
Master’s Thesis

Mobile Applications for Fall

Detection in the Area of Ambient

Assisted Living

Stefan Almer, BSc
stefan@almer.cc

Graz University of Technology

Institute for Information Systems and Computer Media

Advisor: Univ.-Doz. Dipl.-Ing. Dr.techn. Martin Ebner

Co-Advisor: Dipl.-Ing. Dr.techn. Josef Kolbitsch

Central European Institute of Technology

Advisor: Dipl.-Ing. Dr.techn. Johannes Oberzaucher

Graz, December 2011

Masterarbeit

Mobile Anwendungen zur

Sturzerkennng im Bereich

Umgebungsunterstütztes Leben

Stefan Almer, BSc
stefan@almer.cc

Technische Universität Graz

Institut für Informationssysteme und Computer Medien

Begutachter: Univ.-Doz. Dipl.-Ing. Dr.techn. Martin Ebner

Betreuer: Dipl.-Ing. Dr.techn. Josef Kolbitsch

Central European Institute of Technology

Betreuer: Dipl.-Ing. Dr.techn. Johannes Oberzaucher

Graz, Dezember 2011

Abstract

With an increasing population of elderly people the number of falls and fall-related

injuries is on the rise. This will cause changes for future health care systems, and both

fall detection and fall prevention will pose a major challenge. Ambient Assisted Living

(AAL) is a research area in which concepts and information systems for assisting elderly

individuals are developed. Fall detection, as an important discipline of AAL, investigates

a broad range of approaches including wearable devices. With their growing popularity,

mobile devices with their embedded motion sensors, their software capabilities and cost-

efficiency are well-suited for fall detection.

This thesis presents a test framework for fall detection with the aim of easily setting up

assessment tests for collecting motion data and analyzing the data regarding fall detection.

The framework consists of a RESTful Web service, a relational database and a Web-

based backend. It offers an open interface to support a variety of devices. The system

architecture is based on the state-of-the-art theoretical background of AAL and on the

evaluation of an existing software.

In order to test the framework, a mobile device client recording accelerometer and gy-

roscope sensor data is implemented on the iOS platform. The evaluation, which includes

three mobility assessment tests, verifies the required functionality, flexibility, availability

and data integrity. An investigation of the recorded motion data shows that the iOS client

fulfills the requirements regarding sensor accuracy for movement analysis and further fea-

ture extraction.

Keywords ambient assisted living, restful web service, mobile device, mobile application,

fall detection

Zusammenfassung

Mit dem steigenden Anteil der älteren Menschen steigt auch der Anteil von Stürzen

und den damit verbundenen Verletzungen. Dies wird zu Veränderungen in zukünfti-

gen Gesundheitssystemen führen und auch Herausforderungen an Sturzerkennung und

Sturzprävention setzen. Ambient Assisted Living (AAL) (Umgebungsunterstütztes Le-

ben) beschäftigt sich mit Konzepten und Technologien um ältere Menschen zu unterstützen

sowie die Lebensqualität und Selbstständigkeit zu erhöhen. Sturzerkennung, ein zentrales

Forschungsthema in AAL, umfasst den Bereich “Sturzerkennung mit getragenen Syste-

men”. Mit der steigenden Popularität von mobilen Geräten, deren Kosteneffizienz und

eingebauten Bewegungssensoren, eignen sich diese zur Sturzerkennung.

Diese Masterarbeit zeigt die Entwicklung eines Testsystems zur Sturzerkennung, mit

dem Ziel, Sturztests einfach durchführen zu können. Die erfassten Bewegungsdaten wer-

den hinschlicht Sturzerkennung zu einem späteren Zeitpunkt ausgewertet. Das Testsy-

stem umfasst eine offene Schnittstelle (Web Service), eine Datenbank zu Speicherung von

Bewegungsdaten und eine webbasierte Administrationsoberfläche. Über die Schnittstelle

können verschiedenste Geräte zur Aufzeichnung von Bewegungsdaten eingebunden wer-

den. Die Softwarearchitektur basiert auf dem theoretischen Hintergrund von AAL und

der Evaluierung eines bestehenden Systems.

Das gesamte System wurde anhand von drei klinischen Mobilitätstests evaluiert. Dazu

wurde eine mobile Applikation für die iOS Plattform entwickelt, welche die Bewegungs-

sensoren des Gerätes benutzt. Die Evaluierung umfasst die Kommunikation der iPhone-

Anwendung mit dem Web Service, sowie die korrekte Verarbeitung der aufgezeichneten

Daten. Eine Analyse der Bewegungsdaten zeigt, dass sich die Daten der Sensoren zur

Sturzerkennung und zur weiteren Verarbeitung eignen.

Keywords ambient assisted living, umgebungsunterstütztes leben, restful web service, mo-

bile geräte, mobile anwendungen, sturzerkennung

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other

than the declared sources / resources, and that I have explicitly marked all material which

has been quoted either literally or by content from the used sources.

Place, date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, an-

dere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen

wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Ort, Datum Unterschrift

Acknowledgements

I would like to express my gratitude and appreciation to all those who gave me the support

and possibility to write this thesis.

I want to thank the team at CEIT RALTEC in Schwechat for making this master’s

thesis possible and giving me an insight into research, especially in the area of Ambient

Assisted Living. Additional thanks go to Dipl.-Ing. Dr.techn. Johannes Oberzaucher for

providing me support and help for evaluating this thesis.

Furthermore, I would like to thank Dipl.-Ing. Dr.techn. Josef Kolbitsch for his encour-

agement, suggestions for improvement, support and the opportunity to write this master’s

theses. Moverover, I would like to thank Dipl.-Ing. Dr.techn. Univ.-Doz. Martin Ebner

for advising this thesis.

Very special thanks go to my dear colleagues and friends, Korab, Bernhard, Matthias,

Günter and Hannes, for providing ideas, room for never ending discussions and their

professional feedback.

My dearest thanks go to Julia for her endless patience, encouragement and support

while working on this thesis. Thank you so much.

Finally, I would like to express my most heartfelt thanks to my parents, Irmtraud and

Richard, who always believed in me and their endless support all over the years.

Stefan Almer, BSc

Graz, Austria, December 2011

i

ii

Contents

1 Introduction 1

I Motivation 3

2 Ambient Assisted Living 5

2.1 Definition of Ambient Assisted Living . 5

2.2 Trends Towards AAL . 7

2.3 Deployment Barriers . 9

2.4 Enabling Technologies . 10

2.5 Application Domains . 13

2.6 Falls in AAL . 13

2.7 Summary . 15

3 Fall Detection 17

3.1 Definition of a Fall . 17

3.2 Anatomy and Characteristics of a Fall . 18

3.3 Classification of Fall Detection Methods and Current Approaches 21

3.4 Fall Detection Algorithms . 24

3.5 Conclusion . 27

4 Mobile Devices 29

4.1 Mobile Devices . 29

4.2 Current and Future Mobile and Network Market 31

4.3 Mobile Devices for Fall Detection . 33

4.4 Summary . 35

iii

II Implementation 37

5 System Architecture 39

5.1 Current Architecture . 39

5.2 Requirements for a new Architecture . 42

5.3 Proposed System Architecture . 44

5.4 Summary . 48

6 Database 51

6.1 Java Persistence with EclipseLink . 51

6.2 Entity Description and Relations . 56

6.3 Summary . 62

7 RESTful Web Service 63

7.1 Restful Web Services with JAX-RS . 63

7.2 Service: /tests . 65

7.3 Service: /status . 75

7.4 Service: /users . 76

7.5 Service: /devices . 81

7.6 Service: /datafields . 86

7.7 Service: /algorithms . 89

7.8 Authentication . 90

7.9 Authorization . 91

7.10 Error Codes . 92

7.11 HTTP Status Codes . 93

7.12 Summary . 94

8 Backend 95

8.1 JavaScript with the Dojo Framework . 96

8.2 The Backend and Dojo . 97

8.3 API Communication . 97

8.4 Summary . 99

9 Mobile Client 101

9.1 User Interface and Interaction . 101

9.2 Device Motion . 102

9.3 API Communication . 103

9.4 Summary . 105

iv

III Evaluation 107

10 Evaluation of the Framework 109

10.1 Test Settings . 109

10.2 Test Procedure . 110

10.3 Test Scenarios and Evaluation . 110

10.4 Conclusion . 113

11 Summary, Conclusion & Outlook 115

11.1 Summary . 115

11.2 Conclusion . 116

11.3 Outlook . 117

A Implementation 119

A.1 Example JPA Entity Annotation . 119

A.2 JPA Persistence Configuration . 121

A.3 Example JAX-RS Service Annotations . 122

A.4 Apache Tomcat Authentication and Authorization 123

A.5 Backend . 125

A.6 Example Interaction of Client . 128

A.7 iOS Device Motion Retrieval . 128

B Backend Guide 129

B.1 Create Device . 130

B.2 Create User . 131

B.3 Create Test . 132

B.4 Start/Stop Finish Test . 133

B.5 Start Client . 134

B.6 Summary . 135

C Evaluation Scenarios 137

Bibliography 145

Glossary 147

v

vi

List of Figures

2.1 AAL Innovation Model . 7

2.2 Ageing Population, EU 27, 2008–2060 . 8

2.3 AAL Stakeholder . 9

2.4 Fatal Fall Rates by Age and Sex, United States, 2001 14

3.1 Classification of Fall Risk Factors . 19

3.2 Anatomy of a Fall . 20

3.3 Position of the Body Before and After the Fall 21

3.4 Classification of Fall Detection Methods 21

3.5 Recorded Motion Data of the “Sit-to-Stand 5” Test 23

3.6 Posture within Falls . 26

4.1 Flexibility and Portability within Mobile Device Categories 30

4.2 Smartphone Device History, 1992–2008 . 31

4.3 Worldwide Mobile Device Sales in Q2-11 to End Users 32

4.4 Worldwide Smartphone and Media Tablet Shipment Trend, 2010–2015 . . . 32

4.5 Smartphones by Apple and Samsung . 34

5.1 Components of the Current Architecture 40

5.2 Schematic Diagram of the Insole’s Functional Blocks 40

5.3 3-Tier System Architecture . 44

5.4 Exemplary Client-Server Interaction in a 3-Tier Architecture 45

6.1 Architectural Overview of the Database Component 51

6.2 Relational Database Model . 52

6.3 Relationships between JPA Concepts . 53

6.4 Class Diagram of the User ↔ Role Relationship 54

6.5 Resulting relational database of User ↔ Role relationship 54

7.1 Architectural Overview of the Service Components 63

vii

7.2 Database Tables used by Apache Tomcat for Authentication 91

8.1 Architectural Overview of the Backend Components 95

8.2 Overview of Dojo’s Architecture . 96

8.3 Used dijit.layout.* Components for Layout 98

9.1 Architectural Overview of the Mobile Client Interaction 101

9.2 Screenshots of the iOS Client . 102

9.3 Core Motion Framework . 103

9.4 Exemplary Client ↔ API ↔ Database Interaction 104

10.1 Test Room (Gym) at “Senior Citizen Center Schwechat” 110

10.2 Proband Wearing the Test Device at Hip Height 110

10.3 2-Minute Walk - Fast Walk Phase . 111

10.4 Detailed Gait Signal During 2-Minute Walk with Normal Gait Speed (Sin-

gle Steps) . 112

10.5 Sit-to-Stand 5 Test . 112

10.6 Timed Up and Go Test . 113

10.7 Timed Up and Go Test - Individual Phases 113

A.1 Mockups used for Backend Layout . 125

A.2 Example Interaction of Client With API 128

B.1 Backend Dashboard . 133

viii

List of Tables

3.1 Scenarios for Evaluating a Fall Detection Algorithm 27

4.1 Hardware Comparison of Apple iPhone 4S and Samsung Galaxy S II . . . 35

5.1 Structure of the Database Table used to Store Motion Data 41

5.2 CRUD and its HTTP Method Equivalents 47

6.1 Java Persistence API 2.0 Implementations 53

6.2 Description of Database Entity Algorithm 56

6.3 Description of Database Entity ComputedTestData 56

6.4 Description of Database Entity ComputedTestDataRecord 57

6.5 Description of Database Entity DataType 57

6.6 Description of Database Entity DataField 58

6.7 Description of Database Entity Device . 58

6.8 Description of Database Entity DeviceTestAssignment 58

6.9 Description of Database Entity DeviceType 59

6.10 Description of Database Entity Role . 59

6.11 Description of Database Entity Test . 60

6.12 Description of Database Entity TestDataRecorded 60

6.13 Description of Database Entity TestType 61

6.14 Description of Database Entity User . 61

6.15 Description of Database Entity UserProperties 61

C.1 Description of Test Scenario “Inexperienced User” 137

C.2 Description of Test Scenario “Two-Devices” 137

C.3 Description of Test Scenario “Performance” 138

C.4 Description of Test Scenario “Quick Test Series” 138

ix

x

List of Listings

6.1 Persisting an JPA Entity . 55

7.1 Enabling JSON Support in Jersey . 64

7.2 Enabling GZIP Support in Jersey . 64

7.3 Example HTTP Message for Submitting Computed Data 67

7.4 Example HTTP Message for Submitting Device Data 70

7.5 XML Response of Error Code 104 . 93

7.6 JSON Response of Error Code 104 . 93

8.1 Example usage of data-dojo-type Property 97

8.2 Parameter for XHR Request . 98

A.1 JPA Annotations used for Entity User . 119

A.2 Java Class User . 120

A.3 JPA Annotations used for Entity Role . 120

A.4 JPA Persistence Configuration . 121

A.5 Example JAX-RS Service Annotations . 122

A.6 Apache Tomcat Configuration for Authorization 123

A.7 SQL View for Tomcat’s JDBC Authentication 123

A.8 Enabling JDBCRealm via HTTP Basic Authentication in Tomcat 124

A.9 Enabling RolesAllowedResourceFilterFactory in Apache Tomcat 124

A.10 Example usage of the javax.security Annotations 124

A.11 Layout HTML Markup . 126

A.12 Example Dojo XHR Request . 127

A.13 Using the Push Approach to Retrieve Device Motion Update 128

xi

xii

Chapter 1
Introduction

Falls in the group of elderly and disabled people are very common. A demographic

trend shows that the average age of Europeans inhabitants will increase and therefore the

number of serious and fatal falls will also rise [WHO, 2007; van den Broek et al., 2009].

Ambient Assisted Living (AAL) is a research area motivated by the demographic

change. AAL deals with concepts and non invasive support technologies to extend the

people’s life, increase their independence and reduce their incapabilities. A broad range

of approaches, including wearable devices for fall detection, are described. The current

approaches and techniques for performing fall detection and the theoretical background

of a fall is discussed.

The aim of this thesis is to provide a complete testing framework for setting up assess-

ment tests in order to collect motion data for analyzing the data regarding fall detection.

This framework can store motion data from different kinds of motion sensors especially

mobile devices. It includes an open interface for adding novel devices in the future, and an

administrative backend for easily managing tests. The collected data is analyzed regard-

ing fall detection afterwards. In order to demonstrate the functionality of the framework,

a mobile device client was implemented. This proof-of-concept implementation runs na-

tively on iOS devices, particularly the iPhone 4, and records gait and fall data during

assessment tests for research purposes.

This thesis is structured in three main parts. Part I covers a detailed description

of Ambient Assisted Living (AAL) and its main concepts. It is discussed how the main

stakeholders of Ambient Assisted Living are involved in the innovation process. Moreover,

the main trends towards AAL and barriers raised by the stakeholder are discussed. It is

shown which enabling technologies are offered to perform fall detection.

Chapter 3 provides an introduction to fall detection. The anatomy, characteristics and

the risk factors of a fall are illustrated in order to differentiate between different types

of a fall. A classification of fall detection methods and current approaches are provided.

The main principle of fall detection algorithms using the approach of motion sensors in

mobile and wearable devices are described.

The requirements on mobile devices used for fall detection are described in Chapter 4.

1

2 1. Introduction

A brief history of mobile devices, up to today’s smart phones, is presented and an overview

of the current and future mobile device market highlights the importance of mobile devices

in the future. Part I concludes with the benefits of mobile devices for fall detection, their

hardware and software capabilities, which make them particularly well-suited for fall

detection.

Part II deals with the implementation of a flexible test framework and its components.

The first chapter in this part, Chapter 5, evaluates the currently used test software, ana-

lyzes each component, and identifies drawbacks. Based on these findings, the functional

requirements for a new framework are specified. The proposed new system is based on a

3-tier architecture. Each tier is described in greater detail with its main functionality and

technological base. Chapters 6–9 deal with a detailed description of the data, application

and client tiers. It is elaborated how the proposed architecture is implemented and how

the tiers interact. The client tier is divided in two parts: the administrative backend and

a mobile client for recording motion data.

Part III presents the evaluation of the implemented test framework. The evaluation

is contacted by performing common clinical mobility assessment tests. The proof-of-

concept is shown by using the administrative backend for creating tests and the smart

phone client for recording gait data. Finally, the recorded data is analyzed according

feature extraction.

Appendix A provides details about the techniques used during the development of the

test framework, backend and mobile device client. The guide in Appendix B shows the

basic usage and possibilities of the administrative backend. Finally, Appendix C provides

a detailed overview of the performed assessment tests.

PART I

MOTIVATION

This part focuses on the theoretical background of this theses. A brief overview of Am-

bient Assisted Living (AAL) and its concepts on how information and communication

technologies can help improve the quality of life is given. AAL is an important aspect

in a society where people become increasingly older. AAL defines enabling technologies

for supporting and assisting elderly and disabled people. Moreover, the three main do-

mains for “aging well at home”, “aging well at work” and “aging well in the community”

are discussed. The demographic trend shows that the number of falls rises in the future

[WHO, 2007; van den Broek et al., 2009]. It is shown why fall detection and prevention

becomes an important topic in the future.

Due to the importance of fall detection, the definition of a fall as well as the classi-

fication of different kinds of falls are illustrated. Thus, the importance of how and why

people fall to perform fall detection are discussed. Moreover, recent approaches for fall

detection and their technical background to enable fall detection especially with wearable

devices are presented.

An approach involving mobile devices for fall detection and their capabilities is intro-

duced. It is shown how the current and future market of mobile devices and networks

will develop and what the effects will be. Advantages in the meaning of hardware, costs

and user acceptance are discussed over custom-made hardware. Moreover, the two “big

players” are discussed regarding software and hardware capabilities in order to perform

fall detection with mobile devices.

Part I is structured as follows: chapter 2 details the concepts of AAL, chapter 3 focus

on the definition and the technical background of fall detection, and finally, chapter 4

introduces mobile devices for fall detection.

3

4

Chapter 2
Ambient Assisted Living

The concept of Ambient Assisted Living (AAL) focus on quality of life for older people.

AAL defines support and assistance services and information systems which are enabled

by various technologies. The different approaches to AAL and its three main application

domains are described briefly in this chapter.

Moreover, it is discussed how demographic, economic and technological trends in-

fluence AAL. Especially the demographic trend is discussed in more detail showing the

impact on the social environment besides AAL. The main stakeholders are identified and

it is depicted which barriers towards Ambient Assisted Living exist.

The last part of this chapter introduces one of the common aspects of AAL: fall

detection. It illustrates the aftermath of falls for the society, which fall prevention methods

exist and finally which enabling technologies in AAL are used to detect a fall.

2.1 Definition of Ambient Assisted Living

AAL defines information systems which support older people who need assistance in

their everyday life in an non invasive way. Ambient Assisted Living is motivated by the

demographic change towards the increasing group of the elderly and in need of care-

services for the individuals. Therefore, AAL should:

• extend the people’s lives in their preferred environment,

• increase and cultivate their independence,

• reduce incapabilities and

• ensure quality improvement of healthcare services and systems as well.

More precisely, AAL defines concepts, products, services as well as appropriate policies

for improving the quality of live and technologies in the social environment [van den Broek

et al., 2009; Jähnichen, 2008; Georgieff, 2008].

5

6 2. Ambient Assisted Living

Information and Communication Technology (ICT) systems are a major part in the

area of AAL and are also referred to as ambient intelligence systems. These systems

are sensitive and responsive to the presence of the user by combining the concept of

ubiquitous computing and intelligent social user interfaces [van den Broek et al., 2009].

Thus, such systems and technologies are linked between social actors, their environment

and healthcare services where the following aspects by [van den Broek et al., 2009] have

to be taken into account:

• Embeddable: Devices have to be non invasive or even invisible, distributed through-

out the environment or directly integrated into appliances or furniture.

• Personalized: Devices have to fit the user’s needs.

• Adaptive: Devices have to be responsive to the user and the user’s environment.

• Anticipatory: Devices have to anticipate user’s desires as far as possible without

conscious mediation.

As a result assistance systems and technologies are developed and implemented in

close cooperation with the people who utilize them. Therefore, during the entire product

development cycle all involved parties (users, developers, hardware vendors, reseller) are

included to yield a product which fits the requirements [Georgieff, 2008].

This innovation process is user-centered. This leads to a wide information spectrum

and a high degree of interdisciplinarity. Besides the primary target group of the elderly or

disabled people, further involved groups can be identified. This includes family members,

neighbors, home-care nurses, community center staff, and emergency personnel [van den

Broek et al., 2009]. Consequently, the system is also used by additional users who need

to interact with it and with the target group. In order to offer high mobility and increase

independence, ambient intelligence systems need to deal with different locations. Those

locations are divided into physical and virtual spaces [van den Broek et al., 2009]. Physical

spaces include home, car, workplace or outdoor where virtual places include e-shopping,

gaming or activity planing for example.

The innovation model by [Steg et al., 2006] depicted in Figure 2.1 shows the demands

and needs of AAL systems considering the relationship of influencing factors and coher-

ences. The model distinguishes the demand side (user perspective), consisting of the

primary user group defining their needs, requirements and acceptance, and the supply

side, including the technological options, developers, reseller [Steg et al., 2006; Georgieff,

2008].

New Ambient Assisted Living systems, technologies and products result from matching

demand and supply. The demand and supply side as well as matching AAL systems

are influenced by their context factors including socio-economic, political, economic and

technological factors [Steg et al., 2006]. Therefore, context factors could influence the

whole innovation process of an AAL solution.

2.2. Trends Towards AAL 7

Demand Supply

Use/Acceptance
of AAL products services Technology options

Elderly/disabled
people

Industry/service
provider

• Health care, medical
devices

• Gerontology
technologies

• Wellness
• Services
• Smart home
• Smart textiles
• Robotics
• Consumer electronics

e.g.: adequate design,
biographical experiences,
technological experiences,
functionality

materials, microelectronics, MST,
energy, human machine interface,
information/communication,
software/web/networks

Needs in:
health, safety/security and peace
of mind, independence, mobility,
social contact

Parties engaged:
building, construction, craft,
providers, ICT, white goods, flat
owners, social care, insurances

Matching
demand - supply

socio-economic factors political factors economic factors technological factors

Figure 2.1: AAL Innovation Model [Steg et al., 2006]

2.2 Trends Towards AAL

This section discusses the important trends towards Ambient Assisted Living. It is shown

how

• demographic,

• economic and

• technological

trends influence AAL from different perspectives. The demographic trend illustrates the

impact of the aging society in Europe, whereas the economic trend shows how the health-

care companies will change. Future technology trends show how they will influence the

development of new AAL systems.

2.2.1 Demographic Trends

The demographic trend is one of the most influencing trends in the area of Ambient

Assisted Living. In fact, the average age of the European inhabitants will increase [van den

Broek et al., 2009]. This will raise new challenges for the healthcare, care systems and

retirement plans. As shown in Figure 2.2, it is projected that in 2060, the number of

people aged 80 or over is three times larger than in 2008 [Eurostat, 2008]. Moreover, the

European Office for Statistics projects that the number of deaths will outnumber births

in the EU27 from 2015.

8 2. Ambient Assisted Living

2008 2035 2060
0

5

10

15

20

25

30

35

Percentage
aged 65+

Percentage
aged 80+

Year

%
 o

f t
ot

al
 p

op
ul

at
io

n

Figure 2.2: Ageing Population, EU 27, 2008–2060 [Eurostat, 2008]

According to [Eurostat, 2008], the rate of people aged 65+ will double to 30 percent

and the rate of the 80+-aged will be nearly tripled to about 12 percent in 2060. Therefore,

about 150 million people will be aged 65 and over in 2060 in Europe. This can be traced

back to a decreasing birth-rate as well as an increasing life span which increased by about

10 years since 1960 [Georgieff, 2008]. In contrast to this, the whole population will decline.

In 2035 a growth of 5.1 percent is expected in comparison to 2008, while in 2060 only a

growth rate of 2.1 percent is expected compared to 2008 [Eurostat, 2008].

Since people will become older, requirements will change. Social and consumer be-

havior will change and also the retirement ages will rise. This will lead to a lager number

of older people at work. For this reason, people will remain self-sufficient for a longer

time but more people will need assistance or support especially in the group of aged 85+

[van den Broek et al., 2009]. A higher life expectancy results in a higher frequency of dis-

eases, and activities of the daily living will become more challenging. This demographic

trend will also impact the current and future retirement, healthcare and care systems as

well as the labour markets. This will lead to a decreasing “income” for the social frame-

work but, on the contrary, it will lead to increasing costs for healthcare systems [van den

Broek et al., 2009].

Therefore, Europe will change radically in the demographic and socio-economy con-

text. This change will raise technological and socio-economic opportunities in order to

improve the quality of life for the elderly and disabled people. For this reason, AAL sys-

tems in cooperation with Information and Communication Technology (ICT) will strongly

influence the aging generation and therefore become a big part of everyday life in the fu-

ture.

2.2.2 Economic Trends

Companies will focus on individualized services to address new user groups as well as

integrating services of several suppliers. According to [van den Broek et al., 2009] several

services need to be individualized for Ambient Assisted Living:

• Hospitals: They will try increasingly to differentiate from others and offer a more

2.3. Deployment Barriers 9

individual portfolio for the customers.

• Tele-medicine companies: This will play an important role in the future since com-

panies are completing existing stationary and ambulant treatments.

• Care-delivery organizations: For example, community centers will become more

important than equipment, which will result in a business-2-business model.

2.2.3 Technology Trends

Future technological trends will help to develop and design new AAL innovations. This

will include easier-to-use systems with the benefit of focusing more on the user. The

Internet will be available on every device even on mobile and embedded devices with the

result of a more powerful and complex health monitoring. Thus, the networking capacity

will increase enabling broadband communication at home with the result of enabling video

communication with the healthcare services for example. Standardization will lead to a

better integration and communication between a variety of devices. Moreover, Radio-

Frequency Identification (RFID)-enabled devices will gain market share, user location

awareness or user state recognition will be improved [van den Broek et al., 2009].

2.3 Deployment Barriers

Several barriers between the four AAL stakeholders (Figure 2.3) can be identified. These

barriers highlight the problems which hinder the deployment of AAL.

AAL
Stakeholders

Primary:
users and
caregivers

Secondary:
organizations

offering
services

Tertiary:
organizations

supplying
goods and
services

Quaternary:
organizations
analyzing the

context

Figure 2.3: AAL Stakeholder

The obvious target group of AAL, elderly and disabled people as well as caregivers,

are the primary stakeholders. Due to psychological factors, such as habits older people

have a general reluctance to use technology that could improve quality of life and do not

understand the benefits. Thus, older people have strong prejudices against new technolo-

gies, often caused by not fulfilling the user’s requirements. To overcome these barriers for

10 2. Ambient Assisted Living

primary stakeholders it is necessary to inform people about AAL and its benefits as well

as involving the elderly in the crucial process. [van den Broek et al., 2009]

The secondary stakeholders include organizations (care-service, security, community

centers) generally providing services to the primary stakeholders, and the tertiary stake-

holders supply goods and services to the secondary stakeholders. [van den Broek et al.,

2009] identifies three main obstacles for the secondary and tertiary stakeholders. First, the

requirements and objectives of devices and services do not reflect the actual user needs.

This can be avoided by involving the end users in every stage of the design. Second, the

lack of certain standards. Using standards would lead to open-reference architectures for

efficient service integration for example. Third, the missing broadband coverage in various

areas. Broadband coverage is a fundamental part of AAL in order to remotely monitor

the subjects as well as including them in the social and service network. Therefore it is

demand that the broadband coverage in Europe is improved.

Organizations analyzing the economical and legal context are the quaternary stake-

holders. Those have to deal with the broadest range of barriers and problems. One of the

biggest problems is the diversity of social, welfare and healthcare systems across Europe.

Every country has its system which hinders the market for AAL solutions. Therefore,

AAL solutions have to be adapted to accommodate the countries’ requirements. In oder

to facilitate and harmonize every social and healthcare system in Europe, a common social

policy is needed. Moreover, [van den Broek et al., 2009] states additional problems:

• Lack of visible value chains: Currently, only a few AAL solutions are on the market,

and little knowledge of user acceptance is available.

• Lack of standards and certification: Standards and certification is needed to provide

reliability and foster trust in buyers and users. These standards are also needed for

non-technical domains such as quality management and service quality.

• Funding and reimbursement of AAL services: AAL services and products are ex-

pensive and therefore the target groups are often not able to buy them. There is a

need to raise awareness in the governments and politicians to raise funds for AAL

related services.

2.4 Enabling Technologies

The enabling technologies describe the technological base used by the three applications

domains described in Section 2.5. The following technologies are used and defined to

develop applications and functionalities in the area of Ambient Assisted Living: sensing,

reasoning, acting, communicating and interacting.

2.4. Enabling Technologies 11

2.4.1 Sensing

Sensing refers to the use of several sensors which are able the measure different activities.

Such sensors are placed in-body or on-body, in-appliance or on-appliance or in the envi-

ronment and take place in anything and anywhere [van den Broek et al., 2009]. In the area

of AAL, sensors are referred to as “smart sensors” which consist of a conventional sensor

and a signal processing hardware. The processing of the information is either embedded

or discrete:

• Vital sign data and activity sensors: This covers wearable sensors and sensors which

are embedded in the user’s environment for human activity recognition.

• Sensor networks: They combine sensors, appliances, reasoning and actuators for

feedback into a communication network or a single device.

• Sensors for environment, safety and security: They include, for example, fire and

domestic gas detection.

2.4.2 Reasoning

[van den Broek et al., 2009] defines reasoning as “a core function of AAL systems and the

conclusion of knowledge about the activities of the user and the current situation in the

environment from low-level sensor data.” Therefore the user’s activity is classified into

five classes according to [van den Broek et al., 2009]:

• Activities of daily living: real sleeping, personal hygiene (washing activities), cooking

activities, etc.;

• Emergency situations: lying on the floor, motionless, indicators of falls, etc.;

• Psychosocial behavior: going out, meeting people, communication;

• Motion: occupation of rooms, locomotion (walking, standing, lying, falling), quality

and quantity of motion (walking speed, distance);

• Vital parameters: pulse rate, blood pressure, body weight, etc.;

The main goal of reasoning is to differentiate activities of the daily living and emer-

gency situations by analyzing and processing user’s activity. For example, a lying position

could be interpreted as sleeping as well as the result of a fall.

