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Abstract

In radiation therapy, the treatment of eye tumors is particularly challenging. In order
to determine the tumor location in 3D, a magnetic resonance imaging system is used to
acquire slice images of the head. Subsequently, the affected region has to be radiated in a
linear accelerator. During the whole treatment high precision is crucial, thus in previous
solutions head and eyes were rigidly fixed, which was not only very uncomfortable, but also
invasive. In a project cooperation of the Graz University of Technology and the Medical
University of Graz an eye tracking system has been developed. It enables a treatment
without the invasive fixation of head and eyes by using a face mask and two 2D cameras
for the estimation of the eye position. The deviation of the current eye position from their
initial position is used to generate commands to control the treatment, e.g. pause the
radiation therapy device due to a too strong deviation.

In this Master’s Thesis we discuss a head tracking system, which measures unwanted
head motion of a patient and can be combined with the existing eye tracking system. For
this purpose, we find a suited hardware setup using a time-of-flight camera and deal with
the topic of robust head pose estimation. We implement three methods with different
approaches to gain head pose information and compare them in a statistic evaluation.
First, we analyze the ICP algorithm, which is based on the registration of two point
clouds. Further, a template matching approach using three templates located at facial
feature points is examined. The tracked positions in combination with their depth values
allow us to compute the head pose. Finally, we adapt a method by Meers and Ward. It
uses spherical intersections of the face to gain topographic information. In this way we
are able to derive the face orientation. In a facial expression analysis, we examine the
robustness of the three methods. Based on our results, the suitability of the methods can
be discussed, which is a step towards the realization of the head and eye tracking system.

Keywords: computer vision, head and eye tracking system, time-of-flight camera, robust
head pose estimation, medical environments, fixation-free eye tumor treatment
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Kurzfassung

In der Strahlentheraphie ist die Behandlung von Augentumoren besonders herausfordernd.
Um die Tumorposition in 3D zu bestimmen, wird ein Magnetresonanztomograph zur Auf-
nahme von Schnittbildern des Kopfes verwendet. Anschließend kann die betroffene Re-
gion in einem Linearbeschleuniger bestrahlt werden. Während der gesamten Behandlung
ist hohe Genauigkeit ausschlaggebend, weshalb in bisherigen Lösungen Kopf und Au-
gen ruhiggestellt wurden, was nicht nur sehr unangenehm sondern auch invasiv ist. In
einem gemeinsamen Projekt der Technischen und Medizinischen Universität Graz wurde
ein Augen-Trackingsystem entwickelt. Dieses ermöglicht, mit Hilfe einer Gesichtsmaske
und zwei 2D Kameras zur Bestimmung der Augenposition, eine Behandlung ohne inva-
sive Fixierung von Kopf und Augen. Die Abweichung der momentanen Augenposition
von der Ursprungsposition kann verwendet werden, um Kommandos zur Steuerung der
Behandlung zu erzeugen, z.B. kann das Behandlungsgerät bei einer zu großen Abweichung
pausiert werden.

In dieser Masterarbeit stellen wir ein Kopf-Trackingsystem vor, das ungewollte Kopf-
bewegungen eines Patienten misst und mit dem bestehenden Augen-Trackingsystem kom-
biniert werden kann. Zu diesem Zweck suchen wir nach einem geeigneten Hardwareauf-
bau mit einer Time-of-Flight Kamera und besprechen, wie eine robuste Bestimmung der
Kopfpose möglich ist. Wir implementieren drei Methoden mit verschiedenen Ansätzen,
um Information über die Kopfpose zu gewinnen und vergleichen diese in einer statistis-
chen Auswertung. Zu Beginn analysieren wir den ICP Algorithmus, welcher auf der Reg-
istrierung zweier Punktwolken basiert. Mittels Template Matching verfolgen wir in einem
weiteren Ansatz die Bewegung dreier Templates, die sich an den Positionen markanter
Gesichtsmerkmale befinden. Die getrackten Positionen erlauben es uns, gemeinsam mit
ihren Tiefenwerten die Kopfpose zu berechnen. Zuletzt adaptieren wir eine Methode von
Meers und Ward, welche Kugeln mit dem Gesicht schneidet, um topographische Infor-
mationen zu erhalten. Auf diese Weise kann die Ausrichtung des Gesichts abgeleitet
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werden. In einer Gesichtsausdrucksanalyse untersuchen wir die Robustheit der drei Meth-
oden. Unter Verwendung unserer Ergebnisse kann die Eignung der Methoden diskutiert
werden, wodurch wir einen Schritt näher an die Verwirklichung des Kopf- und Augen-
Trackingsystems rücken.

Schlagwörter: digitale Bildverarbeitung, Kopf- und Augen-Trackingsystem, Time-of-
Flight Kamera, robuste Bestimmung der Kopfpose, medizinische Umgebungen, befesti-
gungsfreie Augentumorbehandlung
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Introduction and motivation
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In radiation therapy, the treatment of eye tumors is particularly challenging and high
accuracy is crucial for success. To avoid movement during the treatment, an invasive
technique is commonly used to rigidly fix head and eyes to the treatment couch. In this
way, only the true 3D position of the eye tumor is radiated.

In this Master’s Thesis, we develop a head and eye tracking system which offers a
non-invasive solution to this problem. It estimates the head pose and eye gaze direction of
the patient, which can be used to generate triggering commands to control the treatment.
The patient is advised to remain in a straight head position and look at a certain point,
which will be remembered as the initial position. In case of deviations, the treatment
devices can simply pause and continue when the initial position is reached again.

The tracking of head and eyes is generally not an easy task, since it is composed of
two independent movements. The head pose is described by three rotational and three
translational Degrees of Freedom (DOF). The eyes move relative to the head but their
lines of vision are not parallel. We can describe each eye by three rotational DOF . In
this work we utilize the advantage, that the patient must remain in the initial position.
Thus, we can separate head and eye tracking, and perform head pose estimation first (six
DOF). The eyes are only tracked when the head is currently in its initial position. As a
consequence, 2D eye tracking by only observing the pupils’ locations becomes possible.

1



2 Chapter 1. Introduction and motivation

1.1 Field of application

The head and eye tracking system is targeted to simplify the treatment of eye tumors
in radiation therapy. First, a Magnetic Resonance Imaging (MRI) system (Figure 1.1a)
acquires slice images of the head, which are then used to locate the eye tumor in 3D. In the
subsequent radiation therapy the tumor cells are intended to be destroyed. The radiation
therapy device (Figure 1.1b) rotates around the head and sends radiation through the
tumor from many directions. In this way, surrounding healthy tissues are less exposed to
radiation, while the dose in the tumor is maximized. For the success of this treatment
millimeter precision is required.

(a) MRI system ( c©Lunghammer, TU Graz).

(b) Linear accelerator.

Figure 1.1: Devices for localization and treatment of tumors.
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Several difficulties can arise due to head or eye movements of the patient. In Figure 1.2
we see, that movements during MRI cause strong artifacts in the resulting slice images,
and the planning of the treatment becomes inaccurate. Let us now assume, that the
head does not move during a subsequent radiation therapy session. Even if only the gaze
direction deviates from the one imaged in the MRI system, a healthy region is radiated
and the eye tumor is spared, which clearly should be prevented (Figure 1.3).

(a) Correct slice image. (b) Head movement.

Figure 1.2: Artifacts caused by patient movement during MRI.

(a) Correct treatment. (b) Wrong treatment.

Figure 1.3: Therapy success depends on the eye gaze direction.

Therapy success depends on a fixed head and eye position. To avoid voluntary and
involuntary movements, commonly head and eyes of the patient are immobilized. The
scull is rigidly fixed in a frame (Figure 1.4a) which is screwed onto the treatment couch.
The muscles behind the eye become anesthetized (Figure 1.4b) and tied to the frame with
surgical threads.
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(a) Stereotactic frame (taken from [22]).

(b) Retrobulbar anesthesia (taken from [2]).

Figure 1.4: Immobilization of head and eyes during eye tumor treatment.

In contrast, the head and eye tracking system is a non-invasive approach, which gets
along completely without fixation. The patient comfort is increased and it even becomes
possible to perform repeated and shorter treatments.

1.2 Related work

Head and eye tracking is still a topic of current research. A wide range of application can
be found in driver surveillance, e.g. to analyze the field of view or the blind spot of the
driver to assist if pedestrians, traffic signs or vehicles are overlooked, or, if there is a risk
that the driver is inattentive or falls asleep. Further applications can be found in virtual
reality, in human-computer interaction even for paraplegic persons, or in medicine.

This Master’s Thesis focuses on head pose estimation and many different approaches
exist for this task. Depending on the application and also the required accuracy, different
hardware setups, sensor types and methods may be suited. We will now give a short
overview on related work.

Reference:

University of Wisconsin Hospitals and Clinics Authority (2014)Stereotactic Radiosurgery - A Patient Guide

Reference:

 (2014)Retrobulbar anesthesia
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In [4], the head pose and gaze of a driver is estimated using an approach based on
the Iterative Closest Point (ICP) algorithm ([5]). Only a rough estimate of the head pose
using a small point cloud can be determined, otherwise the computation would be too
costly. Additionally, the algorithm only converges against a local maxima and proper
initialization is necessary. The Go-ICP algorithm from [24] is able to determine the global
maximum, but is too costly because it runs through a large number of translations and
rotations for initialization. All in all, the ICP algorithm may be too inaccurate when only
a sparse point cloud is used, and otherwise too slow for real-time applications.

To speed up the pose estimation of an object, typically only a small set of feature points
is used. In the case of head pose estimation, the face is not descriptive enough to extract
e.g. SIFT features, because it is sparsely textured. Thus, a rather complex method is
used for the robust facial feature tracker with a 2D camera presented in [20]. Rigid facial
feature points represented by Gabor-filtered samples and statistical shape models for the
shape of the face are both trained offline on a face database.

In [23] a head tracking system designed for the use during radiation therapy is pre-
sented. A mouthpiece has to prepared specifically for each patient and an infrared marker
frame is attached, which is tracked by a infrared stereo vision system. In this way cor-
respondence points are established very easily, which are uniquely detectable and move
rigidly with the head.

In [27], a stereo-vision system is used for head tracking without other equipment.
Three facial features are learned, the nose tip and the eye brows. A Kanade–Lucas–Tomasi
tracker and template matching is applied to track the features in 2D. In combination with
the depth values, their 3D positions and further the head pose can be computed.

In [19], the head pose of a vehicle operator is estimated using a Time of Flight (ToF)
sensor. If other workers are in the proximity of the construction vehicle and are possibly
overlooked because they are in the blind spot, a warning signal can be triggered. At the
start of tracking it is assumed that the nose tip is closest to the camera. To estimate
a coarse head pose, a 3D line is fitted through the nose bridge and a symmetry plane is
calcuted. They use principal component analysis and support vector regression to compute
an exact head orientation.

The authors of [14] also use a ToF camera and rely on the nose as a sufficient feature
for face tracking. Their method is based on the assumption, that the roll angle of the head
is negligible small compared to pitch and yaw. Spheres placed around the nose tip are
intersected with the face. A 3D line can be fitted through the midpoints of the spherical
intersection profiles, which provides the pitch and yaw angles of the head pose.

The method in [8] does not rely on a single facial feature like the nose tip, but uses
the whole facial image to estimate a head pose. A regression between depth images
and probabilities in the head pose space is learned, using random forests and synthetically
generated training data. This makes it possible, that even parts of the face can be occluded.
The focus of the paper lies on large variations of the head pose and the accuracy of the
method is evaluated in areas of 15◦ × 15◦.
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1.3 Objective of the thesis

Regarding medical eye tumor treatment, the focus lies on the high accuracy of a head
pose estimation method. This Master’s Thesis concentrates on the tracking of unwanted
motion. The distinction, if a patient is currently in the initial head pose recorded at the
first session or not, should become possible. Such a method would be a simplification of
the medical treatment and an improvement of the patient comfort.

