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Abstract

This thesis deals with the problem of register allocation in a just-in-time (JIT)

compiler. In JIT compilers, compilation time is part of the runtime. Therefore,

it is important to balance the minimization of runtime due to code optimization

and compilation time. JIT compilers are widely included in virtual machines.

The compiler used in this thesis is the Java HotSpot
TM

Server Compiler. The

virtual machine detects the so-called hot spots of a program, which are methods

that are called very often. These methods will be compiled, while the rest of the

code is interpreted. Register allocation is very often the bottleneck of runtime

minimization. Registers can be accessed much faster than the memory. How-

ever, there is only a limited number of registers available. Values that cannot be

stored at registers because of capacity restrictions, have to be moved to the mem-

ory. Movements between the memory and the processor have to be minimized,

because memory bandwidth is scarce and therefore time-costly.

The intermediate code representation in the compiler is in static single assign-

ment (SSA) form. This representation is used for code optimization and can be

exploited also for register allocation. The structure of the intermediate repre-

sentation of the server compiler has been analyzed and a simple feasible register

allocator has been implemented.

The contribution of this master’s thesis is as follows. First, a novel mixed

integer program (MIP) is proposed to model the task of optimal register alloca-

tion on a SSA-form based intermediate representation for the IA-32 architecture.

Furthermore, a model is presented, that takes only spilling decisions into account

and can be combined with existing approaches for spill-free register allocation of

programs in SSA-form. Third, different abstractions for register allocation are

compared and analyzed.
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Kurzfassung

Diese Arbeit beschäftigt sich mit dem Problem der Register Allokation in einem

Just-In-Time(JIT)-Compiler. In JIT-Compilern ist auch die Kompilierzeit Teil

der gesamten Laufzeit. Daher ist es wichtig, sowohl die Laufzeit des Programms

durch Optimierungen im Compiler zu minimieren, als auch die Zeit die für die

Kompilierung benötigt wird. Diese Ziele sind konfliktär. JIT-Compiler sind

meist Bestandteil von virtuellen Maschinen. Der Compiler, der in dieser Ar-

beit verwendet wird ist der so genannte Java HotSpot
TM

Server Compiler. Die

virtuelle Maschine erkennt die so genannten Hot Spots eines Programms, das

sind die Methoden, die sehr häufig aufgerufen werden. Diese Methoden werden

kompiliert, während der Rest des Codes interpretiert wird.

Register Allokation ist sehr oft der Engpass der Laufzeitminimierung. Auf Reg-

ister kann viel schneller zugegriffen werden als auf den Hauptspeicher. Allerd-

ings steht auch nur eine begrenzte Anzahl von Registern zur Verfügung. Die

Werte, die nicht in den Registern gespeichert werden können, weil nicht genügend

Register zur Verfügung stehen, müssen in den Hauptspeicher verschoben wer-

den. Die Anzahl der Verschiebungen zwischen dem Speicher und dem Prozessor

soll minimiert werden, da die Speicherbandbreite gering und Verschiebungen

dadurch zeitintensiv sind. Der Zwischencode des Compilers ist in Static-Single-

Assignment (SSA)-Darstellung. Diese wird genutzt um Optimierungen im Com-

piler durchzuführen. Die SSA-Darstellung kann auch für die Register Allokation

verwendet werden. Die Struktur des Zwischencodes des Servercompilers wurde

analysiert und ein einfacher zulässiger Registerallokator wurde implementiert.

In dieser Arbeit wird ein neues gemischt ganzzahliges lineares (MIP) Mod-

ell präsentiert, das die optimale Registerallokation in SSA-Form für die IA-32

Architektur löst. Außerdem wird ein Modell präsentiert, das nur die Spilling-

Entscheidung berücksichtigt. Dieses Modell kann mit existierenden Lösungsmeth-
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Kurzfassung

oden für spillingfreie Registerallokation von Programmen in SSA-Form kom-

biniert werden. Schließlich werden verschiedene Abstraktionsmodelle für Reg-

isterallokation verglichen und analysiert.
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1. Introduction

This thesis deals with register allocation for the Java HotSpot
TM

Server Compiler.

The Java HotSpot
TM

Server Compiler is a just-in-time (JIT) compiler embedded

in the Java HotSpot
TM

Virtual Machine. While traditional compilers translate

code from a high-level language to machine code, before the program is executed,

a JIT compiler translates code from a high level language to machine code during

the execution of a program. Running a program written in a high-level language

on a target machine requires either translation to machine code or an (software)

interpreter. Both options have well known advantages and drawbacks. Executing

machine code is usually faster than interpreting, but requires prior compilation

and therefore reduces portability. JIT compilation is an approach to compromise

both options.

It is possible that the JIT compiler compiles only part of the executed code or

everything that needs to be executed. In the first option the remaining executed

code needs to be interpreted. In the second option machine code is generated

by the JIT compiler, when a routine (method) is called and no machine code

exists. The advantage is, that only the routines that are actually used, need to

be compiled. However in such a setting, lots of code needs to be compiled and

compilation time increases the total execution time of the program significantly.

Furthermore, sophisticated compilation optimizations lead to faster code, but

need more time in the compilation process. Due to the fact that only a small

portion of code is performance critical (Pareto Principle), only the performance

critical code is worth being optimized.

Therefore, many JIT compilers only compile the performance critical code, in

order to significantly improve the performance of the overall program. The idea is

that the performance critical part of a program is executed more often. Therefore,

it pays off to spend time in generating optimized code, while optimizing rarely
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1. Introduction

executed code will probably increase the overall runtime.

JIT compilers, which compile only promising parts of the code, are widely used

for Virtual machines (VM) and scripting languages such as Java and JavaScript

engines in various Browsers. VMs without integrated JIT compilers usually

interpret high-level code, which usually leads to a poorer performance in terms

of execution speed compared to code compiled by static (optimizing) compilers.

The integration of a JIT compiler in a virtual machine is used to overcome this

drawback. First the code is interpreted and the performance critical parts are

detected during execution. These parts are compiled by the JIT compiler and

the generated machine code is used when available. Summig up, JIT compilers

in a VM are optimizing compilers, because the goal is to produce faster and

more efficient code than the code produced by the default interpreter of the

VM. Contrary to many other optimizing compilers, compilation time is a major

issue for JIT compilers, because compilation time is obviously part of the total

runtime of the program. There is a trade off between code optimizations and

compilation speed in JIT-compilers. The optimization steps are time consuming

and the compilation takes a substantial amount of time. More time spent in code

optimization reduces the execution time of the code, but leads to an increase in

compilation time.

Register allocation is one of the most important tasks in an optimizing com-

piler. Register allocation is placed in the back end of a compiler. The input

to the allocator is usually an intermediate representation (IR) of the program,

that uses an unlimited number of (virtual) registers. The task of the allocator

is to replace the virtual registers by real registers of a certain architecture. The

number of real registers is limited and register constraints need to be considered.

For certain instructions only certain register can be feasible. The allocator might

need to add additional instructions to the IR, which move variables to and from

memory in order to find a feasible allocation. Allocating registers is usually one

of the last steps of a compiler. Hence, the translation from IR, which is returned

from the allocator, to machine code is usually a straightforward task. Regis-

ters are the part of the memory that can be accessed extremely fast. However,

there is only a limited number of registers available. It is important to keep the

number of movements between the memory and the registers as low as possible.

2



1. Introduction

Pereira (2008) state that the code produced by an optimal allocator is over 250%

faster than the code produced by a naive algorithm. This shows the high poten-

tial for optimization in register allocation. Register allocation is NP-complete,

which was shown by Farach and Liberatore (1998) and Sethi (1975). Therefore,

optimal or good allocation of the registers is mostly time consuming.

This thesis deals with register allocation for the Java HotSpot
TM

Server Com-

piler, which is a JIT compiler for the Java HotSpot
TM

Virtual Machine. The

Java HotSpot
TM

Virtual Machine relies on the insight that the execution time

of a program can be significantly reduced, when methods that are called often

are compiled to machine code during runtime, instead of being only interpreted

in the VM. More precisely, everything runs in interpreter mode first. Methods,

which have been called more than a certain number of times are scheduled for

compilation. These are the so-called hot spots where it pays off to use compi-

lation. To sum it up, the idea is to speed up the process by focusing on the

bottleneck methods that are called very often and therefore account substan-

tially for the runtime. As mentioned above, the compilation is done during the

execution of the program and therefore compilation time has to be added to the

total execution time. Hence, low compilation time is crucial.

The Java HotSpot
TM

Virtual Machine has two compilers: a client and a server

compiler. As the name implies, the client compiler is used for client machines,

such as laptops and desktop computers, while the server compiler is used for

server machines. However, these are only the default settings and the user can

switch between the compilers depending on the application that she or he wants

to run. The focus of the client compiler is a low startup and response time,

whereas the goal of the server compiler is to get a good peak performance and

startup time is less important. Therefore, compilation time is less important for

the server compiler and more time can be spent in optimizing code during the

compilation phase which will result in a faster execution time of the compiled

method. As mentioned above, register allocation is a task in the compilation

process, where a lot of time consuming code optimization can be done.

In the server compiler, a graph coloring based allocator is used while in the

client compiler a much faster linear scan algorithm is used. The graph coloring

based allocator in the server compiler is a so-called Chaitin - Briggs allocator

3



1. Introduction

(Paleczny et al. (2001), Chaitin (1982), Briggs et al. (1994) ) The register al-

location for the client compiler has been subsequently improved by Mössenböck

(2000), Mössenböck and Pfeiffer (2002) and Wimmer (2004), who started with a

graph coloring based algorithm and then implemented and improved the linear

scan algorithm.

In this thesis, an analysis of the intermediate representation of the server com-

piler is provided and a simple feasible register allocator has been implemented.

Moreover, two novel integer linear programs (ILP) are proposed. The first is solv-

ing the problem of optimal register allocation on a SSA-form based intermediate

representation for the IA-32 architecture. The second relies on a decomposi-

tion and tackles the aspect of spilling variables to memory. Finally, different

abstractions for register allocation are described, compared and analyzed.

The remainder of the thesis is organized as follows. Chapter 2 deals with reg-

ister allocation and related aspects. It describes the memory hierarchy and the

registers that exist in the most common architecture, the IA-32. Moreover, there

is a basic introduction on the Java virtual machine and the server compiler. The

basics in register allocation are discussed. The chapter deals with programs, the

static single assignment (SSA)-form, the translation out of SSA-form and finally

with the intermediate representation. Chapter 3 describes different abstractions

of register allocation, which show how the register allocation problem can be

modeled. More precisely, there are solution methods based on graph coloring

and on modeling the problem as multi-commodity network flow problem. Fur-

thermore, there is the linear scan algorithm with second chance binpacking, the

boolean quadratic programming approach and register allocation by puzzle solv-

ing. Finally, there are also ILP based approaches. Chapter 4 gives a detailed

overview of the task of register allocation in the Java
TM

HotSpot server compiler

for the IA-32 architecture and Chapter 5 presents mathematical programs for

the register allocation problem. Finally, Chapter 6 concludes the thesis.

4



2. The Role of Register Allocation

in the Compiler and Computer

Architecture

This chapter describes the role of register allocation in compiler optimization

and its interfaces to the computer architecture. First, the memory hierarchy is

described, showing the crucial role of register allocation. Then the register set in

the IA-32, the most common architecture at the moment, is presented. Then the

Java HotSpot
TM

Virtual machine and the server compiler are described. Finally,

the task of register allocation and programs in SSA-form are discussed.

2.1. Memory Hierarchy

In typical computer architectures there is a memory hierarchy which is organized

in a pyramid. Figure 2.1 shows this memory hierarchy. The axes are the size of

the available storage space and the increasing cost and decreasing access speed.

On the top are the registers. There is only a limited amount available. The cost

in terms of production cost and power consumption is quite high. According

to Pereira (2008) reading and writing to registers can be done in one cycle of the

CPU clock. The registers are followed by L1 and L2 cache, the main memory

and finally the hard disk.

The register allocator can access directly the registers and the main memory.

However, the L1 and L2 cache are used to speed up loads and stores from the main

memory. They cannot be accessed directly, but they are used by the memory

management in the background. Data that is loaded frequently from the main

memory, will probably be cached to speed up the loading, but those operations

5



2. The Role of Register Allocation in the Compiler and Computer Architecture

Size of available storage space

Increasing cost and
decreasing access speed

Hard Disk

Main memory

L2 Cache

L1 Cache

Registers

Figure 1: Memory hierarchy in a typical computer architecture.

with a single successor and joins start basic blocks with multiple predecessors. The only operands of these
instructions are basic block labels.

We call a program point the point between two consecutive instructions. The program in Figure 2 contains
16 program points named p1 to p16. We say that a variable v is alive at a program point p if there is a
path from p to an instruction that uses v where v is not re-defined by any instruction. The collection of
program points where a variable is alive is called its live range. For instance, the live range of variable B
is {p2, p3, p4, p9}, whereas the live range of variable a includes all the program points but p11, p12 and p16.
Notice that a is not alive at program points p11 and p12 because this variable is redefined by the instruction
a = f , and its old value is not necessary after the instruction f = a. A simple algorithm to compute liveness
information is given by Appel and Palsberg [3, p.206].

We say that two variables interfere if the intersection between their live ranges is non-empty. In this case,
we also say that their live ranges overlap. For instance, variables c and d interfere, because their live ranges
overlap at program point p5; however, variables c and E do not intefere. This concept is very important for
register allocation, because two variables that do not interfere can be stored in the same register.

1.1 Irregular Architectures

Modern computer architectures present irregular register banks. The two most common sources of irregu-
larities are pre-colored registers and aliasing [42, 60, 61].

1.2 Pre-coloring

Pre-coloring is a very common phenomenon that forces some variables to be assigned to particular machine
registers. A typical example is parameter passing in function calls. Architectures such as PowerPC and
StrongARM use registers to pass arguments to functions. For instance, a two argument function call in
PowerPC is written in assembly in a way similar to the code strip below:
r0 = arg0 ; the first argument must be passed in r0

r1 = arg1 ; the second argument must be passed in r1

2

Figure 2.1.: Memory hierarchy, taken from Pereira (2008)

are hidden in the memory management and the register allocator has no control

about it. Therefore, it is hard to estimate the load and store time to main

memory. According to Pereira (2008) an optimal allocator is over 250% faster

than the code produced by a naive algorithm.

Hack (2004) highlight that in modern processor architecture the time for ac-

cessing a register is at least one order of magnitude faster than accessing a mem-

ory location. This shows the enormous potential for optimization in register

allocation.

2.2. Register Set for the IA-32 architecture

The Java HotSpot
TM

Virtual Machine, and therefore the server compiler, can

be used for the IA-32 architecture and for the Sparc architecture with several

operating systems. Therefore, most algorithms in the compiler are platform in-

dependent. The difference between the two architectures is that the IA-32 is a

so-called complex instruction set computer (CISC) architecture with an irregular

instruction set and a low number of registers, while the Sparc is a reduced instruc-

tion set computer (RISC) architecture with a regular instruction set and a higher

number of registers. In a CISC architecture, complex instructions are supported
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2. The Role of Register Allocation in the Compiler and Computer Architecture

directly in hardware. These are for example, complex addressing modes and

procedure calls. Therefore, a lower number of instructions are necessary and the

code will be more dense. Since there are fewer instructions, fewer operands are

needed and therefore fewer registers are required. However, the complex instruc-

tions will take more time and probably lead to an irregular architecture. The

RISC architecture on the other hand only supports simple instructions which can

be executed in a very fast way. More complex instructions have to be replaced

by a sequence of simple instructions. Therefore, there are more registers avail-

able in this architecture. In RISC architectures, most instructions have a similar

length and structure and operands have to be located in a register. Transfers

to memory can only be done with load and store instructions. These properties

enable better and easier register allocation on a RISC architecture. Moreover,

efficient pipelining is facilitated. These properties make RISC architecture, that

has a regular and simpler architecture, competitive to the CISC architecture.

In this thesis the IA-32 architecture is used, because it is the most common

architecture at the moment. Since we are dealing with an irregular architecture,

not all registers can be used freely.

The first eight registers are called general purpose registers. However, they

cannot be used for every purpose. They can generally be used for arithmetic

integer and logical operations, for address calculations and for memory pointers.

The names of the registers are eax, ebx, ecx, edx, esi, ebp and esp. However, the

esp register is always used for holding the stack pointer. It is not allowed to

use esp for any other purpose, because all instructions that support the stack

management use this register for looking up the current stack pointer. Therefore,

only seven registers can be used freely, which are shown in Figure 2.2. In the

client compiler the register ebp is used for the base pointer, but this is not the

case for the server compiler.

Figure 2.2 shows the effect of aliasing. The 32-bit architecture supports pro-

grams written for the older 16-bit and 8-bit architectures. They do not have

special physical 16-bit and 8-bit registers, but use the 32-bit registers. For ex-

ample, the 16-bit register ax uses the first 16 bits of the eax. This has to be taken

into account in the register allocation process. For instance, when ax is used, eax

cannot be allocated at the same time. The same holds for the 8-bit architecture

7



2. The Role of Register Allocation in the Compiler and Computer Architecture

Core, which has six 40 bit accumulators that can also be used as six 32-bit registers or as twelve 16-bit
aligned registers. As a convention, along this dissertation we will use lower case names to denote values that
fit in one single register, and upper case names to denote values that must fit in one register pair. Thus, in
Figure 2 variables a, c and d fit in one register, whereas variables B and E fit in a register pair.

