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Abstract

Binary liquid drop collisions have been studied extensively during the past decades.

Initially because of meteorological interests and later on for the investigation of spray

combustion. Recent studies have set the attention on binary drop collisions of two

immiscible liquids. Thus, a wide range of applications is opened, for example at

production processes in life sciences, such as encapsulating one liquid within another.

In order to encapsulate additional liquids, collisions of more than two droplets may be

performed. To date, there are no studies on this topic in the literature.

The current study aims to close the scientific gap in the literature by investigating

ternary drop collisions, where all three droplets consist of the same liquid. The main

goals are to examine the fundamental collision mechanisms occurring at ternary drop

collisions and to identify differences and similarities to binary drop collisions. Therefore,

collisions of two and three droplets are investigated experimentally at well-defined

conditions, such as relative velocity and impact parameter. In addition, other relevant

parameters like droplet diameter and dynamic viscosity are varied. On the one hand,

similar to binary collisions, four main regimes are observed in the ternary case, namely

coalescence, bouncing, reflexive separation and stretching separation. On the other

hand, significant differences between binary and ternary drop collisions are observed,

especially during the first period of the collision after the impact. Moreover, it is shown

that the transition from coalescence to separation at ternary head-on collisions cannot

be predicted by established binary collision models.
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Kurzfassung

Binäre Tropfenkollisionen wurden in den vergangenen Jahrzehnten ausgiebig erforscht.

Zunächst hauptsächlich wegen meteorologischer Interessen und später zur Beschreibung

von Sprays in Verbrennungsanlagen. Aktuelle Studien untersuchen Kollisionen zweier

Tropfen deren Flüssigkeiten nicht mischbar sind. Dies ermöglicht eine Vielzahl neuar-

tiger Anwendungen, beispielsweise bei Produktionsprozessen in der Medizintechnik,

wo durch Mikroverkapselung eine Flüssigkeit von einer Zweiten ummantelt wird. Um

zusätzliche Flüssigkeiten einzukapseln können Kollisionen von mehr als zwei Tropfen

eingesetzt werden. In der Literatur gibt es zu diesem Thema jedoch keinerlei Studien.

Die vorliegende Arbeit setzt sich zum Ziel, diese wissenschaftliche Lücke zu schließen.

Dazu werden ternäre Tropfenkollisionen untersucht, wobei die Flüssigkeit bei allen

drei Tropfen dieselbe ist. Ziel ist es, die grundlegenden Mechanismen von ternären

Tropfenkollisionen zu erforschen und diese mit jenen von binären Kollisionen zu ver-

gleichen. Dazu werden Kollisionen zweier und dreier Tropfen bei genau definierten

Bedingungen, gegeben durch Relativgeschwindigkeit und Stoßparameter, experimentell

untersucht. Weiters werden andere wichtige Parameter wie die Tropfengröße und die

dynamische Viskosität der Flüssigkeit variiert. Auf der einen Seite werden, analog

zu binären Kollisionen, bei ternären Tropfenkollisionen vier verschiedene Kollision-

stypen beobachtet: Koaleszenz, Bouncing, reflexive Separation und streifende Sepa-

ration. Andererseits werden signifikante Unterschiede zwischen binären und ternären

Tropfenkollisionen aufgezeigt, insbesondere während der ersten Phase der Kollision

direkt nach dem Aufprall. Außerdem wird gezeigt, dass der Übergang von Koaleszenz

zu Separation bei frontalen ternären Kollisionen nicht mit Hilfe etablierter binärer

Kollisionsmodelle dargestellt werden kann.
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Nomenclature

Latin symbols

Symbol Description Dimension

A droplet area in photograph [px2]

∆A error at estimation of the droplet area [px2]

b impact parameter [m]

d diameter of a cylinder [m]

D droplet diameter [m]

Dmax diameter of the disk at maximum extension [m]

Dor orifice diameter [m]

Eini initial droplet energy [J]

∆E change of surface energy [J]

~fB specific body force vector [m s−2]

f frequency [Hz]

F force [N]

l length of a cylinder [m]

~l length vector [m]

L length [m]

p pressure [Pa]

∆p Laplace pressure [Pa]

R1, R2 principal radii of curvature [m]

S surface area [m2]

∆S change of surface area [m2]

Ŝ non-dimensional surface area [−]
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Nomenclature

Symbol Description Dimension

t time [s]

T temperature [K]

u flow velocity [m s−1]

~u velocity vector [m s−1]

U relative velocity or drop velocity [m s−1]

UJ jet velocity [m s−1]

V volume [m3]

w width of the disk at maximum extension [m]

x, y, z Cartesian coordinates [m]

X non-dimensional impact parameter [−]

Greek symbols

Symbol Description Dimension

α angle between trajectories [rad]

α̂ dissipation coefficient [−]

β, γ angles [rad]

δ droplet size ratio [−]

ε empirical factor [−]

ζ aspect ratio of a cylinder [−]

λ wavelength [m]

λmin minimum wavelength [m]

λopt optimum wavelength [m]

ρ density [kg m−3]

σ surface tension [N m−1]

τ viscous stress [Pa]

φ viscous dissipation function [kg m−1 s−3]

Φ viscous dissipation [J]

~∇ vector of spatial derivatives [m−1]
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Subscripts
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0 onset of fragmentation

c coalescence

C central droplet

L left droplet

LC between left and central droplet

m centre of mass

PF parameters according to Pasandideh-Fard et al. (1996)

R right droplet

RC between right and central droplet

s separation

∞ characteristic quantity of the flow field

Superscripts

Symbol Description Dimension

()∗ non-dimensionalised

Non-dimensional parameters

Symbol Description Definition

Oh Ohnesorge number µ (ρ σL)−1/2

Re Reynolds number ρUD µ−1

We Weber number ρU2Dσ−1

We∗ transition Weber number We/48
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1 Introduction

Droplet collisions are a well investigated field of research for which earliest work dates

back to the late 19th century (Rayleigh, 1896). Interest in meteorological phenomena,

especially in the formation of precipitation, led to studies on binary water drop collisions

in an atmospheric environment beginning in the 1960s (Montgomery, 1970; Brazier-

Smith et al., 1972; Ashgriz & Poo, 1990). In the last decade of the 20th century, focus

has been set on the investigation of binary collisions of hydrocarbon droplets (Brenn

& Frohn, 1989; Jiang et al., 1992; Qian & Law, 1997), helping to understand the

process of spray combustion. It has been shown that the collision outcome of water

and hydrocarbon droplets differs fundamentally, as summarised in the work of Orme

(1997). Later, studies with other liquids have been performed in order to determine

the influence of viscosity on the droplet collision outcome (Willis & Orme, 2000; Willis

& Orme, 2003; Gotaas et al., 2007).

All studies mentioned above are limited to the case where the two colliding droplets

are made of the same liquid. Recent studies have focused on the collision behaviour

of two droplets consisting of two different, possibly immiscible, liquids (Gao et al.,

2005; Chen & Chen, 2006; Planchette et al., 2010; Planchette et al., 2012). There are

several promising applications for drop collisions of immiscible liquids, for example, by

encapsulating a liquid by another immiscible liquid, a protective shell can be generated

preserving the core liquid and its ingredients. In order to increase the number of

different liquids inside such a capsule, collisions of more than two droplets are required.

All studies in the literature mainly consider binary drop collisions, except for the

works of Saroka (2001) and Planchette (2011), where ternary drop collisions were

investigated.

The current study aims to enlighten the scientific field of ternary drop collisions. To

observe and understand the fundamental collision phenomena at ternary drop collisions,

collisions of droplets consisting of the same liquid are investigated in this master’s
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1 INTRODUCTION

thesis work. Afterwards, the collision outcomes observed for ternary drop collisions

are compared to the ones for binary drop collisions. Moreover, the stability limit

defining the transition between coalescence and separation at head-on collisions is

investigated.

As a first step, the collision regime maps, where the collision outcome is classically

represented as a function of the non-dimensional impact parameter and the Weber

number, are obtained for binary and ternary drop collisions using a glycerol-water

solution as the liquid at an average droplet diameter of 370µm. Secondly, the stability

limit for the transition between coalescence and separation at head-on collisions is

investigated. Several parameters are varied: the droplet diameter ranges from 130

to 550µm, the dynamic viscosity using several aqueous glycerol solutions at different

concentrations and the surface tension using silicon oils. All the experiments are

performed in an atmospheric environment at constant pressure and temperature.

Finally, the results are interpreted and compared.

The structure of the thesis is as follow: In chapter 2, the fundamentals required to

understand and describe drop collisions are presented. This includes the process of

drop formation and an overview of the state of the art at binary droplet collisions. In

addition, two separation criteria from the literature, describing the transition between

coalescence and separation for head-on collisions, are introduced.

The used liquids and experimental configurations are presented in chapter 3. Moreover,

the experimental set-up and the software used for image processing are introduced.

Afterwards, the sought quantities like relative velocity U and non-dimensional impact

parameter X are derived.

In chapter 4 the results are presented and discussed. Binary and ternary drop collisions

are compared to each other as well as to results from the literature.

Modelling attempts are provided in chapter 5 in order to explain the experimental

stability limits theoretically. For this purpose, the collision is divided into two periods,

in the first phase the droplets collide and expand into a disk shaped complex while

during the second phase, this disk retracts into a cylindrical shaped rod, which may

break up. In addition, the use of a fragmentation criterion analogously to the work of

Ashgriz & Poo, 1990 is evaluated.

A summary closes this work.

2



2 Fundamentals

Essential knowledge to understand and describe droplet collisions is provided in this

chapter. First, general information is provided starting with basic fluid mechanic

concepts and ending with a description of the different mechanisms of drop formation.

We then focus on binary drop collision of the same liquid. More precisely, an insight

into the collision outcome classification is given, followed by the presentation of

two separation criteria determining the transition between coalescence and reflexive

separation.

2.1 Theoretical background

2.1.1 Fluid properties

In order to describe liquid drop collisions at constant temperature and constant ambient

pressure mathematically, three fluid properties, namely density ρ, dynamic viscosity µ

and surface tension σ, are required. The latter two are defined below.

Dynamic viscosity

The dynamic viscosity µ is a fluid property, which defines its resistance against

deformation. This phenomenon can be illustrated for shear stress by the idealized

situation given in figure 2.1. The liquid is trapped between two parallel horizontal

plates, separated by a distance H, where the one on the bottom is fixed and the one

on the top is dragged by a force F and therefore moves at a constant velocity U . It

is assumed that the flow is laminar and that there is no slip at the plates. Under

3



2 FUNDAMENTALS

x

y u(y)

F

U

H

Figure 2.1: Shear strain between two parallel plates (adapted from Spurk & Aksel,
2007).

these conditions the liquid velocity u increases linearly between the two plates with

u(y = 0) = 0 and u(y = H) = U , see figure 2.1. The shear stress is given by

τ =
F

A
= µ

U

H
= µ

∂u

∂y
, (2.1)

where A is the area of each plate, u the velocity of the fluid along x and y the coordinate

normal to the plate (see figure 2.1). The proportionality factor µ is called dynamic

viscosity with its physical unit [kg m−1 s−1]. For a Newtonian fluid µ is constant and

not a function of ∂u/∂y, whereas it may vary for non-Newtonian fluids. For liquids,

the dynamic viscosity decreases with increasing temperature, whereas for gases, the

dynamic viscosity increases with increasing temperature.

Surface tension

The phenomenon of surface tension takes place at the fluid interface, classically

liquid/vapour, and can be explained by intermolecular interactions. On the one hand,

a molecule in the bulk of the liquid is affected by cohesive forces, which are equal in

all directions. Thus, the resulting net force is zero. On the other hand, a molecule at

the interface does not have the same molecules on all sides of it leading to a net force

boundary surface

Figure 2.2: Schematic illustration of forces on molecules of a liquid (adapted from
de Gennes et al., 2004).
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2.1 THEORETICAL BACKGROUND

towards the centre of the liquid. This phenomenon is illustrated in figure 2.2, where

a molecule at the interface and a molecule inside the liquid can be seen. The arrows

represent the cohesive forces acting on the molecules.

In order to increase the liquid surface, energy has to be supplied to work against

the inward-looking force. The required energy ∆E is proportional to the number of

molecules that are moved to the surface and therefore to the additional surface area

∆S which leads to the following definition of surface tension:

σ = lim
∆S→∞

∆E

∆S
. (2.2)

It is usually expressed in units of [N m−1], or sometimes of [J m−2].

2.1.2 Dimensionless numbers

In this section, the three non-dimensional quantities relevant for the description of

droplet collisions are defined.

Reynolds number

The Reynolds number can be derived by non-dimensionalising the incompressible

Navier-Stokes equations, which read

∂~u

∂t
+ ( ~u · ~∇ ) ~u = −1

ρ
~∇p+

µ

ρ
~∇2~u+ ~fB , (2.3)

where ~u is the velocity vector, p the pressure and ~fB the specific body force vector.

Denoting U∞ and L a characteristic velocity and typical length scale of the flow field

and introducing in equation (2.3) the following non-dimensional quantities

~u∗ =
~u

U∞
, t∗ =

t U∞
L

, ~∇∗ = L~∇ , p∗ =
p

ρU2
∞

, ~fB
∗

=
L

U2
∞

~fB , (2.4)

we obtain the non-dimensional Navier-Stokes equations:

∂~u∗

∂t∗
+ ( ~u∗ · ~∇∗ ) ~u∗ = −~∇∗p∗ +

µ

ρU∞L︸ ︷︷ ︸
Re−1

~∇∗2~u∗ + ~fB
∗

. (2.5)

5



2 FUNDAMENTALS

Reynolds number, which can be found on the right hand side, is defined by

Re =
ρU∞L

µ
, (2.6)

which can be interpreted as the ratio of inertial forces to viscous forces. Since we

expect Re � 1 for droplet collisions (typically 100 < Re < 1000), an inertial regime is

assumed for non-dimensionalising time and pressure (see equation (2.4)). Assuming a

viscous regime these quantities can be non-dimensionalised as follows:

t∗ =
t µ

ρL2
, p∗ =

pL

µU∞
. (2.7)

In this case Re can be found in front of ( ~u∗ · ~∇∗ ) ~u∗ in equation (2.5).

Weber number

The Weber number represents a non-dimensional quantity, which can be interpreted as

the ratio of inertial energy to surface energy. It is given by

We =
ρU2
∞ L

σ
=
ρU2
∞ L

3

σL2
=

inertial energy

surface energy
. (2.8)

Ohnesorge number

The Ohnesorge number is a dimensionless group, which is important for the description

of capillary systems with viscosity. It was discovered as relevant in the atomization of

liquid jets (von Ohnesorge, 1936). It is defined by

Oh =
µ√
ρ σL∞

=
viscous forces√

inertia · surface tension
. (2.9)

2.1.3 Laplace pressure

Due to the effect of surface tension, a pressure difference exists between the inside and

the outside of a curved interface (liquid/vapour), which is called the Laplace pressure.

According to Laplace’s theorem, this pressure difference ∆p can be calculated as the

6



2.2 DROP FORMATION

product of surface tension and the sum of principal curvatures of the interface, which

leads to the Young-Laplace equation

∆p = σ

(
1

R1

+
1

R2

)
, (2.10)

where R1 and R2 are the principal radii of curvature of the surface. For a plane interface

the pressure difference vanishes, as R1 and R2 tend towards infinity.

2.2 Drop formation

In this section, several mechanisms of drop formation are briefly reviewed. The Rayleigh

jet breakup mechanism is described in more detail, since it corresponds to the principle

on which the drop generators used in this master’s thesis work (Brenn et al., 1996) are

based.

In general, there are four mechanisms of drop formation (Walzel, 2010):

• Dripping is the simplest process of drop formation. Due to gravity a drop is

formed on a solid surface or at the outlet of a thin circular tube. When the

gravitational force exceeds the surface tension force, the drop detaches and falls

to the ground. The drop size depends on the surface tension, the liquid density

and the gravitational acceleration. At dripping from capillary tubes, the capillary

tube diameter and the liquid/nozzle wetting additionally influence the droplet

diameter. A typical droplet diameter for water dripping from a horizontal wetted

surface is 9 mm (Lefebvre, 1989).

• Jet breakup occurs when a liquid jet in a gaseous atmosphere or in a vacuum

is subjected to disturbances. After emerging from the nozzle, the cylindrical

jet surface exhibits perturbations and oscillations. Under proper circumstances,

the disturbances are amplified and the jet disintegrates into droplets. This

phenomenon, which includes Rayleigh jet breakup, is discussed in section 2.2.1.

• Sheet breakup is another mechanism of drop formation. According to Fraser

& Eisenklam (1953), there are three different modes of sheet disintegration.

7



2 FUNDAMENTALS

– In the rim mode, due to surface tension forces, the free edge of a liquid

sheet is contracted into a thick rim. This rim disintegrates similarly to a

liquid jet.

– The wave mode is a result of the generation of wave motions on the sheet.

Thus, areas corresponding to the half or full wavelength of the disturbance

are contracted into irregular structures, which disintegrate into droplets.

– During perforated-sheet disintegration, ligaments are formed due to holes in

the liquid sheet. These ligaments then break up into droplets.

• Dispersion of liquids by gas occurs when a gas jet strikes a liquid surface. If

the relative velocity is sufficiently high, the dynamic pressure of the gas exceeds

the internal pressure of the drops and the liquid is dispersed. Viscous stresses

also contribute to this mechanism.

2.2.1 Breakup of liquid jets

As briefly mentioned above, a liquid jet may disintegrate due to oscillations and

perturbations. Depending on the fluid properties, the velocity and the diameter of

the jet, as well as on the fluid properties of the ambient gas, various modes of jet

disintegration can occur. von Ohnesorge (1936) identified three main mechanisms of

jet breakup and plotted his results as a function of Ohnesorge number and Reynolds

number. Reitz (1978) enhanced the Ohnesorge chart, sub-dividing the wind-induced

I - Rayleigh jet breakup
II - first wind-induced

breakup
III - second wind-induced

breakup
IV - atomization

Oh

Re

I II III IV

Figure 2.3: Different modes of disintegration of a liquid jet (adapted from Reitz, 1978).
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2.2 DROP FORMATION

regime into two, so that four different regimes emerged, which can be seen in figure

2.3. The four different modes of jet disintegration are described below.

Rayleigh jet breakup

The Rayleigh jet breakup mechanism can be explained by the theoretical investigations

of Plateau (1873) and Rayleigh (1878). It is based on the so called Plateau-Rayleigh

instability, which is caused by axisymmetric oscillations of the jet surface. Under

specific conditions, the effect of surface tension amplifies these oscillations, which lead

to a disintegration of the jet. Rayleigh (1878) showed that any inviscid liquid jet

of diameter d, which is subjected to surface tension only, will become unstable to

axisymmetric disturbances under the condition that the wavelength of the disturbance

λ satisfies the inequality

λ > πd . (2.11)

Furthermore, the wavelength of the fastest growing disturbance is given by

λopt = 4.51d , (2.12)

leading to a droplet diameter after breakup of

D = 1.89d . (2.13)

Weber (1931) extended Rayleigh’s analysis by including the viscosity of the liquid.

