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Abstra
tStrongly 
orrelated quantum impurity problems have been an important �eld of 
ondensed matter physi
sfor almost eighty years. Models have been designed to explore the manifold of quantum behavior observedin impurity doped materials. In re
ent years they served as a 
ornerstone in the theoreti
al understandingof novel nano-s
ale devi
es like quantum-dots or mole
ular ele
troni
s. These devi
es have attra
ted avast amount of resear
h interest and gave remarkable, key-insights into the behavior of matter at theatomi
 s
ale, whi
h is so important for tomorrow's te
hnology. In this thesis, the physi
s of quantumimpurity models is probed by means of the variational 
luster approa
h (VCA) and 
luster perturbationtheory. Making use of these methods, stati
 and dynami
 quantities of the single impurity Andersonmodel are studied. An expression for the VCA grand potential for a system in a non-intera
ting in�nitebath is presented. Results for dynami
 
orrelation fun
tions in di�erent parameter regimes are shownto be in good agreement with renormalization group results. We address the question of whether theelusive low energy properties of the model are properly reprodu
ed within the framework of VCA. Theseare furthermore 
ompared to 
ontinuous time quantum Monte Carlo 
al
ulations. We also dis
uss resultsobtained by an alternative, i. e. self-
onsistent formulation of VCA, whi
h was introdu
ed re
ently inthe 
ontext of non-equilibrium systems. A non-equilibrium extension of the variational 
luster approa
his applied to the problem of a strongly 
orrelated quantum dot under bias. Thereby the question ofhow to model systems out of equilibrium is addressed. We 
al
ulate the steady-state 
urrent as well asthe non-equilibrium density of states for su
h a devi
e. Furthermore the properties of Graphene withrandomly positioned magneti
 va
an
ies is studied. This problem has aroused a lot of interest in re
entexperiments with proton irradiated Graphene. Su
h a setup poses a 
hallenge to any theoreti
al methodbe
ause it is not only strongly 
orrelated but highly disordered as well. It is shown that in the variational
luster approa
h it is possible to treat su
h a system and harvest results for the density of states.
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KurzfassungStark-korrelierte Quanten-Vielteil
hensysteme sind seit fast a
htzig Jahren ein wi
htiges Arbeitsgebietim Berei
h der Physik kondensierter Materie. Zur Bes
hreibung der vielfältigen, quantenme
hanis
henVorgänge, wel
he zum Beispiel in Materialien mit Störstellen beoba
htbar sind, wurden theoretis
he Mod-elle entwi
kelt. In den letzten Jahren wurden diese Modelle au
h zur Bes
hreibung von nano-skaligenBauteilen, wie Quantenpunkten oder molekularer Elektronik angewendet. Bauteile dieser Art haben einriesiges Fors
hungsinteresse generiert und liefern erstaunli
he Einsi
hten in das Verhalten von Materie aufatomaren Längenskalen. Diese Erkenntnisse sind unabdingbar für die Te
hnologie von morgen. In dieserArbeit wird die Physik von Quanten-Störstellenmodellen mit Hilfe des Variationellen Cluster Zugangs(VCA) und der Cluster Störungsre
hnung untersu
ht. Diese Methoden werden benutzt um statis
he unddynamis
he Gröÿen des Ein-Störstellen-Anderson Modells zu studieren. Hierfür wird ein Ausdru
k für dasVCA Groÿkanonis
he Potential, für Systeme in ni
ht we
hselwirkenden, unendli
h groÿen Bädern präsen-tiert. Es wird gezeigt, dass die erzielten Resultate für dynamis
he Korrelationsfunktionen in vers
hiede-nen Parameterberei
hen mit Renormierungsgruppen-Re
hnungen gut übereinstimmen. Weiterhin wirduntersu
ht, ob die s
hwer bere
henbaren Niederenergieeigens
haften des Modells von VCA wiedergegebenwerden können. Diese werden auÿerdem mit kontinuierli
hen Zeit - Quanten Monte Carlo Re
hnungenvergli
