
Thomas Gödl, BSc

Static Analysis of Extended Symbolic Transition Systems

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Software Development and Business Management

submitted to

Graz University of Technology

Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Institute for Software Technology

 Diplom-Ingenieur

Supervisor

Dipl.-Ing. Dr.techn. Christian Schwarzl

Virtual Vehicle Research Center

Graz, April 2015

This document is set in Palatino, compiled with pdfLATEX2e and BibTeX.

The LATEX template from Karl Voit is based on KOMA script and can be found
online: https://github.com/novoid/LaTeX-KOMA-template

iii

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/BibTeX
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly marked all material which has been quoted either
literally or by content from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und
inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008; Genehmigung des
Senates am 1.12.2008

v

Abstract

Models are widely used in the field of software engineering at the present day to model cyber-
physical systems, embedded systems and software systems. They provide different abstract views
and support a common understanding among various stakeholders. In Model-based Testing a
system is verified in terms of its correctness between a behavioral model, which describes the
behavior of the system, and the System Under Test. Since models are used in the Model-based
Testing approach to ensure the correctness of the System Under Test, these models are required to
be correct.

In this thesis a static analysis technique approach is proposed which is applied to an Extended
Symbolic Transitions System, which is a concrete model utilized in Model-based Testing, in order
to ensure and measure the quality of such a model. The static analysis addresses the quality of an
Extended Symbolic Transition System in terms of two aspects: (1) validating the model structure
for contradictions by means of checks and (2) measuring the model quality quantitatively by means
of metrics. Thus, this thesis introduces a collection of checks and metrics which are applicable to
an Extended Symbolic Transition System. The checks and metrics are implemented in a prototype
static analysis tool and are applied to two illustrative examples. The results obtained can be used to
infer the quality of an Extended Symbolic Transition System.

vii

Kurzfassung

Die Nutzung von Modellen zur Modellierung Cyber-physischer Systeme, eingebetteter Systeme
und Software Systeme ist heutzutage weit verbreitet. Sie bieten unterschiedliche abstrakte Sichten
und fördern das Verständis zwischen verschiedenen Interessengruppen. Im modellbasierten Testen
werden Systeme verifiziert, indem die Korrektheit zwischen einem Verhaltensmodell, welches
das Verhalten des Systems abbildet, und dem zu testenden System sichergestellt wird. Da im
modellbasierten Testen Modelle verwendet werden, um die Korrektheit des zu testendenden System
zu gewährleisten, ist es erforderlich, dass die Modelle selbst korrekt sind.

In dieser Arbeit wird ein statischer Analyseansatz vorgestellt, der auf ein Extended Symbolic
Transition System, welches ein konkretes Modell für das modellbasierte Testen darstellt, angewendet
wird, um die Qualität eines solchen Modells zu garantieren und zu messen. Die statische Analyse
befasst sich dabei mit der Qualität von Extended Symbolic Transition Systemen unter folgenden
Aspekten: (1) Validierung der Modellstruktur, um Widersprüche unter Anwendung von sogenannten
Checks zu eruieren, und (2) die quantitative Messung der Modellqualität mit Hilfe von Metriken.
Die Arbeit stellt eine Sammlung von Checks und Metriken dar, die auf ein Extended Symbolic
Transition System ihre Anwendung finden. Diese Checks und Metriken wurden in einem Prototyp
eines statischen Analyseprogramms realisiert, welches auf zwei Beispielmodellen angewandt wurde.
Die Ergebnisse zeigen, dass Schlussfolgerungen über die Modellqualität getroffen werden können.

ix

Acknowledgment

The research leading to these results has received funding from the ARTEMIS Joint Undertaking
under grant agreement no 295311 (VETESS), from the Austrian Federal Ministry for Transport,
Innovation and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family and Youth
(BMWFJ) and the Austrian Research Promotion Agency (FFG).

I would like to express my gratitude to my supervisors Franz Wotawa and Christian Schwarzl
for the useful comments, remarks and engagements through the entire duration of this master
thesis. I am extremely thankful and indebted to them for sharing expertise and their sincere and
valuable guidance. I also thank my parents for the unceasing encouragement, support and attention.
Furthermore, I am also grateful to my girlfriend who supported me throughout this venture.

xi

Contents

Abstract vii

Kurzfassung ix

Acknowledgment xi

1. Introduction 1

1.1. Motivation . 2

1.2. Contribution . 3

1.3. Outline . 4

2. Related Work 5

2.1. Analysis of Models . 5

2.2. Complexity of Models . 7

3. Extended Symbolic Transition System 9

4. Static Analysis 15

4.1. Preliminaries . 15

4.1.1. Guards and Actions as Binary Expression Tree 15

4.1.2. Independent Path Tree . 17

4.1.3. Shortest Transition Distance Map . 23

4.1.4. Attribute Def-Use Data Structure . 25

4.1.5. Constraint Solving . 27

4.1.6. Statistical Methods . 28

4.2. Syntactic and Semantic Checks . 29

4.2.1. Input and Output Message Consistency . 29

4.2.2. Ambiguous Variable Definition . 31

4.2.3. Validation of Guard and Attribute Update Functions 33

4.2.4. Detection of Hidden Transitions . 38

4.2.5. Non-determinism in Terms of Overlapping Guards 42

4.3. Structure-based Checks . 49

4.3.1. Instantly Executable Transition Loops . 49

4.3.2. Instantly Executable Transition Cascades . 53

4.4. Metrics . 64

4.4.1. Size Metrics . 64

xiii

Contents

4.4.2. McCabes’s Cyclomatic Complexity . 67

4.4.3. Mean Attribute On Attribute Dependency Metric 68

4.4.4. Mean Attribute On Transition Read Dependency and Mean Attribute on
Transition Write Dependency Metrics . 74

4.4.5. Mean Attribute Def-Use Distance Metric . 76

4.4.6. Mean Output To Input Transition Dependency Metric 77

4.4.7. Mean Output To Input Transition Dependency Distance Metric 81

4.4.8. Mean Guard Complexity Metric . 82

5. Experimental Results 85

5.1. Limitation . 85

5.2. Illustrative Example Keyless Access Controller . 85

5.3. Illustrative Example . 88

5.4. Results . 88

6. Conclusion 97

6.1. Future Work . 97

Appendix 99

A. Experimental Results Extended Symbolic Transition System (ESTS) Models 101

List of Acronyms 105

Bibliography 107

xiv

List of Figures

1.1. Model quality characteristics . 2

3.1. Chocolate vending machine depicted as ESTSs . 13

4.1. Binary Expression Tree of expression a + 1 + b + 1 . 16

4.2. An example of an ESTS and its depiction as path tree 20

4.3. Example of an ESTS to demonstrate shortest path computation 24

4.4. Example of an ESTS to demonstrate def-use data structure 26

4.5. System of three ESTS models to demonstrate not receivable messages 30

4.6. System of three ESTS models to demonstrate not sent messages 31

4.7. Example of an ESTS consisting of an output and an input to depict the ambiguity of
parameter definitions . 32

4.8. Binary Expression Tree of expression a + 1 + b + 1 . 34

4.9. Example of guard expressions in the Binary Expression Tree (BET) structure 36

4.10. Simple example depicting the transition hiding issue 39

4.11. Example for illustrating the application of Algorithm 4 41

4.12. Simple example of overlapping guards . 42

4.13. Non-Determinism cases in terms of overlapping guards 44

4.14. Examples of outgoing transition sets in order to demonstrate grouping 45

4.15. Example of ESTS which exhibit a non-determinism in terms of delay transitions . . . 47

4.16. Example ESTS which exhibit non-determinism due to an OC conflict 48

4.17. An ESTS consisting of loops and its corresponding Independent Path Tree (IPT) . . . 51

4.18. Depiction of three loops as IPT. 52

4.19. Examples of Instantly Executable Transition Cascades . 54

4.20. IPT containing a single Instantly Executable Transition Cascade 55

4.21. IPTs of cascades and their reduced representations which are based on the IPT in
Figure 4.20 . 59

4.22. Basic rules for path computation considering only the outgoing transition type 61

4.23. Cases to be considered for the current processed node during path counting 63

4.24. Example of ESTS for which the size metrics in Table 4.6 are calculated 66

4.25. Example of an ESTS in order to calculate cyclomatic complexity metric 68

4.26. Dependency graph for variable x . 69

4.27. Simple example depicting attribute dependencies in terms of an ESTS 70

4.28. Def-Use dependency graph for attribute x . 71

xv

List of Figures

4.29. Example of an ESTS to demonstrate computation of read and write dependencies in
terms of transitions . 75

4.30. Example of an ESTS to demonstrate computation of Mean Attribute Def-Use Distance
(MADUD) metric . 77

4.31. Example of an ESTS to demonstrate the computation of the Mean Output To Input
Transition Dependency (MOITD) metric . 80

4.32. Example of an ESTS to demonstrate Mean Guard Complexity (MGC) metric computation 83

5.1. Keyless Access System Architecture . 86

5.2. Unified Modeling Language (UML) State Chart of the Keyless Access Controller. . . 87

5.3. UML State Chart of the Key Location Detector . 87

5.4. UML State Chart of the Power Controller . 88

5.5. ESTSs of Model A and Model B. 89

A.1. The transformed Keyless Access Controller (KAC) ESTS model based on the UML
State Chart depicted in Figure 5.2 . 102

A.2. The transformed Key Location Detector (KLD) ESTS model based on the UML State
Chart depicted in Figure 5.3 . 103

A.3. The transformed Power Controller (PC) ESTS model is based on the UML State Chart
depicted in Figure 5.4 . 103

xvi

List of Tables

4.1. Mapping of operators to valid operands. 33

4.2. Compatibility of operands in terms of their value domains. 35

4.3. Allowed root expressions for guards and actions. 35

4.4. Number of Transitions by Type (NTT) Metrics Formulas 65

4.5. Number of Attributes (NA) Metrics Formulas . 66

4.6. Size metrics calculated for the ESTS which is depicted in Figure 4.24. 67

5.1. Mapping of check message type to check section. 88

5.2. Result of applying structural and consistency checks to KAC ESTS model. 90

5.3. Result of applying structural and consistency checks on KLD ESTS model. 90

5.4. Comparison of Size Metrics and McCabe’s Cyclomatic Complexity (MCC) Metric of
KAC, KLD and PC ESTS models. 91

5.5. Comparison of Mean Attribute On Transition Read Dependency (MATRD) and Mean
Attribute On Transition Write Dependency (MATWD) Metric of KAC, KLD and PC
ESTS models. 92

5.6. Comparison of MADUD Metric of KAC, KLD and PC ESTS models. 93

5.7. Comparison of MGC Metric of KAC, KLD and PC ESTS models. 93

5.8. Comparison of Size Metrics and MCC Metric of ESTS Model A and Model B. 94

5.9. Comparison of MOITD Metric of ESTS Model A and Model B. 94

5.10. Comparison of Mean Output To Input Transition Dependency Distance (MOITDD)
Metric of ESTS Model A and Model B. 95

xvii

List of Algorithms

1. Conversion ESTS to IPT . 21

2. Determination of next transition to be traversed. 23

3. Validation of Guards and Action Expressions . 37

4. Detection of Hidden Transitions . 40

5. Overlapping Guards Detection . 47

6. Loop Detection . 52

7. Extracting an IPT for each cascade . 56

8. Instantly Executable Cascades Path Calculation . 62

9. Dependency Calculation for a Single Attribute . 72

10. Transition Read And Write Dependency Computation 74

11. Mean Distance of Attribute Def-Use Pairs . 76

12. Output to Input Dependency Computation . 79

13. Mean Output to Input Transition Dependency Distance 81

14. Determination of Guard Complexity . 82

xix

1. Introduction

Models, such as Unified Modeling Language (UML)[1], Business Process Model (BPM)[2] and Finite
State Machine (FSM)[3] models, are widely used in the field of software engineering at the present
day to model cyber-physical systems, embedded systems and software systems. The models aid
the engineering process by providing different abstract views of the system and therefore supports
a common understanding between various stakeholders. Thus, software engineering disciplines
like Model Driven Engineering (MDE)[4], Model Driven Architecture (MDA)[5] and Model-based
Testing (MBT)[6, 7] rely on such models, which are used to express structural and behavioral aspects
of a system.

The quality of software systems is an important issue. Especially in safety critical domains, like
the air traffic, air safety, aeronautics, rail, and health care domain, it is crucial for these systems
to meet highest quality standards. As software systems are becoming more and more complex,
automated techniques are required to aid the software engineering process in order to ensure and
measure the quality of the system under development. The ISO/IEC 25010:2011(E)[8] standard
defines software quality in terms of a quality model consisting of eight main quality characteristics,
namely Functionality Suitability, Reliability, Operability, Performance Efficiency, Security, Compatibility,
Maintainability and Transferability, and a set of sub-characteristics. These quality characteristics can
be automatically measured or assessed by qualified persons, in order to aid the development process
in the detection of bad coding style, security and performance issues, in finding and fixing errors
or in indicating issues in terms of usability and understandability[9]. The prior mentioned quality
properties were mainly established with a focus on the source code of the software. On that account
Lindeland et al. proposed a quality model in [10], which is more suitable for models and consists of
three main quality characteristics, namely Syntactic Quality, Semantic Quality and Pragmatic Quality.
Figure 1.1 illustrates the proposed quality characteristics and sub-characteristics with respect to
models as discussed in [9].

Models are utilized nowadays to generate source code, to generate test cases in order to verify a
system or even for simulation purposes. Thus, the quality of models has to be ensured and measured
at an early stage in order to guarantee the quality for its target application. As a consequence,
approaches like static and dynamic analysis are required. Static analysis is a widely used approach
in terms of quality assurance of source code. The advantage lies in the fact that the source code
must not be executed, in contrast to dynamic analysis. Thus, static analysis is carried out before
compile time and can detect flaws in source code, like null pointers. Examples of tools which
automatize the static analysis of source code are FindBugs[11], Checkstyle[12] or PMD[13]. Another
technique of static analysis is model checking[14], which computes all possible states and executions

1

1. Introduction

Figure 1.1.: Model quality characteristics and sub-characteristics by Lindeland et al. [9].

paths of the program without actually running the program[15]. The static analysis of models has
already been addressed in scientific works like [16], [17], [18], [19], [20] or [21]. On the other hand
computer-aided software engineering (CASE) tools, like IBM Rational Rose[22], already provide
built-in basic checking in order to verify the syntactic correctness based on constraints.

Software metrics are used to measure quality properties of a software system in a quantitative
manner and are mainly related to measure the complexity of software. These metrics act as indicators
to describe the extent to which a system is understandable, maintainable or testable. With respect to
the proposed quality model for models in Figure 1.1, the complexity metrics are related to Pragmatic
Quality. Thus, complexity metrics in terms of models measure the degree to which a model can be
comprehended, maintained and adapted.

1.1. Motivation

In Model-based Testing (MBT)[6, 7] a system is verified in terms of its correctness between a
behavioral model, which describes the intended behavior of the system, and the System under
Test (SUT). The range of models that can be used in MBT is wide, like UML State Charts, FSM,
BPM models, Labeled Transition System (LTS)[23], Symbolic Transition System (STS)[24] or Action
Systems[25, 26].

In [27] another MBT approach is discussed which employs an Extended Symbolic Transition
System (ESTS)[28, 29, 27] as the underlying model. An ESTS model is based on an STS and enhances
it by introducing the following additional properties: (1) delay transitions, (2) completion transitions,

2

1.2. Contribution

(3) transition priorities, (4) transition execution duration and (5) timing groups. As models in the MBT
context are used to prove the correctness of the SUT, it is desirable that these models are correct.

1.2. Contribution

The aim of this thesis is to provide a static analysis suite for ESTS[28, 29, 27] models in order to
ensure and measure the quality of such models. This thesis is based on a proposal by Schwarzl[27],
who suggested the application of static analysis techniques to an ESTS model. In contrast to
Schwarzl’s and Peischl’s approach in [16], where an ESTS model is utilized as an intermediate
model in order to apply static and dynamic analysis to UML State Charts, this thesis only focus
on an ESTS model. The static analysis suite consists of two main components, namely checks and
metrics.

Checks address the quality aspect of ESTS models by ensuring syntactically and semantically valid
models and by extracting particular structural constructs from an ESTS. The following syntactic and
semantic checks are introduced:

1. Communication resolution in terms of not receivable or not sent messages.
2. Non-determinism check in terms of overlapping transition guards resulting in multiple enabled

outgoing transitions.
3. A check with respect to the detection of ambiguously defined attributes and parameters.
4. Ensuring valid guard and action expressions.
5. Detection of hidden transitions, which are never executable transitions since their guard

parameter range are entirely covered by higher prioritized transitions.

Beyond that, this thesis proposes checks to extract particular constructs from an ESTS model, namely
loops and cascades. The common property of both constructs is that they solely consist of transitions
of type unobservable, completion and output. In terms of MBT such constructs can cause a huge
test generation effort for approaches like the one stated in [27].

Metrics are introduced in this thesis in order to determine the complexity of an ESTS model.
Complexity is addressed in terms of the structure, data flow, control flow and the size of a model.
Some of the metrics have already been introduced for other models, like UML models. Therefore,
these metrics have been adapted in order to meet the ESTS model structure. On the one hand,
the metrics are a measure of the complexity of a model and thus address the quality properties
of Comprehension, Maintainability and Adaptability with respect to Figure 1.1. On the other hand,
these metrics can be utilized to draw a conclusion on the test generation effort, since they can be
interpreted in terms of attribute, transition, state and transition-pair coverage.

The checks and metrics presented in this thesis find their application in a prototype implementation
of a tool called STSStaticAnalyzer, which automates the static analysis process. The checks and

3

1. Introduction

metrics are applied to two illustrative examples by means of the prototype tool. The results obtained
show the outcome of the checks and metrics application.

1.3. Outline

The remainder of this thesis is organized as follows: In Chapter 2 the related work is discussed. In
Chapter 3 an ESTS is defined in terms of its structure and semantics. Furthermore, some additional
thesis specific definitions are introduced.

In Chapter 4 the analysis of an ESTS model is discussed. This chapter contains the description
of three types of checks: (1) checks in terms of syntactic and semantic violation detection, (2)
checks in order to extract certain structural constructs and (3) checks to calculate model metrics.
Furthermore, some common data structures as well as convenient tools are introduced which are
utilized throughout the chapter.

In Chapter 5 the experimental results are presented. The results are obtained by applying a prototype
analyzer tool, which contains implementations of the checks defined in Chapter 4, to three ESTS
models. The thesis concludes with Chapter 6, where a summary is provided and potential future
work is discussed.

4

2. Related Work

Model analysis in terms of quality, to ensure consistency and correctness as well as measuring complexity,
is a popular research topic as models are an important artifact in the fields of Object-oriented design,
MBT[6, 7], MDE[4], MDA[5] and BPM[2]. This chapter gives an overview of existing scientific work
concerning model quality.

2.1. Analysis of Models

UML[1] is the most utilized modeling language in the software engineering field. A fact that is
reflected by the huge amount of papers addressing models created in UML as shown in [30], where
an overview of 907 papers are given dealing with UML consistency management.

The work of Schwarzl and Peischl in [16] depicts the closest related work to this thesis. In their
work they proposed static and dynamic analysis on UML state charts. The static analysis part
covered the detection of syntactical errors, undefined variables, not receivable messages, non-determinism
in terms of overlapping parameter ranges and hidden transitions. Whereas the dynamic analysis dealt
with the detection of deadlocks, infeasible transitions and inter-model loops. The dynamic analysis
applied the random walk method which traverses the model and resolve the model communication
dependencies in order to create valid input sequences. Their approach transformed an UML state
chart model to an STS model due to the ambiguous semantic of the former. The static and dynamic
analysis techniques are applied to the STS model. In addition for dynamic analysis errors a failure
trace through the model is created in order to assist the debugging task.

In [17] the tool vUML is introduced for the verification of UML class, collaboration and state
charts utilizing the model checking[14, 31] method. UML models are transformed into PROMELA
language in order to verify them by means of the model checker SPIN[32]. In this way the models
are checked for the existence of deadlocks, livelocks, reaching an invalid marked state, a violation of an
object constraint for instance. The tool provides for a detected error a counterexample in the form
of a sequence diagram. A drawback of the tool is that additional stereotypes for states have to be
introduced in order to assist the model checking routine. The model checker approach is often used
in the context of UML model verification as shown in [30]. Grumberg et al. verified in [33] UML
state charts in terms of livelocks and Linear Temporal Logic (LTL) safety properties by combining static
analysis and bounded model checking. They also identified a subclass of livelocks, namely cycle-livelocks.
Their approach transformed a state chart model into C code. The verification is carried out by
means of the model checker CBMC[34]. Fernandes et al. [35] proposed an approach to verify UML

5

2. Related Work

use case diagrams, state chart diagrams and activity diagrams by means of the a tool called UML
Checker. The tool expects as input the respective model and validation properties which are defined
in temporal logic notation. The model is transformed to the NuSMV[36] input language[37] in order
to be validated by the NuSMV model checker[36] by considering the given validation properties.

In [18] the consistency between UML sequence and state chart diagrams are considered. This
approach transformed both diagrams to Communicating Sequential Processes (CSP)[38] process
algebra. The used consistency rules are defined by means of CSP assertions. The transformed dia-
grams are validated by means of the model checker FDR[39] with respect to the defined consistency
rules.

Malgoures and Motet[40] formalized UML models as Constraint Logic Programming (CLP)[41].
They defined the consistency rules in CLP as well. The consistency check is carried out by means of
a Constraint solver[42] based on the formalized models and the consistency rules. The main limitation
of their approach lies in the fact that they are limited to a specific set of UML features which arise
from the circumstance that they used CLP as formal language.

The authors of [43] chose as the intermediate formal language Web Ontology Language OWL2[44].
UML models consisting of multiple class, object and state chart diagrams are transformed into the
OWL2 specification which is analyzed with a logic reasoner like HermiT[45]. This approach is able
to validate modeling concepts like classes, object, associations, links, labeled links, domain, range,
multiplicity, composition, unique and non-unique associations, ordering, class generalization and
association generalization. In additions to that the conformance of object diagrams against class
diagrams, consistency of class diagrams and state chart diagrams and the consistency of multiple
merged models can be analyzed by their approach.

Approaches like [19] and [20] used Object Constraint Language (OCL) to define consistency rules
directly on the meta-data level. Thus, no intermediate language and model, respectively, are required.
In [20] the authors demonstrated the application of OCL in terms of validating the static semantics
of UML models. In [19] the concepts of Queries, View and Checks are introduced based on OCL.
Queries are functions over meta-model elements returning a value. A check is basically a query but
only with a boolean return value and is utilized for assessing a model with respect to constraints.
Views support the modeler with collected information about the models.

Egyed proposed a tool called UML Analyzer in [46, 47] which has the ability to perform instant
consistency checking. As stated in the paper the instant approach is an adaptation of the incremental
approach. The tool is built on top of IBM Rational Rose in order to access Rational Rose models
as well as receive notifications when a model has changed. He showed an approach for quickly,
correctly and automatically deciding when to evaluate consistency rules. Together with Reder,
Egyed addressed the problem of resolving inconsistencies in design models in[48]. They stated that
resolving inconsistencies is a much harder work than to find one. Their approach utilized a Repair
Tree which organizes repair actions in a hierarchical manner. The Repair Tree basically reflects the
structure of the consistency rules. A repair action is considered as a potential change to the model.

6

2.2. Complexity of Models

In order to model BPM, languages like Business Process Model and Notation (BPMN)[2], UML
activity diagrams[1], YAWL[49] or Event-driven Process Chain (EPC)[50] are utilized. Gruhn and
Laue showed in [51] the application of the logic programming paradigm to validate BPM in terms of
syntactical requirements. Furthermore they showed that logic programming can be used for reasoning
about complex properties like finding patterns in a model or checking consistency across models.

In [52] an approach is presented which used the model checking method to verify BPMN models
with respect to deadlocks, livelocks and multiple termination issues. First, the approach translates a
BPMN model to Kripke structure[53], a structure that is closely related to a FSM and which shows
the characteristics that it does not differentiate between inputs, outputs, program locations and local
variables[54]. Second, the desired properties, such as deadlocks, livelocks and multiple termination are
expressed in LTL formulae. The LTL properties and the Kripke structure are the input for a model
checker.

Awad and Puhlmann proposed another approach in [21] to detect deadlocks in BPMN models.
They utilized BPMN-Q, a BPMN based graphical query language, by translating existing deadlock
patterns, which have been identified in [55], into BPMN-Q. Dijkman et al. proposed in [56, 57] a
translation of BPMN models into Petri nets[58] in order to utilize Petri net-based verification tools
to check issues like dead tasks and improper completions.

2.2. Complexity of Models

Another quality aspect of models is understandability and therefore the complexity of models which is
measured by model metrics. Genero et al. proposed in [59, 60] a metric suite for UML state charts.
The suite consists of the two metric types size metrics and structural complexity metrics. The former
metric type consists of the following metrics: Number of Activities, Number of Simple States, Number of
Events, Number of Guards, Number of Entry Actions, Number of Exit Actions and Number of Composite
States. The latter metric type consists of the metrics McCabe Cyclomatic Complexity[61] and Number
of Transitions. Moreover, the authors empirically validated these metrics in order to prove them as
good understandability indicators.

Lankford applied in [62] the McCabe Cyclomatic Complexity and Halstead Difficulty metric to UML class,
sequence and state chart diagrams. Soliman et al. applied in [63] the Chidamber and Kemerer metrics
suite to UML class, activity and sequence diagrams. In [64] Hall introduced two new metrics, namely
Top-Level Cyclomatic Complexity and Hierarchical Cyclomatic Complexity, by adapting the McCabe
Cyclomatic Complexity for non-hierarchical to hierarchical state charts. Hoe Bae et al. proposed in
[65] the State Machine Understandability Metric (SUM) to measure the understandability of state
machines. The metric is based on state cohesion and state coupling within a state machine.

In [66] the Number of Deactivating Transitions, Number of Activating Transitions, Number of Deacti-
vated States and Number of Activated States for state charts are proposed. These metrics depicts the
complexity of ingoing and outgoing transitions, respectively, of composites states.

7

2. Related Work

Lassen et al. proposed in [67] three complexity metrics for Workflow nets - a subclass of Petri
nets[58]. The calculated metrics are the Extended Cardoso Metric, Extended Cyclomatic Metric and
Structuredness Metric. The first metric is an adaptation of Cardoso’s Control Flow Complexity
(CFC)[68] metric which measures the control flow complexity in business processes, workflows and
Web processes. The Cardoso metric is an generalization of McCabe’s Cyclomatic Complexity[61].
Extended Cyclomatic Complexity is an adaptation of the McCabe Cyclomatic Complexity[61] to
Workflow nets. The last metric measures complexity with respect to the structure of the Workflow
net. This is carried out by identifying certain structural patterns in the Workflow net, and by
associating cognitive weights to each pattern representing its complexity.

In [69] Genero et al. introduced a metric suite to measure structural complexity of Entity-Relationship
(ER) diagrams. Guo et al. proposed a complexity number for concurrent FSM based embedded
software in [70]. The complexity number is defined on the decision diagram representation of the
system functionality and indicates the upper bound on the number of required test cases in order to
accomplish Condition/Decision coverage.

In [71] the authors discussed how existing software complexity metrics can be applied on BPM.
The author discussed the application of metrics like Line of Code, McCabe Cyclomatic Complexity, Fan
in and Fan out in context of BPM. They state that their presented results are modeling language
independent. The adaptation of the McCabe Cyclomatic Complexity[61] has already been discussed
by Cardoso in [72] where he proposed the Control Flow Complexity (CFC) metric, which is based on
McCabe’s metric, for BPM. In [73] two other software metrics are discussed in order to be adapted
for BPM. These are the Halstead Complexity metric[74] and the Information Flow metric by Henry and
Kafura[75]. Piattini et al. introduced in [76] a metric suite for BPMN models which is based on the
measurement framework FMESP[77]. Other metrics known from the software domain have been
adapted by Khlif et al. in [78]. They adapted coupling metrics for BPMN models.

8

3. Extended Symbolic Transition System

An ESTS[28, 29, 27], which is tightly related to an UML State Machine (SM)[1], is used to define the
behavior of systems. The ESTS is based on the STS defined in [24] and introduces the following
additional elements: (1) delay transition, (2) completion transition, (3) transition priorities, (4) transition
execution duration and (5) timing groups. The following definitions are taken from [27] and have been
slightly extended to comply with the content of this work.

Definition 3.1 (Extended Symbolic Transition System)
An Extended Symbolic Transition System e is a tuple 〈S, L, A, P, T, G, q0〉, where S is a set of states, L is a
set of labels, A is a set of attributes, P is a set of message parameters, T is the set of transitions, G is the set of
timing groups and q0 is the initial configuration.

The set of labels is defined as L = Li ∪ Lo ∪ L∗ ∪N1 with Li ∩ Lo = ∅. Hence, the set of all input
and output messages is Lio = Li ∪ Lo. L∗ = {τ, γ} is a set of labels representing the unobservable
and completion transitions, whereas N1 represents the delayed transitions.