Under the assumption that every disturbance causes axisymmetric oscillations of the

jet interface (see figure 2.4), he came to the result that every initial disturbance with

a wavelength less than λmin is damped out by surface tension forces. On the other

hand, if the wavelength of the initial disturbance is larger than λmin, it is unstable and

surface tension forces lead to jet disintegration. Weber (1931) showed that, for viscous

d

λ

Figure 2.4: Jet with axisymmetric disturbance (adapted from Lefebvre, 1989).
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2 FUNDAMENTALS

liquids, the minimum wavelength is given by

λmin = πd , (2.14)

which is exactly the same value as for inviscid liquids (see equation (2.11)). The

optimum wavelength can be calculated by

λopt = πd
√

2 + 6 Oh , (2.15)

which leads to greater optimum wavelengths for more viscous fluids. Furthermore,

Weber (1931) investigated the influence of the air on the disintegration of a liquid jet.

He found that, with increasing relative air velocity, λmin and λopt are decreased.

First wind-induced breakup

In this case, the relative motion of the ambient gas amplifies the effect of surface

tension, which is responsible for the disintegration of the liquid jet in the Rayleigh jet

breakup regime. Thus, the breakup process is accelerated. The breakup takes place

many jet diameters downstream of the nozzle, producing droplets with diameters of

the same order of magnitude as the jet diameter.

Second wind-induced breakup

The second wind-induced breakup mechanism can be explained by the unstable growth

of short waves on the surface of the jet. These waves are caused by relative motion

of the liquid jet and the ambient gas. Contrary to the first wind-induced breakup

regime, surface tension opposes the wave growth in this case. The breakup takes place

many jet diameters downstream of the nozzle, producing droplets with diameters much

smaller than the jet diameter.

Atomization

Atomization represents the complete disintegration of the liquid jet at the nozzle

exit. The liquid is disrupted in a chaotic manner immediately after entering the

10



2.2 DROP FORMATION

gaseous atmosphere. The diameter of the formed droplets is much smaller than the jet

diameter.

2.2.2 Technical design

This section gives an overview of the different technical designs used for droplet pro-

duction. Droplet production systems commercially used in ink-jet printing technology

are of many different types, and only an overview is given here. In detail, there are

many different designs. Below, only an overview is given (according to Le, 1998). The

method used in this work (continuous droplet production) is described in more detail.

Continuous droplet production

Continuous droplet production is based on the Plateau-Rayleigh instability. A liquid jet

is disturbed by applying a pressure wave pattern to it, leading to its disintegration into

droplets (see section 2.2.1). Continuous ink-jet technologies can be generally divided

into binary and multiple deflection methods.

A continuous ink-jet system with a multiple deflection system is sketched in figure 2.5.

On the left-hand side, a drop generator can be seen. It applies a wave pattern to the

liquid jet, leading to its disintegration. Then the droplets are charged at different levels

HV

high-voltage
deflection plate

gutter paper

drop
generator

charge
electrode

Figure 2.5: Continuous ink-jet with a multiple deflection system (adapted from Le,
1998).

11
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and deflected to the media by a high-voltage deflection plate. The uncharged droplets

fly straightforward into a gutter. In a binary deflection system, the uncharged droplets

fly straight to the media and the charged droplets are deflected into the gutter.

In this master’s thesis work, similar drop generators (Brenn et al., 1996) are used

without a deflection system, because it is not required. The disintegration of a liquid

jet using a piezoceramic drop generator is pictured in figure 2.6. The liquid is an

aqueous glycerol solution at 60% mass percentage of glycerol, the orifice diameter is

200µm, the drop generator is driven with an excitation frequency of 7659 Hz and the

jet velocity is around 5.6 m s−1.

Figure 2.6: Disintegration of a liquid jet using glycerol 60% as a liquid. The drop
generator is driven with f = 7659 Hz, the undisturbed jet diameter is
200µm and the jet velocity is approximately 5.6 m s−1.

Drop-on-demand technologies

Drop-on-demand ink-jet is a technology for which individual droplets emerge from the

nozzle in a controlled process. The most commonly used drop-on-demand techniques

are based on the the following technologies:

• Thermal for which drop formation results from nucleation/evaporation. Through

a small heater some of the ink is evaporated in a few microseconds. A bubble is

formed, leading to a pressure increase in the ink chamber. As a result, a droplet

is pushed out of the orifice.

• Piezoelectric. By applying a voltage to a piezoelectric material inside the ink

chamber, the material is deformed, generating a pressure pulse in the liquid.

Thus, a droplet of ink is forced out of the nozzle.

• At a valve-jet, the ink is held under pressure and the orifice is closed by a

dynamic valve. A droplet is produced by opening this valve, for example with an

electromagnet, for a short time step.

In our experiments, continuous-stream drop generators are used. We now discuss the

basics of binary drop collisions.

12



2.3 BINARY DROP COLLISIONS OF THE SAME LIQUID

2.3 Binary drop collisions of the same liquid

In order to describe the outcome of binary drop collisions of the same liquid, several

parameters are required. First of all, the fluid properties have to be determined. These

are the liquid density ρ, the dynamic viscosity µ and the surface tension σ of the

droplet liquid against the ambient medium. Moreover, the collision outcome depends

on the density and the composition of the ambient medium, which is atmospheric air

in the present work. The temperature is constant at T ≈ 23 ± 2 ◦C. Furthermore,

geometric and kinematic quantities, including the droplet diameters D1 and D2, the

relative velocity U between the droplets and the impact parameter b are important. As

illustrated in figure 2.7, the impact parameter b is the distance between the centroids

of the two colliding droplets, measured normal to the direction of the relative velocity

U .

x

y

z

D1

D2

U2

U1

U
b

Figure 2.7: Parameters of binary drop collisions (adapted from Planchette et al., 2012).

This set of parameters leads to five non-dimensional numbers, with which the collision

outcome can be described systematically. The first number is the drop size ratio δ,

which can be written as

δ =
D1

D2

, (2.16)

where D1 is the diameter of the smaller droplet and D2 is the diameter of the larger

droplet. Secondly, the non-dimensional impact parameter X is introduced as

X =
2b

(D1 +D2)
. (2.17)

The last three non-dimensional numbers are the Weber number, the Ohnesorge number

and the Reynolds number, which are defined and discussed in section 2.1.2 and read

13
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(a)

C - coalescence
ref. S - reflexive

separation
str. S - stretching

separation

C

str. S

ref. S

X

We

(b)

C - coalescence
B - bouncing

ref. S - reflexive
separation

str. S - stretching
separation

C

B

C

str. S

ref. S

X

We

Figure 2.8: Schematic stability nomogram for binary drop collisions in air: a water
droplets, b hydrocarbon droplets (adapted from Qian & Law, 1997).

for binary drop collisions

Re =
ρDU

µ
, We =

ρDU2

σ
and Oh =

µ√
ρ σD

, (2.18)

where D = (D1 +D2)/2. Since the Ohnesorge number can be expressed in terms of

Reynolds number and Weber number by

Oh =

√
We

Re
, (2.19)

only four of these five non-dimensional numbers are independent of each other.

Typically, the collision outcome is presented in the form of a (X,We) nomogram

for a given liquid and a constant droplet diameter D (and therefore for a constant
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2.3 BINARY DROP COLLISIONS OF THE SAME LIQUID

Ohnesorge number Oh). Two nomograms for different types of liquids are illustrated

in figure 2.8, including a nomogram for water droplets (see figure 2.8a) and one for

hydrocarbon droplets (see figure 2.8b). The collision outcome is plotted as a function

of the non-dimensional impact parameter and the Weber number. Collisions with

zero or reasonably small impact parameters are called head-on collisions, whereas

unstable collisions, which lead to separation, with sufficiently large impact parameters

are so-called grazing collisions. From figure 2.8 follows that there are four possible

collision outcomes:

• coalescence

• bouncing

• reflexive separation

• stretching separation

Strictly speaking, there is a fifth regime called droplet shattering, but since it appears

only at relatively high Weber numbers it is not a part of this study. Nevertheless, it

will be explained briefly later on.

In figure 2.9, the four main possible collision outcomes of binary liquid drop collisions

are illustrated. On the left hand, in figure 2.9a, the different stages of two coalescing

droplets are sketched. As a first step, the gas between the two approaching droplets

is expelled. Then the drops merge and deform into a disk, or more precisely into

some kind of torus-shaped complex, but with a lamella instead of a hole in the centre

(Ashgriz & Poo, 1990; Roisman et al., 2012). Afterwards, the merged droplet oscillates

until it relaxes into a sphere.

Bouncing, as given in figure 2.9b, is another possible collision outcome. It occurs when

the intervening gas layer between the two droplets cannot be expelled. As a result, the

two droplets bounce apart. The critical thickness for the inter-droplet gap is of the

order of 0.01µm (Mackay & Mason, 1963), which is the typical distance for molecular

interactions. It has to be stated that bouncing highly depends on the surrounding gas

and therefore on its density, viscosity, humidity and other vapours content.

In figure 2.9 c, the regime of reflexive separation is illustrated. Similar to the regime

of coalescence, the merged droplets form a disk after the collision. However, because

of higher kinetic energy compared to the regime of coalescence, the oscillation of the
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2 FUNDAMENTALS

merged droplet separates it reflexively into two droplets again. Increasing the kinetic

energy in the regime of reflexive separation leads to the formation of a ligament which

connects the two droplets (as illustrated in figure 2.9 c). This ligament finally breaks

up and induces the formation of one or more satellite droplets. Reflexive separation

occurs for head-on collisions and for rather small impact parameters.

The phenomena of stretching separation (see figure 2.9d) occurs for moderate and large

impact parameters. In this inertia-dominated process, parts of the two droplets coalesce,

while the remaining parts of the original droplets stay on their initial trajectories.

Thus, a ligament between the two droplets is formed, which is stretched until it breaks

up into one or more satellite droplets.

As mentioned before, there is a fifth regime called droplet shattering. For this mecha-

nism, a high Weber number, and therefore high kinetic energy, is required. After a

large deformation of the droplets, it leads to a chaotic breakup of the resulting liquid

system. Since its onset Weber number is around 400 (Brenn, 2011) for binary drop

collisions, this phenomenon is not investigated in this work. It seems that droplet

shattering is highly depending on the surrounding gas, since Willis & Orme (2000)

and Willis & Orme (2003) could not observe this mechanism for Weber numbers larger

than 2000 in a vacuum environment.

(a) (b) (c) (d)

Figure 2.9: Schematic representation of the four possible collision outcomes of binary
liquid drop collisions: a coalescence, b bouncing, c reflexive separation, d
stretching separation (adapted from Ko & Ryou, 2005).
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2.4 REFLEXIVE SEPARATION CRITERIA

It has to be stated that the regime of reflexive separation described above can be

replaced by the so called single reflex separation (Chen & Chen, 2006) or crossing

separation (Planchette et al., 2010) for collisions of two immiscible liquids.

We now discuss the collision process leading to the onset of reflexive separation.

2.4 Reflexive separation criteria

To estimate the transition between the regimes of coalescence and separation for binary

drop collisions (see figure 2.8), many different models have been developed. Two

models from the literature, which determine the onset Weber number for the transition

between coalescence and reflexive separation for binary head-on collisions of equal-sized

droplets of the same liquid, are introduced in this section.

2.4.1 The model of Ashgriz & Poo (1990)

In order to explain reflexive separation for water droplets, Ashgriz & Poo (1990)

introduced the concept of effective reflexive energy, which is in their point of view the

cause for reflexive separation. They assume that the total energy of the combined

mass after the collision is composed by the kinetic energy and the surface energy. The

flow is considered to be inviscid and therefore viscous dissipation is neglected. This

is a limit of this approach, since experimentally it has been shown that the onset of

reflexive separation is a function of the dynamic viscosity (Willis & Orme, 2003). The

effective reflexive energy Kr is the sum of the initial kinetic energy Kc and the kinetic

energy of the excess surface induced flow Ke. The former is given by

Kc = 2
1

2
ρ

4

3
π

(
D

2

)3(
U

2

)2

=
1

24
πρD3U2 (2.20)

and the latter corresponds to the difference between the surface energy of the initial

droplets and the surface energy of the combined spherical mass, which reads

Ke = 2σπD2 − σπ
(
21/3D

)2
= σπD2

(
2− 22/3

)
. (2.21)
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As a consequence, the effective reflexive energy is

Kr = Kc +Ke = σπD2

(
2− 22/3 +

We

24

)
. (2.22)

The criterion for the occurrence of reflexive separation is based on the linear theory of

Rayleigh (1879), who showed that a liquid column becomes unstable if its length-to-

diameter ratio is equal to π or larger. Consequently, Ashgriz & Poo (1990) investigated

the last phase of binary drop collisions, where the combined mass is stretched into a

cylinder. Such a cylinder, with a total length of l + 2r and a diameter of r, can be

seen in figure 2.10. Its critical length-to-diameter ratio is given by

l

r
= 2π − 2 . (2.23)

Due to surface tension, the liquid at both ends is forced towards the centre, which

would prevent separation. The cylinder can disintegrate only if the momentum rate of

the internal flow field compensates the surface tension forces and sustains the shape of

the cylinder. As a result, disturbances are able to grow and break the cylinder.

l

2r

urpa
pb

A

control volume V

Figure 2.10: Schematic of a cylindrical shaped drop formed in the last stage of the
collision (adapted from Ashgriz & Poo, 1990).

In order to calculate the minimum internal kinetic energy, which is necessary to sustain

the shape of the cylinder, the internal velocity of the cylinder has to be estimated.

Therefore, a force balance is applied to the control volume V sketched in figure 2.10,

which leads to
d

dt

∫
uρdV − ρu2

rA = (pb − pa)A , (2.24)

where ur is the reflexive velocity and u the velocity inside the control volume. The

pressures are estimated by pa = 2σ/r and pb = σ/r and the cross sectional area A

can be calculated by A = r2π. The unsteady term on the left-hand side is estimated
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2.4 REFLEXIVE SEPARATION CRITERIA

by the product of an average velocity ū and the mass flow rate dm/dt. The average

velocity is estimated by the mean value between the velocity at the left (u = 0) and the

right (u = ur) boundary of the control volume, which yields ū = ur/2. By assuming

dm/dt = ρurA and substituting everything into equation (2.24), the reflexive velocity

can be calculated by

ur =

(
2σ

ρr

)1/2

. (2.25)

The minimum kinetic energy to sustain the cylindrical shape is approximated by

Km =
1

2
ρ

(
r2πl +

4

3
r3π

)
u2
r = 4σπr2

(
1

3
+

1

4

l

r

)
. (2.26)

Now it is imagined that the cylinder relaxes into a nominal spherical drop with the

reflexive kinetic energy K∗r and the surface energy S∗n. The total energy of this nominal

spherical droplet is equivalent to the total energy of the cylindrical droplet. Therefore

the energy can be balanced by

K∗r + S∗n = Km + Sm , (2.27)

where Sm is the surface energy of the cylindrical droplet. Normalizing equation (2.27)

by S∗n leads to the critical condition for reflexive separation for the quantity Γ , which

is defined by the ratio of K∗r to S∗n:

Γ =
K∗r
S∗n

=
Km

S∗n
+
Sm
S∗n
− 1 (2.28)

The surface energies S∗n and Sm can be calculated as

S∗n = 4σπr2

(
1 +

3

4

l

r

)2/3

and Sm = 4σπr2

(
1 +

1

2

l

r

)
. (2.29)

Using equations (2.26) and (2.29), equation (2.28) can be rewritten as

Γ =

(
1 +

3l

4r

)−2/3(
4

3
+

3l

4r

)
− 1 . (2.30)

Applying the critical length-to-diameter ratio given in equation (2.23), leads to a value
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for Γ of 0.7425. Therefore it can be argued that “for a nominal spherical combined

mass, when the effective reflexive kinetic energy is more than 75% of its nominal surface

energy, reflexive separation will occur” (Ashgriz & Poo, 1990: 199). Consequently, the

criterion for reflexive separation for equal-sized droplets can be written as

Kr ≥ 0.75σπ22/3D2 . (2.31)

Introducing this criterion into equation (2.22) leads to a critical Weber number for the

transition between coalescence and reflexive separation, at zero impact parameter, of

We0 = 6
(
7 · 22/3 − 8

)
≈ 19 . (2.32)

Since this criterion is based on inviscid flow assumptions, it is described by only one

parameter, the Weber number. This is a limitation of this model, because only inviscid

fluids are considered. Jiang et al. (1992) showed experimentally that the viscous loss

for binary collisions of water droplets cannot be neglected. In the next section their

theoretical model for viscous fluids will be introduced.

2.4.2 The model of Jiang et al. (1992) and of Qian & Law (1997)

The criterion for head-on reflexive separation developed by Jiang et al. (1992) and

by Qian & Law (1997) is based on considerations of kinetic energy, surface energy

and viscous dissipation. Thus, their approach is more general than the previously

introduced model of Ashgriz & Poo (1990). According to Qian & Law (1997), the

droplet collision sequence consists of three different stages (see figure 2.11).

In period 1, two droplets collide and spread outward into a disk. After this disk reaches

its maximum extension, in period 2, the disk contracts back into a droplet shaped

complex due to surface tension forces. Finally, in period 3, the complex stretches into

a cylinder, with its both ends pushing outward. Subsequently, a dumb-bell with a

thin connecting ligament is formed. If the initial kinetic energy is large enough, the

ligament breaks and the droplets separate. Otherwise, surface tension pulls the ends

of the dumb-bell back and the excess energy is dissipated during oscillations under

viscous loss.
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2.4 REFLEXIVE SEPARATION CRITERIA

At the transition between coalescence and reflexive separation, the energy can be

balanced by

Ek = Φ1 + Φ2 + Φ3 + Φr , (2.33)

where Ek is the initial kinetic energy of the two droplets. It is given by

Ek = ρ
1

6
πD3

(
1

2
U

)2

, (2.34)

where D is the droplet diameter, assuming both drops are equally sized. The viscous

dissipation Φ1, Φ2 and Φ3 during the periods 1, 2 and 3 can be generally calculated for

each period by

Φ1,2,3 = µ

∫ ∫
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
dt dx3 . (2.35)

The last term on the right hand side of equation (2.33) represents an additional surface

energy, which the deformed droplet mass possesses at the instant of breakup, compared

to the surface energy of the original spherical droplets. It can be calculated by

Φr = σ∆S , (2.36)

where ∆S is the additional surface area of the deformed droplet compared to the

original spherical droplet. ∆S is evaluated from experimental data.

