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Abstract

Hyperspectral imaging systems are well-suited to identify materials based on
their material properties which are commonly used in several industrial separa-
tion processes. In contrast to RGB cameras, hyperspectral cameras has a higher
spectral resolution and capture intensity information over a broader spectral
waveband. This advantage means a deterioration in spatial resolution of a limi-
ted sensor size. The aim of this master thesis is to analyse the HELIOS camera
based hyperspectral line scan imaging system and to develop a superresolution
approach which improves the spatial and temporal image quality of the final
high resolution images. For this, we assume that the acquisition width of a pixel
of the line scan camera is lager than the distance covered by the conveyor belt
per one camera acquisition step. This additional information about the overlap-
ping area of two temporal adjacent pixels is incorporated into two maximum
a posteriori approaches. They are solved by an efficient primal dual algorithm
which offers a global solution for the two convex problems. The detailed evalua-
tion of the performances with synthetic and real data shows that the developed
algorithms are superior to the bicubic interpolation approach in several scenarios

and metrics and underlines the practical usefulness of the proposed approaches.



Kurzfassung

Bei industriellen Matrialtrennungsprozessen kommen unter anderem bildge-
bende hyperspektral Systeme zum Einsatz, da sich diese zum Identifizieren
von Materialien anhand ihrer Oberflicheneigenschafen eignen. Im Gegensatz
zu herkémmlichen RGB-Kamerasystemen wird mit Hyperspektralkameras ein
groferer elektromagnetischer Wellenbereich hoher aufgelost aufgenommen. Da
optische Systeme durch ihre Sensorgréfie beschréankt sind, fithrt die hohere
spektrale Auflosung zur Verringerung der ortlichen Auflosung. Das Ziel die-
ser Masterarbeit ist es, den Aufnahmeprozess eines HELIOS Hyperspektral-
Zeilen-Kamera-Systemes zu analysieren und einen Superresolution-Ansatz zu
entwickeln, welcher die ¢rtliche und zeitliche Auflésung und somit die Qualitét
des aufgenommenen Bildes erhoht. Zu diesem Zweck nehmen wir an, dass die
ortliche Aufnahmebreite der Kamera auf dem Férderband fiir einen Aufnahme-
vorgang grofer ist, als das Forderband in einem Aufnahmevorgang weiterbe-
wegt. Dadurch enthalten zeitlich aneinandergrenzende Pixel teilweise Informa-
tionen vom selben Teilbereich. Diese zusétzliche Information wird verwendet,
um zwel maximum a posteriori Ansitze zu entwicklen. Diese werden dann mit-
hilfe des Primal-Dual-Algorithmuses gel6st, welcher eine globale Losung fiir die
beiden konvexen Problemstellungen liefert. Die detaillierte Auswertung der Per-
formanz der Ansitze mit synthetischen und echten Datensitzen sowie verschie-
denen Metriken zeigt, dass die entwickelten Superresolution-Methoden den bi-
kubischen Interpolationsansatz tibertreffen, und unterstreichen den praktischen

Nutzen der vorgestellten Ansétze.
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Introduction
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1.1 Motivation and Problem Description . ... ... 12
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1.1 Motivation and Problem Description

With the beginning of the space age in the 1950s and 1960s and the possibility to
save information digitally, the idea of observing the earth from space was born
in order to obtain information about the earth’s renewable and nonrenewable
resources. For this, the spectral imaging was initially developed which gather
information from the electromagnetic energy field arising from the earth and the
occurring spectral and spatial variations in this field. This allows to drawing
conclusions about the earth’s surface and the materials in this observed field.
[24] This technology was refined over the years, and over the last years spec-
tral imaging has become more important in industrial application. The reason
for this trend is, that spectral imaging has the ability to analyse the surface
materials of different objects, which is a central problem in various and espe-

cially industrial fields. For example in the food industry, spectral imaging can

12



1.2. Organisation of the Master’s Thesis 13

be used to distinguish between ripe and bad fruits because the electromagnetic
energy received from ripe and bad fruits differs. A difference in the reflected
electromagnetic energy can also be observed in the recycling industry to distin-
guish between certain types of plastic, which allows to separate them although
they may look the same. The centrepiece of all spectral imaging systems is a
sensor which captures detailed spectral information about the scene in addition
to spatial information. Thus, conclusions can be drawn regarding the materi-
als. Because of limitations in optics and sensor size, spectral imaging systems
have generally a relatively low spatial resolution compared to classical optical
imaging systems. This is a major drawback because especially for separation
processes in industrial application, a high spatial resolution is needed to achieve
an accurate result. In order to find a possibility to overcome the low resolution
drawback, the purpose of this master thesis is to analyse the image acquisition
process of the HELIOS! camera based hyperspectral line-scan imaging system,
which is used for industrial application, and to develop a superresolution al-
gorithm, which increases the spatial resolution in order to get higher resolved

hyperspectral images with better quality.

1.2 Organisation of the Master’s Thesis

The following section 1.3 provides an overview of spectral imaging, including
the explanation of the terms spectroscopy (section 1.3.1), remote imaging (sec-
tion 1.3.2), hyperspectral imaging (section 1.3.3) and the definition of the typical
spectral imaging data representation called data cube (section 1.3.4). Section 1.4
is concerned with the hyperspectral line-scan imaging system HELIOS and its
image acquisition process. Section 1.5 explains why high resolution images are
desirable for many imaging applications. The last section in this chapter gives
an introduction to the widely used superresolution approach and presents the
general superresolution model which forms the basic model for our HELIOS
superresolution approach discussed in chapter 3

Chapter 2 gives an overview of different superresolution and hyperspectral
superresolution approaches over the last few decades.

In chapter 3 the idea of variational superresolution for a specific hyperspec-

tral line-scan imaging system is introduced and the pros and cons of diverse

L HELIOS is a trademark of the company EVK.



14 1.3. Spectral Imaging

variations from the approach are discussed.

In chapter 4, the general primal dual algorithm is introduced which is an
efficient method to solve a class of problems including variational superresolu-
tion approaches. In section 4.2 and 4.3, the concrete implementation and the
convergence of our proposed algorithms are discussed.

Chapter 5 contains all the information about our experimental results, in-
cluding the description of our test environment in section 5.1 and information
about the used metrics, which are discussed in detail in section 5.2.1.

Finally, chapter 6 draw some conclusions about the results and discuss the

possibilities for future work.

1.3 Spectral Imaging

Spectral Imaging in general can be seen as a fusion of spectroscopy and re-
mote imaging technologies. Through the combination of these complex sensors,
so-called imaging spectrometers are developed which are able to collect multi-

spectral and spatial information.

1.3.1 Spectroscopy

Historically, spectroscopy has always been concerned with the dispersion of (vis-
ible) light into its component colors through e.g. a prism. Nowadays, the term
describes the study of the interaction from electromagnetic radiation with mat-
ter and the variance in energy with wavelength [27]. In figure 1.1, the electro-
magnetic spectrum with its varying wavelength is depicted. In terms of optic
remote sensing such as earth remote sensing, the task of spectroscopy is to mea-
sure the reflected sunlight from materials which are on the earth’s ground. For
this, a so-called spectrometer disperse reflects light in many narrow wavebands

and measures the intensity of incident energy for each waveband.

1.3.2 Remote Imaging

Remote imaging generally describes the process of collecting visual information
about an object without contacting it. Since the objective of this method is to
gather as much visual information as possible, the spatial resolution is tradition-

ally. As a consequence of sensor size limitations, remote imaging systems use
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Figure 1.1: The electromagnetic spectrum (taken from [39])

one or only a few relatively broad spectral wavebands [26]. A typical example
of remote imaging systems can be found in the waste industry in which differ-
ent materials are separated. For this task, remote image systems uses as usual
RGB cameras. They acquire the information about the visual light spectrum
in three spectral bands (red, green and blue) about an area to distinguish the
materials by colour. But there are a many applications where different materials
have similar or the same color. In these cases, RGB camera-based systems fails.
For these applications, (hyper)spectral imaging systems, like HELIOS camera-
based systems (see 1.4), are an alternative to solve this kind of problem because
they combine the multispectral approach from the spectroscopy with the spatial

information from remote imaging technology.

1.3.3 Hyperspectral Imaging

As described in the previous sections, spectral imaging systems are able to han-
dle many spectral wavebands. A particular class of such systems is based on
so-called hyperspectral sensors. This sensor mostly divides a certain waveband
into hundreds of continuous narrow bands. According to [39], it is not the num-
ber of wavebands but rather it is the continuous and narrowness of the measured
wavelengths which defines a sensor as hyperspectral. For more information, we
refer to [39, 27]

1.3.4 Spectral Data Representation

Typically, data from spectral imaging system have three (two spatial and one
spectral) dimensions. For this, a data structure called data cube is a common
instrument to visualise such data. Each dimension is an axis of the data cube

and the intensity is represented by colour. In figure 1.2, a data cube is shown.
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According to Manolakis et al. in [26], if we extract all voxel values from the

Figure 1.2: Spectral data represented by a data cube

same spatial location and plot them as a function of wavelength, we receive
the average spectrum from the materials in the corresponding area. Figure 1.3
shows this relationship. Contrary, if we pick all values in the same waveband,
we obtain a grayscale image which represents the spatial distribution of the
reflection intensity of the observed scene in the chosen waveband. This is shown

in figure 1.4.

1.4 A HELIOS Camera-based Hyperspectral
Line-Scan Imaging System

This section introduces the HELIOS camera-based hyperspectral line-scan imag-
ing system, which is a trademark of EVK. The HELIOS camera-based systems
are commonly used for separating objects based on their surface material prop-
erties. For this, such a system uses a line-scan technique where only one line is
captured in each acquisition step. Therefore, the data collected by the HELIOS
camera has a spatial, spectral and temporal dimension in which the spatial
dimension is represented through the captured row and a temporal dimension

denotes the point of time. Figure 1.5 shows the layout and the functional prin-
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Figure 1.3: Figure 1.3a shows the spectral data selection from a specific spa-

tial location and figure 1.3b shows the selected data plotted as a function of

wavelength.

(a) (b)

Figure 1.4: Figure 1.4a shows the spatial data selection from a specific spectral

band and figure 1.4b presents the selected data as a grayscale image.
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ciple of a HELIOS camera. This camera system is usually used in combination
with a conveyor belt which transports the materials and a radiation source illu-
minating the scene. Figure 1.6 shows a typical HELIOS camera-based material
separation system. The used radiation source are typically halogen headlights
because the emitted energy has a relatively constant intensity throughout the
electromagnetic spectrum. This energy interacts with the surfaces of the mate-
rials on the conveyor belt. Caused by this interaction, parts of the energy will be
absorbed and reflected. Thus, the electromagnetic spectrum from the reflected
energy differs from the emitted energy. Finally, the camera sensor converts the

received energy into digital measurements.