Attributes A and message parameters P are both variable sets for the purpose of symbolic treatment
of data. The attributes are properties of an ESTS and parameters are used in the context of input
and output messages in order to accomplish data transmission. A message parameter of a transition
is defined by the function par(l), where par(l) ⊆ P if l ∈ Lio, otherwise par(l) = ∅. The parameter
and attribute sets are disjoint, resulting in A ∩ P = ∅, whereas V = A ∪ P denotes the set of all
variables of an ESTS.

Definition 3.2 (Variable Valuation)
A variable valuation is an ordered pair (v, u) of a variable v ∈ V and a value u ∈ Uv, where Uv is its value
domain containing all possible values of v. �

The type of a variable is defined due to its corresponding value domain set Uv. The set B =

{true, f alse} denotes values of the Boolean domain, R values of the real number domain and Z

values of the integer domain. Thus, a real number variable is defined by Uv = R, an integer variable
by Uv = Z and a Boolean variable by Uv = B.

For a given subset of variables X ⊆ V, UX defines the set of all variable valuations for X. In addition
the parameter valuation is denoted as ς ∈ Upar(l), whereas the attribute valuation is denoted as
ι ∈ UA.

9

3. Extended Symbolic Transition System

Definition 3.3 (Literal)
A literal is a single value c which corresponds to a certain value domain. Where c is used for different value
domains and therefore c is denoted as c ∈ B for a Boolean literal, c ∈ R for a real number literal and c ∈ Z

for an integer literal, when necessary. �

Definition 3.4 (Transition)
A transition t ∈ T is defined as the tuple (s, l, ϕ, ρ, p, d, s′), where s, s′ ∈ S are the source- and target state,
l ∈ L defines its label, ϕ ∈ F(V) defines its guard, ρ ∈ A(V)A defines the attribute update function, p ∈N0

its priority and d ∈N0 a lapse of time. �

The guards are first order logic predicates over the variables in V, with F(V) denoting the set
of first order logic predicates. The update of an attribute valuation ι is carried out by means of
the attribute update function ρ ∈ A(V)A, where A(V)A is a set of update attribute functions,
updating the attributes of set A, which depends on the variable set V. The update is denoted as
ι′ = ρ(ς ∪ ι), which states that the attribute update function produces a new attribute valuation ι′.
The new attribute valuation is calculated based on the current attribute valuation ι and the parameter
valuation ς by means of the attribute update function ρ. The parameter valuation ς is an empty set if
the transition is neither an input nor an output transition, or the input and the output transition has
no message parameter assigned. Furthermore, the identity function id ∈ A(V)A is defined, stating
that an attribute valuation remains unchanged. The priority p ∈ N0 of a transition is a natural
number which uniquely defines an execution order of transitions for states with multiple outgoing
transitions. The execution duration d ∈N0 states a lapse of time for a transition and indicates the
time needed to execute a transition.

Moreover, the set of outgoing transitions of a particular state s is defined as function stateOutTrans(s)
which is stated in Equation 3.1. The function returns a set of transitions where the state s is the
source state of.

stateOutTrans(s) = {t ∈ T | t.s = s} (3.1)

Equation 3.1 states a specific syntax in order to reference the elements of a tuple. An element of a
tuple is referenced by the ’.’ operator. For instance, referencing either the source or the target state
of a transition t is accomplished by the statements t.s and t.s′, respectively. This syntax will be used
throughout the remainder of this work.

Definition 3.5 (Input Transition)
A transition t ∈ T is an input transition when its label l is in the set of input labels such that l ∈ Li, where Li

is the set of input labels. The set I of all input transitions is defined as Ti = {t ∈ T | t.l ∈ Li} with Ti ⊆ T.
�

The function inputMessages(s), shown in Equation 3.2, returns a set of labels corresponding to
input transitions of the outgoing transition set stateOutTrans(s) of state s. On the contrary, Equation

10

3.3 denotes the function outputMessages(s) which returns a set of labels corresponding to output
transitions of the outgoing transition set stateOutTrans(s) of state s.

inputMessages(s) = {l ∈ Li | t ∈ stateOutTrans(s) ∧ t.l = l} (3.2)

outputMessages(s) = {l ∈ Lo | t ∈ stateOutTrans(s) ∧ t.l = l} (3.3)

The equation stated in Equation 3.4 returns a set of labels. These labels represent the timeout terms
of all delay transitions of the outgoing transition set stateOutTrans(s) for a given state s.

timeoutTerm(s) = {l ∈N1 ∪ A | t ∈ stateOutTrans(s) ∧ t.l = l} (3.4)

Definition 3.6 (Output Transition)
A transition t ∈ T is an output transition if its label l is related to the set of output labels such that l ∈ Lo,
where Lo is the set of output labels. The set To of all output transitions is defined as To = {t ∈ T | t.l ∈ Lo}
with To ⊆ T. �

Let E = {e1, e2, ..., en} be a set of ESTS with Lx
i is the set of input labels of ESTS ex ∈ E with x ∈N1.

The set of input labels of the ESTS in set E are disjoint so that Lx
i ∩ Ly

i = ∅ for x 6= y.

Definition 3.7 (Unobservable Transition)
A transition t ∈ T is an unobservable transition if its label l = τ. The set Tτ of all unobservable transitions is
defined as Tτ = {t ∈ T | t.l = τ} with Tτ ⊆ T. �

Definition 3.8 (Completion Transition)
A transition t ∈ T is a completion transition if its label l = γ. The set Tγ of all completion transitions is
defined as Tγ = {t ∈ T | t.l = γ} with with Tγ ⊆ T. �

Definition 3.9 (Delay Transition)
A transition t ∈ T is a delay transition if its label l, which is also called timeout term, is either a numeric
value n ∈ N1, with N1 = N0 \ {0}, or an attribute value a ∈ A. The set Td of all delay transitions is
defined as Td = {t ∈ T | l ∈N1 ∨ l ∈ A} with Td ⊆ T. �

The set Toγτ = To ∪ Tγ ∪ Tτ denotes the set of all output, completion and unobservable transitions,
with Toγτ ⊆ T. These transitions are considered as instantly executable. Instantly executable means that
these transitions are executed as soon as the respective guard evaluates to true without any interaction
with another ESTS or the environment. Whereas interaction with another ESTS or environment means
that a message is sent or that a specific time has to elapse.

In order to refer to a certain transition in the remainder of this work the notation (s label−−→ s′) is used.
s denotes the source state, s

′
the destination state and label the label of the transition and therefore

11

3. Extended Symbolic Transition System

its type, such that label ∈ Lio ∪ L∗ ∪N1. In case of labels for output and input transitions the label
is prefixed by an ”!” and ”?”, respectively.

Definition 3.10 (Timing Group)
A timing group g is a tuple 〈c, Sg, Tg

d , Tr〉, where c ∈ C is its clock, with C the set of clocks, Sg ⊆ S is a set
of states which correspond to the timing group, Tg

d ⊆ Td is a set of delay transitions and Tr ⊆ T is a set of
clock reset transitions. �

A timing group g ∈ G defines a set of states Sg sharing the same clock c, which is used to keep track
of the elapsed time. ζ ∈ UC is the variable valuation of a clock c ∈ C of a timing group, C is the set
of all clocks of the timing groups in G including the ESTS global clock c∗, such that C = C ∪ c∗. UC

is the set of all possible clock values.

The clock c∗ keeps tracks of the elapsed time in an ESTS and behaves similar to a timing group
with Tg

d = T, Sg = S and Tr = ∅, which implies that the clock is used globally for all states and
transitions of the ESTS.

The clock update function ξ is denoted as ζ
′
= ξ(ζ, n), where n specifies the time difference used to

update the clock valuation of all clocks in C.

Definition 3.11 (Configuration)
A configuration of an ESTS is a triple (s, ι, ζ) of a state s ∈ S, an attribute valuation ι ∈ UA and a clock
valuation ζ ∈ UC. �

The set of all configurations is defined as Q = (S× UA × UC). A single configuration is denoted as
q ∈ Q and the initial configuration q0 is given as q0 = (s0, ι0, ζ0) with q0 ∈ Q.

As stated in [27] the behavior of an ESTS is described by the executions of its transitions. The term
execution means that a state change from the source to the destination state of a transition occurs. In
addition to that, the execution of a transition involves the update of the attribute valuation according
to its attribute update function ρ. A transition can only be executed when it is enabled, which is the
case if the corresponding guard evaluates to true.

Definition 3.12 (Enabled Transition)
A transition is enabled if for a given configuration, parameter and attribute valuation, the corresponding
guard evaluates to true. Besides the satisfiability of the guard, a delay transition t ∈ Tg

d must satisfy c >= n
as well, where c is the clock of timing group g and n is the delay of the delay transition, with n ∈N1. �

An input transition is enabled as soon as the corresponding message with its possibly empty
parameter valuation is received and the guard is satisfied. Completion, unobservable and output
transitions are enabled as soon as the source state of the transition is reached and the corresponding
guard evaluates to true. Additionally a delay transition has to fulfill a time constraint. Thus, it might
be necessary that the timing group clock of its respective timing group must be increased by n− c
in order to enable the transition.

12

The transition priority p denotes an execution order for enabled transitions corresponding to the same
label. Where the execution order states a ranking according to the priority such that the enabled
transition with the highest priority will be executed and all other enabled transitions with lower
priorities will be ignored.

(a)Order Component (b)Delivery Component

Figure 3.1.: Chocolate vending machine depicted as ESTSs. (Images adapted from [27])

Example 3.1 (Chocolate Vending Machine)
Figure 3.1 depicts the Chocolate Vending Machine, which consist of two components. The first
component is the Order Component, which is illustrated by the ESTS in Figure 3.1a. Figure 3.1b
depicts the second component, namely the Delivery Component.

The Order Component consists of three states, namely O1, O2 and O3. Transition O3
!req−−→ O1

denotes an output transition which triggers the message req. The value in angle brackets < 5 >

is related to the transition execution time, whereas the expression enclosed in square brackets
corresponds to the guard of the transition. Expressions stock = stock− cnt and cnt = 0 denote the
actions which are associated to the transition. The states of the Delivery Component which are filled
gray belong to a timing group.

The Order Component is used in order to define the amount of chocolates which shall be requested
from the Delivery Component. By an external input message ?btn, which states the fact that the
environment detected that a button has been pressed, the order counter cnt will be incremented. The
reception of the input message ?ok triggers the transmission of the output message !req. This message
is received from the Delivery Component by means of the input message ?req. The component either
waits a configured timeout, depicted by delay transition D2 7−→ D4, or for an input message ?cancel
which indicates that the delivery process shall be canceled. Finally, the output message !choc is sent
with the amount of chocolates to be dispensed. �

13

4. Static Analysis

This chapter describes the approach in order to analyze an ESTS model in a static manner. Therefore,
this chapter provides a description of the check and metric suite for an ESTS model. First of all,
in Section 4.1 preliminaries in order to apply static analysis to an ESTS are provided. In Sections
4.2 and 4.3 checks are introduced addressing consistency and structural issues, respectively. This
chapter concludes with the introduction of metrics to measure data flow, control flow, structural
complexity as well as complexity in terms of size.

4.1. Preliminaries

In this section, preliminary data structures are introduced which are utilized by checks and metrics
discussed later on. In Section 4.1.1 the Binary Expression Tree (BET) data structure is introduced,
which represents guard and action expressions as a binary tree. Section 4.1.2 presents a tree
representation of the possible paths through an ESTS, namely an Independent Path Tree (IPT). In
Section 4.1.3 the data structure Shortest Distance Map is discussed. The map contains the shortest
distance of all transition pairs of an ESTS. In Section 4.1.4 the Def-Use data structure is introduced,
which illustrates the definition and use of attributes.

Furthermore, constraint solving is discussed in Section 4.1.5, which is utilized by some checks.
At last in Section 4.1.6 two statistical instruments, namely mean value and standard deviation, are
discussed.

4.1.1. Guards and Actions as Binary Expression Tree

This section introduces the BET[79] data structure, which depicts a different way to represent guard
and action expressions.

Definition 4.1 (Expression)
An expression exp is a tuple 〈op, opdl , opdr〉, where op denotes the operator, opdl the left operand and opdr

the right operand. A not used operand is denoted with NIL. An expression which corresponds to a unary
operator only has the left operand set, such that opdl 6= NIL and opdr = NIL. By contrast, for a binary
operator either operands are set. Moreover, the operands of an expression can be an expression again, a literal
or a variable valuation, such that opdl , opdr ∈ {exp, c,UV}. The function bet() denotes the transformation
of a guard or action to a BET, such that bet(ϕ) : ϕ 7−→ exp and bet(ρ) : ρ 7−→ exp �

15

4. Static Analysis

+

+ 1

+ b

a 1

Figure 4.1.: Binary Expression Tree of expression a + 1 + b + 1.

A BET depicts a tree with expression exproot denoting the root expression, whose operator corre-
sponds to the root node of the tree. An expression is divided into the following types: (1) arithmetic,
(2) assignment, (3) comparison and (4) logical.

Definition 4.2 (Arithmetic Expression)
An expression exp is considered an arithmetic expression if exp .op ∈ ArithmOp with ArithmOp =

{+,−, ∗, /, %,++,−−}. The set of all arithmetic expressions is ArithmExp. �

Definition 4.3 (Assignment Expression)
An expression exp is considered an assignment expression if exp.op ∈ AssignOp with AssignOp = {=}.
The set of all assignment expressions is AssignExp. �

Definition 4.4 (Comparison Expression)
An expression exp is considered a comparison expression if exp.op ∈ ComparisionOp with ComparisionOp =

{<,≤,>,≥,==, ! =}. The set of all comparison expressions is ComparisionExp. �

Definition 4.5 (Logical Expression)
An expression exp is considered a logical expression if exp.op ∈ LogicalOp with LogicalOp = {&&, ‖, !}.
The set of all logical expressions is LogicalExp. �

Example 4.1 (BET)
Consider the example BET in Figure 4.8, which depicts the arithmetic expression x + 1 + b + 1.
Taking the definitions of this section into account, the following expressions are defined.

• exp0 = 〈+, a, 1〉
• exp1 = 〈+, exp0, b〉
• exp2 = 〈+, exp1, 1〉

The expression exp2 depicts the root expression exproot of the BET. Thus, exproot = exp2 and the red
plus operator in Figure 4.8 corresponds to the root expression operator exproot.op.

�

16

4.1. Preliminaries

4.1.2. Independent Path Tree

This section introduces a different structure to represent an ESTS namely an IPT. An IPT consists of
all possible independent paths within an ESTS so that each path in the tree is unique. The structure
depicts a convenient intermediate view of an ESTS, on which some of the upcoming checks rely in
order to ease their application.

Definition 4.6 (Independent Path Tree)
An independent path tree T is a tuple 〈N,E〉, where N denotes the set of nodes and the set E referring to all
edges of the tree. The function estsToPathTree(e) : e 7−→ T denotes the conversion of an ESTS e to an IPT
T. �

Definition 4.7 (Node)
A node n ∈ N is a tuple 〈s〉, where s denotes the corresponding ESTS state. N denotes the set of nodes. The
node n0 represents the root node of the tree. �

The nodes of an IPT represent the states of an ESTS. Various nodes can refer to the same state, which
means that the number of nodes is greater than or equal to the number of states: |N| ≥ |S|.

Definition 4.8 (Edge)
An edge e ∈ E is defined as the tuple 〈n, t, n′〉 with n, n′ ∈ N. n refers to the source node and n′ to the
destination node. Hence, n is considered to be the parent node of n and n′ is the child node of n by implication.
t ∈ T denotes the corresponding transition of the ESTS, which is represented by edge e. �

In order to use the tree structure, functions are defined to retrieve the following information:

• The parent node of a given node as depicted in Equation 4.1.
• The child nodes of a given node as shown in Equation 4.2.
• The outgoing transitions of a node to its children as illustrated in Equation 4.3.
• The incoming transition by which the node is connected to its parent node as depicted in

Equation 4.4.

As shown in Equation 4.1, for a given node n̂ the parent node np belongs to an edge e, whose source
node is equal to the parent node and its destination node is equal to the given node. Thus, in the
set E exists an edge e such that e.n = np ∧ e.n′ = n̂. If a node has a parent node, precisely one edge
exists where this definition applies. The root node n0 is an exception as this node has no parent
node. Thus, a node cannot have more than one parent node. The function parentNode(n̂), which is
depicted in Equation 4.1, returns only a single value which is either the determined parent node or
NIL. By contrast, NIL indicates that no parent node is present.

parentNode(n̂) =

np ∈ N e ∈ E∧ n = np ∧ n′ = n̂

NIL otherwise
(4.1)

17

4. Static Analysis

Equation 4.2 states the formula in order to retrieve a set of nodes which are denoted as child nodes
of a particular node. A child node nc is defined as the node which functions as destination node n′

of an edge, whereas the source node n corresponds to the given node n̂. The function childNodes(n̂)
returns a set of nodes or an empty set, whereas the empty set denotes that a node has no child
nodes at all.

childNodes(n̂) = {nc ∈ N | e ∈ E∧ e.n = n̂∧ e.n′ = nc} (4.2)

Equation 4.3 depicts the function nodeOutTrans(n̂), which returns a set of transitions related to
those edges where the given node n̂ is the source node, such that n = n̂.

nodeOutTrans(n̂) = {e.t ∈ T | e ∈ E∧ e.n = n̂} (4.3)

Equation 4.4 states the function nodeInTrans(n̂). The function returns the incoming transition which
corresponds to the edge which connects the given node n̂ to its parent node. Thus, the desired
transition belongs to edge e such that e.n′ = n̂. Since a node can either have one parent node or no
parent node at all, the function returns either a single transition or NIL.

nodeInTrans(n̂) =

e.t ∈ T e ∈ E∧ e.n = n̂

NIL otherwise
(4.4)

Definition 4.9 (Path)
A path p ∈ PT is an ordered list (ex, ex+1, ..., em), with x ≥ 1 and p ⊆ E, of edges. PT denotes the set of all
paths of tree T. The function treeToPaths(T): T 7−→ PT denotes the computation of the independent path
set PT. �

The tree T is considered an IPT when all paths of the set PT are mutually distinct. Let PT =

{p0, p1, ..., pm} be a set of all paths of T. Then T is considered as IPT if for any arbitrary pair of paths
pi, pj ∈ P holds that pi \ pj 6= ∅ with i, j ∈N0 and i 6= j. Thus, mutually distinct in terms of paths
means that every arbitrary pair of paths of set PT differs in at least one edge.

hasOutgoingTransitions(ŝ) =

false @ t ∈ T : t.s = ŝ

true otherwise
(4.5)

In addition the destination node n′ of the last edge em of the path, with em ∈ p, precisely shows one
of the following characteristics:

1. The state corresponding to node em.n′ has no outgoing transitions at all, which is stated in
Equation 4.5.

18

4.1. Preliminaries

2. The state belonging to node em.n′ corresponds to another source or destination node of an edge
which is unequal to the last edge of the path, which is stated in Equation 4.6. Furthermore,
this case denotes the presence of a loop in the path.

Moreover node em.n′ always belongs to a leaf node of tree T, such that nodeOutTrans(em.n′) = ∅.

containsLoop(p) =

true ∃ e ∈ p : (e.n.s = em.n′.s) ∨ (e.n′.s = em.n′.s)

false otherwise
(4.6)

Example 4.2 (Independent Path Tree)
In Figure 4.2a an ESTS is depicted and in Figure 4.2b its corresponding path tree. In respect to the
tree in Figure 4.2b the node set is N = {n0, n1, n2, n3, n4, n5} with:

• n0 = A1
• n1 = A2
• n2 = A3
• n3 = A1
• n4 = A4
• n5 = A4

The corresponding edge set is E = {e0, e1, e2, e3, e4} with:

• e0 = {n0, (A1
γ−→ A2), n1}

• e1 = {n1, (A2 !m1−−→ A3), n2}
• e2 = {n1, (A2 τ−→ A4), n5}
• e3 = {n2, (A2 ?m2−−→ A1), n3}
• e4 = {n2, (A2 !m3−−→ A4), n4}

By applying function treeToPaths() to the tree of Figure 4.2b three paths can be retrieved such that
P = {p1, p2, p3} with:

• p1 = {e0, e1, e3}
• p2 = {e0, e1, e4}
• p3 = {e0, e2}

The path tree in Figure 4.2b is being considered as an IPT since all paths are independent due to the
fact that p1 \ p2 = {e3}, p1 \ p3 = {e1, e3} and p2 \ p3 = {e1, e4}. �

19

4. Static Analysis

A2

A3

!m1

A4

τ

A1

γ

?m2

!m3

(a)Example ESTS. (b)Corresponding path tree of the
example ESTS.

Figure 4.2.: An example of an ESTS and its depiction as path tree.

Algorithm 1 represents the concrete algorithm to transform an ESTS into an IPT. The computation
starts at the start state s0 of an ESTS. For this reason a node n corresponding to the start state is
created as shown by the statement n← 〈s0〉. Afterwards the node is added to the variable element
which is a tuple 〈n, tnext〉, with n corresponding to a node of the tree which is added to the node
set N later on, and tnext denotes the outgoing transition of n.s which should be traversed next.
In addition, tnext can also be NIL, which indicates that no specific outgoing transition is set. The
variable element basically denotes the current state of an ESTS and its outgoing transition, which
are currently being considered during path tree creation.

The algorithm uses a while loop in order to traverse the ESTS. The loop is executed as long as the
Boolean variable treeCompleted is f alse, which is set to true when no further element to process is
present, such that element = NIL. This fact indicates that all states and transitions of the ESTS have
been processed.

20

4.1. Preliminaries

Algorithm 1 Conversion ESTS to IPT
1: function create independent path tree(E)→ T

2: T← 〈N,E〉;
3: stackBranches← ∅;
4: p← ∅;
5:
6: n← 〈s0〉;
7: element← 〈n, NIL〉;
8:
9: treeCompleted← f alse;

10: while treeCompleted == f alse do
11: N← N∪ element.n;
12: tnext ← determine next transition(element, p, stackBranches); . Defined in Algorithm 2

13: if tnext 6= NIL then
14: ns′ ← 〈tnext.s′〉;
15: e← 〈element.n, tnext, ns′ 〉;
16: E← E∪ e;
17: p← p∪ e;
18: element← 〈ns′ , NIL〉;
19: else
20: element← NIL;
21: end if
22:
23: if element == NIL∧ stackBranches.isempty() == f alse then
24: branch← stackBranches.pop();
25: element← branch.element;
26: p← branch.p;
27: end if
28:
29: if element == NIL then
30: treeCompleted← true;
31: end if
32: end while
33:
34: return T;
35: end function

Each iteration through the loop consists of the following steps:

1. Add the corresponding node of the element element to the set of nodes N, such that N =

N∪ element.n.
2. Determine the next transition tnext by calling procedure DETERMINE NEXT TRANSITION,

which is defined in Algorithm 2, based on the current element. The next transition tnext is
either a transition of the outgoing transition set of state element.n.s or NIL when no next
transition is returned. Thus, tnext ∈ stateOutTrans(element.n.s) ∨ tnext = NIL. Procedure
DETERMINE NEXT TRANSITION expects as parameter the element element, the current path
under construction p and the stack stackBranches. The given path p denotes the current path
and is used for loop detection. The parameter stackBranches depicts a stack which holds all
branches which are being detected and not yet being processed during tree construction.

21

4. Static Analysis

Algorithm 2 consists of the following 3 cases:

a) If the corresponding transition tnext of the given element is not NIL, the transition
element.tnext is returned as the next transition to be processed.

b) If the constructed path p contains a loop, such that containsLoop(p) = true, NIL is
returned, which indicates that the end of this path has been reached.

c) When none of the previous cases arises the outgoing transitions of the current state
element.n.s are considered. On that account these transitions are converted to the list
transitionList. If the list contains more than one transition, branches are present which
must be saved in order to handle them later. The reason is that the first transition in the
list is considered to be part of the currently constructed path, whereas the remaining
transitions depict branches which have to be processed after the current path is finished.
Thus, for all transitions of the list, except the first one, a branch object has to be created.
A branch object is a tuple 〈element, p〉. While element defines at which state and conse-
quently which transition the branch has been created, p denotes the path which has been
constructed so far at the time the branch is created. Next, the branches are pushed onto
stack stackBranches. Finally, the first transition is returned or if the state has no outgoing
transitions at all, such that stateOutTrans(element.n.s) = ∅ applies, NIL is returned.

3. In the event that the next transition determined tnext is not NIL, the following steps are applied:

a) Create a new node ns′ for the target state s′ of tnext.
b) Create a new edge e whose source node is the node of the current element, the destination

node is node ns′ and the corresponding transition is tnext.
c) Add the edge created to the edge set E.
d) Extend the current path p with the edge created, such that p = p∪ e.
e) Set the current element element to node ns′ in order to traverse transition tnext. Thus, ns′

will be handled in the next loop iteration.

4. If the current element element is NIL, the algorithm attempts to continue path construction at
the last saved branch. Thus, the last saved branch is retrieved from stack stackBranches as long
as stackBranches comprises branches. In order to continue at a branch the element variable has
to be set to the corresponding branch element branch.element and the current path p has to be
set to branch.p. In the next iteration the algorithm therefore continues the tree construction
from state branch.element.n.s and the next transition to be processed is already predefined by
branch.element.tnext, which in case of a branch is never NIL.

5. If the element is still NIL at the end of a loop iteration, the path tree construction is considered
finished.

22

4.1. Preliminaries

Algorithm 2 Determination of next transition to be traversed.
1: function determine next transition(element, p, stackBranches)→ tnext

2: if element.tnext 6= NIL then
3: return element.tnext;
4: end if
5:
6: if containsLoop(p) 6= true then . Application of Equation 4.6
7: return NIL;
8: end if
9:

10: transitionList← to list(stateOutTrans(element.n.s));
11: if transitionList.size() > 1 then
12: for i← 2, transitionList.size() do
13: elementbranch ← 〈element.n, transitionList.get(i)〉;
14: branch← 〈elementbranch, p〉;
15: branchStack.push(branch);
16: end for
17: end if
18:
19: if transitionList.size() > 0 then
20: return transitionList.get(1);
21: end if
22: return NIL;
23: end function

4.1.3. Shortest Transition Distance Map

In the following a data structure will be introduced which is called Shortest Distance Map. The map
contains the shortest distances between all pairs of transitions within an ESTS. Distance is measured
in terms of the number of states which are located between a pair of transition. The data structure
will be used by several checks which are discussed in this chapter.

Definition 4.10 (Shortest Distance Map)
A shortest distance map D consists of a finite number of distance map entries d, where a single entry
corresponds to the shortest distance between a single pair of transitions. A distance map entry d is a tuple
〈t, t′, dist〉, t denotes the start transition of the shortest path, t′ the end transition and dist denotes a natural
value, such that dist ∈N0, which represents the minimum number of states which are located between the
transition pair. �

The map only comprises values for transition pairs where a path is possible. Otherwise NIL is
returned as shown in Equation 4.7. The equation states the function shortestDistance(t, t′) which
returns the computed distance for a given pair of transitions. In the event that t = t′, a distance
value not equal to NIL is returned as long as a path exists, which implies the presence of a loop.

shortestDistance(t, t′) =

d.dist d ∈ D∧ d.t = t ∧ d.t′ = t′

NIL otherwise
(4.7)

23

4. Static Analysis

The algorithm applied in order to create the Shortest Distance Map is based on the Dijkstra’s Algo-
rithm[80]. But in contrast to the Dijkstra Algorithm the paths are not computed in terms of edges, but
rather with respect to nodes. In the case of an ESTS, edges refer to transitions and nodes to states.
Thus, for a given start transition transition t0 ∈ T, the algorithm computes the shortest paths and
distances to all transitions of the set T. In order to compute the distances for the entire ESTS the al-
gorithm has to be called for each transition of the set, such that ∀t0∈T computeShortestDistance(t0),
where computeShortestDistance(t) denotes the application of the algorithm.

A

B

C D

E

Figure 4.3.: Example of an ESTS to demonstrate shortest path computation.

