
Master Thesis

Automatic Speech Recognition for
dysarthric Speakers

conducted at the
Signal Processing and Speech Communication Laboratory

by
Susanne Rexeis

Supervisors:
Univ.-Prof. Dipl.-Ing. Dr.techn. Gernot Kubin

Dipl.-Ing. Dr.techn. Stefan Petrik

Graz, Austria, October 2011





Abstract

Dysarthria is a speech impairment caused by neuro-muscular damages of various cause that

can also lead to reduced dexterity or paralysis of other body parts, e.g. the limbs. For these

patients the use of speech technology as interface to an environmental control system or to a

computer can be a valuable assistance in everyday life. However, due to the various speaker-

dependent disturbances typical for dysarthric speech the performance of standard automatic

speech recognition (ASR)-systems is limited.

This work investigates different approaches to improve the performance of speech recognizers

for German-speaking males suffering from moderate to severe dysarthria. The speech data was

recorded in cooperation with the Simon project.

Evaluations on a small-vocabulary connected digits task showed that speaker-independent

(SI) acoustic models adapted to dysarthric speech using maximum likelihood linear regres-

sion (MLLR) could achieve better results than speaker-dependent (SD) acoustic models for

a patient suffering from severe dysarthria. For two out of the five dysarthric speakers word

recognition rates of over 90% could be achieved using MLLR-adaptation. On a task using a

larger vocabulary of 69 command words, however, only a maximum word recognition rate of

70% could be achieved using acoustic adaptation.

In the utterances of the dysarthric speakers mispronunciations of certain phonemes could

be identified. Two data-driven approaches to adapt the pronunciation dictionaries of the

recognition systems to dysarthric speech were proposed and evaluated: phonological rules and

finite state transducer (FST) networks. The pronunciation errors of the speakers were modeled

based on the evaluation of the speech recognizers on a rhyme-test. Lexical adaptation with

phonological rules achieved promising results on the rhyme-test evaluation. In contrast the

improvement of the recognition rate in the command word task was barely measurable, as a

high number of new confusions occurred after adaptation. Two methods to prune the generated

pronunciation variants based on their probability did not succeed to lower the number of

confusions. Lexical adaptation with FSTs failed to improve results on both the rhyme-test and

the command word task. The number of new recognition errors after adaptation was again very

high, although a score to measure the confusability of the newly generated variants was used

for pruning. The information extracted from the phone confusions of the rhyme-test seems to

be too sparse to score the confusability of the new pronunciations correctly in this approach.
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Kurzfassung

Dysarthrie ist eine Sprachstörung, die durch neuro-muskuläre Schädigungen hervorgerufen

wird. Diese können auch zu Einschränkungen der Beweglichkeit oder gar zu Lähmungen gan-

zer Körperteile, z.B. der Extremitäten, führen. Für Dysathrie-Patienten kann die Verwendung

von Sprachtechnologien, als Schnittstelle zu einfachen Regelungssystemen (z.B. der Heizung),

speziell aber auch zur Steuerung von Computern, eine wertvolle Erleichterung im Alltagsle-

ben bedeuten. Voraussetzung dafür sind eine einfache Bedienbarkeit und Zuverlässigkeit der

Systeme. Durch die Sprachstörungen der Patienten ist die Verwendung von Standard Spra-

cherkennern, wie sie heute in vielen elektronischen Geräten eingebaut sind, kaum möglich. Die

Systeme müssen auf die Sprecher angepasst werden.

In dieser Arbeit wurden verschiedene Ansätze untersucht, um die Erkennungsrate von Sprach-

erkennungssystemen für fünf männliche, deutschsprachige Dysarthrie-Patienten zu verbessern.

Die Sprachdaten wurden vom Team des Simon Projektes zur Verfügung gestellt.

Die Evaluierung der Daten mit einer einfachen
”
Ziffernfolgen Erkennungsaufgabe“ zeigte,

dass ein sprecherunabhängiges akustisches Modell mittels akustischer Adaption mit MLLR

(
”
maximum likelihood linear regression“) für einen Patienten mit schwerer Dysarthrie bessere

Ergebnisse erzielen kann als ein mit Sprachdaten des Patienten trainiertes akustisches Modell.

Für zwei der Sprecher wurde mittels akustischer Adaption eine Wort Erkennungsrate von über

90% erzielt. Bei einer zweiten Erkennungsaufgabe mit einem größeren Vokabular (69 Komman-

doworte) konnte lediglich eine Wort Erkennungsrate von maximal 70% erzielt werden. Dabei

blieben die adaptieren Systeme deutlich hinter den akustischen Modellen, die direkt mit den

Sprachdaten der Sprecher trainiert wurden, zurück.

In den Sprachdaten der Dysarthrie-Patienten konnten Fehler in der Aussprache bestimmter

Phoneme festgestellt werden. Zwei Ansätze, die diese aufbauend auf dem Erkennungsergebnis

eines Reimtests modellieren und automatisiert im Aussprachemodell des Erkenners abbilden,

wurden evaluiert. Im ersten Ansatz, basierend auf phonologischen Regeln, konnten vielver-

sprechende Ergebnisse auf einer Auswertung erzielt werden. Bei den Kommandoworten konnte

jedoch kaum eine Verbesserung der Erkennungsrate gemessen werden, da das neue Ausspra-

chemodell zahlreiche neue Erkennungsfehler verursachte. Zwei Methoden, um die Zahl der

Aussprachevarianten zu reduzieren, führten ebenfalls zu keiner Verbesserung. Die lexikale Ad-

aption mit FST (
”
finite state transducer“) Netzwerken konnte aufgrund neuer Erkennungsfehler

auf keinem der beiden Experimente zufriedenstellende Ergebnisse erzielen, obwohl ein Maß für

die Verwechslungswahrscheinlichkeit der Aussprachevarianten eingeführt wurde. Dieses konnte

jedoch aufgrund der wenigen Daten im Reimtest die Verwechselbarkeit nicht akkurat abbilden.
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1. Introduction

1.1. Definition of Dysarthria

Dysarthria is a collective term for speech impairments ‘resulting from disturbances over the
speech mechanism due to damage of the central or peripheral nervous system’[11]. These
damages can be caused by a traumatic brain injury [20, 29] or stroke [11, 12, 29]. They can
also be the result of neuromuscular diseases like cerebral palsy, Parkinson’s disease [11, 12, 20]
or Multiple Sclerosis [12]. In addition Dysarthria is mentioned in connection with Huntington’s
disease [11] and Down Syndrome [29].

Depending on the patient’s particular damage in the nervous system speech organs like ‘lungs,
larynx, oro- and nasopharynx, soft palate and articulators (lips, lounge, teeth and jaw)’[12] can
be affected to a different degree. Consequently the type and severity of the individual speech
impairment varies strongly from patient to patient. Phenomena that are commonly observed
in dysarthric speech are ‘imprecise consonants and distorted vowels, irregular articulatory
breakdowns, excessive or equal stress to all syllables and a slow rate of speech with a phonatory-
prosodic insufficiency described as harsh, monotonous and monoloudness’[11].

1.2. Motivation

The use of automatic speech recognition (ASR) systems has become a part of everyday life
in the recent years and systems with high recognition rates are widely available. With the
increasing recognition rate for standard speech also the development of ASR-systems that
achieve acceptable performance for speakers with atypical speech, e.g. speakers with foreign
accent or speech impairments like dysarthria has made progress and has become one of the
focuses in current research [28].

Dysarthric speakers often also suffer from motor disabilities of other body parts, e.g. the
limbs that are resulting from the same disease or injury as the dysarthric symptoms. Limi-
tations are ranging from an decreased level of dexterity to complete paralysis of the affected
body part. For these patients the use of speech technology, e.g. in environmental control
systems, can help to improve the quality of life in many different areas [8] allowing them to
autonomously control things in their home-environment, which would otherwise require the
help of another person.

Another widely studied application of ASR is to provide a user-interface to a computer
for motor-impaired persons, who cannot easily use a keyboard or other supportive devices.
This way ASR-systems can provide access not only to very basic activities such as writing or
listening to music, but also to all amenities of the digital age, e.g. information access and
modern communication forms. However, for patients with severe dysarthria these systems
have so far only been successful when speech recognizers with a very small vocabulary were
used [36].

Patients suffering from dysarthria can improve the control over their speech organs with
speech therapy, although a lot of training is necessary. The training is usually monitored by a

1



2 Chapter 1. Introduction

speech therapist who gives feedback and corrects the patient. ASR-systems in computer aided
systems for speech therapy, e.g. for pronunciation verification [29] can help the patient to train
his voice autonomously without a speech therapist being present as extension to traditional
speech therapy.

However, all systems described will only be accepted by dysarthric speakers if they are easy
to use and work reliably, which of course strongly depends on the recognition rate of the
speech recognizer. Otherwise using the system will be frustrating for an impaired speaker.
As the nature of dysarthric speech has a strong impact on the recognition rate of modern
speech recognizers, the development of technologies that improve recognition performance for
dysarthric speakers is a challenging topic.

1.3. Problem setting

The ideal case to implement an ASR-system for a dysarthric speaker would be to train a
speaker-dependent (SD) acoustic model from a huge set of data. But as speaking for long
periods of time can be very tiring for patients suffering from dysarthria [30] this method can
not be considered as optimal solution in most practical cases. Training speech recognizers with
a small dataset has the drawback that parts of the acoustic model might not be well trained,
leading to reduced recognition performance.

Another possible solution is the use of a well trained speaker-independent (SI) acoustic model
that is adapted to a dysarthric speaker. Different state-of-the art approaches for adaptation
on acoustical [14, 38] and lexical [3, 4, 35] level exist in the literature and have been studied
for different problem settings. Many of them have also been applied to dysarthric speech for
English, Spanish and other languages. A brief summary will be given in section 1.4. However
especially for speakers with severe dysarthria there is still a lot of room for improvement.

This work investigates the recognition performance of ASR-systems using both SD and SI
acoustic models focusing on the potential improvements achievable on SI-models with acoustic
adaptation using maximum likelihood linear regression (MLLR) and lexical adaptation based
on phonological rules and finite state transducer (FST)-networks on different small vocabulary
tasks. Evaluations are done on speech data provided by the Simon project [31] of five male
speakers suffering from moderate to severe dysarthria.

1.4. Related Work

Many speech recognition applications have been developed in the recent years for dysarthric
speakers. This section gives a brief overview about the developments in the different fields
described in section 1.2 and the technologies used. Some of the results achieved in these
works are also discussed in more detail in chapter 3 and chapter 4, where also the underlying
technologies are described in depth.

The EU-project ENABL [18, 25] aims to provide computer access to patients with motor-
speech disorders using SI hidden Markov model (HMM) speech recognizers and MLLR adap-
tation. The STARDUST project [5] also had the goal to provide access to assistive technology
for dysarthric speakers, focusing on patients suffering from severe dysarthria. The work of the
STARDUST project was based on SD HMM recognizers and was continued in two follow-up
projects [7, 20]. The open-source software developed by the Austrian Simon project [31] also
aims to provide a user interface for interaction with a computer for dysarthric speakers based
on SD HMM models. A small speech corpus was recorded by members of the project [31] of
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four dysarthric speakers (two male, two female), containing samples of isolated digits, 21 com-
mand words as well as a few words and short sentences from speech therapy settings. Speech
recognizers based on both SI and SD acoustic models were also evaluated on Dutch-speaking
dysarthric speakers in [26].

An expansive set of game-like utilities for speech and language therapy was presented in [29]
addressing several symptoms of dysarthria. While some tools are based on acoustic features
of the speech signal itself, e.g. formants, pitch and sonority, also two utilities were presented
for pronunciation training that are based on ASR. A speech corpus from 14 Spanish-speaking
children (7 male/7 female) suffering from dysarthria was recorded and is described in depth
in [22]. From each speaker four sessions of a 57 word vocabulary were recorded. The pho-
netically rich words were taken from a popular Spanish handbook for speech therapy. An SI
acoustic HMM-model trained from a large Spanish speech database was adapted to dysarthric
speech using maximum a posteriori (MAP). The same speech database and acoustic models
have also been evaluated on a simple lexical adaptation task described in [27]. In this work a
phone recognizer was used to generate transcriptions of the recorded speech samples using a
leave-out strategy for evaluation of the found pronunciation variants. The phone transcriptions
of three utterances of each word were added to the pronunciation dictionary as possible tran-
scription and the new dictionary was evaluated on the fourth utterance. The work presented
in [28] focuses on adaptation on feature level using a Vocal Tract Length Normalization algo-
rithm to improve the performance on whole word HMM speech recognizers. The same corpus
of 57 words as described previously was recorded for 19 Spanish-speaking dysarthric speakers
for evaluation of this work, but the age distribution of the speakers was greater ranging form
15 to 60 years.

Another work [20] dealing with lexical adaptation for dysarthric speakers is based on FSTs
to generate the new pronunciation variants. Evaluation was done using speech data from the
Nemours database [19] which contains speech data of 11 male dysarthric speakers. For each
speaker 74 nonsense sentences were recorded that had the form ‘The X is Ying the Z.’ with
X 6= Z being element of a set of 74 monosyllabic nouns and Y selected out of 37 monosyllabic
verbs. The selection of the nouns and verbs was done ‘to provide closed set phonetic constraints
(e.g. place, manner and voicing constraints) within an associated set of four to six words’[19].

At the University of Illinois a speech database was developed for large vocabulary tasks
on dysarthric speech. The Universal Access database (UA-database) [13] contains data from
patients suffering from spastic dysarthria, sometimes mixed with other forms. Recordings
are grouped in different word categories: digits, computer commands, radio alphabet letters,
common words (taken from Brown corpus of written English) and uncommon words selected
from Children’s novels. By the time of writing parts of the database were publicly available for
research on the homepage of the Statistical Speech Technology Group [34] at the University
of Illinois. In [30] HMM speech recognizers based on different subword modeling types were
evaluated on different subsets of the UA-database. By the time of writing no information was
available about the existence of a publicly available German corpus of dysarthric speech.

Recently tools for assistive writing [9, 36] have been developed that rely on neural network
(NN) and hybrid HMM/NN speech recognizers. Other works focus on speech enhancement
devices [11, 12] that aim to improve intelligibility for a human listener by re-synthesis of
dysarthric speech.



4 Chapter 1. Introduction

1.5. Thesis Organization

The thesis is organized as follows: In chapter 2 an acoustic analysis is done on the speech corpus
recorded from five males suffering from dysarthria for this work to illustrate the differences
between dysarthric and normal speech. Chapter 3 gives a brief introduction in state-of-the
art speech recognition technology and describes the speech sources used in this work in detail
as well as the training of the acoustic models. In addition different approaches for acoustic
adaptation are presented and corresponding results achieved in related works on dysarthric
speech are discussed. In Chapter 4 different lexical adaptation approaches are introduced and
a detailed description of the implementations used in this work is given. The tasks on which
the ASR-systems and proposed adaptation approaches were evaluated on dysarthric speech
are presented in chapter 5, as well as the interpretations of the achieved results. Chapter 6
summarizes the findings of this work and gives a short outlook.



2. Acoustic analysis of dysarthric speech

Several studies have investigated the influence of different characteristics of dysarthria on ASR-
systems. In [28] a smaller phonetic distance between the five Spanish vowels was measured in
speech utterances of 30 dysarthric speakers compared to a reference corpus of 19 unimpaired
speakers, which is a potential source of error for an ASR-system.

In [29] a correlation between the intelligibility of dysarthric speech for a human listener and
the recognition rate of an ASR-system could be shown for patients suffering from a different
degree of dysarthria.

On the other hand many works, e.g. [30] have also shown that the recognition rate of a
speech recognizer depends strongly on the individual speaker when patients with a similar
level of human intelligibility are compared. This indicates that the individual symptoms of the
impaired speaker influence an ASR-system to a different degree.

An acoustic analysis of 12 Swedish-speaking patients suffering from dysarthria was done for
the ENABL project [18]. In that work it could be shown that speaking rate and frequency of
pauses of the individual speaker are of potential importance for a speech recognition system. In
addition articulatory deviations were detected in the speech data, that were expected to cause
severe problems for a speech recognizer. To overcome the latter ‘specially adjusted phonetic
transcriptions of the words’ [18] were proposed.

As already mentioned in chapter 1 speech data from five male dysarthric speakers M002, M063,
M066, M067 and M068 was recorded by members of the Simon project [31] for this work. In this
chapter a brief analysis of the speech samples is done regarding their intelligibility, as well as
distinctive features like disfluencies and mispronunciations. In addition the dysarthric speech
samples are compared to speech data recorded from an unimpaired reference speaker M000.

2.1. Observations

A comparison of the speech samples from the individual speakers showed that a great variety
in loudness between different utterances could be observed for the speakers M002 and M063.
Due to the decreased control of the speech organs some phones are uttered harshly, while other
utterances are spoken in a mute tone. The average power Es in dB

Es = 10 log10(
1

T

T∑
t=1

x[t]2) (2.1)

shows the variation of the loudness in the speech signals. For example M002’s utterance of
‘gell’ [gEl] has an average power Es of around -15 dB, while Es of the utterance of ‘Hain’ [h>aIn]
is around -31 dB. The average power of the same words uttered by the reference speaker is
between -29 and -30 dB. For all calculations the speech signals were clipped with a rectangular
window to exclude the parts of the signals containing only silence. The speech samples recorded
from M066 and M068 generally seem to have a more constant loudness than the utterances of
M002 and M063, but some utterances also sound harsh. M067 also speaks with a constant

5



6 Chapter 2. Acoustic analysis of dysarthric speech

loudness, e.g. for the words ‘gell’ and ‘Hain’ uttered by M067 Es is around -19 dB and -22 dB
respectively. But in contrast to the other speakers M067’s utterances do not sound harsh and
it seems that he speaks with a muter voice.

The speech of all dysarthric speakers analyzed in this work is slurred to a certain degree.
An example for the word ‘Wald’ [valt] uttered by two dysarthric speakers M002 and M067, as
well as the unimpaired reference speaker M000 illustrates some of the differences in speech. A
comparison between the utterances of M002 in figure 2.1 and M000 in figure 2.2 shows that the
utterance by the dysarthric speaker is almost twice as long. M002 stretches the vowel /a/ and
the following lateral approximant /l/, as well as the transition between both phones, which itself
sounds like the diphthong />aI/. In contrast the utterance of M067 shown in figure 2.3 has about
the same length as the utterance of M000, but the labiodental fricative /v/ is pronounced like
the approximant /w/ and is stretched. The duration of the approximant in M067’s utterance
is longer than the durations of both /a/ and /l/.
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Figure 2.1.: The spectrogram of the word ‘Wald’ [valt] uttered by M002. The SAMPA-
labels of the phones in the spectrogram were assigned manually.

