
Graz University of Technology

Christof Rath, Bakk.techn.

Self-localization of a biped robot in the RoboCup™
Standard Platform League domain

Master’s thesis

Institute for Software Technology
Graz University of Technology

Inffeldgasse 16b/II, A – 8010 Graz
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Advisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Supervisor: Dipl.-Ing. Dr.techn. Gerald Steinbauer

Graz, (March, 2010)

ii

Always check the pool before you jump in—you never know!

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

iv

v

Acknowledgments

In order of appearance—almost.

My thanks to my always supporting family, to my aunt, who sponsored a big part of my
studies. To Ruth my love, who was always patient, even when it seemed to never end,
and who made with me the sole thing that really matters, our daughter Charlotta. My
thoughts to my grandmother, who would have loved to witness my graduation.

I want to thank Gerald Steinbauer, who brought me to the science of robotics and to
the RoboCup™, and who gave me the freedom to explore the topics and aspects of this
thesis, and to Franz Wotawa who had always an open door and a good advice. And, last
but not least, I want to thank my colleagues, for the nights we spent programming, for
the nights we spent out, and for the many hours we stood together to keep the spirit
alive, I could not have finished this work without your help.

vi

vii

Abstract

The topic of this thesis was the implementation and evaluation of a self-localization al-
gorithm for the biped robot Nao. The robot should be able to evaluate its pose, and
consequently its team members pose, on a soccer field of the RoboCup™ Standard Plat-
form League. A computationally efficient approach, based on the work of I.J. Cox, has
been implemented, and evaluated by the use of a simulator and the real Nao. The tests
with the real Nao were performed in a six-dimensional motion tracker facility, that is, it
provides translation and rotation in space, to get accurate reference data. Preliminary re-
sults show that the pose could be successfully estimated in 83 % of all evaluated datasets.
Furthermore, it could be shown how important proper synchronization of the various
datasources (like camera, hardware data, or intermediate results) on the real platform is.

Kurzfassung

Ziel dieser Arbeit war die Implementierung und Evaluierung eines Selbstlokalisationsalgo-
rithmus für den zweibeinigen Roboter Nao. Selbstlokalisation bedeutet in diesem Zusam-
menhang, dass der Roboter in der Lage ist, seine eigene Position auf einem Fussballfeld
der RoboCup™ Standard Plattform Liga zu kennen und folglich auch die Position der
anderen Roboter seines Teams. Der implementierte Algorithmus basiert auf der Ar-
beit von I.J. Cox und zeichnet sich durch den geringen Bedarf an Rechenleistung aus.
Zur Evaluierung wurde der Ansatz mittels Simulation und danach am echten Roboter
getestet. Die Tests am echten Roboter fanden in einer 6D-Motion Tracker Umgebung
statt. Der Motion Tracker liefert die Position und Orientierung der beobachteten Objekte
im Raum. Diese Daten dienten als Referenz für die Tests. Bisherige Resultate zeigen,
dass die Positionsbestimmung in 83 % der getesteten Datensätze erfolgreich durchgeführt
werden konnten. Als weiteres Ergebnis zeigte sich die Wichtigkeit, die unterschiedlichen
Datenquellen (Kamera, Hardwaredaten und Zwischenergebnisse) synchron zu halten, um
schlüssige Ergebnisse zu erhalten.

viii

Contents

Acknowledgments v

Abstract vii

1 Introduction 1

1.1 RoboCup™ Initiative . 2

1.2 History . 2

1.3 Timeline . 3

1.4 Soccer Leagues . 4

1.5 RoboCup™ Rescue . 7

1.6 RoboCup@Home . 8

1.7 RoboCup™ juniors . 9

2 Standard platform league 11

2.1 Team ZaDeAt . 12

2.2 The current platform — Aldebaran’s Nao v3 13

2.3 Gameplay . 19

3 Mathematical basics 23

3.1 Homogeneous coordinates and transforms 23

3.2 Denavit–Hartenberg transformation . 28

3.3 Back projection . 31

3.4 Kalman filter . 34

ix

x CONTENTS

4 Self-localization 41

4.1 Landmark detection . 41

4.2 Cox algorithm . 42

4.3 Adaptation of the Cox algorithm . 45

5 Implementation 49

5.1 Fawkes — A robot software framework 49

5.2 Components . 50

6 Results 61

6.1 Cox algorithm . 61

6.2 Ball detection . 71

6.3 Tournaments . 71

7 Conclusion 77

A Tracker test runs 81

List of Figures

2.1 Former and current standard platform . 11

2.2 Team logo . 12

2.3 Nao overview . 13

2.4 Hardware block diagram . 15

2.5 Camera locations . 16

2.6 Software framework . 18

2.7 Field layout according to the SPL rules 2009 19

2.8 Kick-off legal positions . 20

2.9 Basic SPL gamestates . 21

3.1 A single link . 28

3.2 A single link with assigned coordinate frames 28

3.3 Coordinate frame assignment . 30

3.4 Back projection of a pan/tilt camera . 32

3.5 Illustration of Kalman filters . 35

4.1 Goal poles triangulation . 42

4.2 Back projection: image coordinate vs. distance 45

4.3 Squared error vs. M-estimator . 46

4.4 Error functions for different line point structures 46

5.1 Fawkes synchronization hooks . 49

xi

xii LIST OF FIGURES

5.2 Nao software components . 51

5.3 Camera location: Hight h above ground, and the orientation in space, roll,
pitch, and yaw. The optional vector ~v can be used to improve the results. 51

5.4 Asynchronous camera/hardware data . 52

5.5 Fawkes ColorMap Editor . 54

5.6 Line detection in action . 56

5.7 Luminance channel analysis . 56

5.8 ZaDeAt game states for the RoboCup™ 2009 competitions 60

6.1 Initial poses of the first test set . 62

6.2 Placement of the static robots for the second test set 63

6.3 Setup for the data recording . 66

6.4 Tracking setup of the Nao . 67

6.5 Data synchronization: Tracker vs. Nao data logs 68

6.6 Original result of the test run 15 . 70

6.7 Average ball position estimates . 73

A.1–19 Results of the tracker test runs . 81

Chapter 1

Introduction

The topic of this thesis is the implementation and evaluation of a self-localization algo-
rithm for the biped robot Nao (see Section 2.2), as used in the RoboCup™ Standard
Platform League soccer domain. Self-awareness of robot systems is a crucial, but still
underdeveloped field in the science of robotics. Today, many systems rely on error-free
platforms, that is, in many cases errors are either undetected or ignored, which means
that the behaviour of robots is in many cases not dependent on the system status. If
such a system is erroneous its behaviour is often unpredictable.

In the soccer domain the minimum requirement, regarding self-localization, is to know
where the robot is relative to the ball and relative to the opponents goal. Given that, a
robot is able to approach the ball and to turn around the ball until there is a straight
line between robot, ball, and opponent goal, the robot will kick the ball somewhere in
the direction of the goal. By repetitively executing this procedure, a robot should finally
be able to score a goal. In this case the robot has no means to involve its team members
into the decision-making process, for example, another robot of the same team might be
closer to the ball and therefore faster. In the worst case two robots might be at, more or
less, the same distance to the ball. If both of them execute the same task, there is a good
chance that they will collide, but for sure, they will leave a big area of the field unguarded.
Obviously, without knowledge of the global position, chances are high to leave the field,
and to enter restricted areas on the field, which both would lead to penalties.

As mentioned above, there are many reasons for getting knowledge about the global
position, but at least when it comes to team-play, the robots of a team have to know
their own global positions, and the whereabouts of the other team members on the field
to coordinate the behaviours. By knowing the global position on the field, the robots can
position themselves on strategic locations (and avoid restricted areas), coordinate passes,
or evaluate the risks of the current situation.

1

2 CHAPTER 1. INTRODUCTION

1.1 RoboCup™ Initiative

The RoboCup™ was founded as an research and education initiative.
It is an attempt to foster artificial intelligens (AI) and intelligent
robotics research by providing standard problems. These standard
problems have to be easy to understand by a non-technical audience
but still complex enough to allow for a wide range of technologies and
research topics to be integrated, examined and evaluated on various levels of scientific
work. [Web98]

The ultimate goal of the RoboCup™ project is: “By the year 2050, a team of fully
autonomous humanoid robot soccer players shall win a soccer game, complying with the
official FIFA rules, against the winner of the most recent World Cup of Human Soccer.”

1.2 History

The idea of robots playing a game of soccer was first mentioned by Prof. Alan Macworth
in a paper called “On Seeing Robots” presented in 1992 and later published in a book
Computer Vision: System, Theory, and Applications [Mac93].

Independently, a group of Japanese researchers organized a Workshop on Grand Chal-
lenges in Artificial Intelligence in October 1992 in Tokyo. This workshop led to a serious
discussion of using the game of soccer for promoting science and technology. Mainly
two reasons take account for that: Almost everyone knows soccer, the goal behind the
game, and—at least—the basic roules. Therefore all participants know what the effort
is about. And also, soccer is a highly dynamic game and requires a lot of interaction
between the players. This offers a broad field of research and many challenges at every
topic of robotics. In June 1993, a group of researchers, including Minoru Asada, Ya-
suo Kuniyoshi, and Hiroaki Kitano, decided to launch a national robotic competition,
named Robot J-League. The J-League, Japans top league in professional soccer, was
founded in 1992. Due to the overwhelming reactions from researchers outside of Japan,
an international joint project was founded named the “Robot World Cup Initiative”.

It is to say that concurrent to the discussions held in Japan, several researchers already
used the domain of soccer for their work. For example, Itsuki Noda, at the Electrotechni-
cal Laboratory (ETL), a government research center in Japan. He conducted multi-agent
research within the soccer domain [Nod94] and started the development of a dedicated
simulator for soccer games. This simulator became later the official soccer server for
the RoboCup™ 2D soccer simulation league (see Subsection 1.4.1). The version 0 was
programmed in LISP and announced to be the first open system simulator for the soccer
domain enabling multi-agent systems research. The current version 12.1.3, as of January
2009, is covered under the LGPL [Web07] and can be found at SourceForge [Web09c].

1.3. TIMELINE 3

The first public demonstration of this simulator was made at the International Joint
Conference on Artificial Intelligence IJCAI-95.

The laboratory of Prof. Minoru Asada at the Osaka University and Prof. Manuela Veloso
and her student at that time Prof. Peter Stone of the Carnegie Mellon University had
also already been working on soccer playing robots. The participation of these early
pioneers in the domain of robot soccer has been very important for the success of the
RoboCup™.

The first competition has been the Pre-RoboCup-96 which was held during the Inter-
national Conference on Intelligence Robotics and Systems (IROS-96) in Osaka, Japan.
Eight teams, from Japan the USA and Australia, were competing in a simulation league
and there was a demonstration of real robots of the middle size league.

The year 1997 can be seen as a mile stone in the research for AI. In August 1997 the
first Robot World Cup Soccer Games and Conferences were held in conjunction with the
IJCAI-97 in Nagoya, Japan, with 38 participating teams from eleven countries.

1.3 Timeline

League/Year ’97 ’98 ’99 ’00 ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09
Soccer
2D simulation • ·
Small-size • ·
Middle-size • ·
SPL-4 ◦ • · †
Humanoid ◦ ◦ • ·
3D simulation • · · · · · · · · · · · · · · ·
SPL-2 ◦ • · · ·
Junior
Soccer ◦ • ·
Dance ◦ • ·
Rescue ◦ • ·
Rescue
Simulation ◦ • ·
Robot ◦ • ·
Service
@Home ◦ • · · · · · ·

Legend
◦ performances
• competitions
· · · competitions continued
† final year of competitions

4 CHAPTER 1. INTRODUCTION

1.4 Soccer Leagues

1.4.1 Simulation Leagues

source: robocupgamesprima2009

As one of the first leagues, that held competitions,
2D soccer simulation has a long tradition in the
RoboCup™. The games are conducted by a standard-
ized 2D soccer simulation server, the “RoboCup Soc-
cer Simulator” [Web09c]. This server administers the
game state and the world model (for example, which
player is where and what is insight, where is the ball,
etc.) and provides a noisy subset of the world model,
as sensory data, to the competing agents via UDP
packets.

Each competition participant provides an agent, an
executable that processes incoming sensory data and sends corresponding actions for the
team players. Each player has a number of randomized properties (for example, stamina,
regeneration rate, speed, . . .). During the initialization phase the server provides a set of
randomized team members for each side. The agent has to assign a role according to the
fitness of the player (for example, a fast player might become an attacker). The actual
game is divided in n time slots. At the beginning of a time slot each player gets a set of
sensory data which has to be processed within the time slot to send an action command
for that player (for example, goto a position, intercept the ball, . . .).

The two-dimensional world model implies severe limitations in simulation accuracy, espe-
cially in respect to the position of the position and trajectory of the ball. To overcome
these limitations 3D soccer simulation competitions are held since 2004. Currently (as
of June 2008) the robots are represented as spheres with equal diameter (0.44 m) and
weight (75 kg). The robots possess a kind of omnidrive, which allows them to accelerate
into any direction [Rob06].

As there is no actual hardware, one has to cope with. The main research focus in the
RoboCup™ soccer simulation domain, is to develop multi-agent behaviours and strategies.

1.4.2 Small-size league

In the small-size, or F180, league the teams focus on the problem of multi-agent coopera-
tion and control in a highly dynamic environment with a hybrid centralized/distributed
approach. The acting robots are limited in size: They must fit within a 180 mm diameter
circle and must not be higher than 150 mm [LTC09b] (unless they use on-board vision,
which is not very common within the league). Usually the teams use a global vision

1.4. SOCCER LEAGUES 5

© TU Graz

approach. One or two cameras per team are mounted above the field. The images are
processed by an off-field computer to extract the location of the robots and the ball.
This computer is often also used to coordinate and to control the robots. For a game a
maximum of five robots per team are allowed of which one is the goalkeeper. The ball,
used for the games, is a standard orange golf ball.

1.4.3 Middle-size league

© TU Graz

The robots of the middle-size league are currently the
most sophisticated robots in the RoboCup™ with re-
spect to the on-board computational power and sen-
sory equipment. They have to carry all sensors they
want to utilize, and also have to process the sensory
data on-board to generate a world model and to act
accordingly. The robots may interact with each other
via wireless network connection to exchange the world
models, and to execute multi-agend behaviours, but
it is not allowed to use off-field computers, or a global
vision as in the small-size league. Each team may
consist of up to five robots, of which one is a des-
ignated goalkeeper. The robots may not exceed a
50 cm× 50 cm× 80 cm bounding box (except for the
goalkeeper, which may temporarily extent for another
10 cm on any one side to catch the ball). They must
not weight more than 40 kg. An orange standard
FIFA size 5 ball is used to play the game [LTC08].

6 CHAPTER 1. INTRODUCTION

1.4.4 Standard platform league

After the introduction of the Aibo™ by Sony, a four-legged robot, the standard platform

© TU Graz

league evolved. In this league every team operates the
exact same hardware. Previously this has been the
Sony Aibo™, but since 2008 the Nao, by the french
company Aldebaran, a humanoid robot about 50 cm
in height, is the new standardized platform. The
teams are bound to the resources on the platform,
that is, not allowed to modify the hardware of the
robots, nor to use centralized data acquisition, or pro-
cessing capabilities.

Currently up to three Nao’s per team are allowed on
the field. The ball, even though not stated in the rules
is currently the same as for the four-legged standard

platform league, an orange plastic ball, approximately 8 cm in diameter. For further
details refer to chapter 2.

1.4.5 Humanoid leagues

© TU Graz

Currently the humanoid robots are separated in two
groups: Kid-size robots with a height between 30 and
60 cm, and teen-size robots with a height between 100
and 160 cm. The robots must have a human-like body
plan, that is, two legs, two arms and a head attached
to a torso. The robots must be able to stand up-
right, and to walk or run upright. The robots should
be equipped with sensors that have an equivalent in
human senses, like cameras, force sensors, and such.
These sensors must be placed at a position roughly
equivalent to the location of the human’s biological
sensors (for example, the camera has to be placed in
the head) [LTC09a]. For a soccer game not more than
three robots per team are allowed on the field of which
one is the dedicated goalkeeper. The kid-size robots
play with a standard orange tennis ball, the teen-size
robots with a orange beach handball, size 2.

1.5. ROBOCUP™ RESCUE 7

1.5 RoboCup™ Rescue

Disaster management involves very large numbers of heterogeneous agents in a hostile
environment. To reduce the risks for rescue teams, tele-operated and/or autonomous
robots can be used to navigate through a destroyed environment. The trigger for the
RoboCup-Rescue project was the Great Hanshi-Awaji earthquake, that hit Kobe City
on January 17, 1995, causing more than 6 500 casualties, destroying more than 80 000
wooden houses.

The main goals in this competitions are to get a map of a destroyed area, and to find
hazards and casualties on the way. There are two leagues in the RoboCup™ rescue
domain: Rescue robot and rescue simulation.

