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ABSTRACT 

 

Dams are built and operated for water retention for different purposes. The water needs to be regulated 

at intake structures, bottom outlets, spillways with fixed crest or spillways with closure devices. Radial 

gates are common hydraulic closure devices for spillways. These radial gates consist of a curved skin 

plate for water retention and framework arms to transfer the occurring loads to the piers. Concrete 

gravity dams as well hydraulic steel parts as radial gates are stressed during their lifetime not only by 

static forces but also by dynamic forces. Beside floating ice and debris an earthquake event can be a 

dynamic loading on gravity dams and their facilities. 

The first part of this work contains the summary of the dynamic and hydromechanical essentials. 

Furthermore the construction details of hydraulic gates and dams are considered. The modelling 

techniques of the specific loading due to earthquakes for closure devices at the top of spillways and for 

gravity dams and the different dynamic calculation methods are explained. 

In the second part a dam-reservoir-foundation system with an installed radial gate is examined. At first 

the static stresses on the system due to dead weight and hydrostatic pressure are simulated. After the 

eigenfrequency analysis the earthquake accelerations excite the system. Different calculation methods, 

different reservoir modelling techniques and different masses and stiffnesses of the radial gates are used 

and compared. The seismic loading leads to an acceleration amplification factor of about 10 in the 

abutment of the gate and a threefold increase of the bearing forces. 

  



 

 

 

 

KURZFASSUNG 

 

Staumauern werden für den Rückhalt von Wasser für unterschiedlichste Nutzungszwecke errichtet und 

betrieben. Dabei muss das Wasser im Einlaufbereich des Triebwasserweges und Grundablasses und  im 

Bereich von fixen oder beweglichen Hochwasserentlastungsanlagen reguliert werden. Bewegliche 

Hochwasserentlastungsanlagen können als Segmentwehre ausgeführt werden. Diese Segmentwehre 

bestehen aus einem Kreissegment zum Zwecke des Wasserrückhaltes und aus Fachwerksarmen, welche 

die auftretenden Kräfte in die Trennpfeiler der Staumauer ableiten. Sowohl die Betonmauer als auch die 

Stahlbauteile eines Wasserkraftwerkes, zu denen Segmentwehre zählen, werden nicht nur statisch 

sondern auch dynamisch beansprucht. Neben Eis und Schwemmgut können auch Erdbeben eine 

dynamische Beanspruchung von Staumauern darstellen.  

Den ersten Teil der Arbeit stellt die Ausarbeitung der dynamischen und hydromechanischen Grundlagen 

dar. Des Weiteren wird auf den Aufbau und die Lagerung der Gewichtsmauer und der Verschlussorgane 

genauer eingegangen. Die Modellierungsmöglichkeiten der zusätzlich auftretenden Belastung auf die 

Staumauer und die Verschlussorgane zufolge eines Erdbebens des Stausees und die unterschiedlichen 

dynamischen Berechnungsmethoden werden erläutert. 

Im zweiten Teil wird ein Gewichtsmauer-Stausee-Untergrund System mit installiertem Drucksegment 

numerisch untersucht. Zuerst wird die statische Beanspruchung des Systems zufolge Eigengewicht und 

statischem Wasserdruck simuliert. Nach der Eigenschwingungsanalyse werden 

Erbebenbeschleunigungen zur dynamischen Beanspruchung des Systems angesetzt. Dabei werden 

unterschiedliche numerische Berechnungsmethoden, unterschiedliche Stauseemodellierungen und 

unterschiedliche Massen und Steifigkeiten des Segments miteinander verglichen. Durch die dynamische 

Belastung ergab sich eine Erhöhung der Beschleunigungen im Lagerpunkt des Segments um das 

Zehnfache sowie eine Zunahme der Kräfte im Lagerpunkt um das Dreifache. 
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INTRODUCTION 

2 

 Introduction 

Hydro power plants are designed and build to increase humans’ living standards. Since the ancient time 

people try to store water to use it for satisfaction of elementary needs.  

Beside the main benefit of hydro power plants to use it for electricity generation such facilities often 

have multipurpose-profit. Especially storage plants can be used for retention of drinking and service 

water for the agriculture, for generation of recreation rooms, for saving the ship traffic, for regulation of 

the groundwater level, for generating new jobs and are beneficiary of employees. 

During the design of a hydro power plant different fields have to be considered precisely. This is 

necessary to guarantee the safety and the use of the facilities. In addition to a good hydraulic construction 

of the plant, to avoid claims and to guarantee a long lifetime also the civil design is of prime importance. 

Static and dynamic analyses are counted among civil design works. 

Both the internal structural safety and the external structural safety have to be guaranteed. The internal 

safety contains especially concrete construction details like the reinforcement layout and the 

dimensioning of the structure. The external structural safety includes the consideration of the dam-

foundation-reservoir system in static and dynamic fields. For consideration of the dynamic loads on a 

structure, numerical simulations are useful instruments. For these numerical simulations numerous 

open-source and commercial software packages exist.  

At the Institute of Hydraulic Engineering and Water Resources Management of the Graz University of 

Technology one field of research is the numerical simulation of the fluid structure interaction on 

hydraulic retention structures. Based on the master’s project “Seismic acceleration amplification over 

the height of a gravity dam” by Pagger (2014) in the course of this master thesis a numerical model of 

a gravity dam-reservoir-foundation system is developed and the static and dynamic forces on the 

structure due to an earthquake event are implemented.  

The basis of the geometry of the model is the storage hydro power plant Birecik in South-East-Anatolia 

on the river Euphrates in Turkey. It was projected as BOT-model (Build-Operate-Transfer) and came 

into operation in 2000. In 2016 the ownership of the hydro power plant will be transferred to the Turkish 

government.  

At first the static loading cases are computed to get the static behavior of the structure. Over the 

eigenmodes of the system the dynamic loads can be accurate and lead to oscillations of the structure. 

An artificial acceleration time history for an earthquake with a duration of 20 seconds is used for the 

stimulation of the system. Thereby accelerations in horizontal and vertical direction are acting. 

For the numerical simulation the direct time integration method and the modal analysis method are used 

and the differences in the results are figured out. Also varying geometries and material parameters are 

applied and compared. The consideration of the dynamic pressure of the reservoir water is done with 

different approaches.  

A detailed consideration of the installed radial gate on the spillway and the dynamic response on the 

abutment is in the focus of the simulation. 
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The numerical simulation of the gravity dam-reservoir-foundation system is performed by the 

commercial finite-element-analysis software Abaqus/CAE 6.13. 

 Targets and challenges of this work 

Radial gates are designed and constructed by steel hydraulics construction engineers. Thereby the 

knowledge about the dynamic stresses due to an earthquake acting on the steel structure are often only 

estimated in an approximative way. The common procedure is the use of design spectra for the 

earthquake simulation. Therefrom artificial time histories are calculated and multiplied by a 

conservative factor to get the loadings for the design of the closure device.  

To get more detailed information about the loading of the steel structure a numerical simulation of the 

whole system is needed.  

In the framework of this work the first point is an introduction into the thematic basics. Thereby 

especially the dynamic essentials about oscillating systems and the hydrodynamic approaches are 

declared. After the general part the model is created with the software Abaqus/CAE. Especially the 

dynamic response of the abutment of the radial gate is examined. As definitive results the acceleration 

amplification in the abutment for the different model configurations should be illustrated and response 

spectra for the different variants should be created. 

The following points are reasons for the different models: 

• Different models due to the hydrodynamic pressure consideration: 

For the dynamic seismic step of the numerical simulation the model is performed for the empty 

reservoir and the full reservoir. The full reservoir is assumed with Westergaard’s added mass 

technique and with acoustic elements. 

 

• Different models due to different calculation methods: 

The different loading cases are computed with the direct time integration method or with the 

modal analysis with time history method. Different calculation methods lead to a variation of 

results. 

 

• Different models due to different stiffnesses of the gate: 

The gate is discretized as rigid part with an infinite stiffness and as deformable part with 

common steel properties. The influence of the stiffness of the steel structure on the resulting 

accelerations and forces is   examined.
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 Thematic basics 

3.1 Dams 

Dams are constructed as rock- or earth-fill dams as well as concrete dams. Dependent on the geology 

and the geotechnical properties of the foundation different types are built. 

3.1.1 Concrete dams  

Compared to rock- and earth-fill dams, concrete dams have to be based on a sustainable rock foundation. 

Nowadays unreinforced concrete is used for building such dams. Only in areas where tensile forces 

occur (e.g. bottom outlet, piers, etc.) the concrete has to be reinforced. During construction concrete 

blocks are manufactured and joined together to get the hydration heat under control. 

The advantages of concrete dams according Strobl & Zunic (2006) are the unproblematic overflow of 

the dam in case of a flood event, the design of the intake in the dam structure and resultant the lower 

construction costs due to the easy installation of all facilities in the dam area. 

Concrete dams can be divided into: 

• Gravity dams 

• Arch dams 

• Buttress dams. 

 

 

 

 

 

 

 

 

Figure 3-1: Types of concrete dams (Strobl & Zunic, 2006) 

 

Also mixtures of these concrete dam types are designed. Due to the topic of this thesis only the gravity 

dam will be introduced. 
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3.1.1.1 Gravity dam 

Gravity dams are built in wide U-shaped valleys on a sustainable rock abutment. Bandi, et al. (2006) 

limit the construction height of a gravity dam with 100 meters. Higher gravity dams are uncommon 

because an immense amount of concrete would be necessary due to the long contact path. The cross 

section of a gravity dam is a simple triangle geometry with truncated vertices. 

The waterface is nearly vertical in contrast to the downstream face with a common ratio of inclination 

between 1:0.65 and 1:0.8. Concrete blocks with a width between 12 and 20 meters and a length between 

30 and 40 meters are used for construction. (Bandi, et al., 2006) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The layout of a gravity dam can be straight, curved or buckled. 

On the contrary to arch dams gravity dams aren’t in need of intact valley flanks. They only have to be 

founded on a sustainable base to transfer the occurred horizontal and vertical loads over the contact path 

into the abutment. Thereby only the mass of the structure acts against the working load. 

On top of the spillway of a gravity dam different closure devices can be installed. These devices help to 

regulate the water level of the reservoir. These closure devices are declared in 3.2. The hydrostatic 

pressure which acts on a radial gate can be calculated as explained in 5.2. 

The static basics of the gravity dam are declared in 5.3.  

Figure 3-2: Example of a common design of a gravity dam: cross section through the 
spillway (Institut für Wasserbau und Wasserwirtschaft, 2012) 
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3.2 Gates 

Hydraulic closure devices on dams can be installed as intake of penstocks or on spillways to regulate 

the flow. These spillways can be designed as fixed weirs with curved crests, as movable weirs with 

hydraulic gates for regulation or as combined versions.  

The main applications of hydraulic gates according to Erbisti (2004) are: 

• Flood protection 

• Regulation of the water level to use the reservoir for secondary purposes or for guarantying a 

constant water level 

• Flow regulation in case of intake devices 

• Cleaning of reservoirs if floating debris or ice vitiate the use 

• Cutting off the water in case of maintenance 

• Protection in case of an flood event and protection of equipment as emergency gates  

Erbisti (2004) defines several ways to separate hydraulic gates into categories. 

Hydraulic gates can be divided due to their operational purpose. Thereby they can be used as service 

gates, as emergency gates and as maintenance gates. 

 

 

 

 

 

 

 

 

 

Another way to classify hydraulic gates is the division according to their movement. In this case gates 

are distinguished into translational gates, rotation gates and translo-rotation gates. 

 

  

Service gates

spillway gates

flood control 
automatic gates

lock gates

bottom outlet 
gates

Maintenance gates Emergency gates

intake gates

draft tube gates 
of Kaplan 
turbines

gates installed 
upstream of the 
bottom outlet 
service gate

gates installed 
upstream of the 
penstock service 

gate

Figure 3-3: Classification of gates due to their purpose 
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Translational
gates

Slide gate

Stop log

cylinder gate

fixed-wheel gate

caterpillar gate

Rotation gates

flap gate

miter gate

radial gate

sector gate

drum gate

bear trap gate

Translo-rotation
gates

roller gate

 

 

 

 

 

 

 

 

In addition gates can be classified due to the water passage. The discharge can be happen over the leaf, 

under the leaf or over and under the leaf. 

 

 

 

 

 

 

 

 

 

 

Concerning to the topic of this thesis the radial gate will be illustrated in detail. 

3.3 Radial gates 

The in 3.3 mentioned essentials of radial gates are based on Erbisti (2004) and Strobl & Zunic (2006). 