Example 4.3 (ESTS)
Based on the ESTS in Figure 4.3 the shortest distances are computed. Applying function com-
puteShortestDistance(t) to each transition of set T produces the following results:

1. The iteration of the algorithm with t0 = (A→ B) produces the following map entries:

a) d0 = {(A→ B), (B→ C), 1}
b) d1 = {(A→ B), (C → D), 2}
c) d2 = {(A→ B), (D → E), 2}
d) d3 = {(A→ B), (B→ D), 1}

2. The iteration of the algorithm with t0 = (B→ C) produces the following map entries:

a) d4 = {(B→ C), (C → D), 1}
b) d5 = {(B→ C), (D → E), 2}

3. The iteration of the algorithm with t0 = (C → D) produces the following map entries:

a) d6 = {(C → D), (D → E), 1}

24

4.1. Preliminaries

4. The iteration of the algorithm with t0 = (B→ D) produces the following map entries:

a) d7 = {(B→ D), (D → E), 1}

5. The iteration of the algorithm with t0 = (D → E) produces no entries as no path to any other
transition exists.

Thus, eight distance map entries are created, such that D = {d0, d1, d2, d3, d4, d5, d6, d7}. When
computing the distance for the transition pair (A→ B), (D → E), which are highlighted in red in
the figure, the shortest path principle is applied. This example shows that transition (D → E) is
reachable over two paths, with the blue path being shorter as only two states, B and D, have to be
visited in comparison to three states, B, C and D, for the other path. �

4.1.4. Attribute Def-Use Data Structure

This section introduces the Def-Use data structures for attributes. The Def-Use pattern [81, 82] is used
in the context of data flow analysis in order to collect information regarding the modification and
use of variables in a program. A definition (def) of a variable occurs when a new value is assigned,
whereas a use occurs when the variable is referenced. The Def-Use data structure for attributes is
realized by means of the sets Defs and Uses.

Definition 4.11 (Defs)
The definition set Defs consists of definition entries def ∈ Defs. An entry def is a tuple 〈a, t, exp, RefUses〉.
a ∈ A denotes the attribute which has been defined at transition t ∈ T and by means of expression
exp ∈ {bet(ϕ), bet(ρ)}. The exp element represents a guard or action, respectively, in the BET structure.
Furthermore, an entry contains all use statements, represented by the set RefUses, which depend on the
definition statement, with RefUses ⊆ Uses �

Definition 4.12 (Uses)
The use set Uses consists of use entries use ∈ Uses, which is a tuple 〈a, t, exp, RefDefs〉. a ∈ A denotes the
attribute which has been referenced at transition t ∈ T and in expression exp ∈ {bet(ϕ), bet(ρ)}. The exp
element represents a guard or action, respectively, in the BET structure. Furthermore, an entry contains all
def statements, represented by the set RefDefs, on which the use statement depends, with RefDefs ⊆ Defs. �

In Equation 4.8 the function getUseEntry(â, t̂, ˆexp), which returns a set of all use entries that corre-
spond to the given attribute â, transition t̂ and expression ˆexp.

getUseEntry(â, t̂, ˆexp) =

use use ∈ Uses∧ â = use.a ∧ t̂ = use.t ∧ ˆexp = use.exp

NIL otherwise
(4.8)

Furthermore, the function extractAttributeReferences(exp), with exp ∈ {bet(ϕ), bet(ρ)}, is intro-
duced, which returns the set Are f s = {a0, ..., an}, with a0, ..., an ∈ A. Are f s contains all attributes
which are referenced by the given expression exp. Let exp = bet(ρ) be an action with ρ ∈ A′(V′)A′ ,

25

4. Static Analysis

where A′(V′)A′ is a subset of A(V)A, such that A′(V′)A′ ⊆ A(V)A. A′(V′)A′ denotes the set of
actions which actually only contains the action ρ. Thus, the set A′ ⊆ A contains the attributes which
are updated by the action and the set V′ ⊆ V denotes the variables which are referenced by the
action in order to update the attributes of set A′. Therefore, the resulting set Are f s = V′ ∩ A.

A

B

[x == x + 1]

C

x = 3

D

x = 1

E

y = 0
[x == 1]
x = 2

F

[x == 0]

[x == 0]

Figure 4.4.: Example of an ESTS to demonstrate def-use data structure.

Example 4.4 (ESTS)
Consider the example of the ESTS in Figure 4.4, which consists of six states, A, B, C, D, E, F. The
transition types have been neglected and only guards which are enclosed by square brackets and
actions are shown as transition-based information. Based on the figure the following def and use
entries are created, whereas no def-use relations have been established yet:

• def0 = {x, (B→ C), x = 3, ∅}
• def1 = {x, (B→ D), x = 1, ∅}
• def2 = {y, (C → E), y = 0, ∅}
• def3 = {x, (D → E), x = 2, ∅}

• use0 = {x, (A→ B), x = x + 1, ∅}
• use1 = {x, (D → E), x == 1, ∅}
• use2 = {x, (E→ F), x == 0, ∅}
• use3 = {x, (F → A), x == 0, ∅}

26

4.1. Preliminaries

Taking the structure of the ESTS into account the following reference sets RefUses and RefDefs for
each def and use entry are created.

• RefUsesdef0 = {use0, use2, use3}. The set contains use0 due to the loop in the ESTS.
• RefUsesdef1 = {use1}
• RefUsesdef2 = ∅
• RefUsesdef3 = {use0, use2, use3}

• RefDefsuse0 = {def0, def3}
• RefDefsuse1 = {def1}
• RefDefsuse2 = {def0, def3}
• RefDefsuse3 = {def0, def3}

As the reference set RefUsesdef2 is the empty set, this definition of the variable y has no effect of any
other statement in the ESTS. Thus, this definition is a dead definition.

Applying function getUseEntry(x, D → E, x == 1) results in the set {use1}. Finally, applying function
extractAttributeReferences(x == 1) results in the set AttributeRe f s = {x}.

�

4.1.5. Constraint Solving

Several checks introduced in this thesis utilize the technique of Constraint Solving. Basically a
constraint is defined as a restriction of a set of possibilities [83]. In terms of an ESTS a guard
represents a constraint which restricts the possible values of variables which are used in the guard.
The goal of constraint solving is to find for each variable of the constraint a value so that the constraint
evaluates to true, otherwise the constraint is considered not solvable. The solving of constraints is
carried out by means of a Constraint Solver. An example of such solvers is the Choco Constraint
Solver[42].

solveConstraint(c) =

φ ⊂ UV ′ >(c) = true

⊥ >(c) = f alse
(4.9)

Equation 4.9 introduces the function solveConstraint(c), which depicts the constraint solving task
and its possible results. The function expects as input a constraint c and produces as output either
the set φ or ⊥. The set φ means that the constraint is solvable, which is denoted by >(c) in the
Equation. The set φ can either be empty or non-empty and contains the variable valuations satisfying
the constraint, with V′ ⊆ V denoting the set of variables used in the constraint. The set φ is empty if
variables are restricted in the constraint, but the constraint is solvable. In contrast to that the result ⊥
denotes the absence of a result, which means that the constraint is not solvable, i.e. >(c) = f alse.

In the remainder of this work the constraint solving task is denoted by the function solveConstraint(c).
The given constraint c is a first order logic predicate, where quantifiers are not considered.

27

4. Static Analysis

Example 4.5 (Constraint Solving)
Consider the constraint x > 0 ∧ x < 0. Applying constraint solving to the constraint, such that
solveConstraint(x > 0 ∧ x < 0), results in ⊥ as no value for variable x can be found in order to
satisfy the given constraint. By contrast, for the constraint x > 0 ∧ x < 2 ∧ y > 1 ∧ y < 3, such
that solveConstraint(x > 0 ∧ x < 2 ∧ y > 1 ∧ y < 3), results for example1 in the solver result
φ = {(x, 1), (y, 2)}. Hence, the second constraint is solvable. �

4.1.6. Statistical Methods

Some metrics discussed in this thesis use the statistical tools arithmetic mean and standard deviation.
In the remainder of this thesis the arithmetic mean will be referred to by the term mean. Hence,
some functions will be introduced which act as representatives of the corresponding mathematical
formulas.

In Equation 4.10 the arithmetic mean formula is stated. The equation utilizes the set X = {x0, x1, ..., xn},
which consists of n values, with n = |X|. The values of the set can either be an integer or a real
number, such that x0, x1, ..., xn ∈ R. The formula is referred to in the remainder of this work by the
function mean(X).

µ =
1
|X|

|X|

∑
i=1

xi (4.10)

Equation 4.11 states the formula for the standard deviation which utilizes the set X and the
arithmetic mean µ. In the remainder of this work the standard deviation is referred to by the
function standardDeviation(X,µ).

σ =

√√√√ 1
|X| − 1

|X|

∑
i=1

(xi − µ) (4.11)

Moreover, in Equation 4.12 the function cardinality(Y) is stated, which is used in the remainder to
calculate the set X, such that X = cardinality(Y), wgich is based on the content of a given set Y.
Set Y shows the characteristic that it consists of subsets, such that Y = {Y0, Y1, ..., Yn}. The function
counts the comprised elements for each subset Yi, with 0 ≤ i ≤ n.

cardinality(Y) =
n⋃

i=1
|Yi| (4.12)

1other solutions are possible as well

28

4.2. Syntactic and Semantic Checks

Example 4.6 (Mean and Standard Deviation)
Let Y = {{a, b, c}, {d, e, f , g}, {x, y}} be a set consisting of 3 subsets containing arbitrary elements.
Then cardinality(Y) results in X = {3, 4, 2}. Applying Equations 4.10 and 4.11 on set X result in
µ = 3 and σ = 0, 816. �

In the remainder of this work the mean value and its corresponding standard deviation are stated in
the notion µ± σ.

4.2. Syntactic and Semantic Checks

In the following, checks are introduced with respect to the syntactic and semantic quality of an
ESTS model. The goal of these checks is to ensure that a model does not exhibit contradictions. The
checks addressing the syntactic and semantic quality issue in terms of inter-model communication,
ambiguous variable definitions, valid guard and attribute update functions, detection of hidden transitions
and non-determinism in terms of overlapping guards.

4.2.1. Input and Output Message Consistency

ESTSsare able to communicate with each other by means of input and output messages. The objective
of the input and output messages consistency check is to detect messages which are either not sent
but received or sent but not received by another ESTS. The presence of such messages is an indicator
of an inconsistent system whose behavior cannot be guaranteed to be sound.

Messages which are sent but not received by another ESTS are detected by means of the function
notReceivable() as shown in Equation 4.13. e′ indicates the ESTS for which the output messages are
being checked. E represents the set of all ESTS of the system including the ESTS e′. The formula
removes from the output label set of ESTS e′ all input labels of the united input label set of the other
ESTS as far as the label exists. Thus, if an output label of e′ is referenced as an input label in another
ESTS, this label is removed from the output label set. Therefore, the result of the function is either
the empty set if every output message of e′ is receivable. Otherwise the result is a non-empty set,
comprising all non-receivable messages, which indicates an inconsistency.

notReceiveable(e′, E) = Le′
o \

⋃
e∈E\{e′}

Le
i (4.13)

Example 4.7 (Message never received)
Consider a system E consisting of three ESTS instances e1, e2 and e3 as shown in Figure 4.5, such
that E = {e1, e2, e3}. The output messages are decorated with an ! and input messages with a ?.
Parameters have been neglected to simplify the example. This notation will also be used for all
examples in this sub chapter. In this example the output messages of instance e1 are checked for

29

4. Static Analysis

whether they are receivable or not by calling notReceivable(e1, E). ESTS e1 only sends the messages
m1 and m2 so that Le′

o = Le1
o = {m1, m2}. The ESTS e2 and e3 receive one message each so that the

input label sets are defined as Le2
i = {m1} and Le3

i = {m3}, respectively. Applying the function
in Equation 4.13, such that {m1, m2} \ ({m1} ∪ {m3}), results in the set {m2}. The resulting set
indicates that message m2 is not received by ESTS e2 or e3. �

A2

A1

!m2

A0

!m1

(a)ESTS a

B0

B1

?m1

(b)ESTS b

C0

C1

?m3

(c)ESTS c

Figure 4.5.: System consisting of three ESTS models a, b and c, in which the output message m2 of ESTS a is not received.

The detection of input messages which are not sent by another ESTS is realized in a similar way
by means of the function notSent() as shown in Equation 4.14. e′ represents the ESTS for which
all input messages are checked. The difference to Equation 4.13 is that in this case the united set
of output labels of all other ESTSs, except e′, are removed from the input label set of e′. As in the
detection of non-receivable output messages, the empty set indicates that no inconsistency has been
exhibited, which means every expected input message of e′ is sent by another ESTS of set E \ {e′}.
The non-empty set indicates that an inconsistency regarding messaging exists or that the message is
produced by the environment. It comprises the input message of e′ which are not sent by the other
ones.

notSent(e′, E) = Le′
i \

⋃
e∈E\{e′}

Le
o (4.14)

Example 4.8 (Message not sent)
Consider a system E consisting of three ESTS instances e1, e2 and e3 as shown in Figure 4.7 such
that E = {e1, e2, e3}. In this example the input messages of instance e1 are checked for whether they
are sent by any other ESTS. ESTS e1 expects to receive two input messages such that the set of input
labels of e1 is Le1

i = {m1, m2}. The ESTS e2 and e3 send one message each so that the output label
sets are defined as Le2

o = {m1} and Le3
o = {m3}, respectively. Applying the function notSent(e1, E),

30

4.2. Syntactic and Semantic Checks

such that {m1, m2} \ ({m1} ∪ {m3}), results in the set {m2}, which indicates that message m2 is not
sent by ESTS e2 and e3. �

A2

A1

?m2

A0

?m1

(a)ESTS a

B0

B1

!m1

(b)ESTS b

C0

C1

!m3

(c)ESTS c

Figure 4.6.: System consisting of three ESTS models a, b and c, in which the input message m2 of ESTS a is not sent by any of
the other ESTSs.

4.2.2. Ambiguous Variable Definition

Ambiguous variable definition addresses the issue that a variable, either an attribute or a parameter,
is defined with the same name several times in the corresponding variable scope. The scope
of an attribute refers to an ESTS and the scope of a parameter to the corresponding input or
output transition. Ambiguous variable definitions result in an inconsistent model and, as a further
consequence, affects the readability and understandability of a model.

ambiguousAttribs(ι) = {(ai, ui), (aj, uj) ∈ ι0 | ai = aj ∧ i 6= j} (4.15)

The existence of a ambiguous attribute definitions is checked by considering the initial attribute
valuation ι0 ∈ UA. An attribute is assumed not to be uniquely defined if ι0 contains more than one
corresponding entry for an attribute. On that account, the function ambiguousAttribs(ι0), which
is defined in Equation 4.15, is applied to ι0 in order to filter multiple attribute valuations. The
equation shows that only the name of the attribute is considered, while the corresponding values
and therefore the value domains are neglected. The function returns as a result the set ιmultiple. The
set is either a subset of ι0, such that ιmultiple ⊆ ι0 applies, or the empty set if no multiple definitions
are present.

31

4. Static Analysis

Example 4.9 (Ambiguous Attribute Definition)
Consider the initial attribute valuation ι0 = {(a1, 1.0), (a2, true), (a3, 2), (a1, 2.0)}. Applying Equation
4.15 results in ιmultiple = {(a1, 1.0), (a1, 2.0)}, which comprises two entries for attribute a1. The result
shows that the attribute definition and, as a further consequence, the initial values are ambiguous. �

∀ς∈Upar(l),l∈Lio
ambiguousParams(ς) (4.16)

ambiguousParams(ς) = {(pi, ui), (pj, uj) ∈ ς | pi = pj ∧ i 6= j} (4.17)

In contrast to attributes, parameters only have transition scope. That means that a parameter can
be defined with the same name at different output and input transitions, but not twice at the
same transition. Thus, the parameter valuation for each transition has to be considered in order to
filter ambiguous parameter definitions. Equation 4.17 state the function ambiguousParams(). This
function is applied to each parameter valuation of a corresponding input and output transitions as
shown in 4.16.

Example 4.10 (Ambiguous Parameter Definition)
Consider an ESTS which consists of an output transition t1 ∈ T with label l = send and an input
transition t2 ∈ T with label l = receive. The output transition has two corresponding parameters
such that ςt1 = Upar(t1) = {(p1, 0.0), (p1, true), (p2, true)}. The input only has one defined parameter
such that ςt2 = Upar(t2) = {(p1, true)}. Applying Equation 4.17 to either parameter valuations ςt1

and ςt2 , the following result sets are retrieved: ambiguousParams(ςt1) = {(p1, 0.0), (p1, true)} and
ambiguousParams(ςt2) = ∅ �

A

B

!send<int p1,bool p1,bool p2>

C

?receive<bool p1>

Figure 4.7.: Example of an ESTS consisting of an output and an input to depict the ambiguity of parameter definitions.

32

4.2. Syntactic and Semantic Checks

4.2.3. Validation of Guard and Attribute Update Functions

This section introduces a check which addresses the correctness of guard and attribute update
function expressions. The check is responsible for proving these expressions to be syntactically
correct with regard to the proper use of operators and operands in the expression. Therefore, the
check validates an expression in terms of (1) the use of invalid operands, (2) incompatibility of operands
with respect to the operator, (3) existence of implicit type conversions and (4) whether an expression is allowed
to be used in a root expression of guards and attribute update functions in general. For the purpose of
checking guards and actions the corresponding expressions are transformed to the BET structure to
which the check is actually applied.

aaaaaaaaa
Operators

Operands
Left Right Evaluated Value

ArithmOp \ {++,−−} exp ∈ ArithmExp exp ∈ ArithmExp expValue ∈ Z∪R

∨c, ι, ς ∈ Z∪R ∨c, ι, ς ∈ Z∪R

ArithmOp \ {+,−, ∗, /, %} ι, ς ∈ Z expValue ∈ Z

AssignOp ι ∈ Z∪R∪B exp ∈ ArithmExp expValue = ∅
∨c, ι, ς ∈ Z∪R∪B

ComparisionOp \ {==, ! =} exp ∈ ArithmExp exp ∈ ArithmExp expValue ∈ B

∨c, ι, ς ∈ Z∪R ∨c, ι, ς ∈ Z∪R

ComparisionOp \ {<,≤,>,≥} exp ∈ ArithmExp exp ∈ ArithmExp expValue ∈ B

∨c, ι, ς ∈ Z∪R∪B ∨c, ι, ς ∈ Z∪R∪B

LogicalOp \ {!} exp ∈ ComparisionExp exp ∈ ComparisionExp expValue ∈ B

∨exp ∈ LogicalExp ∨exp ∈ LogicalExp
LogicalOp \ {&&, ‖} exp ∈ ComparisionExp - expValue ∈ B

Table 4.1.: Mapping of operators to valid operands.

In order to check the proper structure of an expression, syntactic rules must be in place, which
indicate which types of operand is allowed for which type of operator. These constraints are
depicted in Table 4.1, in which the possible left and right operands for each expression type are
stated. The operands can either be another expression exp, a literal c, an attribute value ι or a
parameter value ς. The column Evaluated Value states to which value domain, denoted as expected
value expValue, an expression evaluates, once it has been executed. Considering the definition for
ArithmOp \ {++,−−}, where the left operand can be any arithmetic expression, due to definition
exp ∈ ArithmExp, a literal, an attribute or a parameter value, due to definition c, ι, ς ∈ Z∪R. The
right operand is defined in the same way as the left operand. When executing the expression, it
evaluates to a value which is either an integer or a real number depending on the type of the
operands. In the case of unary operators, such as ”++”, ”−−” and ”!”, only the left operand column
is considered. An expression which does not conform to the definitions in Table 4.1 is considered
syntactically incorrect.

33

4. Static Analysis

+

+ 1

+ b

a 1

Figure 4.8.: Binary Expression Tree of expression a + 1 + b + 1.

Example 4.11 (Syntactically correct and incorrect expressions)
Considering the binary arithmetic expression ((a + 1) + b) + 1, where a and b are arbitrarily chosen
attributes of the integer value domain. The nested expression a + 1 conforms to the definition in
Table 4.1, since the left operand is ι ∈ Z and the right operand complies to c ∈ Z. Afterwards
the nested expression ((a + 1) + b) is considered, in which a + 1 functions as the left operand.
This expression is syntactically correct as well, since the left operand is an arithmetic expression
exp ∈ ArithmExp, whereas the right operand conforms to the definition ι ∈ Z. Finally, the overall
expression ((a+ 1)+ b)+ 1, with the left operand ((a+ 1)+ b) and the right operand 1, is considered
correct. This is the case as the left operand is an arithmetic expression and the right operand a literal.
Thus, either operands comply to the syntactic definition of arithmetic operators.

By contrast, the expression (a < 1) + b is syntactically not correct. The nested expression a < 1 itself
is a correct comparison expression as it complies to the definition of ComparisionOp \ {++,−−}.
Nevertheless, using this expression in combination with an arithmetic operator as the left operand
does not obey the syntactic rules for arithmetic expressions. �

Once the syntactic correctness of an expression has been ensured, the binary arithmetic operators,
defined as the set ArithmOp \ {++,−−}, and the comparison operators of set ComparisionOp
are checked with respect to their compatibility with the operands involved and their respective
value domains. Thus, an expression can be considered erroneous although it conforms to the
syntactic definitions in Table 4.1. Table 4.2 shows the compatibility constraints applied to binary
arithmetic and comparison expressions. Basically the table states two cases where operands do not
match and therefore lead to a check violation. The table shows for which operator and expression
which violation is detected. The first case considers expressions with numeric operands, so that an
operand value corresponds either to a literal, attribute valuation or parameter valuation. When the
operands do not match an implicit type conversion has been detected. The second case addresses those
expressions where Boolean operands are allowed as well. If at least one operand is of the Boolean
type the other operand must be of the same type, otherwise an incompatibility of the operands is
detected.

34

4.2. Syntactic and Semantic Checks

Expression Type of Violation
op ∈ {==, ! =,<,≤,>,≥ (a) R op Z Implicit Type Conversion
=,+,−, /, ∗, %} (b) Z op R

op ∈ {==, ! =,=} (a) {R, Z} op B Incompatible Operands
(b) B op {R, Z}

Table 4.2.: Compatibility of operands in terms of their value domains.

Finally, the guard and action expressions are checked for whether an arithmetic, assignment,
comparison or logical expression can be used as root expression exproot. The root expression
exproot of BET from Figure 4.8 is exproot = 〈+, exp, 1〉, the operator is ”+”, the left operand is an
expression and the right operand a literal representing an integer value. The overall type of the
expression ((a + 1) + b) + 1 is determined by the operator type of the BET’s root expression, which
is highlighted in red in the figure. Since the operator of the root expression is ”+” and thus the
operator is an arithmetic operator, the overall expression belongs to an arithmetic expression, such
that exproot ∈ ArithmExp. Table 4.3 states the root expression constraints, where 3 indicates the
possibility to act as root expression. Expression types which are not present in the table at all are
not allowed.

Expression Type Guard Action
ArithmExp
AssignExp 3

ComparisionExp 3

LogicalExp 3

Table 4.3.: Allowed root expressions for guards and actions.

Once all required prerequisites for determining a correct expression have been defined, checking of
an expression is carried out by means of Algorithm 3. Therefore, the method CHECK EXPRESSION()
is called with the root expression exproot of the BET. The root expression either corresponds to a
guard or to an action. Thus, the transformation to the BET structure is carried out beforehand and
therefore either by calling bet(ϕ) or bet(ρ).

Basically the method consists the following main steps:

1. Check the left operand type opdl of the given expression exp.

a) If the left operand is either a variable valuation or a literal, the corresponding value
domain is determined.

b) If the left operand is an expression, the method CHECK EXPRESSION() is called re-
cursively with the left operand as argument. This step denotes the traversal of the left
sub-tree in terms of the BET structure. The traversal results in the determination of the
overall value domain of the left sub-tree.

2. Check the right operand opdr type of the given expression exp

a) If the right operand is either a variable valuation or a literal, the corresponding value
domain will be determined.

35

4. Static Analysis

b) If the right operand is an expression, the method CHECK EXPRESSION() is called
recursively with the left operand as argument. This step denotes the traversal of the right
sub-tree in terms of the BET structure. The traversal results in the determination of the
overall value domain of the right sub-tree.

3. Call function VALIDATE EXPRESSION() with the current expression exp and the determined
value domains for the left and right sub-tree. The function validates the given expression with
respect to the defined rules. The algorithm stops if the function returns result INVALID.

4. Return the overall expression value domain which depends on the left and right operand. If
the expression operator belongs to a comparison or logical operator the value domain depends
on the operator, since for these expression always the Boolean value domain is returned. On
the other side, the determined value domain depending on the value domains of the left and
right operands is returned.

The algorithm validates the BET bottom-up by calling the method CHECK EXPRESSION() recur-
sively as long as the left and/or right operands correspond to an expression. The reason is that
only those operands, which are associated to an attribute, parameter or literal, correspond to leaf
nodes in the context of an BET. The value domains of these operands define the overall value
domain of the corresponding expression. The overall value domain of the expression defines the
value domain of the parent expression if one exists. Thus, the tree and in further consequences each
sub-tree is traversed until an expression is processed whose left or right operand corresponds to
an attribute, parameter or literal. In that case the corresponding value domain is determined and
passed to the previous recursive step. Once an operator of a certain recursive traversing step and
the value domains of its operands are known, the expression is validated. In the event the validation
is successful, the overall expression type is passed to the previous recursive step, which means to
the parent expression for which this expression acts as operand. Otherwise a violation is reported
and traversing of the BET is aborted.

<

+ 10

+ 1

a b

(a)BET of expression (((a + b) +
1) < 10.

<

+ 10

+ 1.0

a b

(b)BET of expression (((a + b) +
1.0) < 10.

Figure 4.9.: Example of guard expressions in the BET structure.

36

4.2. Syntactic and Semantic Checks

Algorithm 3 Validation of Guards and Action Expressions
1: function check expression(exp)→ U
2: if exp.opdl ∈ UV ∨ is literal(exp.opdl) then
3: Ul ← determine domain(exp.opdl);
4: else
5: Ul ← check expression(exp.opdl);
6: end if
7:
8: if exp.opdr ∈ UV ∨ is literal(exp.opdr) then
9: Ur ← determine domain(exp.opdr);

10: else
11: Ur ← check expression(exp.opdr);
12: end if
13:
14: result← validate expression(exp,Ul ,Ur);
15: if result == INVALID then
16: ”Abort algorithm!”;
17: end if
18:
19: if exp.op ∈ ComparisionOp ∪ LogicalOp then
20: return B;
21: end if
22:
23: return Ul ;
24: end function

Example 4.12 (Expression Validation)
Consider the expression ((a + b) + 1) < 10 whose BET representation is shown in Figure 4.9a, with
a and b are assumed to be arbitrary chosen attributes of the integer domain. The root expression
of the BET is exproot = 〈<, exp′, 10〉. According to the algorithm, in each recursive step the left
sub tree is traversed first. Thus, CHECK EXPRESSION() is called the first time with exproot.opdl

as argument, with the left operand corresponding to exp′ = 〈+, exp′′, 1〉. Since the left operand of
exp′ is an expression, CHECK EXPRESSION() is called again recursively with exp′′ as argument,
with exp′′ = 〈+, a, b〉. Due to the fact that the left operand of exp′′ corresponds to an attribute no
further recursive-step is required. Next, the right sub-tree of expression exp′′ will be considered,
but no recursive step is needed since the right operand corresponds to an attribute. Due to the
fact that both operands of exp′′ correspond to attributes the value domain of these operands are
determined as integers. Thus, U′′l = U′′r = Z applies in this recursive step which validates the
sub-expression a + b. Validating a + b results in no violation and therefore this recursive step returns
with the integer value domain as result which represents the overall value domain of a + b and
exp′′, respectively. This overall domain value is passed to the previous, not yet finished, recursive
step which processes the expression (a + b) + 1. Thus, the domain value of exp′.opdl is now known,
such that U′l = Z. Since the left operand is evaluated the value domain of the right operand has to
be determined next. The right operand is an attribute of the integer value domain, such that U′r = Z.
The validation of the exp′ causes no violation and the overall domain value Z is returned. Finally,
the entire expression exproot is validated, due to the fact that the algorithm is now back at the first
call of CHECK EXPRESSION() . The left operand value domain has been evaluated as Ul = Z. As
the right operand corresponds to the literal 10 of the integer value domain, the value domain of
the left operand is Ur = Z. The call of VALIDATE EXPRESSION() for expression exproot leads to no
violation. Therefore, the entire expression ((a + b) + 1) < 10 is valid.

37

4. Static Analysis

Figure 4.9b depicts a BET of an invalid expression. Validation is carried out exactly in the same
way as for the previous example. The validation differs only in the recursive step which validates
expression (a + b) + 1.0. Since in this recursive step, with exp′ = 〈+, exp′′, 1.0〉, the corresponding
value domains are U′le f t = Z and U′right = R. Due to the determined left and right operand value
domains a implicit type conversion is detected according to the definition in Table 4.2. �

4.2.4. Detection of Hidden Transitions

The goal of this check is the detection of so called hidden transitions. This type of check during a
static analysis has already been proposed in [16] by Schwarzl et al. in the context of UML state
charts. Basically a hidden transition is a transition which cannot be executed since a guard of a
higher prioritized transition, corresponding to the same label, exists that covers the same or a larger
value range than its own guard. As a consequence the hidden transition will never be executed. A
hidden transition violation can only occur within the outgoing transition set of a particular state.
Thus, the check is applied to each outgoing transition set of each state of an ESTS.

