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Abstract

Strongly correlated quantum impurity problems have been an important field of condensed matter physics
for almost eighty years. Models have been designed to explore the manifold of quantum behavior observed
in impurity doped materials. In recent years they served as a cornerstone in the theoretical understanding
of novel nano-scale devices like quantum-dots or molecular electronics. These devices have attracted a
vast amount of research interest and gave remarkable, key-insights into the behavior of matter at the
atomic scale, which is so important for tomorrow’s technology. In this thesis, the physics of quantum
impurity models is probed by means of the variational cluster approach (VCA) and cluster perturbation
theory. Making use of these methods, static and dynamic quantities of the single impurity Anderson
model are studied. An expression for the VCA grand potential for a system in a non-interacting infinite
bath is presented. Results for dynamic correlation functions in different parameter regimes are shown
to be in good agreement with renormalization group results. We address the question of whether the
elusive low energy properties of the model are properly reproduced within the framework of VCA. These
are furthermore compared to continuous time quantum Monte Carlo calculations. We also discuss results
obtained by an alternative, i. e. self-consistent formulation of VCA, which was introduced recently in
the context of non-equilibrium systems. A non-equilibrium extension of the variational cluster approach
is applied to the problem of a strongly correlated quantum dot under bias. Thereby the question of
how to model systems out of equilibrium is addressed. We calculate the steady-state current as well as
the non-equilibrium density of states for such a device. Furthermore the properties of Graphene with
randomly positioned magnetic vacancies is studied. This problem has aroused a lot of interest in recent
experiments with proton irradiated Graphene. Such a setup poses a challenge to any theoretical method
because it is not only strongly correlated but highly disordered as well. It is shown that in the variational
cluster approach it is possible to treat such a system and harvest results for the density of states.



Kurzfassung

Stark-korrelierte Quanten-Vielteilchensysteme sind seit fast achtzig Jahren ein wichtiges Arbeitsgebiet
im Bereich der Physik kondensierter Materie. Zur Beschreibung der vielfiltigen, quantenmechanischen
Vorgiinge, welche zum Beispiel in Materialien mit Storstellen beobachtbar sind, wurden theoretische Mod-
elle entwickelt. In den letzten Jahren wurden diese Modelle auch zur Beschreibung von nano-skaligen
Bauteilen, wie Quantenpunkten oder molekularer Elektronik angewendet. Bauteile dieser Art haben ein
riesiges Forschungsinteresse generiert und liefern erstaunliche Einsichten in das Verhalten von Materie auf
atomaren Lingenskalen. Diese Erkenntnisse sind unabdingbar fiir die Technologie von morgen. In dieser
Arbeit wird die Physik von Quanten-Storstellenmodellen mit Hilfe des Variationellen Cluster Zugangs
(VCA) und der Cluster Stérungsrechnung untersucht. Diese Methoden werden benutzt um statische und
dynamische Grofen des Ein-Storstellen-Anderson Modells zu studieren. Hierfiir wird ein Ausdruck fiir das
VCA Grofskanonische Potential, fiir Systeme in nicht wechselwirkenden, unendlich grofsen Biadern prasen-
tiert. Es wird gezeigt, dass die erzielten Resultate fiir dynamische Korrelationsfunktionen in verschiede-
nen Parameterbereichen mit Renormierungsgruppen-Rechnungen gut iibereinstimmen. Weiterhin wird
untersucht, ob die schwer berechenbaren Niederenergieeigenschaften des Modells von VCA wiedergegeben
werden konnen. Diese werden aufserdem mit kontinuierlichen Zeit - Quanten Monte Carlo Rechnungen
verglichen. Zudem werden Ergebnisse, welche mittels einer alternativen, selbstkonsistenten Formulierung
von VCA erzielt wurden, diskutiert. Fine Nichtgleichgewichts Erweiterung des Variationellen Cluster
Zugangs wird auf das Problem eines stark-korrelierten Quantenpunktes unter Spannung angewendet.
Es wird beschrieben wie ein solches Modellsystem im Nichtgleichgewicht modelliert und simuliert wer-
den kann. Dabei wird der Strom im stationdren Zustand und die Nichtgleichgewichts- Zustandsdichte
berechnet. Weiters studieren wir die Eigenschaften von Graphen mit zufillig verteilten, magnetischen
Leerstellen. Dieses Material hat in der letzten Zeit viel Interesse in Experimenten mit protonenbe-
strahltem Graphen generiert. Solch ein System stellt allerdings eine Herausforderung fiir theoretische
Methoden dar, da es nicht nur stark-korreliert sondern auch hoch ungeordnet ist. Es wird gezeigt, wie
solche Systeme mit Hilfe des Variationellen Cluster Zugangs untersucht werden kénnen. Ergebnisse fiir,
unter anderem, die Zustandsdichte werden présentiert.
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1. Introduction/Motivation

The rich physics of complex impurities immersed in various materials is dominated by quantum effects.
Solving the full interacting many-body problem including electron-electron interactions is impossible even
in the Born-Oppenheimer approximation [I], which leads to a purely electronic problem on a background
lattice potential. Physical details like electron-phonon interaction or the random component of disorder
complicate the problem even more. A starting point to gain insight into the underlying mechanisms is
provided by quantum impurity models. These models typically try to focus on the essential, renormal-
ized, degrees of freedom, resorting to caricatures of the physical interactions. However, the inherent many
body problem of these very simplistic models has proven to reveal its fascinating aspects only reluctantly
over time. In general, models for the quantum mechanical description of condensed matter systems are
unsolvable again. Powerful methods have been created during the last century to solve those models in
the one approximate way or the other limit. One of the prime models for a quantum impurity problem
is the single impurity Anderson model [2]. Tt consists of a single magnetic impurity (like an electron in a
narrow f-orbital) in an otherwise perfect metal (s-electrons). This may be for example the case for iron
atoms immersed in gold. Amazing physical phenomena like the resistance minimum in doped metals as
well as an unexpected behavior of the entropy and specific heat have been qualitatively explained for the
first time by Kondo in 1964 [3]. He showed that below a certain crossover temperature Ty, named after
him, the Kondo temperature, the physics drastically changes. Increased scattering is observed which
leads to an unexpected increase in resistivity [4]. The key mechanism here is a third order effect, namely
spin-flip scattering. In a physical picture the local magnetic moments [5] of the impurities get screened
below a temperature Tk by the conduction electrons. This leads to a singlet formation, losing all the mag-
netism, which is observed in specific heat measurements. Kondo’s perturbative calculation still suffered
from a low energy logarithmic divergence. His calculation was further refined by various authors in self
consistent perturbative approaches as well as renormalization group based approaches, amongst others.
Ten years later Wilson introduced a renormalization group method to obtain accurately the low energy
properties of this problem [6]. One of the main reasons why the Kondo problem is so difficult to solve
is that the interactions get non-perturbatively strong at low energies, a phenomenon termed asymptotic
freedom in high energy physics. In 1981 an analytic Bethe Ansatz calculation became available for static
thermodynamic quantities [7]. Today a variety of different methods are available for treating the single
impurity Anderson model in an approximate way. It took about fifty years from the first experimental
observations around 1930 to a sound theoretical understanding of the physics of magnetic impurities in
metals. Even today some issues still remain unsolved, like for example the size and structure of the
screening cloud [§]. The extension to many-impurity models (like the periodic Anderson model), and the
interplay between impurities bares an even more elusive problem. This becomes important in the branch
of heavy fermion physics, Kondo insulators, spin liquids or when studying the competition with RKKY
interaction in a Doniach phase diagram [9).

A renewed interest in methods to solve such models originated in the 1990’s for the description of quantum
dots and other mesoscopic devices [I0]. In these artificial elements quantum effects, resembling closely
those of magnetic impurities in metals, become important. A great advantage over bulk systems lies in
the tunability of all system parameters, which enables a better comparison to theoretical models. A wide
range of technological applications like nano or molecular electronics depend on the understanding of
effects like the giant magneto resistance, coulomb blockade or quantized conduction. These models are
also important in the field of quantum information processing [I1]. The advent of dynamical mean field
theory [12] 13} [14 [T5] fueled the interest in computational methods to obtain dynamic quantities of the
single impurity Anderson model, which acts as an auxiliary problem in that powerful method.

The aim of this thesis is three-fold: The first step is to extend and apply cluster perturbation theory and
the variational cluster approach to the single impurity Anderson model. The goal is to obtain dynamic
correlation functions and static expectation values. The model is studied in great detail by means of
these methods to establish a solid base upon which further applications and models of this class may be
constructed. Parts of the results presented in this chapter have recently been published by the author
in collaboration with Wolfgang von der Linden, Enrico Arrigoni and Markus Aichhorn in ref. [16]. All
calculations done in this theses are for zero temperature, although the methods may be extended to the
finite temperature case.

Once the methods are shown to yield good results for a single impurity in an equilibrium situation, the



methods are extended to the non-equilibrium case and the transport properties through a strongly corre-
lated quantum dot are studied. The non-equilibrium properties of mesoscopic devices, exhibiting strong
correlation phenomena are still not understood in detail today, but crucial for future technology [17].
As a third part, magnetic vacancies in Graphene are studied as an application to disordered quantum
impurity problems. This part is motivated by recent studies [I8], which showed that vacancies induced
into the Graphene lattice behave like magnetic defects. Here the applicability of the method to strongly
disordered problems will be outlined.

This work is structured as follows: The methods to tackle quantum impurity problems, used in this thesis,
cluster perturbation theory and the variational cluster approach, will be discussed in detail in ch.Bl The
rest of the thesis, which contains the results of the work which I carried out within my Master thesis work,
is structured into three main parts. The first one presenting results for the single impurity Anderson
model in equilibrium (see ch.[). These results have been already published in ref. [16] by the author
in collaboration with Wolfgang von der Linden, Enrico Arrigoni and Markus Aichhorn. The second, on
providing data obtained for a strongly correlated quantum dot out of equilibrium (see ch.[]). Finally the
third part presents results obtained for the disordered problem of magnetic vacancies in Graphene (see

ch.[B).



2. Numerical Methods

In general the interacting quantum many-body problem is unsolvable (except for some limiting cases),
although the governing equations are known exactly. Conducting severe simplifications and devising
a suitable model/effective Hamiltonian or action for a given many-body system usually leads to an
unsolvable problem again. To gain insights into these models one has to resort to sophisticated, often very
computationally demanding, numerical methods. These methods may involve brute force calculations,
further approximations and/or finite size scaling. Today a large variety of numerical methods exist to
find (approximate) solutions of interacting quantum many-body models. Amongst the most famous are

e mean field approaches (MF),

¢ (diagrammatic) perturbation theory (PT),

e exact diagonalization (ED),

e Quantum Monte Carlo (QMC) methods, which is a very diverse field of its own,
e Numerical- and Functional-Renormalization Group (NRG/FRG),

e methods based on variational wavefunctions,

e the density matrix renormalization group (DMRG) or more generally matrix product state (MPS)
methods,

¢ dynamical mean field theory (DMFT) and
e many-body cluster methods.

Today’s most accurate method to treat the single impurity problem may be the NRG [6] which was
specifically designed for this model. The extension to the case of several impurities proofs troublesome
for this approach. Continuous time QMC [19] is a statistically exact method yielding spectra in imaginary
frequency, which need to be continued to the real energy axis in an ill-defined inversion process, using for
example the maximum-entropy method [20} 2I]. This work is mainly concerned with cluster perturbation
theory (CPT) [22] 23] and the variational cluster approach (VCA) [24] which are many-body cluster
methods. An advantage of these methods is the flexible extensibility from a single- to the many- impurity
problem. It is adaptable to any geometries and dimensions. In addition dynamic quantities, such as the
Green’s function, may be obtained as a function of a complex variable z , which may especially be taken to
be the real energy axis w. Two well known methods which belong to the same family but are not further
explored in this work are cluster/cellular dynamical mean field theory (CDMFT) and its momentum
space analogon the dynamical cluster approximation (DCA).

This chapter is organized as follows: First cluster perturbation theory is introduced and a review on the
method of Green’s function in context with CPT is presented in sec.2Jl Then the variational extension of
CPT, the variational cluster approach is introduced in sec.2Z23l An extension of VCA for infinite reference
systems is presented in sec.2.3.2] An alternative formulation of VCA previously introduced in the context
of non-equilibrium systems is described in sec.Z34l A short review of exact diagonalization algorithms
is given in sec.[Z2 as in this work we use it as the backbone for CPT/VCA. VCA furthermore relies
on methods for finding stationary points in many dimensions or in an alternative formulation roots of
multivariate functions, both will be reviewed shortly in sec.2.3.3 and sec.2Z.335 The recently introduced
non-equilibrium VCA [25] is reviewed in sec.2.4:2] This method is based on the Keldysh Green’s function
technique, which is introduced in sec.2Z.4.11

2.1. Cluster Perturbation Theory

In this section the main concepts of CPT will be reviewed. This section serves also the purpose of setting
the notation for this document. It is widely based on the excellent review article by Sénéchal [26]. In
the following we consider a general model Hamiltonian on any given (large/infinite) lattice. The idea of
CPT [22], 23] is to use the results of a small system and extrapolate them to the thermodynamic limit as



discussed in the following. The rigorous derivation of CPT which is possible within functional integral
formalism (see for example ref. [27]) and may be found for example in ref. [28] will not be given here.
Instead the focus lies on the technical implementation. As a compromise a heuristic argument for the
CPT equation is given. A good overview of the topic is also presented in ref. [29].

CPT yields the single-particle Green’s function ij”’(z), which is a matrix in site/spin space and in
general a function of a complex variable z. This argument 2z may be chosen to be z = iw +i0* (where w is
a real energy) to yield the retarded Green’s function, z = iw — 10" to yield the advanced Green’s function
or z =iw to yield the Green’s function on the Matsubara axis [30}, BI]. Here ¢0* is short for

F(i0%) = lim f(n).

where the limit has to be taken at the end of all operations (i.e. integrals, ...). The single-particle
Green’s function is one of the most important quantities in theoretical condensed matter physics since it
allows the calculation of the single-particle spectral function

A(k,w) = —lﬁmG(k,w +i0%) . (2.1)
7r

This quantity may be measured in experiments by photo emission spectroscopy (PES), inverse photo
emission spectroscopy (IPES) or angle resolved photo emission spectroscopy (ARPES), depending if one
is interested in the momentum dependence or not.

Using exact methods, like exact diagonalization, it is possible to find the exact ground-state and the single-
particle Green’s function for small lattices. Exact diagonalization is limited to system sizes of a few (up
to ~ 20) sites/orbitals which is clearly far from the large/infinite systems we are interested in here. For
CPT the lattice under consideration is first broken apart into smaller, exactly solvable tiles. The cluster
Green’s function G’ is obtained for the tiles by an exact method (for example exact diagonalization). In
the end the cluster Green’s functions are sewed back together to yield the total Green’s function G. Next
the process of breaking apart a lattice will be outlined. How a Green’s function may be obtained for a
cluster is discussed in sec.2.2l Because this constitutes a major part of CPT and is a powerful technique
of its own, it is presented in its own section in detail, not to interrupt the introduction to CPT. The
process of constructing the total Green’s function within the CPT approximation is discussed in sec.2.1.21

2.1.1. Cluster tiling

Consider a large lattice v of L sites and its tiling into clusters C' of LY sites each. This creates a
superlattice I of L sites. The original lattice « is recovered upon attaching one cluster C at each site of
the superlattice I'. The coordinates of the lattice may be expressed as

vl =ri+rS, i (1,0).

The L” reciprocal space vectors k” in the first Brillouin zone (BZ) of the original lattice BZ” may be
expressed as

k" =K+k",

where K belongs to both the reciprocal superlattice T~! and to BZ” while k! belongs to the Brillouin zone
of the superlattice BZ". The process of constructing a cluster tiling is illustrated for simple cubic lattices
in one-, two- and three- dimensions in fig.2.1] How the exact solution for one cluster may be obtained by
exact diagonalization is described in sec.2.2] Next we assume to have the ground-state properties and the
single-particle Greens’s function G’ of the cluster obtained by some means and proceed by constructing
the Green’s function of the total system G.

2.1.2. Obtaining the total Green’s function

CPT is a cluster extension of strong coupling perturbation theory [32] [33], valid to first order in the
inter-cluster hopping. It can be shown that the first order result for the lattice Green’s function G is

G (2k) = G'(2) - T(K) (2.2)

where G’ is the cluster Green’s function and T contains only the single-particle inter-cluster terms. This
means usually the hoppings, which connect the clusters. This equation may be motivated heuristically
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Figure 2.1.: Visualization of cluster tilings for simple cubic lattices in one- (top row), two- (middle row)

and three-(bottom row) dimensions. The plot axis are scaled with the lattice parameter
a. The one-dimensional lattice is a N7 = 10 site lattice with N¢ = 2 site clusters. In the
two-dimensional case a N7 =6 x 6 site lattice with N¢ =2 x 2 site clusters is shown. For the
three-dimensional case a N7 =4 x4 x4 site lattice with N¢ =2 x 2 x 2 site clusters was chosen.
The left column shows the real space lattice r7, super-lattice ' and cluster . The right
column shows the respective k-space picture where k¥ = K + k',
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Figure 2.2.: Cluster tiling of a one-dimensional tight-binding model with on-site energy e and nearest-
neighbor hopping ¢. The chain is split into three-site clusters H’ (green). The matrix elements
of T, which are the inter-cluster hoppings are indicated in red.

by considering Dyson’s equation for the total system, as well as for the cluster

G'=G' -2
G/—l _ G/—l _ Z,
=Gy ;
where the subscript ¢ denotes free Green’s functions and /¥’ the self-energy of the total system/cluster.
Approximating the self-energy of the total system by the self-energy of the cluster 3 = X' it follows that
Gfl _ Gal _ E,
=Gy' - (G -G)
_ql (G6_1 B G61)
=G - ((z-H") - (- H))
:G/—l _(H_Hl)
— Glfl _ T
where H/H' are the one-particle terms of the total Hamiltonian # / cluster Hamiltonian . One sees
that all that is left in T are those single-particle terms of the Hamiltonian not present in the cluster
Hamiltonian H’, which are the inter-cluster hoppings. This is illustrated in fig.2.2 for a one-dimensional
tight-binding system with on-site energy € and nearest-neighbor hopping ¢. The chain is split into three-
site clusters which have to be solved individually. The matrix elements of T, which are the inter-cluster

hoppings are indicated in red. The process of performing a CPT calculation is visualized in a flow diagram
in fig.25l Next some important, exact relations for CPT will be discussed.

2.1.3. Exact relations for CPT

CPT becomes exact in three limiting cases:

e CPT yields the exact solution for interaction-strength U — 0. This means that for non-interacting
systems, where the self-energy 3 vanishes, CPT is exact.

e It is exact in the limit hopping ¢t — 0, where one recovers the atomic problem.

e CPT converges to the exact total Green’s function when the cluster size L¢ approaches the system
size L7: L¢ - L7. Usually one considers systems of infinite size, then CPT is exact in the limit
L - .

Better approximations within CPT are usually not constructed by considering higher orders in pertur-
bation theory but by increasing the cluster size LC.



In the next section an outline of how to handle Green’s functions within CPT and derive important quan-
tities like the ground-state energy, the momentum distribution and the density of states is presented. The
case of a Green’s function consisting of a set of isolated poles as it is the case for translationally invariant
interacting model Hamiltonians is considered in sec.2ZT.4l This will be needed for the study of defects in
Graphene. Then an overview of the analogous procedure for the case of a not translationally invariant
system coupled to a continuous bath is given in sec.2I.5 which requires a radically different treatment.
This will later be applied to the study of the single impurity Anderson model.

2.1.4. CPT Green’s functions for discrete spectra of translationally invariant
models

In this section the calculation of CPT Green’s functions for discrete spectra is outlined. For the basics
of the Q-matrix formalism the reader is referred to sec.2.22l The CPT Green’s function is determined
by the Green’s function of the cluster G’ and the inter-cluster hopping matrix T by eq. 2)). Inserting
eq. (ZI4) into eq. (Z2) one obtains in Q-matrix notation

(1 -G (w)T(k)) &
(1-Q'¢'@QMT(K) " Qgw)Q"
(1+Q¢(@QTT(k) +...) Q'g'(w)Q"
(Q' (@) + Qg (@)QTHR)Q Y (w) +..) Q"
Q'g'(w) (1+QTT(k)Q'g (w) +...) Q"
Q'¢'(w) (1-Q"TI)QY () QT
Q

/ 1 T
@ QT

In the second line the fraction has been Taylor expanded and in the fifth line the terms have been re-
collected. The resulting expression is exact. Introducing a diagonal matrix for the excitation energies \’
of the cluster

G(w, k)

(
(k

AIYV' = )\gé,wr s (23)
one can further rewrite the expression for the Green’s function
1
w- (A +QTT(k)Q)

Note that the energy w-dependence is nicely separated from the wavevector k-dependence in this expres-
sion. The dependence on k only appears in T(k).
To put this into an even more handy form we introduce the matrix

G(w,k) =Q Q.

M= A +QTT(k)Q’,

so that the CPT Green’s function is then given by

G(w,k) =Q t 2.4
(210 = Q@ s r=0 (24)

Upon solving the (w-independent) eigenvalue problem
My Xy IXkAk, (25)

it is possible to rewrite the fraction appearing in eq. (Z4) as

1
ka

X (w Ak) Xk

The Ay are diagonal matrices holding the excitation energies of the full system on the diagonal. They
are the k-dependent equivalent to the A’ defined in eq. (Z.3) for the cluster solution. Inserting this result



into eq. (24) one obtains the k-dependent weights Q, for the CPT Green’s function

G(w. k) = Q' Xy (w-Ak) " X'QT, (2.6)
Qi QL

[Lx L] = [Lx Ny][Ny x Ny ][Ny x L].

The last line indicates the matrix dimensions of the quantities above. Here N, is the number of excitations
in Q and L the cluster size. A slight complication arises here because the cluster tiling breaks the
translational symmetry of the model.

Green's function periodization

The factorization of the total lattice into clusters breaks the translational symmetry of the lattice. There-
fore the total Green’s function G depends on two wave vectors k and k', which is certainly not correct
for a periodic lattice. This may be circumvented by a periodization prescription that provides a total
Green’s function G(w,k), depending only on the indices of the physical unit cell and one wave vector k.
As outlined for example in ref. [26] one may impose a periodization upon the self-energy 3 or the Green’s
function G. Here the Green’s-function periodization is pursued due to good results obtained by that
method. The periodization prescription proposed for systems with a single orbital unit cell in ref. [34]
reads:

L . 7
G(w,k):% 5 e ) Qe (w0, k)
rC rC’

1 & .
= - Z e_lk.(ci_cﬁ Gij (w, k) .
L3

The c; are the cluster basis vectors. This expression may be generalized for physical unit cells consisting
of more than one atom:

L .
Ga,(i’ (w,k) _ pj}jys- Z Z e—zk.(ci—cj) Gij (w,k) ,
iea jef

where «, 3 denote the translationally inequivalent lattice sites of the model under consideration and Lphys.
the size of the physical unit cell. Consider for example the case of a six-site ring cluster in Graphene
which has a two-site physical unit cell:
. C C
Gaﬂ(k;w) = Z e—lk~(ci6—cj6) Gw(w’k) -
2,4,6}

[N\

ie{1,3,5} je{

There is an elegant way to impose this periodization prescription upon the total Greens’ function eq. (2.6).
Introducing the matrix .7-"}; of dimension [Lpnys. x L]

—1 k-ui —1 k*llj

e

fl'cf _ % e*lk-ui e*’bk‘uj N Coz,i R (27)

where .x denotes an element wise product and the matrix (, ; is one for cluster sites ¢ which are trans-
lationally equivalent to the site « of the physical unit cell (i.e. belongs to the same Bravais-sub-lattice),
and zero otherwise:

Coz,i =

1 if cluster site 7 is translationally equivalent to site « of physical unit cell
0 otherwise

The periodized Green’s function Gpe, is obtained by applying the transformation eq. (271) to eq. (2.6)

Gper(w, k) = FI Qi (w—Ax) ™' QLF, (2.8)
Qe i Qo

[Lohys. X Lphys.] = [Lphys. X Ny ][Ny x Ny ][Ny x Lpnys.] -



It follows that the periodized weights Q  are given by

per,
Qper k ~ ‘7:.“Q Xk
Qper kK~ Xy 1Q/T}—k

Eq. 28) concludes the derivation of the expression for the single-particle Green’s function. Next we
derive some useful quantities from this function. Note that within CPT only the single-particle Green’s
function is available. Because CPT builds upon an interacting ground-state, Wick’s theorem [35] does
not hold. This prevents the calculation of higher correlation functions by standard means.

Quantities derived from the Green’s function

The (retarded) Green’s function enables the calculation of the single-particle spectral function A(w,k)
eq. (ZI). In this section all quantities are matrices in the space of orbitals of the unit cell i and spin o
(and of energy w and wavevector k). For spin symmetric Hamiltonians one usually obtains the Green’s
function G for one spin direction only, so all calculated quantities have to be multiplied by a factor of
two. The single-particle spectral function A(w,k) provides information about the density of states p(w)

1
- dk A(w,k) = — 3 A(w,k
p(w) fl.BZ. (w, k) N g (w
where N is the number of k-points in the first BZ. The momentum distribution n(k) is given by

n(k) = f: dew A(w, k) .

A quantity of particular interest is the average occupancy < n >;; (matrix in space of physical unit cell)

<n>ij—/1BZd :—Z

f dw A(w, k)
f (w—wy) Wy

:NZ:

k A

B N
1
N
1.
per,k Qper,k .

Here W, denotes the weight of excitation v. The average occupancy per site is given by <n >

1
<n>:ﬁ2 >

k A\p<0 Lphys.

1

o0 (Qper Qerse) -

Note that the spin index is absorbed into the index of the site in this notation. The ground-state energy
per site is given by

wo:[: dwwp(w)
iys

k Ap<0 phys

6 (Qpore Ak Qi) -

The single-particle gap A, is simply given by the sum of the magnitude of the lowest positive and highest
negative eigenvalue of M eq. (2.3)

Agp = min Ay + max Ay
Ay >0 Ay <0

Next the case of clusters with mixed discrete/continuous spectra is discussed.



2.1.5. CPT Green’s functions for mixed discrete/continuous spectra of models
without translational symmetry

Up to now we have dealt with translationally invariant models. These were broken apart into tiles -
which were all equal. One such representative tile could be solved exactly for the single-particle Green’s
function G’ which was made up of a set of discrete poles. Dealing with non-translationally invariant
models, or models where the translational period is too large to be represented by one, exactly-solvable,
cluster, one can imagine breaking such models into different tiles. Consider for example the case of the
single impurity Anderson model outlined in sec.[Bdl Such tiles may involve clusters (for example infinite
non-interacting baths) which yield continuous spectra/branch cuts of the Green’s function on the real
axis w. These can not be represented conveniently by a finite number of poles, which makes the Q-matrix
formalism not a good choice. Some interacting parts of the system however may be most conveniently
expressed in this formalism. In the end we are left with clusters which are only partly representable in the
form of Q-matrices. The way to proceed here is to evaluate G’Q, the part of the Green’s function which
was represented in Q-matrix form, and G, the part which was represented by other means, separately.
From there on one has to work with those functions evaluated at discrete points z;. One therefore loses
the favorable representation of all quantities which follows from the single-particle Green’s function, in
terms of eigenvalue problems, and has to resort to numerical integration of G'(z;).

Explicitly the (numerically stable) calculation of single-particle expectation values from the Green’s func-
tion G(z;) will be outlined in the following. Note that here G stands for any Green’s function, not just
the one of the total system. This discussion is of course also applicable to systems discussed in the last
section, but it is absolutely necessary here. A zero temperature expectation value of a single-particle
operator in terms of the fermionic Green’s function is given by

1 .
< cic; > = E Z Gij(wn)e“""o
Wn

dz +
- _ _Gl 20
fc omi Cul2)e

[ deg oy Q0
—_fc Gij(2) Z—p

A 2mi
51" o0
:—j+lf deReGij(iw).
2 wJo

Here 8 denotes the inverse temperature. The integration of the Green’s function along the real axis is
very troublesome due to the numerically necessary convergence factor 0*. To achieve a stable integration,
the integral is deformed to the complex plane (for contour C4 see fig.[D-2)) and re-expressed as an integral
over the Matsubara axis. The integral is regularized by the large constant § (see app.[D]). The details of
this calculation are analogous to those for the integral for the grand potential, outlined in detail in app.[Dl
In the next section a review of exact diagonalization is given, which is used to obtain the ground-state
properties of Green’s functions of clusters, in this work.

2.2. Solving clusters - Exact Diagonalization

To gain insight into the physics governed by a particular Hamiltonian operator one may want to calculate
various ground- and excited state properties. In order to evaluate any observables or correlation functions
the stationary many body Schridinger equation

has to be solved. This represents an algebraic eigenvalue problem of large dimension. The Hamiltonian A
has to be expressed in a suitable basis resulting in a hermitian / symmetric matrix in the complex / real
case. There is a great variety of methods available to solve such problems numerically. Even greater as
the variety of methods itself are the means by which one may categorize them. Maybe the most relevant
criterion for our application is the separation of methods which are sometimes termed full solvers and
methods which are often referred to as sparse solvers. A full solver is one which usually needs to store the
full matrix representation of the Hamiltonian in memory and will yield the entire eigenvalue spectrum
and all corresponding eigenvectors. Sparse solvers on the contrary may be used with a matrix stored
in a sparse format (i.e. omitting the storage of zeros) and will in general yield one or some eigenvalues
only. The very different nature of these two classes of eigensolvers makes them favorable for different
applications. The big issue in quantum many-body problems is that the size of the Hilbert space grows

10



exponentially with system size [36]. Therefore the dimension of the Hamiltonian matrix and the state
vectors |U) may exceed a critical size exponentially fast. Consider for example the size of the Hilbert
space M for the Hubbard model [37]

L L L! L!
M = Z =
&5 N (L-Ny)!NI(L - N)!

AV

4L

)

where L is the number of lattice sites and Ny andN, are the number of electrons with spin up and down
respectively. Depending on the hard- and software a double precision floating point number takes 64 bits
(which makes it accurate to about 16 decimal digits). Taking into account that in general one has to deal
with complex numbers it will take 16 byte to store one matrix element or one coefficient for a basis vector.
So for a system consisting of L = 4 sites the amount of memory needed to store the full hamiltonian matrix
will be roughly one megabyte, which is of course nothing on modern machines. Examining a model made
up of six sites the same matrix will already take about 300 megabytes. To see the dilemma one is facing
consider eight sites: In this case the matrix needs more or less 79 gigabytes of memory. Finally the matrix
representation of a twenty site system would need the extraordinary number of ~ 106 gigabytes. As an
amusing side remark it may be mentioned that a system of only seventy sites would need 10%° bits to be
stored which is about the estimated number of atoms in the whole known universe. It should be noted
at this point that in general it is possible to take into account symmetries of the Hamiltonian to reduce
the size of the Hilbert space considerably making calculation of slightly enlarged systems feasible. The
exponential growth of the size however cannot be circumvented. Another dramatic aspect is runtime.
Full eigenvalue solvers in general scale like N3, where N is the dimension of the problem. To conclude
this short discussion about feasibility it is to be mentioned that solving the full eigenvalue problem is
numerically exact and yields access to all physical quantities. The application of full eigenvalue solvers is
however only possible for systems not exceeding matrix sizes of N ~ 2000 x 2000 (which translates to eight
sites for typical many body models) due to runtime reasons. The only way to expand in system size is
to use sparse eigenvalue solvers. One of such methods, the Lanczos algorithm, is used extensively in this
work to calculate the groundstate of system for up to sixteen sites. The Band Lanczos algorithm can be
used to obtain information about excited states, like the single-particle Green function, in a very good
approximation. In the sections to follow, a method for full diagonalization the QR methods is briefly
mentioned in sec.Z2:3 as it is used in this work to deal with small systems (system size L < 7). The
main focus here will lie on sparse solver for hermitian matrices. The Lanczos algorithm will be discussed
in some detail in sec.22.7] as it is an essential part of this work. Sec.2.2.2 reviews the Band Lanczos
method which is used to obtain the single-particle Green function and degenerate groundstates vectors.

2.2.1. Groundstate properties - The Lanczos algorithm

The method commonly known as Lanczos algorithm [38] is an iterative projection method suitable to
solve large hermitian eigenvalue problems. In this work the Lanczos algorithm is used to obtain the
groundstate properties of clusters for CPT/VCA. Here a short overview of the method should be provided.
This paragraph is loosely based on the good and practical overview of eigenvalue solvers by Bai et al. [39]
and the short but very good review in ref. [29].

The Lanczos algorithm is applicable to the standard hermitian eigenvalue problem

H)=FE|v) .

This method yields a few extremal eigenvalues and eigenvectors of H with high precision. The matrix H
is the matrix-representation of the Hamiltonian A in the Fock-basis H = (ny,na, ..., nar| H |0}, nh, .., 0y, ).
This method may be considered a standard tool of many-body physics because it has comparatively
low memory requirements. In the most primitive version only three state vectors |v;) and the sparse
Hamiltonian need to be stored in memory.

The algorithm starts out with a (random) initial vector |vy) upon which the orthonormal basis V' of the
Krylov subspace K is constructed by sequential application of the matrix H. The Krylov subspace after
n-iterations is given by

Kn(H, |’Uo)) = span{|v0) ,H|’U0) ,H2 |’U0> ,I‘I3 |’Uo> goos ,Hn |’Uo>} .
An approximation for H is obtained after n iterations by projecting H onto the Krylov subspace

H~VTHV, (2.9)
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where V' contains the n vectors |v;) as columns. The matrix V' is of dimensions [M x n] where M is
the dimension of H. Therefore the approximation to H, H is a small matrix of dimensions [nxn] =
[nx M][M x M][M x n]. Diagonalization of H yields

UTHU =D, (2.10)

where the eigenvectors of H are the columns of U and the diagonal matrix D contains the corresponding
eigenvalues of H. Plugging eq. (ZI0) back into eq. (Z9) one finds that D contains the approximative
eigenvalues (Ritz values) of H

UT'VIH VU ~D,
——— ——
X7 X

from which one can also see that the columns of X » V U are the approximate eigenvectors of H.
Next the individual steps of the algorithm will be discussed. The starting point is a random vector |vg)

of dimension M. The successive Krylov vectors are constructed by application of H and consecutive
orthogonalization (and normalization):

|vn+1> =H |vn) —€n |vn) - ﬂn |’Un71) (211)
€n = (| H |vy,)
Bn = (mm = mvn}

Uns1) = _Jon) ’

(Un+1 |Un+1>

Here tilded quantities [v) denote non-orthonormal vectors, while [v,) denote the orthonormal ones. The
projection H of H onto the Krylov subspace may be read off from eq. (ZIT)

(Um| H |Un> = (Um| Un+1> tép (Um|Un> +0n (Um| Un—l) )
[ — [ — [ —
Br+10m,n+1 Om,n Om,n-1

which leads to a tridiagonal form of the Hamiltonian

e 1 0 0
B e B2 0
H=|10 B2 e f s
0

which has to be diagonalized by some other standard method. Convergence is reached when the change
in the ground state energy between two successive iterations is smaller than a given limit

lwg — wp™ < lim .

Additionally the iteration has to stop when the Krylov subspace is exhausted for a given starting vector

|vo)
B =\ (vp|vn) < lim .

Especially for small systems the results should be checked by running the algorithm twice with different
starting vectors. A saver convergence-criterion is to monitor the ~ 5 lowest lying energies individually
to notice crossings after some iterations. This algorithm is used in this work to obtain the ground-state
of H. Its extended version, the Band Lanczos algorithm, is introduced in the next section to deal with
single-particle Green’s functions.