1.5 High Resolution Images

In this section, we discuss why high resolution is necessary for imaging systems

and which possibilities exist to archive them.

1.5.1 Why High Resolution Images?

In many imaging applications, high resolution images are required especially
in medical, military and satellite imaging systems. For example, in medical
images systems like magnetic resonance tomography (MRT), the exact position
and size of a tumor can only be found if the spatial resolution of the MRT image
is sufficiently high. There are several ways to enhance the spatial resolution of

imaging systems which are discussed in the following.

1.5.2 Increasing Resolution by Decreasing the Pixel Size

on Sensor or Chip

The most direct approach is to increase the number of pixels on the sensor by
decreasing the pixel size. As a result, the available light per pixel decreases.
This circumstance leads to quality loss because noise generally increases if light
decreases. So it is obvious that there are limitations to increase the amount
of pixels on the sensor. The other possibility is to increase the capacity of
the sensor by increasing the chip size. But this approach has problems with

the speed-up of the charge transfer rate. Hence, there are again limitations for
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Figure 1.6: Layout of a HELIOS camera-based material separation system [25]

increasing the resolution. Furthermore, highly accurate optics and sensors imply

high costs, costs always being an important factor for industrial applications.

1.5.3 Increasing Resolution by Image Processing Methods

Another possibility to increase the pixel density of an image is to use image
processing methods which enhance the resolution by applying mathematical
methods. Generally, one can distinguish between two different approaches called
interpolation and superresolution. These two approaches are briefly discussed

in the following subsections.

1.5.3.1 Superresolution

A widely used approach to overcome the limitations in optics and sensor size is to
create a high resolution image from several low resolution images. This approach
is called “Superresolution”, “High Resolution Reconstruction” or “Resolution
Enhancement” and has been well studied in the last years. The basic idea for

this approach is that multiple slightly different images captured from the same
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scene contain more information than one image alone. For this approach, the
information from the multiple images are combined to form a higher resolution
image. It is obvious that more images contain more information, and so, the
quality of the enhanced resolution image depends on the number of available
images. A further aspect of the high resolution reconstructed image quality is
the quality of the low resolution images. In the digital image acquisition process,
there typically are several factors which result in quality loss. These factors are
optical distortion, aliasing, motion blur and noise. Figure 1.7 schematically

shows the image acquisition process. Methods in image processing which are

Image Acquisition System

Original Scene w . A Image
(analog) /?I?;:ﬁgl Distoration w (digital)

Effects Blur
Noise

Figure 1.7: Image acquisition system

attempts to solve this problem are called “Image Restoration Methods”. These
methods try to overcome the problems which occur during the digital image
acquisition process. In contrast to superresolution methods, image restoration
methods only try to restore a blurred, aliased and noisy image and do not change
the size of the image. From this point of view, superresolution methods can be
seen as a higher-level image restoration problem because they solve the image

restoration problem and increase the spatial resolution.

1.5.3.2 Interpolation

The other approach which increases the size of the image is called “Image In-
terpolation” and in contrast to the superresolution approach, it obtains the in-
formation from a single image. This implies that image interpolation methods
have less information about the scene, so they cannot be as good as superres-
olution methods. As a result, they cannot restore high frequencies lost during
the image acquisition process. Therefore, they cannot be referred as superreso-
lution or high resolution reconstruction methods, and it is obviously that such

methods are not as powerful as superresolution methods.
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1.6 Superresolution

In this section, we focus on the superresolution approach and the underlying

model, which forms the basement of the following chapters.

1.6.1 Superresolution, a Higher Image Restoration Prob-

lem

As stated in section 1.5.3.1, superresolution combines the two image processing
techniques image resolution enhancement and image restoration to generate a
discrete high resolution image f(“) with size M x N from K discrete low
resolution images fi(d) where i = 1..K and K > 2 with size M@ x N(@ where
M® > M@ and N > N@),

1.6.1.1 Image Resolution Enhancement

Image resolution enhancement methods try, as the name already suggests, to
enhance the resolution of a image. For this, they need additional information
because increasing the pixel density without further information results in a
dramatic loss of quality. Thus, the basis assumption in image resolution en-
hancement or rather superresolution methods is the availability of two or more
low resolution images fi(d) from the same scene which contains slightly different
information. This means that the images have subpixels shifts among themselves
because if the images are shifted in exact integer steps, there is no additional
information about the scene in the overlapping area, and so they are useless.
The low resolution images fi(d) are then registrated to each other or the move-
ment between the images are calculated. Afterwards, the collected information
is used to generate a high resolution image f(u). In figure 1.8, this basic su-
perresolution approach is shown. Obviously, the quality of the reconstructed
high resolution image f(*) depends on the number and the quality of the low
resolution images fi(d). Thus, superresolution methods additionally use image

restoration methods to improve the quality of f(%).

1.6.1.2 Image Restoration

By reducing or removing effects caused by an image acquisition process (e.g.

blurring, optical disortation or noise) from the degraded image, restoration
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Figure 1.8: This figure shows the fundamental resolution enhancement or
rather superresolution approach [30]. The pictures on the left are multiple
low resolution images fi(d) from the same scene with sub pixel shifts. These
images are registered to each others in the registration step. After that, a
superresolution image f(*) from the scene is created which has a higher pixel

density than the multiple low resolution images.
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methods increase the quality. In this context, superresolution methods can
be seen as a higher level image restoration problem because they restore the
image and simultaneously increase the resolution of the image by boosting the

pixel density.

1.6.2 General Superresolution Model

As described in [30, 28], the first step for a general superresolution is to analyse
the general image formulation process to obtain a model which relates the high
resolution image f( to the low resolution images fi(d). The high resolution
image f(") is an ideal image (without any degradation) which is sampled from
the continuous scene. This image f(*) is the origin of the image formulation
process which leads to multiple low resolution images fi(d). A particular low
resolution image fi(d) originates from a high resolution image f(*) by passing
the steps warping, blurring, downsampling and at least by adding noise. So, as
described before, this process is called image formulation process and can be
denoted as the forward problem. The inversion of this process is an ill-posed
problem and is called superresolution. In figure 1.9, the image formation process

and the general superresolution model are schematically shown.

S
Desired ( Upe

r )
]
High Resolution erse py Obiefg)
Image
; l i Observed
Scene Image f

Image Formation Process
....................... | Image Restoration (Forward Problem)

Image Resolution Enhancement

Figure 1.9: This figure shows the general superresolution model which is the
inversion of the image formation process. The red and the blue shaded areas
show the assignment to the Image Restoration or Image Resolution Enhance-
ment Methods. [30]
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1.6.2.1 Mathematical Formulation

As stated by Mizel et al. in [28] and Park in [30], the general superresolution
model is commonly described by a series of linear transformation. With using

matrix-vector notation, the model can be written in the following form
f=DiBWif" +m; (1.1)

where D, B and W represent the operators for downsampling, blurring and
warping and 7; describes the noise. Since D;, B; and W; are linear operators,
they can be combined to one linear operator A; so that the equation (1.1)

becomes
= Af" +n (1.2)

where A; = D; B;W;.
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As we discussed in chapter 1, one of the major tasks in computer vision
is creating a higher resolution image from two or more low resolution images
which contain slightly different information about the same scene. This task is
called superresolution and is a very active area because it is possible to overcome
limitations in optics and sensors by combining the information about the scene
from the low resolution images. In several industrial, medical, military and
science applications a high resolution is necessary to locate objects or generally
to obtain information of the scene, so for this applications, superresolution may
be a possibility to improve the performance. In the following, we will give a
general outline of superresolution approaches and their extensions based on the

general superresolution model in section 1.6 proposed in recent years.

26
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2.1 Frequency Domain Approach

The first superresolution approach dates back to Huang and Tsay [19], presented
a method which reconstructs a high resolution image from several low resolution
images. For this, they use a frequency domain approach which is also described

by Yang et al. [46] and Park et al. [30]. The basic principles of this method are
e the shifting property of the continuous fourier transform (CFT) and

e the aliasing property between the CFT and discrete fourier transform
(DFT)

By defining a continuous image as g(k,l), shifts between several continuous

images can be described by
gi(k, 1) = g(k + A1, 1+ Ag2) (2.1)

where ¢ = 1,2...K and A;; and A;2 denote the global shift in horizontal and
vertical direction which are assumed to be known. If G(u,v) is the CFT from
the continuous image g(k, 1), the shifted CFT images can be calculated by the
CF'T shifting property, which leads to

gi(uav) _ ejzﬂ'(Ailu“rAin)g(u’U) (2.2)

For the low resolution images, impulse sample periods (; and (> are defined.
Hence, the observed low resolution images fi(d) [m,n] are related to the contin-

uous images g;(k, 1) by
FPm,n] = gi(Grm + Aqy, Gon + Do) (2.3)

where m = 0,1...M — 1 and n = 0,1...N — 1. By exploiting the aliasing
relationship between the CTF and the DFT, the DFT of a low resolution image
which is defined by .7-'7;(‘1) [, y] can be represented in the following way

Fleil=ze X Y 6(F(5-0) Z(%-2)) e
J1=—0C J2=—0C

By assuming that G(u,v) is band-limited, which means that |G(u,v)| = 0 for

|u| > %,M > %, the linear equation system

Fd = Ag (2.5)
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can be determined by incorporating (2.2) into (2.4) and expressing it in matrix
form. For archiving a simpler formulation, the subscripts are dropped out in
the above formula. F(4 denotes a column vector with K entries where the £
entry relates to the DFT coefficient ]-"i(d) [z,y]. A is a matrix of size K x MN
and contains the relationship between the continuous fourier transform of the
continuous image and the discrete fourier transform of the low resolution images,
and G is a column vector with M N x 1 and represents the coefficients of CFT
of the continuous image which will be obtained. The equation system in (2.5)
is solved with respect to G, and subsequently the high resolution image f(* is
reconstructed by using the inverse discrete fourier transform.

The model behind the described approach is not able to handle blurring
or noise. Furthermore, only global translations which are known a priori are
modeled. To overcome this problem several extensions of the initial frequency
domain approach are presented. Kim et al. [22] took account of the blurring
and noise problem and formulate an approach which can handle low resolution
images with the same noise and blurring. Later, Kim et al. [23] extended this
method to handle different blurrings for each low resolution image and using the
Tikhonov regularisation to provide a stable method. Tom et al. [42] presented
a frequency domain approach which uses a maximum likelihood framework to
formulate the image registration and blurring problem and solves the problem
by concurrently using the expectation maximization algorithm.