32 bits

16 bits

8 bits

EAX

AX

AH AL

EBX

BX

BH BL

ECX

CX

CH CL

EDX

DX

DH DL

EBP

BP

EDI

DI

ESI

SI

Figure 3: General purpose registers from the x86 architecture. This Figure was taken from [55].

1.4 Some Register Allocatin Jargon

Spilling Because registers exist in limited number, they may not be enough to store all the variables in
the source program. If that is the case, then some variables must be mapped to memory. The act of storing
a variable into memory is called spilling. Spill is normally undesirable because it forces the register allocator
to insert special instructions, that we will call spill code, in the target program to access values stored in
memory. An instruction that copies a value from a register to a memory address is called a store. The
opposite instruction, which copies a value from memory into a register, is called a load. These instructions
tend to be slow compared to operations that do not access memory; thus, one of the objectives of a register
allocator is to avoid inserting such instructions in the code that it produces.

Coalescing If two variables v1 and v2 do not interfere, and they are related by a copy instruction, that
is, the source program contains an instruction such as v1 = v2, then it is desirable that these variables be
allocated into the same register r. In this case, we will have the copy instruction r = r, which is redundant
and can safely be removed from the target program. Coalescing is the act of mapping two non-interfering
variables that are related by a copy instruction to the same register. For instance, in the program in Figure 2,
the instructions f = a and a = f can be eliminated from the program if variables a and f are assigned to
the same register. Therefore, a good register allocator should not only assign different registers to interfering
variables, but also try to assign the same register to variables related by copies.

Live Range Splitting This concept is the inverse of coalescing. Whereas coalescing join the live ranges of
variables by removing copies from the source program, live range splitting divides the live range of variables
by adding copies to the program and renaming variables. The splitting of live ranges tends to reduce
the interferences between variables; thus, it might minimize the number of registers required by programs.
Figure 4 shows an example of live range splitting.

2 Different Register Allocation Approaches

Register allocation is possibly the compilation problem with the greatest number of different algorithms
already described in the literature. In the remainder of this section we will be describing several approaches
to register allocation, using the program in Figure 2 as a running example.

2.1 Register Allocation via Graph Coloring

Graph coloring is the most used approach to solve register allocation. The Interference Graph of a program
is the intersection graph of the live ranges of the variables in the program. That is, given a program P ,
its interference graph G = (V,E) contains a vertex for each variable v of P . An edge (u, v) is in E if the

4

Figure 2.2.: General purpose registers from the x86 architecture showing aliasing,
taken from Pereira and Palsberg (2008)

registers.

The seven general purpose registers can be used freely for most of the opera-

tions, but some operations still require special registers. For example, there are

some instructions that need fixed, predefined registers. This property is often

referred to as precoloring. The term was coined in the context of the graph

coloring problem. For example the return value of a procedure needs to be in

eax.

Additionally to the eight general purpose registers there are eight floating

point, or FPU, registers. These registers are organized as a stack because histor-

ically they were located in the floating point co-processor (x87), which was stack

based. Modern CPUs use the SSE extensions for floating point computations.

The SSE instructions operate on XMM registers. Finally, there are eight multi

media extension (MMX) registers and one flags register. The MMX registers

alias the floating point registers.

2.3. The Java Virtual Machine

One advantage of the programming language Java is that “Java executables” can

be used for different systems, as opposed to specialized languages. More precisely,

Java source code is compiled to the so-called Java bytecode, which is the binary

representation of the source code and still a high level language. The code is

the native code for the Java Virtual Machine (JVM). As the name suggests, the

JVM is not a real machine, but a piece of software that runs on different physical

machines. The JVM makes Java a machine-independent language. Moreover,

the bytecode of Java only needs a virtual machine (VM) to run and therefore the

same bytecode can run on different platforms. For other languages, such as C++

8



2. The Role of Register Allocation in the Compiler and Computer Architecture

for example, different executables are needed for different operating systems and

architectures. In the early beginnings, the bytecode was interpreted by the JVM.

This made Java slower compared to languages that were compiled to machine

code. JIT compilation overcomes this drawback and has therefore been included

in many JVMs.

One implementation of a JVM is the Java HotSpot
TM

Virtual Machine, which

has been developed by Sun Microsystems. In the following, the Java HotSpot
TM

Virtual Machine is described based on the information in Sun Microsystems

(2001).

There is a general rule that most programs spend the majority of their time

in certain methods. The Java HotSpot
TM

Virtual Machine uses this property.

Methods that are executed very often, the so-called “hot spots”, are compiled,

while the remaining code is interpreted. Since the remaining code (the infre-

quently performed methods) is not compiled, there is more time available to

optimize the runtime of the hot spots in compilation. Therefore, a focus on the

hot spots is guaranteed, while the compilation time can be kept lower. By using

both, interpreted and compiled code, the overall performance can be optimized.

The hot spots are detected by using runtime information. During the interpre-

tation this information is collected. There are two counters: the method-entry

and the loop back-branch counter. The first counter counts each start of the

method, while the latter one is incremented when a backward branch is executed.

If any of these counters reaches a given threshold, the method is scheduled for

compilation.

The Java HotSpot VM is included in the Java Platform SE 6, and is avail-

able on the Solaris Operating Environment (SPARC Platform Edition and Intel

Architecture Edition), and the Linux and Microsoft Windows operating systems

for the Intel Architecture platform. It supports 32-bit and 64-bit architectures.

Figure 2.3 shows the Java HotSpot
TM

Client and the Java HotSpot
TM

Server

VM. They use a different compiler, but they both have an interface to the same

VM and therefore use the same garbage collector (GC), interpreter and so on.

The difference between the client and the server compiler is that the server

VM is tuned to maximize peak operating speed. Therefore, the fastest possible

operating speed is more desirable than a fast startup time or smaller runtime

9
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Figure 2.3.: The Java HotSpot
TM

Client and the Java HotSpot
TM

Server VM,
taken from Sun Microsystems (2001)

memory footprint.

The server compiler is a high-end fully-optimizing compiler. The SSA-based

representation is used for optimizations.

In the compilation process, the bytecode is first transformed to the graph-based

intermediate representation (IR). Then several optimization steps including reg-

ister allocation are applied. The machine code together with additional meta

data is created from the IR after register allocation.

2.4. The Server Compiler

The compilation is performed in several phases: First, the parser is executed.

Then there is the machine-independent optimization, followed by the instruction

selection. The next step is global code motion and scheduling. After that, the

register allocation phase takes place, which is subject to study in this thesis.

Finally, peephole optimizations and code generation are performed. For more

details see Paleczny et al. (2001).

For the intermediate representation (IR), the static single assignment (SSA)

form is used.

The SSA-form based IR of the server compiler consists of the so-called sea

of nodes. Initially, all instructions are represented by nodes, which are linked

10
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together by edges that state dependencies to each other. On the sea of nodes

optimizations are performed. During the compilation, the nodes are scheduled

to basic blocks and build a control flow graph. This graph is given as an input

to the register allocator. Each node that returns a value has a register mask,

which defines the set of feasible locations. These locations can either be registers

or stack slots. For input values of a node, input register masks are given, that

are used in the same way as output register masks.

2.5. Fundamentals of Register Allocation

This chapter describes the basics in register allocation. First, it is necessary to

define a program. Then the SSA-form will be described in detail and it will be

shown how the translation out of SSA-form works.

2.5.1. Programs

The focus in this thesis is on global register allocation, which is based on method

or procedure-level. The input for such a global register allocator is basically a

single procedure of a program. In the following the notion of a program will be

described in more detail, based on the description in Hack (2004). The program

is represented by its control flow graph, which consists of labels and instructions.

Register allocation is the task of assigning storage locations, i.e., physical regis-

ters and stack positions. Additionally, move instructions can be inserted to the

program to change the allocation of the variables. The type of instructions in

a program and what the program is computing is not relevant to register allo-

cation. For register allocation only the input and output of an instruction are

important, because this defines how many registers are needed, when they are

needed and for how long, and also which kind of register is required.

A program including all the necessary information for register allocation can

be described by the tuple (V,O, L, pred, arg, res, op, start), where V represents

the variables and O the set of operations. The only operation that will be

inserted additionally in the program during the register allocation phase is the

copy operation. Hence, this operation is required to be in O. Let L be the

11
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set of labels. Each label represents an instruction of the program and in each

instruction an operation is carried out. The function op maps a label to the

operation executed at that label. For example, ADD is an operation and a :=

a+4 is an instruction that corresponds to that operation. Let pred be a function

that assigns each label a set of predecessor labels. The labels have to be ordered

linearly. Let pred(l, i) be the l-th predecessor of i. Note that the predecessor

function also defines a complementary map wich defines all successors. Let arg

be the set of input operands and res the set of output operands. Finally, start

represents the start of the control flow. Therefore, start is the entry point of the

program.

An example is given by the following program, which is shown in Figure 2.4.

The procedure fac(i) computes the factorial of i. It uses i as an input and r as

an output. The control flow graph of the program is given in Figure 2.5. If we

look for example at label three (l3), res(l3) = r, the output operand is r and

arg(l3) = (r, i) where r and i are the input operands. Label l3 has only one

predecessor (|pred(l3)| = 1) and pred(l3, 1) = l2.

1 procedure f a c ( i ){
2 r :=1;
3 while ( i >0){
4 r := r∗ i ;
5 i := i −1;
6 }
7 return r ;
8 }

Figure 2.4.: Example program E1: procedure fac(i)

A path in a program is defined as a linearly ordered set of labels (li, ..., ln),

where li is a predecessor of li+1 which is a predecessor of li+2 and so on, li →
li+1....ln−1 → ln.

Basic Blocks. A path that consists of labels that have only one predecessor

and one successor is a basic block. More precisely, a basic block B is a sequence

of labels where each label has only one predecessor and one successor. Hence,

B does not include branches and the instructions in B have to be executed

sequentially. The sequence of instruction in a basic block can be referred to

12



2. The Role of Register Allocation in the Compiler and Computer Architecture

!"#$"%&%'%&%(%')*+"

,-%&%$%&(%-

,.%&%'/%0'1-2

,3%&%$%&(%$%4%'

,5%&%'%&(%'%6%-

,7%&%$8"+$)%$

.

-

Figure 2.5.: Control flow graph of example E1

straight line code.

Moreover, a basic block needs to be maximal. This means that it cannot be

extended and all labels that can be combined to a basic block B are included in

B.

The control flow graph of program fac(i) in Figure 2.5 can be combined in

basic blocks. This is shown in Figure 2.6. Here it can be seen that start and l1

can be combined to a basic block and also l3 and l4 can be combined to a basic

block. The control flow within a basic block is simple and the control flow edges

only exist between basic blocks.

Dominance Relation. The dominance relation is a relation between two

labels, that is helpful to define other important properties of a program. A

label l1 dominates l2 ( l1 � l2 ) if and only if each path from start to l2 contains

l1. Dominance holds the properties of an order relation and is therefore reflexive,

transitive and anti-symmetric.

A program is strict, if each label, where a variable v is used, is dominated by

a label where v was defined. This means that in strict programs each variable

has to be defined before it is used. This thesis only deals with strict programs.

Not strict programs can be converted to strict programs by inserting instructions

13
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Figure 2.6.: Control flow graph of example E1 in basic blocks

where a variable gets defined a dummy value(undef) at locations where the above

mentioned property was violated.

2.5.2. Static Single Assignment Form

A program that fulfills the so-called static single assignment (SSA) property is in

SSA-form. The SSA-property says that each variable has to be statically defined

once. A program in SSA-form is not necessarily strict. As mentioned above, this

thesis will only deal with strict programs and therefore all properties described

are only guaranteed for strict programs. For each usage of a variable there is

exactly one label where the variable is defined. Let Dx be the label where x is

defined. Let us look at the piece of code in Figure 2.7.

1 i = 2 ;
2 a = 3 ;
3 i = func ( i , a ) ;
4 a = a + 1 ;

Figure 2.7.: Straight line code not in SSA-form

Each line corresponds to a label. The program is not in SSA-form because a

is defined in line (label) 2 and line (label) 4. Moreover, i is also defined twice,

14
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in line 1 and line 3. It can be simply converted to a program in SSA form by

giving each definition a unique name. Therefore, i2 and a2 are introduced. The

code in SSA form then looks like the code in Figure 2.8.

1 i 1 = 2 ;
2 a1 = 3 ;
3 i 2 = func ( i1 , a1 ) ;
4 a2 = a1 + 1 ;

Figure 2.8.: Straight line code in SSA-form

In this example only straight-line code was used. In the following example in

Figure 2.9 there are two variables and one while-loop. Pieces of code like this are

very common, where the value of the variable depends on the path that is taken.

1 a=5;
2 b=0;
3 while (b<a ){
4 b=b+1;
5 }

Figure 2.9.: While-loop not in SSA-form

Figure 2.10 shows a try to transfer the example to SSA-form. However, it is

not possible to simply replace each variable by a new one at every definition,

because it is not clear which variable should be used for bx in line 3 and 4. It will

depend on the control flow graph. The control flow graph can be constructed for

the example, which is shown in Figure 2.11(a).

1 a1=5;
2 b1=0;
3 while (bx<a1 ){
4 b2=bx+1;
5 }

Figure 2.10.: Transferring a while-loop to SSA-form
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Figure 2.11.: Comparison of code not in SSA-form and code in SSA-form
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The unknown variables, bx, occur where the control flow merges and the value

of a variable depends on the control flow. In this case artificial instructions are

needed to merge the values. For this purpose so-called Φ-functions are intro-

duced. In our example the definition of bx depends if the control flow comes

from the loop or from the initial input. bx is replaced by b3. b3 can be defined by

the following instruction: b2 := Φ(b1, b3). The instruction needs to be inserted

where the control flow is merging. If the flow originates from predecessor 1, b1

is assigned, else b3 is assigned to b2.

The Φ operation has as many input operands as block predecessors. Φ opera-

tions are used at the beginning of a basic block and can be seen as parallel copies

as they are not ordered. More precisely, all Φ functions can be placed together,

because they are ordered arbitrarily and dependencies between each other can

be resolved. They can be pooled together and can be written in matrix nota-

tion in order to emphasize that they belong to no natural sequence. Hence, all

Φ-functions can be represented using one label.

Figure 2.12 shows the control flow graph of example E1 in SSA-form. It was

necessary to introduce Φ-functions. They were pooled together in the matrix

form. If the flow originates from edge 1, i3 := i1 and r3 := r1. Else, if the flow

originates from edge 2, i3 := 12 and r3 := r2. It is also possible to use line-wise

notation and split the matrix per row.

2.5.3. Translating out of SSA-form

The SSA-form facilitates powerful program optimizations in a compiler (Sreedhar

et al. (1999), Cytron et al. (1991)). However, Φ-instructions are non-native

instructions and therefore they must be eliminated before final code generation.

There is a simple algorithm by Cytron et al. (1991) for this translation. For

each input operand of the Φ-function a copy is inserted. Figure 2.13 shows the

translation out of SSA for example E1, where the two Φ-functions are replaced

by four copies (l6- l9), one for each operand. The Φ -function i3 := Φ(i1, i2) is

replaced by i3 := i1 if edge 1 is taken and i3 := i2 if edge 2 is taken. The removal

of the Φ-function for r3 works analogously.

The described algorithm does not work in all cases. It works well for opti-
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mizations that do not radically change the namespace like constant propagation

and dead code elimination, but for optimizations that do radically change the

namespace, such as copy folding and aggressive value numbering, it does not

work (Briggs et al. (1998)). Two examples where the algorithm fails are the lost

copy problem and the swap problem. This problems will be described in the

following.

Lost Copy Problem. The lost copy problem occurs when copy folding is done

in a program in SSA-form. If the copies are folded in a basic block with critical

backward edges, the simple algorithm for translating out of SSA-form will lead

to incorrect code. Critical edges go from blocks with multiple predecessors to

blocks with multiple successors. Therefore, a new basic block has to be inserted.

An example is given in Figure 2.14.
PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 25

x ← 1

y ← x

x ← x + 1
if p then

RTN y

x1 ← 1

x2 ← φ(x1, x3)
x3 = x2 + 1
if p then

RTN x2

x1 ← 1
x2 ← x1

x3 = x2 + 1
x2 ← x3

if p then

RTN x2

x1 ← 1
x2 ← x1

x3 = x2 + 1
if p then

RTN x2

x2 ← x3

Original code Code in SSA form Copies inserted Copies inserted when

(Copies folded) (Incorrect) critical edges are split

(Correct)

Figure 10. An example of the code leading to the “Lost-Copy” problem

a variable, and the value from the penultimate iteration is then returned.∗ The second

column shows the code translated into SSA form with copy folding. Notice how y

has disappeared. The third column shows the result of replacing the φ-function with

copies using the naive algorithm. Clearly, the result of the code has changed; it now

returns the value of the last iteration. The final column shows how splitting the critical

back-edge cures the problem.