1.5.1 Rescue robot

© TU Graz

The goal of the urban search and rescue (USAR)
robot competitions is to increase awareness of the chal-
lenges involved in search and rescue applications, to
provide objective evaluation of robotic implementa-
tions in representative environments, and to promote
collaboration between researchers. It requires robots
to demonstrate their capabilities in mobility, sensory
perception, planning, mapping, and practical opera-
tor interfaces, while searching for simulated victims
in unstructured environments [Web06].

1.5.2 Rescue simulation

source: robocupgamesprima2009

The purpose of the RoboCup Rescue Simulation
league is twofold: First, it aims to develop a sim-
ulation system to emulate realistic phenomena pre-
dominant in disasters, and second, it aims to develop
intelligent agents (simulated robots) that can act in
a disaster response scenario, as in the rescue robot
league (that is, mapping, observation, etc.).

The RoboCup™ rescue simulation platform runs a ker-
nel which connects various sub-simulators. These are
currently a traffic simulator, a fire simulator and a

civilian simulator. The traffic simulator enforces the rules of traffic (for example, one-
way, multi-lane roads) and simulates the movement of vehicles along roads on a map,
plus the resulting hazards like traffic jams and such. The fire simulator simulates the

8 CHAPTER 1. INTRODUCTION

processes involved in the propagation of fire, considering properties of the objects, wind
and water content. The civilian simulator provides the behaviour of civilians, like move-
ment along roads. Within this environment, the intelligent agents are used for search
and rescue tasks.

1.5.3 Virtual Robots Competitions

source: www.oxfordrescue.co.uk

As in the Robot League, a devastated area has to be
explored for victims with a team of robots controlled
by an operator. However, the environment is pure
virtual. Compared to the Robot League, the focus of
the research is more focused on team work to accu-
rately explore large areas and less on mobility. The
major goal of this competition is to encourage intu-
itive operator interfaces that can be used to monitor
and control multiple heterogeneous robots in a chal-
lenging environment.

A number of very interesting problems must be solved
for a team to be successful in this league. These include navigation, exploration and
mapping, victim detection, communication, and cooperation. In order to fulfil these
tasks efficiently, practical human-robot interfaces have to be developed.

1.6 RoboCup@Home

© TU Graz

Service robotics is the youngest field within the
RoboCup™. First performances were held in Bremen,
Germany in the year 2006. The league aims to de-
velop service and assistive robot technology with high
relevance for future personal domestic applications.
[. . .] A set of benchmark tests is used to evaluate
the robots’ abilities and performance in a realistic non-
standardized home environment setting. [Web10]

The robots have to assist in a household and fulfill typ-
ical tasks, like following, or guiding the human, com-
munication by speech and gesture, and fetching items
form the environment. The voice command of a test
could be: “Grab the remote control and bring it to me”.
The robot is than forced to autonomously search the en-
vironment to detect a pre-defined remote control, grab
it, and deliver it to the human who gave the command.

1.7. ROBOCUP™ JUNIORS 9

Imminent problems to solve are safety and reliability. The robots may at no point be a
risk for the persons inside the testing area, the spectators, or even the environment, like
the furniture. For the competition, extra points are rewarded if the robot completes its
tests without touching any object or human.

Furthermore, the rule book [LTC10] states, participating robot have to be autonomous
and mobile. The tests for the @Home league aiming for real applications and should
produce socially relevant results. The teams are supposed to not only show what can be
put into practice today, but should also present new approaches, even if they are not yet
fully applicable or demand a very special configuration or setup.

1.7 RoboCup™ juniors

© TU Graz

The RoboCup™ juniors competitions should encour-
age students, up to age 19, to get in touch with
robotics. “The project-oriented education in the
field of robotics provides a hands-on, scaffolded en-
vironment where learners can grow.” [Web09b] The
RoboCup™ juniors domain consists of a soccer, a res-
cue and a dance league.

1.7.1 Junior soccer

The junior soccer tournament, teams of two autonomous mobile robots play in a highly
dynamic environment. The ball in use emits infra-red light to ease the task of ball detec-
tion and tracking. The field is surrounded by walls, and has colored goals as landmarks.
The robots must be constructed exclusively by student members of the team. Mentors,
teachers, parents or companies may not be involved in the design, construction, and
assembly of robots.

1.7.2 Junior rescue

© TU Graz

The robots, in the junior rescue league, identify vic-
tims within re-created disaster scenarios. The scenar-
ios vary in complexity from line-following on a flat
surface to negotiating paths through obstacles and
debris on uneven terrain. The robots must act com-
pletely autonomous. Communication between robots
is allowed via a bluetooth connection, but no external
sensing or computation device is permitted.

10 CHAPTER 1. INTRODUCTION

1.7.3 Junior dance

The teams of the junior dance league are encouraged to create a stage performance with
which one or more robots performs to or with music. The performances will be classified
either as dance or theater performance, and scored accordingly.

© TU Graz

Chapter 2

Standard platform league

The standard platform league, also known as SPL, first appeared in 1998 as a performance
during the RoboCup™ in Paris with quadruped robots, called Aibo™ (see Figure 2.1a),
developed by Sony. In this league all teams are using the very same robots. The teams
are not allowed to modify or extend the hardware. Thus the teams can concentrate
on software development while, unlike the simulation league, execute their code on real
robots.

source: www.cmu.edu

(a) Sony’s Aibo™

© TU Graz

(b) Aldebaran’s Nao

Figure 2.1: Former and current standard platform

As, in early 2006, Sony announced the discontinuation of its robotic division and therefore
stopped the production and development of the Aibo™, the RoboCup™ community had
to seek for a new standard platform. In the year 2007, a first beta version of the Nao,
developed by the french company Aldebaran Robotics1, had their performances as the

1http://www.aldebaran-robotics.com/en

11

www.cmu.edu
http://www.aldebaran-robotics.com/en

12 CHAPTER 2. STANDARD PLATFORM LEAGUE

new hardware platform. In 2008, the Nao’s had their first official competitions, and
the Aibo’s had their last at the RoboCup™ competitions held in Suzhou, China. Even
though the teams were supplied with the second generation Nao’s, the hardware was still
way too fragile to play the games accordingly to the rules. The assistant referees were
asked to catch falling robots to prevent them to break and the robots were not allowed to
touch each other, and in the end the field was crowded with people that tried to rescue
their robots. The stressed hardware led to limited locomotion and thus the majority of
the games ended 0:0. The feedback of the RoboCup™ 2008 and the fact that Aldebaran
had to maintain a so called “Nao Clinic”, an onsite repair and replacement facility, the
teams were provided with the current version Nao v3. Figure 2.1b shows a version 3
Nao at a game during the RoboCup™ 2009. This, so announced, last beta version is a
real improvement in robustness and reliability, and the RoboCup™ 2009, held in Graz,
Austria, showed its potential as the new standard platform.

2.1 Team ZaDeAt

The team ZaDeAt has been founded as an intercontinental research effort between the
University of Cape Town, Cape Town, South Africa, the RWTH Aachen University,
Aachen, Germany, and the Graz University of Technology, Austria, in the year 2007.

© ZaDeAt

Figure 2.2: Team logo

The Knowledge-based Systems Group at the RWTH Aachen
University focuses, among other things, on intelligent high-
level control of robots and agents acting in dynamic do-
mains. The Institute for Software Technology at the Graz
University of Technology is engaged in the field of intelli-
gent robust control of autonomous systems. Recently, the
Robotics and Agents Research Lab at the University of Cape
Town has been founded which is run by the Mechanical En-
gineering Department together with the Agent Lab, which
is located in the Computer Science Department and focuses
on computational intelligence. [FSMP08]

The ultimate goal is to intertwine the fields reasoning about
actions, model-based diagnosis and reconfiguration, and emergent behavior modeling to
design self-aware robots. Unresolved challenges are, how complex reasoning and diagnosis
techniques can be down-scaled to work on computationally limited systems like the Nao.
As for the day-to-day business, the South African part of the team has a strong mechanical
background and is, thus, currently assigned to develop a closed loop motion engine. The
base framework and the behaviour control are provided by the German members, and
the Austrian part develops object detection, self-localization, odometry, and the basic
skill set.

2.2. THE CURRENT PLATFORM — ALDEBARAN’S NAO V3 13

2.2 The current platform — Aldebaran’s Nao v3

The Nao is a kid-sized, humanoid robot designed and developed by Aldebaran.

Ultrasonic Sensors

AMD Geode Board

Cameras

Bumpers

Numb Hands

Chest Button/LED

Foot LED

Inertial Measurement Unit

ARM CPU Board

Speakers/Ear LEDs

Microphones

Servo Joints, 21 DoG

IR Transceiver, Eye LEDs

Colored Body parts

Force Resistive Sensors

source: [Nie09]

Figure 2.3: Nao overview

Figure 2.3 shows the specialized RoboCup™–version Nao has 21 degrees–of–freedom, that
is, there are 21 servos that can be used to move the parts of the body. A block diagram
of the robot is shown in Figure 2.4.

Input:

• Current angular position of the joints

• Two cameras in the head

• Two microphones, also in the head

• A chest button

• Two pairs of ultrasound sensors at the chest

• An inertial unit, consisting of a three–way accelerometer and a two–way gyrometer,
at the center of the torso

• Two bumpers at the front of the feet

14 CHAPTER 2. STANDARD PLATFORM LEAGUE

• Four force sensors per foot

Output:

• Desired angular position of the joints

• Stereo loudspeakers, used together with the integrated speech synthesi,s or to play
arbitrary sounds

• Various LEDs, around the loudspeakers, the modelled eyes, inside the chest button
and on the topside of the feet

Motion:

The teams are free to create their own motion engines. A low level interface is provided
to control the joints in real-time. In addition, Aldebaran provides a motion module that
enables basic motions based on an open loop control algorithm, that is, the motions are
based on timed commands without sensory feedback. The basic motions include:

• Walk straight forward and backwards

• Strafe left and right

• Turn left and right

• Walk along an arc of given radius and angle

2.2.1 Main processor (head)

The main processor is a AMD Geode LX-800, working at 500 MHz.

Features:

• 64 kB Instruction / 64 kB Data L1 cache and 128 kB L2 cache

• 400 MHz DDR Memory Controller

• Graphics

• Integrated FPU with MMX and 3DNow! instruction sets

• 128-Bit Advanced Encryption Standard (AES)

2.2. THE CURRENT PLATFORM — ALDEBARAN’S NAO V3 15

i2c

i2c

CPU Board
(head)

LED driver

dsPIC

Codecs

CMOS Video camera LEDs, 2x10 (ears)

LEDs, 16 RGB

IR (tx/rx), 2x

Micros, 2x

Speakers, 2x

AC’97

i2c
i2cCCIR

USB Key 2Gb

Ethernet Port

IEEE 802.11 b/g

RS232 Port
USB2

ARM micro-controller
(chest)

dsPIC

PSoC

dsPIC

dsPIC

dsPIC

dsPIC

dsPIC

Battery level

Inertial sensor, 3 acc + 2 gyros

Ultrasonic sensors (tx/rx), 2x

Pelvis: 1 motor + MRE

Hip: 1 motor + MRE

Hip: 1 motor + MRE

Knee: 1 motor + MRE

Hip: 1 motor + MRE

Ankle: 2 motors + MRE

4FSR + RGB-LED

dsPIC

dsPIC

dsPIC

Head: 2 motors + MRE

Shoulder: 2 motors + MRE

Elbow: 2 motors + MRE

USB2

RS485RS485

1x

2x

2x

1x

1x

2x

2x

2x

after Aldebaran documentation

Figure 2.4: Hardware block diagram

16 CHAPTER 2. STANDARD PLATFORM LEAGUE

The CPU is extended with 256 MB RAM, and a 2 GB Flash USB drive as permanent
storage. To connect the robot to the network, a 100 Mbit ethernet port and a Wi-Fi
IEEE 802.11 b/g card are provided.

Apart of the fact that the CPU architecture is quite outdated and the slow cycle rate,
compared to nowadays embedded systems, the main drawback is the limited cache size
and the poor memory bandwidth. This leads to a severe limitation of algorithms and
possible approaches to solve the pending tasks, especially for the image processing.

2.2.2 ARM micro-controller (chest board)

The chest board is equipped with an ARM micro-controller, which supports the com-
munication to and from the distributed hardware units (that is, the motor boards, the
inertial unit, and the other sensors and actors). The communication between these two
processors is handled via a proprietary format over a USB bus, thus requiring to use the
software framework provided by Aldebaran. Currently this framework is executed on the
main processor. This leads to a base load of approximately 20 percent, even if the robot
is idle.

2.2.3 Video cameras

© Aldebaran

Figure 2.5: Camera locations

Starting with the Nao v3 RoboCup™ version, the Nao
integrates two cameras in its head. The upper cam-
era is located at the forehead, as initially designed.
The lower camera, located at the mouth, has been
integrated after the RoboCup™ 2008 as it became ob-
vious that with only the upper camera, it is not easily
possible to see the ball if it lies right before the robot’s
feet. Thus it was not possible to lineup the robot, in
a reasonable amount of time, to kick the ball in a cer-
tain direction. As both cameras share the same data
bus, only one camera can be used at a time. Switching
the cameras is possible but takes about 0.4 seconds,

or up to 12 frames. The two identical cameras provide VGA (640×480), YUV422 images
at a maximum rate of 30 Hz, with a 58° (diagonal) field-of-view. The placement of the
cameras in the robot’s head is shown in Figure 2.5.

2.2.4 Inertial unit

The inertial unit, located in the chest, consists of a two-axis gyrometer and a three-axis
accelerometer. To determine the torso orientation an Aldebaran algorithm has be imple-
mented in the controller board of the inertial unit. The algorithm uses the accelerometer

2.2. THE CURRENT PLATFORM — ALDEBARAN’S NAO V3 17

for the static case, when only the gravitational acceleration can be measured. If the
unit detects motion, the gyrometer gets used as it has a very good dynamic behaviour.
However, the integration of the gyrometer creates a bias of the computed angle, so in
the dynamic case, a sensor fusion of computed angle from the accelerometer and the
gyrometer is done to reduce this bias.

For the localization task, the torso orientation gets relevant to compute the translation
and rotation of the camera (see Subsection 5.2.1).

2.2.5 Joints

The motorized joints are the only means to move the robot. A sequence of motions of
several joints is required to perform a single, stable step. The algorithm, currently in use,
is developed by Aldebaran and integrated into their middleware. Each joint has at least
one magnetic rotary encoder.

© Austria Microsystems

These sensors are small chips integrated into the joint, that
detects the angle of rotation with a magnet, mounted outside
the chip on the joint axis. The relative value provided by this
sensor is quite precise and has a small error. However, as
the absolute value depends on the orientation of the magnet
and therefore on the assembly of the joint axis, calibration is
required before shipping, and, if necessary, after severe drops.

2.2.6 Software framework

Figure 2.6 shows the three basic layers of the software framework. The base is set by the
operating system. As second layer acts Aldebaran’s NaoQi as middleware, and the third
layer builds the team software. The middleware provides only robot specific functionality,
like motion, or proprietary hardware access. Hence, the team software has also a tight
bound to the operating system.

Operating system

The operating system of the Nao is a modified OpenEmbedded Linux, called OpenNao.
Currently (NaoQi v1.3.17), a patched 2.6.22.19-rt kernel is in use. The patches include
AMD Geode specific changes, a camera and LED driver, and the realtime preemptive (RT
PREEMPT) patch by Ingo Molnar [Mol09]. This patch allows to enforce the realtime
policy that is required for motion composition.

18 CHAPTER 2. STANDARD PLATFORM LEAGUE

OpenNao Linux

Team Software

NaoQi middleware

. . .Game codeObject detection

. . .AlMemoryAlMotion

Figure 2.6: Software framework

Aldebaran’s middleware — NaoQi

The middleware provided by Aldebaran, called NaoQi, handles the proprietary commu-
nication with the ARM micro-controller, and the connected hardware (see Figure 2.4).
NaoQi provides a distributed environment, that allows several distributed instances, each
containing several software modules to communicate with each other, to share data with
each other, and to remotely execute procedures.

To do this, NaoQi provides libraries for several programming languages (C++, Python,
Urbi) and operating systems (Linux, Mac OS, Windows). To share information between
the instances, the http-based SOAP2 is used. The SOAP communication is transparent
to the user. However, facilitating a distributed environment requires a lot of resources
and processing power.

Team software

On top of the NaoQi middleware, a software framework, called Fawkes3, controls the
Nao at the team ZaDeAt. Fawkes is an open source robotics software framework. The
initial development was done at the RWTH Aachen [Nie09]. The communication with
NaoQi is established via a module that is integrated into the NaoQi framework (see
Subsection 5.2.9).

2Simple Object Access Protocol – http://www.w3.org/TR/soap/
3http://www.fawkesrobotics.org/

http://www.w3.org/TR/soap/
http://www.fawkesrobotics.org/

2.3. GAMEPLAY 19

2.3 Gameplay

This section gives an overview of the rules of the standard platform league. The complete
rule set can be found in [LTC09c].

2.3.1 Environment

The field is build on a carpet area with a total length of 7.4 m and a total width of 5.4 m.
The carpet is a green standard industrial carpet, as used for exhibitions and such, with
a thickness of about (2–3) mm. The field lines, as depicted in Figure 2.7, are usually
of simple duct tape. The surface of duct tape, however proofed to be rather slippery
compared to the field, which sometimes lead to unintended and unpredictable twists, for
example, if one foot is on the duct tape and the other is on the carpet.