2.4.3 Acting

Acting technologies describe applications and technologies that support the user in his/her

everyday life by using intelligent robots and automatic control through actuators. The

most important approaches by [van den Broek et al., 2009] are:

12 2. Ambient Assisted Living

• Rehabilitation: Mechatronic technologies like prostheses, wearable robots for reha-

bilitation or artificial muscles are used to support the disabled.

• Neural-machine interface: This includes processing of neural information using sur-

face electrodes, invasive methods or non invasive methods.

• Internet-connected sensor and actuators: Wireless sensor networks monitor differ-

ent parameters and are integrated with the Internet. The sensor parameters are

monitored remotely.

• Service and companion robots: Artificial robots can assist by fulfilling tasks that

the disabled is not able to do any more.

2.4.4 Communicating

With pervasive infrastructures and an increasing number of distributed devices the com-

munication among them will increase - like the communication with decentralized services.

Moreover, sensors and actuators are connected with reasoning systems and the user’s local

or remote services [van den Broek et al., 2009].

By connecting several devices, systems and services the aspect of connectivity pro-

tocols (IPv4 vs. IPv6), data exchange (messaging format), the data itself (definition),

security (confidentiality) and physical network properties (speed) should be kept in mind.

Moreover, [van den Broek et al., 2009] defines three basic network contexts:

• Personal or body network: Communication within Personal Area Network (PAN)

devices and Local Area Network (LAN).

• Local or home network: Communication within LAN devices.

• Public area: Connection of home or mobile devices with services on the Internet.

2.4.5 Interacting

Interacting describes the human-computer interaction. Intelligent interfaces in the user’s

environment will track current activities and will respond to all kinds of actions. The in-

teraction with the services and systems needs to fit the requirements of the user’s abilities.

In order to develop easy to use AAL systems, the end users are involved during the design

process in several iterations. Due to the increasing capabilities of networks, devices and

services will be inter-connected where each one provides its own unique user interface.

Therefore the user has the possibility to choose the appropriate interface [van den Broek

et al., 2009].

2.5. Application Domains 13

2.5 Application Domains

Ambient assisted living approaches are user-centered and provide content-aware assis-

tance. This assistance takes place in living locations (home, community center), mobile

locations (walking, driving car) and visiting locations (workplace, shops) [van den Broek

et al., 2009]. These varying locations lead to a classification of three main application

domains according to [van den Broek et al., 2009]:

• AAL@home,

• AAL@work,

• AAL@community.

The application domain “ageing well at home” (AAL@home) focuses on better quality

of life for a longer time by using assisting technologies. Through the use of supporting

technology the elderly remain more independent and autonomous.

Work is an important factor in the daily life and requires active participation of each

individual. Therefore, “ageing well at work” (AAL@work) deals with the improvement of

quality of work and work-life balance, and adaptable workplaces as well.

“Ageing well in the community” (AAL@community) deals with the decreasing social

participation of the elderly. AAL@community focuses on improving the quality of life by

staying socially active for a longer time, reducing social isolation and therefore avoiding

the decreasing social participation [van den Broek et al., 2009].

2.6 Falls in AAL

Falls are a relevant factor in the society especially in the in group of elderly and dis-

abled people and therefore an important topic in AAL. With the depicted demographic

trend (see Section 2.2.1) it is obvious that automatic fall detection will become a major

technology for supporting the target group.

The demographic trend shows that the ageing population in European will increase.

This trend will also impact the estimated fall incidence every year. According to [WHO,

2007], approximately 28–35% of people aged 65 and over fall each year about 2 to 4 times

while 32–42% of the people aged 70 fall. It should be noted, that the percentage of falls

in nursery homes is higher than of people living in the community (30–50%). Moreover,

it can be observed (see Figure 2.4) that men have a higher rate of falling than women.

With this trend, the importance of fall prevention and fall detection will rise. This

section highlights basic prevention methods as well as fall detection in the area of Ambient

Assisted Living.

14 2. Ambient Assisted Living

65-69 70-74 75-79 80-84 85+
0

20

40

60

80

100

120

140

160

180

5.4 9.5
19

41.4

106.4

10.6
16

34

63.9

153.2

Women Men

Age

Fa
ll

Ra
te

s,
 p

er
 1

00
,0

00
 P

op
ul

at
io

n

Figure 2.4: Fatal Fall Rates by Age and Sex, United States, 2001 [Cameron et al.,
2005]

2.6.1 Fall Prevention

Fall prevention is a wide research topic and varies in the ways a fall is prevented or

predicted. Most research topics focus on fall prevention for the elderly people. Several

prevention methods differ in usage based on context such as nursing home, hospital,

home or living in the community. According to [Todd and Skelton, 2004; WHO, 2007;

Tremblay Jr. and Barber, 2005; LeMier et al., 2002; BRAID, 2010] the following most

common fall prevention methods can be identified:

• Assessment tests: By performing common clinical mobility assessment test, such as

the 2-Minute Walk, Sit-to-Stand 5 or Timed Up and Go test, the fall risk of a user

can be determined.

• Adjustment of environment and walking aids: Potential tripping hazards can be

removed and by using walking aids the risk of falling can be reduced.

• Gait Analysis: Based on the analysis of the gait pattern, a potential fall can be

predicted and the user is alarmed.

• Education: By clarifying the fall risk factors (Figure 3.1) to the involved parties

many of these risks can be reduced.

• Exercise/training: Specifically developed training sessions and exercises strengthen

the patient’s body and thus reduce the risk of falling.

• Medications : The use of the wrong medication can lead to reduced alertness, balance

and gait.

2.6.2 Fall Detection

Current methods use sensing technologies to detect a fall-like behavior. Hence, sensors

installed in the user’s environment track the movement, analyze and process the collected

2.7. Summary 15

information in order to determine a fall. It can be distinguished between user-activated

alarms (where the user manually activates an alarm after the fall event) and automatic

fall detectors (mostly used by wearable devices) [BRAID, 2008, 2009]. The following two

basic fall detection approaches can be identified:

• Wearable approach: The detection device is worn by the user. It incorporates

accelerometer and gyroscope sensors, for example. Such wearable sensors include

smart phones that use the supplied embedded sensors for fall detection.

• Environmental approach: Several sensors are installed in the user’s usual environ-

ment, such as the floor or a wall, and constantly analyze the user’s motion regarding

a fall. Environmental approaches are location dependent.

Chapter 3 discusses fall detection in more detail by describing a fall, the characteristics

of a fall as well as an overview of current fall detection methods and their classification.

2.7 Summary

Ambient Assisted Living defines systems to support the elderly and disabled people in

order to extend their life, increase their independence, support living standards and reduce

their incapabilities. Therefore, selected policies for sensitive and responsive systems are

developed in a user-centered process with the primary target group of the elderly and

disabled people. This relationship is presented in the innovation model which considers

the supply of technology and several context factors besides the demands.

Three main trends towards AAL can be identified: the demographic trend shows that

the average age of the European population will increase. This will lead to a larger number

of people who need assistance while the number of diseases increase. The economic trend

leads to more individualized services, and technology trends will help to develop AAL

solutions.

To make AAL innovations more accessible, some barriers need to overcome: benefits

are not understood, actual needs and requirements are not reflected and the diversity of

the social and healthcare systems hinder the development. Three application domains

are classified: AAL@home (ageing well at home), AAL@work (ageing well at work) and

AAL@community (Ageing well in the community). Enabling technologies define the base

technology used by the domains. Sensing deals with the use of sensors, reasoning clas-

sifies sensor data, acting deals with technologies that support the user, communicating

deals with the communication between devices and services and interacting describes the

human-compute interaction.

Fall detection is one of the most important topics in the area of Ambient Assisted

Living. People 65+-aged fall several times a year and the number of falls increase. AAL

suggest sensing and reasoning technologies for detecting a fall-like behavior. The wear-

able device approach uses embedded sensors for fall detection where the environmental

16 2. Ambient Assisted Living

approach uses sensors located in the user’s environment. Falls cannot be eliminated but

fall prevention will help to reduce the number of falls.

Chapter 3
Fall Detection

This chapter deals with the term fall and tries to find an adequate definition. In order to

develop an algorithm for detecting a fall, the risk factors and the phases of a fall are of

great importance. Further, the main characteristics such as fall from sleeping, fall from

sitting and fall from standing are explained with their properties and characteristics.

The different approaches in the area of fall detection have led to a classification with

three main classes. Each class consists of sub-classes which are illustrated with their

current most common approaches. The last section introduces the most used technique

for fall detection with a body-attached sensor from a theoretical point of view. The

problems and opportunities for improvement are also discussed.

3.1 Definition of a Fall

For better analysis and comparison of a fall, it is required to define a fall in the context of

fall detection. This is important in order to be able to differentiate a fall from activities of

daily living. It is also necessary to clearly define which events could be included into a fall

and classify different types of falls [Zecevic et al., 2006]. In literature, many researchers

individually defined a fall but a general definition is still missing [Zecevic et al., 2006].

There are many definitions of a fall, which try to describe a fall in more detail or with

only very basic characteristics. The most popular and most adapted definition of a fall is

by [Gibson et al., 1987]:

“A fall is an event which results in a person coming to rest inadvertently on the ground

or other lower level and other than as a consequence of the following: Sustaining a

violent blow, Loss of consciousness, Sudden onset of paralysis, as in a stroke, An

epileptic seizure.”

[Zecevic et al., 2006] conducted a survey in a group of seniors, the main “target group”,

to get a better meaningful description of what older people think of a fall. In this telephone

survey 477 people (aged 55 and above) asked to define a fall and the main reasons for

17

18 3. Fall Detection

falling. The participants tended to focus on the antecedents (for example lost balance or

weather) and consequences (injury, environmental landing) of falls instead of defining a

fall.

For seniors, the most mentioned reasons for falling are [Zecevic et al., 2006]:

1. Balance

2. Weather

3. Inattention

4. Medical conditions

5. Indoor obstacles

6. Surface hazards

7. Slip-trip-stumble

According to the results of the survey it can be said that a fall has different mean-

ings for different people based on their knowledge, experience and psychological mindset

[Zecevic et al., 2006]. Among the above noted reasons for falling, [Abbate et al., 2010]

defines a number of risk factors which can lead to a fall. Risk factors are classified into

four categories: Intrinsic, Extrinsic, Internal Environment and External Environment.

Figure 3.1 depicts a number of potential risk factors for each category.

3.2 Anatomy and Characteristics of a Fall

A fall is triggered by an unpredictable event such as slipping on the floor, and usually

happens during activities of daily life. A fall ends with the impact on the floor with the

person lying on the floor. Nevertheless, it should be noted that activities of daily living,

for example “falling on the bed” or “sitting down on a chair fast”, could be spuriously

detected as a fall [Abbate et al., 2010]. According to [Abbate et al., 2010] a fall can be

separated into five phases:

1. Activity of Daily Living (Figure 3.2a)

2. Hard-predictable event (Figure 3.2b)

3. Free-fall (Figure 3.2c)

4. Impact (Figure 3.2d)

5. Optional recovery (the fall could be fatal, therefore the person would be unable to

recover, Figure 3.2e)

3.2. Anatomy and Characteristics of a Fall 19

Stairs

Dangerous
Steps

Risk Factors

Slipping Floors

Crowded Places

Extrinsic

Need to Reach
High Objecsts

Instrinsic

Damaged Roads

Low Mobility and
Bone Fragility

External
Envirtonment

Internal
Environment

Poor Lightning

Individual
(incorrect use of

shoes and
clothes)

Drugs Cocktail
Age (over 65)

Chronic Disease
Poor Balance

Sight Problems

Use of Drugs
that Effect the

Mind

Parkinson
Disease

Previous Falls

Cognitive and
Dementia
Problems

Incorrect
Lifestyle

Figure 3.1: Classification of Fall Risk Factors [Abbate et al., 2010]

[Yu, 2008] was the first who specified the characteristics of a fall. These characteristics

facilitate developing better methods for analyzing the different types of a fall. [Yu, 2008]

defines the duration, the position of the person before and after the fall as well as the

range and direction of the fall. Generally, the four defined fall scenarios are: fall from

sleeping, fall from sitting, fall from walking or standing on the floor, and fall from standing

on supports [Yu, 2008]. Figure 3.3 illustrates the first three scenarios, fall from standing

on supports goes with fall from standing.

3.2.1 Fall from Sleeping

The scenario fall from sleeping defines a fall from lower height for example a bed (see

Figure 3.3a). The person is in a lying position either asleep or not. [Yu, 2008] defines

the characteristics as follows:

1. Duration: 1–3 seconds.

2. Starting position: Person lying in the bed.

3. Fall: The body reduces its height from the bed height to the lying height (the body

is in free-fall).

20 3. Fall Detection

(a) Activity of Daily
Living

(b) Hard-
predictable
event

(c) Free-fall (d) Impact (e) Optional Recov-
ery

Figure 3.2: Anatomy of a Fall [Abbate et al., 2010]

4. End position: The body lying on the floor is nearby the bed.

3.2.2 Fall from Sitting

A fall from sitting starts with the person in a sitting position, for example, on a chair

(see Figure 3.3b) and is defines as follows [Yu, 2008]:

1. Duration: 1–3 seconds.

2. Starting position: Person sitting in the chair.

3. Fall: The head reduces its height form the sitting height to the lying height (the

head is in free-fall).

4. End position: The body lying on the floor is nearby the chair.

3.2.3 Fall from Standing, Walking or Standing on Supports

This scenario covers the fall from standing, fall from walking and fall from standing on

supports, which commonly occur while working (such as standing on the ladder). [Yu,

2008] and [Abbate et al., 2010] defines the fall from standing to a lying position on the

floor, while normally a fall does not include standing (see Figure 3.3c).

1. Duration: 1–2 seconds.

2. Starting position: Person standing.

3. Fall: The head reduces its height from the standing height to the lying height (the

head is in free-fall). The person falls in one direction (the head and and the weight

center of the person move along one plane).

4. End position: The lying head is within a virtual circle that is centered at the person’s

feet before the fall, with the radius of the circle being the persons height.

3.3. Classification of Fall Detection Methods and Current Approaches 21

(a) Fall from Sleeping (b) Fall from Sitting (c) Fall from Standing

Figure 3.3: Position of the Body Before and After the Fall [Abbate et al., 2010]

3.3 Classification of Fall Detection Methods and Current

Approaches

[Yu, 2008] divides fall detection methods for elderly and patients into three main ap-

proaches: wearable device, camera-based and ambience device. Further, each class is

divided into several sub-classes to give a more detailed overview of the approaches. Fig-

ure 3.4 shows the complete hierarchy of all methods. Each method is described in more

detail in the following sections.

Fall Detection

Wearable Device Camera-based Ambience
Device

Posture Device Motion Device Presence Device Posture Device

Inactivity
Detection

3D Head Motion
Analysis

Body Shape
Change Analysis

Figure 3.4: Classification of Fall Detection Methods [Yu, 2008]

3.3.1 Wearable Devices

Within this approach the user “wears” one or more devices with embedded sensors. These

devices are able to detect a fall or the posture of a person using accelerometers and

gyroscopes (see Section 3.4). The advantage of this approach is that it is independent

from the location of the user. A fall can be directly assigned to the user since he/she

22 3. Fall Detection

wears the device.

Wearable Devices are further divided into:

• Posture device: the posture after and during the fall is monitored.

• Motion device: only the motion (acceleration) during the fall is monitored.

The most used technique to detect a fall is by measuring the acceleration. If the accel-

eration exceeds a threshold a fall is detected [Dai et al., 2010]. This basic implementation

has the disadvantage that even picking up the device from the table could be detected

as a fall. The goal is to eliminate such events [Sposaro and Tyson, 2009]. According to

[Kangas et al., 2008], the sensor (for example a mobile phone) needs to be carried on

specific body parts to reduce false alarms. For example wearing the mobile phone on the

trunk reduces false alarms whereas on the arm false alarms are increased since the arm

activity is greater.

[Lopes et al., 2009], [Dai et al., 2010] and [Sposaro and Tyson, 2009] use mobile phones

equipped with accelerometers to detect a fall. This approach has several advantages like

cost-efficient hardware, portability and acceptance even for the elderly [Dai et al., 2010].

Another approach by [Li et al., 2009] uses two tri-axial accelerometers and gyroscopes

at separate body parts, for example, located on the chest and thigh. Using sensors on

different parts on the body can reduce false alarms. [Li et al., 2009] divides human activity

into two categories: static postures and dynamic transitions between these postures. A fall

is defined as an unintentional transition to the lying posture measured with acceleration

and angular velocity.

[Lindemann et al., 2005] developed an accelerometer which is worn on the head fixed

behind the ear. The accelerometer is integrated into the housing of a hearing-aid. Placing

the accelerometer on the head has the advantage that the movements are more sensitive

since the human tries to protect the head. Therefore high acceleration means unpleasant

moves which can lead to a fall.

The “vitaliSHOE” project by [Oberzaucher et al., 2010] makes use of a variety of

sensors installed in an insole. Those insoles measure the bipedal gait and transmit the

data wirelessly for analysis. A base station is used to process and analyze the transmitted

data according to gait and moving behavior. The main goal of the project is fall risk

estimation also fall detection can be performed. Since the current approach makes use of

a base station the insole is not ready for everyday use. A benefit is that users do not feel

influenced by the insole [Jagos et al., 2010].

3.3.1.1 Performing Fall Detection with Wearable Devices

As mentioned previously, fall detection with mobile devices is basically performed by mea-

suring acceleration and extracting the acceleration peaks. Figure 3.5 shows the recorded

acceleration of a Sit to Stand 5 (STS5) test (see Chapter 10). Regarding fall detection,

the acceleration peaks depicted in Figure 3.5 can be used to detect a fall-like behavior.

3.3. Classification of Fall Detection Methods and Current Approaches 23

Such peaks need to be differentiated from activities of daily living in order to perform

accurate fall detection.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

peak

Figure 3.5: Recorded Motion Data of the “Sit-to-Stand 5” Test

In the context of this thesis only the theoretical background for fall detection algo-

rithms are discussed (see Section 3.4).

3.3.2 Camera-based

Camera-based methods can be divided into Body Shape Change Analysis, Inactivity De-

tection and 3D Head Motion Analysis. The main approach of this method is to track the

movement of the user with stationary installed cameras. Specific algorithms analyze the

recorded video and are able to detect fall patterns. [Abbate et al., 2010] summarize the

three sub-categories as follows:

• Body Shape Change Analysis: based on the change of posture after the fall.

• Inactivity Detection: based on the assumption that after a fall, the patient lies on

the floor without moving.

• 3D Head Motion Analysis: based on monitoring the position and velocity of the

head.

The main advantage compared with other methods mentioned is that it is possible to

detect multiple events simultaneously. Since the cameras are stationarily installed these

methods are less intrusive. For both inactivity and body shape detection the compu-

tational complexity is small whereas with 3D head motion analysis the computational

complexity is higher and needs more cameras. Therefore 3D head motion analysis is

currently not reliable [Yu, 2008].

3.3.3 Ambience Devices

This method makes use of sensors which are installed in the environment of the patient.

The advantage of those devices is that they are unobtrusive and best used in houses.

24 3. Fall Detection

One approach used by [Alwan et al., 2006] makes use of sensors which are located on

the floor. The device detects vibration patterns which indicate a fall. Activities of daily

living like walking have a significantly different vibration signature than those generated

by a fall. For high detection rates it is required to install a sensor in every room.

A second approach by [Sixsmith et al., 2005] uses an array of pyroelectric IR sensors

mounted on the wall. The array of sensors only “sees” warm moving objects and not

the static background. In contrast to camera-based methods the background has to be

eliminated by the algorithm used to extract the moving object. The system analyses the

target motion to detect characteristics of a fall. In the second step the target inactivity is

analyzed regarding the period of time since the last movement and the time since when

the tracker last tracked the object.

The disadvantage of ambience device based fall detection is that they all have the

requirement to install several sensors around the patient. Moreover, the rate of false

alarms (false positive falls) is high. This is caused by the fact that within pressure sensors

it is hard to differentiate if a fall is issued by the pressure of the person’s weight or for

example an heavy falling object [Yu, 2008].

3.4 Fall Detection Algorithms

In order to develop an algorithm to detect a fall it must be clarified how a human body

falls and which forces influence the fall. [Abbate et al., 2010] defines that a body only

falls either into the sagittal or frontal plane. According to that the body falls forward or

backward which is the sagittal plane or to the left or right which is therefore the frontal

plane.

This chapter deals with the most commonly used techniques to detect a fall in the

area of wearable devices.

3.4.1 Accelerometer-based Fall Detection

When a body is falling it is accelerated into one direction. The acceleration in the falling

plane increases and can be measured with a sensor. Usually the sensor used is an tri-axis

accelerometer which monitors acceleration in three different axes (x, y, z).

An accelerometer contains a tiny mass. If the accelerometer is moved, tilted or shaken

the mass moves and the movement of the mass is measured and converted to an analog

or digital signal [Epstein and O’Leary, 2006]. The corresponding signals can be analyzed

to detect a fall-like behavior.

Many of the current approaches (see Section 3.3) in the area of fall detection use body

attached accelerometers to detect a fall. Since a body is in a free fall-like situation for a

short period of time the vertical speed increases due to gravitational acceleration [Noury

et al., 2007]. To distinguish between activities of daily living and a fall it is necessary to

measure the acceleration within such activities. Compared to the acceleration within a fall,

3.4. Fall Detection Algorithms 25

which is usually higher, it is possible to differentiate between a fall and a “normal activity”

and define an appropriate threshold [Noury et al., 2007]. Hence, if the acceleration of an

activity exceeds the threshold a possible fall has been detected. Defining the threshold

is rather complex. If the threshold is too low, “normal activities” such as sitting down

are detected as fall. Otherwise, if the threshold is too high, falls are not detected. Which

leads to many false positives [Abbate et al., 2010].

The placement of the accelerometer is also important for reliable fall detection. [Kan-

gas et al., 2007] tried to determine thresholds for accelerometers placed at the waist, wrist

and head between intentional falls and activities of daily living. The study shows that

each position has different parameters in order to differentiate between a fall and activities

of daily living. Hence, the threshold also varies. [Kangas et al., 2007] shows that the most

reliable position for the sensor is the head where it is possible to completely distinguish

between a fall and “normal activities”. When placing the accelerometer at the waist it is

not possible to completely differentiate between a fall and activities of daily living. The

wrist is the least reliable position for detecting a fall.

[Kangas et al., 2008] evaluated three fall detection algorithms (with different complex-

ity) with the following detection rates:

• Head: 47%–98%

• Waist: 76%–97%

• Wrist: 55%

Although the algorithm is rather easy to implement its detection rate highly depends

on the placement of the accelerometer, the used algorithm and the corresponding threshold

for reliable fall detection. Moreover it can be said that a general threshold for accelerom-

eter based fall detection does not exist.

3.4.2 Gyroscope based Fall Detection

After a fall the human body is for example lying in a specific position on the floor (see

Figure 3.3). The orientation of the body can be monitored in order to improve fall

detection [Kangas et al., 2007]. The sensor to monitor such positions is a gyroscope. A

gyroscope is a sensor to measure orientation. It consists of a spinning wheel whose axes

can freely move in any direction. The movement of the axes is measured along three axes

(x, y, z) [Luštrek and Kaluža, 2009]. Therefore the gyroscope can be used the determine

the orientation of the body.

In the meaning of fall detection the measured angular velocity helps to increase the

fall detection accuracy and reduces the rate of false-positives. [Abbate et al., 2010]. The

posture is determined by the inclination angels of the trunk and thigh which are depicted

in Figure 3.6.

Several different approaches by [Li et al., 2009; Kangas et al., 2007] used accelerometer

based fall detection in addition to posture detection. After a possible fall-like behavior

26 3. Fall Detection

0°

+30°

+60°

+90°

+120°

-45°

(a) Trunk

0°

+30°

+120°

+90°

+60°

-45°

(b) Thigh

Figure 3.6: Posture within Falls [Abbate et al., 2010; Li et al., 2009]

has been detected the current posture of the body is monitored. If the body is in a lying

posture (depending of the implementation of the detection algorithm) a fall is detected.

With mere accelerometer based fall detection it is not possible to detect the posture since

only the acceleration is measured.

3.4.3 Quality Criteria of Fall Detection Algorithms

To compare and evaluate fall detection algorithms, [Noury et al., 2007] proposed two cri-

teria: sensitivity and specificity. Sensitivity is the capacity to detect a fall and specificity

is the capacity to detect only a fall [Noury et al., 2007]. These statistical values depend

on the following four cases [Noury et al., 2007]:

1. True Positive (TP): A fall occurs and the algorithm detects it.

2. False Positive (FP): The algorithm detects a fall but no fall occurred.

3. True Negative (TN): A normal movement is performed and the algorithm does not

detect a fall.

4. False Negative (FN): A fall occurs but the algorithm does not detect it.

With the four mentioned cases, sensitivity (3.1) and specificity (3.2) are calculated.

“Good” algorithms will result with a sensitivity of 1 (= 100%) and a specificity of 1 (=

100%).

Sensitivity =
TP

TP + FN
(3.1)

Specificity =
TN

TN + FP
(3.2)

For better comparison of different implementations, [Noury et al., 2007] developed

several test scenarios which are listed in Table 3.1.

3.5. Conclusion 27

Category Name Outcome
Backward fall (both legs straight or with knee flex-
ion)

Ending sitting Positive

Ending lying Positive
Ending in lateral position Positive
With recovery Negative

Forward fall On the knees Positive
With forward arm protection Positive
Ending lying flat Positive
With rotation, ending in the lateral right position Positive
With rotation, ending in the lateral to the left po-
sition

Positive

With recovery Negative
Lateral fall to the right Ending lying flat Positive

With recovery Negative
Lateral fall to the left Ending lying flat Positive

With recovery Negative
Syncope Vertical slipping against a wall finishing in sitting

position
Negative

Neutral To sit down on a chair then to stand up (consider
the height of the chair)

Negative

To lie down on the bed then to rise up Negative
Walk a few meters Negative
To bend down, catch something on the floor, then
to rise up

Negative

To cough or sneeze Negative

Table 3.1: Scenarios for Evaluating a Fall Detection Algorithm [Noury et al., 2007]

3.5 Conclusion

Fall detection as a general term has very widespread meaning. Many researches are

working on finding a general definition of a fall or using existing definitions with their

own adaptions. Moreover, according to a survey in a group of seniors, people are focusing

more on the antecedents and consequences of falling instead of defining it. Therefore no

general definition of a fall exists. Among the reasons for falling such as balance, weather

or inattention there are four main risk factors for falling: intrinsic, extrinsic, internal

environment and external environment.

Generally a fall is triggered by an unpredictable event and ends with the impact on the

floor. A fall is divided into five phases: activity of daily living (for example walking), hard-

predictable event (such as slipping on the floor), free-fall, impact and optionally recovery

from the fall. In order to develop methods for analyzing a fall four scenarios have been

developed. Each scenario describes the duration, start and end position of the human

body and the fall itself. Therefore, the scenarios are fall from sitting (which is a fall from

lower height, the person is lying), fall from sitting (the person is sitting) and finally fall

from standing (the person falls from standing).

Current fall detection methods are divided into three main classes. Each class is di-

vided into several sub-classes which classifies the approaches in more detail. The wearable

devices approach covers devices with embedded sensors which are attached to the body.

Such sensors are able to measure the posture and acceleration of the body and therefore

are able to detect a fall-like behavior. The second approach covers camera-based fall de-

tection. With such methods the movement of a person is tracked with stationary installed

cameras and the recorded video is analyzed for fall patterns. The third class is called am-

28 3. Fall Detection

bience device. This approach makes use of sensors which are installed in the environment

of the person. Different approaches install sensors in the floor to detect fall-like vibration

patterns or install IR sensors on the wall to track moving objects, therefore a person.

To develop a fall detection algorithm it is important to know that the human body

falls only in one direction. Either into the sagittal (forward/backward) or frontal (left-

/right) plane. The most commonly used technique to detect a fall is to measure the body

acceleration. This is done by using an accelerometer which is able to measure acceleration

in any direction. The acceleration of activities of daily living differentiates from a fall.

Since the acceleration of a fall is usually higher it is possible to define an acceleration

threshold. If the measured acceleration exceeds the threshold a possible fall has been

detected. Defining a threshold is complex. It depends on the activity and also on the

placement of the sensor. If the threshold is too high falls are not detected, if it is too low

normal activities are detected as fall. To compare and evaluate an algorithm the criteria

sensitivity (capacity to detect a fall) and specificity (capacity to detect only a fall) are of

great importance. To improve accelerometer-based fall detection, posture detection can

be added. After a fall the posture of the body is monitored and if it is in a lying position

a fall has been detected. This approach reduces the rate of false-positives.

Due to the fact that fall detection algorithms depend an a variety of parameters such

as threshold, placement or threshold there is no general algorithm for detecting a fall.

Chapter 4
Mobile Devices

During the past years, mobile devices such as smartphones, tablets and netbooks gained

much popularity. This chapter shows a classification of mobile devices according to flex-

ibility and portability. The history of smartphones from the beginning in the early 90’s

until now is discussed. It is shown which devices caused the breakthrough of today’s

smartphones. Moreover, the currently most used mobile device platforms are discussed.

The second section analyzes the current mobile device market and highlights the cur-

rent “big players” in the business. Moreover, the growth of the market by looking at the

current state and future trends as well as mobile networks are discussed.

Finally, mobile devices for fall detection are discussed. It is detailed why smartphones

fit in the area of wearable devices according to analyzed trends, hardware and software

capabilities.

4.1 Mobile Devices

Mobile devices define a category of device types which offer great flexibility and porta-

bility. In the past years, mobile devices such as netbooks or smartphones became an

important market in the field of mobile devices. Figure 4.1 illustrates the coherence be-

tween flexibility and portability according to the form factor by categorizing them into

transportable, portable, pocketable, personal and implanted.

Transportable devices cover netbooks (smaller notebooks), portable devices cover ta-

bles, pocketable devices cover smartphones, personal devices cover devices for personal

health monitoring (e.g., blood pressure) and implanted devices cover chips implanted in

the human body.