Intuitively, the naive copy insertion failed because it created a reference to x2 beyond

the scope of the φ-function that defined it. Folding x2 for y extends the lifetime of x2

beyond the redefinition that creates x3.

To avoid this problem, the compiler must notice that the value overwritten by the

new copy is live past the point where the copy is inserted. When it detects this situ-

ation, it can insert a copy to a new temporary name prior to inserting the copy, and

rewrite subsequent uses of the overwritten name with the temporary’s name. This is

the fundamental idea underlying our copy insertion algorithm. This rewriting mimics

∗ While this example might seem contrived, the situation arises routinely in Fortran DO-loops.

Figure 2.14.: Example of the lost copy problem taken, from Briggs et al. (1998)

The first subfigure shows the original program that has a critical edge, which

is the backward edge of the loop. The program is translated to SSA-form in

the second subfigure. Copies are folded in SSA-form and therefore the variable

y is not needed any longer and is discarded. In the third subfigure the code

after applying the naive algorithm to remove Φ-functions is shown. This leads

to incorrect code, because the move from x3 to x2 has one incorrect execution

before the return statement. The last subfigure shows the solution to the lost

copy problem, where an additional basic block is inserted.

19



2. The Role of Register Allocation in the Compiler and Computer Architecture

Swap Problem. Another problem which occurs because of copy folding is the

swap problem. If the input operand of a Φ-function is the output operand to

another Φ-function in the same block, the naive algorithm to remove Φ-nodes

may lead to incorrect code. This situation occurs after code that swaps the value

of two variables. After copy folding in SSA-form, the helper variable for the swap

will disappear and translating out of SSA with the naive algorithm will fail.PRACTICAL IMPROVEMENTS TO BUILDING STATIC SINGLE ASSIGNMENT FORM 29

a ← . . .

b ← . . .

x ← a
a ← b
b ← x
if p then

a1 ← . . .
b1 ← . . .

a2 ← φ(a1, b2)
b2 ← φ(b1, a2)
if p then

a1 ← . . .
b1 ← . . .
a2 ← a1

b2 ← b1

a2 ← b2
b2 ← a2

if p then

Original code SSA form with φ-nodes naively

copies folded replaced

Figure 12. An example of the code leading to the “Swap” Problem

be inserted for it. Simple analysis, though, will show that reordering the copies will

produce correct code without the addition of a temporary, as shown in the right side

of this figure.

In some sense, the choice of how to insert copy operations for φ-functions and when

to insert copies to temporaries is a scheduling problem. A copy operation has two argu-

ments, the source and the destination. We want to insert copies for a set of φ-functions

subject to the following restriction: to schedule a copy c, all other copy operations that

include c’s destination as their source must be scheduled first. That is, before a name

is overwritten, any other operation that needed its value must have it already.

Another way to look at this problem is to model the interaction of the set of copies

as a graph whose nodes represent the copies and whose edges represent a name defined

by one copy and used in another copy. If the graph is acyclic, the schedule of copies

can then be found by a simple topological sort of the graph – although we do not

actually need to build this graph if we are careful about the data structures we use to

build the schedule.

Our algorithm makes three passes over the list of φ-functions. In the first pass,

Figure 2.15.: Example of the swap problem, taken from Briggs et al. (1998)

Figure 2.15 shows an example for the swap problem. The first subfigure shows

the original code where a swap is performed between a and b and x is the tempo-

rary help variable. In the second subfigure the program is translated to SSA-form

and copy folding was performed. Therefore, x was removed. The last subfigure

shows the incorrect code due to the removal of x. To overcome this drawback,

the copies need to be ordered carefully.

There are three possibilities concerning the time when the translation out of

SSA-form can be done.

Perform the elimination before the register allocation phase. The first approach

is the traditional approach and it was done for example in Wimmer (2004).

Standard algorithms to eliminate Φ-functions are used. The register alloca-

tion is done in non-SSA-form. The approach is very similar to an allocator

for a compiler, whose intermediate representation (IR) has never been in

SSA-form.
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Perform the elimination in the last step of register allocation. For the second

approach, an example is Wimmer and Franz (2010), where the authors im-

proved a previous linear scan algorithm (Wimmer (2004)), that did the

elimination before the register allocation phase. The algorithm operates

on SSA-form and they show that the simpler algorithm is faster and gener-

ates equally good or slightly better machine code than the previous version.

The conversion out of the SSA-form is included in the resolution phase of

the linear scan algorithm. The authors state the following advantages of

the SSA-form for their algorithm:

Lifetime analysis: In IRs that are not in SSA-form an iterative data flow

analysis has to be performed. The basic data flow analysis has to be

repeated until a stable state is reached. In SSA-form each variable is

only defined once at a single point of definition. This property can be

used to determine live ranges in a single pass over the CFG.

Lifetime holes: Holes of live ranges always end at the end of a basic block.

This property can be used to guarantee that variables defined during

a lifetime hole of another variable cannot have overlapping life ranges.

This eliminates expensive overlapping checks.

No artificial order: Moves that were inserted in the deconstruction phase

of SSA-form do not have an artificial order. In the register allocator

there is no order that is given by the Φ-functions.

Figure 2.16 shows the steps of the linear scan algorithm with (right subfig-

ure) and without SSA-form (left subfigure). The main differences are that

in the SSA-form no data flow analysis has to be done. Furthermore, SSA

deconstruction is necessary and is included in the resolution phase.

The drawback of their algorithm is that costly memory transfers occur in

the resolution phase where they translate out of SSA. Hack and Goos (2006)

proposed an graph coloring algorithm based on the second approach. They

show that the interference graph of programs in SSA-form are cordal and

can therefore be colored in polynomial time. They improve the Chaitin-

Briggs allocator.
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Figure 1. Linear scan register allocation not on SSA form.

2. Overview
The linear scan algorithm is used for register allocation in many
major compilers, e.g., the client compiler of the Java HotSpotTM
VM [11, 16], the optimizing compiler of the Jikes RVM [1], and
the compiler of the Low Level Virtual Machine (LLVM) [17]. All
implementations use different heuristics to make the algorithm fast
and to produce good machine code, but none operate on SSA form.
However, all three compilers use SSA form for global optimiza-
tions, so all provide the necessary infrastructure for SSA-form-
based register allocation.
We use our previous work on linear scan register allocation

for the Java HotSpotTM client compiler [30] as the baseline for
this study. The client compiler is a production-quality just-in-time
compiler and thus highly tuned both for compilation speed and
code quality. Its source code is available as open source from the
OpenJDK project [27]. Implementation details of the linear scan
register allocator are available from [29].
The front end of the client compiler first parses Java byte-

codes [18] and constructs the high-level intermediate represen-
tation (HIR), which is in SSA form. Several optimizations are
performed on the HIR, including constant folding, global value
numbering, method inlining, and null-check elimination. The back
end translates the HIR into the low-level intermediate representa-
tion (LIR). It is not in SSA form in the current product version, so
the translation includes SSA form deconstruction.
The LIR is register based. At first, most operands are virtual reg-

isters. Only register constraints of the target architecture are mod-
eled using physical registers in the initial LIR. Before register al-
location, the control flow graph is flattened to a list of blocks. The
register allocator replaces all virtual registers with physical regis-
ters, thereby inserting code for spilling registers to the stack if more
values are simultaneously live than registers are available. This is
accomplished by splitting lifetime intervals, which requires a reso-
lution phase after register allocation to insert move instructions at
control flow edges. There is no distinction between local variables
and temporary values, they are all uniformly represented as virtual
registers. After register allocation, each LIR operation is translated
to one or more machine instructions, whereby most LIR operations
require only one machine instruction. Figure 1 shows the compiler
phases of the current product version that are relevant for register
allocation.
Figure 2 illustrates the changes necessary for SSA-form-based

register allocation. SSA form is no longer deconstructed before reg-
ister allocation. Additionally, construction of lifetime intervals is
simplified because no data flow analysis is necessary. The main
linear scan algorithm remains mostly unchanged, but still benefits
from some SSA form properties. If SSA form is no longer required
after register allocation, as in our implementation, SSA form de-
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Figure 2. Linear scan register allocation on SSA form.

construction can be easily integrated into the already existing reso-
lution phase.
Moving out of SSA form after register allocation is reasonable

because register allocation is usually one of the last global opti-
mizations, so SSA form would not be beneficial afterwards. How-
ever, it would also be possible to maintain SSA form, which re-
quires the insertion of new phi functions for variables whose life-
time intervals were split. The standard algorithm for SSA form con-
struction [9] can be used for this.

3. Lifetime Intervals and SSA Form
Our variant of the linear scan algorithm requires exact lifetime
information: The lifetime interval of a virtual register must cover all
parts where this register is needed, with lifetime holes in between.
Lifetime holes occur because the control flow graph is reduced to
a list of blocks before register allocation. If a register flows into an
else-block, but not into the corresponding if-block, the lifetime
interval has a hole for the if-block. In contrast, a register defined
before a loop and used inside the loop must be live in all blocks of
the loop, even blocks after the last use.
The lifetime intervals resulting from phi functions have char-

acteristic patterns. When SSA form is deconstructed before regis-
ter allocation, move instructions are inserted at the end of a phi
function’s predecessor blocks. This leads to a lifetime interval with
multiple definition points and lifetime holes before these defini-
tions. SSA form deconstruction inserts the moves in a certain order.
While there are some constraints for the order in cases where the
same register is both used and defined by phi functions of the same
block, the order is mostly arbitrary.
Figure 3(c) shows the lifetime intervals for the LIR fragment

(computing the factorial of a number) shown in Figure 3(a). Four
blocks B1 to B4 use six virtual registers R10 to R15. Assume that
R10 and R11 are defined in B1, and that R10 and R12 are used in B4.
R10 represents a long-living value that is infrequently used but still
alive, e.g., the this pointer of a Java method. The LIR operations
20 to 42 (numbers are incremented by two for technical reasons)
are arithmetic and control flow operations that use up to two input
operands (either virtual registers or constants) and define up to one
output operand (a virtual register).
The registers R12 and R13 represent the original phi functions,

and the registers R14 and R15 represent the new values assigned
to the phi functions at the end of the loop. Therefore, R12 and R13
have the characteristic lifetime intervals i12 and i13 in Figure 3(c)
(virtual registers and intervals use matching numbers). Interval i12
is defined by the operations 20 and 36. Because the definition at 36
overwrites the previous value without using it, there is a lifetime
hole before this operation, starting at the last use at operation 32.
The intervals i12 and i13 have a similar structure, only i12 ex-
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Figure 2.16.: Steps of the linear scan algorithm with and without SSA-form,
taken from Wimmer and Franz (2010)

Perform the elimination after the register allocation. The third approach was

used by Pereira and Palsberg (2009). They use the conventional SSA

(CSSA)-form, which is a more restricted version of the SSA-form. The

CSSA form was introduced by Sreedhar et al. (1999). The CSSA form en-

sures that variables in the same Φ-function do not interfere. More precisely,

the live ranges of the operands and the assigned value in a Φ-function do

not overlap. The costly memory transfers that occur in the second ap-

proach can be avoided in this approach. Moreover if the program is in

CSSA-form, the lost copy problem and the swap problem do not occur

while translating out of the SSA-form.

The CSSA form is a special case of the SSA form. The output of the

standard algorithm for translating a program to SSA-form is in CSSA-

form (Sreedhar et al. (1999)). However, in the optimization phases this

property can get lost, for example during copy folding. The following

example illustrates how the CSSA-property can get lost. First, there is a

small example that uses three variables, a, b and c (see Figure 2.17).

This piece of code is transformed to CSSA form as shown in Figure 2.18.

The definitions are replaced by unique names and a Φ-function is inserted

where the control flow is merging.

As shown in Figure 2.19 the CSSA form can get lost due to optimization

steps. In this example c1 is eliminated. However, because of the print

statement in the last line, a1 and a3 have overlapping live ranges.
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1 a=func ( ) ;
2 b=2;
3 c=a
4 i f ( a<b){
5 a=a+b ;
6 }
7 pr in t ( a ) ;
8 pr in t ( c ) ;

Figure 2.17.: Example not in SSA-form

1 a1=func ( ) ;
2 b1=2;
3 c1=a
4 i f ( a1<b1 ){
5 a2=a1+b1 ;
6 }
7 a3=phi ( a1 , a2 ) ;
8 pr in t ( a3 ) ;
9 pr in t ( c1 ) ;

Figure 2.18.: Example for the CSSA form

In the CSSA-form all inputs of a Φ-function can share the same register,

because they do not interfere. This property is especially important for

memory coalescing. It is possible to translate out of CSSA-form without

memory transfers, which is not always possible if the properties of CSSA

are not fulfilled.

2.5.4. Intermediate Representation

As the name suggests, the intermediate representation (IR) is the representation

that is used in the transition from the written code to the machine language, that

is performed by the compiler. The IR in SSA form is used by many compilers.

The IR is the representation used between the bytecode and the machine code.

On the IR the optimizations are performed.
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1 a1=func ( ) ;
2 b1=2;
3 i f ( a1<b1 ){
4 a2=a1+b1 ;
5 }
6 a3=phi ( a1 , a2 ) ;
7 pr in t ( a3 ) ;
8 pr in t ( a1 ) ;

Figure 2.19.: Example not in the CSSA form due to optimization steps

In the following, the IR of the Java HotSpot
TM

server compiler is described,

based on the description in Click and Paleczny (1995). In their paper they

provide a simple, fast and easy to use, graph-based IR. More precisely, the rep-

resentation is a directed graph with labeled vertices and ordered inputs. The

label on a node shows the kind of operation that the node represents. Edges do

not have a label. The inputs to the node’s operation are on the input edges. On

the output edges is the value that is defined by the node based on its inputs and

operation. For example, the operation a := b + c is represented by three nodes,

a, b and c. Nodes b and c are input nodes to a. The operation on a is ADD.

In the traditional approach there was a distinction between control flow and

data flow. In the new representation there is a top level, the CFG which consists

of basic blocks. Then there is the bottom level where each basic block contains

instructions. The authors replace this traditional distinction with a new rep-

resentation. Instead of basic blocks, they use so-called region nodes. A region

node has input control values from the predecessor nodes and delivers a merged

control as an output. The information that says in which basic block a node is

in, is taken by a control input. The control edges are optional.
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3. Modeling Approaches of

Register Allocation

Register Allocation is a hard problem and an important task in code optimiza-

tion. Different abstractions were used to simplify the problem and find good

feasible register allocations. Before describing the different modeling approaches

a basic distinction has to be made. We can distinguish between the following

types:

Local Allocation: Local allocation assigns registers for each basic block, i.e.,

a block which consists of only straight-line code without any branches.

Local allocators focus only on a part of the currently compiled method.

Very crucial parts of the program like the innermost loops can be picked

out for performing local allocation.

Global Allocation: Global allocation, on the other hand, deals with allocating

a complete method or function. Therefore, it is necessary to deal with

branches and control structures. Global allocation is usually slower than

local allocation, but can achieve better results.

Farach and Liberatore (1998) and Sethi (1975) show that both global and local

register allocation are NP-complete.

In the following, six different approaches for global allocation are described.

The first one is graph coloring, then we describe the modeling as a multi-

commodity network flow problem. Then the linear scan algorithm, partitioned

boolean quadratic programming and register allocation by puzzle solving are

described. Finally ILP based models are presented. Most of these approaches

simplify the optimization problem in order to make it easier to find a good feasible
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solution. Therefore, they do not explore the entire search space. The simplified

problems are mostly well-known optimization problems, which are still NP-hard.

Therefore, most solution methods are heuristics.

3.1. Graph Coloring

A well known and widely used approach to model register allocation is by mod-

eling the problem as a graph coloring problem. Graph coloring is the task of

assigning colors to vertices such that no two vertices that are connected by an

edge have the same color. A k-coloring is a coloring that can use at most k

colors. The graph coloring problem is NP-hard except for special cases such as

chordal graphs.

So-called virtual registers are used to model the interference graph for which

the graph coloring is performed. More precisely, each variable is assigned to a

virtual register. In this representation the fact that only a limited number of

registers is available is ignored. So the task of register allocation is to replace the

virtual registers by the available physical registers on the target machine. For a

more detailed description see Briggs (1992).

The following example shows how the interference graph is constructed. Fig-

ure 3.1 shows the definition of live ranges. The live range of a virtual register

begins at the first definition and ends at the last use.
!"##$%

&'(#)%

' * + ,

1 a=10;
2 b=4;
3 c=a-b;
4 d=2c;
5 a=b-c;
6 return a;

Figure 3.1.: Code example with live ranges

An interference graph is constructed with the information of the control flow

graph. Each variable is represented as a node. If two variables are live at the

same time at some part of the program, the two variables cannot share a single

register, but must reside on two different registers or one of them has to be spilled
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to memory. This interference is modeled as an edge between the interfering nodes.

A certain color corresponds to a physical register. Nodes with the same color will

be assigned to the same register. The drawback of this modeling is that some

information of the problem gets lost.