Let ta
l1

, tb
l2

be two transitions with priorities a and b, with a > b, and with labels l1 and l2, respectively.
For the labels must hold that l1 = l2. Then both transitions correspond to the outgoing transition
set of the same state, such that ta

l1
, tb

l2
∈ stateOutTrans(s), with s denoting the source state of both

transitions. In the following, the declaration of the labels l1 and l2 are neglected and thus the
transitions are denoted as ta and tb, and it is assumed that the labels are equal.

Let valueRange(ta.ϕ)V be the value range over the variables of set V which is covered by guard
ϕ of transition ta. And let valueRange(tb.ϕ)V be the value range over the variable set V which is
covered by the guard of transition tb. Since a > b applies, ta shows a higher priority than transition
tb. Moreover, it is assumed that both guards depend only on the variable x, such that V′ = {x}
and ta.ϕ, tb.ϕ ∈ F(V′), with F(V′) ⊆ F(V). This assumption is being made only due to convenience
purposes in order to simplify the following explanations.

In order to prove that transition ta hides transition tb, it has to be proven that the former transition
guard entirely covers the value range of the latter transition guard. Thus, valueRange(tb.ϕ)V′ \
valueRange(ta.ϕ)V′ = ∅ must be proven. Due to the fact that determining the entire value range of
guards are a tedious undertaking, an alternative approach is required. On that account, this check
uses constraint solving.

The aim of constraint solving is to find a variable valuation for the involved variables, in this
very case for x, which proves that the entire value range of tb.ϕ is covered by ta.ϕ. Basically for
variable x, a value y should be determined which complies with y /∈ valueRange(ta.ϕ)V′ ∧ y ∈
valueRange(tb.ϕ)V′ . In the context of constraint solving a valuation for x has to be determined which
solves the constraint c =!(ta.ϕ) ∧ tb.ϕ. While the first condition of the constraint denotes a value for
x, which is not in the value range of the guard of transition ta, the second condition depicts the case
that the value of x must be in the value range of the guard of transition tb. In terms of constraint
solving a solution for the constraint, such that constraintSolving(c) = φ, denotes that not the total

38

4.2. Syntactic and Semantic Checks

value range is being covered. By contrast no result, so that constraintSolving(c) = ⊥, depicts a
hidden transition violation.

A

B

!m1
[a > 0 && a < 10]

prio:5

C

!m1
[a > 5 && a < 8]

prio:0

Figure 4.10.: Simple example depicting the transition hiding issue.

Example 4.13 (Hidden Transition)
Consider Figure 4.10 which depicts state A with two outgoing output transitions t5, t0, with t5 corre-
sponding to A !m1−−→ B which is an input transition with priority 5, and t0 corresponding to A !m1−−→ C
which is an input transition with priority 0. Both transitions are outgoing transitions of state A, such
that t5, t0 ∈ stateOutTrans(A). Moreover, transition t5 shows the higher priority than transition t0.
The two guards only depend on a single attribute named a, such that the variable set V′ = {a}.
Thus, the corresponding value ranges are valueRange(t5.ϕ)V′ = {(a, {1, 2, 3, 4, 5, 6, 7, 8, 9})} and
valueRange(t0.ϕ)V′ = {(a, {6, 7})}. As stated previously, a hidden transition exists if the higher
prioritized transition covers the same or a larger value range of the lower prioritized transition.
Applying constraint solving to the constraint c = (a > 0 && a < 10) && (a > 5 && a < 8) shows
that the constraint is not solvable and thus the result is constraintSolving(c) = ⊥. �

As stated in [27] the priority of a transition defines the execution order if multiple enabled transitions,
corresponding to the same label, exist. Thus, only transitions with the same label can hide each
other. For this reason the transitions must be grouped according to their label.

Let PRIO = {px, px+1, ..., px+n}, with px > px+1 > ... > px+n, be a set of all priorities assigned
to the transitions of the outgoing transition set. Then T∗y = {Tpx

y , Tpx+1
y , ..., Tpx+n

y } is an ordered
list of transition sets, each set corresponding to a certain priority, with px, px+1, ..., px+n ∈ PRIO
and therefore denoting a grouping by priorities. The sets comprise transitions of type y, with
y ∈ {ol , γ, τ, dl , il}, with ol denoting transitions of type output corresponding to label l, γ of type
completion, τ of type unobservable, dl of type delay with the timeout term l and il transitions of type
input corresponding to label l. This fact depicts a grouping according to the above defined transition
type constraints. Thus, the sets in dependence of the transition types are defined as follows:

• The set Tp
dl

= {t ∈ stateOutTrans(s) | t ∈ Td ∧ l ∈ timeoutTerm(s) ∧ t.p = p} denotes all
delay transitions of the outgoing transition set of state s which correspond to priority p and to

39

4. Static Analysis

the label l which corresponds to the timeout term.
• The set Tp

γ = {t ∈ stateOutTrans(s) | t ∈ Tγ ∧ t.p = p} denotes all completion transitions of
the outgoing transition set of state s which correspond to priority p.

• The set Tp
τ = {t ∈ stateOutTrans(s) | t ∈ Tτ ∧ t.p = p} denotes all unobservable transitions of

the outgoing transition set of state s which correspond to priority p.
• The set Tp

ol = {t ∈ stateOutTrans(s) | t ∈ To ∧ l ∈ outputMessages(s) ∧ t.p = p} denotes all
output transitions of the outgoing transition set of state s which correspond to priority p and
to message l.

• The set Tp
il
= {t ∈ stateOutTrans(s) | t ∈ Ti ∧ l ∈ inputMessages(s) ∧ t.p = p} denotes all

input transitions of the outgoing transition set of state s corresponding to priority p and to
message l.

The list T∗y shows a descending ordering based on the priority. Additionally the set T is de-
fined containing all outgoing transitions grouped by type and priority, such that T = T∗γ ∪
T∗τ

⋃
l∈inputMessages(s) T∗il

⋃
l∈outputMessages(s) T∗ol

⋃
l∈timeoutTerm(s) T∗dl

.

Algorithm 4 Detection of Hidden Transitions

1: procedure DETECT HIDDEN TRANSITIONS(T)
2: for all transGroup ∈ T do
3: transGroupList← TO LIST(transGroup);
4: for i← 1, transGroupList.size() do
5: for j← 2, transGroupList.size() do
6: highPrioGroup← transGroupList.get(i);
7: lowPrioGroup← transGroupList.get(j);
8: check groups(highPrioGroup, lowPrioGroup);
9: end for

10: end for
11: end for
12: end procedure
13:
14: procedure CHECK GROUPS(highPrioGroup, lowPrioGroup)
15: for all t ∈ highPrioGroup do
16: for all t′ ∈ lowPrioGroup do
17: result← ⊥;
18: c←!(t.ϕ) ∧ t′.ϕ;
19: result← solveConstraint(c);
20: if result == ⊥ then
21: ”Transition t hides transition t′”;
22: end if
23: end for
24: end for
25: end procedure

The constraint solving task is applied to each possible pair of high and low prioritized transitions of
the list T∗y . On this account all transitions of set Tpx

y are checked for whether they hide any transition
of sets the Tpx+1

y , ..., Tpx+n
y . Thus, transitions of a set corresponding to a certain priority px are solely

40

4.2. Syntactic and Semantic Checks

checked for whether the can hide transitions of sets corresponding to a lower priority px+1 ... px+n,
with px > px+1 > ... > px+n.

Algorithm 4 depicts the algorithm in order to detect potential hidden transitions at a single state.
The defined procedure DETECT HIDDEN TRANSITIONS expects as input the set T. Hence, the
outgoing transition set of the state is already grouped. For each transition group transGroup ∈ T,
the comprised transitions sets are checked pairwise. This fact is depicted in the algorithm with the
statements highPrioGroup← transGroupList.GET(i) and lowPrioGroup← transGroupList.GET(j),
where highPrioGroup corresponds to a set of transitions of a higher priority than the transitions
of set lowPrioGroup. The actual check is carried out in procedure CHECK GROUPS, where for all
possible pairs of high and low prioritized transitions constraint solving is applied.

A

B

!m1
[a > 0 && a < 10]

prio:10

C

!m1
[a == 8]
prio:10

D

!m1
[a > 1 && a < 4]

prio:5

E

!m2
[a > 10 && a < 12]

prio:0

Figure 4.11.: Example for illustrating the application of Algorithm 4.

Example 4.14 (Detection of Hidden Transitions)
Consider Figure 4.11 illustrating state A which has four outgoing transitions, all of them of type
output. Based on that, the set T contains two transition sets, in particular T∗om1

and T∗om2
, with T∗om1

=

{T10
om1

, T5
om1
} and T∗om2

= {T0
om2
}. Furthermore, T10

om1
= {(A !m1−−→ B), (A !m1−−→ C)}, T5

om1
= {(A !m1−−→ D)}

and T0
om2

= {(A !m2−−→ E)}.

Applying Algorithm 4 the following pairwise constraint solving task is executed on the transition
groups T10

om1
and T5

om1
.

1. Solving the constraint ”!(a > 0 && a < 10) && (a > 1 && a < 4)” of transitions A !m1−−→ B
and A !m1−−→ D, respectively, results in no solution, which indicates that the low prioritized
transition is hidden.

2. Solving the constraint ”!(A == 8) && (a > 1 && a < 4)” of transitions A !m1−−→ C and
A !m1−−→ D, respectively, results in φ = {(a, val)} with val ∈ {2, 3}.

Thus, the algorithm detects a single hidden transition since transition A !m1−−→ B hides transition
A !m1−−→ D. No constraint solving is carried out for group T0

om2
since no other group exists which

corresponds to output transitions of higher priority and message m2. �

41

4. Static Analysis

4.2.5. Non-determinism in Terms of Overlapping Guards

This check validates an ESTS in terms of non-deterministic behavior. The issue is addressed with
respect to overlapping guards which can occur when a state has multiple outgoing transitions.
Overlapping guards denote a certain variable valuation for the variables of the involved guards so
that more than one guard evaluates to true. As a result the corresponding transitions are enabled
and therefore executed at the same time. In Figure 4.13 seven non-determinism cases are depicted,
which are detected by this check.

A

B

!m1
[x >= 5 && x <= 10]

C

!m1
[x >=0 && x <= 10]

Figure 4.12.: Simple example of overlapping guards.

Example 4.15 (Simple example of overlapping guards)
Figure 4.12 depicts a simple ESTS consisting of the states A, B and C. State A has two outgoing
transitions, both corresponding to an output transition in order to send message m1. Thus, the

ESTS has the transition (A
!m1[x ≥ 5 && x ≤ 10]−−−−−−−−−−−−→ B) and (A

!m1[x ≥ 0 && x ≤ 10]−−−−−−−−−−−−→ C). In order to ensure
that state A does not exhibit a non-deterministic behavior, the guards of both transitions have to
be verified whether they have an overlapping value range or not. The validation of both guards
”x ≥ 5 && x ≤ 10” and ”x ≥ 0 && x ≤ 10” shows that both guards evaluate to true for
x ∈ [5; 10]. Thus, both transitions are enabled which leads to a non-determinism behavior. �

(1) The first case is depicted by Figure 4.13a which shows an unobservable transition. Actually this
case represents an exception since its detection is not carried out by checking the guards. The reason
is that the existence of an unobservable transition is already an indicator for non-determinism.
Therefore, as soon as a state has an outgoing transition of type unobservable a potential non-
determinism situation is detected. Thus, the detection of this non-determinism case is not covered
by this check.

(2) The second case, which is illustrated in Figure 4.13b, is caused by two input transitions of same
priority, which are enabled at the same time. This non-determinism issue would lead to two different
states. Thus, the system cannot decide to which state it should proceed. Both input transitions must
be equivalent in terms of their corresponding message. Meaning that for an arbitrary pair of input
transitions t, t′ ∈ Ti applies that t.l = t′.l.

(3) The third case is caused by a pair of an input and output transition, as depicted in Figure 4.13c,

42

4.2. Syntactic and Semantic Checks

which are both enabled. Thus, the system cannot decide whether an output should be produced or
it should be waited for the input.

(4) The non-determinism example shown in Figure 4.13d denotes the issue if two output transitions
are being enabled at the same time. Hence, the system cannot decide which output should be
produced. In the event that the corresponding messages of the output transitions are equal, such
that t.l = t′.l with t, t′ ∈ To, the priority of the transitions must be equal as well. Thus, in this case
non-determinism within a set of output transitions corresponding to the same message and priority
can occur. In contrast to that also non-determinism within a set of output transitions with different
priority can occur, but only if their corresponding messages are not equal.

(5) The fifth case, depicted in Figure 4.13e, denotes non-determinism caused by two completion
transitions of same priority which are enabled at the same time. Once again the system cannot
decide in such a situation to which state it should proceed.

(6) The next non-determinism scenario is related to a pair of enabled output and completion
transition, which is illustrated in Figure 4.13f. In this case the system cannot decide whether the
output should be produced or not.

(7) The last non-determinism case concerns delay transitions as shown in Figure 4.13g, where each
of the delay transition corresponds to another timing group. If the timeout terms are identical
in terms of their values, both delay transitions are executed at the same time which leads to a
non-determinism behavior. Moreover, the transitions must have the same priority.

Basically the algorithm to detect overlapping guards consists of two steps:

1. Group transitions according to the previously defined non-determinism cases.
2. Pairwise constraint solving of conjugated guards of each group by considering the comprised

transition types.

The grouping step is applied to each outgoing transition set stateOutTrans(s), which is defined in
Equation 3.1, of each state s of an ESTS , with s ∈ E. The goal is that the transitions are compared with
respect to the prior described non-determinism cases. Thus, the following groups are introduced:

• ∀m ∈ inputMessages(s)T̃
p
i(m)

= {t ∈ stateOutTrans(s) | t ∈ Ti ∧ t.l = m ∧ t.p = p}, with T̃p
i(m)

is a
set containing all input transitions which correspond to priority p of the outgoing transition
set of state s. All input transitions correspond to the same message m. An input transition set
is created for each input message m ∈ inputMessages(s) of state s. This groups are related to
non-determinism case (2).

• The group T̃∗io = {t ∈ stateOutTrans(s) | t ∈ Ti ∪ To} is related to case (3) and contains all
input and output transitions of the outgoing transition set of state s.

• ∀m ∈ outputMessages(s)T̃
p
o(m)

= {t ∈ stateOutTrans(s) | t ∈ To ∧ t.l = m∧ t.p = p}, with T̃p
o(m)

is a
set containing all output transitions which correspond to priority p of the outgoing transition
set of state s. All output transitions correspond to the same message m. An output transition
set is being created for each output message m ∈ outputMessages(s) of state s. These groups
are related to non-determinism case (4).

43

4. Static Analysis

A1

A2

τ

(a)Unobservable

B1

B2

?a

B3

?a

(b)Input

C1

C2

?a

C3

!b

(c)IO Conflict

D1

D2

!a

D3

!b

(d)Output

D1

D2

γ

D3

γ

(e)Completion

E1

E2

!a

E3

γ

(f)OC Conflict

G1

G2

δ(10)

G3

δ(10)

(g)Delay

Figure 4.13.: Non-Determinism cases in terms of overlapping guards. (Adapted from [27])

• The group T̃∗o = {t ∈ stateOutTrans(s) | t ∈ To} is related to case (4) as well, and contains all
output transitions corresponding to the outgoing transition set of state s.

• The group T̃p
γ = {t ∈ stateOutTrans(s) | t ∈ Tγ ∧ t.p = p} is related to case (5) and contains

all completion transitions of priority p which correspond to the outgoing transition set of state
s.

• The group T̃∗oγ = {t ∈ stateOutTrans(s) | t ∈ To ∪ Tγ ∧ t.p = p} is related to case (6) and
contains all input and output transitions which correspond to priority p of the outgoing
transition set of state s.

• ∀l ∈ timeoutTerm(s)T̃
p
d(l)

= {t, t′ ∈ stateOutTrans(s) | (t ∈ Tg
d) ∧ (t′ ∈ Tg′

d) ∧ (t.p = p) ∧ (t.l =

t′.l) ∧ (t.l = l) ∧ (t′.l = l) ∧ (t′.p = p) ∧ (g 6= g′)} is related to case (7) and contains only
delay transitions, corresponding to the same timeout term ”l, of different timing groups such
that g 6= g′. A delay transition group is created for each timeout term l ∈ timeoutTerm(s) of
state s.

While the groups T̃∗io and T̃∗oγ exist once, the groups T̃p
γ , T̃p

o(m)
, T̃∗o , T̃p

d(l)
and T̃p

i(m)
can exist several

times. The number of these groups depend on the one hand from the distinct priorities and on
the other hand from the distinct input and output messages, and timeout terms of the outgoing

44

4.2. Syntactic and Semantic Checks

transition set of a state. No group are created for the first non-determinism case since unobservable
transitions are not considered in terms of checking for overlapping guards.

A

B

γ

C

γ

D

!m1

E

!m2

F

?m3

(a)Example for demonstrating grouping in terms
of cases (3), (4), (5) and (6).

A

B

?m1

C

?m1

D

?m2

E

?m2

(b)Example for demonstrating grouping for case
(2).

A

B

(a)

C

(a)

D

(100)

E

(100)

(c)Example for demonstrating grouping for case
(7).

Figure 4.14.: Examples of outgoing transition sets in order to demonstrate grouping.

Example 4.16 (Grouping)
Consider Figure 4.14 depicting three examples of outgoing transition sets for state A. Assuming
that all of the transitions exhibit the same priority the following transition groups are created.

For the example depicted in Figure 4.14a the following groups are created:

• T̃p
i(?m3)

= {(A ?m3−−→ F)}

• T̃∗io = {(A !m1−−→ D), (A !m2−−→ E), (A ?m3−−→ F)}
• T̃p

o(!m1)
= {(A !m1−−→ D)}

• T̃p
o(!m2)

= {(A !m2−−→ E)}

• T̃∗o = {(A !m1−−→ D), (A !m2−−→ E)}
• T̃p

γ = {(A
γ−→ B), (A

γ−→ C)}
• T̃∗oγ = {(A !m1−−→ D), (A !m2−−→ E), (A

γ−→ B), (A
γ−→ C)}

• T̃p
d(l)

= ∅

For the example illustrated in Figure 4.14b two input transition groups are created, T̃p
i(m1)

= {(A ?m1−−→

B), (A ?m1−−→ C)} and T̃p
i(m2)

= {(A ?m2−−→ B), (A ?m2−−→ C)}. The last example, depicted in Figure 4.14c,
addresses the grouping of delay transitions. As no other transitions exist in the outgoing transition
set, the remaining groups are empty. Thus, only the groups T̃p

d(a)
= {(A a−→ B), (A a−→ C)} and

45

4. Static Analysis

T̃p
d(100)

= {(A 100−→ B), (A 100−→ C)} are created.

�

The detection whether a pair of transition guards overlap is achieved by applying constraint solving
to a conjugated pair of transitions guards. The conjugated guard expressions are passed to the
constraint solver which tries to find a solution for the expression so that the expression evaluates to
true, which indicates that the expression is solvable. Thus, for an arbitrary pair of transitions t, t′ of
a transition group, the conjugated guard ϕ̂ = t.ϕ ∧ t′.ϕ is solved. Thus, ϕ̂ denotes the constraint c to
be solved, such that c = ϕ̂.

The delay transition group T̃p
d(l)

constitutes an exception in respect of overlapping guards detection.
For these transitions also the timeout term is considered due to the fact that delay transitions are
executed after the delay has been elapsed. Thus, non-determinism caused by delay transitions can
only occur if the timeout terms of more than one enabled delay transitions are equal. In other
words multiple delay transitions are executed at the same time. In the example of Figure 4.14c this
would lead to the situation that the system cannot decide whether it should proceed to state B or
to state C. Therefore, in the case of delay transitions not only their guards are conjugated, but also
an additional condition is added which compares the corresponding timeout terms. The reason
lies in the fact that the related guards can restrict and therefore influence the value of the timeout
term. Thus, the constraint to which constraint solving is applied is ϕ̂ ∧ t.l = t′.l, with t, t′ ∈ T̃p

d(l)
are

arbitrary delay transitions of the transition group T̃p
d(l)

which is related to priority p. In terms of the
overlapping guards check, no solution, such that the solver result is equal to ⊥, indicates that the
two involved guards do not overlap.

The prior described constraint solving task is applied to each transition pair within a group. When
performing pairwise constraint solving three cases are distinguished:

1. For each group which only consists of a single type of transition, like T̃p
i(m)

, T̃p
o(m)

, T̃p
d(l)

and T̃p
γ ,

constraint solving is applied to each pair of transition. Thus, constraint solving is carried out
(n ∗ (n− 1)/2) times, where n denotes the number of transitions comprised by the group.

2. For each group which comprises two types of transitions, like T̃∗io and T̃∗oγ, only transition
pairs of different types are solved. So that for each transition pair t, t′ ∈ T̃∗io must comply
to (t ∈ Ti ∧ t′ ∈ To) ∨ (t ∈ To ∧ t′ ∈ Ti). This also applies to group T̃∗oγ with the difference
that other transition types are involved, so that the transition pair t, t′ ∈ T̃∗oγ complies to
(t ∈ To ∧ t′ ∈ Tγ) ∨ (t ∈ Tγ ∧ t′ ∈ To) Thus, constraint solving is carried out (n ∗ m) times,
where n denotes the number of transitions of the first transition type and m the number of
transitions of the second transition type.

3. The group T̃∗o contains all output transitions of the outgoing transition set of a state. The
constraint solving task is applied to each pair of transition with different output messages
assigned. Thus, a constraint solving task is only executed for an arbitrary pair of output
transitions t, t′ ∈ T̃∗o where it holds that t.l 6= t′.l. The constraint solving task is executed for
each transition pair of the group T̃∗o which complies to that condition.

46

4.2. Syntactic and Semantic Checks

Algorithm 5 Overlapping Guards Detection
1: procedure check overlapping guards(group)
2: for all transition pairs t, t′ ∈ group do
3: solverResult← ⊥;
4: c← t.ϕ ∧ t′.ϕ′;
5: if group == T̃p

d(l)
then

6: solverResult← solveConstraint(c∧ t.l == t′.l);
7: else
8: solverResult← solveConstraint(c);
9: end if

10: if solverResult 6= ⊥ then
11: ”Guards t.ϕ and t′ϕ overlap!”;
12: end if
13: end for
14: end procedure

Algorithm 5 shows the algorithm in order to detect overlapping guards within a group. The
transitions of the group undergo pairwise constraint solving by considering the restriction in terms
of groups containing two types of transitions. The constraint solving function solveConstraint(c) is
called with the conjugated guard ϕ̂ as constraint c, except when processing the delay transition
group T̃p

d(l)
. In this case the conjugated guard are extended by the condition which compares the

timeout terms of the corresponding delay transitions, so that the given argument for the function is
ϕ̂ ∧ t.l = t′.l.

A1

A2

[a >= 5 && a < 10]
(a):5;g1

A3

[a >= 0 && a < 20]
(a):5;g2

A4

[a == 5]
(a):0;g3

Figure 4.15.: Example of ESTS which exhibit a non-determinism in terms of delay transitions.

Example 4.17 (Overlapping Guard Detection)
Consider the ESTSs in Figures 4.15 and 4.16. Both ESTSs consist of only one state which has outgoing
transitions, which are A1 and B1, respectively. The guards of the transitions are denoted in square
brackets, followed by the label of the transition. Separated by a semicolon the priority is displayed
which is followed - again separated by a semicolon - by the name of the timing group in case of a
delay transition. The transition which are highlighted with blue and red, respectively, indicates a
pair of transitions which exhibit non-determinism behavior.

Applying the Algorithm 5 to the ESTS in Figure 4.15 results in the following grouping sets for state
A1. A1 is the only state which undergoes the overlapping guards check, since it is the only one

47

4. Static Analysis

B1

B2

[a == 1]
!m0:5

B3

[a == 2]
!m1:5

B4

[a == 2]
γ:5

B5

[a == 3]
!m2:10

B6

[a == 4]
!m3:10

B7

[a == 5]
?m4:10

B8

[a == 5]
?m4:10

Figure 4.16.: Example ESTS which exhibit non-determinism due to an OC conflict since an output transition and a completion
transition will enabled at the same time. Moreover the example comprises a non-determinism issue in terms of
2 enabled input transitions.

which has outgoing transitions. Since the outgoing transition set of state A1 in Figure 4.15 only
consists of delay transitions the following transition groups are created:

• T̃5
d(a)

= {(A1
(a)−→ A2), (A1

(a)−→ A3}

• T̃0
d(a)

= {(A1
(a)−→ A4)}

Next, constraint solving is applied to the constraint c =”ϕ̂ && a == a”, with the conjugated guard
ϕ̂ =”a ≥ 5 && a < 10 && a ≥ 0 && a < 20”, for transition group T̃5

d(a)
. Since the group T̃5

d(a)

contains two transitions a single constraint solving task is executed. By contrast, for the group T̃0
d(a)

no constraint solving task at all is executed as this group only contains a single transition. Due to the
fact that the constraint solver can find at least one variable valuation to satisfy the given constraint,
such that φ = {(a, 5)} for instance, the corresponding guards overlap in terms of their value range,
and non-determinism issue is detected which is related to case (7).

Figure 4.16 shows an example which comprises two non-determinism issues. Based on the figure
the following transition groups are created:

• T̃5
o(m0)

= {(B1 !m0−−→ B2)}

• T̃5
o(m1)

= {(B1 !m1−−→ B3)}

• T̃10
o(m2)

= {(B1 !m2−−→ B5)}

• T̃10
o(m3)

= {(B1 !m3−−→ B6)}

• T̃∗o = {(B1 !m0−−→ B2), (B1 !m1−−→ B3), (B1 !m2−−→ B5), (B1 !m3−−→ B6)}
• T̃10

i(m4)
= {(B1 ?m4−−→ B7), (B1 ?m4−−→ B8)}

• T∗io = {(B1 !m0−−→ B2), B1 !m1−−→ B3), (B1 !m2−−→ B5), (B1 !m3−−→ B6), (B1 ?m4−−→ B7), (B1 ?m4−−→ B8)}
• T5

γ = {(B1
γ−→ B4)}

• T∗oγ = {(B1 !m0−−→ B2), B1 !m1−−→ B3), (B1 !m2−−→ B5), (B1 !m3−−→ B6), (B1
γ−→ B4)}

Next, the following constraint solving tasks are executed, whereas for groups T̃5
o(m0)

, T̃5
o(m1)

, T̃10
o(m2)

,

T̃10
o(m3)

, and T5
γ no constraint solving is applied, since those groups contain only a single transition.

48

4.3. Structure-based Checks

• For group T̃∗o :

– Solve the constraint c← (a == 1 && a == 2) for transitions (B1 !m0−−→ B2) and (B1 !m1−−→
B3), which is not solvable, such that solver result is ⊥.

– Solve the constraint c← (a == 1 && a == 3) for transitions (B1 !m0−−→ B2) and (B1 !m2−−→
B5), which is not solvable, such that solver result is ⊥.

– Solve the constraint c← (a == 1 && a == 4) for transitions (B1 !m0−−→ B2) and (B1 !m3−−→
B6), which is not solvable, such that solver result is ⊥.

– Solve the constraint c← (a == 2 && a == 3) for transitions (B1 !m1−−→ B3) and (B1 !m2−−→
B5), which is not solvable, such that solver result is ⊥.

– Solve the constraint c← (a == 2 && a == 4) for transitions (B1 !m1−−→ B3) and (B1 !m3−−→
B6), which is not solvable, such that solver result is ⊥.

– Solve the constraint c← (a == 3 && a == 4) for transitions (B1 !m2−−→ B5) and (B1 !m3−−→
B6), which is not solvable, such that solver result is ⊥.

• For each transition pair in T̃10
i(m4)

– Solve constraint c← (a == 3 && a == 3) for transitions (B1 ?m4−−→ B7) and (B1 ?m4−−→ B8),
which results in φ = {(a, 3)} and therefore depicts non-determinism behavior which is
related to case (2).

• Applying constraint solving to each distinct transition pair in T∗io exhibits no non-determinism.
• Applying constraint solving to each distinct transition pair of group T∗oγ results into the detection

of the following non-determinism case:

– Solve the constraint c← (a == 2 && a == 2) for transitions (B1 !m1−−→ B3) and (B1
γ−→ B4)

results in φ = {(a, 2)} and therefore depicts non-determinism behavior related to case
(6).

�

4.3. Structure-based Checks

In the following, checks are presented which addresses the entire structure of an ESTS by extracting
two path constructs. The first path construct represents a loop consisting only of unobservable,
completion and output transitions. The second construct representing a specific sub-structure of
an ESTS, namely a Instantly Executable Transition Cascade, which only consists of unobservable,
completion and output transitions as well.

4.3.1. Instantly Executable Transition Loops

The goal of this check is to detect a loop path solely consisting of unobservable, completion and
output transitions. Due to the static context of this check, no dynamic values are available and
therefore all guards are considered true. Thus, each loop detected could be a potential endless loop

49

4. Static Analysis

but must not be necessarily one. For that reason this check has only an informative purpose due to
the lack of dynamic values. Therefore, in order to prove whether a loop is indeed endless, it has to
be checked in a dynamic context.