From the narrowband-spectrogram of the examples shown in figure 2.1 and figure 2.3 one
can also see that the number of harmonics is lower than in the same utterance of M000 shown in
figure 2.2, which shows that the prosody of the dysarthric speakers is more monotonous than for
M000. The other dysarthric speakers show the same features in the narrowband-spectrogram.
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Figure 2.2.: The spectrogram of the word ‘Wald’ [valt] uttered by M000. The SAMPA-
labels of the phones in the spectrogram were assigned manually.

2.2. Disfluencies

In case of M002 non-linguistically motivated pauses occur in phone transitions that are difficult
for the speaker to pronounce. The occlusion phase in plosives is also often longer than in case
of the reference speaker, which can also be observed in figure 2.1. It could be shown that
both the insertion of pauses and the duration of the occlusion phase cause errors in speech
recognition systems for this speaker (see section 5.4.1).

Looking at the broadband-spectrogram of figure 2.1 one can also see that the transitions
between phones are not as fluent as for M000 as the lack of control over the speech organs leads
to jumps in the spectrogram. During the evaluation it could be shown that these disfluencies
also lead to recognition errors in ASR. An analysis of the resulting errors from such disfluencies
is done in section 5.2 on an example utterance of M066 (figure 5.1 shows the corresponding
spectrogram).

2.3. Phone confusions

Audible phone confusions are present in the speech samples of all analyzed dysarthric speakers,
although the number of confusions varies strongly from speaker to speaker.

A common source of error are plosives which are often pronounced incorrectly by M002, M063
and M066. While M002 tends to utter /t/ and /d/ fronted as /k/ and /g/, M066 sometimes
pronounces unvoiced plosives as voiced. Both M002 and M066 sometimes insert the nasal /m/
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Figure 2.3.: The spectrogram of the word ‘Wald’ [valt] uttered by M067. The SAMPA-
labels of the phones in the spectrogram were assigned manually.

before plosives at the beginning of a word. For M002 this insertion could only be observed in
front of utterances of /p/, while for M063 the insertion occurred in front of utterances of /p/
and /t/.

In contrast both M067 and M068 are able to pronounce plosives correctly. However, in the
utterance shown in figure 2.3 M067 inserts a filled pause with a audible breathing or smacking
like sound before the occlusion phase of the plosive. This filled pause could also be observed
in the same context in other utterances of the speaker. Both speakers have problems with
the pronunciation of other phones. For example in case of M068 utterances of the phones /r/
and /l/ are pronounced as /j/. As already mentioned M067 replaces the fricative /v/ with the
approximant /w/.

M063 had the lowest intelligibility in the analysis as he often swallows consonants at the
beginning and end of a word that are difficult for him to pronounce. Many phones are generally
not uttered by the speaker at the beginning of words, e.g. /f/, /r/, /s/, /

>
ts/ and /S/. Also

combinations of plosives and trills, e.g. /d r/ are swallowed at the beginning of words. M063 also
sometimes truncates the end of a word, e.g. if it contains a plosive. In some cases utterances
are truncated in both the beginning and end of the word, making it almost impossible to
recognize the original word, even for a human listener. For example the utterance of ‘flink’
shown in figure 2.4 with the orthographic transcription [flINk] is truncated by the speaker in
a way that the recorded sample actually sounds like [Inf] with an additional distortion at the
end of the utterance, where the sound sample is overdriven. In comparison to the consonants
the vowels are uttered more clearly by M063, although phone confusions occur, e.g. the vowels
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/a/ and /o/ are pronounced as the diphthong / >aU/ in some cases.
The truncations of words by M063 cause severe problems for both for human intelligibility

and speech recognition. During the evaluation recognition results for M063 were always the
lowest. While tasks with a very small vocabulary containing only digits acceptable results
were achieved, recognition tasks with a 69 word command words vocabulary failed for this
speaker in contrast to the other dysarthric speakers. A further analysis of the impact of M063’s
speech on ASR-systems can be found in section 5.3.2.
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Figure 2.4.: The spectrogram of the word ‘flink’ [flINk] uttered by M063. The SAMPA-
labels of the phones in the spectrogram were assigned manually.





3. Speech recognition system

3.1. Components of a speech recognizer

A speech recognizer translates an acoustic input into the most likely sentence S of a predefined
language. A sentence is composed of one or more words W from the pronunciation dictionary,
each word consisting of a sequence of labels l from the label set L defined in the acoustic model.
Each label typically represents a linguistic unit, e.g. a word or phoneme.

A simplified model of a speech recognizer is shown in figure 3.1. In the feature extraction step
the acoustic signal is sampled into overlapping frames from which multidimensional observation
vectors ot are computed. The acoustic model calculates the observation likelihood for every
label l of the label set for each given observation vector ot. The pronunciation dictionary holds
the list of known words of the language and their pronunciations specified in terms of the label
set L represented in the acoustic model [3]. The language model uses prior knowledge about
all words in the language and their allowed combinations to assign each word the probability
of appearing in the language in current context. The decoder combines these informations to
find the most likely label sequence S for the given speech signal.

Acoustic

model

Language

model

Feature

extraction
Decoder

Pronunciation

dictionary

speech sample

Speech recognizer

sentence SO

P (W )

P (O|W )

Figure 3.1.: Schematic architecture of a simplified speech recognition system.

3.1.1. Feature extraction

In the feature extraction step a parametric representation of the speech signal is computed. The
Mel-frequency cepstral coefficients (MFCC) are widely used as acoustic features in speech recog-
nition. In this work the 12 MFCCs and energy coefficient are used including the corresponding

11



12 Chapter 3. Speech recognition system

velocity and acceleration coefficients. The 39-dimensional MFCC-vectors were extracted from
the speech samples using the Hidden Markov Model Toolkit (HTK)-tool HCopy.

The computation of the MFCC-vectors is done in six steps [10]. In the first preemphasis
step a high-pass filter is used to boost the energy of the higher frequencies of the sound signal.
The pre-emphasis coefficient 0.9 ≤ α ≤ 1.0 of the filter equation y[n] = x[n]−αx[n−1] was set
to α = 0.97 in this work. In the second step the speech signal is windowed into small frames
that can roughly be assumed to be stationary. In this work a Hamming window with a length
of 25 ms was applied to the speech signal with a frame shift of 10 ms. The energy coefficient
is computed directly from the time signal of each frame, as well as the fast Fourier transform
(FFT). The spectrum is then filtered with a Mel-filter bank, which scales the frequency bands
according to the sensitivity of the human ear. The cepstrum is then computed by taking the
inverse fast Fourier transform (IFFT) of the log of the spectrum. The first 12 values of the
cepstrum are used as MFCCs. The 13 delta features of the cepstral coefficients and the energy
represent the changes of the corresponding features between frames, while the 13 double delta
coefficients represent changes of the delta coefficients between frames.

3.1.2. Acoustic model

The acoustic model is a set of HMMs each modeling one label l from the label set L, which can
either represent a whole word or a phoneme-like subunit, depending on the system design. A
single HMM is a sequence classifier [10] that assigns a sequence of observations O = o1 . . .oT
to the most likely sequence of hidden states q1 . . . qK . The emission probability or observation
likelihood B = bk(ot) expresses the probability that a given observation vector ot was generated
by the hidden state qk of an HMM. The transition matrix A models the transitions between
the hidden states. In speech recognition usually left-to-right transition matrices are used,
which means that no transitions to previous states are allowed. The most common method to
model the emission probability bk(ot) of a state is to compute a probability density function
(PDF) [10] over the feature space using a Gaussian mixture model (GMM).

The number of states in an HMM as well as the linguistic unit representing it in the acoustic
model is depending on the task and system design. For small vocabulary tasks, e.g. digit
recognition, a unit can be modeled to represent a whole word. For large vocabulary tasks it
is usually more useful to model phone-like subunits that are concatenated to words using a
pronunciation dictionary. This way shared sounds can be modeled across words and redun-
dancy as well as model size is reduced, as the words of a language usually are formed from
a relatively small, closed set of sounds. In addition the model is also capable of recognizing
unseen words as long as they are composed of the same labels. For example the lexicon of the
Speechdat(II)-AT (Speechdat) database contains more than 15.000 words, all of them consist-
ing only of 46 phonemes. For acoustic models with phoneme-like subunits HMMs with 3-states
are commonly used, while for whole word acoustic models the number of states per HMM is
usually higher.

As the neighboring phones may alter the pronunciation of a certain phoneme, a common
extension to modeling phonemes as HMMs is to use triphone HMM-models. For each phone
and its possible left and right context a separate HMM-model is created. As this extension
leads to an extensive increase of the number of training parameters the states of the different
HMM-models are clustered using a decision tree based on prior knowledge about acoustic
similarities of phones in different contexts of the given language. The states in each cluster
are then ‘tied’ together, which means that they share the same GMM to model the emission
probability.
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3.1.3. Decoder

The decoder maximizes the joint probability of the language, pronunciation and acoustical
model to find the most likely sequence of words

S = arg max
W

P (O|W )P (W ) (3.1)

The Viterbi-algorithm [10] is a dynamic programming approach to recursively find S from all
possible label combinations. The probability vt(k) of observation ot being observed in state qk
is computed as

vt(k) =
K

max
j=1

vt−1(j)ajkbk(ot) (3.2)

by selecting the most likely transition from all K previous states by weighting vt−1(j) with
the transition matrix entry ajk and the emission probability bk(ot). The most likely sequence S
is found via backtracking of the most likely path through the probability network.

In the HTK-toolkit which is used for recognition in this work the Viterbi-algorithm is im-
plemented in the tool HVite, that can also be used for performing forced alignment of given
reference transcription to a speech sample. HResults is a HTK-tool to evaluate an output of
HVite against a reference transcription for error analysis.

3.2. Acoustic model training

The training of the emission probabilities and the transition matrices is done using the Baum-
Welch or forward-backward algorithm [10], which is a dynamic programming approach that
updates the model parameters iteratively using a set of labeled training data. The HTK-
toolkit [39] provides two tools HRest and HERest that implement the Baum-Welch algorithm
which was used for training of the acoustic models in this work.

For training of the emission probability each state is first modeled by a single Gaussian
component, which is initialized with the mean and standard deviation of the acoustic feature
set of the training data. The HTK-toolkit provides the tool HCompV for this initialization step.
After several training passes, in which the emission probabilities are updated with the Baum-
Welch algorithm, the single Gaussians are split into two identical components and retrained.
The splitting and retraining is repeated until the desired number of mixture components is
reached. The update of the HTK-model definitions to alter the number of Gaussian mixtures
per state was done with HHEd, which can also be used to update the parameters for state-tying
when triphone models are derived from monophone models.

In this work both monophone and triphone HMM acoustic models were trained and evaluated
on two small vocabulary recognition tasks: a command word task and a connected digits task.
In addition whole word models were trained for the connected digits task. The recognition
performance of the acoustic models was evaluated on data from the dysarthric speakers and
an unimpaired reference speaker.

3.2.1. Speech sources

The HMM-based speech recognizers were trained from different speech sources using speech
data from both impaired and unimpaired speakers. For the SI-models a large database contain-
ing speech data from 1000 unimpaired speakers was used. SD-models were trained as well from
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category category type samples/speaker

B isolated digit 2
10-digit sequence 1

C connected digits (4-16 digits/sample) 4
N natural number 1
M money amount 2
Q yes/no 2
D dates 3
T times 2
A application words 6
E word spotting phrase with one embedded application word 1
O directory assistance names 7
L spellings (words and names) 3
W phonetically rich isolated words 4

S, Z phonetically rich sentences 12
Y speaker specific material 7

Table 3.1.: Speech data recorded for Speechdat(II)-AT ordered by categories[1].

data recorded from five male speakers suffering from dysarthria and an unimpaired reference
speaker.

Speechdat(II)-AT-database

The Speechdat-database contains A-law coded speech data from 1000 speakers and is balanced
in gender (544 male/456 female speakers). The recordings have a bandwidth of 8 kHz and
were collected over fixed telephone network. A detailed documentation of the database can be
found in [1].

Each participating speaker received a data-sheet with different reading tasks and questions.
A free telephone number stated on the sheet could be called by the speaker to record the data.
Speech samples of different categories where collected along with speaker specific demographic
data, such as age and native language. Details about the categories and number of recordings
per speaker can be found in table 3.1. Almost all speakers can be considered to have Aus-
trian German as native language. The distribution of speakers among age groups is shown
in Table 3.2. The documentation contains no information if any of the speakers suffer from a
speech impairment.

A lexicon is also included in the database which contains all words that occur in the speech
samples including one phonetic transcription per word. The lexicon is based on an ‘existing
hand-corrected lexicon by Philips Speech Processing’[1]. The phones were coded in SAMPA-
symbols. The complete phone set and the corresponding IPA-symbol can be found in table B.1
and table B.2 in appendix B. The transcription of the recorded data was done orthographi-
cally. In addition special labels were used to mark truncated utterances, mispronunciations,
background noise, hesitations [fil] and nonverbal speaker sounds [spk].

Dysarthric speaker data

The speech samples from five dysarthric speakers were collected in a living room environment
using a laptop and a headset. The selection of the speakers as well as the recordings were done
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Age Group Count Percent

0-15 15 1.5
16-30 444 44.4
31-45 328 32.8
46-60 184 18.4
61-99 29 2.9

Table 3.2.: Age distribution among speakers from the Speechdat(II)-AT[1].

by members of the Simon project [31]. The age of the speakers at the time of the recordings
varied between 17 and 38 years. This age group is also well represented in the Speechdat-
database (see table 3.2).

All recordings were stored as 16bit WAV-files with a sampling rate of 16 kHz. During the
recording process each sample was first read to the impaired speaker who then repeated it.
Unfortunately this method lead to minor distortions in parts of the speech data due to audible
whispering. The recordings of the reference speaker were made under similar conditions.

Sessions of three different data sets were collected from all speakers:

• 69 command words (5-16 sessions/speaker)
• 100 connected digits (1 session/speaker)
• 100 rhyme-test words (1 session/speaker)

The command words contain 69 German words suitable for doing simple tasks on a computer
such as listening to music and doing basic calculations. The first idea was to use the list of
application words from the Speechdat-database (see table 3.1), but this words seemed to be
mainly selected for control of an answering machine and therefore were not suitable for this
task. Consequently the words were selected manually and include e.g. ‘abspielen’ (play),
‘hinauf’ (up) and ‘Hilfe’ (help). The complete list of words can be found in Appendix B.2.2.
As most of the sessions from this set were used for training of SD HMM-models, the words
were also selected with the intention to cover all German phonemes. However, it turned out
that the Vowel /E:/ (as it appears e.g. in the German word ’spät’ [SpE:t] (late)) occurs in none
of the words.

The total number of command words sessions recorded for each speaker is shown in table 3.3.
From the collected command words sessions of each speaker one was defined as development
set for acoustic adaptation of the SI-models and one as test set. The remaining data was used
to train SD-models for speaker M000, M002 and M063. For M066, M067 and M068 only 5 sessions
were available in total and three sessions were considered as not enough to train an SD-model.
For M063 six complete sessions were available. In 10 other sessions two words were missing
while other words were recorded more often (up to 19 samples). In total 1091 command words
samples were available from M063 (between 6 and 25 per word). All samples of the incomplete
sessions were added to the training set while the development set and test set were each selected
from the six complete sessions.

The connected digits set contains 100 randomly generated four-digit-sequences. The com-
plete list that was recorded from all speakers can be found in appendix B.2.1. Of these sequences
80 were defined as training set for SD HMM-models while the remaining 20 were split into a
development and test set containing 10 digit sequences each.

For the rhyme-test words one word from each of the 100 ensembles of the Sotschek rhyme-
test which will be described detail in Section 4.1 was selected and recoded by all speakers.
This data was used for evaluation of both the SI-models and SD command word models and



16 Chapter 3. Speech recognition system

# train- # dev- # test-
Speaker sessions sessions sessions # sessions # samples

M000 4 1 1 6 414
M002 8 1 1 10 690
M063 4a 1 1 6 414 (1091)
M066 3 1 1 5 345
M067 3 1 1 5 345
M068 3 1 1 5 345

aplus additional data

Table 3.3.: Recorded command word sessions for individual speakers.

as development set for the lexical adaptation tasks.

Two lexica were developed for the command words and the rhyme-test respectively. As
isolated digits are part of the command words no separate lexicon was needed for the connected
digits. The phonetic transcriptions of the words in both lexica were mainly taken from the
Speechdat-database lexicon and use the same set of SAMPA-symbols. For words that were
not included in this lexicon, as it was the case for many of the rhyme-test one-syllable words,
the transcription was derived from related words or parts of longer words from the lexicon. If
no matching word could be found a proper Austrian-German transcription was selected from
the larger ADABA-lexicon [21].

3.2.2. Monophone and triphone model training

Monophone and triphone SI and SD acoustic models were trained from the previously described
speech sources based on the Speechdat reference recognizer (Refrec0.96) [16].

SI-models

The scripts from the Refrec0.96 framework were used to train SI-models with two different
training sets: one model was trained on the full Speechdat-database and one using only the
connected digits subsets B and C (see table 3.1).

The training procedure implemented in the framework follows the steps of the tutorial of
the HTK-toolkit [39], but special preprocessing and bootstrap training was added as described
in [16]. First the Speechdat-database data is loaded and split into predefined training, devel-
opment and test-sessions. Speech samples with a transcription that includes a noise marker
different from [fil] and [spk] are automatically excluded. Before the extraction of the MFCC
components the speech samples are converted from 8bit A-law coding to 16bit linear cod-
ing with a short C-Program which is also part of the Refrec0.96 framework. Afterwards the
Speechdat-database lexicon is loaded, the transcriptions are converted from SAMPA-symbols
to HTK-SAMPA and a phone list is generated. The option of the framework to specify a
phonetic mapping to avoid the modeling of rare phonemes was used to map two rare phonemes
present in the Speechdat-database lexicon to other phonemes: /

>
dZ/ to /d S/ and /Z/ to /S/.

The main difference of the training procedure of the Refrec0.96 compared to the HTK-
tutorial is an initial bootstrap training step with reduced training data (only the phonetically
rich sentences described in section 3.2.1, detailed information about the phone statistics can be
found in [1]). The preprocessing aims to remove samples with wrong or empty transcriptions.
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Monophone models are initialized with the global mean and average of the training data and a
3-state HMM silence model as well as a 1-state HMM for modeling of short pauses are created.
The state of the short pause model is then tied to the emitting state of the silence model as
described in the HTK-tutorial. After 2 re-estimation steps a realignment of the training data
is performed using the Viterbi Algorithm and speech samples that could not be aligned are
excluded, while for the remaining data another 2 re-estimation steps are performed. Then
the number of Gaussian mixtures that model the emission probabilities of the HMM-states is
stepwise increased to 2, 4, 8, 16 and 32 GMMs per state followed by two re-estimation steps
after each change. The 32 GMM monophone model is used for realignment of the whole training
data to remove outlier utterances. A new prototype HMM is initialized with the realigned data
and training of the monophone and triphone models is started from scratch following the steps
described in the HTK-tutorial. For the triphone models the clustering of the states is done
using decision tree with a question set included in the Refrec0.96 framework that was designed
to support multiple European languages [16]. For both monophone and triphone models the
number of GMMs per state is stepwise increased to 32 GMMs per HMM-state.