The interference graph is defined on an undirected graph G = (V,E), where

V is the set of nodes, which are the virtual registers, and E is the set of edges,

which correspond to the interferences. Two virtual registers interfere if their

life ranges overlap. In that case, they cannot be assigned to the same physical

register. Once the interference graph is built, the graph coloring problem can be

solved, to get a solution to the register allocation. We are looking for a k-coloring

of G, where k corresponds to the number of physical registers available.

It can happen that there is no feasible solution to this problem, then some

virtual registers have to be spilled to memory.

The first graph coloring based allocator was implemented by Chaitin (1982)

and was called the Yorktown allocator. Figure 3.2 illustrates the phases of this

allocator. The algorithm is described as presented in Briggs (1992).

Renumber: In the first step the right number of names and the live ranges are

determined.

Build: Based on the information of the previous step, the interference graph is

constructed.

Coalesce: Copies that are not necessary are removed. A copy can be removed

if the live ranges do not interfere. The removal can change the interference

graph, therefore the interference graph has to be updated, i.e., the build

step is performed again. The steps are repeated until no more copies can

be removed.

Spill Costs: In this phase the spilling cost is approximated. The cost is com-

puted by taking into account the number of instructions, where the variable

is used, and the loop depths of these instructions.

Simplify: The phase simplify and the phase select are the phases where the

coloring is performed. In this phase the nodes with a degree smaller than

27



3. Modeling Approaches of Register Allocation

Figure 3.2.: Steps of the yorktown allocator as shown in Briggs (1992)

k are subsequently removed and pushed on the stack. This is illustrated in

Figure 3.3(a) for the example with 4 nodes that was defined in Figure 3.1.

We assume that three registers are available. Node a is removed first

because it has the smallest degree. Then all nodes have the same degree.

In that case a node can be chosen arbitrarily. Therefore, node d is removed,

then node c and finally node b. It can happen that all nodes in G have a

degree ≥ k. In that case a node is chosen for spilling. Now it would be

possible to go back to the renumbering phase and perform all the subsequent

steps again. However, it is better to only mark the node for spilling and

continue the simplify phase to find other nodes that have to be spilled.

When G is empty and no node has been marked for spilling, the select

phase can be executed, which will guarantee to find a feasible coloring.

Otherwise it is necessary to go to the spill code phase and back again to

the beginning.

Select: In this phase the nodes from the stack are removed one after another,

reinserted in G and a feasible color is chosen for them. The select phase

is illustrated in Figure 3.3(b). The last node, node d, is popped from the

stack and inserted into the graph. A new color is assigned to the node. This

procedure is repeated until all nodes are removed from the stack, inserted

in the graph and have assigned a color.

Spill Code: For each node that was chosen to spill, the spill code is inserted.

This means that for every instruction that uses a spilled variable, a load

and store instruction has to be inserted.

A solution to the register allocation problem, constructed by the graph coloring
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algorithm, is shown in Figure 3.4. Node a is put on the first register, node b on

the third register and node c on the second register. Then the live range of node

a is finished and the first register can be used again for node d, whose live range

is finished too. Finally, node a is put on the first register again.
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Figure 3.3.: Two phases in the graph coloring algorithm

The graph coloring algorithm was adapted for programs in SSA-form by Hack

et al. (2006). Because of the simpler structure of the interference graph due

to the SSA-property, an algorithm without iterations could be developed. The

phases are shown in Figure 3.5. The interference graph of a program in SSA-

form is chordal. Chordal graphs have the property that their chromatic number

is equal to the size of the largest clique in the graph. The chromatic number

is the maximal k for which a k-coloring is possible. The largest clique in the

interference graph corresponds to the liveset of label with the most variables live.

Therefore, after the liveness analysis the spilling decisions can be made, so that

it can be guaranteed that graph coloring will succeed in one iteration. Moreover,
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1 a=10; // r1=10
2 b=4; // r3=4
3 c=a−b ; // r2=r1−r3
4 d=2c ; // r1=2r2
5 a=b−c ; // r1=r3−r2
6 return a ; // r1

Figure 3.4.: Solution to the register allocation problem, constructed by the graph
coloring algorithm

– Cliques in the interference graph correspond to live sets in the program. This
means after liveness analysis we know how many registers will be needed for
the program in question. If we reduce the amount of variables live at each
point in the program to at most k, the graph will be k-colorable, which
eliminates the iteration. In section 4.1, we present a simple algorithm which
splits the live ranges of the variables so that the register pressure is at most
k at each point in the program.

– Dominance, a fundamental notion for SSA-form programs, induces an order
of the interference graph’s nodes which allows the interference graph G =
(V,E) of a SSA-form program to be colored optimally in O(χ(G) · |V |) as
shown in section 2.

– Finally, as shown in section 4.3, we coalesce useless copies in the shape of
φ-operations not by modifying the graph but by finding a k-coloring which
assigns as many sources and targets of copies the same register. This pre-
serves the chordality of the interference graph and thus does not change its
k-colorability. So coalescing a copy will never cause any additional spill.

This leads to a single pass register allocator architecture looking like

Spill Color Coalesce SSA-Destruction

avoiding any iteration.

2 SSA-form Programs and their Interference Graphs

Before going into algorithmic details, let us discuss basic properties of SSA-
form programs and their connection to relevant terms of register allocation like
liveness and interference.

We consider a program as a standard CFG being a triple (Labels,CF , start).
Each label � ∈ Labels contains a single instruction

� : (y1, . . . , ym� �� �
Dτ

) ← τ(x1, . . . , xn� �� �
Uτ

)

a set of control flow edges CF between the labels and one designated label start
which has no control flow predecessors. As we only consider SSA-form programs
from now on, each variable v has a unique label where it is defined. We will
denote this label by Dv.

A fundamental notion for SSA-form programs is the one of dominance:

Definition 1 (Dominance). A label � dominates a label �� if all paths from
start to �� contain �. We then write � � ��.

Essential for all later work is the notion of a strict program which was coined
by Budimlić [4].

Definition 2 (Strict program). A program is strict, if each usage of a vari-
able v is dominated by Dv.

Figure 3.5.: Phases of SSA-form based graph coloring register allocation (taken
from Hack et al. (2006))

it can be assured that such a k-coloring can be found in quadratic time. After all

virtual registers are colored, coalescing can be performed. Note, that coalescing

before this phase would destroy the SSA-form-structure that is exploited in this

approach. Finally SSA-form deconstruction is done, which consists of inserting

parallel copies. In the rare cases where circular shifts are necessary and no spare

register is available, moves to the memory and back are necessary.

In general, graph coloring approaches are successful for regular architectures

with a high number of registers. For these architectures, good results are obtained

in reasonable runtime. Extensions to the basic algorithm exist for irregular

architecture. However, they increase the runtime and do not always yield good

results.

3.2. Multi Commodity Network Flow

The register allocation problem can also be modeled as a multi-commodity net-

work flow (MCNF) problem. This method was first applied by Koes and Gold-

stein (2005) and Koes and Goldstein (2006) for the gcc compiler. They report

code size improvements of on average 6.84% compared to a traditional graph

allocator.
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In the following, the MCNF problem is described, and then the modeling of

the register allocation problem as a MCNF.

The MCNF problem occurs in communication systems, urban traffic systems,

railway systems, multi-product production-distribution systems and military lo-

gistics systems. For an overview of MCNF problems see Tomlin (1966). The

problem is defined on an directed graph G = (V,A), where V is the set of nodes,

and A is the set of arcs. The graph is not necessarily complete and usually quite

sparse. Let xkij be the flow of commodity k along arc (i, j). Let ckij be the cost of

arc (i, j) for commodity k, uij be the capacity that can flow through arc (i, j),

which is the maximum flow of all commodities. Furthermore, let vkij be the ca-

pacity for a single commodity. Let bki be the source and sink information. If bki

is positive, node i is a source for commodity k and its value is its supply. If bki is

negative, node i is a sink for commodity k and its absolute value is its demand.

Let Ii be the set of predecessor nodes of node i and Oi the set of successor

nodes of node i.

The MCNF can be formulated as follows

min
∑

k∈K

∑

ij∈A
ckijx

k
ij

xkij ≤ uij (3.1)

0 ≤ xkij ≤ vkij ∀k ∈ K, ∀(ij) ∈ A (3.2)

∑

j∈Oi

xkji = bki −
∑

j∈Ii
xkij ∀(i) ∈ V, ∀k ∈ K (3.3)

The objective function minimizes the total flow cost. Constraints (3.1) limit

the total flow through arc (i, j) by the capacity uij and constraints (3.2) limit

the total flow of commodity k through arc (i, j) Constraints (3.3) represent the

inflow and outflow constraints.

The MCNF modeling can be used for local register allocation, which allocates

only straight-line code. But there exist several techniques to expand the modeling

so that it can also be used for global register allocation. The following example

shows how to model the register allocation problem as a MCNF problem (see

Figure 3.6).
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r0 r1 mem MOVE c -> r0

c: -2

d

d

b
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b

c

c

c

crossbar omitted 

for clarity

int example(int a, int b)
{

int d = 1;
int c = a - b;
return c+d;

}

Source code of example

MOVE 1 -> d
SUB a,b -> c
ADD c,d -> c
MOVE c -> r0

Assembly before register allocation

MOVE STACK(a) -> r0
SUB r0,STACK(b) -> r0
INC r0

Resulting register allocation

Figure 1. A simplified example of the multi-commodity network flow model of register allocation. Thin edges have a capacity of 1 (as only
one variable can be allocated to a register and instructions only support a single memory operand). A thick edge indicates that the edge is
uncapacitated. For clarity, edges not used by the displayed solution are in gray and much of the capacity and cost information is omitted. The
commodity and cost along each edge used in the solution are shown if the cost is non-zero. In this example the cost of a load is 3, the cost of
using a memory operand in the SUB instruction is 1, the benefit (negative cost) of allocating c to r0 in the final MOVE instruction is 2 since the
move can be deleted in this case. Similarly, allocating d to a constant when it is defined has a benefit of 2. If an operand of the ADD instruction
is the constant one, then a benefit of 2 is accrued because the more efficient INC instruction can be used. The total cost of this solution is -2.

Each node in the network represents an allocation class: a regis-
ter, constant class, or memory space where a variable’s value may
be stored. Although a register node represents exactly one regis-
ter, constant and memory allocation classes do not typically corre-
spond to a single constant or memory location. Instead they refer
to a class of constants or memory locations that are all accessed
similarly (e.g., constant integers versus symbolic constants).
Nodes are grouped into either instruction or crossbar groups.

There is an instruction group for every instruction in the program
and a crossbar group for every point between instructions. An
instruction group represents a specific instruction in the program
and contains a single node for each allocation class that may be
used by the instruction. The source node of a variable connects
to the network at the defining instruction and the sink node of a
variable removes the variable from the network immediately after
the last instruction to use the variable. The nodes in an instruction
group constrain which allocation classes are legal for the variables

used by that instruction. For example, if an instruction does not
support memory operands, such as the load of the integer constant
one in Figure 1, then no variables are allowed to flow through the
memory allocation class node. Similarly, if only a single memory
operand is allowed within an instruction, the bundle constraints
of the instruction’s memory edges are set to 1. This is illustrated
in Figure 1 by the thin edges connecting to the memory node of
the SUB instruction group. Variables used by an instruction must
flow through the nodes of the corresponding instruction group.
Variables not used by the instruction bypass the instruction into the
next crossbar group. This behavior can been seen in the behavior
of variables a and b in Figure 1. The flows of these variables
bypass the first instruction but are forced to flow through the SUB
instruction.
Crossbar groups are inserted between every instruction group

and allow variables to change allocation classes. For example, the
ability to store a variable to memory is represented by an edge

Figure 3.6.: Modeling of the register allocation problem as a MCNF problem as
shown in Koes and Goldstein (2006)
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The nodes represent the registers and the memory. In our example there are

two registers and the memory, which is the stack, where an infinite amount of

data can be stored. For every time unit a crossbar is introduced. A time unit

corresponds to an instruction. A crossbar can contain multiples of the nodes to

model copying between registers and/or between the memory. This technique

assigns costs to the arcs and can therefore reinforce certain actions, like allocating

values to a constant and so on.

The basic model does not take into account that a variable has to be copied

only once to the memory. Since the storage at the memory is unlimited, it can

be guaranteed that a value is kept in the memory even if it is copied to the

register. By introducing a dummy variable, this can be modeled in the MNCF

representation. Further details can be found in Koes and Goldstein (2005).

The necessary extension for the global allocation will be explained. The dif-

ference to the local allocation is that there is not only straight-line code any

more, but there are branches, so it is necessary to introduce control flow. This

can be represented by so-called merge and split nodes. These nodes are at the

boundaries of a basic block. Merge nodes are at the beginning of a basic block,

while split nodes are at the end of a basic block. Merge nodes are used for basic

blocks that have more than one predecessors and split nodes for nodes that have

more than one successor. It can be distinguished between three types of nodes:

normal nodes, merge nodes and split nodes. Figure 3.7 (a) (taken from Koes and

Goldstein (2005)) shows these three types of nodes. In Figure 3.7 (b) the merge

and split nodes are included in the MCNF representation.

In Koes and Goldstein (2005), the authors used Lagrangian Relaxation as

solution method to solve the MCNF problem, but also other exact or heuristic

solution methods could be used.

This model can easily be extended to SSA-form. The extended version would

have to include merge constraints for Φ-nodes that are similar to the merge

nodes in Figure 3.7. Moreover, SSA-form deconstruction is included. However,

the complexity of the model would not be reduced by the SSA-form.

The MCNF approach leads to good quality solutions but needs a long run-

time. Memory coalescing and possibility of circular copies are not modeled. The

objective function could be extended to take costs of copies into account and not
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Figure 3.7.: Types of nodes in a global MCNF representation, taken from Koes
and Goldstein (2005)
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Figure 2. An example of anti-variables. The anti-variable of a, a�,
is restricted to the memory subnetwork (dashed edges). The edge
r is redundant and need not be in the actual network. The cost of
the second store can be paid by the first edge. If the r edge is left
in the graph, it would have a cost of three, the cost of a store in this
example. Multiple anti-variable eviction edges can also be used to
model the case where stores have different costs depending on their
placement in the instruction stream.

within a crossbar group from a register node to a memory allocation
class node. In Figure 1 the variable a, which is assumed to start
as a parameter on the stack, flows from the memory node to r0,
which corresponds to a load. The crossbar groups shown in Figure 1
are full crossbars which means that for some allocations the use of
swap instructions, instead of a simple series of move instructions,
might be necessary. If swap instructions are not available or are not
efficient relative to simple moves, a more elaborate zig-zag crossbar
structure can be used.
The cost of an operation, such as a load or move, can usually be

represented by a cost on the edge that represents the move between
allocation classes. However, this does not accurately reflect the
cost of storing to memory. If a variable has already been stored to
memory and its value has not changed, it is not necessary to pay the
cost of an additional store. That is, values in memory are persistent,
unlike those in registers which are assumed to be overwritten.
In order to model the persistence of data in memory, we in-

troduce the notion of anti-variables which are used as shown in
Figure 2. An anti-variable is restricted to the memory subnetwork
and is constrained such that it cannot coexist with its correspond-
ing variable along any memory edge. An anti-variable can either
leave the memory sub-network when the variable itself exits the
network or the cost of a store can be paid to leave the memory sub-
network early. There is no cost associated with edges from registers
to memory, but for these edges to be usable, the anti-variable must
be evicted from memory. The cost of evicting the anti-variable is
exactly the cost of a single store. In this way a variable may flow
from registers to memory multiple times and yet only pay the cost
of a single store (of course, every transition from memory to a reg-
ister pays the cost of a load). An actual store is only generated for
the first move to memory.
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Figure 3. The types of nodes in a global MCNF representation of
register allocation. The merge/split nodes not only modify the tradi-
tional flow equations with a multiplier, but also require uniformity
in the distribution of inputs/outputs.

Figure 4. A MCNF based representation of global register allo-
cation with a sample allocation shown with the thicker line. Each
block can be thought of as a crossbar where the cost of each edge
is the shortest path between a given merge and split node.