2.2.2. Single-particle Green’s functions - The Band Lanczos algorithm

The Band Lanczos algorithm is used in this work to compute the single-particle Green’s functions. The
description of the mechanics of the algorithm, given here, follows ref. [39] closely. The spectral (Lehmann)
representation of the single particle Green’s function for the zero temperature case in the energy domain
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is given by

-1 (2.12)

“(Wol ] |n)” *{n| ] T Wo)” (ol Tlm)™ “(mle] [Wo)”
z = (wg - w§) poe z+ (wg —wf)

G (2)=3 (Z

The sum over a denotes a sum over a possibly d-fold degenerate set of groundstates. For groundstates
of fixed particle number, the sums over n and m denote the subspaces with Ny + 1 (particle part) and
Np -1 (hole part) particles respectively (all other matrix elements vanish identically). The index 7 is -1
for Fermions and +1 for Bosons.

This may be recast in a convenient matrix form the so-called Q-matrices [40]

’ 1 ,
Gij (2) = % (2 Q;ng) (2.13)
Q7 =

ﬁ <~|&7tWo > particle part
ﬁ <Wole?Tly > hole part
\ - w, —wo particle part _
wo —w~ hole part
To ease the notation the degeneracy index « is suppressed on the individual quantities. Furthermore
the sum over v is over a set of orthonormal basis-states having one more particle than the groundstate
(particle part) and one less particle than the groundstate (hole part). The excited state energies are

denoted by w,
Introducing the diagonal matrix

(S ’
Gy (W) = o j’y/\ )
gl

the Green’s function may be rewritten in matrix form

G(w) = Qg(w)Q' (2.14)
[LxL]=[Lx Nv][Nv X ]\fny][]\/'v x L] .

Here IV, is the size of the excited state space and L the size of the physical system. It should be noted that
the dimension of the Green’s function is of system size (in general of system-size times spin multiplicity).
The matrices Q, containing the weights of the excitations, are of dimension L x N,. The matrix g is the
only dynamic quantity and is diagonal of size N, x NN,.

The Band Lanczos method uses a block of L starting vectors, which are, in our case, constructed from
the application of the respective creation cf* and annihilation ¢] operators on the ground state |¥) of
an L-site system

{lo1) = [T [Wo) , [va) = 3T [Wo) ..., Jor) = ¢ [To)}
{lv1) =¢] |Wo),lva) =5 [To),....Jvr) =c] |¥o)} -

As the previous lines indicate this procedure has to be done for the Ny + 1 particle sector and for the
Ny -1 particle sector individually. If the model is spin symmetric it suffices to consider one spin direction
o - otherwise one has to take care of different spin directions too. In this work the groundstate |¥y) is
determined beforehand by the Lanczos algorithm. The Band Lanczos algorithm proceeds similarly to the
original Lanczos algorithm by constructing the block Krylov subspace, this time starting from L vectors

K"(H,|v);) =span{|v),,|[v)g,...,|[v) i H|v), , Hv)y,....,Hv),;...; H" [v); ,H" [v)g,... . H"|v)} .

Again an orthonormal basis of n vectors is constructed to project H onto this subspace. While in the
case of the Lanczos algorithm the first occurrence of a linearly dependent vector in the Krylov subspace
indicates that the subspace is exhausted, for the Band Lanczos procedure this point is more subtle.
Starting with a set of L vectors the first occurrence of a linearly dependent vector does not mean that
the block Krylov subspace is exhausted. It simply indicates that the linearly dependent vector and all
vectors constructed from consecutive application of H onto this vector do not contain any new information.
Therefore this vector is removed from the sequence in a process termed deflation. The condition for linear
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dependency is

ﬂn=\/mmslim.

After L deflations the algorithm has to be stopped because the block Krylov subspace is exhausted. After
n iterations the algorithm has generated n orthonormal basis vectors and L — D candidates for the next
possible vectors. Here D denotes the number of deflations undergone in the first n iterations. The Band
Lanczos algorithm will generate a banded matrix H whose eigenvalues are the approximate eigenvalues of
H. Orthogonality only has to be explicitly enforced among 2(L — D) + 1 consecutive Lanczos vectors and
once deflation has occurred, against D earlier vectors. Therefore the resulting matrix H is banded with
bandwidth 2(L - D) + 1, where the bandwidth is reduced by 2 every time a deflation occurs. Additionally
each deflation causes H to have nonzero elements p in a row/column outside of the banded part at
row/column index n— L+ D(k) where n is the number of the iteration at which the deflation has occurred
and D(k) is the number of deflations already occurred at iteration n. As an example, consider the case of
L = 4 starting vectors and assume that during the first n = 10 iterations, deflations have occurred at steps
ny =7 and ny = 9. These two deflations correspond to deleting the vectors H? |v), and H®|v), as well as
all vectors which would be constructed from them by application of H. The structure of the generated
matrix H would then be

r x T T x
r x x T T X
r x x T x T p P p P
T x xr T T T X
gl z =z 2 ¢ vz
r x x Tr T T T P P
pf x r x x T x
p* r T T T X X
p* [ R R
p* p* r T T

Here = denotes potentially nonzero entries within the banded part and p denotes potentially nonzero
entries due to deflations. Note that the two deflations have reduced the initial bandwidth 2L +1 =9 to
2(L-D)+1=5.

To obtain the ) matrix representation eq. (ZI3) of the Green’s function we need both the excitation
energies w., for the position of the excitations and the excited state-vectors |y) for the respective weights.

The excitation energies are obtained as the eigenvalues of the matrix H. The weights follow from the j*
iteration vector

|vj) = N, (|UJ Z [vi) {vil v;) ) : (2.15)

where IV; = @;ﬁ;} is the norm of the vector. To evaluate the weight of for example the Ny + 1 particle
sector Qfﬂ. = (v c‘i”L [To), eq. (ZI3) has to be rearranged

|vj = Nj|v;) + Z ) v1|vj

Multiplying this equation by (7|, one obtains

in:<7|vj) i (vlvs) + Z (v[vi) Uz|Ug>

All quantities occurring in this equation are accessible within the Band Lanczos procedure. The norm V;
and (v UAJJ) are calculated at the orthogonalization step and (7| is the complex conjugate of the eigenvector
of the matrix H which is an approximate eigenvector of H.

One can understand the success of this method since the Lanczos method converges to the extremal
eigenvalues in a given subspace. One can target the correct subspace for single-particle excitations by the
explicit choice |v;) = cz /¢; |¥o) as the starting vectors for Band Lanczos. Then the algorithm will yield
those excitations having the largest weight very accurately. In the calculations 300 excitations in the
No+1- and N, = 300 in the Ny—1 sector are evaluated, although it turns out that for most Hamiltonians,
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at system sizes suitable for ED, N, ~ 100 excitations in total are more than sufficient to exhaust the sum
rule

1 oo
—-= %j[m dwImG(w,k) =1, (2.16)

™

and therefore obtain an accurate Green’s function within numerical precision. This means although the
Band Lanczos method is an iterative algorithm yielding not all eigenvalues and eigenvectors in principle
needed for the determination of the Green’s function, it turns out to be a more or less exact method for
this application.

For small systems it is possible to obtain all eigenvalues and eigenvectors by full diagonalization. This
yields all the required information about the system.

2.2.3. Full diagonalization

Although the focus of this work is clearly on large scale sparse eigenvalue problems for which iterative
algorithms like the Lanczos- (or Arnoldi- in the non-hermitian case) algorithm are appropriate, it is often
convenient to have a full eigenvalue solver at hand. A full solver yields all eigenvalues and eigenvectors.
Such solvers are efficiently implemented in standard numerical packages like LAPACK [41]. In this work
the QR method [42] [43] is used to fully diagonalize small systems (L <6). A summary of this method is
unfortunately beyond the scope of the present work. For a recent review see for example Watkins [44].
Having all eigenvalues and eigenvectors of a given matrix at hand, it is straight forward to compute the
Green’s function by using the spectral representation eq. ZI2). The excited state vectors |y) are the
eigenvectors of the corresponding subspace of the Hamiltonian which are all obtained within numerical
accuracy by full diagonalization. The excitation energies w., are the respective eigenvalues. Using QR for
system-sizes between two and six sites and Band Lanczos between seven and sixteen sites, the question
arises if one can go to larger systems. The limiting factor for Band Lanczos besides runtime is mainly
memory consumption. It turns out that a method is currently under development, which enables access
to larger systems, as will be discussed in the next section.

2.2.4. A possibility to reach larger systems - Matrix Product State Lanczos

Recently an iterative Lanczos based eigensolver using matrix product states has been developed [45].
The advantage of this method is the minimal memory consumption at the cost of a truncation of the
Hamiltonian which induces a new source of error each time the Hamiltonian is applied to a state-vector.
For computing Green’s functions this algorithm currently works very well for the ~ 10 poles with largest
weight. Enabling access to system sizes which are easily double the size reachable with a ’classic’ Band-
Lanczos method. However the Band Lanczos method is able to really reproduce enough poles with
corresponding weights accurately to exhaust the sum rule eq. 2I6). It turns out that the ~ 10 accurate
poles obtained by MPS-Lanczos lack approximately 1% of the sum rule for system sizes not reachable
with Band Lanczos. For Hubbard systems up to ~ 14 sites, the results of the two methods are the same.
The interface to CPT is provided again by the Q-matrix formalism. As preliminary calculations for the
STAM show (see sec.B:377) the missing spectral weight, in the MPS method, manifests itself in a spurious
behavior of the single-particle spectral function A(w) in the vicinity of w = 0 after CPT/VCA. This means
that CPT/VCA are extremely sensitive to an accurate cluster solution for the Green’s function. This
algorithm is still under development and gives hope to double the CPT/VCA cluster/reference system L
sizes in the near future. After discussing some options for solving clusters we turn to a method which is
able to improve dramatically on CPT results.

2.3. Variational Cluster Approach

In this section the variational cluster approach will be reviewed. An alternative self-consistent formulation
of the VCA suitable for equilibrium as well as non-equilibrium problems will be discussed. An expression
for the grand potential for infinite-size reference systems will be presented. VCA is in general capable of
dealing with fermionic- [46, 47, [48] [49, 50, [51] as well as bosonic- [52] systems. In contrast to CPT it may
be applied in broken symmetry phases [53} 54, [55]. Disordered systems [56] [57] may be treated using VCA.
Recently an extension of VCA to non-equilibrium problems was introduced [25]. The models which have
been investigated by VCA are numerous. VCA was inter alia applied to the fermionic Hubbard model [5§],
the Bose-Hubbard model [59], the Falicoff-Kimball model [60], the Periodic Anderson model [61] and
the Jaynes-Cummings-Lattice model [62]. Recently VCA was combined with ab-initio band-structure
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Figure 2.3.: Diagrammatic definition of the Luttinger-Ward functional ®[G]. The double lines denote
the fully interacting propagator G, the dashed lines the interaction.

calculations [63]. Applications to spin systems [64] however have failed up to now.
In the following a short introduction to this method shall be presented.

2.3.1. Variational Cluster Approach - Theory

The variational cluster approach may be seen as a variational extension of CPT based on the self-energy
functional approach (SFA) [65] [66]. This section is widely based on the review article by Potthoff [67] as
well as ref. [52].

We are interested in the interacting single-particle Green’s function G of a given Hamiltonian

Hx,U) =Hi(x) + Hi(U) (2.17)

consisting of a one-particle part H; and a two-particle interaction part Hir. In the SFA the Luttinger-
Ward functional ®[G] [68] is used as a starting point to construct the generalized grand potential func-
tional Q[G, Go]

Q[G,Go] = @[G] - Tr {(G;' -G™') G} + Tr {In (-G)} , (2.18)

where the subscript ¢ denotes the non-interacting Green’s function. The trace Tr is short for Tr = % Y tr,
Wn

where [ is the inverse temperature, the sum is over fermionic Matsubara frequencies and the small form
trace tr denotes a sum over lattice sites and spin. The Luttinger-Ward functional ®[G] is defined as the
sum over all two-particle irreducible diagrams. The functional derivative of ®[G] with respect to the
interacting Green’s function yields the self-energy 3

5B[G]

tiall Sl QU
oG

, (2.19)

as may be inferred from its diagrammatic definition (see fig.23)). Taking a derivative corresponds in
the diagrammatic language roughly to taking out an interacting propagator. At this point it should be
mentioned, that VCA may be constructed completely non-perturbatively [69] [67]. It can be shown that
expression eq. (ZI9) is locally invertible. Legendre transforming the Luttinger-Ward functional ®[X]

F[2] = 3[X] - Tr {2G} ,

allows for expressing X[G]

SF[¥]
LA SR
one may rewrite eq. (2-I])
Q[X,Go] = F[Z] - Trin (-Gy' + %) . (2.20)

The functional derivative of the self-energy functional Q[X, Go] with respect to ¥ yields Dyson’s equation
at the stationary point
002, Go]
o

1

--G+(G' -%) " Lo. (2.21)

This is an equation for the physical self-energy ¥ given the Luttinger-Ward functional F[X] and the
free Green’s function Gg. Eq. 219) and eq. (22I)) comprise a set of two equations for the two unknown
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Figure 2.4.: The space of self-energies X is restricted by those which may be generated by the single-
particle parametrization of an exactly solvable reference-system X'

functions G and .

The Luttinger-Ward functional is a universal functional in the sense, that only depends on the interaction
and is not a functional of Gg. This means systems sharing the same interaction part in their Hamiltonian
have the same Luttinger-Ward functional. This fact is exploited in introducing a so called “reference
system”

H (X, U) = Hp (X)) + Hir (U)

defined on the same lattice and having the same two-particle term Hir as the original Hamiltonian
eq. (ZI1), but may differ in the one-particle terms x’. Here primed quantities denote quantities belonging
to the reference system. This means it differs from the the original system in Gg. The point of erecting
this auxiliary system is to choose it to be an exactly solvable one. To be definite one usually chooses it
to be a cluster decomposition of the original system. The Luttinger-Ward functional is eliminated from
the equations by comparing eq. (220)) for the original and the reference system

[2 GO] F[2]-Tr{ln(-G;' + %)}
- = (F ]-Trln(-Gy ' + %))
= Q[E,GO] 2,Gol - Trin (-G +2) + Trin (-Gg ' + %)
2,Gol - Trln (-G'[2]) + TrIn (-G[X]) . (2.22)

I
2

Note that for bosonic systems the +-signs of the second and third term are interchanged. Also note
that in VCA the self-energy X is taken to be the self energy of the reference system X', which is usually
not explicit in the notation. Eq. [2:22)) is still exact if the reference system is able to provide the exact
self-energy of the full system. In practice the single-particle parameters x” of the reference system are
free to be varied since this does not change the interacting part and eq. (ZI8) still holds. This means
that the functional Q[%, Go] eq. (2222)) becomes a function of those parameters

Q)= (X)) +TrIn(-G(x,x")) - Tr In (—G'(x’)) , (2.23)

The VCA approximation consists therefore in restricting the space of available self-energies to those
produce-able by the reference system and its single-particle parametrization (see fig.2:4)). The stationarity
condition determining the physical parameters eq. (Z21]) is then given by

Ve Qx) 20 (2.24)

Note that this is a dynamic variational principle since it involves G(w) and therefore excited states. The
Green’s function G of the physical system  is obtained by the CPT equation (eq- (Z2)). This time in
contrast to CPT the matrix T = G{, ' —G,' contains all single particle terms not included in the reference
system as well as the deviation, introduced by VCA, Ax = x” — x of the single-particle parameters of the
reference system x” with respect to the ones of the original system x. Some remarks about the definition
of signs in G’ and T are appropriate. The signs of the variational parameters are fixed by the Dyson
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equation eq. (Z2])

Gl=gt-T
=(w-H)-T
=w-(H+T).

This means that if a variationally introduced parameter d« for a one particle quantity is defined in H (and
therefore G) as: (a+ 5@)0, it, of course, is negative in T: —da. For parameters which are intrinsically
negatively defined in H (i.e. usually the hopping ¢) it is like follows: in  (and therefore G): —(a+da)O
and in T: +da. For the evaluation of Dyson’s equation eq. (2.2]]) several forms may be used

G'=G""-T
G=G +G'TG =G +GTC

G=(1-G'T)" ¢

The last one is particularly useful for numerical calculations because only one inversion is needed. The
process of performing a CPT/VCA calculation is summarized in a flow diagram in fig.[Z3l Next we turn
to the question of how the self-energy functional eq. (2:23) may be evaluated numerically.

2.3.2. Evaluation of the self-energy functional

The grand potential in the form of eq. (Z.23)) has to be evaluated numerically in order to find its stationary
point and thus the optimal single-particle parameters x,,,,. In ref. [26] two methods to evaluate eq. (Z23))
have been proposed. One is based on an exact (analytic) frequency integration, which yields an expression
involving sums over excitation energies. Therefore it is especially suited for problems, where the full Q-
matrix representation of the cluster as well as the total system is available (see sec.ZZI.4)). The second
option would be a numeric frequency integration. This is the way to go in dealing systems, whose
excitations can not be put into Q-matrix form entirely (see sec.Z1.5]). As we shall see the real integrals
have to be transformed to complex contour integrals in order to achieve a stable numerical routine. In
the following both cases will be discussed. The first one is needed for the calculations for Graphene,
although here the numerical integration would be applicable too, however with slightly less accuracy.
The second method is used for the single impurity Anderson model, where the spectrum is not explicitly
representable by a finite number of poles.

The evaluation of the first term of eq. (223): Q'(x’), which is the grand potential of the cluster, is the
same in both cases. It may be calculated from the partition functional

’

7 = e—ﬂﬂ’(x’) _ e—Bwn ,
%

which reduces in the limit of zero temperature (8 — +o0) to the contribution of the ground state energy
of the cluster wy, only

lim Z e Bwn = g B
n

B—+00

Therefore, in the zero temperature case, the grand potential of the cluster Q'(x") is given by its ground-
state energy w,

Q' (X) =wy .
Next we turn to the two different approaches of evaluating the additional terms in eq. (2:23)).

Exact frequency integration

This method of evaluating the grand potential eq. (Z23) is used for systems, where the full Q-matrix
representation of the cluster as well as the total system is available. In this work this is the case in the
study of defects in Graphene (see ch.Bl). The results (for example obtained in ref. [26]) will be stated
here without derivation, since the calculation is rather lengthy and was not part of this work. It may for
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Figure 2.5.: Flow chart diagram for a CPT/VCA calculation.
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example be found in ref. [29]. The analytic frequency integration of eq. (2:23) (for fermions) leads to

)

oo, b A I e B (D)
Q(x)—Q(x)-rB;ln‘l e ‘ ﬁNFer:;hl‘l e

which reduces in the case of zero temperature (8 - +o0) to

Qx) =)~ > Ag+i S (KD).

r
ReAl, <0 N ReA (kI')<0

Note that in the bosonic case the +-signs in front of term two and three are exchanged. The excitation
energies of the cluster A, are obtained in eq. (2.3), while the excitation energies of the total system for
a given superlattice wavevector k! are available from the diagonalization of eq. (ZH). Note that the last
sum goes over the 15 BZ of the superlattice I'. NT is the number of points on the superlattice T, i.e.
the number of clusters in the total system. All quantities in this expression are readily available. Next
we turn to the case where those quantities are not easily accessible in Q-matrix form and a numeric
frequency integration has to be used.

Numerical frequency integration for infinite reference systems

In this section we have in mind a special kind of reference system, which is not expressible in Q-matrix
form and of infinite extent. This is the case for the single impurity Anderson model, although the
expressions derived in this section are applicable to any system of that kind. We consider a reference
system consisting of two parts, one being a finite interacting system, the cluster, and one a non-interacting
system of infinite size, the environment. The grand potential Q'(x’) is given by the sum of the grand-
potentials of the cluster part of the reference system (€.;,,s.e;) and of the environment part of the reference
system (9%,.,). The last part being infinite but constant and we consider from now on the shifted grand

env

potential Q(x) — Q..
We start out by discussing the Green’s function G for an infinite reference system. This system is

represented by the Green’s function of the reference system and G’ and T

/ G’cc thze _ Tee Tee
G :(G’ec G;e)’ T_(Tec 0 )

where the subscript ¢ denotes the sites of the cluster part of the reference system, while the collective
index e denotes the sites of the environment part of the reference system. Up to this point all matrices
involving environment indices have infinite size. As far as the Green’s function itself is concerned this
is no problem as we are primarily interested in the cluster part of the reference system given by G, for
which the Dyson equation reduces to

Gee = Gl + Gl TeeGre + Gl TeeGee

Gee = GeeTecGee

Gee = Gro + GleBocGec

See = Tee + TeeGroTec
As far as the grand potential is concerned, the calculation to eliminate the infinite environmental degrees
of freedom is rather lengthy and presented in app.[Cl Based on this result the numerical frequency

integration of eq. (2:23)) is possible. Again this results in tedious work following ref. [26], which is done
in detail in app.[Dl Starting out from

Q(x)=Q'(xX') - TrIn (Il - TG'(X')) ,

and performing a transformation to a complex contour integral as well as an integral regularization, one
ends up with

Q(X/) ~ oy = w(/),cluster(xl) +tr (T)

env
B lZfoodwln|det(llcc—f]cc(iw)G'cc(iw))
7% Jo

This integral may be evaluated as suggested in ref. [26] by integrating from 0 to A1, from A; to A and from
A5 to oo. Ay and A represent two characteristic scales in the problem (for example the smallest /largest
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eigenvalue of the Hamiltonian matrix). For the last part of the integral a substitution @ = % is performed.
In this work an adaptive Gauss Legendre integrator (see for example ref. [70]) for the evaluation of the
integrals is used. Having discussed how the grand potential is evaluated for a given set of single-particle
parameters x’ we proceed by discussing methods to find its stationary point.

2.3.3. Finding stationary points of the grand potential

In VCA the stationary point of the grand potential functional has to be determined. The stationary
point of the grand potential Q(x") which is in general a multivariate function may be a maximum, a
minimum or a saddle-point. Generally enormously large deviations from the physical parameters x do
not make sense. Therefore it is difficult to apply a standard numerical algorithm. In fact I am not
aware of an algorithm which finds arbitrary stationary points of a (often quite complicated) multivariate
function with boundary constraints. Literature exists for the so called Nudged elastic band [7I] and
dimer methods [72] which are not suitable for the problem at hand. The approach taken here is to
separate calculations involving low dimensional (one to two variational parameters) parameter spaces,
where the nature of the stationary point is often known from the general higher dimensional case, where
it is impossible to predict the nature of the stationary point. For example it is known that varying the
chemical potential (or on-site energy), the stationary point is always a maximum. We furthermore found
that varying the hopping, there exist in most parameter regions three stationary points, one which is an
unphysical maximum and two equivalent minima. For further discussion see sec.[33.11

In this work a Brent method [70], which combines a parabolic interpolation with the golden section
algorithm is used for one variational parameter if the stationary point is known to be a minimum or a
maximum. For higher dimensional cases, where the stationary point is known to be either a minimum
or a maximum, a derivative free Nelder-Mead simplex algorithm [73] is used. Both these algorithms are
available from standard numerical libraries like GSL [74]. For the mechanics of these methods the reader
is referred to the literature since a description of these algorithms would go beyond the scope of this
work. In the general case where the nature of the stationary point is not known a self-made algorithm
is used which is based on parabolic interpolation. The idea is that the function Q(x") is fitted by a high
dimensional paraboloid, whereby the consecutive points, by which the paraboloid is fit, contract to the
stationary point. Since this method was developed specifically for this application it is presented in the
following. A similar method may exist in literature, but no perfectly suitable standard-algorithm could
be found. During the finalisation of this thesis E. Arrigoni pointed out to me a similar method presented
in ref. [53] sec. III.D, which includes a suggestion for improvement.

Finding stationary points in many dimensions

Our goal here is to find the stationary point of the N, dimensional function €(x). Therefore we approx-
imate this function by a quadratic form

() O,
where C' is a symmetric matrix with

N2 +3N, +2
Ne¢ = : 2 h )

independent unknown coefficients. To identify the coefficients of C, N¢ trial vectors x’, i = [1,... N¢]
are needed

This leads to a system of equations for the coefficients of C'

(xHTCx'=Q(x"), i=[1,...Nc]. (2.25)
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Consider as an example the two-dimensional case: N, = 2, which leads to Ngo = 6. We need six, three-
dimensional trial points x* to obtain the system

(Xi)T CXi _ Q(Xl)
o Cu Ciz Ci3) () o
(27 a5 1)[Cia Ca Cug ||y |=Q(a],25)
Ciz Ciz C33)\1

011 (.T%) + 022(.%'2) + 2012.T1$2 + 033 + 2012.%‘1 + 2013$2 Q(l‘%, .T%)
C11(22)? + Cog(23)* + QC’uscle +Cs3 + 2012501 + 2013z2 Q(z3,23)
Cri(x3)? + 022(502) + 2012:clz2 +Cs3 + 2012501 + 2013z2 (a3, 23)
011(1"11)2 + 022( )2 + 2012.T1$2 + 033 + 2012.%‘1 + 2013$2 Q(l‘%,l‘%) ’
011 (.T5)2 + 022(.T2)2 + 2012.%‘?@3 + C33 + 2012.%‘? + 2013$g Q(l‘?, .Tg)
Cu( )2 + 022( )2 + 2012.%‘?1‘(25 + C33 + 2012.%‘? + 2(7131‘(25 Q(l‘?, .Tg)

The N¢ trial vectors are chosen in the vicinity of an initial guess for the stationary point x5

x'=x%+ Y giBje;, (2.26)
J

where the function g;'- may be chosen to take integer values € [0,+1,+2,...] to encage x). A guess for
the stationary point of Q(x) is given by the stationary point of its local quadratic approximation by

vQ(x) ~ v ((x%)T Cx5) 20

where the coefficients of C' are known from eq. (2:25)). This leads to another system of equations for the
approximation of the stationary point x5

v(x5)T x5 + (x5)T vox® 20

20x5 20,
which may be solved by bringing the constant terms to the right. Again for the two-dimensional example
this takes the form

Cuiﬁf + 012£E§ _ -Ci3

Croxy + Cooxy  —Cag
The newly obtained approximation for the stationary point x5 is then taken to be a new guess x5, and
the procedure is repeated until the point stabilizes from one iteration to the next. One important point
to note here is that the convergence is strongly dependent on the function ; which is used to quantify
the size of the cage around x5, in eq. (Z26). This function has to contract to a point, the closer one
comes to the true stationary point to avoid instabilities. This concludes the discussion of VCA based on
the grand potential 2. Next we turn to a different, self-consistent formulation of VCA.

2.3.4. Self consistent VCA

In this work we compare results obtained by the conventional VCA which we from now on term VCAg to
an alternative formulation VCAgc. The need for an alternative formulation is motivated by the extension
of VCA to non-equilibrium systems which will be discussed in sec.2:4l The conventional VCAg may not
be straight forwardly used in the non-equilibrium situation since it relies on the grand potential which is
not well defined in this case. The self-consistent reformulation of VCA: VCAgc was recently developed
in ref. [25] to treat systems out of equilibrium, although it can equally be adopted in equilibrium. Up to
now this formulation lacks a rigorous fundamental mathematical justification although it may be related
to CDMFT in some limits [25].

In VCAgc the variational parameters x” are determined by comparing static expectation values of the
reference system and the total system. The idea of this self-consistent approach is to use a reference
system which resembles the full system best. The strategy is to find those values x” for the set of
parameters of the reference system which let the expectation values of their corresponding single-particle
operators < 10) >cluster,w coincide with those of the full system < 10) >cpTxx- Here, the angle brackets
denote expectation values in the reference and the full system coupled by CPT or VCA respectively.
Consider the on-site energies €} and ¢ as variational parameters. One then has to look for those cluster
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parameters €} and €, which fulfill the relations

. f Vst
(ng)cluster,e’f,e’s CT>CPT,€f7€S,€'f7ErS (2.27)

-
=~

L-1

) | )
N ! N
Z (na)cluster,e’f,e’s - Z (nU)CPT,Ef,eS,e
3 3

—

’ r "
106

The sum is over all non-interacting sites included in the cluster. Eq. (2227) amounts to solving a system
of non-linear equations in each step of the self consistency cycle. In general it is possible to vary each
single particle parameter separately. For reasons of keeping the numerics tractable in this work we restrict
ourselves to one €, only, which we take to be the same for each site. Extension to a larger number of
e’ is straightforward. To fix this parameter we require the average particle density on the noninteract-
ing sites to fulfill the condition eq. (227). In some situations, the hybridization matrix element V' and
the intra-cluster hopping ¢’ will alternatively be considered as variational parameters. Then the parti-
cle number expectation values in eq. (2.27)) are replaced by hopping expectation values. Again for ¢ we
use a single variational parameter for hopping between all uncorrelated sites and fix it by requiring the
mean value of hopping in the cluster and the full system to coincidence. An improved multidimensional
Newton-Rhapson algorithm is used to find the roots of the system eq. (227). In some parameter regions
no solution may be found.

2.3.5. Finding the roots of multi-variate functions

In contrast to the standard formulation where one has to find stationary points of the grand potential
), the self-consistent formulation requires finding the roots of a non-linear system of equations. In this
work a modified Newton-Rhapson method [70] is used to solve a non-linear system like eq. (227). The
Newton-Rhapson procedure converges to a root by an iterative process. A starting point x for the roots,
is updated by the prescription

Xn+l1 = Xp — [Jf(xn)]71 f(xn) ,

where Jy is the Jacobian defined as

o Ofr ... Of
Oz Oxo ox
of2  9fz .. Of2
ZON ETNCT
Ofn  Ofn ... OIn
oz Oz ox N

which is calculated by a finite-difference approximation to the partial-derivative.
The self-consistent VCAgc introduced in the last two sections provides the basis for the non-equilibrium
formulation of VCA, which will be discussed in the next section.

2.4. Non-equilibrium Variational Cluster Approach

The extension of CPT/VCA to the non-equilibrium case was started by Balzer et al. [75] who studied
short-time behavior using CPT. Knap et al. [25] were investigating the long-time, steady-state of two-
dimensional Hubbard systems using a self-consistent VCAgc. In this work the long-time, steady-state
behavior of a strongly correlated quantum dot, modeled by the SIAM, is investigated by VCAgc. In
this section the non-equilibrium extension of VCA will be presented. First a short introduction to the
Keldysh-Green’s function technique, on which the non-equilibrium VCA is based, is presented in sec. 2411
Then the self-consistent VCAgc introduced in sec.23.4] will be extended to the non-equilibrium case in
sec.242

2.4.1. The Keldysh-Green's function technique

Here the basics of the Keldysh-Green’s function technique are outlined. This section is based on the very
nice review article by Jauho [76]. Further information on the topic is available at the more comprehensive
reviews ref. [77] or ref. [78]. Introductory lecture notes are available in ref. [79] and ref. [R0]. A good
overview is presented in the book by Haug and Jauho [8I]. The contour ordered (Keldysh-) Green’s
function technique was named after the pioneering work by Keldysh [82], although earlier closely related
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approaches exist, for example by Schwinger [83] and Feynman and Vernon [84].
One great advantage of non-equilibrium Keldysh Green’s function theory is that it is formally similar to
the equilibrium theory. Consider a system described by a general Hamiltonian

7:( = 7:[0 + 7:(1(15) N
where the time dependent part is assumed to vanish in the distant past t > —oco, so
Hi(t)=0 for t<0,

Adiabatically switching on the interaction H; (t) = e 0l V(¢), the interaction attains its full strength at
time ¢ = 0. Note that this implies that at time ¢ - —oo all operators in the Heisenberg-picture OH equal
operators in the interaction representation with respect to 7:[0, O*o(~c0). Zero-temperature equilibrium
many-body theory may be formulated in terms of the time-ordered Green’s function [85], [86]

Wo| T (AH (21, 11) B (29, 12)) [ ¥
Ggé(zl,tl;xmb):—i( o ( (@,0)B” (@2 2))| 0)- (2.28)

{=o0|-00)

The index z, representing space, spin, ... will be suppressed from now on to focus on the important index
in this chapter which is time ¢. The time-ordering operator is defined as

o JA@WBE)  ift>t
TAMBE)) = {B(t’)/i(t) if ¢/ >t (229)
=0(t—t")YA@)B(') +n0(t' —t) B(tA(t), (2.30)

where 1 = +1 for bosons and 7 = -1 for fermions. Note that averages over thermal ensembles in the finite
temperature formalism are not considered in this work, and therefore no reference to them is made in
this section. An extension of the concepts presented here however is easily possible. A troublesome thing
with expression eq. (2:28)) is that it involves the unknown ground-state |¥) of an interacting Hamiltonian
H. We assume that the ground-state at time ¢ - —oo is given by the solvable ground-state |—co) of Ho.
Thus the interacting ground-state |¥) is given by time evolution

[Wo) =5(0,-00) Do) .
It is convenient to transform to the interaction representation with respect to f[o
W70 (8)) = S(t,~00) [¥) = S(¢,~00) |-o0)
OH (1) = §(~00,t) 010 (£)S(t, —o0)
S(ta,t) =T (e’ifttf dt'ﬁl(t')) .
This yields an expression for the time-ordered Green’s function eq. (Z28) for ¢1 > o

{~o0| (00, t1) AL (1) S (t1, ~00) S (~00, t2) BT 0 (15) S (t3, ~00) |-00)

(~ool-o)

Ggg(tl,tz) =—i

Using S(t1,-00)S(-00,t3) = S(t1,t2) and re-introducing the time-ordering which permits us to exchange
operators at different times within it, one obtains

(—o00| S(~c0, )T (S(t1,~00) AT (1) BT (13) ) |-o0)

{-o0|-00)

Ghs(t1,to) = —i

)

where S(—o0,t1) can not be pulled inside T since it is itself not time-ordered, remember —oco < t5 <1 < 00
by construction. Expressing (—oo| = (oo|S(+00,-00) and combining S(co,-00)S(-o00,t1)S(t1,—00) =
S (o0, —00) yields an operator which is time-ordered by itself and may be pulled inside the time-ordered
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Figure 2.6.: The Keldysh contour (closed-time-contour) for systems without initial correlations. Opera-
tors are defined at a time ¢ and on a branch ¢ on the complex contour.

product at the cost of introducing the state in the distant future |+oo)

(00| T' (S (00, ~00) ATT1 (1) BI 4 (1)) | -o0)

T _
Giplint2) =i (o] S (o0, —o0) [=o0)

(2.31)

The way the time-dependent part of the Hamiltonian 7-21(15) was introduced it is adiabatically switched
on and off again. We therefore assume that the system finds its way back to the ground-state of H,
at times ¢t - +oo and we have |[+o0) = ¢!®|-0c0). This relation is made rigorous in the Gell-Mann and
Low theorem [87], which is satisfied in this case (H(t - +o0) = H(t - —00) = Ho, plus adiabatic time-
dependence in-between). Therefore one ends up with

(~oo| T (S (00, ~00) AT 1 (1) BI 7 (1)) | -o0)

{-o00| S(+00, ~00) |-00)

Ghg(tity) =i , (2.32)
which serves as a starting point for perturbation theory.