0.7 m 6 m

0.6 m

1.8 m 1.2 m

4
m

0
.7

m

3
m

10 cm

5 cm

source: SPL rule book

Figure 2.7: Field layout according to the SPL rules 2009

The goals are either yellow or sky-blue. The side poles have a diameter of 100 mm and a
height of 800 mm, the top bar has a diameter of 50 mm. The distance between the side
poles is 1.4 m.

The lighting conditions depend on the actual competition site. Only ceiling lights may
be used. The competition at the German Opens 2009 showed that constant lighting

20 CHAPTER 2. STANDARD PLATFORM LEAGUE

conditions are still crucial for a proper soccer games. The objects on the soccer field
of the SPL are color coded. The ball is orange, the goals are sky-blue and yellow, and
the robots are either red or blue, thus, the object detection rely for a big part on a
correct color classification (see Subsection 5.2.2). The exhibition hall in Hanover, the
venue of the German Opens 2009, has skylights. On days with scattered clouds, the
color calibration proofed useless, as the color temperature changed with the coverage of
the sun. In the end the skylights had to be covered, to make a proper gameplay possible.

2.3.2 Game process

Currently a team consists of three robots, of which one is dedicated as goal keeper. The
game is played over two half times, each last for ten minutes, with a ten minutes half-
time break. In addition, each team can call for one timeout per game. A timeout will
interrupt the game for, at most, five minutes, allowing the teams to modify the code,
replace robots or adapt the color calibration.

At the kick-off, the robots can take up to 45 seconds to reach their legal positions. If
they are unable to reach their positions, they will be placed manually by the assistant
referees to pre-defined positions. However, the pre-defined positions are worse than the
optimal positions that can be reach by autonomous positioning.

G
o
a
l

k
e
e
p

e
r

A
tt

a
c
k
in

g
fi

e
ld

p
la

y
e
r

O
n
e

a
tt

a
c
k
e
r

G
o
a
l

k
e
e
p

e
r

D
e
fe

n
d
in

g
fi

e
ld

p
la

y
e
r

Figure 2.8: Kick-off legal positions

The color differentiation between red robots and the ball, and on the other side, between
blue robots and the sky-blue goal is particular tricky. To ensure a fair game, all color
parts of the robots are swapped during half time. This means the opponents play one
half time as red team, defending the yellow goal, and the other half time as blue team,
defending the sky-blue goal. A good part of the half-time break is therefore occupied
with the replacement of the color parts.

2.3. GAMEPLAY 21

The robot control software has to model a simple state machine as in Figure 2.9. State
transmissions happens either via commands from the GameController4 over the wireless
network (black edges in Figure 2.9), or via short chest button activations (grey edges in
Figure 2.9).

Initial

Ready Set Playing Finished

Penalized

Set P

source: SPL rule book

Figure 2.9: Basic SPL gamestates

4An open source game controller http://www.tzi.de/spl/bin/view/Website/Downloads

http://www.tzi.de/spl/bin/view/Website/Downloads

22 CHAPTER 2. STANDARD PLATFORM LEAGUE

Chapter 3

Mathematical basics

Self-localization describes the task of finding the own pose, that is, translation and orien-
tation, relative to a known point. In the robotic domain this implies to compute sensory
input by applying appropriate algorithms. This also implies that a mathematical descrip-
tion of the problem is required.

This chapter outlines the mathematical background required to tackle the problem of self-
localization in a mobile robot environment. Section 3.1 describes the fundamentals of
Section 3.2, “Denavit–Hartenberg transformation”. Denavit–Hartenberg transformations
are used to calculate the camera location based on the geometry of the robot and the
current joint sensor readings. Section 3.3 outlines the algorithms used for back-projection,
the distance calculation of a point in the world based on the camera location and a point
of the camera image. The last Section 3.4 explicates the Kalman filter, an optimal
state estimator, used to estimate the pose of the robot based on the output of the self-
localization algorithm and odometry readings.

The self-localization algorithms used are described in Chapter 4.

3.1 Homogeneous coordinates and transforms

The description of homogeneous coordinates and transforms given here is an abstract of
a report by Alonzo Kelly [Kel06].

23

24 CHAPTER 3. MATHEMATICAL BASICS

3.1.1 Basics

A point in the three-dimensional space can be represented as a column vector:

p1 =

 x1

y1

z1

 = (x1 y1 z1)T

An operator is any process, that maps points onto other points. Many operators can be
represented as 3× 3-matrices:

p2 =

 x2

y2

z2

 = Op ·p1 =

opxx opxy opxz
opyx opyy opyz
opzx opzy opzz

 x1

y1

z1


=

 opxx x1 + opxy y1 + opxz z1

opyx x1 + opyy y1 + opyz z1

opzx x1 + opzy y1 + opzz z1


Simple operators, like scale, or rotation, can be generated with 3 × 3-matrices by a
suitable choice of the entries in the matrices. However, a very simple and often used
operator cannot be represented: translation. That is, there is no 3 × 3-matrix, that
adds a constant vector ptrans to p1. Such a translation could be represented as a vector
addition: p2 = p1 +ptrans. As ptrans is supposed to be independent of p1, the translation
cannot be represented (in general) by a 3× 3-matrix.

3.1.2 Homogeneous transforms

To overcome this limitation, the point in the three-dimensional space is projected into
a four-dimensional space. The fourth element represents a kind of scale factor: p1,4D =
(x1 y1 z1 w1)T. The point in the three-dimensional space can be found by dividing the
elements by the scale factor:

p1,3D =
(
x1

w1

y1

w1

z1

w1

)T

Points are usually represented with a scale factor of 1: p1 = (x1 y1 z1 1)T. Directions,
in terms of points at infinity, can be represented by using a scale factor of 0: q1 =
(x1 y1 z1 0).

The operators, that can be represented as matrices, for homogeneous points are of the
dimension 4× 4. A translation can be represented as:

p2 = p1 + ptrans =


x1

y1

z1

1

+


xtrans
ytrans
ztrans

1

 =


1 0 0 xtrans
0 1 0 ytrans
0 0 1 ztrans
0 0 0 1




x1

y1

z1

1



3.1. HOMOGENEOUS COORDINATES AND TRANSFORMS 25

3.1.3 Basic operators

The basic operators are translation along, and rotation about any of the three axis of
the reference coordinate frame. The operators take a point in the reference coordinate
frame, operate on it, and supply the result expressed in the same coordinate frame. A
chain of operators is written in right-to-left order, because this it the order in which they
are applied. The order is important because matrix multiplication is not commutative.

Translation

Trans(x, y, z) =


1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

 (3.1)

Rotation about the x-axis

RotX(θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 (3.2)

Rotation about the y-axis

RotY(φ) =


cosφ 0 sinφ 0

0 1 0 0
− sinφ 0 cosφ 0

0 0 0 1

 (3.3)

Rotation about the z-axis

RotZ(ψ) =


cosψ − sinψ 0 0
sinψ cosψ 0 0

0 0 1 0
0 0 0 1

 (3.4)

A rotation followed by a translation can be represented in a single matrix.

26 CHAPTER 3. MATHEMATICAL BASICS

3.1.4 Interpretation of homogeneous transformations

The interpretation of homogeneous transformations can be threefold:

Operators

As already stated above, the homogeneous transformations can be interpreted as operator,
to map a point p to another point p′ within the same coordinate frame.

Multiple operator can be joint to a cumulative operator by simple matrix multiplication:

Op′ = Opn Opn−1 · · · Op1

The operators are written in right-to-left order because this is the order in which they
are applied to the point p. As the matrix multiplication is not commutative, this order
is important.

Coordinate Frames

Homogeneous transformations can also be used to represent coordinate frames relative
to a reference frame. Let

i = (1 0 0 0)T j = (0 1 0 0)T k = (0 0 1 0)T

be the directions, and

o = (0 0 0 1)T

be the origin of the reference coordinate frame.

Those vectors could be grouped to the identity matrix

(i j k o) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I

By applying an arbitrary number of operators, one can transform I → I ′

I ′ =
(
i′ j′ k′ o′

)
= Opn Opn−1 · · · Op1 I

where i′, j′, and k′ represent the directions, and o′ the origin of the new coordinate frame
relative to the reference frame.

3.1. HOMOGENEOUS COORDINATES AND TRANSFORMS 27

Coordinate transformations

The third interpretation of homogeneous transformations is the transformation of coor-
dinates relative to one frame into coordinates that are relative to another frame. Given,
that a homogeneous transformation can be used to represent a coordinate frame relative
to a reference frame, this very same transformation can be used to transform coordinates
of the resulting coordinate frame back to coordinates of the reference frame. Let I ′ be
the coordinate frame, named ’b’ and I be the reference coordinate frame, named ’a’. Let
pb =

(
xb yb zb 1

)T be an arbitrary point represented in the coordinates of the frame ’b’.
The same point pa, represented in coordinates of the frame ’a’ can easily be found.

pa = I ′ pb

Sometimes the transformation of coordinates from the reference frame (a) into the derived
frame (b) is required. For this case the inverse of a homogeneous transformation is
required.

pb = I ′−1 pa

3.1.5 Inverse of a homogeneous transformation

The basic operators described above, and combinations thereof, are assembled by a com-
mon pattern:

Op =

 R t

0 0 0 1

 with R . . . 3× 3 rotation matrix
t . . . translation vector

The inverse of those kind of operators can be found as:

Op−1 =

 RT − RT t

0 0 0 1

 (3.5)

28 CHAPTER 3. MATHEMATICAL BASICS

3.2 Denavit–Hartenberg transformation

3.2.1 Motivation

In the field of robotics you often face the question of where a certain point is located
relative to a second point, or relative to the origin of a coordinate frame, for example,
the position of the camera relative to the ground.

Imagine a simple robot arm with one link of a certain length that is able to turn around
one axis. The question is now, what is the position of the end point of the link rel-

Θ

Figure 3.1: A single link

ative to the mount of the arm for a given turning angle θ. The complexity increases
dramatically as soon as there are several joints in a chain. So-called Denavit–Hartenberg-
Tranformations are often used to address this problem, by transforming one coordinate
frame into another. In the simple example from above, the origin of one coordinate frame
would sit at the end of the link (the end-effector) and a second coordinate frame would
be located in the center of the rotation axis with one axis pointing along this axis. Note
that the orientation of the coordinate frame of the end-effector can be chosen freely. The

z-Axis

y-Axis
x-Axis

Θ

Figure 3.2: A single link with assigned coordinate frames

DH-Transformation can now be used to transform a point (for example, the origin) of
the end-effektors coordinate frame into the axis coordinate frame and subsequently into
a global coordinate frame.

3.2. DENAVIT–HARTENBERG TRANSFORMATION 29

3.2.2 Minimal line representation

As links between joints or links between joints and end-effectors can be seen as lines,
a supporting line representation will be necessary. In general, a line in the Euclidien
Space (E3) has four degrees-of-freedom, therefore at least four parameters are required
to represent all possible lines.

A line L(p, d) is completely defined by the ordered set of two vectors [Wik08]. A point
vector p, indicating the position of an arbitrary point on L and a direction vector d giving
the line a direction as well as a sense. Each point x on the line is given a parameter value
t that satisfies: x = p+ td. The parameter t is unique once p and d are chosen. However,
the representation L(p, d) is not minimal, because it uses six parameters while only four
would be required.

In 1955 Jaques Denavit and Richard S. Hartenberg presented the first minimal line
representation [DH55] which is now widely used. The common normal between two lines
was the main geometric concept that allowed J. Denavit and R.S. Hartenberg to find a
minimal line representation. Their reference line is the z-axis of a global coordinate frame.
Given that a line L has a direction, the following four parameters are required: The
distance d, the azimuth α, the twist θ and the height h. The literature contains alternative
formulations, differing mainly in the conventions for signes and reference axes. However
all these formulations are equivalent and represent the line L by two translational and two
rotational parameters. This property emphasis the use of homogenous transformations
(see Section 3.1).

3.2.3 Coordinate frame assignment

To use this line representation, every joint has an attached coordinate frame. By conven-
tion the z-axis of every such joint frame is the joint axis. As the end-effector has no joint
axis, the direction of the z-axis can be chosen for end-effectors. The x-axis is parallel to
the common normal or if there is no common normal, xn = zn−1×zn. The y-axis follows
the x- and z-axis by defining it to be a right-handed coordinate frame: yn = xn × zn.
For simplicity the y-axis are not shown in Figure 3.3 and the frames would actually be
at the height of the corresponding links:

Homogenous coordinate frame transformation

When going from the coordinate system Zn−1 to the coordinate system Zn, one has to
turn around the zn−1-axis to bring the xn−1-axis parallel to the xn-axis:

30 CHAPTER 3. MATHEMATICAL BASICS

Axis n+ 1

dn+1

xn

yn
zn

hn

θn

Axis n

αn−1

xn−1

yn−1

zn−1

dn

Axis n− 1

source: http://www.fauskes.net/nb/threedill/

Figure 3.3: Coordinate frame assignment

xn

yn

zn−1

xn−1
yn−1

Θn
Rotzn-1(θn) =


cos θn − sin θn 0 0
sin θn cos θn 0 0

0 0 1 0
0 0 0 1


Translate along the old z-axis, to move the old coordinate frame origin to the height of
the new frame:

ynzn−1

xn−1

yn−1

hn xn

Trans(0, 0, hn) =


1 0 0 0
0 1 0 0
0 0 1 hn
0 0 0 1



Translate along the new x-axis, to get the distance along the common normal of the two
z-axes:

http://www.fauskes.net/nb/threedill/

3.3. BACK PROJECTION 31

zn−1
dn

xn−1

yn−1

xn

yn
Trans(dn, 0, 0) =


1 0 0 dn
0 1 0 0
0 0 1 0
0 0 0 1



And finally rotate around the new x-axis, to align the new z-axis with the center of
rotation of the next joint:

xn

zn−1

zn

yn

xn−1

yn−1

αn

Rotxn(αn) =


1 0 0 0
0 cosαn − sinαn 0
0 sinαn cosαn 0
0 0 0 1



This gives (right-to-left order):

n−1 Tn = Rotxn(αn) Trans(dn, 0, hn) Rotzn-1(θn)

=


cos θn − sin θn cosαn sin θn sinαn dn cos θn
sin θn cos θn cosαn − cos θn sinαn dn sin θn

0 sinαn cosαn hn
0 0 0 1

 (3.6)

As the z-axes are equal to the rotation axes of the joints θ is the parameter that changes,
when the position of the joint changes. The other three parameters (d, h and α) are
usually defined by the hardware configuration of the robot and fixed, hence the equation
3.6 can be written as:

n−1 Tn =


cos θn − sin θn 0 0
sin θn cos θn 0 0

0 0 1 0
0 0 0 1

 ·


1 0 0 dn
0 cosαn − sinαn 0
0 sinαn cosαn hn
0 0 0 1

 (3.7)

of where the second matrix can be pre-calculated to reduce the computational load.

3.3 Back projection

Back projection is the task of transforming a point on the camera plane, that is, a pixel
of the camera image, back to a plane in the environment, for the purpose of this thesis

32 CHAPTER 3. MATHEMATICAL BASICS

the ground plane. With this transformation the coordinates of detected objects in the
camera image, relative to the robot, for example the ball, or points of the field lines,
can be calculated. The exact reference point for objects on the ground plane is the
projection of the center of the camera, this is, the principal point pp, along the falling
line. In Figure 3.4 (right) this would be the origin of the coordinate frame.

3.3.1 Pan/tilt cameras

A very simple case for the back projection is a pan/tilt camera, mounted in parallel to
the ground plane at a constant height hc. A pan/tilt camera has two degrees of freedom.
It can turn the camera left and right, and up and down. The coordinates (xs, ys) of a

source: www.isd.mel.nist.gov

θ ψ

ys

xs

l

zs = hc

Figure 3.4: Back projection of a pan/tilt camera

point in the world, relative to the camera, can be found as:

xs = l cosψ cos θ =
hc

tan θ
(3.8)

ys = l sinψ =
hc tanψ

sin θ
(3.9)

Intrinsic camera parameters In order to calculate ψ and θ a mathematical descrip-
tion of the camera properties is required, the so called intrinsic camera parameters. For
the purpose of pan/tilt cameras, they consists of horizontal and vertical field-of-view
(fovh, fovv), the horizontal and vertical resolution of the camera (resh, resv) and the
principal point pp, that is, the center of the camera plane in pixel (ppx, ppy).

The height hc of the pan/tilt unit is usually fixed by the hardware design and thus
constant. To get the variable angles ψ and θ the current setting of the pan/tilt unit

3.3. BACK PROJECTION 33

(Ψ,Θ), the intrinsic camera parameters, and a point of interest in the image (ix, iy) are
required:

ψ = (ppx − ix)
fovh
resh

+ Ψ (3.10)

θ = (iy − ppy)fovv
resv

+ Θ (3.11)

Note: The assumption of the, per design, fixed height hc holds only for variable pan/tilt
settings if the rotation axis of the pan/tilt unit are aligned with the principal point pp
of the camera. In Figure 3.4 (left) this assumption would not hold.