2.3 Global Register Allocation Model
Although the describedMCNFmodel is very expressive and able to
explicitly model many important components of register allocation,
it is unsuitable as a model of global register allocation since it does
not model control flow. In order to represent the global register
allocation problem, boundary constraints are added to link together
the local allocation problems. These constraints are represented by
split and merge nodes as shown in Figure 3.
Similar to normal nodes, split and merge nodes represent a

specific allocation class. Merge nodes denote the entry to a basic
block. A variable with a flow through a specific merge node is
allocated to that allocation class at the entry of the relevant block.
The merge property of the merge node, as enforced by the flow
equations in Figure 3, requires that a variable be allocated to the
same allocation class at the entry of a block as at the exit of all of
the predecessors of the block. Similarly, a split node requires that
an allocation of a variable at the exit of a block match the allocation
at the entry to each of the successors to the block.
More formally, we add the following equality constraint for

every commodity k and for every pair (split, merge) of connected
split and merge nodes to the definition of the MCNF problem given
in Section 2.1:

xk
in,split = xk

merge,out

(a) Normal, merge and split nodes
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reg
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r

Figure 2. An example of anti-variables. The anti-variable of a, a�,
is restricted to the memory subnetwork (dashed edges). The edge
r is redundant and need not be in the actual network. The cost of
the second store can be paid by the first edge. If the r edge is left
in the graph, it would have a cost of three, the cost of a store in this
example. Multiple anti-variable eviction edges can also be used to
model the case where stores have different costs depending on their
placement in the instruction stream.

within a crossbar group from a register node to a memory allocation
class node. In Figure 1 the variable a, which is assumed to start
as a parameter on the stack, flows from the memory node to r0,
which corresponds to a load. The crossbar groups shown in Figure 1
are full crossbars which means that for some allocations the use of
swap instructions, instead of a simple series of move instructions,
might be necessary. If swap instructions are not available or are not
efficient relative to simple moves, a more elaborate zig-zag crossbar
structure can be used.
The cost of an operation, such as a load or move, can usually be

represented by a cost on the edge that represents the move between
allocation classes. However, this does not accurately reflect the
cost of storing to memory. If a variable has already been stored to
memory and its value has not changed, it is not necessary to pay the
cost of an additional store. That is, values in memory are persistent,
unlike those in registers which are assumed to be overwritten.
In order to model the persistence of data in memory, we in-

troduce the notion of anti-variables which are used as shown in
Figure 2. An anti-variable is restricted to the memory subnetwork
and is constrained such that it cannot coexist with its correspond-
ing variable along any memory edge. An anti-variable can either
leave the memory sub-network when the variable itself exits the
network or the cost of a store can be paid to leave the memory sub-
network early. There is no cost associated with edges from registers
to memory, but for these edges to be usable, the anti-variable must
be evicted from memory. The cost of evicting the anti-variable is
exactly the cost of a single store. In this way a variable may flow
from registers to memory multiple times and yet only pay the cost
of a single store (of course, every transition from memory to a reg-
ister pays the cost of a load). An actual store is only generated for
the first move to memory.

Normal

! 
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i
= out

i""

Merge

! 

ini = numin outi""
#i, j ini = in j( )

Split

! 

numout ini = outi""
#i, j outi = out j( )

Figure 3. The types of nodes in a global MCNF representation of
register allocation. The merge/split nodes not only modify the tradi-
tional flow equations with a multiplier, but also require uniformity
in the distribution of inputs/outputs.

Figure 4. A MCNF based representation of global register allo-
cation with a sample allocation shown with the thicker line. Each
block can be thought of as a crossbar where the cost of each edge
is the shortest path between a given merge and split node.

2.3 Global Register Allocation Model
Although the describedMCNFmodel is very expressive and able to
explicitly model many important components of register allocation,
it is unsuitable as a model of global register allocation since it does
not model control flow. In order to represent the global register
allocation problem, boundary constraints are added to link together
the local allocation problems. These constraints are represented by
split and merge nodes as shown in Figure 3.
Similar to normal nodes, split and merge nodes represent a

specific allocation class. Merge nodes denote the entry to a basic
block. A variable with a flow through a specific merge node is
allocated to that allocation class at the entry of the relevant block.
The merge property of the merge node, as enforced by the flow
equations in Figure 3, requires that a variable be allocated to the
same allocation class at the entry of a block as at the exit of all of
the predecessors of the block. Similarly, a split node requires that
an allocation of a variable at the exit of a block match the allocation
at the entry to each of the successors to the block.
More formally, we add the following equality constraint for

every commodity k and for every pair (split, merge) of connected
split and merge nodes to the definition of the MCNF problem given
in Section 2.1:

xk
in,split = xk

merge,out

(b) Merge and split nodes in-
cluded in the MCNF repre-
sentation
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only the code size.

3.3. Linear Scan Algorithm - Second Chance Bin

Packing

The linear scan algorithm was introduced in Poletto et al. (1997). An improved

version, the so-called second chance bin packing was developed by Traub et al.

(1998). The algorithm was implemented for the Java HotSpot
TM

Client Compiler

in Wimmer (2004). The basic linear scan algorithm is described in detail in Po-

letto and Sarkar (1999). The algorithm is described as presented in Wimmer

(2004).

The basic idea of the linear scan algorithm is to assign registers in a single

pass over the linearized CFG. This means, that register allocation can be done

in linear time with respect to size of the input nodes. The first step is to flatten

the CFG. More precisely, the program is treated like straight line code even

though branches occur. Therefore, the basic blocks need to be ordered. The

sequence of the basic blocks plays an important role in the algorithm and effects

the code quality.

Lifetime intervals are computed differently than in the other approaches. The

interval starts at the definition and ends at the last use. Therefore, a variable is

considered live from the first definition to the last use.

The basic linear scan algorithm is a greedy algorithm, because variables that

occur first in the sequence are assigned to a register first and if no more registers

are available the register with the farthest away lifetime end is spilled to memory.

This is only useful if the variable having a long lasting lifetime is not used often

during the lifetime. An easy way for improving the algorithm would be using

estimated spill costs, which could take into account uses in inner loops with

higher weights.

A lot of improvements to the basic algorithm have been proposed, which sig-

nificantly increase the produced code quality but also need more runtime.

The basic algorithm works as follows. The compiler assigns a physical register

to the first interval and continues to assign physical registers for the intervals in
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the list. When no feasible assignment is possible, i.e. when there is no phys-

ical register available for the whole lifetime, some intervals must be spilled to

memory. Two intervals that do not interfere, which means that their ranges do

not intersect, can get the same physical register assigned. More precisely, the

algorithm iterates over the sorted list of intervals. A so-called active list is kept,

where all the intervals that overlap with the current position are stored. If the

lifetime ends, the interval is removed from the list. Each interval currently in the

list has a physical register assigned. If there are more intervals than registers,

spilling has to be performed. The basic strategy is to spill the interval with the

highest end position.

The advantage of the algorithm is the low runtime complexity. The drawback

on the other hand is the very conservative view of the lifetime, which might lead

to a worse allocation compared to more time consuming approaches.

An extension of the linear scan algorithm is second chance binpacking. Second

chance binpacking deals with the drawbacks of the linear scan algorithm while

providing almost the same runtime complexity.

As shown in the example in Figure 3.8, the basic linear scan algorithm does not

take holes in the lifetime into ccount, which occur due to conditional branches

and loops.
!"##$%

&'(#)%

' * + ,

1 a=10;
2 b=4;
3 c=a-b;
4 d=2c;
5 a=b-c;
6 return a;

' * + ,

1 a=10;
2 b=4;
3 c=a-b;
4 d=2c;
5 a=b-c;
6 return a;

-./01()/#+21,)+"'1+#)*314'+531(

Figure 3.8.: Code example with live ranges for linear scan algorithm

In the linear scan algorithm, an interval that is spilled, is spilled for the whole

lifetime. Splitting is not considered. Second chance binpacking also allows to

split intervals. More precisely, an interval can be on a register for part of the

lifetime and spilled later. It can also be spilled and moved back to a register, i.e.

it gets a so-called second chance. The live ranges of the second chance binpacking

are shown in Figure 3.9.
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The linear scan algorithm does not consider the real control flow due to the

linear ordering of the blocks. Therefore, inserted moves might not be feasible

for all control flows. It is necessary to do a second pass that is called resolution.

In this resolution phase, move instructions are inserted and a data flow analysis

is used to minimize the number of moves. Therefore, the runtime complexity

is higher than the one of the basic linear scan algorithm, because the data flow

analysis cannot be performed in linear time. The linear scan algorithm with

second chance bin packing produces results that are nearly as good as the ones

of graph coloring. The algorithm is suited for cases where not only the runtime

is important, but the compilation time is an issue.
!"##$%

&'(#)%

' * + ,

1 a=10;
2 b=4;
3 c=a-b;
4 d=2c;
5 a=b-c;
6 return a;

Figure 3.9.: Code example with live ranges for second chance binpacking

The solution to the register allocation problem of the basic linear scan algo-

rithm is shown in Figure 3.10. First, a is assigned to register 1, then b is assigned

to register 2 and c to register 3. Since there is no empty register for d, one vari-

able has to be spilled. According to the heuristic rule that the interval with the

highest end position should be spilled, a is spilled to the memory and d is put

on register 1.

1 a=10; //mem1=10
2 b=4; // r2=4
3 c=a−b ; // r3=mem1−r2
4 d=2c ; // r1=2r3
5 a=b−c ; //mem1=r2−r3
6 return a ; //mem1

Figure 3.10.: Solution to the register allocation problem, constructed by the lin-
ear scan algorithm
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The solution to the register allocation problem of the second chance bin pack-

ing algorithm is shown in Figure 3.11. In the second chance bin packing algorithm

no interval has to be spilled to memory because the live range of a has a hole

and therefore the three registers are sufficient.

1 a=10; // r1=10
2 b=4; // r3=4
3 c=a−b ; // r2=r1−r3
4 d=2c ; // r1=2r2
5 a=b−c ; // r1=r3−r2
6 return a ; // r1

Figure 3.11.: Solution to the register allocation problem, constructed by the sec-
ond chance bin packing algorithm

The linear scan algorithm was adapted for programs in SSA-form by Wimmer

and Franz (2010). They exploit the property, that lifetime holes of intervals

in SSA-form always end at block boundaries and that intervals beginning at a

lifetime hole of another interval cannot interfere. Generally, more and shorter

intervals exist. Parallel Copies have to be inserted at SSA-form deconstruction

which may lead to memory moves.

3.4. Partitioned Boolean Quadratic Optimization

Problem

Another modeling approach for register allocation is a formulation as a parti-

tioned boolean quadratic optimization problem (PBQP).

This modeling approach was developed by Scholz and Eckstein (2002) for

highly irregular architectures such as digital signal processors. The approach

is inspired by the the graph coloring approach.

A PBQP is defined as follows, given is a number n of symbolic registers and a

number m of real physical registers. A n×(m+1) cost matrix D is defined, where

dik represents the cost of locating the symbolic register i on the physical register

k or on the spill slot. The cost can be set to ∞ if a given location is infeasible.
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For each pair of symbolic registers, i and j, exists a (m + 1) × (m + 1) cost

matrix Cij. The cost value ckl states the cost if symbolic register i is assigned

to physical register r and symbolic register j is assigned to physical register

l. This cost matrix can model the interference between two symbolic registers.

More precisely, if their lifetimes interfere, the according value in the cost matrix

will be set to ∞. Moreover, register aliasing and the usage of more than one

physical register for symbolic registers, as in case of double and long values, can

be modeled in this cost matrix. Let xspi be a binary variable that is 1 if the

symbolic register i is spilled to memory, and 0 otherwise. Furthermore, let xRk
i

be 1 if register k is used by symbolic register i.

min
∑

1≤i<j≤n
~xiCij~x

T
j +

∑

1≤i≤n
~di~x

T
i

s.t.

~xi~1
T = 1 ∀i = 1, .., n (3.4)

The objective is to minimize total cost, i.e., the sum of the cost of the symbolic

registers that are allocated to physical registers and those that have to be spilled

to memory. Constraints (3.4) ensure that each symbolic register is allocated. The

PBQP is NP-complete and solving it to optimality would take too much time for

reasonable sized instances. The problem was solved by a heuristic, three-phased,

dynamic programming approach in Scholz and Eckstein (2002).

3.5. Register Allocation by Puzzle Solving

Pereira and Palsberg (2008) proposed an abstraction to model register allocation

by solving a set of puzzles. A puzzle has to be solved for every elementary

program, i.e., every instruction. Figure 3.12 shows an example of an architecture

with two registers and no register aliasing for the puzzle solving algorithm. For

each register, there is a puzzle board consisting of one column and two rows. For

more complicated architectures where register aliasing is allowed, more columns

are needed.

A puzzle board consists of two rows. The upper row represents the register
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before the instruction is executed, while the lower row represents the register

after the instruction is execuded. For this puzzle board, three kinds of puzzle

pieces exist. Type y uses both rows, while types x only uses the upper row and

type z only covers the lower row. A puzzle is solved, if all pieces are placed on

the puzzle board without overlaps. For different architectures, different types of

puzzle boards and different kinds of pieces exist. Therefore, different algorithms

have to be used to solve the puzzle for different architectures.

For the architecture shown, a simple linear time algorithm exists to solve the

puzzle. More precisely, in the first step, all y pieces have to be placed. After

that, all x pieces and all z pieces can be placed in an arbitrary order.

If the puzzle can be solved, a register allocation without spilling is found.

Otherwise some variables have to be chosen for spilling. If spill free register

allocation is not possible, a simple spilling heuristic is used.

For executing the puzzle solving algorithm, the program is converted to a

sequence of elementary programs. This is done in the following way. First, the

program is converted to SSA form. Then, the program is converted to a variation

of the SSA form, where each variable live at the beginning of a basic block is

renamed by a Φ-function. This program is further converted in the so-called

static single information (SSI) form.

The SSI form was developed by Ananian (1999). The SSI form extends the

SSA form. Additionally, at the end of a basic block, all variables that are live are

renamed by a Π-function. Using the SSI form guarantees that a variable is only

defined and used in one basic block. A Π-function renames all values that are live

at the end of a block. It has the opposite effect of a Φ-function. Therefore, a good

global register allocation can be obtained by local register allocation for every

basic block and linking the results afterwards. For the puzzle solving algorithm

this is not enough. Each basic block is splitted to a sequence of elementary

programs, which only consist of single instructions. Therefore, parallel copies

are inserted between consecutive instructions.

Figure 3.13 shows how a simple program can be mapped to puzzle pieces. The

program has four instructions. For each instruction the puzzle is solved. Given

are the puzzle pieces and the free positions in the board. If a value is defined in

the instructions, it is mapped to a z piece. If its last use is in the instruction, it
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Figure 3.12.: Board and puzzle pieces for register allocation by puzzle solving

is mapped to a x piece. If the value is live, it is mapped to a y piece. In other

words, if a value is live-in but not live-out at an instruction, it is mapped to an

x piece, if it is only live-out, it is mapped to a z piece and if it is live-in and

live-out, it is mapped to a y piece.
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Figure 3.13.: Example for register allocation by puzzle solving

3.6. Integer Linear Program Based Approaches

This section deals with integer linear program (ILP) based approaches. ILPs

are mathematical programs, where some decision variables are restricted to inte-

gral values, but all other constraints and the objective function are linear. (see

Nemhauser and Wolsey (1999) for an introduction to integer programming). The
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models can be solved with ILP solvers. First, an ILP model for register allocation

is presented. Then, an ILP model for the spilling decisions is described.

3.6.1. ILP Model for Register Allocation

Goodwin and Wilken (1996) present an ILP model for register allocation. They

formulate the problem as 0-1 integer programming problem and solve it with a

MIP solver. They refer to their approach as optimal register allocator (ORA).

The model can be used for a regular architecture and takes copy elimination, live

range splitting, rematerialization, precolered registers and paired registers into

account. The allocator is included in the Gnu C Compiler (GCC). The objective

is to minize the total costs of inserting spill instructions. The model was first

proposed by Goodwin and Wilken (1996), extended for irregular architectures

by Kong and Wilken (1998) and improved by Fu et al. (2005).

First, an instruction graph is constructed from the CFG. From this construc-

tion graph, a symbolic register graph is constructed for each symbolic register.

A symbolic register is the same as a virtual register, where each variable is as-

signed to a symbolic register and the fact that only a limited number of registers

is available is ignored. A symbolic register graph is shown in Figure 3.14 and

Figure 3.15 for a sample program. Three instructions are used in the sample

program.

Figure 3.14 shows the symbolic register graph for variable A. The graphs starts

at the definition and ends at the last use. Since the last use is not defined, the

live time is continued. Figure 3.15 shows the same for variable B. The graph

starts at the definition and ends at the last use, which is c = a+ b in the sample

program. The allocation and deallocation decisions are represented by the edges

in the graph. The ILP is based on the insight that in the optimal solution only

non-dominated allocation and deallocation positions are present. Therefore, it

is sufficient to only consider non-dominated positions. These non-dominated

positions can be identified in the symbolic register graph.

To identify these positions, the authors distinguish between load, store and

deallocation decisions. Load decisions are placed before every symbolic regis-

ter use and at the merge of basic blocks. Store decisions can be placed after a
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Figure 3.14.: Symbolic register graph for symbolic register A
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Figure 3.15.: Symbolic register graph for symbolic register B

symbolic register definition and at the end of a basic block which has several

sucessors, i.e., it diverges. Finally, deallocation decisions can be placed after ev-

ery definition, after every use and at every ORA symbolic register graph diverge.

In the sample program, we can identify load, store and deallocation decisions.

Let xrsp be a set of binary decision variables. xrsp is 1 if symbolic register s at

location p is assigned to real register r, and 0 otherwise.

In the following the ILP is explained as presented in Fu et al. (2005) and the

different types of constraints are described.

min
∑

s

∑

r

crspx
r
sp

s.t.
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∑

r

xrsp ≥ 1 (3.5)

∑

s

xrsp ≤ 1 (3.6)

∑

r

xrsp + xmem
sp ≥ 1 (3.7)

xrsp−1 ≥ xrsp (3.8)

xrsp = xrsp′ (3.9)

xrsp ∈ {0, 1} (3.10)

Constraints (3.5) are so-called must-allocate constraints. They ensure that for

every definition and use of a symbolic register, a real register must be allocated.