SD-models

The SD monophone and triphone models were trained using the recorded command words and
the connected digits from the dysarthric speakers and the reference speaker as training data.

The scripts of the Refrec0.96 [16] were adapted for training of the models. A new prepro-
cessing step was implemented to load both the lexicon and speech data from the dysarthric
speaker-database. The HTK configuration parameters had to be changed as well to support
WAV files and the conversion of the speech data before the feature extraction step was left
out, as the speech data was already coded linearly. The processing of the lexicon needed no
changes, as all lexica use the same format. The phonetic mapping between the vowels /E:/
and /E/ was added to the predefined list of mappings to avoid errors in the recognition tasks,
as the vowel /E:/ is not included in the command words training set (see Section 3.2.1), but
occurs in the rhyme-test test set.

Only small changes were applied to the training algorithm. The bootstrap training was used
as well for the dysarthric speakers to exclude distorted samples from training. But due to the
small amount of training data available for the SD-models the initial training step was also
done with the whole data available. However, only in case of M063 samples were excluded from
training. The realignment step was done with the model using 2 GMMs to model the emission
probability per state. Monophone and triphone HMM-models with up to 16 GMMs per HMM
were trained and evaluated.

3.2.3. Whole word model training

For the connected digits task SI and SD whole word models were trained as well. The reference
recognizer [23] used for the work-items 007 and 008 of the AURORA project from the ETSI
(European Telecomunication Standard Institute) DSR (distributed speech recognition) working
group was therefore adapted to work with the same speech sources as for the monophone and
triphone models. The feature extraction step was also changed, as the reference recognizer uses
a separate front-end for feature extraction. For this work the MFCC-vectors were extracted in
the same way as for the SD monophone and triphone models.

The training procedure was left unchanged. For each word a left-to-right HMM-model with
16 states was used. The high number of states was used in the original setting because of
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the noisy environment. Related works have shown that a high number of states also increases
recognition performance on dysarthric speech, e.g. in [28] whole word models with 24 states
were used on a 57-word task containing phonetically rich Spanish words.

The HMM-states are initialized using the global mean and average of the train data. In
addition a 3-state silence model and a 1-state short pause model were defined and added to the
HMM set. The center state of the silence model is tied to the state of the short pause model.
After 3 re-estimation steps the number of GMMs per state for the word and silence model
is stepwise increased using seven re-estimation steps after each change. First only the silence
model is increased to 2 GMMs per state. In the second step the word models are increased to
2 GMMs per state while the silence model is also increased to 3 GMMs. In the third and last
step the word models are increased to 6 GMMs per state and the silence model is increased to
3 GMMs.

3.3. Acoustic adaptation

The general goal of acoustic adaptation is to optimize a trained speech recognition system like
shown figure 3.1 for a new speaker using the same language and pronunciation models. Speaker
adaptation can be done in supervised fashion with a data set with known transcriptions or in
an unsupervised fashion were the transcription of the adaptation data is estimated.

Acoustic adaptation methods can be divided into two groups [15]: speaker normalization
where the observation vectors of the new speaker are normalized for a closer match to the
acoustic model and model adaptation techniques in which the parameters of the acoustic
model are optimized to match the observation vectors of a new speaker. Two model adaptation
approaches which are commonly used and covered in more detail in the following sections are
MLLR and MAP adaptation.

A popular speaker normalization technique is vocal tract length normalization [38] where
the frequency axis is rescaled to compensate differences between the speakers using frequency
warping methods to estimate the scaling factor. For an unimpaired speaker the improvement
of the word error rate (WER) using this is method can be expected to be around 10%. This
method has also been applied to dysarthric speech in [28] using HMM whole word models with
24 states per word and 1 Gaussian component per state to model the emission probability.
The 57 word Spanish corpus used for this work was described previously in section 1.4. For an
SI-model trained from unimpaired speakers the average reduction of the WER on dysarthric
speech reached up to 11% using vocal tract length normalization, while for an SI-model trained
from dysarthric speakers the average reduction was even higher reaching up to 17%. In this
work adaptation using vocal tract length normalization is not covered in further detail, as
no experiments were made in that direction. Instead this work focuses on adaptation of the
acoustic model parameters and adaptation on lexical level.

3.3.1. MAP

MAP adaptation updates the mean vectors of the emission probability distributions of the
HMM-states as the ‘weighted sum of the SD observation vectors ot, regularized by the addition
of a regularization constant λ’[6] times the prior mean vector µ:

µ̂ =
λµ+

∑
t γ(t)ot

λ+
∑

t γ(t)
(3.3)
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The value for the bias estimate λ between the mean vectors of the data and the prior
is typically between two and twenty [38]. ‘γ(t) is the probability of the Gaussian at time
t’[38]. It has been shown that the MAP estimate converges to the maximum likelihood (ML)
estimate when the amount of adaptation data increases towards infinity. However, standard
MAP adaptation is a local approach and only updates the HMM-parameters that are observed
in the adaptation data. In this work the data sets evaluated on the acoustic models do not
always share the same set of triphones as present in the adaptation data, so MAP was not
used.

MAP adaptation has been successfully applied to adapt acoustic models to dysarthric speech,
e.g. in [29] where the average WER over 14 Spanish-children suffering from dysarthria was
evaluated on a 57 word vocabulary (see section 1.4). Acoustic adaptation was applied in
two steps on the 1-state SI-model with 16 GMMs. First, a task dependent adaptation was
performed using speech samples of the 57-word vocabulary uttered by unimpaired children,
then a second adaptation step was performed using three of the four recorded sessions of
the dysarthric speakers. Evaluations were done using a leave-out crossvalidation. The average
recognition rate over all speakers increased from 66.8% to 85.9% with 9 of 14 speakers achieving
a recognition above 90%. In a related work on lexical adaptation an acoustic model with 3-
states and 16 GMMs to model the acoustic likelihood was adapted with MAP which lead to a
decrease of the average WER over all 14 speakers from 31.96% to 16.2%.

3.3.2. MLLR

MLLR-adaptation is done by reestimating the existing mean vectors µ of the GMMs that
model the emission probabilities of the HMM-states using a linear transformation matrix W
that is estimated to maximize the adaptation data:

µ̂ = Wµ (3.4)

The transformation can either be applied globally or cluster-specific [6] where separate trans-
formation matrices are applied to smaller subsets of HMM-states that are part of the acoustic
model. In this case the states can be clustered using regression class trees. This method was
also used in this work using the tools provided by HTK.

The MLLR-adaptation of the means of the Gaussian mixture components was done in su-
pervised fashion using subsets of the speech data from the dysarthric speakers and the ref-
erence speaker for adaptation of the SI-models. Therefore it was necessary to downsample
the recordings from 16 kHz to 8 kHz and apply a POTS-band filter. This was done with a
MatlabTM script using functions from the VOICEBOX-toolbox Version 1.6 [2].

The same preprocessing steps as for training of the SD-models were used for loading the
speech data and for feature extraction. A forced Viterbi-alignment was performed using HVite

to align transcriptions to the data provided for adaptation. The re-estimation of the means
was done with HERest.

The whole word models were adapted to the new data set using one global transformation.
For the monophone and triphone models the adaptation process is implemented as two-pass
adaptation that follows the steps from the HTK-tutorial example [39] for MLLR-adaptation.
The Gaussian mixture components were clustered with a binary regression class tree using
the Euclidean distance between the means as measure for acoustic similarity. The number of
terminal leaf nodes of the regression tree was varied depending on the model type and task
between 10 and 40 nodes. The first split of each of the regression trees is used to separate
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the speech and non-speech sounds. A global transformation is estimated and used as input
transform providing better estimates for the second-pass transformation using the regression
class tree. The transformation based on the classes of the regression tree is done automatically
by HERest which uses a top down approach, generating transforms for all nodes with sufficient
data that are either leaf nodes or have children without sufficient data [39].

The Gaussian variances of the emission probabilities can also be transformed in a similar
way as the means. However, as this approach was not used in this work it is therefore not
covered in detail.



4. Lexical adaptation

For an unimpaired speaker the pronunciation of a word is influenced in many ways depending
on e.g. on the environment and the accent of the speaker. Also, e.g. read speech is pronounced
differently than continuous speech. Pronunciation variation also influences the recognition per-
formance of a speech recognizer [10]. The development of pronunciation dictionaries that allow
multiple pronunciations for words has improved recognition rates for several ASR applications.

This concept is also promising when applied to dysarthric speech, because as shown in
chapter 2 many speakers produce characteristic phone errors depending on the speech organs
affected by their impairment. If this information is extracted properly and corresponding
alternatives are added to the lexicon the recognition rate should increase. However, pronuncia-
tion variation might not overcome all aspects of dysarthric speech such as phonatory-prosodic
insufficiency.

In [35] an overview of several lexical adaptation approaches and examples of their imple-
mentations is given. The information about the mispronunciation can be derived from existing
knowledge or extracted directly from speech data, e.g. from incorrect recognizer outputs or a
confusion matrix [4, 20]. From this information new pronunciation variants can be generated
and added to the pronunciation dictionary. Possible approaches for pronunciation alternative
generation [35] are phonological rules, finite state transducers, neural networks, decision trees
and confusion matrices.

4.1. Generation of pronunciation alternatives

There are two major approaches how the information about pronunciation variation is created:
Knowledge-based approaches rely on existing sources such as pronunciation dictionaries and
general linguistic rules for pronunciation variation. In case of a dysarthric speaker a possible
source could e.g. be information provided by a speech therapist. Data-driven methods extract
the information about pronunciation alternatives directly for a given speech recognition system
and/or speech data. This is usually done by transcribing the utterances either manually or
with the speech recognizer.

A common data-driven method described in [3] is to extract pronunciation variants from a
given data set by phone recognition using phone bi-gram or tri-gram grammars as language
model. The result of the phone recognizer can then either be added directly to the lexicon or
it can be aligned to the baseform transcriptions from a lexicon for further formalization.

A phone recognizer was also used in [27] to find new pronunciations for words uttered by
dysarthric speakers. The output of the phone recognizer was added directly to the lexicon
as new pronunciation variant for the given word. With this method an average relative im-
provement of 17% on the WER on an SI-model trained from unimpaired speakers could be
achieved. However, in the same work a significantly higher average improvement of 49% could
be achieved using acoustic adaptation. A combination of both adaptation approaches lead to
a decline of the relative improvement compared to the acoustic adaptation.

Using a phone recognizer has the drawback that the recognition system has no lexical infor-
mation and is sensitive to distortions. Long pauses, hesitations, breathing sounds and stretched
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word SAMPA-transcription

Sicht s I C t
dicht d I C t
Gicht g I C t
nicht n I C t
richt r I C t
Licht l I C t

Table 4.1.: Example for a set of words from the Sotschek rhyme-test.

vowels that occur frequently in dysarthric speech can result in many insertions and therefore a
kind of noise is introduced in the pronunciation variant. Also an alignment of the recognized
phone sequence to the original pronunciation can be difficult when a lot of insertions occur. In
this work a different data-driven method is proposed to extract the pronunciation information
in a closed setting based on the recognizer results of the recorded speech-data of words taken
from the Sotschek rhyme-test.

4.1.1. Sotschek rhyme-test

The Sotschek rhyme-test [33] is a German rhyme-test which was originally developed to evaluate
the intelligibility of speech transmitted over radio channel. The test contains 99 sets of German
one-syllable words. The six words of each ensemble are phonetically different in exactly one
part of the syllable, 33 differ in the nucleus, 33 in the onset and 33 in the coda. For example
the set in table 4.1 contains six words with a different onset. The selected words are also
phonetically balanced. One more set was added manually to the rhyme-test containing the
affricate /

>
pf/ in the coda of the syllable. Most words contained in the test also exist in the

German Duden, although some, e.g. ‘Haff’ are not very common. The complete word list can
be found in table B.3 in Appendix B. The manually added ensemble is number 100.

With this test it is possible to extract potential substitutions without taking side noises too
much into account with the drawback that the detection of insertions and deletions is very
limited.

For the test set one word was selected of each ensemble, bound to three conditions:

• each word must not appear more than one time
• each onset/nucleus/coda should appear at least once
• the word should be common and easy to pronounce (which was not possible for all

ensembles)

Two types of lexical adaptation algorithms were evaluated based on the information about
phoneme confusions (substitutions, insertions and deletions) found for the dysarthric speakers
on the rhyme-test evaluation: phonological rules and FSTs. The phonological rules were
extracted from the phone output of the HMM-recognizer aligned to the reference transcription.
The weights of the FSTs were derived from the confusion matrix of the HMM-recognizer output
on the rhyme-test. Both approaches for pronunciation will be described in detail in the following
sections.
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4.2. Pruning

It turns out that having too many pronunciations in the dictionary reduces the recognition
rate as the words in the dictionary are more likely to be confused [3]. This is due to the nature
of the Viterbi algorithm that aims to return the best phone sequence not the best matching
word and ‘biases against words with many pronunciations, since the probability mass is split
up among more pronunciations’[10].

What has to be taken into account as well, especially when working with dysarthric speech, is
that a phone confusion can also be a result of some random irregularity in the individual speech
sample analyzed, e.g. through distortions like breathing sounds. As described in chapter 2 these
phenomena are known to be common in dysarthric speech.

This means it is eligible to add only the ‘best’ new pronunciations to the lexicon. There are
several approaches to rank a set of candidate pronunciations. Most of them are based on the
probability of the candidate phone sequence. From this ranking many simple pruning methods
can be applied to the list of ranked pronunciations:

• select the n most likely variants - with n being a predefined value
• select all variants with a probability higher than a threshold t
• discard all variants with a probability ‘less than some fraction f of the most likely

pronunciation’[3]

In this work the pronunciation variants generated with phonological rules were ranked ac-
cording to their probability. For pruning a hard as well as relative threshold was used.

Another possibility to rank a set of candidate pronunciations is based on the degree of
confusability. Pronunciation variants are only allowed to be confusable with other words in
the lexicon to a certain degree [4, 35]. The degree of confusability can e.g. be measured by
computing the likelihood for a phone sequence for each of the confusable word. A candidate
pronunciation is pruned e.g. if a predefined number of words is more likely for the phone
sequence than the input word. This pruning method was used in this work in combination
with FSTs.

Another method for pruning are confidence measures [4], were the pronunciation variants
are selected to maximize the confidence that a word is actually pronounced like the candidate
phone sequence according the acoustic model.

Also the similarity between the canonical transcription and a candidate phone sequence can
be used for pruning as measure for the accuracy gain [24].

4.3. Phonological rules

Phonological rules [3] are a formalization in linguistics to describe how a phone changes in a
certain context

A→ B |C D (4.1)

which simply means that phone A is replaced with phone B if A follows C and precedes D.
These rules can be derived from both knowledge-based and data-driven approaches and have
been used widely in research. In [35] a list of works using phonological rules can be found.
Especially for data-driven approaches it is important to consider that ‘a good phonological
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representation describes phonological alternatives with as concise, general rules as possible’[4].
So when using aligned phone sequences a certain abstraction level has to be introduced to
create a well matching rule set. In this work the vowels (see table B.2 for complete list) were
divided into the following three groups for abstraction:

• free vowels and diphthongs
• checked vowels
• schwa (@)

The consonants were grouped according to the manner of articulation in SAMPA:

• plosives
• phonemic affricates
• fricatives
• sonorants

The grouping of the phones in the phone set presented in appendix B corresponds mainly
to the grouping used for this approach, with the major difference that the diphthongs and free
vowels group were merged.

Rule
generator

reference transcription

Lexicon
generator

lexicon

Pruning

pruning factor

recognition
results

rules

statistics

new lexicon containing all pronunciation variants

pronunciation
variants

with assigned
probabilities

pruned
lexicon

Figure 4.1.: Lexical adaptation implementation using phonological rules.

Figure 4.1 shows the main steps used to generate new pronunciation variants with phono-
logical rules. First the recognition results of a certain HMM-model on the rhyme-test are
evaluated to extract a set of rules. This was done for each dysarthric speaker for the SD,
SI and the adapted SI-model with a data-driven approach to extract both the rule sets and
corresponding phone statistics from a given recognition result and a reference transcription.
For one dysarthric speaker (M002) a set of rules for each model was also designed manually. In
this case phone statistics were not taken into account.

The found rule set was applied to the canonical transcriptions of a given lexicon to generate
new pronunciation variants. In case of the data-driven approach the phone statistics are used to
calculate the probabilities of the generated pronunciation variants in the new lexicon. Based on
the probabilities two pruning methods are applied to discard unlikely pronunciation variants.

4.3.1. Manual rule generation

The rhyme-test evaluation results of the SD, SI as well as the adapted SI acoustic models
along with the corresponding reference transcription were used to extract phone confusions
with HRESULTS for speaker M002. The sound samples and the aligned transcriptions by the
recognizers were also analyzed with Wavesurfer, an open-source tool that supports sound vi-
sualization [32] and MatlabTM. This way the sound samples, along with the spectrogram and
the aligned HTK-transcriptions could be visualized giving a more detailed insight why the
particular phone confusions occur. The sound samples and aligned transcriptions of the ref-
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T A B / C D Description

S d l / * Vc Replace /d/ with /l/ before a checked vowel

S ts f / * Vc Replace /
>
ts/ with /f/ before a checked vowel

S N n / * Cp Replace /N/ with /n/ before a plosive
S i: aI / * Cp Replace /i:/ with />aI/ before a plosive
I p m p / * * Insert an /m/ before any /p/
I p p sp / * C Insert a short pause after /p/ before a consonant
I t sp t / + * Insert a short pause before /t/ except at the be-

ginning of a word

Table 4.2.: Examples of the manual rule set derived from the analysis SI triphone model the
format in which the rules are written.

erence speaker M000 were analyzed in the same way to compare the manner the phones are
pronounced differently by M002.

From this analysis the pronunciation of particular sounds by M002 could be identified as
reason for many confusions that occurred in the rhyme-test data. In other cases disfluencies
in M002’s speech caused confusions or deletions, so rules allowing short pauses within words
between certain phones were also introduced. Other confusions occurred due to distortions
caused by the rise of loudness in the voice of M002 at the beginning or end of a word which was
already described in chapter 2. These confusions were ignored in the manual rule generation
and showed the importance to implement pruning methods when rules generated by data-driven
methods are in use for generating pronunciation variants.