Mobile devices, especially smartphones in the context of this thesis, combine the fea-

tures of a Personal Digital Assistant (PDA) with those of a mobile phone. Modern

smartphones are usually equipped with a touchscreen, an easy to use operating system

and are pocket-sized. In addition to the common PDA functions such as e-mail, address

book or calendar, current smartphone operating systems allow users to install additional

29

30 4. Mobile Devices

Transportable Portable Pocketable Personal Implanted

Flexibility Portability

Figure 4.1: Flexibility and Portability within Mobile Device Categories [Wallin,
2010]

software also referred to as “application” or “app”. Nowadays smartphones provide the

mobile possibilities of business applications, Internet access, entertainment such as games

and music.

The first smartphone, “Simon”, was designed in 1992 by IBM and BellSouth. This

device had the capabilities of making calls, create faxes and memos. It was equipped with

a touchscreen for entering telephone numbers with a finger or with a stylus [Intelligence,

1993]. In the middle of the 90’s Nokia released the Nokia 9000 Communicator product

line. It provided an integrated keyboard, access to e-mail, fax and Internet. The commu-

nicator could be opened in order to present a bigger monochrome display and a keyboard

[Retrobrick, 2011].

The actual term smartphone was first used in 1997 by Ericsson. The R380 smartphone

introduced 2000 by Ericsson used the Symbian operating system and used a touchscreen

and a hinged keyboard and a pen. Subsequently the Symbian OS became one of the most

popular smartphone operating system used by a variety of vendors.

A new era of smartphones began in 2007 when Apple released the first iPhone. The

device integrated a multi-touch interface with a single touchscreen which is used with

fingers - no additional input devices are needed. With the introduction of the new input

method and the underlying iPhone operating system, Apple started a new hype. The easy

to use operating system, user interface and possibility to develop, distribute and install

third-party applications through the “App Store” helped the iPhone to succeed.

Apples first competitor, Google released the Android operating system in 2008. An-

droid is an open source operating system and integrates several Google services. The first

device using the Android operating system was the HTC Dream with a full QWERTY

keyboard. Google’s mobile operating system can be freely used and therefore it is adopted

by several device vendors as operating system. Figure 4.2 shows the devices mentioned

in a timeline.

While Google only provides the operating system, Apple delivers both hardware and

the operating system and a couple of applications. In order to allow developers to create

and sell third party stores, Apple and Google offer a Software Development Kit (SDK)

4.2. Current and Future Mobile and Network Market 31

1992 1996 2000 2007 2008

IBM "Simon" Nokia 9000 Communicator Ericsson R380 Apple iPhone HTC Dream

Figure 4.2: Smartphone Device History, 1992–2008

which provides the basic tools for creating applications. Such third party applications can

be distributed through the application stores.

Apple and Google, offer their customers a special service where they can download

and install applications onto their mobile device. Apple calls it “App Store”, Google

“Android Market”. In general, both stores offer the same functionally and are the common

market places for downloading payed or free applications. According to [Scott, 2011] the

App Store counts about 500,000 applications including 125,000 iPad specific applications.

There have been 18 billion app downloads so far and $3 billion paid to developers. On

contrary, the Android Market counts about 200,000 applications with a total of 4.5 billion

installed applications [Barra, 2011]. A forecast by [Gartner, 2011b] predicts that there

will be 185 billion applications download by the end of 2014 from all mobile app stores.

The top categories in Apple’s App Store are “Games” (15%), “Books” (14%) and

“Entertainment” (11%) [Schroeder, 2011]. While the top three categories in the Google

Android Market are “Entertainment”, “Personalization” and “Books & Reference” [App-

Brain, 2011]. Moreover, [Gartner, 2009] identified future applications trends based on

their impact on consumers and industry players as well as revenue and consumer value.

The trend includes applications for “Money Transfer”, “Location-Based Services”, “Mo-

bile Health Monitoring”, “Mobile Payment” or “Near Field Communication Services”.

4.2 Current and Future Mobile and Network Market

According to [Gartner, 2011a], the worldwide sales of mobile devices in the second quarter

of 2011 totaled about 428 million devices sold to end users. Figure 4.3a shows the device

sales by vendors, whereas Figure 4.3b shows the sales by operating system to the end

user. In comparison to the second quarter in 2010 this is an 16.5% increase in sales.

According to [Gartner, 2011a] the current top vendors are Nokia and Samsung far

ahead of LG and Apple. In contrast, the sales by operating systems show that Android

is nearly installed on 50 percent of the sold devices, followed by Symbian and iOS. By

combining both shares it can be observed that Google with its Android operating system

and Apple are the big players in the “mobile world” [Gartner, 2011a].

The combined share of the iOS and Android operating systems leads to nearly 62

percent market share by those two operating systems. Therefore it can be said that iOS

32 4. Mobile Devices

Nokia

Samsung

LG
Apple

ZTE, 3%
RIM, 3%

HTC, 2.6%

Other 22.8%

16.3%

5.7%
4.6%

42%

(a) by Vendor

Android

Symbian

iOS

RIM

Other

43.4%

22.1%

18.2%

11.7%

4.6%

(b) by Operating System

Figure 4.3: Worldwide Mobile Device Sales in Q2-11 to End Users [Gartner, 2011a]

and Android dominate the mobile operating system market. [Gartner, 2011a] explains

that this share results from the usability those operating systems offer, the offered services

as well as the applications which are offered for each platform.

The mobile device market is an increasingly fast growing market as illustrated by

the device shipment trend in Figure 4.4. In 2010 about 288 million devices including

smartphones and media tablets have been sold. Gartner predicts that their will be more

than 1 billion devices sold in 2015 [Columbus, 2011]. According to this forecast, it can be

said that mobile devices will, in the future, play an even bigger role in everybody’s daily

living than now.

Smartphones Media Tablets

2010 2011 2012 2013 2014 2015

200

400

600

800

1000

1200

270.93

362.45

458.01

561.42

677.18

775.79

318.32
235.69169.73114.5869.0817.61

M
illi

on
s

of
 U

ni
ts

Figure 4.4: Worldwide Smartphone and Media Tablet Shipment Trend, 2010–2015
[Columbus, 2011]

In addition to the mobile device market the number of mobile Internet connections

4.3. Mobile Devices for Fall Detection 33

will grow with the market. This is due to the fact that mobile devices have the necessary

connectivity interfaces such as 3G or Wi-Fi for connecting to the Internet. To illustrate

the growth rate of the mobile Internet, the global mobile traffic in 2010 was three times

greater than the entire Internet traffic in 2000 [Cisco, 2011].

Mobile networks are continuously expanded, new technology standards enforced and

therefore networks are becoming faster. By 2015 [Cisco, 2011] predicts a combined annual

growth rate of about 92 percent in mobile data traffic. Moreover, the average mobile

network connection speed will exceed 2.2 megabits per second with corresponds to an

annual growth rate of about 60 percent. Additionally, [Meeker, 2010] predicts that in

2015 accessing the Internet mobile will overtake desktop Internet access.

4.3 Mobile Devices for Fall Detection

As described in Section 3.3, current fall detection approaches include wearable devices,

camera-based and ambience devices. This section deals with mobile devices in the context

of fall detection in the area of wearable devices. To recap, a wearable device uses embedded

sensors such as accelerometers and gyroscopes in order to detect a fall or the posture of a

person. In addition to the basic requirements of a wearable device, modern mobile devices

offer several advantages which make them suitable for fall detection.

Mobile device trend. As depicted in the previous section, a growing trend for mobile

devices can be observed. Mobile devices will increasingly be used in everyday life and

will become a constant “companion”. With the possibility to access information any

time and anywhere in combination with the services offered (such as applications,

social network integration) and an easy to use interface mobile devices will replace

most users traditional devices. Thus, according to [Wallin, 2010] the mobile market

will become people-centric, i.e., development will focus on people instead of devices.

Better networks. Mobile network connections will become increasingly fast. Mobile

network carriers will expand the network which will also lead to a better network

coverage. As a result, users will be connected to the network at any time. This

factor will lead to better and more fail-safe alarm chains because of a more stable

connection to the health services.

Hardware. With the rising success of mobile devices the embedded hardware is becoming

more efficient. The used mobile processor technology is constantly improved which

leads to faster and smaller chips. As a result, the form factor of devices change

and will become smaller and increasingly powerful. Thus, the required motion

sensors for fall detection are more precise. Initially only accelerometers and Global

Positioning System (GPS) chips have been included. Today, modern devices also

include a gyroscope and a compass (see Table 4.1). Furthermore, mobile device

vendors usually use standard components for building their devices. This leads to

more robust, stable and cheaper hardware.

34 4. Mobile Devices

Costs. The costs of mobile devices will be reduced which is caused by several reasons.

Mobile device vendors want to gain market share and keep the initial costs low as

well. Moreover, a cheaper device price should entice customers as well making the

transition to a new vendor more palatable. Another reason is that, with millions of

devices sold, hardware can be produced much cheaper.

User acceptance. Since mobile devices become more ubiquitous the acceptance for such

devices also grows. Users are becoming more familiar with such devices and are

willing to wear them all the time.

All mentioned facts show that a mobile device perfectly fits into the body area network

(see also Section 3.3.1). Mobile devices deliver all necessary components to perform fall

detection as well as the acceptance of the user to carry a device. Thus, the winning factor

for a mobile device is not only the fact that it fits into the wearable device approach but

also the fact that it is a future-proof “concept”. Therefore, it is not required that the user

wears an additional device for fall detection purposes.

4.3.1 Hardware and Software Capabilities

Modern state of the art smartphones such as the Apple iPhone 4S or Samsung Galaxy S

II (shown in Figure 4.5) are well suited for implementing and performing fall detection

algorithms.

(a) Apple iPhone 4S
[Apple, 2010b]

(b) Samsung Galaxy S II
[Samsung, 2011]

Figure 4.5: Smartphones by Apple and Samsung

As shown in Table 4.1, current modern devices are equipped with high performance

Central Processing Units (CPUs) and a large amount of memory to offer the best perfor-

mance to the user. In addition to the rich multimedia capabilities, both devices include

necessary orientation sensors to monitor the user’s motion.

4.4. Summary 35

Beyond that, the devices include a GPS module for positioning, all kinds of cellular

and Wi-Fi modules as well. Those modules can be used to build a preferably complete

alarm chain. For example, if a fall is detected, it would be possible to place a call or send

a message, additionally the current GPS location could be send to the health services.

Apple iPhone 4S Samsung Galaxy S II
Platform iOS 5 Android 2.3
Processor Apple A5 Dual-Core (1GHZ∗) Samsung Exynos (1.2GHz) or

Qualcomm Snapdragon S3 (1.5Ghz)
RAM 512MB∗ 1GB
Storage 16/32/64GB 16/32GB, micro SD expansion
Cellular quadband GSM, quadband HSPA+

14.4 / EDVO Rev.A
quadband GSM, quadband HSPA+
21/42 or CDMA / EDVO Rev.A,
WiMax

Wi-Fi 802.11b/g/n 802.11a/b/g/n
Location sensor AGPS, compass AGPS, compass
Orientation sensors accelerometer, gyroscope accelerometer, gyroscope
Price starting at 629e starting at 399e
∗ estimated

Table 4.1: Hardware Comparison of Apple iPhone 4S and Samsung Galaxy S II
[Qazi, 2011]

In order to implement an application that performs fall detection, Apple and Google

distribute a SDK to developers. Such development kits provide documentation and a

set of tools that allow the developer to create applications. Moreover, an Application

Programming Interface (API) is provided for accessing each individual motion sensor.

The delivered motion data can be processed and passed to the fall detection algorithm in

order to detected a fall-like behavior.

Apple’s iOS SDK provides access to accelerometers for x, y, z axis acceleration, to

the gyroscopes for x, y, z axis rotation rate as well as to the devices roll, pitch and yaw.

Apple’s iOS platform allows an application to use the motion sensors during its application

life-time. Since the power consumption of motion sensors is higher than other equipped

hardware, Apple does not allow applications to “listen to” motion sensor events - the

battery would drain too quickly. [Apple, 2011] suggests the following event frequencies:

• 10-20Hz: Suitable for determining the device’s orientation.

• 30-60Hz: Suitable for real-time user input such as games.

• 70-100Hz: Suitable for applications which need to detect high-frequency motions.

4.4 Summary

Mobile devices define a category of devices with high flexibility and portability and offer

access to the Internet via mobile networks. Mobile devices are categorized into trans-

portable, portable, pocketable, personal and implanted devices. The history began back in

36 4. Mobile Devices

1992 with IBMs “Simon” and reached the highest popularity in 2007 when Apple released

the iPhone. Such smartphones combine the functionality of a PDA and a mobile phone

offering the possibility of installing third-party software.

The mobile device market is increasingly growing, with estimates that in 2015 about

1 billion devices will be sold. Associated with that, the mobile network will become faster

and expanded. Hence, the mobile Internet access will overtake the desktop Internet access

in 2015.

By analyzing the current mobile device market share, can be said that Apple and

Google are the obvious big players. Both gained much users by offering them “superb”

usability and services as well as a wide range of third-party applications offered through

their applications stores. Currently, both application markets combined include about

700,000 applications while it is predicted that there will be about 185 billion downloads

by the end of 2014.

Furthermore, it can be observed that mobile devices are well suited for fall detection.

The trend shows that mobile devices will play a big role in the future and therefore will

increasingly be used by people. Even mobile networks will become better which leads

to a much better and fail-safe alarm chain. Modern mobile devices offer the required

hardware for fall detection such as accelerometer and gyroscope. Thus, the sensors will

become more precise and deliver data at a higher sample rates.

Software Development Kits (SDKs) provide access to each sensor and therefore appli-

cations can be built for implementing an algorithm for fall detection.

By combining all facts, it can be said that mobile devices meet all requirements for

fall detection and show that users will be likely to wear one single device instead of an

additional device for fall detection.

PART II

IMPLEMENTATION

This part describes the current test framework architecture by analyzing its components

and interaction. Moreover, the drawbacks of the current architecture regarding sustain-

ability, flexibility, availability and integrity are evaluated. According to these drawbacks

functional requirements describing the basic functionality are identified. A proposed new

system architecture is described with its technological base.

The proposed architecture is implemented using a 3-tier architecture. First, the entity

relationship model of the developed database is described in detail. Subsequently, the

implementation of the database using Java persistence is shown. Based on the database

model the required API is defined with its parameters, permissions and responses. Since

the API is designed as RESTful Web service , the Java frameworks used and their con-

figuration are explained in more detail.

To provide a better user experience, a backend using JavaScript has been developed.

It is shown how the Rich Internet Application (RIA) is built using a JavaScript toolkit.

The backend provides an easy to use user interface taking advantage of asynchronous

requests. The last section describes the implementation details of the mobile client. It

is described how motion data is gathered using the mobile device platform. Finally, a

generic application life-cycle on which the client is built, is presented.

37

38

Chapter 5
System Architecture

This chapter focuses on two main parts, first the current architecture of the testing frame-

work and secondly the proposed system architecture. The first section describes the as-

sessment framework currently used and its components as well as the interaction of the

components. Further, the requirements for a new architecture are discussed. This in-

cludes highlighting the drawbacks of the current state according to flexibility, availability,

integrity and sustainability. Moreover, the user requirements for the new architecture are

described using user stories.

Finally, the proposed system architecture is described from a technical point, based

on the evaluated requirements. The main parts of the proposed 3-tier architecture are

illustrated, describing each layer in more detail as well as its technological base.

5.1 Current Architecture

The current architecture shows which components are used to recored motion data in

order to detect a fall-like behavior among older people. The project “vitaliSHOE” by

[Oberzaucher et al., 2010; Jagos et al., 2010] uses a five component approach depicted

in Figure 5.1 which consists of a sensor which is embedded in the insole of a shoe, the

transceiver, the base station, a database server and the algorithm server.

A usual assessment test requires the proband to wear the insole which is connected

wirelessly to the transceiver. The motion data is transmitted to the transceiver (also called

“coordinator”) [Jagos et al., 2010]. The transceiver is connected via a serial interface to

the base station. This base station stores, displays and analyzes the received data [Jagos

et al., 2010]. Finally, the data is stored in a database. Moreover, the algorithm server

implements various algorithms for analyzing the stored gait data.

5.1.1 Component Description

As depicted in Figure 5.1, the current architecture is comprised of the following five

components. A detailed description is provided in the framework paragraphs.

39

40 5. System Architecture

Transceiver Base Station Algorithm Server

Database Server

L

R

Serial

Socket
Socket

SOAP Service
Radio

Insole

Figure 5.1: Components of the Current Architecture

5.1.1.1 Insole

The instrumented shoe insole consists of motion sensors, an embedded system and a

wireless module [Jagos et al., 2010]. The insole is divided into three functional blocks

which are also shown in Figure 5.2 [Jagos et al., 2010]:

1. Force Sensitive Resistors (FSR) for plantar pressure measurement;

2. Inertial Measurement Unit (IMU) for measuring pitch, row angles and acceleration;

3. Processing Unit ;

4. Transceiver for wireless data transmission.

[Jagos et al., 2010] specifies that the sensor data is acquired with a sample rate of

200Hz. The embedded system filters and processes the data down to 50Hz and finally

transmits it wirelessly to the base station.

Figure 5.2: Schematic Diagram of the Insole’s Functional Blocks [Jagos et al., 2010]

5.1.1.2 Transceiver

The transceiver is responsible for the wireless data transmission between the insole and

the base station. In general, this component can be seen as the connector between the

insole and the base station. The base station is connected through the serial interface to

the transceiver.

5.1. Current Architecture 41

5.1.1.3 Base Station

The base station is a Personal Computer (PC) running a client implemented in the Java

programming language. This client is responsible for communicating with the insole for,

for example, sending the start and stop commands as well as storing the received data in

a local database and displaying it.

After the assessment is performed the data is stored in a database table on the database

server in the local network. The connection is established via a simple socket connection.

For each assessment a new database table is created with the attributes in Table 5.1.

To identify the data of a assessment, the name of the table follows a naming convention

containing the test type, proband, researcher and the timestamp. The naming convention

is constructed by the pattern “TestType Propand Researcher Timestamp” which results

in “TUG SA SA 10.10.2011 12:33:13”, for example.

Field Type
pitch angle left text
dynamic acceleration left text
X acceleration left text
Y acceleration left text
Z acceleration left text
FSR heel left text
FSR meta one left text
FSR meta five left text
FSR toe left text
pitch angle right text
dynamic acceleration right text
X acceleration right text
Y acceleration right text
Z acceleration right text
FSR heel right text
FSR meta one right text
FSR meta five right text
FSR toe right text
Timestamp text

Table 5.1: Structure of the Database Table used to Store Motion Data

5.1.1.4 Database Server

A MySQL1 database server is used as storage engine for recorded gait data as well as for

computed data by the algorithm server. The server is available on the local network and

over a Virtual Private Network (VPN).

5.1.1.5 Algorithm Server

The algorithm server is used to process the recorded data with a defined algorithm to

detect a fall-like behavior. The server implements several different algorithms for evaluat-

ing different kind of gait data. Additionally, the algorithm server offers a Simple Object

Access Protocol (SOAP) interface implemented in Java and accepts an identifier of the

data to be processed.

1http://mysql.com/

http://mysql.com/

42 5. System Architecture

Therefore the data is retrieved through a socket connection to the local database

server. The interface passes the data to a local instance of MATLAB2 which actually

performs the computation. Finally, the result is stored in a database on the database

server.

5.2 Requirements for a new Architecture

The previous section focused on the current system architecture which showed that there

are some drawbacks regarding sustainability, flexibility, availability and integrity. This

section deals with these drawbacks and furthermore the basic requirements for the new

architecture is discussed. The following drawbacks of the current system are analyzed

according to:

Flexibility: The current design does not allow to add new wearable devices into the

framework. The database as well as the client needs to be adopted to be able to

integrate a new device.

Availability: Data is first saved locally and then stored on the database server. Which

means that new assessment data is only available if the researcher manually saves

it to the database server. Thus, the data is only available in the local network or

via VPN. No access is given at any time.

Integrity: Using the current database schema, data integrity and consistency is not

guaranteed. A new database table is used for each assessment. The gait data is

stored locally on the base station.

Sustainability: Without the description of the database table naming convention and

its abbreviations it is no longer possible to identify the stored assessment data and

the involved persons. Moreover, the device used and its sensor descriptions are not

mapped to the data.

5.2.1 Functional Requirements

In addition to evaluating the current architecture, functional requirements have been

identified. According to [Malan and Bredemeyer, 2001], functional requirements capture

the indented behavior of the architecture. The following requirements show the demands

of the new testing framework:

Device sensors: A device has a variable number of sensors (such as “acceleration x”).

Device type: A device is identified by a device type like “iPhone 4”.

Sensor data type: A sensor is defined through a data type such as “integer”, “double”,

“boolean” or “text” and has a description.

2http://www.mathworks.de/products/matlab/

http://www.mathworks.de/products/matlab/

5.2. Requirements for a new Architecture 43

Data storage: Data is stored centrally.

Remote data access: Stored data can be accessed (in a secure way) remotely.

Data processing: Collected data can be evaluated with several algorithms. The result

is saved in a database.

Multiple wearable devices: Several devices can be worn at the same time during an

assessment.

Tests: A test is the relationship between the person who performs the test and the data

which is recorded with a device during the test.

Wearable device: Gait data is recorded with (a wearable) device such as a mobile phone

or an insole.

Users: User are defined who have access to the framework and are assigned to a assess-

ment.

User roles: A user can have multiple roles. The roles are “admin”, “proband” and

“observer”.

User properties: A variable number of properties such as weight, height or fat level

can be used to characterize a user.

Confidentiality: Data can be accessed by identifying a user with his/her credentials

and roles. Users only have access to their data.

Programming interface: A programming interface should be provided for storing and

accessing data.

5.2.2 Technical Requirements

By combining the identified drawbacks of the current system discussed in Section 5.2 and

the user requirements in Section 5.2.1 the technical requirements have been evaluated:

• Integrity, consistency: A relational database should be used for storing and query-

ing data in the meaning of integrity and consistency. This database is connected to

a well defined Application Programming Interface (API) which makes it easy pos-

sible to access the stored data. This approach leads to a clear separation between

the device (client) and the stored data (server).

• Flexibility, extensibility: This interface provides additional logic for processing the

data. The interface is well defined and should provide the greatest possible flexibility,

in terms of availability and extensibility (flexibility). Changing the interfaces in the

“background” (logic) should not affect the usability for the user. Therefore interfaces

remain unchanged in the meaning of sustainability.

44 5. System Architecture

• Openness, extensibility: Consequently, the new adopted framework is open for addi-

tional devices. Various devices used within the body area network can be connected,

all its status data can be processed and analyzed.

5.3 Proposed System Architecture

Based on the evaluated requirements an architecture for the new test framework is pro-

posed. The proposed framework consists of three main components: database, interface

and client. Therefore a client-server architecture is chosen. The framework is built on a

3-tier architecture. The parts of the 3-tier architecture are illustrated in Figure 5.3.

Interface

Client

Java

Static Content
HTTP

HTTP

Database JDBC

Data Tier Application Tier Client Tier

Model Controller View

Figure 5.3: 3-Tier System Architecture

[Helic, 2008] describes an n-tier architecture as a modern client-server architecture

which is separated into presentation, application and data layers. A 2-tier architecture

consists of a client layer providing the user interface and the data server for storing

data. The disadvantage of the 2-tier architecture is that the client needs to know how

to communicate with the data servers and also implements the application logic [Helic,

2008].

To overcome the drawbacks of the 2-tier architecture a middle layer called “application

tier” is inserted and therefore called 3-tier architecture. The application tier resides

typically on the server side and holds application or business logic. [Helic, 2008] highlights

the following advantages of the 3-tier architecture:

• improved scalability,

• “thinner” clients,

5.3. Proposed System Architecture 45

• clean separation of presentation, application and data layers,

• easier client maintenance (middle layer can be updated in isolation),

• additional layers can be added in the middle layer, and

• isolation of data layer specifics in the meaning of extensibility and configuration

Figure 5.4 shows the communication process within the 3-tier architecture. The client

presents the user interface and displays data requested from the application layer to the

user. The application layer processes the request from the client by performing additional

logic and requests the required data from the data tier. Finally, the requested data is

passed back to the client. The data tier is commonly a database server running a Database

Management System (DBMS).

Client Tier Application Tier Data Tier

get list of all users

perform business
logic

query

resulting data

prepare data

list of all users

Figure 5.4: Exemplary Client-Server Interaction in a 3-Tier Architecture

The following sections describe each component for the 3-tier architecture used within

the framework. Moreover, it is explained which technologies are used to provide flexibility,

maintainability, availability and sustainability.

5.3.1 Data Tier

The data tier as described previously is the data layer of the 3-tier architecture and

mainly consists of databases. A database is designed to store and manage information in

an organized structure. [Scerbakov, 2008] states that a database is an information model

containing facts relevant to some area of interest (called domain of interest).

To be more precisely, a relational database is used to store the required data entities

and relations among them. The so called relational data model specifies a data structure

(relation) and several languages to manipulate relations [Scerbakov, 2008]. In general,

46 5. System Architecture

the relationship between tuples (data objects) is described. A relational database en-

sures entity integrity by means of primary keys and referential integrity with foreign keys

[Scerbakov, 2008].

5.3.2 Application Tier

The application tier implements the interface described in Section 5.2.2. The interface pro-

vides mechanisms for simply accessing and modifying data in the data store. Additional

logic is added for parsing and processing client requests and responses. The interface is

designed as a Web service which is according to [Haas and Brown, 2004]: “... a software

system designed to support interoperable machine-to-machine interaction over a network.

It has an interface described in a machine-processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by its description using

SOAP-messages, typically conveyed using HTTP with an XML serialization in conjunc-

tion with other Web-related standards.”

A Web service can be accessed by different applications regardless of the program-

ing language the application is implemented in. The Web service offers an Application

Programming Interface (API) which is a set of HTTP messages with defined responses.

[McCabe et al., 2004] identifies two major classes of Web services:

• REST-compliant Web services: with the primary purpose to manipulate Web re-

sources using a uniform set of “stateless” operations (like create, retrieve, update

and delete).

• Arbitrary Web services: the service exposes an arbitrary set of operations used

by Simple Object Access Protocol (SOAP) or Remote Procedure Call (RPC) for

example.

The interface for this application is implemented as resource-oriented Representational

State Transfer (REST) Web service because of its simplicity in contrast so Service Oriented

Architectures (SOAs). Moreover, REST Web services are easier to implement on a wide

range of devices including mobile devices.

The application tier is implemented in the Java programing language as servlet con-

tainer using an appropriate application server.

5.3.2.1 RESTful Web services

REST is an architectural style first defined and introduced by [Fielding, 2000]. REST

stands for Representational State Transfer and deals with resources on the Web. Re-

sources are the key abstraction of information where every information named can be

a resource [Fielding, 2000]. Resources are uniquely identified by an Uniform Resource

Identifier (URI). REST uses the Hypertext Transfer Protocol (HTTP) for transferring re-

source representations. [Fielding, 2000] defines a representation as the current or intended

5.3. Proposed System Architecture 47

state of a resource. Such a representation could be Hypertext Markup Language (HTML),

Extensible Markup Language (XML) or even JavaScript Object Notation (JSON).

Thus, the communication is stateless, which means that all necessary information is

transferred with no client relevant information stored on the server [Fielding, 2000]. REST

provides a uniform interface which is defined by four constraints [Fielding, 2000]:

• identification of resources,

• manipulation of resources through representations,

• self descriptive messages, and

• hypermedia as the engine of application state.

RESTful Web services combine the principles of REST with HTTP. A URI defines a

resource while HTTP methods are used to create, read, update and delete them (following

the CRUD principle). Table 5.2 shows the HTTP method equivalents of CRUD:

CRUD HTTP Description
Create POST create a new resource
Read GET retrieve a representation of a resource
Update PUT modify an existing resource
Delete DELETE delete an existing resource

Table 5.2: CRUD and its HTTP Method Equivalents

5.3.2.2 Authentication and Authorization

Authentication is used to identify and verify the user’s access permission to the Web

service. A simple authentication system based on user name and password is provided.

Authentication is based on the principle of a shared secret which is only known by the

individual and the authentication system.

Besides authentication, authorization is used to determine the user’s access right on

a specific resource, once identified. Resources are protected by defining user roles which

are allowed to access them. If the user is part of the role, access is granted.

5.3.3 Client Tier

The client is the presentation layer of the 3-tier architecture. With n-tier architectures

the client is responsible for displaying data retrieved from the application tier and only

required user interface logic since the applications tier handles the business logic.

Decoupling the client from processing data and business logic leads to more flexible and

“thinner” clients as well as decreasing the implementation time. Therefore it is possible

to implement various clients which perfectly fit their area of application. For the current

base station (see Section 5.1.1.3), this means to implement only the required API calls to

48 5. System Architecture

save the motion data. This leads to a focus on implementing hardware and algorithms

instead of setting up a framework on every device.

Moreover, the client can be implemented independent from the other layers, which

leads to increased modularity.

5.3.3.1 Administrative Backend

For performing administrative tasks such as creating users, devices and tests an admin-

istration backend is required (see Section 5.2.1). This backend is a special type of a

client using the Web service API. It is implemented as Rich Internet Application (RIA).

RIAs are web applications which run on the client side and eliminate the presentation

and interactive layers from the server side [Preciado et al., 2005]. In general, [Preciado

et al., 2005] describes RIAs as the fusion of desktop applications with Web applications

according to user interface functionality. This is achieved using technologies like Adobe

Flex3, Microsoft Silverlight4 or JavaScript.

The backed is protected giving access to users with certain roles. This is required

because only researchers should be able to administrate the framework. The backend

covers the administration of users, devices and tests with all their necessary relationships

among each other.

5.4 Summary

The current architecture consists of five components. The wearable device (insole), a

transceiver for wireless data transmission between the insole and the base station. The

base station runs a Java client for communicating with the insole and storing the received

motion data. A local database server is used to store the acquired data and finally, an

algorithm server is used to evaluate the assessment data.

By evaluating the current assessment framework several drawbacks could be identified.

In terms of flexibility, the current architecture is not “open” enough for new wearable

devices for fall detection. Test data is only saved manually to the database server which

limits the availability of the data for further evaluation. Moreover, sustainability is not

guaranteed since relevant information such as the used device, proband or assessment

location is not clearly saved.

Requirements for the new framework have been collected using functional requirements

used to evaluate the technical requirements for the proposed system architecture. The

framework is built on a 3-tier architecture consisting of data, application and presentation

layers. This client-server architecture improves scalability and provides a clean separation

of the three layers.

The data tier uses a relational database to guarantee integrity and consistency of

3http://www.adobe.com/products/flex.html
4http://www.microsoft.com/silverlight/

http://www.adobe.com/products/flex.html
http://www.microsoft.com/silverlight/

5.4. Summary 49

the saved data. The application tier offers an interface for accessing and storing data.

The interface is based on the Representational State Transfer (REST) architectural style.