The frequency domain approach was the first superresolution method in his-
tory and it can be computed efficiently and parallel. Nevertheless, because of dif-
ficulties with incorporating prior information into the model and the restriction
to a global translation model, most later works about resolution enhancement

methods are spatial domain approaches. [30, 46]

2.2 Nonuniform Interpolation Approach

The nonuniform interpolation approach is a simple and intuitive non-iterative
forward approach which consists of three steps [46, 30]. The fist step is motion
estimation from several low resolution images. After that, a non-uniform inter-
polation step calculates a high resolution image, and finally, an image restoration
step is responsible for noise and blurring reduction. These approaches can be

implemented computationally very efficiently, which is a major advantage be-
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cause of real-time application. Nevertheless, through step-by-step processing,
an optimal solution cannot be granted because of ignoring errors from previous

stages.

2.3 Projection onto Convex Sets (POCS)

The projection onto convex sets method is an iterative approach for which prior
knowledge is used to create constraints where each of the constraints restrict
the solution to be an element of a closed convex set C;. If the sets have a
non-empty intersection, the solution is in the intersection set Cs. As stated
in [30], the paper by Stark et al. [40] was the first where the projection onto
convex sets method was applied for superresolution reconstruction. In this case,
as described in [4], POCS finds a superresolution image f (W) ¢ Cs, which is in

the intersection of M closed convex sets. [4], [38]
M
Co=[)Ci (2.6)
i=1

C' is a subset of the Hilbert space H (for the definition of H, we refer to [38])
and is called convex if for any two elements fi, fo € C the subset C contains
the element f = 60f; + (1 —0) fo where 6 € [0,1]. C' is closed if the limit element
of any sequence of elements in C' is also in C. For each subset C;, a projection

operator P; : H — C; is defined, so that

If — P;f|| = min|| f — h|| Vh, h € C; (2.7)
This means that the nearest element to f, which is in Cj, is P;f. With the
projection operators P;, a sequence of images { f (“)n} can by generated by

f

@™ Py Pyt .. PP " (2.8)
This sequence { f (“)n} converges to the image f (“), which is shown in figure 2.1.
An image f @° i projected by the projector P, onto the nearest point on Cy
and subsequently it is projected onto Cs by P,. Thereby the first iteration is
completed. By iterating this process, the image converges to the solution set Cs
and at the end, it reaches the red point which represents the image f (u), which
is on the convex set Cs.

Based on the assumption that the motion information is exact, Teklap et
al. [41] extend the POCS method from Stark et al. [40] to include observation
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f(u)O

Figure 2.1: This figure shows the projection onto convex sets method. An
arbitrary image f @° i projected by the projection operator P; to the nearest
image in the closed convex set Cy. Subsequently P> projects the image P; f ()
onto the set C, and by repeating these steps, the projected image converges to
#0 | which is the set Cj. [4], [38]

noise. For this, they define closed convex constraints to restrict f(*) to the sets
Ci.;. Index 7 refers to the low resolution image fi(d) and the index j addresses
the pixel of the image fi(d) which is in vector notation. Thus, for each pixel j of
each low resolution image fi(d) a closed convex constraint exists which restricts
™ to the set Ci.;.

Ciyj = (£ Irf3)| < b0} (2.9)

where

ri = 15 — (A (2.10)

i
and A; = W;D;B; and §g = ao,,. o, denote the standard deviation of the noise,
and « > 0 is a suitable constant which defines a statistical bound. g can be
considered as confidence in the observation. The projection P;;; onto the convex
set Cy; in [41, 43] is defined by

ai;_j('f’,(;:?—lgu) (u)

f(u) —+ e ai;:il ) if Ti;j > 50

Py =1 f™ if — 8o <7 <o (2.11)
54 ’I"(u> ) . 4
f(u) + Wai?j if ngj) < —dp

where a;.; is the column vector which contains the j** row of the matrix A;.
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A further extension to this is described by Patti et al. in [31] where for
the first time a POCS approach is able to handle motion blur and arbitrary
sampling lattice for video resolution enhancement. Eren et al. proposed in [11]
a robust object-based method which extends the previous approach in the case
of multiple moving objects in a scene. They assume that inaccurate motion
vectors appear at moving object boundaries and occlusion areas. By creating a
validity map, they ensure that only pixels with accurate motion information are
projected by the associated projector. Furthermore, they create a segmentation
map to distinguish between different moving objects. So, they are able to create
motion models for each object, which leads to more accurate motion information,
which also improves the quality of the image. A different approach is proposed
by Elad et al. [10]. They analyse the ML, MAP and POCS approach and
present a general hybrid approach which combines the advantages from the
analysed methods. Because of combining these methods, incorporating prior
knowledge is simple and an optimal solution is found, which in contrast cannot

be ensured by the POCS approach.
The POCS approach is simple and powerful but the optimality of the solu-

tion cannot be guaranteed and the methods are slow convergence. Thus, high

computational power is needed.

2.4 Regularized Superresolution Approaches

Finding a high resolution image for our superresolution model in section 1.6.2
typically results in a large set of possible solutions. In order to restrict and
stabilize the solution set, regularized superresolution approaches have been de-
veloped. In the following, the maximum a posteriori (MAP), the maximum
likelihood (ML) and the constrained least square (CLS) approach are described.
It should be noted that the ML and CLS are equal to the MAP approach under

certain conditions. For more information, we refer to Park et al. in [46].

2.4.1 Constrained Least Square

The constrained least square approach make use of deterministic prior informa-

tion of the high resolution image to stabilise the solution. If the matrices A; are
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estimated, the CLS Problem can be represented for example by [2, 30]

K

g = min { 3714070 — O+ N0 (212)
=1

where f () is the estimated optimal high resolution image. With the a priori

knowledge that images normally tend to be smooth, we can for example set H =

V, therefore the regularisation term (||V f(*)||?) represents the smoothness of the

K
solution and provides a suitable counterweight to the data term (> [|A;f(®) —
i=1

fi(d) |2), which represents the fidelity to the data. The weighting between those
terms is controlled by the regularisation parameter A. This basic approach is
adapted from Hong et al. [18], who presented an iterative regularized algorithm
for video sequences with an assumed spatially invariant points spread function
where ) is calculated for each iteration. Hardie et al. [17] proposed an approach
for Infrared Imaging System where knowledge of the optical system and detector
array are incorporated into the observation model. Based on this, a constrained
least squares problem is formulated which is subsequently solved by a gradient

descent and a conjugate gradient procedure.

2.4.2 Statistical Approaches

Statistical approaches like ML or MAP generally treat the enhanced and low

resolution images as stochastic variables. Using this assumption, the Bayesian

framework can be used where the probability of f(*) given fl(d), cees 5;1 ) is
L Pr(fenPr(f?, . (1
Pr(f(7)|f1(d)’ I((d)) _ ( ) ( 1 K | ) (213)
. £(d) (d)
Pr(fi™, ..., fx))

where Pr(f(“)|f1(d), e g)) is the a posterori, Pr(f() is the a priori,
Pr( 1(d), ce }(g)|f(“)) is the likelihood and Pr( l(d), ey ](g)) is the normali-
sation term. For the equation (2.13) exist two common ways to find an optimal

solution f (u) by maximising either the likelihood or the a posteriori term.

2.4.2.1 Maximum A Posteriori (MAP)

The MAP estimator maximises the a posteriori term with respect to f(*) to find

an optimal solution f (w),

flw = arg%%¥{Pr(f(U)|f£d)’ L .,fg))} (2.14)
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Using the logarithmic function and Bayes conditional probability theorem, equa-
tion (2.14) leads to

Flw _argr?ax{lnpr( 1(d),..., [(g)|f(u))+lnPr(f(“))} (2.15)

Under the assumption that noise is an independent identically distributed zero
mean Gaussian distribution, the likelihood term can be expressed by the follow-
ing equation.

1 & Cp(u) (d) 2
l O =507 DAL =7l
Pr(fi?,. . fIfW) = T & (2.16)

If we use Gibbs density function [13] [37] for the a priori term
1 r(uw
Pr(f®) = ge—%w( g (2.17)

where U is called energy function and Z and A are constants, the MAP estima-

tion can be represent in the following form

(u) — @ _ pye . Liroe
f10 = argmin o= ZH if = F01+ SU(E) (2.18)

where A is a regularisation parameter between the data term and the regulation
term U (f(®).

2.4.2.2 Maximum Likelihood (ML)

The ML maximises, as the name suggest, the likelihood term in equation (2.14).
This leads to an optimal solution f(“) under the assumption that the prior
term is uniform, hence, it has no effect for the maximisation. The optimal
solution using ML estimator, under the assumption that noise is an independent

identically distributed zero mean Gaussian distribution, is given by

f = argmln ZH ) — D)2 (2.19)

Tom et al. [42] use an ML superresolution approach to address the registration
and blurring problem in the frequency domain and solve it by an EM algorithm.
Elad et al. [10]. formulate an ML (MAP), POCS hyprid approach, which
combines the POCS approach with the statistical approaches ML and MAP.
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The ML approach is simpler than MAP, but it is particularly sensitive con-
cerning noise and errors from the registration and blurring estimation. Further-
more, it is not possible to incorporate prior knowledge into the problem, which

makes the MAP approach a more robust alternative.

2.5 Iterative Backprojection Approach

Another approach is presented by Irani and Peleg in [20]. They formulate an it-
erative back projection method to reconstruct superresolution images. For this,
the back projection method used in computed tomography image reconstruction
serves as a model. The main idea is to calculate the difference between ¢ simu-
lated low resolution images f,i,(d) and i observed low images f @" " This error is

K3
bBP and subsequently back projected

multiplied with a back projection kernel
. . . . 1 . .
to estimate a high resolution image f ()™ . These steps are iterated, which

leads to the following update schema

@ ="+ > () -1 w)

yeU, Yia

(bBP)Q

zy
BP
a Zy/GUi Y Jzy

n+1

f(u)

(2.20)

where Y; , describes the set {y € ¢;|y is influenced by z} and « is a normalisa-

BP _ ,BP

tion factor and by,

(x — zy). zy denotes the centre of the receptive field
of yin f ()" This update schema minimises the error between the simulated
and observed low resolution image, but an optimal solution cannot be guaran-

bBP

teed. Another issue is the choice of which, as described in [20], can be

chosen arbitrarily. However, the choice influences the solution if more possible

bBP may be utilised as an additional constraint so that

solutions exist. Hence,
the reached solution has a particular property (e.g. smooth). In contrast to the
POCS or regulised approaches, it is hard to integrate prior knowledge into the
iterative back projection method, but it is an intuitive and easy to understood

method.

2.6 Superresolution for Hyperspectral Images

Superresolution methods are typically applied to grayscale images, nevertheless
several methods exist which are able to handle colour images. Next, we will
show how superresolution techniques can be used for hyperspectral imaging to

overcome the relatively low spatial resolution of these images.
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2.6.1 Image Fusion

In many papers, as described by Gu et al. [15], the images from a hyperspectral
camera are combined with images from an additional sensor. [33, 14, 34]. The
advantage of both sensors are merged to obtain high resolution hyperspectral
images. These approaches will not further be discussed here because this would
go beyond the scope of this thesis and it is not planned to equip the HELIOS

camera-based hyperspectral imaging systems with an additional sensor.