The rules found for each acoustic model were stored in a file. Each rule is written in one
line in the form ‘T A B / C D’. T defines the type of the following rule (S for substitution, I
for Insertion and D for Deletion). The context of the rule was generalized as far as possible, in
some cases it was possible to find more general groups than described in the previous section.
Examples for derived rules are shown in table 4.2. Rules of that form can then be read by
the lexicon generator used for generation of the pronunciation variants. More details about
findings during the analysis, as well as recognition results of the extended lexica can be found
in section 5.4.1.

4.3.2. Data driven rule generation

The data-driven rule generation is based on a given recognizer output and a reference tran-
scription. The aligned phone confusions generated by HRESULTS are parsed iteratively to find
all substitutions, deletions and insertions along with their phonetic context. The number of
occurrences of each phone from the label set in the test set #Ai is also determined based on
the reference transcription and is used for calculation of phone statistics. The probability for
each confusion between all phones Ai and Bj in a specific context P (Bj |Ai, C,D) is calculated
as

P (Bj |Ai, C,D) =
#(Bj |Ai, C,D)

#Ai
, Ai 6= Bj (4.2)

where #(Bj |Ai, Ci, Di) is the number of times phone Ai occurs in the phonetic context C D
in the reference transcription and is incorrectly recognized as phone Bj . For every confusion
between the phones Ai and Bj in a different context a separate rule is generated. To avoid
the generation of many rules for the same confusion with a low probability the context phones
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T A B / C D P (Bj |Ai, C,D) Description

D k / Cs $ 0.1111 k is deleted after a sonorant at
the end of a word with a proba-
bility of 11.11%

I g d r / ˆ Vc 0.2000 /g/ is replaced with d r at the
beginning of the word before any
checked vowel with a probability
of 20%

S C m / Vf $ 0.3333 /C/ is replaced with /m/ after a
free vowel at the end of a word
with a probability of 33.3%

S N n / Vc Cp 0.5000 /N/ is replaced with /n/ between
a checked Vowel and a plosive
with a probability of 50%

Table 4.3.: Examples for automatically generated phonological rules.

were grouped according to phonetic similarities, as described at the beginning of section 4.3.

The generated rules and their probabilities are written to a file in the same form as described
in the previous section, but in this case an additional column for the probability P (Bj |Ai, C,D)
is added. Table 4.3 shows some examples for automatically generated rules for speaker M002

based on the SI-model recognition results on the rhyme-test.

For the phone statistics the script also calculates the probability for the phone Ai to be
recognized correctly based on all confusions found for the phone

P (Ai) = 1−
∑L

j=1 #(Bj |Ai)

#Ai
, j 6= i (4.3)

where #(Bj |Ai) is the number of times phone Ai is recognized as any other phone Bj

from the label set containing L phones in total, with Bj 6= Ai. The list of phones and their
probabilities are written to a second file. Based on these statistics the probability of the
canonical transcription of a word pcanonical can be calculated as product of the probabilities of
each phone Ak contained in the transcription.

P (pcanonical) =
K∏
k=1

P (Ak) (4.4)

The calculations also have to take into account the special case in which a phone is never
recognized correctly. As the probability of the canonical transcription is the product of the
probabilities for each phone P (Ak) setting the probability of one phone in the label set to zero
would also cause the probability of any canonical transcription containing this phone to be
zero. Therefore in that case the calculation of the probability P (Bj |Ai, C,D) is modified from
eq. (4.2) to

P (Bj |Ai, C,D) =
#(Bj |Ai, C,D)

#Ai + 1
(4.5)

which is equal to the assumption that there is one imaginary correct recognition of phone Ai.
The probability for the phone Ai is then also modified to
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P (Ai) = 1−
∑N

j=1 #(Bj |Ai)

#Ai + 1
, i 6= j (4.6)

4.3.3. Lexicon generation

The generation of the lexicon was implemented independently from the rule generation. This
way both types of generated rules could be handled in the same way.

A given file containing a rule set is read line-by-line and for each rule a structure is stored
that contains the replacement phone Bj , as well as a Perl regular expression with the center
phone Ai and its generalized left and right context (C and D), e.g. the regular expression
for the second rule in table 4.3 look like this (i:|e:|E:|a:|o:|u:|y:|2:|aI|aU|OY)C($). In
case of the data-driven approach the probability of the rule is also added to the rule-structure.
All rule-structures are stored in a rule set @rules.

For the data-driven approach the probability of all canonical transcriptions is calculated as
in eq. (4.4) using the phone statistics computed together with the rule set. Both the canon-
ical transcription and its probability are stored in a structure @canonical pron to which the
phonological rules are applied.

Algorithm 1 shows a pseudo code that illustrates the generation of new pronunciation alter-
natives based on a given set of rules @rules and a canonical transcription structure
@canonical pron. The function returns an array of alternative pronunciations @alternatives
with each entry similar to the structure of @canonical pron which is also added to the array
as first entry alternatives[0].

The transcriptions stored in @alternatives are iteratively segmented into slices, starting from
the first phone, each slice containing the current center phone with its left and right phonetic
context C D. All rule structures that match the current center phone of the canonical
transcription are then loaded and the regular expressions are matched against the current
slice. If a rule matches the slice of the variant from @alternatives currently analyzed a new
variant is generated by copying the entry from @alternatives and exchanging the current
center phone with the new center phone stored in current rule.B. The probability of the new
pronunciation variant is calculated as

P (pnew) =
P (pprev) · P (B|Ai, C,D)

P (Ai)
(4.7)

where P (Ai) is the probability of the original center phone taken from the phone statistics
and P (wprev) is the probability of the transcription of the existing entry from @alternatives to
which the rule has been applied. This can be either the canonical transcription (alternatives[0])
or any variant already generated from it.

The same slice of each pronunciation variant stored in @alternatives is matched against
all regular expressions for the current center phone of the canonical transcription before the
next segment is analyzed. Consequently the segmentation of a new variant always starts at
the position of the phone after the one that matched the regular expression, as the center
phone of the current slice of the new variant does not match the center phone in the canonical
transcription after the application of the phonological rule.

In a final step the probabilities of the resulting pronunciation variants of the function
apply rules are normalized to sum up to 1 for each word in the lexicon. All transcriptions
and their probabilities are written to a new lexicon file.
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Algorithm 1 Application of a rule set to the canonical transcription of a word

1: function apply rules(@canonical pron,@rules,%phone rating)
2: push (@alternatives,@canonical pron)
3: @original phonemes = split into phones(canonical pron.transcription)
4: for i = 0;i <=length(@original phonemes);i = i+ 1 do
5: for all @alternatives do
6: @phonemes = split into phones(current alternative.transcription);
7: if i == 0 then
8: slice = @phonemes[i..i+ 1]
9: else if i == length(@phonemes) then

10: slice = @phonemes[i− 1..i]
11: else
12: slice = @phonemes[$i− 1..$i+ 1]
13: end if
14: @current rules=get rules for phone(@rules, original phonemes[i])
15: for all @current rules do
16: if match(slice, current rule.A, current rule.C, current rule.D) then
17: new pron.transcription = current pron.transcription
18: new pron.transcription[i] = current rule.B
19: if defined(phone rating− > @original phonemes[i]) then
20: @new pron.prob = current pron.prob·current rule.prob

%phone rating→{@original phonemes[i]}
21: else
22: @new pron.prob = current pron.prob · current rule.prob
23: end if
24: push( @alternatives,@new pron);
25: end if
26: end for
27: end for
28: end for

return alternatives
29: end function

The manually generated rules do not have assigned probabilities. Instead a fixed internal
value vp is assigned to each rule when a rule set without assigned probabilities is loaded.
In this case also the phone statistics are undefined and the value assigned to the canonical
transcription is set to 1. The computation of the pronunciation variants is done in the same
way as for the data-driven rules and the updates for the values stored along with the newly
generated transcriptions are calculated as

P (wnew) = P (wprev) · vp (4.8)

So in this case instead of using probabilities the fixed internal value can be seen as penalty for
any variation added to a given pronunciation. Due to the normalization of the pronunciation
variants of each word to 1 the canonical transcription has by definition the highest score. The
new variants to which one rule was applied score second best, in case that two rules were
applied the score is the third highest and so on.
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4.3.4. Pruning

Two different pruning mechanisms were implemented to reduce the number of generated pro-
nunciation variants from the data-driven rules. The first is a hard pruning threshold. From the
list of pronunciation variants all candidate transcriptions pcand having a normalized probability
below a certain threshold t

P (pcand) ≤ t (4.9)

are discarded. The canonical transcriptions and the remaining variants are written to a new
lexicon file.

The second method uses a relative threshold. From a set of candidate pronunciations pcand
for a word the one with the highest probability is selected and an individual pruning threshold
t for this word is calculated as

t = P (wcanonical) · f (4.10)

by multiplying the probability with a given pruning factor f . For each word only the candi-
date transcriptions fulfilling eq. (4.9) are added to the new lexicon.

The same pruning methods could also be applied to the manually generated rule set. But
in this case the pruning factor is not controlling the minimum probability, but the number of
allowed changes applied to the canonical transcription relative to the total number of generated
pronunciation variants. Because of the normalization the values assigned to each variant get
lower with the number of total pronunciation variants generated for the word. However, no
evaluations using that approach are presented in this work.

4.4. Weighted finite state transducers

In a simple way one can think of an FST-network as ‘a machine that reads one string and
generates another’[10]. Formally the FST is defined by the following parameters:

• a finite set of K states Q = {q1 · · · qk}
• a start state qs ∈ Q
• a set of final states ∈ Q
• a finite set of input symbols
• a finite set of output symbols
• a transition matrix between the states

There are two basic operations that can be applied an FST T that are useful in many
applications:

• Inversion of an FST T−1: The input and output symbols of the transitions are exchanged,
so the inverted transducer T−1 maps the output symbols to the input symbols of the
original FST T .
• Composition of two FSTs T1 ◦ T2: The resulting FST maps input symbols of T1 to the

output symbols of T2.

A weighted finite state transducer (WFST) is formally defined in the same way as an FST
with the addition that each transition a : b has an assigned cost c(a : b).

In this work a WFST was used to generate new pronunciation variants based on the ideas
from [4]. In this approach both the acoustic model and the language model are represented as
FSTs. New variants are generated by composition of the language model FST with the acoustic
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model WFST that holds the confusion information of the recognizer. The new variants are
evaluated regarding their confusability with other words and their gain in accuracy.

For evaluation of this approach for the dysarthric speakers an existing framework imple-
mented in [24] was used. The framework was left unchanged, only the configuration was
adapted. New pronunciation variants were generated and added to the existing lexica for the
SD, SI and adapted SI-models for the dysarthric speakers.

4.4.1. WFST representations

The acoustic model WFST C was built based on the confusion matrix generated from the
recognizer output of the rhyme-test. The input and output symbols of C are the L phones
from the label set of the acoustic model and two additional symbols to represent an insertion
and deletion. C has one single (input and output) state with weighted transductions between
all symbols in input and output set. The normalized confusion matrix Θ for a given speaker and
acoustic model was used to assign a weight to each transition between an input symbol ai and
any output symbol bj with i, j = 1 · · ·L+ 2 and N being the number of phones. The costs for
each transition c(ai : bj) were calculated from the confusion matrix entry of the corresponding
phones Θ[Ai, Bj ] as follows:

c(ai : bj) = − log Θ[Ai, Bj ] (4.11)

To avoid numerical problems because of the computation of the log-function Θ was modified
in two ways. To all entries of Θ a small offset (10−5) was added to avoid zero entries in
the confusion matrix. In addition if no sample of phone Ai was recognized correctly the
corresponding entry in the main diagonal of Θ was changed to Θ[Ai, Ai] = Θ[Ai, Ai] + 1.

An example for a small subset of an acoustical model WFST C with the weights for each
transduction c(ai, bj) calculated from the confusion matrix generated from the SI-model rhyme-
test recognition results of speaker M002 is shown in figure 4.2.

.:d/4.730
n:n/2.833
n:m/5.135
N:n/5.135
N:N/5.135
a:aI/5.828
a:a/3.264
a:a:/5.135
a::a:/3.631
l:n/5.828
l:l/2.995
l:s/5.828
b:b/3.883

0/0

Figure 4.2.: Example for an acoustic model WFST C for a small subset of phones.
The assigned weights for each transition are based on the rhyme-test
results from M002 on the SI-model.
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The pronunciation lexicon FST L models the transitions of words into phones. The translator
is built directly from a given lexicon with the words as input symbols and corresponding phone
sequences as output symbols. By inverting the lexicon transducer L a pronunciation model
FST P that translates phone sequences into words is generated. An example for a pronunciation
model transducer P is shown in figure 4.3.
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bald:.

Bahn:.

back:.

:n

baff:.

:a:

:t

Ball:.

:f

:E:

:k

:t

:l

:b

Bach:.

:x

:a

baet:.

Figure 4.3.: Example for a pronunciation model FST P translating phone sequences
into words from the rhyme-test vocabulary.

4.4.2. Pronunciation variant generation

For a given word FST wi, that consists of a single state with one transition path containing the
word, the canonical transcription can be found by composition with the lexicon transducer L.
By composition of the result with the acoustic model WFST C a phone network pcand is
generated.

pcand = wi ◦ L ◦ C (4.12)

This WFST contains the phones of the canonical transcription as well as the phone-level
confusions with the corresponding weights. As C contains transitions between all phones in
the label set the phone network pcand is pruned to discard unlikely transitions. An example
for a pruned phone network can be found in figure 4.4. It shows the result of the composition
of the word ‘Ball’ [bal] from the rhyme-test word list with the lexicon transducer FST L and
the acoustic model transducer C of the SI-model with the phone confusions detected for M002
of which a subset is shown in figure 4.2.

1

0

3

2

5

4

7/0

6
8/0

d/4.730

b/3.883

l/2.995

./0
n/5.828

l/2.995

s/5.828

d/4.730

b/3.883d/4.730

d/4.730

a/3.631

a/3.631

Figure 4.4.: Example for the pruned composition as described in eq. (4.12) for the
word ‘Ball’ from the rhyme-test word list and the confusion matrix FST C
from the Speechdat-database model evaluated on M002.
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t: /17.34

f: /17.34

l: /2.995

.:Bann/0

x: /17.34

.:Bahn/0

a:: /3.631

t: /5.828

a: /17.34b: /3.883

n: /5.828

.:Ball/0
E:: /17.34

k: /17.34 .:Bank/0

.:Bass/0

.:Bar/0

.:Bach/0

Figure 4.5.: Composition example for the composition of the possible pronunciation
variants pcand of the word ‘Ball’ with the lexicon FST P as described in
eq. (4.13) and the confusion matrix FST C from the SI-model evaluated
on M002.

By summing up the costs along the paths all possible phone sequences can be ranked. As
the canonical transcription would always have the lowest cost and therefore the best ranking
it is discarded.

4.4.3. Confusability score

The composition of the phone network pcand with the pronunciation model FST P translates
the phone sequences into words of the lexicon wconf :

wconf = wi ◦ L ◦ C ◦ P (4.13)

The returned words different from the input word wi can be considered as confusable words.
Figure 4.5 shows an example for the confusable words wconf resulting from the phone network
pcand of ‘Ball’ shown in figure 4.4.

By summation of the costs along each path the most likely words that are returned by the
phone network pcand can be determined. Again the canonical transcription has to be removed
before a ranking of the words can be done starting from the word with the lowest costs like
shown in figure 4.6. In this example the rank of the input word ‘Ball’ is 2, while the word
‘Bahn’ has the highest rank 1, which indicates that the most likely phone sequence generated
from pcand matches the word ‘Bahn’ better for the given acoustic model WFST.

The rank of the input word can be seen as confusability score. The higher the rank the
more confusable is the phone sequence and the more likely additional recognition errors are
introduced when the variant is added to the lexicon. In the used framework a minimum rank
of the input word can be configured for pruning of unsuitable variants. If the input word has
a rank lower than the confusability score no new variant is generated from the given phone
network pcand. The implementation of the calculation of the rank in the framework also handles
the case that words have an equal ranking: All words with a higher ranking than the input
word are assigned to a separate rank also when the costs are equal to an other word in the
ranking. The input words and all words with equal costs are assigned to the same rank, so in
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1
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2/0

5

4/0

6/0

/0

Bass/30.04

/0

Ball/24.22

/0
Bahn/13.34

Figure 4.6.: Ranking example for the composition of the possible pronunciation vari-
ants pcand of the word ‘Ball’ with the lexicon P as described in eq. (4.13)
and the confusion matrix FST C from the SD-model.

this case there is no influence on the confusability score.
During this work it turned out that the internal pruning factors are a critical factor for a

proper ranking of the candidate words. When the parameters are set too tight, it happens
that all returned words of pcand are pruned. In this case the script automatically sets the rank
of the phone sequence to a high value as no analysis of the actual ranking can be done. To
avoid this the internal factors were set to high values. In contrast for the graphs shown in this
section the pruning factors were manually set to lower values to achieve a reasonable size of
the graphs with representative contents.

4.4.4. Accuracy gain

The most likely phone sequence returned from the candidate phone network pcand is analyzed
regarding its accuracy gain. Using the values of the normalized confusion matrix from the
rhyme-test evaluation of the acoustic model the string edit distance between the canonical
transcription and the returned phone sequence is calculated, for the dysarthric speaker analyzed
as well as the reference speaker, based on the confusion matrix generated from the same acoustic
model evaluated on the rhyme-test.

The higher the difference between both string edit distances, the lower is the probability that
the same phone sequence would be generated by the reference speaker for this word and the
lower is the gain in general accuracy. If the difference exceeds a certain threshold the phone
sequence is discarded. For this work the gain in accuracy had to be set carefully, as the phone
sequences from dysarthric speakers do not necessarily have to be very likely for the reference
speaker.





5. Evaluation

The performance of SI and SD acoustic models with monophone and triphone subword model-
ing were evaluated on data recorded from the five dysarthric speakers as well as an unimpaired
reference speaker. Whole word models were evaluated on a small vocabulary connected digits
task. In addition the proposed adaptation approaches on both, acoustical and lexical level
described in chapter 3 and chapter 4, were evaluated and the changes of the recognition per-
formance of the different speech recognizers was analyzed and compared.

Perl scripts were implemented to evaluate a given acoustic model on a list of speech samples.
The loading of the speech data as well as the feature extraction was done in the same way as in
the training scripts. The methods from Refrec0.96 were again used for lexicon preprocessing.
The Viterbi-decoding of the speech samples was done using HVite from the HTK-toolkit [39].
The basic evaluations of the recognizer output were done using HResults, which automatically
calculates the recognition rate on both, sentence and word level given the reference transcription
of the test data.

To evaluate the SI acoustic models on the speech data recorded from the dysarthric speakers
it was necessary to downsample the recordings to 8 kHz and apply a bandpass filter.