1.4 Contribution

Here, we shortly summarize the contribution of this Master’s Thesis. A foundation is given
by the MedEyeTrack system, which was developed by the Graz University of Technology
and the Medical University of Graz. In this system, the head is rigidly fixed using a
thermoplastic face mask and each eye is independently tracked using a separate 2D camera.

Based upon the MedEyeTrack system, we now want to create a new system in which
the patient can move the head freely. For that reason, we develop a head tracking system
which can be combined with the existing system without affecting it. For robust head
pose estimation, we first make experiments to find distinct facial features and analyze
their stability under varying facial expressions. We think about how a head pose can
uniquely be described and the trackability of the facial features during head rotations.
We develop a prototype system based on depth measurement with ToF cameras, which
meets the requirements of eye tumor treatment. First, the head tracking system has to
be small enough to fit in the limited space of an MRI tube. Further, we test the correct
operation of ToF cameras under the strong magnetic field of the MRI system. We do a
research on algorithms which may be suited for robust head pose estimation. Then, we
use Matlab to implement three algorithms, adapt them to our head tracking system and
analyze their accurateness and real-time capability. For this purpose, we find an error
measure which describes the deviation of an estimated head pose from a reference pose.
We acquire a series of video sequences, create manually labeled ground truth data and
make a detailed statistic evaluation and experiments on the performance of our algorithms.
In our future work we will port the Matlab algorithms to C++. That is why we also create
an interface in this Master’s Thesis, which allows seamless integration of C++ code from
the head tracking system into the MedEyeTrack software, which was written in C#.

1.5 Organization of the thesis

Chapter 2 offers a detailed explanation on the development of the head and eye tracking
system. Chapter 3 gives a theoretical background. In Chapter 4 we discuss the problem
of head pose estimation and compare methods which may be suited for tracking during
medical eye tumor treatment. Chapter 5 shows some experiments and compares the results
of the methods. Finally, Chapter 6 gives a conclusion and an outlook to future work.
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In this chapter we describe the development of the head and eye tracking system pre-
sented in this Master’s Thesis. A foundation is given by the MedEyeTrack system, which
is an eye tracking system with non-invasive head fixation. It uses eye region detection and
pupil center localization. In a seminar project, we followed the idea of a fixation-free head
and eye tracking system. We analyzed facial features and implemented a head tracking
prototype based on template matching. In this Master’s Thesis we continue the work
from the seminar project. We want to find a robust method for head pose estimation
with sufficient accuracy for eye tumor treatment. First, we find a hardware setup suited
for this purpose. Further we address, how the head tracker will be integrated into the
existing MedEyeTrack system. We implement three methods for head pose estimation
and compare them in a statistic evaluation.

2.1 MedEyeTrack: Eye tracking with 2D cameras

In a project cooperation of the Graz University of Technology and the Medical University
of Graz the MedEyeTrack system was developed (Figure 2.1). A thermoplastic face mask
is used to rigidly fix the head to the system. In Figure 2.1c we see the schematic structure
of the eye tracking system. A 2D camera for each eye is used to observe their movement
during treatment. Due to the lack of space in the Magnetic Resonance Imaging (MRI)
tube, the cameras are mounted over the chest of the patient and directed onto the eye
region with the help of a mirror. Active infrared illumination is used to get independent
from environmental lighting conditions.

7
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(a) A plexiglass prototype system. (b) The system for clinical use (taken from [15]).

(c) Schematic structure.

Figure 2.1: Hardware setup of the MedEyeTrack system.

The MedEyeTrack system can be coupled with the input of a therapy device. It
includes a software to find the eyes and subsequently the pupil centers, by using a Haar-
cascade feature detector and a blob detector. In this way, the current 2D positions of the
pupils can be observed (see blue pluses in Figure 2.2).

At the beginning of the MRI session, round markers indicating the eye positions of the
patient are initialized. In order to guarantee an optimal treatment, these initial positions
should continuously be held during the acquisition of the slice images and also during
the subsequent radiation therapy sessions. The software measures the deviation of the
pupils (see diagrams), triggers the devices only inside of a defined range and pauses them
otherwise. As a result, artifacts caused by movements during MRI are minimized and
only the true tumor position gets radiated.

Reference:

M&R Automation GmbH ()
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Figure 2.2: MedEyeTrack software and diagrams of the pupil misalignment.

2.2 Facial feature analysis

As discussed in Section 1.1, mostly immobilization of head and eyes of the patient is applied
to prohibit any movements. With the MedEyeTrack system and its thermoplastic face
mask a great alternative to an invasive fixation has been found. One obvious disadvantage
of the system is, that the head of the patient has to be rigidly fixed to the system with a
specifically prepared face mask. In Figure 2.3 we see a comparison of the MedEyeTrack
system and a new fixation-free system based on a Time of Flight (ToF) camera, which
we began to develop in our seminar project. Due to the active measuring principle, it is
independent of lighting conditions and can directly extract depth information of the face.
For the acquisition of video sequences from ToF cameras, we implemented an application
with a Graphical User Interface (GUI) (see Figure 2.4). After analyzing the ToF sequences
of several subjects with varying facial expressions we came to the conclusion, that the nose
tip and the inner eye corners are stable facial features which can be used for head tracking.
Further, we implemented a head tracking prototype based on template matching.
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(a) MedEyeTrack system. (b) New system.

Figure 2.3: Comparison of the operating principles of the tracking systems.

Figure 2.4: GUI application (developed in Qt).
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2.3 Robust head pose estimation

2.3.1 Overview

To sum up, we want to build a head and eye tracking system, by combining the existing
MedEyeTrack system with a head tracking system. The objective is to receive data of
unwanted head or eye motion, which lets us control the treatment by generating triggering
signals, if a certain initial position is held by the patient. In this Master’s Thesis we focus
on the implementation of three head pose estimation methods, which are examined for
their accurateness and robustness. One of them could possibly be appropriate for the head
tracking system. An overview on the development process is given in Figure 2.5.

Master’s Thesis:
• combine systems
• method for head
pose estimation

MedEye-
Track

Eye
tracker

2D
cameras

Seminar
project

Head
tracker

ToF
cameras

Head&Eye
tracker

robust
method

non-
invasive

move
freely

trigger
signal

Figure 2.5: Development of the head and eye tracking system.

2.3.2 Hardware setup

Regarding hardware requirements, a compromise has to be found. There is not only not
only very limited space available in the narrow MRI tube, but also interactions between
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the strong magnetic field and the imaging sensor are possible. For one thing, the magnetic
field can influence the imaging process of the sensor, for another thing, metal parts of
the sensor distort the imaging process of the MRI system (Section 3.1.1). That’s why we
choose a ToF sensor for head tracking, which has only few metal parts. It is generally
much smaller than sensors like the Microsoft KinectTM which uses a stereo vision principle
(projector and camera), but has a much lower resolution and introduces more noise. These
limitations are in direct contrast to the goal of accurate head pose estimation.

In this Master’s Thesis, we build upon the plexiglass prototype of the MedEyeTrack
system (Figure 2.1). For pupil tracking, the eyes of a subject have to be aligned with the
mirror so that they look directly into the 2D infrared cameras (see Figure 2.6b). For head
tracking, we extend this hardware setup by a ToF camera directed onto an approximate
nose tip position of the subjects. It is oriented in portrait format and mounted very near
to the face, so that the low resolution is best utilized. The head rests on the back plane of
the system and is fully visible during all motions. Each subject has a different distance of
the nose tip to the ToF camera, approximately in a range of 15 to 20cm. This is a large
variation compared to the distance from the camera. In Section 3.1.2.2 the significant role
of a ToF camera’s integration time on the measuring range and hence the accuracy of the
acquired data is discussed. In an experiment we determined an integration time of 400µs
at a medium distance of 17.5cm to be the best compromise between the introduced noise
and distortion, by comparing faces measured with the ToF camera to a high-resolution
scan from a Structured Light (SL) scanner. The hardware setup is shown in Figure 2.6.

2.3.3 Software integration

Here, we want to briefly mention some details on the integration of the head tracker into
the existing MedEyeTrack system. In our seminar project we used Qt as a development
environment and the OpenCV library for image processing to create a GUI application in
C++. In this Master’s Thesis we use Matlab to implement prototypes for the head pose
estimation methods, which are integrated into the application in our future work. In this
way, the head tracker can be developed independently of the eye tracking system.

The MedEyeTrack software was implemented in C#. In contrast to C++ code, which is
directly translated to machine code, C# code runs in a runtime environment. To integrate
the unmanaged C++ code (ToF and OpenCV libraries and the head tracking application)
into the managed C# code of the MedEyeTrack application, we created an interface using
a wrapper library. With Microsoft Visual Studio this is possible using Visual C++ and
Dynamic Link Library (DLL) export and import keywords. First an unmanaged Win32
export DLL and then a managed wrapper Common Language Runtime (CLR) class library
has to be created. In this way all methods of the head tracking system can simply be reused
in the MedEyeTrack system with the class library as a reference.

The head tracker can notify the MedEyeTrack system when the head is in its initial
pose. If the eyes are as well in their correct position, a treatment device will be triggered.
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(a) Prototype system.

(b) Patient’s view.

Figure 2.6: Hardware setup.
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3.1 Imaging sensors

Next, we give a short overview on the properties and measurement principles of the sensor
types we use in this project. But to begin with, we want to mention the possibility of
interactions between the strong magnetic field of an Magnetic Resonance Imaging (MRI)
device and the sensors brought into this field. To conclude this section, we explain the 2D
calibration of the sensors.

3.1.1 MRI suitability of materials

Ferromagnetic materials - like for example iron, nickel or cobalt - can become very dan-
gerous in the proximity of MRI systems. They can develop a force corresponding to a
multiple of their own weight, are attracted to the center of the MRI system and do not
stop at obstacles like persons, thus resulting in serious injuries or even death. Exper-
iments showed, that also paramagnetic materials cause unwanted irradiated frequencies
which lead to artifacts in the image (Figure 3.1). This has to be taken care of during the
construction of a device which will be used in an MRI system. For the development of
the eye tracking system, a plexiglass prototype has been constructed. The Time of Flight
(ToF) camera has also been tested in the MRI system, it had no influences on the imaging
process and showed correct operation under the strong magnetic field.

15
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Figure 3.1: Paramagnetic materials cause artifacts in the MR image.

3.1.2 Types of sensors

3.1.2.1 Intesity-based camera

Intensity-based cameras produce a 2D image of the scene. In order to get independent
from environmental lighting conditions, an infrared camera in combination with a ring
light for active illumination is used. Infrared light is similar to visible light, but has no
heat information. In the MedEyeTrack system a 2D camera is used for each eye region
(see Figure 3.2), to allow eye tracking with high accuracy. Due to the strong magnetic
field in the MRI system, cameras with a CMOS sensor have to be used, otherwise the
electrical charges on a CCD chip get distorted and the resulting image becomes useless.

If we use a single 2D camera for the task of head pose estimation, no 3D translation
can be determined. A stereo vision system with two cameras on a stereo rig and known
relation between the cameras would be necessary to observe the head, which is not possible
because of the very limited space in the MRI tube. Thus, we use a ToF sensor.

Figure 3.2: Two 2D cameras for eye tracking.

3.1.2.2 ToF sensor

ToF cameras were first proposed in [12]. Unlike 2D cameras, they use an active measuring
principle (Figure 3.3) and are independent of lighting conditions. Compared to stereo
vision systems, the sensor is very small because no stereo basis is necessary to measure
depth information. ToF cameras were invented just about a decade before this work and
they are still at the beginning of development, so only low resolution sensors are available
at the moment.

Reference:

Robert Lange (2000)3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD-Technology
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Figure 3.3: Measuring principle of a ToF sensor.

An amplitude modulated near infrared light signal is emitted, reflected at the object
and projected onto the image sensor. Based on the known speed of light, the phase
shift between incoming and outgoing light at each pixel can be used to measure depth
information. What we get is a 2.5D image of the scene, i.e. an infrared image and the
corresponding depth map.

Each ToF camera works at a specific modulation frequency. To avoid interference
between two cameras, they have to work on different modulation frequencies.