For example, x1
defA + x2

defA ≥ 1 in the sample program ensures that register one

or register two is chosen for the definition of variable A. Constraints (3.6) are

the single-symbolic constraints, that state that a real register can be allocated to

not more than one symbolic register for any point in the program. For example,

x1
cont1A+x1

defB ≤ 1 because the definition of B is at the same time as the allocation

of x1
cont1A. So these two allocation decisions cannot be made for the same real

register.

Constraints (3.7) are the liveness constraints guarantee that a symbolic register

is live in either a real register, the memory or in both for every point in the

program where the variable is live. For example the inequality x1
cont1A +x2

cont1A +

xmem
A ≥ 1 has to hold for the sample program. The deallocation constraints (3.8)

ensure that variables can deallocate at certain positions. An example constraint

is x1
defA ≥ x1

cont1A. Finally, the merge constraints (3.9) make sure that at a

merge vertex all incoming edges have the same allocation states, i.e., the symbolic

registers must be allocated to the same physical registers for each predecessor of

a merge. Constraints (3.10) ensure that each allocation decision is either zero or
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one.

3.6.2. ILP Model for Optimal Spilling

Appel and George (2001) decompose the problem into a spilling decision and a

register assignment decision. In the spilling phase, it is decided when and where

variables are spilled to the memory. This phase is solved to optimality with an

ILP. Usually spilling is expensive and should therefore be planned first. Once the

first stage is done and an optimal solution to the spilling problem is found, it is

guaranteed that a spill free register allocation can be found. However, this is not

a trivial task, because usually this is not possible without live range splitting.

So a traditional graph-coloring based register allocator could still find variables

to spill.

The decomposition makes the algorithm faster. However, as mentioned above,

an optimal allocation cannot be guaranteed.
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HotSpot
TM

Server Compiler

This chapter gives an overview of register allocation in the Java HotSpot
TM

Server Compiler for the irregular IA-32 architecture. Moreover, the existing

implementation of the register allocator is described. Then, a simple stack based

register allocator that was implemented is presented.

4.1. Detailed Problem Description

In this chapter a detailed overview of the task of register allocation in the Java

HotSpot
TM

server compiler for the IA-32 architecture is given. The IR of the

optimized program in SSA-form is given. Due to heavy optimization the IR is not

in CSSA, which makes register allocation, spill slot assignments and translating

out of SSA a lot harder. It is possible to manipulate the IR by inserting new

move instructions and updating the input edges. The sequence of the existing

nodes should not be altered in the register allocator phase. It is required to map

each node defining a value to a physical register or stack position. The IR is

based on SSA-form and therefore it has to keep the Φ-nodes also after register

allocation. However, they are redundant because all input nodes and the Φ-

node itself have to be mapped to the same position. Therefore, the live ranges

involved in a Φ-node are not allowed to overlap, which implies that the program

is in CSSA-form.

In the following, the term position will be used for a physical register or a

stack position. Table 4.1 shows a simple input program to the register allocator.

In the first two columns the labels and the asm code is given. Columns three

to five state the information obtained from the IR, which is relevant to register
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allocation. As we are only dealing with straight line code in this example, all

nodes will be in a linear order within a basic block. Column three shows the

operation that is performed in the node and the index of the node. For register

allocation, the type of node is not a relevant information, but the index of the

node is important. Since the program is in SSA-form, every value that is defined,

has to be assigned to an unique name. As labels are unique names, every unique

name corresponds to a label. The index of the node can be seen as the label

of the node. The unique name can be seen as a symbolic register that has to

be assigned to a physical register or stack position. Therefore, the input to the

register allocator would be a feasible assignment if there would be an infinite

number of registers and no register constraints would exist. Column four shows

the possible registers for the value that is defined by the node and column five

and six show the possible input registers for the respective input operands. The

input operands are given as a pointer to the label where the respective value

was defined. The index of the input nodes is shown in parentheses. Finally, in

the last column, a feasible solution is shown, which is the output of the register

allocator. Each node that defines a value to a position has to be mapped.

A node can either define a value, or use other values or none of both if it is

only used for the control flow. A node defining a value holds a set of feasible

registers or stack positions. In the IR of the server compiler the information is

given by a bitmask called out RegMask. The last bit stands for any stack location

greater than the last position in the register mask. Fat projection nodes are used

to kill values in certain positions. For example after a method call the values

in all registers become invalid, because they may have been overwritten by the

called method. This is modeled by fat projection nodes. All positions in their

out RegMask are killed.

An example, problem 1, is given in Table 4.1. In this example there are only

at most two input operands, but in general an infinite number of input operands

is possible. For example, function calls and save points have a lager number

of input operands. In the following, the format of the input data is described

and the irregularities of the IA-32 architecture and how they are included to the

input data are presented.
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Precoloring. In the example we can see an irregularity of the architecture,

because in label four the DIV instruction needs both the output value and the

first input value to be in register two. This is called precoloring. The term

was coined in the context of graph coloring based register allocation and means

that some operands of instructions are constrained to a fixed register. Such

instructions are division and shift operators. This means for example that for a

shift operation the shift count must always be in the register ecx. Parameters

are also passed in fixed registers and fixed stack slots, and the return value is

always on eax.

A feasible solution is computed to problem 1. In terms of feasibility it is

important that the live ranges of values that are assigned to the same register,

do not interfere and all input and output register constraints are fulfilled. In our

example, label one and label four are assigned to register two. The assignment

is feasible, because they do not interfere. Concerning the input and output

constraints, label one has register two in the output register mask and also for

every usage, register two is contained in the input register mask. Node one is

used as input operand one in label three and four in the example.

label ASM nodes,idx out regmask INP1 INP2 Reg
l1 LD a LD,1 {1,2,3,4} 2
l2 LD b LD,2 {1,2,3,4} 3
l3 ADD c,a,b ADD,3 {1,2,3,4} (1) {1,2,3,4} (2) {1,2,3,4} 4
l4 DIV d,a,b DIV,4 {2} (1) {2} (2) {1,2,3,4} 2
l5 CMP c,d CMP, 5 (3) {1,2,3,4} (4) {1,2,3,4}

Table 4.1.: Problem 1: Sample input for the register allocator - straight line code

In the next example in Table 4.2 a return node is inserted. The input operand

of the return node can only be located in register one. However, when the

value was defined, in label four, the output register was restricted to register

two. Therefore, it is necessary to introduce a move operation, in order to get

a feasible register allocation. In this example it would be possible to assign a

real register to each symbolic register without any violation of the live range

interference constraints, but because of register constraints due to the irregular

architecture a move instruction needs to be inserted.
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label ASM nodes,idx out regmask INP1 INP2 Reg
l1 LD a LD,1 {1,2,3,4} 2
l2 LD b LD,2 {1,2,3,4} 3
l3 ADD c,a,b ADD,3 {1,2,3,4} (1) {1,2,3,4} (2) {1,2,3,4} 4
l4 DIV d,a,b DIV,4 {2} (1) {2} (2) {1,2,3,4} 2
l5 RET d RET,5 (4) {1} ?

Table 4.2.: Problem 2: No feasible allocation possible

This is shown in Table 4.3, where a new node was inserted (label six) that

moves d from one position to another position. Now a feasible allocation can be

obtained.

label ASM nodes,idx out regmask INP1 INP2 Reg
l1 LD a LD,1 {1,2,3,4} 2
l2 LD b LD,2 {1,2,3,4} 3
l3 ADD c,a,b ADD,3 {1,2,3,4} (1) {1,2,3,4} (2) {1,2,3,4} 4
l4 DIV d,a,b DIV,4 {2} (1) {2} (2) {1,2,3,4} 2
l6 MOV e,d MOV,5 {1,2,3,4,st} (4) {1,2,3,4,st} 1
l5 RET e RET,5 (6) {1} 1

Table 4.3.: Problem 2: Insertion of a move, to obtain a feasible allocation

Two Operand Form. In the IA-32 there are more irregularities. One of them

is that the instructions need to be in the two operand form. This means that

the position of the left operand is always the position of the result operand. For

example the following operation is supported

x += a ;

while the operation

x = a+b ;

must be rewritten as

x = b ;

x += a ;

The intermediate representation of the server compiler is in the three operand

form, but additional information is given to model the two operand form. Ta-

ble 4.4 shows an example where the additional information is represented by a
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new column SR. If there is an entry i, the position of the i-th input operand is

forced to be the same as the position of the output operand. The two operand

form is necessary for label three and label four in the example problem 3, in

Table 4.4. For label three, a, which is the first input operand, has to be on the

same position as c. For label four, the second input operand, a, has to be on the

same position as d. Since the life ranges in our example interfere, a move has to

be inserted to enable a feasible allocation. This is shown in Table 4.5.

label ASM nodes,idx SR out regmask INP1 INP2 Reg
l1 LD a LD,1 {1,2,3,4} 1
l2 LD b LD,2 {1,2,3,4} 2
l3 ADD c,a,b ADD,3 1 {1,2,3,4} (1) {1,2,3,4} (2) {1,2,3,4} 1
l4 ADD d,c,a ADD,4 2 {1,2,3,4} (3) {1,2,3,4} (1) {1,2,3,4} ?

Table 4.4.: Problem 3: Two operand form

label ASM nodes,idx SR out regmask INP1 INP2 Reg
l1 LD a LD,1 {1,2,3,4} 1
l2 LD b LD,2 {1,2,3,4} 2
l5 MOV e,a MOV,5 {1,2,3,4,st} (1) {1,2,3,4,st} 3
l3 ADD c,e,b ADD,3 1 {1,2,3,4} (1) {1,2,3,4} (2) {1,2,3,4} 3
l4 ADD d,c, a ADD,4 2 {1,2,3,4} (3) {1,2,3,4} (1) {1,2,3,4} 1

Table 4.5.: Problem 3: Insertion of a move, to obtain a feasible allocation

CISC Spilling. For instructions that use two input operands, the second one

may reside in the memory in certain architectures. This is called CISC-spilling

in the IA-32 architecture. For example in x = b + a, a can be on memory

without being reloaded to a register. Table 4.6 shows an example for CISC-

spilling. Information about which operand can reside on the stack is given in

the IR. This is represented by the column CS in our example, problem 4. If the

stack position is chosen, the instruction will take more time than if a register

is chosen. Therefore, it is preferred to use a register position. However, if the

operand is already on the stack, it is faster to use CISC spilling and no register

needs to be occupied for the operand.

Long Values. In the IA-32 architecture, long values with 64-bits need two

registers to store the value. In the Sparc architecture these registers have to
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label ASM nodes,idx SR CS out regmask INP1 INP2 Reg
l1 LD a LD,1 {1,2} 1
l2 LD b LD,2 {1,2} 2
l3 LD c LD,3 {1,2} ?
l4 ADD d,a,b ADD,4 1 2 {1,2} (1) {1,2} (2) {1,2} ?

Table 4.6.: Problem 4: CISC Spilling

label ASM nodes,id SR CS out regmask INP1 INP2 Reg
l1 LD a LD,1 {1,2} 1
l2 LD b LD,2 {1,2} 2
l5 MOV e,b MOV, 5 {1,2,st} (2) {1,2,st} st
l3 LD c LD,3 {1,2} 2
l4 ADD d,a,b ADD,4 1 2 {1,2} (1) {1,2} (2) {1,2} 1

Table 4.7.: Problem 4: Insertion of a move and usage of cisc spilling

be two adjacent physical registers. Therefore, in the Java HotSpot
TM

server

compiler the two registers have to be adjacent too. This information is again

given as additional information to a node. In problem 5, in Table 4.8, the values

defined in label one and two are long values. Therefore, they need two adjacent

registers. Since label one needs register one and two, label two cannot be stored.

In Table 4.9 an additional move is inserted that moves label one to the stack so

that label two can be stored on register one and two. In the add instruction in

label three, CISC spilling is used.

label ASM nodes,id SR CS Long out regmask INP1 INP2 Reg
l1 LD a LD,1 L {1,2} 1,2
l2 LD b LD,2 L {1,2} ?
l3 ADD c,b,a ADD,3 1 2 {1,2} (2) {1,2} (1) {1,2} ?

Table 4.8.: Problem 5: Use of long values

Control Flow. Table 4.10 shows an example with control flow (Problem 6).

Φ-nodes are in the places where the control flow merges. A special property of

Φ-nodes is that all input and output operands have to be on the same position.

Otherwise move instructions have to be inserted to the predecessor blocks. Due

to this property, the Φ-instructions can be omitted in the final translation to

machine code after register allocation. More precisely, in the example there is a
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label ASM nodes,id SR CS Long out regmask INP1 INP2 Reg
l1 LD a LD,1 L {1,2} 1,2
l4 MOV d,b MOV,4 {1,2,st} (2) {1,2,st} st
l2 LD b LD,2 L {1,2} 1,2
l3 ADD c,b,d ADD,3 1 2 {1,2} (2) {1,2} (4) {1,2} 1,2

Table 4.9.: Feasible allocation of problem 5

Φ-function d := Φ(a, c). This means that d will be a copy of either a or c and

that they all have to be on the same position, i.e., either register one, register

two or the same stack slot.

Block pred label ASM nodes,idx out regmask INP1 INP2 Reg
B1

l1 LD a LD,1 {1,2} 1
l2 LD b LD,2 {1,2} 2
l3 CMP a,b CMP,3 (1) {1,2} (2) {1,2}

B2 B1
l4 ADD c,a,b ADD,4 {1,2} (1) {1,2} (2) {1,2} 1

B3 B1,B2
l5 PHI d,a,c PHI,5 {1,2,st} (1) {1,2,st} (4) {1,2,st} 1
l6 RET d RET,6 {1}

Table 4.10.: Problem 6: Control flow

Fat Projection. The fat projection is a special instruction that is not an irreg-

ularity of the IA-32 architecture, but it is part of the IR of the Java Hotspot
TM

server compiler. It is a dummy instruction that is used to model deletion of

values in a register. All values located in registers and stack positions that are

defined in the out RegMask of the fat projection are deleted. Fat projections

are used after method calls to model that the registers may be overwritten by

instructions in the called method. Therefore, values that are in register, which

are killed by the fat projection need to be copied by the register allocator.

4.2. Existing Implementation

The basic steps of the existing register allocator are the following:

DeSSA: In this phase additionally to the nodes in the SSA-form based IR, live

ranges are built, which are not necessarily in SSA-form. The structure of
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live ranges will be updated parallel to the IR, which will always stay in

SSA-form. The IR and the live ranges are used and manipulated in the

following phases of the register allocator, but both are always kept up to

date in all phases of the register allocator.

Liveness Analysis: The liveout sets of live ranges for all basic blocks are com-

puted. Because the live ranges might not be in SSA-form, the SSA-

structure of the IR cannot be exploited.

Construct IFG: In this phase the interference graph (IFG) is constructed based

on the information of the liveness analysis.

Coalesce: Optimistic and pessimistic coalescing is done in this phase.

Simplify: The IFG is simplified by removing live ranges with a low number of

interferences because for these live ranges feasible colors can be guaranteed.

Select: Registers are assigned to the live ranges by reinserting them to the IFG.

If no feasible coloring is possible, live ranges are marked for spilling.

Split: Live ranges marked for spilling are split in this phase. Due to shorter live

ranges coloring will be easier in the next iteration. After this phase the

liveness analysis has to be done again.

This steps are repeated until no live ranges need to be spilled any more.

4.3. Basic algorithm for feasible allocation

A simple stack based register allocator, that takes into account all irregularities

of the IA-32 architecture was implemented and is described in this section. The

existing Chaitin-Briggs graph coloring allocator can be fully or partly replaced

by the new allocator.

In the basic algorithm all the values defined are copied to a unique stack

position. For each instruction that needs the value on a register it has to be

copied to a register again.
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The algorithm consists of two steps. First the IR is parsed and all necessary

information is gathered. In the second step move instructions from register

to stack or from the stack to a register are added to the IR and the virtual

registers are replaced by stack slots or real registers. The first step is described

in Algorithm 1, while the second step is shown in Algorithm 2.

Algorithm 1 Determination of all virtual registers and register constraints

for all basic blocks bi ∈ B do
for all nodes nij ∈ bi do
if nij defines value then

Add new virtual register
Gather live range information (two operand form, long)

end if
for all input nodes p ∈ In(nij) do
if p is a virtual register then

add new use to virtual register p
gather use information (CISC spillable, two operand form)

end if
end for

end for
end for

For each virtual register defined, a stack position with the necessary size is

assigned. Furthermore, information about register constraints is collected. Then

it is determined if the instruction requires the output in the same register as a

certain input. Fat projections, which overwrite registers do not need to be con-

sidered in the algorithm, because a valid copy of the register is always available

on the stack.

Algorithm 2 describes how moves are inserted and feasible registers or stack

slots are chosen. Directly after the definition of a virtual register the value is

copied to the stack. Because of the SSA-form property, it is guaranteed that a

valid copy of the virtual register is always available on the stack. Moves from the

stack slot to a register need to be inserted directly before each use, that requires a

register. The registers are chosen as follows. First uses with register constraints

(precolered registers) are handled. Then all other uses are replaced by a free

register and a move from the stack to the assigned register is added. Uses that
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do not require a register are for example parameters of method calls, safepoints

or operands that can be used for CISC spilling. In this cases the virtual register

is simply replaced by the stack slot.