Different task specific grammars were used as language model for each task. For the com-
mand word task and rhyme-test isolated word grammars were used while the connected digit
task was evaluated using a loop grammar. The Refrec0.96 framework provided functions to
automatically generate a proper grammar representation that can be interpreted by HTK from
a given word list.

5.1. Measures

For the command word and the rhyme-test evaluations the recognition rate on sentence level
and its changes through different adaptation techniques were of main interest. The recognition
rate on sentence level rs is calculated as

rs = 100− SER

= 100− S

Ns
· 100

where S is the number of sentences incorrectly recognized and Ns is the total number of
sentences in the corresponding test set.

For the connected digits task it was also useful to evaluate the results on word level, where
two different values of interest are calculated by HResults. The recognition rate on word level
rw is

rw = 100−WER

= 100− H − S −D
Ns

· 100

35
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where H is the number of sub-items (phones or words, depending on the configuration of
HResults) that occur in the test samples, D is the number of deletions and S is the number
of substitutions detected in the recognizer output. The recognition accuracy a also takes into
account the number of insertions I in the recognizer output

a = 100− Ns −D − S − I
Ns

· 100 (5.1)

The values for rs and rw are always between 0% and 100%, as the number of substitutions
and deletions cannot be higher than the number of words in the test set. In contrast the
accuracy a can also be negative when a high number of insertions leads to S +D + I > Ns.

HResults also generates other useful outputs such as the alignment of the reference tran-
scription to the recognizer output or a confusion matrix. This data could be used for further
evaluations.

For the adapted HMM models the relative improvement of recognition rate in comparison
to the baseline system was also of interest on both, word and sentence level. It is calculated
as

∆rs = rsadapt − rsbase (5.2)

in case of the improvement on sentence level and as

∆rw = rwadapt
− rwbase

(5.3)

in case of the improvement on word level. The improvement is a suitable measure to show
how well a particular adaptation method works, but the actual recognition rate achieved was
of major interest for most evaluations.

5.2. Connected digits recognition

In this evaluation the performance of SI and SD acoustic models for dysarthric speakers is
compared on a task containing only a very small vocabulary of 10 digits. For the impaired
speakers as well as the reference speaker SD HMM-models with monophone, triphone and
whole word modeling were trained using 80 recordings of 4-digit sequences (see section 3.2.1).
The SI-model used for this tasks was trained from the B and C sub-corpora of the Speechdat-
database which contain recordings of connected digit sequences of various length (see table 3.1).
Details about the training procedures for all model types can be found in section 3.2.2. The
trained acoustic models were evaluated using a digit loop grammar as language model.

The evaluation of the recognition rate of the different speech recognizers was done on word
level. The accuracy had to be taken into account as well to measure the recognition performance
because evaluations showed that all systems introduced a large number of insertion errors if the
p-parameter controlling the ‘word insertion log probability’[39] was not set to a properly low
value for the recordings of the dysarthric speakers. In some cases more than 25 insertions errors
occurred during the evaluation of the SI-recognizer on a test set containing only 10 utterances
(40 digits).

Figure 5.1 shows how the setting of the p-parameter influences the number of insertion errors
of both, the SI and SD triphone acoustic models for speaker M066. The utterance analyzed is
the connected digit sequence ‘zwo vier fünf eins’ (two four five one). The aligned transcriptions
shown in green are the recognizer outputs of the SI triphone model with two different settings
for p. The first row shows the recognizer output with p = 0 while the second row shows the
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result for p = −100. The transcriptions printed in blue are the recognizer outputs of the SD
triphone model trained for M066 with the same p-values used as for the SI-model.

The spectrogram clearly shows that the disfluences in the second and third word trigger
insertions in the SI-recognizer. The number of insertion errors is reduced from three to one
when a lower p-value is used. However, the disfluency in the second word still leads to an
insertion in that case. The same insertion error occurs in the SD-recognizer with p = 0, but
with p = −100 the sequence is recognized correctly.

broadband−spectrogram  (160−point−Hamming)

[H
z]

[s]

ts v o: f i: 6 f Y n f aI n s

1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

3000

4000

1 1.5 2 2.5 3 3.5 4 4.5 5

−0.5

0

0.5
time signal with aligned transcriptions

zwo neun null drei zwo eins <sil> eins

zwo null drei fuenf eins

zwo vier zwo fuenf eins <sil>

zwo vier fuenf eins <sil>

[s]

Figure 5.1.: The spectrogram of the connected digits sequence ‘zwo vier fünf eins’
uttered by M066 and a comparison between the labels assigned on word
level by the connected digit SI (green) and SD (blue) triphone recognizers
using two different values for the word insertion log probability p. In the
first and third alignment p = 0 and in the second and fourth alignment
p = −100. The SAMPA-labels of the phones in the spectrogram were
assigned manually.

The same sequence uttered by the reference speaker M000 and the aligned transcriptions of
the SI (green) and SD (blue) model with p = 0 is shown in figure 5.2. A comparison of the
duration of the digit sequences uttered by M000 and M066 shows that the utterance of M066 is
longer and vowels are more stretched. Looking at the aligned recognizer outputs for the first
digit ‘zwo’ [

>
tsvo:] an insertion error occurs in the SI-recognizer when p = 0 where most of the

stretched vowel /o:/ is replaced by a new digit. A comparison shows that the duration of /o:/
is about 1.5 times longer (∼ 0.75 s) than for M000 (∼ 0.5 s).

The final sound of the second word ‘vier’ [fi:5] is also stretched by M066. At the transition
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Figure 5.2.: The spectrogram of the connected digits sequence ‘zwo vier fünf eins’
uttered by M000 and a comparison of the labels assigned on word level
by the connected digit SI (green) and SD (blue) triphone recognizers
with the word insertion log probability set to p = 0. The SAMPA-labels
of the phones in the spectrogram were assigned manually.

between the front vowel /i:/ and central vowel /5/ there is a notable jump in the formant
structure. In contrast to M000 the formant structure of the final sound /5/ uttered by M066

is more constant. This indicates problems with continuous movements of the tongue during
the phone transition. In addition the tongue position during the final sound /5/ is higher and
more in the back, as the utterance sounds more like /2/.

The pronunciation of the third digit ‘fünf’ [fYnf] also leads to insertions in case of the SI-model
for p = 0. The utterance of the nasal /n/ is quite mute and sounds more like an /m/. In the
spectrogram the concentration to frequencies lower than 500 Hz typical for a nasal [17] is visible,
but the intensity is clearly weaker compared to the neighboring sounds or the utterance of M000.
There is also less measurable activity in the spectrogram for frequencies over 500 Hz compared
to M000. The last digit ‘eins’ [>aIns] is recognized correctly in all recognizer settings. One can
see from the formant structure that speaker M066 has less problems with the pronunciation of
/n/ after the vowel />aI/, as the intensity of the sound is higher and more activity could be
measured in the spectrogram for frequencies over 500 Hz.
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5.2.1. Parameter selection

For selection of the recognizer parameters possible combinations of acoustic models and p-
values were evaluated for each speaker on a development set containing 10 recordings. For the
monophone and triphone acoustic models the number of GMMs used to calculate the acoustic
likelihoods was varied between 2 and 16 GMMs during this evaluation. The acoustic models
were evaluated using p-values 0 ≥ p ≥ −150 for recognition. The selection of the acoustic model
parameters in combination with a good value for p was done manually. By observation of the
average values for the recognition rate rw and the accuracy a over the evaluated p-parameters
the best acoustic model for each speaker was determined. The model that performed best for
the majority of the dysarthric speakers was then selected along with a proper p-value.

In figure 5.3 the average number of insertion errors over the different p-values used for
the evaluated acoustic models with a different number of GMMs is shown for the dysarthric
speakers for both the SI and SD triphone models. The number of insertion errors was strongly
dependent on the individual speaker, but in general the number of errors decreased when
acoustic models with a larger number of GMMs per state were used. The increasing model
complexity leads to a reduction of the number of insertion errors. The number of errors that
occurred in the SD-model for all dysarthric speakers was lower than in the SI-model result for
the same speaker. Comparing the ranking of the speakers from the best to the worst result
between the SI and SD-model one can see that the best result is achieved by M067 and the
worst by M063 in both models. The relative ranking of M068 and M002 is also the same in
both models. Only M066 is ranked second worst in the SI and second best in the SD-model.
This is an evidence that the individual speaker characteristics have a general influence on the
recognition performance on HMM-recognizers.
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Figure 5.3.: The average number of insertion errors over the evaluated values for the
word insertion log probability p on the development set for the SI-models
with a different number of GMMs to calculate the acoustic likelihoods
for the five dysarthric speakers.

In general using a smaller p-value reduces the number of insertion errors. However, a trade-
off between fewer insertions and an increasing number of substitutions and deletions of correct
digit occurrences could be observed in some of the evaluated acoustic models. The effect was
present in almost all SI-models. An example for the number of errors over the different p-values
is shown in figure 5.4 for the SI-model with 16 GMMs evaluated on speaker M068. The main
reason for the strong trade-off in this case is that the large number of insertions that occur
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model #GMMs pref pdys
SI triphone 16 -5.0 -150.0
SD triphone 8 -5.0 -100.0
SI monophone 16 -5.0 -150.0
SD monophone 8 -5.0 -100.0
SI whole word 6 -100.0 -150.0
SD whole word 6 -5.0 -50.0

Table 5.1.: The selected parameters used for connected digits evaluation. For all
speakers an acoustic model with the same number of GMMs was used.
For the word insertion log probability p two different values were chosen:
one for the reference speaker and one for all dysarthric speakers.

with low p-values conceal errors in the alignment of the recognizer output. This effect was
observed less often in the evaluation of the SD acoustic models. On average the SD-models
with 16 GMMs introduced fewer insertions for some speakers, while the number of substitution
and deletion errors lead to a lower average recognition rate rw than for the 8 GMMs models. To
decide which model is more suitable in this case the highest and lowest p-values were excluded
from the average calculations. The new result favored the acoustic model with 8 GMMs which
was chosen for further evaluation.

In case of the SI triphone recognizer the best values for rw and a were achieved by the same
acoustic model in most evaluations, which was either the one trained with 8 or 16 GMMs.
When the lower p-values were ignored in the calculation of the average rw and a the acoustic
model with 16 GMMs had the best average performance and was selected.
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Figure 5.4.: Number of insertion, deletion and substitution errors over different num-
ber of GMMs for SI-models on development set for speaker M068.

Evaluation of the monophone models lead to similar observations. Both the SD-model with
8 GMMs and the SI-model with 16 GMMs had again the best performance and were selected
for further evaluation.

A summary of the acoustic models chosen and the setting of the corresponding p-value for
both the reference speaker and the dysarthric speakers is given in table 5.1. For the reference
speaker the parameter p was set to -5.0 for most models although for the SI whole word
recognizer it was necessary to choose a lower value of p = −100.0. For the dysarthric speakers
the best results were achieved with values of p ≤ −50 for all recognizers. The value for the
SD-recognizers could be set to a higher value than for the SI-recognizers.
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M000 M002 M063
model rw a rw a rw a
SI triphone 99.17 97.50 55.28 47.50 50.28 37.78
SI monophone 100.00 100.00 51.11 46.11 51.67 40.56
SI whole word 100.00 100.00 59.44 52.50 51.67 43.89

M066 M067 M068
model rw a rw a rw a
SI triphone 46.67 28.33 55.83 55.56 60.83 58.06
SI monophone 43.89 34.17 61.11 60.00 58.89 55.28
SI whole word 56.11 44.17 69.17 69.17 65.28 63.06

Table 5.2.: The recognition rate on word level rw and the accuracy a (both in %)
for SI-models evaluated on the connected digits data set.

5.2.2. Evaluation results

The selected acoustic models and parameters were evaluated on the connected digits for both
the SI and SD-models individually on a data set containing 90 recordings of each speaker as
the remaining 10 of the 100 recordings were used as development set for finding the parameter
settings as well as for adaptation of the SI-models. The SI-model could be tested directly on
the data set and results are shown in table 5.2. For the SD-model a 9-fold cross-validation was
used. The results of the cross-validation can be found in table 5.3.

For the reference speaker rw is above 95% for all models while there is great variation
between the results of the dysarthric speakers. In general the SD-models perform significantly
better than the SI-models for the dysarthric speakers which was expected, as the SI-models
were trained from unimpaired speakers. The recognition rates of the SD whole word models are
worse than for both the SD monophone and triphone models for all speakers evaluated including
the reference speaker. In general the SD monophone models have an equal or slightly lower rw
than the SD triphone models in the evaluations of all dysarthric speakers.

Comparing the SI-models with different subword modeling for M000 both the monophone
and the whole word model reached rw = 100%. The SI whole word model achieved the best
results for all dysarthric speakers. If the SI monophone or triphone model had the second
best performance varied from speaker to speaker and it could not be clearly determined which
model type is better in general from this evaluation.

The recognition rate of the SD-models was over 95% for four of the five dysarthric speakers,
while rw was below 70% for the SI-model evaluated on all dysarthric speakers, which is not a
very satisfying result.

5.2.3. Acoustic adaptation

To improve the recognition rate of the SI-models for the dysarthric speakers MLLR-adaptation
of the means of the GMM components modeling the observation probabilities of the HMM-
states was performed on a 10-digit development set as described in section 3.3.2. The triphone
models where adapted using 20 regression classes to cluster the states. For the monophone
models 10 regression classes were used. The whole word models were adapted using one linear
transformation for all states.

The adapted SI-models were again evaluated on the same 90 recordings. The results and
improvements achieved are shown in table 5.4. For M000 all models achieve rw = 100% after
adaptation and there are significant improvements for all dysarthric speakers. Comparing the
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M000 M002 M063
model avg. rw avg. a avg. rw avg. a avg. rw avg. a
SD triphone 99.72 99.44 97.78 94.72 71.39 57.22
SD monophone 100.00 100.00 96.67 91.94 70.83 41.39
SD whole word 97.22 97.22 87.78 76.94 61.11 28.06

M066 M067 M068
model avg. rw avg. a avg. rw avg. a avg. rw avg. a
SD triphone 95.83 94.72 99.17 97.50 95.83 93.89
SD monophone 93.61 88.89 99.17 94.17 94.44 90.56
SD whole word 82.50 61.94 95.28 86.67 81.67 76.94

Table 5.3.: The average recognition rate on word level rw and the average accuracy a
(both in [%]) over the 9-fold crossvalidation of SD-models with different
types of subword modeling on connected digits data set.

M000 M002 M063
model rw a ∆rw rw a ∆rw rw a ∆rw
SI triphone 100.00 100.00 0.83 79.72 78.89 24.44 75.00 73.89 24.72
SI monophone 100.00 100.00 0.00 81.11 79.72 30.00 72.22 71.39 20.55
SI whole word 100.00 100.00 0.00 79.44 78.33 20.00 61.67 61.39 10.00

M066 M067 M068
rw a ∆rw rw a ∆rw rw a ∆rw

SI triphone 83.89 82.78 37.22 94.17 94.17 38.34 91.11 91.11 30.28
SI monophone 76.39 74.44 32.50 92.22 91.94 31.11 91.11 90.56 32.22
SI whole word 71.39 70.56 15.28 93.06 92.78 23.89 87.50 87.22 22.22

Table 5.4.: The recognition results rw in [%] for the MLLR adapted SI-models on the
connected digits data set and the improvement compared to the baseline
results presented in table 5.2 and table 5.3.

adapted monophone and the triphone models the results of the triphone models are equal or
better than the results for the monophone models for all speakers except M002 after adaptation.
In case of the unadapted SI-model it was not clear which of the subword modeling types was
the better choice.

For the dysarthric speakers the adaptation of the SI whole word models does not lead to
improvements as high as for the monophone and triphone models. However, the improvements
are still significant in that case.

The measured accuracy shows that almost no insertions occur in the evaluations of the
adapted SI-models, as the difference between a and rw is always less than 3%. In contrast
in the evaluation the SI-model the difference between both values was only this low for M067

and M068 while the difference was greater than 4.5 % for the other dysarthric speakers (see
table 5.2). This shows that the slower speech and the stretching of the vowels in dysarthric
speech, which lead to insertions, could be learned well by adaptation of the acoustic likelihood
distribution of the SI-model.

In figure 5.5 the results of the adapted SI-models are compared to the SD-model results.
One can see that for most speakers the adapted SI triphone model is not able to achieve
equal or even better results than the SD-model. However, in case of M063 who had the worst
recognition rates among all speakers the adapted SI-models with all three types of subword
modeling achieve better results compared to the corresponding SD-models having seen only
1/8 of speech data from the speaker. The results for the monophone models are generally
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Figure 5.5.: A comparison of the recognition rate on word level rw between the
MLLR adapted SI-models (see table 5.4) on the connected digits data
set and the crossvalidation results of the SD-models on the same data
(see table 5.3).

slightly lower than for the triphone models. One can also see that the whole word models did
not perform as well as the other models evaluated for most speakers.

5.3. Command word recognition

The recognition performance of SI, SD and adapted SI acoustic models was evaluated and
compared on a second small vocabulary task containing 69 command words. Evaluations of
the same acoustic models were done as well on the Sotschek rhyme-test.

The total number of command word sessions available for training and evaluation varied
between five and ten complete sessions per speaker. In addition ten incomplete sessions from
M063 were available which were also used for evaluation. Details about the number of recordings
of the individual speakers can be found in section 3.2.1. The complete word lists for both sets
are available in Appendix B.2.

The SI-model was trained on the full training set of the Speechdat-database. Evaluation
was done for all speakers on all available recordings except one session per speaker, which was
excluded for acoustic adaptation. The total number of sessions evaluated on the SI-model
varied between nine and four complete sessions.

From the command words recordings SD-models were trained for the reference speaker and
two dysarthric speakers. For the remaining three speakers the total number of command word
sessions recorded was too small for training of an SD-model. During evaluation of the SD
acoustic model trained for M063 it turned out that at least parts of the incomplete sessions
of the recorded command words are distorted with background noise. Evaluation results also
showed that the order of the samples in the training-data had a significant impact on the
recognition rate. The recognition rate dropped when all complete sessions appeared before the
distorted sessions in the training file. Therefore the training samples were shuffled once before
training of the SD-model of M063, which helped to improve the recognition results.

For evaluation of the SD-models two approaches were used. As a large part of the command
words data set used to evaluate the SI-models had been used for training the SD-model a
leave-out crossvalidation was performed for M000 and M002. Each session from the extended
test set evaluated on the SI-model was used once for testing of an SD-model trained from the
remaining sessions. It was not possible to carry out a cross-validation in the same way for M063
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because the incomplete sessions could not be split into equal pieces containing a full command
set each. Therefore both the SI and SD-models were also evaluated on one single session of the
command words arbitrarily selected from each speaker, that was excluded from the test set of
the SD-models.

All acoustic models were evaluated using an isolated word grammar as language model.
Therefore the recognition rate was measured on sentence level in contrast to the connected
digit evaluation.