At this point the non-equilibrium case starts to deviate. In the non-equilibrium situation it is not
reasonable that by adiabatically switching off the interaction, the system will return to its non-interacting
ground-state. This means |+oo) = €’ |-c0) does not hold any longer and we are left without knowledge
of the final state. This forces us to take the unknown |+oco) out of eq. (Z31]) to obtain

(~00| (00, +00)T (S(+o0,=00) AT (1) BI 1 (13) ) |-o0)

Glhp(tite) = =i (~o00[ S(~00,+00)5(+00,~00) |-00)

)

where again S(—oc0,+00) can not be pulled inside the time-ordering. The ’trick’ here is to introduce the
so-called closed-path or Keldysh- contour (see fig.[2.6) and define each object not only at a certain time ¢
but also on a certain branch of the contour ¢ = {+,-}. Note that this contour is valid for systems without

initial correlations, where ty may be taken to —oco. Extending the time-ordering operator T eq. (Z30) to

the contour-ordering operator T,

A o A B(, ) i {t ey > (e
Te (At B, ) = {B(t',c')A(t,c) it (¢ > e}

which orders operators along the contour, it is possible again to pull everything inside the ordering

(~0o| T (1S( o0, ~: +00) S (+o0; ~00, +) AT (11, ) BLH1 (13, +) ) |-o0)

{=00].S(=00, =; +00) 5(+00; —00, +) [-0c0)

G?B(thcutz,@) =-1 , (2:33)

This means one lets the system evolve in the forward time direction from —|oco) to |+o0) and then back
from |+o00) to |-o0) in the backwards time direction. Thereby all interactions are unwind. This essentially
comes along with a doubling of degrees of freedom since every operator acting at time ¢ now acts at time
t on contour ¢. Eq. (2233) defines the four-component single-particle Green’s function in Keldysh space
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G (t1,t2) GT; (t1,+;to,+) = G  (t1,ta) = =i < T (c(tl)cf(tg)) > time-ordered Green’s function,
G (t1,t2) = GCTCCT(tl, +itg,—) = GX(t1,t2) = —ni < ' (t1)e(ty) > lesser Green’s function, (2.34)
TH(t1,t2) = Gl (t, —ita, +) = G (t1,t2) = —i < c(t1)c (t2) > greater Green’s function, (2.35)
( e

ty,—;ta, =) = GT(tl,tQ) ——i<T (c(tl)cf(tg)) > anti-time-ordered Green’s function .
These four Green’s functions are not linearly independent, since
GT+aT-G"+G< =G~ .

This allows performing a rotation in Keldysh-space
G" G* G* GF)

where the ro‘@ted form is denoted G and will be used in this work. The individual Green’s functions
contained in G are

GE (t1,t) = % (GT ~-GT-G<- G>) =0(t1 —t2) (G" - G") retarded Green’s function,
G2 (t1,t2) = % (GT ~GT+G<- G>) =0(ta—t1) (G°-G”) advanced function,
1 —
GE, (t1,12) = 5 (GT +GT+ G+ G>) =G*+G” Keldysh Green’s function . (2.37)

Since the greater- and the lesser- Green’s function G”/ G are by definition anti-hermitian (see eq. (Z.35)
and eq. (Z.34)), two handy relations follow

G* = (GMT
GK = (g™t (2.38)

In the next section the marriage of VCA with the concepts presented here will be described.

2.4.2. Non-equilibrium VCAgc

In non-equilibrium VCA [25] the single-particle Green’s function is calculated in Keldysh-space Geq. 236).
This means that it is in general a matrix in Keldysh, site, spin, ...indices and a function of energy w and
wavevector k. Since the original formulation of VCA based on the grand potential is not well defined in
the non-equilibrium situation, here the alternative- self-consistent formulation presented in sec.2.3.4] will
be used.

One may rewrite eq. (Z27) in a more formal way in the non-equilibrium case

-1
©dw (9(G(I)) ~/
/. i ———(G'-G) =0,
Where 77 is the first Pauli matrix in Keldysh space. Having the variational criterion and the foundations
of Keldysh-Green’s functions at hand it is straight forward to apply non-equilibrium VCA. Consider a
system consisting of an interacting region and a non-interacting environment of infinite size. At time
t - —oo these two components are decoupled until at a certain time the coupling is switched on. We
are interested in the long-time, steady-state behavior of the coupled system. As in the non-equilibrium
case, the reference-systems (i.e. interacting cluster and non-interacting environment) have to be exactly
solvable. The retarded Green’s function is then calculated as in the equilibrium case, from which the
advanced Green’s function may be obtained by taking the hermitian-conjugate. The Keldysh part of the
Green’s function for fermions, before coupling to the environment is given by

G (w, 1) = (G™(w) - G*(w)) (1 -2prp(w. 1. 8)) (2.39)

where ppp(w,p, ) is the Fermi-Dirac distribution eq. (D). The last part of this equation may be
rewritten in the zero temperature case as (1 - 2ppp(w, i, 8)) = sign(w — p). Note that this is the only
quantity in which the chemical potential i enters. This procedure will be illustrated by the particular
example of a quantum dot in ch.[Bl It is interesting to mention here, that the authors of ref. [75] found that
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the short-time dynamics of a non-equilibrium system are remarkably well captured within CPT. However
the long-time behavior cannot be expected to come out reasonable within CPT, since the system does not
know that it is subjected to a non-equilibrium situation. The self-consistency within VCAgc introduces
this crucial and necessary feedback. In the following the calculation of several important quantities like
single-particle expectation values, the steady-state current-density and the effective-distribution function
shall be outlined.

Static single-particle expectation values

In this paragraph an expression for single-particle expectation values is presented to be used in the self-
consistency condition sec.2.3.41 The expectation value is expressed in terms of the Keldysh Green’s
function as follows

1
<CICj>_§(<CICj>+<CICj>)

1

§<CTCJ cjcl+5ij>
:% z(z<cfcj>—i<cjcif>)
2 2 ¢
0 3(G<+G>)

2 2

0ij i K
:%——G.i(t,t)

> dw
'LJ K
+s f G ().

Here the correlator was first symmetrized and re-expressed in terms of lesser- and greater- Green’s function
(eq. (234) and eq. (239)) in line four. Then those were combined to yield the equal-time Keldysh Green’s
function eq. (Z37) in line five. Finally an equal-time Fourier-transformation was applied to express the
Keldysh Green’s function in the energy domain. Note that upon numerically evaluating this integral a
convergence study in 0" is absolutely necessary. Too small values of 0" will yield zero for the correlator
while too large values will yield arbitrarily wrong numbers. The problem is that G% does not possess the
analytic properties of a Green’s function (like G) and behaves rather like a spectral function. Therefore
rewriting this integral as a complex contour integral as in app.[Dlis not possible.

Next an expression for the steady-state current density will be presented.

Steady-state current density

Here a representation for the steady-state current density in terms of Keldysh-Green’s functions in site
space is given. For a detailed derivation see ref. [81] or ref. [76]. We consider a general Hubbard-like
interacting model system. The Hamiltonian is given by

H = Z €;M; + Z Umlﬁzl - Z tijczcj -ty (c}LcT + c:[cl) ,
i i <ijs\{L,r}

where [ and r are the two sites between which we intend to measure the current. The notation of other
quantum numbers is suppressed here. The current-density from site [ to site r is given by the time
evolution of the expectation value of the total particle-number to the left of site [

j=—e<NL(t) >
= <i[H,> Al >
i<l

=1 Z Z m+1m Cm+1cm + tmm+1 CT mCm+1, nz] >
i<l m

_ t t t t
=—1 Z <ti-14CCim1 — igr1 €51 Ci + Ligr1 €;Ci1 — T4 C;_q € >
i<l

l -1

_ t t t t

=-1 (Z tiiv1 < C;Ciy1 —C; 1Ci > — Z tiiv1 < C;iCit1 —C1Ci > ], (240)
i=1 i=1

where in the first line the occurrence of the electronic charge e was indicated, which is then set to one in
the spirit of this document. Note that also the explicit dependence on time ¢, indicated in the first line
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is dropped in favor of a convenient notation. It is important to keep in mind that all operators ¢ and
¢t act at the same time ¢ here. The last line may be obtained since 7; commutes with the rest of the
Hamiltonian and we are interested in the current to the right! This can be seen from the commutators

[, C}L] = czcic; - c}czci = cl.Lch]L + cTc}Lcl

= CICiC} +cf (8,5 - m}) =cldy; (2.41)
[Rie;] = cleici — cjeles = cleiej — (655 - clej) e

= CICiCj = dijci = CICiCj = =0y (2.42)
[ns, 7] = [ﬁi,c;]cj + c}[ﬁi,cj] = cj(Sijcj - cgciéij =0, (2.43)

which follow from the elementary fermionic commutators
{Cmcj}:&j e, =0 {sz J} 0, (2.44)
and the relations
[a,b¢] = [a,b]e +bla, é] = {a,b}e - bla,é)} . (2.45)

Here [a,b] = ab — b denotes the commutator and {a,b} = ab + ba the anti-commutator. Proceeding with
the evaluation of the sums left in eq. (240Q) (, which partially cancel,) we end up with an expression for
the current

j=—ity < cIcT - cicl >
t
=—q g < cIcT - cTc}L + 01 — clcl + clcl -0y >
t
= —g (z < cjcr -1 < c,«czr >—1< cicl > 41 < clcl >)
i
= - (G l<7‘ - l>7‘)
t
_ lr (G Glr)

t . . .
A (SReG +iImGE - ReGE —iTmGY)

= t;T (- ReGfs +iImG;s - ReGfE - iJme:)
=t MeGL (1, t)
=4, 3 f w SReG (). (2.46)

Here the operators were symmetrized in the second line to obtain an expression for the current in terms
of the Keldysh Green’s function instead of lesser Green’s functions. In the third line the definition of the
lesser- and greater- Green’s functions (eq. (2.34) and eq. (2:39)), and in the fourth line the definition of
the Keldysh Green’s function eq. (Z37) were used. In the sixth line eq. (Z338) was used to exchange the
r,l labels of the Keldysh Green’s function. From the second-last to the last line a Fourier transformation
of the equal-time Keldysh Green’s function to energy space was done. In the last line the trace over spin
components was added, which has to be executed to calculate the total current of all spin flavors. In VCA
eq. (246) may be evaluated because G{ﬁ can be directly obtained. One may also use the symmetrized
form

LY [ (Gl el w) (2.47)

The continuity equation is fulfilled for that relation, but numerical simulations show that it will be
violated if the current is calculated with a finite numerical broadening 0*. Therefore it is very important
to set 07 = 0 when obtaining Green’s functions for current calculations.

To round up the discussion about non-equilibrium properties, the effective distribution function is defined
in the next paragraph.
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Effective distribution function

In equilibrium the Keldysh component of the Green’s function is given by eq. (Z39). One may define an
effective distribution function in non-equilibrium

1 G (w, 1)
w, L) == — . 2.48
peﬁ'( M) 9 2(GR(UJ)—GA(W)) ( )
Note that G®4X are still matrices in site, spin, ...space and the above relation is not well defined. In

general the effective distribution function can not be expected to be the same for each element after the
coupling to the environment has been switched on. In this work three particular definitions are explored

1 G?f(wvﬂ)

2 2(Gfi(w) - GF(w))
tr (Gg(w,ﬂ))

2tr (GfF (w) - G (w))
z (Gf (w, )

B 2% (GEw)-GAw) "

PS8 (w, 1) =

1
péf‘f)(wau) = 5 -

1
P (w, 1) = 5

The first option is taking a particular site (i.e. the correlated site when dealing with quantum-dot
systems), the second option may be to trace over the Green’s function matrices in site/spin space and
a third to average over all matrix elements. They all show qualitatively the same picture, although the
first version gives the best result. Remarkably the imaginary part of the effective distribution function
stays almost zero as it should be, but can not be expected from the definition. Results for the effective
distribution function are obtained in sec.F2l

This concludes the chapter on the methods used throughout this thesis. In the next chapter, results
obtained for the STAM will be presented.
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3. The single impurity Anderson model in
equilibrium

The single impurity Anderson model (SIAM) is one of the most widely studied models in condensed
matter physics. It was introduced to describe the effects of magnetic transition metal impurities im-
mersed in metallic hosts [2, [88]. Originally it was derived to capture remarkable physical properties
like the resistance minimum [3l, 3] at a specific temperature scale T [89] or the anomalous magnetic
susceptibility and specific heat of such materials. Quantum impurity models have further been applied
to understand the adsorption of atoms onto surfaces [90, @1, 02]. In addition, they are of theoretical
interest as solvable models of quantum field theories [6,[03]. A renewed interest in understanding and cal-
culating dynamic quantities of these models was created with the advent of dynamical mean-field theory
(DMFT) [15, [12} 13]. In the foundations of this theory quantum impurity models have to be solved as
an auxiliary problem. The behavior of various magnetic phenomena and the remarkable branch of heavy
fermion physics is described by strongly correlated quantum impurity models [94] 93], like the periodic
Anderson impurity model.

As one can imagine, because of the enormously large area of application, a wide range of methods and ap-
proximations have been suggested for the solution of the STAM. They however prove to be a very delicate
subject because standard perturbative approaches diverge [89]. Prominent techniques include a self consis-
tent perturbative expansion [96] and Bethe Ansatz techniques [97] for one dimensional problems. The low
energy physics are very well described by numerical renormalization group (NRG) [98], functional renor-
malization group (FRG) [99, 100, T0T] and density matrix renormalization group (DMRG) [102}, 103}, 104].
There is a range of slave particle methods [105], [106] available as well as methods based on Hubbard’s
X-operator technique [37, [107] and calculations using variational wavefunctions [90]. Valuable physi-
cal insight has been gained by using equation of motion techniques applying different approximation
schemes [81]. Quantum Monte Carlo (QMC) methods in general suffer from the sign problem for this
class of models [I9]. Early results were nevertheless achieved for example in ref. [I08]. For moderate
system sizes the Hirsch-Fye QMC [109] algorithm has proven to achieve good results. In the past years
different approaches to continuous time QMC [I9] have been applied very successfully to solve quantum
impurity models especially in application with DMFT. In this context exact diagonalization methods
have been used to solve small systems [110].

As of today some limits of quantum impurity models are understood with great precision but there ap-
pear several gaps to be bridged. The low energy properties of these models are reproduced very well
by renormalization group based approaches. These approaches in general have trouble to capture the
high energy parts of the spectrum. The same may be said about QMC methods which if applicable yield
dynamic quantities in imaginary time. The analytic continuation to the real energy axis is ill condi-
tioned. Spectra obtained by for example the maximum-entropy method [20, 21] have a large uncertainty
for higher energies. Exact diagonalization methods, in principle, grant access to low as well as high
energy parts of the spectrum at the same time. Due to the prohibitively large Hilbert space however only
small systems (about ten to twenty sites) may be treated with this method, whose low-energy behavior
is expected to deviate from the one of the infinite lattice. Nevertheless, the advantage consists in the fact
that the spectral properties may be determined directly on the real energy axis. Besides the issue of the
low energy scale, also the flexibility to adapt to various impurity configurations and geometries is limited
in most methods.

Here, cluster perturbation theory (CPT) [22, 23] and the variational cluster approach (VCA) [24] 65 [66]
are applied to the single impurity Anderson model. These cluster methods attempt at bridging the gap
between diagrammatic approaches and exact diagonalization. In contrast to QMC based methods, dy-
namic quantities may be evaluated directly on the real energy axis. The computational cost of performing
a CPT/VCA calculation is moderate, i.e. of the order of standard exact diagonalization. We will show
that these methods reproduce important features of the low energy part as well as of the high energy part
of the spectrum. The great flexibility and versatility of the method allows for treatment of all sorts of
impurity configurations in any dimension. The CPT/VCA results for the STAM presented in this chapter
have already been published by us in a slightly less exhaustive manner in ref. [16].

We start out by defining the STAM.
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3.1. The single impurity Anderson model
In real space the STAM is defined by the model Hamiltonian
QSIAM = ﬁconduction + ﬁimpurity + ﬁhybridization . (31)

A tight binding band of non-interacting electrons with nearest neighbor hopping (i, j) is described by

L

L

Hconduction =€s Z Z Cja Cior -1 Z ng Cio s (32)
T (7o

where €, is the on-site energy of the particles and ¢ is the overlap integral between neighboring sites. The
operators cIU and c,_, respectively, create and annihilate electrons on site ¢ with spin . The parameter
L is taken to be infinity and is introduced here for convenient notation in later chapters where this
Hamiltonian will be decomposed in real space. The impurity Hamiltonian consists of a single site with
local Coulomb repulsion U,

ﬁimpurity =€f Z f; fa’ + Uﬁ{ ’ﬁ‘{ ’ (33)

with f; creating an electron with spin o and on-site energy €y located at the impurity. The particle
number operator is defined as ﬁ({ = f; f,- Finally the coupling between the non-interacting bath orbitals
and the impurity is given by

Hiybridization =~V > (C;U fr+fl ¢rs) s (3.4)

where V' is the hybridization matrix element between the free electronic site I € [1, L] and the impurity
(see fig.[B2 for illustration).
The Anderson width A is defined as

A=7V? = —V—2
= ps(EF—O)_ ¢ ) (35)

where, for simplicity, we have taken A at the center of the bath density of states. The local density

of states of the conduction electrons p,(0) is given for the model defined in eq. 32) by ps(0) = =

Tt
see eq. . In the forthcoming discussion we refer to the particle-hole symmetric case when we set
q g p Yy
U

€f=—3.
A ﬁrstQimpression of the behavior of this model may be obtained by considering the conduction electrons
and the impurity in isolation (V' = 0). This atomic limit then consists of an s-electron Fermi sea with
Fermi energy er and a single state of the f-electrons. For €f < €f + U and €5 < e, the impurity is doubly
occupied and for er < €7 + U and €r < €5, the impurity is unoccupied. The interesting local moment
region arises in a parameter regime where the impurity is singly occupied.

In discussing the physics of an impurity one often resorts to an effective Hamiltonian which focuses on
the essential spin fluctuations (the Kondo Hamiltonian) and then applies renormalization group ideas to
harvest its physics. A discussion of those important ideas is beyond the scope of this work and may be
found for example in ref. [I111 [89].

The detailed discussion of this model will be started by a mean field analysis in sec.B.2] to get a first
impression of the physics of this model. Then the two-site problem, the Anderson molecule, will be
presented in sec.B33l It provides different kinds of insights into the behavior of the SITAM. The basic
results of this calculation will be carried over to be used as a cluster perturbation theory (CPT) /
variational cluster approach (VCA) reference system in a semi-analytical way. Finally we will turn to the
discussion of the CPT/VCA results.

3.2. Mean field analysis of the Single Impurity Anderson Model

It is instructive to attempt a mean field analysis of the STAM. This analysis was first undertaken by
Anderson [2]. The calculation, ornated with some helpful explanations and figures, is also available in
the overview article by Coleman [112].

To proceed analytically with the STAM, a Hartree-type mean field decoupling is undertaken. Note that
in Hubbard-type models, with local interactions only, the exchange part is always zero. The four fermion
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part of the Hamiltonian eq. (8] is split by the prescription

(Anl) (Aﬁf,,) = (al-<nl>) (ﬁfa— <Ny o >)

g
f o f f
5<n,a>—n,a<nf7g>+<nf_><n,g>

-
0.
Introducing the order parameters ¢, :=< n{: > the interaction part of ﬁimpurity may be recast in a quadratic
form

Hompurity = €1 2 ifo + U (260 + il o00 — 0005 ) .

In a higher order equation of motion treatment of this model, it may be seen explicitly that this type
of mean field treatment neglects fluctuations in the f occupancy altogether. As we will see later this is
a terrible approximation for this model, since the main physics at low temperatures comes exactly from
these fluctuations.

The structure of the following calculation is as follows. At first the bare f-electron propagator g?f(w) will
be determined by the equation of motion technique and so will the s-electron propagator g7, (w). The self-
energies arising due to the hybridization YXpybridization @and the Coulomb interaction ¥y are determined.
Note that Yyybridization, strictly speaking, is not a true self-energy because it arises from one-particle
terms. These four ingredients will be put together, using Dyson’s equation, to generate the mean field
result for the f-electron propagator.

The bare f-electron Green’s function is given by

wgfp(w) =w<< foi fiosy =< {for fIY >+ << [fo, HS]; 1 >>0
= Lt << [forep D ST fE 550
=1l+ef<< [fg,ﬁ{:];fj >>,

=1l+er<< fg;fl >>,

= . 3.6
9r(w) = — . (3.6)
In the third line relation eq. (2.42)) was applied. A similar calculation yields the bare s-electron Green’s
function

gss(w) = — _1€k : (3.7)
The Coulomb self-energy ¥y is given by
T =Ud_ . (3.8)
The hybridization self-energy Yiybridization 1S given by
Yhybridization = Zk: u')V_—kfk

2 —
_fwﬁﬂ-%“/k' d(e—ex)
e w—¢€

Agsuming that V is local in real space, it is a constant in k space and can be taken out of the sum.
Usually this expression is further simplified by approximating the conduction electron density of states
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Y 0(e - ex) by its value at the Fermi energy. Then the approximate self-energy reads
K

. D de [VI?mp(e
Yhybridization (w +10") » [D ;%

A rD 1
APy 1
7w J-D w+10T —¢€

Al . D
= —|imd(w—-€)sign(07) + Rep de
T D w-e¢

:é(iﬂ'+9‘{eln(w+D))
T D

w -

A 3
N — i7r+2£+0(£) .
s D D
D denotes the half bandwidth 2¢. For the evaluation of the integral in the third line in the sense of
a distribution the well known result of Sokhozky-Plemelj was used. In the last line the logarithm was

expanded for small 5. The final approximate expression for the self-energy valid at low energies/wide-
bands therefore is

(3.9)

A
Ehybridization(W + ZO+) ~ Ew +iA ~ A . (310)

The real part is small and may be ignored or put into a small renormalization of €. Approximation
eq. (3I0) is good in the Kondo regime, where the spectrum is peaked at the Fermi energy only. This
approximation breaks down, when the interaction strength exceeds a critical value U, and the spectrum
splits into two peaks. Having all necessary quantities at hand we proceed by finding an expression for
the full Green’s function G%, (w) of the f-electrons. Using Dyson’s equation, Einstein’s convention for
summation, and auxiliary indices i and j which run over s and f each, we find

GFr(w) =grp(w) +g7i(w) T (w)Gjp (W)
=g7f(w) + grs (W) Tss(w) G p(w)
+gfs(w)Tsp(w)Grp(w)

+ 91 f(W)Trs(w)Gsp(w)
+9r (W) Ty (w)Gyrp(w) -

The off-diagonal free Green’s functions g¢s(w) are zero as well as the element Tss(w). So we have
GFp(w) =grp(w) +grp(w)Trs(W)Gsp(w) + gpp(wW)Trp(w)Grp(w) - (3.11)

To proceed we need the off diagonal Green’s function Gsy(w) which is obtained in an analogous way

Gp(w) = gsp(w) + gsi(w) T (W) Gip (w)
= gss(W)Tsp(W)Grp(w) - (3.12)

Inserting eq. (B12)) into eq. (B.14) we obtain the full f Green’s function

GFp(w) =grp(w) + grr(W)Trs(wW)gss (W) Tsp(wW)Grp(w) + gpp(w)Trp(w)Grp(w)

= 1-grp(w) Trs(w)gss(wW)Tsp(w) —grp(w) Tp(w) | grp(w) . (3.13)
——
Shybridization Sy

Inserting the expressions for the free Green’s functions eq. (3:6) and eq. B.1) and for the self-energies

eq. (B10) and eq. (B38) into eq. (BI3) we can write
1

Ww—€f— Ehybridization - EU
1
B : 3.14
w— (€7 +Ud_g) +ilA (3.14)

Gi(w) =
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From the result eq. (3I4) one can now proceed and evaluate a quantity of interest, the density of states
of the f-electrons

pF(w) = —%JmG;’;et(w)
-1 = (3.15)
T(w= (e +Ug-0))" +(A)

To determine the mean field parameters self consistently one may evaluate the f particle numbers per
: f
spin n;.

0
nf= [ dupj(w)
A 0

1
i dw 2 2
Tl (W= (e;+U¢0))" +(A)
Bl .
- T J-o00 sz +1
= larccot(w) : (3.16)
m A

It is convenient to introduce an occupancy nf =< Zn{: > and a magnetization My =< n{ - nf >. The
(o8

mean field equations then become

1 ef+g(nf—aMf)
F== g 2 3.17
n Wzazarcco ( A (3.17)
U
1 er+5(np-—oM
M = —Zaarccot( 172 (Af f)) (3.18)
Tr (e

The mean field equations eq. (B.I]) enable us to calculate the density of states of the f-electrons eq. (B.14)
explicitly. To do so the following iteration may be applied:

1. Guess starting order parameters (bgo) and qﬁio).

2. Calculate the density of states p;’(i) for each spin by using equation eq. (B.13)).

3. Calculate the occupation number n(fi) and the magnetization M](ci) using equation eq. (B.I8).

4. Check if the ngf) = ngf_n and M}i) = M}i_l). If the occupation number and magnetization is not
changing any more within a certain accuracy the iteration has converged. If not start again from
: @ _1(,® (1) @ _1(,® (@)
1) with new ¢, = §(nf +M; ) and ¢, = §(nf - M; )

It should be mentioned that the mean field self-consistency converges in all parameter regions. The
convergence is slowest in the vicinity of the critical interaction strength U,.. Starting order parameters of
< n{ >=0.8 and < n{ >=0.2 as well as a mixing scheme for the order parameter

(I)i _ (1 _ X)(I)i—l i X(I)juggested :

where the mixing parameter y was taken to be 0.75, to obtain convergence in all parameter regions,
within ten to twenty iterations (see fig.[31] (mid left)).

One more quantity worth investigating is the critical interaction strength U, for which a local moment
will form. We set the magnetization to My = 0* in eq. (BI8) and replace the second equation with its

derivative with respect to M.
Ue, f
2 €f+ 5N
f - 2
n’ = —arccot | ——=—
T ( A )
U, 1

1: B —— T
A Uer\2
7r1+(6f+A2nf)
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Rewriting the first of these equations

and inserting into the second yields

UC:ﬁA(l-rcot(ﬁTnf)) (3.19)
The impurity density of states p; (w) for different interaction strengths U, in the particle-hole symmetric
case, is examined in the mean field approximation. The density of states of the s-electrons was taken from
a semi-infinite, one-dimensional, tight-binding chain eq. (823). The hybridization used was A = 0.1. This
resembles the setup used in the more sophisticated CPT/VCA treatment of the STAM in later sections.
The mean field spectrum undergoes an unphysical crossover to a magnetically polarized solution at
% =m(1+cot(5)) =7 (see eq. BI9)). This observed splitting into spin up and spin down components
is unphysical and can be traced back to be a remnant of the mean field approximation. The spectra,
indicating a phase-transition, caused by a zero-dimensional impurity are therefore unphysical. To make it
explicit, the mean field treatment predicts a quantum phase transition, which is not there. Nevertheless a
comparison of the, often applied, approximation for the hybridization self-energy Znybridization €d. (B10)
with the numerically exact expression of Xhybridization €d. (B.9) was undertaken. In fig.B1l (bottom left)
the impurity density of states is shown as it was obtained applying the approximation eq. (3I0), for
various values of interaction strength U. In fig.BJ] (bottom right) the same is shown for the numerically
exact expression of Ehybridization €d. (8:9). It may be observed that as long as the spectrum consists of a
single peak at the Fermi energy (U < U,), the results obtained with approximate Tnybridization €d. (B10)
are identical to those obtained with the numerically exact expression of Xhypridization €d. (89). As soon as
the peaks split, the approximate self-energy starts to deviate. A comparison of the spectra obtained with
the two different treatments of the hybridization self-energy is shown in fig.[B1] (mid right). Note that
the sum rule eq. 2.I6)) is fulfilled for all curves although the results obtained with the exact hybridization
self-energy have a higher amplitude than those obtained within the approximation. The splitting (gap) of
the spin up and spin down components as a function of interaction strength U is shown in fig.[B1] (top left)
for both ways of treating the hybridization self-energy. The order-parameters n/, M7, < n{ > and < n{ >
are visualized in as a function of interaction strength U in fig.B1] (top right), using the approximate
Yhybridization a8 Well as the exact Yhybridization- Lhe result for a mean field crossover diagram is shown in
sec.B3T0 together with the CPT/VCA result. These mean field results will be used in sec.[3 to get an
idea of the non-equilibrium behavior of a quantum dot. Having a rough idea of the physics of the STAM
we proceed by a more sophisticated treatment of the STAM in terms of CPT/VCA.

3.3. CPT/VCA for the single impurity Anderson model

To apply this approach to the STAM we start by splitting the physical model under consideration into
appropriate pieces (see fig.[3.2)), which will serve as reference systems. Here we consider a reference system
consisting of two parts. One part, consisting of a cluster of size L, which contains the interacting impurity
site

~ S L1 ~ ~
Hcluster = Hconduction + Himpurity + thbridization 3 (320)

and a second part, the environment, which contains the rest of the conduction band

Henvironment = Hzgnduction . (321)
The original Hamiltonian may now be rewritten as
Hsiam = Hetuster + Henvironment + Tinter . (322)

Here Tinter is the part of T describing the hopping from cluster to environment, which is the only term
not included in the reference system. For the STAM the two bare Green’s functions Gi,ger and Go,,
needed for eq. (Z2) may be evaluated separately. Because Gi,q.e, iS Tepresentable by a discrete set of
poles, the Q-matrix formalism (see sec.ZZZZ) is used. G, has a branch cut along the real axis and is not
Q-matrix representable. Therefore, for the STAM, the version of CPT as discussed in sec.2.1.3 applies.

The cluster Green’s function G is determined by exact diagonalization of eq. (3.20). Open boundary

cluster

35



3{| —%,, approx. L7 1 P
- --%, exact -
2.5} 4 ]
. 05 1
2 e —<n’>
r ] ©
o § ~ —<m’>
[ L | E f_ M
o 1.5 S —<n>
g <>
1r 1 5 !
0.5 1
0 e 1 1 1 1 1 L L ]
0 5 10 15 20 25 30 20 25 30
u/A
‘ ‘ ‘ ‘ 4
1+ + ==+ + +=+ + =+ + +—+ + ==+ + +=+ + = 2l -
a9 —spin 1
\ 3071 ——spin |
0.5r a
s >
[}
S _
o 20
I o 0-0-G ©0-0-0 6-0-6 ©-0-G0 ©-0-0 09
S 0°
) o 15
kel - fo_
5 os o ; <n f>-1.OO | '
—0.5}/ - ©- <m>=-0.001 10
fo_ 5
Ll <nl>—0.50 | u/A JL
| | I T T T | 1
5 10 15 20 25 0 —40 -20 0 20 40
iteration index t [AYAN
4 4

—spin t
3 ——spin |

—spin 1
—spin |

U/A -40 -20 0 20 40

Figure 3.1.: Results obtained by the mean field treatment of the SIAM in the particle-hole symmetric
case. The parameters used here were V = 0.3162, ¢, and ¢t = 1. (Top Left) Unphysical
splitting of the mean field spin up and spin down components in the density of states as a
function of interaction strength U. The cross marks the analytical result for the transition
eq. (319). (Top Right) Order parameters as a function of interaction strength U. The result
for the approximate hybridization self-energy (Xy is short for Zhybridization) 1S plotted in
color, while the result for the exact hybridization self-energy is indicated in dashed black.
(Mid Left) The evolution of the order parameters of a single run using % = 2. (Mid Right)
Single-particle spectrum as a function of interaction strength U. A comparison for results
obtained with the approximate and the exact hybridization self-energy is shown. Again the
exact results are plotted in black. (Bottom Left) Single-particle spectrum as a function of
interaction strength U obtained with the approximate hybridization self-energy. (Bottom
Right) Single-particle spectrum as a function of interaction strength U obtained with the
exact hybridization self-energy.
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Figure 3.2.: Tllustration of the single impurity Anderson model. The model consists of a chain of non-
interacting sites with nearest neighbor hopping ¢ and on-site energy €;. An impurity site
may be added to one of the sites representing a second orbital with on-site energy e; and
local Coulomb interaction U. This orbital hybridizes with the conduction electrons via a
hybridization matrix element V. The infinite non-interacting chain is truncated at some site
L yielding a cluster of variable size including the impurity site and a chain of non-interacting
sites. These decomposed systems are in the end coupled via a hopping element ¢.

environment

conditions are used throughout this work. The Lanczos algorithm is applied to find the groundstate and
a Band Lanczos method to obtain the Green’s function as described in sec.Z2l The Green’s function
of the environment G. _ is given analytically by the Green’s function of a semi-infinite tight binding

env
chain [IT3]

Benv,i,j (2) = f0.i-5(2) = fo,i; (2) (3.23)
(). —lsign (Omz) [ z-¢
fzyj(z) 4|t|2—(2—€s)2 ( 2|t|
2\ il
+4 sign (Jmz) \| 1 - (22_|th ) ) ,

where f; ; is the retarded / advanced Green’s function of the infinite tight binding chain if the imaginary
part of w is positive / negative. It should be noted that the density of states obtained from this Green’s
function has a semi-circular shape and may be expressed as

1 .
ps(w) = == Im (gony.i,j (w +07)) = Re ( 2t

—VMQ_(W_GS)Q) (3.24)

The CPT/VCA calculations are for numerical convenience performed with hopping ¢ = 1 and hybridization
V' =0.3162 which yields A = 0.1. However we plot all quantities in units of A. The on-site energy ¢, is
taken to be zero unless explicitly stated.

First we discuss the choice of the variational parameters used in VCA for this model (see sec.B3.T)). The
influence of the position of the impurity within the finite cluster part of the reference system is explained
in sec.B321 We start our discussion of the CPT/VCA results in sec.B:3.3 by investigating the two-site
problem (Anderson molecule) analytically and performing a semi-analytic CPT/VCA. This serves also
the purpose of making the reader familiar with the CPT/VCA procedure using a small reference system,
where all quantities may be expressed on paper. Then the question of dimensionality of the model is
discussed in sec.[33.6 by presenting results for an impurity embedded in a two- and three- dimensional
bath. We explore the influence of the structure of the environment in sec.B.3.4 by deforming the bath’s
density of states. The question of how large the cluster part of the reference system has to be chosen will
be discussed in sec.B.335l The possible use of very large cluster parts of the reference system is discussed
in sec.B37 Then we turn to the actual physical results of the model. Several benchmarking dynamic
quantities of the SIAM were evaluated. In the following sections, results for the impurity density of
states will be presented and compared to NRG and DMRG data. We will elaborate on the strengths and
weaknesses of the method as well as the comparison of CPT to VCA. Furthermore, we will discuss the
relation between VCAgc, where the variational parameters are determined self consistently via eq. (Z27)
and VCAg, where the variational parameters are defined at the stationary point of the grand potential.
We will show that the Kondo resonance is reproduced within the framework of CPT/VCA and that the
variational results fulfill certain analytic relations like the Friedel sum rule (eq. (345)). The method will
be shown to provide reasonably accurate results in a wide range of parameter regimes of the model. Low
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energy properties related to the Kondo temperature Tk will be discussed in context with renormalization
group results. The imaginary frequency Green’s function and self-energy will be compared to CT-QMC
results. A modified reference system, with explicitly broken spin symmetry is examined in sec.B.3.13l
We start out by discussing the choice of variational parameters within VCA.

3.3.1. Choice of variational parameters

In VCA one can, in principle, optimize all possible single-particle parameters which are present in the
original model, as well as additional ones. By adding bath sites not present in the original model, one
includes dynamical contributions to the cluster Green’s function. The numerical difficulty increases with
the number of variational parameters. For the VCAgc case a multidimensional root finding algorithm
has to be adopted. For the VCAg, case, a saddle point in many dimensions has to be located. Since the
allowed set of variational parameters limits the search space for the self-energies one will find a solution in
this restricted space only. It is therefore desirable to vary as many single particle quantities as possible.
A balance has to be found between a large space of available self energies and numerically feasible
multidimensional algorithms. Many works have addressed the question of which parameters are the most
necessary to vary and how the choice of variational parameters will influence or limit the results [26].
As discussed in refs. [46] [114], it is important to include an overall chemical potential as a variational
parameter in order to preserve thermodynamic consistency. As a compromise, we will take two variational
parameters x = {€f, €, }, which covers the overall chemical potential. Note that this amounts to shifting
an overall on-site energy in the whole cluster plus an extra independent shift at the correlated site. For
the variation of on-site energies we observe the grand potential €2 to be maximal at the stationary point
which is in agreement with results for other models. Further parameters in the SIAM are the hopping
t and the hybridization V. As discussed for example in ref. [I15], the variation of hopping parameters
is not straightforward. For the VCAq approach, we observe a maximum of Q at AV = -V in the center
of two symmetric stationary points (see fig.[33l (right)). The two symmetric lying minima are equivalent
and are due to the fact that the self-energy is an even power of V. As one tunes the parameters away from
particle hole-symmetry this stationary point is lost in the crossover region from the Kondo plateau to a
doubly or unoccupied impurity (see sec.3:3.9). In this parameter region the hopping ¢ and hybridization
V' are probably not appropriate to be used as variational parameters within VCAq,.