2.6.2 Spectral Unmixing

Another way to overcome the ill-posedness of the superresolution inverse prob-
lem of hyperspectral image is to incorporate prior knowledge about the spectral
signature of the material in the scene. For this approach, it is assumed that
all materials which are in the scene can be determined by their a priori known
spectral signature. These a priori known materials are denoted in literature as
endmember. As hyperspectral images generally have a low spatial resolution,
it is assumed that a mixing of the spectral signature in adjacent spatial pixels

occur. This is typically represented by the linear mixing model

N
f:Zai7n¢+e:Ma+e (2.21)
=1
where f is a vector which contains the pixels of the mixed spectrum, M is a
matrix which contains the information about the endmember, a are the mixing
coefficients and e denotes the error vector. By adding the non-negative (2.22)

and sum-to-one constraint (2.23)

a; >0 (2.22)
N
> ai=1 (2.23)
=1

to the linear mixing model (2.21), physically impossible solutions are excluded.
The linear mixing model is typically solved by minimizing the constrained least

squares model:

N
min |[Ma — f||2 subject to a; > 0; Zai =1 (2.24)
' i=1
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The solution for this minimisation problem is vector a, which contains the in-
formation about the mixing of the endmember. This information is then used
to enhance the resolution of hyperspectral images.

Gu et al. [15] propose an approach in which the information of the unmixing
step is combined with the superresolution mapping. In this case, the unmixing
step is first calculated, and subsequently, the authors train a neuronal network
with the information of the mixing and the spatial correlation tendency of land-
scapes. Therefore, the network uses spatial and spectral information to increase
the resolution of hyperspectral images. In another paper Guo et al. [16] propose
two methods called endmember-based TV model and quantum TV model. For
both methods, first the L1 unmixing step is calculated, which makes the pixels

“pure”. This is done by
. A 2 .
min ||all; + §||Ma — flI5 subject to a; > 0 (2.25)
a

where |la||; is used instead of the sum-to-one constraint. After the unmixing
step Guo et al. use the TV energy superresolution model for both methods.
The endmember-based TV model is then

d d
: a
min E= E /Q||Vuj||2dx+ 5 E (DBu; —fj)zdx—i—g/ﬂ I I lu —m;l|2
Jj=1 Jj=1

i€l(x)
(2.26)

where the term

penalises pixel which cannot be assigned to an endmember.
The Quantum TV Model is an iterative update schema which first zooms the
image using the TV Model, and afterwards, each pixel is rounded up to the

nearest endmember signal.

d d
n+1l _ s ) g o £)2
" = argmulnjzzl/QHVujHQda?—l— 5 7;(DB% fi)%dx (2.27)
"t z) = arg min mi(z) — vz 2.28
(@ =arg  min i) ~ 0" @) (228)
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This chapter presents a detailed insight into the HELIOS superresolution
approach in order to achieve a high resolution reconstruction from some low
resolution hyperspectral line scan images. The discussed approach uses a vari-

ational superresolution model which is extended for hyperspectral images.

3.1 Preliminaries

3.1.1 Definitions

Definition Hadamard product: As defined in [21], the Hadamard product
Ao B of two matrices A, B € RMXN where A = [a; ;] and B = [b; ;] where

38
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1<i<Mand1<j<N is given by
AoB = [am‘ . b@j] (31)

Definition Gradient: The gradient of the function f: RY — R is defined as
Sf

5.’1?1

grad (/) =Vf=| : (3.2)
Sf

OTn
Definition Divergence: The nabla operator is also used to define the diver-

gence operator, which is the negative adjoint of V.

div = —V* (3.3)

3.1.2 Total Variation (TV)

The total variation in image reconstruction was first used by Rudin et al. [36]

and is typically used as a regularizer for MAP approaches.

Definition Total Variation: The total variation in a continuous setting from
a function u € L*(2) defined by

J(u) = sup{ — /Qu(x)divﬁ(x)dx (e e CH O RY), €(x)| <1 Vx € Q} (3.4)

In the case that J(u) < 400, which means that the function has Bounded

Variation, and if w € C1, the total variation is

J(u):/Q|Vu|dw (3.5)

3.1.2.1 Discretisation of the Total Variation

For the discrete total variation, we use the same formulation as described in
[44, 5, 6]. Therefore, an image is represented by a regular grid with the size
M x N. The indexes i, j describe the position on the grid and hy and hy define

the height and width of a pixel. So we can define our grid as

(ihy,jha) : 1<i< M,1<j<N (3.6)

We also define a vector space X = RMN and the discrete gradient operator

V:X =Y whereY = X x X and

[ (V)i
(Vu)i; = ( (Vu)? )
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where
. LitlgZWig  if i < M
(vu)i,j = i e
0 ifi=M
Ui, j+1 —Ui,j ifj <N
V=1 0
’ 0 ifj=N

In this setting, the discrete total variation is defined by
J(u) = [(Vu)ijll2.a (3.7)

where

lalza = > (@52 + (@)

0<i,j<M,N

Additionally, we define the discret diverence operator div: Y — X as follows:

(div p)i; = (div p®)7; + (div p¥)?;

where
0 ifi=0
((div p")i; = § PPt if0<i< M
—_p;’:’j ifi =M
0 if j=0
(div p¥)!, = { LazPust o< j< N
—_p;;;_l ifj=N

3.2 HELIOS Image Acquisition Process

In this section, we discuss in detail the image acquisition process from a typi-
cal HELIOS camera-based material separation system and precisely define the
images which are delivered by such a system. HELIOS camera systems use a
line-scan technique in combination with a hyperspectral sensor. Thus, in one
acquisition step [, a matrix fl(d) of size M x S is captured where M describes
the number of pixels and S denotes the number of spectral wavebands. In the
following, the matrix fl(d) is also denoted as line because in the spatial dimen-
sion, only a line is captured. Each acquisition step from the camera requires a
certain amount of time which is described by t¢. This is commonly the inverse
of the camera frequency. The camera is directed at the conveyor belt which

transports material with speed v. By concatenating of N successive captured
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1...N
1...M 1...M|
A 4 A 4
d d d
fz( ) fz( ) fl(+)N—1
(a) (b)

Figure 3.1: The left figure shows the matrix fl(d) with size M x S which is
captured from one HELIOS image acquisition step at time [. The right figure
shows the image f(?) with size M x S x N from the HELIOS camera system

.. d d
where N successive lines fl( )... fz(+}v—1 are concatenated.
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lines, an image f(? over time with size M x S x N is generated. This image
@ contains three dimensional data and is typically represented as a data cube
described in section 1.3.4. The HELIOS camera system can generally have three
settings where conveyor belt speed v is either smaller, equal or greater than the
horizontal spatial coverage (line width) w of the line scan camera on the con-
veyor belt divided by its acquisition process time ¢t. These different settings are
shown in the columns of figure 3.2, which outlines the image acquisition process
from a line scan camera where the spectral dimension was omitted in order to
simplify the figure. The grey arrows show the moving directions of the conveyor
belt, and the red squares denote the captured pixels in one line acquisition step.
By viewing the first four entries from a column, we can see that different parts
of the green triangle are captured by the line-scan camera over time. Depend-
ing on the horizontal spatial coverage (line width) w of the line scan camera on
the conveyor belt, its acquisition process time ¢ and the conveyor belt speed v,
the HELIOS image (4 contain different information. The correlation between
these factors are shown in the fifth row of figure 3.2. The last row in the figure

shows the theoretical image if the HELIOS Image f(?) is correctly aligned. In

w

the case where v < %,

which means that the conveyor belt moves the object
horizontally less than the horizontal spatial coverage of the camera in one acqui-

sition step. We can see that an overlap between temporal adjacent pixel occurs.

w

The opposite is shown in the case v > %,

whereby the object is horizontally
moved by the conveyor belt, which is more than the horizontal spatial coverage
of the camera in one acquisition step. Thus, gaps occur because not all parts of

the object are captured by the camera.

3.3 Assumptions for the Superresolution Model

As we know from section 1.6, the basic premise for superresolution is that two
or more sub-pixel shifted images from the same scene are available. In the case
of a material separation system based on the HELIOS camera system, shown in
figure 1.6, we have analysed in section 3.2 that three possibilities for the image
acquisition process exist. But only if the moving distance of the conveyor belt
during one camera acquisition step is lower than the horizontal spatial coverage
(line width) of the HELIOS line scan camera, superresolution is possible. In

this case, an overlap between adjacent captured lines occurs if the lines are
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Figure 3.2: The figure is structured as a table and shows the image acquisition
process from three different HELIOS camera settings. The columns denote these
settings where the conveyour belt speed v is either smaller, equal or greater
than the horizontal spatial coverage (line width) w of the line scan divided by
the acquisition process time t. The first four rows show the image acquisition
process of four successive acquisition steps for each of the HELIOS settings.
Row number five shows the whole captured HELIOS Image from the four steps
and the last row shows the theoretical image if we bring the captured lines to

the correct position.
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aligned, which means that the information of this overlapping area is contained
in each of the overlapping lines. Thus, superresolution is possible because we
have more information about the same area. So, for the following, we assume
this scenario.

A further assumption is that the resolution of the spectral dimension of the
HELIOS input images is high enough, so there is no need to increase the spectral
resolution of the image. Thus, the input image and the superresolution image

have the spectral resolution.

3.4 Discrete Setting

3.4.1 Discretisation of a continuous Image

As discussed in section 1.6.2, an image captured by a camera can be seen as a
discretisation from a continuous image. In our case, we use three dimensional
discrete images, thus, we have to model the discretisation step from a three-
dimensional continuous image g : 2 — R to a three-dimensional discrete image
f, which is given on a three-dimensional grid of size M x S x N. For this,
we extend the thoughts about the discretisation step b Unger et al. [44], who
describe the two-dimensional discretisation with squared pixel areas to model a
general three-dimensional discretisation schema.