3.3.2 Homography

It showed that the pan/tilt model was not sufficient for the use with the Nao, even though
the head itself (and therefore the camera) has only two degrees of freedom. When the
torso rotates about its x, or y axis, for example when the robot shifts its weight from
one foot to the other, the base of the pan/tilt unit is no longer parallel to the ground
plane, and the camera therefore rotated about all three axis.

For this case a homography, a matrix operator that generally transforms one plane onto
another, is used to transform the image plane back to the ground plane. The composition
of the homography is simple, at least if the target plane is the ground plane. First the
matrix that transforms a point in the world to the image plane is compiled. It consists
of the intrinsic (see above) and the extrinsic camera parameters. The extrinsic camera
parameters are the rotation and translation of the camera relative to the ground plane.
The intrinsic parameters can be found as [HZ03, pp. 153–157]:

K =


resh

2·tan(0.5·fovh) 0 ppx

0 resv
2·tan(0.5·fovv) ppy

0 0 1

 (3.12)

For the extrinsic parameters a 3 × 3 rotation matrix R and the translation vector T =
(xc, yc, hc)T are required, where xc, and yc are the offsets of the camera relative to the
origin of the robot, for simplicity zero, and hc the height above ground. The 3 × 4
projection matrix P is then:

P = KR

1 0 0 xc
0 1 0 yc
0 0 1 hc

 (3.13)

34 CHAPTER 3. MATHEMATICAL BASICS

With this projection matrix a point (xw, yw, zw) in the world can be transformed to a
point (xi, yi) in the image:

xiyi
si

 = P


xw
yw
zw
1

 (3.14)

Note: If si 6= 1 the result vector has to be scaled accordingly:
(
xi
si
, yi

si

)
.

Ground plane assumption

The back projection, however, cannot be formulated in general as the projection matrix
P cannot be inverted. Under the assumption, that all points of interest, are points on
the ground plane, that is, zw = 0, one can see, that the third column of the projection
matrix P is of no use, as its elements gets always multiplied with zw. In this case a
reduced projection matrix P ′ can be compiled from the first, second and fourth column
of P :

P =
[
p1 p2 p3 p4

]→ P ′ =
[
p1 p2 p4

]
(3.15)

and the world coordinates (with zw = 0) of the image point (xi, yi) can be found as:xwyw
sw

 = P ′−1

xiyi
1

 (3.16)

Note: If sw 6= 1 the result vector has to be scaled accordingly:
(
xw
sw
, yw

sw

)
.

3.4 Kalman filter

The Kalman filter [Kal60], [TBF05, pp. 40-53] is an optimal recursive data processing
algorithm [May79]. It is a set of mathematical equations that provides an efficient means
to estimate the state of a process, based on the previous (or initial) state, a set of control
commands, and a set of measurements. The basic idea is to predict the state of a process
based on the previous state and the control commands, and, in a different step, to correct
those predictions based on the measurements taken.

The following example should be used to describe the functionality of a Kalman filter.
Imagine a train that is equipped with a device that can estimate the distance to the next

3.4. KALMAN FILTER 35

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

(a)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

(b)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

(c)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

(d)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

(e)

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

(f)

(a) (b)

(c) (d)

(e) (f)

source: [TBF05]

Figure 3.5: Illustration of Kalman filters: (a) initial belief, (b) a measurement (in bold)
with the associated uncertainty, (c) belief after integrating the measurement into the
belief using the Kalman filter algorithm, (d) belief after motion to the right (which
introduces uncertainty), (e) a new measurement with associated uncertainty, and (f) the
resulting belief.

36 CHAPTER 3. MATHEMATICAL BASICS

train station, for example by using GPS coordinates. For this example the update of the
distance to the next station might be available only every five minutes. At time t0 the
train is at a known location and the uncertainty (the variance σ2

pred) of the distance to
the next station is very low. As the train start to travel to the next station, the control
commands of the operator can be used to predict the current distance to the next station.
The error (σ2

cmd) between control command and execution will increase the uncertainty of
the distance to the next station prediction, up to the maximum uncertainty right before
the next distance measure update. A distance measurement is of course also error-prone
(σ2
meas), hence the measurement should not be taken as granted but merged with the

distance prediction based on the variances σ2
pred and σ2

meas, to get the optimal estimate
of the current distance to the next station. Figure 3.5 illustrates the function of the
Kalman filter.

One attribute, that makes the Kalman filter optimal, is the fact, that any number of
measurements and measurement devices can be used to correct the current prediction.
In the example above units to measure the distance to the next station might use GPS,
markers along the rails, or the round trip time of radio signals. All of them might
have different, and changing, update cycles and also variances that change over time
(for example based on the number of satellites that can be used to calculate the current
position). GPS is unavailable in tunnels, markers might be expensive and therefore
seldom, plus they don’t provide any updates at all if the train stops, but still, all of those
measurements can be merged with the current prediction, based on the current variances,
as soon as they are available.

3.4.1 Basic assumptions

The original Kalman filter depends on the following basic assumptions. The process is
governed by a linear stochastic difference equation:

xk = Axk−1 +B uk−1 + wk−1 (3.17)

with the measurement:

zk = H xx + vk (3.18)

The process and measurement noises (wk−1, vk) are independent of each other, white,
and with normal probability distributions (Gaussian):

p(w) ∼ N (0, Q) (3.19)
p(v) ∼ N (0, R) (3.20)

In (3.17), x ∈ Rn represents the process state vector (with n elements), the n×n-matrix
A relates the proces state at the previous time step k− 1 to the current time step k, and
the n × l-matrix B relates the control input u ∈ Rl to the current state. In (3.18), the

3.4. KALMAN FILTER 37

m×n-matrix H relates the process state to the measurement z ∈ Rm. The process noise
covariance matrix Q is of the size n × n, the and measurement noise covariance matrix
R is of the size m×m.

3.4.2 Time-discrete Kalman filter algorithm

The algorithm is separated into two parts. The first set of equations calculates the a priori
estimate (also known as prediction step, or time update), the second set of equation acts
as a form of feedback, to incorporate new measurements into to the a priori estimate to
obtain an improved a posteriori estimate (also known as correction step, or measurement
update).

Prediction step

x̂−k = A x̂k−1 +B uk−1 (3.21)
P−k = APk−1A

T +Q (3.22)

In the prediction step the a priori estimate is calculated only based on the previous state
x̂k−1 and the optional control input uk−1. Note that the previous system state may be
either another a priori estimate (if there were no new measurements), or a a posteriori
estimate. The uncertainty of the estimate increases, based on the previous uncertainty
and the process noise covariance matrix Q. The more prediction steps occur without a
correction step, the further the uncertainty of the estimate will increase.

Correction step

Kk = P−k HT
(
H P−k HT +R

)−1 (3.23)
x̂k = x̂−k +Kk

(
zk −H x̂−k

)
(3.24)

Pk = (I −KkH) P−k (3.25)

The n×m-matrix Kk is called the gain or blending factor, that minimizes the a posteriori
error covariance Pk. Equation (3.24) computes the a posteriori state estimate as linear
combination of the a priori estimate and the weighted (Kk) difference between the actual
measurement zk and the measurement prediction H x̂−k , also known as the measurement
innovation or residual.

3.4.3 Sensor fusion

The Kalman filter can as well be used to fuse the measurements of several sensors into
a state estimation with a minimized error [Gut00]. Each sensor provides measurements

38 CHAPTER 3. MATHEMATICAL BASICS

with an expected value and a variance, or, in the n-dimensional case an expectation
vector and a covariance matrix. The influence of each measurement to the resulting
state estimate depends on the respective variances:

σ =
(

1
σ2

1

+
1
σ2

2

)−1

(3.26)

µ = σ

(
µ1

σ2
1

+
µ2

σ2
2

)
(3.27)

or, in the n-dimensional case, with the measurement vectors m1 and m2:

p(m1) ∼ N (0,Σ1)
p(m2) ∼ N (0,Σ2)

Σ =
(
Σ−1

1 + Σ−1
2

)−1 (3.28)

m = Σ
(
Σ−1

1 m1 + Σ−1
2 m2

)
(3.29)

3.4.4 Transformation of density functions

The task of transforming a density function from one domain into another is inherent
to the Kalman filter, but it is also relevant for the sensor data processing. Whenever
a sensor provides its data in a different domain as the rest of the system, for example
a laser scanner provides distance and angle to the closest surfaces, but the rest of the
system might use cartesian coordinates, the density function of the sensor data has to
be transformed. In general, some unit u ∈ Rn, u ∼ N (µu,Σu), and a transformation
f : Rn → Rm with f(u) = x, x ∼ N (µx,Σx) are given, and the expected value µx and Σx

are unknown.

According to [Gut00], this problem can be solved for linear transformations, for which
f(u) can be written as f(u) = Au+ b, where A is a constant m× n-matrix:

µx = Aµu + b (3.30)
Σx = AΣuA

T (3.31)

For non-linear transformations the problem can be approximated by the use of Taylor
series:

f(u) ≈ f(û) + Fû (u− û)

Fû =
∂ f
∂u

(û)

The m × n-Jacobian matrix Fû contains the partial derivatives of f with respect to u,
then:

µx = f(µu) (3.32)
Σx = F Σu F

T (3.33)

3.4. KALMAN FILTER 39

3.4.5 Extended Kalman filter

The filter was originally defined to calculate state estimates of discrete-time controlled
processes that are governed by linear stochastic difference equations. The extended
Kalman filter (EKF), however, extends the application of the Kalman filter to processes
that require non-linear functions for the prediction and/or the correction step, by lineariz-
ing about the current mean and covariance. However, it is to note that the distributions
of the random variables (v, w) are no longer normal after their respective non-linear
transformations. [TBF05, pp. 54-64]

Let xk ∈ Rn again be the process state vector at the time step k. The process is now
governed by the non-linear stochastic difference equation, with a measurement zk ∈ Rm:

xk = f(xk−1, uk−1, wk−1) (3.34)
zk = h(xk, vk) (3.35)

Prediction step

x̂−k = f(x̂k−1, uk−1, 0) (3.36)
P−k = Ak Pk−1A

T
k +WkQk−1W

T
k (3.37)

Ak and Wk are Jacobian matrices, that contain the partial derivatives of f with respect
to x and w:

Ak[i,j] =
∂ f [i]

∂x[j]
(x̂k−1, uk−1, 0)

Wk[i,j] =
∂ f [i]

∂w[j]
(x̂k−1, uk−1, 0)

Correction step

Kk = P−k HT
k

(
Hk P

−
k HT

k + Vk RV
T
k

)−1 (3.38)
x̂k = x̂−k +Kk

(
zk − h(x̂−k , 0)

)
(3.39)

Pk = (I −KkHk)P−k (3.40)

Hk and Vk are again Jacobian matrices, containing the partial derivatives of h with
respect to x and v:

Hk[i,j] =
∂ h[i]

∂x[j]

(
x̂−k , 0

)
Vk[i,j] =

∂ h[i]

∂v[j]

(
x̂−k , 0

)

40 CHAPTER 3. MATHEMATICAL BASICS

Chapter 4

Self-localization

This chapter describes the implemented algorithms regarding self-localization. In general,
the task of self-localization can be split into two groups. The first group deals with fixed
landmark detection, the second group with scan matching, the task of matching a set of
detected features on a predefined map of known features.

4.1 Landmark detection

Landmark detection, describes the task of extracting fixed landmarks from the sensor
input, and to estimate the own position relative the the known position of those land-
marks.

The field of the former standard platform league, had several such landmarks. Color
coded beacons were mounted on the sides of the field, and the corner arcs as well as
the goals were either blue or yellow. The field of the current standard platform league
provides only colored goals as landmarks, that is, one of the goals is yellow and the other
one is sky-blue. This limits the chance to see the landmarks and therefore to use it
continuously for the localization task.

However, as the field is symmetrically, the color of the goals is the only means to get the
absolute orientation on the field. The current design of the goals allows to distinct the
left and right side pole of a goal. As the position of the poles is known, the poles can
still be used as landmarks, not only to get the global orientation, but also, by applying
plain geometry, to estimate the current pose on the field, at least if the robot searches
deliberately for either goal.

41

42 CHAPTER 4. SELF-LOCALIZATION

α

dpoles

d1

d2

r

r

γ

β

Figure 4.1: Goal poles triangulation

Given, that the lengths dpoles, d1, d2, and rpoles, and the angle α are known, the angles
β and γ can be found by applying the law of cosine: c2 = a2 + b2 − 2 a b cos γ. With the
variables in Figure 4.1, β′ can be found as:

cosβ′ =
d′21 + d2

poles − d′22
2 · d′1 · dpoles

with d′n = dn + rpoles (4.1)

Experiments have shown that the law of cosine did not hold for the known angle α, or
with other words, that α+β+γ 6= 2π. This is due to inaccuracies in the object detection,
the calculation of the camera location, and the back projection. To limit the resulting
error, the angle γ, and thus β′′ = 2π − α − γ are calculated as well. The angle β, used
for the pose calculation, is then the average of β′ and β′′.

4.2 Cox algorithm

In 1991, Ingemar J. Cox published [Cox91] an algorithm to estimate the global pose of
a robot, based on a predefined map of walls, marked as lines, and the input of a laser
range scanner.

The algorithm requires an initial pose q0 = (xini, yini, θini)T, a predefined list of lines
that map the surrounding walls, and a range scan, that is, a list of relative distances to
the closest walls. (1) The initial pose is used to transform the range scan (of relative
distances) to the corresponding initial global scan points. (2) For each scan point, the
offset, and direction, to the closest line is calculated. (3) Calculate a pose correction
(∆x,∆y,∆θ), that minimizes the sum of all squared offsets. (4) If the pose correction

4.2. COX ALGORITHM 43

exceeds some given thresholds (εx, εy, εθ), use the corrected pose as new initial pose and
continue at (1). (5) Calculate the covariance matrix as a means of the quality of the pose
estimation.

Initial scan transformation (1)

The initial scan transform is trivial. With the given initial position lini = (xini, yini)T

and orientation θini, and for a list of scan points si = (xrel, yrel)T relative to the current
pose do:

pi =
(

cos θini − sin θini
sin θini cos θini

)
si + lini (4.2)

With pi being an initial estimate of the scan point si in global coordinates.

Selecting a corresponding line (2)

For each global scan point pi, find the line in the map that has the shortest euclidian
distance di. If di exceeds some predefined threshold dmax the scan point is assumed to
be an outlier, and therefore removed from the list of scan points.

For calculating the distances di the finite line segments are used, for the next step infinite
lines, with ui = (uix, uiy)T, ri are used, so that: zT ui = ri holds for arbitrary points z
on the line.

Finding the pose correction (3)

Goal of this step is to find a correction b = (∆x,∆y,∆θ)T that minimizes the sum of the
squared distances of (2). For that, each scan point pi has to be transformed:

trans(b)(pi) =
(

cos ∆θ − sin ∆θ
sin ∆θ cos ∆θ

)
(pi − lini) + lini +

(
∆x
∆y

)
(4.3)

To simplify the task, Cox argued that the angle ∆θ should be sufficiently small so that
the transformation can be approximated to:

trans(b)(pi) ≈
(

1 −∆θ
∆θ 1

)
(pi − lini) + lini +

(
∆x
∆y

)
(4.4)

With this linearization the squared distance of each scan point pi to the closest line
zT ui = ri can be found as:

erri = d2
i = (trans(b)(pi)Tui − ri)2

≈ ((xi1, xi2, xi3) b− yi)2 (4.5)

44 CHAPTER 4. SELF-LOCALIZATION

with:

xi1 = uix

xi2 = uiy

xi3 = uT
i

(
0 −1
1 0

)
(pi − lini) = (pix − xini)uiy − (piy − yini)uix

yi = ri − pixuix − piyuiy

The sum of the squared distances Efit(b) for all scan points p1, . . . , pn is defined as:

Efit(b) =
n∑
i=1

erri =
n∑
i=1

((xi1, xi2, xi3) b− yi)2

= (Xb− Y)T(Xb− Y) (4.6)

with:

X =

x11 x12 x13
...

...
...

xn1 xn2 xn3

 Y =

y1
...
yn



To get the correction b̂ that minimizes Efit(b), one has to solve:

∂ Efit(b̂)
∂b

= 0

with the solution:

b̂ = (XTX)−1XTY (4.7)

The new initial pose is than qit = qit−1 + b̂.