In the following, we always choose the set x = {V'} or x = {V, ¢} for calculations at particle-hole symmetry
since the variation of on-site energies will always yield zero deviations from the physical parameters and
thus reproduce the CPT result here. For all other parameter regions it is sufficient to consider x = {ef, €5}
as variational parameters.

Since the cluster part of the reference system is a finite system, we expect spurious effects depending
on the location of the impurity within the cluster. How the position of the impurity within the cluster
influences the results is discussed in the next section.

3.3.2. Even-Odd Effect - choice of the impurity position

CPT/VCA rely on the Green’s function of a cluster of size L which is obtained by exact diagonalization.
Due to this fact it is unavoidable that some effects of the finite size cluster affect the solution of the
full system. (Except in the case of vanishing interaction strength (U = 0).) Therefore suitable clusters
have to be chosen on a basis of physical results. Some aspects of this are discussed by Balzer et al. [114]
in the context of DMFT and VCA and by Hand et al. [I16] in the context of DMRG. In this work we
consider clusters of even size only. For these systems the groundstate does in general not suffer from spin
degeneracy. Furthermore, the spatial position of the impurity is important. This can be inferred from the
bath’s density of states, which vanishes for w = 0 at every second site. It may also be seen in the structure
of the groundstate, for which the size of the degenerate sectors alternates with the geometrical size of the
cluster. In the forthcoming calculations we always place the impurity at the far end of the infinite chain,
although essentially the same results are achieved by attaching it to site two, four, etc. inside the chain.
We start out our discussion of the physical results by treating an Anderson molecule in isolation and then
carrying its solution over to a CPT/VCA reference system. This enables a semi-analytical treatment in
terms of CPT and VCA. Then the more sophisticated evaluation using numeric CPT/VCA for larger
reference systems will follow.

3.3.3. Semi-analytical expressions for VCA of the two-site problem

The particle-hole symmetric two-site SIAM is considered here in detail to gain a better understanding
of the behavior of CPT/VCA. The ground-state energy is obtained by diagonalization. A solution for
the 2 x 2 cluster Green’s function G’ is presented as well as an expression for the CPT/VCA Green’s
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function G after coupling to a semi-infinite chain. The only non vanishing natural variational parameter
for this system is the hybridization V. Expressions for the self-energy 3(AV), the grand potential
Q(AV) and the grand potential derivative d%(AAVV) are found. Finally the optimal cluster parameter
Viiar (U) =V + AVqat (U), the effective mass m* (U) (see sec.B3TT]) and the Kondo temperature Tk (U)
(see sec.B3.11)) are obtained as a function of interaction-strength U.

Consider a correlated site described by annihilation and creation operators f, and f(‘; with Coulomb
interaction U and on-site energy e coupled to a non-interacting site with corresponding annihilation and

creation operators ¢, and cL and on-site energy ¢;. The Hamiltonian for this system is given by

Hoasite = U 2 +efzf*f +eszc = (V+AV) S (fle, +cl 1))

= }ﬁlf Zﬁ; Z(fc +cf). (3.25)

o

In the second line the transition to the particle-hole symmetric case was made by setting €5 = 0 and
ey =Y. For CPT V' =V the parameter of the original model. For VCA V[, (U) = V + AVstat.(U)
where AVstat.(U) is determined via the stationary point of the grand potential Q within VCAq (see
sec.23.7]) or self consistently via single particle expectation values within VCAgc (see sec.23.4).

The two-site Hamiltonian will be coupled to a semi-infinite non-interacting environment

Honv. =t 2. 3. (che, +cle,) (3.26)

<ij> o

by CPT/VCA via

ﬁce =-t Z (c§7o'co' + 020370) )

o

where ¢3 denotes the first site of the semi-infinite chain eq. (3.26) and ¢ the uncorrelated site in the cluster
3.2
The CPT equation for the Green’s function defines the variational parameters

¢lt=gt-T
- (7:‘2site + T) .
So T consists of of the inter-cluster hopping and the term which has been subtracted from the reference
system eq. (320)) AV:
T = TCPT | pVCA ’
TCPT _ oo ’
TVOA = AVZ(fc +ehf,)

The matrix form of T is explicitly given by

0 AV 0
T=(AV 0 —t]. (3.27)
0 -t 0

Ground state energy

As a first step the ground state energy for this system shall be obtained by diagonalization of the Hamil-
tonian eq. (3:20). To make work easy, it is advisable to find noninteracting subspaces by investigating
the symmetries of this system. The Hamiltonian conserves the number of particles

N:;;ﬁf:§(ﬁ;+ﬁg).
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To show this we evaluate

[Hosite, N']=U I[ﬁ}ﬁ;,(ﬁ; +0f )]
—% > ;[ﬁ;,(ﬁ; +af )]
-V Y S (fhen +cbfn) (AF +al )] (3.28)

Using the identities eq. (Z43), the elementary fermionic commutators eq. (2:44), the commutators eq. (Z-4T]),
eq. 2.42), eq. (2.43) and
[czcj,ﬁk] = [czcj,czck] = —[cz,czcj]ck - cz[ck,c;fcj]
=~ ({ef,elye; = cl{ef ej}) ev = ] ({e el yes —cf{ep i)
= jkCICj - 5iijCj . (329)
on eq. (B:28) it follows immediately that
[7:[2sitev-/\7] =0.

The total spin projection S. is defined as

In the same manner as above it is easy to show that the Hamiltonian conserves the total spin projection
[7:[2site; gz] =0.

In addition the Hamiltonian commutes with the total Spin S2.

Therefore the many-particle basis may be constructed respecting these symmetries. This results in non-
interacting subspaces for (N = 0,5, = 0), (N = 1,5, = :I:%), (N =2,5. =0,£1), (N = 3,8, = i%),
(N =4,5, =0). Since the Hamiltonian is particle-hole symmetric it suffices to investigate the N = 0
(N=4), N=1 (N =3) and N =2 subspaces:

e The N =0 (N =4) subspace
is spanned by [0,0) (|1{,1})) where the naming convention is |s, f). The corresponding matrix

element is (0,0] Hasite |0,0) = 0. So the eigenenergies EZ.N’SZ and eigenvectors |\Il)£V’Sz are given by

[©)5 =10.0) . EG®=0
@Yo’ = 1Nt Ef=0
e The N =1 (N = 3) subspace

is spanned by {| 1,0 >,10,1>} ({| 1,1}>,] 14,1>}) (and the spin symmetric states). The corresponding
matrix elements can be read off straight forwardly from the Hamiltonian:

[1,0> | ]0,1>
11,0 > 0 -V’
o,1>] v/ | -
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SZ

. . N,S. . N, .
The eigenenergies E; and eigenvectors |¥); are given by

1 U-VU2+16V72 11
w)g"E =~ . 11,0 +0,1> , By -1 U+ VU +16V7)

4V’
|‘I’)17+%:—U+\/Z§;16V’2|T,O>+|O,T>a E11 5 __ zll(U \/W)
oyt - U Vi2V+16V'2|¢0>+|0 >, Eg'f%:-i(m UZ +16V72)
T R N e e EEa )
wyyt = LAV s st By = LU VTR T6V7)
w)yTE = U+"TV”6V'2|M¢>+|N >, E %:——(U VUZ116V7?)
IW>§’_%=—U U4;+16V'2|H¢>+|N >, E i——(mW)
o)y E = U+'lfv+16vl2|u¢ >+ M,4>, E %:——(U VU2 +16V72)

e The N =2 subspace
is spanned by {| t,1>,|{, 1>, 1,4>,]4,1>,]0,11>,| 11,0 >}. The corresponding matrix elements are:

IT,£> 4,0 I [ T1L0> [ 0,1> | [, 1>
|1, 1> -3
|4, 4> -2
|1, 1> -7 -V -V
0,1]> -V 0 -V
| 14,0 > -V 0 v
|4, 1> -V -v | Y

Here one can identify the three triplet states

W=t B =S

_ _ U
)= 1,0, EX =

U
R R R N T

Note that the minus sign in the last triplet state arises due to the minus sign when exchanging two
fermions. The other three states are

I‘If)f=|0,N>—| 1,05, E2=0

—VU? +64V7"2 U VU? +64V72
w2 = s -2 11,0 > 10,14> + 4, 1>,
8V 11744
ES = —i(U+ VU2 +64V72)
U+VU? +64V72 U VU? +64V72
()2 = 1,> - T 14,0 > T 0,14> +| 4, 1>,

1
E3 = —Z(U —VU2 +64V72) .

The energy levels of the two-site model (Anderson molecule) are plotted in fig.B3] for various parameters.
There one can nicely see the effects of hybridization and interaction. The plots show the behavior of
degeneracies and level (anti-) crossings. For positive U the groundstate energy is found in the N = 2
sector and is given by

By =1 (U+ VT 6av7)
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We will next turn to the construction of the system’s Green’s function.

Cluster Green'’s function

The cluster Green’s function G’ may be obtained from the Lehmann representation using the results of
the previous section. Here we pursue a different often very useful way. We construct the cluster Green’s
function from the Green’s function of the correlated site f by using the equation of motion technique.
It is always possible to construct all elements of G;; if the Green’s functions of the correlated sites are
known exactly.

Schénhammer and Brenig calculated the Green’s function of the correlated site for this model perturba-
tiveley and showed that their expression becomes exact in the limit of vanishing bandwidth [90]. This
is exactly the case considered here, where the impurity site is coupled to a single non-interacting site,
providing a bath with vanishing bandwidth. They obtained

1
2-T"(2)-%(2)

Gis(2) =

where the hybridization I'V(2) in our case is given by

e -
z
and the self-energy ¥'(z) is given by
u?

The G} ¢ is the 1,1 element of G;j. Since we are considering a two-site system the other elements may be
constructed by solving the Green’s function of a one-site chain G’ and coupling it via V' to the f-site.
The Green’s function of the free site is given by

GO (2) = % . (3.31)

G;j may be then be obtained from a Dyson-like equation
U 0 U 0
fs = Gfs +G aHaﬂGﬂs
0 0 0 0 0
=G+ G HppGh, + G Hp GG, + G Hop G, + G Ho G
H,z denotes the off-diagonal single-particle terms of the Hamiltonian eq. (3:25)
o 0o -V’
af = _V! 0 .
Since H,p contains only off-diagonal elements and G}OS =0 we are left with:
15(2) = G (2)Hy G (2)
=-V'G} ()Gl (2) .
Due to symmetry G/ ;(z) = G’,(z). The last missing element is obtained as follows
G;s = G;Os + G,saHaBG,ﬂOs
- G+ Gl H. G
70 12~ /0 / 70
= Gss +V Gsststs .

This general procedure of obtaining all elements of the interacting cluster Green’s function from the
Green’s function of the interacting site (which has to be obtained exactly by some method beforehand
for a system of length L) and the matrix Green’s function of a free chain of length L -1 is outlined in
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Figure 3.3.: Energy levels of the Anderson molecule as a function of the model parameters. The legend
displayed in the upper left figure is valid for all plots. (Left column) Asymmetric model
for fixed interaction strength U and hybridization V' as a function of on-site energy ey.
(Right Column top and mid) Symmetric model for fixed interaction strength U as a function
of hybridization V. (Right Column top) Symmetric model for fixed hybridization V as a

function of interaction strength U.
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app.[El The Green’s function of the semi-infinite environment is given by

—isign (Jmz)V4t? — 22

2t2

Ql(z)="2

The cluster Green’s function for the two-site Anderson system and environment is finally given by

’
1 plas

)T _Z—F’(sz(—)z’(z) 0
G'(z)=]_ s 1= . 3.32
( ) z-T"(2)-%'(2) z-T7(2)-%'(2) 0 ( )
0 0 z—isign (Jmz)V4t2—2z2

2t2

Next we will use the CPT equation to obtain the Green’s function of the total system.

CPT/VCA Green’s function

For the CPT/VCA procedure it is more convenient to use the inverse G~ (z)

z-%(z) V' 0
G l(z) = %4 z 0 . (3.33)
0 0 GLle)
Here T is the inter-cluster hopping matrix including the variational parameter AV for VCA. The inverse
of the total Green’s function is then given by

Gl 2)=G"1(2)-T
z-%(2) V 0
= V z t
0 t GIN2)

€

After some algebra one may extract the total Green’s function of the correlated site

2GI N (2) -2

Gre(z) =
) = N Ga (5) - ) - VG ()
1
_Z_VQ(TlGée)_EI(Z)

1
z—VQ( 2 )—E’(z)

z+isign (Imz)Vdt2-22

1
- z—isign (Imz)V4t2—22
Z—VQ( Sg(2t2) t )—E’(Z)
B 1
S 2-V2G (2) - Y (2)

1
C2-T(2)-Y(2)°
Note that due to the CPT/VCA approximation the self-energy stays the self energy of the cluster! The
only term changing from the cluster to the total Green’s function, is the hybridization to the environment.
So instead of the hybridization to an isolated site I'(z) = V'2G' the Green’s function now depends on
the hybridization to an infinite chain I'(2) = V2G._. Furthermore the variational parameter AV appears

in the self energy '(z) only.
To perform a VCA calculation, an expression for the grand potential is needed.

Grand Potential Q(AV)
The grand potential € is given by (see eq. (Z23))

Q(AV) = w{(AV) + tr (T(AV)) —% fow dwRe (tr (In (I - T(AV)G (iw, AV)))) .
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Plugging in the cluster groundstate eq. (831]), the cluster Green’s function eq. (833) and the matrix T
(eq. (B21)) one obtains a semi-analytic expression for the grand potential Q(U,V, AV, t)

1 2 = L
_—_77_ 2 P —
Q(U,V,AV,t)—4( U-/U?+64V") ) - fo dwln(M(w)

(72v4 + Uw? +44V%0w” + 4w’ + 36AV? (2V2 +w?) + T2AVV (2V2 + w?)
+wVAt2 + w? (36AV? + U2 + T2AVV +4(9V? +w?)) )) :

Ni(w) = 2(36AV4 + 144AV3V + 36V + Uw? + 40V?w? + 4w?
+8AV? (27V? + 5w?) + 16AV (9V? + 5Vw?) ) :

The grand potential Q(U, AV') is shown in fig.B3l (right) for ¢t = 1.0 and V' = 0.3162. To find its stationary
point, the derivative with respect to AV is needed.

Stationary point of the grand potential Q(AV)

The stationary point of €2 with respect to AV is given by the derivative

AQ(AV)

JAV) " Vavwy(AV) + Vay Tr (T(AV)) - vAV% fow dwRe (tr (In (1 - T(AV)G' (iw, AV))))

= Vavwy(AV) - % fow dwRe (tr (Vayvin (1L - T(AV)G' (iw,AV))))
= Vavwy(AV) - % fow dw me(tr ( (1L - T(AV)G' (iw, AV))’1 (VavT(AV)G' (iw, AV))
+(1- T(AV)G’(z'w,AV))‘1 (T(AV)VavG'(iw, AV)) )) .

The second term in the first line vanishes because T (eq. (B21)) has off-diagonal elements only. Upon
plugging in the cluster groundstate eq. (331)), the cluster Green’s function eq. (B333) and the matrix T
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(eq. (B21)) one obtains a semi-analytic expression for the derivative of the grand potential

dQ ~16V’ 16V o 1
= d 648V2y " 3.34
A(AV) VP roavE | w fo N Nz(w)( (334

+18 (18AV! + T2AV?V + 26V + 2AVV (U? + 44V?) + AV? (U? + 116V?) ) w®
+(72AV? + U? + H44AVV + 80V?) w' + 4u®

+ Va2 1 w? (4w’ + w® (U? + 72V72) +w (18V72 (U? + 18V72))) ) :

Na(w) = (2592V2V70) + (36V’2(36AV4 + 144AV3V +3U°V? + 124V (3.35)
+2AVV (U? +160V?) + AV (U? + 304V?) ))w2
- (1584AV4 +U* +6336AV?V +84U°V? + 2192V

+4AV? (19U + 2528V7) + 8AV (19U°V +944V?) )w4
+(8(38AVZ+ U + T6AVV +42V?) ) w® + 16w°

+V4t2 + w2(w (36V" (U? +36V"?)) +w® (8 (U* +38V")) + 16w”
+ w3(1584AV4 +U* + 6336 AV3V + 76UV? + 1584V*

+ AV? (T6U? + 9504V7) + 8AV (19U°V +792V?) )) :

Setting the derivative to zero one obtains a nonlinear integral equation. An analytic evaluation of the
integral is not possible. The roots may be obtained numerically. The integrand of eq. (3.34)) is shown in
fig.B4l The derivative of the grand potential eq. (334) is plotted for various values of U in fig.[BH (left).
The root in the center at AV = -V is unphysical because it would yield a cluster solution corresponding
to an atomic limit and therefore will never be able to reproduce the thermodynamic limit with increasing
cluster size. Furthermore careful examination of eq. (8.34) shows that the equation breaks down for
AV = -V, because all AV drop out. The evolution of V' with U is shown in figure fig.[33l (right). Here
we directly try to get a handle on the low energy properties by calculating the effective mass, which is
inversely proportional to the Kondo temperature.

Effective Mass

The effective mass is defined in eq. (348). Inserting the self-energy for the two-site system eq. (330) one
obtains

m*(U):1 U? dIm( iw )

m*(0) 4 dw —w? - 9V"2

w=0*
U2d( w )
-1+ -
4 dw\w2+9V72 /| .
1 (U\?
:1+%(7) . (3.36)

Note that for U = 0 the effective mass is one as it is supposed to be. Furthermore one sees that within this
approximation (self energy of the two site cluster), the Kondo temperature which is inversely proportional
to the effective mass becomes proportional to

v;'tac.w))Q
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Figure 3.4.: Integrand for the grand potential derivative as a function of energy w for various values of
interaction strength U/t (see legend) (for fixed V' = 0.3162, AV =0, ¢t = 1) (left) and for
various values of the hybridization V' (for fixed U/t =2, AV =0, t = 1) (right).
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Figure 3.5.: (Left) The derivative of the grand potential eq. (334) as a function of AV (¢t =1,V =0.3162).
The root in the center is unphysical in the thermodynamic limit for various values of
interaction-strength U/t (see legend). (Right) The grand potential Q(U,AV') for hopping
t = 1.0 and hybridization V' = 0.3162. One can see three stationary points for each value of
interaction strength U. One maximum at AV = -V which is unphysical (see text). And two
symmetric minima which correspond to the same physical situation.
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Unfortunately the cluster parameter Vi, which makes the Grand Potential stationary, cannot be de-
termined analytically but a numerical determination of the roots of eq. [3.34) is feasible. This results in
a perfect exponential behavior of m*(U) and Tk (U). The exponent may be obtained by an exponential
fit (R? =1) and is given by

,»YLU
TK o< e 8A s

with
v =0.6511.

The effective mass is plotted in fig.B7 (right). As a reference the Bethe Ansatz result for T 1 and values
obtained by FRG [I00] are plotted. The factor a = 1 except for the VCA data a = 1 to account for the
mismatch in the exponent. The issue of obtaining an exponential scale but not the correct exponent for
the functional dependence on U is observed in various methods (see for example variational wavefunctions
where the issue was cured by introducing a better Ansatz by Schonhammer [I17] or FRG [118]).

After showing that VCAq is capable of creating an exponential scale in U, it is interesting to investigate
the behavior of VCAgc.

Self consistent VCA

Here we attempt to obtain the VCAgc solution for the two-site problem. The only variational parameter
is AV and therefore we determine the expectation value of < ffc > self consistently. The hopping
expectation value is given by

2 oo
< fTC >=—— f dw Glg(iw) .
™ JO

Evaluation of this expectation value in the cluster yields

9 e A(AV + V) (9(AV + V)2 + w?)
< fTC >cluster = —— f dw . (337)
' 0 36(AV + V)4 + (U? +40(AV + V)2) w? + 4w*
Evaluation of this expectation value in the total system gives
2 [ 8V
t =-= d
<fle>cer T .[0 ¥ w(U2+36(AV+V)2+4w?) (w+V/a+w?) ) (3.38)
8V2 + HAVIV)Zrw?
Upon requiring the two expectation values to coincide
!
< fTC >cluster=< fTC >CPT (339)

the optimal value of AV is obtained.
The numerical evaluation of eq. (339)) as a function of V' =V + AV is shown for U =1 and ¢ = 1 in fig.[3.0l
(top). A comparison of the hopping expectation value in the cluster eq. (3.37) and after coupling to the
environment eq. (338) is shown in fig.[36 (bottom). It is immediately obvious that VCAge does not
fulfill the same limits as VCAq for U - 0. In VCAq the grand potential becomes flat in this limit and
no stationary point can be found. In VCAgc however the two expectation values do not coincide in this
limit. However the equation breaks down at this point. The optimal value for the cluster parameter V'
is shown in fig.[31 (left) and yield no satisfactory behavior. The effective mass (fig.B.1 (right)) obtained
with those values of V' does not show an exponential dependence on U.

This concludes the discussion of the two-site problem. We now proceed by investigating the effects of
the environment density of states on the cluster part of the reference system.

3.3.4. Comparing a flat band to a semi-circular density of states of the
environment

The density of states, created by dissecting the one-dimensional tight-binding chain at any site, has a
semi-circular shape. The corresponding Green’s function may be evaluated analytically (see eq. (3:23)
and is shown in fig.[B8 (left). The parameters chosen for the plot were €, =0 and ¢ = 1.

In this section the influence of the shape of the density of states of the bath on the results shall be
evaluated. For that purpose the 'natural’ semi-circular density of states of the model is replaced by a flat
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Figure 3.6.: Self consistent VCA results. (Top row) Numerical evaluation of eq. (839) as a function of

V' =V + AV for ¢t =1 and various U (see legend). The roots indicate the optimal cluster
parameter. (Bottom row) The cluster- eq. (B.317) and CPT eq. (338)) expectation values of
the hopping from the impurity to the chain as a function of U/t (see legend) for ¢ = 1. (Left
Column) V =0.3162, (Right Column) V =1.0.
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Figure 3.7.: Behavior of the variational parameter and the effective mass. (Left) Optimal parameter V'
of the reference system as obtained by the semi-analytical equations for VCAq eq. (3:34)
and VCAgc eq. B39). As a reference the L = 2 data of our numerical simulation is shown
too. (Right) The effective mass eq. (3.48) obtained by the optimized parameter V' of the
reference system (see left figure). Additionally shown is the Bethe-Ansatz [89] eq. (B46]) and
NRG [100] result as a reference.

band

L _D<w<D

Afjat (w) = {(Q)D else

where D denotes the half-bandwidth and the constant is chosen to respect the sum rule eq. (2I6). The
Green’s function for this density of states may be constructed by first inverting eq. (3.43) which yields the
imaginary part Jm (Gg,;(2)) = —5% within the band. Then one may use Kramers-Kronig relations [I]

7 om (G w’
Re (Gt (w)) 17’/—J (G ))dw',

™ w-w

—o00

to obtain the real part. The Green’s function of the flat band therefore is given by

1 z—-D
Gar() =55 (55)

In the following this density of states of the environment will be compared to the semi-circular one.
Therefore the half-bandwidth is chosen to be D = 7t for the flat density of states, to obtain the same A
as in the semi-circular case (see eq. (3.3))). The Green’s function of the flat band is shown in fig.B.8] (left).
CPT results for the impurity density of states, for a L = 8-site cluster, are shown in fig.[3.8 (mid, right).
The plots show curves for different values of interaction strength U (using A = 0.1). The data in the
middle shows results obtained by using the semi-circular tight-binding density of states, while the right
plot shows data using the flat band. The spectra are very similar. Especially in the low energy region,
there is no difference, since they depend predominantly on the value of the environmental density of states
at the Fermi energy. Several other quantities (like the effective mass or the static-spin susceptibility) were
evaluated for both kinds of environment giving more or less equivalent results.

The cluster part of the reference system is of finite length. To examine the severity of this approximation
spin-spin and density correlation functions are evaluated in the next section.

3.3.5. Estimating the necessary extent of the reference system: spin/density
correlations

In this section an attempt is made to estimate the necessary extent of the cluster part of the reference
system to achieve good results within CPT/VCA. Calculations of static expectation values (see sec.[3.3.9)
revealed, that much smaller clusters suffice in the parameter region where the impurity is essentially zero-
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Figure 3.8.: (Left) Density of states and real part of the Green’s function of the environment. Shown is
the "natural" density of states of a semi-infinite tight binding chain (semi-circular) as well
as the flat density of states examined in this section. Note that here the x-axis was scaled
with A = 0.1 although this parameter does not enter in this calculation. (Mid) Single-particle
spectral function for the particle-hole symmetric STAM at various interaction-strengths U/A
(see legend). Further parameters used were V = 0.3162, t = 1 and 0% = 107%. The bath’s
density of states used was the semi-circular DOS of the semi-infinite tight binding chain.
(Right) The same but calculated using a flat DOS in the environment.

or double occupied. In the Kondo- and the crossover region large clusters are expected to be necessary,
because the CPT results look far from converged for cluster sizes examined here. In the following the
spin-spin and charge-charge correlations inside the reference system are calculated, which are expected
to give a hint on the necessary size of the clusters.

To evaluate the spin-spin correlation function

<S§;§; > =< §f§j+§f§f+§f§§’> , (3.40)
Z E

for the STAM, we transform this expression to one involving fermionic operators (and number operators)
instead of spins. Using

first operator Z transforms to

Z

N AT N
L@l -at) (8] - )
Expressing the x and y components of the spin by spin-ladder operators

S+ =874 i8Y = Mt (3.41)

Representing the spin-ladder operators by fermionic operators eq. (B42) one arrives at the fermionic
representation of F

A1

F = 3 (cfcl c}fcj +czﬁci cj-fc} ) .
Furthermore the density-density correlation function < n;n; > is examined, which consists of four Fermi-
operators.

The typical behavior of the spin-spin vector, spin-spin z and density-density correlations as a function of
distance away from the impurity is shown in fig.[39] (left), for the non-interacting case in a ten-site cluster.
The local values at the impurity can be calculated easily and are < S§% >= 0.125 and < S3 >= 0.375. A
plot of the spin-spin vector correlation < SySenq > of a large parameter region of the STAM is shown
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Figure 3.9.: (Left) The spin-spin vector, spin-spin z and density-density correlations as a function of
distance away from the impurity are shown. Note that the density-density correlations are
visualized as < m;n; > —1. The data is shown, as a representative for the typical behavior
of the correlators, for an interaction strength U =0 in a L = 10 site cluster. (Right) The
spin-spin vector correlation: < SgpSenq > between the impurity and the site farthest away from
the impurity inside the cluster is shown in all parameter regions. The interaction strength
for this calculations was % =2, the cluster length L = 6.

in fig.B9 (right). This means the correlation of the impurity with the site farthest away from it is
measured. The interaction strength used was % = 2. For details of the parameter regions of the SIAM see
sec.B3T0 As is clearly visible from the figure, the correlations have already faded away in the regions
where the impurity is zero- or doubly occupied and are still there in the Kondo- and crossover regime.
Similar calculations for larger systems (up to L = 16) showed essentially the same behavior. Based on
an extrapolation in system size L of the spin-spin correlation functions we estimate the need of ~ 50-site
clusters in the Kondo regime of the STAM for CPT. This discussion does not apply to VCA, where the
situation is entirely different and much smaller clusters are sufficient as will be shown in the forthcoming
discussion. This behavior can be well understood from the involved physics. In the Kondo regime below
a temperature scale Tk, the impurities local moment gets screened by the conduction electrons to make
up a singlet state. The question of how many electrons contribute to the screening and how large this
screening cloud is, is still open today. Many concepts have been suggested but up to now controversial
theoretical predictions exist [8,[119]. New ideas may require very different ways of thinking [120]. It has
never been possible to measure this extent in experiment. Bulk measurements are much too less sensitive

to detect this length scale {x = T—;( (vp denotes the Fermi velocity), which typically behaves like

v

2kpr r
x(r) =xO+mS(riQF)f(€—K)

These experiments measure for example the Knight-shift, but the T% dependence of the susceptibility
renders the parameter £ invisible. Experiments on nano-devices up to now have been fruitless because
of the extent of the screening cloud into the leads. Very recent scanning tunneling microscopy (STM)
based measurements only can give hints [121].

We model the STAM by an infinite tight-binding chain. The effects of embedding an impurity in higher
dimensions is investigated in the next section.

3.3.6. Effects of an impurity embedded in higher dimensions

In this work the STAM is modeled by a one-dimensional chain. The effects of embedding the impurity in
two- or three dimensions are studied here within CPT. The two- or three dimensional bath is obtained by
a mapping of the one-dimensional chain to an effective higher dimensional model, which is only possible
in the case of a single impurity. This process, involving a rescaling of the hopping parameters in the
chain, is outlined in detail in app.[El

In fig.B10 the impurity density of states is shown for an impurity embedded in different dimensions.
The results were obtained using CPT based on L = 10-site clusters. The result for one-, two-, and three
dimensions shows the same characteristic features. Therefore we conclude, that dimensionality does not
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Figure 3.10.: Local density of states in the impurity obtained by CPT. The calculations were done for
an interaction strength of U = 0.0,0.4,0.8,1.2 and 2.0, a hybridization of V = 0.3162 and
a hopping of t = 1. The cluster-size used was L = 10 sites and the numerical broadening
0* =107%. (Left) An impurity embedded in a one-dimensional tight-binding system. (Mid)
An impurity embedded in a two-dimensional tight-binding system. (Right) An impurity
embedded in a three-dimensional tight-binding system.
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play a critical role in these kinds of calculations. Note that a scaling of energies with A was not done
in this section since A depends on the density of states (see eq. (3.3)) of the conduction electrons at the
Fermi-energy, which is very different in a one-, two- and three-dimensional tight-binding system. This is
the reason why the Kondo-resonance in the three plots has a different height in each, although they all
fulfill their respective Friedel sum rule eq. (3.43).

The finite size of the cluster part of the reference system is limited to 16-sites within our Band Lanczos
treatment. A method which enables accessing larger systems is assessed in the next section.

3.3.7. Using larger reference systems: MPS Lanczos results

The memory requirements of the Band Lanczos cluster solver limit the size of the cluster part of the
reference system to 16-sites for the STAM. The Matrix product state Lanczos method described in sec.2.2.4]
would be a candidate cluster solver for larger systems. This promising method, however is still under
development by P. Dargel [45]. In this section an overview of the current status of the ongoing work to
merge this method with CPT/VCA shall be given.

The Q-matrices and corresponding excitation energies for the STAM on six to twenty sites were calculated
by Piet Dargel using the MPS Lanczos method. The cluster solution of the single-particle spectral function
for a six- and twelve site cluster is shown in fig.3.12l (left), the corresponding CPT solution for the infinite
system in fig.[F12 (right). One can see that for larger system-sizes, the sum-rule eq. (2I6) is not fulfilled
any more by the MPS method. A comparison to six to twelve site Band Lanczos results is shown in
fig.3111 Shown is the single-particle spectral function of the impurity site for the total system. For small
systems the Band Lanczos and the MPS Lanczos results agree. For larger systems, not accessible to Band
Lanczos, the MPS Lanczos produces a spurious result in the vicinity of w = 0 due to missing weight in the
Q-matrices. As we are interested especially in the behavior of the low energy region, no further results
based on this cluster solver will be presented in the forthcoming discussion. However this method is a
promising tool for future extensions of CPT/VCA.

After these preliminary discussions, we now turn to the actual physics of the STAM within CPT/VCA.

3.3.8. Spectral properties

The single-particle spectral function A7, is obtained from the retarded Green’s function G7"™* (vef. [27])
1

A% (w) = -=Im GS"™(w) . (3.43)
ﬂ'

The diagonal element at the impurity site Af;(w) describes the impurity density of states p%(w). A
physical property of the STAM which poses a challenge to numerical methods is the Kondo-Abrikosov-
Suhl resonance often referred to as Kondo peak [3]. It arises in the parameter regime where the magnetic
moment of the impurity is screened by the conduction electrons to form a singlet state [I12]. The particle-
hole symmetric model lies in the center of this Kondo region. This quasiparticle excitation is for example
not captured in mean field approaches (see sec.3.2). With increasing interaction strength U the numerical
solution becomes increasingly challenging.
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Figure 3.11.: Local single-particle spectral function as a function of w. For interaction strength % =8,
on-site energy er = —4 and a numerical broadening of 0* = 107, The CPT results based on
a Band Lanczos cluster solver for system sizes L =6 to L = 12 are denoted BL. The CPT
results based on a MPS Lanczos cluster solver for system sizes L =6 to L = 20 are denoted
MPS. For small systems the Band Lanczos and the MPS Lanczos results agree. For larger
systems, not accessible to Band Lanczos, the MPS Lanczos produces a spurious result in
the vicinity of w = 0 due to missing weight in the Q-matrices. This behavior is expected to

be cured in the near future because the method is still under development.

In this section we elaborate on the results for the density of states in the particle-hole symmetric case.
Results for the single-particle spectral function eq. (3:43]) of the impurity site are shown in fig.BI3 As
a reference, the spectra obtained with NRG and DMRG from Peters [104] are plotted. Renormalization
group approaches like NRG are especially suited to reproduce the low energy quasi particle excitations of
this model and therefore serve as a reference for our data. The CPT spectral weight at w = 0 appears too
broad in the plot in comparison with the NRG result. This is partly due to a large numerical broadening
of 0" = 0.05. Due to the nature of the CPT method we cannot expect it to reproduce the low energy
spectrum as well as RG calculations do. The height of the Kondo resonance is too small in this figure
because of the large 0* which was used to compare to DMRG data only. However the height converges
with 0 — 107% to the result predicted by scattering theory (see sec.B3.9). The energetically higher
excitations like the Hubbard bands located at w ~» —ef and w ~ —ef + U develop more and more with
increasing length of the cluster part of the reference system L. A comparison of the center of gravity
for those developing bands of the L = 14 site CPT result and the L = 50 site DMRG result are in good
qualitative agreement. There are spurious structures in the spectral density, originating from the cluster
Green’s function of the finite system, preventing continuous bands to form. We would like to note that
the accurate determination of the Green’s function of the reference system is of prime importance. An
inaccuracy in pole-positions or pole-weights for very small but non-vanishing weights will yield spurious
artifacts in the spectra in the vicinity of w = 0 as shown in sec.B.3.7

To improve upon the result of CPT we considered the hopping matrix element ¢ and the hybridization
matrix element V' as variational parameters. The parameters used for the evaluation of the reference
system were determined with two different methods. VCAq results are depicted in the plot for a L = 10
site cluster. As shown in the figure this method strongly reduces the finite size peaks in the Hubbard
bands. The width of the Hubbard bands is reproduced correctly for high values of U where the FWHM
within VCA is given by ~ 1.9A. This comes very close to the expected 2A [90, 122] of the atomic bands.
This method improves the spectral properties of the Kondo resonance with respect to CPT, bringing
it closer to the L = 50 site DMRG result. The data obtained using the self consistent VCA approach
VCAgq agree very well with the result based on VCAg. One should note that the two broad Lorentzian
high energy peaks (in VCAq as well as VCAgc) consist of many excitations which will be revealed
upon repeating this calculation with smaller 0*. The low computational effort of CPT/VCA proofs
advantageous at calculating spectra. The VCA procedure (for a twelve site cluster) usually converges
in minutes to hours on a standard workstation PC, while more demanding numerical methods often
need days to a week to converge. Furthermore, the spectra are exactly determined from the Lehmann
representation and no ill-posed analytical continuation is required in comparison to methods working in
imaginary time or imaginary frequency space. To our knowledge the most accurate spectra available for
this model so far are published in ref. [123].
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Figure 3.12.: Cluster- and CPT solution of a six- and a twelve-site interacting cluster for the single-particle
spectral function of the STAM. The left column shows the cluster-, the right column, the
CPT result. The top row shows the L = 6-site results, while the bottom row shows the
L = 12-site results. The black curves indicate the results obtained by a Band Lanczos
cluster solver - the yellow, dashed lines those obtained by a MPS Lanczos solver. Further
parameters used were V = 0.3162, t = 1 and 0+ = 1076.
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A spatially resolved image of the spectral function, calculated with CPT, for the parameter set used in
fig.B13 (c) is shown in fig.BI4 (left). The qualitative picture would be the same in VCA, merely the
structures are slightly shifted. This increased picture reveals how the perturbation introduced by the
impurity is fading away slowly in an alternating fashion. At every second site away from the impurity a
dip at w =0 is present, which is usually referred to as Fano dip.