5.3.1. Parameter selection

Like for the connected digit evaluation the acoustic models best suitable for the task were
selected in a first step. The HMM-models trained with a different number of GMMs for
estimation of the acoustic likelihoods were therefore compared. Figure 5.6 and figure 5.7 show
the individual recognition results for the SI and SD-models, respectively. The results for the
reference speaker M000 on the SI-model were around 90 % in all evaluations, while all results
for the dysarthric speakers were below 40%. To visualize the results achieved for the dysarthric
speakers in a proper scale the results for M000 were excluded from figure 5.6.
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Figure 5.6.: The recognition rate rs over the SI-models with a different number of
GMMs to estimate the observation likelihood evaluated on the command
words data set for both monophone and triphone subword modeling.

For the SI monophone models the recognition rate rs for M000 was between 86% and 89%
with the best result achieved by the model with 16 GMMs. For the SI triphone models rs was
between 95% and 98%. The best result for the triphone models was achieved with 4 GMMs
followed by the model with 16 GMMs. However, the difference between both results was less
than 0.3%. Like in the connected digits recognition task the SI triphone models are performing
very well for the reference speaker without any adaptation.

Looking at the overall results for the dysarthric speakers on the SI-models with different
number of GMMs rs tends to increase with the model complexity for both monophone and
triphone subword modeling. Both, monophone and triphone models with 16 GMMs were
used for further evaluation for all speakers, as they achieved the best results for four of the
five dysarthric speakers evaluated. Only for M063 the triphone model with 8 GMMs achieved
better results than the model with 16 GMMs. The evaluation of the monophone model on the
speech data of M063 showed that the model with 2 GMMs performed best and the model with
16 GMMs had the worst recognition rate, but the difference between the two results was less
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than 1%.
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Figure 5.7.: The recognition rate rs of the SD-model on the command words data set
for monophone and triphone subword modeling with a different number
of GMMs to estimate the observation likelihood. The solid lines show the
result rs on the predefined test session (see section 3.2.1) while the dashed
lines show the average crossvalidation results avg.rs on the command
words data set also used for evaluation of the SI-models.

The SD monophone models trained for M000 achieved the best results on the command words
test set as well as for the cross-validation using 8 GMMs to model the emission probability.
All SD triphone models trained for M000 achieved 100% recognition rate on the test set. The
best crossvalidation results for the triphone models are rs = 99.71% for the acoustic models
with 4 ≤ #GMMs ≤ 8. For M002 the SD monophone models with 8 GMMs achieved the best
results on the test set and for the cross-validation. The SD triphone models with #GMMs ≤ 4
performed best on the test set while the best crossvalidation result was achieved by the model
with 8 GMMs. In case of M063 the SD monophone and triphone model with 16 GMMs achieved
the best results.

Based on the results both, the SD monophone and triphone models with 8 GMMs were
chosen. The lower recognition rate observed for M000 and M002 for #GMMs ≥ 8 indicates that
the amount of training data available for the SD-models is not enough for proper training of
the emission probabilities of each state in the acoustic model.

5.3.2. Baseline results and interpretation

Table 5.5 summarizes the selected acoustic models and the corresponding recognition rates.
The values are used as baseline for comparison in all further adaptation experiments.

A comparison between the monophone and triphone model shows that the SI monophone
model achieved better results for three of the dysarthric speakers (M063, M066 and M068) on the
command words data set. For the reference speaker M000, as well as the dysarthric speakers
M002 and M067 the results of the triphone SI-model are better. In case of the SD-models the
triphone models achieved better or equal results than the monophone models for all speakers.

From the recognition rates rs achieved by the SI and SD-model one can see that rs is in the
same range in case for M000 with both types of the subword modeling used. Both monophone
models achieve lower results than the triphone models. This shows how well the SI acoustic
model generalizes to unimpaired speakers. The word that caused most recognition errors in
the evaluations of the speech-data of M000 on the SI-model was the word ‘simon’ [s>aIm@n].
The words most often aligned were ‘vier’ [vi:5] or ‘sieben’ [si:b@n], probably because of the
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M000 M002 M063

test set full set test set full set test set full set
model rs rs rs rs rs rs
SI monophone model 91.30 90.43 26.09 33.01 5.80 9.11
SI triphone model 98.55 97.68 30.43 30.27 2.90 9.30

rs avg.rs rs avg.rs rs -
SD monophone model 100.00 94.49 82.61 88.25 22.06 -
SD triphone model 100.00 99.71 88.41 92.11 31.88 -

M066 M067 M068

test set full set test set full set test set full set
rs rs rs rs rs rs

SI monophone model 21.74 17.75 15.94 22.83 37.68 36.23
SI triphone model 15.94 9.42 18.84 28.62 28.99 28.26

Table 5.5.: The recognition rate rs in [%] for the selected SI and SD-models evaluated
for the five dysarthric speakers and the reference speaker on a predefined
arbitrary command word test-session and on the command words data.
To evaluate the latter on the SD-models a cross-validation was used in
this case and the average rs is given. These results are used as baseline
for further evaluation.

schwa-sounds that occur in these words. In both, the SD monophone and triphone model
crossvalidation two complex words ‘Empfänger’ and ‘öffnen’ were not recognized correctly in
most folds among other words.

As in the connected digits task the unadapted SI-model is not able to achieve satisfying re-
sults on dysarthric speech. A wide range of errors occurred in the speech data of the dysarthric
speakers. Compared to the connected digits evaluation the results on the command word
recognition tasks are generally lower. One reason for this is the increased vocabulary size. In
addition the command words contain more complex phone combinations and multi-syllable
words of various length, while in case of the connected digits task the pronunciation of the
words is relatively easy and all digits contain only 3-5 phonemes per word.

The phone alignments of the recognizer outputs of the triphone acoustic models of two
command words ‘Prozent’ [prO

>
tsEnt] and ‘grün’ [grYn] are shown in table 5.6. The words were

selected because the utterances of all dysarthric speakers of the two words in the corresponding
command words test sets were incorrectly recognized. A further analysis of the recognition
results on the command words data set for both words proved that the word ‘Prozent’ is
problematic for all speakers, as only one utterance of M002 and one of M068 were recognized
correctly in the evaluation of the SI-model. Four of the nine utterances of the word ‘grün’
uttered by M002 were recognized correctly and only one of the four utterances of M067 was
incorrectly recognized. For the other dysarthric speakers all utterances of the word were not
recognized correctly. Both words start with combinations of plosives and trills which seem to
cause problems. For example M063 and M068 do not utter the /r/ after /p/, which leads to a
confusion with the word ‘Pause’ [p >aUs@]. In case of M067 the recognition error in the utterance
of ‘grün’ is caused by a hesitation at the beginning of the word. Also the plosive /t/ at the
end of the word ‘Prozent’ is a potential source of error.

Like in the connected digit task the results of M063 are the worst in this evaluation. Also
the SD-model performs significantly worse for M063 than for M002 although the amount of data
used to train the acoustic model of M002 was smaller. One reason for the unsatisfying results
are the truncations of the words made by the speaker that were already mentioned in chapter 2.
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speaker model transcription
M002 SI-model LAB: p r o: ts E n t

REC: l a N z a: m

LAB: g r y: n

REC: d r aI

M002 SD-model LAB: p r o: ts E n t

REC: f E r g r ox: s ah n

LAB: g r y: n

REC: d r aI

M063 SI-model LAB: p r o: ts E n t

REC: p aU z eh

LAB: g r y: n

REC: l oe S eh n

M063 SD-model LAB: p r o: ts E n t

REC: l oe S eh n

LAB: g r y: n

REC: oe f n eh n

M066 SI-model LAB: p r o: ts E n t

REC: n U l

LAB: g r y: n

REC: z E n d eh n

M067 SI-model LAB: p r o: ts E n t

REC: l oe S eh n

LAB: g r y: n

REC: z E n d eh n

M068 SI-model LAB: p r o: ts E n t

REC: p aU z eh

LAB: g r y: n

REC: f Y n f

Table 5.6.: Some alignments of the recognizer output to the reference transcriptions
done by HResults of utterances of the words ‘Prozent’ and ‘grün’ of five
dysarthric speakers.
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A closer analysis of the data also showed that the phone alignments assigned by the SI-model
are mainly based on vowels and nasals that occur in the word. Substitutions by the recognizers
of the latter are often a better match to the actual utterance of the speaker than the phone
from the orthographic transcription of the word. Figure 5.8 shows the spectrogram and time
aligned transcriptions of the utterance ‘Prozent’ by M063 from the test set from which also
the recognizer outputs shown in table 5.6 were generated. From the manual phone alignment
one can see that the actual utterance is more or less a concatenation of several vowels. The
SI-model aligns the word ‘Pause’ mainly because of the presence of the vowels / >aU/ and /@/.
The SD-model aligns the word ‘löschen’, but only the last part of the alignment is visible as the
beginning of the word was aligned to a breathing sound that is not shown in the time window.
In addition the low quality of parts of the training-data appeared to have a certain impact on
recognition rate of the SD-model. In total it has to be doubted that any of the acoustic models
trained for the command word task are suitable for practical use in case of this speaker.
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Figure 5.8.: The spectrogram of the word ‘Prozent’ uttered by M063 and a comparison
between the SAMPA-labels assigned by the SI (green), and SD (blue) tri-
phone recognizers. The SAMPA-labels of the phones in the spectrogram
were assigned manually.
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5.3.3. Sotschek rhyme-test

The command word acoustic models described in the previous section were also evaluated on
the Sotschek rhyme-test. Like before an isolated word grammar was used for this evaluation,
but a separate grammar was generated for every ensemble, each containing only the 6 words
from the analyzed rhyme. The lexicon contained all words from all ensembles.

The baseline results for the Sotschek rhyme-test are shown in table 5.7. Compared to the
results on the command words rs is significantly lower for the reference speaker M000 for both
the SI and SD-models. In contrast to the previous evaluation the results of the SI-model were
also notably lower than for the SD-model. This shows that the test is suitable to point out the
weaknesses in the acoustic models.

model M000 M002 M063 M066 M067 M068

rs rs rs rs rs rs
SI monophone 74.00 47.00 21.00 39.00 52.00 51.00
SI triphone 65.00 46.00 27.00 31.00 53.00 47.00
SD monophone 82.00 64.00 26.00 - - -
SD triphone 80.00 72.00 38.00 - - -

Table 5.7.: The recognition rate rs in [%] on the Sotschek rhyme-test for both the SI
and SD-models on the five dysarthric speakers and the reference speaker.
These results are used as baseline results for further evaluations.

For the dysarthric speakers the results achieved by the SD-models trained from speaker
M002 are lower on the rhyme-test evaluation than for the command word task where results
of over 80% could be achieved. In contrast the recognition rates on the rhyme-test are higher
in the SI-model evaluations of all dysarthric speakers, as well as in the evaluation of the SD-
model trained from M063. These models achieved a very low recognition rate rs < 40% on the
command word task. The better results in this evaluation are very likely due to the smaller
vocabulary used in the rhyme-test evaluation.

A detailed error analysis of the recognizer output of the SI triphone model was done in which
the relative errors that occurred in samples with a different onset eon, coda ec and nucleus en of
the syllable compared to the total number incorrect sentences S in the rhyme-test evaluation
were analyzed.

eon =
#errors in onset

S
(5.4)

ec =
#errors in coda

S
(5.5)

en =
#errors in nucleus

S
(5.6)

This evaluation showed that for four out of five dysarthric speakers the relative error was
the highest in rhymes with a different onset, followed by the relative error in ensembles with a
different coda eon > ec ≥ en. For speakers M067 and M068 the relative number of errors in the
coda and nucleus was the same. M063 was the only speaker were the distribution of the relative
error was different during evaluation of the SI-model with ec > eon > en. The relative number
of errors eon was in the same range for the reference speaker and the dysarthric speakers. In
the coda of the syllable M000 even had the highest relative error rate ec. But in contrast to the
dysarthric speakers the relative number of errors in ensembles with a different nucleus en was
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considerably lower for M000.

The same error analysis was done for the SD triphone models as well. In contrast to the SI-
models the results varied much more from speaker to speaker. For the reference speaker M000
the error distribution was en > eon > ec with ec ≈ 10%. For M063 also ec ≈ 25% was the
lowest relative error, while most errors were detected in rhymes with a different onset. In case
of M002 the distribution of errors ec > en > eon = 25% was the complete opposite compared
to M063.

5.3.4. Acoustic adaptation

The means of the emission probabilities of the SI acoustic models were adapted to match the
feature vectors of the individual dysarthric speakers using MLLR. The adaptation set for each
speaker contained one session of the command words (see section 3.2.1). The HMM-states of
both, the monophone and triphone acoustic models were clustered before adaptation using a
regression tree with 40 leaves. Details about the adaptation can be found in section 3.3.2.

Table 5.8 shows the recognition rate rs on the command word task and the rhyme-test of
the MLLR adapted acoustic models as well as the absolute improvement ∆rs compared to the
baseline results presented in table 5.5 and table 5.7.

For the reference speaker the adaptation of the triphone models does not lead to a high
improvement on the command word task, which is not surprising as recognition rates rs > 97%
were achieved in the baseline experiments. However, on the monophone model significant
improvements ∆rs > 7% could be achieved. Looking at the errors that occurred, the word
that was incorrectly recognized in most cases was the word ‘simon’ [s>aIm@n], which was again
confused with ‘sieben’ [si:b@n].

For all dysarthric speakers acoustic adaptation of the SI-model lead to significant improve-
ments for both types of subword modeling on the command word evaluations. However, the
recognition rates of speakers M002 and M063 are still well below the recognition rate of the SD-
models trained for these speakers. A comparison between the recognition rates of the adapted
SI and the SD-models evaluated on the command words test set of both speakers is shown in
figure 5.9.

An analysis of the recognition results of the adapted triphone models showed that the ut-
terances of the word ‘Prozent’ in the test sets of M066, M067 and M068 are recognized correctly
after acoustic adaptation. In case of M067 all utterances of the word in the command words
data set are recognized correctly after adaptation. More than half of the utterances of M066

and M067 are also recognized correctly, while two thirds of the utterances of M002 and all ut-
terances of M063 are still incorrectly recognized. For M002 and M063 the lowest improvement
was measured on the command words data set. Possible reason for the confusions are in case
of M002 the variation in the loudness of the utterances and in case of M063 the truncations
which were discussed and illustrated in both chapter 2 and section 5.3.2

The utterance of ‘grün’ remains problematic after adaptation and is only recognized correctly
in the evaluation of the test set in case of M067. However, when looking on the command words
data set evaluation for M067 it turns out that one other utterance of the same word is incorrectly
recognized after adaptation.

On the rhyme-test evaluation the improvement of the acoustic models was significant for
both, the dysarthric speakers and the reference speaker, although compared to the command
word evaluation the improvement on the rhyme-test was lower for the dysarthric speakers.
The rhyme-test evaluation shows that acoustic adaptation leads to an improvement of the SI
triphone model for the reference speaker M000 which cannot be measured in the command
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Command words test set
M000 M002 M063 M066 M067 M068

rs ∆rs rs ∆rs rs ∆rs rs ∆rs rs ∆rs rs ∆rs
triphone 100.00 1.45 68.12 37.69 13.04 10.14 50.72 34.78 62.32 43.48 68.12 39.13
monophone 98.55 7.25 66.67 40.58 5.80 0.00 44.93 23.19 46.38 30.44 71.01 33.33

Command words data set
M000 M002 M063 M066 M067 M068

rs ∆rs rs ∆rs rs ∆rs rs ∆rs rs ∆rs rs ∆rs
triphone 99.42 1.74 66.67 36.40 19.20 9.90 49.64 40.22 71.38 42.76 69.57 41.31
monophone 97.97 7.54 67.15 34.14 16.94 7.83 42.75 25.00 59.42 36.59 69.93 33.70

Sotschek rhyme-test
M000 M002 M063 M066 M067 M068

rs ∆rs rs ∆rs rs ∆rs rs ∆rs rs ∆rs rs ∆rs
triphone 77.00 12.00 56.00 10.00 33.00 6.00 39.00 8.00 66.00 13.00 49.00 2.00
monophone 87.00 13.00 67.00 20.00 25.00 4.00 43.00 4.00 70.00 18.00 53.00 2.00

Table 5.8.: The recognition rate rs in [%] after MLLR adaptation of the SI-models
evaluated on three different data sets and the improvement of the results
compared to the baseline results stated in the previous sections.
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Figure 5.9.: A comparison of rw between the MLLR adapted SI-models on the com-
mand words data set and the crossvalidation results of the SD-models
the same data set.
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words test.
The error analysis of the rhyme-test recognition results shows that acoustic adaptation of

the SI triphone model influences the relative error distribution in different ways depending
on the speaker. Only in case of M067 and M068 the total number of errors in rhymes with a
different onset, nucleus and coda is reduced. For the reference speaker M000 the total number
of sentence errors decreases, while the total of errors in ensembles with a different nucleus stays
the same, which leads to a higher relative error en. For M002 and M063 the total number of
errors decreases for samples with a different nucleus and coda, while more confusions occur
with samples with a different onset. In case of M068 the opposite is the case. For the relative
error the same ranking as for the unadapted SI-model eon > ec ≥ en applies to M000, M002,
M063 and M066. For M067 and M068 the relative error en is highest and eon the lowest. In both
cases MLLR-adaptation leads to a very high gain in recognition performance on syllables with
a varied onset, while the effect on the other rhymes is low in case of M067 and even negative
in case of M068.

5.4. Lexical adaptation evaluation

For each of the five dysarthric speakers the pronunciation dictionaries used for both, the rhyme-
test and command word task were adapted for a closer match between the transcriptions of
the lexicon entries with the utterances of the speakers. Two adaptation approaches, that were
proposed in section chapter 4 were used: phonological rules and FSTs. Adaptation was done for
the SI and SD baseline acoustic models (see section 5.3.2) from the command word evaluation
as well as the MLLR-adapted SI-models presented in section 5.3.4.

The phonological rules were derived from the rhyme-test evaluation of the acoustic models
using the approach described in detail in section 4.3.2. The new pronunciation variants were
added to the existing lexica and two types of pruning mechanisms were applied: hard and
relative pruning. For speaker M002 an additional set of phonological rules was derived manually
from the same rhyme-test evaluations and two lexica were generated based on these rules.

For lexical adaptation with FSTs the framework described in section 4.4 was used. New
variants were generated based on the confusion matrix of the rhyme-test evaluation as repre-
sentation of the acoustic model. The resulting lexica for each speaker contain the canonical
transcriptions as well as the new variants that achieved both the desired confusability ranking
and accuracy gain.

All newly generated lexica were stored in the same format as the base lexica. Evaluation of
the SI, adapted SI and SD acoustic models was done on both, the rhyme-test and command
word task in the same way as described in section 5.3 with the newly developed lexica as
pronunciation model. Isolated word grammars were again used as language model. All results
were evaluated on sentence level and compared to the baseline results from section 5.3.