Estimating matcher accuracy (5)

Cox showed that the covariance matrix, as a means of the matcher accuracy, or quality
of the pose estimate can be found as:

Σmatch =
1

n− 4
(Y −Xb̂)T(Y −Xb̂)(XTX)−1 (4.8)

4.3. ADAPTATION OF THE COX ALGORITHM 45

4.3 Adaptation of the Cox algorithm

As mentioned above, I.J. Cox used a laser range scanner for his work. One of the
properties of those laser scanners is an almost linear error with respect to the distance of
a measurement. The sensor device used for this thesis, however, is the camera mounted
in the head of the bi-ped robot. Detected line points of the field lines of the soccer field,
are projected back to the ground plane (see Section 3.3) to get relative coordinates, used
as input for the matcher algorithm. The error of those coordinates is of the order 1/ tan,
that is, the error increases exponentially with respect to the distance. This property

04080120160200240

0,4

0,8

1,2

1,6

2

Distance

y-pixel in the image

Figure 4.2: Back projection: image coordinate vs. distance (hc = 0.45, Θ = 0.52,
resv = 240, fovv = 0.6, ppy = resv/2)

renders the error function Cox proposed for his matcher algorithm (the squared distance
to the closest line) impractical, as distant and therefore uncertain points and especially
distant outliers will heavily impact the result, while closer points that are most likely
more accurate will be overruled. In addition, I.J. Cox used only straight lines to be able
to solve the problem analytically. The center circle or, if available, the corner arcs cannot
be modelled, or at best they can only be approximated by line segments.

M. Riedmiller et al. [LLR05] proposed a modified error function and a numerical approach
to solve the matching task (3). The proposed error function:

erri = 1− c2

c2 + d2
i

(4.9)

maps the distance to the closest line d to a value between 0 and 1 (solid line in Figure 4.3).
For values of d between ± c the shape of the error function is somewhat similar to the
squared function (dashed line in Figure 4.3). Outside these boundaries the error function
flattens more and more to approximate 1.

46 CHAPTER 4. SELF-LOCALIZATION

di

erri

after [LLR05]

Figure 4.3: Traditional squared error function (dashed line) and the more robust M-
estimator

The pose correction, that minimizes Efit of step (3), is found numerically, using Resilient
Propagation (RPROP) [RB93]. The required gradients, with respect to the translation,
have been pre-calculated for a 5× 5 cm grid, to minimize the computational load. Hence,
only the gradient of the error function with respect to the rotation has to be calculated
for each scan point in each iteration, the gradients with respect to the translation can be
found in the look-up table.

4.3.1 Aperture problem

The pose estimation cannot always be performed equally sound for all three parameters.
Based on amount and structure of the detected line points either parameter of the pose
might fail to be estimated. Figure 4.4a depicts a situation where all three parameters

(a) distinct local minima (b) minimum valley

Figure 4.4: Error functions for different line point structures

can reliably estimated as a distinct local minima is to be found. In Figure 4.4b, captured
at the very same spot but with a different orientation of the camera, the translation
orthogonal to the goal line, and the orientation could be sound estimated, where as it
wasn’t possible to estimate the translation in parallel to the goal line, in which case the
initial pose is the best result that can be provided.

4.3. ADAPTATION OF THE COX ALGORITHM 47

Without proper handling, the parameter that is in parallel to the goal line would skid
along the valley with each iteration, as the gradient of the error function is constant,
leading to bad results. Hence, the topology of the error function has to be examined for
each parameter before the minimization step can be executed. For this examination the
second order deviation with respect to each parameter has to be calculated. For results
greater than some εi a local minima can be found and the minimization is performed. The
threshold values εi are found empirically, by logging the second order deviation results
for critical situations.

4.3.2 Post processing

The result of the Cox algorithm is a pose estimate and a respective covariance matrix.
Even though the covariance matrix is a measure of the quality of the result, it cannot be
used to detect misalignments, that is, whether the line points are mapped to the correct
field lines.

To lessen the impact of such misalignment and to incorporate the results of the Cox
algorithm and the results of the odometry, an extended Kalman filter (see Section 3.4)
is used. Starting at a configureable initial pose, the odometry readings are used as
prediction step and the pose estimate of the Cox algorithm are used as correction.

48 CHAPTER 4. SELF-LOCALIZATION

Chapter 5

Implementation

This chapter describes the implementation of the ZaDeAt team software in general and
the components required for the localization in detail. The core framework has been
developed at the RWTH Aachen as part of the masters thesis [Nie09] by Tim Niemüller.
It is now an open source project, to be found at http://www.fawkesrobotics.org.

5.1 Fawkes — A robot software framework

Pre Loop

Sensor/Vision

Sensor Proc.

World State

Think

Skills

Act

Act Exec

Post Loop

C
oncurrent

T
hreads

source: [FPS+09]

Figure 5.1: Fawkes syn-
chronization hooks

Fawkes is a plugin-based, multi-threading, and, per de-
fault, single process software framework. It provides basic
functionalities, like centralized data storage (called Black-
Board), configuration, logging, timing, and others. The
framework functionalities can be accessed via aspects. The
main application of Fawkes provides the core framework.
It initializes and manages the aspects, provides a mecha-
nism to load and unload plugins during runtime, and it
establishes the basic network features. Furthermore, it ex-
ecutes a default main loop, where plugin threads can be
hooked on to, to enforce synchronized thread execution.

5.1.1 Plugins

The plugins provide the actual functionality that is re-
quired to operate the robot. Each plugin consists of one or
more threads. When the plugin gets loaded, all dependent
threads are initialized. During this initialization phase,
functions that are provided via aspects gets initialized as

49

http://www.fawkesrobotics.org

50 CHAPTER 5. IMPLEMENTATION

well. If, and only if, all threads could be initialized (which implies that all aspects could
be provided), and all depending plugins are loaded, the loading of a plugin succeeds. It
is guaranteed, by the framework, that all dependencies are fulfilled in order to load a
plugin. However, the framework guarantees are only valid during the loading phase of
a plugin. In case a resource becomes unavailable, the plugin itself has to take care of a
proper handling.

5.1.2 Threads

The threads in Fawkes are based on the POSIX Threads API. Each thread can be
executed either in a continuous mode, or in a blocked timing mode. In the continuous
mode the thread task gets continuously executed. This is, for example, necessary for
high priority tasks, or, on the other end of the scale, long blocking tasks. In the blocked
timing mode, the thread gets hooked on one of the slots of the main loop (see Figure 5.1).
In this case, the thread task gets executed during the respective stage in the main loop,
together with all other threads, even of other plugins, that are hooked to the same slot.

5.1.3 Aspects

Framework functionalities, like the BlackBoard, centralized clock, and logging, are pro-
vided via aspects. An aspect gets initialized during thread creation and it can be guaran-
teed that either all aspects have been successfully initialized, or the thread creation, and
consequently, for example, the loading of a plugin, fails.

5.2 Components

Figure 5.2 gives an overview over the components that are used to operate the Naos of
the team ZaDeAt.

5.2.1 naocampos

The exact position of the active camera (relative to the ground plane), is one of the
most critical informations when it gets to the calculation of distances, based on camera
images. The more accurate the position of the camera is, the more accurate will the
resulting distances be. Relevant distances to be measured are the distance to the ball,
the distance to the goals (see Subsection 5.2.2), and the distances to the visible lines (see
Subsection 5.2.3).

The mandatory variables to be calculated are: the height above ground, and the three
rotational parameters roll (the angle when turning around the camera view axis), pitch

5.2. COMPONENTS 51

act nav

Cox Kalman

w
or

ld
m

o
d
el

Im
ag

e

Network

NaoQi
integration

fvbase

NaoQi GVM
naoballgoals

naolocalize

naomotion

skiller

agent

naoodometry

naocampos

ball pos

goals pos

robot

pose

odometry

cam pos

motion data

in
fo

w
o
rl

d

orders

navigation/motion

N
a
o

h
a
rd

w
a
re

N
a
o
Q

i

m
o
ti

o
n

after: [FPS+09]

Figure 5.2: Nao software components

(also known as tilt), and yaw (also known as pan). In addition, the translational offset
between the reference point for the back projection (see Section 3.3) and the robot’s chest
is of interest. The reference point for the back projection is the projection of the center
of the camera on the ground plane along the fall line.

pitch
yaw

roll

h~v

Figure 5.3: Camera location:
Hight h above ground, and the
orientation in space, roll, pitch,
and yaw. The optional vector ~v
can be used to improve the re-
sults.

The joint angles, the currently supporting leg, and the
readings from the inertial unit (see Subsection 2.2.4)
are the inputs for the camera position calculation.
Using the joint angles and applying the Denavid-
Hartenberg transformations (see Section 3.2) from the
supporting foot, up the supporting leg, through the
torso and up the neck to the active camera, would
be sufficient in the optimal case. This optimal case
would require error-free magnetic rotary encoder (see
Subsection 2.2.5) and a hard ground plain. Both re-
quirements are not fulfilled. The magnetic rotary en-
coders underly the typical variation of technical pro-
cesses and especially the linearization problem of ana-
log devices. The green carpet of the soccer field is
soft enough to impact the rotation of the camera if
the center of the weight is not aligned to the center
of the supporting foot.

As the rotation of the camera is even more critical
then the absolute height, especially for distant objects,
the readings of the inertial unit can optionally be used
to determine the orientation of the torso. However,

52 CHAPTER 5. IMPLEMENTATION

the calculation gets even more complex, and as currently only the accelerometer values
are used, the result is only valid for the static case. In this case the vector ~v1, from the
supporting foot to the center of the torso, and the vector ~v2, from the center of the torso
to the principal point of the camera get calculated. As the chains are shorter and the
orientation of the torso can be determined with a high accuracy, the cumulative error is
less than in the first case.

Data synchronization

5

6

2 4

1

3, 7

Figure 5.4: Asynchronous camera/hardware data: 1. Actual pose, 2. Camera heading at
capture time tcap, 3. Image (scan) at capture time (green), 4. Camera heading at process
time tproc > tcap, 5. Transformed scan (initial pose at process time), 6. Estimated pose
(based on asynchron data), 7. Transformed scan (estimated pose)

A particular important issue is the synchronisation of the camera image and the corre-
sponding camera position. It showed, that ignoring this issue made it impossible to get
a stable localization. As the update rate of camera images (10 or 15 Hz) is much lower
than the update rate of the joint positions (50 Hz), the position of the joints, as basis of
the camera location, could have got updated four to five times. The nominal speed of
the head yaw joint, for example, is 7.03° per 20 ms. This leads to a maximum error of
35.15° within five joint position update cycles.

5.2.2 naoballgoals

The object detection is currently color-based. The camera image gets classified using a
seeded region-growing algorithm. Due to the limited computational power on the Nao, it
is infeasible to classify the whole picture. Consequently, only a subset of the pixels of the
camera image can be examined. A grid of so-called scan lines gets applied to the image

5.2. COMPONENTS 53

and only the pixels along the grid are examined. On the other hand, the examination of
the grid pixels only would lead to inaccurate measurements.

The algorithm in use examines the pixels along the scan line grid. If the pixel can be
found in a, previously learned, color map, the neighbouring pixels get examined as well
and a cluster of matching pixels forms. A drawback of this algorithm is the fact that
measures have to be taken to avoid multiple examination of the same pixel as it might
be added for evaluation from each direction. Thus, each pixel currently processed has
to be tested if it has already been examined. Another drawback is the undefined timing
behaviour. The classification time is directly related to the size of classified regions in the
image. The classification of close objects takes therefore longer than the classification of
remote objects.

The result are bounding boxes around the classified clusters and the exact ratio of match-
ing to non-matching pixels within the bounding boxes.

while not end of scanlineGrid do
if currentPixel already examined then skip it endif
if currentPixel found in colorMap then

add currentPixel to examineStack
while examineStack not empty do

if firstStackPixel already examined then skip it endif
if firstStackPixel found in colorMap then

update boundingBox
add neighbouring pixels to examineStack

endif
done

endif
done

Listing 5.1: Seeded region-growing algorithm

The quality of the object detection relies directly on the quality of the color map. The
color map has to be created manually. A training tool allows to select color regions on live
images of the robot, and to map the selected colors to an object type, for example, the
ball, or the sky-blue goal. Using a Bayesian approach the color map then gets created.
Changing lighting conditions, over-trained color maps, and skipped color regions (for
example, an unrecognized orange region in the background, while concentrating on the
ball) are real hazards when using a color map based approach.

A second tool, developed during the work for this thesis, allows to post-process the
learned color map (see Figure 5.5). This allows to close gaps of colors that were not
visible during the training, and to extend the learned regions to make the color detection
more robust to changing lighting conditions. In the end it showed, that completely hand-
crafted color maps worked very well, and that, with a little practice, the time-consuming
training step could be eliminated.

54 CHAPTER 5. IMPLEMENTATION

Figure 5.5: Fawkes ColorMap Editor

After the blob detection, which is shared between ball and goal detection, the correspond-
ing bounding boxes (also known as region-of-interest, or ROI) are further processed de-
pending on the object type. This step is necessary to reduce the number of false positives,
that is, the number of objects that have been detected as a certain object type, without
actually being such (for example, a spectator wearing orange cloths has a good chance
to be detected as ball). On the other hand, being too strict during this step may lead to
not detecting the objects that are required to play (especially the ball and the goals).

Ball detection – post processing

The post processing for ROIs classified as ball is currently reduced to finding the closed
ROI. More sophisticated approaches were tried but could not be evaluated to be stable
enough.

One implemented approach used the matching/non-matching pixels ratio within the
bounding box of a blob. As the ball is pictured as circle, the ratio between the total
area of the bounding box and the area of the blob within it is given as:

Acirc
Abox

=
d2 π

4

d2
=
π

4
= 0.785 (5.1)

The main problem was the wide field-of-view of the camera (58° diagonal see Subsec-
tion 2.2.3). The ball used at the standard platform league has 8 cm in diameter. Given
the ball is 3 m away of the robot, the resulting bounding box has an extend of five pixels

5.2. COMPONENTS 55

in the optimal case (that is, no occlusion, a perfect color map, and good lighting combi-
nations). In this case 20 of the 25 pixels of the blob would have to match to be detected
as ball.

Another implemented approach used the ratio of distance to the ball and extend of the
bounding box:

extblob =
2 reshor
fovhor

arctan
(

rBall
distBall

)
(5.2)

Where extblob is the expected extend of the blob, for a ball with the radius rBall, at the
given distance distBall, with the camera properties horizontal resolution reshor, and the
horizontal field of view fovhor. Possible occlusion of the ball limits this approach to a
“to big to be a ball” criteria. Yet it may help to avoid running of the field in case the
ball is not insight at all, as the current solution always takes the closest ROI no matter
what. During the RoboCup™ 2009 in Graz the situation occurred a couple of times, that
a robot approached a spectator instead of keep looking for the actual ball.

Goal detection – post processing

The goal detection post process aims to extract the two poles of the goal. If both poles
are currently visible, the distances to either of them can be used to triangulate, or to
be precise trilaterate, the robot’s pose (see Section 4.1), and to incorporate these pose
estimate to the Kalman filter (see Section 3.4 and Subsection 4.3.2).

The algorithm takes the closest blob found and calculates the distances to all other
detected blobs. If the distance between two blobs is approximately 1.4 m, it is assumed
that those two blobs are poles of the same goal, and the algorithm terminates. As the
poles are connected by a thinner top bar, there is a chance that either a part of the top
bar, or even the complete goal is enclosed by a single bounding box. Therefore each ROI
gets split at 1/5 from the top and the lower part is classified again to get ROIs that fit
the poles as good as possible.

For a correct distance estimation it is required to see the part of an object that touches the
ground plane. The back projection will only return correct distances if the bottom of a
pole is insight (which depends on the distance, the camera pitch, and possible occlusion).
Searching for the green carpet below the pole ROI would be a valid, yet to be included,
test.

5.2.3 naoloc

The implementation of the naoloc plugin was the main topic of this work. It provides an
absolute pose on the field based on odometry readings, feature alignment (detected line
points on field lines, see Section 4.2), and goal triangulation. The main parts are the line

56 CHAPTER 5. IMPLEMENTATION

detection, the pose estimation, based on the previous pose and the detected line points,
and the filtering, where the previous pose, the pose estimation, and the goal triangulation
get fused to calculate the optimal new pose estimate.

Line detection

The lines on the soccer field are white lines on a green carpet. Thus, the lines are very
ease detectable on the luminance channel, as the contrast between white and the field-
green is very good. A line is expected to start with a major rise of the luminance value

(a) Raw image (b) Luminance channel (c) Resulting debug image

Figure 5.6: Line detection in action

and to end with a comparable drop of the luminance value. To detect the rise and drop of
the luminance, not the actual value but the gradient over several pixels is examined. By
using the gradient, the algorithm gets more robust against changing lighting conditions
and pixel noise.

0

50

100

150

200

0 50 100 150 200 250 300

0

100

200

x−coordinate

y−
coord

in
ate

0

50

100

150

200

250L
u
m

in
an

ce ch
an

n
el

(a) Three-dimensional representa-
tion of the luminance channel

0 50 100 150 200 250 300
0

50

100

150

200

250

x-coordinate

L
u
m

in
an

ce ch
an

n
el

y-coordinate=127

(b) Single row of the luminance
channel

Figure 5.7: Luminance channel analysis

As the robots are white for the biggest part of its surface, they might as well be detected
as lines. To avoid this, the maximum line width is defined. If a blob exceeds this width,

5.2. COMPONENTS 57

it is assumed to be part of a robot and get ignored. In addition, many of the assumed
line points, that are actually part of robots, are ignored after back projection. Due to
the ground plane assumption, these points would be either to far away, or even above
the horizon.