In storage hydro power plants there are mostly radial gates installed as closure device of a spillway. In 

combination with a fitted flap on the top it represents a good compromise of safety and easy handling. 

For lifting a radial gate only small forces are needed compared to translational gates. Furthermore these 

gates don’t need guide rails so the piers can be designed slimmer. Due to the bearing in only two points 

the dimensions, especially the width is limited to 25 meters. 

Because of the given advantages radial gates are ideally suited for high head storage power plants. 

Figure 3-4: Classification of gates due to their movement 

Figure 3-5: Different types of rotation gates (Strobl & Zunic, 
2006) 
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Radial gates can be designed and built as normal radial gates and as reverse radial gates. In case of 

normal radial gates the radial arms are compressed and the concrete in the pier is stressed by pressure 

forces. The good material characteristics of steel in case of tensile loading and the good material 

properties of concrete under pressure cannot be used. Due to the pressure forces on the steel components 

bigger cross sections of the steel beams because of buckling risk are necessary and the concrete has to 

be reinforced in the bearing area. 

The material behavior of steel and concrete can considerably better used at reverse radial gates. Due to 

the upstream bearing of the gate the radial arms are stressed by tensile forces. The disadvantages of the 

reverse radial gate are the required bigger lifting forces and the bad accessibility for maintenance. 

 

 

 

 

 

 

 

 

 

The constituents of a radial gate are: 

• the curved skin 

• the radial framework arms 

• the fixed bearings in the piers 

• and the hydraulic hoists for operation. 

The skin plate consists of horizontal and vertical beams and stiffeners and steel plates with thicknesses 

between 6.5 and 40 millimeters. On the two vertical main girders the radial framework arms are 

connected to the skin. These compressed arms transfer the loads to the bearings. The beams are fastened 

by welding seams or bolts. Common layouts for the vertical and horizontal orientation of the radial arms 

are shown in Figure 3-7. 

  

Figure 3-6: Radial gate with fitted flap of the run-off-river plant Rothleiten at the river Mur 
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Figure 3-7: Common layouts of the radial arms of a radial gate (Erbisti, 2004) 

 

The radial gate usually rotates about a horizontal axis, thereby the direction of the resulting force of the 

static water pressure should go through the pivot. Due to this geometrical condition no tendency to open 

or close the gate should appear.  

Normal gates have to be lifted for discharge, though small openings result in large flows. With a fitted 

flap on top of the gate the discharge can happen over the leaf and it can be regulated exactly. Also the 

water level of the reservoir can be kept constant and debris and ice can be led away with this variation. 

3.3.1 Geometry of radial gates 

 

 

 

 

 

 

 

 

The radius Rs of a radial gate defines Strobl & Zunic (2006) as approximately 1.3 times the height h of 

the gate. The radius of the flap should be about 1.7 to 2.8 times the height hk of the flap. The mass of a 

radial gate can be assumed by 3 to 5 kN/m² times the surface area of the skin plate.  

Erbisti (2004) estimates the mass of a radial gate over the width B, the head on the sill H and the gate 

height h with the following formula: 

 � 
 0.64�������.��� (3.1) 

Figure 3-8: Geometry definitions of radial gates (Strobl & Zunic, 2006) 
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Figure 3-10: Spherical plain bearing for radial gates (US Army Corps 
of Engineers, 2000) 

3.3.2 Variants of bearings and anchorages of radial gates 

The classic version of a gate trunnion was mainly used until the 1960’s. It consists of a trunnion hub, 

which is connected with the radial gates’ framework arms by bolts or welding. The hub rotates around 

the pin, which is supported on both sides by the trunnion brackets. The trunnion pin is locked against 

rotation by a key plate. 

 

 

 

 

 

 

 

 

 

 

 

Due to the problems of pin misalignments, thermal elongation and elastic deformation of the pin the 

spherical plain bearing was innovated at the end of the 1960’s. This spherical bearing contains an inner 

and an outer ring with spherical sliding surfaces. 

 

 

 

 

 

 

 

 

  

Figure 3-9: The classic version of a gate trunnion (US Army Corps 
of Engineers, 2000) 
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Figure 3-11: Structural anchorage of radial gates (Erbisti, 2004) 

The static water pressure and the dead load of the gate can be transferred over the trunnion yokes (a) 

through the trunnion anchorage to the pier. Two systems for anchorage of trunnions are common: 

• Structural anchorage over two longitudinal members 

• Prestressed anchorage over post-tensioned round bars. 

The structural anchorage consists of two longitudinal members (b) connected by a transverse anchor 

girder (c) on the upstream end. The direction of the longitudinal beams should be the direction of the 

resulting force of the acting loads. 

  

 

 

 

 

 

 

 

 

 

In case of larger radial gates the prestressed anchorage has turned out as the better system. The post-

tensioned round tendons fix the trunnion yoke to the pier. Only the ends of the round bars are connected 

with the concrete. The residual tendon length is isolated from the pier by tubes. The tendons are also 

oriented longitudinally in direction of the resulting pressure force. 

  

 

 

 

 

 

 

 

 
Figure 3-12: Prestressed anchorage of radial gates (US Army Corps of 

Engineers, 2000) 

b a c 
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 Dynamic Principals 

4.1 Oscillations 

Oscillations are temporal variations of a state variable. This state variable can be, e.g. the position, the 

force, the temperature or the electric voltage of a body. In connection with oscillations terms like period, 

frequency or angular eigenfrequency are used. The basics of oscillations are based on Freymann (2011). 

The period is defined as the time T in which the movement proceeds until it repeats again. 

The frequency can be calculated by stringing together of multiple periods. Hence the frequency is the 

oscillation per time: 

 � 
 1� (4.1) 

Resultant from angle relations the angular eigenfrequency is defined by following formula: 

 � 
 2 � 
 2 � (4.2) 

Oscillations can be divided according to Freymann (2011) in: 

• Periodic oscillations 

• Harmonic oscillations 

• Almost periodic oscillations and 

• Transient oscillations. 

4.1.1 Periodic oscillations 

In case of periodic oscillations the progression of the magnitude repeats in equal recurrent intervals. 

 

 

 

 

 

 

 

 

Figure 4-1: Example of a periodic oscillation 
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4.1.2 Harmonic oscillations 

A harmonic oscillation is characterized by a sine- or cosine-shaped figure. Similar to periodic 

oscillations also harmonic oscillations have equal recurrent intervals. 

 

 

 

 

 

 

 

The formula of a harmonic oscillation is with the equations (4.1) and (4.2): 

 ��t� 
 	�� cos��& ' (�� (4.3) 

Due to the mathematic relation  

 cos�) ' *� 
 cos)+,-* . -/0)-/0* (4.4) 

the general equation of an harmonic oscillation is: 

 ��t� 
 1+,-�& ' �-/0�&. (4.5) 

With: 

 1 
 ��+,-(� (4.6) 

 � 
 .��-/0(� (4.7) 

4.1.3 Almost periodic oscillations 

An almost periodic oscillation results out of a superposition of particular harmonic oscillations. This 

superposition doesn’t have to inevitably lead to periodic oscillations, in some cases also almost periodic 

oscillations are possible. These oscillations have due to their name an almost periodic appearance. 

4.1.4 Transient oscillations 

Transient oscillations are not subjected any rules regarding their repetition. Their oscillation graph has 

no visible trend or progression, therefore they are unpredictable. 

Figure 4-2: Example of a harmonic oscillation 
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4.2  Oscillating systems 

During an oscillation process potential energy will be transformed into kinetic energy and reversed. 

Over this process the mass m provides due to its inertia the kinetic energy. On the other hand the potential 

energy will be stored as deformation energy in the spring. (Vöth, 2006) 

The damping properties of an oscillator are characterized by the damping force		�� 
 +�� .  
The determination of the oscillation components mass, stiffness and damping can occasionally be 

difficult. The mass can be easily defined over the density and the volume of the body. Material 

stiffnesses can normally be found in technical literature. The damping is the most unsteady component. 

For the damping assumption the literature provides different approaches, which often are based on 

measurement results and are subjected to uncertainties. (Vöth, 2006) 

4.2.1 Classification of oscillating systems 

Not every oscillating system is damped and not every system is induced by an external force, therefore 

oscillations can be differentiated according to Gross, et al. (2012) into free and forced oscillations and 

damped and undamped oscillations.  

The general equation of a two-dimensional oscillating system based on Newton’s equation of motion 

has the formula: 

 2�� ' +�� ' 3� 
 ��&� (4.8) 

With: 

• the mass component  2��  
• the damping component 	+��  
• the stiffness component 	3� 

• and the exciting force  ��&�. 
In case of an free oscillation the system is not brought into oscillation by an exciting force so f(t) = 0. 

Eigen-oscillations of systems can be counted to free oscillations. 

Also the damping component only endures in case of damped oscillations. Thereby the amplitude of the 

oscillation decreases due to the damping component. In the event of an undamped oscillation the 

amplitude remains steadily because of the missing damping. (Gross, et al., 2012) 
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4.3  Single-degree-of-freedom system 

The single-degree-of-freedom system is the simplest oscillating system in the dynamics. The basics of 

the single-degree-of-freedom system are taken from Flesch (1993). 

The system consists of the mass m, the spring and the damping component. The spring has the spring 

stiffness k and the damping element possesses the damping coefficient c. 

 

 

 

 

 

 

 

With the inertia force	�4 
 2��   the damping force �� 
 +��   and the spring force �� 
 3�  the equation 

of the general equation of a two-dimensional oscillating single-degree-of-freedom system is equal to 

equation (4.8). 

4.3.1 The eigenoscillation of an undamped single-degree-of-freedom system 

An oscillating system with one constant mass oscillation and constant amplitude after the release is 

called undamped single-degree-of-freedom system. 

The general approach of a second-order homogeneous differential equation is: 

 ��&� 
 �5	67 . (4.9) 

If there is no exciting force acting the general equation of an undamped system is: 

 �� ' ���� 
 0. (4.10) 

The eigenfrequency is defined as: 

 � 
 ��2 . (4.11) 

and the angular eigenfrequency is: 

 ��� 
 32. (4.12) 

 

Figure 4-3: Single-degree-of-freedom system 
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With the oscillation period T, the eigenfrequency and the angular eigenfrequency the differential 

equation of an undamped system can be solved: 

 ��&� 
 895	6:7 ' 8�5;	6:7  (4.13) 

The Euler Equation 

 5	< 
 COS( ' /	-/0( (4.14) 

helps to write the final term down in the following way: 

 ��&� 
 �9-/0��& ' ��+,-��& (4.15) 

The two constant terms B1 and B2 can be solved, if the boundary conditions, which are depending 

on the dynamic system, are known. 

4.3.2 The eigenoscillation of a damped single-degree-of-freedom system 

An oscillating system with a decreasing mass oscillation and decreasing amplitude after the release is 

called damped single-degree-of-freedom system. 

In case of a damped single-degree-of-freedom system the damping component is added to formula 

(4.10). 

 �� ' +2�� ' ���� 
 0 (4.16) 

The general approach of a second-order homogeneous differential equation is: 

 - 
 . +22 ±AB +22C
� . ���. (4.17) 

In consideration of the term under the square root three issues can occur: 

• 
D�E 
 ��… critical damping 

• 
D�E > ��… over-critical damping 

• 
D�E < ��… under-critical damping 
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With the components of the three equations the damping factor can be defined as the proportion of the 

damping coefficient c and two times the product of the mass and the angular eigenfrequency: 

 H 
 +22�� 
 ++I (4.18) 

The case in which the damping is bigger than the critical damping is very unusual in dynamics in civil 

engineering so the damping factor H can be used to simplify the second-order homogeneous differential 

equation.  

Also the damped eigenfrequency: 

 �� 
 ��J1. H� (4.19) 

can be integrated into the approach and leads to the simplified equation: 

 - 
 .H�� ± /��. (4.20) 

It should be mentioned that the damping has almost no effect on the eigenfrequency. 

The differential equation of a damped single-degree-of-freedom system can be solved: 

 ��&� 
 5K6:7�895	6L7 ' 8�5;	6L7� (4.21) 

With the Euler Equation the final term is: 

 ��&� 
 5K6:7��9-/0��& ' ��+,-��&�. (4.22) 

Figure 4-4: Movement distributions for different dampings (Flesch, 1993) 
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Figure 4-5: Multiple-degree-of-freedom 
system 

4.4 Multiple-degree-of-freedom system 

A multiple-degree-of-freedom system has several masses in different positions. Each mass gets a 

horizontal degree of freedom for the translation uj assigned. Following essentials of the multiple-degree-

of freedom system are predicated in Flesch (1993). 