We first define a voxel of the discrete image f; x.; at position (hij, hak, shal) with
height hq, depth ho, width hgz and shifting s where hy, hs,hs >0 and s > 0. In
the case of hy = ho = hg, the voxel is a cube, in the other case it is a cuboid.
For simplifying the following definition, we define a vector h = [hq, ha, h3]T,
which contains the information about the height, depth and width of a voxel.
s is defined as a shifting factor for the temporal dimension, which means if
s = 0 there is no shifting, hence voxel f;x; and voxel f; ;41 are at the same
position. In the case of 0 < s < 1, there is an overlap between the voxels f;
and fj k141, and if s > 1, horizontal gaps between those voxels exist. As you
can see in equation 3.8, the voxel value f; 1 is calculated from the continuous

image g by taking the mean in the voxel region A?,:l

1
fikl = /A g(x)dz (3.8)

h1h2h3 h,s
Gkl
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where the voxel region itself is defined by

; ; hi h
A = (g ok shal) + (1= 5) x|

yx [ sy 39)

27 2

hz hQ
27 2

3.4.2 Discrete Images f¥ and f®

For our problem, we define the discrete images f(@ and f(*), which are both
samplings from the same continuous image ¢, but each has a different voxel size
vector h and shifting factor s. The image f(9) describes the input image which is
captured from the HELIOS camera system and the image f(*) is the calculated
high resolution image from our approach. To distinguish between the parameter
for the low- or high resolution image, we again use the superscript letters (%)
and . In order to make superresolution possible for our approach, we assume
that image f(? with size h(? has an overlap between two adjacent pixels in
the temporal dimension. Thus, we define a shifting factor s(® : 0 < s(® < 1.
The resulting superresolution image f(* has no overlap or gap, so s = 1. A
further assumption is that the spectral resolution of the image f(*) and f(% is
equal. With the described assumptions, we define the relationship between the
sampling of the high resolution image f(*) and low resolution ¥ by a vector
¢ = [¢1,1,¢)T where ¢1,¢3 > 1. Furthermore, we define that h(® = ¢ o h(®
where o denotes the Hadamard product, which is defined in 3.1. This means
that

hy” Gy
hgd) _ hgu)
g Chi”

We can clearly see that ( contains the scaling information between the super-
resolution image f(* and the low resolution f(¥). This information is used by

the downsampling operator D discussed in section 3.6.1.

3.5 HELIOS Superesolution Model

As we have defined our discrete images f(@ and f*), we develop a HELIOS
superresolution model based on the image formation process from the HELIOS
camera system. We know from the general superresolution model that the

starting point for the image formation process is the high resolution image f®.
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In the general superresolution model, a wrapping operator W is applied to this
image in order to align the sub-pixel shifts between several images. In our case,
the high resolution image f(* is calculated from the low resolution image f(®,
so there is only one input image. Thus we can omit the wrapping operator
W. The next step takes into account that by each image acquisition, negative
effects like image distortion, blurring etc. occurs, for this a blurring operator
B is applied to the high resolution image f(*). Afterwards, the downsampling
operator D is applied to the blurred high resolution image f(*), which describes
the relationship between f(*) and the low resolution image f(?). Finally, we
assume that each image is degraded by noise, for this, a noise term 7 is added
to the HELIOS superresolution model which can mathematically be described

by the following equation

f@ = DBFW 4 (3.10)

Based on on equation 3.10, we can define our discrete convex optimisation prob-

lem, which is described in the next section.

3.6 Discrete Convex Optimisation Problem

For our convex optimisation problem, we choose a MAP approach to find a so-
lution for the superresolution model described in equation 3.10. As mentioned
in section 2.4.2.1, MAP approaches finding an optimal solution and allows in-
corporating prior knowledge into the problem. This is done by modeling a
regularisation term which restricts the solution in a specific way. In our case,
we use the discrete Total Variation, which is described in detail in section 3.1
for regularisation. As we defined in 3.4, the amount of spectral bands from f(*
and f(49 are equal, and so we handle each spectral band separately. We define
an index j where 1 < j < S, which addresses the spectral dimension, which
means that f;u) and f}d) contains all information about the j* spectral band
of the high and low resolution image. Furthermore, we transform f;u) and f](d)
to vectors by stacking the columns, so f;“) has then size M N®) x 1 and f;d)
has size M(DN(@ x 1. Based on these thoughts, we can formulate our discrete

convex optimisation problem as

uin = {MDBA = [l + 1V £l s Vi =18 (3.11)
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where ||.||, defines the p-norm. The operators D, B in equation (3.11) are linear
and describe the downsampling and blurring operators. The convex minimisa-
tion problem from above can be solved by setting p1, po = 1 which leads to the
TVL! superresolution method, or by setting p; = 2 and p» = 1 to the ROF

superresolution method.

3.6.1 Downsampling Operator

The purpose of the downsampling operator D is to model the downsampling
process from a discrete high resolution image () to a discrete low resolution
image (. In section 3.4.2, we precisely discussed how we can obtain these
discrete images from a continuous image g.

We have defined in section 3.4.2 the relationship between the voxel sizes of image
f@ and f@ which is

hy” G
hgd) _ hgu)
g Gshi”

and the shifting factors, which are
sw —1

0<s® <1

As we assumed in section 3.3, the number of spectral bands for the superreso-
lution image f(*) is the same as for the input image f(@, hence, we only have
to model the downsampling operator D for the spatial and temporal dimension.
For a certain spectral band i, we can calculate the voxel value fﬁ)l from the
downsampled image f(® with the following equation, which can be found in its

two-dimensional form for squared pixel sizes in the paper [44] by Unger et al.

d 1 () () () (D
F > p(Al ﬁAg,’i,z’ )fi,i),z (3.12)

X,1,2

diid = Ch(®) 5@
#A i ) 0<a, 5 < AT NG
. h(w) g(d) B g(w) ) )
In equation (3.12), Ail 0, A, 7 denotes the voxel regions which are

defined in section 3.4.1, and p(A) is the Lebesgue measure, which denotes the

volume of a voxel region. As you can see, the downsampling calculation for



48

3.6. Discrete Convex Optimisation Problem

]
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Figure 3.3: The figure shows the assumption about the downsampling process

from a discrete high resolution image £ to a discrete low resolution image f(®

where the pixels in one dimension of the low resolution image contain partly the

same information
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Ch(w) s
Aiai,l

)
f @ s a weighted area integral over the region of . For a better un-

il
d7erstanding, figure 3.3 graphically shows our assumptions concerning the sam-
plings. This calculation is stored in a Matrix D with size M (® N (4 x pr(w) N(w)|
which represent our downsampling operator.

Unlike “normal” downsamplings (e.g. [44, 28]), sometimes the same subregion
from a superresolution image voxel is included two ore more times in the cal-
culation of lower sampled voxel. That is the case in the case if voxel region
Ahms( Agzy)’5<d) and Agﬁfgi’ls(d>. This is
also shown in figure 3.3. This multiple used subregion can be calculated more

). .
intersects with the overlap between

accurately through the inverse downsampling process (upsampling process) be-
cause there are two ore more low sampled voxels which contains information

about this subregion.

3.6.2 Blurring Operator

A crucial factor for superresolution is finding a blurring operator B, which con-
tains all blurring effects caused by imperfect optics and sensors. For this, a blur
kernel b is typically either calculated by optimisation methods (e.g. constrained
least square (CLS)) or estimated as a Gaussian function. As described in previ-
ous sections each spectral band is calculated separately, hence, blurring kernel
b is two-dimensional and furthermore it is assumed that all spectral have the
same blurring. Once a blur kernel b is found, the blurring operator B can be
constructed as a matrix with size M@ N @) x M (@) N(®) haged on it. In the fol-
lowing subsections, we describe in short the blur kernel estimation via Gaussian

function and a estimation via non-blind constrained least square optimisation.

3.6.2.1 Blur Kernel via Gaussian Blurring

If no knowledge about blurring is available, an appropriate method is to assume
the blurring as a Gaussian function [44, 28, 16]. For example, a two-dimensional

Gaussian blur kernel can be calculated through

1 _ (w—uz)2+(y—uy>2
b(z,y) = 5——r (323 ) (3.13)
Yy

where o, and o, describe the variances in = and y direction and p, and p, are

the means in their respective directions.
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3.6.2.2 Blur Kernel via Constrained Least Square

Another way to find the Blur kernel is the calculation via optimisation. In this
case, we need a calibration pattern and a blurred image recorded by the imaging
system to derive a non-blind optimisation problem. The relationship between
a spectral band of the high resolution image and a spectral band of the low

resolution image is
1Y =DBf™ (3.14)

as discussed in section 3.6. To calculate the two-dimensional blurring kernel
b(x,y) with size M® x N®) | we rewrite Bf;“) so that

Bf™ = Ub (3.15)

where U is a matrix of size M (¥ N @) x M (®) and b is a vector of size MO N®) x 1,

which represents the blur kernel b(z,y), hence equation (3.14) is
£ = DUb (3.16)

This equation can be solved with the constrained least square optimisation which

is

. d .
min = | DUB — f{*2 subject to b; > 0 and Z b =1 (3.17)
The blur kernel b can be determined by the iterative gradient descent update
schema,
bt =" + a(UTDTDUL — UTDT f1V) (3.18)
bt o
prt1 = max(bi 1, 0) (3.19)

Z bn+1

where « is a constant and controls the step size for the gradient descent step,
and equation (3.19) is for fulfilling the > b; = 1 and b; > 0 constraints. A

sightly different version of this is used by Yuan et al. in [47].
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In this chapter, we will discuss in detail the algorithms which are used to
solve the convex optimisation problem from the previous chapter. For this,
we first introduce some mathematical concepts which will be used from the

discussed algorithms.

4.1 Preliminaries

4.1.1 Definitions

Definition Indicator function: The indicator function 0y () for the set ¥ is
defined by
0 ifzeX
ox(z) = { (4.1)
oo else
Definition Subdifferential: The subdifferential df(z) in a point = € R™ of a

convex function f : R™ — R is given by the set
of (@) ={g e R": f(z) + (g,y — ) < f(y),Vy € R"} (4.2)

51
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which means that the subdifferential is a generalisation of the gradient to non-
differential functions. In figure 4.2, the subdifferential of a function and its

representation in the dual space is shown.

Definition Subgradient: An element g is called subgradient in a point € R™
if g € 0f(x) where df(z) is the subdifferential defined in (4.2).

Definition Proximal operator: The resolvent operator or proximal operator

for a convex function f and 7 > 0 is defined as

T

2
v = (I +70)™(y) = argmin {”xz—y” + f(x)} (13)

which means that x is the value where function f(y) reaches its minimum value.
In figure 4.1, an example is shown where the proximal operator is calculated for

two functions F(z) and G(z) and the domain of z is restricted to [—0.5,0.5].

-1 -1

1 05 0 05 1 15 1 —05 0 05 1 15

Figure 4.1: For the functions F(z) = (z — 0.25)? + 0.5 (left) and G(z) =
(x — 0.75)2 + 0.5 (right) where = € [~0.5,0.5] (hatched area), the proximal

operator finds the minimum values (black dots) with in the domain of x.