2c

2d

period 1

period 2

period 3

2b

2a

Figure 2.11: Illustration of the three periods of binary head-on collisions of droplets
(adapted from Qian & Law, 1997).
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Viscous dissipation during period 1

According to Jiang et al. (1992), in the first stage of the collision, before the maximum

deformation of the disk is reached, the drops may be considered as a central disk

sandwiched by two caps (see figure 2.12). It is assumed that the two caps are not affected

by the collision. As a consequence, their spherical contour remains and, moreover, they

move constantly at U/2, where U is the impact relative velocity. Thus, the time period

until the disk reaches its maximum extension can be estimated by 2D/U . Jiang et al.

(1992) argue that the maximum velocity gradient, with a strain rate of approximately

U/2h, is located in the stagnation flow region. Therefore, the thickness 2h of this

stagnation flow region can be calculated by using the relation ρ(U/2)2/2 ≈ µU/2h.

This leads to h ≈ 4µ/ρU . The volume of the stagnation flow region can be estimated

by (2h)(D2π/4). According to equation (2.35), the amount of energy dissipated in

period 1 can therefore be calculated by

Φ1 ≈ µ

(
U

2h

)2(
1

2
πhD2

)(
2D

U

)
≈ 1

16
πρD3U2 . (2.37)

It is interesting to note that, according to equation (2.37), the amount of dissipated

energy is independent of the dynamic viscosity µ. Taking the previous assumptions

into account, Φ1 can be estimated by a fractional amount α̂ of initial kinetic energy

2h

U/2

U/2

D

cap portion

disk portion

Figure 2.12: Schematic model of period 1 of the collision (adapted from Jiang et al.,
1992). The disk portion is coloured white and the cap portion is coloured
grey.
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dissipated. Therefore, it is given by

Φ1 =
1

24
πα̂D2σWe . (2.38)

The value of α̂ has to be determined empirically for each liquid, which is a drawback

of this approach. Jiang et al. (1992) obtained α̂ ≈ 0.5 for hydrocarbon and water

droplets.

Viscous dissipation during period 2

In order to evaluate the amount of energy dissipated in period 2, the characteristic

liquid velocity v2 towards the centre has to be evaluated. Therefore the pressure and

surface tension forces are balanced, which reads

1

2
ρv2

2 = σ

(
1

a
+

1

b

)
, (2.39)

where a and b are geometrical parameters according to figure 2.11. Rearranging

equation (2.39) leads to

v2 =

[
2σ

ρ

(
1

a
+

1

b

)]1/2

. (2.40)

The volume of the whole complex can be calculated by πD3/3 and the time which

lapses until the drop regains its spherical shape is estimated by a/v2. With the help of

equation (2.35), Φ2 can be written as

Φ2 ≈
1

2
µ
(v2

b

)2
(
a

v2

)
1

3
πD3 =

2

3
πD3/2µ

ã

b̃5/2

[
σ

ρ

(
1 +

b̃

ã

)]1/2

, (2.41)

where ã = 2a/D and b̃ = 2b/D. Equation (2.41) depends on the droplet diameter, the

fluid properties and two geometrical parameters. The latter have to be determined

separately for collisions at different conditions.

Viscous dissipation during period 3

The amount of energy dissipated in period 3 is evaluated analogously to period 2.

The characteristic liquid velocity v3 is estimated from balancing pressure and surface
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tension forces, which reads
1

2
ρv2

3 =
2σ

d
. (2.42)

Consequently, v3 is given by

v3 =

(
4σ

ρd

)1/2

. (2.43)

The volume is calculated by πD3/3 and the elapsed time is assumed to be in the order

of c/v3. Thus, the viscous dissipation Φ3 can be expressed by

Φ3 ≈
1

2
µ
(v3

d

)2
(
c

v3

)
1

3
πD3 =

2

3
πD3/2µ

(
2σ

ρ

)1/2(
c̃

d̃5/2

)
, (2.44)

where c̃ = 2c/D and d̃ = 2d/D. The geometrical parameters c and d are given in figure

2.11 and have to be determined individually for collisions at different conditions.

Now that all viscous losses are evaluated, the critical Weber number We0 for the

transition between coalescence and reflexive separation of binary head-on collision can

be calculated. Therefore, equations (2.36), (2.38), (2.41) and (2.44) are substituted

into equation (2.33) and normalized by the initial surface tension energy 2σ(πD2),

which leads to

We0 =
1

1− α̂

 ã

b̃5/2

[
1

2

(
1 +

b̃

ã

)]1/2

+
c̃

d̃5/2

 16
√

2
µ√
ρD σ︸ ︷︷ ︸
Oh

+
24∆S

(1− α̂)πD2
. (2.45)

This is a linear equation

We0 = ĀOh + B̄ , (2.46)

where Ā and B̄ are geometrical parameters, independent of the fluid properties. There-

fore, at the transition from coalescence to reflexive separation, the separation criterion

can be described in terms of two non-dimensional numbers, namely We and Oh. The

drawback of the criterion given by equation (2.45) is that four individual geometrical

parameters and ∆S have to be determined experimentally.
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In the first part of this chapter, the liquids used for the experimental investigations

are introduced. Afterwards, the experimental set-up and the procedure of image

processing is described for binary and ternary droplet collisions. Finally, a list of the

used laboratory equipment is given.

3.1 Liquids and measurements

In order to analyse binary and ternary drop collisions, experiments with different

liquids are performed. In table 3.1 the used liquids and their physical properties are

listed. Almost all experiments are performed with aqueous glycerol solutions. The

concentrations of these solutions are given in mass percent of glycerol. Distilled water

has been used for the preparation of the mixtures. By using aqueous glycerol solutions,

Liquids Density Dynamic viscosity Surface tension

ρ [kg m−3] µ [mPa s] σ [mN m−1]

Glycerol 10% (Gl 10%) 1012.46 1.23 68.94

Glycerol 30% (Gl 30%) 1063.22 2.17 67.45

Glycerol 40% (Gl 40%) 1096.00 3.15 66.79

Glycerol 50% (Gl 50%) 1131.30 5.24 66.53

Glycerol 60% (Gl 60%) 1153.88 8.81 65.27

Glycerol 65% (Gl 65%) 1166.60 12.11 64.39

Glycerol 70% (Gl 70%) 1179.90 17.84 64.00

Silicon oil M3 (SO M3) 887.48 2.79a 19.50

Silicon oil M10 (SO M10) 931.40 9.37a 20.10

Table 3.1: Measured properties of the investigated liquids at ≈ 23 ◦C. Glycerol concen-
tration in aqueous glycerol solutions are given as mass percentage. a Values
given by the data sheet of the supplier Carl Roth at 20 ◦C.
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Liquids Orifice diameter Dor [µm]

70 100 200 300 500

Glycerol 10 % • ◦
Glycerol 30 % • • ◦ • ◦
Glycerol 40 % • ◦ • ◦
Glycerol 50 % • ◦ • ◦ • ◦ • ◦ •
Glycerol 60 % •
Glycerol 65 % •
Glycerol 70 % •

Silicon oil M3 •
Silicon oil M10 •

Table 3.2: Performed experiments to describe the transition between coalescence and
reflexive separation for the case of head-on collisions of equal-sized droplets:
• binary drop collisions, ◦ ternary drop collisions.

the dynamic viscosity can be tuned in a wide range, while density and surface tension

remain almost constant (see table 3.1). In order to vary the surface tension, experiments

with two different silicon oils have been performed for binary drop collisions.

The physical properties in table 3.1 apply for a temperature of ≈ 23 ◦C. The density

ρ was obtained by measuring the mass of a defined volume (5 ml) of the liquid. The

dynamic viscosity µ was determined with the help of an Ubbelohde viscometer and the

surface tension σ was measured with the pendant drop method using a tensiometer

type LAUDA TVT-1. For both silicon oils, values for the dynamic viscosity are taken

from supplier data sheets.

As mentioned in section 2.2.1, the droplet diameter mainly depends on the diameter

of the liquid jet and therefore on the orifice diameter. Basically, four different sized

orifices with nozzle diameters of 70, 100, 200 and 300µm were used, leading to drop

sizes ranging from 130 to 570µm. One experiment has been carried out with an

orifice diameter of 500µm. In table 3.2, the performed experiments are listed. Binary

collisions are marked with a filled circle (•) and ternary collisions are marked with an

open circle (◦).

For all these configurations, the onset velocity U0, and therefore the onset Weber

number We0, of the transition between coalescence and reflexive separation for head-on

collisions is determined. Moreover for glycerol 50 % in combination with the 200µm
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orifice, a stability nomogram, analogous to figure 2.8, was determined for binary and

ternary drop collisions. The results are presented in the following chapter.

In addition, the onset of fragmentation at head-on collisions is determined for binary

collisions of unequal-sized droplets. Liquids and combined nozzle diameters are listed

in table 3.3. Thus, two different droplet size ratios of δ = 0.62 and δ = 0.78 are

investigated.

Liquids Orifice diameter Dor [µm]

70 200

Glycerol 30 % 100 • •
Glycerol 40 % 100 • •
Glycerol 50 % 100 • •

Table 3.3: Performed experiments to describe the transition between coalescence and
reflexive separation for head-on collisions of unequal-sized droplets: • binary
drop collisions.

3.2 Binary drop collisions

In the present section, the experimental set-up used to study binary drop collisions is

introduced. Afterwards, the equations for the analysis of the images are derived.

3.2.1 Experimental set-up

The experimental set-up for binary drop collisions can be seen in figure 3.1. Two drop

generators are connected with a hose to the pressurised tank, which contains the liquid.

The pressure is continuously adjustable and measured by an analogue manometer. In

order to prevent the nozzles from clogging by particles, the liquid is filtered.

The experimental rig consists of two main components and is placed on a vibration

isolated table to avoid environmental disturbances. Its two essential parts are the

drop generators and a visualisation system, which are described below. In the case of

binary drop collisions, there are two piezoelectric drop generators, which produce stable

monodisperse liquid drop streams (Brenn et al., 1996). The liquid jet emerging from the

nozzle of a drop generator with the velocity UJ , is disturbed by a piezoceramic oscillator
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TTL

filter

pressurised tanksignal generatorcomputer

camera on traverse

drop generators

LED / nanolite

drain tray

vibration isolated rigid optical table

liquid

Figure 3.1: Experimental set-up for binary drop collisions of the same liquid.

with the frequency f , leading to instabilities in the jet stream with a wavelength of

λ = UJ/f . Thus, if λ has a proper magnitude (see equation (2.15)), droplets with

diameters around twice the diameter of the nozzle hole are produced (see equation

(2.13)). Since the nozzle plates of the drop generators are changeable, droplet streams

of different sizes can be achieved. In order to adjust the trajectories of the streams,

the generators are placed on translation and rotation stages. The accuracy of these

movable stages is estimated to be about±2µm and ±2 ◦, respectively. The piezoceramic

oscillators of the generators are connected to a signal generator, which provides an AC

sine wave output signal with an amplitude of 20 V and a typical frequency of 10 kHz.

The visualisation system can be divided into two parts, the camera system and the

illumination system. The camera system used to acquire pictures of the colliding

droplets is a PCO Sensicam video camera placed on a traverse. A suitable lens is

connected by a C-mount adapter to the camera. Since the droplets have a typical

diameter of 130 to 560µm, a magnification lens is attached to the front side of the

objective. The camera is controlled via a computer.

Secondly, the illumination system is responsible for the illumination of the droplet

streams. For that purpose two different light sources are used. On the one hand, a red

light LED and on the other hand, a nanolite flash light. The nanolite provides flashes

of only a few nanoseconds duration and therefore very sharp images can be acquired.

However, the advantage of the LED is that its light flashes are synchronized with the

frequency of the drop generators by connecting it to the corresponding TTL output of

the signal generator. Thus, the droplet streams appear stationary, which facilitate the

adjustment of stability and tuning of the trajectories. Since many pictures of the same
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3.2 BINARY DROP COLLISIONS

scene are superposed to the final picture with this technique, the images appear less

sharp than with the nanolite system. A complete list of the used equipment can be

found in section 3.4.

3.2.2 Image processing

In order to extract informations from obtained photographs, two computer programs

are used. With the help of the first, called ImageJ, the projected area of each drop

and the coordinates of its centre of mass are derived . This is illustrated in figure 3.2

for the case of binary drop collisions.

The above mentioned procedure can be described as follows. First of all, the picture

has to be cut to select the last two pairs of drops before the collision point. Then the

area and the coordinates (xm, ym) of the centre of mass are calculated for each droplet

by ImageJ. The origin of the coordinate system is placed in the left upper corner of

the cropped image. For binary drop collisions four droplets remain. With knowledge

of the droplet area and assuming spherically shaped drops, the droplet diameter D for

each droplet i is given by

Di =

√
4 · Area

π
. (3.1)

Since all quantities computed by ImageJ are given in pixels, a scale is used to convert

them into meters. For this purpose, a stage micrometer is used. A photograph of it can

Area [px2] xm [px] ym [px]
1 1075 117.24 43.80
2 1093 47.68 44.58
3 1084 104.11 121.05
4 1078 61.85 122.00

x

y

z

12

34

Figure 3.2: Example of image processing with ImageJ for binary drop collisions. On
the left hand, a photograph of the collision can be seen. On the right hand,
a table with the results can be found.
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1 [mm]

Figure 3.3: Photograph of a stage micrometer. Micrometer scale is 1 mm in 0.01 mm
divisions.

be seen in figure 3.3. The micrometer scale is 1 mm, and by measuring this distance in

the photograph in [px], the constant factor to convert the desired quantities from [px]

to [m] can be determined easily.

Depending on the droplet size, the resolution of the imaging system was varied from

3.3µm px−1 to 14.5µm px−1. At the estimation of the droplet area in the photographs,

which is typically in the order of A = 1000 px2 per drop, an error of ∆A = ±πD/2 px2

is assumed. Thus, the accuracy of the estimated drop diameter is roughly 2.8%, which

is typically ±1 px.

By using the droplet diameters Di, the excitation frequency f of the drop generators

and the coordinates of the centroids xm,i and ym,i, the relative velocity U and the

impact parameter X can be calculated. For binary drop collisions this procedure is

shown in section 3.2.3. In order to perform the calculations and handle the data, a

second software is used: GNU Octave.

3.2.3 Analysis

In figure 3.4, a sketch shows the relative positions of the droplets for binary drop

collisions. The drops are numbered from 1 to 4, according to the following rules:

xm,1 ∧ xm,2 < xm,3 ∧ xm,4
ym,1 < ym,2

ym,3 < ym,4 .

(3.2)

To calculate the desired quantities, the three vectors ~l12, ~l31 and ~l34 have to be defined.
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Figure 3.4: Sketch of binary drop collision and notations used for the calculation of
the relative velocity U and the non-dimensional impact parameter X.

Each of these vectors ~lij points from the centre of mass of drop number i to the centre

of mass of drop number j and can be written as

~lij =

xm,j − xm,i
ym,j − ym,i

 . (3.3)

Their lengths can be calculated by

lij = |~lij| =
√

(xm,j − xm,i)2 + (ym,j − ym,i)2 . (3.4)

The average droplet diameter is given by

D =
1

4

n=4∑
i=1

Di . (3.5)

The vectors ~l12 and ~l34 point in the directions of the left and the right droplet stream,
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respectively. Together they form the angle α, which can be calculated by

α = cos−1

(
~l12 ·~l34

l12 l34

)
. (3.6)

To check the symmetry of the collision, the angle between the trajectories and the

vertical axis (y-axis) can be calculated by

αL = cos−1

(
~l12 ·

(
0
1

)
l12

)
and αR = cos−1

(
~l34 ·

(
0
1

)
l34

)
. (3.7)

We consider the collision as symmetrical when αL/αR = 1 ± 0.15. Knowing the

excitation frequency f and using the outcome of equation (3.4), the velocities of the

left and the right drops are given by

UL = l12 f and UR = l34 f , (3.8)

respectively. Applying the law of cosines, using the results of equation (3.6) and (3.8),

it follows for the magnitude of the relative velocity of the two drops

U =
√
U2
L + U2

R − 2ULUR cosα . (3.9)

For the calculation of b, which defines the distance between the centre of the left drop

and the centre of the right drop, normal to the relative velocity vector, the angles β

and γ have to be determined. The former is given by

β = cos−1

(
~l31 ·~l34

l31 l34

)
(3.10)

and the latter is formed between the relative velocity U and the velocity UR. Thus,

applying the law of sines, γ can be written as

γ = sin−1

(
UL
U

sinα

)
. (3.11)

Therefore, b can be calculated by

b = l31 sin(β − γ) (3.12)
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and the non-dimensional impact parameter X can be written as

X =
| b |
D

. (3.13)

3.3 Ternary drop collisions

The present section shows the experimental set-up and the mathematical description

of ternary drop collisions.

3.3.1 Experimental set-up

In figure 3.5, the experimental set-up used to study collisions of three droplets can be

seen. There are two main differences in comparison to the set-up for binary collisions

(see figure 3.1). First of all, three drop generators are needed. The generator in the

centre is fixed and therefore not moveable. Its droplet stream flows vertically downward

in the direction of the y-axis (see figure 3.8). The fact that all three drop generators

are driven by exactly the same frequency f leads to the second difference. For ternary

drop collisions a second pressurised tank is needed, which is connected to the central

generator. The reason for this will be explained in section 3.3.3. All other components

of the experimental set-up were already described in section 3.2.1.

TTL

filters

pressurised tankssignal generatorcomputer

camera on traverse

drop generators

LED / nanolite

drain tray

vibration isolated rigid optical table

liquid liquid

Figure 3.5: Experimental set-up for ternary drop collisions with one liquid.
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3.3.2 Image processing

Basically, image processing for ternary drop collisions is similar to the procedure

described in section 3.2.2. It is illustrated in figure 3.6. The last three pairs of droplets

are selected by cutting the picture. Afterwards the area and the coordinates (xm, ym)

of the centroid are calculated for each droplet by ImageJ. The droplet diameter D is

calculated according to equation (3.1). All further calculations are performed with

GNU Octave.

Area [px2] xm [px] ym [px]
1 757 110.38 32.39
2 777 36.72 35.33
3 789 183.57 38.33
4 749 110.84 104.11
5 788 59.04 106.40
6 774 162.47 109.14

12 3

45 6

x

y

z

Figure 3.6: Example of image processing for ternary drop collision using ImageJ. On
the left hand, a photograph of the collision can be seen. On the right hand,
a table with the results can be found.