With the equation of motion the differential equations for each mass can be formed: 

 

 29��9 'M+9
��
 'M39
��

N

O9

N

O9


 P9�&� (4.23) 
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The components of the equations can be summarized and transformed into matrix notation: 

 STUV�� W ' S8UV�� W ' SXUY�Z 
 Y[�&�Z (4.24) 

With: 

• STU…  mass matrix 

• SXU…  stiffness matrix 

• S8U...  damping matrix 

• YUZ, V�� W, V�� W.. motion vectors 

• Y[�&�Z... load vector. 

4.4.1 The eigenoscillation of an undamped multiple-degree-of-freedom system 

In case of an undamped multiple-degree-of-freedom system the several masses oscillate constantly with 

constant amplitude. 

The general equation for a free oscillating system has the following form: 

 STUV�� W ' SXUY�Z 
 Y0Z. (4.25) 
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With the approach: 

 Y�Z 
 Y�̂Zsin	��& ' (� (4.26) 

the homogeneous system of differential equations result: 

 �SXU . ��STU�Y�̂Z 
 Y0Z (4.27) 

The resulting homogeneous system of equations is solvable if its determinant disappears.  

After the disappearance of the determinant the equation: 

 �SXU . ��STU� 
 Y0Z (4.28) 

leads to a n-degree polynomial function with n eigenmodes. 

For this polynomial function several eigenmodes �	, called angular eigenfrequencies are possible. 

The results of the system of equations belonging to each �	 can only be described as ratio. Correlating 

to each eigenvalue the relative deflection of the mass for each eigenfrequency can be determined. These 

ratio value form the eigenvalue i. 

 The eigenmodes can be summarized in the modal matrix: 

 SaU 
 SYa9ZYa�Z… YaNZU (4.29) 

In the modal matrix the eigenmodes are arranged in order of size, whereby the eigenvalue, which belongs 

to the smallest eigenfrequency, is defined as base oscillation mode.  

A requirement for the system is the orthogonality between the eigenmodes Sa	U and ca
d: 
 Yψ	ZfSTUVψ
W 
 0				�,g	/	 ≠ i (4.30) 

 Yψ	ZfSXUVψ
W 
 0			�,g	/	 ≠ 	i (4.31) 

To calculate the undamped oscillation of the system the displacement 	��t� can be constituted as linear 

combination: 

 Y��t�Z 
MYa	Zj	�&�
N
	O9


 SaUYj�&�Z (4.32) 

By substituting into the general equation (4.25) and by consideration of the orthogonality relations the 

differential equation of an undamped multiple-degree-of-freedom system can be written as: 

 Ya	ZfSTUYa	ZVj� �&�W ' Ya	ZfSXUYa	ZYj�&�Z 
 Y0Z. (4.33) 
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With the orthogonality relations the system can be separated into several single-degree-of-freedom 

systems with their specific eigenfrequencies. 

4.4.2 The damped multiple-degree-of-freedom system 

For the consideration of a damped multiple-degree-of-freedom system also for the damping matrix the 

orthogonality between the eigenmodes have to exist: 

 Yψ	ZfS8UVψ
W 
 0					�,g	/	 ≠ i (4.34) 

This orthogonality is only an assumption, because the damping-matrix is fully filled, compared to the 

mass- and the stiffness-matrix which are diagonal matrices. 

To avoid complex eigenmodes for the case of a damped multiple-degree-of-freedom system at first the 

equation for the undamped case has to be solved. After that the damping component can be integrated 

and leads to a resulting equation for the damped multiple-degree-of-freedom system: 

 Ya	ZfSTUYa	ZVj� �&�W ' Ya	ZfS8UYa	ZVj� �&�W ' Ya	ZfSXUYa	ZYj�&�Z 
 Y0Z (4.35) 
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4.5 Consideration of damping 

For the determination of the mass the density of the material is often known. Additionally the Young’s 

modulus could be determined for nearly every material. Only for the damping no specific parameter for 

an exact description exists. Due to this fact the Rayleigh-Damping is a common way to consider the 

damping of a system. According to escoaet (2015) the Rayleigh-Damping is based on the assumption of 

an orthogonality relation between the eigenvalues of equation (4.34) and hence on the linear 

combination of the mass matrix and the stiffness matrix: 

 S8U 
 )STU ' *SXU (4.36) 

Thereby the ) .value and the * .value are the unknown parameters. The  )T .term is defined as the 

external damping. It is responsible for the mass proportional damping which occurs at low 

eigenfrequencies. The *X .term can be specified as the internal damping or as stiffness proportional 

damping. It has a big influence on high eigenfrequencies. (escoaet, 2015). 

Due to the modal viscose damping of the i-nd eigenmode: 

 2ξ�	 
 Va
WfS8UYa	Z (4.37) 

the relation between ), * and the damping factor H according to Flesch (1993) can be displayed: 

 H	 
 )2�	 ' *2 �N 
 +	+lI	7. (4.38) 

The Rayleigh-Damping guarantees a specific damping-factor only in two eigenmodes. The other 

eigenmodes arise as a result of an interpolation between the two points (Flesch, 1993).  

 

 

 

 

 

 

 

In the frequency range between the two eigenmodes a constant damping factor can be formed (escoaet, 

2015): 

 α 
 �9��2H�9 '�� 
 4 �9��H��9 ' ��� (4.39) 

 * 
 2H�9 ' �� 
 H ��9 ' ��� (4.40) 

Figure 4-6: Rayleigh-Damping (Pagger, 2014) 
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 Hydromechanical basics 

The understanding of the equilibrium and the motion of fluids are the main objectives of the 

hydromechanics. The following pages serve as a short introduction into the essentials of this subject and 

are based on Gross, et al. (2009). 

5.1 General hydro mechanical basics  

5.1.1 Properties of fluids 

In the event of a deformation of the static fluid without changing the volume only very low resistance 

forces acting against this, so a static fluid can take any shape while it retains the volume. This acting 

resistance forces are called shearing forces. 

Fluids suffer only slight volume changing anyway so they can be regarded as incompressible. 

Newton determined due to experiments on moving fluids a linear correlation between the dynamic 

viscosity n and the time-based change of the angle o for shearing forces: 

 p 
 n qrqs 
 no�  (5.1) 

Fluids with this correlation are called Newtonian fluids or viscous fluids. 

Ideal fluids are frictionless (η = 0 Pas) as well as incompressible (V = const.).  

5.1.2 Hydrostatics 

The hydrostatics considers fluids in their static state. A static fluid has special behaviors compared to 

solid bodies. These behaviors are responsible for the pressure conditions in fluids. The pressure itself is 

defined as proportion between the force F and the area A: 

 P 
 �1 (5.2) 

The unity of the pressure is 1 Pascal (Pa) or 1 N/m². Also 1bar is often used, whereat 1 bar is equal to 

105 Pascal. 

Heavy fluids are fluids with an occurring dead load. The pressure of these fluids increases with the 

depth. 
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 P�s� 
 P� ' tus (5.3) 

For the case of the fluid water with surrounding atmospheric pressure the term can be written as: 

 P�s� 
 tus. (5.4) 

Another specific property of a fluid is the direction independence of the pressure in any depth. Blaise 

Pascal found out that the pressure of a fluid in each direction has the same value: 

 P 
 Pv 
 Pw 
 Px (5.5) 

Hence the pressure p only depends on its location: 

 P 
 P�y, z, s� (5.6) 

Due to the not-acting shearing forces only normal stresses occur and the stress tensor can be defined as: 

 { 
 |.P 0 00 .P 00 0 .P}. (5.7) 

5.1.3 The Euler equation for hydrodynamics 

The movement of frictionless fluids can be described via the mathematic model of Euler. It’s a first 

order differential equation and a special case of the Navier-Stokes Equation. For the approach an 

infinitesimal cube is cut out of the fluid, a volume force f is set and the equilibrium equation is 

established. 

  

Figure 5-1: Hydrostatic pressure of heavy fluids 



HYDRO MECHANICAL BASICS 

24 

 

 

 

 

 

 

 

 

 

The equilibrium of forces of the x-y-plane is figured out. 

The volume force � is acting on the x-y-plain. 

Due to the dependence of the pressure on the location on the two sides of the plane different pressures 

occur. The force equilibriums in all three directions lead to: 

 P~z~s ' �v~y~z~s . �P ' qPqy ~y�~z~s 
 0 (5.8) 

 P~y~s ' �w~y~z~s . �P ' qPqz ~z� ~y~s 
 0 (5.9) 

 P~y~z ' �x~y~z~s . �P ' qPqs ~s� ~y~z 
 0. (5.10) 

Out of the equations the correlations result: 

 
qPqy 
 �y 
 t�y (5.11) 

 
qPqz 
 �z 
 t�z (5.12) 

 
qPqs 
 �s 
 t�s (5.13) 

The parts can be summarized to: 

 ~P 
 qPqy ~y ' qPqz ~z ' qPqs ~s. (5.14) 

 

  

Figure 5-2: Infinitesimal cube for the Euler equation 
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The extension of the equation (5.8) with the inertia force leads to: 

 P~z~s ' �v~y~z~s . �P ' qPqy ~y� ~z~s . ~rv~& t	~y~z~s. (5.15) 

This also can be done for the two other directions. 

After division following formula arises: 

 
~rv~& 
 �v . 1t qPqy (5.16) 

Summarized the total derivation, containing a local and a convective part, can be written as: 

 
~rv~& 
 qrvq& ' rv qrvqy ' rw qrvqz ' rx qrvqs . (5.17) 

For all three directions the Euler Equation for incompressible, frictionless fluids in vector notation is: 

 �� 
 ~r���~& ' �r��� ∙ ��r���' 1t �P (5.18) 

5.1.4 Hydrostatic pressure on plain surfaces 

A static fluid stresses surrounding structures by the hydrostatic pressure. For the mathematical approach 

of this pressure a specific area of the surface must be taken. This area A is inclined by the angle	). 

 

 

 

 

 

 

 

 

The resulting water load F on the surface can be calculated by integration over the area A by: 

 � 
 � P	~1� . (5.19) 

 

  

Figure 5-3: Hydrostatic pressure on plain surfaces based on Gross, et al. (2009) 
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The pressure p results out of the simple formula: 

 P 
 	tus (5.20) 

by neglecting the atmospheric pressure p0. In Figure 5-3 the correlation between the depth z and the 

value y by the sine-function is obvious and leads to: 

 P 
 tuz-/0�. (5.21) 

The insertion of equation p into equation F defines the water load F more precisely: 

 � 
 tu-/0�� 	z	~1�  (5.22) 

With the formula: 

 � 	z	~11 
 z-1 (5.23) 

and the angle relation: 

 s� 
 z�-/0) (5.24) 

the water pressure F on a plain surface can be written as: 

 � 
 tus�1. (5.25) 

Now the magnitude of the orthogonally acting water pressure on the plain surface is known, but the 

location of the centre of the pressure is already unknown. 

With the water pressure F and its reaction force an equation of the moments can be formed: 

 � ∗ z� 
 � 	zP	~1� 
 tu-/0�� 	z�	~1�  (5.26) 

The area moment of inertia: 

 �� 
 � 	z2	~11  (5.27) 

and the static moment: 

 �y 
 � 	z	~11  (5.28) 

helps to form the formula to calculate the y-component of the centre of the pressure: 

 z[ 
 �v�v 
 �vz�1. (5.29) 
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For non-symmetric areas the x-component can also be calculated over moment relations around the y-

axis: 

 �y� 
 � 	yP	~1�  (5.30) 

and results in: 

 y[ 
 .�yz�y 
 �yzz-1. (5.31) 

5.1.5 Hydrostatic pressure on curved surfaces 

For the calculation of the hydrostatic pressure F on the curved surface the splitting of the force into its 

components is necessary.  

 

 

 

 

 

 

 

 

The components can be written as: 

 ~�� 
 P	~1-/0) 
 P~1∗ (5.32) 

 ~�� 
 P	~1+,-) 
 	tus	~1̅ 
 tu	~�. (5.33) 

 

The integrations over the volume V and the area A* lead to the two forces: 

 �� 
 �P	~1∗ 
 	tu�s	~1∗ → (5.34) 

 �� 
 	tus�1∗ (5.35) 

 

  

Figure 5-4: Hydrostatic pressure on curved surfaces 
based on Gross, et al. (2009) 
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 �� 
 	tu�~� → (5.36) 

 �� 
 	tu� (5.37) 

The centre of the orthogonally acting water pressure F on curved surfaces can be calculated over the 

same formulas as in the case of a plain surface. The horizontal force component acts in the centre of the 

vertical projected surface and the vertical force component occurs in the centre of the horizontal 

projected surface. 

