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Abstract

Correlated Electronic Structure of Manganese Pnictides

by Simon Erker

Density functional theory (DFT) within the local density approximation (LDA) describes

well the electronic structure of many weakly correlated materials but completely fails for

materials that are strongly correlated. Typically these strongly correlated materials have

partially filled d- or f -shells where the Coulomb interaction is comparable to the band-

width. One of the most successful techniques for modeling strongly correlated electron

systems is the dynamical mean-field theory (DMFT). Combining DMFT with the ab-initio

LDA-scheme is an efficient method to go beyond DFT and include local correlations.

In this thesis the basic LDA+DMFT scheme is explained and the method is used to

calculate the electronic structure of the manganese based pnictide materials BaMn2As2

and LaOMnAs. A continuous-time quantum Monte Carlo (CT-QMC) algorithm in the

hybridization expansion at room temperature (β = 40 eV−1) considering only density-

density interactions is used to obtain the momentum resolved and momentum integrated

spectral functions.

For BaMn2As2 we used the dp-model corresponding to the experimental crystal structure

and investigated the influence of the selected energy window, the double counting correc-

tion and of the interaction parameters U and J .

For LaOMnAs we showed the difference of the dpp-model and the d-model for the de-

scription of the electronic structure.
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Introduction

The physics of materials with electrons that are strongly correlated is a very interesting

and emerging topic in today’s theoretical and experimental condensed matter physics.

Strongly correlated materials often show unusual electronic and magnetic properties such

as superconductivity, metal-insulator transitions, half-metallicity or heavy-fermion be-

havior. These rich phenomena put correlated materials in the focus of experimental

research and give a motivation for a better theoretical understanding of these materials.

Transition metal compounds with their partially filled d-shells are a typical candidate

for strong electronic correlations. An essential feature that combines all these materials

is that the behavior of their electrons cannot be described effectively by conventional

band structure methods like density functional theory (DFT) in the local density ap-

proximation (LDA). One must go beyond DFT-LDA and include electronic correlation

to achieve accurate results for the electronic structure. Many-body methods are capa-

ble to explicitly treat electronic correlations. A successful many-body method in this

context is the dynamical mean-field theory (DMFT) that maps a lattice model onto a

self-consistent determined impurity model. DMFT fully accounts for local correlations

and becomes exact in the limit of infinite dimensions. However, many-body methods only

work for simplified effective models and depend on unknown model parameters. There-

fore they cannot provide an ab-initio description of real materials. An approach that

elude this problems and was developed in the last years is the LDA+DMFT method. It

combines the advantages of DFT-LDA, that provides a realistic ab-initio description for

many weakly correlated materials, with the correct treatment of local correlations within

DMFT. The main topic of this thesis is to investigate the electronic structure of strongly

correlated transition metal compounds with this LDA+DMFT approach. In particular,

the strongly correlated manganese-based pnictide materials BaMn2As2 and LaOMnAs

are studied. The impurity problem within the self-consistent DMFT equations is solved

with a continuous-time quantum Monte Carlo algorithm in the hybridization expansion.
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Contents 2

Outline of this thesis

This thesis is split into two parts. Part I is a review of the applied methods and in part

II we show some applications on manganese-based pnictides.

In chapter 1, the theoretical background of density functional theory is reviewed and

the limitations of the local density approximation for strongly correlated materials are

discussed.

In chapter 2, a summary of the dynamical mean field theory based on the Hubbard model

is given. Furthermore, the basics of continuous-time quantum Monte Carlo is explained,

which is used for solving the impurity problem. Finally the maximum entropy method

for obtaining the spectral function on the real axis is discussed.

In chapter 3, a fully charge self-consistent implementation of the LDA+DMFT scheme is

presented. It combines the conventional band structure package wien2k with the triqs

library for interacting quantum systems.

In part II, chapters 4 and 5 discuss applications of DFT and LDA+DMFT to the

manganese-based pnictide materials BaMn2As2 and LaOMnAs, respectively. Starting

with the crystal and magnetic structure of those materials, the densities of states and

band structures obtained by LDA are studied. Finally the spectral functions obtained

with LDA+DMFT are presented.



Part I

Methods
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Chapter 1

Conventional electronic structure

calculations

1.1 Introduction

In condensed matter physics it is in principle easy to write down the starting point for

all quantitative calculations of electronic properties:

Ĥ |Ψ〉 = E |Ψ〉 (1.1)

This eigenvalue problem describes the quantum nature of matter, where Ĥ is the Hamil-

tonian of the system. The full Hamiltonian of a condensed matter system is given, in

atomic units, by

Ĥ = −1

2

∑

i

∇2
i −

∑

α

1

2Mα

∇2
α −

∑

α,i

Zα
|ri −Rα|

+
1

2

∑

i,i′

1

|ri − ri′|
+

1

2

∑

α,α′

ZαZα′

|Rα −Rα′ |

where ri and Rα denote the position of electron i and atomic nuclei α with atomic number

Zα and nuclear mass Mα. The first two terms describe the kinetic energy of the electrons

and the nuclei, respectively. The third terms, the lattice potential, describes the inter-

action of the electrons with the nuclei, the fourth term the electron-electron interaction

and the last term the interaction between the nuclei.

Now the fundamental problem in condensed matter physics is solving the Schrödinger

equation (1.1). However, the many-body nature of the problem makes finding the solu-

tion, except in the simplest cases, impossible in practice. Even after applying the so called

5



Chapter 2. Conventional electronic structure calculations 6

Born-Oppenheimer approximation, by decoupling the electronic degrees of freedom from

the lattice part, finding a solution of the Hamiltonian is far from being possible. This

is because of the Coulomb term which describes the interaction between the electrons.

It correlates every electron with all others and leads to a complex many-body problem.

To solve this many-body problem one can either make substantial approximations to the

Hamiltonian or replace it with a significantly simplified model Hamiltonian. Both ap-

proaches are used for the investigation of electronic properties in solids, in the density

functional theory (DFT) and in many-body theory, respectively.

1.2 Density Functional Theory

The main motivation for using Density Functional Theory is that the calculations can be

done from first principles which means the only input parameters are atomic numbers

and the positions of the atoms in the crystal. The basis of DFT are the Hohenberg-Kohn

theorems [1]:

The ground state electron density of a many electron system in the presence

of an external potential uniquely determines the external potential.

The functional for the ground state energy is minimized by the ground state

electron density.

The first Hohenberg-Kohn theorem states that the density may be used as the basic

variable uniquely characterizing the system. From the second theorem one can derive that

all ground state properties of any interacting electron gas can be described by minimizing

the total energy as a functional of electron density ρ(r). So the Hohenberg-Kohn theorems

provide us with the basics for calculating properties of an interacting electron system.

This can be realized in the framework of the Kohn-Sham approach [2]. The key idea of

the Kohn-Sham approach is to replace the interacting many-body system with a simpler

auxiliary system of non-interacting quasiparticles that has the same ground-state density

as the true interacting system.

According to the Hohenberg-Kohn theorem and assuming the existence of such an aux-

iliary system, the energy functional of an interacting system can be written as a sum of
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contributions:

E[ρ] = Ekin[ρ] + Eion[ρ] + Ehartree[ρ] + Exc[ρ] (1.2)

with

Eion[ρ] =

∫
drρ(r)vext(r) (1.3)

Ehartree[ρ] =

∫
drρ(r)vhartree(r) =

∫
drdr′

ρ(r)ρ(r′)

|r− r′| (1.4)

where Ekin[ρ] is the kinetic energy and Eion[ρ] is the energy of the electrons in the ex-

ternal potential vext of the ions. Ehartree[ρ] describes the classical Coulomb interaction

energy (Hartree energy) corresponding to the charge distribution ρ, i.e. it is the static

mean-field contribution where an electron feels the potential vhartree induced by all other

electrons. Finally Exc[ρ] is the so called exchange-correlation energy in which all diffi-

culties of the quantum many-body problem, comprising exchange and correlation effects,

are transferred.

From this we can introduce the Kohn-Sham potential. It is the single-particle potential

that will lead to the same density ρ(r) as the original interacting problem.

vKS[ρ(r)] = vext(r) + vhartree(r) + vxc[ρ](r) (1.5)

where the exchange-correlation potential vxc is defined as the functional derivative of the

exchange-correlation energy Exc[ρ]:

vxc[ρ](r) =
δExc[ρ]

δρ(r)
(1.6)

To be able to express the kinetic energy Ekin, which cannot explicitly expressed in terms

of the electron density, we perform the minimization of the energy functional E[ρ] with

respect to a set of one-particle wave functions ψkν(r) instead of the density ρ(r). These

normalized set of wave functions fulfill

ρ(r) =
∑

εkν≤εF

|ψkν(r)|2. (1.7)
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The minimization finally leads to the following independent single-particle Schrödinger-

like equations known as Kohn-Sham equations:

[
− ~2

2m
∇2 + vKS[ρ]

]
ψkν(r) = εkνψkν(r) (1.8)

where ψkν(r) are the Kohn-Sham eigenfunctions of the one-particle system and εkν(r) are

the Kohn-Sham eigenstates. Hence, the complicated many-body problem is simplified to

a set of non-interacting one-particle problems with a not explicitly known potential vxc.

It is important to note that up to this point no approximations were made and if vxc

or Exc was known explicitly this mapping would be exact. However, in order to solve

the Kohn-Sham equations (1.8) it is is necessary to find a suitable approximation for the

exchange-correlations functional Exc[ρ]. The most popular approximations in condensed

matter physics are the local density approximation (LDA) and the generalized gradient

approximation (GGA), which are briefly described in the next chapter.

With an approximation for Exc[ρ], the set of Kohn-Sham equations (1.8) has to be solved

self-consistently. This is because the Kohn-Sham potential (1.5) is a functional of the

density. The full self-consistent procedure is sketched in Fig. 1.1.

At this point it is important to note that the Kohn-Sham eigenfunctions ψkν and Kohn-

Sham eigenvalues εkν are quantities of the non-interacting auxiliary system which only

has the same ground-state density as the original interacting system. Therefore they

should not have any physical meaning. Nevertheless the Kohn-Sham eigenvalues εkν

often give surprisingly good results to describe the real excitation spectrum of the system

and can therefore in fact be used to describe the real system, e.g. for calculating the

band-structure.

1.3 Exchange-Correlation Functionals

Local Density Approximation

One of the most popular approximations to the exchange-correlation functional is the

local density approximation (LDA) [2]:

ELDA
xc [ρ] =

∫
drρ(r)εLDAxc (ρ(r)) (1.9)
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First principles information:
atomic numbers, crystal strcuture

Choose initial electronic density ρ(r)

Calculate effective potential:
vKS[ρ](r) = vext(r) + vhartree(r) + vxc[ρ](r)

Solve Kohn-Sham euqations:[
− ~2

2m
∇2 + vKS[ρ]− εkν

]
ψkν(r) = 0

Evaluate new electronic density:
ρ(r) =

∑
εkν≤εF |ψkν(r)|2

Converged?

Evaluate band structure, partial DOS ...

yes

no

Figure 1.1: Flow chart of the DFT charge self-consistent scheme.

where εLDAxc (ρ) is the exchange-correlation energy density of the homogeneous electron

gas with density ρ, i.e. the exchange-correlation energy is locally approximated by the

exchange-correlation energy of the homogeneous electron gas which has a uniform density

that is equal to ρ. This is valid if the inhomogeneity of ρ(r) is small, but in many materials

this is not the case and the LDA is a rather crude approximation. However for many

materials LDA gives surprisingly good results even if the inhomogeneity is large. Chaperly

and Alder created an interpolation formula for the exchange-correlation energy density

of the homogeneous electron gas for any density by numerical simulations of the jellium

model [3].

In order to perform spin-polarized calculations to include non-homogeneous spin densities,

the Hohenberg-Kohn theorem and the Kohn-Sham equations need to be supplemented

with a spin index and in this case the LDA is easily adjusted to the local spin density
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approximation (LSDA):

ELSDA
xc [ρ↑, ρ↓] =

∫
drρ(r)εLSDAxc (ρ↑(r), ρ↓(r)) (1.10)

A typical error of LDA is overbinding. When some of the electrons are well localized in

certain orbitals (typically d- and f -orbitals) the participation of those electrons in the

electronic cohesive energy of the solid is overestimated. This results in a too small value

of the unit cell volume at equilibrium.

Furthermore LDA completely fails for strongly correlated materials that are the scope of

this thesis and are discussed in following chapters.