Therefore the Web service API covers best flexibility and availability. The Web service

is protected with an authentication and authorization mechanism. The client itself is

responsible for data representation and only needs to implement Web service calls to save

the recorded data. Thus, a client providing an administrative backend, implemented as

Rich Internet Application is required.

50 5. System Architecture

Chapter 6
Database

This chapter discusses the implementation details of the database used. Figure 6.1 depicts

the database component in the proposed system architecture.

Apache Tomcat Application Server

Client
(iOS/

Browser)

Jersey (JAX-RS)

Backend (DoJo)

Container

Java

JP
A

(E
cl

ip
se

Li
nk

)

Au
th

or
iz

at
io

n

Fi
lte

r

HTML

XML

JSON

Database JDBC

Figure 6.1: Architectural Overview of the Database Component

The relational diagram in Figure 6.2 shows the mapping and relations between the

used entities. The database design covers all relationships depicted in Figure 6.2 and is

implemented in an object-oriented design. Furthermore the term “Java persistence” in

the context of the Java Persistence API (JPA) is discussed. An exemplary usage of these

techniques and libraries is also specified. Also optimization settings are discussed. The

last section describes all entities and the relationships depicted in Figure 6.2.

6.1 Java Persistence with EclipseLink

Java persistence means storing Java objects in a relational database by using the Java

Persistence API. In general, JPA is a “Plain Old Java Object (POJO)” based framework

offering object-relational mapping [Keith and Schincariol, 2009]. JPA is only a specifica-

tion (JSR 3171) which defines how to persist, access and manage data between a relational

database and Java objects [DeMichiel, 2009]. Version 2.0 of the specification was released

in 2009 and is the most recent one.

1http://jcp.org/en/jsr/detail?id=317

51

http://jcp.org/en/jsr/detail?id=317

52 6. Database

username
password
first_name
last_name
birthdate
gender
deleted

id
User

name
id

Role

name
id

DeviceType

proband (FK)
researcher (FK)
start
end
location
test_type (FK)
finished
description

id
Test

name
id

TestType

test (FK)
device (FK)
sample_rate
position

id
DeviceTestAssignment

description
data_type (FK)

DataField
id

name
id

Algorithm device_test_assignment
(FK)
algorithm (FK)
comment
computed_on

id
ComputedTestData

DeviceTypeDataFields
device (FK)
data_field (FK)

is inhas

1..*

1..*

describes
is type of

1 1..*

hasis in
1..*

1..*

has
1

1

re
co

rd
s

be
lo

ng
s

to
0.

.*
1

is type of1 1

is type of
1

1
co

m
pu

te
s

be
lo

ng
s

to
0.

.*
1

0..* 1describes
is type of

1 1..*

name

DataType
id

is type of

1

1

user (FK)
role (FK)

UserRole

device_type (FK)
description
serial_number
deleted
last_active

id
Device

ha
s

0.
.*

1

device_test_assignment
(FK)
frame
data_field (FK)
value_int
value_double
value_bool
value_text

id
TestDataRecord

computed_test_data (FK)
frame
data_field (FK)
value_int
value_double
value_bool
value_text

id
ComputedTestDataRecord

user (FK)
weight
height
length_legs
blood_sugar
blood_pressure
fat_level
updated_at

id
UserProperty

describes
has

0..* 1

Figure 6.2: Relational Database Model

JPA works with a set of special annotations to “transform” a Java object into a

database entity. [Keith and Schincariol, 2009] characterizes an entity with:

• Persistability: Entities are persistable which means that their state can be rep-

resented in a data store and can be accessed later. Entities are not automatically

persisted, the application decides when to persist.

• Identity: A key that uniquely identifies an entity instance and distinguishes it from

all other instances - equivalent to the primary key in the database.

• Transactionality: Entities are created, updated and deleted within a transaction.

Transactions are committed in the database and are atomic.

• Granularity: Entities are meant to be fine-grained objects with an aggregated

state stored in a table and should be designed as lightweight as possible.

Since entities do not persist themselves in the meaning of persistability, JPA pro-

vides an interface called EntityManager for this purpose. The EntityManger provides

basic operations for creating, reading and writing an entity. The managed entities of

the EntityManager are called persistence context [Keith and Schincariol, 2009]. Entity

6.1. Java Persistence with EclipseLink 53

managers are created by the EntityManagerFactory which is defined by the persistence

unit. This unit defines which classes are used by all entity mangers and correspond to

a single EntityMangerFactory [Keith and Schincariol, 2009]. The stated concepts and

their relation are shown in Figure 6.3.

PersistanceUnit EntityManagerFactory

EntityManager

Persistence

PersistenceContext

Creates

CreatesCreates

Manages

Configured By

1

*

1

*

1

*

1 1

1 *

Figure 6.3: Relationships between JPA Concepts [Keith and Schincariol, 2009]

The JPA 2.0 specification is implemented by various vendors, Table 6.1 provides an

overview of JPA 2.0 implementations.

Product Vendor Version Release
DataNucleus DataNucleus 3.0.1 August 2011
EclipseLink Eclipse Foundation 2.3.0 June 2011
Hibernate Red Hat 4.0.0.CR3 September 2011
OpenJPA The Apache Software Foundation 2.1.1 July 2011
TopLink Oracle 11g Release 1 (11.1.1.4.0) January 2011

Table 6.1: Java Persistence API 2.0 Implementations

The EclipseLink 2 implementation was chosen since it is the reference implementation

of the Java Persistence API [Foundation, 2008]. Moreover, EclipseLink offers a good

documentation and community. MySQL Community Server 3 5.5 is used as production

and development database server. The official MySQL Connector/J 4 driver is used as

Java DataBase Connectivity (JDBC) connector.

6.1.1 Sample Usage of the Java Persistence API

As described perviously, POJOs (Listing A.2 shows a sample class) are transformed to

entities with JPA annotations. Applying the entity annotation tells the persistence engine

that this class is an entity. Furthermore, also the @Id annotation needs the be added to

a property to identify it as Primary Key (PK).

2http://www.eclipse.org/eclipselink/
3http://www.mysql.com/downloads/mysql/
4http://dev.mysql.com/usingmysql/java/

http://www.eclipse.org/eclipselink/
http://www.mysql.com/downloads/mysql/
http://dev.mysql.com/usingmysql/java/

54 6. Database

To illustrate the entity creation, the relation between the User and Role (see Fig-

ure 6.2) is described. The relation between these two entities is a “n:m” relation, meaning

that many users are in many roles. “Transforming” the relationship into Java classes will

lead to only two classes shown in Figure 6.4. There is no need to create the junction

(join) table (holds the relationship) shown in Figure 6.2. After applying the annotations,

the persistence engine will automatically create the junction table.

+ getRoles()
+ addRole(role)

+ id
+ name
- roles

User

+ id
+ name

Role
1 0..*

Figure 6.4: Class Diagram of the User ↔ Role Relationship

To model the “n:m” relationship between the two classes in the persistence context,

the @ManyToMany annotation is applied to the roles property. This bidirectional mapping

also requires the usage of a “join table” since it is not possible to save the foreign keys

in a single row. The join table contains only the foreign keys of each entity, identifying

the relationship. This is archived by applying the @JoinTable annotation. Figure 6.5

illustrates the “n:m” relationship using a “join table” and the resulting database tables

generated by the persistence engine.

2 John Doe

1 Jane Doe

NAMEUSER_ID

3 PROBAND

2 RESEARCHER

1 ADMIN

NAMEROLE_ID

2 2

2 1

1 3

ROLE_IDUSER_ID

USER table ROLE table

USER_ROLE table (junction table)

Figure 6.5: Resulting relational database of User ↔ Role relationship

Listing A.1 and Listing A.3 show the basic implementation of the many-to-many re-

lationship using the annotations mentioned earlier. Listing A.1 also shows the addi-

tional parameter required by the @JoinTable annotation: name (name of the join table),

joinColumns (join column on the owning side) and inverseJoinColumns (join column

on the inverse side). The following list provides a short summary by [DeMichiel, 2009] of

the JPA annotations used:

• @Entity: Specifies that the class is an entity. This annotation is applied to the

entity class.

• @Id: Specifies the primary key property or field of an entity.

6.1. Java Persistence with EclipseLink 55

• @GeneratedValue: Specification of generation strategies for the values of primary

keys. The GeneratedValue annotation may be applied to a primary key property.

• @ManyToMany: Defines a many-valued association with many-to-many multiplicity.

Every many-to-many association has two sides, the owning side and the non-owning

(inverse) side.

• @ManyToOne: Defines a single-valued association to another entity class.

• @OneToOne: Defines a single-valued association to another entity that has one-to-one

multiplicity.

• @OneToMany: Defines a many-valued association with one-to-many multiplicity.

• @Temporal: Must be specified for persistent fields or properties of type java.util.Date

and java.util.Calendar.

• @Column: Used to specify a mapped column for a persistent property or field as

unique or nullable for example.

• @MappedSuperclass: Designates a class whose mapping information is applied to

the entities that inherit from it. A mapped superclass has no separate table defined

for it.

Finally, the code in Listing 6.1 shows how to persist an object with the EntityManager.

1 EntityManagerFactory factory = Persistence.createEntityManagerFactory(PERSISTENCE_UNIT_NAME);

EntityManager em = factory.createEntityManager ();

3

em.getTransaction ().begin();

5

User user = new User();

7 user.name = "Jane Doe";

em.persist(user);

9

em.getTransaction ().commit ();

11 em.close ();

Listing 6.1: Persisting an JPA Entity

6.1.2 Performance Optimization

To improve the performance of EclipseLink, the following persistence unit properties

inside the persitence.xml (see Listing A.4) should be set [Guide, 2010; Sutherland,

2011; Matthews, 2009]:

• eclipselink.jdbc.batch-writing: “JDBC”, enables batch writing, which means

that INSERT, UPDATE and DELETE statements are grouped instead of executing each

individually.

• eclipselink.jdbc.cache-statements: “true”, enables statement caching to avoid

parsing same statements again.

56 6. Database

• rewriteBatchedStatements: “true”, by adding this option to the database Uni-

form Resource Locator (URL), prepared statements are rewritten with MySQL Con-

nector/J.

With these above settings enabled, a simple test inserting about 120.000 records was

reduced from 60 seconds to about 30 seconds.

6.2 Entity Description and Relations

The following section describes each entity shown in Figure 6.2 in more detail with its

relation to other entities. The data types depicted in this section are automatically

generated by the JPA.

6.2.1 Algorithm

This table contains the name of the algorithm with whom the computed data is generated.

This table is referenced by the foreign key algorihm of the entity ComputedTestData.

Entity: Algorithm
Field Type Description
id bigint primary key, auto-increment
name varchar(255) name of the algorithm, unique

Table 6.2: Description of Database Entity Algorithm

6.2.2 ComputedTestData

This table describes the computed data which belongs to a DeviceTestAssignment.

Foreign keys:

• algorihtm: The algorithm used to compute data (Algorithm),

• device test assignment: Foreign Key (FK) which references to the DeviceTest-

Assignment.

Entity: ComputedTestData
Field Type Description
id bigint primary key, auto-increment
deviceTestAssignment (FK) bigint device/test the data record belongs to
algorithm (FK) bigint algorithm used to compute data
comment varchar(255) comment about the data
computedOn date when the data has been computed

Table 6.3: Description of Database Entity ComputedTestData

6.2. Entity Description and Relations 57

6.2.3 ComputedTestDataRecord

A ComputedTestDataRecord holds a single value of a set of computed data. The result

of a vector with the values a, b, c would cause three records with the same frame number

to be inserted. A single record belongs to just one data field which holds the information

of the data type.

Foreign keys:

• computed test data: Reference to the computed data record (ComputedTestData),

• data field: Reference to the used data field (DataField).

Entity: ComputedTestDataRecord
Field Type Description
id bigint primary key, auto-increment
computed test data (FK) bigint reference to the computed test data assignment
frame int frame number the value belongs to
data field (FK) bigint data type (field) this record holds
integerValue int(11) the corresponding integer value
doubleValue double the corresponding double value
boolValue tinyint the corresponding boolean value
textValue varchar(11) the corresponding text value

Table 6.4: Description of Database Entity ComputedTestDataRecord

6.2.4 DataType

This table holds the available data types and is referenced by the FK data type of the

entity DataField. There are only four fixed data types: Integer, Double, Boolean and

Text.

Entity: DataType
Field Type Description
id bigint primary key, auto-increment
name varchar(255) name of the data type, unique

Table 6.5: Description of Database Entity DataType

6.2.5 DataField

A DataField describes a sensor (for example “Accelerometer X”) with the corresponding

data type.

Foreign keys:

• data type: Reference to the used data type (DataType).

58 6. Database

Entity: DataField
Field Type Description
id bigint primary key, auto-increment
data type bigint data type of the field
description varchar(255) description of the field, unique

Table 6.6: Description of Database Entity DataField

6.2.6 Device

This table holds information about a concrete device and is defined through the device

type. It is referenced by the FK device of the entity DeviceTestAssignment.

Foreign keys:

• device type: Reference to the device type (DeviceType)

Entity: Device
Field Type Description
id bigint primary key, auto-increment
device type (FK) bigint type of the device
description varchar(255) description of the device
serialNumber varchar(255) serial number of the device
deleted tinyint flag that indicates if the device is deleted, default false
last active date timestamp of the device’s last activity

Table 6.7: Description of Database Entity Device

6.2.7 DeviceTestAssignment

A DeviceTestAssignment holds the relationship between a Test and Device (therefore

the devices of a test) and the used device settings.

Foreign keys:

• test: Reference to the test (Test),

• device: Reference to the device (Device).

Entity: DeviceTestAssignment
Field Type Description
id bigint primary key, auto-increment
test (FK) bigint reference to test
device (FK) bigint reference to device
sampleRate int(11) sampling rate of the device
position varchar(255) position of the device

Table 6.8: Description of Database Entity DeviceTestAssignment

6.2. Entity Description and Relations 59

6.2.8 DeviceType

This table holds the available device types such as “iPhone 4” or “Insole” for example.

It also defines the device data field through a many-to-many association to DataField

through the junction table DeviceTypeDataField.

Entity: DeviceType
Field Type Description
id bigint primary key, auto-increment
name varchar(255) name of the device type, unique

Table 6.9: Description of Database Entity DeviceType

6.2.9 Role

This table holds the available user roles which are “ADMIN”, “RESEARCHER” and

“PROBAND”.

Entity: Role
Field Type Description
id bigint primary key, auto-increment
name varchar(255) name of the role, unique

Table 6.10: Description of Database Entity Role

6.2.10 Test

A Test holds all necessary information about taken tests. It references to the proband

who took the test, the researcher who observed the test and the type of test. All devices

which were used are referenced by the test FK in the table DeviceTestAssignment.

Foreign keys:

• proband: Reference to User,

• researcher: Reference to User,

• type: Reference to the test type (TestType).

60 6. Database

Entity: Test
Field Type Description
id bigint primary key, auto-increment
proband (FK) bigint the person to be tested
researcher (FK) bigint the person observing the test
start date start time of the test
end date end time of the test
location varchar(255) the location of the test
status varchar(255) status of the test
type (FK) bigint the type of the test
finished tinyint indicates if the test is finished
description varchar(255) description of the test

Table 6.11: Description of Database Entity Test

6.2.11 TestDataRecord

This table stores the captured data from a device. A TestDataRecord holds a single value

of a set of device data. The result of a vector with the values a, b, c would cause three

records with the same frame number to be inserted. A single record belongs to just one

data field which holds the information of the data type.

Foreign keys:

• device test assignment: Reference to the device test assignment (DeviceTestAssignment)

• data field: Reference to the used data field (DataField)

Entity: TestDataRecord
Field Type Description
id bigint primary key, auto-increment
device test assignment (FK) bigint device/test the data record belongs to
frame int the frame number the values belong too
data field (FK) bigint data type (field) this record holds
integerValue int(11) the corresponding integer value
doubleValue double the corresponding double value
boolValue tinyint the corresponding boolean value
textValue varchar(11) the corresponding text value

Table 6.12: Description of Database Entity TestDataRecorded

6.2.12 TestType

This table contains the test types. It is referenced by the FK test type of the entity

Test.

6.2. Entity Description and Relations 61

Entity: TestType
Field Type Description
id bigint primary key, auto-increment
name varchar(255) name of the test type, unique

Table 6.13: Description of Database Entity TestType

6.2.13 User

This table holds the available users. A user belongs to a number of roles through a

many-to-many association to Roles through the junction table UserRole.

Entity: User
Field Type Description
id bigint primary key, auto-increment
username varchar(255) name of the user, used to identify a user, unique
password varchar(255) password of the user, saved as MD5() hash value
firstName varchar(255) first name of the user
lastName varchar(255) last name of the user
birthdate date the date of birth of the user
gender varchar(255) the gender of the user
deleted tinyint flag that indicates if the user is deleted, default false

Table 6.14: Description of Database Entity User

6.2.14 UserProperties

This table holds additional properties of a user. A user can have a dynamic number of

property entities. The updated at field indicates when the record has been created or

updated.

Foreign keys:

• user: Reference to the user the record belongs to (User)

Entity: UserProperties
Field Type Description
id bigint primary key, auto-increment
user (FK) bigint the whom this property belongs to
height float the body height of the person in cm
weight float the users weight in kg
length legs float the length of the user’s legs in cm
blood sugar varchar(255) blood sugar
blood pressure varchar(255) blood pressure in the format systolic/diastolic
fat level float the useres fat level in %
updated at date indicates when the record has been last updated

Table 6.15: Description of Database Entity UserProperties

62 6. Database

6.3 Summary

This chapter covered the development of the object relational database through the Java

Persistence API using the EclipseLink reference implementation. The persistence API

specifies how entities are persisted and managed between a relational database and Java

objects. Thus, entities characterized as persistable, transactional, granular and unambigu-

ous and persisted through the entity manager. An example showed how JPA annotations

are used to “transform” an object in to an entity.

Chapter 7
RESTful Web Service

This chapter defines the services implemented as well as the techniques and libraries used.

The first section provides an architectural overview and the next section details the Web

service definition. The definitions of the custom error codes are listed in Section 7.10

and the complete definition of the HTTP Status Codes in Section 7.11. If not mentioned

otherwise, all parameters are required. Figure 7.1 shows the components discussed in this

chapter.

Apache Tomcat Application Server

Client
(iOS/

Browser)

Jersey (JAX-RS)

Backend (DoJo)

Container

Java

JP
A

(E
cl

ip
se

Li
nk

)

Au
th

or
iz

at
io

n

Fi
lte

r

HTML

XML

JSON

Database JDBC

Figure 7.1: Architectural Overview of the Service Components

7.1 Restful Web Services with JAX-RS

As defined in the previous chapter, the API is implemented as a REST Web service in

Java. The JSR 3111 specification, also called Java API for RESTful Web Services (JAX-

RS), defines a set of annotations used for the development of Web services according to

the Representational State Transfer architectural style [Hadley and Sandoz, 2009].

The implementation of the Web service uses the Jersey2 framework, which is according

to [Community, 2011] the production quality reference implementation of the JSR 311

specification. The annotations defined in JSR 311 are simply applied to Java objects.

The listing in Appendix A.5 shows the basic usage of the following annotations:

1http://jcp.org/en/jsr/detail?id=311
2http://jersey.java.net

63

http://jcp.org/en/jsr/detail?id=311
http://jersey.java.net

64 7. RESTful Web Service

• @GET, @POST, @PUT, @DELETE: Defines the HTTP request type of the resource.

• @Path: Defines a root resource.

• @QueryParam: Extracts the value of a URI query parameter.

• @PathParam: Extracts the value of a URI template parameter.

The two required output formats, XML and JSON, are automatically generated (mar-

shalling) by enabling the JSON support of Jersey in the configuration options in the

project’s web.xml (see Listing 7.1).

1 <init -param >

<param -name >com.sun.jersey.api.json.POJOMappingFeature </param -name >

3 <param -value >true </param -value >

</init -param >

Listing 7.1: Enabling JSON Support in Jersey

The client needs to set the HTTP header field “ACCEPT” to either “application/xml”

or “application/json” in order to get the response in the desired format. Otherwise

the Web service returns the HTTP error 406 (“Not Acceptable”). To enable GNU Zip

(GZIP) encoding the container filters in Listing 7.2 are added to web.xml.

<!-- For handling gzip -ed request bodies -->

2 <init -param >

<param -name >com.sun.jersey.spi.container.ContainerRequestFilters </param -name >

4 <param -value >com.sun.jersey.api.container.filter.GZIPContentEncodingFilter </param -value >

</init -param >

6

<!-- For creating gzip -ed responses -->

8 <init -param >

<param -name >com.sun.jersey.spi.container.ContainerResponseFilters </param -name >

10 <param -value >com.sun.jersey.api.container.filter.GZIPContentEncodingFilter </param -value >

</init -param >

Listing 7.2: Enabling GZIP Support in Jersey

As application server Apache Tomcat3 is used. It serves also the static backend (see

Section 8). Moreover Apache Tomcat is also responsible for client authentication through

HTTP Basic Authentication which is defined in Section 7.8.

The Web service uses the ISO 86014 standard for date and time representation which

is accomplished with the Joda Time5 library.

It should be noted, that the current Web service returns all requested records. This

can be avoided by using a paging mechanism where only a smaller set of the requested

records is returned, if the number of records becomes very large.

7.1.1 Accepted Query Parameters

The Web service API accepts the input query parameters according to [Berners-Lee et al.,

1994]. The HTTP URL scheme is defined as http://<host>:<port>/<path>?<searchpart>

where [Berners-Lee et al., 1994] defines

3http://tomcat.apache.org
4http://www.rfc-editor.org/rfc/rfc3339.txt
5http://joda-time.sourceforge.net

http://tomcat.apache.org
http://www.rfc-editor.org/rfc/rfc3339.txt
http://joda-time.sourceforge.net

7.2. Service: /tests 65

• <host>: as the fully qualified domain name or IP address,

• <port>: as the port number to connect to,

• <path>: as an HTTP selector, and

• <searchpart>: as the query string.

The query string is composed by a variable number of key-value pairs (key=value)

and separated by &. The following example shows the usage of two query parameters:

http://example.com:8080/users/username=UniqueUsername&password=SecurePassword.

The Web service accepts the following value data types:

• String (string): Used for text, e.g., /location=Graz.

• Integer (int): Integer numbers, e.g., /frame=1.

• Float (float): Real numbers, e.g., /weight=88.34.

• Boolean (bool): Represents just two states, true and false, e.g., /deleted=true.

7.2 Service: /tests

The service /tests and its sub-services are defined to retrieve and create tests, store

computed test data and device data. The following services are explained in more detail

in this section:

• /tests: Returns a list of available tests or creates new a test.

• /tests/computedrecords/<device assignment id>: Returns a list of computed

test data assignments or creates a new assignment by appending computed data.

• /tests/computedrecords/<device assignment id>/record/<id>: Returns sub-

mitted data of or deletes computed data.

• /tests/devicerecords/<device assignment id>: Stores recorded device data or

retrieves stored device data of a test.

• /tests/running: Returns a list of device assignments for current running tests.

• /tests/test/<id>: Get information about specific test, update or delete test.

• /tests/test/<id>/devices: Returns a list of device assignments of a test or adds

a new device to a test.

• /tests/test/<id>/devices/device/<device assignment id>: Delete device from

test.

66 7. RESTful Web Service

• /tests/test/<id>/start|finish|stop: Starts, finishes or cancels a test.

• /tests/testtypes: Returns a list of test types or creates a new test type.

• /tests/testtypes/testtype/<id>: Get information about specific test type, up-

date or delete test type.

7.2.1 /tests

Returns a list of available tests or creates a new test. The user can only retrieve a test

where he is assigned (ADMIN gets all tests, PROBAND and RESEARCHER get only

tests where they are attendees). The supplied proband and researcher user have to be in

the supplied role; deleted users are not accepted.

Parameter (GET):

exclude finished (bool) (optional):

Exclude already finished tests,

true or false, default false.

Parameter (POST):

proband user id (int): The ID of the

user who performs the test.

researcher user id (int): The ID of

the user who observes the test.

location (string) (optional):

Location of the test.

description (string): Short descrip-

tion of the test.

test type id (int): The ID of the test

type.

GET POST PUT DELETE

Description List of tests. Create new test. Not supported.
Permission ALL ADMIN
HTTP Status Code 200, 404 201, 400, 403 405
Error Code 103 101, 102 100

Permissions and Supported HTTP Methods of Service /tests

7.2.2 /tests/computedrecords/<device assignment id>

Returns a list of computed test data assignments or creates a new assignment by append-

ing computed data.

To submit newly computed data, the data is attached in the request body either as

plain text or gzip-ed CSV file. To submit data, the HTTP header field “Accept” needs

to be “text/plain” for plain text data or “application/gzip” for gzip-ed body data.

The data fields for the submitted data can be freely chosen as long the field is unique and

7.2. Service: /tests 67

exists. For additional requirements see service definition

/tests/devicerecords/<device assignment id>.

Parameter (GET):

<device assignment id> (int): The

device assignment ID (holds the

information which device belongs

to a test).

Parameter (POST):

<device assignment id> (int): The

device assignment ID (holds the

information which device belongs

to a test).

algoritm id (int): ID of the algorithm

used for the computed results.

comment (string) (optional):

Comment of the record.

GET POST PUT DELETE

Description Get list of computed test data. Save new computed data. Not supported.
Permission ADMIN ADMIN
HTTP Status Code 200, 403, 404 200, 400, 403, 404, 409 405
Error Code 102, 103 101, 102, 103, 104 100

Permissions and Supported HTTP Methods of Service
/tests/computedrecords/<device assignment id>

Example: Append newly computed data to device assignment with ID = 2. The device

data is computed with the “Band Bass” algorithm. The computed result is of the data type

“Text” with the value “No Result.”. Listing 7.3 shows the corresponding HTTP message.

1 POST /tests/computedrecords /2/? algorithm_id =51& comment=Short comment HTTP /1.1

Host: www.example.com

3

Text

5 No Result.

Listing 7.3: Example HTTP Message for Submitting Computed Data

Response XML

1 <computedTestData >

<id>51</id>

3 <algorithm >

<id>51</id>

5 <name>Band Bass</name>

</algorithm >

7 <comment >Short comment </comment >

<computedOn >2011 -09 -14 T09:15:47 .569+02 :00</

computedOn >

9 </computedTestData >

Response JSON

1 {

"id": 51,

3 "algorithm": {

"name": "Band Bass",

5 "id": 51

},

7 "comment": "Short comment",

"computedOn": "2011 -09 -14 T09 :15:47.569+02:00"

9 }

Example: GET /tests/computedrecords/2

Get list of computed data for device assignment with ID = 2.

68 7. RESTful Web Service

Response XML

1 <computedTestDatas >

<computedTestData >

3 <id>1</id>

<algorithm >

5 <id>1</id>

<name>Simple Fall Detection </name>

7 </algorithm >

<comment >Evaluation of fall detection </comment

>

9 <computedOn >2011 -09 -13 T16:10:48 .000+02 :00</

computedOn >

</computedTestData >

11 <computedTestData >

<id>51</id>

13 <algorithm >

<id>51</id>

15 <name>Band Bass</name>

</algorithm >

17 <comment >Short comment </comment >

<computedOn >2011 -09 -14 T09:15:47 .000+02 :00</

computedOn >

19 </computedTestData >

</computedTestDatas >

Response JSON

[

2 {

"id": 1,

4 "algorithm": {

"name": "Simple Fall Detection",

6 "id": 1

},

8 "comment": "Evaluation of fall detection",

"computedOn": "2011 -09 -13 T16 :10:48.000+02:00"

10 },

{

12 "id": 51,

"algorithm": {

14 "name": "Band Bass",

"id": 51

16 },

"comment": "Short comment",

18 "computedOn": "2011 -09 -14 T09 :15:47.000+02:00"

}

20]

7.2.3 /tests/computedrecords/<device assignment id>/record/<id>

Get submitted data or delete computed data. The HTTP header field “Accept” needs to

be “text/plain” or “application/gzip” to retrieve the stored data.

Parameter:

<device assignment id> (int): The device assignment ID (holds the information which

device belongs to a test).

<id> (int): The ID of the computed record.

GET POST PUT DELETE

Description Get details of computed record. Not supported. Delete computed record.
Permission ADMIN ADMIN
HTTP Status Code 200, 400, 403, 404 405 200, 400, 403, 404
Error Code 101, 102, 103 100 101, 102, 103

Permissions and Supported HTTP Methods of Service
/tests/computedrecords/<device assignment id>/record/<id>

Example: GET /tests/computedrecords/2/record/51

Get computed data, “Accept” is set to “text/plain”.

Response “text/plain”

Text

2 No result.

7.2. Service: /tests 69

7.2.4 /tests/devicerecords/<device assignment id>

Stores recorded device data or returns stored device data of a test/device assignment.

For storing device data, the data is attached in the request body either as gzip-ed

or plain text Comma-separated Values (CSV) file. It is not possible to append device

records if there is already existing data, the returned HTTP status code would be 409

(“Conflict”). The attached CSV file should met the following requirements:

• The values (including header) are separated by comma (“,”).

• The header fields have the same name as the device data fields.

• Each single device data field has to be submitted.

• The number of values (columns) is equal to the number of device data fields.

• The value and the data field data type should belong together.

• The status of the test needs to be finished to submit data.

If one of the requirements is not met, a corresponding error is raised. To submit

data, the HTTP header field “Accept” needs to be “text/plain” for plain text data or

“application/gzip” for gzip-ed body data.

Parameter:

<device assignment id> (int): The device assignment ID (holds the information which

device belongs to a test).

GET POST PUT DELETE

Description Get recorded device data. Store device data. Not supported.
Permission ADMIN ADMIN, PROBAND
HTTP Status Code 200, 400, 403, 404 201, 400, 403, 404, 406, 409, 500 405
Error Code 101, 102, 103 101, 102, 103, 104, 110 100

Permissions and Supported HTTP Methods of Service
/tests/devicerecords/<device assignment id>

Example: This example shows how to submit recorded device data. We assume that the

device behind the test/device assignment has the following data fields: “Accelerometer

X”, “Accelerometer Y” and “Accelerometer Z”. The CSV file is contained in the

HTTP message like the example in Listing 7.4. For success, the HTTP status code 201

(Created) is returned.

70 7. RESTful Web Service

POST /tests/devicerecords /1 HTTP /1.1

2 Host: www.example.com

4 Accelerometer X,Accelerometer Y,Accelerometer Z

1.0 ,2.0 ,4.0

6 5.4 ,4.4 ,5.6

Listing 7.4: Example HTTP Message for Submitting Device Data

7.2.5 /tests/running

Returns a list of device assignments for the given device were the following conditions are

met:

• The device is assigned to a test.