5.1.6 Uplift 

The uplift force of a static fluid equates to the dead load of the replaced fluid.  

 

 

 

 

 

 

 

 

 

The forces dF1 and dF2 acting on the body: 

 ~�9 
 tus9~1 (5.38) 

 ~�� 
 	tus�~1 (5.39) 

 ~�� 
 ~�� . ~�9 
 tu�~1 
 tu�s� . s9�~1 (5.40) 

 

The resulting uplift force FA can be calculated by integration over the volume V: 

 �� 
 � tu� � (5.41) 

 

  

Figure 5-5: Uplift force of a fluid based on Gross, et al. (2009) 
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5.2 Hydrostatic pressure on radial gates 

Radial gates are stressed during their lifetime by different forces. In case of an open gate the structure 

can be underflowed or overflowed. If one of these two cases happens hydrodynamic forces occur in the 

flow area. Also operation forces by lifting and lowering the gate can appear. Due to the fact that steel is 

a good head conductor also temperature loads can strain the gate. Similar to the load on a gravity dam 

also a radial gate can be stressed by floating debris or ice. The common loading case is a combination 

of the hydrostatic load on the radial gate and the dead load of the steel structure. In case of an impulse 

in consequence of an earthquake also additional dynamic loads can act in terms of accelerations. 

The following rudiments based on Erbisti (2004) supply the water load on the structure and the bearing 

forces in the pivot of the radial gate. 

The geometry of the gate has a big influence on the angle and the magnitude of the resulting water load. 

The following calculation procedure is for the case of a vertical position of the pivot between the upper 

and lower end of the gate. To locate the pivot point the heights h1 and h2 as well the angles α1 and α2 are 

necessary. The height h, the radius R and the width b of the gate define the rough geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5-6: Geometry definitions for the calculation of the water load and the 
bearing forces 

Figure 5-7: Horizontal and vertical components of the water load and the 
bearing force 
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With the simple equation ∑�� 
 0 the horizontal bearing force AH results out of: 

 1� 
 �� 
 ��2 o�� (5.42) 

Also the vertical bearing force can be calculated over the equation	∑ �� 
 0	: 
The uplift force Wu acts against the dead weight of the gate G and the vertical water load component 

Wv,1. 

 1� 
 �� 
 �� . � .��,9 (5.43) 

 1� 
 �� 
 1�o�� . � . 1�o�� (5.44) 

 

The variables A5 and A6 are defined as these areas: 

 

Figure 5-8: Definition of the uplift section and the vertical water load section  

 

Finally the resulting water load on the radial gate with the angle β can be calculated with: 

 � 
 ���� .��� (5.45) 

 * 
 �g+&�0 ������. (5.46) 

 

The resulting bearing force A have to be divided by 2 to get the bearing force on each abutment pier. 
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5.3 Static loads on gravity dams 

Different static loads can occur on a gravity dam simultaneously. In addition to the gravity load and 

the upstream water pressure also the downstream hydrostatic water pressure, the silt load and the uplift 

load can arise. Especially on gravity dams often loads due to temperature have to be considered too. 

Due to an earthquake event or bounce forces of floating solid bodies like debris and ice also dynamic 

forces can stress the structure. 

 

Figure 5-9: Static loads on a gravity dam 

 

The stability analysis of a gravity dam can simply be done with the rigid-body-method consisting of a 

two-dimensional triangular dam on a rigid foundation with a rough contact path with the friction 

angle	(. Therefore the structural safety, the stability of the foundation and the sliding stability have to 

be proofed. 

The following approaches are used for the analytical stability analysis of a gravity dam (Institut für 

Wasserbau und Wasserwirtschaft, 2012): 

At first the mass center and the section modulus of the two-dimensional structure must be calculated: 

 y- 
 ∑1/y	∑1	  (5.47) 

 z- 
 ∑1/z	∑1	  (5.48) 

 � 
 ���6  (5.49) 

The following graphics show common stress distributions in the contact path of a gravity dam. Beside 

the figures the formulas for the different loads are summarized. 
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Figure 5-10: Common stress 
distributions in the contact path of a 

gravity dam 

The stresses in the contact path can be calculated with: 

 {9,� 
 �1 ± T�. (5.50) 

 

Dead Load G: 

 � 
 1oD (5.51) 

 T� 
 �5 (5.52) 

 

The distance e for the calculation of the moment MG is defined in Figure 

5-9 . 

Water load upstream Wu: 

 �� 
 ���o� (5.53) 

 �� 
 ����2 o� (5.54) 

 T� 
 �� ���3  (5.55) 

 

Water load downstream Wd: 

 {9,� 
 �1 ± T�. (5.56) 

 �  
 �� o� (5.57) 

Earth pressure at rest E: 

 X� 
 1 . -/0( (5.58) 

 								5�,¡,� 
 o¢s�1 . -/0(� (5.59) 

 													£�,¡,� 
 o¢�1 . -/0(����2  (5.60) 

 	T¤:,¥,¦ 
 £�,¡,� ��3  (5.61) 
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Figure 5-11: Equivalent static loads due to the 
seismic loading 

Uplift U: 

 ��§� 
 23�� (5.62) 

 � 
	� ��y�� ~y (5.63) 

 

The dynamic loads on the structure due to an earthquake can be assumed over the pseudo-static method 

with equivalent static forces. These additional water and dead loads result from following formulas: 

 �¨©© 
 0.7�E«v (5.64) 

 �� 
 �¨©©u;	�� 
 23	�� (5.65) 

 �¤ 
 ­�t�1�J��s	 �¨©© (5.66) 

 	�¤� 
 �5��1�t� (5.67) 

 �¤� 
 23�¤� (5.68) 

 

 

The DIN 19700-11 (2004) standardizes in addition to the normal operation case two loading conditions, 

for which a sliding safety analysis have to be done: 

Normal operation: 

 -N®¯ 
 �� . 0.85��&�0( ' �+� ' £�,¡,� ≥ 1.5 (5.69) 

OBE (operating basis earthquake): 

 -�¯³ 
 �� . 0.85� . �¤��&�0( ' �+� ' £�,¡,� '�¤ ' �¤� ≥ 1.3 (5.70) 

MCE (maximum credible earthquake): 

 -�¯³ 
 �� . 0.85 ∗ � . �¤��&�0( ' �+� ' £�,¡,� '�¤ ' �¤� ≥ 1.2 (5.71) 

 

In the formulas (5.69), (5.70) and (5.71) the uplift is reduced by 85 % due to the Austrian approach. 
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The US Army Corps of Engineers defines in the guideline EM 1110-2-2000 (1995) other safety 

factors for the usual, the unusual and the extreme earthquake event. 

 

 

 

Table 5-1: Sliding safety requirements 
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 Modelling and calculation methods for dynamic 

simulations 

6.1 Calculation methods for dynamic simulations 

For the dynamic simulation of structures different methods can be used which differ from each other 

due to their accuracy. 

Depending on the structure type according to Flesch (1993) in dynamic simulations different interactions 

have to be considered: 

• building – foundation 

• building – installed facilities 

• building – surrounding  medium 

The knowledge of the occurring loads and their properties are of interest. Thereby different parameters 

can be necessary depending on the required accuracy. Sometimes the knowledge about the maxima of 

the oscillation (accelerations, displacements, etc.) are enough information for the calculation, otherwise 

for complex simulations the whole time history or the frequency content is needed to get comprehensive 

results. (Flesch, 1993) 

For the modelling of structures in civil engineering Flesch (1993) mentions the frequently requirement 

of multiple-degree-of-freedom systems with mass-, stiffness- and damping matrices. The results of the 

system of equations can be approximated via different calculation methods. 

 

 

 

 

 

 

 

 

For the dynamic simulation for structures in civil engineering a range of commercial and open-sourced 

computer programs exist. 

The introduction of the different methods is based on Flesch (1993) and Österreichische 

Staubeckenkomission (2001). 

Figure 6-1: Calculation methods for dynamic simulations (Österreichische Staubeckenkommission, 
2001) 
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6.1.1 Pseudo-static method 

The pseudo-static method is the simplest way to consider seismic loads on a structure. With the 

assumption of a time-independent equivalent static load the system can be simplified. This equivalent 

static load results out of the product of the seismic coefficient ´ and the dead load of the structure. 

Three different versions for the determination of the equivalent static load are common: 

• Constant acceleration distribution due to the earthquake over the height of the structure 

• More detailed calculation of the accelerations by comprehension of the first eigenmode of the 

structure 

• Determination of the acceleration with the first eigenmode and the first eigenfrequency as base. 

This method can be used for dams of secondary importance, because the calculation leads in rare cases 

to conservative results. Due to this fact strict criteria for the stability analysis must be achieved. 

6.1.2 Dynamic approximation 

The dynamic approximation is a way to consider the seismic accelerations on a structure with a pseudo-

static method. Therefore common methods according to Chopra, Newmark or Makdisi/Seed, which are 

based on parameter studies, can be used. Chopra applies in his method for gravity dams a mass 

distribution based on the first eigenoscillation, a rigid foundation and added masses according to 

Westergaard. 

6.1.3 Modal analysis with the response spectra method 

In the first step of a modal analysis the system has to be split up into several independent single-degree-

of-freedom systems. These single-degree-of-freedom systems possess different eigenfrequencies and 

dampings. After this the response of each system can be calculated by determination of the maximum 

displacements, oscillation velocities and accelerations for each eigenfrequency. By plotting the 

maximum values dependent on the eigenfrequencies the response spectra can be built. 

Due to the fact that the simultaneous occurrence of the maximum values of each mode is unlikely and 

an exact result of a multiple-degree-of-freedom system specific superposition procedures have to be 

implemented. 

There are several superposition methods described in literature, the most common methods are 

mentioned on the following page. 

The common formula for the superposition is the SRRS (Square-Root-of-Sum-of-Square): 

 � 
 µM�	N
	O9  (6.1) 
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With: 

N…  Total value of a random displacement value 

Ni…  Ratio of the eigenmode i on the displacement value 

The SRRS – formula is the standard superposition formula for these purposes.  

In case of a system with small intervals between the eigenfrequencies the maximum response can be 

underestimated. For these cases the CQC-method (Complete quadratic combination) is common. It 

avoids the problem of underestimation but the computing time is longer. 

 N 
 µMM�	�	
�·N

O9

N
	O9  (6.2) 

With: 

N…  Total value of a random displacement value 

Ni…  Ratio of the eigenmode i on the displacement value 

Nj…  Ratio of the eigenmode j on the displacement value 

�/i...  Factor of interpendency 

The added mass technique according to Westergaard and the approach of the foundation as massless 

finite elements are possible for modal analyses with the response spectra method. 

6.1.4 Modal analysis with the time history method 

The time integration of each mode due to the acceleration time histories is essential for this modal 

analysis method. Thereby the results are superposed mode by mode to get time histories for the total 

structure response. This method has the advantage that time histories can be computed, not only 

maximum values as with the response spectra method. 

6.1.5 Calculation within the frequency domain 

With the calculation within the frequency domain the differential equations are solved by integral 

transformations. At first the loads have to be transferred from the time domain into the frequency 

domain. After that the equations can be solved in the frequency domain. Here each frequency can be 

computed by a simple static calculation with a complex stiffness matrix. At last the results must be 

transferred back into the frequency domain. 

For the integral transformation different algorithm exist. This method is often used for a more precise 

consideration of fluid-structure interactions, but it is only applicable to linear simulations. 
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6.1.6 Direct time integration method 

The direct time integration method is the most exact way for seismic simulations, but also the most 

complex one. A time discretization is necessary for this method. For the time integration the finite 

difference method is used in case of an explicit method. The method according to Newmark is common 

for implicit solutions. For the direct integration method the whole time history of the earthquake event 

is needed.  

The advantage of this method is the possibility of the computation of nonlinear problems. A 

disadvantage is the big computing time especially in case of nonlinear problems. 

The solution of nonlinear problems can be done with an implicit or an explicit method. The differences 

of these solution methods are figured out according to Bathe (2002). 

• Explicit solution: 

In case of an explicit solution the conditions of the timestep tn are used between the timestep tn 

and the timestep tn+1. These conditions are extrapolated from the previous step to the subsequent 

step. With increasing time steps the explicit method leads to increasing deviations. More 

accuracy can be achieved by choosing smaller increment steps. Less computing time for each 

step is necessary. 

 

• Implicit solution: 

Based on the timestep tn the equation of motion for the step tn+1  is getting constructed and solved. 