Generalized Gradient Approximation

The generalized gradient approximation (GGA) functional additionally contains the deriva-

tive of the density ρ(r):

EGGA
xc [ρ↑, ρ↓] =

∫
drρ(r)εGGAxc (ρ↑(r), ρ↓(r),∇ρ↑(r),∇ρ↓(r)) (1.11)

In many aspects GGA is more accurate than LDA, but does not have a single universal

form and depend on a set of adjustable parameters. Common GGA functionals are

Perdew-Wang [4] or Perdew-Burke-Enzerhof (PBE) [5].

1.4 Basis sets: (L)APW+lo

In this thesis, the Kohn-Sham wave functions ψσkν(r) are calculated using the full-potential

(linearized) augmented plane-wave ((L)APW) + local orbitals (lo) method as imple-

mented in the electronic structure code wien2k [6, 7]. A detailed description of the

wien2k code can be found in [8]. For the purpose of this thesis we give a short intro-

duction to the used basis set of (L)APW+lo.

It turns out that augmented plane waves (APW) are specially suited as a basis set to solve

the Kohn-Sham equations for the effective potential of a crystal. Such a potential varies

smoothly in the interstitial region between the atoms and is atomic-like near the atomic

nuclei. Therefore the crystal is divided into non-overlapping atomic spheres (muffin-tin
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spheres) SαMT around each atom α and the interstitial region I in between the spheres

(as seen in Fig. 1.2).

SMT

RMT

interstitial
region I

Figure 1.2: Partitioning of the unit cell into muffin-tin sphere SαMT with a radii RαMT

and an interstitial region I between the spheres.

In the original APW basis the basis functions are energy-dependent which leads to non-

linear equations for matching the functions at the sphere boundaries. This complication

can be avoided when using linearized augmented plane waves (LAPW) [9, 10]. Further-

more to account for semicore bands so called local orbital basis functions are used. A

local orbital is defined for a particular atom α and particular quantum numbers l and

m. In this (L)APW+lo method the eigenfunctions of the Kohn-Sham Hamiltonian are

expanded as follows:

ψσkν(r) =
∑

K

cσKν(k)φkσ
K (r) (1.12)

with K the reciprocal lattice vectors, ν the band index and σ the spin degree of freedom.

The basis functions φkσ
K (r) are now the (L)APW functions. For numerical calculations

the total number of basis functions considered is of course limited and therefore the sum

over K is restricted by a maximum value Kmax. Additional local orbital terms (lo, LO)

are added to linearize the basis set and increase its flexibility to describe states of different

eigenenergies. In summery any eigenstate of the Kohn-Sham Hamiltonian can be written

as:

ψσkν(r) =





1√
Ω

∑

K

cσKν(k)ei(k+K)r if r ∈ I
∑

l,m

[
Aναlm(k, σ)uα,σl (rα, Eα

1l) +Bνα
lm(k, σ)u̇α,σl (rα, Eα

1l)

+ Cνα
lm(k, σ)uα,σl (rα, Eα

2l)
]
Y l
m(r̂α) if r ∈ SαMT

(1.13)
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with Ω the volume of the unit cell. In the interstitial region (I) a plane wave expansion is

used and inside the muffin-tin spheres SαMT a linear combination of radial functions times

spherical harmonics Y l
m(r̂α) is used. This ensures the flexibility to describe free-electron-

like states in the interstitial, and atomic-like states near the nuclei. The coefficients

Alm, Blm, and Clm are determined by the normalization and boundary conditions at the

muffin-tin spheres. Their explicit expression can be found in the literature [8] and depend

on the choice of the basis (whether the atom is described in the APW+lo or the LAPW

representation with additional LO terms).

wien2k is based on a full-potential method, meaning that all electronic shells are used

to calculated the Kohn-Sham-potential. In its general form the Kohn-Sham-potential is

expanded as,

vKS(r) =





∑

K

vKe
iKr if r ∈ I

∑

l,m

vlm(r)Y l
m(r̂) if r ∈ SαMT

(1.14)

where r̂ indicating the angles θ and ϕ, which specify the direction of r in spherical

coordinates.

1.5 Limitations of DFT-LDA

Using standard approximations to the exchange-correlation functional, density functional

calculations are mainly restricted to materials for which the picture of individual electrons

is applicable or the quasi-particles are weakly interacting. There is however a large variety

of strongly correlated materials for which this standard approach of electronic structure

calculations breaks down. In these materials the electrons can no longer be considered

individually and therefore DFT calculations within LDA or GGA lead to a qualitatively

wrong result compared to experiments. Well known examples are transition metal oxides

or pnictide materials with partially filled d- or f -shells.

The main problem of LDA in capturing strong correlation effects is that the approxi-

mations for the exchange-correlation energy are based on the homogeneous electron gas

which is not adequate for systems with narrow bands, i.e for materials where the on-

site Coulomb interaction is comparable with the band width. The narrower a band the

more localized is an electron and the longer it resides on an atom. Therefore it feels the
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presence of other electrons. The case of electrons being localized occur when the kinetic

energy gain of an electron due to hopping from site to site is smaller than the energy loss

due to Coulomb repulsion U between electrons sitting on the same orbital. So for strong

Coulomb repulsion U the double occupied orbitals become energetically very expensive

and the system may reduce its total energy by localizing the electrons. The Hubbard

parameter U defines the strength of the Coulomb repulsion and gives the energy cost to

place two electrons in the same orbital. The classical example of this behavior are Mott

insulators [11] with partially filled d-shells like transition-metal oxides such as MnO, FeO,

CoO and NiO [12]. DFT-LDA give a metallic ground state while experiments show an

insulator with a large gap. So strong electronic correlations in these systems require a

treatment that goes beyond DFT-LDA. Combing DFT with the model Hamiltonian ap-

proach leads to first successful attempts to describe Mott insulators. In particular LDA

is combined with a basically static mean field approximation for the remaining part of

the U [13, 14]. This LDA+U method takes into account the orbital dependence of the

Coulomb and exchange interactions which is absent in the LDA and was found to be

very useful in the study of long-range ordered insulating states. However, especially the

intermediate region where the electrons are neither perfectly localized nor fully itinerant,

requires a treatment that goes beyond a static mean-field approximation and includes

dynamical effects. Here the highly promising LDA+DMFT method seems to close the

gap by combining electronic band structure calculations and the dynamical mean-field

theory. The LDA+DMFT method is the focus of this thesis and will be explained in the

next chapters.





Chapter 2

Dynamical Mean Field Theory

2.1 From the lattice to the quantum impurity model

The essential idea in dynamical mean field theory (DMFT) is to map a lattice model with

many degrees of freedom onto a self-consistent single-site quantum impurity problem,

where a single impurity is coupled to a self-consistently determined non-interacting bath.

One of the simplest lattice models of correlated electrons is the Hubbard model:

Ĥ =
∑

〈ij〉,σ

tij ĉ
†
iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ (2.1)

This model describes electrons with spin directions σ =↑ or ↓ moving between localized

states at lattice sites i and j. The first term is the kinetic energy, characterized by the

hopping term tij. The second term describes the Coulomb interaction between electrons

meeting on the same lattice site i (The Pauli principle requires them having opposite

spin).

To understand the basics of DMFT we first consider the Weiss mean-field approximation

for classical interacting spins (the Ising model) as an analogy. There the spin at a single

site is the relevant degree of freedom and all interactions with other degrees of freedom

are merged into an effective magnetic field (the classical mean field or Weiss field). This

Weiss field is set such that it reproduces the expectation value of a specific local observable

of the lattice model, in the classical case the thermal average of the magnetization. This

mean field approximation even becomes exact in the limit of infinite coordination, which

appears quite intuitive. When the number of neighbors of a site becomes large they can

15
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be treated globally as an external bath.

This concept can be extended to a dynamical mean-field theory in the quantum case like

for the Hubbard model. In the quantum case the relevant degrees of freedom are the

quantum states of a single site in a lattice. The rest of the lattice is described as a bath

of non-interacting electrons. The effect of the bath on the single site is captured by a

hybridization function, which describes the ability of electrons to enter or leave the single

site and thus allow the site to make transitions between different configurations. So the

hybridization function can be seen as the mean-field, however it is now not only a number

anymore but a function of frequency and therefore we can call it dynamical mean-field.

In the single band Hubbard model each site can undergo transitions between the four

possible quantum states |0〉, |↑〉, |↓〉 and |↑↓〉 by exchanging electrons with the bath. The

model of a single site coupled to a bath of non-interacting electrons corresponds to the

well studied single-site Anderson impurity model (SIAM) [15], that can be solved much

easier than the original model by various numerical methods.

Bath

Figure 2.1: DMFT replaces the original lattice problem by a single site coupled to a
bath.

Within DMFT, the Hamiltonian (2.1) can be mapped onto a SIAM, where (d̂σ, d̂
†
σ) are

particle operators for an impurity orbital and the bath can be seen as a conduction band

described by (âkσ, â
†
kσ):

ĤAIM =
∑

k,σ

εkâ
†
kσâkσ

︸ ︷︷ ︸
free bath states

+
∑

k,σ

Vk(â
†
kσd̂σ + d̂†σâkσ)

︸ ︷︷ ︸
hybridization

+
∑

σ

ε0d̂
†
σd̂σ + Un̂d↑n̂d↓

︸ ︷︷ ︸
local many-body interaction

(2.2)

The first term is the energy of bath with energy levels εk, the second term describes the

hybridization between the bath and the impurity with Vk being the quantum mechanical

amplitude for electrons hopping in or out of the impurity site. The third term denotes

the energy of the impurity and the last term gives the local Coulomb interaction for
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the impurity with particle number operators n̂dσ = hatd†σd̂σ. Note that the Coulomb

interaction is considered only locally on the impurity site. The index k is a degree of

freedom of the electronic states of the bath. It should be mentioned that the εk’s are

effective parameters that should not be confused with the single-particle energies εq of

the original lattice model (εq is the Fourier transform of the hopping amplitude tij).

We are interested in the dynamics of the impurity orbital and therefore in finding the

Greens function of the impurity. In the Feynman path integral representation the Green

function of the impurity cab be written as:

Gimp(τ − τ ′) = −〈T̂τ d̂σ(τ)d̂†σ(τ ′)〉 =
1

Z

∫
D[d̂†σ, d̂σ]d̂†σ(τ ′)d̂σ(τ)e−S (2.3)

with the imaginary-time action S. Since we are focusing on the dynamics of the impurity

orbital and the Hamiltonian is quadratic in the bath operators (âkσ, â
†
kσ), the bath degrees

of freedom can be integrated out. This leads to the local effective action for the impurity

orbital:

Seff = −
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′d̂†σ(τ)G−1
0 (τ − τ ′)d̂σ(τ ′) + U

∫ β

0

dτn̂d↑(τ)n̂d↓(τ) (2.4)

where G0(τ − τ ′) is the effective non-interacting bath Green function that can be seen as

the bare propagator for an electron created on the impurity at imaginary time τ (coming

from the external bath) and destroyed at imaginary time τ ′ (going back to the bath). It

contains all the information about the structure of the bath and is in the literature also

refereed to as the Weiss effective field as comparison to the classical model. The Fourier

transform of this propagator can be written in the general form

G−1
0 (iωn) = iωn − ε0 + µ−∆(iωn), (2.5)

where the hybridization of the impurity orbitals with the effective bath is described by

the hybridization function ∆(iωn)

∆(iωn) =
∑

k

|Vk|2
iω − εk + µ

. (2.6)

It is decisive for the mapping that the hybridization function ∆(iωn) is chosen such that

the impurity model reproduces the exact local Green function of the lattice model. In

other words G0(iωn) has to be determined such that, when inserted in the Anderson model,
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the resulting interacting impurity Greens function Gimp(iωn) obeys a self-consistency con-

dition. This self-consistency condition requires the impurity Green function to coincide

with the on-site local Green function of the lattice G(iωn) =
∑

kG(k, iωn):

Gimp(iωn)
!

= G(iωn) =
∑

k

G(k, iωn) (2.7)

If this condition is fulfilled the Hamiltonian (2.2) serves as a reference system for the

Hubbard model (2.1). This mapping of a lattice model onto a quantum impurity model

is the decisive part of DMFT.

2.2 Dynamical mean-field equations

In order to get all the necessary equations for the whole DMFT procedure we start with

the key quantity of DMFT. To study the problem we introduce the one-particle lattice

Green function

Gσ
ij(τ − τ ′) = −〈T̂τ ĉiσ(τ)ĉ†jσ(τ ′)〉 . (2.8)

A Fourier transform and summation over all k-values lead to the local Green function of

the lattice as the key quantity of DMFT:

G(iωn) = Gii(iωn) =
∑

k

G(k, iωn) =
∑

k

1

iωn − εk + µ− Σ(iωn)
(2.9)

where ωn = (2n+ 1)π/β are the Matsubara frequencies with β the inverse temperature.