An important parameter is the integration time, which defines how much light can
reach the image sensor. In [28], the effect of the integration time on the accuracy of a
head tracking system and its direct influence on the distance measurement are discussed.
Too distant objects cause the acquired data to be noisy and uncertain. Too near objects
may cause saturation and distort the measured distances.

3.1.2.3 Structured light 3D scanner

The basic problem of passive stereo vision systems is to find correspondences. A 3D point
can only be triangulated if a point correspondence is known. It is very hard to establish
correspondences for every point of an object, especially when it is sparsely textured, like
it is the case for a face. In [16], a good introduction to Structured Light (SL) systems
can be found. They are similar to passive stereo vision systems, just that one of the two
cameras is replaced by a projector. A temporal encoded stripe pattern is projected into
the scene (Figure 3.4a), which assigns a binary code to every illuminated pixel. This active
measurement principle makes it a lot easier to find correspondences, since the pixels can
be uniquely distinguished from their neighbors.

Like in [25], we use a SL system with a projector and two cameras for reconstruction
of a high resolution 3D face model. A single camera setup has the disadvantage, that
only one side of the face is fully visible and for example the opposite side of the nose
is occluded. In a two camera setup, there is one camera for either side of the face and
the reconstruction gets much better. An overview on the active triangulation principle is
given in Figure 3.4b.

Reference:

Ziraknejad, N. and Lawrence, P.D. and Romilly, D.P. (2012)The effect of Time-of-Flight camera integration time on vehicle driver head pose tracking accuracy

Reference:

Ribo, M. and Brandner, M. (2005)State of the art on vision-based structured light systems for 3D measurements

Reference:

Zhang, Song and Yau, Shing-Tung (2008)Three-dimensional shape measurement using a structured light system with dual cameras
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(a) A temporal encoded stripe pattern is projected onto an object (taken from [16]).

(b) Stereo camera geometry: the projector makes it easier to
find correspondences in the camera views (taken from [11]).

Figure 3.4: Principle of a structured light 3D scanner.

3.1.3 2D calibration

To undo lens distortion, the sensors need to be calibrated, which is here demonstrated
for the ToF camera. We acquire images of a target at several viewing angles and do a
calibration based upon [26] and [6]. Figure 3.5 gives a comparison of the distorted and
undistorted target and we can see, that the slightly distorted grid of black points and also
the target edge have become straight again.

(a) Distorted calibration target. (b) Undistorted calibration target.

Figure 3.5: 2D calibration of the ToF camera with a control point target.

Reference:

Ribo, M. and Brandner, M. (2005)State of the art on vision-based structured light systems for 3D measurements

Reference:

Garcia, R.R. and Zakhor, A. (2012)Consistent Stereo-Assisted Absolute Phase Unwrapping Methods for Structured Light Systems

Reference:

Zhengyou Zhang (2000)A flexible new technique for camera calibration

Reference:

Jean-Yves Bouguet (2014)Camera calibration toolbox for matlab
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3.2 Geometric definitions

3.2.1 Definition of a coordinate system

The ToF camera records an infrared image and a depth map. From the depth map we can
compute a 3D point cloud of the facial surface. For convenience, we choose a right-handed
coordinate system suitable for the data from the ToF camera (see Figure 3.6a). The x- and
y-axis point to the same directions as in the acquired images (y-axis facing downwards),
and the z-axis looks in view direction of the ToF camera. This way the nose lies at the
minimal z-value. A common choice for the origin is at the centroid of the head or at the
top of the neck (beginning of the backbone). Similar to [18], we place it at the nose tip.
This makes it easier to align 2.5D data, which does not contain information about the
back of the head. In addition, the nose tip is a good choice of a common reference point
for a learning-based method we want to implement in our future work.

3.2.2 Rigid-body transformations in 3D

In our seminar project we experimented with several facial features and found, that the
nose tip and the inner eye corner points do not change their positions notably during facial
expressions. Thus, in our methods (Section 4.3 and 4.4) we assume that the face is a rigid
body. In this way we can describe all head poses by just rotation and translation between
two corresponding 3D point clouds {pi} and {qi} (homogeneous 3D coordinates):

Hrigid =
(

R t
0T 1

)
, with R ∈ (3× 3), t ∈ (3× 1)

{qi} = Hrigid · {pi} = T ·R · {pi}, with Hrigid, R, T ∈ (4× 4)

A rigid-body transformation preserves distances between points. We need at least three
point correspondences to compute the rigid-body transformation with its 6 Degrees of
Freedom (DOF).

Estimation using Singular Value Decomposition (SVD): To compute an optimal
rotation R and translation t, which best transform the point set {pi} to {qi} (inhomoge-
neous 3D coordinates), we need to minimize the error

E = 1
N

N∑
i=1
|Rpi + t− qi|2.

This is established by the following steps (adapted from [17]):

• center both point sets: p̃i = pi − p̄ and q̃i = qi − q̄

• compute a correlation matrix of the centered point sets:
C = P̃ · Q̃T with P and Q ∈ (3×N)

Reference:

Spreeuwers, Luuk (2011)Fast and Accurate 3D Face Recognition

Reference:

Olga Sorkine-Hornung (2014)Least-Squares Rigid Motion Using SVD
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• perform an SVD on the correlation matrix: C = U ·D · V T

• construct the rotation matrix from its results: R = V · diag(1, 1, det(V · UT )) · UT

• compute an optimal translation: t = q̄ −Rp̄

(a) The origin lies at the nose tip.

(b) Pitch: a rotation around
the left-right-axis, like shaking
the head yes.

(c) Yaw: a rotation around
the up-down-axis, like shaking
the head no.

(d) Roll: a rotation around
the front-back-axis, like shak-
ing the head maybe.

Figure 3.6: Definition of a coordinate system (right-handed, y-axis down).
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3.2.3 Arbitrary 3D rotations

The following definitions are taken from [1]. Rotations about a single coordinate axis are
easy to define (also have a look at Figures 3.6b to (d)):

Rx(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ



Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



Rz(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1


This rotations about single coordinate axes can be combined to a rotation matrix R, which
allows for an arbitrary rotation of an object in 3D. One possibility would be to factor a
rotation as R = Rx(ϕ) · Ry(θ) · Rz(ψ) (ordering xyz, with Euler angles ϕ, θ and ψ).
Rotation matrices are not commutable, so all of the five other possible combinations xzy,
yxz, yzx, zxy and zyx yield different results, when using the same angles. In our case we
choose the ordering

R = Rz(ψ) ·Ry(θ) ·Rx(ϕ).

Worth mentioning is the fact, that the inverse of R is

R−1 = Rx(−ϕ) ·Ry(−θ) ·Rz(−ψ)
!
6= Rz(−ψ) ·Ry(−θ) ·Rx(−ϕ).

Contrary to possible expectations, the ordering specification has an influence on the value
of the angles:

R−1 = Rz(ψ̃) ·Ry(θ̃) ·Rx(ϕ̃),

with |ϕ̃| 6= |ϕ|, |θ̃| 6= |θ| and |ψ̃| 6= |ψ|. We get completely different Euler angles, which we
illustrate by the following example:

R = Rz(30◦) ·Ry(20◦) ·Rx(10◦)

has the inverse

R−1 = Rx(−10◦) ·Ry(−20◦) ·Rz(−30◦) = Rz(−28.45◦) ·Ry(−22.24◦) ·Rx(1.12◦).

By comparing the dependence of successive rotations to a gimbal system, we also get a
very descriptive explanation (Figure 3.7a). Figure 3.7b shows the succession of rotations
of the coordinate frame.

Reference:

 (2014)Euler Angle Formulas
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(a) Gimbal system (adapted from [9]).

(b) Euler angles (adapted from Wikipedia).

Figure 3.7: Explanatory figures for successive rotations of the ordering zyx.

3.2.4 Computation of Euler angles from a 3D rotation

In [1] one can find a detailed explanation on the computation of Euler angles ϕ, θ and ψ

from a given rotation matrix R (upper-left 3 × 3 submatrix of a homography H). These
represent the rotational components Rx(ϕ), Ry(θ) and Rz(ψ) about single coordinate axes.
Algorithm 1 specifies the computation of Euler angles for the ordering R = Rz(ψ) ·Ry(θ) ·
Rx(ϕ):
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Algorithm 1 For a rotation matrix R with the ordering Rz(ψ)·Ry(θ)·Rx(ϕ), compute the
Euler angles ϕ, θ and ψ which represent the rotational components about single coordinate
axes (algorithm taken from [1]).

1: procedure rot2euler(R3×3)
2: if r20 < +1 then
3: if r20 > −1 then
4: θ = arcsin(−r20)
5: ψ = atan2(r10, r00)
6: ϕ = atan2(r21, r22)
7: else . r20 = −1 . Not a unique solution: ϕ− ψ = atan2(−r12, r11)
8: θ = +π

2
9: ψ = −atan2(−r12, r11)

10: ϕ = 0
11: end if
12: else . r20 = +1 . Not a unique solution: ϕ+ ψ = atan2(−r12, r11)
13: θ = −π

2
14: ψ = atan2(−r12, r11)
15: ϕ = 0
16: end if
17: end procedure

3.3 Registration with the ICP algorithm

With registration, we try to find a mapping between two views of the facial surface in
order to minimize their distance. In our application, the first view is a data point cloud
measured by a ToF camera and the second a high-resolution model acquired by a SL
scanner. The result should be a rigid-body transformation, which maps the data point
set to a corresponding set of model points. The problem is that we don’t know which
points correspond, which is complicated by changing facial expressions, sensor noise and
a different sampling of the points.

An optimal solution to this problem offers the Iterative Closest Point (ICP) algorithm
(see [5]), which assumes a set of closest points to be the corresponding points. It performs
the following steps iteratively:

• compute a set of model points which is closest to the data point set

• compute an optimal registration of both point sets, i.e. a rigid-body transformation
using SVD (see Section 3.2.2)

• transform the data point set by the estimated registration result

• stop, if the change of a distance error between the point sets is below a threshold
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The algorithm computes an optimal registration result, but is sensitive to noise or
outliers. This is due to the use of a squared error measure, which is computed by summing
up the squared distances between the data and model points. This gives a strong weight
to the outliers and the registered point cloud is incorrectly moved into their direction. To
reduce the error caused by noise and outliers, it is important to appropriately filter the
input point clouds.

Further a good initialization is necessary, so that the algorithm converges against the
global and not only a local minimum.

The execution time of the algorithm depends on the sizes of the input point clouds,
and is a few seconds in our case. Smaller point cloud sizes accelerate the execution, but
lead to less accurate and unsatisfactory results. Thus, it generally can not be applied in
real-time applications.

3.4 Template matching

In [3] a tutorial on template matching with the OpenCV library is given, here we give a
short recap. Template matching is used to find areas in an image that are similar to a
template image. For example, an eye template can be searched in the image of a face. To
find the matching location of the template, it is slided over the image and at each pixel
location a similarity measure is computed for the overlapping region. For the similarity
measure we use the normalized correlation coefficient, which results in the image

R(x, y) =
∑
x′,y′ T ′(x′, y′) · I ′(x+ x′, y + y′)√∑

x′,y′ T ′(x′, y′)2 ·
∑
x′,y′ I ′(x+ x′, y + y′)2

,

with
T ′(x′, y′) = T (x′, y′)− 1

w · h
·
∑
x′′,y′′

T (x′′, y′′),

I ′(x+ x′, y + y′) = I(x+ x′, y + y′)− 1
w · h

·
∑
x′′,y′′

I(x+ x′′, y + y′′),

where T is the template and I the search image. This measure is based on the computation
of the covariance of T and the overlapping region in I, normalized by their standard
deviations. The highest score in R should then correspond to the location of the template
in the search image.
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3.5 Error measures

3.5.1 Mean absolute error

The Absolute Error (AE) is a scalar that tells us how close an estimated value is to the
true value. We use it to compute the 3D distance error AE = ‖p̂− p‖ between two points,
a point estimate p̂ and the true point p from the ground truth. The Mean Absolute Error
(MAE)

MAE =
n∑
i=1

‖p̂i − pi‖
n

is the mean distance error of all point pairs of a set {(p̂i,pi)}.