• The current user is assigned as test user in the test (except ADMIN).

• The test is not finished.

• The test is started (e.g. the start time is set)

This service only returns one single assignment, since a unique device can only be part

of one running test. This service is usually called by the device itself, therefore the device

last active date is updated.

Parameter:

for device id (int): Device ID used to search for running tests.

GET POST PUT DELETE

Description Returns device test assignment. Not supported.
Permission ADMIN, PROBAND
HTTP Status Code 200, 400, 403, 404 405
Error Code 101, 102, 103 100

Permissions and Supported HTTP Methods of Service /tests/running

Example: GET /tests/running/?for device id=1

Get device test assignment for device with ID = 1.

7.2. Service: /tests 71

Response XML

<deviceTestAssignment >

2 <id>3</id>

<device >

4 <deleted >false</deleted >

<description >iPhone 4 Black</description >

6 <deviceType >

<id>1</id>

8 <name>iPhone 4</name>

</deviceType >

10 <id>1</id>

<lastActive >2011 -09 -13 T16:51:27 .744+02 :00</

lastActive >

12 <serialNumber >1234567890 </serialNumber >

</device >

14 <sampleRate >50</sampleRate >

<position >Hip</position >

16 </deviceTestAssignment >

Response JSON

{

2 "id": 3,

"device": {

4 "id": 1,

"serialNumber": "1234567890",

6 "description": "iPhone 4 Black",

"deleted": false ,

8 "lastActive": "2011 -09 -13 T16 :50:26.090+02:00",

"deviceType": {

10 "id": 1,

"name": "iPhone 4"

12 }

},

14 "sampleRate": 50,

"position": "Hip"

16 }

7.2.6 /tests/test/<id>

Get information about specific test, update or delete test. ADMIN has permission to all

tests, PROBAND and RESEARCHER only permission to tests where they are assigned.

If a test is deleted all assigned devices and computed data are deleted too.

Parameter:

<id> (int): The ID of the test.

proband user id (int) (optional): The ID of the user who performs the test.

researcher user id (int) (optional): The ID of the user who observes the test.

location (string) (optional): Location of the test.

description (string) (optional): Short description of the test.

test type id (int) (optional): The ID of the test type.

GET POST PUT DELETE

Description Details about test Not supported. Update test. Delete test.
Permission ALL ADMIN ADMIN
HTTP Status Code 200, 400, 403, 404 405 200, 400, 403, 404 204, 403, 404
Error Code 101, 102, 103 100 101, 102, 103 102, 103

Permissions and Supported HTTP Methods of Service /tests/test/<id>

7.2.7 /tests/test/<id>/devices

Returns a list of device assignments of a test or adds a new device to a test.

72 7. RESTful Web Service

Parameter (GET):

<id> (int): The ID of the

test.

Parameter (POST):

<id> (int): The ID of the test to add a device.

device id (int): The ID of the device to add.

sample rate (int): Sample rate of the device (Hz).

position (string): Position of the device (usually body

location).

GET POST PUT DELETE

Description List of assigned
devices.

Add new device
to test.

Not supported. Delete device as-
signment.

Permission ADMIN ADMIN ADMIN
HTTP Status Code 200, 403, 404 201, 400, 403, 404 405 204, 403, 404
Error Code 102, 103 101, 102, 103 100 101, 103, 105

Permissions and Supported HTTP Methods of Service /tests/test/<id>/devices

Example: POST /tests/test/1/devices/?device id=1&sample rate=100&position=Hip

Add new device with a sample rate of 100Hz located on the hip to test with ID = 1.

Response XML

<deviceTestAssignment >

2 <id>51</id>

<device >

4 <deleted >false</deleted >

<description >iPhone 4 Black</description >

6 <deviceType >

<id>1</id>

8 <name>iPhone 4</name>

</deviceType >

10 <id>1</id>

<lastActive >2011 -09 -13 T16:51:27 .744+02 :00</

lastActive >

12 <serialNumber >1234567890 </serialNumber >

</device >

14 <sampleRate >100</sampleRate >

<position >Hip</position >

16 </deviceTestAssignment >

Response JSON

{

2 "id": 51,

"device": {

4 "id": 1,

"serialNumber": "1234567890",

6 "description": "iPhone 4 Black",

"deleted": false ,

8 "lastActive": "2011 -09 -13 T16

:51:27.744+02:00",

"deviceType": {

10 "id": 1,

"name": "iPhone 4"

12 }

},

14 "sampleRate": 100,

"position": "Hip"

16 }

7.2.8 /tests/test/<id>/devices/device/<device assignment id>

Delete device from test.

Parameter:

<id> (int): The ID of the test.

device assignment id (int): The ID of the device assignment.

7.2. Service: /tests 73

GET POST PUT DELETE

Description Not supported. Delete device assignment.
Permission ADMIN
HTTP Status Code 405 204, 403, 404
Error Code 100 102, 103

Permissions and Supported HTTP Methods of Service /tests/test/<id>/devices

7.2.9 /tests/test/<id>/start|finish|stop

Starts, finishes or cancels a test. Cancel simply resets the start/end time and the finished

flag of the given test. If it is not possible to set a test in the required status, a HTTP

error is returned with a detailed error message (see Section 7.10).

• Cancel test: Only tests with status started or no status can be canceled.

• Start test: Only test with no status can be started.

• Finish test: Only tests which are started can be finished.

Parameter:

<id> (int): The ID of the test.

GET POST PUT DELETE

Description Not supported. Start, cancel, finish test. Not supported.
Permission ADMIN
HTTP Status Code 405 200, 403, 404, 500 450
Error Code 100 102, 103, 105, 106 100

Permissions and Supported HTTP Methods of Service
/tests/test/<id>/start|finish|stop

Example: PUT /tests/test/1/start

Start test with ID = 1.

Response XML

<error>

2 <id>107</id>

<message >Internal Server Error</message >

4 <detailedMessage >Unable to start test. Test

already started or finished.</

detailedMessage >

</error>

Response JSON

1 {

"id": 107,

3 "message": "Internal Server Error",

"detailedMessage": "Unable to start test. Test

already started or finished."

5 }

7.2.10 /tests/testtypes

Returns a list of test types or creates a new test type.

74 7. RESTful Web Service

Parameter (POST):

name (string): Unique name of the test type.

GET POST PUT DELETE

Description List of test types Create new test type. Not supported.
Permission ADMIN ADMIN
HTTP Status Code 200, 403 201, 400, 403, 409 405
Error Code 102 101, 102, 104 100

Permissions and Supported HTTP Methods of Service /tests/testtypes

Example: GET /tests/testtypes

Get list of all test types.

Response XML

1 <testTypes >

<testType >

3 <id>3</id>

<name>Running </name>

5 </testType >

<testType >

7 <id>2</id>

<name>Shaking </name>

9 </testType >

<testType >

11 <id>1</id>

<name>STS5</name>

13 </testType >

</testTypes >

Response JSON

[

2 {

"name": "Running",

4 "id": 3

},

6 {

"name": "Shaking",

8 "id": 2

},

10 {

"name": "STS5",

12 "id": 1

}

14]

7.2.11 /tests/testtypes/testtype/<id>

Get information about specific test type, update or delete test type.

Parameter:

<id> (int): The ID of the test type.

name (optional) (string): Unique name of the test type.

GET POST PUT DELETE

Description Details about the
test type.

Not supported. Update test type. Delete test type.

Permission ALL ADMIN ADMIN
HTTP Status Code 200, 400, 403, 404 405 200, 400, 403,

404, 409
204, 400, 403, 404

Error Code 101, 102, 103 100 101, 102, 103, 104 101, 102, 103

Permissions and Supported HTTP Methods of Service
/tests/testtypes/testtype/<id>

7.3. Service: /status 75

Example: GET /tests/testtypes/testtype/2

Get test type with ID = 2.

Response XML

<testType >

2 <id>2</id>

<name>Shaking </name>

4 </testType >

Response JSON

{

2 "name": "Shaking",

"id": 2

4 }

7.3 Service: /status

The /status service is used to get the current status of a test:

• /status: Returns the status of a test or the assigned test of a device assignment.

7.3.1 /status

Returns the status of a test or the assigned test of a device assignment. PROBAND and

RESEARCHER are only allowed to get the status of tests where they are assigned, AD-

MIN has permission to all tests. If the request contains the for device assignment id

parameter, the assigned device last activity field is updated. The returned status codes

are defined as follows:

• 0: Test has no status.

• 1: Test is finished.

• 2: Test is running.

Parameter:

for test id (int): The ID of the test type.

for device assignment id (int): The ID of the test/device assignment.

GET POST PUT DELETE

Description Status of the test. Not supported.
Permission ALL
HTTP Status Code 200, 400, 403, 404 405
Error Code 101, 102, 103, 105, 106, 109 100

Permissions and Supported HTTP Methods of Service /status

76 7. RESTful Web Service

Example: GET /status/?for test id=1

Get status of test with ID = 1.

Response XML

<testStatus >

2 <status >2</status >

<testID >1</testID >

4 </testStatus >

Response JSON

{

2 "status": 2,

"testID": 1

4 }

7.4 Service: /users

The /users services are used to create new users and user properties. Access to all services

is only granted to the ADMIN role with one exception: /users/user which returns the

current user. The following services are provided:

• /users: Returns a list of available users or creates a new user.

• /users/user/<id>: Get information about a specific user, update or delete a user.

• /users/roles: Returns a list of available roles.

• /users/user: Returns the current active (logged in) user.

• /users/user/<id>/properties: Returns list of all user properties or creates a new

property.

• /users/user/<id>/properties/property/<property id>: Get information about

a specific user property, update or delete a property.

7.4.1 /users

Returns a list of available users or creates a new user.

7.4. Service: /users 77

Parameter (GET):

role (int) (optional): Filter users by

role ID.

deleted (bool) (optional): Include

deleted users (true or false,

default: false).

Parameter (POST):

username: The unique username of the

user.

password: The password of the user.

first name: First name of the user.

last name: Last name of the user.

birthdate: Birthdate of the user (for-

mat YYYY-MM-DD).

gender: Gender of the user: Male or

Female.

roles: Comma separated list of role

IDs.

GET POST PUT DELETE

Description List of users. Create new user. Not supported.
Permission ADMIN ADMIN
HTTP Status Code 200, 400, 403, 404 201, 400, 403, 409 405
Error Code 101, 102, 103 101, 102, 104 100

Permissions and Supported HTTP Methods of Service /users

Example: POST /users/?username=new.user&first name=New&last name=User

&birthdate=1970-12-25&roles=1,3&gender=Male&password=test

Create new user.

Response XML

<user>

2 <id>51</id>

<username >new.user</username >

4 <firstName >New</firstName >

<lastName >User</lastName >

6 <birthdate >1970 -12 -25</birthdate >

<deleted >false</deleted >

8 <gender >Male</gender >

<roles>

10 <role>

<id>1</id>

12 <name>ADMIN</name>

</role>

14 <role>

<id>3</id>

16 <name>RESEARCHER </name>

</role>

18 </roles>

</user>

Response JSON

1 {

"id": 51,

3 "username": "new.user",

"firstName": "New",

5 "lastName": "User",

"birthdate": "1970 -12 -25",

7 "deleted": false ,

"gender": "Male",

9 "roles": [

{

11 "name": "ADMIN",

"id": 1

13 },

{

15 "name": "RESEARCHER",

"id": 3

17 }

]

19 }

7.4.2 /users/roles

Returns a list of available roles.

78 7. RESTful Web Service

GET POST PUT DELETE

Description List of all roles. Not supported.
Permission ADMIN
HTTP Status Code 200, 403, 404 405
Error Code 102, 103 100

Permissions and Supported HTTP Methods of Service /users/roles

Example: GET /users/roles

Get list of all roles.

Response XML

1 <roles>

<role>

3 <id>1</id>

<name>ADMIN</name>

5 </role>

<role>

7 <id>2</id>

<name>PROBAND </name>

9 </role>

<role>

11 <id>3</id>

<name>RESEARCHER </name>

13 </role>

</roles>

Response JSON

[

2 {

"name": "ADMIN",

4 "id": 1

},

6 {

"name": "PROBAND",

8 "id": 2

},

10 {

"name": "RESEARCHER",

12 "id": 3

}

14]

7.4.3 /users/user

Returns the current active (logged in) user.

GET POST PUT DELETE

Description Current user. Not supported.
Permission ALL
HTTP Status Code 200, 403, 500 405
Error Code 102, 111 100

Permissions and Supported HTTP Methods of Service /users/user

7.4.4 /users/user/<id>

Get information about specific a user, update or delete a user.

Parameter (at least on optional parameter is required):

<id> (int): The ID of the user.

username (string) (optional): The unique username of the user.

password (string) (optional): The password of the user.

first name (string) (optional): First name of the user.

last name (string) (optional): Last name of the user.

7.4. Service: /users 79

birthdate (string) (optional): Birthdate of the user (format YYYY-MM-DD).

gender (string) (optional): Gender of the user: Male or Female.

roles (string) (optional): Comma separated list of role IDs.

deleted (bool) (optional): Mark user as deleted (true) or undeleted (false).

GET POST PUT DELETE

Description Details about the
user.

Not supported. Update user. Mark user as
deleted.

Permission ADMIN ADMIN ADMIN
HTTP Status Code 200, 400, 403, 404 405 200, 400, 403,

404, 409
200, 403, 404

Error Code 101, 102, 103 100 101, 102, 103, 104 102, 103

Permissions and Supported HTTP Methods of Service /users/user/<id>

Example: PUT /users/user/101/?username=new.user

Update the username of user with ID = 101 (duplicate entry, username already taken).

Response XML

<error>

2 <id>104</id>

<message >Conflict </message >

4 <detailedMessage >user with username ’new.user’

already exists </detailedMessage >

</error>

Response JSON

1 {

"id": 104,

3 "message": "Conflict",

"detailedMessage": "user with username ’new.user

’ already exists"

5 }

7.4.5 /users/user/<id>/properties

Returns a list of all user properties or creates a new property. If a property is created

of updated the created on field is updated to the current time to keep track when the

property has been changed.

Parameter (POST):

<id> (int): The ID of the user.

weight (float) (optional): The weight of the user (kg).

height (float) (optional): The height of the user (cm).

length legs (float) (optional): The length of the user’s legs (cm).

blood sugar (string) (optional): The user’s blood sugar.

blood pressure (string) (optional): The user’s blood pressure (usually systolic/diastolic)

fat level (float) (optional): The user’s fat level.

80 7. RESTful Web Service

GET POST PUT DELETE

Description Get all properties of the user. Create new user property. Not supported.
Permission ADMIN ADMIN
HTTP Status Code 200, 403, 404 201, 400, 403, 404 405
Error Code 102, 103 101, 102, 103 100

Permissions and Supported HTTP Methods of Service
/users/user/<id>/properties

Example: GET /users/user/2/properties

Get properties of user with ID = 2.

Response XML

1 <userProperties >

<userProperty >

3 <id>2</id>

<height >180.0 </height >

5 <weight >99.0</weight >

<lengthLegs >90.0</lengthLegs >

7 <updatedAt >2011 -09 -13 T16:10:17 .000+02 :00</

updatedAt >

</userProperty >

9 <userProperty >

<id>3</id>

11 <weight >101.0 </weight >

<updatedAt >2011 -09 -13 T16:10:17 .000+02 :00</

updatedAt >

13 </userProperty >

</userProperties >

Response JSON

[

2 {

"id": 2,

4 "height": 180,

"weight": 99,

6 "lengthLegs": 90,

"updatedAt": "2011 -09 -13 T16 :10:17.000+02:00"

8 },

{

10 "id": 3,

"weight": 101,

12 "updatedAt": "2011 -09 -13 T16 :10:17.000+02:00"

}

14]

Example: POST /users/user/2/properties/?weight=88.2

Create new user property with weigt = 88.2kg.

Response XML

<userProperty >

2 <id>51</id>

<weight >88.2</weight >

4 <updatedAt >2011 -09 -13 T18:09:36 .798+02 :00</

updatedAt >

</userProperty >

Response JSON

1 {

"id": 51,

3 "weight": 88.2,

"updatedAt": "2011 -09 -13 T18 :09:36.798+02:00"

5 }

7.4.6 /users/user/<id>/properties/property/<property id>

Get information about a specific user property, update or delete a property.

Parameter:

<id> (int): The ID of the user.

<property id> (int): The ID of the property.

weight (float) (optional): The weight of the user (kg).

height (float) (optional): The height of the user (cm).

length legs (float) (optional): The length of the user’s legs (cm).

7.5. Service: /devices 81

blood sugar (string) (optional): The user’s blood sugar.

blood pressure (string) (optional): The user’s blood pressure (usually “systolic/dias-

tolic”).

fat level (float) (optional): The user’s fat level.

GET POST PUT DELETE

Description Get information
of property.

Not supported. Update property. Delete property.

Permission ADMIN ADMIN ADMIN
HTTP Status Code 200, 403, 404 405 200, 400, 403, 404 204, 400, 403, 404
Error Code 102, 103 100 101, 102, 103 101, 102, 103

Permissions and Supported HTTP Methods of Service
/users/user/<id>/properties/property/<property id>

7.5 Service: /devices

The /devices services are used to create, update and delete devices. Moreover, the device

types and its data fields can be configured. The following services are defined:

• /devices: Returns a list of devices or creates a new device.

• /devices/device/<id>: Get information about a specific device, update or delete

a device.

• /devices/device/<id>/datafields: Returns a list of data fields of a device.

• /devices/devicetypes: Returns a list of device types or creates a new device type.

• /devices/devicetypes/devicetype/<id>: Delete a device type.

• /devices/devicetypes/devicetype/<id>/datafields: Returns a list of the data

types’ data fields.

7.5.1 /devices

Returns a list of devices or creates a new device.

Parameter (GET):

serial number (string) (optional):

Returns devices with a given serial

number (deleted is ignored)

deleted (bool) (optional): Include

deleted devices (true or false,

default: false)

Parameter (POST):

description (string): Short descrip-

tion of the device.

serial number (string): Serial number

of the device.

device type id (int): The ID of the

device type.

82 7. RESTful Web Service

GET POST PUT DELETE

Description List of devices. Create new device. Not supported.
Permission ADMIN, PROBAND ADMIN
HTTP Status Code 200, 400, 403, 404 201, 403, 404 405
Error Code 101, 102, 103 102, 103 100

Permissions and Supported HTTP Methods of Service /devices

Example: GET /devices

Get the list of all devices.

Response XML

1 <?xml version="1.0" encoding="UTF -8" standalone="

yes"?>

<devices >

3 <device >

<deleted >false</deleted >

5 <description >iPhone 4 Black</description >

<deviceType >

7 <id>1</id>

<name>iPhone 4</name>

9 </deviceType >

<id>1</id>

11 <lastActive >2011 -09 -13 T16:51:27 .000+02 :00</

lastActive >

<serialNumber >1234567890 </serialNumber >

13 </device >

<device >

15 <deleted >false</deleted >

<description >iPhone 4 White</description >

17 <deviceType >

<id>1</id>

19 <name>iPhone 4</name>

</deviceType >

21 <id>2</id>

<serialNumber >09876543210 </serialNumber >

23 </device >

<device >

25 <deleted >false</deleted >

<description >Insole </description >

27 <deviceType >

<id>2</id>

29 <name>Insole </name>

</deviceType >

31 <id>3</id>

<serialNumber >001</serialNumber >

33 </device >

</devices >

Response JSON

[

2 {

"id": 1,

4 "serialNumber": "1234567890",

"description": "iPhone 4 Black",

6 "deleted": false ,

"lastActive": "2011 -09 -13 T16 :51:27.000+02:00",

8 "deviceType": {

"id": 1,

10 "name": "iPhone 4"

}

12 },

{

14 "id": 2,

"serialNumber": "0987654321",

16 "description": "iPhone 4 White",

"deleted": false ,

18 "lastActive": null ,

"deviceType": {

20 "id": 1,

"name": "iPhone 4"

22 }

},

24 {

"id": 3,

26 "serialNumber": "001",

"description": "Insole",

28 "deleted": false ,

"lastActive": null ,

30 "deviceType": {

"id": 2,

32 "name": "Insole"

}

34 }

]

Example: POST /devices/?description=iPhone 4 Black 1&serial number=789

&device type id=1

Create a new device.

Response XML

1 <device >

<deleted >false</deleted >

3 <description >iPhone 4 Black 1</description >

<deviceType >

5 <id>1</id>

<name>iPhone 4</name>

7 </deviceType >

<id>101</id>

9 <serialNumber >789</serialNumber >

</device >

Response JSON

{

2 "id": 101,

"serialNumber": "789",

4 "description": "iPhone 4 Black 1",

"deleted": false ,

6 "lastActive": null ,

"deviceType": {

8 "id": 1,

"name": "iPhone 4"

10 }

}

7.5. Service: /devices 83

7.5.2 /devices/device/<id>

Get information about a specific device, update or delete a device.

Parameter:

<id> (int): The ID of the device.

description (string) (optional): Short description of the device.

serial number (string) (optional): Serial number of the device.

device type id (int) (optional): The ID of the device type.

GET POST PUT DELETE

Description Detailed device
information.

Not supported. Update device. Mark device as
deleted.

Permission ADMIN,
PROBAND

ADMIN ADMIN

HTTP Status Code 200, 403, 404 405 200, 400, 403, 404 200, 400, 403, 404
Error Code 102, 103 100 101, 102, 103 101, 102, 103

Permissions and Supported HTTP Methods of Service /devices/device/<id>

Example: GET /devices/device/101

Get details of the device with ID = 101.

Response XML

1 <device >

<deleted >false</deleted >

3 <description >iPhone 4 Black 1</description >

<deviceType >

5 <id>1</id>

<name>iPhone 4</name>

7 </deviceType >

<id>101</id>

9 <serialNumber >789</serialNumber >

</device >

Response JSON

{

2 "id": 101,

"serialNumber": "789",

4 "description": "iPhone 4 Black 1",

"deleted": false ,

6 "lastActive": null ,

"deviceType": {

8 "id": 1,

"name": "iPhone 4"

10 }

}

7.5.3 /devices/device/<id>/datafields

Returns a list of data fields of a device.

GET POST PUT DELETE

Description List of device data fields. Not supported.
Permission ADMIN, PROBAND
HTTP Status Code 200, 403, 404 405
Error Code 102, 103 100

Permissions and Supported HTTP Methods of Service
/devices/device/<id>/datafields

84 7. RESTful Web Service

Example: GET /devices/device/101/datafields

Get the data fields of the device with ID = 101.

Response XML

1 <dataFields >

<dataField >

3 <dataType >

<id>2</id>

5 <name>Double </name>

</dataType >

7 <description >accX</description >

<id>2</id>

9 </dataField >

<dataField >

11 <dataType >

<id>2</id>

13 <name>Double </name>

</dataType >

15 <description >accY</description >

<id>3</id>

17 </dataField >

<dataField >

19 <dataType >

<id>2</id>

21 <name>Double </name>

</dataType >

23 <description >accZ</description >

<id>4</id>

25 </dataField >

</dataFields >

Response JSON

[

2 {

"id": 2,

4 "description": "accX",

"dataType": {

6 "name": "Double",

"id": 2

8 }

},

10 {

"id": 3,

12 "description": "accY",

"dataType": {

14 "name": "Double",

"id": 2

16 }

},

18 {

"id": 4,

20 "description": "accZ",

"dataType": {

22 "name": "Double",

"id": 2

24 }

}

26]

7.5.4 /devices/devicetypes

Returns a list of device types or creates new a device type.

Parameter (POST):

name (string): Unique name of the device type.

data fields (string): Comma separated list of data field IDs.

GET POST PUT DELETE

Description List of device types. Create new device type. Not supported.
Permission ADMIN ADMIN
HTTP Status Code 200, 403, 404 201, 400, 403, 409 405
Error Code 102, 103 101, 102, 104 100

Permissions and Supported HTTP Methods of Service /devices/devicetypes

Example: POST /devices/devicetypes/?name=iPhone%203&data fields=2,3,4

Create a new device type with name = iPhone 3 and its data fields.

Response XML

<deviceType >

2 <id>51</id>

<name>iPhone 3</name>

4 </deviceType >

Response JSON

{

2 "id": 51,

"name": "iPhone 3"

4 }

7.5. Service: /devices 85

7.5.5 /devices/devicetypes/devicetype/<id>

Delete or update a device type. Data fields cannot be deleted.

Parameter (PUT):

<id> (int): ID of the device type.

name (string) (optional): New name of the device type.

data fields (string) (optional): Comma separated list of data field IDs to be added.

GET POST PUT DELETE

Description Not supported. Update device type. Delete device type.
Permission ADMIN ADMIN
HTTP Status Code 405 200, 403, 404 204, 403, 404
Error Code 100 102, 103 102, 103

Permissions and Supported HTTP Methods of Service
/devices/devicetypes/devicetype/<id>

7.5.6 /devices/devicetypes/devicetype/<id>/datafields

Returns a list of the data types’ data fields.

Parameter:

<id> (int): ID of the device type.

GET POST PUT DELETE

Description List of data fields. Not supported.
Permission ADMIN
HTTP Status Code 200, 403, 404 405
Error Code 102, 103 100

Permissions and Supported HTTP Methods of Service
/devices/devicetypes/devicetype/<id>/datafields

Example: GET /devices/devicetypes/devicetype/51/datafields

Get the data fields of the device type with ID = 51.

86 7. RESTful Web Service

Response XML

<dataFields >

2 <dataField >

<dataType >

4 <id>2</id>

<name>Double </name>

6 </dataType >

<description >accX</description >

8 <id>2</id>

</dataField >

10 <dataField >

<dataType >

12 <id>2</id>

<name>Double </name>

14 </dataType >

<description >accY</description >

16 <id>3</id>

</dataField >

18 <dataField >

<dataType >

20 <id>2</id>

<name>Double </name>

22 </dataType >

<description >accZ</description >

24 <id>4</id>

</dataField >

26 </dataFields >

Response JSON

[

2 {

"id": 2,

4 "description": "accX",

"dataType": {

6 "name": "Double",

"id": 2

8 }

},

10 {

"id": 3,

12 "description": "accY",

"dataType": {

14 "name": "Double",

"id": 2

16 }

},

18 {

"id": 4,

20 "description": "accZ",

"dataType": {

22 "name": "Double",

"id": 2

24 }

}

26]

7.6 Service: /datafields

The /datafields service is used to define data fields for device types and computed data.

The following services are provided:

• /datafields: Returns a list of available data fields or creates a new data field.

• /datafields/datafield/<id>: Get information about a specific data field, update

or delete a data field.

• /datafields/datatypes: Returns a list of available data types.

7.6.1 /datafields

Returns a list of available data fields or creates a new data field.

Parameter (POST):

description (string): Short description of the data field.

data type id (int): The ID of the data type.

7.6. Service: /datafields 87

GET POST PUT DELETE

Description List of data fields. Create new data field. Not supported.
Permission ADMIN ADMIN
HTTP Status Code 200, 403, 404 201, 400, 403, 409 405
Error Code 102, 103 101, 102, 104 100

Permissions and Supported HTTP Methods of Service /datafields

Example: GET /datafields

Get list of all data fields.

Response XML

<dataFields >

2 <dataField >

<dataType >

4 <id>2</id>

<name>Double </name>

6 </dataType >

<description >FSR_heel_right </description >

8 <id>28</id>

</dataField >

10 <dataField >

<dataType >

12 <id>2</id>

<name>Double </name>

14 </dataType >

<description >FSR_meta_one_right </description >

16 <id>29</id>

</dataField >

18 <dataField >

<dataType >

20 <id>2</id>

<name>Double </name>

22 </dataType >

<description >FSR_meta_five_right </description >

24 <id>30</id>

</dataField >

26 <dataField >

<dataType >

28 <id>2</id>

<name>Double </name>

30 </dataType >

<description >FSR _ toe_right </description >

32 <id>31</id>

</dataField >

34 <dataField >

<dataType >

36 <id>4</id>

<name>Text</name>

38 </dataType >

<description >Text</description >

40 <id>32</id>

</dataField >

42 </dataFields >

Response JSON

[

2 {

"id": 28,

4 "description": "FSR_heel_right",

"dataType": {

6 "name": "Double",

"id": 2

8 }

},

10 {

"id": 29,

12 "description": "FSR_meta_one_right",

"dataType": {

14 "name": "Double",

"id": 2

16 }

},

18 {

"id": 30,

20 "description": "FSR_meta_five_right",

"dataType": {

22 "name": "Double",

"id": 2

24 }

},

26 {

"id": 31,

28 "description": "FSR _ toe_right",

"dataType": {

30 "name": "Double",

"id": 2

32 }

},

34 {

"id": 32,

36 "description": "Text",

"dataType": {

38 "name": "Text",

"id": 4

40 }

}

42]

Example: POST /datafields/?description=Gyroscope X&data type id=1

Create a new data type with name = Gyroscope X of data type “Integer”.

Response XML

<dataField >

2 <dataType >

<id>1</id>

4 <name>Integer </name>

</dataType >

6 <description >Gyroscope X</description >

<id>51</id>

8 </dataField >

Response JSON

{

2 "id": 51,

"description": "Gyroscope X",

4 "dataType": {

"name": "Integer",

6 "id": 1

}

8 }

88 7. RESTful Web Service

7.6.2 /datafields/datafield/<id>

Get information about specific a data field, update or delete a device data field. Only the

description of the data type can be updated. Changing the data type would cause that

all saved (associated) data becomes invalid.

Parameter:

<id> (int): The ID of the data field.

description (string) (optional): Short description of the data field.

GET POST PUT DELETE

Description Details about
data field.

Not supported. Update data
type.

Delete data type.

Permission ADMIN ADMIN ADMIN
HTTP Status Code 200, 400, 403, 404 405 200, 400, 403,

404, 409
204, 403, 404

Error Code 101, 102, 103 100 101, 102, 103, 104 102, 103

Permissions and Supported HTTP Methods of Service
/datafields/datafield/<id>

7.6.3 /datafields/datatypes

Returns a list of available data types. Data types cannot be modified through API. The

following data types are defined:

• Boolean: true or false

• Text : Text of variable length

• Double: Double-precision 64-bit IEEE 754 floating point6

• Integer : 32-bit signed two’s complement integer6

GET POST PUT DELETE

Description List of data types. Not supported.
Permission ADMIN
HTTP Status Code 200, 403, 404 405
Error Code 102, 103 100

Permissions and Supported HTTP Methods of Service /datafields/datatypes

6http://download.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

http://download.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

7.7. Service: /algorithms 89

Example: GET /datafields/datatypes

Get the list of all data types.