Again the idea of DMFT is to identify the on-site Green Function of the lattice G(iωn)

with the Green function of an effective single impurity model which has the same on-site

Coulomb interaction as in the Hubbard model.

Gσ(iωn) = Gσ
imp(iωn) (2.10)

The corresponding impurity model for the Hubbard model is the single impurity Anderson

model (2.2). The effective dynamics at the impurity are conveniently described in terms

of an imaginary-time action, which takes into account the retardation effects of electrons

hopping in and out of the single site.

Seff = −
∑

σ

∫ β

0

dτ

∫ β

0

dτ ′d̂†σ(τ)G−1
0 (τ − τ ′)d̂σ(τ ′) + U

∫ β

0

dτn̂d↑(τ)n̂d↓(τ) (2.11)
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Again we like to mention that G0(τ − τ ′) is the equivalent to the Weiss effective field in

the classic case, with the main difference that it is a function of time (or a function of

frequency in the Matsubara representation respectively) instead of a single number. It

therefore fully accounts for local quantum fluctuations of the impurity due to the coupling

with the bath of electrons. However spatial fluctuations are neglected in this description.

Equivalent to the local on-site Green function of the lattice we can introduce the impurity

Green function that can be calculated from the effective action:

Gimp(τ − τ ′) = −〈T̂τ d̂σ(τ)d̂†σ(τ ′)〉Seff
(2.12)

A Fourier transform yields the Matsubara Green function Gimp(iωn):

Gimp(iωn) =

∫ β

0

dτGimp(τ)eiωnτ (2.13)

The non-interacting bath Green function G0(iωn) of the SIAM is connected to the lo-

cal lattice Greens function G(iωn) of the Hubbard model and the impurity self energy

Σimp(iωn) via the Dyson equation (For simplicity we skip the spin index σ from now on.):

G−1
0 (iωn) = G−1(iωn) + Σimp(iωn) (2.14)

Solving the impurity model (i.e. solving Seff) defined by the bath Greens function G0(iωn)

is the main difficulty in the whole process and can be done by various numerical methods

we will discuss later. From the solution of the impurity model we are getting Gimp(iωn)

and Σimp(iωn). The impurity self-energy is now used as an approximation of the lattice

self-energy.

Σ(k, iωn) ≈ Σ(iωn) = Σimp(iωn) (2.15)

Considering the lattice self-energy as purely local is the main approximation within the

DMFT scheme and allows us to reduce the lattice problem to a quantum impurity model.

A local self-energy of the lattice implies that the effective mass, coherence temperature

and lifetimes are constant along the Fermi surface. The approximated self-energy is used

to determine the local lattice Green function.

G(iωn) =
∑

k

1

iωn − εk + µ− Σimp(iωn)
(2.16)

This equation is used in the self-consistency condition, requiring that the on-site lo-

cal Green function of the lattice G(iωn) coincides with the impurity Greens function
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Gimp(iωn). For more details on DMFT one can refer to the reviews [16, 17, 18].

2.3 The DMFT self-consistent iterative loop

The equations from the previous section can be regarded as system of equations for

the unknown functions G0(iωn) and Σimp(iωn). The system is solved iteratively till self-

consistency is achieved, where at every iteration the following steps are performed:

1. At first an input value for the self-energy Σ(iωn) is set and from this the lattice

Green function G(iωn) is calculated with equation (2.9).

2. Form the Dyson equation (2.14) the bath Green function G0(iωn) is obtained.

3. The SIAM defined by G0(iωn) is solved to get the interacting impurity Green func-

tion Gimp(iωn) and the impurity self-energy Σimp(iωn).

4. The lattice self-energy is approximated by the impurity self-energy and equation

(2.16) is used to obtain a new lattice Green function G(iωn), which closes the self-

consistent loop.

EFFECTIVE LOCAL
IMPURITY PROBLEM

Effective bath
G−1

0 = Σloc + G−1
loc

Dyson equation
Σimp = G−1

0 − G−1
imp

Self-consitency condition
Gloc = Gimp

DMFT Approximation
Σloc = Σimp

Calculate local lattice GF

Gloc =
∑

k

1

iωn − εk + µ− Σloc

Gimp

Σimp

ΣlocGloc

Gloc

G0

Figure 2.2: The DMFT self-consisted iterative loop.

The iteration loop runs until the self-energy Σ(iωn) for step 1 will to some accuracy

become equal to the output value from step 3. The whole DMFT calculation scheme for

the Hubbard model is defined by those steps.



Chapter 3. Dynamical Mean Field Theory 21

It is worth to note that instead of the non-interacting energy spectrum εk of the lattice

the corresponding density of states ρ0(ε) may be used to calculate the local lattice Green

function G(iω):

G(iωn) =

∫
dε

ρ0(ε)

iωn − ε0 + µ− Σ(iωn)
(2.17)

where the density of states is defined as:

ρ0(ε) =
∑

k

δ(ε− εk) (2.18)

In our derivation the Green functions are always defined on imaginary Matsubara fre-

quencies iωn like the Green function above. For getting values on the real axis we need

to perform an analytical continuation from discrete imaginary frequencies to real fre-

quencies. The procedure for this analytical continuation is described in one of the next

sections. From the transformation iωn → ωn + iδ we obtain the local retarded Green

function G(ω):

G(iωn → ω + iδ) = G(ω) = <[G(ω)] + i=[G(ω)] (2.19)

From the local retarded Green or rather from its spectral function A(ω), all single particle

properties of the system can be obtained (e.g. the density of states).

A(ω) = − 1

π
=[G(ω)] (2.20)

Rewriting this expression the spectral function can also be calculated from the self energy:

A(ω) = − 1

π

∑

k

=[Σ(ω)]

(ω − εk + µ−<[Σ(ω)])2 + =[Σ(ω)]2
(2.21)

2.4 Limits in which DMFT becomes exact

DMFT leads to the exact solution in these three simple limits:

1. In the limit of infinite space dimensions d→∞: This is equivalent to the limit of

infinite coordination number z. In this limit the lattice self-energy becomes purely

local, i.e. does not depend on momentum k and the DMFT approximation (2.15)

becomes exact.

Σ(k, iωn)
d→∞−−−→ Σ(iωn) or Σij(iωn)

d→∞−−−→ δijΣ(iωn) (2.22)
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k-independence of the self-energy in real space representation means that the matrix

Σij(iωn) becomes diagonal.

2. In the non-interacting limit U = 0, the self-energy vanishes. Solving the effective

action (2.11) yields G(iωn) = G0(iωn) and from the the self-consistency condition,

G(iωn) reduces to the non-interacting local Green function making the DMFT ap-

proximation exact.

3. In the atomic limit tij = 0, there is no hopping between the sites and the Hubbard

model describes a collection of isolated sites. Therefore the lattice self-energy only

has on-site components. In the Anderson model the hybridization function ∆(iωn)

vanishes, leading to the problem of an isolated impurity. Since there is no particle

exchange with the bath anymore the effective action becomes local in time making

the DMFT approximation exact.

Since DMFT is exact in the limits two and three which are the weak and the strong

coupling limits, it may be seen as a reasonable approximation also in the intermediate

region.

2.5 Solving the single impurity Anderson model

A crucial step within the DMFT scheme is to reliably solve the quantum impurity model.

There exists various techniques to solve the SIAM, such as quantum Monte Carlo (QMC)

simulations based on the Hirsch-Fly algorithm, numerical renormalization group (NRG)

or iterative perturbation theory (IPT). While the Hirsch-Fye algorithm is very popular it

has the time discretization as an essential drawback. The discretization can become very

large with lowering the temperature leading to a severe discretization error. Recently

new continuous-time quantum Monte Carlo (CT-QMC) methods were developed to solve

the quantum impurity model without time discretization [19, 20]. Applications of QMC

to fermionic lattice problems are limited by a severe sign problem, however, CT-QMC

turned out to be a very powerful tool for solving fermionic impurity models where it has

a much less severe sign problem or in some cases the sign problem is even absent. In this

work only CT-QMC is used in the calculations and will be described in more detail.
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Continuous-time quantum Monte Carlo

In general a quantum impurity model may be written as a Hamiltonian consisting of three

basic terms:

ĤQIM = Ĥloc + Ĥbath + Ĥhyb (2.23)

The impurity Ĥloc, usually a system with a rather small number of degrees of freedom

described by the operators (d̂σ, d̂
†
σ), the non-interacting bath Ĥbath described by (âσ, â

†
σ)

and the coupling term between the impurity and the bath Ĥhyb.

The main advantage of continuous-time methods is to avoid the regular discretization of

the thermodynamic time interval 0 ≤ τ ≤ β. This avoids time-discretization allows to

treat the problem for arbitrary large β values and therefore to investigate low-temperature

regions.

The basic idea is to split the Hamiltonian H = Ha + Hb into two parts and to write the

partition function Z in the interaction representation with respect to Ha and expand in

powers of Hb.

Z = Tr[Te−βHae−
∫ β
0 dτHb(τ)]

=
∑

k

∫ β

0

dτ1 . . .

∫ β

τk−1

dτk
(−1)k

k
Tr
[
e−βHaHb(τk) . . . Hb(τ1)

] (2.24)

Monte Carlo configurations are now represented as segments {τi, τj} which continuously

fill the imaginary time interval, and τi and τj are chosen stochastically. There are basi-

cally two versions of CT-QMC: The weak-coupling expansion where the expansion of the

partition function is done in powers of the interaction term HI
loc, and the hybridization

expansion where the expansion is done in powers of the hybridization term Hhyb.

In this work we use an implementation of the hybridization expansion based on the seg-

ment representation. In this approach, Monte Carlo configurations consist of a sequence

of creation and annihilation operators, and thus represent a sequence of hybridization

events (electrons hopping from the bath to the impurity or back into the bath). The hy-

bridization expansion approach is particularly well suited for the multi-orbital impurity

problems that typically appear in LDA+DMFT calculations. The advantage is that arbi-

trary complicated impurity interactions can be treated, although the number of orbitals

is limited by the exponential growth of the local Hilbert space. For further details we

refer the reader to [21].
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Real materials and interactions

For real material calculations, impurity models with more degrees of freedom are used.

This is because of a more complicated structure of the interactions, therefore we need

more degrees of freedom to describe the richer variety of physical phenomena. For example

in our case, where we study transition metal materials with partially filled d-shells, not

only the density-density Coulomb interaction but also the Hund’s rule physics is relevant

for an adequate description of these materials. The Hund’s rule says that configurations

with maximal spin and orbital angular momentum are preferred.

The interaction Hamiltonian to describe different configurations of electrons in the d-

orbitals of the studied materials in general consists of 2-particle terms like Uijklĉ
†
i ĉ
†
j ĉlĉk:

Ĥloc =
∑

ijkl

Uijklĉ
†
i ĉ
†
j ĉlĉk (2.25)

Uijkl are the screened Coulomb matrix elements. For d-electrons this interaction matrix

elements are typically expressed in terms of the three Slater integrals F0, F2 and F4

with U = F0 (direct Coulomb interaction, Hubbard U) and J = 1
14

(F2 + F4) (exchange

Coulomb interaction, Hund’s exchange J). The third parameter is set by the atomic ratio
F4

F2
= 0.625.

In practice, however, often only density-density interactions Umm′n̂m(r)n̂m′(r) are taken

into account because of technical reasons when using QMC solvers. In this case the

configuration can be represented by the segment picture [20] which is numerically more

efficient and therefore much faster.

Furthermore the definition of the Hubbard U and Hund’s exchange J is a crucial task.

One needs to consider screening effects that play a major role in real materials. Starting

from a huge unscreened value (e.g. U = 10 − 20 eV) the effective value may be much

smaller (U ∼ 4 eV) due to screening effects.

2.6 Maximum entropy method

Since QMC is formulated in imaginary time τ and discrete imaginary Matsubara frequen-

cies iωn, dynamical information (e.g. the spectral function A(ω)) on the real axis can

only be obtained from analytic continuation of the QMC data. In particular we need

to perform an analytical continuation of the Green function G(iωn) or the self energy
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Σ(iωn). The spectral function on the real axis is linked to the imaginary time Green

function via:

G(iωn) =

∫ ∞

−∞
dω′

A(ω′)

iωn − ω′
G(τ) =

∫ ∞

−∞
dω

e−τω

1 + e−βω
A(ω) (2.26)

In the QMC simulations the Green function G(iωn) is measured and may deviate from

the exact Green function by statistical and systematic errors. In principle we need to

invert the spectral representation of G(iωn) to obtain A(ω), however, this inversion is

ill-conditioned. This is because the fermion kernel K(τ, ω) = e−τω

1+e−βω
becomes exponen-

tially small at large frequencies. Therefore small changes of the Green function in this

frequency region may have a huge effect on A(ω). Hence, from QMC data G(iωn) the

spectral function A(ω) can be calculated accurately only for small frequencies and there

exists an infinite number of spectral functions that fulfill Eq. (2.26).