The iterations must be done until convergence is reached. A big computing time is necessary 

for implicit solutions due to the iteration processes but bigger time increments are possible 

compared to the explicit method. 
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6.2 Essentials for the dynamic simulation of gravity dams  

Earthquakes occur in the solid earth due to volcanic, tectonic or artificially initiated stimulation. 

Tectonic earthquakes are the heaviest and the most common one. These quakes arise by plate movements 

and fractions in the earth crust. The centers of tectonic earthquakes are in depths between 70 and 720 

kilometers, there waves and as result accelerations originate and propagate through different layers to 

the earth surface (Wieland, 1978). 

 

 

 

 

 

 

 

 

 

 

 

 

The basement naturally has “infinite” dimensions. For simulation boundaries have to be defined in most 

cases. The difficulty of the assumption of these model borders is to hold the influence of the limits on 

the dynamic behavior as little as possible. Due to the big decreasing of the displacements over the depth 

of the foundation the influence of the model limits in numeric simulations is small in cases of 

conservative geometry assumptions (Österreichische Staubeckenkommission, 2001). 

In cases of dams of secondary importance or in case of earth- or rock fill dams with low stiffnesses 

compared to the surrounding foundation the dam can be directly supported by rigid bearings. 

(Österreichische Staubeckenkommission, 2001) For the simulation of taller concrete dams the numerical 

model has to consist of following parts: 

• gravity dam 

• foundation  

• reservoir 

A common modelling technique for the foundation is the definition as massless, limited, linear elastic 

structure. Due to the fixation in all three directions there is no space for the movement of the rock mass 

due to a seismic stimulation. This circumstance and the uncertainties of the rock properties lead to a 

simplified assumption of the foundation as massless rock. The damping behavior can be assumed with 

Figure 6-2: Modelling scheme of seismic simualtions based on 
Meskouris, et al. (2011) 
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the damping values of the gravity dam due to the similar material properties of the concrete and the rock. 

The bottom boundary and the vertical boundaries can be defined as rigid bearings. The flexibility of the 

contact path of the gravity dam can be considered in this way however the radiation damping of the 

foundation has to be neglected so the earthquake may be overrated (Österreichische 

Staubeckenkommission, 2001). 

Conventional stability analyses of gravity dams can be done with a two-dimensional plain strain model. 

For more precise considerations of specific parts in most cases a three-dimensional model is more 

accurate. 

 

 

 

 

 

 

 

 

 

 

 

As a rule of thumb the height of the foundation can be assumed as 2 times the height of the dam. The 

length of the reservoir and the horizontal length between the downstream end of the dam and the vertical 

boundary should be at least three times the height of the dam for models with reflecting reservoir 

boundaries. In case of a definition of the reservoir’s back boundary as non-reflecting a length of 2 times 

the dam height is sufficed. (Österreichische Staubeckenkommission, 2001).  

The stimulation of the system due to the stress of an earthquake can arise in various ways depending on 

the calculation method. In case of the direct integration method the vertical accelerations are applied on 

the horizontal boundary and the horizontal accelerations are appointed on the vertical boundaries.  

Thereby the same magnitude on every node can be chosen as simplification. In case of modal analyses 

global horizontal and vertical accelerations or response spectra has to be defined. Another assumption 

is the simultaneous appearance of the accelerations on each node. 

Different material parameters are necessary to correctly take the dynamic behavior of the parts into 

consideration. For the concrete of the gravity dam and the foundation the density, the Young’s modulus 

and the Poisson’s ration are important. The water can be considered by Westergaard’s added mass 

technique or with compressible acoustic finite elements. For acoustic elements the density and the bulk 

modulus have to be defined. 

  

Figure 6-3: Common two-dimensional model for seismic 
simulations of gravity dams 
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In coincidence with the modelling following regions and interactions have to be surveyed: 

• dam-foundation – interaction 

• dam-reservoir – interaction 

• reservoir-foundation – interaction 

• water surface 

• reservoir boundaries 

• possibly symmetric conditions 

The interaction between the foundation and the dam can be supposed as nonpositive connection. 

(Österreichische Staubeckenkommission, 2001) Also between the dam and the reservoir’s acoustic 

elements a tie constraint can be assumed. On the water surface the pressure has to be declared as zero. 

To avoid the water wave reflection due to the earthquake on the back vertical boundary the surface must 

be defined as non-reflecting. 

In the following point the ways to consider the interaction between the reservoir and the dam in seismic 

simulations is professed in more detail. 

6.2.1 Consideration of the hydrodynamic pressure on the structure  

There are different possibilities to consider the hydrodynamic pressure on structures. For fluid-

structure-interaction simulations the approaches can be separated into analytical procedures and 

modelling procedures via finite elements or finite volumes.  

The following consideration opportunities according to Institut für Wasserbau und Wasserwirtschaft 

(2013) for fluids exist: 

• Added mass techniques 

o Added masses by Westergaard 

o Added masses by Zangar 

• Acoustic Elements 

• Fluid Elements 

• Eulerian Finite Elements 

• Lagrangian Finite Elements 

• Smoothed Particle Hydrodynamics 

Due to the used methods in the simulation only the added mass technique according Westergaard and 

the acoustic elements are declared in detail.  

  



NUMERICAL SIMULATION OF THE GRAVITY DAM IN ABAQUS/CAE 

42 

Figure 6-4: Westergaard’s added mass technique based on Goldgruber (2011) 

6.2.1.1 Westergaard’s added mass technique 

The added mass technique by Westergaard is a classic, analytical way to consider the hydrodynamic 

pressure on structures. The mass of the reservoir is replaced by mass points on the structure’s surface. 

The mass points are located in the interacting surface nodes of the elements of the structure. The value 

of these masses depends on the surface area of the elements. In case of this procedure no discretization 

of the water is necessary and surface waves of the water are neglected. The limits of these methods are 

the consideration of only horizontal movements and the negligence of resonance effects (Österreichische 

Staubeckenkommission, 2001). 

 

 

 

 

 

 

 

 

The added mass for an element with the area AW can be calculated with the following formula 

according to Goldgruber (2011): 

 2� 
 78t1�J�s	 (6.3) 

For the most cases the procedure according Westergaard is sufficient and leads to conservative results. 

In cases of slim structure as arch dams other procedures like acoustic elements better represent the 

physical behavior of the reservoir. (Institut für Wasserbau und Wasserwirtschaft, 2013). 

6.2.1.2 Acoustic elements 

The acoustic elements are derived from fluid dynamics. In case of the method with acoustic elements 

the fluid has to be discretized with finite elements. These finite elements possess only one degree of 

freedom, namely the pressure. The elements are defined as compressible, frictionless, homogeneous and 

irrotational with a constant density. (Institut für Wasserbau und Wasserwirtschaft, 2013) 

The procedure with acoustic elements is a combination of Newton’s law of motion and the continuity 

equation. 

The general equation of motion for an acoustic medium is: 

 � ∙ P ' t�r� 
 0 (6.4) 

The time derviation of formula (6.4) is: 
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q�tq&� ' t�� ∙ r� 
 0 (6.5) 

The continuity equation is defined as: 

 
qPq& ' t�� ∙ r 
 0 (6.6) 

The constitutive law is: 

 qP 
 +��qP (6.7) 

With the wave propagation speed cW: 

 +� 
 A Xt� (6.8) 

 

With the previous formulas the linear acoustic wave equation can be formed: 

 
q�Pq&� . +���� ∙ P 
 0 (6.9) 
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 Numerical simulation of the gravity dam in Abaqus/CAE 

For the discretization and simulation the commercial finite-element-analysis software Abaqus/CAE is 

used. Abaqus supplies different modules for standard implicit or explicit simulations, for computational 

fluid dynamics or for electromagnet models. It provides a simple interface for the preprocessing 

operations. Nevertheless the result of the preprocessing work is the generation of an input file to run the 

job. Also the post processing by evaluation and visualization can be done with Abaqus/CAE. (Dassault 

Systemes, 2013) 

In addition for visualization purposes and evaluation of the results the scripting language Python 2.7 

with the packages Numpy and Matplotlib is applied.  

 

 

 

 

 

 

 

The base of the model is the geometry of the storage hydro power plant Birecik in Turkey. This hydro 

power plant consists of a left and a right embankment dam, a powerhouse, the intake concrete structure 

as well the spillway with stilling basin. For the seismic simulation one section of the 60 meters high 

spillway part with installed radial gate is cut out. 

A three-dimensional model is designed in Abaqus/CAE to incorporate the influences in Y-direction on 

the abutment of the radial gate. 

The three-dimensional numerical model consists of following parts: 

• Gravity dam 

• Reservoir 

• Foundation 

• Radial gate 

These parts are connected by constraints. Orthogonal to the flow direction symmetry constraints as 

described in 7.3.1 are defined to prevent motions in this direction. 

  

Preprocessing

(Modelling, Discretization)

• Abaqus/CAE 6.13

Processing / Simualtion

• Abaqus/CAE 6.13 
standard / implicit

Postprocessing / 
Visualization

• Abaqus/CAE 6.13
• Python 2.7

• Numpy- and 
Matplotlib-Package 
for Python

Figure 7-1: Components and tools for the numerical simulation 
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Figure 7-3: Radial gate part 

 

 

 

 

 

 

 

  

 

 

 

 

 

The system is supported by horizontal and vertical bearings at the foundation boundaries. 

On the spillway the radial gate with a fitted flap is installed. The installed flap guarantees an exact 

adjustment of the water level and the discharge of a defined water flow. 

 

  

Figure 7-2: Parts of the numerical model 
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Figure 7-5: Geometry of the radial gate 

7.1 Geometry 

The geometry of the model is caused by the width of the spillway section and the assumption of the 

artificial boundaries of the reservoir and the foundation.  

The height of the gravity dam is settled with 62.50 meters. The stored water reservoir with a height of 

58 meters leads to a freeboard of 4.50 meters. The assumed length of the reservoir is about 2.5 times the 

height of the reservoir. Also the downstream distance of the foundation is about 2.5 times the height of 

the reservoir. The height of the foundation is 1.5 times the height of the gravity dam. The width of one 

spillway section is 17.50 meters, whereby the five meters wide piers are cut in the middle. 

 

 

 

 

 

 

 

 

 

 

The radial gate consists of a curved skin plate with main girders and secondary girders, radial framework 

arms and diagonal bracings. On both sides the gate is pivoted at the pier’s downstream side. The rotation 

of the gate is assumed as locked. 

 

 

 

 

 

 

 

 

 

Figure 7-4: Geometry of the general model 
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Due to the lack of schemes for the geometry of the radial gate random cross section dimensions are used. 

The width of the gate is 12.50 meters. The radius of the curved skin plate is defined with 17.52 meters. 

The plate is supported by diagonal bracings. The framework arms are inclined outward to the piers. 

7.2 Material definitions 

For the right consideration of the mechanical behaviors different materials for each part are defined.  

The foundation is assumed as massless, homogeneous material with zero density. For the simulations 

the radial gate is defined as massless or as steel part with a density of 0.0078 kt/m³. The material 

properties of the four parts are shown in Table 7-1: 

 

 

 

 

 

7.3 Boundary conditions 

7.3.1 Symmetry boundary condition 

One spillway section is removed from the residual gravity dam due to symmetry. In case of a cut-out 

symmetry conditions have to be put on the vertical boundaries. For the numerical model the dam has to 

be held in y-direction. That means displacements in y-direction are prohibited. Also rotations around 

the z-axis are inadmissible. Figure 7-6 shows the surfaces for the symmetry boundary condition only on 

the orthographic right side. The same conditions are set on the left side. 

 

 

 

 

 

 

 

Table 7-1: Material properties of the parts 

Figure 7-6: Symmetry boundary condition 
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7.3.2 Tie constraints 

The gravity dam is in contact with the reservoir by a tie constraint. Due to the assumed similar material 

behavior of the gravity dam and the foundation the contact path also can be designed as a tie constraint. 

The radial gate is installed over a coupled connection on the spillway pier. 

 

 

 

 

 

 

 

 

 

 

 

7.3.3 Supporting conditions in static steps 

The numerical model is in static steps supported by rigid bearings on the horizontal and vertical artificial 

boundaries of the foundation. Thereby the movement in x-direction is locked on the vertical borders and 

the movement in z-direction is avoided on the horizontal border. 

 

 

 

 

 

 

 

 

 

Figure 7-7: Tie constraints in the model 

Figure 7-8: Supporting conditions in static steps 
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7.3.4 Boundary conditions for the acoustic elements 

To avoid reflections of the acoustic waves caused by an earthquake on the free field simulated boundary 

of the reservoir the vertical surface has to be defined as non-reflecting for absorption. In case of using 

acoustic elements the water surface has to be specified as surface with zero pressure. 