Response XML

<dataTypes >

2 <dataType >

<id>3</id>

4 <name>Boolean </name>

</dataType >

6 <dataType >

<id>2</id>

8 <name>Double </name>

</dataType >

10 <dataType >

<id>1</id>

12 <name>Integer </name>

</dataType >

14 <dataType >

<id>4</id>

16 <name>Text</name>

</dataType >

18 </dataTypes >

Response JSON

[

2 {

"name": "Boolean",

4 "id": 3

},

6 {

"name": "Double",

8 "id": 2

},

10 {

"name": "Integer",

12 "id": 1

},

14 {

"name": "Text",

16 "id": 4

}

18]

7.7 Service: /algorithms

The /algorithms service deals with the defined algorithms used by the computed data

to indicate which algorithm was used to compute the data.

Overview of services:

• /algorithms: Returns a list of available algorithm or creates a new algorithm.

• /algorithms/algorithm/<id>: Get information about specific algorithm, update

or delete algorithm.

7.7.1 /algorithms

Returns a list of available algorithm or creates a new algorithm.

Parameter (POST):

name (string): Unique name of the algorithm.

GET POST PUT DELETE

Description Get list of algorithm. Create new algorithm. Not supported.
Permission ADMIN ADMIN
HTTP Status Code 200, 403, 404, 409 201, 400, 403, 409 405
Error Code 102, 103, 104 101, 102, 104 100

Permissions and Supported HTTP Methods of Service /algorithms

90 7. RESTful Web Service

Example: GET /algorithms

Get the list of all algorithms.

Response XML

<algorithms >

2 <algorithm >

<id>2</id>

4 <name>Low Pass</name>

</algorithm >

6 <algorithm >

<id>1</id>

8 <name>Simple Fall Detection </name>

</algorithm >

10 </algorithms >

Response JSON

[

2 {

"name": "Low Pass",

4 "id": 2

},

6 {

"name": "Simple Fall Detection",

8 "id": 1

}

10]

Example: POST /algorithms?name=Band Bass

Create a new algorithm with “name = Band Pass”

Response XML

<algorithm >

2 <id>51</id>

<name>Band Pass</name>

4 </algorithm >

Response JSON

{

2 "name": "Band Bass",

"id": 51

4 }

7.7.2 /algorithms/algorithm/<id>

Get information about a specific algorithm, update or delete an algorithm.

Parameter:

<id> (int): ID of the algorithm.

GET POST PUT DELETE

Description Get details of al-
gorithm.

Not supported. Update algo-
rithm.

Delete algorithm.

Permission ADMIN ADMIN ADMIN
HTTP Status Code 200, 403, 404 405 200, 400, 403, 404 204, 403, 404
Error Code 102, 103 100 101, 102, 103, 104 102, 103

Permissions and Supported HTTP Methods of Service
/algorithms/algorithm/<id>

7.8 Authentication

Authentication is the process of identifying and verifying the identity of a user.

The Web service uses the “HTTP Basic Authentication” according to RFC26177.

[Franks et al., 1999] specifies RFC261 as a simple authentication scheme in which password

are passed for each realm. HTTP Basic Authentication sends the username and password

7http://www.rfc-editor.org/rfc/rfc2617.txt

http://www.rfc-editor.org/rfc/rfc2617.txt

7.9. Authorization 91

within the request header “WWW-Authenticate” as Base64-encoded string [Franks et al.,

1999].

The Web service uses Apache Tomcat’s JDBC Realm instead of the commonly used

UserDatabaseRealm. The JDBC Realm uses a JDBC connection to the database which

provides the users and their roles for authentication. [Chopra et al., 2007] defines the

configuration in Listing A.8 which is added to Apache Tomcat’s server.xml inside the

Host node to enable the JDBC Realm. [Chopra et al., 2007] describes the options as

follows:

• connectionURL: Points to the database that contains the authentication details.

• connectionName/connectionPassword: Credentials used to access the database.

• userTable/userRoleTable: Specifies which tables should be used to lookup the

user and role.

• digest: The algorithm that Tomcat uses to digest the password entered by the

user.

According to [Chopra et al., 2007] the JDBC Realm expects the tables depicted in

Figure 7.2. Since the table “user roles” does not exist in the expected definition, a virtual

table (called “view”) is created to provide the user ↔ role relation (see Listing A.7) [Asseg,

2011].

login
role

user_role

password
login

users

Figure 7.2: Database Tables used by Apache Tomcat for Authentication

7.9 Authorization

In contrast to authentication, authorization deals with permissions: “Is the user allowed

to access the resource he/she requests?” The Web service has three pre-defined roles a

user can belong to:

• ADMIN: Has permission to access all resources as well as permission to access the

backend.

• RESEARCHER: Person who usually observes a test; has only permissions to access

several resources and no permission to access the backend.

• PROBAND: Person who is to be tested; has only permission to access several resources

and no permission to access the backend.

92 7. RESTful Web Service

Those roles are defined through the <security-role> element in the web.xml file of

the Tomcat server application. The <security-constraint> elements specifies which

roles (<auth-constraint>) and which HTTP methods (<http-method>) are allowed to

access a specific resource (<url-pattern>) [Burke, 2010]. The complete authorization

setup of the Web service is shown in Listing A.6.

At least the RolesAllowedResourceFilterFactory is enabled by adding Listing A.9

to the applications web.xml. This will enable javax.security annotations, which allows

to specify access roles within method definitions. Listing A.10 shows the basic usage of

the following annotations:

• @PermitAll: Specifies that all security roles are allowed to invoke the specified

method(s) [Mordani, 2009].

• @RolesAllowed: Specifies the security roles permitted to access method(s) in an

application. The value element of the RolesAllowed annotation is a list of security

role names [Mordani, 2009].

7.10 Error Codes

The error codes offer additional information besides the appropriate 3xx, 4xx or 5xx

HTTP status codes in the response header. The response depends on the requested

format which could be either XML or JSON (see Listing 7.5 and Listing 7.6 for an example

response). The following error codes and messages are available:

100: Method not allowed. (Typically goes with HTTP status 405.)

101: Bad Request. (Typically goes with HTTP status 400.)

102: Forbidden. (Typically goes with HTTP status 403.)

103: Resource not found. (Typically goes with HTTP status 404.)

104: Conflict. (Typically goes with HTTP status 409.)

105: Unable to start test. Test already started or finished.

106: Unable to finish test. Test not started.

107: Internal server error. (Typically goes with HTTP status 500.)

108: Unknown.

109: Unable to cancel test. Test is finished.

110: Not Acceptable. (Typically goes with HTTP status 406.)

7.11. HTTP Status Codes 93

<error>

2 <id>104</id>

<message >Conflict </message >

4 <detailedMessage >user with username ’new.user’

already exists </detailedMessage >

</error>

Listing 7.5: XML Response of

Error Code 104

1 {

"id": 104,

3 "message": "Conflict",

"detailedMessage": "user with username ’new.user

’ already exists"

5 }

Listing 7.6: JSON Response of

Error Code 104

7.11 HTTP Status Codes

[Fielding et al., 1999] defines a complete list of HTTP status code which are part of each

HTTP response. HTTP status codes are divided into several “classes” where status codes

of class 2xx (“Successful”), 4xx (“Client Error”) and 5xx (“Server Error”) are of greatest

importance:

200 OK: “The request has succeeded. The information returned with the response is

dependent on the method used in the request.” [Fielding et al., 1999]

201 Created: “The request has been fulfilled and resulted in a new resource being cre-

ated.” [Fielding et al., 1999]

204 No Content: “The server has fulfilled the request but does not need to return an

entity-body.” [Fielding et al., 1999] (Mostly used when deleting a resource.)

400 Bad Request: “The request could not be understood by the server due to malformed

syntax.” [Fielding et al., 1999]

403 Forbidden: “The server understood the request, but is refusing to fulfill it.” [Field-

ing et al., 1999]

404 Not Found: “The server has not found anything matching the Request-URI. No

indication is given of whether the condition is temporary or permanent.” [Fielding

et al., 1999]

405 Method Not Allowed: “The method specified in the Request-Line is not allowed

for the resource identified by the Request-URI.” [Fielding et al., 1999]

406 Not Acceptable: “The resource identified by the request is only capable of gener-

ating response entities which have content characteristics not acceptable according

to the accept headers sent in the request.” [Fielding et al., 1999]

409 Conflict: “The request could not be completed due to a conflict with the current state

of the resource.” [Fielding et al., 1999]

500 Internal Server Error: “The server encountered an unexpected condition which

prevented it from fulfilling the request.” [Fielding et al., 1999]

94 7. RESTful Web Service

7.12 Summary

The API has been implemented as RESTful Web service using the Java API for RESTful

Web Services (JAX-RS) specification. Jersey was chosen as the implementation frame-

work since it is the reference implementation of the specification. Jersey comes with a

set of annotations for defining the basic HTTP methods and Uniform Resource Locators

(URLs). Furthermore, all required services haven been specified in detail defining the

URL, authorization, response as well as error response codes.

Chapter 8
Backend

As described in Section 5.3.3, the backend is built as Rich Internet Application (RIA)

using JavaScript. Today, the list of JavaScript libraries seems to be endless, which makes

it hard to decide on the correct framework. The final decision to find the most appropriate

framework is based on the application requirements.

While looking at various toolkits such as jQuery1, Google Web Toolkit2, ExtJS3,

Prototype4 and YUI5, it turned out that DoJo Toolkit6 best fits the requirements: Dojo

provides a wide range of layout possibilities and widget support for implementing the

backend.

Thus, this section deals with the architecture of Dojo, the modules used by the backend

and the interaction with the API. Appendix B provides a short guide for the backend.

As depicted in Figure 8.1, the backend is stored as static content on the Apache

Tomcat application server. The client (browser) requests the backend from the server.

All further Web service requests are performed by the backend running in the client’s

Web browser.

Apache Tomcat Application Server

Client
(iOS/

Browser)

Jersey (JAX-RS)

Backend (DoJo)

Container

Java

JP
A

(E
cl

ip
se

Li
nk

)

Au
th

or
iz

at
io

n

Fi
lte

r

HTML

XML

JSON

Database JDBC

Figure 8.1: Architectural Overview of the Backend Components

1http://jquery.com/
2http://code.google.com/webtoolkit/
3http://www.sencha.com/products/extjs/
4http://www.prototypejs.org/
5http://developer.yahoo.com/yui/
6http://dojotoolkit.org/

95

http://jquery.com/
http://code.google.com/webtoolkit/
http://www.sencha.com/products/extjs/
http://www.prototypejs.org/
http://developer.yahoo.com/yui/
http://dojotoolkit.org/

96 8. Backend

8.1 JavaScript with the Dojo Framework

The DoJo Toolkit consists of five major components as depicted in Figure 8.2: Base, Core,

Dijit, DojoX and Util. In addition to a JavaScript library, the toolkit provides feature-

rich widgets such as form widgets or layout widgets [Russell, 2008]. Each component is

discussed in more detail.

Dijit DojoX your
widgets

Base

Util
Core

Figure 8.2: Overview of Dojo’s Architecture [Russell, 2008]

8.1.1 Base

This component provides the foundations of the toolkit and can be referred to as the

“kernel” of Dojo [Russell, 2008]. Besides, Base is responsible for bootstrapping the appli-

cation, i.e, detecting the browser environment, “smoothing out” browser incompatibilities

and finally loading the dojo namespace [Russell, 2008]. Thus, the Base provides relevant

AJAX utilities for performing HTTP requests.

8.1.2 Core

Core is built upon Base and offers enhanced functionality which is not universal enough to

be included in Base [Russell, 2008]. Such functionality includes widget parsing, animation

or drag and drop, for example. Moreover, [Russell, 2008] states that there is no clear

boundary between Core and Base.

8.1.3 Dijit

Dijit stands for “Dojo widget” and according to [Foundation, 2011] it provides “a com-

plete collection of user interface controls, giving you the power to create web applications

that are highly optimized for usability, performance, internationalization, accessibility, but

above all deliver an incredible user experience.”

With little effort, widgets can be created by applying the special data-dojo-type

inside an HTML tag. Listing 8.1 shows how to “transform” a simple HTML <div>

element into a Dojo dialog widget.

8.2. The Backend and Dojo 97

1 <div id="dialog" data -dojo -type="dijit.Dialog" data -dojo -props="..."></div>

Listing 8.1: Example usage of data-dojo-type Property

8.1.4 DojoX

DojoX stands for “Dojo Extensions” and contains widgets which do not fit into Core or

Dijit [Russell, 2008]. DojoX also includes extensions which are still under development

and therefore DojoX is often called “Extensions and Experimental”. DojoX includes for

example, the grid widget.

8.1.5 Util

The Util component provides a unit-testing framework and build tools. The build tools

are used for production releases of an application. The code is compressed via ShrinkSafe

and furthermore the code is aggregated into layers (which is a collection of JavaScript

files) [Russell, 2008].

8.2 The Backend and Dojo

Starting with a simple mockup as shown in Appendix A.5.1, the final layout can be seen

in Figure 8.3. The tab-based layout is created by arranging various dijit.layout.*

containers in a hierarchical structure. The main containers are shown in Figure 8.3,

Listing A.11 shows the proper HTML markup. To summarize, the backend additionally

uses the following modules:

• dojo.data.ItemFileWriteStore: An abstraction layer for storing data. Offers the

possibility to modify the underlying data. An ItemFileWriteStore is connected

to an EnhancedGrid which displays the containing data.

• dojox.grid.EnhancedGrid: This grid is based on the dojox.grid with enhanced

features such as context menu.

• dijit.form.*: This components “transform” a simple HTML form into Dojo form

widgets allowing, for example, validating the form.

8.3 API Communication

The communication with the Web service is achieved by using Dojo’s XMLHttpRequest

(XHR) function which performs asynchronous requests [Russell, 2008]. According to the

RESTful architecture the following methods are used for the HTTP methods:

98 8. Backend

dijit.layout.BorderContainer
dijit.layout.ContentPane
dijit.layout.TabContainer
dijit.layout.TabContainer (nested)
dijit.layout.ContentPane

Figure 8.3: Used dijit.layout.* Components for Layout

• GET: dojo.xhrGet(), performs an XHR GET request.

• POST: dojo.xhrPost(), performs an XHR POST request.

• PUT: dojo.xhrPut(), performs an XHR PUT request.

• DELETE: dojo.xhrDelete(), performs an XHR DELETE request.

In more detail, a parameter object is passed to the method to configure the request:

1 var xhrArgs = {

url: /* String: URL of the request */,

3 headers: /* Object: Additional header fields */,

handleAs: /* String: How to handle the response */,

5 load: /* Function: Called funtion on success */,

error: /* Function: Called funtion on failure */

7 }

Listing 8.2: Parameter for XHR Request

The load callback is only called if the request succeeds, providing the response data

as argument. The implemented callback processes the received data and attaches it to

8.4. Summary 99

an ItemFileWriteStore. This store is finally bound to the corresponding EnhancedGrid

which forces the grid to refresh and display the data. Listing A.12 illustrates an example

request.

8.4 Summary

To accomplish a desktop-like backend application, the backend is built as Rich Internet

Application (RIA) using JavaScript. The Dojo Toolkit was chosen since it best fitted the

backend requirements. Dojo provides a wide range of layout containers as well as widgets.

Dojo is module-based and therefore can be optimized best for production. API calls are

realized through Dojo’s asynchronous XMLHttpRequest (XHR) function using the API’s

JSON response.

100 8. Backend

Chapter 9
Mobile Client

In order to demonstrate the functionality of the framework and the recording of motion

data with a mobile device, a client using the iOS platform has been implemented. The

client runs specifically on the iPhone 4 since this device supplies both an accelerometer

and a gyroscope for recording device motion. The client uses the Web services as defined

in Section 7. Figure 9.1 illustrates the interaction of the mobile device client and the Web

service.

Apache Tomcat Application Server

Client
(iOS/

Browser)

Jersey (JAX-RS)

Backend (DoJo)

Container

Java

JP
A

(E
cl

ip
se

Li
nk

)

Au
th

or
iz

at
io

n

Fi
lte

r

HTML

XML

JSON

Database JDBC

Figure 9.1: Architectural Overview of the Mobile Client Interaction

iOS applications are built according to the Model-View-Controller (MVC) pattern.

This pattern divides code into functional areas where the model defines the underlying

data, the view the user interface and the controller acts as bridge between the model and

view [Apple, 2010b].

Moreover, the user interface and interaction are discussed together with the basic

methods of gathering device data. The last section of this chapter deals with the API

communication and shows which services are used.

9.1 User Interface and Interaction

The iOS client application consists of three main views. The view in Figure 9.2a shows

the applications main view where the “My Data” section contains information about the

101

102 9. Mobile Client

current user and “My Device” contains information about the device used. “Reload”

invokes reloading login and device data. “My Tests” opens the view depicted Figure 9.2c

which gives an overview of the user’s tests.

Touching the magnifier button opens the “Active Test” view (Figure 9.2b). This

view is immediately opened after the application launch and polls for running tests. To

avoid unintentional touching, a “lock view” is overlayed (not shown). A running test is

indicated by the green background in the first cell with the appropriate status description.

Moreover, the device settings used for the current test is shown within “Test Settings”.

“Cancel” aborts the current task and closes the view. If a test is running, cancel does not

cancel the test on the server side. The application was designed to require as little user

interaction as possible.

(a) Main View (b) Active Test View (c) User’s Tests View

Figure 9.2: Screenshots of the iOS Client

9.2 Device Motion

Besides detecting motion as gestures, iOS offers the possibility to receive high-rate contin-

uous motion data with the framework called “Core Motion” [Apple, 2011]. This framework

obtains motion data from the device’s sensors such as accelerometer and gyroscope. The

framework consists of four parts, illustrated in Figure 9.3.

• CMAccelerometerData: measures device acceleration (accelerometer).

• CMGyroData: the device’s rotation rate (gyroscope).

9.3. API Communication 103

• CMDeviceMotion: encapsulates device-motion data from the accelerometer and the

gyroscope.

Core Motion Framework

CMMotionManager

CMAccelerometerData

CMDeviceMotion

CMGyroData

CMAttitude

Figure 9.3: Core Motion Framework [Apple, 2011]

The CMMotionManger is a manager class providing the gateway to the motion services.

It provides access to three motion types: raw accelerometer data, raw gyroscope data,

and processed device-motion data [Apple, 2010a].

Motion data can be obtained by using either the push or pull approach. The pull

approach means periodically requesting the most reset motion data measurement from

the motion manager, whereas with push, an update interval and a block are defined.

Core motion delivers each motion update on the defined interval to the block. The

block is responsible for handling the retrieved motion data. Listing A.13 shows the basic

implementation of the client’s motion recording. [Apple, 2011] suggests using the push

approach for data-collection applications and the pull approach for most applications

9.3 API Communication

The communication with the API is achieved by using the ASIHTTPRequest1 library.

This library is well-suited for basic HTTP requests and interacting with REST-based

services [Copsey, 2011]. The response of the Web service in the JSON format is handled

by the SBJson2 library. SBJson converts JSON objects to its counterpart in Objective-C.

Web service interaction is handled by the RTConnectionManager which is built on the

delegation pattern3, i.e., a class which sends a message to RTConnectionManager imple-

ments the RTConnectionManagerDelegate. For each Web service call a corresponding

method is implemented, constructing the request, and finally sending the request to the

API.

1http://allseeing-i.com/ASIHTTPRequest/
2https://github.com/stig/json-framework/
3http://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/

CocoaFundamentals/CocoaFundamentals.pdf

http://allseeing-i.com/ASIHTTPRequest/
https://github.com/stig/json-framework/
http://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
http://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf

104 9. Mobile Client

If the request succeeds the associated delegate method is called, telling the delegate

that the request has finished. The delegate needs to implement the requestFailed:request

method, which is called if the request fails for some reason. The client makes use of the

following services:

1. /users/user: For authentication and user details.

2. /devices/?serial number=<serial>: For loading device information. <serial>

is replaced by the device’s Unique Identifier (UDID).

3. /tests/running/?for device id=<device id>: Periodically requesting current run-

ning tests. <device id> is returned by the previous service.

4. /status/?for device assignment id=<assignment id>: If a running test is found,

this service is periodically invoked. It returns the current status of the test. <assignment id>

is supplied in the response of the former service call.

5. /tests/devicerecords/<assignment id: Finally, if the test has finished, the recorded

device motion data is uploaded.

The interaction mention in the previous list of the iPhone application, the API and

the database is illustrated in Figure 9.4.

App API Database

1. get user details

prepareer motion data

query user

resulting user entity

record device motion

user entity in JSON

2. get device information

device entity in JSON

query for running tests

list of running tests

3. request running tests

list of running tests as JSON array

4. get test status

status of test in JSON

query test status

status of test

5. submit recorded data

data inserted

insert data

transaction complete

Figure 9.4: Exemplary Client ↔ API ↔ Database Interaction

The flow chart in Appendix A.6 illustrates the application life-cycle for performing

a test. This design requires a permanent Internet connection. The application life-cycle

9.4. Summary 105

highly depends on the requirements of the client. Therefore, for example, within an offline

client it may not be necessary the poll for the test status every time. The device data

could be stored on the device and uploaded later on.

9.4 Summary

A mobile client using Apples iOS platform was developed for recording motion data. The

application itself is very light-weight and uses the device’s accelerometer and gyroscope for

recording motion data. The user interface and interaction is reduced to a bare minimum

and consists only of three views. Device data is recorded using the provided “motion

manager” which offers two approaches to acquire data: pull and push. The application

uses the push approach which means that at the given interval the motion data is delivered

from the system whereas pull requires manually requesting motion data. The implemented

client shows an generic application life-cycle for performing test-based motion recording.

Since the API offers a maximum of flexibility, the implementation of the client highly

depends on its requirements.

106 9. Mobile Client

PART III

EVALUATION

Part III show the evaluation of the new test framework architecture discussed in Part II.

The following components of the architecture are evaluated:

• database,

• Web service API,

• administrative backed, and

• mobile device client

regarding flexibility, availability, integrity and sustainability. The evaluation should en-

sure that the implemented framework fulfills the requirements and is open enough for

adding new devices and sensors with its different types of data. The mobile device client

application should prove that fall detection on mobile devices is possible.

107

108

Chapter 10
Evaluation of the Framework

The architecture described in Part II has been evaluated by running three common clinical

mobility assessment tests. The 2-Minute Walk, Sit-to-Stand 5 and Timed Up and Go test

were performed [Lewis and Shaw, 2005; Whitney et al., 2005; Podsiadlo and Richardson,

1991]. The test scenarios comprised creating the tests and their dependencies using the

backend. For each test two mobile devices using the implemented client were used for

recording the motion data during the test to demonstrate the idea. A body area network,

both devices were used at the same time. During the assessment the motion data is

stored locally on the device and is transmitted after the test is finished to the Web

service. Appendix C shows a more detailed description of each scenario.

Moreover, this chapter lists the used settings and procedures used for each test. Finally,

each assessment test is described and analyzed. To verify and analyze the recorded device

data, the data has been visualized using MATLAB1.

10.1 Test Settings

The tests have been performed in the “Senior Citizen Center Schwechat” in a well equipped

room for testing (see Figure 10.1). A notebook using the Mozilla Firefox browser was

used for performing backend relevant tasks such as creating users, devices and tests. The

notebook as well as the two mobile phones were connected though Wi-Fi with the Internet.

As mobile devices running the client application, an iPhone 4 (using accelerometer and

gyroscope) and an iPhone 3 (using accelerometer only) have been connected to the Web

service using the proband’s user credentials. Both devices were running all the tests with

a sample rate of 50Hz. The iPhone 4 was located on the right hip and the iPhone 3 on

the left hip (see Figure 10.2).

1http://www.mathworks.de/products/matlab/index.html

109

http://www.mathworks.de/products/matlab/index.html

110 10. Evaluation of the Framework

Figure 10.1: Test Room (Gym) at
“Senior Citizen Cen-
ter Schwechat”

Figure 10.2: Proband Wearing the
Test Device at Hip
Height

10.2 Test Procedure

The test procedure for all three performed tests was as follows:

1. The researcher creates the test by assigning devices and a user in the backend.

2. The proband is fitted with the mobile devices connected to the Web service and

waiting for the test to be started.

3. The researcher explains the test procedure to the proband. The proband is in start

position.

4. Start of test: The proband performs test.

5. The researcher finishes test by using the backend.

6. Evaluation of the recorded device data:

(a) Retrieving the data from the Web service and

(b) Visualizing the data in MATLAB.

10.3 Test Scenarios and Evaluation

For evaluating the test framework, three clinical mobility assessment tests have been

performed: 2-Minute Walk Test, Sit-to-Stand 5 Test and Timed Up and Go Test. Each

test was performed by the same proband using the settings in Section 10.1. Appendix C

provides a detailed overview of the performed tests.

10.3. Test Scenarios and Evaluation 111

10.3.1 2-Minute Walk Test

The 2-Minute Walk Test (2MWT) is intended to measure physical endurance and function

[Lewis and Shaw, 2005].

• Starting position: The proband is standing.

• Procedure: The proband walks without assistance for two minutes.

In Figure 10.3, data, recorded during the performance of a classical 2-Minute Walk

test, can be seen. The test was performed on a 10 meter straight walk passage. During

the test, the test-subject had to walk with “normal” (self-chosen) speed.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

data points [n] - gait recorded with 50 Hz sample rate

SV
M

 [g
]

10 m straight walk - approximately 7 stepsturn around

fast walking

Figure 10.3: 2-Minute Walk - Fast Walk Phase

As depicted in Figure 10.4, the iPhone 4 data promises a good base for ongoing

data analysis and movement feature extraction (based on simple peak detection as well

as more sophisticated feature analysis, such as knowledge-based methods and statistical

analysis). Single movement passages (for example 10m straight walk, turn around) are

distinguishable by performing a simple Support Vector Machine (SVM) calculation and

following peak detection. A calculation of peak distances offers the opportunity to extract

important and fall risk describing parameters (for instance gait cycle times, variances over

time) in the time domain.

After the 2 minutes of normal walking, a walking phase with an increased speed can

be seen, which is characterized by a well increased value of the SVM peaks during the

movement in x-direction (sagittal plane).

112 10. Evaluation of the Framework

2800 2900 3000 3100 3200 3300 3400 3500

0.2

0.4

0.6

0.8

1

1.2

data points [n] - gait recorded with 50 Hz sample rate

SV
M

 [g
]

double stance time

SVM movement peak - during movement in sagital direction (x- direction)
single gait cycle

Figure 10.4: Detailed Gait Signal During 2-Minute Walk with Normal Gait Speed
(Single Steps)

10.3.2 Sit-to-Stand Test

The Sit to Stand 5 (STS5) test is used to evaluate lower-extremity strength and balance

[Whitney et al., 2005].

• Starting position: The proband is sitting on a chair.

• Procedure: The proband is timed while he stands up and sits down five times.

The data in Figure 10.5 shows a good base for feature extraction of classical assessment

parameters like STS5 performance time as well as an expanded set of features like single

movement times.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

singel sit-down-stand-up cycle movement peak in transversal
axis - z-direction

STS5 time - time for 5 stand-up and sit-down movements

Figure 10.5: Sit-to-Stand 5 Test

10.3.3 Timed Up and Go Test

The Timed Up and Go (TUG) evaluates gait and balance of the proband [Podsiadlo and

Richardson, 1991]. According to [Fuller, 2000] a proband is freely mobile if the test is

10.4. Conclusion 113

performed in less than ten seconds, and a proband is partially mobile if the test takes

longer than 30 seconds.

• Starting position: The proband is sitting in a standard armchair.

• Procedure: The proband is timed while he gets up of the armchair walks three meter,

turns around, walks back and sits down again [Podsiadlo and Richardson, 1991].

The evaluation data of the performance of the TUG can be seen in Figures 10.6 and

10.7. Wearing the iPhone 4 at hip height shows a promising base for feature extraction.

Moreover, parameters for classical assessments like TUG performance time can be ex-

tracted as well as an expanded set of features (single movement times, gait cycle times,

variances over time). Figure 10.7 illustrates the individual phases of the TUG test.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

datapoints [n] - movement data recorded with 50 Hz

SV
M

 [g
]

gait cycle time

verbal start signal TUG sit position

Figure 10.6: Timed Up and Go Test

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

datapoints [n] - movement data recorded with 50 Hz

SV
M

 [g
]

3 m straight walksit phase sit phase

sit down phase

3 m straight walk turn phase

Figure 10.7: Timed Up and Go Test - Individual Phases

10.4 Conclusion

The system architecture proposed in Section 5.3 and the implementation were evaluated

to ensure:

114 10. Evaluation of the Framework

• flexibility,

• availability,

• integrity, and

• sustainability.

The backend was tested regarding usability, the Web service API regarding correct

data transmission and storage and the mobile device client in terms of proper motion

data recording and Web service communication. Finally the stored motion data has been

evaluated.

The test procedure consisted of creating the used test device, the user and the actual

test in the administrative backend. The proband was equipped with both test devices at

hip height with the client application running. Subsequently the proband was instructed

about the test procedure. Finally, the proband performed the assessment by starting and

finishing the test using the backed.

The visualization and evaluation of the recorded iPhone 4 motion data showed that

the device fulfills the requirements for movement analysis regarding the sensor data and

accuracy. The recorded data promises a good base for ongoing data analysis and move-

ment feature extraction. Furthermore, knowledge based methods and statistical analysis

can be performed.

Thus, it can be said that:

1. the framework fulfills the requirements for data storage and processing and

2. the iPhone is well suited for implementing an application for movement analysis.

The evaluation also showed that the backend is easy to use and understandable and

therefore all requirements have been met. The tests also proved the communication

between the client and the Web service API, all data has been stored correctly. Moreover,

the evaluated data shows that the saved data is returned correctly by the Web service.

Chapter 11
Summary, Conclusion & Outlook

This chapter summarizes and concludes the results gathered in this master’s thesis. An

outlook gives an overview of future implementation and extensibility opportunities of the

proposed architecture.

11.1 Summary

This thesis dealt with the implementation of an assessment test framework for collecting

fall related data using mobile devices. Thus, this theses presented relevant research in the

field of Ambient Assisted Living, fall detection and mobile devices.

A currently used software for performing assessments tests has been evaluated and

analyzed regarding flexibility, availability, integrity and sustainability. The evaluation

showed that the framework is not flexible enough to integrate different devices. In terms

of availability, data was saved locally and regarding integrity and sustainability, it was

not possible to identify recorded data later on.

According to these drawbacks, a new system architecture based on the evaluation

of the existing software and the theoretical background was proposed and implemented.