In this work a stochastic maximum entropy method is used to do the analytical con-

tinuation. This MaxEnt method is based on the Bayesian statistics and finds the most

probable solution out of all possible solutions that are consistent with the QMC data.

For further details on MaxEnt we refer the reader to [22].
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Charge Self-Consistent LDA+DMFT

3.1 Merging conventional band structure calculations

with DMFT

To be able to correctly describe the electronic structure of strongly correlated materi-

als a method has been developed that combines density functional theory, mainly in

its local density approximation (LDA), and dynamical mean-field theory (DMFT). This

LDA+DMFT method [18, 23, 24, 25] includes the advantages of the LDA, which gives a

good ab-initio description for weakly correlated materials, with the correct treatment of

the local correlations within DMFT. The basic idea is to divide the electrons in the ma-

terial into two groups [26]: weakly correlated electrons (i.e. electrons in s- and p-orbitals)

that are well described in the local-density approximation (LDA), and strongly corre-

lated (or more localized) electrons (i.e. d- and f -orbitals) well described using DMFT.

The model Hamiltonian for the DMFT is then constructed for the correlated subset C.
The next step is to find a suitable basis set for the correlated subspace C. Since DMFT

includes local correlations, a local basis set is needed. Wannier functions as introduced

in Ref. [27] are an adequate choice for such a basis.

The full-orbital Kohn-Sham Hamiltonian from LDA is then projected onto the correlated

subspace of the partially filled orbitals. To this Hamiltonian ĤKS we add many-body

terms ĤU for the on-site Coulomb interaction U and Hund’s coupling J , which act only

on the subset of correlated orbitals. Since some correlations are already included in the

LDA treatment we further need to subtract a double counting correction ĤDC. Finally

27



Chapter 4. Charge Self-Consistent LDA+DMFT 28

we obtain a model Hamiltonian of the form:

Ĥ = ĤKS − ĤDC︸ ︷︷ ︸
one-electron Hamiltonian H0

+ĤU (3.1)

This model Hamiltonian is then treated within DMFT. The self-consistency in this scheme

includes two iteration loops, one for the LDA and the other for the DMFT. We can either

perform this loops simply one after another (single-shot calculation, see Fig. 3.1) or we

can use a total charge self-consistent scheme where we also start from a converged LDA

calculation, but after every DMFT loop we calculate the local density ρ(r) from the full

Green function in the local basis and use this density as a new starting point for a LDA

cycle until a converged local density is also reached. Only this second scheme is fully

self-consistent.

DFT - Local Density Approximation ρ(r)

Model Construction:
- Wannier basis

- interaction parameters
- double counting

DMFT Σ(ω)DMFT Σ(ω)

DFT - Local Density Approximation ρ(r)

Figure 3.1: Flow chart of a single-shot LDA+DMFT calculation. Two separate self-
consistent loops over the charge density ρ(r) and the self-energy Σ(ω) are involved.

3.2 Projection onto the correlated subspace

In this thesis we use a projection procedure on Wannier functions within the (L)APW+lo

framework introduced in [27]. For this procedure we start from a set of orthonormal local

orbitals |χασm 〉 defined in the unit cell, where α specifies the atom in the unit cell, m is
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an orbital index of the correlated subspace, and σ is the spin degree of freedom. These

orbitals are then expanded over the Bloch basis set |ψσkν〉 which is an output of the

electronic structure calculation and is used to describe lattice quantities:

|χ̃ασkm〉 =
∑

ν

〈ψσkν |χασm 〉 |ψσkν〉 (3.2)

This leads to a complete basis when the sum runs over all Bloch states of the system. But

since we are only interested in a basis for the correlated subspace we need to truncate

the expansion. Therefore one first has to define a suitable energy window W = [ε1, ε2]

for the relevant Bloch states. The choice of the energy window is an important issue,

because it determines the shape and the degree of localization of the Wannier functions.

In general the more bands are included the more localized the Wannier functions become.

To capture hybridization effects of the correlated orbitals with other states, e.g. the Mn-

d- with the As-p-orbitals in BaMn2As2, one should take a lager energy window that also

contains the Bloch states of the uncorrelated p-orbitals. Therefore the energy windowW
is often chosen to be larger and the dimension of the Kohn-Sham Hamiltonian used in

LDA+DMFT exceeds that of the correlated subspace C. After finding a suitable energy

window W the summation in 3.2 is then restricted to Bloch states inside this energy

window.

|χ̃ασkm〉 =
∑

ν∈W

〈ψσkν |χασm 〉 |ψσkν〉 (3.3)

The number of included bands will in general depend on k and σ. However, due to the

truncation the reduced Bloch basis used in the summation is not complete anymore. As

a result the set of orbitals |χ̃ασkm〉 is not orthonormal. To finally get a set of orthonormal

Wannier functions we need to perform a Löwdin orthonormalization of the Wannier-like

functions |χ̃ασkm〉:

|wασkm〉 =
∑

α′m′

Sαα
′

mm′

∣∣∣χ̃α′σkm′

〉
(3.4)

Now we have a full orthogonal basis set and can denote the projection operator for the

Wannier functions:

Pασ
k =

∑

m∈C

|wασkm〉 〈wασkm| (3.5)
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The matrix elements of the projection operator connecting the Bloch basis with the

Wannier basis reads as

Pασ
mν(k) = 〈wασkm |ψσkν〉 . (3.6)

3.3 The LDA+DMFT equations

The DMFT equations have to be solved iteratively. The multi-orbital impurity problem

as the most challenging part is defined for the correlated subspace C by the bath Green

function G0 and the local interaction parameters U and J . Assuming we have already

solved the Kohn-Sham problem we can construct the Kohn-Sham Green function as

GKS
νν′(k, iωn) =

δνν′

iωn + µ− εkν
. (3.7)

As initial guess for the bath Green function G0 the projection of the KS Green function

on the correlated subspace is used (for simplicity we omit the indices α and σ in this

part),

G0
mm′(iωn) =

∑

k,νν′

Pmν(k)GKS
νν′(k, iωn)P ∗ν′m′(k), (3.8)

which, together with Hloc, defines the multi-orbital impurity problem. The solution of the

impurity model leads to the impurity Green function Gimp
mm′(iωn). The impurity self-energy

Σimp
mm′(iωn) is obtained via the Dyson equation:

Σimp
mm′(iωn) = [G0(iωn)]−1

mm′ − [Gimp(iωn)]−1
mm′ (3.9)

In the DMFT Approximation the lattice self-energy Σ(k, iωn) for the correlated states

is approximated by the impurity self-energy, which relates the impurity model to the

lattice. Therefore we upfold the impurity self-energy into the Bloch basis that is used as

the complete basis of the problem.

Σνν′(k, iωn) =
∑

α,mm′

P ∗νm(k)[∆Σimp
mm′(iωn)]Pm′ν′(k) (3.10)

where ∆Σimp
mm′(iωn) = Σimp

mm′(iωn) − Σdc
mm′(iωn). At this step we subtracted the double-

counting correction that will be discussed later. The lattice self-energy is now used to
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calculate the lattice Green function of the solid in the Bloch basis:

[G(k, iωn)]−1
νν′ = (iωn + µ− εkν)δνν′ − Σνν′(k, iωn) (3.11)

From that we obtain the local Green function by projecting the lattice GF to a set of

correlated orbitals m of the correlated atom α and summing over the full Brillouin zone.

Gloc
mm′(iωn) =

∑

k,νν′

Pmν(k)Gνν′(k, iωn)P ∗ν′m′(k) (3.12)

The DMFT self-consistency condition requires that the local Green function of the lattice

coincides with the impurity Green function

Gloc
mm′(iωn) = Gimp

mm′(iωn) (3.13)

A new bath Green function G0 for the impurity model is constructed from the Dyson

equation:

[G0(iωn)]−1
mm′ = Σimp

mm′(iωn) + [Gloc(iωn)]−1
mm′ (3.14)

which closes the DMFT loop.

Charge density update

Due to charge transfer between bands treated within DMFT, also the the chemical poten-

tial may be shifted. In particular the real part of the self energy is an effective contribution

to the chemical potential. That means that at fixed chemical potential there would be a

change of electron count. Therefore we need to adjust the chemical potential such that

the resulting charge density ρDMFT holds the correct total number of electrons N

Correlation effects treated within DMFT therefore also affect the local electronic den-

sity. In a complete implementation, self-consistency over the charge density used in LDA

should also be reached. Within such an implementation the charge densities that emerge

from LDA ρLDA and from DMFT ρDMFT are combined to one self-consistently deter-

mined charge density ρLDA+DMFT . In this manner, self-energy effects that occur due to

DMFT can be coupled back onto the LDA calculation and thus onto bands outside of the

correlated subspace.

The local density ρDMFT for the energy window W can be calculated from the full lattice
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Green function Gνν′(k, iωn) via the density matrix Nk
νν′ :

Nk
νν′ =

∑

n

Gνν′(k, iωn)eiωn0+

(3.15)

ρDMFT(r) =
∑

k,νν′

〈r |ψkν〉Nk
νν′ 〈ψkν′ | r〉 (3.16)

where ψkν are the KS eigenstates within the energy window W . The total electronic

density is obtained from the contributions inside and outside the energy window:

ρ(r) = ρDMFT(r) + ρLDA(r) (3.17)

From the charge density a new Kohn-Sham potential vKS[ρ(r)] can be calculated starting

a new cycle in a fully charge self-consistent implementation. One of the main advantages

of the charge self-consistency is the possibility to calculate the total energies in the for-

malism. Although the total energy is a natural output quantity of DFT, the one-shot

LDA+DMFT post-processing schemes have no direct access to it. The importance of

charge self-consistency was shown e.g. for an accurate calculation of the total energy in

[28]. The general structure of DMFT with LDA as well as the iterative procedure used

in practice is summarized in Fig. 3.2.

3.4 Double-counting corrections

A problem in the construction of the model Hamiltonian for DMFT from LDA is that

LDA already takes into account a significant part of the electronic correlations that is

again included in explicit many-body methods. Therefore this double-counting has to

be corrected for LDA+DMFT calculations. However, since DFT itself is not an orbital-

resolved theory and LDA is not a well-controlled approximation, an exact formulation

of this double-counting correction does not exist. All double counting schemes basically

subtract an averaged energy for the occupation of a selected reference state depending

only on Nσ. Here the two most common approximations, which are the around mean

field (AMF) and the full localized limit (FLL), are introduced.
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DFT part (wien2k)

from ρ(r) construct vKS

and solve Kohn-Sham euqations

⇒ εkν , ψkν(r)

DMFT prelude (dmftproj)

Wannier basis |wkm〉
Projectors Pmν(k) = 〈wkm |ψkν〉
⇒ Ĝ0mm′ =

(
Σmm′ + (Gloc

mm′)−1
)−1

Impurity Solver (CT-QMC)

Ĝ0mm′ ⇒ Gmm′(iωn), Σmm′(iωn)

Converged?

ρLDA+DMFT ⇒ vKS

ρ update

adjust chemical potential µ and
compute new density:

Nk
νν′ =

∑

n

Gνν′(k, iωn)eiωn0
+

ρDMFT(r) =
∑

k,νν′

〈r |ψkν〉Nk
νν′ 〈ψkν′ | r〉

Green’s function (triqs)

construct Gloc
mm′ from lattice GF Gνν′

Gνν′(k, iωn) = [(iωn + µ− εkν)δνν′ − Σνν′(k, iωn)]
−1

Gloc
mm′(iωn) =

∑

k,νν′

Pmν(k)Gνν′(k, iωn)P ∗
ν′m′(k)

Figure 3.2: Flow chart of the LDA+DMFT charge self-consistent scheme.

Fully Localised Limit (FLL)

The fully localised limit (FLL) [29] was originally developed for the LDA+U method.

It is argued that the LDA contribution acts on the correlated shell in the form of an

electrostatic energy. The idea of the FLL is now that the LDA solution corresponds

to the fully localised solution of the Hubbard model. Thus, the FLL is often used for

insulating systems close to the atomic limit.