A loop path shows the characteristics that the first state and the last state are equal and each
transition of the path must be an unobservable, a completion or an output transition. The loops are
calculated on the basis of the IPT structure. More precisely, the detection is carried out by validating
each path of set PT in respect of the existence of loops.

A path contains a loop if the previously defined function containsLoop(p) of Equation 4.6 returns
true. By means of Equation 4.18, which depicts the function startEdge(p), the start edge of the loop
of a given path p is determined. The equation denotes that the start edge ex of a path p is the edge
whose source node state nx.s is equal to the destination node state n′m.s of the last edge em of the
path. The result is either a set containing a single edge, corresponding to the start edge of the loop,
or the empty set, which states that the path does not contain a loop.

startEdge(p) = {ex ∈ p | nx.s = n′m.s ∧ x ≤ m} (4.18)

Equation 4.19 states the formula to retrieve the path that depicts the loop from a given indepen-
dent path p with respect to the determined start edge ex of Equation 4.18. The stated function
retrieveLoopPath(p, ex) returns a set l containing all edges of path p from index x, which is the
index of the start edge, to the index m of the last node in p. In other words all edges with an
index greater than or equal to x and less than or equal to m are considered and all other edges are
neglected. Thus, the function results in set l = {ex, ex+1, ..., em} with l ⊆ p. The set L = {l1, ..., ln}
denotes the set of all loops detected in an ESTS , with L ⊆ PT.

retrieveLoopPath(p, ex) = {ei ∈ p | x ≤ i ≤ m)} (4.19)

isProperLoop(l) =

false ∃ e ∈ l : e.t /∈ Toγτ

true otherwise
(4.20)

Based on Equations 4.18 and 4.19 the existence of loops have been determined without considering
the transition type of the edges. Which means that the loop determined might not be a loop solely
consisting of instantly executable transitions. Loops consisting at least of one edge which does not
correspond to an unobservable-, a completion or an output transition are not of relevance. Thus,
each loop path l must be verified accordingly by means of function isProperLoop(), which is stated
in Equation 4.20. The function expects as input a loop path l and returns false if at least one edge
of the given loop path does not correspond to a transition of the set Toγτ , otherwise the function
returns true.

50

4.3. Structure-based Checks

A2

A3

?m2

A4
!m3

A1 !m1

γ γ

A5

!m4

!m5 γ

(a)ESTS with loops.

A1

A1

!m1

A2

γ

A4

A1

γ

A5

!m4

A3

?m2 !m3

A1

!m5

A1

γ

(b)IPT representation of the ESTS.

Figure 4.17.: An ESTS consisting of loops and its corresponding IPT.

Algorithm 6 shows the application of the previously defined formulas by means of the function
DETECT LOOP(). The function expects as input argument an independent path set PT and returns
a set of loop paths L. For each path p ∈ PT the following steps are applied:

1. Determine the start edge of a loop by applying Equation 4.18.
2. Retrieve from the independent path p the loop path l, which is a sub path of p, such that l ⊆ p.
3. Verify the loop path l if the path corresponds to an instantly executable loop path. If so, add

the loop path to the result set L, such that l ∈ L.
4. Check the number of detected loops against a maximum number of detectable loops MaxDe-

tectedLoops. If the maximum is reached the algorithm stops. Since in a directed graph the
detection algorithm runtime can be exponentially in the worst case, the limit MaxDetectedLoops
is introduced. The limit denotes a configurable upper barrier for the detection of loops and
thus ensures that the algorithm is executed in a feasible amount of time.

If the result set L is empty, no instantly executable loops are detected.

Example 4.18 (Loop Detection)
Consider the ESTS depicted in Figure 4.17a and its IPT structure shown in Figure 4.17b. The set of
independent paths PT of the path tree in Figure 4.17b is PT = {p1, p2, p3, p4} with:

51

4. Static Analysis

A1

A1

!m1

A2

γ

A4

A1

γ

A5

!m4

A3

?m2 !m3

A1

!m5

A1

γ

(a)First loop

A1

A1

!m1

A2

γ

A4

A1

γ

A5

!m4

A3

?m2 !m3

A1

!m5

A1

γ

(b)Second loop

A1

A1

!m1

A2

γ

A4

A1

γ

A5

!m4

A3

?m2 !m3

A1

!m5

A1

γ

(c)Third loop

Figure 4.18.: Depiction of three loops as IPT.

Algorithm 6 Loop Detection

1: function detect loop(PT)→ L
2: L = ∅;
3: for p ∈ PT do
4: ex = startEdge(p); . applying Equation 4.18

5: l = retrieveLoopPath(p, ex); . applying Equation 4.19

6: if isProperLoop(l) == true then . applying Equation 4.20

7: L = L∪ l;
8: end if
9: if |L| == MaxDetectedLoops then

10: return L;
11: end if
12: end for
13: return L;
14: end function

• p1 = {(A1, !m1, A1)}
• p2 = {(A1, γ, A2), (A2, ?m2, A3), (A3, !m5, A1)}
• p3 = {(A1, γ, A2), (A2, !m3, A4), (A4, γ, A1)}
• p4 = {(A1, γ, A2), (A2, !m3, A4), (A4, !m4, A5), (A5, γ, A1)}

By means of Equation 4.18 for each p ∈ PT the following start edges are determined:

• e
p1
x = (A1, !m1, A1) is determined, since nx.s = A1, n′m.s = A1, x = 0, m = 0 and therefore

complies to A1 == A1∧ 0 ≤ 0, depicting a self loop.
• ep2

x = (A1, γ, A2) is determined, since nx.s = A1, n′m.s = A1, x = 0, m = 2 and therefore
complies to A1 == A1∧ 0 ≤ 2.

• e
p3
x = (A1, γ, A2) is determined, since nx.s = A1, n′m.s = A1, x = 0, m = 2 and therefore

complies to A1 == A1∧ 0 ≤ 2.
• e

p4
x = (A1, γ, A2) is determined, since nx.s = A1, n′m.s = A1, x = 0, m = 3 and therefore

52

4.3. Structure-based Checks

complies to A1 == A1∧ 0 ≤ 3.

The following loop paths are retrieved by applying Equation 4.19 to each path of PT by considering
the determined start edges.

• l1 = {(A1, !m1, A1)}
• l2 = {(A1, γ, A2), (A2, ?m2, A3), (A3, !m5, A1)}
• l3 = {(A1, γ, A2), (A2, !m3, A4), (A4, γ, A1)}
• l4 = {(A1, γ, A2), (A2, !m3, A4), (A4, !m4, A5), (A5, γ, A1)

Finally, each loop path is verified according to Equation 4.20. The loop paths l1, l3 and l4 comply to
Equation 4.20 and l2 does not due to the edge (A2, ?m3, A3), which is related to an input transition.

Thus, the algorithm detects three loops, which are illustrated in Figure 4.18, and therefore the result
set is L = {l1, l3, l4} �

4.3.2. Instantly Executable Transition Cascades

The goal of this check is to detect a specific sub-structure in an ESTS which solely consists of the
instantly executable transition like the unobservable, completion and output namely an Instantly
Executable Transition Cascade. Basically a cascade is a set of transitions such that cascade ⊂ Toγτ ,
withToγτ denoting the set of instantly executable transitions. Besides the detection of such cascades,
for each cascade the possible paths are determined in order to compare the number of paths against
the limit MaxPathCount. As a further consequence each cascade which exceeds the MaxPathCount
limit is reported by this check.

Example 4.19 (Cascade)
Examples of such cascade are shown in Figure 4.19. Figure 4.19a depicts only one cascade, cascade1,
whose corresponding states and transitions are highlighted in red. The cascade consists of transitions
{(A2 !m1−−→ A3), (A2 !m2−−→ A4), (A3 !m3−−→ A5), (A5 τ−→ A6), (A5 τ−→ A7), (A6

γ−→ A8)}. Figure 4.19b
depicts two cascades due to the fact that the transitions from state A3 to A5 and A4 to A5 belong
to an input transition. The corresponding cascades are cascade2 = {(A2 !m1−−→ A3), (A2 !m2−−→ A4)},
which is highlighted in red, and cascade3 = {(A5 τ−→ A6), (A5 τ−→ A7), (A6

γ−→ A8)}, which is
highlighted in blue. �

A cascade shows the characteristic that it depicts a connected fragment ecascade of the original ESTS e,
with ecascade ⊆ e. Connected means that from a start state to each end state of the cascade a path can
be constructed. In order to define the terms start state and end state some fundamental definitions
have to be stated beforehand. The detection of a cascade is based on the IPT representation of an
ESTS, and thus the definitions of a start state and end state are stated in terms of an IPT, such that
T = estsToPathTree(e). In the context of an IPT connected means that from a start node to each end
node a path can be constructed. The IPT structure is used in order to benefit from its structure as in
contrast to an ESTS no loops exists and therefore such cases must not be considered.

53

4. Static Analysis

A2

A3

!m1

A4

!m2

A1

?m1

A5

?m4!m3

A6

A8

γ

τ

A7

τ

(a)ESTS containing a single instantly executable
transition cascade.

A2

A3

!m1

A4

!m2

A1

?m1

A5

?m4?m3

A6

A8

γ

τ

A7

τ

(b)ESTS containing two instantly executable tran-
sition cascades.

Figure 4.19.: Examples of Instantly Executable Transition Cascades.

The first step consists of the determination of potential start nodes of a cascade in the IPT, which
is carried out by applying Equation 4.21. Basically, a start node exhibits the property that the
incoming transition is not an instantly executable transition, such that nodeInTrans(n̂) /∈ Toγτ ,
and the outgoing transition set contains at least one instantly executable transition, such that
∃t ∈ Toγτ ∧ t ∈ nodeOutTrans(n̂).

startNodes(T) = {n ∈ N | nodeInTrans(n) /∈ Toγτ ∧ (∃t ∈ nodeOutTrans(n) : t ∈ Toγτ)} (4.21)

Example 4.20 (Extracting Start Nodes)
Applying Equation 4.21 to the IPT which is depicted in Figure 4.20 results in the detection of two
start nodes corresponding to the states A2 and A5. This example shows the reason that these nodes
are only considered as potential start nodes. The cascade, starting at node A5 is already part of the
cascade starting at node A2. Thus, in Figure 4.20 actually only a single cascade exists which starts at
A2. �

54

4.3. Structure-based Checks

A2

A3

!m1

A4

!m2

A8

A1

?m1

A7A6

A8

γ

A5

!m3

τ

A7

τ

A5

A6

τ τ

γ

?m4

Figure 4.20.: IPT which is based on the ESTS of Figure 4.19a and containing a single Instantly Executable Transitions Cascade,
which is highlighted in red.

Each cascade has to be verified whether it is indeed a cascade or part of another cascade. Let
cascade1 and cascade2, with cascade1, cascade2 ∈ Toγτ , be two arbitrary cascades with different start
nodes, then cascade1 is part of cascade2 if cascade1 ⊆ cascade2. This means that each transition which
is related to cascade1 is also related to cascade2.

The verification and extraction of the cascades are carried out by means of Algorithm 7. The
algorithm depicts the function EXTRACT CASCADES, which extracts all cascades from the given
IPT, which represents an entire ESTS, based on the determined start nodes SN. The function returns
a set of IPTs T̂∗, where each IPT of the set corresponds to a cascade. The returned IPTs exhibit the
characteristics that all edges correspond to transitions of the instantly executable transition type.
Furthermore, the IPTs and as a further consequence the cascades are mutually distinct, which means
that the IPTs differ in at least one edge.

55

4. Static Analysis

Algorithm 7 Extracting an IPT for each cascade

1: procedure extract cascades(T, SN)→ T̂∗

2: T̃∗ ← ⋃
sn∈SN subTree(sn,T);

3: P∗ ← ⋃
T∈T̃∗ treeToPaths(T);

4: P̂∗ ← ⋃
P∈P∗ reducePaths(P);

5:
6: P̃∗ ← P̂∗;
7: for all reduced path set pairs P̂x , P̂y ∈ P̂∗, with x 6= y do
8: P̃∗ ← P̃∗ \ getIncorrectCascade(P̂x , P̂y);
9: end for

10:
11: T̂∗ ← ⋃

P∈P̃∗ pathsToTree(P);
12: return T̂∗;
13: end procedure

The first part of the algorithm deals with the extraction of potential cascades with respect to the
determined start nodes. The extraction of the cascades consists of three steps:

1. Create based on each start node, with sn ∈ SN denoting the start node, a sub-tree, whose root
node corresponds to sn.

2. Create for each created sub-tree a corresponding path set by means of P∗ =
⋃

T∈T̃∗ treeToPaths(T),
with P∗ denoting the set of all path sets of all sub-trees.

3. The last step reduces each path set by removing all edges which are not related the a cascade.
This is established by means of Equation 4.22 and function reducePaths(P). The function is
called for each path set of the set P∗. Thus, this step results in the reduced set of path sets P̂∗.

reducePathSet(P) =
⋃
p∈P

reducePath(p, ex) (4.22)

reducePaths(p, ex) = {ei ∈ p | 1 ≤ i < x} (4.23)

Equation 4.22 reduces all paths of a given path set P and returns the reduced set of paths P̂. For
each path p, with p ∈ P, the function reducePath(p, ex), which is stated in Equation 4.23, is applied.
The edge ex, with ex ∈ p and 1 ≤ x < m, corresponds to the first edge in the path which does not
belong to an instantly executable transition. Thus ex.t /∈ Toγτ . The paths are reduced by removing
all edges from a path starting at edge ex.

In the next step Algorithm 7 deals with the verification of cascades which are already part of other
cascades. This step results in the set P̃∗, which denotes the set of all path sets representing those
cascades which are mutually distinct. First of all, the set P̃∗ comprises all cascades of all detected
potential cascades, such that P̃∗ = P̂∗. Next, all cascades are removed which are already part of
another cascade. This is achieved by applying function getIncorrectCascade(P̂x, P̂y) to all possible
pair of reduced path sets P̂x, P̂y ∈ P̂∗, with x 6= y. As depicted in Equation 4.25 the function returns

56

4.3. Structure-based Checks

either the path set which is part of the other path set or the empty set. The empty set denotes that
neither the first path set is part of the second path set nor is this the case the other way round. In
other words the function returns exactly the reduced path set which should be removed from the set
of actual cascade path sets P̃∗. Thus, after all pairs of reduced path sets are checked only mutually
distinct path sets are present in the set P̃∗.

transPathSet(P) =
⋃
p∈P
{e.t | e ∈ p} (4.24)

Equation 4.25 utilizes Equation 4.24, which transforms the path sets into a set of transitions. Based
on the transition set, the check whether a cascade is part of another cascade is carried out. The
reason is that in a path set a particular transition can be assigned to multiple edges. In contrast the
transition set contains a transition at most once.

getIncorrectCascade(P̂x, P̂y) =



{P̂x} iff transPathSet(P̂x) ⊆ transPathSet(P̂y)

∧ transPathSet(P̂y) 6⊆ transPathSet(P̂x)

{P̂y} iff transPathSet(P̂y) ⊆ transPathSet(P̂x)

∧ transPathSet(P̂x) 6⊆ transPathSet(P̂y)

∅ otherwise

(4.25)

Finally, Algorithm 7 creates the set T̂∗, with T̂∗ = {T̂1, T̂2, ..., T̂n}, depicting the set of IPTs, where
each IPT corresponds to a proper cascade.

Example 4.21 (Extraction of Cascades)
Consider the ESTS depicted in Figure 4.19a and its corresponding representation as IPT in Figure
4.20. The ESTS and its corresponding IPT are defined as follows:

• The ESTS e is defined with the set of states S = {A1, A2, A3, A5, A6, A7, A8} and the set of
transitions T = {t1, t2, t3, t4, t5, t6, t7, t8} with:

– t1 = (A1 ?m1−−→ A2)
– t2 = (A2 !m1−−→ A3)
– t3 = (A2 !m2−−→ A4)
– t4 = (A3 !m3−−→ A5)
– t5 = (A4 ?m4−−→ A5)
– t6 = (A5 τ−→ A6)
– t7 = (A5 τ−→ A7)
– t8 = (A6

γ−→ A8)

• The IPT T created for ESTS e, with T = estsToPathTree(e) is defined by the node set N =

{n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12} with n1 = A1, n2 = A2, n3 = A3, n4 = A4, n5 = A5,
n6 = A6, n7 = A7, n8 = A8, n9 = A5, n10 = A6, n11 = A7, n12 = A8. And the edge set
E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11} with:

57

4. Static Analysis

– e1 = {n1, t1, n2}
– e2 = {n2, t2, n3}
– e3 = {n3, t4, n5}
– e4 = {n5, t6, n6}
– e5 = {n6, t8, n8}
– e6 = {n5, t7, n7}
– e7 = {n2, t3, n4}
– e8 = {n4, t5, n9}
– e9 = {n9, t6, n10}
– e10 = {n10, t8, n12}
– e11 = {n9, t7, n11}

Applying Equation 4.21 to the IPT T results in the set of start nodes SN = {n2, n9}. By considering
Algorithm 7, for each startnode sn ∈ SN a sub-tree is created which results in the set T̃∗ =

{T̃(n2)
, T̃(n9)

}, and as a further consequence into the set P∗ = {PT(n2) ,PT(n9)}, with:

• P
T(n2) = {p1, p2, p3, p4} with p1 = {e2, e3, e4, e5}, p2 = {e2, e3, e6}, p3 = {e7, e8, e9, e10} and

p4 = {e7, e8, e11}.
• P

T(n9) = {p1, p2} with p1 = {e9, e10} and p2 = {e11}.

Next, each path set of the set P∗ is reduced as shown subsequently:

1. Reduce path set PT(n2) ∈ P∗, which results in the set P̂T(n2) = {p̂1, p̂2, p̂3}, which is depicted
as IPT in Figure 4.21b.

a) Reduce path p1 ∈ P
T(n2) → no edges are removed from path. Thus p̂1 = p1.

b) Reduce path p2 ∈ P
T(n2) → no edges are removed from path. Thus p̂2 = p2.

c) Reduce path p3 ∈ P
T(n2) → edges e8, e9 and e10 are removed from path, since e8 corre-

sponds to an input transition. Thus p̂3 = {e7}.
d) Reduce path p4 ∈ P

T(n2) → edges e8 and e11 are removed from path, since e8 corresponds
to an input transition. Thus, p̂4 = {e7}. As p̂4 = p̂3, p̂4 is neglected.

2. Reduce path set PT(n9) ∈ P∗, which results in the set P̂T(n9) = P
T(n9) . The corresponding IPT

is depicted in Figure 4.21c.

The set P̂∗ = {P̂T(n2) , P̂T(n9)} denotes the result of the reduction step.

Finally, the cascades corresponding to the reduced path sets of set P̂∗ are checked whether a cascade
is part of another cascade. The following steps are applied according to Algorithm 7:

1. P̃∗ = P̂∗

2. Call getIncorrectCascade(P̂T(n2) , P̂T(n9))

a) Create set TP̂
T(n2) based on the path set P̂T(n2) by applying TP̂

T(n2) = transPathSet(P̂T(n2)),

such that TP̂
T(n2) = {t2, t3, t4, t5, t6, t7, t8}.

b) Create set TP̂
T(n9) based on the path set P̂T(n9) by applying TP̂

T(n9) = transPathSet(P̂T(n9)),

such that TP̂
T(n9) = {t6, t7, t8}.

58

4.3. Structure-based Checks

c) Since TP̂
T(n2) ⊆ TP̂

T(n9) ∧ TP̂
T(n9) 6⊆ TP̂

T(n2) complies to f alse∧ true, case one of Equation
4.25 does not apply.

d) Since TP̂
T(n9) ⊆ TP̂

T(n2) ∧ TP̂
T(n2) 6⊆ TP̂

T(n9) complies to true∧ true, case one of Equation
4.25 does apply and thus function getIncorrectCascade returns the set {P̂T(n9)}.

3. Next, P̃∗ = P̃∗ \ {P̂T(n9)} with P̃∗ = {P̂T(n2) , P̂T(n9)} \ {P̂T(n9)}, resulting in P̃∗ = {P̂T(n2)}.
4. Finally, T̂∗ = {T̂P̂

T(n2) }. Thus, the algorithm extracts one cascade, which is highlighted in red
in Figure 4.21a.

�

A3

A5

!m3

A7

A2

!m1

A4

!m2

A8

A7A6

τ
τ

γ

A6

A8

γ

A5

?m4

τ τ

(a)IPT corresponding to the cas-
cade with start node A2.

A3

A5

!m3

A2

!m1

A4

!m2

A8

A7A6

τ τ

γ

(b)Reduced IPT corresponding to
the cascade with start node A2.

A6

A8

γ

A5

τ

A7

τ

(c)IPT corresponding to the cas-
cade with start node A5, the
reduced IPT has the same ap-
pearance.

Figure 4.21.: IPTs of cascades and their reduced representations which are based on the IPT in Figure 4.20 with start nodes
A2 and A5.

Once the cascades are determined the computation of possible paths through a cascade is performed.
During path computation the following basic rules are applied:

1. If a node has an outgoing transition which is either of type unobservable or completion, the
path counter is incremented by 2, which is depicted in Figure 4.22a.

2. If a node has an outgoing transition which is of type output the path counter is incremented
by 1, which is depicted in Figure 4.22b and 4.22c.

The rules are only of basic nature and defines how path computation is carried out considering a
single tree node and by ignoring special structures within a cascade, such as branches. Due to the
static context of this check no concrete values for the guards of the involved transitions are present.

59

4. Static Analysis

For this reason, both possible cases of guards are considered during path computation, which means
that a guard can either be true or false.

On that account the first rule, depicted in Figure 4.22a, counts two paths for a transition which has
an outgoing transition of type unobservable or completion. The first path is counted for the case
that the guard remains false and therefore the transition is not enabled, so that the system remains in
state A. The second path is counted when the guard is true, so that the transition will be traversed
and therefore the system changes from state A to state B. Thus, the first rule counts the paths (A)

and (A
{τ,γ}−−−→ B).

The second rule is applied in case of an output transition due to a special treatment of output
guards. Those guards are used in order to set the values for the message parameters. Therefore, in
context of path computation, such guards are considered always true and therefore the transition is
considered always be enabled. Thus, for Figure 4.22b only one path is computed which is (A !−→ B).
Furthermore, if two output transitions are present in a row, as shown in Figure 4.22c, both transitions
are considered part of the same path. This means that if a path is reaching a destination state with
an output transition, the output transition is part of the same path. Thus, with respect to Figure
4.22c a single path, (A !−→ B !−→ C), is computed.

The algorithm to compute the possible paths of a cascade is applied to an IPT by iterating through
the nodes of the tree in a Depth First Search style, starting at the root node. The path computation is
finished if all branches of the IPT has been traversed. During iterating through the tree, each node is
checked whether one of the four cases illustrated in Figure 4.23 applies. These cases are based on
the previously discussed basic rules. Based on the cases the path counter is incremented accordingly
as shown in Equation 4.26.

computePathCount(n) =



|{t ∈ nodeOutTrans(n)) | t ∈ Tτ ∪ Tγ}|+ 1 isPathCountCase1(n) = true

|{t ∈ nodeOutTrans(n) | t ∈ To}| isPathCountCase2(n) = true

|{t ∈ nodeOutTrans(n) | t ∈ Toγτ}| isPathCountCase3(n) = true

|{t ∈ nodeOutTrans(n) | t ∈ To}| − 1 isPathCountCase4(n) = true
(4.26)

The first case handles the IPT root node which has outgoing transitions of type unobservable and
completion as shown in Figure 4.23a. As stated in Equation 4.27 a node which is the root node and
which has at least one outgoing transition of type unobservable or completion is covered by this case.
In this case the path counter is increased by the number of outgoing transitions of type unobservable
and completion. Furthermore, an additional path is counted which is related to the path that no
transition is enabled and the system remains at the source state. With respect to Figure 4.23a the
paths (A) and (A

τ,γ−→ B) are counted.

60

4.3. Structure-based Checks

A

B

{τ, γ}

(a)Two paths are counted, since the outgoing
transition is either of type unobservable
or completion and the guard is considered
true and false.

A

B

!

(b)One path is counted since the guard of
the output transition is always considered
true.

A

B

!

C

!

(c)One path is counted since both output
transition guards are considered true.

Figure 4.22.: Basic rules for path computation considering only the outgoing transition type.

isPathCountCase1(n) =

true ∃ t ∈ nodeOutTrans(n) : t ∈ Tτ ∪ Tγ ∧ parentNode(n) = NIL

false otherwise
(4.27)

The second case handles the IPT root node which has at least one outgoing transition of type output,
as shown in Figure 4.23b and stated in Equation 4.28. In this particular case the path counter is
incremented by the number of output transitions. Compared to the previous case, no additional
path is counted since output transitions are considered always be enabled. Therefore, only the path
(B t−→ C) will be counted.

isPathCountCase2(n) =

true ∃ t ∈ nodeOutTrans(n) : t ∈ To ∧ parentNode(n) = NIL

false otherwise
(4.28)

61

4. Static Analysis

The third case addresses nodes which are not the root node of the IPT and whose outgoing transition
set comprises at least one transition which is related to an unobservable or completion transition.
The remaining outgoing transitions can correspond to any other instantly executable transition type.
This case is depicted in Figure 4.23c and the corresponding Equation 4.29 denotes the determination
whether a node applies to this case or not. This is the case when a node, which is not the root
node, that has at least one outgoing transition corresponding to type unobservable or completion.
In this case the path counter is incremented by the number of outgoing transitions of type output,
unobservable and completion. In contrast to the first case, no additional path is counted although
an outgoing transition of either type unobservable or completion is present. The reason is that the
path, which indicates that the system remains at the source state, has already been counted when

processing the parent node. Thus, with respect to Figure 4.23c the paths (C
τ,γ−→ D) and (C

!,τ,γ−−→ E)
are counted. The path which implies that the system remains at node C - due to not satisfied guards
- is covered by path (B −→ C) which is counted when processing node B.

isPathCountCase3(n) =

true ∃ t ∈ nodeOutTrans(n) : (t ∈ Tτ ∪ Tγ) ∧ (parentNode(n) 6= NIL)

false otherwise
(4.29)

The last case deals with the fact that the outgoing transition set of a non-root node only comprises
output transitions, as stated in Equation 4.30. In this case the path count is increased by the number
of output transitions - 1. The -1 stems from the fact that one of the output transition is considered
as part of a path, which has been calculated when processing the parent node. Furthermore, this
handling deals with the issue which has been pointed out by Figure 4.22c.

isPathCountCase4(n) =

true @ t ∈ nodeOutTrans(n) : t ∈ Tτ ∪ Tγ ∧ parentNode(n) 6= NIL

false otherwise
(4.30)

Algorithm 8 Instantly Executable Cascades Path Calculation

1: procedure check cascades(T̂∗, MaxPathCount)
2: CascadeSet← ∅;
3: for all T ∈ T̂∗ do
4: pathCount← 0;
5: cascade← ∅;
6:
7: NDFS ← pre order dfs sorting(T);
8: for n ∈ NDFS do
9: cascade← cascade ∪ {t ∈ nodeOutTrans(n) | t ∈ Toγτ};

10: pathCount← pathCount + computePathCount(n); . Application of Equation 4.26

11: end for
12:
13: if pathCount > MaxPathCount then
14: CascadeSet← CascadeSet ∪ cascade;
15: end if
16: end for
17: REPORT(CascadeSet);
18: end procedure

62

4.3. Structure-based Checks

A

B

{τ, γ}

(a)Case 1: start node A, whose outgoing tran-
sition set comprises transitions of type
unobservable and completion.

B

C

{!}

(b)Case 2: start node B, whose outgoing tran-
sition set comprises transitions of type
output.

B

C

D

{τ, γ}

E

{!, τ, γ}

(c)Case 3: Node C which is no start node
and the outgoing transition set contains
at least one transition which is of type
unobservable or completion.

C

D

E

{!}

(d)Case 4: Node D which is no start node and
the outgoing transition set contains only
output transitions.

Figure 4.23.: Cases to be considered for the current processed node during path counting.

Algorithm 8 shows how the cascades exceeding the MaxPathCount are computed. The algorithm
defines the procedure CHECK CASCADES which expects as input the set T̂∗, which is computed
by Algorithm 7, and the MaxPathCount limit. The nodes of each IPT of the set T̂∗ are iterated in a
pre-order Depth First Search style. Thus, on Line 7 an pre-order-based node set is created. The next step
of the algorithm implies the computation of the paths for each IPT. In order to achieve that, for each
node of the set NDFS the function computePathCount(n) is called. The function computes the count
by which the path count pathCount will be incremented. Furthermore, all outgoing transitions of
type unobservable, completion and output of the node are added to the set cascade. The set denotes
the transitions of which the cascade consists of. After all nodes are checked the computed pathCount
is checked against the limit MaxPathCount. In the event that the limit is exceeded the current
cascade is added to the set CascadeSet, which denotes the set of cascades which have exceeded the

63

4. Static Analysis

limit. Finally, all cascades which exceeds the limit are reported by calling procedure REPORT().