3.5.2 Mean signed difference

The Signed Difference (SD) gives information about how much and in which direction an
estimated value is displaced from a true value. For points, we get the displacement error
SD = p̂ − p between a point estimate p̂ and the true point p from the ground truth in
three dimensions. The Mean Signed Difference (MSD)

MSD =
n∑
i=1

p̂i − pi
n

is the mean value of all displacement errors of a set {(p̂i,pi)} of point pairs and its result
is a 3D mean error vector µ = ( µx µy µz )T .
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4.1 Problem statement

In our application, we need to assure that a treatment device is only triggered, when
the patient’s head is in a unique pose, namely a straight pose which is acquired during
initialization. When the head leaves this initial pose, the device is paused. In a naive
approach, we try to solve this task by observing the position of a single facial feature.
We use the nose tip, which can always be detected at a depth minimum, because the
face moves in a restricted range of only a few centimeters around the initial head pose in
our application. Now we try to verify, if the head is currently in the initial pose, just by
measuring the nose tip’s deviation from its initial position. After short consideration this
turns out to be unsatisfactory, because this naive approach can not recognize head pose
changes caused by rotations around the initial nose tip position.

Head pose estimation is a hard problem, but why? The human face is a strongly de-
formable surface with only little texture, which is demonstrated in Figure 4.1. A minimum
of three facial feature points is necessary to define a head pose uniquely. In our seminar
project we had a focus on stable facial features suited for head tracking. We found that
the nose tip and inner eye corner points are best suited, due to their central position and
rigidness. In this chapter, we want to find a head pose estimation method meeting the
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requirements of medical eye tumor treatment, under the use of the noisy data from a Time
of Flight (ToF) sensor.

Figure 4.1: Variability of facial expressions.

4.2 Overview

4.2.1 Definition of a reference frame

We acquire ToF sequences of several subjects with an approximately straight initial head
pose (Figure 4.2), using the hardware setup explained in Section 2.3.2.

Figure 4.2: Initial head pose in ToF sequences of four subjects.
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In Section 3.2.1 we defined a coordinate system with its origin located at the nose tip.
Now, we introduce a straight reference head pose with the coordinate frame located at the
origin of the ToF camera. It is important to note the difference between reference and
initial head pose. The reference pose at the origin is important for establishing a common
frame for method comparison, while the initial pose somewhere in 3D space is the one in
which the patient must remain during a therapy session. Every frame of a ToF sequence
represents a head pose in 3D space, which is connected over a rigid-body transformation
(3D rotation and translation, see Section 3.2.2) to the reference frame (see Figure 4.3).

Only if the current head pose lies within a certain threshold of the initial head pose,
the MedEyeTrack system can perform pupil detection. If head and pupils are in their
initial positions, a treatment device may be triggered.

Figure 4.3: Relation of head poses and reference frame (adapted from [7]).

4.2.2 Methods

We want to find a method for head pose estimation with sufficient precision to allow the
application in a medical environment. This chapter gives a detailed theoretical explanation
on the three different approaches we implemented, here is a brief overview. In the following
experiments and conclusion sections (Chapters 5 and 6) we analyze statistical results on
the accuracy and discuss the methods’ advantages and drawbacks.

Iterative Closest Point (ICP) method: The main idea of a registration-based
method is the alignment of two point clouds. A regular grid is sampled on the face
and the rigid-body transformation between two views can be determined. We compute
the registration relative to a Structured Light (SL) reference model of the face (Section
3.1.2.3), which represents a straight head pose at the origin of the ToF camera.
Registration-based methods are time consuming, but offer results with high accuracy.
They only rely on 3D information and are thus independent of the appearance of an
object. We investigate the performance on (noisy) ToF data and find out, if we get
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reliable results which can be used as ground truth and training data for a learning-based
method.

Template Matching (T3M) method: We extend the head tracking prototype from
our seminar project (Section 2.2) and create a simple method based on template matching.
The positions of three templates are sufficient to describe a head pose. Template matching
computes the 2D similarity of an image patch, so it is dependent on the appearance of
an object. We extend the common approach and additionally compute the similarity of
the corresponding depth patch. We analyze the performance of the resulting 2.5D method
and find out if it can compete with the other two methods.

Spherical Intersection Profile (SIP) method: The third method we implement is
based on 3D face geometry analysis and is also appearance-independent. The main idea
is to place spheres of varying radii at the nose tip and find the resulting intersections with
the face. With these intersection profiles, which are somehow related to the contour lines
of a mountain, we are able to analyze the facial surface and compute a viewing direction.

4.2.3 Preprocessing of the ToF data

Each ToF frame undergoes a preprocessing stage:

• undistortion of the infrared and depth image

• weak or strong median filtering and optional gaussian filtering

• Region Of Interest (ROI) detection

At the beginning, a ToF frame has to be undistorted. Section 3.1.3 explains the 2D
calibration of ToF camera. The calibration data is used to undistort the infrared and
depth image.

Characteristic for the ToF measuring principle is the rather strong noise on the depth
data. It is necessary to preprocess each ToF frame in a filtering stage, with kernel sizes de-
pending on the applied head pose estimation method. For the registration-based method,
we avoid that the 2.5D model of the face will be deformed and only use a 7× 7 kernel for
median filtering. For the methods based on template matching or topographic analysis
stronger median filtering (15 × 15 kernel) and additional gaussian filtering (7 × 7 kernel)
is suited. For time efficiency reasons, the filter kernels are approximated by successive
filtering in both dimensions (i× i→ i× 1 and 1× i).

After the filtering a ROI can be determined. In our application, the patient is advised
to remain in a straight position. Comparable to a passport photo, the face is always
prominently visible during the whole ToF sequence and we only need to take care of a
limited range of movements. Besides of the high accurracy this restricted setup offers, the
patient’s face can also easily be extracted via depth thresholding. The nose tip always
remains at the depth minimum. An elliptical region around the nose tip forms the ROI .
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4.3 ICP method: A registration-based approach

4.3.1 Motivation

First of all, we want to investigate a method based on registration with the ICP algorithm
(see Section 3.3). The registration of two point clouds typically takes several seconds, so
this method is not suited for the real-time case, where a model must be compared to a
video sequence with several frames per second. Nevertheless, we want to investigate if it
can be used for creating ground truth data with high accuracy.

4.3.2 Overview

Our method consists of the following steps:

• aquisition of high resolution models with a SL scanner

• alignment of the SL scans in a reference frame at the origin of the ToF camera

• estimation of the initial head pose (first frame of a ToF sequence)

• registration of all frames of a ToF sequence

• computation of the head pose deviations from their initial position

Right its use, a ToF frame is preprocessed according to Section 4.2.3.

4.3.3 Acquisition and alignment of SL scans

With a SL scanner we acquire a high resolution model for each subject:

Figure 4.4: Structured light scans of some subjects.

These high quality reconstructions of the face are then used to register each frame
of the lower quality ToF sequences to them. In this way we get an estimate of each
subject’s motion in relation to a common reference frame with all nose tips at the origin
(defined in Section 4.2.1, also see Figure 3.6).
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For the alignment of the SL models we first detect the nose tips at the depth
minima of the point clouds and move them to the origin. The inter-subject registration
of models fails due to the huge variation of the facial topology. Instead, after a rough
alignment to the xy-plane by registration, we do a horizontal symmetry correction. The
model is iteratively rotated about the y-axis, according to the enclosed angle between
the left and right cheekbone and the x-axis (height deviation). The heights of the
cheekbones are estimated by computing the median values of small patches to the left
and right of the nose tip. After that we do a vertical symmetry correction, as described
in [18]. In this paper, faces are rotated about the x-axis until the nose bridge is tilted by
an angle of 30◦, which is assumed to be a straight gaze (see Figure 4.5). To accomplish
this, we need to fit a line to the nose bridge. In order to create a vertical profile of the
face (Figure 4.5a), we project all 3D points within a distance of 5mm onto the symmetry
plane (black dots). After outliers are filtered, we resample the profile with a y-distance of
1mm (yellow markers). After gaussian filtering we get a smooth height profile of the face
(green line). Next we fit a line to the nose bridge with the Random Sample Consesus
(RANSAC) algorithm (see [10]). Figure 4.5b shows the construction of height profiles
from the resampled points for several subjects. We see a lines fitted through each nose
bridge. Figure 4.5c and 4.5d show the profiles before and after the alignment to a tilt
angle of 30◦ (magenta-colored line).

4.3.4 Estimation of the initial head pose

After we have aligned models of all subjects, we can register the first frame of each ToF
sequence. We compute a point cloud from the first ToF frame and detect the nose tip at
the depth minimum. With the nose tip as a center point, we limit the point cloud to a
sphere with a radius of 8cm. To avoid that the ICP algorithm only converges to a local
minimum, we do a pre-alignment step. The nose tip is moved to the origin and the point
cloud is registered to the xy-plane, to reach a frontal view. Then a transormation HICP

is computed by registering the pre-aligned ToF point cloud to the SL point cloud. The
initial head pose is the given by:

Hinitial = HICP ·HpreAlign

and the corresponding Euler angles can be computed (see Section 3.2.4). The initial
translation is given by the upper-right 3× 1 submatrix of Hinitial.

4.3.5 Registration of all frames of a ToF sequence

In Figure 4.3 we see, how a head pose is related to the reference frame at the nose tip.
Previously, we located the point cloud of the SL model with a straight gaze at this position.
With ICP registration, we want to estimate the rigid-body transformation (see 3.2.2)
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(a) Vertical profile of the face at the symmetry plane.

(b) Fitting of lines through nose bridges of several subjects.

(c) Profiles before the alignment to a tilt angle of 30◦.

(d) Profiles after the alignment to a tilt angle of 30◦.

Figure 4.5: Straight gaze alignment: Nose bridges must be tilted by 30◦.
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between each head pose (given by a ToF point cloud in space) and the reference pose
(given by the SL model). Based on the assumption, that a human can only make limited
head movements during two subsequent ToF frames, we make use of the inverse rotation
transform proposed in [21]. The name results from the fact, that the inverse registration
of the previous frame can always transform the SL model nearly to the ToF point cloud
of the current frame. Instead of computing the inverse, we directly apply the previous
registration result (beginning with Hinitial) to the current ToF point cloud and transform
it to the SL model. When the temporal condition is met, this guarantees a small deviation
of the point clouds and the convergence of the ICP algorithm in the global optimum.
Otherwise, the algorithm would probably find only a local optimum, when the deviation
of the current head pose from the reference pose is too large. A final overview on the
registration process is given in Figure 4.6.

(a) Prealignment step: From a ToF frame, a
point cloud (red) is extracted and prealigned
(orange) with the SL scan’s point cloud (blue)
with the nose tip at the origin.

(b) Registration step: We register the pre-
aligned ToF point cloud (green) and get a trans-
formation. We can now also inversely transform
the SL scan onto the ToF frame.

Figure 4.6: Registration of a ToF point cloud at the SL model (reference pose).
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4.4 T3M method: Eyes and nose template matching

4.4.1 Motivation

Next, we analyze a very intuitive method for head pose estimation, based on facial feature
tracking. In [27], this approach is applied with a stereo-vision camera system. The main
idea is to estimate a rigid-body transformation from point correspondences between two
views of the head. With template matching and depth information supplied by the ToF
camera, we are able to compute 3D positions of facial features. We need to track three
templates, which must be located at relatively stable facial feature points.

Because template matching completely relies on the appearance of an object, problems
can arise, e.g. if we track the eye region and the eye lid gets closed. This would lead to
a strong deviation of the template from the true facial feature point. To overcome this
problem, we additionally match the corresponding depth patch. In this way, two facial
feature points can better be distinguished from one another. Furthermore, the method
gets more robust, because the template matching orients on the geometric structure of the
face.

From the nature of template matching, increasing deviations from the true template
location arise at strong rotations of the head. This is because only a 2D similarity measure
is computed, though the face undergoes a 3D transformation. However, we will focus our
comparison with the other methods on the target range of our application, which is only
a few centimeters around the initial nose tip position.