 

 

 

 

 

 

 

 

 

 

  Figure 7-9 Surface conditions for acoustic elements 
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7.3.5 Stimulating earthquake accelerations 

For the earthquake loading two random time histories in x- and z-direction are used. Thereby the x-

direction is the flow direction and orthogonal to the dam axis and the z-direction is the vertical direction 

and orthogonal to the flow direction. The earthquake duration is 20 seconds and the maximum 

earthquake accelerations go up to 0.1 g. The accelerations are put on the foundation boundaries as shown 

in Figure 7-10. 

 

 

 

 

 

 

The response spectra of the acceleration time histories in x-direction and z-direction are shown in Figure 

7-11. 

  

Figure 7-10: Earthquake accelerations in x- and z-direction 

Figure 7-11: Acceleration response spectra in x- and z-direction of the stimulating acceleration time histories 
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7.4 Simulation steps 

The numerical simulation can be divided into a static simulation, the eigenfrequency analysis and the 

seismic dynamic analysis. The static simulation contains the gravity step with the dead weight of the 

dam as load and the hydrostatic step with the static water load acting on the structure. 

The following calculation steps are computed: 

• Initial step 

• Static analysis: 

o Gravity step 

o Hydrostatic step 

• Eigenfrequency analysis (including pre-deformation from the static analysis) 

• Dynamic analysis 

7.4.1 Gravity step 

The first calculation step is the static gravity step. As load the dead weight of the concrete structure is 

applied. As results the stresses in the contact path due to the dead load are of interest. 

7.4.2 Hydrostatic step 

The hydrostatic water pressure on the gravity dam is the decisive load in case of hydraulic structures. 

The additional load leads to higher deformations in x-direction and higher stresses in the contact path 

compared to the gravity step.  

7.4.3 Eigenfrequency analysis 

In the frequency step the eigenoscillations of the structure are computed. As result a maximum of 20 

eigenmodes are extracted. With the eigenmodes the dynamic behavior of the structure can be 

represented. By calculating the Rayleigh Damping coefficients with the eigenfrequencies the damping 

behavior of the structure can be considered. Abaqus/CAE uses standardly the Lanczos method for 

iteration of the eigenvalues.  

7.4.4 Dynamic step 

The seismic dynamic analysis can only be done with the knowledge of the eigenmodes. For the rock 

mass the damping behavior of the gravity dam can be adopted because of the uncertainties of the material 

properties. For the dynamic step two different calculation methods are used: 

• Modal analysis with the time history method 

• Direct integration method. 

By using the modal analysis method with time histories the dynamic simulation can be done by 

superposition. A global stimulation of the system by the two time histories and a global damping 

parameter with 5 % over the whole 20 modes is defined. 

The calculation method of direct time integration uses the two time histories as stimulations on the 

foundation borders and the Rayleigh coefficients α and β for the consideration of the damping. The 



NUMERICAL SIMULATION IN ABAQUS/CAE 

52 

earthquake is simulated over a time period of 20 seconds with a defined maximum increment number 

of 2000 and an increment size of 0.01 using the Full-Newton method. 

7.5 Discretization of the model 

For the discretization of the model different element types dependent on the required accuracy are used. 

The foundation is modelled with linear solid elements. For the gravity dam quadratic solid elements are 

used. The radial gate is discretized with quadratic shell elements and a rigid body definition or with 

linear shell elements and quadratic beam elements. The model configurations in which the reservoir is 

discretized with finite elements use quadratic acoustic elements. 

 

 

 

 

 

 

 

 

 

 

  

Figure 7-12: Discretization of the model 
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The following element types with their definitions in Abaqus/CAE are used. 

 

 

 

 

 

 

 

 

 

 

 

 

The deformable skin plate of the gate with its complex geometry must be discretized with linear shell 

elements to keep the node number low. 

Due to the more complex geometry of the deformable gate the sum of elements is 15676 and the number 

of nodes is 44937 for these jobs. 

The total number of elements for jobs with rigid gate is 10506 and the total number of nodes is 39623.  

 

 

 

 

 

  

Table 7-2: Element definition for the model in Abaqus/CAE 

Table 7-3: Number of elements 

Table 7-4: Number of nodes 
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7.6 Static analysis 

After the initial step the static analysis is computed. It contains the gravity step and the hydrostatic step. 

7.6.1 Gravity step 

In the Gravity step only the dead weight of the concrete structure is acting. This loads lead to stresses in 

the contact path of the dam, which are shown in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum pressure in the contact path is about 1 MPa on the upstream heel of the dam. On the 

downstream heel of the dam a pressure of about 0.55 MPa occurs. Due to the change in altitude at the 

nodes 1864, 1865 and 1813 a steeper stress graph is visible in this area. 

The peaks in the stress graph at node 1847 and 1872 are caused by typical numerical troubles. The 

common static stress distribution in the contact path of a gravity dam has a nearly linear form and 

decreases from upstream to downstream. The analytical way to calculate the stresses is described in 5.3. 

  

Figure 7-13: Stresses in the contact path of the dam due to the dead weight 
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Figure 7-15: Stresses in the contact path of the dam due to the dead weight and the hydrostatic pressure 

7.6.2 Hydrostatic step 

In addition to the dead weight of the concrete structure also the hydrostatic water pressure acts on the 

dam. The hydrostatic pressure distribution is shown in Figure 7-14. 

 

 

 

 

 

 

 

 

 

 

Because of the direction independence of the water the hydrostatic pressure increases with the depth 

with an inclination of 45 degrees. The two steps in the distribution arise from the horizontal surfaces of 

the dam. The maximum hydrostatic pressure at the bottom of the dam is 0.58 MPa. 

The hydrostatic influence on the structure leads to a different figure of the stresses in the contact path 

compared with the gravity step. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-14: Hydrostatic pressure on the gravity dam in MPa 
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In contrast to the gravity step the stresses increase from upstream to downstream. A pressure of 0.4 MPa 

is visible on the upstream heel of the dam. Due to the altitude step in the contact path the stresses 

decrease between node 1812 and 1869 before they rise again. A maximum pressure in the contact path 

of 1.05 MPa at the downstream heel is visible. 

7.6.2.1 Resulting hydrostatic water load and bearing forces of the gate 

The bearing forces of the gate can be figured out by a so called “Free Body Cut” in Abaqus/CAE. The 

obtained results are compared with the analytical calculation. 

 

 

 

 

 

 

 

 

 

 

 

The analytical calculation is done with a developed Python-Script attached in appendix A and results 

in following forces: 

 1 
 � 
 6.17	T� (7.1) 

 � 
 12.33	T� (7.2) 

 

  

Figure 7-16: Resulting hydrostatic water load with its direction and static bearing forces A and B 
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Figure 7-17: Numerical results of the static bearing forces of the radial gate 

The influence of the Y-direction in the numerical model leads to slightly higher bearing forces. 

The direction of the resulting bearing forces is the orientation of the framework arms. 

 1N�E 
 �N�E 
 6.4	T� (7.3) 
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7.7 Dynamic analysis 

Different configurations of the model are chosen and compared for the numerical, dynamic simulation. 

These differences are caused by different reservoir loading conditions, different masses of the radial 

gate, different reservoir modelling methods and different stiffnesses of the radial gate. In the following 

figure the compared jobs with their specifications are pictured in the mentioned order. 

  

Figure 7-18: Configurations of the model for the comparisons 
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The reservoir is modelled with acoustic elements or with point masses according to Westergaard. For 

jobs with Westergaard’s added mass technique point masses are set on the nodes of the upstream gravity 

dam and radial gate surface. Jobs with this method are computed with the user element subroutine by 

Goldgruber (2011). 

 

 

 

 

 

 

 

 

 

 

The dynamic simulation contains the eigenfrequency analysis and the dynamic analysis with the 

dynamic, implicit direct time integration method or the modal analysis with time history method. With 

the calculated eigenfrequencies the damping behavior of the structure can be considered. On the 

following pages the different configurations are compared concerning eigenmodes, accelerations and 

displacements and acceleration response spectra are created. These response spectra graphs show the 

calculated accelerations belonging to each eigenfrequency A Python script is developed to calculate 

these accelerations and plot them in a chart.  

For a better clarity each configuration has a different color as visible in Figure 7-18. 

The analyzed nodal point is the left abutment of the radial gate on the pier. 

 

 

 

 

 

 

 

 

Figure 7-19: Point mass definitions for Westergaard’s added mass technique 

Figure 7-20: Analyzed nodal point of the dynamic simulation 
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Table 7-5: Eigenfrequencies and effective masses in x-and z-direction of the radial gate 

7.7.1 Eigenfrequencies and eigenmodes of the radial gate 

The eigenfrequency analysis of the radial gate results in the following eigenmodes and eigenfrequencies. 

The first four eigenmodes are shown in Figure 7-21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7-21: Eigenmodes of the radial gate 
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7.7.2 Eigenmodes of the entire model 

Also for the whole model the eigenmodes are pictured whereby the gravity dam structure with the radial 

gate is cut out for better illustration. For the first mode a movement in positive x-direction and for the 

modes two, three and four a movement in the negative x-direction is identifiable. 

 

  

Figure 7-22: Eigenmodes of the entire structure 



NUMERICAL SIMULATION IN ABAQUS/CAE 

62 

Table 7-6: Eigenfrequencies and effective masses in x- and z-direction of the modes 1 to 7 of the comparison 
regarding the reservoir consideration technique and the calculation method 

7.7.3 Comparison of the reservoir considerations and the calculation methods 

7.7.3.1 Eigenfrequency analysis 

Three different jobs with full reservoir and rigid, massless gate are compared. The simulation with 

acoustic elements is done with the time integration method (green). The consideration with the added 

mass technique according Westergaard is computed with the direct time integration method (darkblue) 

as well with the modal analysis with time histories (lightblue). 

In Figure 7-23 only the two configurations with direct time integration are compared because the 

calculation method has no influence on the eigenfrequencies and effective masses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 7-23: Eigenfrequencies and effective masses in x- and z-
direction of the modes 1 to 7 of the comparison regarding the reservoir 

consideration technique and the calculation method 
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The assessed α- and β-values are shown in Table 7-7. For the modal analysis a global damping factor of 

ξ = 0.05 is chosen. 

7.7.3.2 Resulting accelerations in the abutment 

The highest accelerations are visible at the direct time integration method with Westergaard’s added 

masses. The lowest amplitudes can be pointed out at the direct time integration method with acoustic 

elements however the maximum values of this method are higher than the maxima of the modal analysis 

due to the constant damping of 0.05 for all nodes. 

  

Table 7-7: Calculation of the Rayleigh damping coefficients of the comparison regarding the reservoir consideration 
technique and the calculation method 

Figure 7-24: Resulting accelerations in x-direction in the abutment of the comparison regarding the reservoir consideration 
technique and the calculation method 
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7.7.3.3 Resulting displacements in the abutment 

The displacement time histories of the two direct time integration methods are nearly similar whereby 

the higher displacements on the peaks belong to the consideration with the added mass technique by 

Westergaard. The resulting displacements of the modal analysis are smaller over the whole time history.  

7.7.3.4 Acceleration response spectra 

The maximum value of the stimulating acceleration time history is visible at a frequency of 4.5 Hz. 

In the upper right graph the occurring accelerations of the different configurations at a frequency of 4.5 

Hz are shown. 

Slight frequency shifts between the three configurations and the stimulating time history are visible. 

Figure 7-25: Resulting displacements in x-direction in the abutment of the comparison regarding the reservoir consideration 
technique and the calculation method 

 

Figure 7-26: Acceleration response spectra of the comparison regarding the reservoir consideration technique and the 
calculation method 
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7.7.4 Comparison of the full and empty reservoir case 

7.7.4.1 Eigenfrequency analysis 

The empty reservoir case simulated by the direct time integration method or the modal analysis method 

and the full reservoir case with acoustic elements and the direct time integration method are compared. 

Figure 7-27 shows the eigenfrequencies and effective masses of the full reservoir model compared with 

the empty reservoir case independent on the calculation method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the full reservoir case (green) the modes 1 and 10 are used for the Rayleigh damping. In case of the 

empty reservoir (violet) the used modes are 1 and 7.  

Figure 7-27: Eigenfrequencies, and effective masses in x- and z-direction of the modes 1 to 7 of the 
comparison regarding the reservoir case 

Table 7-8: Eigenfrequencies and effective masses in x- and z-direction of the modes 1 to 7 of the comparison regarding the 
reservoir case 
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7.7.4.2  Resulting accelerations in the abutment 

Smaller amplitudes of the empty reservoir case with direct time integration method are visible. The 

biggest maximum and minimum accelerations are calculated for the full reservoir case. The full reservoir 

case has a completely different response acceleration time history in contrast to the empty reservoir case. 