Edc
FLL =

U

2
N(N − 1)− J

2

∑

σ

Nσ(Nσ − 1) (3.18)

where N is the total electronic charge of the impurity problem with N = N↑ +N↓. The

corresponding potential reads:

Σdc
mm′ =

[
U(N − 1

2
)− J(Nσ −

1

2
)

]
δmm′ (3.19)
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Around Mean Field (AMF)

A similar idea has lead to the around mean field (AMF) approximation [29] which also

originates from LDA+U. Here it is assumed that LDA corresponds to a solution in which

the occupation numbers are orbital-independent, and thus an orbital-averaged value is

used. With the total number of 2l + 1 orbitals per atom we get:

Edc
AMF =

U

2
N2 − 1

2l + 1

(
U

2
+ lJ

)∑

σ

N2
σ (3.20)

For the corresponding potential we get:

Σdc
mm′ =

[
U(N − 〈nσ〉)− J(Nσ − 〈nσ〉)

]
δmm′ (3.21)

where 〈nσ〉 is the average electron density per spin and orbital, i.e. 0.5 for a half-filled

system. In general AFM is better suited for metals. The difference between AMF and

FLL vanishes for half-filled systems and takes its maximum value of U−J for a completely

filled or completely empty system.

In our formalism we treat the DC correction on the level of the self energy. The real part of

the self energy acts as a contribution to the chemical potential which itself is determined

by the number of electrons in the system. After every DMFT loop the chemical potential

is set such that the system holds the correct number of electrons. So the DC correction

results in an energy shift of the spectrum of the correlated orbitals relative to all other

bands. It is important to note that the DC correlation acts on the correlated orbitals

only which in the case of manganese pnictides are the Mn-3d bands.

3.5 LDA+DMFT output

The basis output from LDA+DMFT is the self-energy Σmm′(iωn) and the Green function

Gmm′(iωn) of the correlated subspace. As in Eq. (3.10) the self-energy matrix Σmm′(iωn)

can be upfolded to a self-energy in the full Hilbert space Σνν′(k, iωn), since the projec-

tion matrix between the full orbital basis set and the reduced Wannier basis retains all

information on the orbitals below and above the projected energy window. From the

self-energy in the full Hilbert space Σνν′(k, iωn) one can calculate the full orbital Green
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function Gνν′(k, iωn). However, since we are interested in observable quantities an ana-

lytical continuation onto the real frequency axis has to be done. In this work we use the

maximum entropy method to perform the transformation: iωn → ω + iδ. The maximum

entropy method is introduced in chapter 2.6. From MaxEnt the real frequency Green

function is obtained and one can calculate the k-resolved spectral function A(k, ω) (as

well as the k-integrated spectral function A(ω)):

A(k, ω) = − 1

π
=Tr[G(k, ω + iδ)] (3.22)

The spectral function contains the full information about the system and combines the

weakly interacting orbitals (s- and p-orbitals) calculated with LDA and the strongly

correlated orbitals (e.g., d-orbitals) computed with LDA+DMFT.
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Chapter 4

BaMn2As2

4.1 Introduction and crystal structure

The recent discovery of high-temperature superconductivity in the ironbased pnictides,

e.g. LaOFeAs [30] and BaFe2As2 [31, 32, 33], has led to a a lot of experimental and

theoretical work with the goal of a better understanding of the properties in these mate-

rials. This thesis is aimed at manganese-based compounds with crystal structures similar

to the iron-based pnictide superconductors. At first we are focusing on the interesting

BaMn2As2 compound that crystallizes in the tetragonal I4/mmm (ThCr2Si2-type) struc-

ture, shown in Fig. 4.1, and is isostructural to BaFe2As2 (parent compound of the 122

iron arsenide family). The crystal structure in this material is built from charged [Ba]δ+

layers alternating with [MnAs]δ− layers. The Mn ions form a square lattice sandwiched

between two shifted As sheets. Experiments show that BaMn2As2 is an antiferromagnetic

(AFM) insulator with a small band gap, while BaFe2As2 is an antiferromagnetic metal

at low temperatures [34]. BaMn2As2 is therefore unique compared to the other BaX2As2

(X =Fe or Cr) compounds which are all metals. From neutron diffraction measurements

the AFM ground state of BaMn2As2 was found to be of a Néel type (G-type) with an

ordering temperature of TN = 625 K and an ordered magnetic moment of µ = 3.9 µB/Mn

(at 10 K) oriented along the c axis [35] where µB is the Bohr magneton. In contrast, the

metallic ground state of BaFe2As2 is of a stripe AFM order below TN = 140 K with a

magnetic moment of µ = 0.9 µB/Fe [36, 37]. Furthermore the magnetic phase transition

in BaFe2As2 coincides with a tetragonal to orthorhombic structural distortion that is

driven by magnetic interactions.

39
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The ordered magnetic moment per Mn and the Néel temperature of BaMn2As2 is substan-

tially larger than of the isostructural compound BaFe2As2 leading to drastically different

properties although Mn ([Ar]4s23d5) and Fe ([Ar]4s23d6) are lying next to each other in

the periodic system and from a conventional band structure point of view have similar

electronic properties (Mn has one electron less than Fe).

Magnetic order in BaMn2As2 from neutron diffraction measurements

Yogesh Singh,1 M. A. Green,2,3 Q. Huang,2,3 A. Kreyssig,1 R. J. McQueeney,1 D. C. Johnston,1 and A. I. Goldman1

1Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
2NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

3Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
�Received 22 July 2009; published 14 September 2009�

Neutron diffraction measurements have been performed on a powder sample of BaMn2As2 over the tem-
perature T range from 10 to 675 K. These measurements demonstrate that this compound exhibits collinear
antiferromagnetic ordering below the Néel temperature TN=625�1� K. The ordered moment �
=3.88�4��B /Mn at T=10 K is oriented along the c axis and the magnetic structure is G type, with all
nearest-neighbor Mn moments antiferromagnetically aligned. The value of the ordered moment indicates that
the oxidation state of Mn is Mn2+ with a high spin S=5 /2. The T dependence of � suggests that the magnetic
transition is second order in nature. In contrast to the closely related AFe2As2 �A=Ca, Sr, Ba, and Eu�
compounds, no structural distortion is observed in the magnetically ordered state of BaMn2As2. Our results
indicate that while next-nearest-neighbor interactions are important in the AFe2As2 materials, nearest-neighbor
interactions are dominant in BaMn2As2.

DOI: 10.1103/PhysRevB.80.100403 PACS number�s�: 75.25.�z, 75.30.Kz, 75.50.Ee

BaMn2As2 crystallizes in the tetragonal ThCr2Si2-type
structure, shown in Fig. 1, and is isostructural to the AFe2As2
�A=Ba, Sr, Ca, and Eu� family of compounds which display
coupled antiferromagnetic �AF� and structural transitions.1–10

Superconductivity is observed in the AFe2As2 compounds on
doping at the A site,11–14 by in-plane doping at the Fe
site,15–17 or by application of external pressure.18–21 The
magnetic, thermal, and electronic properties of single crys-
tals of BaMn2As2 have been reported recently.22,23 In con-
trast to the AFe2As2 materials, BaMn2As2 has an insulating
ground state.22,23 Magnetization measurements on single
crystals suggested that BaMn2As2 has a collinear AF ground
state with the easy axis along the c axis and with a high Néel
temperature TN�395 K and shows no structural distortion
at 300 K.23 BaMn2As2 is, therefore, unique compared to the
other BaM2As2 �M =Cr and Fe-Cu� compounds which are all
metals with itinerant magnetic interactions or ordering.24 We
have previously suggested23 that the magnetic and electronic
properties of BaMn2As2 are intermediate between those of
the itinerant antiferromagnets AFe2As2 mentioned above,24

and the local moment antiferromagnetic insulator
La2CuO4,25 both of which are parent compounds for high-
temperature superconductors. It is thus important to deter-
mine the actual magnetic structure of BaMn2As2, the value
of the ordered moment, the Néel temperature, and the ther-
modynamic order �continuous or discontinuous� of the mag-
netic phase transition and compare these properties with the
magnetism found in the AFe2As2 and La2CuO4 compounds
to try to understand the relation between magnetism and su-
perconductivity in these materials.

Herein we report neutron diffraction measurements on a
powder sample of BaMn2As2 that answer these questions.
We find that BaMn2As2 becomes antiferromagnetically or-
dered below a high Néel temperature TN=625�1� K and
with a refined ordered moment of 3.88�4��B �at temperature
T=10 K� oriented along the c axis. The magnetic structure is
found to be G type, a collinear antiferromagnetic structure in
which nearest-neighbor �NN� spins in the tetragonal basal
plane are antiparallel and successive planes along the c axis
are also antiferromagnetically aligned. The temperature de-

pendence of the ordered moment suggests that the magnetic
ordering is second order in nature. There is no detectable
structural transformation or distortion in the magnetically or-
dered state. These properties will be compared with the
AFe2As2 compounds.

A polycrystalline sample �4.8 g� of BaMn2As2 was pre-
pared through solid-state synthesis by reacting small pieces
of Ba metal with prereacted MnAs taken in the ratio
Ba:MnAs=1.05:2. Extra Ba was used in the starting com-
position to compensate for the loss of Ba due to evaporation
and also to avoid the formation of the MnAs phase �a ferro-

c

a

b

Ba

Mn
As

FIG. 1. �Color online� The crystallographic and the magnetic
structures of BaMn2As2. The arrows on the Mn atoms represent the
G-type arrangement of the Mn2+ spins in the antiferromagnetically
ordered state.
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Figure 4.1: Crystal and magnetic structure of BaMn2As2 with I4/mmm space group
symmetry. The arrows on the Mn atoms represent the G-type arrangement of the Mn2+

spins in the antiferromagnetically ordered state.

In BaFe2As2 superconductivity is achieved by electron or hole doping at the Ba site [31],

by in-plane doping at the Fe site [32] or by the application of external pressure [33].

Superconductivity in this BaFe2As2 based compounds coincides with the disappearance

of the coupled antiferromagnetic and structural transition, therefore is is thought that

spin fluctuations of Fe are important for developing a superconducting ground state. If

the structural and magnetic phase transition is successfully suppressed by e.g. doping,

superconductivity can be found.

From these promising results it was suggested that doping of BaMn2As2 can also lead to

the development of a unconventional superconducting ground state at high TC by inducing

large antiferromagnetic fluctuations. A lot of effort was made and several transition

metals were doped at the Mn site, but it turned out that chemical doping does not have a

decisive influence on the long-ranged AFM order in these Mn-based compounds. However,

achievements were made in turning BaMn2As2 metallic by applying high pressure [38] or
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by hole doping at the Ba-site [39] leading to a antiferromagnetic local-moment metal.

All these unique properties of BaMn2As2 makes it particularly interesting for further

investigations. The goal of this thesis is to better understand the importance of the

electronic correlations within the Mn-d shells on the band structure, using a fully charge

self-consistent LDA+DMFT approach.

BaMn2As2 BaFe2As2

ground state insulating metallic
Néel temperature 625 K 140 K
magnetic moment 3.9 µB/Mn 0.9 µB/Fe

Table 4.1: Experimental results for BaMn2As2 [35] and BaFe2As2 [36, 37]

4.2 ab initio DFT calculations

We are starting with some investigations using conventional band structure calculations

within a full-potential (linearized) augmented plane-wave ((L)APW) + local orbitals

(lo) implementation (wien2k [6]). For the calculations the local density approximation

(LDA) and the generalized gradient approximation (GGA) are used. The lattice param-

eters a = 4.1684 Å, c = 13.4681 Å with internal parameters zAs = 0.3611 for BaMn2As2

[35], and a = 3.9570 Å, c = 12.9685 Å and zAs = 0.3541 for BaFe2As2 [36] are taken from

the literature.

4.2.1 Ground state

We begin the discussion of the density functional investigation with the determination

of the ground state and a structure optimization for the two compounds BaMn2As2

and BaFe2As2. Therefore the total energy was calculated for three cases, the non-spin-

polarized case and the two possible antiferromagnetic orderings, G-type and stripe. Fur-

thermore the total energy calculations were performed for various unit cell volumes, i.e.

different lattice parameters. Finally the total energy was plotted against the relative devi-

ation from the unit cell volume calculated form the experimental lattice parameters. The

minimum of the total energy was determined by fitting the data to the Birch-Murnaghan
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equation of state [40]:

E(V ) = E0 +
9V0B0

16





[(
V0

V

) 2
3

− 1

]3

B′0 +

[(
V0

V

) 2
3

− 1

]2 [
6− 4

(
V0

V

) 2
3

]
 (4.1)

where V0 is the reference volume, V is the deformed volume, B0 is the bulk modulus, and

B′0 is the derivative of the bulk modulus with respect to pressure. The result of the fit is

plotted in 4.2. The most stable ground state is the one with the lowest energy.
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Figure 4.2: Volume optimization for paramagnetic and antiferromagnetic BaMn2As2

and BaFe2As2, fitted with the Birch-Murnaghan equation of state [40]. Zero denotes
the unit cell volume from the experimental lattice parameters. The ground state of
both materials is antiferromagetic but in different magnetic orders. We find G-type
order in BaMn2As2 whereas the ground state of BaFe2As2 is of the stripe-type

.