If a line is (almost) horizontal in the image, the line detection fails, as such a line exceeds
the maximum line width. To avoid this, the gradient is calculated in x- and y-direction
in two consecutive runs. To reduce the computational load a scan line grid is used to
limit the number of pixels processed.

Cox algorithm

The Cox algorithm requires an initial pose, a set of line points, represented in world-
coordinates relative to the robot, and a set of pre-defined features (the field lines in our
case):
prevPose := initialPose
for i:=1 to n do

transform linePoints to prevPose
for each linePoint in transformedLinePoints do

calculate distance to closest fieldLine
calculate error and gradients

done
calculate newPose that minimizes the error
prevPose := newPose

donex
calculate covarianceMatrix
return newPose and covarianceMatrix

Listing 5.2: Cox algorithm

Details about the Cox algorithm, the error function, or the Resilient Propagation algo-
rithm, used to calculate the new pose can be found in Section 4.2.

Localization post process

In a post process step, the estimated new pose is fed to a Kalman filter [Kal60] (see Sec-
tion 3.4). Additional inputs for the filter are the odometry readings (see Subsection 5.2.4),
and the result from the goal triangulation (see Section 4.1).

In case both poles of either goal are visible, and given, that both poles can be back
projected (that is, the ground plane assumption holds), the two poles are used to estimate
the current pose. This pose might be less accurate, compared to the result of the Cox
algorithm, in case the poles are far away, but it provide a good initial pose in case the
pose was lost, and it provide the only true source for a correct orientation as the field,
and therefore the pre-defined feature set of the Cox algorithm, is symmetrical.

58 CHAPTER 5. IMPLEMENTATION

5.2.4 naoodometry

The naoodometry plugin calculates the relocation of the robot based on the sensor read-
ings of the joint positions. At any given time the transformation of the torso relative to
the supporting foot can be calculated by solving the Denavid-Hartenberg transformation
chain of the supporting leg (see Section 3.2). By integrating the resulting translation
and rotation over time, the locomotion of the robot can be observed.

However, the result of the Denavid-Hartenberg transformation is only accurate if the
supporting foot sits flat on the ground, a prerequisite that is not necessarily fulfilled
on the soft carpet. Furthermore it is noteworthy that slippage and manual relocation
(kidnapped robot) are not detectable. The latter could be solved in the future with the
utilization of the inertial unit.

5.2.5 naomotion

This plugin handles the navigation, and the motion execution. The navigator executes
goto(x, y, θ) commands, that, depending on the actual call, are relative either to the
current pose of the robot, or to the origin of the global coordinate system, that is, the
center of the field. Apparently, a goto(x, y, θ) call to global coordinates will only succeed
if the current pose of the robot is valid. The navigator implements currently only a simple
turn-walk-turn path planning algorithm, without any kind of collision avoidance. Future
development are proposed to include an incremental Phi* search algorithm [NKL09] for
path planning, Bézier curves for the end-point approach, and collision avoidance, at least,
by integrating the ultra-sound sensors.

The motion execution handles basic motion calls of the kind walk(dist), strafe(dist),
or turn(angle). It currently relies on the motion implementation from Aldebaran, hence
the current motion execution is basically a wrapper around Aldebaran’s ALMotion calls.

5.2.6 worldmodel

The worldmodel plugin integrates several sources of data (for example, local examina-
tions, team members, or referee decisions) to provide a unified world model for high level
components. Integration routines include simple copying of single sources, merging mul-
tiple sources based on a set of merging strategies, or filtering the incoming data over time.
By integrating other robots beliefs of the world, each robot can refine its own world model
[FHL05], thus every robot broadcasts its beliefs with a rate of approximately 10 Hz.

The mapping of data sources to destination, and the integration strategy are defined by
configuration values, and as such does not require a modification of the code, which fosters
the reusability of the code on different platforms. On the other hand, it is noteworthy that
such an generalized approach only allow for very basic integration strategies. Common

5.2. COMPONENTS 59

tasks like object tracking, that is, updating the pose of objects that are out of sight based
on joint, or consequently odometry readings, are currently not implemented.

5.2.7 skiller

The skiller plugin provides an interface to the Lua [IdFF96] scripting language, that is
used to implement the basic skills. A skill can be seen as the simplest operation the
robot can perform, as seen from a high level abstraction. The list of skills include the
basic motion commands (like walk, turn, . . .), tasks to kick the ball, to stand up, in case
the robot has fallen down, or to search for the ball (or the goals), and more.

The advantages of Lua are the seamless integration into C/C++ frameworks, the small
overhead in terms of speed and memory consumption, dynamic structures, no redundan-
cies, and ease of testing and debugging [Ier06]. Lua features a safe execution environment.
Errors can be easily detected and will not cause a failure of the whole program. Lua per-
forms automatic memory management. This means that the behavior developer has to
worry neither about allocating memory for new objects nor about freeing it when the
objects are no longer needed [Web09a].

5.2.8 agent

The agent is the top level robot controller. It gets all input data via the world model
and is able to execute the skills, that are available to the skiller (see above). The agent
can be developed in various ways, either as top level skill executed by the skiller, or as
independent component. Currently it is implemented as a Fawkes plugin, similar to the
skiller, that executes a Lua defined hierarchical hybrid state machine. The state machine
used for the RoboCup™ 2009 competitions is shown in Figure 5.8.

The top level state machine implements the state as required by the SPL rule book
[LTC09c] (see Figure 2.9). Each state may execute sub state machines to map the
required functionalities.

5.2.9 naoqi_integrator

The naoqi_integrator is developed as a NaoQi module, to integrate the NaoQi middle-
ware into the Fawkes software framework. It provides a data set of the current sensor
readings for the BlackBoard, and executes pending commands, sent by various Fawkes
plugins.

60 CHAPTER 5. IMPLEMENTATION

generated by: Fawkes skillgui

Figure 5.8: ZaDeAt game states for the RoboCup™ 2009 competitions

Chapter 6

Results

6.1 Cox algorithm

The Cox algorithm has been evaluated in simulation and on the real robot. The simu-
lation has become a key factor for debugging and to find improved parameters for the
main algorithm and the supporting parts.

6.1.1 Simulation

Automated test runs provided the biggest part of the evaluation of the Cox algorithm.
The bulk execution of test runs with modified parameters led to a final parameter set that
could be evaluated on the real Nao in an efficient and non-destructive way. Even during
the simulation the robot felt many times, a circumstance that could be easily detected
and the simulation restarted. For the real robot this would be an imminent threat. The
tests would require the full attention to be able to catch the robot to prevent damage,
and thus be very time consuming.

Setup

A test set on the simulator consists of at least 25 runs, each from a random initial
pose (translation, and orientation). The self-localization task cannot rely on a particular
orientation of the head. The head gets controlled by a high-level agent, which requires
to set the orientation of the head based on the current objective (for example search
for the ball, or the opponents goal). The self-localization task is limited to examine the
camera image that is currently available. To model this behaviour, the head orientation
is set independently and randomly during the complete test session. To ensure a broad

61

62 CHAPTER 6. RESULTS

field-of-view, the four quadrants, lower-left, upper-left, upper-right, and lower-right, are
visited one after the other.

Within each run the robot executes a pre-defined motion
pattern. Starting from a random initial pose, the robot
walks 0.5 m straight, a clockwise-arc with 0.5 m radius for
270°, 1 m straight, a counterclockwise-arc with 0.5 m radius
for 270°, and again, 0.5 m straight. The total distance cov-
ered is 6.7 m and it turned for a total of 540°. In the optimal
case the robot should have performed a figure-of-eight walk
and be at the same spot with the same orientation as it
started from. In case the Nao stumbles, the run is cancelled and not counted as one of
the 25 runs. However, within the simulation the walk of the Nao is very stable and it
only falls down in case it collides with another object.

Results

A single run takes about 3 minutes. The simulator works with a frame rate of 12.5 Hz,
this leads to approximately 2 200 frames per run, a test set requires about 90 minutes
and produces approximately 55 000 frames. For each frame the actual pose is extracted
from the simulator and stored together with the initial and resulting pose of the Cox
algorithm.

Figure 6.1: Initial poses of the first test set: Black robot icons mark initial poses of test
runs where the robot stumbled, red icons mark initial poses where the robot lost its pose,
and yellow icons mark test runs where the pose estimation succeeded.

6.1. COX ALGORITHM 63

The poses of Figure 6.1, drawn black, mark initial poses of runs where the robot fell
down, the red initial poses mark runs where the self-localization failed, and the yellow
icons show initial poses where the self-localization succeeded. The pose is considered lost,
if either the euclidian distance between ground truth and estimated pose exceeds 0.5 m,
or the offset of the orientation between ground truth and estimated pose exceeds 45°. In
several cases the pose got lost only for a couple of frames. In case the robot recovered it’s
pose before finishing the test run, the self-localization task is considered to be successful.

Based on a final parameter set two test series have been performed. The first series was
executed on an empty field, that is, the observed robot was the only robot on a, 2009
SPL rules conform, soccer field (see Figure 2.7). The second set took place on the same
field but was extended by five static robots. The initial poses of those robots were set
according to the rules, that is, one robot of either color was dedicated as goalkeeper and
places within the goal area, the remaining two opponent robots were places at the corner
points of the penalty area and the remaining robot of the own team was placed within
the own half of the field. Sometimes during the run the static robots were pushed around

Figure 6.2: Placement of the static robots for the second test set

as the observed robot performed its walk patterns, and, as a result, had a chance to fall
down. Thus the poses of the static robots were somewhat random for the single runs of
the second test series, but have not been set deliberately.

First test set The first test set required 35 runs to get 25 runs that finished without
stumbling. Those 25 runs generated 56 558 frames. For 31 784 frames (56 %), enough line

64 CHAPTER 6. RESULTS

points could be extracted to perform the Cox algorithm. A total of 52 827 pose estimates
were correct, and for 3 731 frames (6 %) the pose was lost.

Average Deviation Median Maximum
Line points 56.12 25.57 50 173
Distance error* [cm] 15.38 31.26 7.05 322.16
Angular error** [°] 7.13 16.54 2.17 121.49

Table 6.1: Summary of the first test set

Average Deviation Minimum Median Maximum
Total frames 2 262.32 n/a 2 261 2 262 2 263
Cox frames*** 1 271.36 184.37 864 1 276 1 572
Pose correct 2 113.08 321.99 809 2 247 2 263
Pose lost 149.24 321.67 0 16 1 452

Table 6.2: Overview over the test runs of the first test set

* Eucledian distance between pose estimate and ground truth
** Offset between the orientations of pose estimate and ground truth
*** Number of frames for which enough line points could be detected to perform the Cox algorithm

During the 25 runs the pose got lost 101 times, and was recovered 97 times, that is, four
runs ended with a lost pose. In 81 cases the threshold distance of 0.5 m was exceeded,
and in 20 cases the pose got lost as the angular offset threshold of 45° has been reached.

Second test set The field for the second test set has been extended by five static
robots (see Figure 6.2). Thus, the observed robot had way more encounters with static
object, and as a result sumbled more often. It required 50 runs to get 21 runs that have
been finished without stumbling of the observed Nao. These 21 runs generated 47 511
frames, for 58 % (27 885 frames) the Cox algorithm could be executed. A total of 33 572
pose estimates were correct, and the poses of 13 939 frames, or 29 %, were lost.

The exceedance of the distance error threshold caused a pose lost 118 times, the ex-
ceedance of the angular error threshold for another 55 times. The pose could be recov-
ered 166 times, leaving seven runs finished with a lost pose. Note that the pose lost due
to the angular error is only counted in case the distance error was below the threshold

6.1. COX ALGORITHM 65

Average Deviation Median Maximum
Line points 61.06 29.70 54 201
Distance error* [cm] 43.56 73.56 12.93 464.7
Angular error** [°] 24.13 42.43 4.01 180

Table 6.3: Summary of the second test set

Average Deviation Minimum Median Maximum
Total frames 2 262.43 3.73 2 255 2 262 2 278
Cox frames*** 1 327.86 281.58 799 1 397 1 772
Pose correct 1 598.67 617.76 417 1 765 2 262
Pose lost 663.76 617.72 0 495 1 845

Table 6.4: Overview over the test runs of the second test set

value, that is, if both threshold values were exceeded, only the distance error counter was
increased.

The higher average of detected line points of the second run can be explained with the
fact that the white body parts of the static robots are also detected as lines. Currently
there is no detector for other robots on the field, thus the point sets that are related
to robots cannot be distinguished from the point sets of the field lines. A line detector
algorithm that used the detected line points to extract straight line segments has been
tested, but was removed as it was computationally infeasible on the current platform.
The erroneous line points that are detected on other robot’s body parts are the main
source of why the estimation error, and thus the number of frames where the pose is lost,
increases for the second test set.

6.1.2 Real-world test

In order to evaluate the self-localization approach on the real Nao a test environment has
been set up within a six-dimensional motion tracker facility. The motion tracker provides
ground truth data as reference for the estimates of the Cox algorithm. The experiments
were conducted as part of the generation of ground truth datasets for the Nao robot
platform [FKN+10].

Setup

The motion tracker is part of the CUBE Laboratory of the Institute for Electronic Music
Acoustics of the University of Music and Performing Arts in Graz. The high performance

66 CHAPTER 6. RESULTS

Figure 6.3: Setup for the tracking session. The left image shows the SPL field within
the motion tracker system. The right image shows one of the 15 cameras of the body
motion tracking system. The LEDs at the front of the camera provide pulsed infra-red
light allowing capturing under day light conditions.

vision-based motion capturing system is usually used for research on innovative forms
of arts and music [EPS09]. The tracker system V624, by Vicon, consists of 15 infra-
red cameras, that are mounted around the tracked area, and the supporting hard- and
software. It is capable to track the three-dimensional positions of reflective markers at
a frame rate of 120 Hz. With proper placement of the markers the system is able to
calculate the pose of bounding boxes in six-dimensions, that is, three translational and
three rotatory components, with a high spacial accuracy of less than one millimeter.

In order to get the reference pose of the Nao, the robot got four reflective markers
attached to its chest. In addition, the head got markers as well and was tracked to get
ground truth data of the camera location at the time of frame capturing. The latter
has been done to verify the current implementation of the camera location calculation.
Even though the markers of the head are mounted actually above it, the tracker system
is capable to provide the pose that has its origin aligned with the turning axis of the
upper head joint (see Figure 6.4 right).

To reduce the number of error sources and to minimize the time required in the tracker
lab the tracking session was used for data recording only. The post-processing of the
data, the execution of the Cox algorithm, and the statistical evaluation happened in a
separate step off-site. One of the key challenges has been the synchronization of the data
sets, because there was no way to synchronize the timestamps of the tracker with those
of the Nao hardware clock.

6.1. COX ALGORITHM 67

Figure 6.4: Tracking setup of the Nao. The left image shows the Nao with attacked re-
flective markers. The right image shows the modelled bounding boxes inside the tracking
software.

Data synchronization

The default output of the tracker system does not provide timestamps at all.It is a list
of coordinates prepended by a frame number. The frame number gets reset with every
new run. However, the capturing rate skews between about 118 Hz and 121 Hz, and the
timestamp of the start of a run is logged at a accuracy of one second. To get accurate
timestamps another feature of the tracker system was exploited. The system sends new
measurements as UDP1 packages over the network. These packages were read by the
third-party software SuperCollider2. SuperCollider is an open-source environment and
programming language for real time audio synthesis and algorithmic composition. It has
been used to capture the tracker data together with the timestamp of the incoming UDP
packages. The result has been one file per run with comma separated values containing
the time stamp, and the six-dimensional poses of chest and head. The timestamps of the
tracker files, however, are all relative to the program start of the capture software.

As a first post-process step it was necessary to calculate the offset between tracker time-
stamps and the timestamps captured on the robot. The first and the final run coinci-
dentally began with the same stand up motion. It showed that the z-component of the
chest box of the tracker data and the knee pitch of the robot hardware log had a direct
relationship during the stand up motion.

In a first attempt the offset ofirst was calculated for the first run, and for the last run
olast. In the optimal case the clocks of the capture system and the robot are equally
fast and hence ofirst = olast. In this case the difference between the two offsets was
more than four seconds. Consequently the offset between tracker and Nao logs had to

1User Datagram Protocol
2http://supercollider.sourceforge.net/

http://supercollider.sourceforge.net/

68 CHAPTER 6. RESULTS

Offset: 1264761365.079548 [sec]

Figure 6.5: Tracker vs. Nao data logs: The red line shows the z-axis of the chest pose of
the tracker dataset for the first 1000 frames. The blue line shows the run of the left knee
joint. The orange and black lines are the filtered functions used for synchronization.

be calculated separately for each run. To automate this step the approach of the line
detection (see Subsection 5.2.3) has been reused to detect the first deliberate movement
within the tracker log and the corresponding robot’s joint.

Results

The result dataset consists of 19 runs. The runs are compiled from various motion
patterns, to cover all available moves of the robot. Details of each run can be found in
Table 6.5. The robot covered a distance of 66.7 m and rotated for a total of 6 850°.

A total of 24 762 frames has been captured, of which 12 093 (48 %) provided enough line
points to apply the Cox algorithm. The pose estimation succeeded for 20 741 frames, but
failed for 3 914 frames (15 %).