Definition Legendre-Fenchel transform: The convex conjugate f* of a
function f : R — R U {oo} is defined through the Legendre-Fenchel transform
(35]

frp) = sup {(z,p) - f()} (4.4)

zedom f
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which is the maximum gap between the linear function (x,p) and f(x) in the
case that f is differentiable p = f’(z). Figure 4.2 shows an example of the

Legendre-Fenchel transform with a continuous but not differentiable function.

ifxz<O
A5 (p)
2x  else
pos 1 2 P
p € [0,2]

Figure 4.2: The figure shows the Legendre-Fenchel transform for a continuous
function (blue) which is not differentiable at & = 0. For this point, the subdif-
ferential is the closed interval [0, 2] because it contains all possible tangents in
that point (this is schematically shown with the red and green tangent). The
subddifferential at point = 0 can be seen as a line (yellow) in the dual space.
For any point z < 0, the slope p = 0 (cyan) and for any point > 0 p = 2 (dark
blue).

4.1.2 Duality

The duality principle means that we are able to bring a function, problem or
concept into another related formulation and vice versa [1]. Depending on the
viewpoint, we talk about the primal or dual formulation. The Legendre-Fenchel
Transformation, which is defined in 4.1.1, is such a transformation. It changes
the representation of continuous but not necessary differentiable function, which
is usually defined through points so that every point on a function is defined by
(z, f(x)), to a representation so that the function is defined through its slope
and the convex conjugate (p, f*(p)). In short: (z, f(x)) < (p, f*(p)). This is
represented graphically in figure 4.3. For more information about the duality

and the Legendre-Fenchel transformation, we refer to [35].
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(07 _f*)

Figure 4.3: The figure shows the relationship between a function (blue), its
tangent (red) on point (xg, o) and the convex conjugate f* for this point. f*
is the intersection between the tangent of the point (zg,y0) and the negative

y-axis.

4.1.3 Conjugate Gradient Method

The conjugate gradient method is an old and one of the best known methods
to solve a linear equation system with the form Az = b to x. We use this
method to accelerate the calculation of the proximity of G(z) from the ROF
method in section 4.2. As stated in the document by Barett et. al. [3], the
conjugate gradient method belongs to a class called non-stationary iterative
methods and is an effective way to solve symmetric positive definite systems.
In contrast to stationary methods, non-stationary methods use information for
computation which changes at every iteration. In algorithm 1, the conjugate
gradient method is described, which can also found in [3]. In the document by
Barett et. al. [3], further information about the conjugate gradient and many

more iterative methods for solving linear systems can be found.

4.1.4 General Primal-Dual Algorithm

In the following, we will explain the general primal-dual algorithm which can be
used to solve a particular class of optimisation problems in an efficient way. One

of the major advantages is the possibility to parallelise this algorithm, which
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Algorithm 1 conjugate gradient algorithm

20 = initial guess

0 =bh— Az
maxiter = max. number of iterations
tolerance = tolerance of method
for i = 1 to maxiter do
i1 = r=0T =)

if i =1 then

pt = 0

else

X — Pi-1
Bi-1 Pi-2
pr=r"t 4 BiapT!

end if

convergence check: break if convergence < tolerance

end for
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has become more important in the last years.

4.1.4.1 General Primal-Dual Formulation

First, we define two vector spaces X,Y, which are finite dimensional vector
spaces. Furthermore, we define a linear operator K : X — Y, which has an

operator norm

|K|| = sup{||Kz| : z € X with ||z]| < 1} (4.5)
For these definitions, a general class of optimisation problems can be represented
in the following form [7, 1J:

:%i% F(Kz)+ G(x) (4.6)

F and G are proper, convex, lower-semicontinuous functions. If we replace the
term F(Kx) with its convex conjugate which is defined in 4.1.1 where (.,.)
denotes the standard inner product, the problem can be turned into a saddle-

point problem

min max{({Kw,y) — I (y) + G()} (4.7)

which is a primal-dual formulation of the primal problem in (4.6).

4.1.4.2 General Primal-Dual Algorithm

The saddle-point problem in equation (4.7) can be implemented through follow-
ing algorithm, which is discussed in the paper [1], [44], [7], [32] [6], [9].

Algorithm 2 General Primal Dual Algorithm

Initialisation:
7,0>0; 0€[0,1]; 2,9 € X xY
Iterations:
2"t = (I +75G)"H(a™ — TK*y")
Yyt = I+ odF) Y y" + oK (2" + 0(z" ! — ™))

4.1.4.3 Convergence

There are two common ways to ensure the convergence of the general primal

dual algorithm, which are described in the following sections.
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Primal Dual with estimated ¢ and 7
As stated in [7], the general primal-dual algorithm converges under the condition

that # = 1 and 7 and o are chosen so that the inequality
Tol? <1 (4.8)

holds. In the above formula L = || K|, which means that L is the operator norm

of operator K. For the proof and further reading we refer to [7] and [5].

Preconditioned Primal Dual

In some cases where the operator norm of K is hard to compute, we can use
an alternative method to find 7 and o. This method is described by Pock
et. al. in [32]. The constants o and 7 are replaced with diagonal matrices
and T where the diagonal consists of (¢1,...,0,) and (71,...,7,) respectively.
These elements are called diagonal preconditioners and calculated through the

following formulas
1 1

O = (4.9)
> K|
j=1

Tj =

- m
> K 12
=1

where « € [0,2]. Pock et al. show that these elements can be used for a large
class of convex optimisation problems and they are easy to compute. Further-
more, they show that the preconditioned primal dual algorithm converges faster

than the primal dual with estimated o and 7 as described in section 4.1.4.3

4.2 ROF Superresolution

4.2.1 From Primal to Primal-Dual

The discret version of ROF superresolution problem has the form

. U A U .
min = {(nw} Noa + ZIDBS" ~ f}‘”né)}, Vi=1...8 (4.10)

fgu,)

J

Since the convex conjugate f*(p) from the norm ||.||2,1 is the indicator function
0% (p) where ¥ = {p : ||p||oc < 1}, we can turn the primal problem in equation

(4.10) with the Legendre-Fenchel transform defined in equation (4.4) into the
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following primal-dual formulation.

. r( T A e r .
min max = {((pj,Vf]( O) —dx(p;)+ §||DBfJ( ) _ fj‘“”%)}, Vi=1...5
N e’ N——

5

(y,Kx) F*(y) G(x)
(4.11)
This formulation corresponds to the primal-dual formulation in equation (4.7),

which allows us to solve the problem with a primal-dual algorithm.

4.2.2 ROF Proximal Operators

As described in section 4.1.4.2, for the terms F*(y) and G(z) the proximal

operators have to be calculated.

4.2.2.1 Proximity of F*(y)

For the ROF primal-dual formulation, the proximity of F*(y) is

. 7|2
pj = (I +00F)™ (77) = axg min {w ¥ 52(Pj)} (112)
J
which leads to .
P
Pi= ———~ 4.13
I max(L 7] (413

which is described by Chambolle et. al. in [7] as a reduction on pointwise

Euclidean projectors onto L? balls.

4.2.2.2 Proximity of G(z)

The proximity of G(z) is
{ 155" = £1 A

(w) _ —1 (W) A (w) _ p(d))2
i =0 +70G) " (f;7) = argmin o +SIDBf; — f; ||2}
’ (4.14)
The partial derivative with respect to f;u) is calculated and set to zero.
oG )
= £ = 0BT (DB — fP) =0 (4.15)
of;
Through rearranging the above, we come to the following equation
(I +7A(DB)"(DB)) ") = ") + 7A(DB)T £V (4.16)
-~

A T b
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The equation (4.16) can be seen as a linear system of equation of form Az = b.
For such a system, several methods exist to solve it for x. For our implemen-
tation, we choose the conjugate gradient method, which is described in section
4.1.3. As we can see in algorithm 1, the conjugate gradient method uses an ini-
tial guess for z as starting point for solving the system. In the case of solving
the proximal operator for G(x), we use the conjugate gradient method in each
iteration of the ROF superresolution primal-dual algorithm, which is shown in
algorithm 3. The purpose of the primal-dual algorithm is to find a “good” su-
perresolution image f;u)nﬂ, which becomes “better” at every iteration. The
purpose of the conjugate gradient method is to solve the linear equation system
Az = b to x shown in equation (4.16), where © = f}u)nﬂ in our case, which is
shown in algorithm 3. So, we have for every computation of the proximal oper-
ator of G(x) an initial guess f;")n, which becomes “better” at every iteration
of the primal-dual algorithm, which leads to a fast computation of the proximal

operator of G(z).

4.2.3 TIterative ROF Superresolution Primal-Dual Algo-

rithm

The equation 4.20 can be implemented as an iterative Primal-Dual algorithm

where the pseudocode is shown in algorithm 3

4.2.4 Step Size

As described in section 4.1.4.3, choosing the right values for 7 and o is a crucial
factor which affects the convergence of the algorithm. As pointed out in equation
(4.11), the operator K = V for the ROF primal dual algorithm. With the
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Algorithm 3 Iterative ROF Superresolution Primal-Dual Algorithm
Initialization:

j,05 >0 {Vj,j eNj < S} 0e[0,1]; £ e X; pey;

mazlterPD, maxIterCG € Nt; toleranceCG > 0

u)o

Algorithm:
R
A= 1+7NDB)T(DB))
for j =1to .S do
while n < ma:z:]tﬁnD do
7 =pi" + 0,V

n+1l _ pj

pj — max(1,|p;
n
b=f"" £ 7A(DB)T @)

n+1 n

f;“’) = CG(A, b, maxlterCG,toleranceCG, f;") )
u ,n,+1 1 n+1 1 n+1 u n
[0 = e =)

end while

end for

definition of our discrete V in section 3.1.2.1, K has the following structure.

- 0 0 7 0
0 -7 0 0 & 0
0 0 -7 0 0 =
0 o 0
0o ... 0
A0 0
K = 0 _h% h_12 0 0 (4.17)
0 0
0 - o 0 0
0 0 0 % % O 0
0 o0
0 0 - 7 0
0 0k &
0 0
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By ignoring the border pixel in operator K, and we can calculate the values for

the constants 7 and o, by using formula (4.9) with o = 1, which leads to

h1h2 h1
T =

= = — 4.18
2(h1 + h2) 7 2 ( )

4.3 TVL; Superresolution Primal-Dual

4.3.1 From Primal to Primal-Dual

In order to find an implementation for the TV L, superresolution, we use the

discrete version of the optimisation problem which has the form

min = {(||Vf;“)||2,1 +AIDBFY = £{V2.) } Wi=1...8  (419)
;"
We know that f*(p) from the norm ||.||2,1 is the indicator function ds, (p) where
Y1 = {|Ipllo < 1} and and that f*(p) from A||.||21 is 0s, (p) where Xy =
{lIplloo < A}, we can formulate the primal dual problem as

i LV < 85 (05) + (a5, DBF™ — 1Y — 65, (¢))), Vi =1...8
I){gglgaqf (pjs Vf;) = 0s,(pj) + (aj, DBf;" — f;7) = ds,(q5) ), Vi=1...