A zoom to the Kondo peak in the local density of states of the impurity is shown in fig. 314 (right) for
different, values of interaction strength U, in the particle-hole symmetric case, obtained by VCAq. The
pinning of the height of the Kondo resonance may be observed, as well as an exponential narrowing of
its width. A more detailed look on the spectral region of the Kondo resonance is provided in fig.B.15
The CPT/VCAq data is compared to NRG and FRG data as well as results obtained from a restricted
Hartree-Fock calculation from Karrasch et al. [I00]. The CPT/VCA results are plotted for lengths of
the cluster part of the reference system L = 2,4,6,8 and 10 for two different sets of parameters. The
results for higher L are always located towards the center of the figure. The results corresponding to the
resonance at w = 0 were obtained for the particle-hole symmetric model. For this set of parameters we
used the hybridization V as a variational parameter. The second peak shown centered around w/A ~ 0.8
corresponds to a parameter set right at the border of the Kondo region. The variational parameters used
away from particle-hole symmetry are x = {ef,€5}. One can see that the CPT result is not converged for
the L = 10 site cluster yet. In contrast, the VCAq result seems to converge much faster. Although in
the plot it looks like the VCA result does not improve much upon a restricted Hartree-Fock calculation,
in the following we will show that CPT/VCA yields results in all parameter regimes of the STAM which
cannot be reproduced within a mean field treatment (see sec.B.2]).

The variational parameters obtained for the two sets of parameters shown in fig.[B.13] (left) are presented

in fig.3T4 (right). In addition to the VCAq parameters, which were used for the results above, the
variational parameters obtained in VCAgc are also depicted. We plotted the difference of the parameter
of the reference system x’ to the physical parameter x: Ax. All parameters appear to converge to zero with
increasing length of the cluster part of the reference system L. Notice that the self consistent approach
always leads to a Ax of greater magnitude with respect to VCAq. Remarkably, the spectrum obtained by
VCAq and VCAgc for the parameter set x = {ef, €5} is in very good agreement although the variational
parameters are rather different. The most striking difference is that the self consistent approach yields a
negative Aey while the Q2 based VCA yields a positive Aey. This is however compensated by the different
Ac,. Using the hybridization V' as a variational parameter, the AV obtained by VCAq and VCAg¢ agree
rather well. Remarkably, the resulting density of states is very different, which shows that the calculation
is extremely sensitive to this parameter.
Overall one can conclude that VCA reproduces the medium and high energy regions of the spectrum
reasonably well. The VCA result improves enormously upon the CPT data. In general, the results from
VCAq and VCAg agree very well with each other. Next we turn to the examination of static expectation
values.

3.3.9. Impurity density of states and occupation

The occupation of the impurity site is given at temperature 7' = 0 by
¥ 1 1 e o .
<ng>:—+—/ dwRe G (iw) . (3.44)
2 wJo

This integral may be evaluated from the imaginary frequency Green’s function, which in turn is directly
accessible within CPT/VCA.

To see whether CPT/VCA are good approximations in all parameter regions of the STAM, we vary the
on-site energy of the impurity €; at fixed interaction strength U. The local impurity density of states at
the chemical potential (w = p = 0) and the impurity occupation number are plotted for various lengths of
the cluster part of the reference system L = 2,4,6 and 8 for the same model parameters. The VCAg, result
is shown in fig. 316l (left), the CPT data in fig.B17 (left) and in fig.B16] (right) a VCAgc calculation. We
start out by discussing the VCAg result (fig.B18] (left)). The variational parameters x used within VCAq
are the on-site energy of the impurity e; and the on-site energies of the uncorrelated cluster sites ;. The
density of states py(0) displays a pronounced plateau which is related to the existence of a quasiparticle
peak (Kondo resonance) pinned at the chemical potential. The parameter regions leading to an empty
(e <0) or to a doubly occupied (e¢; > U) impurity do not show the Kondo resonance, as expected. In the
half filled region which lies in between, virtual spin fluctuations lead to a pronounced quasi particle peak
at the chemical potential. We observe that the result converges with increasing length of the cluster part
of the reference system L to the physically expected result. Due to the variational parameters considered,
the deviations of the results as a function of L are rather small as compared to CPT where the results
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Figure 3.13.: Spectral function at the impurity site at particle-hole symmetry for different interaction
strengths U. The interaction strengths shown are U/A = 4 in the upper left figure (a),
U/A =8 in the upper right figure (b), U/A =12 in the lower left figure (c¢) and U/A =20
in the lower right figure (d). Each plot shows the results obtained by CPT for a length of
the cluster part of the reference system of L = 14 (dashed-red), VCAq with two variational
parameters: the hopping ¢ and the hybridization V' which are determined by the stationary
point of the grand potential 2 at a length of the cluster part of the reference system of
L =10 (blue), VCAg¢ with the same variational parameters determined self consistently at
a length of the cluster part of the reference system of L = 10 (cyan). All results have been
obtained for a large numerical broadening 0" = 0.05. As a reference the NRG and DMRG
results of Peters [I04] are plotted in yellow and dash-dotted-dark brown respectively.
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Figure 3.14.: (Left) The local density of states eq. (B:43) is shown resolved in real space. The spectrum
was obtained using CPT on a L = 14 site cluster. The impurity parameters were U/A = 12,
er/A = —6 and the numerical broadening was set to 0* = 0.05. The spectrum shown in
fig.B.13] (¢) corresponds to the data shown for site 14 where the impurity is located. (Right)
Zoom to the region of the Kondo peak in the local density of states of the impurity site. The
spectra are plotted for several values of interaction strength U/A = [0,...,40]. The curves
were obtained for the particle-hole symmetric case, A = 0.1, for 07 = 107 using VCAq.

change significantly with increasing size of the reference system (see fig.BI7 (left)). It is difficult to
estimate the size of the reference system which is necessary to reach full convergence. We expect CPT
calculations in the empty or doubly occupied regions to converge rather fast (within a few sites) while
calculations in the Kondo regime, and particularly in the crossover region, may fully converge only at
larger sizes (L ~ 50) of the reference system (see ref. [I16] as well as sec.33.5). This is inferred from the
spin-spin correlation function in the cluster which is observed to decay sufficiently fast outside the Kondo
plateau (i.e. it is effectively zero at the boundary of the cluster) but shows long range correlations inside
the plateau. The VCAgc results are obtained with one variational parameter x = {es}. The reason for
not using x = {€y, €5} again, is that the result is almost the same as the one obtained with VCAq (see
fig.3.16 (left)). However in some (small) parameter regions the numerical evaluation becomes difficult.
The data shown in fig.B16] (right) shows a clear improvement as compared to CPT but does not reach
the quality of the VCAq result in terms of convergence in system size. Note that for VCAge only one
variational parameter was considered as compared to two in the VCAgq calculation.

The Friedel sum rule (FSR) [124] 125] [89] provides an exact relation between the extra states induced
below the Fermi energy by a scattering center and the scattering phase shift. It also holds true for
interacting systems. This gives a relation between the f occupation < nf >, and the density of states:

7r<n£>)

+ (3.45)

Nf-2
o(0)=—
ps.(0) msm(

Here Ny denotes the degeneracy of the f orbital and < n! > its mean occupation. In our case N F =2
and the mean occupation in the Kondo regime < nf >~ 1. Note that the Friedel sum rule represents the
analogon of Luttinger’s theorem [126] in the theory of Fermi-liquids [I27]. This is why the physics of
the impurity is often referred to as local Fermi liquid behavior. Since both of these quantities can be
evaluated independently, we can check the validity of the Friedel sum rule in our approximation. Results
are shown in fig.[3.16 applied to the L = 8 site VCAg results. The VCAg results fulfill the Friedel sum
rule almost in the whole Kondo region. At the crossover to a zero or doubly occupied impurity the Friedel
sum rule is not fulfilled exactly any more but approximated very well. In the region farther outside it
again is perfectly fulfilled. The variational parameters of VCA are crucial to fulfill the Friedel sum rule
as can be seen from a CPT calculation (fig.317) which violates it in all parameter regions. It appears
as if VCAq with variational parameters x = {er, €} naturally drives the system to fulfill this condition.
The VCAg( result (fig.BI6 (right)) violates the sum rule too. This is not a feature of VCAgc in general
but rather has to do with the choice of variational parameters, which was just x = {€e;} in this case. The
VCAgc result for two variational parameters x = {es, €5} looks qualitatively like the respective VCAq
result.
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Figure 3.15.: (Left) Magnification of the Kondo resonance in the density of states of the impurity site.
Shown are calculations at two different sets of parameters. The resonance at w = 0 cor-
responds to the particle-hole symmetric case: U/A = 20, e;/A = -10, while the resonance
away from zero corresponds to a set of parameters right at the edge of the Kondo region:
UJA =20, e;/A =0. For comparison we show NRG (yellow) and FRG (dark brown) data
as well as results obtained from a restricted Hartree-Fock calculation (blue) from Karrasch
et al. [I00] (The NRG results are partially hidden by the FRG results.). The CPT result
(cyan) is shown for lengths of the cluster part of the reference system L = 2,4,6,8 and 10.
Results for higher L are always located towards the center of the plot. In the particle-hole
symmetric case VCAq (magenta) was performed with variational parameters x = {V'} for
L =2,4,6,8 and 10. Away from particle-hole symmetry VCAq was performed with varia-
tional parameters x = {¢r, €5} for the same lengths of the cluster part of the reference system
L. For the CPT/VCA calculations a numerical broadening of 0* = 107 was used. The inset
shows a zoom to the top region of the peaks. (Right) Magnification of the Kondo resonance
in the density of states of the impurity site. Shown are calculations at two different sets
of parameters. The resonance at w = 0 corresponds to the particle-hole symmetric case:
U/A =20, e¢;/A = -10, while the resonance away from zero corresponds to a set of param-
eters right at the edge of the Kondo region: U/A =20, e;/A = 0. For comparison we show
NRG (yellow) and FRG (dark brown) data as well as results obtained from a restricted
Hartree-Fock calculation (blue) from Karrasch et al. [I00] (The NRG results are partially
hidden by the FRG results.). The CPT result (cyan) is shown for lengths of the cluster part
of the reference system L =2,4,6,8 and 10. Results for higher L are always located towards
the center of the plot. In the particle-hole symmetric case VCAq (magenta) was performed
with variational parameters x = {V'} for L =2,4,6,8 and 10. Away from particle-hole sym-
metry VCAq was performed with variational parameters x = {ef, e, } for the same lengths
of the cluster part of the reference system L. For the CPT/VCA calculations a numerical
broadening of 07 = 107% was used. The inset shows a zoom to the top region of the peaks.
(Right) Evolution of the variational parameters for the data shown in fig.BI5 Shown is
the difference of the parameters of the reference system x’ to the physical parameter x:
Ax = x" = x. Parameters obtained by VCAg (crosses) are compared to those obtained by
VCAgc (circles). The variational parameters Ae; (dark brown) and Ae, (yellow) corre-
spond to the calculation away from particle-hole symmetry in fig.[3.15] while the parameter
AV (olive) corresponds to the calculation at particle-hole symmetry. Lines are only guides
to the eye.
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Figure 3.16.: (Left) Density of states of the impurity site (solid lines) obtained via VCAq at w = 0 and
average occupation of the impurity (dashed lines) for different lengths of the cluster part
of the reference system L = 2,4,6 and 8 (blue, green, red and cyan) as a function of the
impurity on-site energy e€;. The Coulomb interaction U is kept constant at U/A = 20. The
numerical broadening used is 0¥ = 107%. The set of single particle parameters considered
for variation within VCAgq is x = {€y,€}. Note that here the point ey = —% corresponds to

the particle-hole symmetric case. The Friedel sum rule (eq. (3:43])) was applied to the L =8

result (dotted-violet). It is fulfilled to a very good approximation in the Kondo region and
far outside of it. Small deviations from the Friedel sum rule arise at the crossover region
to an empty or doubly occupied impurity. The inset shows a zoom to the Kondo plateau.

(Right) Density of states of the impurity site (solid lines) obtained via VCAgc at w =0 and

average occupation of the impurity (dashed lines) for different lengths of the cluster part

of the reference system L = 2,4,6 and 8 (blue, green, red and cyan) as a function of the
impurity on-site energy ;. The Coulomb interaction U is kept constant at U/A = 20. The
numerical broadening used is 0% = 107%. The set of single particle parameters considered
for variation within VCAgc is x = {e}. Note that here the point €y = —% corresponds to
the particle-hole symmetric case. The Friedel sum rule (eq. (3:43])) was applied to the L =8

result (dotted-violet). It is fulfilled outside of the Kondo region only.

Scanning the interaction strength U at fixed impurity on-site energy e; confirms the presence of the
Kondo behavior. Shown in fig.BI7 (right) are results obtained with VCAq using the same variational
parameters x = {es,€e,} as above. In the weakly correlated part (U/A < 5) the density of states at the
chemical potential is low. The intermediate region (5 < U/A < 15) signals the crossover to the Kondo
regime. For larger U the Kondo regime is reached with an impurity occupation of < nf >~ 1, which may
be inferred from the Friedel sum rule. In the inset of the figure, the CPT result for the same lengths of
the cluster part of the reference system L are shown. The CPT results are by far not converged for the
cluster sizes considered here. This emphasizes the importance of the variational parameters.

The results in fig.3I6 and fig. 317 (right) agree very well with those of calculations based on X-operator
technique exercised by Lobo et al. [I07]. In their work a strong coupling perturbation theory is applied
starting from the Anderson molecule as a basis and using the Friedel sum rule as a condition to fix the
position of an infinitely narrow conduction band.

The results of this section clearly show that VCA is able to capture the physics of the STAM in every
parameter region. The improvement obtained by going over from CPT to VCA is crucial to fulfill exact
analytic relations. The results of this chapter are extended in the next section by constructing a crossover
diagram.

3.3.10. Crossover diagram

To delve into the CPT/VCA results for the whole parameter range of the STAM a “phase diagram” is
presented in this section. This is to be understood to be a mere scan of the parameters U and e because
the model does not undergo a phase transition, unlike indicated in the mean field results presented in
sec.B.2l The density of states of the impurity at the chemical potential p;(0) is shown in fig.B.I8 in
a density plot. The left result was obtained using VCAg, the result shown in the right by CPT. This
plot essentially shows the height of the Kondo resonance as a function of interaction strength and on-site

60



10 20 30 40 50

uin

-0 0 10 20 30 20 o 0 50
&0 uia

Figure 3.17.: (Left) Density of states of the impurity site (solid lines) obtained via CPT at w = 0 and
average occupation of the impurity (dashed lines) for different lengths of the cluster part
of the reference system L = 2,4,6 and 8 (blue, green, red and cyan) as a function of the
impurity on-site energy ;. The Coulomb interaction U is kept constant at U/A = 20. The
numerical broadening used is 0* = 107%. Note that here the point €f = —% corresponds to
the particle-hole symmetric case. The Friedel sum rule (eq. (3:43])) was applied to the L =8
result (dotted-violet). It is drastically violated. However the results are far from converged
for the small lengths of the cluster part of the reference system considered here. (Right)
Density of states of the impurity site at w = 0 for different lengths of the cluster part of the
reference system L = 2,4,6 and 8 (dark brown, cyan, olive and magenta) as a function of
the interaction strength U. The impurity on-site energy s is kept constant at ey/A = -10.
The numerical broadening is chosen to be 0" = 1075, The set of single particle parameters
considered for variation within VCAgq is x = {€f, €5 }. The inset shows the CPT results.

energy of the impurity. The different regimes of the STAM, as obtained by an atomic limit calculation

(see sec.[3]]), are indicated by black lines. These lines divide the physics into regions where the impurity
is doubly, singly or not occupied. In the singly occupied region (% > ler + %|) local moments and their
screening is expected to appear. This region which bestrides the cone enclosed by black lines is the
region where Kondo physics may take place within this approximation. The parameter regions where the
impurity is empty or doubly occupied lie above and below this cone. More sophisticated methods will lead
to a smearing out of the border of these regions and introduce a crossover area with competing effects. A
boundary expected between a single resonance and a local moment behavior where the single resonance
is split into two for spin up and spin down respectively is given by mean field theory (see sec.B3.2)). The
mean field boundary is obtained from eq. (3I9). The plot shows that the Kondo plateau is reproduced
very well by VCAgq. The Friedel sum rule eq. (843 is fulfilled in all parameter regions in contrast to the
CPT result, which clearly shows a weak behavior. The VCAq results are almost converged for lengths of
the cluster part of the reference system L »~ 6. Increasing L yields better results in the crossover region.
Results obtained by means of CPT do not reproduce the Kondo plateau very well for small length of
the cluster part of the reference system. We estimate that CPT needs a length of the cluster part of
the reference system of L »~ 50 to reproduce the Kondo plateau as good as VCA with L = 6 sites. The
spurious spectral weight arising in the plot in some regions of U < 0 may arise as a numerical artifact of
the VCA procedure.

The average impurity occupation for the same parameter region is shown in fig.[3.19 The result obtained
with VCAq (fig.BI19 (left)) clearly shows the Kondo plateau where the impurity is singly occupied. The
parameter regions of a doubly occupied or empty impurity lead to a density of states in the impurity
which is zero at the chemical potential (compare to fig.BI8). The CPT result (fig.319 (right)) again
shows, that CPT would need much larger cluster sizes. A similar behavior is also found at examining
the spin-spin correlations of the cluster part of the reference system (see fig.[39] (right)). Note that cuts
at certain parameter values through the plots: fig.B.I8 and fig.B.19 are presented in fig.3.16 (left) and
fig.B17 (left) for a more detailed overview. The results of this section have been obtained using VCAq
with variational parameters x = {€s, ¢, }. It should be noted that using only x = {e} already yields good
results. As mentioned in sec.339, CPT needs quite large lengths of the cluster part of the reference
system L to converge to the VCA results. Having shown that VCA produces overall good results in all
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Figure 3.18.: In the plot a “phase diagram” of the STAM is shown. The quantity on the z-axis is the
density of states in the impurity py at w =0 (i.e. the height of the Kondo resonance). The
black line indicates the different regions obtained from an atomic limit calculation. In the
right cone local moments are to be expected. While in the upper region the impurity is
expected to be empty and in the lower half to be doubly occupied. The blue curve shows
the onset of a magnetic state as obtained by a mean field treatment (see text). (Left) The
results where obtained with VCAgq for a set of variational parameters x = {e, €}, a length
of the cluster part of the reference system of L = 6 sites and 0" = 107°. (Right) The CPT
result for the same parameters.
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Figure 3.19.: Average particle density in the impurity < nf > as a function of U and ey for the same
parameters as in fig.BI8 (Left) The VCAq result. (Right) The CPT result.
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parameter regions for the general features of the spectra, we turn to the much harder accessible case of
the low energy properties.

3.3.11. Low energy properties, Kondo Temperature

In this section we examine the low energy properties of the symmetric STAM. In the strong coupling limit
a single scale, the Kondo temperature T, governs the low energy physics. This scale may be extracted
from the width of the Kondo resonance in the local density of states.

The Kondo temperature Tk is known from Bethe Ansatz results for the particle-hole symmetric STAM [7,

28]

TK — - e_’YSLA U , V= 1. (346)

2
This scale which is inversely proportional to the spin-flip rate of the impurity divides the physics of
the STAM into two regions. A local moment behavior of the impurity, where the spin is free and a
low temperature region where the local spin and the conduction electrons become entangled and form a
singlet state [111].
Quantities which depend inversely on Tk are the effective mass m* and the static spin susceptibility
Xm- We investigate and compare the results for the scale Tk obtained from the direct determination
of Tk (from the full width at half maximum and the spectral weight of the Kondo resonance) and the
inverse quantities m* and x,,. We find that the results of all four measurements turn out to yield the
correct qualitative behavior in VCAq. However in a region where the dependence of T is exponentially
dependent on the interaction strength U the exponential prefactor is not predicted correctly. Therefore
we introduce a scaling factor v eq. (346) which turns out to be the same for all four ways of determining
Tk . In particular this factor is independent of the set of parameters used. The scaling factor may be
calculated semi-analytically for a reference system consisting of a two site cluster and the semi-infinite
environment within VCAq and VCAgc (x = {V'}) (see sec.B33). The calculation for VCAgq leads to an
integral expression for the stationary point of the grand potential Q with respect to AV from which the
optimal AV can be obtained numerically (see sec.B3.3). The Kondo scale may be determined from the
so obtained values of V/(U) = AV (U)+V by

Ti(U) o (#) . (3.47)

This leads to a perfect exponential behavior with an exponent defined in eq. (3.46) where
~v=0.6511.

In the following subsections the numerical results obtained by VCAq will be plotted in semi-logarithmic
plots over a scaled x-axis: « %, where a = L for the VCA( results. The issue of obtaining an exponential
scale but not the correct exponent for the functional dependence on U is common to various approximate
methods (for example variational wavefunctions where the issue was cured by introducing an extended
Ansatz by Schénhammer [117], saddle-point approximations of a functional integral approach [129] or
FRG [118]). A faint analogy may be drawn here to Gutzwiller approximation, where an exponential
energy scale in U arises by a renormalized hybridization parameter V' [9], which seems also to be the case
for VCAQ

The self-consistent calculation for VCAgc also leads to an integral expression for the determination of
AV. This expression is obtained by requiring the expectation values of the hopping from the impurity
site to the first site in the chain in the cluster to be the same as the expectation value in the full solution.
This procedure does not yield an exponential scale in U. The optimal cluster parameter V'’ shows spuri-
ous behavior as a function of U (see sec.B.3:3). We conclude that VCAgc with x = {V'} cannot reproduce
the low energy properties of the STAM, while VCA, yields the correct behavior apart from a factor.
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Effective Mass - Quasiparticle Renormalization

The effective mass m* is defined as the quasiparticle renormalization [100]

m*(U) L d[Im X% (iw,U)]
m*(0) dw w0
_ d[Im G (iw, V)]
B dw w=0*%
d[Im G (iw,0)] !
( e wzw) , (3.48)

where we introduced the dependence on the interaction strength U explicitly. In the Kondo regime, this
quantity becomes inversely proportional to the Kondo temperature.

We want to answer the question whether the Kondo scale is captured by CPT/VCA or not. Therefore we
compare the functional form and the exponent obtained from the effective mass and the analytic result
for Tk eq. (346). The result for the effective mass obtained within VCAg is shown in fig.320 (left).
The variational parameter used was x = {V'}. The functional form is reproduced well by VCAgq(i.e. it
starts out quadratically and goes over to an exponential behavior in the Kondo region). However the
exponent (g% ) is not reproduced correctly. VCAq yields a lower exponent of ~ (v g% ). The factor v is
defined in sec.B3:3 determined from a semi-analytical calculation of Ty within VCAq. This additional
factor is the same for all initial parameters (within the Kondo regime), it is particularly independent of
A. Therefore the x-axis for the CPT/VCA results is scaled by « = % to see that the functional form of the
effective mass matches the NRG result [100] to a very good approximation. The VCA results are already
converged for small cluster sizes of L = 6 while the CPT results converge rather slowly. An attempt was
made to extrapolate the CPT data to L — oo. It is interesting to observe that this extrapolated curve
coincides nicely with the VCA result (L—6) in the low U region. Note that for this quantity the VCA
result is almost independent of the length of the cluster part of the reference system as will be motivated
in sec.3B312

Kondo Spectral Weight and Half Width

Since the height of the Kondo resonance is fixed by the Friedel sum rule eq. 8.43) the width and the
weight (area) of the peak are proportional to the Kondo temperature Tk . Obtaining the spectral weight
or full width at half maximum (FWHM) of the Kondo resonance from the spectrum introduces a large
uncertainty. Nevertheless we made an attempt, to get an idea of the behavior of T . We fixed the spectral
weight by the first minimum to the left and to the right of the central peak. In general the effective mass
and static spin susceptibility will yield more reliable results but it is instructive to compare these four
ways of determining T .

Shown in fig.B20 (right) is the evolution of the spectral weight and the FWHM of the Kondo resonance
with increasing interaction strength U. The data were calculated using VCAq with a variational param-
eter x = {V} for the particle-hole symmetric STAM. For the results shown in the plot the x-axis of the
VCA result has been scaled by the same factor « as in the previous section for easier comparison to the
Bethe Ansatz result.

Static spin susceptibility

The static spin susceptibility y,, is given by the linear response to an applied magnetic field B in z
direction

({ng1) —{ns)

meU=—d 1B (3.49)

B=0

In the Kondo regime this quantity too becomes inversely proportional to the Kondo temperature. For the
calculations in this section we introduce an additional spin dependent term in the impurity Hamiltonian

eq. B3)

- B
Hmagnetic = Z 0’5 f; fg" (350)
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Figure 3.20.: (Left) Effective mass m* of the Kondo resonance eq. B48) as a function of interaction
strength U. We plot CPT results for lengths of the cluster part of the reference system
L =2,4,6,8 and 10 (magenta), the to L — oo extrapolated CPT result (olive), as well as
VCAg results (blue). The data points for the CPT result in the low U region are not shown
to avoid messing up the plot. The variational parameter used for the VCAq result was
x = {V}. The VCAq data was obtained for a reference system of length L = 6. For CPT
as well as VCAq we used a numerical broadening of 0% = 1079, For comparison the results
obtained by NRG (yellow) and FRG (dark brown) are shown [I00]. The factor a on the
x-axis is « = 1 for NRG and FRG data and o = % for CPT as well as VCA, results (see
text). (Right) VCAq results for the spectral weight (blue) and full width at half maximum
(olive) of the Kondo resonance as a function of interaction strength U. The variational
parameter used was x = {V'}. A length of the cluster part of the reference system of L = 6
sites and a numerical broadening of 07 = 107% were used for this calculation. Data points
marked with a circle were used for the fit of the exponential function in the Kondo region.
The black line shows the Kondo temperature Tk as obtained by Bethe Ansatz calculations
eq. (340). The factor o on the x-axis is a = 1 for Bethe Ansatz data and o = % for VCAq

data (see text).
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Figure 3.21.: The static spin susceptibility x,, eq. (349) is shown as a function of interaction strength
U. The variational parameter used was x = {V'}. The data were obtained for L = 6 sites
and 0" = 1075, For comparison the results obtained by NRG (blue) and FRG (green) are
shown [I00]. The factor « on the x-axis is a = 1 for NRG as well as FRG results and o = £

Bt
for VCAq data (see text).

The static spin susceptibility x,, as obtained with VCA, is shown in fig.[3.21l The variational parameter
used was x = {V'}. As in the two preceding sections the x-axis was scaled by « for the VCAq data. As
a reference the results of NRG and FRG [I00] are shown. The behavior of the VCA result is good for
small interaction strength U. The VCA result shown for L = 6 sites is already converged while the CPT
result would require much larger systems.

We would like to highlight that VCA reproduces an energy scale Tx. Results from direct calculation
of Tk and calculation of the effective mass m* and the static spin susceptibility x,, yield the correct
functional form but not the right exponent. The results of this section are further explored in the next
paragraph, when the result for the CPT/VCA self-energy is compared to CT-QMC data.

3.3.12. Benchmarking CPT/VCA against continuous time Quantum Monte
Carlo

In this section we compare CPT/VCA results to QMC data. We obtained the Monte Carlo results using
the continuous time Quantum Monte Carlo (CT-QMC) code of the TRIQS [I30] toolkit and its imple-
mentation of the hybridization expansion (CT-HYB) [131] algorithm using Legendre polynomials [132].
This method enables access to very low temperatures and is especially suited to obtain low energy prop-
erties [I9]. The CT-QMC data provides statistically exact and reliable results to test our data.
All CT-QMC calculations were done for a single impurity orbital at U = 0.8 and ey = -0.4. We used a
semicircular hybridization function with half bandwidth D = 2 and V = 0.3162. This setup corresponds
to the same model under investigation here. The value for the interaction strength U = 0.8 was chosen
because of the relatively low expected Kondo temperature of S = ﬁ ~ 100. For all calculations 1.2 x 10?
MC updates where conducted, with a sweep size of 100 updates, plus a 10% thermalization period.
To ensure that the Kondo resonance is correctly reproduced by CT-QMC we evaluated the Matsubara
Green’s function for various values of inverse temperature 5. The height of the Kondo resonance is given
by the Friedel sum rule eq. (8.45) to be Jm(Gy(iw = 0)) = —10 for the parameters used here (A = 0.1). To
obtain IJm(G(iw = 0)) we extrapolate twice, first in 4w — 0 for each 3, then we use these results and ex-
trapolate to 7' — 0. The extrapolation to iw — 0 is done linearly using the first two Matsubara frequencies.
The imaginary part of Gs(iw) and the extrapolated value to iw — 0 are shown in the inset of fig.[3.22]
(left) for 5 € [10,1200]. Those extrapolated values are plotted as a function of temperature (fig.322
(left)). These data points are then extrapolated to T' — 0 using a fit by a rational model function. The
result clearly shows the onset of the Kondo resonance when the temperature is lowered below the Kondo
temperature Tk . The extrapolation to T' = 0 shows very good agreement (Jm(G(iw =0)) ~ —=10.1) with
the result expected from the Friedel sum rule within the uncertainty. It is important to note that the
CT-QMC results converge very nicely in 5. Although for higher 8 lower Matsubara frequencies become
available, the overall shape of the Green’s function does not change significantly.

Therefore we may compare the T'=0 CPT/VCA results for the Green’s function and self-energy to the
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Figure 3.22.: (Left) CT-QMC result for the imaginary part of the impurity Green’s function extrapolated
to iw = 0. An extrapolation to zero temperature is attempted, which yields a good agreement,
with the result predicted by the Friedel sum rule (green circle) within the uncertainty (red
triangle). The inset shows the imaginary part of the impurity Green’s function for various
B (see legend) and the extrapolated points at iw = 0. (Right) Comparison of the Matsubara
impurity Green’s function G¢(iw) obtained by CT-QMC (5 = 400), CPT and VCAq. The
CPT/VCA results were obtained for lengths of the cluster part of the reference system of
L=2,4,6,8 and 10. The real part shown in the lower part of the figure is zero. The Friedel
sum rule prediction of Jm (G (iw = 0)) = —10 is fulfilled by all methods. The legend of this
figure serves as well as legend for fig.B.23] (left) and fig.[323 (right). That is why the last
entry (large iw exp.) is displayed in the legend but is missing in the graph of this figure.

CT-QMC data. The Matsubara Green’s functions of the impurity site Gy s(iw) obtained by CT-QMC
(8 = 400), CPT and VCA are shown in fig.B.22 (right). We use 8 = 400 as a compromise between low
temperatures and still reliable CT-QMC results (within manageable computation time). The 5 = 400
result was obtained using 65 Legendre coefficients. A detailed analysis has shown that this number is
sufficient to get high frequency moments of the self-energy ¥ accurately. The VCAq, results were obtained
with one variational parameter x = {V'} for U = 0.8, A = 0.1 and 0" = 1075 in the particle-hole symmetric
case. For the CPT calculation we used the same parameters. For both methods we considered lengths
of the cluster part of the reference system of L =2,4,6,8 and 10. The imaginary part of the CPT result
converges with increasing length of the cluster part of the reference system to the expected result. The
VCA result lies near the CT-QMC data but underestimates the slope of the curve at low iw. The VCA
result provides a huge improvement upon CPT for the lengths of the cluster part of the reference system
shown here. The real part of Gys(iw) is exactly zero within CPT/VCA as it is supposed to be. Note
that the value of Gy (iw = 0) which is fixed by the Friedel sum rule is exactly reproduced within CPT
and VCA for the particle-hole symmetric case. The same is shown for the self-energy of the impurity site
Ysf(iw) in fig. B2 (right). From the imaginary part of X;;(iw) one can infer the convergence of the
CPT/VCA result with larger length of the cluster part of the reference system L. The real part of the
self-energy Re(Syy(iw) = p = —ey = & = 0.4) is again exactly reproduced within CPT/VCA.

In the following, we discuss the self-energy X (iw) for the two interesting cases of very low and very high
Matsubara frequency. We start out by conducting an expansion of the self-energy X (z) for high Mat-
subara frequencies (z = iw — o0) which shall be outlined here briefly. The self-energy matrix is defined
by

Y(2) =Gyt -G
=2-T-G™".

Here T is the one-particle part of the Hamiltonian. In the particle-hole symmetric case considered here
it contains all the hoppings as well as the on-site energy of the impurity e = —%. We conduct a series
expansion in powers of 27! of ¥(2). Apart from the real constant T; all z-dependent terms of ;;(z) are
anti-symmetric in z. Therefore even powers in 2*?' | [ > 0 vanish. Expanding the Green’s function G(z)
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Figure 3.23.: (Left) Comparison of the self-energy of the impurity Xs(iw) times energy w obtained by
CT-QMC (8 = 400), CPT and VCAq. The CPT/VCA results were obtained for lengths
of the cluster part of the reference system of L = 2,4,6,8 and 10. CPT as well as VCAq
become exact for high Matsubara frequencies. The legend for this figure is the same as
for fig.[322 (right) and is displayed there. (Right) Comparison of the imaginary part of
the self-energy of the impurity IJm(Xs;(iw)) obtained by CT-QMC (8 = 400), CPT and
VCAgq. The CPT/VCA results were obtained for lengths of the cluster part of the reference
system of L =2,4,6,8 and 10. An expansion of 3(iw) for large iw eq. (B51) is additionally
shown (straight line at — (%)2) CPT/VCA always reproduces the exact self-energy for high
Matsubara frequencies. The legend for this figure is the same as for fig.B.22 and is displayed
there.

yields for the self-energy 3(2)

¥(2)=-T-=z2 i -nHmxm,

m=1

X = Zz_"Cn,

(Cu)iy = (Wolar (AR)"al o)
+(-1)" (ol (AF)"a, [Wo) |

where AH = H — wy. Collecting powers of z yields a cumulant-like expansion for the self-energy 3(2)

Y(z) =) 2 "%, , where
n=1

EO:—T+Cl,and
21=02—012.

Here we consider the zeroth and first order in 2% only and obtain for ¥(iw)

sz(w):g—% (g)2+0(i)3, (3.51)

2 w

where the self-energy at the impurity site X ¢¢ is the only non-vanishing matrix element of 3J;;. This result
is plotted as a reference in fig.B23] (right). Due to the nature of the CPT/VCA approximation these
methods always yield the exact self-energy for high Matsubara frequency as shown in fig.3.23 (left). The
low energy properties examined in the previous section depend basically on the slope of the Matsubara
Green’s function at (iw) = 07. The results shown in fig.B.22] (right) and fig.B23 (right) show that this
slope is underestimated by CPT/VCA in comparison to CT-QMC, at least at the small lengths of the
cluster part of the reference system available. The qualitative picture however shows a good agreement,
with the expected physics.
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Figure 3.24.: (Left) Grand potential Q€Y .,,,, (eq. (D.I8)) as a function of the interaction strength U/A
(see legend). The data was obtained by studying a L = 4 site cluster coupled to an infinite
lead. The numerical broadening used was 0* = 107, The crosses indicate the respective
minimum of the grand potential. There exists a critical U./A ~ 4.3 above which a finite
B! is preferred by the system. (Right) The splitting of the Kondo resonance caused by an
applied magnetic field in x direction is shown for different values of the auxiliary field B..
The plots were obtained using VCA (i.e. the physical field B, is always zero). Instead of
taking the parameter Bl at the stationary point of the grand potential (this value would
be Bl /A ~ 1.9 for the parameters used) we explicitly plug in a fixed value for B.. The
length of the cluster part of the reference system used was L = 6 for the model parameters
U/A =12. The numerical broadening used was 0" = 1075.