Algorithm 2 Assign registers and insert moves

for all virtual registers do
insert move to unique stack position right after definition

end for
for all basic blocks bi ∈ B do
for all nodes nij ∈ bi do
for all precolored input nodes p ∈ In(nij) do

Insert Copy from Stack position
Assign precolored register to the copy

end for
for all other input nodes p ∈ In(nij) do
if Stack postion feasible (CISC spilling, parameter, safepoint) then

Use stack copy
else

Insert Copy from Stack position
Assign feasible (and not yet used) register

end if
end for
if nij defines value then

Assign feasible register
end if

end for
end for

The algorithm was tested on the SPECjvm2008 benchmark instances (Stan-

dard Performance Evaluation Corporation (2008)) and results show that the

stack based allocator delivers code that is 2.2 times slower than the code of

the existing register allocator. This shows the high potential of a good register

allocator.
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A mathematical program formulation for the task of global register allocation

is presented. The goal is to define the task of register allocation in an exact

mathematical way. We can formulate the discrete optimization problem as an

Integer Linear Program (ILP).

Although it would be possible to find the optimal allocation for rather small

instances using a (commercial) ILP solver, it would not be of practical relevance

because of the high computation time. However, it defines the task of register

allocation exactly and improvements of the formulation can yield a tractable

model that can be solved exactly or heuristically in reasonable time.

ILP models for register allocation have been proposed by Goodwin and Wilken

(1996) and Kong and Wilken (1998), but they do not take spill slot assignments,

memory coalescing and SSA-form into account. To the best of our knowledge

this is the first mathematical model for SSA-form based register allocation for

an irregular architecture.

In our model we are using the same information as the register allocator of the

server compiler in the actual implementation. Most information is obtained from

the IR in SSA-form. Moreover, the loop depths and expected execution times of

the basic blocks are used for estimating the costs for moving and rematerializing

data. The liveness analysis is done in the ILP implicitly and does not need to

be computed beforehand.
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The formulation takes into account the various special constraints and prop-

erties of register allocation for the IA32-architecture. These properties are pre-

colored values, values that color two adjacent registers, CISC spilling and the

two operand form, where the register of the first input operand has to equal the

register of the output operand.

The problem can be separated into two main parts. The first part consists of

the moves and rematerializations within a basic block and the second of linking

the basic blocks, which consists of placing input values of Φ-functions and other

values that are live between block boundaries to appropriate positions. This

separation between the two parts will be used in the structure of our formulation.

The basic components of an ILP are the decision variables, the input data,

the constraints and finally the objective function. Therefore, the first step is to

identify the decision variables and constraints to obtain a feasible model.

5.1. Identification of Decision Variables and

Constraints

This section is illustrated by using examples. The first example is shown in

Table 5.1. One basic block is considered, B = {1}. Furthermore, we are given

seven labels or nodes, l1-l7, and four values, V = {a, b, c, d}. An architecture

similar to the IA-32 is considered, but with fewer registers. The architecture in

the example consists of two registers (r1 and r2). The number of stack positions

is assumed to be infinite. However, this number is limited by a trivial upper

bound, which is the number of values in the program (|V | = 4 in the sample

program).

Additionally, we need a special position, which is used for cisc spilling. A move

to this register represents the cost of using the cisc spill option instead of forcing

the value to be on a register. The set of possible positions, P , consists hence

of the two registers, the four stack positions and the position for cisc spilling,

P = {r1, r2, s1, s2, s3, s4, c}. The set P ′ ⊂ P is the set of all registers and stack

positions without the cisc spill position, P\{c}.
For each node (label) j, we define a number of move iterations, m = 0, ..,mmax.
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In each move iteration m a single move is performed. Hence, m = 0 represents

the first move after the label is executed. The register allocator is basically

allowed to insert an infinite number of moves, but an upper bound for mmax in

the optimal solution is |V ||P |.
In the example in Table 5.1 we have fat projection, add, call and div operations

in the labels. For every label, the output register mask and the input register

masks are given. All instructions that need two input operands are in two-

operand form, which means that the position of the input operand equals the

position of the output operand.

label ps. ASM idx SR CS out regmask INP1 INP2
l1 LD a 1 {r1,r2}
l2 LD b 2 {r1,r2}
l3 ADD c,a,b 3 1 2 {r1,r2} (1) {r1,r2} (2) {r1,r2}
l4 CALL a,b 4 (1) {r2} (2) {s1}
l5 FATP 5 {r1,r2, s1}
l6 DIV d,b,a 6 1 2 {r2} (2){r2} (1){r1, r2}
l7 RET d 7 (6) {r1}

Table 5.1.: Sample instance for the IP model

The following decision variables are used in the mathematical model. Let xvkijm

be 1 if value v is in position k in block i at label j in move iteration m, and 0

otherwise. Let zvklijm be 1 if value v is copied from position k to position l in block

i at label j in move iteration m, 0 otherwise. Figure 5.1 illustrates the role of

the decision variables. The figure shows possible states of the registers and stack

positions for a given basic block, i = 1, and a given label, j = 3, and how these

states are represented by the decision variables. There are four move iterations,

mmax = 3,m = 0, ...,mmax.

Right after the execution of the instruction of label three, the move iteration

index m is 0. We assume that the values in the registers and stack positions are as

seen in the figure. The value a is located in register one. Therefore, the decision

variable xa1
130 equals 1. All other decision variables for register one at block one,

label three and move iteration zero equal 0, i.e., xb1130 = xc1130 = xd1
130 = 0. Hence,

the following constraint has to hold.
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Figure 5.1.: States of registers and stack positions during move iterations
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xa1
130 + xb1130 + xc1130 + xd1

130 ≤ 1 (5.1)

Therefore, we can identify the first set of constraints for the model in a general

form. Constraints (5.2) state that a position at a given time slot can hold at

most one value. B represents the set of basic blocks, Ni is the set of nodes of

block i and M is the set of move iterations.

∑

v∈V
xvkijm ≤ 1 ∀i ∈ B, j ∈ Ni,m ∈M,k ∈ P (5.2)

In register two, there is currently no value and all decision variables equal 0.

At the stack position s1 is the value c and in s2 there is b.

Between the two move iterations we are allowed to insert at most one move.

The value b is moved from s2 to r1 in Figure 5.1. Therefore, the decision vari-

able zb42
130 equals 1. Moves of values can only be performed from a register if the

value is actually in the register. Therefore, the following constraint has to hold

in our example

zb42
130 ≤ xb4130 (5.3)

We can identify the next set of constraints in a general form for the model.

Constraints (5.4) ensure that values can only be copied from a position if they

are stored at that position. M ′′ represents the set of move iterations excluding

the last iteration mmax.

zvklijm ≤ xvkijm ∀i ∈ B, j ∈ Ni,m ∈M ′′, k, l ∈ P (5.4)

It is only allowed to perform a single move in one iteration because otherwise

circular shifts could occur. A simple circular shift is for example a swap of two

registers. This is the smallest circular shift that can occur. If a swap is performed

by executing two moves, the value of one register is overwritten. Therefore, it is

not possible to map a circular shift to a feasible register allocation without using

a spare register which would cause additional costs that are not modeled in the

IP model. This is ensured by the following constraint that has to be satisfied in
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the example
∑

v∈V

∑

k∈P

∑

l∈P
zvkl130 ≤ 1 (5.5)

In a general form, constraints (5.6) ensure that there are no circular shifts.

∑

v∈V

∑

k∈P

∑

l∈P
zvklijm ≤ 1 ∀i ∈ B, j ∈ Ni,m ∈M ′′ (5.6)

It is furthermore necessary to ensure that states of the positions can only be

changed by copy instructions between two consecutive slots m and m + 1. For

example, the value a can only be in register 1 in time m = 1, if it has been in

register 1 in time m = 1 or if it has been copied from another position in this

iteration. Therefore, we can state

xa1
131 ≤ xa1

130 +
∑

k∈P
zak1

130 (5.7)

In a general form, constraints (5.8) link the move iterations to each other. M ′

represents the set of move iterations excluding the first with the index 0.

xvlijm ≤ xvlijm−1 +
∑

k∈P
zvklijm−1 ∀i ∈ B, j ∈ Ni,m ∈M ′, v ∈ V, l ∈ P (5.8)

The state of the positions before and after a label may only be altered by an

instruction defining a new value. For example, the state in m = 0 of label three

is defined by the state of label two in m = mmax plus the changes that were made

by the instruction in the label. The following constraint can be stated for our

example.

xvk130 ≤ xvk12mmax
∀v ∈ V \{c}, k ∈ P (5.9)

The value c is defined at label three, therefore the following constraint has to

be respected.

∑

k∈{1,2}
xck130 = 1 (5.10)
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For the fat projection, a special constraint has to be respected, so that all the

values in the output register mask are killed. For example, for the fat projection

in label five, the following constraint has to be ensured.

∑

v∈V

∑

k∈{1,2,3}
xvk150 = 0 (5.11)

These constraints can be stated in a general form.

xvkij0 ≤ xvkij−1M ∀i ∈ B, j ∈ Ni\{0}, v ∈ V \{Def(i, j)}, k ∈ P (5.12)

Constraints (5.12) ensure that only instructions can change the states before

and after a label, where Def(i, j) is the value that is defined by node ij, which

was c in the example above.

∑

k∈O(Def(i,j))

xckij0 = 1 ∀i ∈ B, j ∈ N ′i (5.13)

Constraints (5.13) state that one position in the output register mask of a label

has to be chosen to store the defined value of a label. O represents the positions

that are given in the output register mask and N ′i is the set of nodes of block i

that define a value.

∑

v∈V

∑

k∈O(ij)

xvkij0 = 0 ∀i ∈ B, j ∈ Fi (5.14)

Constraints (5.14) ensure that the values in the output register mask are killed

in the fat projection. Fi represents the set of fat projection nodes of block i.

For the labels, it is also necessary to ensure that the values of the required

input operands are in the appropriate position. For example, for input operand

a in label three, a is required to be either in register one or in register two before

label three. The following constraint ensures this property.

∑

k∈{1,2}
xak12mmax

≥ 1 (5.15)

This can be stated in a general form as follows.
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∑

k∈I(v,i,j)

xakijmmax
≥ 1 ∀i ∈ B, j ∈ Ni, v ∈ Inp(i, j) (5.16)

Constraints (5.16) ensure that the input operands are in a feasible position as

defined in the corresponding input regmask, where I(v, i, j) represents the input

regmask of value v of node ij and Inp(i, j) is the set of all the input operands

of node ij. Note, that this set may be empty.

Furthermore, it is important that the irregularities of the IA-32 architecture

are respected. These include the two operand form, cisc spilling and long values,

that were explained in Chapter 4.

The two operand form occurs in the example in label three, where the position

of input operand one, a, has to equal the position of the output operand, c. This

can be ensured by the following constraints.

xak12mmax
≥ xck130 ∀k ∈ P (5.17)

In a more general form the constraints are

xukij−1mmax
≥ xvkij0 ∀i ∈ B, j ∈ N ′′i , v = Def(i, j), u = Inp′(i, j), k ∈ P (5.18)

Inp′(i, j) represents the input node which position has to be the same as the

position of the defined value.

For input operands where cisc spilling is allowed, the input register mask is

extended by the artificial cisc position. A move to this position models the cost

of cisc spilling. The cisc spill register is deleted after each label again, because

it cannot be used for storing values, but only for simulating cisc spilling.

xvcijm = 0 ∀v ∈ V, i ∈ B, j ∈ N,m ∈M ′ (5.19)

For values that need two adjacent registers like long or double values, con-

straints (5.2) have to be extended.

∑

v∈V
xvkijm +

∑

v∈V ′
xvk−1
ijm ≤ 1 ∀i ∈ B, j ∈ Ni,m ∈M,k ∈ P (5.20)

63



5. Mathematical Program for Optimal Allocation

At the entry point of the program, the x-variables have to be initialized with

0, which is guaranteed by constraints (5.21).

xvk100 = 0 ∀v ∈ V, k ∈ P (5.21)

Some values can be rematerialized. More precisely, for certain values that can

be easily computed, it is faster to compute them again from scratch, than spilling

them to memory and moving them back to the register. To include this in the

model, it is necessary to introduce a new set of binary decision variables yvkij . Let

yvkij be one if value v is rematerialized to position k in block i at label j.

Rematerializations take place directly before a label and therefore constraints

(5.8) can be extended.

xvlijmmax
≤ xvlijmmax−1 +

∑

k∈P
zvklijmmax−1 + yvlij ∀i ∈ B, j ∈ Ni, v ∈ V, l ∈ P (5.22)

These constraints are sufficient to model the solution space of a program con-

sisting of only one basic block. In the following, an extended version of the model

that can handle more than one basic block is considered. An example is shown

in Figure 5.2 that has one basic block and two predecessor blocks. Furthermore,

two Φ functions are given. For basic block six, the values in the positions are

the same in both predecessor blocks in position one and five (see Figure 5.2).

The value in position one and five in block six is obviously the same as in the

predecessor blocks. If the values are different in the predecessor blocks, they are

either defined by Φ-functions, such as in position two, four and six, or the values

cannot be propagated to the successor block, such as in position three.

The following constraints ensure the feasible propagation of the value a of

position one for all predecessor blocks (block three and four).

xa1
600 ≤ xa1

3jmaxmmax
(5.23)

xa1
600 ≤ xa1

4jmaxmmax
(5.24)
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The feasible propagation is stated in a general form in constraints (5.25).

xvki00 ≤ xvkpjmaxmmax
∀v ∈ V, k ∈ P, i ∈ B, p ∈ Pred(i) (5.25)

Pred(i) represents the set of all predecessor blocks of block i. Furthermore, it

is necessary to link Φ nodes to each other. Φ nodes are not considered as normal

nodes. In the example for position two and value e, the following Φ-node linking

constraints have to hold for block three and four.

xe2600 ≤ xa2
3jmaxmmax

(5.26)

xe2600 ≤ xc24jmaxmmax
(5.27)

In a general form, constraints (5.28) link Φ nodes to each other

xvki00 ≤ xukpjmaxmmax
∀k ∈ Pi ∈ Bv ∈ Phi(i), p ∈ Pred(i), u = Inp(v, p) (5.28)

Phi(i) represents the set of all Φ-nodes of block i. For critical backward edges,

an empty block needs to be inserted, which consists of only one dummy node.

The move iterations of this node are used to change the state of the registers

and stack positions. If no moves are performed in this block, it can be removed

again. Otherwise it has to be inserted into the IR by the register allocator. If

this is considered, the lost copy and swap problem cannot occur. Furthermore,

efficient coalescing of Φ-nodes can be done, which includes memory coalescing.

All the relevant notation can be found in Table 5.2.

5.2. Complete Model Formulation

The model can be described as a biobjective mixed integer program. The first

objective is the minimization of the total execution time, which is modeled as

the total costs of moves and rematerializations inserted by the register allocator,

while the second objective is the minimization of the number of stack slots used

for spilling. These objectives can be conflicting.
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Table 5.2.: Notation for the register allocation MIP
Decision variables
xvkijm binary decision variable indicating if value v is in position k at slot ijm
zvklijm binary decision variable indicating if value v is copied from k to l at slot ijm
yvkij binary decision variable indicating if value v is rematerialized to position k at slot ijm
sk nonnegative decision variable indicating if stack slot k is used
t nonnegative decision variable measuring the used stack slot with the highest index

Sets and Parameters
B set of basic blocks indexed by i
Ni set of time slots before a node i indexed by j
P ′ set of registers and stack positions
c artificial cisc spill register
P set of all positions P = P ′ ∪ {c}
P s set of all stack positions P s ⊆ P
P 0 set of all positions including the dummy position 0 P 0 = P ∪ 0
M set of all states between two labels M = {0, 1, ...,mmax}
M ′ set of states between two labels excluding the state directly after a label M ′ = M\0
M ′′ set of states M excluding the state directly before the following label M ′′ = M\mmax

Def(i, j) the value that is defined by node ij
O(i, j) the positions that are given in the out regmask of node ij
N ′i the set of nodes of block i that define a value
Fi the set of fat projections nodes of block i
N ′′i is the set of nodes requiring the two operand form in block i
I(v, i, j) represents the input regmask of value v of node ij
Inp(i, j) is the set of all the input operands of node ij.
Inp′(i, j) is the input operand that requires the same position as the output operand
Inpc(i, j) is the input operand that can be used for cisc spilling
InpΦ(v, p) is the input operand of Φ-node v corresponding to block p
V set of values
V ′ is the set of values requiring two adjacent positions V ′ ⊆ V
V m set of values that can be rematerialized
Pred(i) is the set of predecessor blocks of block i
Phi(i) is the set of all Φ-nodes of block i
Fi set of fat projections in block i
Rijt number of available registers for unused but live values at time slot ijt
Lv set of time slots in which value v is live
L1
ijt set of values using one physical register that are live at time slot ijt

L2
ijt set of values using two physical register that are live at time slot ijt

αvkl
i costs for moving a value from register k to register l in block i
βvk
ij costs for rematerializing value v to register k in block i at node j
γvij costs for moving value v from a register to the stack at slot ij
δvij costs for moving value v from the stack to a register at slot ij
ηij costs for using the cisc spill option at node ij

Indices
i block index, i ∈ B
j time slot index, j ∈ Ni

k, l index for registers and stack slots, k, l ∈ R
v index for values, v ∈ V
m move iteration index, m ∈M
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Figure 5.2.: Linking of basic blocks and φ-nodes

An optimal solution to the problem that considers only the first objective func-

tion, delivers the register allocation with the fastest possible runtime. However,

the cost in the objective function is only an estimation of the real cost. The cost

is composed of the cost of a single move from position k to position l in block i

multiplied by the execution frequency of block i.