3.3.3 Analysis

Basically, there are two possible configurations for symmetrical ternary drop collisions,

which can be seen in figure 3.7. For the axially symmetric case, as presented in

figure 3.7a, the trajectory of the central droplet stream appears to be the symmetry

axis, which is approximately parallel to the y-axis of the coordinate system. In

figure 3.7b, the centrally symmetric configuration, with the centre of mass of the

central droplet as its point of symmetry, is shown. The two main parameters, relative

velocity and non-dimensional impact parameter, are given in table 3.4 for both cases.

In the present thesis only the case of centrally symmetric drop collisions is investigated,

since this configuration is better comparable to binary drop collisions, than axially
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(a) (b)

Figure 3.7: Symmetric ternary drop collisions: a axially symmetric configuration and
b centrally symmetric configuration (adapted from Planchette, 2011).

symmetric ternary drop collisions. However, for the investigation of head-on collisions,

there is no difference between the two possible configurations of ternary drop collisions,

since the impact parameter reduces to zero and the relative velocity is the same for

both cases (see table 3.4).

In figure 3.8, a sketch of the relative position for the case of a centrally symmetric

ternary drop collision (see figure 3.7b) can be seen. The droplets are numbered from 1

to 6 considering

xm,1 ∧ xm,2 < xm,3 ∧ xm,4 < xm,5 ∧ xm,6
ym,1 < ym,2

ym,3 < ym,4

ym,5 < ym,6 .

(3.14)

The required vectors to estimate the desired quantities ~l12, ~l13, ~l34, ~l53 and ~l56 can

be defined analogous to equation (3.3). Their lengths can be calculated as shown in
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figure relative velocity impact parameter

3.7a ULC = −URC bLC = bRC ⇒ XLC = XRC

3.7b ULC = −URC bLC = −bRC ⇒ XLC = −XRC

Table 3.4: Relative velocity and impact parameter for axially and centrally symmetric
ternary drop collisions.

equation (3.4). The average droplet diameter is defined by

D =
1

6

n=6∑
i=1

Di . (3.15)

The angles αLC and αRC are given by

αLC = cos−1

(
~l12 ·~l13

l12 l13

)
and αRC = cos−1

(
~l53 ·~l56

l53 l56

)
(3.16)

bLC

αLC

αRC

UL

UC UR

ULC

URC

γRC

βRC

bRC

γLC

βLC

l12

l56

l34

l13

l53

1

2

3

4

5

6

x

y

z

Figure 3.8: Sketch of centrally symmetric collision of three droplets.
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and the velocities of the droplets number 1, 2 and 3 can be written as

UL = l12f , UC = l34f and UR = l56f , (3.17)

respectively. In order to achieve symmetric collisions, it is essential that the spacing

between two successive droplets follows

l12 cosαLC ≈ l34 ≈ l56 cosαRC , (3.18)

where αLC ≈ αRC and l12 ≈ l56. The constraint given by equation (3.18) and the fact

that the excitation frequency f is the same for all three drop generators leads to the

conclusion that the velocity UC of the drop in the centre has to be smaller than the

velocity of the left and the right drop (see equation (3.17)). Therefore, the central

drop generator is connected to a separate pressurised tank, enabling its connection

with a smaller pressure and therefore a smaller velocity UC , as briefly mentioned in

section 3.3.1 (see figure 3.5).

As presented in equation (3.9), the relative velocities between left and central droplets

ULC and right and central droplets URC can be calculated by

ULC =
√
U2
L + U2

C − 2ULUC cosαLC ,

URC =
√
U2
R + U2

C − 2URUC cosαRC .
(3.19)

The overall relative velocity is given by

U = ULC + URC ≈ 2ULC ≈ 2URC . (3.20)

Analogous to equation (3.10), the angles βLC and βRC are defined by

βLC = cos−1

(
~l12 ·~l13

l12 l13

)
and βRC = cos−1

(
~l53 ·~l56

l53 l56

)
(3.21)

and similar to equation (3.11), the angles γLC and γRC are calculated by

γLC = sin−1

(
UC
ULC

sinαLC

)
and γRC = sin−1

(
UC
URC

sinαRC

)
. (3.22)
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Furthermore, the distances bLC and bRC are given by

bLC = l13 sin(βLC − γLC) and bRC = l53 sin(βRC − γRC) , (3.23)

which leads to the non-dimensional impact parameters

XLC =
bLC
DLC

and XRC =
bRC
DRC

, (3.24)

where DLC and DRC can be calculated by

DLC =
1

4

n=4∑
i=1

Di and DRC =
1

4

n=6∑
i=3

Di , (3.25)

respectively. The overall non-dimensional impact parameter is defined as

X =
1

2
(|XLC |+ |XRC |) ≈ |XLC | ≈ |XRC | . (3.26)

3.4 Laboratory equipment

In this section the used laboratory equipment is listed below. Accessories like cables

and tubes are not considered.

• Drop generator. Provides a monodisperse liquid droplet stream based on the

Plateau-Rayleigh instability. Orifice changeable. Developed by Brenn et al.

(1996).

• Linear and rotary micro-control stages for drop generator. OWIS.

• Pressure vessel. Capacity: 10 l. Difference pressure up to 10 bar. SATA.

• Air pressure regulator. Norgren Watson Smith.

• Signal generator. FLUKE 282 40MB/s ARBITRARY WAVEFORM GENERA-

TOR.

• Camera. PCO Sensicam qe 670KE. Cooled 12-bit CCD camera system. Resolu-

tion: 1376× 1040 px.
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• Objective. Super Cosina 75-300 mm 1:4.5-5.6 Macro camera lens. A C-mount

adapter is used to connect the objective to the camera.

• Magnification lens. Raynox CM-3500 MicroExplorer lens (6x and 12x magnifica-

tion).

• Linear micro-control stages for camera. OWIS.

• Stage micrometer. A.KRÜSS Optronic MML 1003.

• Vibration isolated rigid optical table. Newport LabLegs SL Series.

• NANOLITE flash light. Typical flash duration of a few nanoseconds. Power

supply of the flash light. HSPS (High-Speed Photo Systems).

• Red light LED. Typical flash duration of approximately 1µs. Manufactured at

the Institute of Fluid Mechanics and Heat Transfer at the Graz University of

Technology.

• Computer.
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4 Results and discussion

In the first part of this chapter the collision regime maps for binary and ternary liquid

drop collisions are presented and compared. The second part focuses on the onset of

fragmentation for head-on collisions.

4.1 Collision regime maps

In this section, the obtained (X,We) nomograms at constant Ohnesorge number

for binary and ternary collisions of equal-sized droplets are presented and discussed.

Moreover, similarities and differences between both collision regime maps are pointed

out. The used liquid is an aqueous glycerol solution with 50% mass of glycerol and the

nozzle diameter of the drop generators is 200µm.

4.1.1 Binary drop collisions

In this section the different collision outcomes for binary liquid drop collisions are

presented. The Ohnesorge number for all collisions is 0.032 ± 0.001. Four classical

collision outcomes can be identified: coalescence, bouncing, reflexive separation and

stretching separation (see figure 2.9). These collision outcomes are shown and discussed

below. In all the images shown below, the droplets are seen to move from the left to

the right.

First of all, head-on collisions with increasing Weber numbers are discussed allowing

to observe the transition between coalescence (see figure 4.1) and reflexive separation

(see figure 4.2). In figure 4.1a, two drops merge at We = 12.7. The collision energy

is not very high. For this reason it takes some time to expel the intervening air layer

between the drops. As a result both drops start to flatten a bit before the liquid bridge
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(a)

(b)

(c)

Figure 4.1: Photographs of pairs of coalescing drops, using glycerol 50% as the liquid, at
zero impact parameter: a D = 341µm, We = 12.7, X = 0.04, f = 7060 Hz
b D = 335µm, We = 25.1, X = 0.02, f = 7060 Hz c D = 338µm,
We = 35.7, X = 0.02, f = 7060 Hz.

is formed. After coalescence, the excess surface and internal kinetic energy is dissipated

via oscillations.

In figure 4.1b, the Weber number is increased to 25.1, which can be realised by

increasing the pressure in the reservoir (see figure 3.1) or by increasing the angle

between the trajectories of the two droplet streams (see figure 3.4). The merged

droplets expand into a slim disk shaped complex, then retract into a cylindrical rod

and finally into a spherical drop. Coalescence at a Weber number of 35.7 can be seen

in figure 4.1 c. After the cylindrical rod is formed, internal forces continue to push

both ends outwards and as a result the complex deforms into a dumbbell. Nevertheless,

the internal motion is not strong enough to break this ligament and, consequently, it

retracts into a spherical droplet.

By further increasing the Weber number (see figure 4.2), the internal momentum rate

exceeds the surface tension force and reflexive separation occurs. This can be seen

in figure 4.2a (We = 37.3), where in the last stage of the collision the two droplets

separate again and a small satellite droplet is formed. As the Weber number is further

increased, the size of the satellite droplet grows, which can be observed in figures 4.2b

and 4.2 c. Moreover, in figure 4.2b, it can be nicely seen how the droplets are pinched

off the connecting ligament. In general, the ligament can contract to form a single

droplet, as shown in the photograph, or break up into several satellite droplets.
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(a)

(b)

(c)

Figure 4.2: Examples of reflexive separation at binary drop collisions, using glycerol
50% as the liquid, at zero impact parameter: a D = 337µm, We = 37.3,
X = 0.01, f = 7060 Hz b D = 339µm, We = 47.8, X = 0.01, f = 7060 Hz
c D = 339µm, We = 68.6, X = 0.04, f = 7060 Hz.

As the Weber number is increased to around 68, which can be seen in figure 4.2 c, the

limitation of the used droplet production technique is reached. The disk emerging

from the collision expands to a degree that it interacts with the preceding disk. In the

current case, the collision is not affected, but, for larger Weber numbers, successive

disks may coalesce, which affects the collision outcome to a great extent. This aspect

is not critical for the development of a collision regime map, but can become a limiting

factor for the investigation of the onset velocity of high-viscous liquids, for example

with an aqueous glycerol solution at 75% mass of glycerol (typical dynamic viscosity of

35.5 mPa s at 20 ◦C).

In figures 4.1a and 4.3, coalescence at constant Weber numbers and different non-

dimensional impact parameters can be compared. In figure 4.1a the impact parameter

is around zero, whereas in figure 4.3 the non-dimensional impact parameter is in the

order of 0.48. Nevertheless, apart from the displacement of the droplet trajectories, the

Figure 4.3: Coalescence at binary drop collision, using glycerol 50% as the liquid, at
D = 341µm, We = 13.2, X = 0.48, f = 7060 Hz.
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(a)

(b)

Figure 4.4: Bouncing at binary drop collisions, using glycerol 50% as the liquid, at
a D = 339µm, We = 13.0, X = 0.57, f = 7060 Hz b D = 337µm,
We = 13.2, X = 0.92, f = 7060 Hz.

collision process looks similar in both cases. As the non-dimensional impact parameter

is increased to 0.57, which is presented in figure 4.4a, bouncing occurs. Due to the

small contact area both droplets deform oblique and bounce apart without forming a

liquid bridge. The deformation is quite significant and therefore it takes some time

until both droplets regain their spherical shape. In figure 4.4b, bouncing at a large

non-dimensional impact parameter can be seen. Hence the contact area is very small,

barely no deformation of the drops can be noticed. Thus, they recover their spherical

shape quickly.

In figure 4.5, two photographs at X ≈ 0.25 are presented. For the collision in figure

4.5a, the Weber number has a magnitude of 36.2 and in figure 4.5b, We = 69.4. It

is interesting to note that, for a Weber number comparable to the one of figure 4.5b

(a)

(b)

Figure 4.5: Coalescence at binary drop collisions, using glycerol 50% as the liquid,
at small impact parameters: a D = 338µm, We = 36.2, X = 0.25,
f = 7060 Hz b D = 368µm, We = 69.4, X = 0.23, f = 5310 Hz.
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(a)

(b)

Figure 4.6: Stretching separation at binary drop collisions, using glycerol 50% as the
liquid, at a D = 349µm, We = 35.7, X = 0.54, f = 7060 Hz b D = 338µm,
We = 36.2, X = 0.75, f = 7060 Hz.

(We = 68.6) and smaller impact parameter (X = 0.04), reflexive separation occurs

(see figure 4.2 c). This can be explained by the fact that the amount of impact inertia

along the imaginary line connecting the centroids of the droplets is decreased with

increasing impact parameter. In other words, for head-on collisions all impact inertia

is reflected towards the outside. At non-zero impact parameters, due to the position

of the droplets at the impact, part of internal liquid motion is tangential and the

remaining energy responsible for reflexive separation is reduced. From this follows

that, with increasing impact parameter, the critical impact inertia leading to reflexive

separation increases.

As a next step, stretching separation at intermediate Weber numbers is discussed.

Taking the configuration of figure 4.5a (coalescence) at We ≈ 36 as a reference, the

impact parameter is increased. Above a certain impact parameter, stretching separation

occurs, which can be seen in figure 4.6a. This process is inertia dominated, which can

Figure 4.7: Bouncing at binary drop collision, using glycerol 50% as the liquid, at
D = 338µm, We = 35.7, X = 0.83, f = 7060 Hz.
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be observed more clearly in figure 4.6b, where the non-dimensional impact parameter

of X = 0.75 is larger than in figure 4.6a. After the impact a liquid bridge is formed,

but the main parts of both droplets remain on their respective trajectories. Thus,

the connecting ligament is stretched and finally pinches off from both drops at its

ends. In further consequence, the ligament breaks into three satellite droplets, due

to a non-uniform pressure field within the ligament resulting from surface tension.

Thus, spherical drops are formed at both ends of the ligament and pinched off. This

mechanism is called end-pinching (Stone et al., 1986). If the impact parameter is

increased, the regime of stretching separation ends and both droplets bounce off each

other. This can be seen in figure 4.7.

Let us now discuss the collision outcomes at high Weber numbers for We > 100.

Starting at We = 100.1 and a small impact parameter, as presented in figure 4.8a,

reflexive separation can be observed. The breakup mechanism appears to be different

from the breakup mechanism at intermediate Weber numbers (see figure 4.2). In figure

4.2, the Rayleigh criterion can be identified as the reason for breakup of the cylinder

into two main droplets after its length-to-diameter ratio exceeds a value of π. At

high Weber numbers, the merged complex stretches into a very long cylindrical rod,

with a much higher aspect ratio. Disturbances at the surface of the cylinder from

recoiling lead to its pinch off at both ends. This mechanism is identical to the above

mentioned end-pinching mechanism, which is responsible for the breakup of ligaments

(a)

(b)

Figure 4.8: Reflexive separation as a result of binary drop collisions, using glycerol 50%
as the liquid, at large Weber numbers: a D = 366µm, We = 100.1, X =
0.08, f = 5310 Hz b D = 369µm, We = 152.3, X = 0.11, f = 5250 Hz.
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into satellite droplets. The produced droplets are smaller in size than the initial drops.

For a Weber number of 152.3, which can be seen in figure 4.8b, the formed cylinder

is longer than in figure 4.8a. The pinched off droplets seem to grow in size from the

outside to the inside. It is also interesting to note that the maximum diameter of the

disk emerging in the first phase after the collision is now almost four times the initial

droplet diameter.

In figure 4.9, two photographs of reflexive separation at intermediate non-dimensional

impact parameters can be seen. Both happen to be close to the transition to another

regime. First, in figure 4.9a, reflexive separation at an intermediate Weber number

(We = 47.5) and at X = 0.15 is pictured. The collision process looks similar to a

head-on collision at an equal Weber number, which is shown in figure 4.2b. The only

difference is that, due to arising tangential forces at non-zero impact parameters, the

whole merged complex is rotated by a certain angle. The second photograph, given in

figure 4.9b, shows reflexive separation at a large Weber number and X = 0.22. This

process is quite different from head-on reflexive separation (see figure 4.8a). Due to

the rotational momentum, the internal motion of the flow is not strong enough to

form a long cylindrical rod. In fact the complex retracting from the disk is not much

longer than in figure 4.2b. Finally, the complex breaks up into three uniform-sized

droplets.

In the next section, stretching separation at high Weber numbers of We ≈ 100 is

discussed. To do so, two photographs are reproduced in figure 4.10. In figure 4.10a,

at a non-dimensional impact parameter of X = 0.44, a broad liquid bridge is formed,

(a)

(b)

Figure 4.9: Reflexive separation as a result of binary drop collisions, using glycerol 50%
as the liquid, at small impact parameters: a D = 339µm, We = 47.5, X =
0.15, f = 7060 Hz b D = 363µm, We = 115.7, X = 0.22, f = 5310 Hz.
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(a)

(b)

Figure 4.10: Stretching separation at binary drop collisions, using glycerol 50% as the
liquid, at large Weber numbers: a D = 363µm, We = 101.7, X = 0.44,
f = 5310 Hz b D = 365µm, We = 99.4, X = 0.67, f = 5310 Hz.

which subsequently collapses into a ligament and breaks up into a single satellite

droplet. On the contrary, at a larger impact parameter, which can be seen in figure

4.10b, a longer ligament is formed. This ligament breaks up into many satellites.

Because of the inward directed motion of the outer satellites, they merge again into

one resulting satellite droplet. Due to a larger impact parameter, the droplets in figure

4.10b are not as much deflected from their initial trajectories as the droplets in figure

4.10a.

The collision regime map for binary drop collision is created by plotting the outcomes

of many different collisions for the various pairs (X,We) into a single nomogram. This

can be seen in figure 4.11. The used liquid is glycerol 50% and the average Ohnesorge

number for this map is in the order of 0.032. In figure 4.12, the (X,We) coordinates

and the figure numbers of the previously presented photographs can be seen.

The transitions between the four different regimes are drawn as grey lines. They are a

result of observation and neither based on theoretical nor on empirical correlations.
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Figure 4.11: Collision regime map obtained for binary drop collisions, using glycerol
50% as the liquid, in an atmospheric environment at T ≈ 23 ◦C. The
droplet diameter ranges between 325µm and 378µm, leading to an average
Ohnesorge number of Oh ≈ 0.032. The relative velocity is varied in the
range of 1.0 m s−1 ≤ U ≤ 5.9 m s−1, which leads to Weber numbers between
6 and 217. The transitions are sketched as grey lines.

At small Weber numbers (We < 20) only two collisions outcomes, depending on the

non-dimensional impact parameter, are possible. For X . 0.5 both drops merge

permanently and otherwise bouncing occurs. With increasing Weber number, this

border is shifted to larger impact parameters. This observation was expected, since

more kinetic energy is available to expel the air layer between the droplets which

prevents bouncing.