(4.20)

As we can see, the above formula has one primal variable f;“) and two dual
variables p;,g;. In order to have an expression in the form of equation (4.7)
to use a primal dual algorithm for the TV L superresolution problem, the dual

variables pj;, q; are stacked into a vector. This leads to

. Dy \V4 (w) 521 (pj)
nin ma ) i - +\O/ 4.21
T na << <qj> (DB) (5)) o7 19+ b5, (a) 2
_ N—— G(x)

xr
y K F*(y)

For the sake of completeness, a zero has been added which has of course no

effects but it represents the term G(x) from equation (4.7).

4.3.2 TVL; Proximal Operators

As stated in algorithm 2, we have to calculate the proximal operators for F*(y)
and G(x) in equation (4.21)
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4.3.2.1 Proximity of F*(y)

For the TVL; superresolution primal dual formulation, the proximity of F*(y)
is

|2
pj =1+ cr,,@F)_l(p_j) = arg Hzl)in {w + 0%, (pj)} (4.22)
7 p

. 772
g ={U+ O‘an)_l(q_j) = argrr;in {w + q;‘rf}d) + 0%, (qj)} (4.23)
i q

which leads to
Dj

L @ = A @ o (-f7)) (424

pj =

4.3.2.2 Proximity of G(z)

For the TVL; superresolution primal dual formulation the proximity of G*(x)

is

(W) p(u))2
157 = £ 40

(w) _ 1 .
£ ={I+10G) 1(fj )—argmln{ 5r

J u
£

} — @ (a.25)

4.3.3 Iterative L; Superresolution Primal-Dual Algorithm

The equation 4.20 can be implemented as an iterative primal-dual algorithm

4.3.4 Step Size

As described in section 4.1.4.3, there are two methods which guarantee the
convergence of the primal-dual algorithm. For both ways, the constants 7;, a.?
and af have to be chosen in a correct way, which requires the calculation of the
linear operator K. K, shown in equation (4.21), is a compounded matrix of V
and DB with size 2M W N®) 4 M) N (D) s pr) N (@) We decided to calculate
the matrices Tj, E? and E? via the diagonal preconditioners, which is described

in section 4.1.4.3, to ensure the convergence of the algorithm.
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Algorithm 4 Iterative TVIl Superresolution Primal-Dual Algorithm
Initialisation:

7j,05,0% >0 {Vj,j € N|j <S}; 6 €[0,1]; f}u)’o e X; b, ) eY;
maxlterPD € NT
Algorithm:
for j=1to S do
while n < maxlterPD do
57 =) + A

n+l _ pj
p] max(1,|p;])

T = qj +o{(DBf" — 1)
7" = max(—A, min(A, gj + o?(—£17)))
f;u),nH _ f7(u)n _ Tj(_divp;}-i-l + BTDTq;l+1)

f}u),n—i-l _ f}u),n—i-l + e(fjgu),n—i-l . f7(u),n)

end while

end for
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5.1 Environment

For our experimental results, we chose two several experimental environments to
analyse the performance of our proposed algorithms. For the first environment
we used two data sets from the Columbia CAVE Laboratory Multispectral Image
Database [8]. These sets are used as ground truth images which are subsequently
blurred and downsampled with known parameter to create a synthetic data
set. As we know the exact burring and downsamping operator we are able to
calculate the reconstruction quality of the high resolution image of our approach
by using the metrics described in section 5.2.1. For the second environment we
used a real data set where the image comes from a HELIOS camera based
hyperspectral line scan imaging system to show performance of the approach in
a real environment. In this scenario no exact information of the blurring or the
downsampling operator are available, thus, we have to approximate the blurring

and the downsampling operator to use our superresolution approach.

64
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5.2 Synthetic Data Evaluation

For the synthetic data evaluation, we chose the “Beads” and “Pompoms” data
sets from the the Columbia CAVE Laboratory Multispectral Image Database [8].
Each of these data sets has thirty-one grayscale images with 512 x 512 pixels.
For our synthetic data sets, we use only the first 240 x 120 pixels of each image.
Together, these thirty-one image sections form our synthetic three-dimensional
high resolution image f(*). Each spectral plane f;u) where 7 = 1..31 is then
blurred with a two-dimensional Gaussian kernel with size 7 x 5 and ¢ = 2.5 and
based on these several samplings and shiftings are processed to create several low
resolution images with different sizes and shifting factors. These low resolution
images are then used as input images for our superresolution approach and the
results are compared with the reference image to determine the performance
of our algorithm. As we have no noise in this setting, we use A = 100 for the
ROF and TVL1 algorithms to attach great importance to the data term of the

optimisation problem (3.11) in order to achieve good results.

(a) (b)

Figure 5.1: This figure shows the 20" spectral band images from the
“Beans” (a) and the “Pompoms” (b) data sets from Columbia CAVE Labo-
ratory Multispectral Image Database [8].
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5.2.1 Evaluation Metrics

To evaluate the performance of our proposed ROF and TVL1 methods, we
use the common image-processing metrics Peak Signal to Noise Ratio (PSNR)
and Structural Similarity (SIMM), which are extended to the third-dimension
so that we are able to measure the reconstruction quality of three-dimensional

spectral images.

5.2.1.1 Peak Signal to Noise Ratio (PSNR)

The PSNR is a widely used quality metric which can be calculated in the fol-

lowing way:
| M N 9
MSE(X,Y) = = ;; (X(z,y) - Y(Z,j)) (5.1)
MAX?

where M AX; denotes the maximum possible input value from a pixel.

5.2.1.2 Structural Similarity (SIMM)

In contrast to the PSNR, the SIMM quality metric measures the similarity of
structural information in two images. The SIMM and MSIMM as described by
Wang et al. in [45] are calculated through the formulas

(2patty + C1) (202, + C)

SIMM (z,y) =
@) = G221 On02 + o2+ Ca)

(5.3)

and

M
MSIMM(X,Y) Z SSIM (z,y;) (5.4)

5.2.2 Hyperspectral Metrics

As we describe in section 5.2.1.1 and 5.2.1.2, the MSSIM and PSNR indexes are
calculated from a ground-truth image X and superresolution image Y. In our
environment, there is such a pair for each spectral dimension, so we calculate
the MSSIM and PSNR values for each band and average them at the end, which
leads to the mean MSSIM (MMSSIM) and mean PSNR (MPSNR) index.

MPSNR(X,Y) Z PSNR(X;,Y;) (5.5)

i=1
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S
MMSIMM(X,Y) = % > MSSIM(X,,Y;) (5.6)

i=1

5.2.3 Performance with varying Shifting Factor

To show the effects through different shifting factors, we create four low reso-
lution images from the same ground truth image with the shifting factors 0.25,
0.5, 0.75 and 1 and a sampling rate from 1. A sampling rate from 1 means that
the spatial resolution of the input image is equal to the spatial resolution of
the ground truth image. So, in this case, no resolution enhancement is done.
Figure 5.2 shows the MPSNR and MMSIMM indexes for the four images with

varying shifting factor. As we expected, if the shifting factor increase the perfor-

MMSIMM and MPSNR Perfomance depending on Shifting Factor
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Figure 5.2: The figure shows the influence of the shifting factor to the perfor-
mance of the ROF, TVL1 and bicubic interpolation approaches. In this scenario,
A = 100.

mance of the ROF and TVL1 models decreases. This is because the overlapping
area between adjacent pixel decreases if the shifting factor increases. But the in-
fluence of the different shifting factors s in the range [0.25 1] to the performance

of the algorithms is relatively small. But fine structures can be reconstructed
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Nevertheless, we can see that our proposed approaches outperform the bicubic

interpolation approach in both metrics and all tested shifting factors.

5.2.4 Performance with varying Sampling Rate

To show the performance of the proposed algorithm with different sampling
rates, we choose a shifting factor 0.5 and sampling rates of 0.25, 0.5 and 1.
A sampling rate of 0.25 means that the spatial resolution of the ground truth
image f(* is four times higher than spatial resolution of the input image f(@.
So, in the case of sampling factor 1, the input and the ground truth image have

the same spatial resolution. Figure 5.3 shows that ROF and TVL1 outperforms

MMSIMM and MPSNR Perfomance depending on Sampling Factor
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Figure 5.3: The figure shows the influence of the sampling factor to the perfor-
mance of the ROF, TVL1 and bicubic interpolation approaches. In this scenario,
A = 100.

the bicubic interpolation approch in both metrics at every chosen sampling rate.
Furthermore, as we expected, with increasing sampling rate the performance of

the approaches increases. This is obviously because by increasing the sampling
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rate, we receive more information for the same area, and, hence, the results are
better. Compared to the shifting factor, we can see that the sampling rate has

more influence on the performance than the shifting factor.

5.2.4.1 Summary

In the tables 5.1 and 5.2, the resulting images of different sampling and shifting
factors are shown. As we know the exact blurring and downsampling operator
and as there is no noise, we achieve a very good reconstruction quality with the
ROF and TVL1 superresolution methods for the synthetic data sets. When the
sampling rate is 1 and the shifting factor is 0.25 fine details can be reconstructed
by the ROF and TVL1 method. This is shown in the first and second row of
table 5.1 where the texture of the pompoms can be seen in the images which
are calculated by ROF and TVL1. In contrast to this, the texture details
can not be reconstructed by the bicubic interpolation approach. The same
is true for the beads data set where also fine details can be reconstructed by the
ROF and TVL1 method but not by the bicubic interpolation approach. If the
shifting factor increases and the sampling factor decreases the reconstruction
quality also decreases, but again the ROF and TVL1 methods outperfom the
bicubic interpolation approach. The evaluation support our expectation of the
performance behaviour where the sampling rate has much more influence on
the reconstruction quality than the shifting factor. Nevertheless, with a smaller
shifting factor fine details can be better reconstructed. Finally, we can say that
the ROF and TVL1 methods outperforms the bicubic interpolation approach

for the used synthetic data sets in all cases.

5.3 Real Data Evaluation

For the real data evaluation, we use test data from the EVK HELIOS test
environment to show the performance of our superresolution approach in real

environments.

5.3.1 Camera System Setup

Before we start with capturing images from the system, we have to calibrate it.

The first parameter is the recording frequency of the camera, which is set to its
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Table 5.1: This table shows the results for the noise free pompoms data set
with known blurring and downsampling. A = 100 in all cases. In the first row
there is no downsampling and the shifting factor s = 0.25. In the second row
an image section from row number one is shown in detail. In the third row, the
shifting factor s = 1, hence, no overlap exists and the downsampling factor in x
and y-direction is 4. In the forth row an image section from row number three

is shown in detail.




5.3. Real Data Evaluation 71

Table 5.2: This table shows the results for the noise free beads data set with
known blurring and downsampling. A = 100 in all cases. In the first row there is
no downsampling and the shifting factor s = 0.25. In the second row an image
section from row number one is shown in detail. In the third row, the shifting
factor s = 1, hence, no overlap exists and the downsampling factor in = and
y-direction is 4. In the forth row an image section from row number three is

shown in detail.