The parameter αvkl
i is the estimation of the cost of moving value v from position

k to position l in block i, while the parameter βvk
ij is the estimation of the cost

of rematerialization for value v to position k for node j in block i.

The cost of a single move depends on the positions. A movement between

registers is cheaper than a movement between a register and a stack position.

The most expensive move is a move from memory to memory. The estimation

of the execution frequency is based on the loop depth of the block.

The second objective is the minimization of the number of stack slots used for

spilling. This objective optimizes memory usage.

Solution methods for biobjective optimization problems include the determi-

nation of the set of pareto optimal solutions, combining the two objectives as

weighted sum or the lexicographic ordering of the two objectives. For the theory

on multiobjective optimization, see Ehrgott (2005) and Deb (2005). In the model
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for optimal register allocation for the Java HotSpot
TM

Server Compiler, the first

objective is usually more important. Therefore, a solution approach that solves

the biobjective problem by lexicographic ordering of the two objective functions,

is promising. Lexicographic ordering means that first the first objective function

is optimized, while the second is neglected. Then, the first objective is fixed by

introducing a new constraint. In a minimization problem, the first objective can

be set less than or equal to the objective function value of the previous optimiza-

tion problem. Obviously, the objective function value can not be less than the

objective function value of the previous problem, but inequalities are easier to

handle in optimization.

In the following, the biobjective mathematical model is described. Let sk be a

set of variables that indicate if stack slot k is used and t measures the stack slot

with the highest index.

minF = (F1, F2)

subject to:

F1 =
∑

v∈V

∑

k∈P

∑

l∈P

∑

i∈B

∑

j∈Ni

∑

m∈M
αvkl
i zvklijm +

∑

v∈V m

∑

k∈P

∑

i∈B

∑

j∈Ni

∑

m∈M
βvk
ij y

vk
ij (5.29)

F2 = t (5.30)

∑

v∈V
xvkijm +

∑

v∈V ′
xvk−1
ijm ≤ 1 ∀i ∈ B, j ∈ Ni,m ∈M,k ∈ P 0 (5.31)

zvklijm ≤ xvkijm ∀i ∈ B, j ∈ Ni,m ∈M ′′, k, l ∈ P (5.32)

∑

v∈V

∑

k∈P

∑

l∈P
zvklijm ≤ 1 ∀i ∈ B, j ∈ Ni,m ∈M ′′ (5.33)
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xvlijm ≤ xvlijm−1 +
∑

k∈P
zvklijm−1 ∀i ∈ B, j ∈ Ni,m ∈M\{0,mmax}, v ∈ V, l ∈ P

(5.34)

xvlijmmax
≤ xvlijmmax−1 +

∑

k∈P
zvklijmmax−1 + yvlij ∀i ∈ B, j ∈ Ni, v ∈ V m, l ∈ P (5.35)

xvlijmmax
≤ xvlijmmax−1 +

∑

k∈P
zvklijmmax−1 ∀i ∈ B, j ∈ Ni, v ∈ V \V m, l ∈ P (5.36)

xvkij0 ≤ xvkij−1mmax
∀i ∈ B, j ∈ Ni\{0}, v ∈ V \{Def(i, j)}, k ∈ P (5.37)

∑

k∈O(i,j)

xckij0 = 1 ∀i ∈ B, j ∈ N ′i , c = Def(i, j) (5.38)

∑

v∈V

∑

k∈O(i,j)

xvkij0 = 0 ∀i ∈ B, j ∈ Fi (5.39)

∑

k∈I(v,i,j)

xvkijmax
≥ 1 ∀i ∈ B, j ∈ Ni, v ∈ Inp(i, j) (5.40)

xukij−1mmax
≥ xvkij0 ∀i ∈ B, j ∈ N ′′i , v = Def(i, j), u = Inp′(i, j), k ∈ P (5.41)

xvcijm = 0 ∀v ∈ V, i ∈ B, j ∈ N,m ∈M ′ (5.42)

xvk100 = 0 ∀v ∈ V, k ∈ P (5.43)

xvki00 ≤ xvkpjmaxmmax
∀v ∈ V, k ∈ P, i ∈ B, p ∈ Pred(i) (5.44)
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xvki00 ≤ xukpjmaxmmax
∀k ∈ P, i ∈ B, v ∈ Phi(i), p ∈ Pred(i), u = InpΦ(v, p)

(5.45)

xv0
ijm = 0 ∀i ∈ B, j ∈ Ni,m ∈M, v ∈ V (5.46)

sk ≥ xvkijm ∀i ∈ B, j ∈ Ni,m ∈M, v ∈ V, k ∈ P s (5.47)

t ≥ ksk ∀k ∈ P s (5.48)

xvkijm ∈ {0, 1} ∀v ∈ V, k ∈ P, i ∈ B, j ∈ Ni,m ∈M (5.49)

zvklijm ∈ {0, 1} ∀v ∈ V, k, l ∈ P, i ∈ B, j ∈ Ni,m ∈M (5.50)

yvkij ∈ {0, 1} ∀v ∈ V, k ∈ P, i ∈ B, j ∈ Ni (5.51)

sk ≥ 0 ∀k ∈ P s (5.52)

t ≥ 0 (5.53)

As mentioned above, the objective function minimizes the total cost composed

of F1 and F2.

Constraints (5.29) represent the first objective function. As mentioned above,

the cost of moves and of rematerializations is minimzed. Constraints (5.30)

represent the second objective function, which is the minimization of the maximal

spill slot register. Constraints (5.31) ensure that only one value can be stored at

each position k at a time slot ijm. Moreover, they make sure that values of set

V ′, which are values that need two adjacent registers, are stored in two adjacent

registers. Constraints (5.32) guarantee that only feasible moves can be made, i.e.,
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it is only possible to move a value from a certain position if it was stored there.

Constraints (5.33) make sure that only one move can be performed in each move

iteration. Constraints (5.34) show the state transition between two consecutive

move iterations. More precisely, a value can only be stored in a position, if it

was stored there before or if copied from another position. Constraints (5.35) are

the remateralization constraints. They state that rematerializations can only be

done in the last move iteration. Constraints (5.36) state that rematerializations

are not allowed for values that cannot be rematerialized. Constraints (5.37)

ensure that the state between labels can only be changed by the instruction of

a node. Constraints (5.38) guarantee that the value that is defined by a node

has to be stored in a position defined by the out regmask. Constraints (5.39)

are the fat projection constraints, that say that the values in positions of the

corresponding out regmask are killed. Constraints (5.40) ensure that the values

of the input operands are in the corresponding in regmask. Constraints (5.41)

are the two operand form constraints, that ensure that the two operand form

is respected. Constraints (5.42) ensure that the artificial cisc spill register c is

only used in the last move operation and can therefore not be used for another

purpose than for simulating cisc spilling. Constraints (5.43) make sure that no

values exist at the entry point of a program. Constraints (5.44) link basic block

i with its predecessor blocks, while constraints (5.45) define that the φ-nodes

are respected. constraints (5.46) says that the artificial zero position, which is

used for modeling long values, is always set to zero. Constraints (5.47) is a

linking constraint that measures if stack position k is used. Constraints (5.48)

ensure that the index of the stack position with the highest index is assigned to

t. Finally, constraints (5.49) to constraints (5.53) define the types of decision

variables. More precisely, the variables xvkijm, zvklijm and yvkij are binary, while the

variables sk and t are nonnegative.

A solution to the model can be easily mapped to real copies and remateri-

alizations which need to be inserted to the intermediate representation. This

information can be taken from the zvklijm and yvkij decision variables. The trans-

lation out of SSA-form is done in the model, because all the positions of the

operands of a Φ-node have to equal and therefore the Φ-node can be simply

omitted in the final code generation phase. The model formulation is based
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on SSA-form. If the program would not be in SSA-form the model formulation

would need additional constraints at every redefinition of a variable. At the point

of redefinition it must be ensured that only the new defined value exists and the

old values are deallocated.

The model can be improved by reducing indices. For instance the move itera-

tions can be combined to a single step and therefore the index m can be omitted.

But as mentioned above, cyclic shifts are forbidden. This can be ensured by

constraints (5.54).

∑
i ∈ V

∑

k∈S

∑

l∈S
zvklij ≤ |S| − 1 ∀v ∈ V, k ∈ P, i ∈ B, j ∈ Ni (5.54)

Liveness analysis is done implicitly in the model. At each node the value of an

input node must be live, which is ensured by constraints (5.40) and (5.45). From

the point of definition (Constraints (5.38)) to the nodes where the values are used

they can only be propagated by the constraints (5.34) and (5.37). Therefore, it

is ensured that a value exists on a position for all time slots where it is live and

liveness analysis is not necessary. However, exact liveness analysis can be used

to strengthen the formulation by forbidding values to be live when they are not

needed any more or are not yet defined and strengthen constraints while they

are live. Moreover, the number of decision variables could be reduced because

the variables xvkijm, zvklijm and yvkij are only needed while the value v is live.

5.3. Model for Near-Optimal Spilling Decisions for

the Java HotSpot
TM

Server Compiler in

SSA-form

In this section a model for deciding when variables should be spilled to the

memory is proposed. The model does not take into account rematerializations

and memory coalescing for Φ-functions. Furthermore, for a given solution of the

program, the registers still have to be assigned. This can be done by algorithms

for spill free allocation for programs in SSA-form as described in Pereira and

Palsberg (2008) and Hack et al. (2006). The model is similar to the one developed
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by Appel and George (2001), but it is extended to the SSA-form. Liveness

analyses needs to be performed and the computed data is used in the sets Lv

which contain all time slots in which value v is live.

The set of binary variables rvijt states if value v is on a register in block i at

node j at time t. The time t ∈ {1, 2} says whether the time unit before or after

the execution of the instruction is used. More precisely, if t = 1, the time unit

before the execution of the instruction is used, while if t = 2, the unit afterwards

is used. Let mv
ij be one if value v is in the memory at node ij, 0 otherwise.

The objective is to minimize the cost of load and stores to and from memory

and the usage of memory operands. Furthermore, let svij and lvij be two sets of

binary variables that indicate if store and load operations are performed for value

v at node ij. These variables only exist for the lifetime of value v. Therefore,

a lifetime analysis has to be performed to obtain the required data for the IP.

Finally, cij are the decision variables indicating if the cisc spill option is used at

node ij or not.

min
∑

v∈V

∑

ij∈Lv

(γvijl
v
ij + δvijs

v
ij) +

∑

i∈B

∑

j∈Ni

ηijcij

∑

v∈L1
ij1

rvij1 +
∑

u∈L2
ij1

2ruij1 ≤ Rij1 + wijcij ∀i ∈ B, j ∈ Ni (5.55)

∑

v∈L1
ij2

rvij2 +
∑

u∈L2
ij2

2ruij2 ≤ Rij2 ∀i ∈ B, j ∈ Ni (5.56)

rvij2 = 1 ∀i ∈ B, j ∈ Ni, v = Def(ij) (5.57)

rvij1 = 1 ∀i ∈ B, j ∈ Ni, v ∈ Inp(ij)\Inpc(ij) (5.58)

rvij1 + cij = 1 ∀i ∈ B, j ∈ Ni, v ∈ Inpc(ij) (5.59)

rvij2 +mv
ij = 1 ∀v ∈ V, ij ∈ Lv (5.60)
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rvij2 ≤ rvij1 ∀v ∈ V, ij ∈ Lv\Def(v) (5.61)

rvi j1 ≥ rvi(j−1)2 + lvij−1 ∀v ∈ V, ij ∈ L′v (5.62)

lvij ≥ mv
ij ∀v ∈ V, ij ∈ Lv (5.63)

mv
ij ≥ mv

i(j−1) + svij−1 ∀v ∈ V, ij ∈ L′v (5.64)

svij ≥ rvij2 ∀v ∈ V, ij ∈ Lv (5.65)

rvi01 ≤ rvljmax2 ∀i ∈ B, v ∈ Li0, l ∈ Pred(i) (5.66)

mv
i0 ≤ mv

ljmax
∀i ∈ B, v ∈ Li0, l ∈ Pred(i) (5.67)

rvi01 ≤ ruljmax2 ∀i ∈ B, v ∈ Phi(i), l ∈ Pred(i), u = InpΦ(v, p) (5.68)

mv
i0 ≤ mu

ljmax
∀i ∈ B, v ∈ Phi(i), l ∈ Pred(i), u = InpΦ(v, p) (5.69)

rvijt,m
v
ijs

v
ij, l

v
ij, cij ∈ 0, 1 ∀v ∈ V, ij ∈ Lv, t ∈ {1, 2} (5.70)

The objective function is to minimize the total costs for loads and stores to and

from memory and the costs for using the cisc spill option. γvij represents the costs

for the loads and δvij the costs for stores. The cost for using the cisc spill option

is given by ηij. The set Lv defines the liveness of variable v. Constraints (5.55)

ensure that the maximum number of available registers is not exceeded before

the node is executed, while constraints (5.56) ensure the same after the node is
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executed. If the cisc spill option is used wij additional registers are available.

wij is either 2 or 1 depending on either a long or a normal value is used as the

memory operand. Rijt states the number of available registers. It is computed

as the number of registers minus the number of registers used as input or output

operands or for a fat projection. Constraints (5.57) make sure that the value that

is defined at node ij is in a register afterwards. Constraints (5.58) guarantee that

all input values of an instruction are on a register, except for the one with cisc

spill option, which is handeled in constraints (5.59). This operand can either be

on a register or the cisc spill option is chosen. Constraints (5.60) state that a

value that is live must be either allocated to a register or to memory. Constraints

(5.61) state that a value can only be on a register after an instruction when it

was on a register before the instruction, except for the definiton of the value.

Constraints (5.62) ensure that a value can be on a register before an instruction,

if it has been on a register after the previous instruction or it is loaded from

memory. Constraints (5.63) say that a value can only be loaded from memory

if it was there before. Constraints (5.64) state that a value can only be in the

memory if it was in the memory one instruction before or it was stored to the

memory. Constraints (5.65) guarantee that a value can only be stored from a

register to the memory if it was actually on the register. Constraints (5.66) make

sure that a value can be at the begining of a basic block if it has been in a register

at the end of the blocks of all predecessors and constraints (5.67) ensure the same

for the memory. Constraints (5.68) state that a value that gets defined by a Φ-

node can only be in the register if all input values are in a register at the end of

their corresponding block and constraints (5.69) state the same for the memory.

Finally, constraints (5.70) ensure that the decision variables are binary.
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Registers are used to store local variables and temporary values. Compared to

the memory, registers can be accessed much faster. However, the number of

registers is limited. Therefore, the problem of register allocation is to decide

which values to store on the fast accessible registers and which to spill to the

memory.

In this thesis a mathematical programming formulation for the register alloca-

tion problem was proposed. To the best of our knowledge, this is the first time

that a mathematical programming formulation was presented for the problem

of SSA-form based register allocation. The model is capable of dealing with all

the irregularities of the IA-32 architecture. Another model was proposed that

solves the subproblem of spilling variables to memory in a register allocator for

programs in SSA-form.

Furthermore, different modeling approaches for register allocation were pre-

sented and advantages and disadvantages of the different approaches were dis-

cussed. Register allocation can be modeled as a graph coloring problem, as a

multi commodity network flow problem, as a partitioned boolean quadratic op-

timization problem and can be solved by the linear scan algorithm with second

chance bin packing.

An analysis of the intermediate representation of the server compiler was pro-

vided. The focus was on intermediate representation in SSA-form. Finally, a

simple feasible register allocator was implemented.

Future work can focus on improving the implementation so that it is compet-

itive to the existing allocator of the Java Hot Spot
TM

Server Compiler.
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A. Abbreviations

Abbreviation Description

CISC complex instruction set computer

CPU central processing unit

CSSA conventional static single assignment form

FPU floating point unit

GC garbage collector

GCC gnu C compiler

HIR high level intermediate representation

IP integer program

ILP integer linear program

IR intermediate representation

JIT just in time

JVM Java virtual machine

LIR low level intermediate representation

MCNF multi-commodity network flow

MIP mixed integer program

MMX multi media extension

ORA optimal register allocator

PBQP partitioned boolean quadratic optimization problem

RISC reduced instruction set computer

SIMD single instruction multiple data

SSA static single assignment

SSE streaming SIMD extension

SSI static single information

VM virtual machine
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