4.4.2 Overview

The template matching approach can be subdivided into the following parts:

• before its use, a ToF frame is preprocessed (Section 4.2.3)

• initialize eyes and nose templates in the first ToF frame

• match templates in every following frame

• in case of template loss: fallback function

• otherwise: compute a head pose

4.4.3 Template initialization

At the beginning of a ToF sequence, the subject looks straight into the camera. If we
track three facial features, we get enough point correspondences to compute a rigid body
transformation between two frames (Section 3.2.2). We empirically found, that the left
and right inner eye corners and the nose tip are the most stable facial features in variation
of location and appearance. We extract tracking templates at these locations in the first
frame (see Figure 4.7). The inner eye corners must be selected manually and the nose tip
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can be selected automatically by finding the depth minimum. To increase robustness, the
templates not only consist of an infrared (4.7a) but also a depth patch (4.7b). For reliable
matching sufficient detail surrounding a facial feature has to be covered. Ideally, only a
rigid region should be chosen as template. As a consequence, the eyebrows are excluded
from the eye templates to get more accurate results. The template size is a compromise
between small and large faces and we choose an average size, which unrestrictedly fits for
all subjects.

(a) Infrared patches. (b) Depth patches.

Figure 4.7: Eyes (37× 27 pixels) and nose templates (51× 41 pixels).

Figure 4.8: Example infrared search images (73× 47 and 101× 71 pixels). The result for this
example frame can be found in Figure 4.10b.
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(a) Matching results for image patches.
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(b) Matching results for depth patches.
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(c) Combined matching results.

(d) Colorbar.

Figure 4.9: Normalized cross correlation results (the axes give the pixel positions in the search
images, see Figure 4.8) of (a) infrared patches and infrared search images, (b) depth patches and
depth search images and (c) both combined. The center of a correlation image is at the center
of the corresponding search image. The new template positions are given by the bold markers in
(c). The results are arranged like the eyes and nose templates in Figure 4.7. (d) shows a colorbar
for the template matching scores in the range [-1,1], whereby 1 means maximum similarity.

4.4.4 Template matching

After the tracking templates have been initialized in the first frame, they are matched
in every following frame. A limited search area around each template’s old location is
computed (see Figure 4.8; marked by white dotted bounding boxes in the results, see Figure
4.10), with about two times the template’s extent. Besides from computational efficiency,
a confusion with other prominent parts of the face is avoided in this way, e.g. inner eye
corners with mouth corners. Inside each search image the OpenCV template matching
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function based on the normalized correlation coefficient (see Section 3.4) is applied for
both, the template’s infrared and depth patch. Correlation is computed by sliding the
patch over the search window. We only get valid results in a region where both completely
overlap:

size(NCC) = size(search image)− size(patch) + 1.

In Figure 4.9 this is shown for a sample frame, in which the head pose has changed
in relation to the initial frame. The matching results of the infrared (Figure 4.9a) and
depth patches (Figure 4.9b), are then averaged to a common matching score (Figure 4.9c).
The new template locations are estimated in subpixel accuracy, using a score dependent
weighted average of all pixel positions above a threshold:

locationtemplate =
[∑

x,y, x · score(x, y),
∑
x,y y · score(x, y)

]∑
x,y score(x, y) ,

∀x, y : score(x, y) > 0.8 ·max(score).

The template matching score is in the range [−1, 1], whereby 1 means maximum sim-
ilarity. If one of the templates reaches a score lower than 0.8 (which is equivalent to a
threshold of 90%), a fallback function is executed. The template is searched at the initial
template location and the search area is increased to three times of the template’s extent.
Only after the threshold is exceeded again, the result is accepted as correct match.

4.4.5 Head pose computation

From the 2D template locations we compute 3D feature points, if all three templates were
found correctly in the current frame (no fallbacks). We use the point correspondences
- the current and the initial 3D feature points - and build a linear equation system to
estimate the best fitting rigid-body transformation (Section 3.2.2). In this way we get a
rotation and a translation, which connect the current to the initial head pose.

In Figure 4.10 we see template matching examples. The templates are marked by solid
bounding boxes and are surrounded by their search areas (white dotted bounding boxes).
If a fallback occurs, the bounding box of the affected template changes from green to
red. The matching scores are given in percent. The more the scores decrease, the more
the template region discolors to red. If the score drops below 90%, the region is shown in
inverted grey values. The blue and the green plus markers show the initial and the current
template locations.
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(a) Initial straight head pose. (b) Head turned sideways.

(c) Eyes nearly closed. (d) Looking upwards.

Figure 4.10: Example frames with annotated matching results.
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4.5 SIP method: Topographic analysis of the face

4.5.1 Motivation

The sparse texturing of the face and also the high movability of facial features make it
very difficult to estimate a head pose with high accurracy. Therefore, we want to try a
geometric measurement approach which is appearance-independent. In an experiment we
search for a stable feature of the face (see Figure 4.11). In comparison to other facial
features (e.g. eye brows, mouth corners), the nose tip shows out to be relatively stable
and due to its central and elevated position optimally suited for our purposes. The inner
eye corners are also stable and bounded within the eye region, but are not as easy to
detect as the nose tip during head rotations. We adapted a very sophisticated technique
from [13] and [14], with the main idea of performing spherical intersections. These allow
us to analyze the facial structure and estimate a head pose at low computational effort.
We want to find out if the dependence on only a single facial feature point brings us
advantages in robustness over the methods so far.

Figure 4.11: An experiment on the stability of the nose tip.
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4.5.2 Overview

We can roughly divide the method into the following steps:

• preprocessing: filtering, find a ROI (Sections 4.2.3 and 4.5.4)

• detect the nose tip and compute SIPs

• estimate the midpoints of the SIPs

• get the orientation of the face by fitting a line

• current head pose: position of the nose tip and orientation of the face

4.5.3 Topography

Topography is the measurement of surface shape and features of the earth, e.g. the
elevation of a mountain. If we take a look at Figure 4.12 we see, that the human face can
be analyzed in the same way. The highest elevation is the nose tip and surrounding facial
features are nearly regularly descending in height. In topography, contour lines (black
lines in the figure) are used to get an impression of the terrain slope. Later we explain
the concept of SIPs centered at the nose tip (colored lines), which are better suited for
computing the face orientation (also shown in the top view of the face in Figure 4.14d).

Figure 4.12: Comparison of contour lines (black) and SIPs (colored).
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4.5.4 Preprocessing

At the beginning, the ToF depth map is median and gaussian filtered, with kernel sizes
m×m and g×g. The filter kernels are decomposed for time efficiency reasons (see Section
4.2.3). In Figure 4.14 the effect of different filter kernel sizes on the contour lines (black)
and the results of the SIP algorithm (colored lines) is compared. In the top row we see
the result of pure median filtering. With a small kernel size the SIPs get quite mazy. A
bigger kernel size improves this, but still some local extrema remain, which is illustrated
by the contour lines. In the bottom row we see the positive effect of additional gaussian
filtering. In our system we choose the kernel sizes given in Figure 4.14a, which leads to a
smooth surface of the face.

(a) Mazy profile lines.

(b) Bypassing of obstacles.

(c) Trapped in local extrema.

Figure 4.13: (a) Insufficient filtering of the depth map. (b), (c) Detail views.

In Figure 4.13 we see an image detail from Figure 4.14a, displayed with contour lines
of higher density. Further enlarged views of the image details highlighted by the red boxes
are given. From this examples we recognize, that sufficient filtering of the ToF depth map
is essential for the correct operation of the SIP algorithm. Otherwise, the determination
of an SIP can be compared to finding a way through a maze and a lot of obstacles have to
be bypassed in the height profile of the face (see Figure 4.13a). It gets even worse when
when we start the computation in a local extrema (e.g. an outlier in the depth map),
because then the resulting SIP is degenerated or incomplete (see Figure 4.13b). To sum
up, one can say that insufficient filtering leads to a higher time consumption during the
computation of the SIPs and will only lead to an inaccurate head pose.
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(a) m = 5, g = 0. (b) m = 15, g = 0.

(c) m = 5, g = 7. (d) m = 15, g = 7.

Figure 4.14: Choice of parameters for median and gaussian filtering.
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4.5.5 Nose tip detection

After the facial ROI is determined (see Section 4.2.3), we need to find the nose tip in every
new frame. This could be established by detecting the highest curvature in the face, but
in our specific situation the nose tip always is at a depth minimum (near to the center of
the image) and we just have to consider proximity to the camera. We can again use the
fact, that a human is only able to make limited head movements during two subsequent
ToF frames to ensure the correctness of the nose tip location.

4.5.6 Spherical intersection profiles

The core concept of this method is to find a number of SIPs centered at the nose tip. They
are related to contour lines of a mountain, with the sole difference that the intersections
are caused by spheres and not by planes (see Figs. 4.12 and 4.15). In this way we reach
the advantage, that the resulting intersections become independent of the orientation of
the face.

Figure 4.15: SIP construction: Multiple spheres centered at the nose tip.

Algorithm 2 gives an efficient way of computing an SIP based on the depth map (see
Figure 4.16b). Starting from the nose tip, we advance (orange crosses) in direction of the
face centroid until we reach the last point within a sphere of a specific radius r. We want
to build a point set lying exactly at the sphere boundary, representing the intersection
with the face mesh. Thus we interpolate between the inner (red) and outer (black) points
lying nearest to r. If the face centroid was to the right of the nose tip before, we follow
the sphere boundary a full round in upward (otherwise in downward) direction until the
intersection profile is complete (line between red and black points).
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(a) 3D view. (b) Depth map (top view).

Figure 4.16: SIP examples: find inner and outer points to interpolate an SIP.

Algorithm 2 Compute 3D intersection of face and sphere (radius r) at nose tip, based
on 2D depth map traversal (algorithm adapted from [13]).

1: procedure SIP(depthMap, ROI, nose, sphere)
2: (ir, ic)← (nose.row, nose.col) . Start: nose tip in the depth map
3: inner.pt3D ← nose.pt3D . 3D point from depthMap projection
4: found← false . try to find intersection
5: if faceCentroid.col < nose.col then
6: boundaryDirection← L⇐, direction← D⇓

7: else
8: boundaryDirection← R⇒, direction← U⇑

9: end if
10: while (ir, ic) in ROI and distance(inner.pt3D, nose.pt3D) < r do
11: (ir, ic)← translate(ir, ic, boundaryDirection) . L⇐ or R⇒
12: outer.pt3D ← project3D(depthMap, ir, ic)
13: if r < distance(outer.pt3D, nose.pt3D) then
14: found← true . intersection found
15: else
16: inner ← outer

17: end if
18: end while
19: if found 6= true then
20: return No intersection
21: end if
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22: repeat . direction: U⇑, L⇐, D⇓, or R⇒
23: (ir, ic)← translate(inner.row, inner.col, direction)
24: inner2.pt3D ← project3D(depthMap, ir, ic)
25: (ir, ic)← translate(outer.row, outer.col, direction)
26: outer2.pt3D ← project3D(depthMap, ir, ic)
27: if inner2.pt3D or outer2.pt3D invalid then
28: break
29: else if r < distance(inner2.pt3D, nose.pt3D) then . turn left
30: outer ← inner2

31: else if distance(outer2.pt3D, nose.pt3D) < r then . turn right
32: inner ← outer2

33: else . move straight ahead
34: inner ← inner2

35: outer ← outer2

36: end if
37: innerDist← distance(inner.pt3D, nose.pt3D)
38: outerDist← distance(outer.pt3D, nose.pt3D)
39: t← r−innerDist

outerDist−innerDist . relative distance to sphere boundary
40: interpolated.pt3D = inner.pt3D + t · (outer.pt3D − inner.pt3D)
41: add interpolated.pt3D to SIP
42: update(direction) . move straight ahead or turn left/right
43: until SIP complete
44: return SIP . spherical intersection profile for radius r
45: end procedure

4.5.7 Head pose computation

Now we have given a set of SIPs. Initially, the profile lines are running average filtered,
which results in the smoothed black lines in Figure 4.17a. Algorithm 3 explains, how we
can compute facial symmetry and further a midpoint per profile. The algorithm is based
on the assumption, that the roll angle of the head is negligible compared to the pitch and
yaw angle (also see Figure 3.6). For each point of an SIP, we can thus interpolate a second
point on the opposite side of the profile, which is at the same height of the face. In the
middle of every point pair lies a symmetry point. By averaging the symmetry points we
get a midpoint per profile. The symmetry points of all SIPs form a facial symmetry plane.
Now, it is easy to fit a 3D line through the nose tip and the midpoints per profile using
the RANSAC algorithm, which lets us determine the orientation of the face (only pitch
and yaw angle). The head pose is then given by the position of the nose tip and the face
orientation we have just computed. Figure 4.17b shows an example, where a subject has
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its head rotated to the left. The initial head pose is indicated by the blue axis. The green
axis is fitted to the SIP midpoints, which is the new viewing direction.