 

  

Table 7-9: Calculation of the Rayleigh damping coefficients of the comparison regarding the reservoir case 

 

Figure 7-28: Resulting accelerations in x-direction in the abutment of the comparison regarding the reservoir case 
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7.7.4.3 Resulting displacements in the abutment 

The direct time integration method for the full reservoir case leads to larger displacements in positive x-

direction over the 20 seconds of the earthquake compared to the empty reservoir case. Displacements in 

negative x-direction, caused by absence of the hydrostatic pressure for the empty reservoir case, are 

visible. The modal analysis (rosy) has the smallest displacements again.  

The reason of the smaller resulting values in case of the modal analysis in the two comparisons can be 

the global damping factor of 5 % over the whole 20 seconds in contrast to the direct time integration 

method with the Rayleigh damping coefficients whereby the system is underdamped between the two 

used modes and overdamped for the remaining modes. 

7.7.4.4 Acceleration response spectra 

Also at the comparison of the full reservoir case and the empty reservoir case changes in the response 

frequencies are identifiable whereby the peaks of the empty reservoir case occur at higher frequencies. 

  

Figure 7-29: Resulting displacements in x-direction in the abutment of the comparison regarding the reservoir case 

Figure 7-30: Acceleration response spectra of the comparison regarding the reservoir case 
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7.7.5 Comparison regarding the mass of the gate 

The rigid radial gate consists of a rigid body for the framework arms and a stiff shell with a very high 

Young’s Modulus. The mass for the dynamic simulation is considered as point mass in the mass center 

of the gate. According to formula 3.3 and the approach by Strobl & Zunic (2006) the oscillating mass 

of the gate is assumed with 100 t. For the deformable radial gate random beam sections are chosen to 

reach the mass of 100 t over the steel volume and the density for significant comparisons. 

7.7.5.1 Eigenfrequency analysis 

In case of the rigid gate only small differences between the eigenfrequencies and the effective masses 

of the model with the massless gate (green) and the model with the gate mass of 100 t (orange) occur. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7-31: Eigenfrequencies and effective masses in x- and z-direction of the modes 1 to 7 of the rigid gate case for the 
comparison regarding the mass of the gate 

Table 7-10: Eigenfrequencies and effective masses in x- and z-direction of the modes 1 to 7 of the rigid gate case for the 
comparison regarding the mass of the gate 
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Higher eigenfrequencies of the model with massless gate (red) compared to the model with the gate 

mass of 100 t (brown) are visible due to the mass difference in case of a deformable gate. In contrast to 

the rigid gate case the values of the eigenfrequencies are smaller. 

 

Figure 7-32: Eigenfrequencies and effective masses in x- and z-direction of the deformable gate case for the comparison 
regarding the mass of the gate 

Table 7-11: Eigenfrequencies and effective masses in x- and z-direction of the deformable gate case for the comparison 
regarding the mass of the gate 
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7.7.5.2 Resulting accelerations in the abutment 

Higher amplitudes of the model with the gate mass of 100 t, especially between 4 and 15 seconds are 

visible for the rigid radial gate case. A slight phase shift is recognizable whereby the time history of the 

model with the gate mass of 100 t is a little delayed. 

Table 7-12: Calculation of the Rayleigh damping coefficients of the comparison regarding the mass of the gate 

Figure 7-33: Resulting accelerations in x-direction in the abutment of the rigid gate case of the comparison regarding the 
mass of the gate 
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In case of a deformable gate higher accelerations of the massless model are visible whereby the 

amplitudes and the peaks of the two models are quiet similar. 

7.7.5.3 Resulting displacements in the abutment 

Higher amplitudes of the rigid gate with a mass of 100 t are identifiable. Also the maximum 

displacements are seeable for the model with a rigid mass of 100 t. Also in the displacement time history 

for this comparison slight phase shifts are visible. 

 

Figure 7-34: Resulting accelerations in x-direction in the abutment of the deformable gate case of the comparison regarding 
the mass of the gate 

Figure 7-35: Resulting displacements in x-direction in the abutment of the rigid gate case of the comparison regarding the 
mass of the gate 
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The influence of the mass is visible for the model with a deformable gate at the maximum accelerations. 

They occur for the model with the massless, deformable gate otherwise the amplitudes are higher in case 

of a deformable gate with a gate mass of 100 t.  

 

  

Figure 7-36: Resulting displacements in x-direction in the abutment of the deformable gate case of the comparison regarding 
the mass of the gate 
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7.7.5.4 Acceleration response spectra 

Not only between the stimulating accelerations and the resulting accelerations of the configurations 

frequency shifts are visible, also between the model with the massless gate and the model with a gate 

mass of 100 t in case of a rigid gate a shifting arises. 

Like the acceleration time history also at the response spectra shows higher accelerations of the 

massless, deformable gate compared to the deformable gate with a gate mass of 100 t. 

  

Figure 7-37: Acceleration response spectra of the rigid gate case of the comparison regarding the mass of the gate 

Figure 7-38: Acceleration response spectra of the deformable gate case of the comparison regarding the mass of the gate 
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Table 7-13: Eigenfrequencies and effective masses in x- and z-direction in case of using acoustic elements of the comparison 
regarding the stiffness of the gate 

7.7.6 Comparison regarding the stiffness of the gate 

Four different models are created to match the results of the dynamic simulation of the model with the 

rigid gate with the model of the deformable gate. A rigid body is defined in Abaqus/CAE with an 

infinitely high Young’s Modulus. The deformable gate has normal steel material properties. 

The full reservoir case with acoustic elements or Westergaard’s added masses and a rigid or deformable 

radial gate with a mass of 100 t are compared. 

7.7.6.1 Eigenfrequency analysis 

 

 

 

 

 

 

 

 

 

 

  

Figure 7-39: Eigenfrequencies and effective masses in x- and z-direction in case of using acoustic elements of the comparison 
regarding the stiffness of the gate  
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Table 7-14: Eigenfrequencies and effective masses in x- and z-direction in case of using Westergaard’s added masses of the 
comparison regarding the stiffness of the gate  

The model with the rigid radial gate (orange) has higher eigenfrequencies and effective masses 

compared to the model with the deformable gate (brown) for the case of acoustic elements. 

A bigger difference of the eigenfrequencies between the model with the rigid radial gate (cyan) and the 

deformable radial gate (lightgreen) for the model with Westergaard’s added masses is discernible in 

contrast to the model with acoustic elements. 

For the models with the rigid radial gate the 1st and the 7th mode for the calculation of the Rayleigh 

damping coefficients are used. Due to the bigger effective masses occurring at higher modes in case of 

a deformable gate it is necessary to choose the 2nd and the 17th mode for the Rayleigh damping. 

 

Figure 7-40: Eigenfrequencies and effective masses in x- and z-direction in case of using Westergaard’s added masses 
of the comparison regarding the stiffness of the gate  
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7.7.6.2 Resulting accelerations in the abutment 

In the comparison of the resulting accelerations of the models with a rigid radial gate and a deformable 

radial gate by using acoustic elements no significant differences in the amount of the accelerations are 

visible. A small phase shift is recognizable whereby the model with the deformable gate is a little 

delayed. 

  

Table 7-15: Calculation of the Rayleigh damping coefficients of the comparison regarding the stiffness of the gate 

Figure 7-41: Resulting accelerations in x-direction in the abutment in case of using acoustic elements of the comparison 
regarding the stiffness of the gate 
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Higher amplitudes of the model with a deformable radial gate arise in case of the modelling of the 

reservoir according to Westergaard. The maximum occurs at the rigid gate case and the minimum 

acceleration belongs to the deformable gate case. 

7.7.6.3 Resulting displacements in the abutment 

Like the acceleration time history also at the displacements a small phase shift is seeable in case of 

acoustic elements. The minimum and maximum displacements belong to the rigid gate. 

  

Figure 7-42: Resulting accelerations in x-direction in the abutment in case of using Westergaard’s added masses of the 
comparison regarding the stiffness of the gate 

Figure 7-43: Resulting displacements in x-direction in the abutment in case of using acoustic elements of the comparison 
regarding the stiffness of the gate 
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Also at the displacement time histories higher amplitudes of the deformable gate case in case of using 

Westergaard are visible. The maximum displacement belongs to the rigid gate case and the minimum 

displacement belongs to the deformable gate. 

  

Figure 7-44: Resulting displacements in x-direction in the abutment in case of using Westergaard’s added masses of the 
comparison regarding the stiffness of the gate 
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Figure 7-45: Acceleration response spectra in case of using acoustic elements of the comparison regarding the stiffness of the 
gate 

7.7.6.4 Acceleration response spectra 

In the two acceleration response spectra the maximum accelerations of the models with deformable 

gates occur at frequencies smaller 4.5 Hz. The maximum accelerations of the models with a rigid gate 

are between 4.5 and 5 Hz. 

 

 

In case of modelling with Westergaard’s added masses the two response spectra of the rigid and the 

deformable gate with a mass of 100 t are quite similar whereby the distribution of the rigid gate is a little 

higher. A slight change in response frequency occurs. 

Figure 7-46: Acceleration response spectra in case of using Westergaard’s added masses of the comparison regarding the 
stiffness of the gate 
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7.7.7 Comparison of Westergaard’s added mass technique and acoustic elements 

7.7.7.1 Eigenfrequency analysis 

The eigenfrequency comparison of the two reservoir modelling techniques shows slightly higher 

frequencies of the acoustic elements case (lightgreen) and the case of using Westergaard’s added masses 

(brown). 

Figure 7-47: Eigenfrequencies and effective masses in x- and z-direction of the comparison of the reservoir modelling 
technique 

Table 7-16: Eigenfrequencies and effective masses in x- and z-direction of the comparison of the reservoir modelling 
techniques 
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7.7.7.2 Resulting accelerations in the abutment 

Higher amplitudes of the model with Westergaard’s added masses are visible but the maximum and 

maximum acceleration belongs to the acoustic elements. 

  

Table 7-17: Calculation of the Rayleigh damping coefficients of the comparison regarding the reservoir modeling technique 

Figure 7-48: Resulting accelerations in x-direction in the abutment of the comparison regarding the reservoir modelling 
technique 
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7.7.7.3 Resulting displacements in the abutment 

Also in the displacement time histories bigger amplitudes of the model with added masses are 

identifiable. The maximum and minimum displacements are also visible in case of Westergaard. 

7.7.7.4 Acceleration response spectra 

Higher maximum accelerations for the case of using acoustic elements are shown in the response spectra 

for the comparison of the reservoir modelling technique. A frequency shift is visible and a pronounced 

second peak at about 10 Hz in case of using Westergaard is identifiable. 

  

Figure 7-49: Resulting displacements in x-direction in the abutment of the comparison regarding the reservoir modelling 
technique 

Figure 7-50: Acceleration response spectra of the comparison regarding the reservoir modelling technique 
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7.7.8 Minimum and maximum accelerations and displacements of the different configurations 

In the following table the maximum and minimum accelerations of the configurations are summarized. 

The models are sorted by the minimum acceleration value. 

 The minimum acceleration is visible at the full reservoir case with massless, deformable gate using the 

direct time integration method and acoustic elements. The maximum acceleration occurs at the model 

with rigid gate with a mass of 100 t and Westergaard’s added mass technique. The maximum 

displacement belongs to the full reservoir case with rigid, massless gate, acoustic elements and direct 

time integration and the minimum displacement occurs in case of an empty reservoir and a rigid, 

massless gate using the modal analysis. 

7.7.9 Acceleration amplification factor of the different configurations at a frequency of 4.5 Hz 

in the Response Spectra 

The maximum acceleration of the stimulating time history in x-direction occurs in the response spectra 

at a frequency of 4.5 Hz. Due to the seismic loading higher accelerations at 4.5 Hz occur in the abutment 

of the radial gate. The amplification factor of the accelerations in the abutment compared to the 

stimulating accelerations at the foundation boundaries are pointed out. 

In Figure 7-51 and Figure 7-52 the order of the models is the same as in Table 7-18. 

 

  

Figure 7-51: Acceleration amplification factor in the abutment at 4.5 Hz 

Table 7-18: Maximum and minimum accelerations and displacements in the abutment in x-direction 
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Table 7-20: Maximum acceleration amplification factor in the abutment 

7.7.10 Maximum acceleration amplification factor of the different configurations in the Response 

Spectra 

In addition to the developed acceleration amplification factor at a frequency of 4.5 Hz also the maximum 

occurring accelerations of each model and the maximum acceleration of the stimulating acceleration in 

the response spectra are compared. 