From a Weber number of approximately 20 on, a third collision outcome, namely

stretching separation, can be observed. It occurs at relatively high impact parameters,

when parts of both droplets temporarily merge, but due to the relatively high kinetic

energy, the non-merging parts of the droplets remain on their initial trajectories and the

liquid bridge temporarily connecting them breaks up. Consequently, for Weber numbers

larger than around 20, there is no transition between coalescence and bouncing, but

only between stretching separation and bouncing. With increasing Weber number, this

transition is shifted to larger impact parameters, until the regime of bouncing vanishes
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Figure 4.12: Coordinates of the presented photographs in the binary collision regime
map, which is given in figure 4.11.

completely at We ≈ 120. On the contrary, the transition between coalescence and

stretching separation is shifted to smaller impact parameters with increasing Weber

number. Thus, the probability of stretching separation in the (X,We) nomogram

increases with increasing kinetic energies (see figure 4.11).

Reflexive separation occurs first at a Weber number of around 37 at X = 0. In this

case, the initial kinetic energy is sufficiently large to separate the temporarily merged

droplets again. The transition to coalescence is observed for constant Weber number

(We ≈ 40) and increasing non-dimensional impact parameter (0→ 0.15) as well as for

almost constant X (≈ 0.15) and increasing Weber number (40 → 90). At a Weber

number of approximately 90, the three regimes of coalescence, reflexive separation and

stretching separation meet on the map. The transition between the latter two appears

to be found for almost constant non-dimensional impact parameter (X ≈ 0.22) for all

investigated Weber numbers. Consequently, coalescence occurs only for We < 90. It

has to be stated that this value is approximated, because it is difficult to distinguish

between the different regimes in this transition area. This can be seen in figure 4.11,

where no data points are plotted in this region. The reason for this lies in the fact that

the collision outcome in this parameter range is very sensitive to any perturbations.
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The nomogram for binary drop collisions, using glycerol 50% as the liquid, looks very

similar to the nomograms for hydrocarbon droplets obtained by Qian & Law (1997) (see

figure 2.8b) and Jiang et al. (1992). One main difference is that bouncing for head-on

collisions at the very small Weber number of 6 (see figure 2.8b) could not be observed

during this work. At this Weber number, bouncing occurred for non-dimensional impact

parameters larger than around 0.57. Maybe for smaller Weber numbers, bouncing at

zero impact parameter could be observed using the current configuration.

(a) (b) (c) (d)

Figure 4.13: The four main collision outcomes observed for centrally symmetric ternary
drop collisions using glycerol 50% as the liquid: a coalescence at D =
363µm, We = 15.1, X = 0.13, f = 5429 Hz b bouncing at D = 384µm,
We = 23.6, X = 0.81, f = 5529 Hz c reflexive separation at D = 359µm,
We = 48.3, X = 0.01, f = 5560 Hz d stretching separation at D = 374µm,
We = 85.9, X = 0.53, f = 5710 Hz.
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4.1.2 Ternary drop collisions

In this section, the observed collision outcomes and the map of regimes for centrally

symmetric ternary drop collisions (see figure 3.7b) are presented. The used liquid

again the aqueous glycerol solution at 50% mass of glycerol (see table 3.1). In general,

similar to binary drop collisions, four different collision outcomes, namely coalescence,

bouncing, reflexive separation and stretching separation were observed. They are

exemplarily pictured in figure 4.13. At first glance, the collision mechanisms look

similar to binary drop collisions (see figure 2.9 and section 4.1.1). However, significant

differences will be shown later on.

The different collision outcomes are shown and discussed below. On the following

pictures the droplets move from the left to the right. A white vertical line within an

image indicates that it consists of two photographs. This is necessary in some cases in

order to observe the collision farther downstream without lessening the magnification

of the acquired images.

In figure 4.14, three examples of coalescence in ternary head-on collisions can be

seen. At a small Weber number, in figure 4.14a, all three droplets are almost equally

deformed before the liquid bridge is formed. Then they merge permanently. Due to

small kinetic energy, the combined complex deforms very little and relaxes very fast

into a spherical droplet. At a Weber number of 27 (calculated with the relative velocity

(a)

(b)

(c)

Figure 4.14: Coalescence at ternary head-on collisions, using glycerol 50% as the liquid,
at a D = 375µm, We = 10.2, X = 0.06, f = 4131 Hz b D = 359µm,
We = 27, X = 0.06, f = 5560 Hz c D = 359µm, We = 42.9, X = 0.05,
f = 6810 Hz.
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given by equation (3.20)), which can be seen in figure 4.14b, the central droplet is more

deformed than the two outer droplets after the impact. Moreover, the merged droplet is

deformed into a spheroid. The kinetic energy is still very small. Thus, after relaxation

and a few oscillations, a spherical droplet is obtained. In figure 4.14 c, coalescence at

We = 42.9 can be observed. The central drop is highly squeezed by the two impinging

drops and, as a consequence of the high kinetic energies, a narrow disk is formed. After

this disk reaches its maximum extension, the liquid retracts due to surface tension and

relaxes afterwards into a cylindrical rod. As the forces which push both ends of this

cylinder outwards cannot overcome the inward pulling surface tension force, the excess

energy is dissipated through oscillations and the merged complex reaches a spherical

shape.

Coalescence at larger impact parameters is pictured in figure 4.15. For a small Weber

number of 14.7 and a quite high non-dimensional impact parameter of 0.51, which can

be seen in figure 4.15a, the process of the collision is similar to the head-on case given

in figure 4.14a. All three droplets are flattened equally as the intervening air layer is

expelled. After the liquid bridge is formed, only moderate deformations occur due to

oscillations. In figure 4.15b, three coalescing droplets at We = 47.2 and a moderate

impact parameter of 0.24 are pictured. The droplets merge and expand into a narrow

disk followed by relaxation into a rod-shaped complex. Despite the inclination of the

merged complex, due to the non-zero impact parameter, this process is quite similar to

the head-on collision presented in figure 4.14 c.

At small Weber numbers, if the impact parameter exceeds a critical value, the drops

do not coalesce any more. Instead they bounce off each other, since the intervening air

(a)

(b)

Figure 4.15: Coalescence at ternary collisions, using glycerol 50% as the liquid, at
non-zero impact parameter: a D = 362µm, We = 14.7, X = 0.51,
f = 5429 Hz b D = 371µm, We = 47.2, X = 0.24, f = 5500 Hz.
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(a)

(b)

Figure 4.16: Bouncing at ternary collisions, using glycerol 50% as the liquid, at small
Weber numbers: a D = 363µm, We = 14.7, X = 0.75, f = 5429 Hz b
D = 384µm, We = 23.8, X = 0.6, f = 5529 Hz.

layer between the droplets cannot be expelled. This phenomenon can be seen in figure

4.16a at We = 14.7 and X = 0.75 for a ternary drop collision. The impact kinetic

energy is very small and therefore the droplets are only slightly deformed. Obviously,

the deformation of the central droplet is larger than the deformation of the two outer

drops. Interactions between two successive droplet triplets can occur, due to the limited

space between two successive drops in the droplet streams. In this case, a force is

applied which pushes each triplet closer together. Since this additional force has no

impact on the outcome regime, the results can be included in the collision regime map

(see figure 4.26). In figure 4.16b, bouncing can be observed at We = 23.8 and X = 0.6.

In contrast to figure 4.16a, the central droplet is stronger deformed due to the higher

kinetic energy of the outer droplets and the smaller impact parameter.

Stretching separation at ternary drop collisions is introduced in the next paragraph.

It can be seen in figure 4.17 at We = 47 and X = 0.42. The outer droplets squeeze

the central drop until a liquid bridge is formed. Due to inertia, the outer drops stay

on their trajectories and stretch the connecting ligament until the complex breaks

Figure 4.17: Stretching separation at ternary collisions, using glycerol 50% as the liquid,
at D = 370µm, We = 47, X = 0.42, f = 5500 Hz.
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Figure 4.18: Bouncing at ternary collisions, using glycerol 50% as the liquid, at D =
380µm, We = 43.6, X = 0.88, f = 5120 Hz.

up into two large droplets and one small satellite droplet. Decreasing the impact

parameter at this Weber number stabilises the collision, leading to coalescence, which

can be seen in figure 4.15b. A further increase of the impact parameter would lead to

bouncing droplets. This can be seen in figure 4.18 for a very large non-dimensional

impact parameter of 0.88. Despite this large impact parameter, the central droplet is

noticeably deformed, because it is squeezed from two sides.

In figure 4.19, two photographs picturing reflexive separation at ternary drop collisions

can be seen. Starting from small Weber numbers, reflexive separation occurs for the

first time at a Weber number of around 47, which can be seen in figure 4.19a. Similar

to figure 4.14 c, the central droplet is highly squeezed after the impact, and the merged

complex is deformed into a narrow disk. After the relaxation, a cylindrical rod is

formed. With its internal flow pushing both ends further outwards, a dumbbell with a

thin connecting ligament is formed. Finally, this ligament breaks up, and two droplets

larger than the initial droplets with a small satellite droplet in between are formed.

(a)

(b)

Figure 4.19: Reflexive separation at ternary head-on collisions, using glycerol 50% as
the liquid, at a D = 372µm, We = 47.6, X = 0.03, f = 5500 Hz b
D = 372µm, We = 87.3, X = 0.03, f = 5710 Hz.
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At a larger Weber number, say 87.3, the process of the collision is different from the

collision pictured in figure 4.19a. This can be seen in figure 4.19b, where after the

relaxation of the disk, a long cylindrical rod is formed. At both of its ends a drop with

around the initial droplet size is pinched off. The remaining ligament in the centre

contracts to a third droplet.

Reflexive separation at a non-zero impact parameter of X = 0.11 is pictured in figure

4.20. The Weber number is in the same range as in figure 4.19b. Due to the tangential

part of the impact inertia, the merged complex is turned around a certain rotation

angle. Thus, after the relaxation of the disk, the formed cylindrical rod is not as long

as the rod established in the head-on case. The breakup results in three almost equally

sized droplets.

Figure 4.20: Reflexive separation at ternary collision, using glycerol 50% as the liquid,
at D = 373µm, We = 86.4, X = 0.11, f = 5710 Hz.

Note that it is not always clearly visible on the photographs if reflexive or stretching

separation occurs. For example, the collisions in figure 4.17 (stretching separation) and

figure 4.20 (reflexive separation) look quite identical. In figure 4.17, the outer droplets

principally stay on their initial trajectories. This means that the droplet on the right

before the collision can be found on the left after the collision. This is an indication

for stretching separation, which cannot be obviously seen in figure 4.20. Here, reflexive

behaviour can be observed as well. Another way to estimate the collision outcome is

to look at its position in the collision regime map, which will be introduced below in

figure 4.26.

Figure 4.21: Coalescence at ternary collision, using glycerol 50% as the liquid, at
D = 390µm, We = 81.5, X = 0.22, f = 5151 Hz.
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(a)

(b)

Figure 4.22: Stretching separation at ternary collisions, using glycerol 50% as the
liquid, at a D = 386µm, We = 81, X = 0.31, f = 5151 Hz b D = 372µm,
We = 83.6, X = 0.56, f = 5710 Hz.

As for binary collisions, an increase of the impact parameter stabilises the collision,

and the three droplets merge permanently. This can be seen in figure 4.21. The merged

droplet is highly deformed and oscillates over a long period of time, but surface tension

forces prevent the breakup. This photograph looks a bit different from the others,

because the LED was used in this case for the illumination of the droplets.

After increasing the non-dimensional impact parameter to 0.31, stretching separation

occurs, which can be seen in figure 4.22a. Due to the relatively small value of X, the

droplets are strongly deflected from their initial trajectories. In figure 4.22b, stretching

separation at a further increased impact parameter is pictured. The formation of the

connecting ligament and its pinching off from the outer droplets can be seen nicely.

The breakup of the ligament into satellites takes place farther downstream.

Finally, the different regimes obtained for ternary drop collisions at high Weber numbers

around 140 - 145 are presented. In figure 4.23, reflexive separation at a head-on collision

is pictured. The droplets collide at a high relative velocity and are deformed into a

Figure 4.23: Reflexive separation at ternary collision, using glycerol 50% as the liquid, at
a large Weber number: D = 399µm, We = 143.1, X = 0.11, f = 5530 Hz.
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(a)

(b)

Figure 4.24: Stretching separation at ternary collisions, using glycerol 50% as the
liquid, at large Weber numbers: a D = 402µm, We = 143.4, X = 0.37,
f = 5530 Hz b D = 407µm, We = 141, X = 0.55, f = 5530 Hz.

narrow disk with a very large diameter, exceeding the initial droplet diameter many

times. After relaxation of the disk, a cylindrical shaped droplet is formed. Then drops

are pinched off from its ends. The breakup cannot be seen in the photograph, but the

mechanism is basically the same as for binary collisions at high Weber numbers (see

figure 4.8b).

Figure 4.25: Bouncing at ternary collision, using glycerol 50% as the liquid, at a large
Weber number: D = 400µm, We = 140.3, X = 0.77, f = 5530 Hz.
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As the impact parameter exceeds a critical value stretching separation occurs. This can

be seen in figure 4.24a at X = 0.37. Because of the relatively small impact parameter,

the volume of the interacting portions is quite large. This leads to a broad ligament

and, in further consequence, to highly deformed droplets, which can be seen in the last

two stages of the collision. For a larger impact parameter, the volume of the interacting

portions shrinks and the two outer droplets are not distracted as much from their

initial trajectories as at smaller impact parameters. This is pictured in figure 4.24b at

X = 0.55.
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Figure 4.26: Collision regime map obtained for ternary drop collisions, using glycerol
50% as the liquid, in an atmospheric environment at T ≈ 23 ◦C. The
droplet diameter ranges between 340µm and 419µm, leading to an average
Ohnesorge number of Oh ≈ 0.031. The relative velocity is varied in the
range of 1.1 m s−1 ≤ U ≤ 6 m s−1, which leads to Weber numbers from 8
to 245. The non-dimensional impact parameter X is plotted with an error
bar between |XLC | and |XRC | and the Weber number is plotted with an
error bar between WeLC and WeRC , which are calculated with the relative
velocities 2ULC and 2URC , respectively. The transitions are sketched as
grey lines.
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The third possible collision outcome at high Weber numbers is bouncing. In figure 4.25

an example is given at a non-dimensional impact parameter of 0.77. The photograph

perfectly shows that the central droplet is deformed at two opposing poles, whereas

the outer droplets are only impressed at on pole. Thus, it takes a longer time for the

central droplet to relax into a sphere again.

In figure 4.26, the (X,We) nomogram obtained for ternary liquid drop collisions is

plotted. The average droplet diameter is 379µm, which leads to an average Ohnesorge

number of Oh ≈ 0.031. As sketched in figure 3.7b, there are basically two relative

velocities and two non-dimensional impact parameters for collisions of three droplets.

On the one hand, between the left and the central droplet and on the other hand,

between the right and the central droplet. Due to symmetry, the absolute value of

these two velocities and impact parameters should be equal (see table 3.4). However,

perfectly symmetric drop collisions are practically not achieved. To take this into

consideration each data point in 4.26 is plotted with an error bar in terms of We and X.

The error bar for the Weber number is taken as the variability of the relative velocity

U with extreme values of 2ULC and 2URC . The non-dimensional impact parameter

X is drawn between |XLC | and |XRC |. The (X,We) coordinates of the photographs
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Figure 4.27: Coordinates of the presented photographs in the ternary collision regime
map, which is given in figure 4.26.
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presented above are marked in figure 4.27.

According to figure 4.26, and as already mentioned above, four different regimes can be

identified. Starting with a small Weber number, say 10, only two collision outcomes are

possible, namely coalescence and bouncing. The former occurs for head-on collisions

at non-dimensional impact parameters up to around 0.7 and the latter happens when

this critical value is exceeded. With increasing Weber number, the critical impact

parameter representing the transition between these two regimes is decreased.

At We ≈ 45, two other possible collision outcomes appear. For head-on collisions,

reflexive separation occurs, monotonously shifting its transition against coalescence to

larger impact parameters with increasing Weber numbers. At We ≈ 90 and X ≈ 0.22,

the three regimes of coalescence, reflexive separation and stretching separation meet.

For larger Weber numbers, three droplets cannot coalesce permanently. The transition

between the regimes of reflexive and stretching separation proceeds at approximately

constant non-dimensional impact parameter (X ≈ 0.22) for Weber numbers up to 250,

which is the limit of We in the present study.

As mentioned above, stretching separation occurs at We ≈ 45, and a non-dimensional

impact parameter of around 0.5. In this parameter range, the regimes of coalescence,

bouncing and stretching separation meet. It has to be stated that an exact crossing

point could not be determined, because the collision outcome is very sensitive to any

disturbances and not easy to identify. Therefore, as for binary collisions, this area

remains white in figure 4.26. For increasing Weber number, the transition between

coalescence and stretching separation is shifted to smaller impact parameters until

the regimes of reflexive separation and stretching separation meet. The critical non-

dimensional impact parameter for the transition from stretching separation to bouncing

increases with increasing Weber number.

Note, that the collision regime map in figure 4.26 agrees very well with the (X,U)

nomogram obtained by Planchette (2011) at D = 375µm. Although the liquids are

not exactly the same, glycerol 50% is used in the current study, while glycerol 40% was

used by Planchette (2011) (see table 3.1), the outcomes of both studies match very

well in a qualitative way.
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(a) (b)

Figure 4.28: Ternary head-on collisions using glycerol 30% as the liquid: a bounc-
ing, b coalescence. The corresponding collision parameters to the two
photographs are listed in table 4.1.

Bouncing at head-on collisions

During the measurements for the map of regimes for ternary collisions, bouncing at

zero impact parameter was not observed. Moreover, looking at the transition between

coalescence and bouncing in figure 4.26, it appears that the critical impact parameter

increases with decreasing Weber number in the investigated domain which is different

from what was observed with binary collisions in a comparable domain. However,

bouncing at X = 0 was observed using glycerol 30% as the liquid. In comparison to

glycerol 50% its dynamic viscosity is smaller but its surface tension is almost equal

(see table 3.1).

In figure 4.28a, bouncing at a ternary head-on collision is pictured. It can be seen that

all three drops are highly squeezed due to the relatively large relative velocity, but no

Figure Relative velocity [m s−1] Impact parameter [−] [µm] [Hz]

U ULC URC X XLC XRC D f

4.28a 2.140 1.059 1.081 0.017 0.007 -0.026 353 5460

4.28b 2.139 1.060 1.079 0.023 0.029 -0.018 354 5460

Table 4.1: Corresponding collision parameters to the two photographs in figure 4.28.
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liquid bridge is formed. Thus, the droplets retract and bounce off each other. However,

this process is not easy to achieve since small disturbances cause coalescence to occur.