(a) Running average filtered SIPs. (b) 3D view (angle to z-plane is 60◦).

Figure 4.17: Head pose: fit 3D line through nose tip and SIP midpoints.
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Algorithm 3 For a set of SIPs, compute facial symmetry and midpoints, which can be
used to fit a 3D line (algorithm adapted from [14]).

1: procedure Midpoints({SIP})
2: midpoints← ∅
3: for all SIP ∈ {SIP} do . for each profile (point set)
4: symmetryPoints← ∅
5: for all p ∈ SIP do
6: found← false . find other point in SIP at same height
7: for all q ∈ SIP do
8: k ← (index(q) mod length(SIP )) + 1 . wrap around
9: next← SIP [k] . point after q

10: if p ≡ q or p ≡ next then
11: continue
12: end if
13: if q.y < p.y < next.y or next.y < p.y < q.y then
14: other ← q+next

2 . take medium point
15: found← true . height of p between q’s and next’s
16: break
17: end if
18: end for
19: if found ≡ true then
20: add p+other

2 to symmetryPoints
21: end if
22: end for
23: add mean(symmetryPoints) to midpoints . per SIP
24: end for
25: return midpoints . for 3D line fitting
26: end procedure
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In this chapter we make some experiments and compare the performances of the meth-
ods we presented in Chapter 4. For this purpose, the inner eye corner and nose tip feature
points are hand-labeled in the video sequences to create ground truth data. We use an
accuracy measure, which is defined as the percentage of frames lying within a certain error
threshold, whereby the distance and angle errors are considered separately. In Section 5.1
this is explained in more detail.

In Section 5.2, we optimize parameters and properties within a method to increase its
accuracy.

After that, we make a statistic evaluation to compare our methods with one another
in Section 5.3. For this purpose, mean and standard deviation of the absolute errors of
the nose tip position and the head orientation angles are computed. Additionally, we
determine the quantity of how often the Template Matching (T3M) method fails due to
unreliable matches.

We further make an experiment in Section 5.4, to find out how the accuracy of each
method depends on facial expressions.

Because the head rests on the backplane of the system during tracking, the head
rotation is strongly coupled to the 2D nose tip position. In Section 5.5, we therefore
analyze the 2D-dependence of the displacement error.

49
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5.1 Overview

5.1.1 Notation

In the following we use the superscript (f) or (f,m) to indicate that a variable belongs
to a specific frame f of a video sequence or a method m = {ICP,T3M, SIP}. We use pi
for a 3D feature point from the ground truth, whereby the index i ranges from one to
three. With {pi}(f) for example, we can specify all three feature points of the frame f .
We use the hat symbol for feature points p̂i that have been determined using a head pose
estimation method.

5.1.2 Creating ground truth data

In order to evaluate the performance of a head pose estimation method, we create 3D
ground truth data. Each frame of a video sequence shows the face in a different head
pose. We label the 2D feature positions of the nose tip and the inner eye corners by hand
and compute the corresponding 3D points {pi}(f) from the depth map. In Section 5.1.4
we will explain, how the results of our methods can be compared with these ground truth
points.

5.1.3 The relation of initial and reference head pose

In Section 4.2.1 we defined a reference frame which lies at the origin of the Time of Flight
(ToF) camera. We want to relate all head poses in space to this reference head pose. In
Section 4.3.3, we thus aligned a Structured Light (SL) face scan of each subject at the
reference frame in a way that it shows a straight gaze. The video sequence of a subject
does not start directly at the reference pose, but at an arbitrary head pose. With the
Iterative Closest Point (ICP) method, the rigid transformation H(1,ICP) can be computed
(recall Section 3.2.2), which relates the initial to the reference head pose. Further, all
frames can be registered directly to the reference pose in the same way:

T (f,ICP) = H(f,ICP).

By using the initial registration H(1,ICP), we can also transform the results of the T3M
method, which were only computed relative to the initial head pose:

T (f,T3M) = H(1,ICP) ·H(f,T3M).

In the Spherical Intersection Profile (SIP) method, we gain head pose information based
on the facial surface, by computing the pitch and yaw angles, which are related to the
z-plane. The roll angle is not taken into account. For the reference pose we defined a
straight gaze based upon a nose bridge angle of 30◦. In the SIP method, the angles are
computed without taking care of the nose bridge, so they are not consistent with the
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straight face definition. To fix this problem, we transform the results by the inverse of the
first frame and include the initial registration:

T (f,SIP) = H(1,ICP) ·
(
H(1,SIP)

)−1
·H(f,SIP ).

In this way, we reach a common relation among the methods, and we are able to compare
their results in the statistic evaluation in Section 5.3:

T (1,ICP) = T (1,T3M) = T (1,SIP).

For each ToF frame, we define the associated head pose as a rigid motion starting from
the reference pose:

HeadPose(f,m) =
(
T (f,m)

)−1
,

whereby m is one of the three methods. Finally, we want to remind that the head pose is
uniquely defined by six parameters: the x, y and z values of the nose tip and the Euler
angles ϕ, θ and ψ of the face orientation which can be computed from the head pose
according to Section 3.2.4.

5.1.4 Definition of distance and angle errors

Here we describe, how a head pose estimation method can be evaluated (adapted from [8]).
The error of the six Degrees of Freedom (DOF) of a head pose can be easily measured, if
we treat the translational and rotational part separately. Then a distance and an angle
error can be defined based on the comparison of point correspondences. We use the error
measures from Section 3.5.

The 3D ground truth points of the first frame of a video sequence must be transformed
from the initial to the reference pose:

{p̃i}(1) = H(1,ICP ) · {pi}(1)

For a frame f , we now use the result of a head pose estimation method to transform the
ground truth points at the reference pose back to the current head pose and get estimated
feature points:

{p̂i}(f,m) = HeadPose(f,m) · {p̃i}(1)

Now we can evaluate one of our methods by computing a distance error of the nose
tip feature point (i = 1) using the Mean Absolute Error (MAE):

MAE
(m)
Nose =

n∑
f=1

∥∥∥p̂(f,m)
1 − p(f)

1

∥∥∥
n

.

For the angle error, we need to compare the estimated and true Euler angles, which we
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get from the head pose transformation of each frame (see Section 3.2.4). From a method’s
head pose we get the Euler angle estimates:

HeadPose(f,m) −→
(
ϕ̂ θ̂ ψ̂

)
.

For the ground truth, we have to define the true head poses first. We estimate a rigid
transformation H(f) between the ground truth feature points of the current frame {pi}(f)

and the ones of the initial frame {pi}(1). Using the initial registration, we can further
transform them to the feature points at the reference pose {p̃i}(1):

T (f) = H(1,ICP) ·H(f).

The inverse transformation is then the ground truth head pose of frame f , from which we
can compute the true Euler angles:

HeadPose(f) =
(
T (f)

)−1
−→

(
ϕ θ ψ

)
.

Now we can formulate the angle error using the MAE :

MAE
(m)
Angles =

n∑
f=1

∑3
i=1

∣∣∣α̂(f,m)
i − α(f)

i

∣∣∣
n

=
n∑
f=1

∣∣∣∆ϕ(f,m)
∣∣∣+ ∣∣∣∆θ(f,m)

∣∣∣+ ∣∣∣∆ψ(f,m)
∣∣∣

n
.

We use an accuracy measure for the distance error, which tells us how accurately a
method works if a certain distance threshold t is tolerated. It computes the percentage of
frames, for which the Absolute Error (AE) between estimated and true nose tip position
lies underneath t:

Accuracy
(m)
Nose(t) = 1

n
·
n∑
f=1

(
1
[
AE

(f,m)
Nose < t

])
.

In the same way, we compute an accuracy measure for the angle error:

Accuracy
(m)
Angles(t) = 1

n
·
n∑
f=1

(
1
[
AE

(f,m)
Angles < t

])
.

It tells us the percentage of frames, where the AE between true Euler angles and estimates∣∣∣∆ϕ(f,m)
∣∣∣+ ∣∣∣∆θ(f,m)

∣∣∣+ ∣∣∣∆ψ(f,m)
∣∣∣ is lower than a certain threshold t.

In Section 5.5 we will use the Mean Signed Difference (MSD)

MSD
(m)
Nose =

n∑
f=1

p̂(f,m)
1 − p(f)

1
n

,

to analyze the 2D dependence of the nose tip distance error. It gives us information about
the direction and amount of displacement between estimated and true nose tip position.
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5.2 Intra-method optimization

In this section we want to optimize parameters and properties within a method. For the
ICP method, we try to optimize the filtering in the preprocessing step, to increase the
accuracy of the registration results. Later, we want to decide between two approaches for
nose tip detection in the SIP method.

5.2.1 Filter parameter evaluation for the ICP method
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Figure 5.1: ICP method: Accuracy evaluation with various filter kernels.

The use of a ToF camera introduces strong noise and outliers on the measured depth
data of the face. As already mentioned in Section 3.3, the ICP algorithm performs a least
squares optimization. The sum of squared distances between data and model points gives
a strong weight to outliers. In this way the result is possibly distorted, but the algorithm
may also converge against the wrong minimum. Thus, appropriate filtering is essential for
accurate operation of our ICP method. Nevertheless, it has to be a compromise between
sufficient noise reduction and little deformation of the face model. As discussed in Section
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4.2.3, the type of filtering depends on the target method. In this experiment we first
determined, that at least a 7× 7 kernel should be used for the median filter to sufficiently
reduce outlying depth values. We tried four filtering possibilities: only a small (7 × 7)
or a large (15 × 15) median filter kernel, or each of them in combination with Gaussian
filtering. We reached the most accurate registration results by just using the small median
kernel without the Gaussian filter (see Figure 5.1).

5.2.2 Nose detector evaluation for the SIP method
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Figure 5.2: SIP method: Accuracy evaluation with different nose tip detectors.

For the SIP method it is important, that the position of the nose tip is detected
precisely. This increases the accuracy of the subsequent head pose estimation. For this
purpose, we want to compare two different approaches and use the better one in our
method. In the first approach, the nose tip is assumed to remain exactly at the global
depth minimum. This is not the case during head rotations, and a small error arises.
The detected position is then a little bit shifted away from the true one, namely into the
direction of the camera. This may also be the case in our second approach, in which
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we detect the nose tip via template matching. Due to the central and exposed position
of the nose tip, a nose template can be matched robustly. In Figure 5.2 we see, that
the detection approach using template matching works slightly better. By observing the
detection results in a video sequence, we see that in the first approach the detected position
jitters around the true nose tip. This is caused by sensor noise of the ToF camera and
the fact that the nose tip is not a perfect peak. In the second approach, the detection is
stabilized by matching a region surrounding the nose tip.

5.3 Inter-method statistical evaluation

In this section, we compare our ICP, SIP and T3M method in a statistic evaluation. We
use a set of video sequences acquired from four subjects (see Figure 4.2), with hand-labeled
eye corner and nose tip feature points. While inspecting the labeled feature points we made
the observation, that especially during head rotations the labeled nose tip positions deviate
from the true ones. Even for a human it is particularly challenging to decide where the
true position is. Thus, we decided to acquire a sequence of a single subject with small
black markers at the feature points (see Figure 4.1), which make labeling much easier.
We strictly distinguish unmarked and marked sequences in the evaluation (see Sections
5.3.1 and 5.3.2), which makes it possible to estimate the error which was introduced by
imprecise labeling. In Section 5.3.3 the results of both types are compared briefly.

