike Car Cow Person1 Person2

DT 6 9 10 11 1

DT OP 7 1 2 1 11

DT2 4 8 6 9 3

DT2 OP 8 5 8 2 10

DT Shot 13 10 15 12 6

StdKern1 15 14 12 15 14

StdKern2 14 15 12 13 13

StdKern2 OP 1 1 15 16 12

GaussKern 12 13 9 10 5

Var 5 11 5 8 2

Var OP 11 12 11 5 15

EMD 14 14

DT OP Var Add 9 3 1 4 8

DT2 OP Var Mult 3 6 7 6 6

DT2 OP Var Add 10 4 4 3 9

DT OP Var Mult 2 6 3 7 4

Table A.23: Rankings: Rank, 400 contour fragments
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Bike Car Cow Person1 Person2

DT 4 4 7 12 1

DT OP 10 2 9 1 12

DT2 6 10 8 13 6

DT2 OP 15 11 16 5 15

DT Shot 7 5 13 14 7

StdKern1 12 14 14 15 10

StdKern2 14 15 14 16 11

StdKern2 OP 1 1 6 10 4

GaussKern 11 13 11 11 3

Var 5 9 2 8 2

Var OP 8 12 10 4 13

EMD 4 9

DT OP Var Add 9 3 1 2 8

DT2 OP Var Mult 3 7 5 6 9

DT2 OP Var Add 13 8 12 3 14

DT OP Var Mult 2 6 3 7 5

Table A.24: Rankings: RankNorm, 400 contour fragments
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A.5 Ranking using all measures

This section shows the rankings of the methods for each image. The single results are first

normalized using the method explained in section 4.2.1 and then integrated by using the

mean over all measurements of quality. Tables A.25 and A.27 give the integrated results,

tables A.26 and A.28 the corresponding rankings.

Bike Car Cow Person1 Person2

DT 0.0350 0.0428 0.0444 0.0539 0.0351

DT OP 0.0178 0.0288 0.0484 0.0262 0.0912

DT2 0.0290 0.0350 0.0411 0.0527 0.0316

DT2 OP 0.0194 0.0335 0.0652 0.0297 0.0952

DT Shot 0.0770 0.0444 0.0888 0.0771 0.0368

StdKern1 0.2165 0.1633 0.0851 0.1215 0.0944

StdKern2 0.2780 0.2828 0.0851 0.1228 0.0979

StdKern2 OP 0.0328 0.0492 0.0805 0.1384 0.1005

GaussKern 0.0745 0.0997 0.0590 0.0728 0.0518

Var 0.0326 0.0408 0.0429 0.0448 0.0347

Var OP 0.0507 0.0456 0.0769 0.0444 0.1204

EMD 0.0465 0.0867 0.0796

DT OP Var Add 0.0199 0.0305 0.0462 0.0314 0.0546

DT2 OP Var Mult 0.0244 0.0350 0.0475 0.0381 0.0378

DT2 OP Var Add 0.0195 0.0334 0.0614 0.0299 0.0803

DT OP Var Mult 0.0264 0.0353 0.0409 0.0367 0.0377

Table A.25: Rankings: Combined results of all measures on datasets, 81 contour fragments.
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Bike Car Cow Person1 Person2

DT 10 9 4 10 3

DT OP 1 1 7 1 10

DT2 7 5 2 9 1

DT2 OP 2 4 10 2 12

DT Shot 13 10 16 12 4

StdKern1 14 14 13 14 11

StdKern2 15 15 13 15 13

StdKern2 OP 9 12 12 16 14

GaussKern 12 13 8 11 7

Var 8 8 3 8 2

Var OP 11 11 11 7 15

EMD 15 13

DT OP Var Add 4 2 5 4 8

DT2 OP Var Mult 5 6 6 6 6

DT2 OP Var Add 3 3 9 3 9

DT OP Var Mult 6 7 1 5 5

Table A.26: Rankings: Combined rankings of all measures on datasets, 81 contour frag-
ments.

Bike Car Cow Person1 Person2

DT 0.0476 0.0547 0.0495 0.0622 0.0389

DT OP 0.0467 0.0330 0.0602 0.0333 0.0803

DT2 0.0402 0.0480 0.0452 0.0553 0.0393

DT2 OP 0.0645 0.0421 0.0721 0.0353 0.0833

DT Shot 0.0943 0.0553 0.0709 0.0773 0.0499

StdKern1 0.1426 0.1352 0.0650 0.0990 0.0910

StdKern2 0.1435 0.1940 0.0650 0.1001 0.0896

StdKern2 OP 0.0367 0.0515 0.0843 0.1235 0.1044

GaussKern 0.0963 0.0899 0.0509 0.0655 0.0570

Var 0.0458 0.0560 0.0483 0.0542 0.0397

Var OP 0.0733 0.0701 0.0787 0.0443 0.0974

EMD 0.0827 0.0793

DT OP Var Add 0.0451 0.0361 0.0560 0.0375 0.0581

DT2 OP Var Mult 0.0327 0.0467 0.0576 0.0481 0.0517

DT2 OP Var Add 0.0574 0.0406 0.0647 0.0351 0.0759

DT OP Var Mult 0.0331 0.0469 0.0490 0.0502 0.0435

Table A.27: Rankings: Combined results of all measures on datasets, 400 contour frag-
ments.
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Bike Car Cow Person1 Person2

DT 8 9 4 10 1

DT OP 7 1 8 1 10

DT2 4 7 1 9 2

DT2 OP 10 4 13 3 11

DT Shot 12 10 12 12 5

StdKern1 14 14 10 14 13

StdKern2 15 15 10 15 12

StdKern2 OP 3 8 16 16 15

GaussKern 13 13 5 11 7

Var 6 11 2 8 3

Var OP 11 12 14 5 14

EMD 15 13

DT OP Var Add 5 2 6 4 8

DT2 OP Var Mult 1 5 7 6 6

DT2 OP Var Add 9 3 9 2 9

DT OP Var Mult 2 6 3 7 4

Table A.28: Rankings: Combined rankings of all measures on datasets, 400 contour frag-
ments.
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A.6 Overall rankings

In this section the overall results and rankings are given. The overall results are the mean

of the results in tables A.25 and A.27.

Rank Method Result

1 DT OP Var Mult 0.0354

2 DT OP Var Add 0.0365

3 DT2 OP Var Mult 0.0366

4 DT2 0.0379

5 Var 0.0392

7 DT OP 0.0422

6 DT 0.0425

8 DT2 OP Var Add 0.0449

9 DT2 OP 0.0486

10 DT Shot 0.0648

11 Var OP 0.0676

13 GaussKern 0.0710

14 StdKern2 OP 0.0716

12 EMD 0.0803

15 StdKern1 0.1362

16 StdKern2 0.1733

Table A.29: Rankings: Overall rankings and results on the experiments with 81 contour
fragments.
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Rank Method Results

1 DT OP Var Mult 0.0445

2 DT2 0.0456

3 DT OP Var Add 0.0466

4 DT2 OP Var Mult 0.0474

5 Var 0.0488

6 DT 0.0506

7 DT OP 0.0507

8 DT2 OP Var Add 0.0547

9 DT2 OP 0.0595

10 DT Shot 0.0695

11 GaussKern 0.0719

12 Var OP 0.0728

13 StdKern2 OP 0.0801

14 EMD 0.0810

15 StdKern1 0.1066

16 StdKern2 0.1185

Table A.30: Rankings: Overall rankings and results on the experiments with 400 contour
fragments.
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