The proposed system architecture consisted of three main parts: database, interface and

client. Therefore a 3-tier architecture was chosen. The architecture is separated into the

data, the application and the client tier. The data tier was used for storing related test

data in a relational database. An open interface implemented by the application tier

supports a variety of devices. The interface was designed as Web service according to the

RESTful architectural style. The client tier covers the administrative backend built as

Rich Internet Application running in the client’s Web browser. The backend is used for

easily managing assessment tests with their related users and devices.

A mobile device application using the iOS platform has been developed. The appli-

cation used the accelerometer and gyroscope sensor of the iPhone 4 for recording motion

data during the assessment test. An evaluation of the proposed and implemented ar-

chitecture regarding flexibility (by adding the iPhone 4 into the framework), availability

(communicating with the Web server over the internet), integrity (recorded data is saved

115

116 11. Summary, Conclusion & Outlook

correct) and sustainability (access to recorded data is granted all the time) has been

conducted. Moreover, the backend was tested regarding usability.

The evaluation was done by performing three clinical mobility assessment tests by

using two iPhones for recording gait data. The visualization and evaluation of the recorded

motion data proofed that the framework and the iOS client fulfills the requirements.

Moreover, the analysis of the motion data showed that the sensor accuracy of the iPhone

is accurate enough to perform movement analysis and further feature extraction.

11.2 Conclusion

Ambient Assisted Living is a wide research area and defines policies, concepts and tech-

nologies on which new support and assistance systems are built. AAL highlights the need

of a common social policy for Europe in order to overcome the adaption of AAL solutions

for each country.

The development of a fall detection algorithm depends on a variety of parameters

such as the fall direction of the human body and the phases a fall. This parameters

make it hard to develop a common fall detection algorithm for all different kinds of falls.

Current approaches show how fall detection can be performed but only under certain

circumstances with different drawbacks. Therefore, no general fall detection algorithm

exist.

The evaluation of the implemented framework, backend and the iOS client application

shows that:

• the implementation of the framework fulfills the requirements regarding flexibility,

availability, integrity and sustainability;

• integrating a new device for recording motion data into the framework is easy and

only requires a few steps;

• the implementation of a client application using the framework does not require

expert knowledge because of the easy-to-use interface.

• mobile devices such as the iPhone 4 and their embedded hardware and software

capabilities regarding sensor data accuracy are well-suited for further movement

analysis and feature extraction;

• the backend is easy-to-use and performing assessment tests does not require to set-

up the required hardware and software all the time;

• performing and creating assessment tests is less complex and time consuming, there-

fore more tests can be performed;

• assessment tests can be performed regardless of the location since the framework is

available over the Internet.

11.3. Outlook 117

11.3 Outlook

The system architecture proposed in Chapter 5.3 and its implementation offers an flexible

and open interface for different devices used. As mentioned in Section 5.1, the current

used test framework lacks in the meaning of availability, integrity and sustainability. To

overcome these drawbacks, the base station (see Section 5.1.1.3) used by the vitaliSHOE

project can be easily adopted and integrated into the new test framework.

Moreover, the proposed system architecture could be extended to integrate the algo-

rithm server (see Section 5.1.1.5) as well. Consequently it would be possible to analyze

newly transmitted or already existing data regarding fall detection. This would cause

adopting existing services or defining new services depending on the new requirements.

The basic services for storing the results is already implemented.

As depicted in Chapter 10, the iPhone 4 is well-suited for fall detection. Therefore,

an independent application for fall detection could be implemented. With the current

disadvantage that no general fall detection algorithm exists. A general fall detection

algorithm could be developed on the foundation of the collected motion data.

118 11. Summary, Conclusion & Outlook

Appendix A
Implementation

A.1 Example JPA Entity Annotation

1 import ...;

3 @Entity

public class User {

5

/**

7 * Primary Key

*/

9 @Id

@GeneratedValue(strategy = GenerationType.TABLE , generator="USER_GEN")

11 public Long id;

13 /**

* Name of the user

15 */

public String name;

17

/**

19 * Relation to the roles a user belongs to

*/

21 @ManyToMany

@JoinTable(name = "USER_ROLE", joinColumns = @JoinColumn(name = "USER_ID"), inverseJoinColumns = @JoinColumn(name

= "ROLE_ID"))

23 private List <Role > roles = new ArrayList <Role >();

25 /**

* Roles the user belongs to

27 *

* @return List of roles the user belongs to

29 */

public List <Role > getRoles () {

31 return roles;

}

33

/**

35 * Add role to user

*

37 * @param role The new department the student belongs to

*/

39 public void addDepartment(Role role) {

if(! getRoles ().contains(role))

41 getRoles ().add(role);

}

43

}

Listing A.1: JPA Annotations used for Entity User

119

120 A. Implementation

import ...;

2

public class User {

4

public Long id;

6

public String name;

8

private List <Role > roles = new ArrayList <Role >();

10

/**

12 * Roles the user belongs to

*

14 * @return List of roles the user belongs to

*/

16 public List <Role > getRoles () {

...

18 }

20 /**

* Add role to user

22 *

* @param role The new department the student belongs to

24 */

public void addDepartment(Role role) {

26 ...

}

28

}

Listing A.2: Java Class User

1 import ...;

3 @Entity

public class Role {

5

/**

7 * Primary Key

*/

9 @Id

@GeneratedValue(strategy = GenerationType.TABLE , generator="DEPARTMENT_GEN")

11 public Long id;

13 /**

* Name of the department

15 */

public String name;

17

}

Listing A.3: JPA Annotations used for Entity Role

A.2. JPA Persistence Configuration 121

A.2 JPA Persistence Configuration

<?xml version="1.0" encoding="UTF -8" ?>

2 <persistence xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http: //java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_2_0.

xsd"

4 version="2.0" xmlns="http: //java.sun.com/xml/ns/persistence">

6 <persistence -unit name="<persistence name >" transaction -type="RESOURCE_LOCAL">

<provider >org.eclipse.persistence.jpa.PersistenceProvider </provider >

8

<class>...</class >

10

<properties >

12 <property name="javax.persistence.jdbc.driver" value="com.mysql.jdbc.Driver" />

<property name="javax.persistence.jdbc.url" value="jdbc:mysql: //<host >:3306/<database >?

rewriteBatchedStatements=true" />

14 <property name="javax.persistence.jdbc.user" value="<username >" />

<property name="javax.persistence.jdbc.password" value="<password >" />

16

<!-- Optimize database writes to use batching. -->

18 <property name="eclipselink.jdbc.batch -writing" value="JDBC" />

<property name="eclipselink.jdbc.cache -statements" value="true"/>

20 <property name="eclipselink.jdbc.batch -writing.size" value="1000" />

<property name="eclipselink.ddl -generation" value="none" />

22

<property name="eclipselink.logging.level" value="INFO" />

24 </properties >

26 </persistence -unit>

</persistence >

Listing A.4: JPA Persistence Configuration

122 A. Implementation

A.3 Example JAX-RS Service Annotations

1 import ...;

3 @Path("/users")

public class UsersService {

5

/**

7 * Returns list of all all users.

*/

9 @GET

public List <Users > getUsers () {

11 ...

}

13

/**

15 * Create new user.

*

17 * @param username The user name of the user

*/

19 @POST

public User createUser(@QueryParam("username") String username) {

21 ...

}

23

/**

25 * Return single user with given ID.

*

27 * @param userID The ID of the user

*/

29 @GET

@Path("/user/{id: [0 -9]+}")

31 public User getUser(@PathParam("id") int userID) {

...

33 }

35 /**

* Delete single user with given ID.

37 *

* @param userID The ID of the user

39 */

@DELETE

41 @Path("/user/{id: [0 -9]+}")

public User deleteUser(@PathParam("id") int userID) {

43 ...

}

45

/**

47 * Update user with given ID.

*

49 * @param username The user name of the user

*/

51 @PUT

@Path("/user/{id: [0 -9]+}")

53 public User updateUser(@QueryParam("username") String username) {

...

55 }

57 }

Listing A.5: Example JAX-RS Service Annotations

A.4. Apache Tomcat Authentication and Authorization 123

A.4 Apache Tomcat Authentication and Authorization

1 <!-- API , all users allowed -->

<security -constraint >

3 <web -resource -collection >

<web -resource -name>RaltecWebservice Protected </web -resource -name>

5

<!-- Define the context -relative URL(s) to be protected -->

7 <url -pattern >/*</url -pattern >

9 <http -method >DELETE </http -method >

<http -method >GET</http -method >

11 <http -method >POST</http -method >

<http -method >PUT</http -method >

13 </web -resource -collection >

15 <!-- Anyone with one of the listed roles may access this area -->

<auth -constraint >

17 <role -name>ADMIN</role -name>

<role -name>RESEARCHER </role -name>

19 <role -name>PROBAND </role -name>

</auth -constraint >

21 </security -constraint >

23 <!-- BACKEND , only admin allowed -->

<security -constraint >

25 <web -resource -collection >

<web -resource -name>RaltecWebservice Protected </web -resource -name>

27

<!-- Define the context -relative URL(s) to be protected -->

29 <url -pattern >/backend /*</url -pattern >

31 <http -method >DELETE </http -method >

<http -method >GET</http -method >

33 <http -method >POST</http -method >

<http -method >PUT</http -method >

35 </web -resource -collection >

37 <!-- Anyone with one of the listed roles may access this area -->

<auth -constraint >

39 <role -name>ADMIN</role -name>

</auth -constraint >

41 </security -constraint >

43 <!-- Login configuration -->

<login -config >

45 <auth -method >BASIC </auth -method >

<realm -name>RaltecWebservice Protected Area</realm -name>

47 </login -config >

49 <!-- Security roles referenced by this web application -->

<security -role>

51 <role -name>ADMIN</role -name>

</security -role>

53 <security -role>

<role -name>RESEARCHER </role -name>

55 </security -role>

<security -role>

57 <role -name>PROBAND </role -name>

</security -role>

Listing A.6: Apache Tomcat Configuration for Authorization

create view TC_RALTEC_REALM_USERS as

2 select USER.username as USERNAME , ROLE.name as ROLENAME from USER_ROLE left join USER on USER_ROLE.user_id = USER.id

left join ROLE on USER_ROLE.role_id = ROLE.id WHERE USER.deleted = 0

Listing A.7: SQL View for Tomcat’s JDBC Authentication

124 A. Implementation

<Context docBase="RaltecWebServices" path="/RaltecWebServices" reloadable="true">

2 <Realm className="org.apache.catalina.realm.JDBCRealm"

driverName="com.mysql.jdbc.Driver"

4 connectionURL="jdbc:mysql: // localhost:3306/raltec_webservices"

connectionName="<username >" connectionPassword="<password >"

6 userTable="user" userNameCol="username" userCredCol="password"

userRoleTable="tc_raltec_realm_users" roleNameCol="rolename"

8 digest="MD5"/>

</Context >

Listing A.8: Enabling JDBCRealm via HTTP Basic Authentication in Tomcat

1 <init -param>

<param -name>com.sun.jersey.spi.container.ResourceFilters </param -name>

3 <param -value >com.sun.jersey.api.container.filter.RolesAllowedResourceFilterFactory </param -value>

</init -param>

Listing A.9: Enabling RolesAllowedResourceFilterFactory in Apache Tomcat

import ...;

2

@Path("/users")

4 public class UsersService {

6 /**

* Returns list of all all users.

8 *

* All users allowed to access resource

10 */

@GET

12 @PermitAll

public List <Users > getUsers () {

14 ...

}

16

/**

18 * Create new user.

*

20 * Only user with role "ADMIN" allowed to access resource

*/

22 @POST

@RolesAllowed("ADMIN")

24 public User createUser (...) {

...

26 }

28 }

Listing A.10: Example usage of the javax.security Annotations

A.5. Backend 125

A.5 Backend

A.5.1 Mockups

Raltec WebServices

Dashboard

USERS DEVICES TESTS

Go X ✓-

Outdoor #1
STS5

Max Mustermann
Hermann Bauer

✓ iPhone 4 Schwarz (Hüfte)
✓ iPhone 4 Schwarz (Hand)

Go X ✓-

Outdoor #1
STS5

Max Mustermann
Hermann Bauer

✓ iPhone 4 Schwarz (Hüfte)
✓ iPhone 4 Schwarz (Hand)

Go X ✓-

Outdoor #1
STS5

Max Mustermann
Hermann Bauer

✓ iPhone 4 Schwarz (Hüfte)
✓ iPhone 4 Schwarz (Hand)

Go X ✓-

Outdoor #1
STS5

Max Mustermann
Hermann Bauer

✓ iPhone 4 Schwarz (Hüfte)
✓ iPhone 4 Schwarz (Hand)

Go X ✓-

Outdoor #1
STS5

Max Mustermann
Hermann Bauer

✓ iPhone 4 Schwarz (Hüfte)
✓ iPhone 4 Schwarz (Hand) +All tests

(a) Dashboard

Raltec WebServices
USERS DEVICES TESTS

+ Property

+ PropertyDelete

Delete

ID

Stefan Heinz

M

5

3

Birthdate

Edit

Name

EditM

Max Mustermann

1970-05-05

1980-02-02

DeletedGender

+ Add new User
Users

Tester

+ Property

+ PropertyDelete

Delete

ID

Stefan Heinz

M

5

3

Birthdate

Edit

Name

EditM

Hermann Bauer

1970-05-05

1980-02-02

DeletedGender

Observer

+ Property

+ Property

Delete

Delete

ID

Stefan Heinz

M

5

3

Birthdate

Edit

Name

EditM

Max Mustermann

1970-05-05

1980-02-02

DeletedGender

Admin

(b) User

Raltec WebServices
DEVICES TESTSUSERS

Types

Data Fields

+ Add new Device

Delete

DeleteEdit

Edit

Device name

iPhone 4 Schwarz3

ID

5

TypeSerial number

iPhone 456465456879

Devices

(c) Devices

Raltec WebServices
DEVICES TESTSUSERS

Types

Data FieldsNew Device Type
Name

Save

Accelerometer X
Accelerometer Y
Accelerometer Z

Data Fields
>

(d) Create Device Type

Raltec WebServices
USERS DEVICES TESTS

Delete

DeleteEdit

Edit

Type

STS5

6

Max Mustermann
Hermann Bauer

ID

8

5

7

2011-01-01
13:23:33

8

8

End

8

8

2011-01-01
13:24:54

8

8

Start

8

3

All Tests

(e) Tests

Raltec WebServices
USERS DEVICES TESTS

Max MustermannTest person

Hermann BauerObserver

SchwechatLocation

STS5Type

Outdoor #1Comment

Add

Edit Test

Add Devices

Device

Sensor Rate

Position

Added Devices

Remove

Device RatePosition

50Hüfte 4iPhone 4

Save Test

(f) Edit Test

Figure A.1: Mockups used for Backend Layout

126 A. Implementation

A.5.2 Layout HTML Markup

<!DOCTYPE HTML>

2 <html lang="en">

<head>

4 <meta http -equiv="Content -Type" content="text/html; charset=UTF -8">

<title>Raltec Webservices </title>

6 <script src="js/dojo/dojo.js" data -dojo -config="isDebug: true"></script >

</head>

8 <body class="claro">

<div id="wrapper" class="" data -dojo -type="dijit.layout.BorderContainer" data -dojo -props="design: ’headline ’">

10

<div id="header" data -dojo -type="dijit.layout.ContentPane" data -dojo -props="region: ’top ’">

12 </div>

14 <div id="tabContainerParent" class="centerPanel" data -dojo -type="dijit.layout.TabContainer" data -dojo -props="

region: ’center ’, tabPosition: ’top ’">

16 <div id="tabDashboard" data -dojo -type="dijit.layout.TabContainer" data -dojo -props="title: ’Dashboard ’, nested:

’true ’">

<div id="tabDashboardTests" data -dojo -type="dijit.layout.ContentPane" data -dojo -props="title: ’Tests ’">

18 </div>

</div>

20

<div id="tabUsers" data -dojo -type="dijit.layout.TabContainer" data -dojo -props="title: ’Users ’, nested: ’true ’"

>

22 <div id="tabUsersUsers" data -dojo -type="dijit.layout.ContentPane" data -dojo -props="title: ’Users ’">

</div>

24 </div>

26

<div id="tabDevices" data -dojo -type="dijit.layout.TabContainer" data -dojo -props="title: ’Devices ’, nested: ’

true ’">

28 <div id="tabDevicesDevices" data -dojo -type="dijit.layout.ContentPane" data -dojo -props="title: ’Devices ’">

</div>

30 </div>

32 <div id="tabTests" data -dojo -type="dijit.layout.TabContainer" data -dojo -props="title: ’Tests ’, nested: ’true ’"

>

<div id="tabTestsTests" data -dojo -type="dijit.layout.ContentPane" data -dojo -props="title: ’Tests ’">

34 </div>

</div>

36

</div>

38

</div>

40 </body>

</html>

Listing A.11: Layout HTML Markup

A.5. Backend 127

A.5.3 Example XHR Request

1 dojo.provide("raltec.Example");

3 dojo.declare("raltec.Example", [raltec.Main], {

5 grid: {},

7 /** Default constructor */

constructor: function () {

9

// create grid layout

11 this.gridLayout = ...;

13 // create a new grid

this.grid = new dojox.grid.EnhancedGrid (...);

15 this.grid.startup ();

17 this.load(); // load data for grid

},

19

/**

21 * Load data from service

*/

23 load: function () {

25 var xhrArgs = {

url: "http ://www.example.com/service/x",

27 headers: { "Accept": "application/json" },

handleAs: "json",

29 load: this.loadSuccess ,

error: this.loadFailed

31 }

33 var deferred = dojo.xhrGet(xhrArgs);

},

35

/*

37 * Handle request success

* @param receivedData Received data in JSON format

39 */

loadSuccess: function(receivedData) {

41

// create store

43 var store = new dojo.data.ItemFileWriteStore({ data:

{ identifier: ’id’,

45 items: receivedData }

});

47

// set new grid store

49 this.grid.setStore(store);

},

51

/**

53 * Handle request error

* @param error Error message

55 * @param ioArgs Addtional error information (http status code , ...)

*/

57 loadFailed: function(error , ioArgs) {

...

59 }

});

Listing A.12: Example Dojo XHR Request

128 A. Implementation

A.6 Example Interaction of Client

Login

Load list of
devices

Already
selected
device?

Selected
device in list?

poll for running
test assignment

List contains
assignment?

save device
assignment,

stop polling for
running test
assignment

setup and run
test

poll for test
status

Test status is
RUNNING?

Yes

No

Yes

Yes

List contains 0
devices?

List contains 1
device?

List contains
> 1 device?

No

No

No

End, device
not available

Yes

No

save device
assignment

Yes

User selects
device

Yes

Yes Test status is
FINISHED?

No

cancel test

No

stop recording,
prepare data for

upload

Yes
upload data

/users/user

/devices/?serial_number=<serial>

/tests/running/?for_device_id=<device_id>

/status/?for_device_assignement_id=<id>

/tests/devicerecords/<device_assignment_id>

Figure A.2: Example Interaction of Client With API

A.7 iOS Device Motion Retrieval

- (void)startRecording

2 {

int sampleRate = ...;

4

// set sample rate

6 motionManager.deviceMotionUpdateInterval = 1.0 / sampleRate;

8 // start device motion updates

[motionManager startDeviceMotionUpdatesToQueue:motionQueue withHandler :^(CMDeviceMotion *motion , NSError* error) {

10 ...

}];

12

}

Listing A.13: Using the Push Approach to Retrieve Device Motion Update

Appendix B
Backend Guide

The backend is an administration tool which allows researchers to easily administer assess-

ments. In order to facilitate the workflow of creating users, devices and tests, the backend

is a simple and easy-to-use web application running in every modern web browser. The

backend allows the researcher to create devices with its sensors, users with additional

properties and finally assessments with related devices. A dashboard provides a clear

overview of current assessments which allows the researcher to start, finish or cancel an

active assessment.

This guide provides a basic overview of how to create a complete test scenario. To

illustrate the process, the guide is based on an Sit to Stand 5 (STS5) test use case. This

generic use case consists of five steps:

• create device (Section B.1),

• create user (Section B.2),

• create test (Section B.3),

• start the test (Section B.4), and

• using the iPhone client for performing the assessment (Section B.5).

The table columns can be rearranged by simply dragging the column header to a

different position. Records can be edited by double-clicking the required row. Additional

options are offered through a context menu (right click) on the record such as “delete”,

“add devices” or “user properties”.

It should be noted that users and devices cannot be deleted, they are marked as deleted

by checking the “deleted” checkbox in the edit dialog.

129

130 B. Backend Guide

B.1 Create Device

If the desired device is already created, proceed to the next step. Before creating a device,

it is important to know which sensor channels of the device should be used respectively

which data fields the client uses.

According to use case: The use case illustrated in Appendix B makes use of an

“Apple iPhone 4”. This step involves also creating the desired data fields. Data fields are

the used sensor channels of the device. For example, an accelerometer has three channels

which would be “Accelerometer X”, “Accelerometer Y”, “Accelerometer Z”.

1. Create data fields for each sensor: Devices

→ Data Fields → New.

Note: Data fields can be used for several de-

vice types, so there is no need to create a data

field twice.

1. Description of the data field, e.g., “Accelerom-

eter X”

2. Desired data type of the data field, e.g., “Dou-

ble”

2. Create the desired device type “iPhone 4”

and assign the used data fields from the list:

Device → Types → New.

Note: The device type indicates a device fam-

ily, not the actual device.

1. Name of the device type, e.g., “iPhone 4”

2. Data field assigned with the data type, e.g.,

“accX, accY, accZ, . . . ”

3. Create the actual device: Devices → De-

vices → New.

Note: This is the physical device used for the

assessment.

1. Description/name of the actual device, e.g.,

“Test iPhone 4 Black”

2. Serial number of the device, e.g., “0123456789”

3. Device type, e.g., “iPhone 4”

B.2. Create User 131

B.2 Create User

If the required users are already created, proceed to the next step. A test requires at

least two users: one in the role “PROBAND” (the person who performs the test) and one

“RESEARCHER” (the person who observes the test).

1. Create the two users in the desired

roles. (Users → Users → New)

1. Unique user name (used for login), e.g.,

“m.mustermann”

2. The users password, e.g., “mustermann”

3. First name, e.g., “Max”

4. Last name, e.g., “Mustermann”

5. Date of birth, e.g., “1973-09-01”

6. Gender, e.g., “Male”

7. Desired roles, e.g., “PROBAND”

2. Optional: Add properties to the

user by right clicking on the desired user

and selecting “Edit Properties”. A user

can have a various number of proper-

ties. Therefore each property has an

creation date assigned to identify the

newest record.

132 B. Backend Guide

B.3 Create Test

A test is the actual relationship between users and the assigned device used within the

test scenario.

According to use case: The first step involves creating the desired test type (STS5)

and finally creating the test itself by assigning the previously created device, user and test

type.

1. Create a new test type: Tests →
Types → New.

Note: The type of a test indicates

which test was performed (for example

“STS5”).

Optional if the desired test type is al-

ready created.

1. Name of the test type, e.g., “STS5”

2. Create the active test to perform:

Tests → Tests → New

1. Description of the test, e.g., “First Test”

2. Proband, e.g., “Max Mustermann”

3. Researcher, e.g., “John Doe”

4. Type, e.g., “STS5”

5. Location (where the test takes place),

e.g., “Gym”

3. Add devices with their settings to

the test. Devices can be added also later

by right clicking on the test by selecting

“Edit Devices”.

1. Device to be added, e.g., “Test iPhone 4

Black”

2. Body location of the device, e.g., “Hip”

3. Used sample rate, e.g., “50”

B.4. Start/Stop Finish Test 133

B.4 Start/Stop Finish Test

The “Dashboard” offers an overview of all currently open or running tests. Tests can

be arranged by simply dragging and dropping them. A green background color (see

Figure B.1) indicates that a test is currently running. For each test, four buttons are

present with the following actions (see Figure B.1):

1. Start: The test gets started, devices start recording.

2. Cancel: The test will be reset (e.g., stopped).

3. Delete: The test gets deleted, which means that it is completely removed from the database.

4. Finish: The test gets marked as finished and therefore removed from the dashboard, the device

stops recording and submits the recorded data.

Figure B.1: Backend Dashboard

According to use case: The previously created test shows up in the dashboard and

is ready to be started.

134 B. Backend Guide

B.5 Start Client

The client is an application that is installed on the iPhone and is responsible for recording

motion data by using its sensors. The client requires at least one test created in the

backend as well as the actual device created. Otherwise it is not possible to run an

assessment.

According to use case: The client is installed on the required device. First, the

login credentials of the previously created proband user are entered and finally the appli-

cation is started. If the test is already started, the client immediately begins recording

device data otherwise it waits for the test to be started.

1. Enter login credentials of the

proband in the “Settings” application

on the device.

2. Start the client on the device. If ev-

erything is set up correctly, the proband

needs no interaction with the applica-

tion.

B.6. Summary 135

B.6 Summary

As illustrated in this appendix, creating new assessments requires three steps in the

administrative backend: create a device, a user and the assessment. The mobile client

is an application installed on the Apple iPhone and is responsible for recording motion

data during the test. After the client is connected, the selected test can be started and

stopped using the dashboard.

The backend is a Web application offering several features like column reordering

through drag and drop. Moreover, tests shown in the dashboard can be reordered as

well.

136 B. Backend Guide

Appendix C
Evaluation Scenarios

#1 “Inexperienced User”
Start: 2011-09-28 10:17
End: 2011-09-28 10:33
Proband: Johannes Oberzaucher
Researcher: Stefan Almer
Location: Seniorenzentrum Schwechat, Projektraum
Description: An inexperienced user should create a new “test scenario” within the back-

end. This covers creating a test, user and device and finally starting the
test created.

Completion Criteria: User clicks “start test”.
Prerequisites: Backend is opened in the browser.
Results: Proband had no issues creating the test. Additionally two devices were

added to the test. A short walk test was also performed.

Table C.1: Description of Test Scenario “Inexperienced User”

#2 “Two-Devices” (Type: 2-minutes-walk)
Start: 2011-09-28 11:34
End: 2011-09-28 11:51
Proband: Stefan Almer
Researcher: Johannes Oberzaucher
Location: Seniorenzentrum Schwechat, Gruppenraum
Description: The proband is wearing two devices while he is performing the “2-minutes-

walk” test.

Device 1: iPhone 4 (position: right pants pocket, sample rate: 50Hz)
Device 2: iPhone 3 (position: left pants pocket, sample rate: 50Hz)

Completion Criteria: Timelimit
Prerequisites: Test created in backend, user is equipped with both devices on start posi-

tion.
Results: Test took actually three minutes. Data recording on the phones and trans-

mission the the API was no problem. The recorded data is OK.

Table C.2: Description of Test Scenario “Two-Devices”

137

138 C. Evaluation Scenarios

#3 “Performance”
Start: 2011-09-28
End: 2011-09-28
Proband: Johannes Oberzaucher
Researcher: Stefan Almer
Location: Seniorenzentrum Schwechat
Description: How long does it take up create a test?
Completion Criteria:
Prerequisites:
Results: If all users and devices are created it takes under a minute to create a new

test.

Table C.3: Description of Test Scenario “Performance”

#4 “Quick Test Series”
End: 2011-09-28 11:34
Start: 2011-09-28 11:51
Proband: Stefan Almer
Researcher: Johannes Oberzaucher
Location: Seniorenzentrum Schwechat
Description: A series of tests is performed with two devices:

1. STS5

2. TUG

Device 1: iPhone 4 (position: right pants pocket, sample rate: 50Hz)
Device 2: iPhone 3 (position: left pants pocket, sample rate: 50Hz)

Completion Criteria: All tests are done.
Prerequisites: Tests created in backend (ready to start).
Results: Quick evaluation was done, recorded data OK.

Table C.4: Description of Test Scenario “Quick Test Series”

Bibliography

Abbate, Stefano, Marco Avvenuti, Paolo Corsini, Alessio Vecchio, and Janet Light, 2010.

Monitoring of Human Movements for Fall Detection and Activities Recognition in El-

derly Care using Wireless Sensor Network: A Survey. InTech. ISBN 9789533073217.

Alwan, Majd, Prabhu Jude Rajendran, Steve Kelli, David Mack, Siddharth Dalali, and

Matt Wolfe I, 2006. A Smart and Passive Floor-Vibration Based Fall Detector for

Elderly. In Proc. of the 2nd International Conference on Information & Communication

Technologies: From Theory to Applications, volume 2, pages 1003–1007. IEEE. doi:10.

1109/ICTTA.2006.1684511.

AppBrain, 2011. Most Popular Android Market Categories. http://www.appbrain.com/

stats/android-market-app-categories. Last accessed October 16, 2011.

Apple, 2010a. CMMotionManager Class Reference. http://developer.apple.

com/library/ios/#documentation/CoreMotion/Reference/CMMotionManager_Class/

Reference/Reference.html. Last accessed September 30, 2011.

Apple, 2010b. iOS Application Programming Guide. http://developer.apple.

com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/

iPhoneAppProgrammingGuide.pdf. Last accessed September 30, 2011.

Apple, 2011. Event Handling Guide for iOS. http://developer.apple.com/

library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/

EventHandlingiPhoneOS.pdf. Last accessed September 30, 2011.

Asseg, Frank, 2011. Securing a Restful JPA WebApp With Tomcat’s JDBCRealm and Jer-

sey via HTTP Basic-Auth. http://objecthunter.congrace.de/tinybo/blog/articles/

89. Last accessed September 21, 2011.

Barra, Hugo, 2011. Android: momentum, mobile and more at Google I/O. http:

//googleblog.blogspot.com/2011/05/android-momentum-mobile-and-more-at.html.

Last accessed October 12, 2011.

Berners-Lee, T., L. Masinter, and M. McCahill, 1994. Uniform Resource Locators

(URL). RFC 1738, Internet Engineering Task Force. http://www.rfc-editor.org/

rfc/rfc1738.txt. Last accessed November 9, 2011.

139

http://worldcatlibraries.org/wcpa/isbn/9789533073217
http://dx.doi.org/10.1109/ICTTA.2006.1684511
http://dx.doi.org/10.1109/ICTTA.2006.1684511
http://www.appbrain.com/stats/android-market-app-categories
http://www.appbrain.com/stats/android-market-app-categories
http://developer.apple.com/library/ios/#documentation/CoreMotion/Reference/CMMotionManager_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/CoreMotion/Reference/CMMotionManager_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/CoreMotion/Reference/CMMotionManager_Class/Reference/Reference.html
http://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/EventHandlingiPhoneOS.pdf
http://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/EventHandlingiPhoneOS.pdf
http://developer.apple.com/library/ios/documentation/EventHandling/Conceptual/EventHandlingiPhoneOS/EventHandlingiPhoneOS.pdf
http://objecthunter.congrace.de/tinybo/blog/articles/89
http://objecthunter.congrace.de/tinybo/blog/articles/89
http://googleblog.blogspot.com/2011/05/android-momentum-mobile-and-more-at.html
http://googleblog.blogspot.com/2011/05/android-momentum-mobile-and-more-at.html
http://www.rfc-editor.org/rfc/rfc1738.txt
http://www.rfc-editor.org/rfc/rfc1738.txt

140 Bibliography

BRAID, 2008. Automatic Wearable Fall Detectors. http://capsil.braidproject.

eu/index.php?title=Automatic_wearable_fall_detectors&oldid=1738. Last accessed

November 2, 2011.