In the following, we compute the MAE of the nose tip position and the face orientation
angles for each method. The accuracy measures are used to compare the methods in a
diagram. In a table and a diagram, the mean and standard deviation of the errors are
compared. We make the statistical evaluations on all frames and additionally only inside
the working range of the head tracking system. Within a radius of 5mm from the initial
nose tip position the system should work accurately, outside of this range the treatment
devices will have been paused already. In Section 5.1.4, the error definitions can be looked
up.

5.3.1 Unmarked sequences

In this section we use hand-labeled data of four video sequences of different subjects
without marker points. In the next section we estimate the error which was introduced by
imprecise labeling. In Figure 5.3 we see the method’s results, on the left side the nose tip
and angle accuracy is computed using all frames, on the right side only the ones within
the working radius of 5mm. For method comparison, we have a look at the accuracies at
a nose tip distance error threshold of 3mm and an angle threshold of 5◦. For all frames,
the nose tip accuracy Accuracy

(m)
Nose(3mm) is at 63%, 79% and 67%, for the ICP, SIP

and T3M method respectively. In the working range, it is 89%, 99% and 93%. The face
orientation accuracy Accuracy

(m)
Angles(5◦) is 56%, 46% and 60% for all frames, and 77%,

63% and 90% within the working range. An overview is also given in Table 5.3.
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Figure 5.3: Unmarked sequences: Tracking accuracies of nose tip and face orientation.

In Table 5.1 and Figure 5.4 we see a method comparison for the mean and standard
deviation of the AEs of nose tip position, summed angle, and pitch, yaw and roll angle
separately. The mean of the AE is equivalent to the MAE . Again, we give the results for
all frames and then only within the working range of 5mm radius of a subject’s initial
nose tip position. On the right side a fail percentage for the T3M method is given, which
reduces inside the working range where the method works more robustly. We compare
the tracking qualities of the ICP, SIP and T3M in detail in the next section, because the
ground truth of the marked sequence is more reliable.
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Nose [mm] All angles [◦] Pitch [◦] Yaw [◦] Roll [◦] Fail [%]
ICP 2.94± 1.94 5.48± 3.28 1.93± 1.74 1.66± 1.27 1.88± 1.64 -
SIP 2.14± 1.51 5.95± 3.44 2.26± 2.13 1.58± 1.54 2.11± 1.47 -
T3M 2.18± 1.38 4.05± 2.37 1.32± 1.09 1.12± 0.97 1.60± 1.41 16.9

(a) All frames evaluated.

Nose [mm] All angles [◦] Pitch [◦] Yaw [◦] Roll [◦] Fail [%]
ICP 1.85± 0.88 3.96± 2.25 1.10± 1.08 1.50± 1.14 1.36± 1.08 -
SIP 1.06± 0.69 4.70± 2.95 1.57± 1.56 1.43± 1.20 1.70± 1.33 -
T3M 1.47± 0.82 2.60± 1.61 0.97± 0.74 0.73± 0.68 0.90± 0.75 2.2

(b) Frames within working range of 5mm evaluated.

Table 5.1: Unmarked sequences: MAEs with standard deviation.
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Figure 5.4: Unmarked sequences: Comparison of all method’s head pose errors. In the Figure
we see bar charts for the distance and angle error, which represent the translational and rotational
part of the head pose error, both given as MAE with standard deviation. Below the plots a unit
is given next to each label, which corresponds to the error shown on the y-axis. Besides the
summed angle error, the rotational components about the single coordinate axes are given (the
pitch, yaw and roll angles are intuitively explained in Figure 3.6).
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5.3.2 Marked sequence

In this section we use a hand-labeled video sequences of a subject with marker points.
The results can be used to estimate the error of the ground truth which was introduced by
imprecise labeling in the unmarked sequences of the previous section. In Figure 5.5 we see
the accuracy results for the marked sequence. The nose tip accuracy Accuracy(m)

Nose(3mm)
for all frames is 68%, 91% and 74%, for the ICP, SIP and T3M method respectively, and
80%, 98% and 85% in the working range. The face orientation accuracy Accuracy(m)

Angles(5◦)
is 40%, 46% and 49% for all frames, and 44%, 45% and 76% within the working range.
An overview is also given in Table 5.3.
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Figure 5.5: Marked sequence: Tracking accuracies of nose tip and face orientation.

From the accuracy curves we see, that the SIP method is the most accurate one
in estimating the nose tip position. The T3M method is generally better than the ICP
method, but the matching of the eye templates fails at too strong head rotations or tightly
closed eyes. This can also be seen from the upper limit of the curves, which is lowered by
the fail percentage. At the estimation of the face orientation, SIP is slightly better than
ICP, but the T3M method outperforms them both inside the working range of 5mm.
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Nose [mm] All angles [◦] Pitch [◦] Yaw [◦] Roll [◦] Fail [%]
ICP 2.51± 1.13 6.61± 3.69 2.09± 1.54 2.07± 1.66 2.45± 1.95 -
SIP 1.82± 0.83 5.99± 3.60 2.04± 2.02 2.03± 1.59 1.92± 1.47 -
T3M 1.95± 1.10 5.53± 4.05 2.12± 1.71 1.13± 1.10 2.28± 2.26 13.0

(a) All frames evaluated.

Nose [mm] All angles [◦] Pitch [◦] Yaw [◦] Roll [◦] Fail [%]
ICP 2.04± 1.01 6.56± 4.18 1.67± 1.59 2.19± 1.79 2.69± 2.09 -
SIP 1.24± 0.68 6.28± 4.04 2.13± 2.49 2.05± 1.67 2.09± 1.58 -
T3M 1.57± 0.92 3.40± 2.55 1.23± 1.19 0.85± 0.83 1.32± 1.21 8.4

(b) Frames within working range of 5mm evaluated.

Table 5.2: Marked sequence: MAEs with standard deviation.
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Figure 5.6: Marked sequences: Comparison of all method’s head pose errors. In the Figure we
see bar charts for the distance and angle error, which represent the translational and rotational
part of the head pose error, both given as MAE with standard deviation. Below the plots a
unit is given next to each label, which corresponds to the error shown on the y-axis. Besides the
summed angle error, the rotational components about the single coordinate axes are given (the
pitch, yaw and roll angles are intuitively explained in Figure 3.6).
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In Table 5.2 and Figure 5.6 we see the method comparison for the MAE and standard
deviation of the marked sequence. Especially in the figure we see a good comparison of the
methods. For the nose tip, the ordering from worst to best method is ICP, T3M and SIP.
For the angles, it is ICP, SIP and T3M . We want to mention again at this point, that the
T3M method is evaluated only for the frames where all three templates could be matched
successfully. For example within the working range, the method failed in 8.4%. This fail
rate depends on the facial expressions present in a video sequence, which is illustrated in
Table 5.6 of the next section.

5.3.3 Comparison of unmarked and marked sequences

Ideally, the results of the unmarked and marked sequences should be the same, otherwise
the unmarked sequences were labeled imprecisely. By comparing the accuracies in Table
5.3, we can get an impression of the error that has been introduced. Nevertheless, it
remains a rough estimation, because the results depend on how a subject moved its head
during the video sequence and which facial expressions were made. From the nose tip
accuracy for all frames we see, that the results except for those of the ICP method have
become slightly better. The use of markers showed that the nose tip distance error for all
frames is lower in reality. In contrast, the nose tip accuracy within the working range and
also the angle accuracies for both, all frames and those within the working range, have
become worse mostly. The Tables 5.1 and 5.2 which show the MAE and the standard
deviation confirm the trend of the accuracy results. From this comparison we see, that
hand-labeling without markers is not always accurate. The feature points were often
assumed to be at a different location, which happened to be near the results of our head
pose estimation methods. However, the marked sequence improved the quality of our
statistic evaluation. The results of the marked sequence are more reliable and still far
from being bad. But, to get an even more clear view on the results, we categorize the
facial expressions of the marked sequence in the next section. In this way, we can evaluate
the results of the frames showing a neutral face.

Nose tip accuracy at t = 3mm [%] Angle accuracy at t = 5◦ [%]
all frames within r = 5mm all frames within r = 5mm

method ICP SIP T3M ICP SIP T3M ICP SIP T3M ICP SIP T3M
unmarked 63 79 67 89 99 93 56 46 60 77 63 90

marked 68 91 74 80 98 85 40 46 49 44 45 76

Table 5.3: Accuracy comparison for the unmarked and marked sequences.
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5.4 Facial expression analysis

In this experiment we manually sort the various facial expressions (recall Figure 4.1) in
the marker sequence into four categories:

Neutral describes the human face when no emotion can be observed.

Eyes closed denotes that the eyes are normally closed, like during blinking or sleeping.

Mouth moved characterizes talking or laughing.

Grimaces show strong facial deformation, such as a widely opened mouth, a chin which
is moved to one side or tightly closed eyes.

Now, we can evaluate the performance of the head tracking system based on the categories
and get a clearer view on the results. By observing the accuracy diagrams in the Figures
5.7, 5.8 and 5.9, we get an impression of how our methods react during facial expressions.
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Figure 5.7: ICP method: Comparison of facial expressions.
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Figure 5.8: SIP method: Comparison of facial expressions.

In the ICP method, grimaces and mouth movement cause the largest errors, because
a point cloud of the whole face is compared. For the SIP and T3M method, closing the
eyes and grimaces are worst. This can also be seen in Tables 5.4 and 5.5.

In Table 5.6 we see, how the fail rate of the T3M method depends on facial expressions.
The percentages refer to the frames present in one category, so they do not sum up to
100%. Closing the eyes like blinking or tightly during grimaces is worst for this method.
Mouth movement can be handled like a neutral face, because none of the three templates
includes the mouth region, which is why the template matching is not affected. The
neutral face, especially within the working range, can be handled without problems.

The head tracking system should be applied during medical eye tumor treatment, where
the patient shows a neutral expression and stays within the working range. In this case, the
SIP method is best for estimating the nose tip position and the T3M method for the facial
orientation. Further, 68% of the corresponding frames lie within 1.15 + 0.71 = 1.86mm of
the true nose tip position and 2.45+1.42 = 3.87◦ of the true facial orientation (µ+σ) and
99% within 3.28mm and 6.71◦ (µ+ 3σ) (note: diagrams show ALL frames, not < 5mm!).
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Figure 5.9: T3M method: Comparison of facial expressions.

Neutral Eyes closed Mouth moved Grimaces All frames
ICP 2.03± 0.91 2.14± 0.98 2.71± 0.99 3.10± 1.20 2.51± 1.13
SIP 1.68± 0.71 2.11± 1.01 1.64± 0.65 2.02± 0.93 1.82± 0.83
T3M 1.65± 0.77 3.41± 1.56 1.71± 0.80 2.25± 1.21 1.95± 1.10

(a) All frames.

Neutral Eyes closed Mouth moved Grimaces All frames
ICP 1.42± 0.53 1.42± 0.64 2.22± 0.79 2.96± 0.98 2.04± 1.01
SIP 1.15± 0.71 1.35± 0.73 1.28± 0.62 1.31± 0.67 1.24± 0.68
T3M 1.34± 0.68 2.97± 1.66 1.42± 0.73 1.88± 1.00 1.57± 0.92

(b) Within 5mm.

Table 5.4: Facial expressions: Comparison of the nose tip error [mm].
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Neutral Eyes closed Mouth moved Grimaces All frames
ICP 5.74± 3.11 7.01± 3.83 5.92± 3.16 8.07± 4.12 6.61± 3.69
SIP 4.76± 2.89 6.33± 3.41 4.93± 2.97 8.02± 3.91 5.99± 3.60
T3M 4.54± 2.82 12.25± 7.88 4.24± 2.06 6.46± 3.86 5.53± 4.05

(a) All frames.