Input Interp. TVL1 ROF Original
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maximum, in our case 300 Hz. Next, we manually adjust the halogen headlights
to have a maximal illumination in the recording area. Then we manually finding
the best focus for the camera and subsequently, we make a white and a black
balancing to normalise the input. The last configuring step sets the speed of the
conveyor belt. For our test scenario, the conveyor belt speed plays an important
role because as described in section 3.2, the overlap between two adjacent lines
depends on the conveyor belt speed and the camera frequency and is a critical
factor in our assumption about the superresolution. As in our setup the camera
frequency is fixed to its maximal value, only the conveyor belt speed controls the
size of the overlapping area between the lines. Thus, we choose various conveyor
belt speeds to verify behaviour and performance of our superresolution approach

with different overlap areas.

5.3.2 Calibration Pattern

For an optimal functioning of our approach, we have to make accurate assump-
tions about the blurring and the shifting factor. For both of them, we need a
calibration pattern which allows us to find correspondences between the calibra-
tion image and the captured image. We choose a calibration pattern layout with
filled circles of different sizes arranged in a grid. On the one hand, this allows us
to measure the distortion caused by the shifting factor and on the other hand,
it is easy to determine the center of a circle which provides us with correspon-
dence points for the registration step of the point spread function estimation.

In figure 5.5, the used calibration pattern is shown.

5.3.2.1 Pattern Signatures

To use the pattern as a reference image, we have manually created a 3D hyper-
spectral image based on the 2D pattern where for each pixel which is either black
or white the corresponding spectral signature in the 3D hyperspectral image is
inserted. Because we have no information about the “right” material signatures,
we have to extract it from the captured image. For that reason, we capture the
whole grid with the HELIOS camera system and extract the material signature
for black and white pixels by selecting an area with connected “pure” pixels of
either black or white pixels for each spectral dimension separately. The selected

pixels are then averaged, so we obtain a value for each spectral dimension for
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black or white pixels in the 2D grid respectively. In figure 5.4, the spectral

signatures for black and white are shown.

black and white material signature

4,000 |-

3,000 |-
- white signature
= —— black signature
g 2,000 |-
E

1,000 |-

0 50 100 150 200 250 300

spectral dimension

Figure 5.4: Plot of the black and white colour spectral signature from the

calibration pattern

5.3.3 Determining Shifting Factor s

As described in section 5.3.1, the conveyor belt speed controls the overlap area,
so, for our approach it is necessary to have accurate information about the
shifting factor s, which is

s =1—overlap

if an overlap exists. As in our case the speed of conveyor belt is manually set and
no information about the exact speed is available, we decide to find the shifting
factor by a simple pattern-based measurement method. For this method, we use
again the grid which is shown in figure 5.5 and capture the whole grid with the
HELIOS camera system. The grayscale image from a captured image with the
shifting factor s = 0.43 and spectral dimension d = 200 is shown in figure 5.6.

As we can see in the figure, through the image acquisition process of the system,
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Figure 5.5: This figure shows the layout of the calibration pattern
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captured lines for the whole grid increases when the shifting factor decreases.
Thus, there is more information about the same area available when the shifting
factor is lower. For the real data evaluation, we use all four shifting factors from
the table.

Table 5.3: The figure shows the first row of the grid captured by the EVK HE-

LIOS test environment with different conveyor belt speeds respectively shifting

factors.
S first row of captured grid image
0.43 . . . .
0.61

- - - -

5.3.4 Determining A\

As we defined A in section 3.6 as weighting factor between the regularisation
term which controls the smoothness of the result and the data term which
controls the affiliation to the input data, finding an appropriate A is also an
important process and has strong influence on the results. In the real data set,
we expect little noise, so we can attach more importance to the data term, which
leads to a relative large A\. We experimentally found out that A = 150 works
well in combination with the Gaussian blur kernel. In the case of blur kernel

estimation by least square, we found out that A = 30 works fine.

5.3.5 Determining the Blur Kernel

As we define our hyperspectral image as a series of lines captured by a line
scan camera and our approach focuses on increasing the spatial and temporal
resolution of the image, we decide to use a two-dimensional kernel. For the real

data evaluation, we use different kernel sizes and estimation methods for finding
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Figure 5.7: By fitting an ellipse in the binary image, the major axis a and
b can be calculated, which helps to find the shifting factor s of the current

environment

an appropriate kernel, which allows us to reduce the effects caused by the image

acquisition process in order to increase the quality of our superresolution results.

5.3.5.1 Kernel Size

Depending on the spatial resolution of the image, a defined blur kernel size
has different influence on the deblurring process. This is obvious because if we
use a fixed kernel size for an image and we double up the spatial resolution
of the image, the kernel loses the half range of influence on the image. As we
compute superresolution images with different spatial and temporal image sizes
for real data evaluation, we also have to compute different blur kernel sizes to
see which of them works best. We decide to use kernel sizes either 3, 5 or 7 in

x or y-direction.

5.3.5.2 Blur Kernel Estimation with Constrainted Least Squere

Once we have estimated the shifting factor s, we calculate the blurring of the
camera system. For this, we again use the captured image from the grid shown
in figure 5.5 but for the blur kernel estimation, we additionally need a ground

truth image. This image is created in the following manner. First, we take the
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digital image of the grid and calculate the new image based on the shifting factor
s. Subsequently, we register the captured image and the ground truth image
and cut off the useless parts created by the registration. The remaining images
are then used to estimate the blur kernel with a simple least square problem
which is solved by a simple gradient descent update schema, which is described
in section 3.6.2.2. In table 5.4, the best results for the CLS blur kernel with

(a) reference image (b) blurred image

Figure 5.8: This figure shows the reference and the blurred image which are

used to calculate the one dimensional point spread function

increasing factor 1 and 2 are shown.

5.3.5.3 Blur Kernel Estimation with Gaussian

An other method is to assume that the blurring is a Gaussian function. In
this case, the blur can be calculated through the Gaussian function, which is
described in section 3.6.2.1. For the real data blur kernel estimation, we choose
different blur kernel sizes and several o, and o,. In table 5.5, the best results

are shown.

5.3.6 Real Data Evaluation Results

In contrast to the synthetic data, we have no exact ground truth image, so
we only can determine the best results by comparing the resulting images. As
described before, we have tried several parameter sets to find the best results

which are shown in figures 5.9 and 5.10.
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Table 5.4: This table shows the least square estimated blur kernels for different

increasing factors

blurkernel

factor | size
1 TxT7
2 Tx 7

Table 5.5: This table shows the best estimated Gaussian blur kernels for

different increasing factors

oy blurkernel

factor | size Oy
1 3x51]0.75
2 5x 7| 1.7
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(b)

(d) (f)

Figure 5.9: This figure shows the best results of proposed ROF and TVL1
method where the input image (a) has a shifting factor s = 0.43 and the resulting
images (b), (c), (d), (e), (f) have the same spatial resolution as the input image.
Image (b) and (c) are the ROF and TVL1 high resolution image with CLS
estimated blur kernel, image (d) and (e) are the ROF and TVL1 high resolution
images with Gaussian kernel and image (f) is the high resolution image which
was calculated by the Matlab bicubic interpolation algorithm. In all images the
contrast is adjusted such that the whole range of gray values is used. The both

rectangles on the bottom of each image show two image regions in detail.
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(b)

(d) (e) (f)

Figure 5.10: This figure shows the best results of proposed ROF and TVL1
method where the input image (a) has a shifting factor s = 0.43 and the resulting
images (b), (c), (d), (e), (f) have and increased resolution by the factor 2.
Image (b) and (c) are the ROF and TVL1 high resolution image with CLS
estimated blur kernel, image (d) and (e) are the ROF and TVL1 high resolution
images with Gaussian kernel and image (f) is the high resolution image which
was calculated by the Matlab bicubic interpolation algorithm.In all images the
contrast is adjusted such that the whole range of gray values is used. The both

rectangles on the bottom of each image show two image regions in detail.
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5.4 Summary

‘We have found that the least square estimated blur kernels as discussed in 5.3.5.2
do not achieve any improvements compared to Gaussian estimated kernels. Fur-
thermore, we can see that the ROF and TVL1 models are better than interpola-
tion but in real data, there is no great difference. Although no exact evaluation
for real data is possible because of no accurate reference images, we can see that
the proposed ROF and TVL1 superresolution approach outperform the bicubic
interpolation in a real data environment. The high resolution images which are
calculated by the ROF or TVL1 approaches are even sharper than calculated
by the interpolation approach. Moreover interpolation is not able to correctly
recover the distortion caused by the overlap by adjacent pixels in temporal di-
mension, reduce blur or noise effects. So, finally, we can say that the proposed
approaches are more powerful and useful in hyperspectral imaging systems than

bicubic interpolation.
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6.1 Conclusion

In this master thesis, we have shown how a superresolution reconstruction opti-
misation problem can be derived from a HELIOS hyperspectral line-scan camera
based material separation system in order to achieve a higher hyperspectral im-
age resolution. Chapter 1 provided an overview of spectroscopy, remote imaging
and (hyper)spectral imaging. Furthermore, the layout and several components
of a HELIOS camera based hyperspectral line-scan imaging system has been
explained. And finally, an overview of superresolution, image interpolation and
the advantages of high resolution images was given. Chapter 2 showed the fun-
damental approaches to improve the quality of high resolution images from two
ore more subpixel shifted low resolution images and several extension to hyper-
spectral imaging. In chapter 3, a superresolution approach for a HELIOS camera
based system was proposed, which is based on the assumption that such a sys-
tem delivers hyperspectral images with an overlap in adjacent pixels. With this
assumption, a convex superresolution problem was formulated to reconstruct an
image with a higher resolution and better quality than the input image. Chap-

ter 4 provided an introduction into to the general primal dual algorithm, which

83
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is a modern method to solve a specific class of problems including the proposed
convex superresolution problem from chapter 3. In Chapter 5, we presented
the performance evaluations of our proposed approaches and compared it with
bicubic interpolation to show the powerfulness and usefulness in synthetic and

real environments.

6.2 Outlook

In this master thesis, we analysed the image acquisition process of a HELIOS
hyperspectral line-scan camera based material separation system and proposed
a ROF and TVLI superresolution approach which increases the quality and
resolution of the hyperspectral image. The performance evaluation has shown
that for the real environment the ROF method with an Gaussian estimated
blur kernel works best. For future work, we recommend analysing the real-time
performance of the proposed algorithms, in particular a CUDA-based GPU
implementation because the primal-dual algorithm is particularly qualified for
such an implementation. Moreover, some additional constraints and extensions
can improve the quality of the high resolution image. Especially incorporating
the knowledge of the spectral signature of the endmembers may boost the image

quality of the calculated high resolution hyperspectral images.
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