BRAID, 2009. User-Activated Alarms and Pendants. http://capsil.braidproject.

eu/index.php?title=User-activated_alarms_and_pendants&oldid=2899. Last accessed

November 2, 2011.

BRAID, 2010. Falls Prevention. http://capsil.braidproject.eu/index.php?title=

Falls_Prevention&oldid=6250. Last accessed November 2, 2011.

Burke, Bill, 2010. RESTful Java with JAX-RS. O’Reilly Media. ISBN 9780596158040,

320 pages.

Cameron, Kathleen A., Jon Pynoos, Debra J. Rose, and Judy A. Stevens, 2005. Falls

Free: Promoting a National Falls Prevention Action Plan. Technical Report, National

Council of the Aging. http://www.healthyagingprograms.org/resources/FallsFree_

ReviewPaper_Final.pdf. Last accessed November 2, 2011.

Chopra, Vivek, Sing Li, and Jeff Genender, 2007. Professional Apache Tomcat 6. Wrox.

ISBN 9780471753612, 672 pages.

Cisco, 2011. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Up-

date, 2010–2015. White Paper. http://www.cisco.com/en/US/solutions/collateral/

ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf. Last accessed October

12, 2011.

Columbus, Louis, 2011. Gartner Releases Hype Cycle for Networking and

Communications, 2011. http://softwarestrategiesblog.com/2011/08/27/

gartner-releases-hype-cycle-for-networking-and-communications-2011/. Last

accessed October 12, 2011.

Community, Project Jersey, 2011. Jersey: Restful Web Services Made Easy. http://

wikis.sun.com/display/Jersey/Main. Last accessed September 18, 2011.

Copsey, Ben, 2011. What is ASIHTTPRequest? http://allseeing-i.com/

ASIHTTPRequest. Last accessed September 29, 2011.

Dai, Jiangpeng, Xiaole Bai, Zhimin Yang, Zhaohui Shen, and Dong Xuan, 2010. PerFallD:

A Pervasive Fall Detection System using Mobile Phones. In Proc. of the 8th IEEE

International Conference on Pervasive Computing and Communications Workshops,

volume 10, pages 292–297. IEEE. ISBN 9781424466054. doi:10.1109/PERCOMW.

2010.5470652.

DeMichiel, Linda, 2009. JSR 317: Java™ Persistence API, Version 2.0. Technical Report,

Sun Microsystems, Inc. http://download.oracle.com/otndocs/jcp/persistence-2.

0-fr-eval-oth-JSpec/. Last accessed September 22, 2011.

http://capsil.braidproject.eu/index.php?title=Automatic_wearable_fall_detectors&oldid=1738
http://capsil.braidproject.eu/index.php?title=Automatic_wearable_fall_detectors&oldid=1738
http://capsil.braidproject.eu/index.php?title=User-activated_alarms_and_pendants&oldid=2899
http://capsil.braidproject.eu/index.php?title=User-activated_alarms_and_pendants&oldid=2899
http://capsil.braidproject.eu/index.php?title=Falls_Prevention&oldid=6250
http://capsil.braidproject.eu/index.php?title=Falls_Prevention&oldid=6250
http://worldcatlibraries.org/wcpa/isbn/9780596158040
http://www.healthyagingprograms.org/resources/FallsFree_ReviewPaper_Final.pdf
http://www.healthyagingprograms.org/resources/FallsFree_ReviewPaper_Final.pdf
http://worldcatlibraries.org/wcpa/isbn/9780471753612
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://softwarestrategiesblog.com/2011/08/27/gartner-releases-hype-cycle-for-networking-and-communications-2011/
http://softwarestrategiesblog.com/2011/08/27/gartner-releases-hype-cycle-for-networking-and-communications-2011/
http://wikis.sun.com/display/Jersey/Main
http://wikis.sun.com/display/Jersey/Main
http://allseeing-i.com/ASIHTTPRequest
http://allseeing-i.com/ASIHTTPRequest
http://worldcatlibraries.org/wcpa/isbn/9781424466054
http://dx.doi.org/10.1109/PERCOMW.2010.5470652
http://dx.doi.org/10.1109/PERCOMW.2010.5470652
http://download.oracle.com/otndocs/jcp/persistence-2.0-fr-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/persistence-2.0-fr-eval-oth-JSpec/

Bibliography 141

Epstein, Keith and Joseph O’Leary, 2006. Motion Sensing with Accelerometers –

Present and Future. http://www.cs.cornell.edu/conferences/asee2006/ASEEPapers/

Session4/motionsensingapplications_Epstein.pdf. Last accessed March 16, 2011.

Eurostat, 2008. Population Projections 2008-2060. http://europa.eu/rapid/

pressReleasesAction.do?reference=STAT/08/119. Last accessed October 21, 2011.

Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,

1999. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, Internet Engineering Task

Force. http://www.rfc-editor.org/rfc/rfc2616.txt. Last accessed June 15, 2011.

Fielding, Roy Thomas, 2000. Architectural Styles and the Design of Network-based Soft-

ware Architectures. PhD Thesis, University of California, Irvine. doi:10.1.1.91.2433.

Foundation, The Dojo, 2011. Create Beautiful User Interfaces. http://dojotoolkit.org/

widgets. Last accessed September 29, 2011.

Foundation, The Eclipse, 2008. Eclipse Announces EclipseLink Project to Deliver JPA 2.0

Reference Implementation. http://www.eclipse.org/org/press-release/20080317_

Eclipselink.php. Last accessed September 26, 2011.

Franks, J., P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and

L. Stewart, 1999. HTTP Authentication: Basic and Digest Access Authentication. Rfc,

Internet Engineering Task Force. http://www.rfc-editor.org/rfc/rfc2617.txt. Last

accessed September 21, 2011.

Fuller, Gorge F., 2000. Falls in the Elderly. American Academy of Family Physicians.

http://www.aafp.org/afp/20000401/2159.html. Last accessed October 1, 2011.

Gartner, 2009. Gartner Identifies the Top 10 Consumer Mobile Applications for 2012.

http://www.gartner.com/it/page.jsp?id=1230413. Last accessed October 12, 2011.

Gartner, 2011a. Gartner Says Sales of Mobile Devices in Second Quarter of 2011 Grew

16.5 Percent Year-on-Year; Smartphone Sales Grew 74 Percent. http://www.gartner.

com/it/page.jsp?id=1764714. Last accessed October 12, 2011.

Gartner, 2011b. Gartner Says Worldwide Mobile Application Store Revenue Forecast to

Surpass $15 Billion in 2011. http://www.gartner.com/it/page.jsp?id=1529214. Last

accessed October 12, 2011.

Georgieff, Peter, 2008. Ambient Assisted Living: Marktpotenziale IT-unterstützter Pflege

für ein selbstbestimmtes Altern. ISSN 18615066.

Gibson, M.J., R.O. Andres, B. Isaacs, T. Radebaugh, and J. Worm-Petersen, 1987. The

Prevention of Falls in Later Life. Danish Medical Bulletin, 34(4), pages 1–24.

Guide, EclipseLink Users, 2010. Optimizing the EclipseLink Application

(ELUG). http://wiki.eclipse.org/index.php?title=Optimizing_the_EclipseLink_

Application_%28ELUG%29&oldid=198358. Last accessed September 22, 2011.

http://www.cs.cornell.edu/conferences/asee2006/ASEE Papers/Session 4/motion sensing applications_Epstein.pdf
http://www.cs.cornell.edu/conferences/asee2006/ASEE Papers/Session 4/motion sensing applications_Epstein.pdf
http://europa.eu/rapid/pressReleasesAction.do?reference=STAT/08/119
http://europa.eu/rapid/pressReleasesAction.do?reference=STAT/08/119
http://www.rfc-editor.org/rfc/rfc2616.txt
http://dx.doi.org/10.1.1.91.2433
http://dojotoolkit.org/widgets
http://dojotoolkit.org/widgets
http://www.eclipse.org/org/press-release/20080317_Eclipselink.php
http://www.eclipse.org/org/press-release/20080317_Eclipselink.php
http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.aafp.org/afp/20000401/2159.html
http://www.gartner.com/it/page.jsp?id=1230413
http://www.gartner.com/it/page.jsp?id=1764714
http://www.gartner.com/it/page.jsp?id=1764714
http://www.gartner.com/it/page.jsp?id=1529214
http://worldcatlibraries.org/wcpa/issn/18615066
http://wiki.eclipse.org/index.php?title=Optimizing_the_EclipseLink_Application_%28ELUG%29&oldid=198358
http://wiki.eclipse.org/index.php?title=Optimizing_the_EclipseLink_Application_%28ELUG%29&oldid=198358

142 Bibliography

Haas, Hugo and Allen Brown, 2004. Web Services Glossary. W3C note, W3C. http:

//www.w3.org/TR/2004/NOTE-ws-gloss-20040211/. Last accessed October 6, 2011.

Hadley, Marc and Paul Sandoz, 2009. JAX-RS: Java™ API for RESTful Web Services.

Technical Report, Sun Microsystems, Inc. http://download.oracle.com/otndocs/jcp/

jaxrs-1.1-mrel-eval-oth-JSpec/. Last accessed September 18, 2011.

Helic, Denis, 2008. Software Architecture VO/KU. http://coronet.iicm.tugraz.at/sa/

s5/sa_styles1.html. Last accessed October 6, 2011.

Intelligence, Access, 1993. Bellsouth, IBM Unveil Personal Communicator Phone.

http://research.microsoft.com/en-us/um/people/bibuxton/buxtoncollection/a/

pdf/press%20release%201993.pdf. Last accessed October 15, 2011.

Jagos, Harald, Johannes Oberzaucher, Martin Reichel, Wolfgang L. Zagler, and Walter

Hlauschek, 2010. A Multimodal Approach for Insole Motion Measurement and Analysis.

Procedia Engineering, 2(2), pages 3103–3108. ISSN 18777058. doi:10.1016/j.proeng.

2010.04.118.

Jähnichen, Stefan, 2008. Ambient Assisted Living: Neues VDE-Positionspapier “Intelli-

gente Assistenzsysteme im Dienst für eine reife Gesellschaft”. http://www.vde.com/de/

Verband/Pressecenter/Pressemappen/Documents/Hintergrundpapier%20AAL.pdf. Last

accessed October 20, 2011.

Kangas, Maarit, Antti Konttila, Per Lindgren, Ilkka Winblad, and Timo Jämsä, 2008.

Comparison of Low-Complexity Fall Detection Algorithms for Body Attached Accelerom-

eters. Gait & Posture, 28(2), pages 285–291. doi:10.1016/j.gaitpost.2008.01.003.

Kangas, Maarit, Antti Konttila, Ilkka Winblad, and Timo Jämsa, 2007. Determination of

Simple Thresholds for Accelerometry-Based Parameters for Fall Detection. In Proc. of

the 29th Annual International Conference of the Engineering in Medicine and Biology

Society, volume 2007, pages 1367–1370. doi:10.1109/IEMBS.2007.4352552.

Keith, Mike and Merrick Schincariol, 2009. Pro JPA 2: Mastering the Java Persistence

API. Apress. ISBN 9781430219569, 500 pages.

LeMier, Mary, Ilene Silver, and Craig Bowe, 2002. Falls Among Older Adults: Strate-

gies for Prevention. Technical Report, Washington State Department of Health. http:

//www.doh.wa.gov/hsqa/emstrauma/injury/pubs/FallsAmongOlderAdults.pdf. Last ac-

cessed November 2, 2011.

Lewis, Carole and Keiba Shaw, 2005. Benefits of the 2-Minute Walk Test. Physical Ther-

apy & Rehab Medicine, 16(16). http://physical-therapy.advanceweb.com/Article/

Benefits-of-the-2-Minute-Walk-Test.aspx. Last accessed October 1, 2011.

Li, Qiang, John A. Stankovic, Mark A. Hanson, Adam T. Barth, John Lach, and Gang

Zhou, 2009. Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-Derived

Posture Information. In Proc. of the 6th International Workshop on Wearable and

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://download.oracle.com/otndocs/jcp/jaxrs-1.1-mrel-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/jaxrs-1.1-mrel-eval-oth-JSpec/
http://coronet.iicm.tugraz.at/sa/s5/sa_styles1.html
http://coronet.iicm.tugraz.at/sa/s5/sa_styles1.html
http://research.microsoft.com/en-us/um/people/bibuxton/buxtoncollection/a/pdf/press%20release%201993.pdf
http://research.microsoft.com/en-us/um/people/bibuxton/buxtoncollection/a/pdf/press%20release%201993.pdf
http://worldcatlibraries.org/wcpa/issn/18777058
http://dx.doi.org/10.1016/j.proeng.2010.04.118
http://dx.doi.org/10.1016/j.proeng.2010.04.118
http://www.vde.com/de/Verband/Pressecenter/Pressemappen/Documents/Hintergrundpapier%20AAL.pdf
http://www.vde.com/de/Verband/Pressecenter/Pressemappen/Documents/Hintergrundpapier%20AAL.pdf
http://dx.doi.org/10.1016/j.gaitpost.2008.01.003
http://dx.doi.org/10.1109/IEMBS.2007.4352552
http://worldcatlibraries.org/wcpa/isbn/9781430219569
http://www.doh.wa.gov/hsqa/emstrauma/injury/pubs/FallsAmongOlderAdults.pdf
http://www.doh.wa.gov/hsqa/emstrauma/injury/pubs/FallsAmongOlderAdults.pdf
http://physical-therapy.advanceweb.com/Article/Benefits-of-the-2-Minute-Walk-Test.aspx
http://physical-therapy.advanceweb.com/Article/Benefits-of-the-2-Minute-Walk-Test.aspx

Bibliography 143

Implantable Body Sensor Networks, pages 138–143. IEEE. ISBN 9780769536446. doi:10.

1109/BSN.2009.46.

Lindemann, U., A. Hock, M. Stuber, W. Keck, and C. Becker, 2005. Evaluation of a Fall

Detector Based on Accelerometers: A Pilot Study. Medical & Biological Engineering

& Computing, 43(5), pages 548–551. http://www.ncbi.nlm.nih.gov/pubmed/16411625.

Last accessed March 13, 2011.

Lopes, Ivo C., Binod Vaidya, and Joel J. P. C. Rodrigues, 2009. SensorFall - An Ac-

celerometer Based Mobile Application. In Proc. of the 2nd International Conference

on Computer Science and its Applications, pages 1–6. IEEE. ISBN 9781424449453.

doi:10.1109/CSA.2009.5404172.

Luštrek, Mitja and Boštjan Kaluža, 2009. Fall Detection and Activity Recog-

nition With Machine Learning. Informatica, 33(2), pages 205–212. http:

//dis.ijs.si/mitjal/documents/Fall_detection_and_activity_recognition_with_

machine_learning-Informatica-09.pdf. Last accessed April 4, 2011.

Malan, Ruth and Dana Bredemeyer, 2001. Functional Requirements and Use Cases.

Technical Report, Bredemeyer Consulting. http://www.bredemeyer.com/pdf_files/

functreq.pdf. Last accessed November 8, 2011.

Matthews, Mark, 2009. A 10x Performance Increase for Batch INSERTs With MySQL

Connector/J Is On The Way.... http://www.jroller.com/mmatthews/entry/speeding_

up_batch_inserts_for. Last accessed September 22, 2011.

McCabe, Francis, David Booth, Christopher Ferris, David Orchard, Mike Champion,

Eric Newcomer, and Hugo Haas, 2004. Web Services Architecture. W3C note, W3C.

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/. Last accessed October 6, 2011.

Meeker, Mary, 2010. Internet Trends. http://www.morganstanley.com/institutional/

techresearch/pdfs/Internet_Trends_041210.pdf. Last accessed October 12, 2011.

Mordani, Rajiv, 2009. Common Annotations for the Java™ Platform™. Technical

Report, Sun Microsystems, Inc. http://download.oracle.com/otndocs/jcp/common_

annotations-1.1-mrel-eval-oth-JSpec/. Last accessed September 21, 2011.

Noury, N., A. Fleury, P. Rumeau, A.K. Bourke, G. Ó Laighin, V. Rialle, and J.E. Lundy,

2007. Fall Detection - Principles and Methods. In Proc. of the 29th Annual International

Conference of the Engineering in Medicine and Biology Society, pages 1663–1666. IEEE.

doi:10.1109/IEMBS.2007.4352627.

Oberzaucher, Johannes, Harald Jagos, Christian Zödl, Walter Hlauschek, and Wolfgang

Zagler, 2010. Using a Wearable Insole Gait Analyzing System for Automated Mo-

bility Assessment for Older People. In Proc. of the 12th International Conference

on Computers Helping People With Special Needs, pages 600–603. Springer-Verlag.

http://portal.acm.org/citation.cfm?id=1880751.1880852. Last accessed March 13,

2011.

http://worldcatlibraries.org/wcpa/isbn/9780769536446
http://dx.doi.org/10.1109/BSN.2009.46
http://dx.doi.org/10.1109/BSN.2009.46
http://www.ncbi.nlm.nih.gov/pubmed/16411625
http://worldcatlibraries.org/wcpa/isbn/9781424449453
http://dx.doi.org/10.1109/CSA.2009.5404172
http://dis.ijs.si/mitjal/documents/Fall_detection_and_activity_recognition_with_machine_learning-Informatica-09.pdf
http://dis.ijs.si/mitjal/documents/Fall_detection_and_activity_recognition_with_machine_learning-Informatica-09.pdf
http://dis.ijs.si/mitjal/documents/Fall_detection_and_activity_recognition_with_machine_learning-Informatica-09.pdf
http://www.bredemeyer.com/pdf_files/functreq.pdf
http://www.bredemeyer.com/pdf_files/functreq.pdf
http://www.jroller.com/mmatthews/entry/speeding_up_batch_inserts_for
http://www.jroller.com/mmatthews/entry/speeding_up_batch_inserts_for
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.morganstanley.com/institutional/techresearch/pdfs/Internet_Trends_041210.pdf
http://www.morganstanley.com/institutional/techresearch/pdfs/Internet_Trends_041210.pdf
http://download.oracle.com/otndocs/jcp/common_annotations-1.1-mrel-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/common_annotations-1.1-mrel-eval-oth-JSpec/
http://dx.doi.org/10.1109/IEMBS.2007.4352627
http://portal.acm.org/citation.cfm?id=1880751.1880852

144 Bibliography

Podsiadlo, D. and S. Richardson, 1991. The Timed ’Up & Go’: A Test of Basic Functional

Mobility for Frail Elderly Persons. American Geriatrics Society, 39(2), pages 142–148.

ISSN 00028614. http://www.ncbi.nlm.nih.gov/pubmed/1991946. Last accessed October

1, 2011.

Preciado, J.C., M Linaje, F. Sánchez, and S. Comai, 2005. Necessity of Methodologies to

Model Rich Internet Applications. pages 7–13. IEEE. doi:10.1109/WSE.2005.10.

Qazi, Saad, 2011. Comparison between iPhone 4S Vs Samsung Galaxy

S2 Vs Droid Bionic Vs Htc Titan. http://mobilephones.pk/reviews/

comparison-between-iphone-4s-vs-samsung-galaxy-s2-vs-droid-bionic-vs-htc-titan/.

Last accessed October 13, 2011.

Retrobrick, 2011. Nokia 9000i Communicator. http://www.retrobrick.com/nokia9000.

html. Last accessed October 15, 2011.

Russell, Matthew A., 2008. Dojo: The Definitive Guide. O’Reilly Media. ISBN

9780596516482.

Samsung, 2011. Photos. http://www.samsung.com/global/microsite/galaxys2/html/

photos.html. Last accessed November 7, 2011.

Scerbakov, Nikolai, 2008. Structured Data Management. http://coronet.iicm.tugraz.

at/wbtmaster/courses/LV706045_panel1.htm. Last accessed October 7, 2011.

Schroeder, Stan, 2011. Apple’s 500,000 Approved iOS Apps by the Numbers. http:

//mashable.com/2011/05/24/app-store-500000-apps/. Last accessed October 16, 2011.

Scott, Jeff, 2011. Apple Event Recap and Our Thoughts: iPhone 4S An-

nouced; iOS 5 and iCloud Release Dates. http://www.148apps.com/news/

iphone-4s-annouced-ios-5-icloud-release-dates/. Last accessed October 12, 2011.

Sixsmith, A., N. Johnson, and R. Whatmore, 2005. Pyroelectric IR Sensor Arrays for

Fall Detection in the Older Population. In Proc. of the Journal de Physique IV, volume

128, pages 153–160. doi:10.1051/jp4:2005128024.

Sposaro, Frank and Gary Tyson, 2009. iFall: An Android Application for Fall Monitoring

and Response. In Proc. of the Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, volume 2009, pages 6119–6122.

Steg, Horst, Hartmut. Strese, Claudia Loroff, Jérôme. Hull, and Sophie Schmidt, 2006.

Europe is Facing a Demographic Challenge Ambient Assisted Living Offers Solutions.

IST Project Report on Ambient Assisted Living, pages 1–85. http://www.aal-europe.

eu/Published/reports-etc/FinalVersion.pdf. Last accessed October 20, 2011.

Sutherland, James, 2011. How to improve JPA performance by

1,825%. http://java-persistence-performance.blogspot.com/2011/06/

how-to-improve-jpa-performance-by-1825.html. Last accessed September 22,

2011.

http://worldcatlibraries.org/wcpa/issn/00028614
http://www.ncbi.nlm.nih.gov/pubmed/1991946
http://dx.doi.org/10.1109/WSE.2005.10
http://mobilephones.pk/reviews/comparison-between-iphone-4s-vs-samsung-galaxy-s2-vs-droid-bionic-vs-htc-titan/
http://mobilephones.pk/reviews/comparison-between-iphone-4s-vs-samsung-galaxy-s2-vs-droid-bionic-vs-htc-titan/
http://www.retrobrick.com/nokia9000.html
http://www.retrobrick.com/nokia9000.html
http://worldcatlibraries.org/wcpa/isbn/9780596516482
http://www.samsung.com/global/microsite/galaxys2/html/photos.html
http://www.samsung.com/global/microsite/galaxys2/html/photos.html
http://coronet.iicm.tugraz.at/wbtmaster/courses/LV706045_panel1.htm
http://coronet.iicm.tugraz.at/wbtmaster/courses/LV706045_panel1.htm
http://mashable.com/2011/05/24/app-store-500000-apps/
http://mashable.com/2011/05/24/app-store-500000-apps/
http://www.148apps.com/news/iphone-4s-annouced-ios-5-icloud-release-dates/
http://www.148apps.com/news/iphone-4s-annouced-ios-5-icloud-release-dates/
http://dx.doi.org/10.1051/jp4:2005128024
http://www.aal-europe.eu/Published/reports-etc/Final Version.pdf
http://www.aal-europe.eu/Published/reports-etc/Final Version.pdf
http://java-persistence-performance.blogspot.com/2011/06/how-to-improve-jpa-performance-by-1825.html
http://java-persistence-performance.blogspot.com/2011/06/how-to-improve-jpa-performance-by-1825.html

Bibliography 145

Todd, C and D Skelton, 2004. What are the main risk factors for falls among older people

and what are the most effective interventions to prevent these falls? Technical Report,

WHO Regional Office for Europe. http://www.euro.who.int/document/E82552.pdf.

Last accessed November 2, 2011.

Tremblay Jr., K.R. and C.E. Barber, 2005. Preventing Falls in the Elderly. http://www.

ext.colostate.edu/pubs/consumer/10242.pdf. Last accessed November 2, 2011.

van den Broek, Ger, Filippo Cavallo, Luca Odetti, and Christian Wehrmann, 2009.

Ambient Assisted Living Roadmap. http://www.aaliance.eu/public/documents/

aaliance-roadmap/aaliance-aal-roadmap.pdf. Last accessed October 20, 2011.

Wallin, Leif-Olof, 2010. Trends and Directions in Mobile and Wireless. http://

computersweden.idg.se/polopoly_fs/1.301097.1268145273!leifolofwallingartner.

pdf. Last accessed October 13, 2011.

Whitney, Susan L., Diane M. Wrisley, Gregory F. Marchetti, Michael A. Gee, Mark S.

Redfern, and Joseph M. Furman, 2005. Clinical Measurement of Sit-To-Stand Per-

formance in People With Balance Disorders: Validity of Data for the Five-Times-

Sit-To-Stand Test. Physical Therapy, 85(10), pages 1034–1045. ISSN 00319023.

http://www.ncbi.nlm.nih.gov/pubmed/16180952. Last accessed October 1, 2011.

WHO, 2007. WHO Global Report on Falls Prevention in Older Age. http://www.who.int/

ageing/publications/Falls_prevention7March.pdf. Last accessed November 2, 2011.

Yu, Xinguo, 2008. Approaches and Principles of Fall Detection for Elderly and Patient.

In Proc. of the 10th International Conference on e-Health Networking, Applications and

Services, pages 42–47. IEEE. doi:10.1109/HEALTH.2008.4600107.

Zecevic, Aleksandra A., Alan W. Salmoni, Mark Speechley, and Anthony A. Vandervoort,

2006. Defining a Fall and Reasons for Falling: Comparisons Among the Views of

Seniors, Health Care Providers, and the Research Literature. The Gerontologist, 46(3),

pages 367–376. http://www.ncbi.nlm.nih.gov/pubmed/16731875. Last accessed March

13, 2011.

http://www.euro.who.int/document/E82552.pdf
http://www.ext.colostate.edu/pubs/consumer/10242.pdf
http://www.ext.colostate.edu/pubs/consumer/10242.pdf
http://www.aaliance.eu/public/documents/aaliance-roadmap/aaliance-aal-roadmap.pdf
http://www.aaliance.eu/public/documents/aaliance-roadmap/aaliance-aal-roadmap.pdf
http://computersweden.idg.se/polopoly_fs/1.301097.1268145273!leifolofwallingartner.pdf
http://computersweden.idg.se/polopoly_fs/1.301097.1268145273!leifolofwallingartner.pdf
http://computersweden.idg.se/polopoly_fs/1.301097.1268145273!leifolofwallingartner.pdf
http://worldcatlibraries.org/wcpa/issn/00319023
http://www.ncbi.nlm.nih.gov/pubmed/16180952
http://www.who.int/ageing/publications/Falls_prevention7March.pdf
http://www.who.int/ageing/publications/Falls_prevention7March.pdf
http://dx.doi.org/10.1109/HEALTH.2008.4600107
http://www.ncbi.nlm.nih.gov/pubmed/16731875

146 Bibliography

Glossary

2MWT 2-Minute Walk Test.

AAL Ambient Assisted Living.

API Application Programming Interface.

CPU Central Processing Unit.

CSV Comma-separated Values.

DBMS Database Management System.

FK Foreign Key.

FSR Force Sensitive Resistors.

GPS Global Positioning System.

GZIP GNU Zip.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

ICT Information and Communication Technology.

IMU Inertial Measurement Unit.

JAX-RS Java API for RESTful Web Services.

JDBC Java DataBase Connectivity.

JPA Java Persistence API.

JSON JavaScript Object Notation.

147

148 Glossary

LAN Local Area Network.

MVC Model-View-Controller.

PAN Personal Area Network.

PC Personal Computer.

PDA Personal Digital Assistant.

PK Primary Key.

POJO Plain Old Java Object.

REST Representational State Transfer.

RFID Radio-Frequency Identification.

RIA Rich Internet Application.

RPC Remote Procedure Call.

SDK Software Development Kit.

SOA Service Oriented Architecture.

SOAP Simple Object Access Protocol.

STS5 Sit to Stand 5.

SVM Support Vector Machine.

TUG Timed Up and Go.

UDID Unique Identifier.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

VPN Virtual Private Network.

XHR XMLHttpRequest.

XML Extensible Markup Language.

	1 Introduction
	I Motivation
	2 Ambient Assisted Living
	2.1 Definition of Ambient Assisted Living
	2.2 Trends Towards AAL
	2.3 Deployment Barriers
	2.4 Enabling Technologies
	2.5 Application Domains
	2.6 Falls in AAL
	2.7 Summary

	3 Fall Detection
	3.1 Definition of a Fall
	3.2 Anatomy and Characteristics of a Fall
	3.3 Classification of Fall Detection Methods and Current Approaches
	3.4 Fall Detection Algorithms
	3.5 Conclusion

	4 Mobile Devices
	4.1 Mobile Devices
	4.2 Current and Future Mobile and Network Market
	4.3 Mobile Devices for Fall Detection
	4.4 Summary

	II Implementation
	5 System Architecture
	5.1 Current Architecture
	5.2 Requirements for a new Architecture
	5.3 Proposed System Architecture
	5.4 Summary

	6 Database
	6.1 Java Persistence with EclipseLink
	6.2 Entity Description and Relations
	6.3 Summary

	7 RESTful Web Service
	7.1 Restful Web Services with JAX-RS
	7.2 Service: /tests
	7.3 Service: /status
	7.4 Service: /users
	7.5 Service: /devices
	7.6 Service: /datafields
	7.7 Service: /algorithms
	7.8 Authentication
	7.9 Authorization
	7.10 Error Codes
	7.11 HTTP Status Codes
	7.12 Summary

	8 Backend
	8.1 JavaScript with the Dojo Framework
	8.2 The Backend and Dojo
	8.3 API Communication
	8.4 Summary

	9 Mobile Client
	9.1 User Interface and Interaction
	9.2 Device Motion
	9.3 API Communication
	9.4 Summary

	III Evaluation
	10 Evaluation of the Framework
	10.1 Test Settings
	10.2 Test Procedure
	10.3 Test Scenarios and Evaluation
	10.4 Conclusion

	11 Summary, Conclusion & Outlook
	11.1 Summary
	11.2 Conclusion
	11.3 Outlook

	A Implementation
	A.1 Example JPA Entity Annotation
	A.2 JPA Persistence Configuration
	A.3 Example JAX-RS Service Annotations
	A.4 Apache Tomcat Authentication and Authorization
	A.5 Backend
	A.6 Example Interaction of Client
	A.7 iOS Device Motion Retrieval

	B Backend Guide
	B.1 Create Device
	B.2 Create User
	B.3 Create Test
	B.4 Start/Stop Finish Test
	B.5 Start Client
	B.6 Summary

	C Evaluation Scenarios
	Bibliography
	Glossary