Neutral Eyes closed Mouth moved Grimaces All frames
ICP 5.62± 3.62 7.27± 4.30 5.98± 3.65 8.40± 4.65 6.56± 4.18
SIP 4.74± 3.25 6.38± 3.85 5.35± 3.32 9.17± 4.14 6.28± 4.04
T3M 2.45± 1.42 7.31± 4.32 2.77± 1.38 4.84± 3.10 3.40± 2.55

(b) Within 5mm.

Table 5.5: Facial expressions: Comparison of the angle error [◦].

Neutral Eyes closed Mouth moved Grimaces All frames
T3M 2.7 49.2 0.5 19.8 13.0

(a) All frames

Neutral Eyes closed Mouth moved Grimaces All frames
T3M 0.0 57.7 0.0 10.9 8.4

(b) Within 5mm.

Table 5.6: Facial expressions: Fail rate comparison for the T3M method [%].

5.5 2D displacement error analysis

In this section we want to analyze the 2D dependence (inspired by [8]) of the displacement
error. For this evaluation we only use the marked sequence, so that it can be reliable
said if the displacement error is random or systematic. To be able to make a meaningful
statement, we have to divide the area in which the head moves into grid cells first. The grid
is centered at the initial nose tip position and uses patches of the size 2× 2mm. Instead
of the MAE , which only computes an absolute error without a direction, we use the MSD
from Section 3.5.2 (also see Section 5.1.4). It can be interpreted as the displacement
between the mean position of a set of true points and the one of a set of point estimates.
Applied only in a single grid cell, it gives us the approximate error of one of our head
pose estimation methods at a given 2D nose tip position, which is the center of a grid
cell. Because the head rests on the backplane of the system during tracking, the head
rotation is strongly coupled to this position. We want to find out, if the displacement
error is somehow correlated with the x- or y-coordinates. In this case, the error is not
only random but systematic and could be calibrated to increase the accuracy of a method.

Now we will discuss the MSD diagrams for our head pose estimation methods. The
blue arrows show the mean error vector in x- and y-direction at a specific nose tip position.
To the right of the diagrams we see a colorbar which gives information about how many
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frames were evaluated for the computation of the error vector in each of the grid cells.
In Figure 5.10 we see a diagram for the MSD, evaluated for the ICP method. It

shows a dependence of the error in y-direction, but there is also a random component
of the error, as we can see from the arrows pointing up and down in some rows of the
grid. By comparing the ground truth feature points to the estimates in the whole video
sequence, one can see a strong displacement of the estimated nose tip position during
mouth movements and grimaces. This is because a complete point cloud of the face is
compared in the ICP algorithm. The resulting error caused by varying facial expressions
at the initial head pose is mostly larger than the registration error for just a neutral
face during head rotations. Due to this strong dependence on facial expressions, a 2D
displacement error can not be calibrated.

Figure 5.10: ICP method: 2D displacement analysis.
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In Figure 5.11 the diagram for the T3M method shows a systematic error. The esti-
mated nose tip position is shifted into the direction of the initial one at the center. The
pattern is a bit turbulent, which may be caused by the rigid motion estimation for three
template points in 3D. The eye templates are bounded in the eye socket, which results in a
different movement than for the nose template. Further, grimaces, especially with tightly
closed eyes cause the eye templates to move different from the nose template.
By comparing the diagram of the T3M method to one of the other methods we see, that
some of the cell colors are different. This has the reason, that the template matching
failed for 13% of the frames, mostly for the eye templates at grimaces or too strong head
rotations. These frames were left out from the displacement error vector computation.

Figure 5.11: T3M method: 2D displacement analysis.



5.5. 2D displacement error analysis 67

Figure 5.12 shows the displacement error for the SIP method. It is clearly visible, that
the estimated nose tip position is shifted into the direction of the initial one at the center.
Additionally, this deviation gets stronger, the greater the distance of current true nose tip
position and initial one gets. This method has a very clear systematic error pattern which
could be calibrated, in order to improve the accuracy for the head pose estimates.
This method shows a very clear displacement compared to the T3M method, because it
only depends on the template position of the very exposed nose tip feature.

Figure 5.12: SIP method: 2D displacement analysis.
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5.6 Discussion

In Section 5.2 we optimized parameters and properties within a method. For the ICP
method, we analyzed the filtering stage and tried different filter kernels. We found, that
a small median filter (7× 7 kernel) without a Gauss filter is the best compromise between
noise and outlier reduction and deformation of the face model.
For the SIP method we tried out two nose detector approaches and came to the result, that
matching a nose template is more robust than detecting the nose tip just from proximity
to the ToF camera. The nose would remain at the global depth minimum during the
whole video sequence, but ToF noise and the actual size of the nose tip lead to a strong
jitter of the estimated position, which makes this approach too imprecise.

In the inter-method statistic evaluation of Section 5.3 we compared the ICP, SIP
and T3M method based on the MAE of the nose tip position and the face orientation
angles. We used an accuracy measure, which computes the performance of our head pose
estimation methods as a function of the AE of the nose tip position and the face orientation
angles, respectively. SIP turned out to be the most accurate method to estimate the nose
tip position. T3M is best for estimating the face orientation, but is not robust during
facial expressions where the eyes are normally or tightly closed. Further, we discussed the
error which is introduced from imprecise hand-labeling, by comparing sequences without
markers at the nose tip and inner eye corner feature points to a sequence with markers.

In Section 5.4 we divided the various expressions of the human face into four categories
to analyze how they influence our head pose estimation methods. Grimaces in which the
mouth is widely opened or the chin is moved to one side bring large errors for ICP and SIP,
but do not influence the T3M method. Normally and tightly closed eyes bring large errors
for SIP and T3M , or even cause the T3M method to fail. In medical eye tumor treatment,
the field of application of the head tracking system, the neutral facial expression within
a working range of 5mm is the most important. Further, the eyes need to stay open for
the MedEyeTrack system to work correctly. During the treatment, the patient will also
not be moving the mouth like during talking or laughing. Under these special conditions,
99% of the corresponding frames lie within 3.28mm from the true nose tip position and
6.71◦ from the true face orientation for SIP and T3M , respectively.

In the 2D displacement error analysis of Section 5.5 we used the MSD to find system-
atic error patterns. The ICP method showed a more random pattern, which was caused
by the stronger influence of facial expressions on the algorithm.
The T3M and the SIP method both use approaches based on 2D template matching.
Template matching assumes only a 2D movement of the template. This leads to a sys-
tematic error which can be calibrated. In the T3M method, where the nose tip position
is estimated from all three templates, the error pattern is a bit turbulent. In the SIP
method, the nose tip estimate is clearly shifted towards the initial position at the center,
because it only depends on the template position of the very exposed nose tip feature.
The error also depends on the distance between true nose tip and center.
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As a conclusion, we shortly summarize the chapters of this Master’s Thesis and give
an outlook to our future work.

6.1 A final summary

In Chapter 1 we gave an introduction to medical eye tumor treatment, which is the field
of application of the head and eye tracking system. The objective of this thesis was to find
a head pose estimation method for the tracking of unwanted motion. The system can be
used to generate triggering commands to control the treatment devices. If the head leaves
the initial position which was recorded at the first session, the devices can be paused.

In Chapter 2 we discussed, how the head and eye tracking system is developed based
upon the existing MedEyeTrack system. For the head tracking system we had to develop
a hardware setup which can be combined with the existing setup. A Time of Flight (ToF)
camera is mounted closely to the face, directed onto the approximate nose tip position
of the patient. After an analysis of facial feature points, the nose tip and the inner eye
corners have been identified to be the most stable ones which are best suited for face
tracking.
Further, we suggested a possibility for integrating the C++ software of our head tracking
prototype into the existing MedEyeTrack software written in C# via a class library. Both
systems can be combined to generate triggering signals when both, head and eyes, are in
their correct position for the treatment.

Chapter 3 collected theory and background information. We explained for example
the sensor types which are important for this project and how the 2D calibration of a
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sensor works. The main focus was directed onto geometric definitions. We discussed
the coordinate system we use, how a rigid-body transformation can be estimated using
Singular Value Decomposition (SVD) and in detail how 3D rotations work.

The main part of this thesis was Chapter 4, in which we discussed the problem of head
pose estimation and presented three methods which can be used for this purpose.
The first method was a registration-based approach using the Iterative Closest Point (ICP)
algorithm. Data point clouds are transformed to a high-resolution face model which has
been generated using a Structured Light (SL) system. This well known approach can not
be used in real-time applications, but we wanted to use it as a reference for comparing the
performance of the other methods.
In the Template Matching (T3M) method we use templates at the nose tip and both inner
eye corner feature points to track their positions in 2D. From the ToF depth map we get
the corresponding 3D points and are able to estimate a rigid motion between two frames.
In the Spherical Intersection Profile (SIP) method, we wanted to try an approach which
has been proposed by Meers and Ward. Outgoing from the nose tip position, which we
tracked with a template, spheres are intersected with the face to generate profile lines.
These can be used to compute head pose information from a single frame.

In Chapter 5 we made experiments to optimize and analyze the three head pose esti-
mation methods. We found that the ICP method had difficulties with noise and outliers.
Further, the point cloud comparison was inaccurate at facial expressions which cause a
strong deformation of the face, like for example when the mouth is opened wide. The
SIP method, which uses a single nose template, turned out to give the best estimation of
the nose tip position. The T3M method was best for estimating the face orientation, but
lacked in robustness at too strong rotations or facial expressions with closed eyes.
Then, we discussed the case of medical eye tumor treatment, where the patient shows
a neutral face and is advised to remain at the initial head pose (we assumed a working
range of 5mm around the initial nose tip position). For this case, the error of our head
tracking system would lie within 3.28mm for the nose tip (SIP method) and 6.71◦ for the
face orientation (T3M method) in 99% of the frames showing a neutral face we evaluated.
Finally, we analyzed the 2D dependence of the nose tip error for our head pose estimation
methods. The head rests on the back of the tracking system, so the nose tip position
depends on the head rotation. Especially the SIP method showed a very clear systematic
error pattern, which can be calibrated.

6.2 Future work

In our future work we will fully develop the head tracking system, whereby a choice
about the head pose estimation method has to be made. A possibility would be a mixed
approach, in which the SIP method could be used in the cases where T3M fails. The SIP
method would still give a better estimation of the face orientation than the ICP method.
Further, the T3M method could use just the nose template instead of all three ones for
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position estimation. As a result, the estimated nose tip position would be as accurate as
in the SIP method.

We are eager to improve the results and lower the errors we reached in this Master’s
Thesis. First, we will try to calibrate the systematic error of the nose tip position. To
increase accuracy further, the ToF camera could also be depth calibrated. At the moment
we just did a 2D calibration of the ToF sensor, which leads to a distortion of the depth
data depending on the distance to the camera. For example the point cloud comparison
of the ICP method could be improved in this way. To analyze the influence of noise, we
will also test different ToF sensors which could be of lower noise and maybe of higher
resolution.

Further, we will record video sequences of more test subjects to make a more compre-
hensive statistic evaluation.

An idea we also have in mind is to try out Fanelli’s method from [8], which is a learning-
based method using a random-forest classifier. In this method, a classifier is trained on a
large synthetic data set. Fanelli uses his method for the classification of head poses in a
large range of rotations and translations where the requirements to the error are different
from ours. It would be interesting to adapt this method to the application of medical
eye tumor treatment, where small head motions and high accuracy have priority. A great
advantage of this method would be that it copes with partial occlusions of the face. For
the field of medical eye tumor treatment, this would allow the patient to wear a head coil
during Magnetic Resonance Imaging (MRI) (see Figure 6.1), which enhances the image
quality and makes it possible to determine the tumor location more exactly.

Figure 6.1: A head coil improves the image quality during MRI.
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AE Absolute Error
CLR Common Language Runtime
DLL Dynamic Link Library
DOF Degrees of Freedom
GUI Graphical User Interface
ICP Iterative Closest Point
MAE Mean Absolute Error
MRI Magnetic Resonance Imaging
MSD Mean Signed Difference
RANSAC Random Sample Consesus
ROI Region Of Interest
SD Signed Difference
SIP Spherical Intersection Profile
SL Structured Light
SVD Singular Value Decomposition
T3M Template Matching
ToF Time of Flight
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