This can be seen in figure 4.28b. The parameters for both photographs in figure 4.28

are basically identical (see table 4.1). It is interesting to note that the Weber number

of ≈ 25.5 for the two collisions in figure 4.28 is relatively large. In order to give a

reliable explanation for this behaviour, further experimental investigations would be

necessary. Maybe it cannot be characterized by a set of non-dimensional numbers

only, but additional geometric parameters like the angle between the trajectories of

the droplets, characteristics of the ambient air and limitations of the alignment tuning

may play an important role.

4.1.3 Comparison of binary and ternary drop collisions

In sections 4.1.1 and 4.1.2, the collision regimes of binary and ternary liquid drop

collisions for Oh ≈ 0.032 were presented and discussed. In this part of the thesis,

the two cases are compared, underlining differences and similarities. First of all, the

obvious and main difference is that a third droplet in the centre is added for ternary

collisions. However, this central droplet does not contribute additional energy in terms

of kinetic energy, which can be explained looking at figure 3.8. The velocity vector

of the central droplet points downwards, whereas the relative velocities between both

outer droplets and the central droplet point normal to its direction. Thus, the drop in

the centre brings no additional kinetic energy into the collision, because the velocity

component in the direction of the trajectory of the central droplet is the same for all

three drops (see equations (3.17) and (3.18)). On the other hand, the surface energy

of the central drop cannot be neglected.

At ternary collisions, four possible collision outcomes, similar to binary collisions, were

observed. In figure 4.29, the obtained collision regime maps for binary (see figure 4.11)

and ternary (see figure 4.26) drop collisions are compared. This is legitimate because

both maps were achieved at approximately the same Ohnesorge number. For simplicity

only the transitions between the particular regimes are sketched in figure 4.29. The

transitions for binary drop collisions are drawn as full grey lines and the transitions

for ternary collisions are sketched as black dashed lines. Moreover, the coordinates of

some photographs, which will be discussed later, are marked.
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Figure 4.29: Transitions for binary and ternary liquid drop collisions according to figure
4.11 and figure 4.26, respectively.

As a first step, the four collision regimes of binary and ternary drop collisions are

compared in a qualitative way with the help of the photographs presented in sections

4.1.1 and 4.1.2. In a second stage, the differences and similarities of the transition

boundaries are discussed.

Regime of coalescence

Coalescence for binary and ternary head-on collisions is pictured in figures 4.1 and

4.14. The first phase of the collision, until the formed disk reaches its maximum

extension, is different in both cases due to the additional mass of the central droplet

for ternary collisions. However, the second phase, where the disk relaxes and oscillates

looks quite similar for both cases. Especially in figure 4.14 c, the disk relaxes into a

cylindrical rod, exactly as in the binary case given in figure 4.1 c. Evidently, assuming

equal-sized initial droplets, the drop formed after a ternary collision has a diameter of

around 1.44D, whereas the drop resulting from the binary collision has only a diameter

of 1.26D. The similarities discussed above can also be found comparing pictures of

coalescence at non-zero impact parameter (see figures 4.15 and 4.21 compared to figures

4.3 and 4.5).
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4.1 COLLISION REGIME MAPS

Regime of bouncing

In order to compare the phenomenon of bouncing for binary and ternary drop collisions,

the photographs of figures 4.7 and 4.25 are used. As the process of collision is only

qualitatively compared, the parameters of both collisions can differ quantitatively. For

the binary case, which can be seen in figure 4.7, both droplets are equally deformed

at opposed sides. The same applies for both outer droplets in ternary collisions (see

figure 4.25). However, this time both drops do not have direct contact, but impinge

on the central droplet. Therefore, the central droplet is symmetrically deformed and

undergoes a larger distortion than the two impacting droplets.

Regime of reflexive separation

Reflexive separation at head-on collision and intermediate Weber numbers can be seen

in figure 4.2a for the binary case and in figure 4.19a for the ternary case. Analogous to

the regime of coalescence, which was already discussed above, the relaxation of the disk

into a cylindrical rod which leads to breakup looks similar for both types of collisions.

This can be observed for head-on collisions at large Weber numbers (compare figure

4.8b to figure 4.23) as well as for collisions at non-zero impact parameter (compare

figure 4.9b to figure 4.20).

Regime of stretching separation

Due to the central droplet at ternary collisions, there is more liquid available for the

formation of a connecting ligament than for binary collisions. On the one hand, for

binary collisions, the two main resulting droplets are smaller than the initial droplets

because liquid is lost for the formation of the satellite droplets. On the other hand, for

ternary collisions, the two main emerging droplets are larger than the initial droplets,

because they take liquid from the additional central droplet. For example, this can

be seen by comparing figure 4.10 to figure 4.22. However, the principal mechanism

of formation of the ligament and its breakup are the same for binary and ternary

collisions.

In conclusion, the first phase of the collision, where the droplets collide, is different

for binary and ternary drop collisions. However, the second phase, where the merged
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complex relaxes or a ligament is formed, followed by possible breakup or permanent

coalescence, seems to be identical in both cases. In the following part of the thesis,

the transitions between different regimes in the collision regime maps of binary and

ternary drop collisions are discussed.

Transition: coalescence - reflexive separation

For head-on collisions, the onset of fragmentation takes place at larger Weber numbers

for ternary than for binary collisions. This can be seen clearly in figure 4.29. The

reason for it is the central droplet at ternary collisions. This drop acts like a buffer

by decreasing the occurring velocity gradient after the impact. Therefore, additional

kinetic energy is required compared to binary drop collisions. At increasing impact

parameter, the ternary transition follows the binary one until they meet at the maximum

Weber number for coalescence to occur at We ≈ 90 and X ≈ 0.2. However, this value

is rather vague, looking at the collision regime maps in figures 4.11 and 4.26. Thus,

it cannot be trustworthily said if coalescence appears at higher Weber numbers for

binary or ternary collisions. The higher required kinetic energy at ternary head-on

collisions would also indicate that more energy is needed for reflexive separation to

occur at small impact parameters. During the measurements for the collision regime

maps, the highest Weber number where coalescence was observed is We = 72.7 for the

binary case and We = 82 for the ternary case.

Transition: coalescence - stretching separation

The transition between coalescence and stretching separation occurs in the range of

0.2 < X < 0.6 and 0.2 < X < 0.5 for binary and ternary collisions, respectively. In

the area, where the borders overlap in terms of the non-dimensional impact parameter,

they seem to agree also very well in terms of the Weber number. The influence

of the central droplet in ternary collisions appears to be decreased with increasing

impact parameter. Therefore, no significant difference could be observed comparing

the transition between coalescence and stretching separation. For ternary collisions

in the range of 0.5 < X < 0.6 the regimes of coalescence and bouncing meet. This is

discussed in the paragraph on the transition between coalescence and bouncing.
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4.1 COLLISION REGIME MAPS

Transition: reflexive separation - stretching separation

The transition between reflexive and stretching separation originates in the point

where the regimes of coalescence, reflexive separation and stretching separation meet

at We ≈ 90 and X ≈ 0.2. Similar to the transition between coalescence and reflexive

separation, the value of this Weber number is not exactly determined. However, above

a certain Weber number, the transition between reflexive separation and stretching

separation comes into existence and remains at a constant value of X ≈ 0.2 for

increasing Weber number, which leads to a horizontal line in the (We, X) nomogram

(see figure 4.29). This is valid for binary and ternary collisions similarly.

Transition: stretching separation - bouncing

Looking at figure 4.29, huge differences between binary and ternary collisions can be

observed for the transition between stretching separation and bouncing. At a given

Weber number, bouncing occurs for ternary collisions at much smaller non-dimensional

impact parameters than for the binary case. However, if we take a closer look, the

(a)

(b)

Figure 4.30: a Bouncing at ternary drop collision at D = 376µm, U = 3.68 m s−1,
X = 0.68, f = 5710 Hz b Bouncing at binary drop collision at D = 337µm,
U = 1.81 m s−1, X = 0.68, f = 7060 Hz.
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differences almost completely vanish and can be explained easily. Exemplarily, in figure

4.30a, bouncing at a ternary collision is pictured at a quite large Weber number of 86.5.

The collision is marked in the collision regime map in figure 4.29. It can be seen that,

at these parameters, stretching separation would occur in the binary case. Now we take

a look at the collision outcome if one of the two outer droplets at the ternary collision

is removed. In this case, the remaining outer droplet and the central droplet collide at

a velocity of U/2, which would be around 1.84 m s−1 in the case of figure 4.30a. The

binary collision outcome at this velocity can be seen in figure 4.30b where two droplets

collide at U = 1.82 m s−1. The impact parameter is equal in both cases. The collision

outcome of figure 4.30b, is also marked in figure 4.29. It is located in the regime of

bouncing for the binary case. Applying this procedure to all bouncing data points

representing ternary collisions in figure 4.26, leads to figure 4.31. The old transition

for ternary collisions between bouncing and reflexive separation is removed (compare

to figure 4.29) and replaced by a new transition, which is drawn as a continuous black

line. It can be seen that the transitions for binary and ternary drop collisions between

X
[−

]

We [−]

binary collisions

ternary collisions

bouncing

new transition:
coalescence - bouncing

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

coalescence

bouncing

reflexive separation

stretching separation

Figure 4.31: Transitions for binary and ternary liquid drop collisions according to figure
4.11 and figure 4.26, respectively. The non-dimensional impact parameter
X is plotted with an error bar between |XLC | and |XRC |. The Weber
number is calculated with the half impact velocity U/2 and plotted with
an error bar between WeLC and WeRC , which are calculated with the
relative velocities ULC and URC , respectively.
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4.1 COLLISION REGIME MAPS

bouncing and reflexive separation now agree very well to a great extent. It can be

concluded that, for the observed collisions, the mechanism of bouncing seems to be the

same for binary and ternary drop collisions. The ternary case can be considered as two

binary collisions at once. Therefore it is legitimate to use U/2, which corresponds to

the relative velocity in the binary case, for the calculation of the Weber number in the

ternary case. This is valid for bouncing droplets at Weber numbers in the range where

stretching separation and bouncing meet. For decreasing Weber numbers at We ≈ 40

and X ≈ 0.5 this transition vanishes. Instead, the transition between coalescence and

bouncing arises, which will be discussed next.

Transition: coalescence - bouncing

The transition between coalescence and bouncing differs strongly between binary and

ternary collisions. Starting at a certain Weber number, say 10, the critical impact

parameter increases with the Weber number for binary collisions, whereas the opposite

happens for ternary collisions. In figure 4.32b, a binary collision at U = 1.02 m s−1 can

be seen, where both droplets bounce apart again after the impact. Figure 4.32a shows

a ternary collision in the same range of Weber number and impact parameter. The

positions of both collisions are marked in figure 4.29. Contrary to the binary case, the

ternary collision results in coalescence. Both outer droplets impinge the central droplet

at U/2 = 0.62 m s−1 and after a short phase where the droplets are slightly deformed, the

intervening air layer is expelled and a liquid bridge is formed. Afterwards, the merged

droplet contracts due to surface tension forces. The excess energy is dissipated through

oscillations and a single coalesced drop remains. Unfortunately, it was not possible to

(a)

(b)

Figure 4.32: a Coalescence at ternary drop collision at D = 375µm, U = 1.23 m s−1,
X = 0.69, f = 4131 Hz b Bouncing at binary drop collision at D = 360µm,
U = 1.02 m s−1, X = 0.71, f = 4960 Hz.
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perform measurements for binary collisions at a relative velocity of 0.62 m s−1, which

would help to explain the difference at transition between coalescence and bouncing

at binary and ternary collisions. It is interesting to note that the trend of transition

for the ternary case indicates that bouncing is impossible to occur at ternary head-on

collisions. However, this phenomenon was already shown in section 4.1.2, but with a

less viscous liquid.

4.2 Onset of fragmentation

In this section, the results of the investigation on the onset velocity, defining the

transition between coalescence and reflexive separation for the case of head-on collisions,

are presented and discussed. From now on, for simplicity, reflexive separation is merely

called separation. First of all, the obtained data for binary head-on collisions with

droplets of the same size is presented. Afterwards, the results for binary head-on

collisions of unequal-sized droplets are discussed. Finally, the onset velocities for

ternary drop collisions are presented.

4.2.1 Binary collisions of equal-sized droplets

In order to determine the onset of fragmentation for binary head-on collisions for a

given liquid and a given droplet size, two different quantities have to be estimated.

These are the largest velocity U0,c where coalescence can be observed and the smallest

(a)

(b)

Figure 4.33: Onset of fragmentation for binary head-on collisions of equal-sized droplets
using glycerol 40% as the liquid: a coalescence at D = 361µm, U0,c =
2.13 m s−1, X0,c = 0.02, f = 6396 Hz b separation at D = 365µm, U0,s =
2.18 m s−1, X0,s = 0.00, f = 6396 Hz.
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Liquid µ σ Dor U0 U0,c U0,s X0,c X0,s D

[mPa s] [mN m−1] [µm] [m s−1] [m s−1] [m s−1] [−] [−] [µm]

Gl 10% 1.23 68.94 200 1.96 1.90 2.02 0.03 0.00 336

Gl 30% 2.17 67.45 200 2.00 1.99 2.00 0.00 0.02 370

100 2.82 2.78 2.85 0.01 0.04 220

70 3.67 3.59 3.74 0.02 0.01 141

Gl 40% 3.15 66.79 200 2.16 2.13 2.18 0.02 0.00 363

70 4.29 4.24 4.34 0.03 0.00 132

Gl 50% 5.24 66.53 500 1.58 1.41 1.75 0.00 0.01 864

300 1.98 1.92 2.04 0.03 0.07 503

200 2.53 2.50 2.55 0.01 0.01 338

100 3.45 3.38 3.52 0.03 0.00 221

70 4.61 4.53 4.68 0.03 0.00 149

Gl 60% 8.81 65.27 200 2.85 2.80 2.89 0.00 0.00 367

Gl 65% 12.11 64.39 200 3.73 3.67 3.79 0.01 0.02 366

Gl 70% 17.84 64.00 200 4.44 4.33 4.54 0.02 0.02 369

SO M3 2.79 19.50 200 1.46 1.43 1.48 0.01 0.02 347

SO M10 9.37 20.10 200 2.98 2.79 3.17 0.00 0.04 365

Table 4.2: Results describing the onset of fragmentation for binary head-on collisions
of equal-sized droplets.

velocity U0,s, where separation can be detected. Certainly, U0,c has to be smaller than

U0,s. The onset velocity can then be calculated by

U0 =
1

2
(U0,c + U0,s) . (4.1)

In figure 4.33, two photographs determining the onset of fragmentation for binary

collisions, using glycerol 40% as the liquid, at an average droplet diameter of D ≈
363µm can be seen. The picture on top, in figure 4.33a, shows the regime of coalescence

at a relative velocity of U0,c = 2.13 m s−1. In figure 4.33b, separation at U0,s =

2.18 m s−1 can be observed. Consequently, according to equation (4.1), the onset

velocity results in U0 = 2.16 m s−1.

A list of the results, obtained from the experiments defined in table 3.2, is given in table

4.2. The quantities U0 and D are written in bold. With the help of these quantities and

the fluid properties (see table 3.1), non-dimensional quantities like Weber, Reynolds
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Figure 4.34: Evolution of the obtained onset velocity with the droplet diameter for
binary collisions of equal-sized droplets.

and Ohnesorge number can be calculated in order to describe the onset of fragmentation

systematically.

In figure 4.34, the evolution of the threshold velocity is plotted against the average

droplet diameter for three different liquids. It can be observed that, for a given liquid,

the critical threshold velocity reduces monotonously with increasing droplet size. A

power law between U0 and D appears, with an exponent in the range of -0.6 to -0.7.

Another information which can be obtained from figure 4.34 is that, for a given droplet

diameter, the onset velocity is decreased with the dynamic viscosity. Therefore, in

figure 4.35, the evolution of the threshold velocity is plotted against the dynamic

viscosity. Results obtained with equal nozzle diameters Dor , and therefore droplets

with around the same diameter, are marked with the same symbol in this graph.

Except for the silicon oils (SO), which are marked with open circles, because their

surface tension differs from the almost equal surface tensions of the aqueous glycerol

solutions. Some results are plotted with an error bar for the onset velocity between

the values of U0,c and U0,s, which are listed in table 4.2. It can be seen that, for

a given droplet diameter, the onset velocity grows monotonously with the dynamic

viscosity. This seems reasonable, because with increasing µ the resistance of the liquid

against deformation rises and therefore more energy is needed to break up the merged

droplet. For viscosities smaller than approximately 10 mPa s, a power law between U0

and µ is obtained for various droplet sizes. The exponent is in the range of 0.2 to 0.25.
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Figure 4.35: Evolution of the measured onset velocity with the dynamic viscosity for
binary collisions of equal-sized droplets.

However, regarding the results with D = 358µm, this power law cannot be applied

to the data for µ > 10 mPa s, because the growth of U0 with the dynamic viscosity is

increased. In figure 4.35, small deviations of some data points from the fitted lines

can observed. This can be explained by the fact that, for a given nozzle diameter, the

droplet diameters are not constant at all measurements. For example, for an average

droplet diameter of 358µm, the measured droplet diameters vary from 336 to 370µm

(see table 4.2).

In order to bring all these results to a single line, we plot the onset Weber number as a

function of the Ohnesorge number. This can be seen in figure 4.36 for the results of

this study. Qian & Law (1997) proposed a criterion to describe the transition between

coalescence and separation, where the onset Weber number grows linearly with the

Ohnesorge number (see equation (2.46)). This is the case at Oh < 0.06 for the obtained

results. For this regime the data is fitted with a line (see figure 4.36), which is defined

by the equation We0 = 730.0 Oh + 14.4. This agrees very well with the measurements

of Qian & Law (1997), who obtained We0 ≈ 678.8 Oh + 15 at Oh < 0.05. However, as

shown in figure 4.36, for Ohnesorge numbers larger than around 0.06 (regime 2), the

linear correlation between We0 and Oh is not valid any more. This indicates that the

mechanism of separation, and accordingly the process of the collision itself, is different

for droplets with Ohnesorge numbers smaller and larger than 0.06.

The linear correlation between onset Weber number and Ohnesorge number implies
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Figure 4.36: Evolution of the onset Weber number with the Ohnesorge number for
binary collisions of equal-sized droplets. The curve is fitted with the data
at Oh < 0.06. The used liquids are listed in table 3.2.

that the onset velocity is proportional to U0 ∼ µ0.5D−0.75. The experimental results

show that U0 ∼ µ0.21D−0.66 (see figures 4.34 and 4.35). While the agreement for the

exponents of the droplet diameter is quite good, the exponents of the dynamic viscosity

differ tremendously. Thus, the linear correlation between We and Oh appears to

be appropriate to represent the onset of fragmentation for binary head-on collisions

of the same liquid (see figure 4.36), but comparing it to experimental results shows

that it takes certain parameters incorrectly into account. This can be improved by

representing the transition between coalescence and separation by a power law between

Reynolds number and Ohnesorge number, which is introduced and discussed in section

4.2.3.