5.4.1. Manually derived phonological rules

The general analysis of the speech data from the dysarthric speakers presented in chapter 2
showed that phone confusions could be found in the recordings of all speakers. Based on
the rhyme-test-evaluation of the acoustic models presented in section 5.3.3 the speech data of
speaker M002 was analyzed in more detail to derive phonological rules for the phone confusions
that occur in the speech of M002. Based on the derived rule set speaker specific pronunciation
variants were added to the existing rhyme-test and command words lexica for a closer match
between the pronunciation model with the utterances of M002.
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The following methods were combined to derive the phonological rule set:

• error analysis of the rhyme-test recognition results
• listening analysis of the speech samples
• evaluation of the spectrogram
• comparison of the findings to the reference speaker

In a fist step the recognition errors that occurred during the rhyme-test evaluation were an-
alyzed regarding their reproducibility. Therefore potential pronunciation variants were manu-
ally added to the lexicon for words in ensembles with the same phonetic context. The acoustic
models were then evaluated on the ensemble with the new lexicon to find out if the expected
pronunciation variant appeared in the recognizer output. For example in the SD acoustic
model a confusion between the vowel /a/ and the diphthong />OY/ occurred in ensemble 2 in
the utterance of ‘Ball’ [bal]. This error could be reproduced in ensemble 1, in the utterance
of ‘bald’ [balt] by adding variants with the vowel /a/ replaced with />OY/ for all six words of
ensemble 1 to the lexicon. Using this approach more possible phone combinations could be
evaluated in the ensembles than in the original setting and consequently also phone errors not
represented in the original ensemble could be identified. For example for three ensembles (81,
82 and 83) with a varied onset the evaluation of the SI-model resulted in three different phone
confusions for the plosive /t/. Further evaluation with the method previously described could
identify the phone confusion of /t/ with /n/ as the most likely in all three ensembles.

By combining the listening analysis with further analysis of the spectrogram and aligned
transcriptions using wavesurfer and MatlabTM additional variations could be found in the
speech data that were not obvious from the recognizer outputs. For example the insertion
of the nasal /m/ before the plosive /p/, that was already mentioned in chapter 2, is clearly
audible and also visible in the spectrogram, e.g. in the word ‘paus’ uttered by M002 which
is shown in figure 5.10. This insertion could also be observed in some of M002’s utterances
of command words, e.g. in the word ‘Prozent’, which was also identified as being one of the
words most often incorrectly recognized in the command word task (see section 5.3.2). In
ensemble 56 of the rhyme-test, in which the word ‘paus’ occurs, possible alignments for the
onset of the syllable are six consonants (/p/, /l/, /z/, /r/, /h/ and /g/) due to the closed
setting of the rhyme-test. The phone alignments of the acoustic models are therefore different
from the actual utterance of M002 and are shown in figure 5.10. The SI and adapted SI-model
both do not assign a label to the nasal before /p/, while the SD-model assigns the label /g/
to the first part of the utterance.

The better the models were adapted to M002’s speech the fewer rules could be clearly identi-
fied to be reproduceable, partly also because no comparable tests were available in the rhyme-
test data. In addition it has to be considered, that not all confusions in the recognizer output
are directly connected to a phone confusion made by the speaker. It has already been shown in
chapter 2 that speaker M002 tends to have certain variations in the loudness and the intensity
of his voice, which lead to recognition errors as well. The recording for ensemble 16 of M002

e.g. was completely unusable as the onset of the utterance is overdriven.

An additional source of error was the insertion of pauses between phones by M002 which is
typical for dysarthric speech [18], but not present in that form in unimpaired speech. Most
non-linguistically motivated pauses can not be detected in the rhyme-test-evaluation as the
pronunciation model only contains isolated words. In most cases these pauses lead to phone
confusions and deletions due to incorrect segmentations of the speech signals. In the example
utterance shown in figure 5.11 the SI and adapted SI-model do not segment the utterance of
‘bunt’ [bUnt] correctly as the /t/ is uttered after a long occlusion phase. The output of the
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Figure 5.10.: The spectrogram of the word ‘paus’ uttered by M002 and a compari-
son between the SAMPA-labels assigned by the SI (green), adapted SI
(yellow) and SD (blue) triphone recognizers. The SAMPA-labels of the
phones in the spectrogram were assigned manually.

recognizers, however, indicate a deletion of /t/ and a substitution of /n/ with /m/, although
/n/ is correctly pronounced by M002. Another example for a wrong segmentation was the
utterance of ‘flink’ [flINk] where M002 inserted a pause of about 0.4 s between /f/ and /l/. As
the ensemble is only varied in the coda of the syllable the phone label /f/ is aligned at an
incorrect position by all acoustic models and no phonetic variation is detected automatically
in this case. Segmentation errors occurred more often in the phone alignments of the SI-model
than in the adapted SI and SD-model. This shows that characteristics of the speech of M002,
like the long occlusion phase of a plosive, are learned to a certain extend not only by the
SD-model, but also by acoustic adaptation of the HMM-model parameters. Consequently, the
number of rules found during the evaluation of the speech data depended strongly on how
well the models were adapted to the dysarthric speaker. For the SI-model 20 rules could be
identified, while only 9 could be found for the adapted SI-model and just 6 for the SD-model.

The rule sets were applied to the rhyme-test and command words lexica. The resulting
pronunciation models were evaluated on the same triphone models as used in the command
word task. Table 5.9 shows the number of variants generated by the defined rule sets for
the different acoustic models, as well as rs for the different test sets. For the SI-model the
improvement on the rhyme-test was 6% which is around 2/3 of the improvement achieved
by acoustic adaptation of the same model. The results on the acoustically adapted SI-model
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Figure 5.11.: The spectrogram of the word ‘bunt’ uttered by M002 and a compari-
son between the SAMPA-labels assigned by the SI (green), adapted SI
(yellow) and SD (blue) triphone recognizers. The SAMPA-labels of the
phones in the spectrogram were assigned manually.

could be further improved by 4%. In contrast on the command word recognition task an
improvement of almost 3% could only be measured for the full command words set in case of
the SI-model. Compared to the improvement achieved with acoustic adaptation this is a poor
result. For the adapted SI-model rs was even lower than the baseline results of both command
word evaluations. Lexical adaptation of the SD-model lead to an improvement of 5% on the
rhyme-test data, but on the command word task only a small improvement < 2% could be
measured on the test set.

An analysis of the errors that occurred before and after lexical adaptation showed that the
adaptation of the pronunciation model changes the recognizer output on the command word
evaluation more than suggested by the recognition results. For example on the command words
test set evaluated on the SI-model eight utterances were recognized correctly after lexical adap-
tation while eight other utterances were incorrectly recognized, due to confusions with newly
generated resulting in no detectable changes in the overall result. This shows the importance
of a pruning strategy to control the confusability of the newly generated lexica.

5.4.2. Automatically generated phonological-rules

Phonological rules to model the pronunciation of the dysarthric speakers where generated
automatically based on the rhyme-test evaluation presented in section 5.3.3. The HRESULTS
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rhyme-test Command words
M002 test set full set

# vars. rs ∆rs # vars. rs ∆rs rs ∆rs
SI-model 1788 52.00 6.00 367 30.43 0.00 33.17 2.90
adapted SI-model 220 60.00 4.00 17 65.22 -2.90 64.73 -1.94
SD-model 133 72.00 5.00 16 89.86 1.45 92.11 0.00

Table 5.9.: The number of variants generated with lexical adaptation based on man-
ually derived rewrite rules for M002 for the SI, adapted SI and SD-model
along with the achieved recognition rates rs in [%] evaluated on both the
rhyme-test and command words as well as the absolute improvements
compared the baseline results presented in section 5.3.

# vars. M002 M063 M066 M067 M068

SI-model 55 71 70 50 55
adapted SI-model 46 69 60 35 53
SD-model 31 73 - - -

Table 5.10.: The number of automatically generated rules for each of the dysarthric
speakers for the SI, adapted SI and SD-models based on the Sotschek
rhyme-test recognition results.

alignments of the phonemes of the recognizer outputs to the reference transcriptions were used
to extract the rule sets. The probability for each rule and phone statistics of the rhyme-test
were computed as well to assign each pronunciation variant a probability, which could then
be used for pruning. Details about the algorithms used for generation of the rules and the
extension of the lexica can be found in section 4.3.

The phonological rules were applied to two different lexica containing the rhyme-test words
and the command words respectively. The lexica were adapted to each of the five dysarthric
speakers for the triphone acoustic models that were previously trained for the command word
evaluation in section 5.3. The number of rules generated for each speaker and model can
be found in table 5.10. The evaluation of the new pronunciation dictionaries was done in the
same way as for the manually derived phonological rules on the rhyme-test and command word
recognition tasks using isolated word grammars as language model.

In table 5.11 the number of generated pronunciation variants before and after pruning and
the recognition rate rs for the different acoustic models are presented for the different tasks.

For all speakers lexical adaptation lead to improved results on the rhyme-test evaluation.
The improvement varied strongly between 4% and 21% depending on the speaker and model.
This variation is caused by the different sizes of the rule sets generated, which depend on the
number of errors on the baseline results. For models with a high number of recognition errors
more confusions were detected from which more rules are generated. Applying more rules to
the development set leads to a higher improvement after adaptation. This can also be observed
in the mean and standard deviation of the recognition results compared to the baseline results.
Besides the average rs being higher after lexical adaptation also the standard deviation of the
results is lower. Comparing the rhyme-test lexical adaptation results without pruning to the
baseline results the standard deviation of the average recognition rate dropped from 12.7 to
7.5 for the SI-model and from 13.2 to 9.7 in case of the adapted SI-model results.

A comparison of the recognition errors that occurred before and after lexical adaptation
shows that in the rhyme-test evaluation many errors from the baseline results are corrected,
but also new confusions occur. To remove unlikely variants from the lexicon and reduce the
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rhyme-test Command words
SI-model test set full set
speaker pruning factor # vars. rs ∆rs # vars. rs ∆rs rs ∆rs
M002 no pruning 1196 60.00 14.00 65 27.54 -2.89 27.21 -3.06
M002 hard pruning 0.01 891 59.00 13.00 56 27.54 -2.90 28.02 -2.25
M002 relative pruning 0.001 562 66.00 20.00 25 27.54 -2.89 27.21 -3.06
M063 no pruning 1630 47.00 20.00 89 5.80 2.90 10.09 0.79
M063 hard pruning 0.007 1290 51.00 24.00 79 5.80 2.90 10.19 0.89
M063 relative pruning 0.01 1299 52.00 25.00 77 5.80 2.90 10.19 0.89
M066 no pruning 1904 50.00 19.00 101 18.84 2.90 11.96 2.54
M066 hard pruning 0.001 1814 51.00 20.00 101 18.84 2.90 11.96 2.54
M066 relative pruning 0.07 596 52.00 21.00 57 17.39 1.45 10.87 1.45
M067 no pruning 1140 65.00 12.00 66 15.94 -2.90 26.81 -1.81
M067 hard pruning 0.001 1105 65.00 12.00 66 15.94 -2.90 26.81 -1.81
M067 relative pruning 0.003 1048 65.00 12.00 62 15.94 -2.90 26.81 -1.81
M068 no pruning 1131 59.00 12.00 61 27.54 -1.45 27.54 -0.72
M068 hard pruning 0.003 1061 60.00 13.00 58 27.54 -1.45 27.54 -0.72
M068 relative pruning 0.005 1029 61.00 14.00 57 27.54 -1.45 27.54 -0.72

adapted SI-model
speaker pruning factor # vars. rs ∆rs # vars. rs ∆rs rs ∆rs
M002 no pruning 907 67.00 11.00 41 66.67 -1.45 63.93 -2.74
M002 hard pruning 0.003 860 66.00 10.00 41 66.67 -1.45 63.93 -2.74
M002 relative pruning 0.005 807 66.00 10.00 40 66.67 -1.45 63.93 -2.74
M063 no pruning 1630 49.00 16.00 82 15.94 2.90 20.18 0.98
M063 hard pruning 0.007 1230 51.00 18.00 71 15.94 2.90 20.18 0.98
M063 relative pruning 0.01 1221 52.00 18.00 71 15.94 2.90 20.18 0.98
M066 no pruning 1252 56.00 17.00 66 56.52 5.30 52.90 3.26
M066 hard pruning 0.001 1221 56.00 17.00 66 56.52 5.80 52.90 3.26
M066 relative pruning 0.09 428 56.00 17.00 35 53.62 2.90 52.54 2.90
M067 no pruning 445 74.00 8.00 30 62.32 0.00 70.65 -0.73
M067 hard pruning 0.003 426 74.00 8.00 30 62.32 0.00 70.65 -0.73
M067 relative pruning 0.003 428 74.00 8.00 30 62.32 0.00 70.65 -0.73
M068 no pruning 1056 63.00 14.00 45 71.01 2.89 69.57 0.00
M068 hard pruning 0.001 981 63.00 14.00 45 71.01 2.89 69.57 0.00
M068 relative pruning 0.15 153 64.00 15.00 14 69.57 1.45 68.48 -1.09

SD-model
speaker pruning factor # vars. rs ∆rs # vars. rs ∆rs rs ∆rs
M002 no pruning 563 80.00 4.00 25 89.86 1.45 91.95 -0.16
M002 hard pruning 0.05 273 78.00 6.00 20 89.86 1.45 91.95 -0.16
M002 relative pruning 0.08 221 78.00 6.00 14 89.86 1.45 91.79 -0.32
M063 no pruning 1332 44.00 6.00 64 31.88 0.00 - -
M063 hard pruning 0.08 427 46.00 8.00 32 31.88 0.00 - -
M063 relative pruning 0.09 483 48.00 10.00 37 31.88 0.00 - -

Table 5.11.: The number of variants generated for the rewrite rules with and without
pruning as well as the achieved recognition rates rs in [%] on both the
rhyme-test and command words evaluations along with the absolute im-
provement ∆rs compared to the baseline results presented in section 5.3.
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confusability two types of pruning were applied to the pronunciation variants based on their
probability: hard pruning and relative pruning. Both methods are described in detail in
section 4.3.4. The selection of a proper pruning factor was done on the rhyme-test for all
models and both pruning variants. The pruning factor was varied between 0.001 and 0.2 and
the value that achieved the best result on the rhyme-test evaluation of the individual speaker
was selected. If two factors achieved the same recognition rate the higher was selected for both
pruning methods, favoring lexica with more pruned samples. The selected pruning variant and
factor as well as the size of the lexica along with the achieved results on both, the rhyme-test
and command word task are shown in table 5.11 for all speakers. One can see that for the
majority of the speakers the results on the rhyme-test improved or stayed equal after pruning
was applied. Again after pruning some errors are eliminated in the rhyme-test evaluation by
the changes in the lexicon, while some new errors occurred.

Looking at the command words results the rules found do not seem to generalize well for most
speakers and acoustic models. Only the results of the SI and adapted SI-model evaluations
on the command words data set for speakers M063 and M066 show a small improvement. The
SD-model trained for M002 showed a marginal improvement on the command words test set
while the average cross-validation result was worse than the corresponding baseline result.
An analysis of the errors that occurred in the baseline and lexical adaptation results showed
that like in the evaluation of the manually generated rules lexical adaptation does lead to an
improvement and incorrect baseline results are recognized correctly after adaptation. But the
result is again deteriorated, as the confusability of the new lexicon was high. In total about
the same number of errors occurred because of confusions with newly generated variants.

Unfortunately, also the chosen pruning methods did not have a strong influence on the
recognition results on the command word evaluation. In most cases no change in the recognizer
output was detected after pruning although the number of pronunciation variants was lower in
the pruned lexicon. For example an analysis of the errors that occurred in the cross validation
evaluation of the SD-model of M002 showed that the recognition results after pruning only
change in one fold. Beside the fact the rhyme-test evaluations were the development set for
which the rules are optimized, another reason for the low results on the command words might
be the different number of syllables of the words in both sets. As the rhyme-test contains only
one-syllable words rules can only be derived automatically for three types of phone settings:

• consonant-vowel-consonant
• beginning of word - consonant - vowel
• vowel - consonant - end of word

Many of the command words consist of two or more syllables and mispronunciations or
pauses at the intersections are not present in the rhyme-test and cannot be reflected in the rule
set. In addition it could be shown in the manual evaluation of the phone alignments of speaker
M002 (see section 5.4.1) that not all utterances are segmented correctly during recognition,
which in case of automatic rule generation results in rules that model substitutions that are
not entirely correct.

A comparison between the number of pronunciation variants generated for speaker M002

based on the manual analysis and the automatic approach showed that for the SI-model in the
automatic approach a considerably lower number of variants was generated for the command
words lexicon. This is a result of the limited phone contexts possible in the rules. On the other
hand the number of generated variants is higher for the adapted SI and SD-model, as for these
models only very few rules could be developed during manual rule generation as confusions
could not be reproduced on other utterances of the speaker. In contrast this limitation did
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not apply to the automatic rule generation, but might lead to rules being generated based on
outlier utterances.

5.4.3. Finite State Transducers

The framework described in section 4.4 was used to adapt the pronunciation dictionaries of
the rhyme-test and command words to dysarthric speech. For the five speakers pronunciation
variants were generated based on the orthographic transcriptions in the lexica as language
model FST and an acoustic model WFST representing the phone errors of the confusion matrix
of the rhyme-test evaluation of the corresponding acoustic model. Evaluations of the lexica
were done in the same way as for the phonological rules on the command word and rhyme-test
recognition tasks.

The number of pronunciations added to the lexica and the achieved recognition results are
shown in table 5.12. Compared to the previous adaptation approach with phonological rules
the number of pronunciations added to the rhyme-test lexicon is significantly lower in the FST-
approach. This is caused by the general differences in both approaches. In the FST-approach
only one new pronunciation variant is generated per word. In addition in case of rhyme-test
words many generated variants are discarded because of the high confusability with other
words. The rhyme-test lexicon is per definition confusable, as every word differs from at
least five others only in one phone. In contrast the number of phonological rules created and
indirectly also the number of resulting variants is directly related to the number of recognition
errors that occurred on the rhyme-test. Therefore, the number of rules also decreased when
an acoustic model achieved better results on the rhyme-test, which resulted also in a lower
number of generated variants.

Another difference is that the FST-approach does not take into account the phonetic context
of a phone confusion, which overcomes the limitations of variant generation for the command
words described for the phonological rule approach in the previous section. Consequently one
pronunciation variant was added for almost all words in the command words lexicon for all
models in the FST-approach, as the orthographic transcriptions and generated variants of
most words are not likely to be confused. However, this does not change the fact that only
information about the three types of confusions described in the previous section are modeled
in the confusion matrix. To reduce the number of variants generated in the FST-approach the
FST framework allows the setting of the confusability score and the maximum difference of
the similarity measures between the canonical transcription and the generated pronunciation
variant for the dysarthric speaker and the reference speaker.