The calculations confirm that the G-type antiferromagnetic state is the most stable ground

state for BaMn2As2, whereas the stripe-type state is the ground state of BaFe2As2. So

already DFT reproduces the experimental ground states for both materials [35, 36]. Also

it can be seen that the non-spin-polarized case in general leads to smaller lattice param-

eters than the antiferromagnetic cases. Underestimation of lattice parameters is typical

for LDA calculations (overbinding).

We like to give some more comments on the different antiferromagnetic orderings in the

two compounds. Again in the BaFe2As2 compound, the AFM structure was found to be

a stripe structure (a schematic representation of the structure can be found in fig. 4.3).

In this ordering the spin of the nearest-neighbor (NN) is parallel along one basal-plane

axis (the stripe direction) and antiparallel along the other direction. Theoretically it was
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shown that within a local moment Heisenberg interaction picture this structure is stabi-

lized if the the AFM next-nearest-neighbor (NNN) interaction J2 is larger than half the

NN interaction J1 (J2 > J1/2).

On the other hand, in the G-type magnetic structure as observed for BaMn2As2 all NN

spins are antiferromagnetically aligned. Within a local moment picture this already occurs

with NN interactions only, not requiring any NNN interactions. The different magnetic

structures might indicate that NN interactions are dominant in BaMn2As2, whereas NNN

interactions are important in the tetragonal phase of BaFe2As2.

(a) G-type (b) Stripe

Figure 4.3: Schematic top views of two magnetic orders in the Mn-Mn layer and
Fe-Fe layer respectively: (a) the conventional checkerboard antiferromagnetic G-type
order (which is the ground state of BaMn2As2) and (b) the stripe antiferromagnetic
order (ground state of BaFe2As2). The dashed squares denote the magnetic unit cells.

It was also found that the magnetic easy-axis direction in BaMn2As2 is along the c-axis,

whereas it is in the a-b plane for BaFe2As2. Furthermore the magnetic transition is second

order in BaMn2As2 in contrast to the first-order transition in BaFe2As2 [35, 36].

4.2.2 Magnetic moment

As already stated in the introduction, the experimental value of the ordered moment at

T = 10 K is µ = 3.9 µB/Mn. This value is considerably smaller than the value of 5.0

expected from µ = gSµB for a fully localized picture. In the fully localized picture the

atom resides in a single valence, therefore the ordered moment is equal to the atomic

moment. Due to the strong Hund’s rule interaction the spins of all five d-electrons are

expected to be aligned, yielding a half-filled d-shell. In this high-spin state (S = 5/2) of
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Mn2+ we are therefore expecting a net Mn moment of 5.0 µB/Mn (assuming a g factor

g = 2), possibly reduced by quantum fluctuations. The reduction in BaMn2As2 mainly

comes form the strong hybridization that results from the overlap between the Mn-d-

orbitals and As-p-orbitals in this compound and can be seen in the density of states 4.7.

In general, very strong hybridization is needed to effectively compete against the very

strong Hund’s interaction in the half-filled d shell of Mn2+. So the hybridization between

Mn-d and As-p states basically controls the Mn moment.

However the magnetic moment in BaMn2As2 is still much larger than the value of

0.9 µB/Fe found in BaFe2As2. In this compounds, the reduced moment on Fe is due

to the itinerant nature of the magnetism. The large ordered moment on Mn indicate lo-

cal moment antiferromagnetism in BaMn2As2, i.e. the ordered magnetic state displays a

more localized behavior. This in turn suggests that electronic correlations in this system

are stronger or at least more efficient in changing the electronic properties of the material.
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Figure 4.4: Dependency of the magnetic moment of the Mn-atoms on the unitcell
volume. DFT calculations are done with two different exchange correlation potentials,
LSDA and PBE-GGA.

DFT calculations of the ordered moment gives µ = 3.56 µB/Mn for LSDA and 3.73 µB/Mn

for GGA. The difference between the LSDA and GGA results is that the moment forma-

tion is a bit stronger in the GGA, but both values are still smaller than the experimental

result. In fig. 4.4 the dependency of the magnetic moment on the lattice parameters is

plotted. What can be seen is that the magnetic moment increases with increasing unit

cell volume, i.e. with the Mn and As atoms being further apart. This reduction can

be understood from hybridization of the Mn-d and As-p orbitals. With these two atoms

being further apart, the hybridization decreases leading to an even more localized state
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and a larger magnetic moment. On the other hand, a smaller unit cell volume that can

be the result of an applied external pressure, leads to a smaller magnetic moment. So

the Mn-As distance basically controls the overlap between the manganese and arsenide

atoms and therefore controls the size of the magnetic moment by making the manganese

electrons more localized (itinerant) with increasing (decreasing) distance.

4.2.3 Bandstructure and density of states

In the following section all density-functional calculations are done using LDA. A self-

consistent density was generated with 726 k-points in the irreducible part of the Brillouin

zone (all other k-points can be found using symmetry operations). The converged charge-

density was then used to calculate energies along selected high-symmetry lines in the first

Brillouin zone of the tetragonal lattice. The resulting band structures are shown in Fig.

4.5 for non-spin-polarized and antiferromagnetic ordered BaMn2As2, respectively. The

corresponding densities of states are plotted in Figs. 4.6 and 4.7.
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Figure 4.5: DFT-LDA bandstructure of BaMn2As2 in the paramagnetic (left) and
antiferromagnetic phase (right) respectively. The manganese-3d states are highlighted
in red and the arsenic-4p in green.
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At first sight one can immediately see that the onset of magnetic order has a profound

impact on the electronic structure. The non-spin-polarized band structure and DOS look

very similar to that in BaFe2As2 only with a shifted Fermi energy due to the different

electron count. For the understanding of the material properties it is important to identify

the character of the dominant states near the Fermi level. LDA predicts that the dominant

bands at the Fermi level come from Mn-3d states extending roughly between −1.5 eV

and 2 eV, leading to a bandwidth of 3.5 eV as shown in Fig. 4.6. While the dominant

electronic character near the Fermi level is due to Mn, a strong mixing with As states is

apparent at −2.5 eV, where the As-4p band is peaked. The atom projected DOS confirms

that there is a substantial hybridization between Mn-3d and As-4p states and there is

virtually no contribution from Ba states in the region around the Fermi energy.

While the crystal field splitting in many transition metal oxides leads to a separation of

transition metal d-bands into a t2g and eg part, this is not the case for BaMn2As2. All

five Mn-d orbitals participate in the bonding, however, the orbitally resolved partial 3d

DOS shows that at the Fermi energy the main contribution comes from the t2g-orbitals

(xy and yz/zx) whereas the eg-orbitals (3z2-r and x2-y2) have a minor weight.

The electronic structure with AFM order looks very different from the non-spin-polarized

case. LDA already gives an insulation ground state with a small semiconducting gap of

0.1 eV. LDA calculations often underestimate band gaps, so it can be concluded that it is

most likely the experimental band gap is somewhat larger than 0.1 eV. From AFM band-

structure calculations one can also see the substantial hybridization between the Mn-3d

and As-4p orbitals, which is responsible for the reduced ordered Mn moment. In fact

from the AFM density of states it can be seen that the hybridization is spin dependent.

The majority spin Mn-d states overlap in energy with the As-p states leading to a strong

hybridization. The minority spin Mn-d states on the other side are above the main As-p

DOS and are therefore less strongly mixed with the As states.

DFT-LDA gives us a metallic ground state in the non-spin-polarized case. However,

experiments show that BaMn2As2 is a small gap semiconductor. In the next section we

will investigate if correlation effects can lead to an insulating ground state even in the

non-magnetic case. Therefore the non-spin-polarized calculation will be the staring point

to perform LDA+DMFT calculations that will be treated in the next section.
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Figure 4.6: DFT-LDA density of states of BaMn2As2 in the paramagnetic phase.
There is a hybridization between the manganese and arsenic orbitals.
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4.3 Correlated electronic structure

For the calculation of the correlated electronic structure within the LDA+DMFT scheme,

we use the wien2k+triqs code [28, 27]. In this code wien2k is used for the DFT calcu-

lation, the Kohn-Sham wave functions are then projected into the subspace of correlated

orbitals for the DMFT calculation. The DMFT part is solved using the triqs package

(Toolbox for Research on Interacting Quantum Systems) [41].

Technical aspects of our calculations

The impurity model within the DMFT loops was solved using a CT-QMC solver in

the hybridization expansion version but only with density-density interactions to save

computing time. All calculations are done at room temperature (β = 40 eV−1, T = 290

K). There are several parameters that need to be set for the QMC process. The most

important parameter is the number of Monte Carlo measurements N . In all calculations

we used N ∼ 107.

Once a fully charge self consistent LDA+DMFT calculation is running we need to define

a criterion for the convergence of the QMC simulation. Since it is not easy to define an

automated criterion we simply check the output self energy until we obtain a graphically

converged solution over a few loops. The self energy curve has an increasing QMC error

as the frequency increases, hence we fit the QMC data for Matsubara frequencies iω > 80.

Fig. 4.8 is an example of a self energy obtained from a QMC simulation which is well-

converged.

Once convergence of a calculation is achieved, it is desirable to quickly predict whether

a metallic or insulating solution is obtained. The obvious way is to check directly the

spectral function A(k, ω) for spectral weight at the Fermi level. However to obtain the

spectral function an analytical continuation of the QMC data onto the real frequency

axis has to be performed, which again need non-negligible computation time especially

if a large number of data points is considered. Therefore an indirect approach based on

results in Matsubara frequency is desired.

One method is to check the imaginary part of the self energy as the Matsubara frequency

approaches zero: =[Σ(iωn → 00)]. This gives an estimate value of the self energy at

the real frequency zero. From the definition of the spectral function in terms of the self

energy we can estimate the spectral weight at the Fermi energy as follows: For a metallic
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solution we expect =[Σ] to go to zero as ω approaches zero. On the other hand for an

insulating solution the self energy should diverge for ω → 0. However, this is only valid

in one-band systems. In multi-band systems it is a sufficient but not necessary condition

for an insulating solution

A more direct method is to check the imaginary part of the Green function G(iωn → 0+)

which corresponds to the retarded Green function at ω = 0. G(ω) is directly connected

to the spectral function at the Fermi energy through A(ω) = − 1
π
=[G(ω)]. For a metallic

solution, =[G(iωn → 0+)] has some value corresponding to the spectral weight at the

Fermi level, whereas for an insulation solution =[G(iωn → 0+)] goes to zero.
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Figure 4.8: An example of the self energy (top) and the Green function (bottom) from
a converged CT-QMC simulation that resulted in an insulating state. The imaginary
parts are plotted on the left the real parts on the right. The calculation was done for
U = 4.0 eV and J = 0.9 eV using FLL double counting correction with fixed N = 5
and an energy window of W = [−4.8; 2.2] eV.
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Interaction parameters

The choice of the interaction parameters U and J is a crucial task within the LDA+DMFT

method. In principle these values can be calculated from constrained local density ap-

proximation (cLDA) [42] or constrained random phase approximation (cRPA) [43] with a

useful accuracy. However these values strongly depend on screening effects and therefore

also on the included orbitals for the construction of the model Hamiltonian. This is why

these parameters are often used as adjustable parameters to get the expected solution,

in our case an insulation solution for the crystal structure of BaMn2As2. A major part

of this work is to study the dependence of the result on the values of the interaction

parameters U and J . As a starting point we use literature values form LDA+DMFT

calculations of the isostructural iron pnictide BaFe2As2 [44, 45]. In the iron pnictides

the electronic correlations are controlled by the Hund’s exchange J , rather than by the

Hubbard U . The Hund’s rule interaction tends to align electrons when they find them-

selves on the same atom. We assume that also in the manganese based compound the

Hund’s exchange plays an important role in the context of correlations. Since the Mn-3d

orbital should be exactly half-filled with 5 electrons, we believe the exchange energy to

be higher than in the iron compound. Since it was shown that the manganese based com-

pound is a more correlated material than its iron counterpart [46], we slightly increase

the interaction parameters for our calculation in comparison to BaFe2As2-calculations.

We estimate the effective on-site Coulomb parameter on the Mn-3d bands to be U = 4.0

eV and the intra-orbital exchange parameter to be J = 0.9 eV. Note that the bandwidth

of the Mn-3d bands from LDA was around 4.5 eV, which is in the order of our estimate

for Coulomb repulsion.

4.3.1 Choice of the energy window

In order to investigate the correlation effects in such complicated materials like BaMn2As2,

it is important to have an optimized basis of localized Wannier functions. Therefore a

suitable correlated subspace has to be chosen to perform a LDA+DMFT calculation. The

correlated orbitals in the case of BaMn2As2 are the Mn-3d orbitals but because of the

strong mixing with other states it is reasonable to use an extended energy window that

also includes the ligand As-4p bands. The inclusion of the As-p bands is also physically

motivated since charge-transfer effects might also play a role in the physics of the system.