4.2.2 Binary collisions of unequal-sized droplets

In this section the results for the onset of fragmentation at binary head-on collisions of

unequal-sized droplets are presented. Basically, experiments for two different droplet

size ratios of δ = 0.62 and δ = 0.76 have been performed, using three different liquids

(see table 3.3). The obtained results are listed in table 4.3, where U0 is calculated

according to equation (4.1).

In figure 4.37, coalescence and separation at binary collisions of unequal-sized droplets
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Liquid Dor U0 U0,c U0,s X0,c X0,s D δ

[µm] [m s−1] [m s−1] [m s−1] [−] [−] [µm] [−]

Gl 30% 200
2.95 2.92 2.97 0.05 0.00

354
0.63

(µ = 2.17 mPa s) 100 223

(σ = 67.45 mN m−1)

100
3.65 3.62 3.68 0.02 0.01

174
0.78

70 135

Gl 40% 200
3.19 3.06 3.31 0.00 0.03

362
0.63

(µ = 3.15 mPa s) 100 228

(σ = 66.79 mN m−1)

100
3.84 3.75 3.93 0.11 0.02

186
0.76

70 142

Gl 50% 200
3.91 3.86 3.95 0.07 0.01

357
0.61

(µ = 5.24 mPa s) 100 216

(σ = 66.53 mN m−1)

100
4.76 4.74 4.77 0.01 0.02

181
0.76

70 137

Table 4.3: Onset velocities for binary head-on collisions of unequal-sized droplets.

are pictured. The left droplet stream is produced with a smaller nozzle diameter than

the right droplet stream, which leads to a droplet size ratio of δ = 0.76. Both drop

generators are driven with the same excitation frequency f , leading to a different

spacing between two successive droplets for both droplet streams. In order to ensure

that the relative velocity between two colliding droplets consists only of a component

in the horizontal direction, the right droplet stream is inclined, leading to an equal

vertical distance between two successive droplets for the left and the right droplet

stream.

A difficulty arising at binary collisions of unequal-sized droplets is the proper definition

of a representative droplet diameter D for calculating non-dimensional quantities like

Weber and Ohnesorge number. In fact, there are four possibilities which are listed

below.

• small droplet diameter D = D1

• large droplet diameter D = D2

• average droplet diameter D = (D1 +D2)/2

• mass conserving average droplet diameter D = 3
√

(D3
1 +D3

2) / 2
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(a) (b)

Figure 4.37: Onset of fragmentation for binary head-on collisions of unequal-sized
droplets using glycerol 50% as the liquid: a coalescence at D1 = 137µm,
D2 = 181µm, δ = 0.76, U0,c = 4.74 m s−1, X0,c = 0.01, f = 20035 Hz b
separation at D1 = 137µm, D2 = 181µm, δ = 0.76, U0,s = 4.77 m s−1,
X0,s = 0.02, f = 20035 Hz.

In order to choose a reasonable droplet diameter, the onset velocity U0 is plotted as a

function of the droplet diameter. This can be seen in figure 4.38, where the droplet

diameters are drawn with an error bar between the small and the large droplet diameter.

Moreover, three lines are plotted, which are the fit curves of figure 4.34 for the collisions

of two droplets of the same size. The error bars in figure 4.38 show that, for a given

viscosity, the best agreement to binary collisions of equal-sized droplets is achieved

using a droplet diameter between the smaller droplet diameter D1 and the average

droplet diameter (D1 +D2)/2. During the first period of the collision after the impact,

high velocity gradients appear. Therefore it is assumed that the viscous dissipation in

this phase is dominated by small scales. The Reynolds number is calculated with the

small droplet diameter D1 resulting in

Re =
ρUD1

µ
. (4.2)

With respect to the second period of the collision, where the merged disk relaxes into

a sphere and inertia is irrelevant, the mass conserving average droplet diameter is used
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Figure 4.38: Correlation of the onset velocity with the droplet diameter for binary
collisions of unequal-sized droplets. The lines correspond to the fit curves
given in figure 4.34.

to calculate the Ohnesorge number:

Oh =
µ

ρ σ 3
√

(D3
1 +D3

2) / 2
. (4.3)

For the calculation of the Weber number, two different approaches are proposed. On

the one hand, analogous to the Reynolds number, the smaller droplet diameter is

used:

We =
ρU2D1

σ
. (4.4)

On the other hand, since the impact inertia is related to the viscous dissipation during

the first phase of the collision, the smaller droplet diameter is used for the estimation of

the inertial energy. The surface energy is calculated with the mass conserving average

droplet diameter. Thus, the Weber number is given by

We =
ρU2D3

1

σ [(D3
1 +D3

2) / 2]
2/3

. (4.5)

Analogous to figure 4.36, the evolution of the onset Weber number is plotted against the

Ohnesorge number in figure 4.39. The solid line represents the trend curve obtained for

binary collisions of equal-sized droplets given in figure 4.36. The onset Weber numbers

obtained by equation (4.4) are black coloured. It can be seen that, for the larger droplet

size ratio of δ = 0.76, the data correlates very well with the results for binary collisions
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Figure 4.39: Evolution of the onset Weber number with the Ohnesorge number for
binary head-on collisions of unequal-sized droplets. The used liquids are
listed in table 3.3. The black line corresponds to the fit curve given in
figure 4.36. For the black data points the Weber number is calculated as
given in equation (4.4) and for the grey data points it is calculated by
equation (4.5). The Ohnesorge number is obtained analogous to equation
(4.3).

of equal-sized droplets. However, the Weber numbers for δ = 0.62 are overestimated.

Calculating the Weber number as given by equation (4.5) appears to unify the grey

coloured data points. Then, however, the Weber numbers are underestimated compared

to the results obtained for binary collisions of equal-sized droplets.

There are two possible explanations for this discrepancy. First of all, the wrong

diameters were chosen for the calculation of We and Oh. However, it will be shown in

section 4.2.3 that the Ohnesorge number correlates very well with the onset Reynolds

number, indicating that the diameter in equation (4.3) is estimated correctly. Secondly,

as already observed previously, Weber number and Ohnesorge number are not the right

parameters to describe binary droplet collisions universally.

4.2.3 Ternary drop collisions

The onset velocity for ternary head-on collisions is determined similar to the binary case

by defining a maximum velocity for coalescence and a minimum velocity for separation

to occur. Thus, U0 can be calculated as given in equation (4.1). In figure 4.40, on the
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(a)

(b)

Figure 4.40: Onset of fragmentation for ternary head-on collisions using glycerol 30%
as the liquid: a coalescence at D = 186µm, U0,c = 3.34 m s−1, X0,c = 0.02,
f = 14940 Hz b separation at D = 186µm, U0,s = 3.49 m s−1, X0,s = 0.03,
f = 14940 Hz.

top coalescence is pictured at U0,c = 3.34 m s−1 and on the bottom separation can be

observed at U0,s = 3.49 m s−1, leading to an onset velocity of U0 = 3.41 m s−1. The

used liquid is glycerol 30% and the average droplet diameter is D = 186µm. All of

the obtained results for ternary head-on collisions are listed in table 4.4. The relevant

quantities are written in bold.

Below, the characteristics of the onset of fragmentation are examined more closely. In

figure 4.41, the onset velocity is plotted against the dynamic viscosity of the liquid

at several almost constant droplet diameters. For a droplet diameter of 186µm, a

power law between U0 and µ with an exponent of 0.17 appears and for D = 361µm a

Liquid µ σ Dor U0 U0,c U0,s X0,c X0,s D

[mPa s] [mN m−1] [µm] [m s−1] [m s−1] [m s−1] [−] [−] [µm]

Gl 10% 1.23 68.94 200 2.66 2.54 2.77 0.01 0.01 368

Gl 30% 2.17 67.45 200 2.83 2.74 2.91 0.00 0.01 354

100 3.41 3.34 3.49 0.02 0.03 186

Gl 40% 3.15 66.79 200 2.79 2.70 2.88 0.03 0.02 361

100 3.66 3.55 3.78 0.03 0.03 181

Gl 50% 66.53 5.24 300 2.38 2.33 2.43 0.02 0.00 536

200 2.78 2.74 2.83 0.02 0.01 360

100 3.98 3.92 4.04 0.00 0.04 192

70 4.80 4.69 4.91 0.02 0.02 143

Table 4.4: Onset velocities for separation and corresponding parameters obtained for
ternary head-on collisions.
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Figure 4.41: Correlation of the onset velocity with the dynamic viscosity for ternary
drop collisions.

power law between these two quantities with an exponent of almost zero is obtained.

Hence, the onset velocity for ternary collisions seems to be nearly independent from the

dynamic viscosity. This is in contrast to the binary case, which was already discussed

in figure 4.35. On the other hand, the mainstream trend that, at a given viscosity, the

onset velocity decreases with increasing droplet diameter can be observed for both the

binary and the ternary cases.
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Figure 4.42: Onset velocity plotted against the droplet diameter for ternary drop
collisions.
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As a next step, in figure 4.42, the evolution of the onset velocity with the droplet

diameter at a constant dynamic viscosity is considered. For glycerol 50% with µ =

5.24 mPa s, a power law with an exponent of -0.55 appears. Comparing it to binary

collisions, given in figure 4.34, leads to the conclusion that the onset velocity decreases

stronger with increasing droplet diameter in the binary case compared to ternary

collisions.

In figure 4.43, the onset Weber number is plotted as a function of the Ohnesorge

number for ternary collisions. Moreover, the fitted curve for binary collisions, as shown

in figure 4.36, is sketched. Two conclusions can be drawn with the help of this diagram.

First of all, the onset Weber number at a given Ohnesorge number is larger in the

ternary than in the binary case. This was expected and already observed and discussed

in section 4.1.3. Secondly, the data points in the diagram do not fall onto a single

curve. As already mentioned for binary collisions of equal-sized (see section 4.2.1) and

unequal-sized (see section 4.2.2) droplets, this indicates once more that the combination

of (We,Oh) is not the right set of parameters to describe the onset of fragmentation

for droplet collisions. Nevertheless it is considered in this thesis because established

collision models in the literature are based on it (see section 2.4.2).

A more general definition of the onset of fragmentation can be obtained by representing

10
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Figure 4.43: Evolution of the onset Weber number with the Ohnesorge number for
ternary drop collisions. The black line is the fit curve of the results for
binary collisions presented in figure 4.36. The used liquids are listed in
table 3.2.
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Figure 4.44: Correlation of the onset Reynolds number with the Ohnesorge number.
The fit curve for binary collisions of equal-sized droplets (marked by grey
diamonds) excludes collisions at Oh > 0.06. The used liquids are listed in
tables 3.2 and 3.3.

it in terms of an onset Reynolds number Re0 and Ohnesorge number. This can be

seen in figure 4.44, where the results for ternary collisions are plotted as black circles.

It can be seen that the data points fall perfectly onto a single line, which is defined

by a power law with an exponent of -0.93. The results for binary collisions are also

drawn in this diagram. The outcomes for binary collisions of equal-sized droplets are

represented by grey diamonds. The power law with an exponent of -0.74 appears for

small Ohnesorge numbers at Oh < 0.06, excluding the three data points on the right

hand. Planchette et al. (2012) gathered the results for binary head-on collisions of

seven different studies in the literature and showed that they all belong to a single

line for low Ohnesorge numbers, which is defined by a power law between Re and Oh

with an exponent close to -0.8. This agrees very well, with the measurements of the

present study. Furthermore, the results for binary head-on collisions of unequal-sized

droplets are also shown in figure 4.44. Here, Reynolds number and Ohnesorge number

are calculated according to equations (4.2) and (4.3), respectively. The data points are

marked by black triangles and correspond very well to the grey line representing the

results for binary collisions of equal-sized droplets.
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In conclusion, it can be said that the representation of the onset Reynolds number

of fragmentation as a function of the Ohnesorge number has to be favoured over the

representation in terms of Weber number and Ohnesorge number. The latter can

be used to describe binary collisions of equal-sized droplets using one single liquid,

but it does not represent the phenomenon as well as (Re,Oh) because it takes the

dynamic viscosity incorrectly into account (see section 4.2.1). Describing the onset

of fragmentation as a function of Reynolds number and Ohnesorge number can be

applied to all types collisions investigated during the current study, including binary

collisions of equal-sized and unequal-sized droplets as well as ternary collisions. The

different exponents in figure 4.44 can be explained by different flow fields in the drops

due to the quasi stationary central droplet in the ternary case. Moreover, Planchette

et al. (2012) have shown that the onset of fragmentation for binary head-on collisions

of immiscible liquids can be expressed by (Re,Oh). In this case the exponent of the

Ohnesorge number appears to be around -0.5, which can be explained by a different

flow field as well. This confirms the approach of representing the onset of fragmentation

for head-on collisions in terms of Reynolds number and Ohnesorge number.
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5 Modelling

In this chapter modelling attempts based on the literature are presented in order

to explain the onset of fragmentation for binary and ternary liquid drop collisions

theoretically. A completely analytical expression for the onset velocity U0 is not

developed, but individual periods of the collision are analysed. Therefore, the collision

process is divided into two main phases (see figure 5.1). In the first phase of the

collision, the droplets impinge on each other and deform into a disk shaped complex.

Afterwards, in the second phase of the collision, this disk relaxes into a cylindrical

shaped rod, which possibly breaks up into two equal-sized droplets or retracts into a

spherical droplet.

first phase second phase

Figure 5.1: Collision process in two phases. The first phase lasts from the first contact
of the two droplets until the merged disk reaches its maximum extension.
During the second phase the disk relaxes into a cylinder.

In the first section of this chapter, the fragmentation criterion introduced by Ashgriz

& Poo (1990) is verified for the results obtained in this study. Afterwards, the viscous

energetic loss in the first phase of the collisions is analysed. Finally, an empirically

obtained transition criterion analogous to figure 4.44 is introduced.

5.1 Fragmentation criterion

In the second phase of the collision, the deformed disk retracts due to surface tension

forces and relaxes into a cylindrical shaped complex (see figure 5.1). Based on the
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l

d

Figure 5.2: Second phase of a binary drop collision where a liquid cylinder is formed.

Rayleigh criterion (Rayleigh, 1879), Ashgriz & Poo (1990) introduced a fragmentation

criterion for binary head-on collisions of water droplets. In order to minimise its total

surface energy, the liquid cylinder breaks up into two equal-sized droplets when its

length-to-diameter ratio exceeds the critical value of π. However, it has been shown

that the breakup mechanism of this cylinder has nothing in common with the classical

Plateau-Rayleigh instability of a liquid column (Stone & Leal, 1989; Notz & Basaran,

2004). Nevertheless, experimental observations show very good agreement of the onset

of fragmentation and the exceeding of the critical length-to-diameter ratio of the

cylinder. Lately, Planchette et al. (2012) used it as a fragmentation criterion for their

model, describing the onset velocity for binary collisions of immiscible liquids. In this

work we follow the same approach and evaluate if the criterion is applicable to the

results obtained for binary and ternary collisions.

In order to determine the length-to-diameter ratio of the cylindrical shaped drop, its

length l and its diameter d must be measured, which is pictured in figure 5.2. Thus,

the aspect ratio ζ can be calculated by

ζ =
l

d
. (5.1)

Technically speaking ζ is time-dependent, but it can be seen in figure 5.2 that the shape

of the cut out and the following cylinder are almost identical. It can be concluded that

the shape of the maximum extended cylinder varies little in time compared to the used

sampling frequency. This was confirmed by examining other photographs obtained
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5.1 FRAGMENTATION CRITERION

during this study at typical sampling frequencies from 5 to 20 kHz.

5.1.1 Binary drop collisions

In order to examine if the fragmentation criterion can be applied to binary head-on

collisions, the critical aspect ratio ζ0 has been defined for all obtained onset velocities

(see table 4.2). Two values of ζ0 are required for each measurement, one at coalescence

and one at separation defining the lower and upper limits, respectively. The results are

plotted in figure 5.3 with error bars between the two values of ζ0. The silicon oils are

marked separately (SO). For small Ohnesorge numbers, ζ0 is close to the value of π,

which agrees very well with the Rayleigh criterion. However, above a certain Ohnesorge

number, say 0.06, the critical aspect ratio increases. Thus, the fragmentation criterion

of ζ0 = π cannot be applied to binary collisions at higher Ohnesorge numbers. This is in

good agreement with figure 4.36 and figure 4.44, where two regimes can be observed for

Oh < 0.06 and Oh > 0.06, respectively, indicating a change in the breakup mechanism.

It results that, for small Ohnesorge numbers (Oh < 0.06), the Rayleigh criterion can

be used for binary head-on collisions.
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Figure 5.3: Correlation of ζ0 with the Ohnesorge number. At Oh < 0.06 the critical
aspect ratio is in good agreement with the Rayleigh criterion, which is
drawn with a dashed line (ζ0 = π). The used liquids are listed in table 3.2.
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5.1.2 Ternary drop collisions

The critical aspect ratios describing the transition between coalescence and reflexive

separation for ternary head-on collisions are drawn in figure 5.4 against the Ohnesorge

number. For each onset velocity (see table 4.4), the value of ζ0 at coalescence and

separation is estimated, leading to a data point at the average with an error bar

between these two values in the diagram. The Rayleigh criterion at ζ0 = π is marked

by a dashed line. It can be seen that the data correlates with a critical aspect ratio π.

Deviations from this value can be explained by measurement inaccuracies and the time

dependency of ζ, combined with finite sampling frequencies between 5 and 20 kHz. The

measuring accuracy of ζ is about 3.3%, assuming an error of ±1 px for the estimation

of l (typically 100 px) and d (typically 32 px).
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Figure 5.4: Evolution of ζ0 with the Ohnesorge number. The critical aspect ratio is in
good agreement with the Rayleigh criterion, which is drawn by a dashed
line (ζ0 = π). The used liquids are listed in table 3.2.

In conclusion, the Rayleigh criterion can be applied to determine the onset of frag-

mentation for ternary head-on collisions in the examined range of Ohnesorge numbers

(see figure 5.4). This agrees very well with the observations made for binary collisions,

which is not unexpected, regarding that the process of the collision during the second

phase is nearly identical for the binary and the ternary case.
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5.2 FIRST PHASE OF THE COLLISION

5.2 First phase of the collision

The first phase of the collision of two or more droplets lasts from their first contact

until the formed disk reaches its maximum extension (see figure 5.1). At the state of

maximum extension it is assumed that the internal flow has stopped and all the energy

is transformed into surface energy. Thus, it can be balanced to the initial energy, and

the dissipated energy can be estimated.