 

 

Table 7-19: Acceleration amplification factor in the abutment at 4.5 Hz 

Figure 7-52: Maximum acceleration amplification factor in the abutment 
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7.7.11 Dynamic forces in the abutment 

The static calculation results in a bearing force of 6.4 MN in the connection between the radial gate arms 

and the concrete pier due to equation 7.3. These forces increase in case of oscillating masses due to 

accelerations. The resulting dynamic forces are figured out by Abaqus/CAE’s “Free Body Cut” function 

and plotted in charts. Figure 7-53 shows the resulting dynamic force in the abutment after 8.30 seconds 

of the earthquake for the models with deformable gate with a gate mass of 100 t.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both maxima occur after 8.30 seconds of the earthquake. The maximum force for the model with 

acoustic elements is 18.76 MN and the maximum force for the model with added masses is 25.85 MN. 

  

Figure 7-53: Dynamic force in the abutment at 8.3 seconds for the model with 
acoustic elements  

Figure 7-54: Dynamic force in the abutment at 8.3 seconds for 
the model with Westergaard's added masses 
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7.7.12 Pseudostatic method for the calculation of the dynamic force in the abutment 

The resulting maximum forces of the numerical simulation in the abutment can be compared with the 

result of the pseudostatic method. Therefore the added masses according to Westergaard have to be 

calculated by using formula (6.3). 

 2� 

7

8
∙ 0.001 ∙ 14 ∙ 12.5 ∙ √14 ∙ 7 
 1.516	3& (7.4) 

The addition of the mass of the radial gate and the calculated added mass results in a total mass of: 

 2 
 1.616	3& (7.5) 

The multiplication of the resulting mass with the maximum accelerations of about 25 m/s in the 

response spectra of the comparison of acoustic elements and Westergaard (Figure 7-50) leads to the 

resulting water load on the radial gate and furthermore to the dynamic force in the abutment.  

 � 
 2 ∙ � 
 1.616 ∙ 25 
 40.40	T� (7.6) 

 1 
 � 

�

2

 20.20	T� (7.7) 

The pseudostatic method results in a dynamic bearing force of 20.20 MN. It’s between the result of the 

of the model with acoustic elements and the result of the model using Westergaard’s added masses 

 

  

Table 7-21: Resulting dynamic bearing force in the abutment of the radial gate 
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7.7.12.1 Time histories of the forces in the abutment of the radial gate 

The highest dynamic forces occur between 5 and 15 seconds. For a better readability this period is 

illustrated more precisely. 

Higher amplitudes of the model with Westergaard’s added masses are visible especially in the graph of 

the forces in z-direction. The maximum forces occur at the same time. 

The seismic stimulation of the system leads to a threefold magnification of the forces in the abutment 

of the model with acoustic elements and a force increasing with the factor of four for the model with 

Westergaard’s added mass technique. 

  

Figure 7-55: Dynamic force time histories in the abutment of the radial gate 
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7.8 Discussion and summary of the results 

7.8.1 Static analysis 

The maximum pressure in the contact path of the gravity dam caused by the dead weight of the concrete 

structure is about 1 MPa and occurs on the upstream heel of the dam (Figure 7-13). The addition of the 

hydrostatic pressure leads to a mirroring of the stress distribution and a maximum of 1 MPa on the 

downstream end of the contact path (Figure 7-15). The amount of the hydrostatic water pressure on the 

bottom of the reservoir is 0.58 MPa (Figure 7-14). 

The hydrostatic water loading results in forces of 6.4 MN in the abutment of the radial gate (Figure 7-16, 

Figure 7-17). Due to the oscillating masses caused by seismic loading the forces increase up to 18.76 

MN (Figure 7-55). That is about 3 times the force of the hydrostatic step. 

7.8.2 Dynamic analysis 

In the framework of the dynamic numerical simulation different model configurations are compared.  

Comparison regarding the reservoir modelling technique and calculation the method:        

At first the models with a rigid, massless radial gate are matched whereby the modelling of the reservoir 

with Westergaard’s added mass technique yields the highest accelerations and displacements over the 

20 seconds. The modal analysis results in the smallest values (Figure 7-24, Figure 7-25). The 

eigenfrequencies of the model with added masses and the model with acoustic elements with a massless 

rigid gate are similar (Figure 7-23). In the response spectra graphs frequency shifts occur and the peaks 

of the resulting distributions at about 4.7 Hz are delayed compared with the stimulating acceleration at 

4.5 Hz (Figure 7-26). The acceleration amplification factor at 4.5 Hz is for the model with acoustic 

elements 8.05 and for the model with Westergaard’s added masses 8.14 and therefore nearly the same 

(Figure 7-51). Also the maximum amplification factor by comparing the maximum peaks of the resulting 

response spectra and the maximum peak of the response spectrum of the stimulating acceleration time 

history is very similar (Figure 7-52). 

Comparison regarding the reservoir case:              

The comparison of the reservoir cases with the rigid and massless gate show clear differences in the 

eigenfrequency due to the difference of the acting model masses (Figure 7-27). Higher accelerations and 

bigger amplitudes of the model with full reservoir are visible in the acceleration time histories (Figure 

7-28). The displacements of the full reservoir case are mainly positive whereas the displacements of the 

empty reservoir are mostly negative (Figure 7-29). The lower results of the modal analysis are probably 

caused by the higher global damping assumption with a constant damping coefficient of 5% in contrast 

to the Rayleigh damping assumption of the direct time integration whereby the system is underdamped 

between the two used modes and overdamped for the remaining modes. The response spectra of this 

comparison show a change in response frequency whereby the peaks of the two empty reservoir cases 

occur at frequencies bigger than 5 Hz (Figure 7-30). The amplification factors of the empty reservoir 

cases are with 3.27 and 2.52 are significantly smaller than the amplification factor of the full reservoir 

case (Figure 7-51). The comparisons of the maximum amplification factors show smaller differences 

(Figure 7-52). 
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Comparison regarding mass of the radial gate:         

The slight influence of the gate mass on the eigenfrequencies is visible at the comparison of the models 

with massless, rigid or deformable gate and models with a gate mass of 100 t (Figure 7-31, Figure 7-32). 

The amplitudes in the acceleration time histories in case of a rigid gate as well in case of a deformable 

gate are higher for models with a gate mass of 100 t. The maximum acceleration occurs for the rigid 

gate at the massless case and for the deformable gate at the 100 t case (Figure 7-33, Figure 7-34). The 

maximum and minimum displacements belong to the massless gate models independent on the stiffness 

of the gate (Figure 7-35, Figure 7-36). The response spectra show small frequency shifts whereby the 

distributions of the models with a massless gate are delayed (Figure 7-37, Figure 7-38). The calculations 

of the amplification factors show bigger differences in case of a deformable gate. The highest 

amplification factors of all configurations occur in case of a massless deformable gate by using acoustic 

elements for the reservoir (Figure 7-51, Figure 7-52). 

Comparison regarding the stiffness of the radial gate:         

The comparison of the eigenfrequency regarding the stiffness of the gate show higher frequencies in 

case of a rigid gate compared to the deformable gate cases (Figure 7-39, Figure 7-40). Furthermore these 

differences are bigger for Westergaard’s added mass technique. In the acceleration time histories no 

trend is visible for both reservoir modelling techniques thereby the amplitudes for rigid gate models are 

slightly higher (Figure 7-41, Figure 7-42). Additionally the response spectra show higher accelerations 

of the models with rigid gate compared to the models with deformable gate (Figure 7-45, Figure 7-46). 

The acceleration amplification factors at 4.5 Hz are for both reservoir modelling techniques higher for 

the rigid gate case (Figure 7-51). This trend is also visible at the maximum acceleration amplification 

factor (Figure 7-52). 

Comparison of Westergaard’s added mass technique and acoustic elements:     

The comparison of the results of the models with different reservoir modelling technique shows slightly 

higher maximum and minimum accelerations and displacements of the model with Westergaard’s added 

masses, however the acceleration and displacement amplitudes of the Westergaard case are distinctly 

higher (Figure 7-48, Figure 7-49, Figure 7-50). 

The calculation of the dynamic force in the abutment of the radial gate shows different results for the 

different calculation methods whereby the simulation with acoustic elements leads to the highest forces 

of 25.85 MN. The pseudostatic method yields 20.20 MN and the simulation with acoustic elements 

results in the lowest bearing force of 18.76 MN. 
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7.9  Conclusion and outlook 

The dynamic simulation results in high accelerations in the abutment especially in negative x-direction 

(upstream). The comparison of the calculation method shows that the system is often underdamped in 

case of using the direct time integration compared to the modal analysis, dependent on the chosen 

Rayleigh damping factors. It is safe to assume that the full reservoir case results in higher accelerations 

and displacements in the radial gate in contrast to the empty reservoir case. The slight influence of the 

gate mass especially in case of a rigid gate was figured out. The worst combination, which leads to the 

highest accelerations is a full reservoir combined with a massless, deformable gate by using the direct 

time integration. The simulated accelerations in the abutment of this configuration go up to 0.63 g.  

With the developed response spectra the maximum peaks of the stimulating acceleration time history 

and the resulting acceleration time history in the abutment can be compared. The comparison of the 

maximum acceleration peaks of the stimulating and resulting response spectra yields an amplification 

factor of 10 for the deformable gate without mass. 

The elaboration of the dynamic forces in the abutment shows a maximum increase to 18.76 MN 

(acoustic elements), 20.20 MN (Pseudostatic) or 25.85 MN (Westergaard’s added masses), which is 

about the three- to fourfold of the static loads. 

Finally it can be concluded that the most accurate way of modeling (acoustic elements, deformable gate, 

mass of 100 t) doesn’t yield the highest loads at the gate. This means that dependent on the model the 

results can be much too conservative, which may lead to overbuilt structures. 

Due to the issue that the maximum peaks in the response spectrum of the stimulating accelerations occur 

in the same frequency range as the maximum peaks of nearly all resulting acceleration response spectra 

further investigations can be dynamic simulations with different acceleration time histories to examine 

the influence of the stimulating time history on the acceleration amplification factors. 
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A Appendix 

A.1 Python script for the analytical calculation of the hydrostatic pressure 

on the gate 

import numpy as np 

 

#..................................................... 

# Calculation of the hydrostatic pressure on the Gate 

#..................................................... 

 

# water density [kt / m^3] 

d = float(0.001) 

 

# Radius gate [m] 

R = float(17.7) 

 

# Width gate [m] 

b = float(12.5) 

 

# Elevation water level [m.a.s.l] 

EL_WL= float(385) 

 

# Elevation sill [m.a.s.l] 

EL_S= float(371) 

 

# Elevation bearing [m.a.s.l] 

EL_B= float(377.6) 

 

#-no other definitions required! 

 

# heights 

h = EL_WL - EL_S 

h1 = EL_WL - EL_B 

h2 = EL_B - EL_S 

 

alpha1 = np.arcsin(h1/R) 

 

alpha2 = np.arcsin(h2/R) 

 

# -- Horizontal component -- 

Wh = h * h/2 * b * d 

 

# -- Vertical component -- 

 

# Total area circle 

Atot = R**2*np.pi 

 

palpha1 = alpha1/(360*np.pi/180) 

palpha2 = alpha2/(360*np.pi/180) 

 

A1 = h1 * (R*np.cos(alpha1))/2 

A2 = h2 * (R*np.cos(alpha2))/2 

 

A3 = Atot * palpha1 - A1 

A4 = Atot * palpha2 - A2 

 



APPENDIX 

94 

A5 = (R - h1 / np.tan(alpha1))*h1 - A3 

 

bcircle = R * (alpha2*2) 

scircle = 2*h2 

hcircle = (R - h2 / np.tan(alpha2)) 

 

Acircle = R * bcircle / 2 - (scircle*(R - hcircle ))/2 

 

A6 = Acircle /2 + hcircle*h1 

 

Wv = (A6 - A5) * b *  

 

 

 

# Resulting waterpressure 

 

W = round(np.sqrt(Wh**2 + Wv**2),3) 

 

# Force angle 

 

beta = round(np.arctan(Wv/W) * 180/np.pi,3) 

 

A = round(W/2,3) 

 

print '----RADIAL GATE: ', b, 'x', h,'m, R=', R,'m ----' 

print 'The resulting static waterload   W = ', W, 'kt', '=', W*10, 'MN' 

print 'The resulting bearing force      Av = ', Wv/2, 'kt', '=', A*10, 'MN' 

print 'The resulting bearing force      A = ', A, 'kt', '=', A*10, 'MN' 

print 'The waterload-angle              beta = ', beta, 'degree' 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