So an optimized basis of the localized dp Wannier functions is constructed from the 16
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Bloch bands, corresponding to the 10 Mn-3d and 6 As-4p states. To capture all this

states for this dp-model we need to choose an energy window that includes all these

energy bands.

The right choice of the energy window is a crucial task within out formalism since it can

strongly influence the result of the calculation. In fact one has to be very careful not

to include bands that are not treated in the calculation. In the case of BaMn2As2 the

LDA-bandstructure exhibits bands that lie above the ten Mn-d bands and originate form

Ba states. Fatband plots indicated that these bands still show some Mn-d-character due

to hybridization effects. However, LDA wrongly underestimates the gap between this

Ba bands and the Mn bands and even predicts some mixing of these bands. We will

show in the next section that for a correct description of the electronic structure within

LDA+DMFT, the energy window has to be chosen such that it does not include bands

above the correlated spectrum.

Influence of the energy window and the double counting

Next we discuss the consequences of wrongly including bands in the construction of our

model lie above the Mn-d states. Furthermore the influence of the double counting cor-

rection will be investigated.

As stated above it is sometimes physically motivated to use an extended energy window.

Due to mixing of correlated bands with other non-correlated bands it is sometimes not

even possible to choose an energy window that does not include other bands but still

capture the whole correlated spectrum. LDA often overestimates the hybridization of

correlated and uncorrelated states resulting in a too strong mixing of the corresponding

bands. For the dp-model we are therefore getting too many Mn-d electrons in our im-

purity problem if we are treating all occupied and unoccupied states. In fact from the

energy-windowW = [−4.8; 3.4] eV we get 6.2 electrons as initial occupancy for the impu-

rity model, while the nominal value would be 5. Such a large deviation of the correlated

electron count clearly do not properly reflect the correct physics of our material. A way

out of this problem is to use an adequate double counting correction to shift the corre-

lated bands relative to all other uncorrelated bands. The effect on the band structure

is the following: In our implementation the chemical potential after each DMFT-loop is

adjusted such that it yields the correct total number of electrons. Since the chemical po-

tential has to lie within the Mn-d manifold, this means that the DC correction effectively

shifts down all uncorrelated bands relative to the Fermi level. The amount of this shift
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is directly given by the difference of the LDA and the LDA+DMFT chemical potential.

This might reduce the number of electrons in the impurity problem closer to 5 electrons

per Mn. However, note that the charge within realistic systems always be larger than

five due to the covalency of chemical bonds.

In the top two graphics of Fig. 4.9 the k-resolved and the k-integrated spectral func-

tions are plotted using AMF double counting and an extended energy window of W =

[−4.8; 3.4] eV. One can see from the momentum integrated spectral function that there

is almost a gap opening above the Fermi energy. Furthermore the As-p bands are shifted

down by the determined LDA+DMFT chemical potential of µ = 1.06 eV. Note that we

measure the chemical potential relative to its LDA value. However this is not the ex-

pected result. We find a total charge inside the impurity problem to be 5.45 which is still

more that the expected 5 electrons.

To overcome this problem we increase the DC shifting by setting the number of electrons

to the fixed value of 5 electrons. This should further reduce the charge inside the impurity

problem and give results close to experiment. The obtained spectral functions from this

DC-shifting are plotted in the lower part of Fig. 4.9. It can be seen that we are still

getting a bad metal instead of an insulator. The momentum resolved spectral function

exhibits very clear bands around the Fermi level. However these bands have very little

weight giving almost no states in a range of about 0.8 eV above the Fermi energy. As

expected the As-p bands are further shifted down by the chemical potential of µ = 2.09

eV and the charge inside the impurity problem is slightly reduced to 5.35. Now the

question is where do the bands around the Fermi energy come from? The answer can be

found by a comparison of the k-resolved spectral function with the LDA band structure.

An accurate comparison shows that the bands around the Fermi energy look very similar

to bands of the LDA band structure at around 2 eV. So the answer to the question is

that not only the As-p bands are shifted further down by the chemical potential but

also bands that were located above the Mn-d bands or are mixed with them are now

getting shifted down creating states at the Fermi energy that should not exist. Note that

a chemical potential of µ = 2.09 eV means that bands are shifted down by this amount.

These bands basically hinder the material from getting insulating. Further they are also

wrongly influencing the chemical potential since µ is determined to reproduce the right

total number of electrons in the system.

To summarize our findings the energy window should be chosen very carefully. In our

case, Ba bands should not be included in the construction of a localized basis since they

might drastically influence the solution by being shifted down to the Fermi level due to the
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chemical potential resulting from the double counting correction. A correct description

is therefore achieved by using the smaller energy window W = [−4.8; 2.0] eV. With this

smaller energy window we can reduce the influence of empty higher bands, although these

bands might show some Mn-d character in the LDA calculation.
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Figure 4.9: LDA+DMFT momentum resolved spectral function (left) and density
of states (right) for U = 4 eV and J = 0.9 eV and an extended energy window of
W = [−4.8; 3.4] eV. The results are plotted for conventional AMF double counting
(top) and FLL double counting with fixed charge N = 5 (bottom).
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4.3.2 Final results for non-magnetic BaMn2As2

We first focus on the non-spin-polarized case, not taking into account the magnetic or-

dering due to the significantly increasing complexity. For the calculations the FLL double

counting correction with a fixed N = 5 is used, as it is believed to give better results for

an insulating solution, which is what we expect from experiments. The results presented

here are for interaction parameters U = 4.0 and J = 0.9. We used the dp-model with

an energy window for the correlated subspace of W = [−4.8; 2.0]. The obtained charge

inside the impurity model is 5.15 and the determined chemical potential is µ = 2.16 eV.

Figures 4.10 and 4.11 show the momentum integrated and the momentum resolved spec-

tral function respectively. Fig. 4.12 shows the orbitally resolved spectral functions for

the five Mn-3d orbitals. The LDA density of states and band structure are also plotted

for comparison. One can immediately see that our result gives an insulating state with

a band gap of about 0.7 eV. The As-4p bands can still be recognize from LDA band

structure, however, due to the double counting correction they are shifted down by the

chemical potential of µ = 2.1 eV. The Mn-3d bands are divided into a lower and a upper

Hubbard band. The upper Hubbard bands shows a clearly peaked structure above the

Fermi energy. In the momentum resolves spectral function individual bands can still be

recognized. In contrast the bands of the lower Hubbard band are completely smeared out

and mixed with the As-p states. Therefore no clear lower Hubbard band can be seen.
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Figure 4.10: LDA+DMFT density of states of non-magnetic BaMn2As2 compared
with LDA. Further the correlated DOS is orbitally resolved for Mn-3d and As-4p states.
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solved spectral function (right) of non-magnetic BaMn2As2.
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From the orbitally resolved spectral functions of the five Mn-d orbitals in Fig. 4.12 one

can see that the local orbital occupations are almost equal for all five orbitals and close

to one electron per orbital. This is due to the fact that the Hund’s rule coupling tends

to equalize the local orbital occupations. In our case all five d orbitals become close to

half-filled as the system goes through the Mott transition. This fact strongly indicates

the importance of the Hund’s exchange coupling in manganese pnictides.

We also investigated the influence of Hubbard U and Hund’s exchange J on the size o the

band gap. Therefore we first fixed the exchange parameter to J = 0.9 eV and performed

calculations for various U . It turned out that already a smaller Hubbard interaction of

U = 3.0 eV leads to an insulating state in the paramagnetic phase of BaMn2As2. In fact

for constant J we observed a linear increase of the band gap with increasing U . In the

range of U = 3.0 − 5.0 eV the band gap grows linearly from 0.4 eV up to 1.0 eV. We

can conclude that the insulating state quite robust and not sensitive to small variation

of Hubbard U.

On the other hand we found that the system is more sensitive to changes of the exchange

coupling J . It is easy to change the ground state from insulating to metallic by modifying

J . We can say that our results show a stronger dependence of the physical properties of

the system on the Hund’s exchange J rather than Hubbard U .

4.3.3 Magnetic calculations

Until now we only investigated the paramagnetic phase in BaMn2As2. However we know

from experiments that this compound is in an antiferromagnetically ordered state up to a

temperature of 625 K. In general the properties of transition-metal compounds are known

to be controlled by a strong and complex interplay between electronic and magnetic de-

grees of freedom. Therefore for an adequate description of the electronic structure in

BaMn2As2 it would be crucial to also consider magnetism and not only electronic corre-

lations.

Starting point for magnetic LDA+DMFT calculations is a converged non-spinpolarized

LDA calculation. In the non-magnetic calculations before we always forced the solution

into a non-magnetic state by symmetrizing the spin-up and spin-down solutions before

each new DMFT circle. This is necessary to prevent the calculation from running into

a magnetic solution that cannot be stabilized. For an antiferromagnetic calculation we

cannot consider just one Mn atom in the unit cell and transfer the result to the second
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Mn-atom by symmetry operations anymore. Now the Mn sites in the unit cell needs to

be treated as inequivalent sites which further increases the complexity of the problem.

Starting from a converged non-magnetic LDA calculation the development of the spin-

dependent charge distribution inside the impurity model as a function of the DMFT

iteration step is plotted in Fig. 4.13. It seems that the system favors an antiferro-

magnetic state, however, it was not possible to stabilize our calculations to achieve a

converged solution. The moment is somehow oscillating around, sometimes being con-

stant over a few loops. It seems that there is one meta-stable charge configuration in

which the system tends to stay longer than in other configurations (e.g. in cycle five).

This solutions corresponds to a magnetic moment of µ = 2.2 µB/Mn, which would be in

the range of values measured from neutron diffraction experiments at around 530 K [35].

This is of course a quite crude estimation from which we clearly cannot really conclude

that our LDA+DMFT calculation yields the right magnetic moment. However, we can

conclude that the material tends to prefer an antiferromagnetic solution, although we are

unfortunately not able to present converged results for this phase.
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(blue) electrons plotted over a few DMFT loops.
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4.4 Conclusion and Outlook

In conclusion, we studied the electronic structure of the manganese bases pnictide mate-

rial BaMn2As2. We calculated the orbital and momentum resolved spectral function of

the compound with the LDA+DMFT method for interaction parameters U = 4.0 eV and

J = 0.9 eV. LDA predicts that in the paramagnetic case the Mn-3d bands are crossing

the Fermi level with no clear splitting into the eg and t2g manifold. We showed that local

electronic correlations among the five electrons in the set of five Mn-3d orbitals are strong

enough to push the compound into an insulating phase with a band gap of 0.7 eV. We

conclude that LDA+DMFT basically is an adequate method to describe the electronic

structure of this strongly correlated material in the paramagnetic phase.

However, for a complete description of the electronic structure in BaMn2As2 the mag-

netic order must be considered as well. Experiment show that below 625 K BaMn2As2

in an antiferromagnetic ordered state. Spin-polarized LDA correctly predicts an AFM

semiconducting ground state, however, the LDA band gap is to small in comparison to

experiments and electronic correlations are known to play an important role in transi-

tion metal compounds. Reaching a converged solution for the magnetic states was not

achieved in our work, although in principle it should be possible within the LDA+DMFT

framework.

A correct description of the magnetic and electronic structure of BaMn2As2 might also

require some non-local correlations which can be treated within a cluster LDA+DMFT

approach, but we leave this question open for future work.





Chapter 5

LaMnAsO

5.1 Introduction and crystal structure

The second Mn-based pnictide compound we study in this thesis is LaOMnAs. It is

iso-structural to the parent compound of the iron pnictide superconductor LaOFeAs and

belongs to the oxypnictides or so-called 1111 family of these compounds. It was a break-

through for these materials when superconductivity at 26 K was found in La[O1−xFx]FeAs

in 2008 [30]. However, no superconductivity was found in LaOMnAs so far, although it

was believed to be a promising candidate for high temperature superconductivity since its

physical properties show strong similarities to those of the parent compounds of cuprate

high TC superconductors. As in the case of BaFe2As2 the suppression of the antifer-

romagnetic phase transition that goes along with a orthorombic distortion seems to be

important for superconductivity. But unlike LaOFeAs the antiferromagnetic phase seems

to be very robust in LaOMnAs and no orthorombic distortion is observed.

LaMnAsO crystallizes in a quasi two-dimensional tetragonal ZrCuSiAs structure (space

group P4/nmm), consisting of alternating layers of LaO and MnAs [47, 48]. Every man-

ganese is surrounded by four arsenic atoms and DFT calculations show that there is a

substantial hybridization between the the Mn-3d and As-4p orbitals. The Lanthanum

and oxygen atoms are situated far enough in space from the Mn ions and therefore their

electronic states are weakly hybridizing with the Mn-d states.