During the evaluation it turned out that the high improvements of the recognition rate on
the rhyme-test that were achieved with the phonological rules could not be measured in the
evaluation of the WFSTs. In most cases the evaluations of the new lexica showed that more
errors occurred than in the baseline results. However, it has to be considered that in the
previous approach the rules were built to match exactly the confusions that occurred in the
rhyme-test, in contrast to the WFST where the context of the confusion is not taken into
account. An analysis of the error outputs showed that in this evaluation like in the command
word evaluation of the phonological rules a high number of new confusions is the main reason
for the reduced recognition rate. This result was not expected as the confusability score was
designed to vote against variants that are easily confused with other words in the lexicon.

Although the rhyme-test evaluation did not lead to improvements on the evaluation of the
SI-model of the dysarthric speakers, the evaluation on the command words data set showed
marginal improvements for the speakers M066, M067 and M068. Compared to the improvement
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rhyme-test Command words
SI-model test set full set
speaker # vars. rs ∆rs # vars. rs ∆rs rs ∆rs
M002 259 39.00 -7.00 59 27.54 -2.89 28.99 -1.28
M063 197 24.00 -3.00 61 2.90 0.00 9.21 -0.09
M066 230 26.00 -5.00 61 15.94 0.00 10.87 1.45
M067 317 44.00 -9.00 65 20.29 1.45 29.71 1.09
M068 273 51.00 4.00 61 33.33 4.34 31.16 2.90

adapted SI-model test set full set
speaker # vars. rs ∆rs # vars. rs ∆rs rs ∆rs
M002 285 53.00 -3.00 60 66.67 -1.45 66.67 0.00
M063 165 33.00 0.00 60 13.04 0.00 20.47 1.27
M066 177 38.00 -1.00 58 50.72 0.00 49.28 -0.39
M067 402 61.00 -5.00 67 62.32 0.00 70.29 -1.09
M068 273 51.00 2.00 63 69.57 1.45 69.57 0.00

SD-model test set full set
speaker # vars. rs ∆rs # vars. rs ∆rs rs ∆rs
M002 347 72.00 0.00 61 92.75 4.34 91.95 -0.16
M063 428 38.00 0.00 63 31.88 4.34

Table 5.12.: The number of variants generated using WFSTs as well as the achieved
recognition rates rs in [%] on both the rhyme-test and command words
evaluations along with the absolute improvement ∆rs compared to the
baseline results presented in section 5.3.

resulting from acoustic adaptation these results are negligible. Again the reason for the small
improvement was the number of confusions that occurred after lexical adaptation. The SD-
models trained for M002 and M063 both achieved an improvement of 4.34% on the test set.
However, this result could not be approved in the cross-validation on the data of M002.

The main reason for the high confusability after lexical adaptation with the FST-approach
is that the entries of the confusion matrix from the rhyme-test evaluation are sparse. As the
confusion matrix is generated from only 100 test samples the differences between the entries are
too small to model a proper representation of the acoustic model in the corresponding WFST.
This is a general problem of the rhyme-test evaluation as used in this work. As described in
section 4.4 the confusion matrix contained a lot of entries that were zero, some even in the
main diagonal. Therefore, the confusion matrix had to be modified to be used for the task.
The introduction of a smoothing strategy for the confusion matrix as described in [20] could
lead to better results. It has been shown in section 5.3.3 that there is a correlation between the
number of errors that occurred in ensembles with a different onset, nucleus and coda for the
reference speaker and the dysarthric speakers. A possible smoothing strategy for the SI-model
could be based on merging the confusion matrix of a dysarthric speaker with a normalized
matrix generated from several unimpaired speakers. In this work the phonetic distance of the
new variant to the canonical transcription was evaluated against the phonetic distance of the
variants for the reference speaker M000, based on the corresponding confusion matrix of M000’s
rhyme-test evaluation which can also be considered as sparse. The normalized matrix from
several unimpaired speakers would also provide a more accurate measure for the pronunciation
accuracy. For the SD-model a possible strategy to increase the amount of data could also be a
leave-out training strategy as used in crossvalidation with evaluation passes on the rhyme-test
to generate more data for the confusion matrix.
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6.1. Summary

The evaluations in this work have shown that great improvements could be achieved in the
recognition performance of dysarthric speech on SI-models using acoustic adaptation. The
major advantage of adaptation methods like MLLR is that only very small sets of data of the
dysarthric speakers are needed. The recognition rate achieved on a small vocabulary connected
digits task exceeded 90% for two of the five dysarthric speakers evaluated. For one speaker
suffering from severe dysarthria the MLLR adapted SI-model even outperformed the SD-model
trained for this task. However, it could also be shown that acoustic adaptation cannot overcome
the differences of dysarthric and unimpaired speech for all speakers. In a command word task
using a 69 word vocabulary only a maximum recognition rate of 70% could be achieved with
acoustic adaptation. It also turned out that for one speaker the vocabulary from this task
was too demanding and neither an SD nor an acoustically adapted SI-model could achieve
satisfying results.

For all speakers mispronunciations due to their speech impairment were detected in the
recorded data and two data-driven approaches to model this information in the pronunciation
dictionary were evaluated: phonological rules and FSTs. It turned out that both approaches
lead to improvements as samples are recognized correctly after adaptation but also a lot of new
confusions occur that conceal the improvements or even lead to a negative result compared to
the baseline recognition system with the pronunciation dictionary containing only the ortho-
graphic transcriptions of the words. Several pruning strategies were applied, but the expected
improvement of the results could not be achieved. The most likely reason for this is insufficient
data, as both approaches derive the confusion information from a rhyme-test evaluation con-
taining only 100 single observations. In addition there is evidence that the confusions found in
the one-syllable rhyme-test words do not generalize well to the multi-syllable command words.

6.2. Outlook

The performance on the command word task could be improved significantly with MLLR
acoustic adaptation. However, the improvements are limited even if the whole training set is
used for adaptation. A further improvement of the results could be achieved by combining
MLLR and MAP-adaptation using the data from the training set of the SD-models, for which
the data of the three speakers M066, M067 and M068 also would be sufficient.

For the lexical adaptation it would be important to gain more information about the phone
confusions. This could either be done by recording more samples from the dysarthric speakers,
or by introducing a three pass rhyme-test where for each recorded word 3 ensembles are designed
in which the onset, nucleus and coda of the syllable is varied respectively. This way two times
more information could be extracted using the same number of recordings. In case of the
SD-model also a leave-out strategy like for crossvalidation could be used to generate more data
from the rhyme-test evaluation. Evaluations have also shown that the number of words in one
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ensemble might be too small to cover all possible phone confusions.
Further improvements for the lexical adaptation with FSTs could also be achieved, like

proposed in [20], by smoothing of confusion matrix of rhyme-test. This could be done with
the average confusion matrix of different unimpaired speakers.

Another idea would be to use a different rhyme-test setting for lexical adaptation, e.g. the
rhyme-test developed by Ziegler et. al., which ‘uses polysyllabics in addition to monosyllabics
and dispensed with infrequent words and inflected forms’ [40] to avoid pronunciation problems
resulting from the unfamiliarity of dysarthric speakers with the word. This rhyme-test might
also be a better match to the multi-syllable command words.
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A. Acronyms and Symbols

List of Acronyms

ASR automatic speech recognition
FFT fast Fourier transform
FST finite state transducer
GMM Gaussian mixture model
HMM hidden Markov model
HTK Hidden Markov Model Toolkit
IFFT inverse fast Fourier transform
IPA international phonetic alphabet
MAP maximum a posteriori
MFCC Mel-frequency cepstral coefficients
ML maximum likelihood
MLLR maximum likelihood linear regression
NN neural network
PCM pulse code modulation
PDF probability density function
POTS plain old telephone service
SAMPA Speech Assessment Methods Phonetic Alphabet
SD speaker-dependent
SER sentence error rate
SI speaker-independent
WER word error rate
WFST weighted finite state transducer

List of Symbols

# number of operator
/. . . / marker for the symbol of a single phone
γ(t) probability of the Gaussian at time t
◦ FST composition operator
T−1 inverse of an FST T
P (A) probability of A
P (B|A) conditional probability of B given A
µ mean value of a Gaussian PDF
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B. Lexicon

B.1. Phone label set

The label set of the acoustic models is based on the lexicon of the Speechdat(II)-ATdatabase.
Transcriptions are in SAMPA-coding using the German phone set published in [37] without
the rare phonemic affricate /

>
dZ/, which was mapped to /d S/ instead. In addition the phone

/R/ is transcribed as as lowercase /r/ instead of the uppercase /R/ used in [37]. For model
training the SAMPA symbols were converted to HTK-SAMPA. The complete phone set can
be found in table B.1 and table B.2.

IPA SAMPA HTKSAMPA
Plosives

p p p
b b b
t t t
d d d
k k k
g g g

Phonemic affricates
>
pf pf pf
>
ts ts ts
>
tS tS tS

Fricatives
f f f
v v v
s s s
z z z
S S S
Z Z Z
C C C
j j j
x x x
h h h

Sonorants
m m m
n n n
N N N
l l l
R r (R) r

Table B.1.: German consonants in
IPA, SAMPA and HTK-
SAMPA [37].

IPA SAMPA HTKSAMPA
Checked vowels

I I I
E E E
a a a
O O O
U U U
Y Y Y
9 9 oe

Free vowels
i: i: i:
e: e: e:
E: E: E:
a: a: a:
o: o: o:
u: u: u:
y: y: y:
2: 2: ox:

Diphthonges
>aI aI aI
>aU aU aU
>OY OY OY

Schwa
@ @ eh
5 6 ah

Table B.2.: German vowels in IPA,
SAMPA and HTK-
SAMPA [37].
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B.2. Word lists

B.2.1. Connected Digits

null drei acht zwo
null zwo neun sieben
zwo fuenf eins null
eins fuenf zwo sieben
fuenf zwo null fuenf
zwo acht fuenf drei
sechs zwo neun null
acht eins sieben zwo
drei vier zwo drei
sechs sieben sieben zwo
sechs eins acht sechs
fuenf vier zwo neun
vier sechs fuenf vier
null zwo sechs sieben
fuenf drei vier fuenf
neun zwo fuenf null
zwo neun zwo sieben
fuenf neun sechs acht
zwo vier neun zwo
zwo neun fuenf neun
zwo vier neun sechs
neun zwo neun sechs
sechs null eins zwo
neun acht fuenf null
zwo sechs zwo neun
zwo acht sechs acht
zwo drei fuenf vier
sechs sieben null zwo
vier eins vier acht
sechs zwo drei drei
sechs zwo sechs fuenf
null zwo zwo neun
zwo sechs eins eins
vier fuenf zwo drei

zwo sieben vier sechs
sieben drei sieben zwo
fuenf neun null zwo
acht drei sieben zwo
vier zwo fuenf vier
zwo sieben zwo zwo
sieben sechs fuenf sieben
drei null zwo eins
neun fuenf neun vier
fuenf fuenf neun drei
sechs zwo neun acht
sechs null vier null
null acht eins acht
drei fuenf null fuenf
drei drei zwo null
null neun eins acht
zwo drei drei vier
zwo neun neun zwo
sieben neun acht acht
null neun fuenf sechs
zwo vier fuenf eins
null null sechs fuenf
sechs sieben drei eins
sieben eins zwo null
null sechs zwo neun
vier drei sieben sieben
acht zwo vier eins
zwo drei zwo fuenf
vier null acht vier
fuenf zwo eins zwo
vier zwo zwo fuenf
null zwo acht sieben
sechs fuenf zwo eins
eins fuenf acht zwo

vier drei vier vier
sieben neun eins zwo
acht null zwo null
drei sieben eins neun
drei acht sechs neun
drei neun acht sechs
sieben null eins null
sechs eins sechs eins
drei eins sechs eins
drei acht zwo zwo
eins drei null neun
zwo neun fuenf zwo
vier neun sieben sechs
sechs acht zwo fuenf
null sechs eins null
vier eins fuenf eins
sieben neun drei sechs
drei null drei eins
eins drei acht acht
zwo zwo vier zwo
drei sechs fuenf sechs
neun fuenf zwo sieben
fuenf fuenf eins eins
sechs sieben drei vier
sieben vier null neun
drei null null zwo
acht eins eins zwo
drei zwo null neun
neun fuenf zwo eins
neun drei eins vier
sechs null zwo acht
fuenf eins fuenf acht

B.2.2. Command Words

eins
zwei
drei
vier
fuenf
sechs
sieben
acht
neun
null
zwo
Zahl

Rechner
mal
plus
minus
durch
Prozent
Komma
Seite
vor
lauter
leiser
stopp

Pause
abspielen
Texte
senden
Kontakte
simon
Liste
schliessen
ausschalten
schlafen
zuhoeren
Hilfe

Ja
Nein
aus
ein
links
rechts
hinauf
hinunter
rauf
runter
zurueck
weiter

ok
abbrechen
loeschen
wiederholen
suchen
Eingabe
Farbe
rot
gruen
blau
gelb
Empfaenger

Training
langsam
schnell
Computer
Englisch
Deutsch
oeffnen
vergroessern
verkleinern
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B.2.3. Rhyme-test Words

Test 1 Bach Bann bang Bank Ball bald
Test 2 Ball buhl bell Boell Beil beul
Test 3 biet bitt Beet Bett boet baut
Test 4 back Bock bueck boeg Boeck beug
Test 5 Boss Bosch Bock Bonn Bord Born
Test 6 bis Bass Bus buess boes beiss
Test 7 Buff Bus Busch Bucht bum bunt
Test 8 des daecht Depp Deck daemm denn
Test 9 wen sehn den Gen zehn lehn
Test 10 Sicht dicht Gicht nicht richt Licht
Test 11 dir der dar Dur duerr doerr
Test 12 doch Docht Dock dort Dorn doll
Test 13 saeng haeng draeng peng meng laeng
Test 14 wumm stumm dumm drum Mumm Rum
Test 15 viel fehl Fall Fell fuell feil
Test 16 Siel fiel schiel Ziel Kiel Nil
Test 17 Flip flitz flick Flint flink flirr
Test 18 focht Fock vom von fort vorn
Test 19 Fund Schund Hund bund Mund rund
Test 20 Geck Gent Gerd gern gell Geld
Test 21 wies hiess dies giess nies liess
Test 22 fing hing dring ging Thing Ring
Test 23 Graf grab Grat Graz Gram Gral
Test 24 Schuss Bus Guss Kuss muss Nuss
Test 25 hin Hahn Hohn Huhn hoehn Hain
Test 26 weiss heiss beiss Geiss Reis leis
Test 27 Hall hell hoehl Hoell Heil heul
Test 28 Hieb heb hob hopp Hub hupp
Test 29 hier Heer Haar harr Herr hoer
Test 30 hiss hin hing hink Hirt Hirn
Test 31 Sinn hin bin drin Zinn Kinn
Test 32 Hof Hos hoch hob Hohn hohl
Test 33 hat hott Hut haett heut Haut
Test 34 Wacht sacht dacht Macht Nacht Jacht
Test 35 war Bar gar Kar Jahr rar
Test 36 doch poch noch Joch roch Loch
Test 37 Haff baff gaff paff Kaff raff
Test 38 Kien Kinn Kahn kenn kuehn kein
Test 39 Kuss kusch kuck kund Kurt Kult
Test 40 leis Laich leicht Leib Leid Leim
Test 41 lieg leg lag Leck lueg laug
Test 42 Lied litt lad luett Leid Leut
Test 43 Los Lob Lot lotz log Lohn
Test 44 Mast mach Macht matt Matz Mann
Test 45 Mehl Mal Moll Mull Muell Maul
Test 46 mies miss Mass muss Mais Maus
Test 47 Wein Schein dein mein nein rein
Test 48 miet mit matt Mett Maid Maut
Test 49 Mief mies miet Miez mim mir
Test 50 wisch Fisch drisch Tisch zisch misch
Test 51 Mist Most musst messt muesst meist
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Test 52 Muff muss Mumm Mund murr Mull
Test 53 Nas nach Naab Naht nag nahm
Test 54 wenn saenn Fenn denn nenn renn
Test 55 Nest Nepp nett Netz neck nenn
Test 56 Saus Haus Gauss paus raus Laus
Test 57 Pest Pech petz penn peng pell
Test 58 sag Tag mag nag jag rag
Test 59 wann dann dran Tann Mann ran
Test 60 rauf raus Rausch Rauch Raub Raum
Test 61 reif reich reib reit Reim Rhein
Test 62 rief Riff raff Ruf Reif rauf
Test 63 Riff Riss Rist richt rinn Ring
Test 64 Ritt Reet rot raet rett reit
Test 65 Rist Rost Rest ruest roest reist
Test 66 Ruf Russ Ruch Ruth Ruhm Ruhr
Test 67 sass Saat sag sahn Saar Saal
Test 68 sind sehnt Sand Sund send suehnt
Test 69 sacht Sack sann Sand sang sank
Test 70 seht Saat satt saet Sued seit
Test 71 Saum Schaum Baum Zaun kaum Raum
Test 72 schief Schiff Schaf schaff schuf schuef
Test 73 schiel Schill Scheel Schall scholl schael
Test 74 schier schirr scher Schar scharr schurr
Test 75 schief schiess schieb schied schien schiel
Test 76 schwitz schwimm schwind schwing schwirr schwill
Test 77 sind find schind bind Kind Rind
Test 78 Sinn sehn sann Sohn Senn sein
Test 79 Stiel still Stahl Stall stell steil
Test 80 Wut Sud gut Nut Ruth lud
Test 81 fad bat Tat Maat Naht Rat
Test 82 wer sehr Teer zehr Meer leer
Test 83 weil Seil heil peil Teil Zeil
Test 84 West Fest best Test Nest Rest
Test 85 wir vier Bier Pier Tier mir
Test 86 vor bohr gor Tor Moor Rohr
Test 87 trief triff traf troff Treff troeff
Test 88 Trieb Trip trapp Trupp trueb treib
Test 89 triff trist Tritt Trick trimm trink
Test 90 saet baet taet naeht jaet raet
Test 91 Wahn sahn Bahn Zahn mahn Lahn
Test 92 Wild Wald waehlt Welt wuehlt weilt
Test 93 was Hass das Pass nass lass
Test 94 wieg Weg wag wog waeg weck
Test 95 web Weg wem wen Wehr Wert
Test 96 weiss weich Weib weit Wein weil
Test 97 Wind Wand wohnt wund waehnt weint
Test 98 wisch wich Wicht wink will wild
Test 99 vorn Horn Born Dorn Zorn Korn
Test 100 Zupf Zapf Zipf Zoepf Zaepf Zopf

Table B.3.: Full list of the 100 sets of Sotschek rhyme-test.
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