The above results suggest a possible application of VCA as an impurity solver for zero temperature
DMFT. The results would not suffer from a bath truncation error as in exact diagonalization based
DMFT. A big advantage would be the low demand on computational power of VCA and the qualitatively
correct local density of states. To round the discussion up, a symmetry breaking field is introduced in
the reference system in hope for better results.

3.3.13. Introducing a symmetry breaking field

We explore the possibility to improve the VCAg results achieved by varying the internal single particle
parameters of the model by introducing a symmetry breaking ’spin flip field” at the impurity site. The
term added to the impurity Hamiltonian eq. (3.3))

ﬁﬂip:Bw (f:fl""fffT) ) (352)

explicitly breaks the conservation of spin in the cluster solution. We are interested in the model with a
physical parameter B, = 0 so this variable may only attain a finite value as a variational parameter B,
in the reference system. This is motivated by the actual physics of the impurity at which conduction
electrons undergo spin flip scattering. Our findings indicate that any finite value of B, splits the Kondo
resonance and has thus to be discarded on physical grounds for the physical system under investigation.
While this prevents the application of this field to improve the VCA results, it gives very nice insight
in the physics of the STAM as described by CPT/VCA. We find that a critical interaction strength U
depending on the length of the cluster part of the reference system exists, which separates solutions which
would prefer a finite B, from those which would prefer B, = 0. The critical interaction strength for L = 4
is given by U./A ~ 4.3. The grand potential 2 - €Y ..., is plotted for various interaction strengths U in
fig.B241 (left). For an analogous calculation for L = 6 site clusters a value of U./A ~ 4.1 is achieved. The
mean field result would yield a critical interaction strength U./A =« for the parameters used here. We
interpret this value as a signature of the onset of local moment behavior. The values for U, are of course
not to be taken literally, they depend very much on the finite size of the cluster under investigation.
However, the fact that a critical U exists, signals that the essential physics of the STAM is reproduced by
our approach.

The splitting of the Kondo resonance caused by a non-zero variational field Bl is shown in fig.[324]
(right). The value of U/A = 12 used for this calculation lies in the region above U. where the system
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prefers a nonzero field B;. This ends the discussion of the CPT/VCA results in equilibrium. In the next
section we turn to the non-equilibrium case.
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4. Non-equilibrium transport through a
strongly-correlated quantum dot

Since the early 1990’s the field of (then) bulk Kondo physics was enriched by the study of artificial nano-
scale structures, exhibiting similar physics in a much more control- and tune-able way [133, 134 [135].
Numerous experimental studies [10] 136, 137, 138 [138] established a new field for both equilibrium
Kondo physics as well as non-equilibrium phenomena in those devices. One especially remarkable device
providing such a playground for quantum impurity models is a quantum dot [I39]. These small units
may be used in a single-electron transistor setup, exhibiting Coulomb blockade effects. Quantum dots,
sometimes referred to as artificial atoms, resemble the physics of a magnetic impurity in a metal, when
connected to metal leads by tunneling barriers. In a metal the magnetic moment of the impurity, above the
Kondo temperature T provides a local moment, usually in a, singly occupied, narrow f-orbital. Lowering
the temperature below T, the screening of this moment leads to the remarkable Kondo physics. Quantum
dots, with an odd number of electrons, are capable of resembling this behavior as shown in fig.[ 1l The
great advantage of artificial nano structures is, that each parameter may be controlled experimentally.
A quantum dot, connected to left-, and right leads, as well as a gate electrode, may be modeled by
the STAM. The tunnel couplings to the leads Vi and Vg, are the analogues of the hybridization matrix
elements of f- and s-electrons in a bulk impurity system and may be controlled by the gate voltage. The
energy levels of the dot and correlation effects may be engineered by using different materials, sizes and
geometries of the dot. Such devices are subjected to strong correlations because of the macroscopically
entangled states arising from virtual spin flip scattering [10].

The non-equilibrium behavior of such systems under bias poses an unsolved issue even today. Early works
ref. [140, 147 142} [143] gave some essential insight into the basic non-equilibrium physics. A good overview
of semi-classical approaches is presented in the book by Richter [I44]. A sound theoretical base of the
non-equilibrium Kondo physics was developed during the last twenty years ref. [145] 146, 147, 148, [149].
Qualitative results for any bias voltage are extremely hard to obtain because it is expected, that the dot
stays in the strong coupling regime also at high bias voltages [150] (Viias > Tk ). Several ideas to tackle the
interacting non-equilibrium problem are presented in ref. [I51]. A comparison of many body perturbation
theory and time dependend density functional theory is available in ref. [I52]. The involved time scales
are discussed for example in ref. [I53]. Some progress was made in recent years using non-equilibrium
FRG [154, 155, [156], QMC [157, 158], dual-fermion approaches [I59, [160] and with the introduction of
scattering Bethe Ansatz [161] [[62]. The applicability of a master-equation was explored in ref. [163].
DMRG was used to get insight into one-dimensional problems ref. [164, [165]. Recently it was noted that
the logarithmic discretization used in NRG causes problems, when one wants to predict the long-time
behavior of non-equilibrium systems [166]. In this publication we do not consider any additional charging

initial virtual spin flipped

Figure 4.1.: Schematic energy diagram of a quantum dot (reproduced from ref. [I0]). The spin-degenerate
level of the dot is singly occupied. A depopulation as well as a double-occupation of the dot is
energetically unfavorable. The tunnel couplings to the left and right lead are denoted I'y, and
I'r. Those leads consist of Fermi seas filled up to their respective chemical potential uy and
1r- A possible virtual spin flip event, which is the essence of the Kondo effect, is depicted
here. (Left) Initial state of the quantum dot: single-occupation. (Mid) The dot’s electron
may tunnel off the correlated region in a virtual process. (Right) It is replaced by an electron
of another spin flavor. Another process for such an event may be a virtual double-occupation.
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equilibrium non-equilibrium

Figure 4.2.: Density of states in a quantum dot (reproduced from ref. [I0]). The Kondo effect reveals
itself as a characteristic resonance in the local density of states of the quantum dot. (Left)
In an equilibrium situation the resonance is located at the Fermi-energy. (Right) In a non-
equilibrium situation the Kondo peak splits into two, one pinned at the chemical potential
of the left lead, and one pinned at the chemical potential of the right lead.

effects, which are important for a real device. A study of such effects and the involved screening and
relaxation time scales was done in ref. [I67] using perturbative methods. Very recent results obtained
by a non-equilibrium extension of the FRG for the interacting resonant level model became available in
ref. [168].

The expected non-equilibrium behavior is pictured in fig.[ L2l A splitted Kondo resonance is pinned at
the chemical potentials of the respective leads [169].

In this chapter we use the non-equilibrium formulation of VCA (see sec.[Z4) to obtain non-equilibrium
properties of the STAM in the strongly correlated regime. Results for the effective distribution function are
presented in sec.[2l An expression for the current in the non-interacting case is obtained in sec.[d3l The
linear-response current in the Kondo-regime will be discussed in sec.[l4l A comparison of the CPT/VCA
results to mean field theory is presented in sec.[£3l Finally results for the current and density of states as
obtained by CPT/VCA are discussed in sec.[.6l The behavior of the VCA variational parameters will be
discussed there. All parameter regions of the STAM will be explored and also systems with asymmetric
coupling to left and right leads will be investigated. We start out by presenting the model of a quantum
dot within CPT/VCA in sec.[1l

4.1. Modeling of a quantum dot system out of equilibrium

To obtain non-equilibrium properties for the quantum dot system, the STAM out of equilibrium has to
be solved, as explained in the last section. The non-equilibrium VCA may be applied to this problem in
splitting the infinite system into three parts (see fig.[L3). A left (uncorrelated) lead, which is modeled
by a semi-infinite tight-binding chain (see eq. (3:23))). A central correlated region, which consists of a
STAM (see eq. B1) in real space on a finite size cluster. And a right lead, which is again modeled by
a semi-infinite tight-binding chain. Note that it is crucial that the leads (reservoirs) are of infinite size,
otherwise no steady state will be reached. The procedure of splitting is similar to the one considered
in the equilibrium case and is described in sec.B:3l The Green’s functions of the reference system are
obtained as in the equilibrium case. However here a two by two Keldysh Green’s function is used (see
sec.24)). The cluster part of the reference system, this time, consists of the impurity, sitting in the
middle of the cluster. The sites to the left of the impurity belong formally to the left lead (and therefore
have on-site energies ¢, and chemical potential ur,). The sites to the right of the impurity belong to the
right lead and have the respective parameters. In increasing the size of the cluster part of the reference
system symmetrically to the left and right of the impurity, we treat more and more sites of the leads
exactly, which would ultimately converge to the exact solution of the total system when L — co. Practical
system sizes however are limited again to L < 16. A bias voltage may be applied by shifting the chemical
potential and the on-site energies of the leads simultaneously. This is always done in an asymmetric
manner: [ = €y, = —€r = —[iR = V‘“Ta Note again that the uncorrelated sites in the cluster which are
situated to the left (right) of the impurity formally belong to the lead and therefore also have on-site
energies of ey (eg). To maintain particle-hole symmetry we are therefore limited to clusters with an
odd-number of sites L =3,5,7,9,11,13 and 15. Observations showed that every second of these systems
L =5,9 and 13 suffers from a finite-size gap, which closes with increasing cluster size. This arises due to
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Figure 4.3.: A quantum dot is modeled within VCA by the STAM. The reference system consists of three
parts: A left (uncorrelated) lead, which is modeled by a semi-infinite tight-binding chain. A
central correlated region, which consists of a STAM in real space on a finite size cluster. And
a right lead, which is again modeled by a semi-infinite tight-binding chain.

the fact that an even number of sites sits to the right as well as to the left of the impurity. Therefore in
the following only L = 3,7 and 11 site clusters will be used.
The effective distribution function will be discussed in the next section.

4.2. Effective distribution function

The effective distribution function was defined in eq. (Z48). We start out by analytically evaluating it
for a generic system. Suppose we have again a semi-infinite left lead [, a finite size, central (interacting)
region ¢ and a semi-infinite right lead r. To evaluate the effective distribution function we need to obtain
the retarded, advanced and Keldysh components of the total Green’s function in the central region. The
cluster Green’s function in Keldysh space is given in block form

G/R GIK
! GIR ! GIK
— G/R G/K
G — T , T ,
GA

A
G/ .
I
G,
where R, K and A denote retarded, Keldysh and advanced Green’s functions respectively. In general each
Green’s function in this expression again is a matrix in site/spin space. Coupling the environments to the

~r-1
leads by CPT eq. (Z2)) requires the inverse cluster Green’s function G and the inter-cluster hopping
matrix in Keldysh space

GZR—I —GZR’IGEKGZA’I
/R-1 IR-1 /K /A-1
GC _GC GC GC
o/R-1 _q/R-1q/K 7 A-1
G = i r s r
G/A—1 ’ t

l
1A-1 t t
GC

=
1

rA-1
G’V‘

The CPT equation (Tl = Glfl ~ T, yields the total Green’s function in Keldysh space. The Keldysh
component is given by

aAaif? (el valA el )va K (1+aif 6/ e?) (1-12 o) t(aif alf e (a)F +alF(alfaiK -alK a/f)?))
(1-2cAAra)) (-1 GIR (GG R)2) (-1raiA @A) 2) (-1+GIR(GIR Gl R)2)
oK :( t(afartvaliarfciAciB o altvaiA ol )2) c'KiaiAalli@l K +alf)e?
1-2GA(G1A+ G (1-2 G (G var i) (1-t2ciA(aA+ary) (1-t2 G (ar R varly)
2(cheralaBatafraliaRailf-ciAaill e aifaK el ally?) ol ailfuat(af -afafalk?ialfaiK alfe?)
(1-r2eAeArar)) (12 e (ar R +arl) (-rrarA @Ay e?) (-1ralR (el Rl 2)
(4.1)

2 TAATK 1A 1K /R ~TA IRA/R 1K TAATR (I AnTRATK IK /A nTRY 2
(et o et rallaltaidvalfalfall e afatalfalfralf ot allye?)
(-rraiAGiAvarye?) (-1 (el Ry e2)

IK 1A IR(~/K TA (/K 1A TAATK N2
t(afatvalfi (o vai (o] ot -atalfHe?))
(-rraAGrA+ar)e?) (-1+ Gl (G R GIR )2
TA~/R 2 1K TAG/RA/K 2 1K TATA L2 IR~/R,2
ataf? (el vaitallalfe?)+al (c1ralf o e?) (-1+a G e?)
(-rraiA GG e2) (-1+GIR (G R+ GIR)e2)

(4.2)
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The retarded /advanced components are

G;R/A(l—tQG’CR/AG’TR/A) tGICR/AG;R/A t2GICR/AG;R/AG/TR/A
1-e2GlYA @A Ay QA @A Gy ezl A @A el
GR/A _ tG::R/AG;R/A G/CR/A tG/CR/AGITR/A
—e2G YA @A q Ay ealA @A a1l A A al
t2GrCR/AG;R/AG,TR/A tG'CR/AG'TR/A G;R/A(17t2G/CR/AG;R/A)

=Gl A @A q Ay ealA @A a1l A A al
. T . L ak .
The effective distribution function peg is given by peg = % - W (see eq. (2.48)). Here we consider

the first definition, where all Green’s functions are evaluated at a specific site.

Gl +af -Gt v ral GGl v Gl -Gt e v G -G
2(GA -G+ 2GAGR (G -Gl + G - GIFY)

Pefr = (43)

From here on we consider the central region to consist of a single-non-interacting site, although the
discussion is also valid for multi-site interacting central regions. The cluster Green’s functions before
coupling (at zero temperature), are then given by (see eq. (Z39))

1

G (w) = 4.4

S W) = —— (4.4)
A .

G (w) = (Gl (s eopyr) = Gl (@, €cpuyr)) sign(w = ey ) (4.5)

Plugging eq. (£4) ?Lnd eq. (L0) into eq. @3) and collecting terms (Ggfl/T —G’C’?l/r) = 2i3m(Gg/zl/T) =
=2mipcr One obtains

mt? (p+ pr — pisign(w — ) = prsign(w — ) + (0% = 0*sign(w — pic))
2 (mt2(pr + pr) +0%) '

Deft =

Upon taking the limit 0* — 0, one sees that all contributions of the cluster drop out

1 pi(w, er)sign(w — ) + pr(w, € )sign(w - )
2 pi(w,€) + pr(w,€)

Per(w; Vbias) = % (4.6)
This shows that the effective distribution function at zero temperature, defined via one site of the central
region, does not depend on the central region at all. More importantly it does not depend on the
interaction U, but solely on the applied bias voltage Viias = p1 — it with € = y; and €, = p,.. Furthermore
it is purely real as it is to be expected for a distribution function. It reduces to the Fermi-Dirac distribution
in the limit Vi = 0.
An explicit result for a non-interacting tight-binding system under bias which consists of two semi-infinite
leads and a single-site central region is plotted in fig. 4l The densities of states for the left and right lead,
needed for the evaluation of eq. (6] are given in eq. (B.23). This generic behavior does not change with
increased system size and is independent of the cluster parameters including interaction, as mentioned
before. Note that the top point of the trapezoid-shaped structure in the lower part of fig.[4.4] at VbT‘ =40
occurs exactly at the point where the density of states of the left and right lead stop overlapping.

Using the basic results for the Green’s function obtained here, a reference expression for the current of
a non-interacting system will be presented in the next section.

4.3. Current in the non-interacting case

The current in the non-interacting case (U = 0), for both spin directions, may be evaluated using the
formula for the current eq. (Z47) and the Keldysh Green’s function Gjs and G5 evaluated in eq. ({E2)

oo 1A AR\ /2
j= f dw %e( - W( - 2i0%sign(w — pe) +2i0"sign(w — 1)

+ V(G (~sign(w — iy ) +sign(w — ) + G (~sign(w — 1) + sign(w - ur)))))

N =27 (0" +i (G + GIFYW? - w)) (0" —i(G]* + GV +iw)
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Figure 4.4.: Effective distribution function eq. (&6) for a tight-binding chain under bias. The hopping ¢
is chosen to be one. A bias of Viias = u; — -, with ¢; = y; and €, = u,., was applied by anti-
symmetrically shifting the chemical potentials of the left and right lead starting from zero.
The axis are scaled with A = 0.1, to make comparison to other plots more easy. (Left) Zoom
to the relevant parameter region of this work. (Right) The same but for a larger parameter
space.

which may be simplified by taking the limit 0¥ - 0

oyt [T 4 pupr (sign(w — ) — sign(w — pir))
jmamvt [ CCA ANV 0) (GF+ GR)V2 )

o
= 47V dw PLpr , 4.7
pu (G + G V2 -w) ((GIF + G V2 - w) 1)

All currents in this thesis will be given in units of hopping ¢ = 1. The expression in the integrand is
purely real, because G = (G*). Here the left/right Green’s functions of the environment are given
in eq. 323). Tt is interesting to compare this result to ref. [I70], where an expression for the current
through an interacting region is derived. The current under bias is obtained from this expression by
setting V‘JQ‘“ =¢€ =y = —4r = —€,. The current under doping is obtained by setting % =y = -, = and
e = ¢ = 0. These two currents are plotted in fig.[5l One can clearly see the effects of the leads’ bands
in the biased case.

As a reference value for CPT/VCA calculations, the linear response current in the Kondo-regime will
be derived in the next section.

4.4. Linear response in the Kondo regime

According to ref. [140} [R1], the conductance may be calculated using a Landauer-type formula generalized
to interacting systems

Le foo dw dPrD(upp) T3 (WIIH(W) 2i7m (G° (w +i0%)) . (4.8)

~ J-oo 27 dw 'Y (w) +I'%(w)
This formula is valid for proportional leads I'r, (w) = oI g (w) in a steady-state situation. Here —=Jm (G (w
is the interacting density of states in the system. I'{ are the hybridizations with the ¢ = L, R left and
right lead

7 (w)=27> V7P 6(w-wy).
k

As always we use units of e = A = 1. We are interested in the zero temperature conductance for a particle-
hole symmetric system with chemical potential 4 = €p = 0 and symmetric leads I'r, (w) = T'r(w). Therefore
the derivative of the Fermi-Dirac distribution function pgp(w, i, 8) reduces to d(ex = 0). The coupling
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Figure 4.5.: Current under bias/doping in the non-interacting case obtained by eq. @7). The model
parameters were hybridization V' = 0.3162 and hopping ¢t = 1. The current is given in units
of hopping t =1

of one site to symmetric leads by a local hopping V' gives a spin independent hybridization function

Trery =T(w) =7V (W) , (4.9)

where p(w) is the local density of states of the first site of the non-interacting lead (i.e. here a semicircular
LDOS of a semi-infinite tight binding chain). Plugging all this information into eq. (£38) the conductance
for both spin channels is given by

— f “’)(— )( Jm(G(w+zO+)))
=T'(0)Im (G(z()*)) .
The hybridization at the Fermi energy, for the semi-infinite tight binding chain (hopping t), is given by

2
r(o):in:V—:A.
tmw t

For a symmetric impurity the height of the Kondo resonance at w =0 is given by T%A. So

1 1
——Tm (G(w+i07)) = —.

T A
This result is only valid in the Kondo regime at zero temperature and for very small bias voltages.
Therefore we are left with a linear-response conductance (for both spin channels) of

o==, (4.10)

1
T
which remarkably is independent of all system parameters (A,¢,V,...) and especially independent of the
interaction strength U, as long as the system is in the Kondo regime. This of course arises from the
pinning and constant height of the Kondo peak. Note that this is exactly the result for the conductance
quantum

22 €2
onp=—=— 5
" h " oxh
which reproduces in units of e = A = 1 the above result [4.10
Although mean field theory produces qualitatively wrong results for the SIAM (see sec.B2)), it is inter-

esting to compare CPT/VCA to some other technique before proceeding further.
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4.5. Doped leads: A comparison of cluster perturbation theory to
mean field results

In this section we examine the case of lead-doping (instead of applying a bias voltage). In this case the
bands of the leads do not shift altogether (¢, = 0), only the chemical potentials of the leads are shifted
in an asymmetric manner with doping g = u; = —-- This can be achieved, for example, by introducing
dopants into the lead material, or by applying pressure to suitable materials. This case is interesting,
because it allows for comparison to a specific form of the Meir-Winegreen-Lee formula [T40, 81]. This
form is obtained by rewriting eq. (£.8) for our purpose here

I (W) (W)

—FZ(w) A 2iJm (G (w +1i0%)) ,

>
j=iy, [oo % (prD,L(w, i1, B) = prD,R(W, 1, B))

which is again only valid for the case of a bias voltage in the wide band limit, or the case of doping with
arbitrary bands. Inserting eq. (49) and the Fermi-Dirac distributions at zero temperature eq. (D)) one
obtains for the current

j= WVQZ [:j dw pp(w)pf(w) . (4.11)

To arrive at this expression, we assumed that the right and left leads have an equal density of states pg.
The current therefore is given essentially by the density of states in the interacting site pf.

To obtain a rough estimate for the current, the mean field results for the interacting impurity p} are used
(see sec.B.2)). As noted there, the mean field single-particle spectra are qualitatively wrong. Furthermore,
using the density of states p} from the mean field equations gives an equilibrium density of states which
is not a good approximation for large doping. Results for the current under doping are shown in fig.[Z.0]
(left) with the approximate hybridization self-energy and fig.[L6l (right) with the exact hybridization
self-energy. Note that all currents are evaluated in both spin channels. This approach provides a starting
point to compare more sophisticated methods to.

In the following the mean field results for the current obtained by eq. (1) are compared to CPT results
of L = 3,7 and 11 site clusters in fig.[L7l The mean field currents are obtained by eq. (£I1)) using the
mean field density of states eq. BI8). The CPT currents are obtained by eq. (Z47) using the CPT
procedure. The current was obtained by CPT as well as MF for various values of interaction-strength U
in the particle-hole symmetric case. The hybridization was chosen to be V' = 0.3162 and the hopping in
the chain was ¢ = 1. As can be seen from the plots, CPT performs dramatically better than MF because
it correctly reproduces the Kondo resonance. The CPT results show a pronounced finite-size structure.
It is however questionable if CPT is a good approximation for large doping, because the CPT self-energy
again does not "know of" the non-equilibrium situation. This point may be cured by introducing a self-
consistent feedback as it is done in non-equilibrium VCA in the next section. As the results in equilibrium
suggest, VCA with variational parameters x = {V,¢} may strongly reduce the CPT finite-size effect (see
fig.B.13 and discussion there). It is interesting to note that the integration in eq. ([£I1]) is essentially
over a semi-circle from pp(w) times a Lorentz peak at w = 0 from p§(w). This is true as long as the
mean field solution does not break the symmetry. The semi-circle may be approximated by a flat band of
height %, because away from w =0, p7(w) is essentially zero. Putting this into eq. (.11} and examining
the case of large doping (ur, = —pur greater than the bandwidth) the current takes the value of 2A. After
comparing CPT/VCA to mean field results, we turn to the more interesting and more difficult case of a
strongly correlated quantum dot under bias.

4.6. A biased quantum dot: CPT/VCA results

Here we consider a correlated quantum dot which is coupled to two leads (left, right). To study the
performance of CPT/VCA we split the reference system into three parts: left lead, interacting region
and right lead. The interacting region consists of the correlated site and additional uncorrelated sites to
the left and to the right of it which belong to the leads but are treated within the diagonalization of the
cluster - thereby creating a better approximation. The chemical potential of the left lead uz as well as the
on-site energy ey, are set equal. To apply a bias voltage to the device this parameter is then scanned from
zero to some value and the corresponding parameter for the right lead is tuned in exactly the negative
direction asymmetrically. So we have pr, = €, = —€g = —ur = V"Q‘“. Note that the uncorrelated sites in
the cluster which are situated to the left (right) of the impurity formally belong to the lead and therefore
also have on-site energies of e/, (eg).
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Figure 4.6.: Mean field results, in the particle-hole symmetric case, for the current under doping obtained
by eq. II). The legend indicates different values of interaction strength ¥. The hybridiza-
tion was chosen to be V' =0.3162 and the hopping in the chain was ¢t = 1. A spurious mean
field gap opens at the critical interaction strength % = 3.14. (Left) Results obtained using
the approximate MF hybridization self-energy. (Right) Results obtained using the exact MF
hybridization self-energy.
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Figure 4.7.: Comparison of the CPT and MF currents under doping. Shown are the CPT results for
L = 3,7 and 11 site clusters as well as the MF results using the exact hybridization self-
energy. All curves are for particle-hole symmetric parameters. The hybridization was chosen
to be V' =0.3162 and the hopping in the chain was ¢t = 1. The plots from top, left to bottom
right show results for interaction strength % =0,4,12,20,40 and 80. The linear response
result, valid in the Kondo regime, eq. (I0) is also indicated. The analytic result for U = 0
was calculated using eq. (7).

78



In the following CPT and non-equilibrium VCA calculations are performed for the STAM under bias. The
non-equilibrium VCA results in this chapter were calculated with one variational parameter x = {At}.
This variational offset was added to all hoppings, in the cluster (¢’ = ¢+ At) as well as the hybridization
(V' =V + At) to the correlated site, uniformly. The variational parameter is fixed by requiring the
average over all expectation values in the cluster to coincide with the corresponding average in the total
system after coupling to the leads. All calculations were done for three different sizes of the cluster part
of the reference system L = 3,7 and 11. The hybridization parameter was chosen to be V = 0.3162 and
the hopping to be t = 1, which yields again A = 0.1. All calculations were done in three parameter
regions. In the particle-hole symmetric case: €5 = —% (Kondo regime), in a parameter region where the
impurity is zero-occupied: €5 = —% +2U and in a parameter region, where the impurity is doubly-occupied:
€f = —% — U. Different values of interaction-strength % =4,8,12 and 20 where investigated in each of
these cases. Results for the behavior of the variational parameters will be given, as well as data obtained
for the current and the non-equilibrium density of states.

4.6.1. Behavior of the variational parameters

The resulting parameter-shift At = ¢' — ¢ is shown for different interaction strengths % and cluster sizes
L in fig. @8 in the particle-hole symmetric case: ey = —% (Kondo regime). The same data is shown
in fig. 0 in a parameter region where the impurity is zero-occupied: ey = —% +2U and in fig.[ 10 in
a parameter region, where the impurity is doubly-occupied: €y = —% —U. A similar behavior for all
interaction strengths is observed.

4.6.2. Current

The current-density eq. (2.46) (for both spin channels) is examined here, for different values of the inter-
action strength % =4,8,12 and 20. The current was measured between the left lead and the first site of
the system and it was checked that the continuity equation is fulfilled. This is achieved by calculating
the current with 0% = 0.

The current for a singly-occupied impurity is plotted in fig. .11l The CPT/VCA current yields the cor-
rect linear response current for small bias voltages. It is interesting to observe, that VCA always departs
sooner from the linear response behavior than CPT with increasing interaction strength U. This is to
be expected due to an exponential thinning of the Kondo resonance with increasing U [I71]. The linear
response current is independent of the interaction strength U in the Kondo regime. This is due to the
fact, that CPT as well as VCA respect the Friedel sum rule in the particle hole symmetric case. The
current under bias goes to zero as soon as the bands of the leads stop overlapping (here at Viias/A = 40).
In those cases, where this happens before reaching this bias voltage, the vanishing of the current is due
to effects in the dot. As expected non-equilibrium VCA strongly suppresses the finite-size effects of the
cluster. This is also seen in equilibrium where VCA leads to the formation of continuous Hubbard bands
while CPT yields more separated peaks for small system sizes (see fig.3.13 and discussion there). For
lower interaction strengths (see for example U/A = 4), the CPT/VCA results for different cluster sizes
coincide almost. For large interaction strength (see for example U/A = 20) they depart from each other,
respecting the linear response and high voltage limits. A pronounced two-peak structure seems to evolve
for the non-equilibrium VCA L = 7 result with increasing interaction-strength U. The maximum current
decreases monotonically with interaction-strength U.

The current for a zero-occupied impurity is plotted in fig.[ 12l As one can see by comparing to the linear
response current of the Kondo regime, the current here is much smaller than in the Kondo regime. It is
remarkable that the CPT and VCA results for all cluster sizes lie almost on top of each other. Note that
in this case each plot has a differently scaled y-axis.

The current for a doubly-occupied impurity is plotted in fig.[T3l Again the current is much smaller than
in the Kondo regime and CPT and VCA perform very similar.

4.6.3. Density of states

The local density of states in the impurity is shown in fig.[£14] for the particle-hole symmetric case, for
L=3,L=7and L =11 site clusters respectively. The LDOS is plotted in a density plot as a function of
energy w (horizontal) and applied bias voltage (vertical). The splitting of the Kondo resonance, which
resides at w = 0 for zero bias, is observed in both CPT and non-equilibrium VCA. In the non-equilibrium
situation the Kondo resonance splits into two peaks. A linear splitting, depending on interaction strength
U, is observed in non-equilibrium VCA. For high voltages the LDOS seems to saturate. Note that the
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Figure 4.8.: Behavior of the non-equilibrium VCA variational parameter x = {At}, At = ¢'—t as a function
of bias voltage. Shown are results for system-sizes L = 3,7 and 11 in each plot. The figures
from top, left to bottom, right are for different interaction-strengths % = 4,8,12 and 20.
These results are for the singly-occupied impurity: €; = —%. The hybridization was chosen
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L =11-site VCA results look a bit broader, which is due to the lower resolution of the images. While the
CPT results produce a periodic structure in bias voltage, the VCA data shows a linear splitting of the
Kondo peak up to a saturation region.
The local density of states in the impurity is shown in fig.[£T3lin the zero-occupied case. The local density
of states in the impurity is shown in fig.[£16in the doubly-occupied case. In the zero- and doubly-occupied
case, the DOS shows one of the Hubbard bands. Otherwise it looks pretty unspectacular. As already
mentioned when discussing the current, in these parameter regions CPT and VCA yield similar results
for all cluster sizes.

After examining these three distinct parameter sets, i.e. a singly-, doubly-, and un-occupied impurity,
in detail, a wider picture resolving the whole parameter space of the STAM shall be presented.

4.6.4. Current in all parameter regions

In this section the current through the dot under bias is analyzed as a function of the impurity on-site
energy € at fixed interaction strength U. The three cases studied in detail in the last section are of course
included. By sweeping €y and calculating the current under bias at each ey, it is possible to study the
behavior of the current in the different parameter regimes of the SIAM. Due to demanding computational
time needed for these calculations, we limit ourselves to L = 3-site CPT/VCA here. The whole procedure
and parameters are virtually identical to those used in the last section. The results for the current as a
function of bias voltage and on-site energy are shown in fig.[.T7 for interaction strengths U/A =4 and 8
and in fig.[L.I8 for interaction strengths U/A = 12 and 20. In both figures CPT and VCA results for
L =3and A =0.1 are shown. As noted already previously the differences between CPT and VCA for low
interaction strength (see U/A = 4) are rather small. However going to larger interaction strength they
become large (see U/A = 20). Note that this is the three-site result, so no two-peak structure develops
in the VCA current, as seen in fig.[£ 11l Tt is interesting to observe that in all cases the largest current is
obtained exactly at the crossover points from the Kondo to the un- or doubly occupied impurity (these
regions are marked by black-dashed lines in the plots). It is also interesting that the VCA procedure
yields a much more uniform current upon variation of the on-site energy in the Kondo regime as the CPT
calculation does. This result undermines once more that outside of the Kondo plateau CPT and VCA
yield virtually the same result for all system sizes.
Next, we briefly touch upon the case of different couplings to the two leads: 'y # I'g.

4.6.5. Asymmetric tunneling to the leads

In this section the effects of an asymmetric coupling of the dot to the left and right lead are explored. A
coupling to the leads is chosen of V, = 1‘/—5 and Vi = 1.5V where V' = 0.3162. The hopping everywhere else
in the chain is ¢ = 1 and a value for A = 0.1 is calculated using V. The results for the current, variational
parameters and density of states are shown in fig.I9 for U/A =4, in fig.20 for U/A =8, in fig. 12T
for U/A =12 and in fig.[@22 for U/A = 20. As predicted in ref. [I69] under bias the Kondo resonance
splits into two components with different weight. The one with higher weight located at the chemical
potential of the lead which couples stronger. A pinning of the resonances at the respective chemical
potentials of the leads cannot be observed here. However the effect of more weight in the peak closer
to the chemical potential of the stronger coupling lead is predicted. It is interesting to observe in the
density of states, that there seems to be a crossover to totally different behavior at some bias voltages.
These crossovers are not due to problems with degeneracy when finding the cluster solution. Since in
the whole thesis all calculations are done grand canonically and the degeneracy of the groundstate is
taken care of (see eq. (Z13)). T suspect these crossovers to arise due to cluster symmetry, finite size and
boundary conditions. Such crossovers occur more often for larger clusters. The CPT density of states
for low bias voltages does not look very promising. However the VCA result does. Tt yields a reasonable
density of states also in the low bias region. Furthermore it reduces the amount of spurious crossovers to
a minimum. There is however a narrow region at medium bias voltages where the VCA result undergoes
some crossovers. This can also be seen in the behavior of the variational parameters and the current.
The current in this region most probably cannot be trusted. It is furthermore interesting that the VCA
current is in most parameter regions larger than the CPT current.

This concludes the discussion about non-equilibrium VCA. We now turn to the description of Graphene
with magnetic vacancies.