LaOMnAs is a localized moment AFM insulator with a Néel temperature of about 317

K, and a magnetic moment of 3.34 µB/Mn (at 2 K) that is ordered parallel to the c

axis [48]. The saturated moment is comparable to that for BaMn2As2 and it is reduced

61
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Figure 5.1: Crystal and magnetic structure of LaOMnAs with P4/nmm space group
symmetry. The arrows indicate the direction of the magnetic moments of the Mn atoms
in the antiferromagnetically ordered state.

from the theoretical value of 5.0 µB/Mn as a result of the substantial hybridization be-

tween the Mn-3d and the As-4p orbitals. In contrast, LaOFeAs is an AFM semi-metal

with TN = 137 K and an ordered magnetic moment of 0.36 µB/Fe [30, 49]. Similar to

BaMn2As2, LaOMnAs can be metalized by chemical substitution, e.g hole doping on the

La site [50], still keeping AFM order. It is generally believed that the Hund’s rule coupling

in Mn compounds is so strong that doping will not reduce the correlations to the point

at which the antiferromagnetic phase transition is suppressed and superconductivity may

become possible [51].

5.2 ab initio DFT calculations

Again wien2k was used to calculate first ab initio properties of the studied material

LaOMnAs. Literature values were used for the lattice parameters [47]: a = 4.1188 Å

and c = 9.0441 Å with internal parameters zAs = 0.6684 and zLa = 0.1326. Calculations

were performed within the LDA using 630 k-points in the irreducible Brillouin zone (with

8 symmetry operations this leads to 10,000 k-points in the full Brillouin zone).
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A total energy calculation confirmed the ground state of LaOMnAs being a AFM G-type

similar to BaMn2As2.

Bandstructure and density of states

The band structures along selected high-symmetry lines in the first Brillouin zone are

plotted in Fig. 5.2 for non-spin-polarized and AFM ordered LaOMnAs, respectively.

Figs. 5.3 and 5.4 show the corresponding density of states. Again there is a significant

difference in the electronic structure of the two different phases.
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Figure 5.2: DFT-LDA Bandstructure of LaOMnAs in the paramagnetic (left) and
antiferromagnetic phase(right), respectively. The manganese-3d bands are highlighted
in red, the arsenic-4p in green and the oxygen-2p bands in blue.

From the non-spin-polarized calculation we are getting a metal with predominantly Mn-d

states at the Fermi level, particularly t2g-orbitals (xy and yz/zx) rather than the eg-

orbitals (3z2-r and x2-y2). In the region between −1.7 and −2.8 eV mixing between

the Mn-3d, As-4p and O-2p states can be found, leading to a hybridization between

these orbitals. However, Mn-d fatband plots indicate that in the non-magnetic case the
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hybridization is weaker than in BaMn2As2. There is even a small band gap between the

As-4p and Mn-3d bands. Below −2.8 eV the main contribution to the DOS comes from

the oxygen. In this region the O states also mix with the La states, but there is virtually

no hybridization between La and Mn.
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Figure 5.3: DFT-LDA density of states of LaOMnAs in the paramagnetic phase.

Whereas a non-spin-polarized calculations wrongly gives a metal, the AFM calculation

results in an insulating state with a bandgap of approximately 0.4 eV. This corresponds

to the experimentally found ground state indicating that magnetism plays an important

role in this material. However, the LDA value of the bandgap is much smaller than the

value obtained from experiment. Optical measurements suggested that LaOMnAs is a

indirect-transition-type semiconductor with an indirect band gap of approximately 1.4

eV [52]. LDA typically underestimates the bandgap within a few percent, but this huge

deviation from the experimental value indicates, that electronic correlations have to be

considered to correctly describe the electronic structure in LaOMnAs.

The value of the magnetic moment obtained from LDA is 3.66 µB/Mn and therefore

slightly too large in comparison to the experiment value of 3.34 µB/Mn at low tempera-

tures. This is in contrast to the LDA calculations for BaMn2As2 that resulted in a too
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small magnetic moment. In the AFM case we again find a spin-dependent hybridization

for the Mn-d states. The majority spin states overlap with the As-p and O-p states,

whereas the main contribution of the minority spin states lies above the Fermi energy

and therefore does not hybridize with other states.
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Figure 5.4: DFT-LSDA density of states of LaOMnAs in the antiferromagnetic phase
(G-type). DOS for majority spin is plotted above the axis and minority spin below.
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5.3 Correlated electronic structure

In this section we are using the fully charge self-consistent implementation of LDA+DMFT

combining wien2k with the triqs package. The impurity model is solved with a CT-

QMC solver in the hybridization expansion at the inverse temperature β = 40 eV−1 (room

temperature T = 290 K).

We are only investigating the correlated electronic structure in the paramagnetic phase

of LaOMnAs. The correlated model Hamiltonian for the DMFT loop is constructed from

the non-spin-polarized LDA result. In contrast to BaMn2As2 the Mn-d bands of LaOM-

nAs are separated from the lower lying As and O bands by a small band gap. Also the

higher lying La bands only show minor mixing with the Mn bands. This makes it easier

to choose an energy window including only the correlated Mn-3d bands and construct a

localized basis only from these d bands. This d-model, however, in not capable to cap-

ture hybridization nor charge transfer effects. From the LDA density of states one can

see that there is in fact a hybridization of Mn with As orbitals as well as with O orbitals.

Therefore it would be physically motivated to use a dpp-model constructed from Mn-3d,

As-4p and O-2p bands. In the following sections we will present the difference of these

two models on describing the correlated electronic structure in LaOMnAs.

5.3.1 The dpp-model

In the dpp-model hybridization effects of the correlated d-states with other orbitals are

taken into account by the choice of the energy window. For the construction of the

localized basis we use a total of 22 bands, including 10 Mn-3d, 6 As-4p and 6 O-2p bands.

The chosen energy window for this dpp-model is W = [−5.5; 2.2] eV. The selected bands

are highlighted in the LDA bandstructure in Fig. 5.2.

To be able to compare LaOMnAs with BaMn2As2 we use the same interaction parameter

as for the dp-model in BaMn2As2: U = 4.0 eV and J = 0.9 eV (although a different

screening is expected). We used the normal FLL double-counting correction (without

fixing the number of electrons to N = 5), which is meant to be more appropriate for

insulating systems. In Fig. 5.5 we plotted the resulting spectral function together with

the corresponding LDA density of states. From the DOS near the Fermi level we can

see that the material is still metallic. But is seem we are close to a Mott metal-insulator

transition as a band gap is almost opening up. This behavior is similar to our results

for BaMn2As2 without DC-shifting. With the choice of the energy window we are not
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having the problem of bands being shifted down to the Fermi level due to the chemical

potential. Therefore there must be an other reason for not getting an insulating state.

A reason might be the underestimation of the p-d gap between As and Mn bands. This

explanation is supported by the fact that the final charge inside the impurity problem is

5.5 which is quite far away from the nominal number of electrons in the Mn-d orbital of

five. As in the case of BaMn2As2 we could use a double-counting shifting to manually

increase the p-d gap. However, one needs to be careful in using such manually adjusted

DC correction for increasing the p-d gap since its justification is still controversial.

Fig. 5.6 shows the correlated momentum resolved spectral function A(k, ω) on the right

together with the LDA band structure on the left. One can see that the As-p states

hybridize strongly with the Mn-d states and get, thus, affected by correlations. The O-p

bands on the other hand remain almost unchanged since they hybridize much less with

Mn-d. Therefore we can well identify the oxygen bands that are shifted down due to the

obtained chemical potential of µ = 1.02 eV in comparison to the LDA band structure.

The lower part of the As-p spectrum is also not much influenced by correlations. As we

are reaching the As bands that are mixed with the correlated Mn states the bands are

getting more diffuse until no well-defined bands can be identified. The spectrum above

the Fermi energy is governed by quite flat and therefore localized Mn bands.
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Figure 5.5: LDA+DMFT density of states of non-magnetic LaOMnAs compared with
LDA-DOS. Further the correlated DOS is orbitally resolved for Mn-3d, As-4p and O-2p
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Figure 5.6: Comparison of LDA bandstructure (left) and DMFT momentum resolved
spectral function (right) of non-magnetic LaOMnAs.

5.3.2 The d-model

For the d-model we only use the 10 Mn-3d bands within the energy window W =

[−1.6; 2.2] eV. We automatically get the initial charge of 5.0 inside the energy window

which corresponds to five Mn electrons in the five Mn-3d orbitals. The values of the

initial charge distribution from LDA of the five orbitals are: 1.30, 1.15, 0.85, 0.85 for dz2 ,

dx2−y2 , dxy and degenerate dzx,yz orbitals, respectively. This means that the charge is not

equally distributed over the d orbitals.

Without the screening from other non-correlated hybridized orbitals we expect the cor-

relations to be stronger than for a full dpp-model. To reproduce the experimental band

gap of 1.4 eV [52] we will investigate the dependence of the electronic structure on the

correlation strength. For this model the double counting should not have any influence

on the results since for a d-only model the DC can be absorbed in the chemical potential.

For the calculations we used a DC correction of the FLL type.

To investigate how the electronic structure depends on the correlation strength, we fixed

the J/U ratio to 0.225 and performed calculations from (J = 0.3, U = 1.3) eV up to
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(J = 0.9, U = 4.0) eV. A selection of resulting Mn-d resolved spectral functions are

plotted in Fig. 5.7. As comparison the Mn-d partial LDA density of state is plotted

in the graphs as well. One can see that in the region of weak correlations we basically

reproduce the LDA result. As expected it is much easier to open a band gap if we are

only considering the Mn-d bands rather than in the full dpp-model. Already for the rather

small interaction parameters (J = 0.5, U = 2.2) eV LaOMnAs is in a Mott insulating

phase. One can clearly see the lower and upper Hubbard bands, separated by a band

gap of about 0.8 eV, which is typical for Mott insulators. As we are going through the

Mott transition the charge distribution in all five Mn-d orbitals is getting equalized due

to the Hund’s rule coupling leading to half filled electron orbitals. As we increase the

interaction strength the Hubbard bands basically keep the same shape but the band gap

increases up to 3.8 eV.

We can summarize that a LDA+DMFT calculation taking into account only the d orbitals

is capable of reproducing the insulating behavior of LaOMnAs. With the right choice of

the interaction parameters we were able to correctly reproduces the experimental size of

the band gap. However, dealing with the Mn-d spectrum only introduces quite severe

approximations. The physics of charge transfer and hybridization effects cannot be cap-

tured without taking into account the ligand p states. Further due to the small energy

window the Wannier functions are getting quite extended leading to non-local Coulomb

interactions. Therefore it is questionable if a calculation treating only the correlated d

orbitals gives a reasonable description of the studied material.
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Figure 5.7: DMFT density of states of non-magnetic LaOMnAs for different correla-
tions strengths in the d-model compared with partial Mn-d LDA-DOS.
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5.4 Conclusion and Outlook

LDA calculations do not properly describe the electronic structure of LaOMnAs since

it fails to capture effects that originates from strong electronic correlations. LDA gives

a metallic state in the paramagnetic phase but already correctly predicts an insulating

antiferromagetically ordered ground state. However, the LDA band gap is to small in

comparison to experiments and electronic correlations are known to play an important

role in transition metal compounds. Therefore we applied the LDA+DMFT method to

calculate the correlated electronic structure of paramagnetic LaOMnAs for interaction

parameters U = 4.0 eV and J = 0.9 eV. Our LDA+DMFT results for the dpp-model

indicate that in this correlation regime LaOMnAs is close to an insulating Mott state.

We also performed calculations with a smaller energy window that includes Mn-d bands

only. In this model we were able to show the Mott metal-insulator transition taking place

already for relatively small interaction parameters of U = 2.2 eV and J = 0.5 eV. How-

ever, the smaller energy window results in more extended Wannier functions that might

lead non-local Coulomb interactions. Therefore the physical validity of this simplified

model is questionable.

Finally we were not able to stabilize calculations in the experimentally observe antiferro-

magetically ordered state to investigate the interplay of electronic and magnetic degrees

of freedom in LaOMnAs.
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AFM Antiferromagnetic

AMF Around Mean Field

cLDA constrained Local Density Approximation

cRPA constrained Random Phase Approximation

CT-QMC Continuous Time - Quantum Monte Carlo

DC Double Counting

DFT Density Functional Theory

DMFT Dynamical Mean Field Theory

FLL Fully Localized Limit

GGA Generalized Gradient Approximation

(L)APW+lo (Linearized) Augmented Plane-Wave + local orbitals

L(S)DA Local (Spin) Density Approximation

SIAM Single Impurity Anderson Model
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