The pose was lost for 162 times due to distance error exceedance (of 0.5 m), and 70
time due to angular error exceedance (of 45°). In 230 cases the pose could be recovered,
resulting in two runs that finished with a lost pose.

Camera synchronization In order to synchronize a camera frame and the correspond-
ing camera location, the capture timestamp was used to find the dataset within the
robot’s joints log that had the least offset. This dataset was used to calculate the camera
location, as descibed in Subsection 5.2.1. Theoretically, the maximum offset between
capture timestamp and corresponding camera location should be less than half the offset
between two camera frames. Given the capture rate of 15 Hz, the maximum offset should
be 33.3 ms.

The average of all offsets of the tracker dataset frames has been 0.42 ms, with a standard
deviation of 55.89 ms. However, the minimum value has been −1 381 ms, that is, the
captured frame was almost 1.4 s older than the closest joints dataset, and the maximum

6.1. COX ALGORITHM 69

Run Motion pattern Ball/Opponent Head motion
01 walk straight: 1 m – –
02 walk straight: 3 m – –
03 walk straight: 3 m X –
04 walk straight: 3 m X X
05 walk straight: 4 m X X
06 walk arc: 2 m/100° – –
07 walk arc: 1 m/180° – –
08 walk arc: 1 m/270° – –
09 figure-of-eight X X
10 figure-of-eight X X
11 turn: +720°, −360° X –
12 turn: +360°, −360° X –
13 turn: +360°, −720°, +360° X X
14 turn: +360°, −720°, +360° X X
15 walk sideward: −3 m, +3 m – –
16 walk sideward: −4 m, +2 m X –
17 walk sideward: −4 m, +2 m X X
18 walk sideward: −3 m, +2 m X X
19 figure-of-eight – X

Table 6.5: Motion patterns of the tracker dataset

Average Deviation Median Maximum
Line points 35.69 13.56 30 107
Distance error* [cm] 23.7 18.7 17.99 107.25
Angular error** [°] 12.8 15.78 7.11 101.1

Table 6.6: Summary of the tracker test set

Average Deviation Minimum Median Maximum
Total frames 1 303.26 629.56 392 1 100 2 490
Cox frames*** 636.47 394.62 223 465 1 766
Pose correct 1 091.63 448.73 392 947 2 063
Pose lost 206 321.3 0 6 1 071

Table 6.7: Overview over the test runs of the tracker test set

70 CHAPTER 6. RESULTS

value 1 746 ms. This is explicable for the fact that the flash drive as well as the CPU were
at the limit of their capabilities. The fact that several camera frames share the same,
outdated, camera location introduces an enormous error. Within 1.7 s the head of the
Nao can easily turn from the left to the right limit and back. The impact of this error
can be seen in the following section.

Changed parameters for the test run 15 The setup of the fifteenth run proved
to be particular challenging with respect to the Cox algorithm and the current state of
development. Figure 6.6 shows the result generated with the same parameter set, as used
for the other test runs.

Figure 6.6: Original result of the test run 15, generated with an unmodified parameter set:
The magenta colored robot icons shows the initial and final pose of the tested robot, the
blue and red icons shows the placement of static robots of the respective color. The blue
line depicts the ground truth trajectory, the yellow line the integration of the odometry
readings, and the red line the estimated pose. The orange circles illustrates the ball
position estimates during the test run. The actual position of the ball ball was at the
center of the field.

The robot sticks, more or less, to the side line for the whole time. The trajectory and the
placement of the blue robot took account for that behaviour. For the first period, after
the start of the run, the Cox algorithm was fed with line points of a T-shape of side line
and center line, which is particularly good to minimize the error function with respect to

6.2. BALL DETECTION 71

all three parameters (see Subsection 4.3.1). Thus, the values of the resulting covariance
matrix were very small, and consequently the impact on the filter high, compared to the
odometry readings. After about 30 cm the blue robot came insight on the right side of
the camera image. Without a proper detection algorithm for other robots on the field
the white parts of the static robot were also detected as line points resulting, again, in a
T-shape geometry that was, again, mapped onto the side line. The same happened with
the almost +-shaped line points, resulting from the center line and parts of the center
circle. It can be seen that the y-component of the pose was estimated correct while the
x-component was tied to the side line. To get the results depicted in Figure A.15 it was,
hence, necessary to limit the impact of the Cox algorithm by increasing the values of the
covariance matrices of the pose estimates.

6.2 Ball detection

For the test runs containing opponent and ball, the ball detection algorithm (see Subsec-
tion 5.2.2) has been applied. The resulting relative position of the ball was transformed,
using the ground truth pose provided by the tracker, to get an absolute position on the
field. The ball was not moved during a test run, thus, the resulting global position was
expected to be constant. Due to the offset between capture timestamp of the camera
frame and corresponding camera location and the error introduced by the back projection,
the actual resulting position changed quite dramatically. Figures of the tracker test runs,
depicting also the ball position estimates, can be found in the Appendix A. For example,
Figure A.5 shows the estimated global positions of the ball, as the robot moved along
its trajectory of the test run 05. It is to say, that the figure shows only the estimations
that were on the field. Several estimates were way out of bound, the estimate that were
furthest away had an x-coordinate of over −63 m.

The resulting average estimation of the global position for the test runs, were the ball
could be detected, are illustrated in Figure 6.7, together with the corresponding standard
deviation ellipses. Note that the extend of the deviation ellipses are scaled down by the
factor 10 to be able to draw them within the field boundaries.

6.3 Tournaments

As part of the work for this thesis, it was possible to participate at several tournaments.
These were the RoboCup™ 2008 in Suzhou, China, the German Opens 2009 in Hannover,
Germany, and the RoboCup™ 2009 in Graz, Austria.

72 CHAPTER 6. RESULTS

run Ground truth Average Deviation
x [m] y [m] x [m] y [m] x [m] y [m]

04 0 −0.6 0.157 −0.574 0.615 0.303
05 0 −0.6 −1.440 −1.037 7.915 3.461
09 0 −0.6 0.025 −0.717 0.292 0.621
10 0 −0.6 0.095 −0.700 0.493 1.333
11 0 −0.6 −0.103 −0.301 0.445 0.700
14 0 0 0.125 −0.166 1.153 1.214
16 0 0 −0.156 −0.795 0.153 0.371
17 0 0 −0.271 −0.194 1.736 1.726
18 0 0 −0.378 0.568 3.678 3.064
run Minimum Median Maximum
04 −1.719 −1.761 0.003 −0.567 1.139 −0.131
05 −63.422 −33.038 0.114 −0.561 1.577 −0.116
09 −1.158 −3.357 0.069 −0.616 0.547 0.341
10 −4.163 −15.215 0.091 −0.533 1.739 0.348
11 −0.490 −3.179 −0.228 −0.053 1.742 0.239
14 −0.728 −5.873 −0.392 0.402 4.788 0.575
16 −0.502 −1.133 −0.136 −0.963 0.125 0.605
17 −16.510 −1.447 −0.060 −0.599 1.568 16.987
18 −2.545 −0.698 −0.693 0.341 43.076 36.917

Table 6.8: Results of the ball detection and global position estimation

6.3. TOURNAMENTS 73

Figure 6.7: Average ball position estimates: The filled circles with the black outline show
the actual positions of the ball. The center of the yellow and orange ellipses show the
average of all ball estimates for a test run, the extend of the ellipses show the respective
standard deviation. The standard deviation has been scaled down by the factor ten to
display them within the field boundaries. The dashed line shows the extend of the largest
ellipse at true scale.

74 CHAPTER 6. RESULTS

6.3.1 RoboCup™ 2008, Suzhou, China

The event took place only several weeks after we got our robots for the first time, hence the
time in China was used mainly to stabilise the framework on the hardware and to perform
experiments required for a stable motion. It showed that the hardware was in a very
early state of development and that the reliability of the platform had to be increased
tremendously. Many a time the robots required repair after a couple of experiments
with modified walking parameters. As the wireless network is always reserved for the
tournament games, the robots had to be plugged to the network via cable. The sockets
of the network, however were mounted quite fragile and it took only several bends of the
cable for the socket to come loose. Also the shell of the robot was not made of some
stable plastic, but came from a prototype printer, for which the screws came loose and
the parts had a good chance to break in case the robots fell down.

Experiments related to this work showed that the line detection algorithm worked very
well, while the calculation of the camera location was still error prone. A part of those
errors could be related to hardware malfunctions. In the end it showed that the proposed
algorithm, which integrated the accelerometer did not produce results that were reliable
and stable enough a the use within competitions. In addition, this approach was also
quite costly with respect to the required computational power. As a result the calculation
of the camera location is currently only based on the servo readings of the supporting
leg, and the head joints. Thus, however, the result is only correct under the assumption
that the supporting foot is firmly on the ground and therefore in parallel with the ground
plane.

6.3.2 German Opens 2009, Hannover, Germany

The second participation was at the German Opens in 2009. By now the hardware, as
well as the middleware provided by Aldebaran, made a big leap towards market ready.
The platform became more robust and reliable. Known changes were the replacement of
a part of the gears to metal gears, the replacement of the shell, a new head CPU, and
a second camera, mounted below the original camera to be able to see the feet of the
robot.

At this point the self-localization using the Cox algorithm was implemented but still not
competitive. It could be shown that the localization worked in the static case, but failed,
more or less instantaneously, as soon as the robot started to move. Later tests revealed
that the cause for this behaviour was the offset between a captured camera frame and the
related camera location (see Subsection 5.2.1). As the camera location was calculated
based on a wrong joint data set, the back projection (see Section 3.3) of the line points
fails and consequently also the pose estimation of the Cox algorithm.

The games could be played, to some extend, without the knowledge of the own position.
The conducting agent was rather simple: search for the ball, approach the ball, search for

6.3. TOURNAMENTS 75

the opponent’s goal, turn around the ball until the robot is lined up, and kick. Therefore,
color classification and object detection of ball and goals became the main topics during
the event. The exhibition hall in Hannover had sky lights and the changing lighting
conditions due to scattered clouds was a real problem for the color classification on our
robots. The creation of the color tables got changed from a Bayesian learning approach
to pure hand-crafted color tables. That way the area of possible colors for a certain object
could be made large enough, so that the changing lighting conditions did not impact the
result that much anymore.

Improvements could also be seen in other parts of the software. The core framework,
which had to deal with teething troubles, like race conditions, became somewhat stable.
A fact that finally allowed to pay more and more attention to the actual topics of this
thesis.

6.3.3 RoboCup™ 2009, Graz, Austria

For the event in Graz, the object detection was refined. A seeded region growing al-
gorithm (see Subsection 5.2.2) has been implemented to be able to detect the exact
boundaries of the detected objects. These information can be used to calculate the plau-
sibility of an object occurrence based on distance and size. It helped furthermore to
be able to detect the two goal poles. With the position of the two poles of either goal
a rough estimation of the own pose can be calculated based on triangulation (see Sec-
tion 4.1). The result is quite accurate with respect to the orientation, but may be of
least quality with respect to the translation, in case the bottom of the poles are occluded.
The estimation can still be useful, either to evaluate the believe of the current pose, or
even as a new initial pose for the Cox algorithm. Further work has to be done, as the
current system does not support multi-hypotheses tracking [RV09].

It is to say that the RoboCup™ 2009 only got minor attention by the author as his
daughter was born during this event.

76 CHAPTER 6. RESULTS

Chapter 7

Conclusion

Self-localization

During the work for this thesis a self-localization algorithm, based on the work of I.J.
Cox [Cox91], has been implemented for the use on the biped robot Nao. This algorithm
provides an estimate of the global pose on a soccer field of the RoboCup™ Standard
Platform League. The evaluation was done using simulation and a sophisticated six-
dimensional motion tracker system, to get ground truth data for the real Nao. A total
of 128 831 frames were processed and the pose estimation succeeded for over 83 %, or
107 140 frames. A pose estimation has been defined as successful in case the euclidian
distance between estimated position and actual (ground truth) position was less than
0.5 m and the offset between actual and estimated orientation less than 45°.

Frames Sim 1st (%) Sim 2nd (%) Tracker (%)
Total number 56 558 100 47 511 100 24 762 100
Cox processed 31 784 56.2 27 885 58.69 12 093 48.84
Pose correct 52 827 93.4 33 572 70.66 20 741 83.76
Pose lost 3 731 6.6 13 939 29.34 3 914 15.81
Ground truth missing 107 0.43

Table 7.1: Summary of the evaluation of the Cox algorithm

Details about the test sets can be found in Section 6.1. Given the numbers of Table 7.1,
it can be said, that the Cox algorithm is suitable for the task of self-localization within
the soccer environment of the SPL domain, as long as a stable motion, and thus, reliable
odometry readings can be expected. However, the current robots, with the motion engine
in use, showed a particularly challenging behaviour. Under odd circumstances, the Nao
got caught on the field with the front of its foot, which caused a twist of up to 60° within
a single step. These twists were undetected by the odometry, as the odometry calculation

77

78 CHAPTER 7. CONCLUSION

relies only on servo readings. Hence, the expected initial pose was sometimes way off the
actual value, and, consequently, the result of the Cox algorithm.

A major drawback of the implemented algorithm is the fact that there are no means to
detect that the pose has been lost. The algorithm optimizes the initial pose to find a
local minima in the error function, however small this minima might be. To overcome
this limitation, the goal detection has been optimized to be able to detect the side poles
independently, in order to use the two poles for triangulation. However, the evaluation
of the ball detection (see Section 6.2), which showed ball position estimates with an error
of more than 60 m, revealed that the absolute numbers of the distance estimation are
often of limited use.

The reason why this algorithm still was chosen is the limited computational power re-
quired compared to, for example, particle filters. The Cox algorithm calculates the error
function n-times (once per iteration) for each pose estimate, with n = 10 currently. The
particle filter used by other teams in the SPL require 100–150 particles to produce sound
results, and the error function has to be evaluated for each particle, for each pose esti-
mate. The vision subsystem of the Fawkes framework has several shortcomings, at least
on the Nao platform. Each vision plugin is supposed to perform only a single task, that
is, the ball and the goal detection, for example, should be performed in two different plu-
gins. Each plugin, however, gets its own copy of the current camera image. In addition,
most of the vision subsystem, depends on one particular colorspace. Therefore a new
camera image has to be reordered and copied several times. A task that is very costly
with respect to the computation time, as the camera image buffer does not fit in the
cache memory, and the connection to the main memory is rather slow on the embedded
system.

The evaluation of the time offsets between a camera frame and the corresponding cam-
era location, highlighted that the current framework furthermore needs a mechanism to
monitor the current offset in time between image and camera location and to react in
case this offset exceeds a given threshold. It should be always better to produce results
like there is a ball, I just cannot tell how far away it is, than to approach a ball that is
expected to be 60 m away. The same applies for any kind of self-localization approach
that uses the camera as sensor. A distance estimation is always only as good as the
estimation of the camera location at the capture time, and if this estimation is out-dated,
a resulting distance is no good at all.

Other topics

In addition to the self-localization algorithm several loose ends regarding the ball and
goal detection have been tied and the overall system stability could be improved by fixing
race conditions and eliminating dead locks. A couple of tools were developed to support
an efficient preparation for the games during tournaments, and the setup for test sessions.
It showed that the on-site preparations often took too long and introduced many errors

79

that greatly harmed our performance. For example, in the beginning there was no tool
support to set the camera parameters, like white balance, contrast, or saturation. The
parameters had to be set in a configuration database, the vision subsystem restarted,
and the result evaluated using different tools. As this procedure took some time and had
to be done several times due to changing lighting conditions, this could be done only for
one robot and the resulting parameter set was copied to the other robots. Variances of
the different cameras had to be ignored. Several times we forgot to update a robot with
the latest settings and ended up with a robot that was not able to detect the ball, only
for misconfigured camera parameters.

80 CHAPTER 7. CONCLUSION

Appendix A

Results of the tracker test set

The results of the tracker test runs are depicted on the following figures.

Color code: The magenta robot icons show the initial and final pose of the tested
robot. The blue line depicts the ground truth trajectory. The yellow line illustrates the
integration of the odometry readings, and the red line the estimated pose, as calculated
by the Cox algorithm and Kalman filter. If available, the actual position of the ball is
depicted as an orange filled circle with black outline, the estimated ball positions are
shown as empty orange circles. The blue and/or red robot icon marks the pose of a
static robot of the respective color, if placed on the field for that test run.

81

82 APPENDIX A. TRACKER TEST RUNS

Figure A.1: Run 01: walk straight: 1 m, fixed head. The magenta robot icons show
the initial and final pose of the tested robot. The blue line depicts the ground truth
trajectory. The yellow line illustrates the integration of the odometry readings, and the
red line the estimated pose, as calculated by the Cox algorithm and Kalman filter.

83

Figure A.2: Run 02: walk straight: 3 m, fixed head. The magenta robot icons show
the initial and final pose of the tested robot. The blue line depicts the ground truth
trajectory. The yellow line illustrates the integration of the odometry readings, and the
red line the estimated pose, as calculated by the Cox algorithm and Kalman filter.