86



bias V/A

bias V/A

bias V/a

bias V/A

bias V/a

bias V/a

Figure 4.14.:

bias V/a
bias V/a
bias V/a

bias V/A
bias V/A
bias V/A

bias V/A
bias V/A
bias V/A

bias V/a
bias V/A
bias V/A

bias ViA
bias V/a
bias V/A

bias ViA
bias V/A
bias V/A

Local density of states in the impurity for sizes of the cluster part of the reference system
of L =3,7 and 11 as a function of the applied bias voltage. The results shown are for the
singly-occupied impurity. Note that zero bias voltage amounts to the equilibrium situation.
The maximum peak height in the high bias area may be up to three times as high as
indicated in the colorbar. The colorbar was chosen to resolve also the finer structures at
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maximum peak height in the high bias area may be up to three times as high as indicated in
the colorbar. The colorbar was chosen to resolve also the finer structures at low bias. The
sum rule eq. (216 is fulfilled at each applied bias voltage. From left-column to right-column
the interaction strength increases: % =4,8,12, and 20. (First row) CPT result for L = 3.
(Second row) Non-equilibrium VCA result for L = 3. (Third row) CPT result for L = 7.
(Fourth row) Non-equilibrium VCA result for L = 7. (Fifth row) CPT result for L = 11.
(Sixth row) Non-equilibrium VCA result for L = 11.
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4.17.: The current under bias is shown as a function of on-site energy e; at fixed interaction
strength U. Thereby the behavior of the current in different parameter regimes of the
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(Left column) The current is shown for several selected values of on-site energy ;. (Right
column) The current is shown in a density plot as a function of on-site energy e; and bias
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Figure 4.19.: Results for asymmetric coupling to the leads: Vi, = 1‘%5, Vg = 1.5V for an interaction-strength
of U/A =4 in the particle-hole symmetric case. All results have been obtained by CPT and
VCA for L =3 and 7. (Top left) The behavior of the VCA variational parameter ¢. (Top
right) Current obtained by CPT/VCA. (Mid left) Density of states as obtained by L = 3-site
CPT. (Mid right) Density of states as obtained by L = 3-site VCA. (Bottom left) Density
of states as obtained by L = 7-site CPT. (Bottom right) Density of states as obtained by
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Figure 4.20.: Results for asymmetric coupling to the leads: Vi, = 1‘%5, Vg = 1.5V for an interaction-strength
of U/A =8 in the particle-hole symmetric case. All results have been obtained by CPT and
VCA for L =3 and 7. (Top left) The behavior of the VCA variational parameter ¢. (Top
right) Current obtained by CPT/VCA. (Mid left) Density of states as obtained by L = 3-site
CPT. (Mid right) Density of states as obtained by L = 3-site VCA. (Bottom left) Density
of states as obtained by L = 7-site CPT. (Bottom right) Density of states as obtained by
L = T-site VCA.
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Figure 4.21.: Results for asymmetric coupling to the leads: Vi, = 1‘%5, Vr = 1.5V for an interaction-strength
of U/A =12 in the particle-hole symmetric case. All results have been obtained by CPT and
VCA for L =3 and 7. (Top left) The behavior of the VCA variational parameter ¢. (Top
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Figure 4.22.: Results for asymmetric coupling to the leads: Vi, = 1‘%5, Vr = 1.5V for an interaction-strength
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5. Magnetic vacancies in Graphene

A single layer of Graphite, one allotrope of carbon, is named Graphene. Graphene consists of a single
layer of carbon atoms, packed in a honeycomb lattice, with a carbon-carbon distance of a = 0.142nm.
This remarkable two-dimensional material, developed into one of the hottest topics in research during
the last years. This can be attributed both to the amazing fundamental phenomena and the promising
future applications. The interest in Graphene was furthermore fueled by the Nobel price in physics 2010,
which was awarded to Geim and Novoselov for the production and isolation of this, previously thought
unstable, material [I72} [I73]. Graphene is a playground for fascinating physics like the quantum Hall
effect, Dirac fermions and Klein tunneling. It has remarkable mechanical and electrical properties. Being
a transparent conductor, it is mechanically stronger than steel and stretchable. Both the thermal and
electrical conductivity are very high. It is closely related to nano-structures, like fullerenes and carbon-
nanowires, which can be thought of as rolled up Graphene. A good review of the electronic properties of
Graphene can be found in ref. [I74]. A description in terms of a tight-binding Hamiltonian in ref. [175].
The motivation for this work stems from a recent study of another remarkable feature of Graphene.
Chen et al. found that vacancies, introduced by proton-irradiation, behave like magnetic defects [18].
Therefore a Kondo-like behavior is observed. Such effects have previously been reported in irradiated
Graphene [176,[177] and apply as well to magnetic ad atoms on the surface [178,[179,[180]. The theoretical
study is however difficult, because in addition to an interacting many-body problem which has to be
solved, the material is strongly disordered. A study of what to expect from different forms of defects
in Graphene was performed by Ding in ref. [I8T]. How disorder may be modeled in this material is
described in ref. [I82]. Some studies of defects in Graphene are available. Magnetic impurities were
studied by QMC [183], DMFT [184] and analytic work [I85]. The topic was furthermore related to
quantum criticality [186]. A mean field/QMC study of the Hubbard model on a honeycomb lattice was
performed recently by Feldner et al. [I87].

In the following we build a model for disordered magnetic vacancies in Graphene. This model is loosely
based on the STAM, which was shown to yield good results within VCA in previous chapters. The new
component here is a scheme of incorporating the randomness of disorder. This chapter is organized as
follows. First the lattice structure of Graphene will be examined in context with CPT/VCA cluster tilings
in sec.[El The superlattice-wavevector transforms for this model are given there too. Then a CPT/VCA
extension to random vacancies, a special form of disorder, will be discussed in sec.[5.21 To test the method
results for the homogeneous Hubbard model on the Graphene lattice are presented in sec.53 Finally
results for the influence of magnetic vacancies in Graphene, on the single-particle spectra, are given in

sec.[5.4l

5.1. Cluster decomposition of Graphene

Graphene is a purely two-dimensional material. In this section the decomposition of the Graphene lattice
into two-site-, six-site ring- and ten-site double-ring- clusters is presented. These cluster decompositions
are needed for CPT as well as the VCA treatment of Graphene. We start out by discussing the lattice
structure of Graphene shown in fig.[5.1l

5.1.1. Graphene Lattice ~

The two dimensional Graphene lattice is not a Bravais lattice. This means it cannot be constructed by a
one atom unit cell. The smallest unit cell possible is one consisting of two atoms. The Graphene lattice
is then built up by placing this two atom element on a triangular lattice. The lattice vectors R” of this
elementary lattice v are given by

3 3
R?:i(\;_), Rg:i(f/_), (5.1)
V3 % V3 \-%

where a is the lattice constant, which is set to 1 in this work. This lattice is depicted in fig.[5.2] (left). In
literature the lattice vectors of hexagonal type lattices are often given with the lattice constant a scaled
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Figure 5.1.: The two dimensional lattice of Graphene. The Bravais lattice is a triangular two dimensional
lattice (eq. (&1))). The black arrows (r1,72) indicate the lattice vectors of the lattice . A two
site unit cell is attached at each lattice point (eq. (5.2))). Shown is a cluster decomposition
into six-site ring clusters (green). The green numbers show the labeling of the sites inside the
cluster (eq. (52))). The blue arrows (R1, R2) indicate the lattice vectors of the superlattice T'.
The Bravais lattice here is a jolted triangular lattice given in eq. (51). The lattice constant
was chosen to be a = 1.
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Figure 5.2.: (Left) Lattice of Graphene v eq. (5I)). The lattice vectors are indicated in red and the two
atoms of the unit cell are labeled according to eq. (52). (Mid) The lattice of the six-site ring
cluster I' eq. (B.3). The lattice vectors are indicated in red and the six atoms of the unit
cell are labeled according to eq. (5.8). (Right) The lattice of the ten-site double ring cluster
T'p eq. (B9). The lattice vectors are indicated in red and the ten atoms of the unit cell are
labeled according to eq. (5.I0). The lattice constant was chosen to be a =1

10

Figure 5.3.: (Left) Reciprocal lattice of Graphene v (eq. (53)). Some special points in the Brillouin zone
(purple triangles) are given in eq. (B4]). (Mid) The reciprocal lattice of the superlattice
T'¢ (eq. (B7)). Special points in the Brillouin zone (purple triangles) are given in eq. (5.8).
(Right) The reciprocal lattice of the superlattice T'1y (eq. (B10])). Special points in the Bril-
louin zone (purple triangles) are given in eq. (512). The lattice constant was chosen to be
a=1.
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by V3. This often leads to confusing factors of V'3 when one is used to working with the bare a. Here I
tried to make a compromise and pull the factor /3 explicitly out of the expressions which makes them
readable in both conventions. The two atoms in the unit cell Cy are located at

-2 (), < Galg) 6

The reciprocal lattice vectors K7 are given by

27r\/§( ) 27r\/§(

1
i

K = b
73

KJ =
P 2

a

_i) : (5.3)
V3

The reciprocal lattice and the Brillouin zone are shown in fig.[53 (left). Special points in the Brillouin
zone are given by

o) rEAY). () oA

0 a > a

5.1.2. Six-site ring superlattice [’y

We now consider one possible cluster tiling which is motivated by the lattice symmetry. The lattice
vectors of the superlattice I'g for six-site ring clusters are given by

3
R = (\2/_) Ry = ( f)' (5.5)
V328 VB \-33

The six atoms in the cluster Cg are located at

o (2 A L
V3 \$ ) V3 \0)’ V3 \0)’

V3

This lattice is depicted in fig.[5.2] (mid). The reciprocal lattice vectors K¢ are given by

2 L 2 L
K= /3 (i) K, = L (—i)- (5.7)
a 3\/5 a 3\/5

The reciprocal lattice and the Brillouin zone are shown in fig.[5.3] (mid). Special points in the Brillouin
zone are given by

0 1 3
Frﬁz(g), pre_ 213 (L) o 2 273 (8) Ko 2 2TV (i) (5.8)
a 9V/3 @ ov3

5.1.3. Ten-site double ring Superlattice I'y,

Another possible cluster tiling which is motivated by the lattice symmetry is a ten-site double ring cluster.
The lattice vectors of the superlattice I'1y are given by

10 a % 10 — a 3
i - 75 (ui). w7 (v i

The ten atoms in the cluster Cy( are located at

c?m __a (0) c2010 __a ( \%/_) CC10 __a ( %/_) CC10 __a ( 2 ) cClU __a ( 3 )
\/g 0}’ \/g _ 23 ’ 3 \/g _ 23 3 \/g _\/g ) 5 \/g _\/g )
V3 -5 V3 \0)’ V3 \0)’ V3 %)’ VERG
(5.10)
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Figure 5.4.: (Left) The reciprocal lattice points of the lattice v for a 7 x 7 system with periodic boundary
conditions. (Mid) The reciprocal lattice points of the lattice T'¢ for a 7 x 7 system with
periodic boundary conditions. (Right) The reciprocal lattice points of the lattice I'1p for a
7 x 7 system with periodic boundary conditions.

This lattice is visualized in fig.[5.2 (right). The reciprocal lattice vectors K 1© are given by

27 \/§ 4 27 \/5 L
2% ) o1 .
a a5 a 53

K{w — ng = (511)

The reciprocal lattice and the Brillouin zone are shown in fig.[53 (right). Special points in the Brillouin
zone are given by

1 10 11
FFm:(g) , PF10: 27T\/§ (\4%) , MFIO: 27T\/§ (45) , KFlO: 27T\/§ (%) - (512)
a Vo

a = 0 a 15

After discussing several possible cluster tilings, the reciprocal space of these lattices is to be examined.

5.1.4. Brillouin zones of the Graphene lattices

The k-points of the first Brillouin zone are needed for computing integrals in reciprocal space by evalu-
ating sums over k dependent quantities (k out of the first Brillouin zone). For an infinite system there
exist special schemes how to choose special k-points [188], 189, [190] representative for the whole system.
Sampling k-points is not a good option in this case because one wants to compare results obtained by
different calculations and one would have to ensure the use of the same sampled k-points. We deal with
finite lattices (with periodic boundary conditions). Here the k-points can be obtained exactly by first
creating a mesh of k-points along the reciprocal lattice vectors

where NN; is the number of lattice points along reciprocal lattice vector K; and n; runs from —[NT] to

[Zi]. Here [] denotes the Gauss bracket. Not all the points kp, will lie within the first Brillouin zone and
some need to be folded back to it. This procedure depends on the shape of the Brillouin zone. The first
Brillouin zones of the 2,6 and 10-site clusters are shown in fig.[5.4l The computational effort of sums in
k-space may be reduced considerably by taking Brillouin zone symmetries into account.

For CPT/VCA the inter-cluster hopping matrix T is needed in a superlattice wave vector transformed

form, which will be discussed in the following.
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5.1.5. Superlattice wave vector transform

Considering a lattice v of infinite extent, the superlattice-wave vector transform of the hopping matrix
T,y is given by

- - r= R
Trr/(k) = 3 T T, where ,
rr (K) RZF {r' = r+R/

L. 1 _ Zf{ ’anF+’n2RF
Tz] (k) = Z € ( ! 2) Ti,j+n1 action of RI'(j)+nzaction of R} (5) >
ny,n2e{-1,0,1}

(5.13)

where r are lattice vectors of the lattice v, R are locations inside the cluster and r are lattice vectors of
the superlattice I'. We now turn to the specific cases of the cluster decompositions discussed above.

5.1.6. One-site Cluster Tiling

Although the unit cell of Graphene consists of two atoms, it is possible to construct single-site clusters
by attributing the intra-unit cell hopping to the hopping matrix T and solving the atomic problem for
the cluster Green’s function. The superlattice is then given by the elementary Graphene lattice «v. The
superlattice-wave vector transformed hopping matrix is given by

Ae —t (1+eRs 4 e”k'(R;’_R;’)))

TW (k) = _ _ 14
ij (k) (—t (1+6+zk-Rg +e—zk<(RY7R;)) Ae ’ (5.14)

where ¢ is the uniform nearest neighbor hopping matrix element. The quantity Aec is introduced by the
VCA procedure as variational parameter.
Note that in the case of one-site clusters no Green’s function periodization is necessary.

5.1.7. Two-site Cluster Tiling

The superlattice here again is given by the elementary Graphene lattice . For two-site clusters the
superlattice-wave vector transformed hopping matrix is given by

Ae At —t (eiik'R;’ + e”k'(RzR;’)))

. A 5.15
v () (At—t (S”k'Rz +e‘1k'(R1_R2)) Ae o

The quantities Ae and At are introduced by the VCA procedure as variational parameters. Note that in
the case of two-site clusters no Green’s function periodization is necessary.

5.1.8. Six-site Ring Cluster Tiling

For a six-site ring cluster the superlattice is given above by the lattice I's. The superlattice-wave vector
transformed hopping matrix is given by

. T T
Ae At 0 _teike(Ri+R°) 0 At
At Ae At 0 —t e’““R56 0
7O (k) - 0 At Ae At 0 —t e*ik R
ij +ik<(RF6 +RL6 )
—te 1 2 0 At Ae At 0
0 _tetkR, 0 At Ae At
At 0 —temikRy° 0 At Ae
(5.16)
For six site clusters the general periodization prescription for Green’s functions
1 . ’
Glk,w) = — 3 ™ BR) Grp (k,w)
NC R,RI
1 .
= — e_lk'(ci_cj) Gij(k,w) 5 (517)
Ne i
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may be generalized to
1 .
Gap(k,w) = — > Y e Gy (k,w) (5.18)
iea jef3

where «a, 8 denote the two translationally inequivalent lattice sites of the two-site unit cell Cy and ¢ and
j denote the sites of the cluster under consideration. The specific application to the six-site ring cluster
yields

1 7ik-(c.c€’—c96)
Gaplk,w)=— > Yooe P Gyik,w) . (5.19)
Ne ie{1,3,5} je{2,4,6}
5.1.9. Ten-site Ring Cluster Tiling

For a ten-site ring cluster the superlattice is given above by the lattice I';g. The superlattice-wave vector
transformed hopping matrix is given by

Ae At At
At Ae At
At Ae At At
At Ae At
(10) At Ae At
Tij (k) = At Ae At
At Ae At
At At Ae At
At Ae At
At At Ae
E-ik-(R1;10+R510)
e—ik»Rflo
E—ik-RI;N
iR 10
+ -t e+ik<(R§‘10+Rglo) ‘
E+'Lk-R1;10
+ik<R1;10
’ E—'Lk-RglU
(5.20)

For ten site clusters the general periodization prescription for Green’s functions eq. (5.I1) may be
generalized to

1 —ik~(c¢1°—c¢1°)
Gapk,w)=— > ooe %) Gy (kyw) . (5.21)
C ie{1,3,5,7,9} je{2,4,6,8,10}

This concludes the basics about the Graphene lattice structure and its cluster decompositions. In the
next section a model for randomly positioned magnetic vacancies is introduced.

5.2. Disorder Model for correlated sites

In this section a model for randomly positioned magnetic vacancies in Graphene, within CPT/VCA, is
introduced. Disordered systems have previously been described by the SFA [56] and also by VCA [57].
The approach to disorder in this work is based on both these studies and is a direct extension of ref. [57].
Irradiation induced vacancies in Graphene are reported to exhibit local magnetic moment behavior [18§].
In the VCA framework, Graphene is modeled by a tight binding Hamiltonian on a honeycomb lattice,
described by the one-band Hubbard model parameters (U =0, € = 0, ¢t = 1). The magnetic impurities
may either be added upon introducing a spin-spin term like in a Kondo Hamiltonian [I91] or in a better
approximation by related impurity terms like in the STAM. Here we choose to model the magnetic
vacancies as interstitial impurities v, having high interaction strength U, an on-site energy which makes

the system particle-hole symmetric: ¢, = —% and a hybridization to the surrounding carbon atoms of
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t, << t. Those vacancies are randomly distributed on the Graphene lattice:

N S U, T i i
H=-t Z Cio cja - 5 Z Vao Voo + Uy Z nZT ngl —ty Z (Cia Vao T Voo Cz’a) .
(i,j) o ao €3 (v, i) o

Here the cIU /c;, creates/annihilates an electron with spin o at site i. The operators v, /v, create/an-
nihilate electrons at the correlated vacancy sites a. This setup corresponds to local moment behavior
in the vacancies (impurities) above Tk and Kondo screening below, in accordance with experiment [18§].
Since Graphene is a two-dimensional material it is to be expected, that randomly induced vacancies (with
local moment behavior) have a similar effect as magnetic adsorbates on Graphene making this approach
suitable for the treatment of adsorbates as well. We proceed by discussing how this infinite disordered
lattice may be treated within CPT/VCA.

The vacancies are produced by irradiation in a random fashion. This randomness has to be included in
the resulting Green’s function G. Approaching the problem using CPT/VCA, the solution is based on
finite size clusters of length L. The idea is to calculate the cluster Green’s function G’ for different classes
of vacancy configurations. There will be

Nc =L+1
classes C,, corresponding to a =0 up to o = L vacancies inside the cluster. These classes make up the set

C={C.}, ac0,L].

e ().

corresponding to the different possibilities to spread the « vacancies inside the cluster.

For example the vacancy class Cy denotes clusters with no vacancies present (multiplicity m, = 1),
another one may be to have one vacancy in the cluster Cy (multiplicity m, = L).

Note that this classification of clusters into groups having the same number of impurities, does not mean
that clusters within one group have the same properties. Consider as an example a larger cluster with
two vacancies. Then the correlations will be strongly dependent on the distance between the two vacancy
sites. However this classification makes sense because the probability of finding a cluster will in a first
approximation depend only on the number of vacancies in it.

To emulate a disordered lattice with a given concentration of vacancies the classes C,, have to be mixed
in an appropriate fashion. It is to be expected, that more vacancies inside the same cluster are less likely.
How this is done in practice will be outlined in sec.[5.2.11

There are two ideas for averaging the solution for the Green’s function over the vacancy realizations:

Each of these classes has a multiplicity of

1. Averaging of the cluster Green’s function. The ideas presented in ref. [I92] have to be extended in
two points. Here we consider a weighed average of the cluster Green’s function corresponding to
different vacancy classes. The second more crucial point has to do with the modeling of the vacancies
and the lattice geometry. Since the hopping on the lattice ¢ is uniform, except for hopping into
the vacancy t, << t, one has to deal with a different inter-cluster hopping matrix for each disorder
configuration! This may only be treated on this level by averaging not only G’ but also T". Details
of this approach will be described in detail in sec.[5.2.21

2. Averaging of the total Green’s function after CPT/VCA coupling. This is ad-hoc and it will be
shown below that this approach does not yield an acceptable result. This approach will be outlined
in sec.5.2.3l

The probability to find a certain amount of vacancies inside one cluster will be discussed in the next
paragraph.

102



5.2.1. Weighing disorder configurations

Each cluster configuration n belongs to a vacancy class Cy. Depending on the multiplicity m, the
normalized reweighing factors are defined as
Wq
Pa= T xe
Ma Y Wa
a=1
Any average may then be calculated by multiplying each component by the appropriate p, and summing
over all of them An averaged quantity A is calculated as

— 1 Ne w, g
A= No CZC m_ EC: An- (5.22)
Wy Yo @ neCy
azz:l

The concentration of vacancies is given by the ratio of the number of vacancies NV and the number of
total sites available L

Ne¢

2 qwq

NY  Z
P, =— =2t

Ne
L Y wa
a=1
Specifying a desired vacancy concentration P, a probability distribution function for the weights w, has

to be found fulfilling additional constraints:

e All weights have to be positive:

We >0 Va.

e For zero vacancy concentration only configurations involving no vacancies may contribute:

We =0 Ya>0 A wy>0if P,=0.

e For a vacancy concentration of one only configurations € C;, may contribute:

We=0 Va<L A w,>0if P,=1.

It is to be expected that for a given vacancy concentration P, the weight of a cluster of size L having «
vacancies present is given by the binomial distribution [I93]

wa(L, P,) = PX(1= P,y (z) , (5.23)

which fulfills the above constraints. The distribution of cluster weights is shown in fig.[5.3lfor various values
of the desired vacancy concentration and cluster sizes. This in principle would still leave some freedom
in weighing different configurations having the same number of vacancies, which is not investigated here.
Note that this is an approximation because the scattering off nearest-neighbor vacancies is certainly
different from the scattering of two separated vacancies. Next, two examples for weighing clusters will
be presented to illustrate the above notation.

Example I: weighing for two-site clusters

Consider a system of two-site clusters L = 2. There may exist o = 0,1 or 2 vacancies inside a single cluster.
This gives N¢ = L+1 = 3 vacancy classes. The multiplicity of the classes is given by m,, = [1,2, 1] because
there exist two ways to arrange one vacancy in a two-site cluster. The overall number of different cluster
configurations is 4 (not taking symmetry into account). One may choose three weights w, according to
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Figure 5.5.: Distribution of cluster weights according to the binomial distribution eq. (5.23) for cluster
sizes L =1,2,6,10,14 and 16 and vacancy concentrations of P, = 1% (six pictures in top left
corner), P, = 5% (six pictures in top right corner), P, = 10% (six pictures in bottom left
corner), P, = 25% (six pictures in bottom right corner). Note that for higher values of P,
the distribution does not decrease monotonically with the number of vacancies per cluster.
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eq. (523)) to obtain the desired impurity concentration P,

P - (’LU1+2’LU2)
U_Q(w0+w1+w2) ’

An average quantity is explicitly calculated
1 Nc M

Wa
o ZAU

Ne m
Z We, CneC a neC,,
a=1

A=

1 w1 1 2 wa )
= (A2 (A4 A2+ 24,
w0+w1+w2( 0 2 ( L 1)+ 1 2

Example Il: weighing for six-site clusters

Consider a system of six-site clusters L = 6. There may exist o = 0,1,2,3,4,5 or 6 vacancies inside a
single cluster. This gives N¢ = L + 1 = 7 vacancy classes. The multiplicity of the classes is given by
me = [1,6,15,20,15,6,1] corresponding to the number of possibilities to arrange the vacancies inside
a six-site cluster. The overall number of different cluster configurations is 64 (not taking symmetry
into account). One may choose six weights w, according to eq. (523) to obtain the desired impurity
concentration P,

P - (w1 + 2wo +3’LU3 +4w4+5w5 +6’LU6)

B 6 (w0+w1 +w2+w3+w4+w5+w6) ’
We will now proceed by introducing the averaging of Green’s functions for different vacancy configurations

within CPT/VCA.

5.2.2. Approach to disorder (I): Averaging on cluster level

Here T will present details for what will be referred to as disorder approach I: averaging on the cluster
level. This is the conceptually correct way for averaging as outlined in ref. [56, 57]. The cluster Green’s
function of a single vacancy configuration is given by

o I Nt
G,=Q,8,Q) neCq. (5.24)
The averaged cluster Green’s function will then be given by eq. (5.22))

_ 1 Ne¢ we 0

e Y Y Qe

where one can read off the definitions of the tilded quantities. This may be rewritten in matrix notation
defining

Q = (Qn:lv Q2a )
Q- (Qliaki--)
g~, = diag (gllag,% ) >

in the usual form
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The CPT/VCA Green’s function is then given by

Qf

S (iara)

~ 1
- (3
~(v-@'1) @,

where
/N\ = dlag (/N\l,AQ, ) .

Note that here Q may also stand for Q,, as defined in ch.2ZT.4l An issue with the problem at hand is
that T, even in CPT, is different for every vacancy configuration 7 (not class «). This arises due to the
different hoppings into the vacancies t,, which sit on different sites in each configuration. One way to
deal with this would be to average T in the same way as the cluster Green’s function is averaged:

1 Nc Mo

Wa
Yo N¥oT,

T=
N,
Z(:: We, Coec Ma neCy
a=1

The full averaged Green’s function within this approximation is given by
_ — -1 —
Gr=(1-G'T) G

Please note again that in this approach all quantities are averaged on cluster level. These averaged

quantities G" and T go into one CPT equation eq. (Z2) to yield the total Green’s function G.
Next averaging at another level of the calculation is described.

5.2.3. Approach to disorder (Il): Averaging of the full Green’s function

This approach is not controlled and just for reasons of comparison. Averaging on cluster level, leaves
the problem of separately averaging the matrix T. It is interesting to see what happens if each vacancy
configuration 7 is treated with the corresponding T, at the level of the "CPT-Dyson" equation. However
then the averaging has to be done at the level of the CPT/VCA-Green’s function G. The cluster Green’s
function of a single vacancy configuration G; is again given by eq. (5.24). A configuration specific matrix
T,, is used to calculate a CPT/VCA-Green’s function G, for each configuration

-1 -1
G'=G,'-T,.

The averaged CPT/VCA-Green’s G is then simply given by

_ 1 Ne We T~ 1 ~t
Grr = — > Q —— — Q
%c Wy o< Ma peC, Tw- (An -Q, Ty Qn)
a=1
1 Nc wa M
_ > e S G,. (5.25)
a neCl,

N¢
Z We, CneC
a=1

So here the CPT equation is applied to each configuration n and the total Green’s functions G, are then
averaged over. The biggest issue, besides it’s general uncontrolledness, with this approach is straight
forward to see. At least some of the calculated Green’s functions G, will be of the class 7 € Cy. This
means that no vacancies are present within the cluster and the spectrum may in general be gapless (while
spectra for n € C,, a > 0 are expected to be gapped). It can now be seen from eq. (5:23) that no matter
how many vacancy configurations will be mixed with this G,-o the spectrum will stay gapless. I consider
this unphysical. Therefore in the following we will pursue disorder approach (I).

In the next section, results for the homogeneous Hubbard model on a honeycomb lattice are presented
and compared to other methods.
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Figure 5.6.: (Left) Density of states of Graphene plotted along a common path in the Brillouin-zone:
I'- M- K -T. The result for U = 0 (tight binding model) is shown which was calculated for
all cluster sizes within CPT and VCA as a check. The black line shows the analytical result
for the nearest-neighbor tight-binding dispersion relation of Graphene eq. (5:26). (Right)
The gap as a function of interaction strength U obtained by CPT using 1,2,6, and 10 site
clusters as well as with VCAq, using 2 and 6 site clusters. The variational parameter used is
the hopping t since the model is particle-hole symmetric. As a reference the mean field and
QMC results by Feldner et al. [I87] are plotted.

5.3. Calculations for homogeneous Graphene

In this section the CPT/VCA method shall be tested on the two-dimensional honeycomb lattice. There-
fore results for the tight-binding model and the Hubbard model will be presented. First the density of
states is discussed. Then the band gap as a function of interaction-strength U will be compared to other
methods.

5.3.1. Density of states

In this section results obtained by CPT/VCA are discussed for L = 1,2,6 and 10 -site clusters. Results for
the density of states in the non-interacting case (tight-binding model) reproduce the analytic solution [175]

e(k)=e—1tx* \/1 + 4cos(\/§k:wg) cos(kyg) + cos(k’yg)2 , (5.26)

as expected for all cluster sizes (see fig.[5.8 (left)). Data for a (homogeneous) Hubbard model is shown
in fig.57 for U =1 and € = -0.5, in fig.B8 for U =2 and ¢ = -1, in fig.50 for U = 3 and € = -1.5 and in
fig.5.I0 for U = 4 and € = —2. The data was obtained by CPT as well as by VCAq with one variational
parameter x = {t}. The model is particle-hole symmetric, so a variation of on-site energies would always
yield a zero deviation from the physical parameter. An expected band gap opens for all studied cluster
sizes. The result for two-site clusters exhibits a much wider band gap as the six-site result. Also the
narrowing of the bands, observed for six-site clusters is absent in the two-site result. The six and ten
site results look qualitatively similar, while the two site results deviate. It is interesting to note that
VCA always tends to predict a smaller gap than CPT. The gap at the K point also becomes less wide for
larger cluster sizes. This indicates an overestimation of the gap in CPT/VCA, which is gradually cured
by considering larger clusters.

Next the band gap as a function of interaction-strength U as obtained by CPT/VCA will be compared
to other methods.

5.3.2. CPT/VCA band gap

The single particle gap is obtained by adding the lowest (in magnitude) positive excitation energy of the
total system Al at k = K and the lowest in magnitude negative excitation energy of the total system
M (A is defined in sec.ZZI4). The gap as a function of interaction strength U, obtained by CPT using
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Density of states of Graphene plotted along a common path in the Brillouin-zone: I'-= M - K —
T'. The result for U = 1 (Hubbard model) is shown from left to right for L = 2,6 and 10 site
clusters. The black line indicates the analytical result for the nearest-neighbor tight-binding
dispersion relation of Graphene eq. (526). (Top row) Results obtained by CPT. (Bottom
row) Data obtained by VCA with variational parameter x = {¢}.
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Density of states of Graphene plotted along a common path in the Brillouin-zone: I'- M - K —
I'. The result for U = 2 (Hubbard model) is shown from left to right for L = 2,6 and 10 site
clusters. The black line indicates the analytical result for the nearest-neighbor tight-binding
dispersion relation of Graphene eq. (28). (Top row) Results obtained by CPT. (Bottom
row) Data obtained by VCA with variational parameter x = {¢}.
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Figure 5.9.: Density of states of Graphene plotted along a common path in the Brillouin-zone: I'- M - K —
T'. The result for U = 3 (Hubbard model) is shown from left to right for L = 2,6 and 10 site
clusters. The black line indicates the analytical result for the nearest-neighbor tight-binding
dispersion relation of Graphene eq. (526). (Top row) Results obtained by CPT. (Bottom
row) Data obtained by VCA with variational parameter x = {¢}.
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Figure 5.10.: Density of states of Graphene plotted along a common path in the Brillouin-zone: T' — M —
K -T. The result for U = 4 (Hubbard model) is shown from left to right for L = 2,6 and 10
site clusters. The black line indicates the analytical result for the nearest-neighbor tight-
binding dispersion relation of Graphene eq. (5.26). (Top row) Results obtained by CPT.
(Bottom row) Data obtained by VCA with variational parameter x = {¢}.
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1,2,6, and 10 site clusters as well as with VCAq using 2 and 6 site clusters, is shown in fig.[5.6] (right).
The variational parameter used is the hopping ¢ since the model is particle-hole symmetric. The results
show convergence to the QMC data. The mean field and QMC data was obtained by Feldner et al. in
ref. [I87]. It is interesting to observe that the VCA result for a certain cluster size almost reaches the
quality of the CPT result for the next higher cluster size. After testing CPT/VCA on the homogeneous
Hubbard model we proceed by investigating Graphene with random magnetic vacancies.

5.4. Results for Graphene with randomly positioned magnetic
vacancies

Graphene with randomly positioned magnetic vacancies, in a given concentration, is studied within the
two disorder approaches presented above. The magnetic vacancies are modeled by the system parameters:
t=1,U,/t=2,¢, =-U,/2,t,/t = 0.3162. Those numbers where chosen because it is to be expected, that
a magnetic vacancy behaves like having a strong Coulomb repulsion with a low hopping parameter.
Otherwise they are chosen arbitrarily, more realistic values are part of future work.

The data obtained by CPT for the averaged single particle spectral function, within disorder approach
I (i.e. averaging on cluster level), is shown in fig.[B.T1l Results are shown for vacancy concentrations of
P, =1%,5%,10% and 25%. The mixing of the disorder configurations was done according to a Binomial
distribution as outlined in sec.[5.2.3l The calculations were done for cluster sizes of L = 1,2,6 and 10. The
un-natural choice of one-site clusters causes spurious spectra without a vacancy-induced band gap. One
may observe two gaps opening in the spectrum away from w = 0 with increasing vacancy concentration.
The case of one-site clusters will be excluded from further discussions here. All other system sizes behave
in principle similar. A gap opens at the K point, at the Fermi energy er = 0, with increasing vacancy
concentration. The gap opens already at low vacancy concentrations of about 1%. In the extreme limit
of 25% vacancies the lattice starts to seperate into smaller pieces causing flat disconnected parts in
the spectra, like in a dimerized lattice. This basically is a localization phenomenon. It is interesting
to observe, that in the L = 2-site case the spectrum at the K point starts out almost linearly. The
L = 6- and 10-site calculations agree on an almost quadratic spectrum at K. This is in accordance with
the results for homogeneous Graphene (see sec.5.3). Furthermore two symmetric, non-dispersing bands
of low weight evolve in the vicinty of the Fermi energy, at a vacancy concentration of ~ 10% in the case of
L =2-,6- and 10-site clusters. The larger the clusters, the more gaps away from the Fermi-energy open.
This may be an issue of the Green’s function periodization. One can also observe, that the larger the
clusters get, the smaller the gap at the Fermi-energy will be predicted. This is in accordance with the
result for a homogenous Hubbard model (see fig.[5.6 (right)). There it was shown, that smaller clusters
always overestimate the size of the gap in comparison to QMC. The general form of the tight-binding
dispersion relation on a honeycomb lattice eq. (5.26]) is preserved in the L = 1— and 2-site case. The results
obtained by L = 6 — and 10-site clusters distort the original dispersion much more. It is interesting to
observe that the one-site result and the six-site result agree reasonably well on the position of the induced
openings in the band away from w = 0. Another interesting result however is, that all cluster sizes yield
almost the same spectrum at the I" point. A Kondo-resonance at w = 0 is not observed.

It may be interesting to compare the results obtained for magnetic vacancies with randomly positioned
non-magnetic impurities. These are modeled by the system parameters: ¢ = 1,U, [t = 0,€,/t = =1,t,/t =
0.3162, to be able to compare to the case examined before. The spectra obtained for this setup for the
same concentration of impurities and cluster sizes as before are plotted in fig.[5.12} The spectra look quite
similar to those obtained before. Therefore we may conclude that the general features of the spectra arise
due to the effects of disorder and not a finite interaction strength U at the impurity locations. There are
however some details, like in the additionally introduced flat bands in the vicinity of the Fermi-energy.
In this case only one of those develops, as opposed to two in the previous case of magnetic vacancies.
As expected results obtained by averaging the total Green’s function (disorder approach II) do not yield
a physical result (see fig.[5.13). Note that the general features of the spectra obtained for various cluster
sizes agree very well qualitatively.
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Figure 5.11.: Density of states of Graphene with randomly distributed magnetic vacancies plotted along
a common path in the Brillouin-zone: I' - M — K —T". The averaged single particle spectral
function obtained by CPT for a vacancy concentration of P, = 1% (top row), P, = 5%
(second row), P, = 10% (third row), P, = 25% (bottom row). Data is shown for cluster
sizes of L = 1 (first column), L = 2 (second column), L = 6 (third column) and L = 10
(fourth column). The spectra were calculated by the disorder approach I where the Green’s
function and single particle hopping matrix is averaged on cluster level. The black line shows
the analytical result for the nearest-neighbor tight-binding dispersion relation of Graphene

eq. (520).
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Figure 5.12.: Density of states of Graphene with randomly distributed non-magnetic defects plotted along
a common path in the Brillouin-zone: I' - M — K —T". The averaged single particle spectral
function obtained by CPT for a vacancy concentration of P, = 1% (top row), P, = 5%
(second row), P, = 10% (third row), P, = 25% (bottom row). Data is shown for cluster
sizes of L = 1 (first column), L = 2 (second column), L = 6 (third column) and L = 10
(fourth column). The spectra were calculated by the disorder approach I where the Green’s
function and single particle hopping matrix is averaged on cluster level. The black line shows
the analytical result for the nearest-neighbor tight-binding dispersion relation of Graphene

eq. (520).
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Density of states of Graphene with random randomly distributed magnetic vacancies plotted
along a common path in the Brillouin-zone: I' - M — K —I'. The averaged single particle
spectral function obtained by CPT for a vacancy concentration of P, = 1% (top row),
P, = 5% (second row), P, = 10% (third row), P, = 25% (bottom row). Data is shown for
cluster sizes of L = 1 (first column), L = 2 (second column), L = 6 (third column) and
L =10 (fourth column). The spectra were calculated by the disorder approach IT where the
full Green’s function is averaged over. The black line shows the analytical result for the
nearest-neighbor tight-binding dispersion relation of Graphene eq. (5.26).
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6. Conclusions

In this thesis cluster perturbation theory and the variational cluster approach have been extended and
applied to quantum impurity models. Calculations done for the single impurity Anderson model, the
building block of the majority of quantum impurity models, yield good results. An expression for the
change of the grand potential originating from the coupling of the impurity to the infinite bath was
derived. A self consistent formulation of the variational cluster approach, previously introduced in the
context of non-equilibrium problems [25], was explored. Results obtained by the self consistent approach
show good qualitative agreement with results obtained by VCA based on the grand potential. It was
possible to show that the essential physics of the single impurity Anderson model is captured by CPT
and VCA. Using VCA, the results converge at moderate cluster sizes while the CPT results require pro-
hibitively large clusters to converge. Comparison to results obtained from Bethe Ansatz, renormalization
group approaches and data obtained from X-Operator based calculations shows good agreement for all
quantities investigated. VCAgq yields qualitatively correct spectral properties for the single impurity
Anderson model. It reproduces the Kondo resonance and an exponential scale in interaction strength U.
Furthermore the position and width of the Hubbard satellites comes out correct. For the asymmetric
model the Friedel sum rule is fulfilled in all parameter regions implying that the Kondo resonance is
pinned at the chemical potential in the Kondo region. A close look at the Kondo resonance showed that
the variational cluster approach is able to reproduce the resonance and the functional behavior of the
Kondo temperature remarkably well. The Kondo temperature is expected to show exponential behavior
in interaction strength in the Kondo regime. VCA tends to underestimate the exponent. Comparison of
dynamic quantities to continuous time Quantum Monte Carlo shows good agreement. In conclusion VCA
is a flexible and versatile method which provides reasonably accurate results with modest computational
resources.