In order to calculate the surface energy of the deformed disk, its geometric parameters

are needed. In figure 5.5, the maximum diameter Dmax and its width w are exemplarily

defined for a binary collision. A problem in the estimation of Dmax is that, in the

photographs, the droplets are shown at discrete time steps. Therefore, one cannot

verify if the disk is currently at its maximum deformation. However, Roisman et al.

(2012) showed that, around its maximum value, the diameter of the disk varies little in

time for immiscible liquids. This was observed for miscible liquids during this work

as well while comparing the measured maximum diameters at a certain velocity. The

variation from an imaginary average maximum diameter is about ±5 %.

The estimation of the surface area of the disk can be done differently. Jiang et al.

(1992) proposed a spheroid with an elliptic cross section which leads to a surface area

w

Dmax

Figure 5.5: First phase of a binary drop collision, where the formed disk reaches its
maximum extension.
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of

S =
1

2
πD2

max

[
1 +

1

β

1

(β2 − 1)1/2
ln
(
β + (β2 − 1)1/2

)]
with β =

Dmax

w
> 1 . (5.2)

Photographs of Ashgriz & Poo (1990) and the work of Roisman et al. (2012) showed

that the disk looks more like a torus, with a lamella in the middle instead of a hole.

Assuming a perfect torus with an infinitely thin lamella, as sketched in figure 5.6, leads

to a surface area of

S = π2w (Dmax − w) +
1

2
π (Dmax − 2w)2 . (5.3)

Dmax

w

Figure 5.6: Torus with infinitely thin lamella in the centre.

However, for simplicity, a simpler approach is used in this work. The surface area is

estimated by an infinitely thin disk:

S =
1

2
πD2

max . (5.4)

This approach looks at the first glance very crude. In fact, the surface areas calculated

for the spheroid (see equation (5.2)) and for the torus (see equation (5.3)) are on an

average 17.5% and 44% larger, respectively, than the results obtained for the disk (see

equation (5.4)). Nevertheless, the qualitative results should be the same as using a

more complex surface area like in equations (5.2) or (5.3). Moreover, the shape of the

merged complex at the onset of fragmentation is very close to a disk. The reasons

for this approach are, on the one hand, as already mentioned, simplicity, and on the

other that the disk width w lies in most cases only between 15 and 20 px. Assuming an

error of ±1 px for the measurement of w leads to a relative error between 5 and 6.7%.

On the contrary, the maximum diameter is typically in the order of Dmax = 80 px,

leading to a relative measurement error of only 1.25%. By using equation (5.4) for the

calculation of the surface area, the relatively large measurement error of the disk width

is not considered.
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5.2.1 Binary drop collisions

Below the amount of energy dissipated in the first phase of binary head-on collisions of

equal-sized droplets is investigated. To do so, two different approaches are considered.

Modelling of the viscous loss

Following the approach of Jiang et al. (1992), the initial energy of the droplets can be

balanced to the energy of the merged disk at its maximum deformation by

Eini = σS + Φ1 , (5.5)

where Eini represents the initial kinetic and surface energies of the droplets, S is the

surface area of the deformed disk according to equation (5.4) and Φ1 stands for the

dissipated energy and is a function of the dynamic viscosity. The initial energy of the

droplets can be calculated by

Eini = 2

[
1

6
πD3 1

2
ρ

(
U

2

)2

+ πσD2

]
, (5.6)

assuming equal-sized droplets. Introducing equation (5.6) into equation (5.5) and

normalizing it by 2πσD2 leads to the non-dimensional equation

S

2πσD2︸ ︷︷ ︸
Ŝ

= 1 +
We

48︸︷︷︸
We∗

1− 48Φ1

2πσD2We︸ ︷︷ ︸
α̂

 , (5.7)

which can be written as

Ŝ = 1 + We∗(1− α̂) . (5.8)

Here, Ŝ represents a non-dimensional surface area, We∗ is the Weber number divided

by the constant factor 48 and α̂ can be seen as a dissipation coefficient.

In figure 5.7, the obtained results for binary head-on collisions are plotted as Ŝ

depending on We∗. These are the results from the measurements of the map of regimes

(see figure 4.11) and from the measurements of the onset velocities (see table 4.2). The

results for glycerol 50%, marked by grey filled circles, spread over a wide range of We∗

and liquids with dynamic viscosities smaller and larger than 5.24 appear only around
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Figure 5.7: Evolution of Ŝ with We∗ for the determination of the viscous loss in the
first phase of binary drop collisions. The dashed line stands for the lossless
case. The solid line represents the correlation of the experimental data
marked by the grey filled circles.

certain Weber numbers. The lossless case (α̂ = 0) is marked by a dashed line. The

fitted solid line belongs to the grey data points with µ = 5.24 mPa s.

The model by Jiang et al. (1992) predicts that the energy dissipation at the maximum

deformation of the disk is independent of the dynamic viscosity and can be characterised

by a single dissipation coefficient α̂. However, Willis & Orme (2003) disproved this

statement and showed that the viscous dissipation depends on µ. This can be seen in

figure 5.7 as well. For a viscosity of µ ≤ 5.24 mPa s, the data points fit to a single line,

but for higher viscosities a deviation from the line can be observed, implying increasing

viscous losses with increasing dynamic viscosity. This is a limitation of the model of

Jiang et al. (1992), since the dependency of α̂ on µ is not considered. For low Weber

numbers We∗ < 1 the difference in dissipated energy for various liquids is not very

large, but technically speaking, the dissipation coefficient α̂ has to be determined for

each liquid. In the case of glycerol 50%, using equation (5.4) for the calculation of the

surface area, a value of α̂ ≈ 0.44 is obtained.

Modelling of the maximum diameter

An alternative method to model the first phase of the collision can be found in the

work of Chandra & Avedisian (1991). They modelled the maximum diameter of a
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5.2 FIRST PHASE OF THE COLLISION

drop impinging on a solid surface. Their approach is used in the current section to

predict the maximum diameter in the first phase of binary drop collisions. It is based

on energy conservation, as given in equation (5.5). The initial energy and the surface

area are given by equations (5.6) and (5.4). The viscous dissipation can be estimated

by

Φ1 = φV t , (5.9)

where φ is the viscous dissipation function, V the combined liquid volume and t the

time taken by the disk to reach its maximum extension. The volume can be calculated

by

V =
1

3
πD3 ≈ 1

4
πD2

maxw . (5.10)

The estimation of the viscous dissipation function φ and the time t is a very delicate

issue. Chandra & Avedisian (1991) assumed for the former

φ ≈ µ

(
U∞
L∞

)2

, (5.11)

where U∞ is a characteristic velocity and L∞ a characteristic length scale. For binary

drop collisions these quantities are U∞ = U/2 and L∞ = w/2. The time is estimated

by t ≈ 2D/U .

Pasandideh-Fard et al. (1996) enhanced the model of Chandra & Avedisian (1991)
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Figure 5.8: Predicted maximum diameter using two models of the literature compared
to experimental results. The diagonal indicates perfect agreement between
modelled and measured maximum diameters.
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by estimating the characteristic length in equation (5.11) by L∞ = (2DPF )/(
√

RePF ),

which is equivalent to the boundary layer thickness at the solid-liquid interface. The

time is approximated to be t = (8DPF )/(3UPF ). Adapting these quantities for binary

drop collisions leads to L∞ = (2
√

2D)/(
√

Re ) and t = (16D)/(3U). Unfortunately,

the models of Chandra & Avedisian (1991) and Pasandideh-Fard et al. (1996) are not

appropriate to describe Dmax for binary liquid drop collisions. The predicted diameters

are not conform with our measurements, which can be seen in figure 5.8. This indicates

that the velocity gradient at binary drop collisions (see equation (5.11)) and at the

impact of a drop onto a solid wall are not the same. This seems reasonable, because at

the wall a no-slip boundary condition can be assumed, which is not the case for the

collision of two drops.

In order to describe the maximum diameter for binary drop collisions an empirical

ansatz is introduced to calculate the viscous dissipation. For this all the quantities in

equation 5.9 are calculated using the characteristic parameters D and U , which leads

to

φ = ε
1

2
πµUD2 , (5.12)

where ε is a constant factor which will be empirically determined. Substituting equation

(5.6), (5.4) and (5.12) into equation (5.5), and multiplying it with 2/πσD2, leads to

Dmax

D
=

√
1

12
We + 4− εWe

Re
. (5.13)
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Figure 5.9: Predicted maximum diameter compared to experimental results. Empirical
tuning leads to a value for ε of 2.3.
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In figure 5.9, the predictions of equation (5.13) are compared to the experimental

data. The data points are brought to a single line with the help of an empirically

determined value of ε = 2.3. The slope of the line with a value of ≈ 1.33 shows a

discrepancy between theoretical prediction and experiment. This disagreement can be

eliminated by multiplying the theoretical results for Dmax/D with a prefactor of 0.75

on the grounds that the surface area of the complex was approximated quite crude to

the one of a disk in the first place (see equation (5.4)). Thus, the obtained agreement

with the experimental data appears to be very good.

5.2.2 Ternary drop collisions

In this section, the amount of dissipated energy in the first phase of ternary liquid

drop collisions is investigated. Analogous to the binary case (see section 5.2.1) two

different approaches are considered.

Modelling of the viscous loss

Below, the approach of Jiang et al. (1992) is applied to the first phase of ternary liquid

drop collisions. For the initial energy, the surface energy of the central droplet is added

to equation (5.6), which leads to

Eini = 2

[
1

6
πD3 1

2
ρ

(
U

2

)2

+
3

2
πσD2

]
. (5.14)

Applying the same procedure as in section 5.2.1, the non-dimensional energy balance

for ternary collisions yields to

Ŝ = 1.5 + We∗(1− α̂) . (5.15)

In figure 5.10, the results for Ŝ are plotted against We∗. Similar to the binary case,

these are the results obtained from the measurements for the map of regimes (see figure

4.26) and from the measurements of the onset velocity (see table 4.4). The lossless

case with α̂ = 0 is marked by a dashed line. The solid line represents the curve fitted

for the data points marked by grey filled circles. The data corresponds very well to the

solid line with a loss coefficient of α̂ ≈ 0.28. However, as already discussed in section
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Figure 5.10: Evolution of Ŝ with We∗ for the determination of the viscous loss in
the first phase of ternary drop collisions. The dashed line stands for the
lossless case. The solid line represents the correlation of the experimental
data marked by grey filled circles.

5.2.1 the amount of dissipated energy in the first phase at binary collisions depends on

the dynamic viscosity, leading to a different α̂ for each liquid. Thus, it is very likely

that it is valid for ternary collisions as well. It is interesting to note that, for a given

liquid, say glycerol 50%, the loss of kinetic energy in the first phase is larger for binary

(α̂ ≈ 0.44) than for ternary collisions (α̂ ≈ 0.28). Possibly, this can be explained by a

smaller velocity gradient at ternary collisions because of the central droplet.

Modelling of the maximum diameter

The empirical model for the maximum diameter of the disk, based on the work of

Chandra & Avedisian (1991), is applied to ternary drop collisions analogous to the

binary case given in section 5.2.1. The energy is balanced as given in equation (5.5),

calculating the initial energy according to equation (5.14). The surface area of the

disk is defined by equation (5.4) and the viscous dissipation is calculated analogous to

equation (5.12). Multiplying with 2/πσD2 and rearranging leads to an equation for

the maximum diameter of

Dmax

D
=

√
1

12
We + 6− εWe

Re
. (5.16)
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Figure 5.11: Predicted diameter according to equation (5.16) with ε = 0.25 compared
to experimental results.

In figure 5.11, the results of equation (5.16) are compared to the experimental results.

The prefactor ε is empirically tuned to a value of 0.25. The slope of the fitted line

shows very good agreement of the calculated and the measured values, but the intersect

is close to a value of one. This cannot be corrected by a constant prefactor as in

the binary case (see figure 5.9). This discrepancy cannot be explained yet, but it

indicates that the approach for the viscous dissipation given by equation (5.12) is not

appropriate to model the viscous loss for ternary drop collisions. Furthermore, the

fact that there seems to be a fundamental difference between binary and ternary drop

collisions in terms of viscous losses during the first phase of the collision, as indicated

comparing figure 5.7 to 5.10 and figure 5.9 to 5.11, is supported.

5.3 Second phase of the collision

In the second phase of the collision, the deformed disk retracts due to surface tension

forces and relaxes into a cylindrical shaped complex (see figure 5.1). This cylinder may

breakup into two equal-sized droplets. For the second phase no theoretical model is

deduced, but an experimentally observed transition criterion describing the transition

between coalescence and separation is presented.
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5.3.1 Binary drop collisions

There are several options to represent the transition between coalescence and separation

for binary head-on collisions. Jiang et al. (1992) plotted a critical transition Weber

number (We∗ = We/48) as a function of the dynamic viscosity divided by surface

tension. However, this type of representation is not appropriate to represent results

obtained with different droplet sizes or liquids with different surface tension. This

can be seen in figure 5.12, where the results of Jiang et al. (1992) are marked by

grey diamonds. It can be observed that their results agree quite well with the present

measurements at an equivalent droplet diameter of 358µm. However, the results

obtained for other droplet diameters differ from them because the droplet diameter

is not considered on the abscissa. Moreover, the influences of dynamic viscosity and

surface tension are not correctly accounted for. This can be seen when comparing the

results obtained with glycerol and silicon oil as the liquids at a droplet diameter of

D ≈ 357µm and µσ−1 ≈ 0.14 s m−1.

Qian & Law (1997) developed a transition criterion showing a linear dependency of

Weber number on the Ohnesorge number (see section 2.4.2). This correlation was

observed for binary collisions during this work as well (see figure 4.36). However, this

kind of representation only works for binary collisions and only when one single liquid

is involved. Thus, presenting the onset of fragmentation as a function of an onset
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Figure 5.12: Evolution of the transition Weber number with the dynamic viscosity
divided by surface tension as proposed by Jiang et al. (1992). The used
liquids are listed in table 3.2.
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Figure 5.13: Correlation of the onset Reynolds number with the Ohnesorge number
for binary head-on collisions of equal-sized droplets. The used liquids are
listed in table 3.2.

Reynolds number Re0 and Ohnesorge number is preferred in this study. Figure 5.13

shows the onset Reynolds number as a function of Ohnesorge number for the present

results of binary drop collisions. It can be seen that a power law with an exponent of

-0.74 appears for low Ohnesorge numbers (Oh < 0.06). The obtained results agree very

well with results from the literature.

5.3.2 Ternary drop collisions

The onset of fragmentation for ternary head-on collisions cannot be described in terms

of Weber number and Ohnesorge number (see figure 4.43). It has to be represented

in terms of an onset Reynolds number and Ohnesorge number, which can be seen in

figure 5.14. At a given Ohnesorge number for Re < Re0 coalescence occurs, whereas

for Re > Re0 the collision results in separation. For the performed measurements a

power law with an exponent of -0.93 appears.

In conclusion, representing the onset of fragmentation for head-on drop collisions in

terms of Reynolds number and Ohnesorge number appears to be generally applicable.

For binary and ternary drop collisions with a single liquid, and binary drop collisions
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Figure 5.14: Evolution of the onset Reynolds number with the Ohnesorge number for
ternary head-on collisions of equal-sized droplets. The used liquids can be
found in table 3.2.

with two immiscible liquids, power laws with different exponents occur in the (Re, Oh)

chart describing this boundary. Planchette et al. (2012) developed a transition criterion

characterising this correlation for binary collisions with two immiscible liquids. For

binary and ternary drop collisions with a single liquid no theoretical models exist in

the literature considering the scaling law between Reynolds number and Ohnesorge

number. We believe that this would be promising a approach to model the transition

between coalescence and separation for head-on collisions.
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6 Summary and conclusions

In the present study binary and ternary drop collisions of the same liquid at well-defined

conditions of impact were investigated. The collisions were achieved using piezoceramic

drop generators which produced stable monodisperse liquid droplet streams. Collision

parameters were obtained by analysing acquired photographs. The objectives of

the present study were to compare the collision outcomes occurring at ternary drop

collisions and their transitions to the ones of binary collisions.

A (X,We) nomogram was plotted to represent the regime map of ternary drop collisions

at an average droplet diameter of D ≈ 379µm using glycerol 50% as the liquid. Similar

to binary drop collisions, four main regimes, namely coalescence, bouncing, stretching

separation and reflexive separation, were observed. The transitions in the collision

regime map bear resemblance to the transitions observed for binary drop collisions.

However, two significant differences were observed. First of all, due to the central

droplet at ternary collisions, more initial kinetic energy is required for separation to

occur than in the binary case. Secondly, at small Weber numbers the transition between

coalescence and bouncing is shifted to larger non-dimensional impact parameters with

decreasing Weber number at the ternary case, whereas the opposite is true for binary

collisions.

The onset of fragmentation at head-on collisions was investigated for a wide range of

liquids and droplet diameters. The results obtained for binary drop collisions show a

linear correlation between Weber number and Ohnesorge number which can also be

found in the literature. On the contrary, the onset of fragmentation at ternary head-on

collisions cannot be explained in terms of these two non-dimensional numbers. In that

case, a power law between Reynolds number and Ohnesorge number with an exponent

close to -1 can be used to describe the fragmentation threshold. This power law was

observed for binary head-on collisions as well, but with an exponent close to -0.75.

The difference in the exponents can be explained due to different flow fields in the
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merged droplet. Note that the onset of fragmentation for binary head-on collisions of

immiscible liquids can also be represented by (Re,Oh).

Upon further investigation of head-on collisions it was shown that the viscous loss

during the first phase of the collision, where the merged disk reaches its maximum

extension, is larger for binary than for ternary collisions. This can be explained by

the absence of the central droplet at the binary case, resulting in a larger velocity

gradient. Moreover, an empirical model for the maximum diameter of the disk formed

after the impact, based on theoretical models predicting the maximum diameter of

a droplet impinging on a solid wall, was introduced for binary drop collisions. This

could not be applied for ternary collisions. This indicates that the first phase of binary

and ternary drop collisions differs fundamentally. On the contrary, it has been shown

that a fragmentation criterion, defined by the critical length-to-diameter ratio of the

liquid cylinder, which is formed in the second phase of the collision, can be applied to

binary and ternary drop collisions in a range of low Ohnesorge numbers (Oh < 0.06).

Similar to the classical Rayleigh criterion, the critical value of this length-to-diameter

ratio is π.

Overall, the collision behaviour of ternary head-on collisions differs from binary head-

on collisions, especially in the first period after the impact. Measuring the onset of

fragmentation for binary and ternary head-on collisions leads to a power law between the

Reynolds and Ohnesorge numbers with an exponent close to -0.75 and -1, respectively.

A theoretical model considering these power laws for miscible liquids has not been

developed yet, but we believe that this would be a promising approach to model the

transition between coalescence and separation for head-on collisions.
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