Example 4.22 (Instantly Executable Cascades Path Calculation)
In this example the application of Algorithm 8 is shown by applying them to the IPT of Figure 4.21b.
First, the nodes of the path tree are sorted by function
PRE ORDER DFS SORTING, such that NDFS = {A2, A3, A5, A6, A8, A7, A4}. Next, for each node
of set NDFS computePathCount(n) is called which results in which results in 5 paths.

• computePathCount(A2) = 2 due to isPathCountCase2(A2) = true.
• computePathCount(A3) = 0 due to isPathCountCase4(A3) = true.
• computePathCount(A5) = 2 due to isPathCountCase3(A5) = true.
• computePathCount(A6) = 1 due to isPathCountCase3(A6) = true.
• computePathCount(A8) = 0 due to nodeOutTrans(A8) = ∅.
• computePathCount(A7) = 0 due to nodeOutTrans(A7) = ∅.
• computePathCount(A4) = 0 due to nodeOutTrans(A4) = ∅.

The computed paths are:

1. A2→ A3→ A5
2. A2→ A3→ A5→ A6
3. A2→ A3→ A5→ A6→ A8
4. A2→ A3→ A5→ A7
5. A2→ A4

�

4.4. Metrics

This section introduces metrics addressing the complexity of an ESTS model in terms of data flow,
control flow, structure and size. Based on this metrics the overall complexity of an ESTS model can
be inferred.

In Section 4.4.1 some metrics with respect to the size of a model are introduced. A control flow
complexity metric is discussed in Section 4.4.2. In Sections 4.4.3, 4.4.4, 4.4.5, 4.4.6 and 4.4.7 metrics
in terms of data flow complexity are discussed. Finally, Section 4.4.8 discusses the complexity of
guard expressions.

4.4.1. Size Metrics

Genero et al. [59] stated that the size of behavioral diagrams, in their concrete case UML State
Machines, has influence on its understandability. On this account in the following section several
metrics related to the size of an ESTS are defined.

64

4.4. Metrics

Number of Transitions by Type (NTT) The NTT metric provides information about the total
number of transitions with respect to their type. Table 4.4 states the formulas in order to calculate
the metric.

Single ESTS Set E of ESTSs Description
NTTTi = |Ti| NTTE

Ti
= ∑e∈E NTTe

Ti
Total number of input transitions.

NTTTo = |To| NTTE
To

= ∑e∈E NTTe
To

Total number of output transitions.

NTTTγ = |Tγ| NTTE
Tγ

= ∑e∈E NTTe
Tγ

Total number of completion transitions.

NTTTd = |Td| NTTTd
E = ∑e∈E NTTe

Td
Total number of delay transitions.

Table 4.4.: NTT Metrics Formulas

Number of Transitions (NT) The NT is defined as the total number of transitions of an ESTS
given by NT = |T| or by NT = NTTTi + NTTTo + NTTTγ + NTTTd . The total number of transitions
over a set E of ESTSs is given by NTE = ∑e∈E NTe.

Number of States (NS) The NS is defined as the total number of states of an ESTS given by
NS = |S|. The total number of transitions of a set E is given by NSE = ∑e∈E NSe.

Number of Messages (NM) The NM metric represents the total number of incoming and outgoing
messages and therefore is related to the number of elements in the input and output label sets. Thus,
NM = |Li|+ |Lo|.

Number of Transitions with a Guard (NTG) The NTG metric represents the number of transitions
with a guard not always evaluating to true.

Number of Transitions with an Effect (NTE) The NTE metric indicates the number of transitions
with an effect. A transition has an effect when its corresponding attribute update function ρ calculates
a new attribute valuation ι′ which is not equal to the previous valuation ι. Therefore, NTE is given
by NTE = |{t ∈ T | ι 6= ι′}|. NTE over a set E of ESTSsis given by NTEE = ∑e∈E NTEe.

Number of Attributes (NA) The NA metric depicts the number of attributes. Moreover, the
metrics NAZ, NAB and NAR are introduced depicting the number of attributes corresponding to
the integer, Boolean and real number domain. The formulas in order to compute the metrics are
stated in Table 4.5.

65

4. Static Analysis

A2

A4

?m3
[b < 2]

A3

!m2<int p2>
[p2 == b &&
 b == 2]

A1

!m1<int p1>
[p1 == a]
b = b + 1;

10 A0

?m4
[a == 1]
a = 0;

γ
[a == 0]
a = a + 1;

Figure 4.24.: Example of ESTS for which the size metrics in Table 4.6 are calculated.

Formula Description
NA = |A| Total number of attributes.

NAZ = |{a ∈ A | ι ∈ UA ∧ ι.v = a ∧ ι.u = Z}| Number of integer attributes.

NAB = |{a ∈ A | ι ∈ UA ∧ ι.v = a ∧ ι.u = B}| Number of Boolean attributes.

NAR = |{a ∈ A | ι ∈ UA ∧ ι.v = a ∧ ι.u = R}| Number of real number attributes.

Table 4.5.: NA Metrics Formulas

Example 4.23 (Size Metrics)
Based on Figure 4.24 the previous metrics defined are calculated whose results are given in Table 4.6.
NTTTi = 2 due to the input transitions (A2 ?m3−−→ A4) and (A3 ?m4−−→ A0), NTTTo = 2 because of the

output transitions (A2 !m2−−→ A3) and (A1 !m1−−→ A2). The ESTS only consists of a single completion
transition (A0

γ−→ A1) so that NTTTγ = 1. NTTTd = 1 due to the delay transition (A4 10−→ A1). The
NT metric can be calculated based on the previous NTT values and is therefore 6. Since the set of
states S is {A0, A1, A2, A3, A4}, NS = 5. As the delay transition (A4 10−→ A1) is the only transition
without a defined guard, which means the guard always evaluates to true, thus the NTG metric
is 5. The ESTS in Figure 4.24 consists of three transitions which have an effect, since they have
defined actions. Those transition are namely (A3 ?m4−−→ A0) with action a = 0, (A0

γ−→ A1) with
action a = a + 1 and (A1 ?m4−−→ A2) with action b = b + 1 Thus, NTE = 3. In the model two attributes,
namely a and b are used, both corresponding to the integer domain value. Therefore, NA = 2,

66

4.4. Metrics

NAZ = 2, NAB = 0 and NAR = 0. �

Metric Value
NTTTi 2

NTTTo 2

NTTTγ 1

NTTTd 1

NT 6

NS 5

NM 4

NTG 5

NTE 3

NA 2

NAZ 2

NAB 0

NAR 0

Table 4.6.: Size metrics calculated for the ESTS which is depicted in Figure 4.24.

4.4.2. McCabes’s Cyclomatic Complexity

Hereinafter, McCabe’s Cyclomatic Complexity[61] is discussed which addresses the aspect of complexity
of an ESTS in terms of execution paths. The metric originally measures the complexity of programs
with respect to the maximum number of linearly independent paths. Therefore, McCabe associated a
program to a directed graph, namely a Program Control Graph (PCG)[84]. The graph shows the
characteristic that each node of the graph can be reached from the entry node and each node can
reach the exit node.

V(G) = E− N + p + 1 (4.31)

Equation 4.31 depicts the cyclomatic complexity formula according to McCabe. V(G) denotes the
cyclomatic complexity number of graph G, E the number of edges of graph G, N the number of
nodes and p the number of components. McCabe stated that the cyclomatic complexity is equal to
the maximum number of linearly independent circuits in a strongly connected graph. In case of a
not strongly connected graph a virtual edge from the exit node to the entry node is added which is
depicted by the additional +1 in the formula. Thus, in an already strongly connected graph the +1
can be neglected. In other words, cyclomatic complexity V(G) calculates the minimum number of
paths through a program to achive path coverage.

As an ESTS is a directed graph, Equation 4.31 can be simply applied to it as stated in Equation 4.32,
whereas it is assumed that an ESTS is always a strongly connected graph.

67

4. Static Analysis

V(e) = |T| − |S|+ 1 (4.32)

Considering Equation 4.31, E corresponds to the number of transitions T and N to the number of
states. The parameter p is considered to be one since the metric is applied on a single ESTS.

A2

A3

?m2

A4
!m3

A1 !m1

γ γ

A5

!m4

!m5 γ

Figure 4.25.: Example of an ESTS in order to calculate cyclomatic complexity metric.

Example 4.24 (Cyclomatic Complexity)
Given the ESTS e, depicted in Figure 4.25, the following cyclomatic complexity is calculated by
formula V(e) = 8 − 5 + 1, which results in V(e) = 4. One can choose the following linearly
independent paths:

• A1→ A1
• A1→ A2→ A3→ A1
• A1→ A2→ A4→ A1
• A1→ A2→ A4→ A5→ A5

�

In the context of an ESTS the McCabe’s Cyclomatic Complexity (MCC) metric can provide infor-
mation about the minimum number of test cases needed to accomplish full state and transition
coverage.

4.4.3. Mean Attribute On Attribute Dependency Metric

This section introduces a metric which measures the degree an attribute depends on other attributes,
called Mean Attribute On Attribute Dependency (MAAD) metric. Dependency means that the

68

4.4. Metrics

value of a particular attribute is affected by the values of other attributes. The metric depicts the
mean value over all dependency degrees of all attributes of an ESTS. The goal of this metric is to
measure complexity in terms of data flow. Based on this metric it can be inferred that the higher the
dependency degree of an attribute the complexer is the data flow with respect to this attribute.

Before the metric can be computed, the attribute dependencies of the attributes have to be determined.
Thus, subsequently the dependency computation in terms of a single attribute is discussed. The
process in order to determine all dependencies for a certain attribute is named hereinafter dependency
resolution. Consider the expression a = b + 1, where a and b are attributes. Since for attribute a a
new value is assigned, the sub-expression b + 1 is of interest as it denotes the actual computation of
the new value for a. As the expression b + 1 contains a single attribute, namely b, a is considered to
depend on attribute b. The previous example was rather simple. Therefore, consider a more complex
example which is declared by the following expressions:

• x = a + b
• a = c + d + 1
• b = 10
• c = d + 10
• d = 0

In this example the dependency degree for attribute x is wanted. By looking at expression x = a + b,
it can be seen that x depends on two other attributes, a and b. When examining expression
a = c + d + 1 it can be determined that attribute a itself depends on two other attributes, namely c
and d. These two attributes has an indirect affect on attribute x, as they affect attribute a directly,
which in turn affects x directly. Thus, the entire attribute dependency hierarchy has to be resolved
over all involved expressions. The dependence hierarchy for a certain variable can be depicted as a
Dependence Graph as shown in Figure 4.26. The dependency computation for attribute x results in
the set {a, b, c, d} and thus x shows a dependency degree of 4.

x

a b

c d

Figure 4.26.: Dependency graph for variable x based on expressions x = a + b, x = c + d + 1, b = 10, c = d + 10, d = 0

After the basic concept of attribute dependency resolution has been stated, the attribute dependency
in terms of an ESTS is discussed next. Subsequently, it will be shown by means of a simple example

69

4. Static Analysis

how the dependency resolution procedure is applied to an ESTS for a single attribute and which
other concepts are involved.

Consider the simple ESTS in Figure 4.27. The labeling of the transitions in terms of transition types
have been neglected. Only three transitions show a labeling, where each of the labels denote an
action. Basically, attribute dependency resolution correlates with the analysis of data flow. Thus,
one of the tools in the field of data flow analysis is used, namely the Def-Use Data Structure. On
that account the first step involves the creation of the Def-Use Data Structure. This is carried out by
iterating over the set of transitions T and extracting all assigned as well as referenced attributes.
With reference to the example ESTS in Figure 4.27 the following sets Defs and Uses are created:

• As the ESTS contains three actions, three def entries are created, such that Defs = {def0, def1, def2}
with:

– def0 = (a, (A→ B), a = 10, {use0, use1})
– def1 = (b, (B→ C), b = a, {use2})
– def2 = (x, (C → D), x = a + b, ∅)

• The use entries use0, use1 and use2 are created, since attribute a is referenced two times and
attribute b one time, such that Uses = {use0, use1, use2}, with:

– use0 = (a, (B→ C), b = a, {def0})
– use1 = (a, (C → D), x = a + b, {def0})
– use2 = (b, (C → D), x = a + b, {def1})

A

B

a = 10

C
b = a

D

x = a + b

Figure 4.27.: Simple example depicting attribute dependencies in terms of an ESTS.

Based on the calculated Def-Use data the dependencies for attribute x of expression x = a + b can
be illustrated as a dependency graph as well, as shown in Figure 4.28. The dependency graph
starts at def2 entry which corresponds to expression x = a + b and thus represents the definition
of attribute x. The graph nodes consist of def and use entry nodes. A def node can only have an
outgoing arrow to a use node. In contrast a use node can only have an outgoing arrow to a def node.
The def→ use relation, which is named referencing-relation, models the relation between the defined
attribute and its referenced attributes and therefore as a further consequence to all attributes it
directly depends on. Due to the fact that a referenced attribute can depend on other attributes as

70

4.4. Metrics

well, the corresponding definitions of the attribute must be considered as well. This is depicted by
the use→ def relation, namely a is defined by-relation. All attribute dependencies can be extracted
from the dependency graph by considering all def nodes which represent the definition of each
directly or indirectly referenced attributes. For the concrete example this leads to the result that
attribute x depends on a and b.

Figure 4.28.: Def-Use dependency graph for attribute x of expression x = a + b of the ESTS depicted in Figure 4.27.

Algorithm 9 shows the function COMPUTE DEPENDENCIES in order to calculate the dependencies
for a single attribute. The algorithm follows the basic concept of a dependency graph, but without
actually building a graph, as the algorithm traverses a virtual dependency graph by means of the
Def-Use data in a depth-first search[85] style. The function expects as input the attribute a for which the
dependencies should be computed as well as the sets Defs and Uses, and returns the set Adependency,
which comprises all attributes on which the given attribute depends.

The algorithm starts with the initialization of the data structures stack and Defsvisited. The former
is a stack which contains all elements, either a def or a use, which are processed next. The latter
denotes a set of definition entries which has already been processed and thus are considered being
visited, in the context of a dependency graph. The actual dependency computation starts now with
retrieving all definition entries from the set Defs which belong to the given attribute as shown in
the for-loop condition. These definitions are considered as start definitions defstart and denote those
definitions where the dependency resolution commences. In the context of a dependency graph
a defstart corresponds to the start node. Thus, the start definition defstart is pushed onto the stack
stack.

The while-loop depicts the actual traversing of the virtual dependency graph. The while-loop is
executed as long as the stack is not empty. During each while-loop iteration the top element of
the stack is retrieved which is assigned to the variable element. If the element is a use entry, such
that element ∈ Uses, all referenced definition entries are pushed onto the stack, which is carried

71

4. Static Analysis

Algorithm 9 Dependency Calculation for a Single Attribute
1: function compute dependencies(a ∈ A, Defs, Uses)→ Aa

dependency
2: stack← ∅;
3: Defsvisited ← ∅;
4: for all defstart ∈ Defs with defstart.a == a do
5: stack.push(defstart);
6: while stack 6= ∅ do
7: element← stack.pop();
8: if element ∈ Uses then
9: stack.pushAll(element.Re f De f s);

10: else
11: if element 6= defstart ∧ element.a /∈ Adependency then
12: Aa

dependency ← Aa
dependency ∪ element.a;

13: end if
14: if element /∈ Defsvisited then
15: Are f s ← extractAttributeReferences(element.exp);
16: for all are f ∈ Are f s do
17: use← getUseEntry(are f , element.t, element.exp); . Applying Equation ??
18: if use 6= NIL then
19: stack.push(use);
20: end if
21: end for
22: end if
23: Defsvisited ← Defsvisited ∪ element;
24: end if
25: end while
26: end for
27: return Aa

dependency;
28: end function

out by statement stack.pushAll(element.Re f De f s). This case depicts in the context of a dependency
graph the creation of a referencing-relation. If the element is a def entry, such that element ∈ Defs, the
following steps are applied:

1. Add the attribute which is defined by the element, with element ∈ Defs, to the Adependency set,
but only if the element is not equal to the start definition defstart, such that element 6= defstart,
and the corresponding attribute of the element is not yet in the set, so that element.a /∈
Adependency.

2. If the definition, which is represented by element, has not yet been visited, such that element /∈
Defsvisited, the following steps are applied:

a) Extract all attributes of the corresponding expression element.exp by means of function
extractAttibuteReferences(element.exp) which results in set Are f s.

b) For each attribute are f ∈ Are f s the corresponding use entries are looked up by means of
function filterUses(are f , element.t, element.exp), which should either return a use entry or
NIL if no such entry could be found in the set Uses. If a use entry is present, such that
use 6= NIL, this entry is pushed onto the stack, which corresponds to the is defined by
relation in context of a dependency graph.

c) In the last step of handling a def entry, the entry is added to the Defsvisited set which
prevents the algorithm to handle definitions multiple times.

Once the dependencies are calculated, the MAAD metric and the corresponding standard devi-
ation value are computed. This is accomplished by computing for all attributes of an ESTS the

72

4.4. Metrics

attribute dependencies. Thus, let e be an ESTS with attributes A = {a0, a1, ..., an}, then A∗dependency =⋃
a∈A COMPUTE DEPENDENCIES (a, Defs, Uses) denotes the set of all calculated dependencies of

all attributes of ESTS e, such that A∗dependency = {Aa0
dependency, Aa1

dependency, ..., Aan
dependency}. In order to

calculate the mean and standard deviation for each subset of the set A∗dependency, their cardinality have
to be calculated by means of Equation 4.12, such that X = cardinality(A∗dependency). Based on set X the
mean is calculated as µ = mean(X) and the standard deviation as σ = standardDeviation(X, µ).

Example 4.25 (Dependency, Mean and Standard Deviation Computation)
By means of the example ESTS of Figure 4.27 the application of Algorithm 9 is shown. Moreover,
based on the computed dependencies the metrics are calculated.

The given ESTS consist of three attributes, such that A = {a, b, x}. Thus, the algorithm com-
puted the dependency sets A∗dependency = {Aa

dependency, Ab
dependency, Ax

dependency} with Aa
dependency = ∅,

Ab
dependency = {a} and Ax

dependency = {a, b}. Hence, the algorithm is demonstrated for attribute x.

1. Execute algorithm with COMPUTE DEPENDENCIES(x, Defs, Uses).
2. Determine start definition defstart = def2 which is pushed onto stack, such that stack = {def2}.
3. Retrieve top element of stack, such that element = def2, stack = ∅.
4. Current element element is a definition entry which belongs to the start definition defstart. Thus,

set Adependency remains unchanged.
5. The corresponding expression x = a + b shows 2 attribute dependencies, such that extrac-

tAttributeReferences(x = a + b) returns the set Are f = {a, b} which belong to use1 and use2,
respectively. The entries use1 and use2 are pushed onto stack, such that stack = {use1, use2}.

6. Current element element is considered as being visited and thus added to set Defsvisited, so that
Defsvisited = {def2}.

7. Retrieve top element from stack such that element = use1 and stack = {use2}.
8. Push all definitions on which use1 depends onto stack, such that stack = {def0, use2}.
9. Retrieve top element from stack, such that element = def0 and stack = {use2}.

10. Current element does not belong to start definition, wherefore a dependency is reported such
that Adependency = {a}.

11. The expression a = 10, corresponding to def0, shows no attribute dependencies and therefore
extractAttributeReferences(a = 10) returns NIL, so that no element is pushed onto stack.

12. Current element element is considered as being visited and thus added to set Defsvisited, so that
Defsvisited = {def2, def0}.

13. Retrieve top element from stack such that element = use2 and stack = ∅.
14. Push all definitions on which use2 depends onto stack, such that stack = {def1}.
15. Retrieve top element from stack, such that element = def1 and stack = ∅.
16. Current element does not belong to start definition, wherefore a dependency is reported such

that Adependency = {a, b}.
17. The expression b = a, corresponding to def1, shows a single attribute dependency and therefore

extractAttributeReferences(b = a) returns the set Are f = {a} which belongs to use0. The entry
use0 is pushed onto stack, such that stack = {use0}

18. Retrieve top element from stack such that element = use0 and stack = ∅.

73

4. Static Analysis

19. Push all definitions on which use0 depends onto stack, such that stack = {def0}.
20. Retrieve top element from stack, such that element = def0 and stack = ∅.
21. Current element does not belong to start definition, wherefore a dependency is reported which

actually is already comprised in the set Adependency = {a, b}.
22. As def0 ∈ Defsvisited no further actions are carried out.
23. Since the stack remains empty dependency computation finished with result Adependency =

{a, b}.

Based on set A∗dependency the cardinality set X = {0, 1, 2} is calculated. Thus the mean is computed as
µ = mean(X) which results in µ = 1 and the standard deviation as σ = standardDeviation(X, µ)

which results in σ = 1, 291. Thus, the metric is denoted as MAAD = 1± 1. �

4.4.4. Mean Attribute On Transition Read Dependency and Mean Attribute on

Transition Write Dependency Metrics

This section introduces the metrics Mean Attribute On Transition Read Dependency (MATRD) and
Mean Attribute On Transition Write Dependency (MATWD). The aim of these two metrics is to
measure the degree attributes depend on transitions in terms of read and write operations which
are called from here on read dependencies and write dependencies. While the MATRD metric depicts
the mean value over all attribute dependencies to transitions which are referencing and reading the
attribute, respectively. The MATWD metric depicts the mean value over all attributes dependencies
to transitions which are modifying the attribute’s value.

Algorithm 10 shows the calculation of the read and write dependencies. The algorithm expects
as input the set of attributes A and the Def-Use data in terms of the definition set Defs and the
usage set Uses. The result of the algorithm are the sets T∗read and T∗write. These sets consist of subsets
containing the transitions which show either a read, corresponding to set T∗read, or write dependency
corresponding to set T∗write. A single subset corresponds to a certain attribute, so that the sets are
defined as T∗read = {Ta0

read, Ta1
read, ..., Tan

read} and T∗write = {Ta0
write, Ta1

write, ..., Tan
write} with a0, a1, ..., an ∈ A

and n = |A|.

Algorithm 10 Transition Read And Write Dependency Computation
1: function compute dependencies(A, Defs, Uses)→ T∗read, T∗write
2: for all a ∈ A do
3: Ta

read ← {use.t | use ∈ Uses∧ use.a = a};
4: T∗read ← T∗read ∪ {Ta

read};
5:
6: Ta

write ← {def.t | def ∈ Defs∧ def.a = a};
7: T∗write ← T∗write ∪ {Ta

write};
8: end for
9: return T∗read, T∗write;

10: end function

The algorithm computes in a for-loop for each attribute of the attribute set the read and write
dependencies by means of the Uses and Defs, respectively. This is carried out in terms of read
dependencies by retrieving all use entries of the set Uses which belongs to a given attribute a, such

74

4.4. Metrics

that use.a == a. The result is the a set of transitions, Ta
read, corresponding to those use entries. Write

dependencies for a certain attribute a are determined similar but by considering the Defs set and by
retrieving those def entries which belongs to a, such that def.a = a. The result is a set of transitions,
Ta

write, corresponding to those def entries.

A

B

[x == x + 1]

C

x = 3

D

x = 1

E

y = 0
[x == 1]
x = 2

F

[x == 0]

[x == 0]

Figure 4.29.: Example of an ESTS to demonstrate computation of read and write dependencies in terms of transitions.

Based on the computed sets T∗read and T∗write the metrics are calculated. Beforehand, the sets
Xread and Xwrite must be computed which are defined as Xread = cardinality(T∗read) and Xwrite =

cardinality(T∗write). As a further consequence the mean values are calculated by µread = mean(Xread)
and µwrite = mean(Xwrite). The corresponding standard deviations are defined as σread = standard-
Deviation(Xread, µread) and σwrite = standardDeviation(Xwrite, µwrite). Thus, MATRD = µread ± σread

and MATWD = µwrite ± σwrite.

Example 4.26 (Dependency, Mean and Standard Deviation Computation)
Consider Figure 4.29 which is used in this example to demonstrate the computation of the MATRD
and MATWD metrics. The attribute set is defined as A = {x, y}, whereas the sets Defs and Uses are
taken over from the Example 4.4.

Applying Algorithm 10 results in the following transition sets for each attribute of set A.

• Tx
read = {(A→ B), (D → E), (E→ F), (F → A)}

• Tx
write = {(A→ B), (B→ C), (B→ D), (D → E)}

• Ty
read = ∅

• Ty
write = {(C → E)}

The algorithm returns the result sets T∗read = {Tx
read, Ty

read} and T∗write = {Tx
write, Ty

write}. In order
to calculate the metrics first the sets Xread and Xwrite are created. The calculation of the metrics

75

4. Static Analysis

are based on the sets Xread = {4, 0} and Xwrite = {4, 1} and thus result in MATRD = 2± 2 and
MATWD = 2, 5± 1, 5. �

4.4.5. Mean Attribute Def-Use Distance Metric

The Mean Attribute Def-Use Distance (MADUD) metric measures the mean distance over all def-use
pairs. The computation of the def-use pair distances are carried out for each attribute. In other words,
the distances are calculated between a def-use entry pair where both entries correspond to the same
attribute. This fact is shown in Algorithm 11 which determines all required distances and computes
the mean value over the collected distances.

Algorithm 11 Mean Distance of Attribute Def-Use Pairs
1: function mean distance definition use(A, Defs, Uses)→ µ, σ
2: Dist← ∅;
3: for all a ∈ A do
4: for all def ∈ {def ∈ Defs | def.a == a} do
5: for all use ∈ {use ∈ Uses | use.a == a} do
6: dist← shortestDistance(def.t, use.t); . Application of Equation 4.7
7: if dist 6= NIL then
8: Dist← Dist∪ dist;
9: end if

10: end for
11: end for
12: end for
13: µ← mean(Dist); . Application of Equation 4.10

14: σ← standardDeviation(Dist, µ); . Application of Equation 4.11

15: return µ, σ;
16: end function

The algorithm expects as input the set of attributes A as well as the sets Defs and Uses, which
are representing the sets of all definitions (defs) and usages (uses), respectively. The output of the
algorithm is the mean value µ and the standard deviation σ. The algorithm iterates over the attribute
set and retrieves first of all the def entries from set Defs, which correspond to the current attribute
a. For each of these definitions the distance to all use entries, which correspond to the current
attribute a, are determined by means of function shortestDistance(t, t′), as stated in Equation 4.7.
The collected distances are represented by the set Dist whose elements are integer values. Finally,
based on this set the mean value and the standard deviation are calculated.

Example 4.27 (Mean Def-Use Distance)
Consider Figure 4.29 which is used in this example to demonstrate the computation of the MADUD
metric. The attribute set is defined as A = {x, y}, whereas sets Defs and Uses are take over from
Example 4.4. It is assumed that the shortest distances have been determined beforehand for this
example.

Applying Algorithm 11 results in the following def-use pair distances.

• Determine distances for def-use pairs of attribute x.

– Distance for def0-use0 is 4→ Dist = {4}.
– Distance for def0-use1 is 6→ Dist = {4, 6}.

76

4.4. Metrics

A

B

[x == x + 1]

C

x = 3

D

x = 1

E

y = 0
[x == 1]
x = 2

F

[x == 0]

[x == 0]

Figure 4.30.: Example of an ESTS to demonstrate computation of MADUD metric.

– Distance for def0-use2 is 2→ Dist = {4, 6, 2}.
– Distance for def0-use3 is 3→ Dist = {4, 6, 2, 3}.
– Distance for def1-use0 is 4→ Dist = {4, 6, 2, 3, 4}.
– Distance for def1-use1 is 1→ Dist = {4, 6, 2, 3, 4, 1}.
– Distance for def1-use2 is 2→ Dist = {4, 6, 2, 3, 4, 1, 2}.
– Distance for def1-use3 is 3→ Dist = {4, 6, 2, 3, 4, 1, 2, 3}.
– Distance for def3-use0 is 3→ Dist = {4, 6, 2, 3, 4, 1, 2, 3, 3}.
– Distance for def3-use1 is 5→ Dist = {4, 6, 2, 3, 4, 1, 2, 3, 3, 5}.
– Distance for def3-use2 is 1→ Dist = {4, 6, 2, 3, 4, 1, 2, 3, 3, 5, 1}.
– Distance for def3-use3 is 2→ Dist = {4, 6, 2, 3, 4, 1, 2, 3, 3, 5, 1, 2}.

• No distances are calculated for attribute y, since no use entries are present.

The computed mean value µ = 3 and standard deviation σ = 1, 472 and thus the metric MADUD =

3± 1, 472. �

4.4.6. Mean Output To Input Transition Dependency Metric

The following metric addresses the measurement of the degree that an output transition depends on
input transitions. The Mean Output To Input Transition Dependency (MOITD) denotes the mean
dependency value over all transitions of an ESTS.