84 APPENDIX A. TRACKER TEST RUNS

Figure A.3: Run 03: walk straight: 3 m, fixed head. The magenta robot icons show
the initial and final pose of the tested robot. The blue line depicts the ground truth
trajectory. The yellow line illustrates the integration of the odometry readings, and the
red line the estimated pose, as calculated by the Cox algorithm and Kalman filter. The
position of the ball is depicted as an orange filled circle with black outline. The blue
robot icon marks the pose of a static, blue robot.

85

Figure A.4: Run 04: walk straight: 3 m, moving head. The magenta robot icons show
the initial and final pose of the tested robot. The blue line depicts the ground truth
trajectory. The yellow line illustrates the integration of the odometry readings, and the
red line the estimated pose, as calculated by the Cox algorithm and Kalman filter. The
actual position of the ball is depicted as an orange filled circle with black outline, the
ball position estimates are shown as orange circles. The blue robot icon marks the pose
of a static, blue robot.

86 APPENDIX A. TRACKER TEST RUNS

Figure A.5: Run 05: walk straight: 4 m, moving head. The magenta robot icons show
the initial and final pose of the tested robot. The blue line depicts the ground truth
trajectory. The yellow line illustrates the integration of the odometry readings, and the
red line the estimated pose, as calculated by the Cox algorithm and Kalman filter. The
actual position of the ball is depicted as an orange filled circle with black outline, the
ball position estimates are shown as orange circles. The blue robot icon marks the pose
of a static, blue robot.

87

Figure A.6: Run 06: walk arc: 2 m/100°, fixed head. The magenta robot icon shows
the initial pose of the tested robot. The blue line depicts the ground truth trajectory.
The yellow line illustrates the integration of the odometry readings, and the red line the
estimated pose, as calculated by the Cox algorithm and Kalman filter.

88 APPENDIX A. TRACKER TEST RUNS

Figure A.7: Run 07: walk arc: 1 m/180°, fixed head. The magenta robot icons show
the initial and final pose of the tested robot. The blue line depicts the ground truth
trajectory. The yellow line illustrates the integration of the odometry readings, and the
red line the estimated pose, as calculated by the Cox algorithm and Kalman filter.

89

Figure A.8: Run 08: walk arc: 1 m/270°, fixed head. The magenta robot icons show
the initial and final pose of the tested robot. The blue line depicts the ground truth
trajectory. The yellow line illustrates the integration of the odometry readings, and the
red line the estimated pose, as calculated by the Cox algorithm and Kalman filter.

90 APPENDIX A. TRACKER TEST RUNS

Figure A.9: Run 09: figure-of-eight, moving head. The magenta robot icons show the
initial and final pose of the tested robot. The blue line depicts the ground truth trajectory.
The yellow line illustrates the integration of the odometry readings, and the red line
the estimated pose, as calculated by the Cox algorithm and Kalman filter. The actual
position of the ball is at the crossing of center line and center circle, the ball position
estimates are shown as orange circles. The red robot icon marks the pose of a static, red
robot.

91

Figure A.10: Run 10: figure-of-eight, moving head. The magenta robot icons show
the initial and final pose of the tested robot. The blue line depicts the ground truth
trajectory. The yellow line illustrates the integration of the odometry readings, and the
red line the estimated pose, as calculated by the Cox algorithm and Kalman filter. The
actual position of the ball is at the crossing of center line and center circle, the ball
position estimates are shown as orange circles. The red robot icon marks the pose of a
static, red robot.

92 APPENDIX A. TRACKER TEST RUNS

Figure A.11: Run 11: turn: +720°, −360°, fixed head. The magenta robot icon shows
the final pose of the tested robot. The blue line, on top of the pose icon depicts the
ground truth trajectory. The red line illustrates the estimated pose, as calculated by
the Cox algorithm and Kalman filter. The actual position of the ball is depicted as an
orange filled circle with black outline, the ball position estimates are shown as orange
circles. The red robot icon marks the pose of a static, red robot.

93

Figure A.12: Run 12: turn: +360°, −360°, fixed head. The magenta robot icons show the
initial and final pose of the tested robot. The blue line, on top of the pose icons depicts
the ground truth trajectory. The red line illustrates the estimated pose, as calculated
by the Cox algorithm and Kalman filter. The actual position of the ball is depicted as
an orange filled circle with black outline, the ball position estimates are shown as orange
circles. The red robot icon marks the pose of a static, red robot.

94 APPENDIX A. TRACKER TEST RUNS

Figure A.13: Run 13: turn: +360°, −720°, +360°, moving head. The magenta robot icon
shows the final pose of the tested robot. The blue line, on top of the pose icon depicts
the ground truth trajectory. The red line illustrates the estimated pose, as calculated
by the Cox algorithm and Kalman filter. The actual position of the ball is depicted as
an orange filled circle with black outline, the ball position estimates are shown as orange
circles. The red and blue robot icons mark the poses of static robots of the respective
color.

95

Figure A.14: Run 14: turn: +360°, −720°, +360°, moving head. The magenta robot
icons show the initial and final pose of the tested robot. The blue line, on top of the pose
icons depicts the ground truth trajectory. The red line illustrates the estimated pose,
as calculated by the Cox algorithm and Kalman filter. The actual position of the ball
is depicted as an orange filled circle with black outline, the ball position estimates are
shown as orange circles. The red and blue robot icons mark the poses of static robots of
the respective color.

96 APPENDIX A. TRACKER TEST RUNS

Figure A.15: Run 15: walk sideward: −3 m, +3 m, fixed head. The magenta robot icons
show the initial and final pose of the tested robot. The blue line depicts the ground truth
trajectory. The yellow line illustrates the integration of the odometry readings, and the
red line the estimated pose, as calculated by the Cox algorithm and Kalman filter. The
actual position of the ball is depicted as an orange filled circle with black outline, at the
center of the field, the ball position estimates are shown as orange circles. The red and
blue robot icons mark the poses of static robots of the respective color.

97

Figure A.16: Run 16: walk sideward: −4 m, +2 m, fixed head. The magenta robot icons
show the initial and final pose of the tested robot. The blue line depicts the ground truth
trajectory. The yellow line illustrates the integration of the odometry readings, and the
red line the estimated pose, as calculated by the Cox algorithm and Kalman filter. The
actual position of the ball is depicted as an orange filled circle with black outline, the
ball position estimates are shown as orange circles. The red and blue robot icons mark
the poses of static robots of the respective color.

98 APPENDIX A. TRACKER TEST RUNS

Figure A.17: Run 17: walk sideward: −4 m, +2 m, moving head. The magenta robot
icons show the initial and final pose of the tested robot. The blue line depicts the ground
truth trajectory. The yellow line illustrates the integration of the odometry readings, and
the red line the estimated pose, as calculated by the Cox algorithm and Kalman filter.
The actual position of the ball is depicted as an orange filled circle with black outline,
the ball position estimates are shown as orange circles. The red and blue robot icons
mark the poses of static robots of the respective color.

99

Figure A.18: Run 18: walk sideward: −3 m, +2 m, moving head. The magenta robot
icons show the initial and final pose of the tested robot. The blue line depicts the ground
truth trajectory. The yellow line illustrates the integration of the odometry readings, and
the red line the estimated pose, as calculated by the Cox algorithm and Kalman filter.
The actual position of the ball is depicted as an orange filled circle with black outline,
the ball position estimates are shown as orange circles. The red and blue robot icons
mark the poses of static robots of the respective color.

100 APPENDIX A. TRACKER TEST RUNS

Figure A.19: Run 19: figure-of-eight, moving head. The magenta robot icons show the
initial and final pose of the tested robot. The blue line depicts the ground truth trajectory.
The yellow line illustrates the integration of the odometry readings, and the red line the
estimated pose, as calculated by the Cox algorithm and Kalman filter.

Bibliography

[BJNT06] Ansgar Bredenfeld, Adam Jacoff, Itsuki Noda, and Yasutake Takahashi, ed-
itors. RoboCup 2005: Robot Soccer World Cup IX, volume 4020 of Lecture
Notes in Computer Science. Springer, 2006.

[Cox91] Ingemar J. Cox. Blanche – An Experiment in Guidance and Navigation of an
Autonomous Robot Vehicle. IEEE Transactions on Robotics and Automation,
7(2):193–204, 1991.

[DH55] J. Denavit and R.S. Hartenberg. A kinematic notation for lower-pair mecha-
nisms based on matrices. Trans ASME J. Appl. Mech, 23:215–221, 1955.

[EPS09] Gerhard Eckel, David Pirro, and Gerriet K. Sharma. Motion-Enabled Live
Electronics. In Proceedings of the 6th Sound and Music Computing Conference,
Porto, Portugal, 2009.

[FHL05] Alexander Ferrein, Lutz Hermanns, and Gerhard Lakemeyer. Comparing
sensor fusion techniques for ball position estimation. In Bredenfeld et al.
[BJNT06], pages 154–165.

[FKN+10] Alexander Ferrein, Tobias Kellner, Tim Niemüller, Patrick Podbregar,
Christof Rath, and Gerald Steinbauer. Providing Ground-truth Data for the
Nao Robot Platform. Technical report, RWTH Aachen Universitysity, Ger-
many and University of Cape Town, South Africa and Graz University of
Technology, Austria, February 2010.

[FPS+09] Alexander Ferrein, Anet Potgieter, Gerald Steinbauer, Tim Niemüller, and
Christof Rath. Fawkes Nao Development by Team ZaDeAt 2009/2010. Uni-
versity of Cape Town, South Africa and RWTH Aachen University, Germany
and Graz University of Technology, Austria, December 2009.

[FSMP08] Alexander Ferrein, Gerald Steinbauer, Graeme McPhillips, and Anet Potgi-
eter. RoboCup Standard Platform League - Team Zadeat - An Intercontinen-
tal Research Effort. In International RoboCup Symposium., Suzhou, China,
2008.

[Gut00] Jens-Steffen Gutman. Robuste Navigation autonomer mobiler Systeme. PhD
thesis, Albert-Ludwigs-Universität Freiburg, Institut für Informatik, 2000.

101

102 BIBLIOGRAPHY

[HZ03] Richard Hartley and Andrew Zisserman. Multiple View Geometry in computer
vision. Cambridge University Press, second edition, 2003.

[IdFF96] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes
Filho. Lua — An Extensible Extension Language. Software: Practice and
Experience, 26(6):635–652, 1996.

[Ier06] Roberto Ierusalimschy. Programming in Lua. Lua.org, second edition, 2006.

[Kal60] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

[Kel06] Alonzo Kelly. Essential Kinematics for Autonomous Vehicles. Technical Re-
port Rev 2.0, The Robotics Institute, CMU, July 2006.

[LLR05] Martin Lauer, Sascha Lange, and Martin Riedmiller. Calculating the Perfect
Match: An Efficient and Accurate Approach for Robot Self-Localization. In
Bredenfeld et al. [BJNT06], pages 142–153.

[LTC08] Middle-size League Technical Committee. Middle Size Robot League – Rules
and Regulations. http://www.er.ams.eng.osaka-u.ac.jp/robocup-mid/
index.cgi?action=ATTACH&page=Rules+and+Regulations&file=msl%
2Drules%2D2008%2D12%2D12%2Epdf, December 2008.

[LTC09a] Humanoid League Technical Comitee. RoboCup Soccer Humanoid League
Rules and Setup. http://www.tzi.de/humanoid/pub/Website/Downloads/
HumanoidLeagueRules2009.pdf, March 2009.

[LTC09b] Small-size League Technical Committee. Laws of the F180 League
2009. http://small-size.informatik.uni-bremen.de/_media/rules:
ssl-rules-2009.pdf, 2009.

[LTC09c] Standard plattform League Technical Committee. RoboCup Standard Plat-
form League (Nao) Rule Book. http://www.tzi.de/spl/pub/Website/
Downloads/Rules2009.pdf, January 2009.

[LTC10] RoboCup@Home League Technical Committee. RoboCup@Home Rules &
Regulations. http://www.robocupathome.org/documents/rulebook2010_
DRAFT.pdf, February 2010.

[Mac93] Alan K. Mackworth. On seeing robots. In Computer Vision: Systems, Theory,
and Applications, pages 1–13. World Scientific Press, 1993.

[May79] Peter S. Maybeck. Stochastic Models, Estimation, and Control, volume 1 of
Mathematics in Science and Engineering. Academic Press, Inc, 1979.

[Mol09] Ingo Molnar. RT PREEMPT Wiki. http://rt.wiki.kernel.org, March
2009.

http://www.er.ams.eng.osaka-u.ac.jp/robocup-mid/index.cgi?action=ATTACH&page=Rules+and+Regulations&file=msl%2Drules%2D2008%2D12%2D12%2Epdf
http://www.er.ams.eng.osaka-u.ac.jp/robocup-mid/index.cgi?action=ATTACH&page=Rules+and+Regulations&file=msl%2Drules%2D2008%2D12%2D12%2Epdf
http://www.er.ams.eng.osaka-u.ac.jp/robocup-mid/index.cgi?action=ATTACH&page=Rules+and+Regulations&file=msl%2Drules%2D2008%2D12%2D12%2Epdf
http://www.tzi.de/humanoid/pub/Website/Downloads/HumanoidLeagueRules2009.pdf
http://www.tzi.de/humanoid/pub/Website/Downloads/HumanoidLeagueRules2009.pdf
http://small-size.informatik.uni-bremen.de/_media/rules:ssl-rules-2009.pdf
http://small-size.informatik.uni-bremen.de/_media/rules:ssl-rules-2009.pdf
http://www.tzi.de/spl/pub/Website/Downloads/Rules2009.pdf
http://www.tzi.de/spl/pub/Website/Downloads/Rules2009.pdf
http://www.robocupathome.org/documents/rulebook2010_DRAFT.pdf
http://www.robocupathome.org/documents/rulebook2010_DRAFT.pdf
http://rt.wiki.kernel.org

BIBLIOGRAPHY 103

[Nie09] Tim Niemüller. Developing A Behavior Engine for the Fawkes Robot-Control
Software and its Adaptation to the Humanoid Platform Nao. Master’s thesis,
RWTH Aachen University, Knowledge-Based Systems Group, April 2009.

[NKL09] Alex Nash, Sven Koenig, and Maxim Likhachev. Incremental Phi*: Incre-
mental Any-Angle Path Planning on Grids. In Craig Boutilier, editor, IJCAI,
pages 1824–1830, October 2009.

[Nod94] Itsuki Noda. Multi-agent soccer game server. In MACC ’94, October 1994.

[RB93] Martin Riedmiller and Heinrich Braun. A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm. In IEEE International
Conference on Neural Networks, pages 586–591, 1993.

[Rob06] RoboCup Federation. RoboCup Soccer Server 3D Manual, June 2006.

[RV09] Paul E. Rybski and Manuela M. Veloso. Prioritized Multihypothesis Tracking
by a Robot with Limited Sensing. EURASIP J. Adv. Signal Process, 2009:1–
17, 2009.

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, September
2005.

[Web98] Website. What is RoboCup. http://124.146.198.189/overview/21.html,
1998.

[Web06] Website. Rescue Robots. http://www.robocuprescue.org/rescuerobots.
html, 2006.

[Web07] Free Software Foundation Website. GNU Lesser General Public Licence.
http://www.gnu.org/licenses/lgpl.html, June 2007.

[Web09a] Website. Lua Garbage Collection. http://www.lua.org/manual/5.1/
manual.html#2.10, September 2009.

[Web09b] Website. RoboCup Junior. http://www.robocupjunior.org, 2009.

[Web09c] Website. RoboCup Simulation Server. http://sserver.wiki.sourceforge.
net/, April 2009.

[Web10] Website. RoboCup @Home. http://www.robocupathome.org/, 2010.

[Wik08] Wikipedia. Robotics conventions. http://en.wikipedia.org/wiki/
Robotics_conventions, July 2008.

http://124.146.198.189/overview/21.html
http://www.robocuprescue.org/rescuerobots.html
http://www.robocuprescue.org/rescuerobots.html
http://www.gnu.org/licenses/lgpl.html
http://www.lua.org/manual/5.1/manual.html#2.10
http://www.lua.org/manual/5.1/manual.html#2.10
http://www.robocupjunior.org
http://sserver.wiki.sourceforge.net/
http://sserver.wiki.sourceforge.net/
http://www.robocupathome.org/
http://en.wikipedia.org/wiki/Robotics_conventions
http://en.wikipedia.org/wiki/Robotics_conventions

	Acknowledgments
	Abstract
	Introduction
	RoboCup™ Initiative
	History
	Timeline
	Soccer Leagues
	RoboCup™ Rescue
	RoboCup@Home
	RoboCup™ juniors

	Standard platform league
	Team ZaDeAt
	The current platform --- Aldebaran's Nao v3
	Gameplay

	Mathematical basics
	Homogeneous coordinates and transforms
	Denavit--Hartenberg transformation
	Back projection
	Kalman filter

	Self-localization
	Landmark detection
	Cox algorithm
	Adaptation of the Cox algorithm

	Implementation
	Fawkes --- A robot software framework
	Components

	Results
	Cox algorithm
	Ball detection
	Tournaments

	Conclusion
	Tracker test runs