Based on the success of VCA in an equilibrium simulation, a non-equilibrium extension of VCA was ap-
plied to a strongly-correlated quantum dot. A value for the linear response current in the Kondo regime
was determined as well as an expression for the effective distribution function. In the non-equilibrium
application again the extension from CPT to VCA proofed to be crucial. We investigated the current and
non-equilibrium density of states in all parameter regions. A linear splitting of the Kondo resonance was
observed in VCA, as well as an interesting behavior of the steady-state current: A two peak structure
evolves for higher interaction-strength in the Kondo regime. Furthermore the current in the Kondo regime
is very stable against variations of the model parameters. The highest peak-to-peak current however is
observed exactly at the crossover point from the Kondo plateau to the zero- or doubly occupied impurity.
In the third part of this work randomly positioned magnetic vacancies in Graphene were studied using
CPT/VCA. This made an extension to a strongly disordered, interacting problem necessary. A scheme
for treating vacancies/impurities in a lattice within CPT/VCA was developed and applied. The results
for the single-particle spectra and the behavior of the band gap looks promising for future applications.
The good behavior of VCA for the STAM makes an eventual use as a cluster-solver for DMFT appealing.
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A. Abbreviations

List of abbreviations (in alphabetical order)
e ARPES ... angle resolved photo emission spectroscopy
e B7Z ... Brillouin zone
e CDMFT ... cluster/cellular dynamical mean field theory
e CPT ... cluster perturbation theory
e CT-QMC ... continuous time quantum Monte Carlo
e CT-HYB ... continuous time hybridization expansion quantum Monte Carlo
e DCA ... dynamical cluster approximation
e DMFT ... dynamical mean field theory
e DMRG ... density matrix renormalization group
e DOS ... density of states
e ED ... exact diagonalization
e FRG ... functional renormalization group
e FSR ... Friedel sum rule
e FWHM ... full width at half maximum
e IPES ... inverse photo emission spectroscopy
e LDOS ... local density of states
e MF ... mean field theory
e MPS ... matrix product states
e NRG ... numerical renormalization group
e PES ... photo emission spectroscopy
e PT ... perturbation theory
e QD ... quantum dot
e QMC ... quantum Monte Carlo
e SFA ... self-energy functional approach
e STM ... scanning tunneling microscope
e STAM ... single impurity Anderson Model
e VCA ... variational cluster approach
e VCAq ... variational cluster approach based on the grand potential

e VCAg( ... variational cluster approach based on self-consistency



B. Units, Libraries and Infrastructure

In this document units of
h=e= k/’B =1 s

are used. The reduces Planck’s constant is denoted #, the (positive) electronic charge e and Boltzmann’s
constant kp. The hopping integral for free electrons on a lattice, ¢ is set to one unless otherwise noted.

The numerical calculations done in this work were performed using a self-written program in C++. The
program was developed in Eclipse Helios using a GNU C compiler v4.4. Use was made of several libraries
for C+-+: Boost, Lapack, Arpack, Blas and GSL v1.15. A wrapper library for some numerical routines
developed by Ralf Gamilscheg and Michael Knap, BoostTools was used. Some parts of the work, espe-
cially data evaluation, were done using Matlab v7.11.0. For the CT-QMC calculations I used the TRIQS
toolkit. All calculations were done on an Intel quad-core 17, with 16 gigabytes of RAM, operated by a
Debian 6.0 Linux system. For this document IXTEX was used.



C. Detailed analysis of the grand potential
for infinite reference systems

In the following it will be shown that for a formally infinite system consisting of one or more clusters and
an environment a regular expression for the grand potential 2 can be obtained. The part of the system
which may be troublesome is hidden in the noninteracting environment of infinite extent which will blow
up the trace. We first examine the third part of eq. (Z23))

Tt In (-G) = In (det(-G)) . (C.1)

To find a practicable notation we write the matrix Green’s functions in terms of its elements in block
indices, where the index ¢ stands for cluster and the index e for environment. These indices denote blocks
which are of infinite extent. To ease the notation the spin index is depressed as it is just a parameter. All
infinite terms are those containing tr G.,. The idea is to first rewrite the interacting Green’s functions
Gap (o, B € [c,e]) in terms of the noninteracting Green’s functions G'aﬂ and the coupling matrix T,gs.
Note that for the problem under consideration here G,z is a full matrix. The Green’s function of the
reference system G_, 3 is of course diagonal in block indices. Finally the coupling matrix Ty has in CPT
only off diagonal elements, but in VCA a further contribution T.. enters, arising from the variational
parameters. We are now going to identify and separate the problematic terms. To see how these terms
in the end drop out consider the right hand part of eq. (CI) in the form

GCC GCE
el (& £2))

and insert an identity matrix to the left and to the right of G

X:ln{det[(g o )(]0l _&e) “ (1)
Lo \Y'[(1 o
(0 ) (0 - )|f

/-1
X = ln{det (—G'ee) det( G,__?g —G’ijeGGeeG,_l )

x det (-GL,) } . (C.2)

which can be written as

The interacting Green’s function G, is determined in terms of the noninteracting Green’s functions gaz
and the coupling matrix T,z straightforwardly by Dyson’s equation

Gee = Tee Gl (C.3a)
Gee = Gl +Gl, TeeGee Tee G, (C.3b)
Gee = G, TeeGee (C.3¢)
Gce = Gcc Tce Tee » (ng)
where the abbreviation r.. has been defined as
Pee = (1= Gl Toe — Gl T GL, Tee) (C.4)

It is important to note that all occurring terms including r.. (which depends just on the projection of
G!, on the finite cluster space) are well behaved under the trace, except for g.. which has infinite trace.



Inserting eqs. (C3) into eq. (C2) we obtain
X =2Trn(-G,,) (C.5)
+1 det _Gcc Gcc Tce
. ¢ Tec Gcc _G;_el - Tec Gcc Tce ’
To get rid of the last troublesome term G/,' we rewrite the above expression using Sylvester’s theorem
det (X + AB) =det (X) det (1+BX " A) , (C.6)

which is valid for non singular X. A suitable form of eq. (C.3)) is

~Gee 0
X:2T&~1n(—G;e)+1n{det[( 0 —G'Jel)

. 0 Gee 1 0
Tec Gcc _Tec Gcc 0 Tce '

Applying theorem eq. (C.6) we may write

X =2TrIn(-G.,.) + ln{det (~Gee) det (-GL1)

—— ——
Pce Pce

0 -1
det[ﬂ + ( _Tce G;e Tec Gcc +Tce G;e Tec Gcc )]} .

Here we have identified p.. as another well behaved quantity which just depends on the projection of the
infinite environment onto the finite cluster. Finally we end up with

X =Trln(-G.,) + Trln (-Ge.) +

0 -1
T‘rln{ﬂ i ( “Pce Gcc *+Pee Gcc ) } '

The last term vanishes as we see as follows. With the abbreviation a = p..G.. it reads

Trln{ll+( 0 _H)}:lndet(ﬂ _ﬂ)
-a a —a l+a

We use a Schur complement type of decomposition by seeking an upper tridiagonal matrix which applied
from the right eliminates the upper right block of the original matrix and only changes the lower right
block. In the present case it reads

(% )< (0 ) (5 0):
(54 ()

1 -1 7 0 1 -1
1ndet(_a ]1+a)—1ndet(_a ]1)+lndet(0 ]1)

=2In(1) = 0.

The inverse of a matrix

and we get



Adding now the first two terms of equation eq. (2223) the grand potential 2 is given by

Q=0 -Trin(-G,) - TrIn(-G,,)
+Trin (-G, ) + Trin (-Gee) +0
=Q - Trin(-G.,) + Trln (-Gec) +0
=Q +Trin(re)
=Q' - Trin (1 -Gl D) , (C.7)
See 1= Tee + TeeGee Tee -

This shows that the infinite environment contributions drop out and we may use eq. (D.18)) to obtain a
finite value for the grand potential 2.



D. Evaluation of the grand potential

The goal of this appendix is to find an expression for the grand potential €2 in terms of the Green’s
functions available in a CPT/VCA approach. The system we have in mind here is a fermionic cluster
coupled to a formally infinite environment. The calculation done here in full detail follows [26] closely.
Similar calculation for bosonic systems may be found in [52] 29]. The new aspect of this result is that it
may be used for formally infinite systems.

The grand potential ) for fermions can be cast into the form of eq. (Z.23) [194, 68, [85]. Where G and G’ are
the CPT/VCA Green’s function and the Green’s function of the reference system respectively. Note that
for Bosons the minus sign in front of G’ and the plus sign in front of G are exchanged. The minus signs
inside the logarithms are necessary to meet the convention for the branch cut of the complex logarithmic
function in standard numerical methods. The trace Tr denotes a sum over Matsubara frequencies and a
sum over lattice sites and spin which is denoted tr

1
Tr=—=> tr.
52
Here 5 = k[%T is the inverse temperature. The fermionic Matsubara frequencies w,, = % are defined
as the poles of the Fermi-Dirac distribution function [30]
1
prp(2) = 5 - (D.1)
The Green’s function G is given by
-1
G=(1-G'T) G, (D.2)

within the CPT/VCA approximation. As shown in app.[Clthe expression for Q in eq. (2:23) is convergent
also for the formally infinite reference system considered here. This means that the formally infinite
matrices G' and T may be folded back to dimensions L + ¢, where L is the size of the cluster part of
the reference system and c¢ is the number of environment sites coupled to the cluster. Therefore we
may rewrite the expression for the grand potential (eq. (2.23)) using the CPT/VCA approximation for G

(eq. (D2))) and obtain
Q=0 +Trin((1-G'T)")+TrIn(-G') - Tr In (-G')
=Q'-Trin(1-G'T) . (D.3)
Our goal is to show that this trace is integrable and to cast it into a form which may be calculated
efficiently numerically.

We start out by analyzing the asymptotic behavior of the second term in eq. (D.3)) which we will refer to
as I. Examining the trace

I=Tr ln(H—G’T):%Ztr In(1-G'T), (D.4)

and knowing that

w— 00 1

G/(w) 5 =,
w
we find that

tr 1n(]1 —G'T) Tt 1n(1— Z)

w
T 1(T)\? T\?
oI -of])
w 2\w w
1 1
v——trT oc —.
w w

Where we Taylor expanded the logarithm and we used that the matrix T is w independent. Since the
integral of % diverges, one introduces a convergence factor e®n?" .
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Figure D.1.: Deformation of the integration contour Crp (left) to Crp- (middle). Note that in the process
the contour is cut once at infinity and reconnected the other way round to end up with Cap
(right).

We are going to replace the sum over Matsubara frequencies by an integral using the residue theorem [195]
ygf(z)dz:zmzRes(f(z,zp)) . (D.5)
P

which is valid for any function f(z) which is meromorphic inside the region C. It was mentioned before
that the poles of the Fermi-Dirac distribution eq. (D) are the fermionic Matsubara frequencies w,,. We
will now use a common trick from many body theory for sums like this [35] [196]. We construct a function
f(2) which has as residuals exactly the integrand we are looking for

211

L_%u« In (1 - G'(2)T) ", (D.6)

where the integration contour used encloses all poles of the Fermi-Dirac distribution Crp (see figure
[D.1] (left)). Note that in this context the Fermi-Dirac distribution prp is sometimes called Matsubara
weighing function [197]. Making an educated guess the function f(z) we are looking for is

f(2) :—%pFD(z)tr In (1l - G'(z)T) e (D.7)

To show this we will calculate the residuals of eq. (D7) with respect to the poles of the Fermi-Dirac
distribution function and end up with eq. (D.6]). The residuals are given by

Z— Wy

Res (f(z,wn)) —— L tim tr In (1 - G'(2)T) 20" .

2mi 2w eP% + 1

The numerator as well as the denominator go to zero in the limit z - w,. By using the theorem of
Del’Hospital and differentiating the numerator and the denominator separately with respect to z we
obtain

Res (f(z,wn)) = -

! lim Lezo+tr In (1l -G'(z)T) + % (z—wn) (gezwtr In (1 - G'(Z)T))
z

2713 z—wn €87 ep?

S ﬂtr In (]1 - G'(wn)T) LeW"'0+

™ ePwn

211

= L%tr In (]1 - G'(w,)T) en0”

To end up at the last line we used that e®“» = —1. So far we replaced the sum over Matsubara frequencies
by a complex contour integral and rendered the integral convergent by a convergence factor

1 1 .
I:——f d trIn (11— G'(2)T) e?" . D.8
271 JCrp i1 n( (:)T)e (D-8)

Note that the integrand has also poles along the real axis arising from G'(2).
To evaluate the integral we try to deform the integration contour into something more usable. Some



Im(z)

& Re(2)

- °

Figure D.2.: Three possible integration contours for the T=0 case. We use contour C'4 which is depicted
to the far right and can be split into two integrals C'4. along an infinite semicircle and C7
along the imaginary axis from +ico to —ioo.

possibilities are shown in figure [D.Il In some of the proposed contours the limits where cut at infinity
and closed the other way round. Having in mind an integration contour C4p like the one in figure
[D-1] (right), we are interested in the zero temperature result (8 — oo0). In this limit the Fermi-Dirac
distribution goes to zero in the region B (Re(z) > 0) as

) ) 1
Am T T A e gpm() 1 1
1
T o eox 11
e e*X + 1

It goes to one in the region A (Re(z) <0)

. . 1
N T = i RS A 1 1
1
= 7_00&2 posy —
e ex~xX +1

For zero temperature we are therefore left with only the integration in the negative real half plane. Some
possible integration contours are drawn in figure[D.2l Choosing the contour C4 and splitting it into two
contributions C'4r and C; (see figure [D.2] (right)) we evaluate the integral along the infinite semicircle
Cy first

1 1 .
1’:——% d tr In (1 - G (2)T) &
2mi Jou el n (2)T)e

1 [ram : . -
= lim - [ 7" doiRe o (1 - G (Re)T) 0

271'

Where in the integral the substitution z = lim Re’® was done. For large arguments we know that the

R—oc0

Green’s function G’ behaves like % so we can proceed with

T i¢ ot
I :——] / d 1¢t 1 (]1__) iRe"?0
WRI_I)I;R de'?tr In T
T id o+
- i} iRe"?0
= o 11_1)1;]% dd)e tr - Re“i’e
T R
_ bt lim f2 dop et o
2T R—oo Jz



From the first to the second line the logarithm was expanded. Next we try to find an estimate for the
upper bound of the absolute value of this integral

3r i
2 -Rew 0+
doe'

R
/ 2 d (if(cos pisin $)0*

2

in
— 13 +
< f )
3

szdQS ‘eiiR(ﬁOJr
0

2

_ ‘_ T_ ~2Re0"|3
= 0
2R0*
_|_T -RO*
= ‘2R0* (1 —e ) (D.9)

As one can see eq. (D9) goes to zero for R - oo and therefore the integral I’ vanishes. Note that the
limit R to infinity has to be executed before the limit 0* to zero. The only part of the integral which

contributes to I is )

el 20"
I-= 550 dztr In (1 - G'(z)T) ", (D.10)

2m
where the contour C7 runs along the imaginary axis from +ico to —ico.
At evaluating the integral numerically the convergence factor e is very unpleasant. The next step is
to get rid of it. We will add to the integrand a function r(z) which has only poles on the outside of the
integration contour. These are chosen to lie on the positive real axis in our approach. Furthermore r(z)
should behave like % in the limit w — oo to cancel the —% behavior of the integrand. Such a function

r(z) may be chosen to be

r(z) = tr_T , (D.11)
z=p

where p is a large positive real number. The expression for I takes the form

1 T
I=-— dz trIn (11 -G’(z)T) + .
2mi Jo; Z=p

(D.12)

1
< —5
w2

The added term r(z) will not contribute to the integral as the poles lie outside the region of integration
but it will render the integral convergent because the expression within the trace now goes like ﬁ as
compared to the % before. Therefore the convergence factor may be dropped.

It is possible to further rewrite the integral using the property of retarded Green’s functions
G(-iw) = G*(iw),
which also holds true for the function r(z). The resulting integral

1 —ioo T
I[=-—— / dw tr ln(ll—G’(w)T) +
271 J+ico w=p
1

+o00 T
= / idwtr In (1 - G'(iw)T) +
i

271 J-oco ]

w—
0
= i(/ dw tr 1n(]1—G’(iw)T)+ , T
21" J-co w=p
+o00 T
+/ dwtr In (1 - G'(iw)T) + - )
0 iw—p
1 oo T
= —(f dwtr In (1 - G'(=iw)T) + —
2m " Jo —iw = p
+o00 T
+f dwtr 1n(]1—G'(iw)T)+ - )
0 iw—p
T
w=p

p

_Lre eue
_27r/0 dwtrln(]l G(zw)T)+ +cc. (D.13)



The integration variable w was once implicitly negated in this process.
The integral over r(w) + cc may be evaluated having in mind the form of T (see figure [D.3))

1 oo T T 1 oo 1 1
_/ dwtr - + — =—trT dw . -
2m Jo Ww—-p —-lw-p 27 0 w—p Ww+p
1 il 1
=—trT (-2 f dw ————
o (=2p) 0 ww2+p2
1 1
= ——tr Tp—arctan (8) lo
™ P P
1
:——trT(z—O)
m 2
T
)
=-LAp, (D.14)

where Ay is the on-site part of T. The trace of T is given by tr'T = 2LAu for homogeneous systems,
where the factor 2 is due to spin. Here L is the size of the reference system. The value Ay is the difference
of the chemical potential of the reference system to the variational chemical potential in VCA.

Putting everything together we obtain

I=-LAp+ ifmdwtr In (1 - TG'(iw)) + cc
2 Jo
=LA+ 2ifowdwtrm(e(ln(n—TG'(iw)))
s

=-LAp+ 1 Z/Owdwln|det(ll - TG, (iw))| - (D.15)
T o

A numerical convergence analysis for integrals of this kind is undertaken in [26]. There it is shown that
the convergence is in general very good. The method used to evaluate eq. (D.15) is a Gauss-Legendre
integration. The region of integration from zero to infinity is split into three regions. Region one with
about twenty points on the interval [0,A;) where Ay is the low energy scale of the problem (i.e. the
smallest eigenvalue of the hamiltonian, up to some minimum). Region two with about twenty points on
the interval [Ay, As) where Ay is the high energy scale of the problem (i.e. the largest eigenvalue of the
hamiltonian up to some maximum). Region three on the interval [Ag, co) where in the integrand one
substitutes u = % and integrates from 0 to Aj':

1 (7 _2
— dww “In
w Jo

det(n-I(y(i))‘. (D.16)
w

The integrand vanishes very fast for large arguments and so the contributions from the third region are
small.

Finally putting everything together the expression for the grand potential at zero temperature is

Q=Q' -1
:w6+trT—lZfooodwln|det(]1—TG'M(iw))| (D.17)
™ (e
=wh+ LA~ lZfoodwln|det(]1—TG;g(iw))| : (D.18)
™5 Jo

To round this discussion up, some interesting comments follow. Note that det (1L - G'(iw)T) = det (1L - TG'(iw))
due to Sylvester’s theorem. The trace in expression [D.1§ still includes spin. For systems where the dif-
ferent spins do not couple and G, is calculated for one spin o only a factor 2 may replace the sum over
0. As test for the correct implementation may serve the fact that for non-interacting systems the grand
potential has to be a constant in all variational parameters. This arises from the fact that whatever
values are chosen for the variational parameters, CPT/VCA yields the exact result. Equation [D.18 also
permits to see very easily why the noninteracting infinite system will not cause this grand potential to
diverge. A full proof for this fact is given in app.[Cl Consider an infinite noninteracting lead coupled to a
finite interacting cluster. The lead part in the Green’s function G’ will be diagonal and occupy the block
of G’ from index L + 1 to co. Note also the matrix T (which is now also infinite) will maintain its form
(see figure [D.3]). The matrix 1l - G'T will be in general a full matrix in the block [1, L +2] if two leads are

10
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Figure D.3.: Generic form of the matrix representation of the cluster Green’s function G’ (left) and the
inter-cluster hopping matrix T (right).

coupled to the cluster or [1,L + 1] if one lead is coupled to the cluster. It will have ones in the diagonal
from [L +2,00] or [L+1,00] and no further off diagonal elements. So taking the log (which is a matrix
logarithm) and then the trace will be finite (only zeros will be added up for the infinite non interacting
system). This arises of course from the fact that just a finite number of sites of the environment are
coupled to the cluster.

11



E. Obtaining the matrix Green’s function
from the Green’s function of the
correlated site

A general procedure for obtaining all elements of the interacting cluster Green’s function G;j from the
Green’s function of the interacting site G} f (which has to be obtained exactly by some method beforehand
for a system of length L) and the matrix Green’s function of a free chain of length L -1 G, s,5" €
[1,...,L - 1] is outlined here. A similar discussion using T-matrix representation in k-space is given in
ref. [I98]. We discuss the special case of a single impurity at the far end of a non-interacting chain, but
the method is applicable to systems with a finite number of impurities and the generalization is straight
forward. The advantage provided by this method is that in any calculation only the local impurity
Green’s function needs to be calculated. From this Green’s function the local Green’s function on every
other site as well as the off-diagonal terms may be reconstructed.

The L x L cluster Green’s function G;j is built up successively by making use of the equation of motion
method which results in a Dyson-like equation. We start out by creating the block diagonal uncoupled
Green’s function GIJ, where Gf} = G’; and G}J = G&,, 4,5 € [2,...,L]. Then one proceeds by obtaining
the cluster Green’s function by

Gl =G +GioTapGl, -

Here T,z has just an entry —V for the coupling of the impurity to the first site of the chain and the
hermitian conjugate. Therefore the equation reduces to
Gi; =G + G T12GY,; + GipTo1 Gy
0 0 0

=G -V (GHGy,; + GiaGYy) - (E.1)
This looks like an ordinary CPT coupling of an isolated impurity to the first site of some other system.
However in this context there is a major difference! The Green’s function of the impurity G’ff was
already obtained for the specific system of length L under consideration. So we merely reconstruct the

other matrix elements, which is exact! It is important to note that we have to proceed iteratively and
not by a matrix operation:

1. One starts out at the impurity setting G}, = Gf} = Gy

2. Then one may calculate G, i € [2, ..., L] by eq. (EJ):
G}y = G;? -V (G;?G,m + G;gG'U)
= —VG;% ,11 :

Note that the index for 7 starts at 2, so the element 1,1 which was set in the before, is not touched!
The elements of G of the first row and first column are therefore built up from the impurity Green’s
function G} ¢ and the Green’s functions of a tight-binding chain with open boundary conditions

G9. Since G’ is symmetric G}, = G/,
3. Then one may proceed and calculate the diagonal elements G;;, i € [2, ..., L] by eq. (E)):

G;i = G;? - VG;?GIM :

4. From here on all missing off diagonal elements are calculated in the same fashion using eq. (EJJ).
Starting at calculating G, then G/; up to G, always not touching previously calculated elements.

To illustrate the procedure a short outline of the corresponding algorithm is helpful:

12



#Obtain Green’s functions of tight binding chain and impurity site
Gy < Calculate the local impurity Green’s function for a SIAM of length L
Glhain < Calculate the matrix Green’s function for a tight binding model of length L —1
#Initialize G°
Ggl <Gy
G(2:L,2:L) = Gchain
#Obtain G
G < GY
for j=1—- L do
fori=j5—- L do
if (i ==1)&&(j==1)) then
Gl’j <~ G?] - VG?1G2J' - VG?QGU
Gji < Gij
end if
end for
end for
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F. Mapping a one dimensional chain to
effective higher dimensions

Consider a single correlated orbital at the far end of a semi-infinite chain which is one possible realization
of the single impurity Anderson model

7:[: _sz fjgfia +Un.{nlf_v Z(f;czo' +fi0'cz')

—t Z czTchU _NJZCIUCZ-U

<1j>0 0

The non-interacting semi-infinite one dimensional chain will generate a semi-circular local density of states
at the impurity site. For this special setup it is however possible to renormalize the hopping parameters
in the chain and obtain a model for an impurity embedded in higher dimensions. Note that after this
renormalization the sites of the chain cannot be identified with real orbitals any more but act as an
auxiliary bath which produces the desired density of states in the impurity. To obtain the renormalized
hoppings we apply a Lanczos procedure where we consider hopping from a central impurity. For the
Lanczos procedure we identify the starting vector |vg) = |1} the impurity site. Normalized vectors will

always be denoted as |v) while for unnormalized ones |v) will be used. The construction procedure now
consists of successive single particle hopping out of the impurity

|Un+1) =H |Un> —€n |Un> - /Bn |’Un71)

€n = (Un| H |vn)
Bn = V @:lm = mvn)
|Un+1) = |vn+1> )
(Un+1|

which leads to a tridiagonal form of the Hamiltonian

e f1 0 0
B e B2 O
0 52 €2 53

0 0 ﬂg €3

F.0.1. Mapping a semi-infinite one dimensional chain to a two dimensional
model

Here we build up the renormalized hopping parameters considering one Manhattan distance after the
other. Each site is labeled by its Manhattan distance and an arbitrary index (see fig.[F.1)).

1. Manhattan distance 0

[vo) =10,1)
[vo) =10,1)

2. Manhattan distance 1
We would like to find the first iteration Krylov vectors

[o1) = H|vo) — €0 [vo) — Bolv-1) -

14



Figure F.1.: Hopping to a two dimensional bath. The impurity is located in the center. Each site is
labeled by its Manhattan distance and an arbitrary index.

Therefore we evaluate the action of the Hamiltonian onto the impurity

Hlvo) = —€|1) =V (|1,1) +]1,2) +]1,3) + [1,4))
=—€|l) -V {|1,X)} ,

{]1,X)} is short for a weighed sum over all orbitals within Manhattan distance one. Furthermore
we evaluate

€0 = (’Uol’}:[lvo) = —€

Bo =/ {volvg) = 1.

Plugging this back into the equation for |v;) we get
[o1) = =€[1) =V {]0,X)} = (=€) [vo) =1 %0
==V {|17 X>} .

The norm of |vy) is given by

(vior) = (-V)(1+1+1+1)(-V)=4V.
So we end up with the normalized vector

1
|v1) ~~7a {11, X)) -

3. Manhattan distance 2
We proceed by calculating the second iteration vector

[v2) = H fo1) = exor) = B fvo) -

15



The action of the Hamiltonian onto |v1) is given by
Hv1) L |1, X) -4V'10,1)
v1) =— -1, X) - ,
! \/41

—t(12,1) +2,2) +2,8) +[2,2) +[2,3) +[2,4) +2,4) +[2,5) +[2,6) +[2,6) + |2, 7) + |2,8)))

s

(u|1,X)+4V|O,1)+t|2,X)) ,

where
12,X) = (|2,1) +2]2,2) +]2,3) + 2]2,4) +]2,5) + 2|2,6) +[2,7) + 2|2,8)) .

Furthermore we evaluate

. 1 1
1= (il Afor) = =2 (LX) 1, X) = (17417 12 17) =

B =\/{vior) =2V .

Plugging this into the expression for |vy) we get

v2) - i(u|1,x>+4V|o,1>+t|2,x>)—<—u>— = (LX)} -2V, 1)

Vi V4
t
- 12,X) .
\/Z| )
The norm of |vsg) is given by
(v2|ﬂ:i(1+22+1+22+1+22+1+22)L:5t2.
V4 V4

So we end up with the normalized vector

1
) = —— [2,X)

. Manhattan distance 3
The third Lanczos vector is given by

lus) = H[v2) — €2 [va) = B2 v1) -

16



The action of the Hamiltonian onto |v2) is given by

- 1
Hlve)=—==|-n|2,X) -t cIcQ,X
| 2) \/%( | ) <sz:> J| ))

1
=— | —p2,X) =t 1, 1) +2]1,1) +2[1,2) + |1,2) + 2|1,2) + 2|1,3) +|1,3) + 2|1,3

m(ul)(l)l)l)l)l)l)l)l)
+2|1,4)+|1,4)+2|1,4)+2|1,1))
—t(|3,1)+|3,2)+|3,12)+2|3,2)+2|3,3)+|3,3)+|3,4)+|3,5)+2|3,5)+2|3,6)+|3,6)

+13,7) +13,8) +23,8) +2|3,9) +3,9) +[3,10) +[3,11) + 2|3, 11) + 23, 12)))

:\/%_0(—u|2,X)—5t|1,X)—t|3,X)),

with
13,X) = (]3,1) +313,2) + 3|3,3) +[3,4) + 3|3,5) + 3]3,6) +|3,7) + 3|3,8) + 3]3,9) +(3,10) + 33,11} + 3|3,12)) .
Furthermore we evaluate

€2 = (s HJv2) = —= (2. X HI2.X) = 25 (20) = —p

1 1
V20 V20

By =/ (valva) = V5t .

Plugging this into the expression for |vs) we get
t

m|3,x> .

jo3) = -

The norm of |v3) is given by

—— -t —t [76
v3lvg) = —=(4+ 72)— =1/ —t° .
So we end up with the normalized vector
1

m|3,x> .

lva) = -

. Manhattan distance 4
The fourth Lanczos iteration vector is given by

lva) = H|vs) - esfvs) - Bs [v2)

The action of the Hamiltonian onto |vs) is given by

- 1
Hlvs)=——=|-p|3,X) -t czc 3,X
|vs) \/%( 13,X) QZJ_; 5| ))

V76

where the hopping terms |2,¢) and |4,4) can not be written as «|2,X) + 5]4,X). Therefore these
terms will not cancel with the expressions coming from €3 |v3) and S5 |v2) like in the previous cases.
This makes it hardly possible to continue analytically (see fig.Hl).

1
= —(u|3,X) - t(terms involving |2,4) and terms involving |4,i)) ,
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Manhattan distance = 1 Manhattan distance = 2 Manhattan distance = 3 Manhattan distance = 4
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Figure F.2.: Evolution of the sites affected in a certain Manhattan distance in the Lanczos procedure
for the mapping of a one dimensional chain to an effective two dimensional model. The
red dots indicate the current starting vector superposition. The green dots denote the states
contributing at the application of the Hamiltonian. Note that for a Manhattan distance <= 3,
a nice "hopping’ outwards takes place, while for distances >= 4 hopping inside and outside
takes place making the analytic evaluation of the coefficients not feasible.

F.0.2. Mapping a semi-infinite one dimensional chain to a three dimensional
model

The procedure for the mapping to a three-dimensional model is completely analogous to the two-
dimensional case and will not be outlined in detail at this point.

F.0.3. Numerical results for two and three dimensions

A numerical evaluation of the iteration however is easily feasible. The rescaled hopping coefficients
t(Z) =C; t 5

are displayed in fig.[F.0.3] for the mapping to a two-dimensional model (left) and a three-dimensional
model (right) and are listed in tab.[Edl The calculation of the rescaled hopping parameters becomes
more and more demanding and time consuming with increasing distance from the impurity. For the
two-dimensional mapping the coefficients alternate in sign and the two branches may be extrapolated
separately with very high accuracy

C1 = 2
- 1.999999087638(21)% + 3.666362617826(21) — 1.616035541467 =[1,2,3,.. ]
- (21)% + 1.799469717153(21) — 0.988115961204 ARt
2.000306397205(21)2 + 4.968914151507(21) + 4.012272194344
Cal+1 = Lo 1=11,2,3,.00].

(20)2 +2.521186264485(21) + 2.112147532948

For the three-dimensional case an extrapolation is more difficult because of the erratic behavior of the
coefficients. It is however sufficient to use the first twenty or so coefficients and set the rest to the
asymptotic value co = 3.

The resulting local density of states at the correlated site ps(w) may be evaluated using a continued
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Figure F.3.: Effective hopping coefficients ¢; for mapping a chain to two dimensions (left) and to three
dimensions (right).
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Figure F.4.: Effective local density of states at the interacting site using the coefficients ¢; for mapping a
chain to two dimensions (left) and to three dimensions (right). The model parameters used
were U =0,t=1,V =1.
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The local density of states are displayed in fig.[F.0.3] for the mapping to a two-dimensional model (left)
and a three-dimensional model (right).

Table F.1.: Hopping coefficients ¢; for the mapping of a one dimensional chain to a two- and a three-
dimensional effective model.
distance i ... coefficient at bond i away from correlated site
2D ¢; ... coefficient for the mapping to two-dimensions
3D ¢; ...coefficient for the mapping to three-dimensions

| distance i | 2D ¢; | 3D ¢; || distance i | 2D ¢; | 3D ¢; |
¢y | 2.000000 | 2.449490 c15 | 1.989657 | 3.005940
co | 2.236077 | 3.000000 c1g | 2.011621 | 3.001386
c3 | 1.949377 | 3.073182 c17 | 1.990959 | 2.993073

continued on next page
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Table F.1 — continuation

| distance i | 2D ¢; | 3D ¢; || distance i | 2D ¢; | 3D ¢; |
cq | 2.074883 | 2.924988 c1g | 2.010051 | 3.008736
cs | 1.967931 | 3.049102 c19 | 1.991982 | 2.993337
cg | 2.041942 | 2.983285 c0 | 2.008840 | 3.002119
cr | 1.976995 | 2.990363 co1 | 1.992806 | 3.002684
cg | 2.028360 | 3.023338 coo | 2.007881 | 2.994256
co | 1.982234 | 2.976134 co3 | 1.993483 | 3.006018
c1o | 2.021124 | 3.014898 coq | 2.007103 | 2.996264
c11 | 1.985607 | 2.997686 co5 | 1.994050 | 3.000146
c12 | 2.016693 | 2.991709 co6 | 2.006460 | 3.003107
c13 | 1.987946 | 3.013275 cor | 1.994530 | 2.995299
c14 | 2.013729 | 2.988102
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