An output to input dependency is determined by considering the output and input parameters,
respectively, of the transitions as well as the assigned and references attributes. In terms of the

77

4. Static Analysis

output parameter all attributes affecting the parameter are determined. As by definition the output
parameter can be set and thus affected by means of an equality guard expression, the guards of an
output transition are considered. By means of these attributes the connection to the input transition
is established by considering all input transitions where these attributes are re-assigned in an action,
and beyond that an input parameter has an affect of the re-assigned value of the attribute. Thus, to
establish the output to input dependency, the data flow of the parameters and attributes have to be
taken into account.

The data flow of the attributes as well as the parameters can be depicted with the aid of the Def-Use
data structure. Hereinafter, the dependency computation approach for a single output transition to

is discussed. For this purpose the guard ϕ, with ϕ ∈ F(V), of an output transition and the action
ρ, with ρ ∈ A(V)A, are depicted in the BET structure, with expϕ = bet(ϕ) and the expρ = bet(ρ),
respectively.

The computation consists of the following steps and are depicted in Algorithm 12:

1. Retrieve all sub-expressions exp′ϕ ∈ EXP′ϕ, with EXP′ϕ denoting the set of all sub-expressions,
of the guard to.ϕ where the following constraints apply:

• The operator of the sub-expression must correspond to the equality operator, such that
exp′ϕ .op ∈ {==}.

• Either the left or the right operand must correspond to a parameter valuation of the
output transition message. Thus, exp′.opdl ∈ Upar(l) ∨ exp′.opdr ∈ Upar(l) with to.l = l.

The extraction is carried out by the use of function extractSubExpression(exp).
2. For each sub-expression exp′ϕ ∈ EXP′ϕ extract the referenced attributes. Thus, Are f s =⋃

exp′ϕ∈EXP′ϕ extractAttributeReferences(exp′ϕ).
3. For each referenced attribute, with are f ∈ Are f s, determine the use entry which corresponds to

the referenced attribute are f , output transition to and to the guard expϕ. This step results in the
set Uses′ which holds all useentries of the referenced attributes. Thus, Uses′ =

⋃
are f∈Are f s

{use ∈
Uses | use.a = are f ∧ use.t = to ∧ use.exp = expϕ}.

4. For each use ∈ Uses′ the corresponding definition reference set RefDefs is considered, but
only those definition references which correspond to an input transition. Thus, Defs′ =⋃

use∈Uses′{def ∈ use.RefDefs | def.t ∈ Ti}, with set Defs′ denoting all definitions which define
referenced attributes and which belong to an input transition.

5. For each definition def ∈ Defs′ determine the parameters which are referenced by the cor-
responding action expression def.exp by means of function Pre f s = extractParameterRefer-
ences(def.exp). The result of the function is the set Pre f s, which contains all referenced parame-
ters belonging to the input transition. Thus, Pre f s ⊆ par(l) with def.t.l = l. If the set Pre f s is not
empty, such that Pre f s 6= ∅, the new value of the attribute is affected by an input parameter
and as a further consequence affects the output parameter. For this reason the corresponding
transition is added to the set Tto

dependency which denotes the set of input transitions on which
the output transition to depends.

Since the MOITD denotes the mean dependency of all output transitions of an ESTS, Algorithm
12 is applied to each output transition. Thus, let E be an ESTS with output transitions To =

78

4.4. Metrics

Algorithm 12 Output to Input Dependency Computation

1: function output input dependency(to ∈ To , Defs, Uses)→ Tto
dependency

2: Tto
dependency ← ∅;

3: expϕ ← bet(to .ϕ);
4: EXP′ϕ ← extractSubExpressions(exp);
5:
6: Are f s ← ∅;
7: for all exp′ϕ ∈ EXP′ϕ do
8: Are f s ← Are f s ∪ extractAttributeReferences(exp′);
9: end for

10:
11: Uses′ ← ∅;
12: for all are f ∈ Are f s do
13: Uses′ ← Uses′ ∪ {use ∈ Uses | use.a = are f ∧ use.t = to ∧ use.exp = expϕ};
14: end for
15:
16: Defs′ ← ∅;
17: for all use ∈ Uses′ do
18: Defs′ ← Defs′ ∪ {def ∈ use.RefDefs | def.t ∈ Ti};
19: end for
20:
21:
22: for all def ∈ Defs′ do
23: Pre f s ← extractParameterReferences(def.exp);
24: if Pre f s 6= ∅ then
25: Tto

dependency ← Tto
dependency ∪ def.t;

26: end if
27: end for
28: end function

{to0 , to1 , ..., ton}, then the set T∗dependency denotes the set of all computed output to input dependencies,
with T∗dependency =

⋃
t∈To OUTPUT INPUT DEPENDENCY(t, Defs, Uses), such that T∗dependency =

{Tto0
dependency, T

to1
dependency, ..., Tton

dependency}.

In order to calculate the mean value as well as the standard deviation the cardinality of each subset
of set T∗dependency is computed by applying Equation 4.12. Therefore, X = cardinality(T∗dependency).
Finally, the functions defined in Equations 4.10 and 4.11 are applied.

Example 4.28 (Mean Output To Input Dependency)
Consider Figure 4.31 which is used in this example to demonstrate the computation of the MOITD
metric. The labels of the transitions denote either an input or output transition. While an input
transition is prefixed by ”?”, an output transition is prefixed by ”!”. The variable definitions in angle
brackets depict the input and output parameters, respectively. With respect to the example ESTS,
the set of output transitions is To = {to(m3) , to(m5)}.

The Def-Use data structure looks as follows:

• Defs = {def0, def1, def2} with:

– def0 = {a, (A ?m1−−→ B), a = p0, {use0}}
– def1 = {a, (B ?m4−−→ C), a = p0, {use0}}
– def2 = {b, (C ?m2−−→ D), b = 20 + p0, {use1}}

• Uses = {use0, use1} with:

79

4. Static Analysis

A

B

?m1<int p0> a = p0;

C

?m4<int p0> a = p0;

D

!m3<int p0> [p0 == b]

?m2<int p0> b = 20 + p0;

E
!m5<int p0> [a == p0]

Figure 4.31.: Example of an ESTS to demonstrate the computation of the MOITD metric.

– use0 = {a, (D !m5−−→ E), a == p0, {def0, def1}}
– use1 = {b, (B !m3−−→ D), p0 == b, {def2}}

Applying Algorithm 12 to each transition of the set To leads to the following results which are
denoted step by step hereinafter:

1. Applying the algorithm to output transition to(m3) = (B !m3−−→ D).

a) EXP′ϕ = {(p0 == b)}
b) Are f s = {b}
c) Uses′ = {use1}
d) Defs′ = {def2}
e) Pre f s = {p0}. Since Pre f s 6= ∅, the corresponding input transition is added to set

T
to(m3)
dependency, such that T

to(m3)
dependency = {ti(m2)

}

2. Applying the algorithm to output transition to(m5) = (D !m5−−→ E).

a) EXP′ϕ = {(a == p0)}
b) Are f s = {a}
c) Uses′ = {use0}
d) Defs′ = {def0, def1}
e) Processing def0 results in: Pre f s = {p0}, and since Pre f s 6= ∅ , the corresponding input

transition is added to set T
to(m5)
dependency, such that T

to(m5)
dependency = {ti(m1)

}.
f) Processing def1 results in: Pre f s = {p0}, and since Pre f s 6= ∅, the corresponding input

transition is added to set T
to(m5)
dependency, such that T

to(m5)
dependency = {ti(m1)

, ti(m4)
}.

80

4.4. Metrics

Thus, the set T∗dependency = {T
to(m3)
dependency, T

to(m5)
dependency} and applying cardinality(T∗dependency) results in

X = {1, 2}. Based on set X the computed mean value µ = 1, 5 and standard deviation σ = 0, 5 and
thus the metric MOITD = 1, 5± 0, 5. �

4.4.7. Mean Output To Input Transition Dependency Distance Metric

This metric measure the mean distance between the output transitions and their dependent input
transitions. The computation is based on the MOITD metric since the Algorithm 12 is used to resolve
the output to input transition dependencies as shown in Algorithm 13. The algorithm computes the
mean distance for all output transitions. Thus, the following steps are applied:

1. For each output transition to ∈ To apply Algorithm 12 to calculate the input dependencies.
2. Compute the distances for each output transition to the dependent input transitions by means

of shortestDistance(ti, to) as defined in Equation 4.7, with ti denoting the input transition on
which to depends.

3. Calculate the mean value µ and standard deviation σ, which depict the output of Algorithm
13.

Algorithm 13 Mean Output to Input Transition Dependency Distance
1: function mean distance(To , Defs, Uses)→ dist
2: Dist← ∅;
3: for all to ∈ To do
4: Tto

dependency ← output input dependency(to , Defs, Uses); . Application of Algorithm 12

5: for all ti ∈ Tto
dependency do

6: dist← shortestDistance(ti , to); . Application of Equation 4.7
7: if dist 6= NIL then
8: Dist← Dist∪ dist;
9: end if

10: end for
11: end for
12: µ← mean(Dist); . Application of Equation 4.10

13: σ← standardDeviation(Dist, µ); . Application of Equation 4.11

14: return µ, σ;
15: end function

Example 4.29 (Mean Distance of Output To Input Dependencies)
Applying Algorithm 13 to the ESTS of Figure 4.31 leads to the distance set Dist = {2, 2, 4}. The
distances of the set Dist are related to the distances of the following transitions:

• Distance from (A ?m1−−→ B) to (D !m5−−→ E)→ 2.
• Distance from (B ?m4−−→ C) to (D !m5−−→ E)→ 2.
• Distance from (C ?m1−−→ D) to (B !m3−−→ D)→ 4.

Based on set Dist the computed mean value µ = 2, 6667 and standard deviation σ = 0, 953 and thus
the metric MOITD = 2, 6667± 0, 953. �

81

4. Static Analysis

4.4.8. Mean Guard Complexity Metric

The Mean Guard Complexity (MGC) metric depicts the mean complexity degree of all guard
expressions of an ESTS. The complexity degree of a single guard is related to the count of the used
logical operators ”&&” and ”||”. The approach to measure complexity in terms of logical operator
count has been taken over from the static analysis tool Checkstyle[12], which determines complex
Boolean expressions in Java source code by this means.

First, in order to calculate the metric for each guard of an ESTS the complexity degree has to be
determined. This is accomplished by means of Algorithm 14, which expects as input a single guard
ϕ and returns the complexity degree complexityDegree, with complexityDegree ∈N0, for the given
guard. The algorithm handles the given guard as BET exp as defined in Definition 4.1. Initially,
the guard expression is pushed onto the stack stack, which holds all expressions which should
be processed, with the next expression to be processed corresponding to the top element of the
stack. The while-loop is executed as long as the stack is not emptyl. In each while-loop iteration the
following steps are carried out:

• Retrieve the top element from stack, which is the current expression exp to be processed.
• If the operator of the current expression corresponds to a logical expression, the complexity

counter will be incremented.
• Push the left operand opdl of the current expression onto stack, but only if the left operand is

neither a variable valuation nor a literal.
• Push the right operand opdr of the current expression onto stack, but only if the left operand

is neither a variable valuation nor a literal.

Algorithm 14 Determination of Guard Complexity
1: function guard complexity(ϕ)→ complexityDegree
2: complexityDegree← 0;
3: stack.push(bet(ϕ));
4: while stack 6= ∅ do
5: exp← stack.pop();
6: if exp.op ∈ LogicalOp then
7: complexityDegree← complexityDegree + 1;
8: end if
9: if exp.opdl 6= NIL∧ exp.opdl /∈ {c,UV} then

10: stack.push(exp.opdl);
11: end if
12: if exp.opdr 6= NIL∧ exp.opdr /∈ {c,UV} then
13: stack.push(exp.opdr);
14: end if
15: end while
16: return complexityDegree;
17: end function

In order to calculate the MGC metric the mean over the complexity of all guards has to be formed. On
that account the set Xcomplexity must be defined which contains the complexity degrees of all guards.
The set is defined as Xcomplexity =

⋃
∀ϕ∈F(V) GUARD DEPENDENCY(ϕ). As a further consequence

MGC = µ± σ with µ = mean(Xdependency) and σ = standardDeviation(Xdependency, µ).

82

4.4. Metrics

A

B

[x > 0 && x < 1 && y > 0 && y < 2
&& z > 0 && z < 3]

C

[x > 0 && x < 1]

D

[x > 0 && x < 1 && y > 0 && y < 2
&& z > 0 && z < 3]

E

[x == 0]
[x > 0 && x < 1 && y > 0 && y < 2]

F

[x == 0]

Figure 4.32.: Example of an ESTS to demonstrate MGC metric computation.

Example 4.30 (Mean Guard Complexity Computation)
Based on the ESTS of Figure 4.32 the guard complexity computation is demonstrated. The labels of
the transitions only show the guards. With respect to Algorithm 14 the following guard complexity
degrees are computed:

• Guard at transition A→ B has complexity degree 5.
• Guard at transition B→ C has complexity degree 1.
• Guard at transition B→ D has complexity degree 5.
• Guard at transition C → E has complexity degree 0.
• Guard at transition D → E has complexity degree 3.
• Guard at transition E→ F has complexity degree 0.

On the account of the calculated complexity degrees the set of all values is Xcomplexity = {5, 1, 5, 0, 3, 0}.
Finally, MGC = 2, 33± 2, 134. �

83

5. Experimental Results

This chapter presents the results which have been obtained with the tool STSStaticAnalyzer. The
STSStaticAnalyzer tool has been developed during this thesis and is realized in Java and contains the
implementations of the checks which have been discussed in Chapter 4. The results in this chapter
are retrieved from a system consisting of three UML models as depicted and described in Section 5.2
and from an illustrative example consisting of two ESTS models described in Section 5.3. In order to
apply static analysis to ESTS models, which are based on the UML models, they are transformed
into ESTS domain beforehand. The transformation approach is discussed in [27] in detail. The
STSStaticAnalyzer tool is executed on a set containing all three ESTS model instances or in case of
the illustrative example on a set of two ESTS models. For the application of message consistency
checks, all ESTS models belonging to the same system has to be passed to the STSStaticAnalyzer.

This chapter is organized as follows: First, limitations concerning the tool implementation are
discussed. Second, a short description of the example system and the illustrative example is
provided. Afterwards, the results obtained by executing the checks on the models are presented and
discussed.

5.1. Limitation

The STSStaticAnalyzer tool shows an implementation limitation in terms of that the concrete
realization of the attribute Def-Use data structures deviates from the definition in this thesis. The
concrete Def-Use data structure implementation is limited to the extent that for neither def nor use
entries the corresponding dependent sets, RefUses and RefDefs, respectively, are realized. Thus, each
def entry of an attribute has an impact on every use entry corresponding to the attribute. On the
other hand a use entry of an attribute depends on all def entries corresponding to the attribute.
Therefore, the result of each check, which utilizes the Def-Use data structure, has to be considered
with regard to this limitation.

5.2. Illustrative Example Keyless Access Controller

The illustrative example is taken from [27] and depicts a system consisting of three parallel running
components, namely the Keyless Access Controller (KAC), the Key Location Detector (KLD) and
Power Controller (PC) component. The architecture of the example system is shown in Figure 5.1.

85

5. Experimental Results

The behavior of these three components are modeled as UML State Charts as shown in Figures 5.2,
5.3 and 5.4. The system illustrated provides the functionality to unlock and lock a car as well as
turning on and off the engine and thus the power supply. All of these functions depend on the
location of the key.

Figure 5.1.: Keyless Access System Architecture. (Image adapted from [27])

The three components communicate with each other by means of messages like evKeyInRange
in Figure 5.2. Internal messages, which are messages that are sent between the components, are
prefixed with ev. By contrast, external messages are prefixed with ex and depicts messages sent from
external sources.

The KAC depicted in Figure 5.2, is the main component of the system defining the behavior in
terms when the car is locked or unlocked. Basically, the KAC component consists of two main states,
namely CarStopped and CarMoving. The state CarStopped illustrates under which condition the car
is locked or unlocked if it is not moving. This fact is depicted by the two sub-states CarLocked and
CarUnlocked. The component’s state changes depends on the current state and on the messages
received. The external message extSpeed notifies the component that the car is in motion. Thus, the
car changes into the state AutoUnlocked and as a further consequence to AutoLocked if the speed
exceeds the defined limit of 20. The state Warning and its sub-states depict an exception. The KAC
changes to the exception mode warning if a message is received notifying that the key is either out of
range or in the range again. A situation which should not be possible while the car is in motion. The
state WarnLightOn indicates that a warning light is turned on. The warning can be acknowledged by
the driver, which is indicated by the external message extAckWarning, automatically after 1000 time
units or if the a message is received that the key is inside the car. All of these facts result in the state
change to AutoUnlocked.

The purpose of the KLD component, depicted in Figure 5.3, is to determine where the key is located.
The component distinguishes two main states, namely KeyOutsideCar and KeyInsideCar. The former
consists of two sub-states stating whether the key is in or out of range of the car. Depending on the
state changes the KAC and PC component are notified by means of messages.

86

5.2. Illustrative Example Keyless Access Controller

Figure 5.2.: UML State Chart of the Keyless Access Controller. (Image adapted from [27])

Figure 5.3.: UML State Chart of the Key Location Detector. (Image adapted from [27])

87

5. Experimental Results

The PC component is responsible for switching between a high and low power mode. In which
mode the PC component is located depends on the KLD component status. The PC is in high power
mode only if the key is inside range or inside the car, otherwise in low power mode. The low power
mode, which is denoted by state LowPower, consists of two sub-states Standby and Off. After the PC
component is situated in the Standby state for a configured time, it changes to the Off state, which
indicates that the power is turned off.

Figure 5.4.: UML State Chart of the Power Controller. (Image adapted from [27])

5.3. Illustrative Example

The two ESTS models depicted in Figure 5.5 have no functional and behavioral purpose, respectively,
since they do not model a specific system behavior. On the contrary, these models are utilized to
discuss the results for those metrics where no results are obtained from the Keyless Access Controller
example.

5.4. Results

The example UML State Charts are transformed to ESTS models by means of the transformation
approach stated in [27]. The ESTS models created are depicted in the Appendix of this thesis in the
Figures A.1, A.2 and A.3.

Table 5.2 shows the results obtained by applying syntactic, semantic and structure-based checks
to the KAC ESTS model. The column Type corresponds to the check message type and is used to
depict which check of Sections 4.2 and 4.3 produced the message. The mapping of check message
type to its corresponding check section is shown in Table 5.1. The table only contains those checks
which produced a check message.

Check Message Type Section Title Section Reference
Message Consistency Input and Output Message Consistency 4.2.1

Non-determinism Non-determinism in terms of Overlapping Guards 4.2.5

Loop Instantly Executable Transition Loops 4.3.1

Table 5.1.: Mapping of check message type to check section.

88

5.4. Results

A2

A3

γ

A6

?m6<int p0>
c = p0;

A1

A4

!m5<int p0>
[p0 == b]
b = 0;

?m2<int p0,int p1>
a = a + p0 + p1;

 c = p1;

A0

γ

A5

!m8<int p0>
[p0 == c + 1]

c = 0;

γ

A7

?m3<int p0>
c = p0;

γ

γ

A8

A9

!m4<int p0>
[a == p0]
a = 0;

γ

?m7<int p0>
b = p0;

γ

?m1<int p0>
a = p0;

(a)Model A

A2

A3

!m2<int p1>
[p1 == a + b &&

 a > 10 &&
 a < 20 &&
 b == 1]

A1

?m3<int p1>
a = p1 + 2 + b + x;

A0

γ

?m1<int p1>
a = p1 + 3 + 4;

(b)Model B

Figure 5.5.: ESTSs of Model A and Model B.

89

5. Experimental Results

The table contains three check messages with respect to Message Consistency and thus denoting a
violation where all of them are related to input messages. Two violations are related to external
input messages, namely extSpeed and extAckWarning. Since no model exists which sends these
messages they are reported as violations. The only relevant violation in terms of Message Consistency
is related to the input message evKeyInside. This message is neither sent from the KLD nor the PC
component, but is expected by the KAC component. As shown in the UML State Chart in Figure
5.2, the evKeyInside message belongs to a transition connecting the Warning state to the Normal state.
The next violation corresponds to a non-determinism issue occurring at state AutoUnlocked. At this

state, two completion transitions, AutoUnlocked
historyconnector 42 == 3−−−−−−−−−−−−−−→ AutoUnlocked and AutoUnlocked

speed≥20−−−−−→ AutoLocked are enabled at the same time. This is the case if both guards are solvable for
at least one attribute valuation, like speed = 20, historyconnector 42 = 3. Four checks messages are
related to the type Loop. Those messages only have informative purpose denoting four self-loops
related to completion transitions.

Type Message
Message Consistency Input message extSpeed is not sent by any other ESTS.

Message Consistency Input message extAckWarning is not sent by any other ESTS.

Message Consistency Input message evKeyInside is not sent by any other ESTS.

Non-determinism AutoUnlocked
historyconnector 42 == 3−−−−−−−−−−−−−−→ AutoUnlocked and

AutoUnlocked
speed≥20−−−−−→ AutoLocked overlaps for values speed = 20

and historyconnector 42 = 3

Instantly Loop Path: WarnLightOff
historyconnector 42 == 6−−−−−−−−−−−−−−→ WarnLightOff

Instantly Loop Path: WarnLightOn
historyconnector 42 == 6−−−−−−−−−−−−−−→ WarnLightOn

Instantly Loop Path: AutoLocked
historyconnector 42 == 3−−−−−−−−−−−−−−→ AutoLocked

Instantly Loop Path: AutoUnlocked
historyconnector 42 == 3−−−−−−−−−−−−−−→ AutoUnlocked

Table 5.2.: Result of applying structural and consistency checks to KAC ESTS model.

Table 5.3 depicts the check messages with respect to the KLD ESTS model. Only two message
consistency issues are found, but either issues are related to external message and thus just have
informative purpose. Applying the checks to the PC ESTS model results in no consistency and
structural issues.

Type Message
Message Consistency Input message extKeyInside is not sent by any other ESTS.
Message Consistency Input message extKeyOutside is not sent by any other ESTS.

Table 5.3.: Result of applying structural and consistency checks on KLD ESTS model.

In the following, the metric results obtained are presented. Table 5.4 shows a comparison of the size
metrics, which have been stated in Section 4.4.1, and the MCC metric from Section 4.4.2, for all three

90

5.4. Results

system components. Based on the NS and NT metric it can be inferred that the KAC is the most
and the PC the least complex model.

The KAC model consists of 7 states and 59 transitions. The ratio of states to transitions, such that the
number of transitions is significantly higher as the number of states, leads to the assumption of the
existence of states with many incoming and outgoing transitions, respectively. A fact which increases
the degree of model complexity. In contrast the KLD, 13 states and 16 transitions, and the PC, 4

states and 5 transitions, models have an almost even states to transitions ratio. The inference that the
KAC model is the most complex is supported by comparing the MCC metric, which is for the KAC
model considerably higher. According to the MCC metric the KAC model has 53 distinct paths,
whereas the KLD and PC models has only 4 and 2 distinct paths, respectively, Thus, in context of
testing the effort to accomplish full transition coverage is notably higher for the KAC model.

Metric KAC KLD PC Section
NS 7 13 4 4.4.1
NT 59 16 5 4.4.1
NTTTi 47 79,66% 6 37,5% 3 60% 4.4.1
NTTTo 0 9 56,25% 0 4.4.1
NTTTd 6 10,17% 0 1 20% 4.4.1
NTTTγ 6 10,17% 1 6,25% 1 20% 4.4.1
NTTTτ 0 0 0 4.4.1
NTE 57 96,61% 4 25% 0 4.4.1
NTG 51 86,44% 4 25% 0 4.4.1
NM 5 6 2 4.4.1
MCC 53 4 2 4.4.2
NA 4 1 0 4.4.1
NAZ 4 100% 1 100% 0 4.4.1
NAB 0 0 0 4.4.1
NAR 0 0 0 4.4.1

Table 5.4.: Comparison of Size Metrics and MCC Metric of KAC, KLD and PC ESTS models.

The NTE metric shows that 96,61% of the transitions in the KAC model have an effect, which means
an action associated that changes the value of an attribute. The MGC metric shows for the KAC
model a high percentage of 86,44%, which means that 86,91% of the transitions have guards assigned.
A fact which is supported by the value 51. Due to the high number it can be inferred that the KAC
component is more complex than the two others, since both features a very low value with respect
to these metrics.

Considering the NTTTi metric of the KAC model shows that the majority of the transitions in the
model correspond to input transitions. Thus, the KAC model is primarily triggered by other models
and external sources, without triggering any other model itself as depicted by metric NTTTo = 0.
Referring to the NTTTi and NTTTo metrics of the KLD it is shown that almost every transition,
despite the single completion transition, are either input or output transitions.

The Keyless Access system consists of 5 attributes with all of them associated to the integer value
domain. The majority of the attributes, precisely 4 attributes, correspond to the KAC model.

91

5. Experimental Results

Furthermore, one attribute belongs to the KLD model and none to the PC model.

In Table 5.5 the results obtained for the MATRD and MATWD metrics are presented. Since the PC
model comprises no attributes the value of either metrics is 0, and thus no read and write dependencies
to transitions exist. The values concerning the KLD model illustrates the fact that only a single
attribute is present in the model. The MATRD metric for the KAC model shows a mean value of
µ = 12, 25 and a standard deviation value of σ = 11, 44. This values denotes that attributes are
referenced by 12,25 transitions on average, while the standard deviation indicates a large scatter
range around the mean value. This fact depicts the existence of attributes which are only referenced
by a few transitions, whereas other attributes exhibit a high count of the transition read dependency.
A circumstance which is reflected by the corresponding min and max values. These values state
that at least one attribute is read from only one transition and at least one attribute is read by 28

transition. Concerning the MATWD metric the KAC model again shows significant higher values in
contrast to the other models. The mean value µ = 35, 5 denotes that attributes are written by 35,5
transitions on average. The standard deviation σ = 8, 76 basically leads to the same inference as for
the MATRD metric, which is reflected by the min and max values of 29 and 48, respectively.

MATRD Metric (Section 4.4.4) KAC KLD PC
µ 12,25 2 0

σ 11,44 0 0

min 1 2 0

max 28 2 0

MATWD Metric (Section 4.4.4)
µ 35,5 4 0

σ 8,74 0 0

min 29 4 0

max 48 4 0

Table 5.5.: Comparison of MATRD and MATWD Metric of KAC, KLD and PC ESTS models.

Table 5.6 shows the results calculated with respect to the MADUD metric. Due to the fact that the
PC model contains no attributes no results are obtained with respect to this metric. Considering the
KAC model the mean value µ = 1, 8 is computed with a standard deviation of σ = 0, 41. Meaning
that 1,8 states on average are located between the definition and the use of an attribute. The standard
deviation denotes that the overall def-use distances are located close to the the mean value. Basically,
it can be inferred that an attribute is read shortly after it has been written, and that the structural as
well as the behavioral complexity between writing and reading an attribute is low. The KLD model
is slightly more complex in terms of the MADUD metric, as the mean value is µ = 4 which means
that 4 states on overage are located between a definition of an attribute and its use. The standard
deviation σ = 0, 76 depicts that the deviation from the mean is low.

Finally, the results obtained for the MGC metric are discussed which are depicted in Table 5.7. Since
NTG = 0 for the PC component, no value for the MGC is computed. In contrast the MGC metric
for the KLD is 0 as well, but as the model shows a value of 4 for the NTG, it means that none of
the four guards utilize a logical operator and thus solely consists of a single condition. The KAC

92

5.4. Results

MADUD Metric (Section 4.4.5) KAC KLD PC
µ 1,8 4 0

σ 0,41 0.76 0

min 1 3 0

max 3 5 0

Table 5.6.: Comparison of MADUD Metric of KAC, KLD and PC ESTS models.

model consists of 51 guards, as stated in in Table 5.4, with a mean complexity of µ = 0, 63 and a
standard deviation of σ = 0, 49. Thus, all guards utilize either no or only 1 logic operator, which is
also reflected by the corresponding min and max values. Based on the mean value it can be stated
that the majority of the guards consist of a single logical operator and thus of two conditions.

MGC Metric (Section 4.4.8) KAC KLD PC
µ 0.63 0 0

σ 0.49 0 0

min 0 0 0

max 1 0 0

Table 5.7.: Comparison of MGC Metric of KAC, KLD and PC ESTS models.

No results have been obtained for the MAAD, MOITD and Mean Output To Input Transition
Dependency Distance (MOITDD) metrics when applying the STSStaticAnalyzer tool to all three ESTS
models. Thus, the illustrative example, shown in Figure 5.5, is used in order to discuss the results
concerning these metrics. First, in Table 5.8 the size metrics with respect to Model A and Model B are
shown. Based on this data Model A is more complex which is reflected by the number of states and
transitions.

93

5. Experimental Results

Metric Model A Model B Section
NS 10 3 4.4.1

NT 15 3 4.4.1

NTTTi 5 33,33% 2 50% 4.4.1

NTTTo 3 20% 1 25% 4.4.1

NTTTd 0 0 4.4.1

NTTTγ 7 46,67% 1 25% 4.4.1

NTTTτ 0 0 4.4.1

NTE 8 53,33% 2 20% 4.4.1

NTG 3 20% 1 80% 4.4.1

NM 8 3 4.4.1

MCC 6 1 4.4.2

NA 3 3 4.4.1

NAZ 3 100% 3 100% 4.4.1

NAB 0 0 4.4.1

NAR 0 0 4.4.1

Table 5.8.: Comparison of Size Metrics and MCC Metric of ESTS Model A and Model B.

In Table 5.9 the results obtained for the MOITD metrics are depicted. The table shows by comparing
the means values of Model A and Model B that the former model shows a considerably higher depen-
dency of its output transitions to its input transitions. A fact that is reflected by the corresponding
min and max values. Thus, it can be inferred that Model A shows a notably higher dependency
degree of output to input transitions in contrast to Model B, and therefore can be considered more
complex.

MOITD Metric (Section 4.4.6) Model A Model B
µ 5 1,5

σ 1,26 0,71

min 4 1

max 7 2

Table 5.9.: Comparison of MOITD Metric of ESTS Model A and Model B.

Table 5.10 presents the result obtained when calculating the MOITDD metric on Model A and Model
B. The results denote that both models show the same mean distance between inputs and the
dependent outputs. Indicating that in both models two states are located between an input and a
dependent output on overage.

94

5.4. Results

MOITDD Metric (Section 4.4.7) Model A Model B
µ 2 2

σ 1 0

min 1 2

max 3 2

Table 5.10.: Comparison of MOITDD Metric of ESTS Model A and Model B.

In conclusion it can be stated that the KAC model is the most complex model of the Keyless Access
System. This argumentation can be drawn by considering the results depicted in Table 5.4. There,
the KAC model shows considerable higher values in terms of the metrics NS, NT, NTE, NTG and
MCC. Thus, this model constitutes a significant higher structural and control flow complexity in
contrast to the KLD and PC models. This fact is as well subsidized by the results of the MATRD
and MATWD metrics for the KAC model, which are presented in Table 5.5. The models only vary
slightly in terms of the MADUD and MGC metrics.

Considering the fictional example, Model A can be rated as more complex than Model B. This
conclusion is based on the consistently higher values of the metrics in Table 5.8. Finally, referring to
the metrics MOITD and MOITDD, no major differences are in place.

95

6. Conclusion

Cyber-physical and embedded systems are complex and often used in safety critical domains. To
reduce the complexity of such systems models are utilized which provide an abstract view of the
systems and thus make them easier to comprehend. Moreover, by means of models a common
understanding of the system can be achieved among various stakeholders. Another aspect of models
is their application in the field of MBT, where models like an ESTS are used to describe the intended
behavior of an SUT. In order to retrieve test cases test generation strategies are applied to these
models. These test cases are executed on the SUT to prove its correctness and thus improve the
quality of the SUT. As the models are utilized to increase the system quality, it is crucial to ensure
that these models are of high quality themselves.

In this thesis a static analyzer suite for ESTS models has been proposed. The suite consists of two
components, namely checks and metrics. The quality of the model in terms of syntax, consistency
and correctness is ensured by the checks that are proposed. Moreover, the checks are able to extract
specific constructs from an ESTS, namely loops and cascades. The metrics provide a quantitative
measure of the quality of an ESTS in terms of complexity. The complexity is an indicator of the
degree of comprehensibility and the maintainability of a model. The checks and metrics proposed
have been implemented in a prototype tool called STSStaticAnalyzer, which has been applied to two
illustrative examples.

6.1. Future Work

The approach discussed in this thesis can be considered to be one of the first attempts of applying
static analysis to ESTS models. The static analyzer suite presented is a first suggestion for the
application of checks and metrics to an ESTS model.

Potential future work might encompass the introduction of other metrics known from the software
engineering field like fan-in/out, cohesion and coupling. Moreover, the scope of checks could be
extended by ensuring syntactic correctness in terms of timing groups and output transition guards.
Furthermore, the introduction of a check could be considered in order to statically detect deadlock
situation by solving path constraints.

Static analysis cannot detect all potential issues that limit the quality of a model. It may be worth
considering the combination of static analysis techniques with dynamic ones. Dynamic analysis

97

6. Conclusion

techniques simulate an ESTS model in order to detect deadlocks or race conditions as described in
[86].

98

Appendix

99

Appendix A.

Experimental Results ESTS Models

101

A
p
p
en
d
ix

A
.
E
xp

erim
en
tal

R
esu

lts
E
S
T
S
M
o
d
els

Figure A.1.: The transformed KAC ESTS model based on the UML State Chart depicted in Figure 5.2.

102

Figure A.2.: The transformed KLD ESTS model based on the UML State Chart depicted in Figure 5.3.

Figure A.3.: The transformed PC ESTS model is based on the UML State Chart depicted in Figure 5.4.

103

List of Acronyms

ESTS Extended Symbolic Transition System
LTS Labeled Transition System
MBT Model-based Testing
STS Symbolic Transition System
SUT System Under Test
UML Unified Modeling Language
SM State Machine
PCG Program Control Graph
MDE Model Driven Engineering
MDA Model Driven Architecture
MBT Model-based Testing
BET Binary Expression Tree
LTL Linear Temporal Logic
CSP Communicating Sequential Processes
CLP Constraint Logic Programming
OCL Object Constraint Language
BPM Business Process Model
BPMN Business Process Model and Notation
ER Entity-Relationship
FSM Finite State Machine
EPC Event-driven Process Chain
CFC Control Flow Complexity
NA Number of Attributes
NT Number of Transitions
NS Number of States
NTT Number of Transitions by Type
NM Number of Messages
NTG Number of Transitions with a Guard
NTE Number of Transitions with an Effect
MAAD Mean Attribute On Attribute Dependency
MATRD Mean Attribute On Transition Read Dependency
MATWD Mean Attribute On Transition Write Dependency
MADUD Mean Attribute Def-Use Distance
MGC Mean Guard Complexity

105

Appendix A. Experimental Results ESTS Models

MOITD Mean Output To Input Transition Dependency
MOITDD Mean Output To Input Transition Dependency Distance
IPT Independent Path Tree
SUM State Machine Understandability Metric
KAC Keyless Access Controller
KLD Key Location Detector
PC Power Controller
MCC McCabe’s Cyclomatic Complexity
CASE computer-aided software engineering
SUT System under Test

106

Bibliography

[1] Unified Modeling Language Specification v2.4.1, Object Management Group (OMG), August 2011.

[2] Business Process Model and Notation v2.0, Object Management Group (OMG), January 2011.

[3] A. Gill, Introduction To The Theory Of Finite-State Machines Assistant Professor of Electrical Engi-
neering. McGraw-Hill Book Company, Inc., 1962.

[4] S. Kent, “Model Driven Engineering,” in Integrated Formal Methods, Third International Conference,
{IFM}, vol. 2335, 2002, pp. 286–298.

[5] S. J. Mellor, A. Uhl, and D. Weise, “Model-Driven Architecture Models and Metamodels,” OMG
white paper, pp. 290–297, 2000.

[6] L. Apfelbaum and J. Doyle, “Model based testing,” Software Quality Week Conference, pp. 1–14,
1997. [Online]. Available: http://www.geocities.com/model based testing/sqw97.pdf

[7] I. Schieferdecker, “Model-Based Testing,” IEEE Software, vol. 29, no. 1, pp. 14–18, Jan.
2012. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
6111361

[8] I. ISO, “Iso/iec 25010”. 2011,” Systems and software engineering—Systems and software Quality
Requirements and Evaluation (SQuaRE)—System and software quality models, 2011.

[9] A. Storch, R. Laue, and V. Gruhn, “Measuring and visualising the quality of models,” in 2013
IEEE 1st International Workshop on Communicating Business Process and Software Models: Quality,
Understandability, and Maintainability, CPSM 2013, 2013.

[10] O. I. Lindland, G. Sindre, and A. Solvberg, “Understanding quality in conceptual modeling,”
IEEE Software, vol. 11, pp. 42–49, 1994.

[11] “Findbugs 3.0.0,” accessed: 2015-02-17. [Online]. Available: http://findbugs.sourceforge.net/

[12] “Checkstyle 6.3,” accessed: 2015-02-17. [Online]. Available: http://checkstyle.sourceforge.net/

[13] “Pmd 5.2.3,” accessed: 2015-02-17. [Online]. Available: http://pmd.sourceforge.net/

[14] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking, 1999. [Online]. Available:
http://books.google.de/books?id=Nmc4wEaLXFEC

[15] K. Vorobyov and P. Krishna, “Comparing Model Checking and Static Program Analysis: A
Case Study in Error Detection Approaches,” in Proc. SSV, 2010, pp. 1–7.

107

http://www.geocities.com/model_based_testing/sqw97.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6111361
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6111361
http://findbugs.sourceforge.net/
http://checkstyle.sourceforge.net/
http://pmd.sourceforge.net/
http://books.google.de/books?id=Nmc4wEaLXFEC

Bibliography

[16] C. Schwarzl and B. Peischl, “Static-and dynamic consistency analysis of UML state chart
models,” Model Driven Engineering Languages and . . . , pp. 1–15, 2010. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-642-16145-2 11

[17] J. Lilius and I. Paltor, “vUML: A tool for verifying UML models,” . . . 1999. 14th IEEE
International Conference on . . . , 1999. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=802301

[18] J. Küster and J. Stehr, “Towards explicit behavioral consistency concepts in the
UML,” . . . of the 2nd International Workshop on . . . , 2003. [Online]. Available: http:
//is.uni-paderborn.de/uploads/tx sibibtex/KuesterSCESM2003.pdf

[19] R. Breu and J. Chimiak-Opoka, “Towards systematic model assessment,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 3770 LNCS, pp. 398–409, 2005.

[20] D. Chiorean, M. Paşca, A. Cârcu, C. Botiza, and S. Moldovan, “Ensuring UML Models
Consistency Using the OCL Environment,” Electronic Notes in Theoretical Computer Science, vol.
102, pp. 99–110, Nov. 2004. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S1571066104051187

[21] A. Awad and F. Puhlmann, “Structural detection of deadlocks in business process models,”
Lecture Notes in Business Information Processing, vol. 7 LNBIP, pp. 239–250, 2008.

[22] “Ibm rational rose enterprise,” accessed: 2015-02-17. [Online]. Available: http://www-03.ibm.
com/software/products/en/enterprise

[23] J. Tretmans, “Model based testing with labelled transition systems,” Formal methods
and testing, pp. 1–38, 2008. [Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-540-78917-8 1

[24] L. Frantzen, J. Tretmans, and T. Willemse, “A symbolic framework for model-based
testing,” . . . approaches to software testing . . . , pp. 40–54, 2006. [Online]. Available:
http://link.springer.com/chapter/10.1007/11940197 3

[25] B. K. Aichernig, “Model-Based Mutation Testing of Reactive Systems,” in Theories of Programming
and Formal Methods, 2013, pp. 23–36.

[26] B. K. Aichernig, E. Jöbstl, and M. Kegele, “Incremental refinement checking for test case
generation,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 7942 LNCS, 2013, pp. 1–19.

[27] C. Schwarzl, “Symbolic Model-based Test Case Generation for Distributed Systems,” Disserta-
tion, Graz University of Technology, 2012.

[28] C. Schwarzl and F. Wotawa, “Test case generation in practice for communicating embedded
systems,” e & i Elektrotechnik und Informationstechnik, vol. 128, no. 6, pp. 240–244, Jun. 2011.
[Online]. Available: http://link.springer.com/10.1007/s00502-011-0009-5

108

http://link.springer.com/chapter/10.1007/978-3-642-16145-2_11
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=802301
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=802301
http://is.uni-paderborn.de/uploads/tx_sibibtex/KuesterSCESM2003.pdf
http://is.uni-paderborn.de/uploads/tx_sibibtex/KuesterSCESM2003.pdf
http://linkinghub.elsevier.com/retrieve/pii/S1571066104051187
http://linkinghub.elsevier.com/retrieve/pii/S1571066104051187
http://www-03.ibm.com/software/products/en/enterprise
http://www-03.ibm.com/software/products/en/enterprise
http://link.springer.com/chapter/10.1007/978-3-540-78917-8_1
http://link.springer.com/chapter/10.1007/978-3-540-78917-8_1
http://link.springer.com/chapter/10.1007/11940197_3
http://link.springer.com/10.1007/s00502-011-0009-5

Bibliography

[29] C. Schwarzl, B. Aichernig, and F. Wotawa, “Compositional random testing using extended
symbolic transition systems,” Testing Software and Systems, pp. 179–194, 2011. [Online].
Available: http://link.springer.com/chapter/10.1007/978-3-642-24580-0 13

[30] F. J. Lucas, F. Molina, and A. Toval, “A systematic review of UML model consistency
management,” Information and Software Technology, vol. 51, no. 12, pp. 1631–1645, Dec. 2009.
[Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0950584909000433

[31] G. Fraser, F. Wotawa, and P. E. Ammann, “Testing with model checkers: A survey,” pp. 215–261,
2009.

[32] G. J. Holzmann, “The Model Checker SPIN,” IEEE Transactions on Software Engineering, vol. 23,
no. 5, pp. 279–295, 1997. [Online]. Available: http://www.mendeley.com

[33] O. Grumberg, Y. Meller, and K. Yorav, “Applying software model checking techniques for
behavioral UML models,” in Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7436 LNCS, 2012, pp. 277–292.

[34] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C Programs,” Tools and
Algorithms for the Construction and Analysis of Systems, vol. 2988, pp. 168–176, 2004. [Online].
Available: http://www.springerlink.com/index/tqa8n61vhen040fm.pdf

[35] F. Fernandes and M. Song, “UML-Checker : An Approach for Verifying UML Behavioral
Diagrams,” Journal of Software, vol. 9, no. 5, pp. 1229–1236, 2014.

[36] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: a new symbolic model checker,”
International Journal on Software Tools for Technology Transfer, vol. 2, no. 4, pp. 410–425, 2000.
[Online]. Available: http://nusmv.fbk.eu/

[37] A. Cimatti and M. Roveri, “Nusmv 1.0: User manual,” Technical report, ITC-IRST, Trento, Italy,
Tech. Rep., 1998.

[38] S. D. Brookes, C. a. R. Hoare, and a. W. Roscoe, “A Theory of Communicating Sequential
Processes,” Journal of the ACM, vol. 31, no. 3, pp. 560–599, 1984.

[39] M. Goldsmith, B. Roscoe, and P. Armstrong, “Failures-divergence refinement-fdr2 user manual,”
2005.

[40] H. Malgouyres and G. Motet, “A UML model consistency verification approach based on
meta-modeling formalization,” Proceedings of the 2006 ACM symposium on . . . , pp. 1804–1809,
2006. [Online]. Available: http://dl.acm.org/citation.cfm?id=1141703

[41] J. Jaffar and J.-l. Lassez, “Constraint Logic Programming,” POPL ’87 Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 111–119, 1987.

[42] N. Jussien, G. Rochart, and X. Lorca, “Choco: an open source java constraint
programming library,” . . . Contraint Programming (. . . , 2008. [Online]. Available:
http://hal.archives-ouvertes.fr/docs/00/48/30/90/PDF/choco-presentation.pdf

109

http://link.springer.com/chapter/10.1007/978-3-642-24580-0_13
http://linkinghub.elsevier.com/retrieve/pii/S0950584909000433
http://www.mendeley.com
http://www.springerlink.com/index/tqa8n61vhen040fm.pdf
http://nusmv.fbk.eu/
http://dl.acm.org/citation.cfm?id=1141703
http://hal.archives-ouvertes.fr/docs/00/48/30/90/PDF/choco-presentation.pdf

Bibliography

[43] A. Hanzala and I. Porres, “Consistency of UML class , object and statechart diagrams using
ontology reasoners,” Journal of Visual Language and Computing, vol. 26, pp. 42–65, 2015. [Online].
Available: http://dx.doi.org/10.1016/j.jvlc.2014.11.006

[44] C. Bock, A. Fokoue, P. Haase, R. Hoekstra, I. Horrocks, A. Ruttenberg, U. Sattler, and M. Smith,
“OWL 2 Web Ontology Language - Structural Specification and Functional-Style Syntax (Second
Edition),” Online, pp. 1–133, 2012.

[45] R. Shearer, B. Motik, and I. Horrocks, “HermiT : A Highly-Efficient OWL Reasoner,” Complexity,
vol. 432, p. 10, 2008. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.142.8603&rep=rep1&type=pdf

[46] A. Egyed, “Instant consistency checking for the UML,” Proceedings of the 28th international
conference on . . . , pp. 381–390, 2006. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1134339

[47] ——, “UML/analyzer: A tool for the instant consistency checking of UML models,” in
Proceedings - International Conference on Software Engineering, 2007, pp. 793–796. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4222649

[48] A. Reder and A. Egyed, “Computing Repair Trees for Resolving Inconsistencies in Design
Models,” in ASE, 2012, p. 220. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2351676.2351707

[49] W. M. P. Van Der Aalst and a. H. M. Ter Hofstede, “YAWL: Yet another workflow language,”
Information Systems, vol. 30, pp. 245–275, 2005.

[50] W. M. P. Van Der Aalst, “Formalization and verification of event-driven process chains,”
Information and Software Technology, vol. 41, no. January, pp. 639–650, 1999.

[51] V. Gruhn and R. Laue, “Checking Properties of Business Process Models with Logic Program-
ming,” in MSVVEIS, 2007, pp. 84–93.

[52] O. M. Kherbouche, A. Ahmad, and H. Basson, “Detecting structural errors in BPMN process
models,” 2012 15th International Multitopic Conference, INMIC 2012, pp. 425–431, 2012.

[53] M. Browne, E. Clarke, and O. Grümberg, “Characterizing finite Kripke structures in proposi-
tional temporal logic,” pp. 115–131, 1988.

[54] K. Schneider, Verification of Reactive Systems: Formal Methods and Algorithms, 1st ed. Springer
Publishing Company, Incorporated, 2010.

[55] S. Onoda, Y. Ikkai, T. Kobayashi, and N. Komoda, “Definition of deadlock patterns for business
processes workflow models,” in Systems Sciences, 1999. HICSS-32. Proceedings of the 32nd Annual
Hawaii International Conference on. IEEE, 1999, pp. 11–pp.

[56] R. M. Dijkman, M. Dumas, and C. Ouyang, “Formal semantics and analysis of BPMN process
models using Petri nets,” Language, vol. 50, pp. 1–30, 2007. [Online]. Available: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.91.3621&rep=rep1&type=pdf

110

http://dx.doi.org/10.1016/j.jvlc.2014.11.006
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.8603&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.8603&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=1134339
http://dl.acm.org/citation.cfm?id=1134339
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4222649
http://dl.acm.org/citation.cfm?doid=2351676.2351707
http://dl.acm.org/citation.cfm?doid=2351676.2351707
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.3621&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.3621&rep=rep1&type=pdf

Bibliography

[57] ——, “Semantics and analysis of business process models in BPMN,” Information and
Software Technology, vol. 50, no. 12, pp. 1281–1294, Nov. 2008. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0950584908000323

[58] J. L. Peterson, “Petri Nets,” ACM Computing Surveys, vol. 9, no. 3, pp. 223–252, Sep. 1977.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=356698.356702

[59] M. Genero, D. Miranda, and M. Piattini, “Defining metrics for UML statechart diagrams in a
methodological way,” Conceptual Modeling for Novel . . . , pp. 118–128, 2003. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-540-39597-3 12

[60] M. Genero, M. Piattini, and C. Calero, Metrics for Software Conceptual Models, M. Genero,
M. Piattini, and C. Calero, Eds. Imperial College Press, 2005. [Online]. Available:
http://medcontent.metapress.com/index/A65RM03P4874243N.pdf

[61] T. McCabe, “A complexity measure,” Software Engineering, IEEE Transactions on, vol. SE-2, no. 4,
1976. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1702388

[62] J. Lankford, “Measuring system and software architecture complexity,” 2003 IEEE Aerospace
Conference Proceedings (Cat. No.03TH8652), vol. 8, pp. 8 3849–8 3857, 2003. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1235569

[63] T. Soliman, “Utilizing CK metrics suite to UML models: A case study of Microarray
MIDAS software,” Informatics and Systems (. . . , 2010. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5461798

[64] M. Hall, “Complexity metrics for hierarchical state machines,” Search Based Software
Engineering, pp. 76–81, 2011. [Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-642-23716-4 10

[65] J. Ho Bae, H. Seok Chae, and C. K. Chang, “A metric towards evaluating understandability of
state machines:An empirical study,” Information and Software Technology, vol. 55, no. 12, pp.
2172–2190, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.infsof.2013.07.011

[66] G. Zhang and M. Hölzl, “A Set of Metrics for States and Transitions in UML State Machines,”
in Proceedings of the 2014 Workshop on Behaviour Modelling-Foundations and Applications. ACM,
2014, p. 2.

[67] K. B. Lassen and W. M. P. van der Aalst, “Complexity metrics for Workflow nets,”
Information and Software Technology, vol. 51, no. 3, pp. 610–626, Mar. 2009. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0950584908001092

[68] J. Cardoso, “Control-flow complexity measurement of processes and Weyuker’s
properties,” 6th International Enformatika Conference, vol. 8, pp. 213–218, 2005.
[Online]. Available: http://eden.dei.uc.pt/∼jcardoso/Research/Papers/Oldpaperformat/
6th-IEC-2005-CFC-and-Weyker-Properties.pdf

111

http://linkinghub.elsevier.com/retrieve/pii/S0950584908000323
http://portal.acm.org/citation.cfm?doid=356698.356702
http://link.springer.com/chapter/10.1007/978-3-540-39597-3_12
http://medcontent.metapress.com/index/A65RM03P4874243N.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1702388
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1235569
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5461798
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5461798
http://link.springer.com/chapter/10.1007/978-3-642-23716-4_10
http://link.springer.com/chapter/10.1007/978-3-642-23716-4_10
http://dx.doi.org/10.1016/j.infsof.2013.07.011
http://linkinghub.elsevier.com/retrieve/pii/S0950584908001092
http://eden.dei.uc.pt/~jcardoso/Research/Papers/Old paper format/6th-IEC-2005-CFC-and-Weyker-Properties.pdf
http://eden.dei.uc.pt/~jcardoso/Research/Papers/Old paper format/6th-IEC-2005-CFC-and-Weyker-Properties.pdf

Bibliography

[69] M. Genero, G. Poels, and M. Piattini, “Defining and validating metrics for assessing the
understandability of entity-relationship diagrams,” Data and Knowledge Engineering, vol. 64, pp.
534–557, 2008.

[70] A. S. Vincentelli and A. Pinto, “A complexity metric for concurrent finite state
machine based embedded software,” 2013 8th IEEE International Symposium on
Industrial Embedded Systems (SIES), no. Sies, pp. 189–195, Jun. 2013. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6601491

[71] V. Gruhn and R. Laue, “Complexity metrics for business process models,”
9th international conference on business . . . , pp. 1–12, 2006. [Online]. Avail-
able: http://www.researchgate.net/publication/221281564 Complexity Metrics for business
Process Models/file/d912f5085635ace7b0.pdf

[72] J. Cardoso, “Evaluating workflows and web process complexity,” Workflow Handbook, vol. 2005,
pp. 284–290, 2005.

[73] J. Cardoso and J. Mendling, “A discourse on complexity of process models,” Business process . . . ,
pp. 117–128, 2006. [Online]. Available: http://link.springer.com/chapter/10.1007/11837862 13

[74] M. H. Halstead, “Elements of software science (operating and programming systems series),”
1977.

[75] S. Henry and D. Kafura, “Software structure metrics based on information flow,” Software
Engineering, IEEE Transactions on, no. 5, pp. 510–518, 1981.

[76] E. Rolón, F. Ruiz, F. Garcı́a, and M. Piattini, “Applying Software Metrics to evaluate Business
Process Models,” CLEI Electronic Journal, vol. 9, no. 1, 2006.

[77] F. Garcı́a, M. Piattini, F. Ruiz, G. Canfora, and C. a. Visaggio, “FMESP: Framework for the
modeling and evaluation of software processes,” Journal of Systems Architecture, vol. 52, pp.
627–639, 2006.

[78] W. Khlif, N. Zaaboub, and H. Ben-Abdallah, “Coupling metrics for business process
modeling,” WSEAS Transactions on Computers, vol. 9, no. 1, pp. 31–41, 2010. [Online].
Available: http://www.wseas.us/e-library/transactions/computers/2010/89-144.pdfhttp://
www.wseas.us/e-library/conferences/2009/genova/ACS/ACS-32.pdf

[79] B. R. Preiss, Data Structures and Algorithms with Object-Oriented Design Patterns in
Java, ser. Worldwide Series in Computer Science. Wiley, 2000. [Online]. Available:
http://books.google.com.au/books?id=ywpRAAAAMAAJ

[80] J. Bondy and U. Murty, Graph theory with applications. Wiley, 1976. [Online]. Available:
http://book.huihoo.com/pdf/graph-theory-With-applications/pdf/preface.pdf

[81] D. Lance, R. Untch, and N. Wahl, “Bytecode-based Java program analysis,” . . . of the 37th annual
Southeast regional . . . , 1999. [Online]. Available: http://dl.acm.org/citation.cfm?id=306382

112

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6601491
http://www.researchgate.net/publication/221281564_Complexity_Metrics_for_business_Process_Models/file/d912f5085635ace7b0.pdf
http://www.researchgate.net/publication/221281564_Complexity_Metrics_for_business_Process_Models/file/d912f5085635ace7b0.pdf
http://link.springer.com/chapter/10.1007/11837862_13
http://www.wseas.us/e-library/transactions/computers/2010/89-144.pdf http://www.wseas.us/e-library/conferences/2009/genova/ACS/ACS-32.pdf
http://www.wseas.us/e-library/transactions/computers/2010/89-144.pdf http://www.wseas.us/e-library/conferences/2009/genova/ACS/ACS-32.pdf
http://books.google.com.au/books?id=ywpRAAAAMAAJ
http://book.huihoo.com/pdf/graph-theory-With-applications/pdf/preface.pdf
http://dl.acm.org/citation.cfm?id=306382

Bibliography

[82] M. Lam, R. Sethi, J. Ullman, and A. Aho, “Compilers: Principles, Techniques, and Tools,”
2006. [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:
Compilers:+Principles,+Techniques,+and+Tools#0

[83] P. Van Hentenryck and V. Saraswat, “Strategic directions in constraint programming,”
ACM Computing Surveys, vol. 28, no. 4, pp. 701–726, Dec. 1996. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=242223.242279

[84] H. F. Ledgard and M. Marcotty, “A genealogy of control structures,” Communications
of the ACM, vol. 18, no. 11, pp. 629–639, Nov. 1975. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=361219.361222

[85] R. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM Journal on Computing,
vol. 1, no. 2, pp. 146–160, Jun. 1972. [Online]. Available: http://epubs.siam.org/doi/abs/10.
1137/0201010

[86] M. Decker, “Simulation of Deterministic and Parallel Execution of Extended Symbolic Transition
Systems,” Master’s Thesis, Graz University of Technology, 2013.

113

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Compilers:+Principles,+Techniques,+and+Tools#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Compilers:+Principles,+Techniques,+and+Tools#0
http://portal.acm.org/citation.cfm?doid=242223.242279
http://portal.acm.org/citation.cfm?doid=361219.361222
http://portal.acm.org/citation.cfm?doid=361219.361222
http://epubs.siam.org/doi/abs/10.1137/0201010
http://epubs.siam.org/doi/abs/10.1137/0201010

	Abstract
	Kurzfassung
	Acknowledgment
	Introduction
	Motivation
	Contribution
	Outline

	Related Work
	Analysis of Models
	Complexity of Models

	Extended Symbolic Transition System
	Static Analysis
	Preliminaries
	Guards and Actions as Binary Expression Tree
	Independent Path Tree
	Shortest Transition Distance Map
	Attribute Def-Use Data Structure
	Constraint Solving
	Statistical Methods

	Syntactic and Semantic Checks
	Input and Output Message Consistency
	Ambiguous Variable Definition
	Validation of Guard and Attribute Update Functions
	Detection of Hidden Transitions
	Non-determinism in Terms of Overlapping Guards

	Structure-based Checks
	Instantly Executable Transition Loops
	Instantly Executable Transition Cascades

	Metrics
	Size Metrics
	McCabes's Cyclomatic Complexity
	Mean Attribute On Attribute Dependency Metric
	Mean Attribute On Transition Read Dependency and Mean Attribute on Transition Write Dependency Metrics
	Mean Attribute Def-Use Distance Metric
	Mean Output To Input Transition Dependency Metric
	Mean Output To Input Transition Dependency Distance Metric
	Mean Guard Complexity Metric

	Experimental Results
	Limitation
	Illustrative Example Keyless Access Controller
	Illustrative Example
	Results

	Conclusion
	Future Work

	Appendix
	Experimental Results ESTS Models
	List of Acronyms
	Bibliography