hen. Zudem werden Ergebnisse, wel
he mittels einer alternativen, selbstkonsistenten Formulierungvon VCA erzielt wurden, diskutiert. Eine Ni
htglei
hgewi
hts Erweiterung des Variationellen ClusterZugangs wird auf das Problem eines stark-korrelierten Quantenpunktes unter Spannung angewendet.Es wird bes
hrieben wie ein sol
hes Modellsystem im Ni
htglei
hgewi
ht modelliert und simuliert wer-den kann. Dabei wird der Strom im stationären Zustand und die Ni
htglei
hgewi
hts- Zustandsdi
htebere
hnet. Weiters studieren wir die Eigens
haften von Graphen mit zufällig verteilten, magnetis
henLeerstellen. Dieses Material hat in der letzten Zeit viel Interesse in Experimenten mit protonenbe-strahltem Graphen generiert. Sol
h ein System stellt allerdings eine Herausforderung für theoretis
heMethoden dar, da es ni
ht nur stark-korreliert sondern au
h ho
h ungeordnet ist. Es wird gezeigt, wiesol
he Systeme mit Hilfe des Variationellen Cluster Zugangs untersu
ht werden können. Ergebnisse für,unter anderem, die Zustandsdi
hte werden präsentiert.
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1. Introdu
tion/MotivationThe ri
h physi
s of 
omplex impurities immersed in various materials is dominated by quantum e�e
ts.Solving the full intera
ting many-body problem in
luding ele
tron-ele
tron intera
tions is impossible evenin the Born-Oppenheimer approximation [1℄, whi
h leads to a purely ele
troni
 problem on a ba
kgroundlatti
e potential. Physi
al details like ele
tron-phonon intera
tion or the random 
omponent of disorder
ompli
ate the problem even more. A starting point to gain insight into the underlying me
hanisms isprovided by quantum impurity models. These models typi
ally try to fo
us on the essential, renormal-ized, degrees of freedom, resorting to 
ari
atures of the physi
al intera
tions. However, the inherent manybody problem of these very simplisti
 models has proven to reveal its fas
inating aspe
ts only relu
tantlyover time. In general, models for the quantum me
hani
al des
ription of 
ondensed matter systems areunsolvable again. Powerful methods have been 
reated during the last 
entury to solve those models inthe one approximate way or the other limit. One of the prime models for a quantum impurity problemis the single impurity Anderson model [2℄. It 
onsists of a single magneti
 impurity (like an ele
tron in anarrow f-orbital) in an otherwise perfe
t metal (s-ele
trons). This may be for example the 
ase for ironatoms immersed in gold. Amazing physi
al phenomena like the resistan
e minimum in doped metals aswell as an unexpe
ted behavior of the entropy and spe
i�
 heat have been qualitatively explained for the�rst time by Kondo in 1964 [3℄. He showed that below a 
ertain 
rossover temperature TK , named afterhim, the Kondo temperature, the physi
s drasti
ally 
hanges. In
reased s
attering is observed whi
hleads to an unexpe
ted in
rease in resistivity [4℄. The key me
hanism here is a third order e�e
t, namelyspin-�ip s
attering. In a physi
al pi
ture the lo
al magneti
 moments [5℄ of the impurities get s
reenedbelow a temperature TK by the 
ondu
tion ele
trons. This leads to a singlet formation, losing all the mag-netism, whi
h is observed in spe
i�
 heat measurements. Kondo's perturbative 
al
ulation still su�eredfrom a low energy logarithmi
 divergen
e. His 
al
ulation was further re�ned by various authors in self
onsistent perturbative approa
hes as well as renormalization group based approa
hes, amongst others.Ten years later Wilson introdu
ed a renormalization group method to obtain a

urately the low energyproperties of this problem [6℄. One of the main reasons why the Kondo problem is so di�
ult to solveis that the intera
tions get non-perturbatively strong at low energies, a phenomenon termed asymptoti
freedom in high energy physi
s. In 1981 an analyti
 Bethe Ansatz 
al
ulation be
ame available for stati
thermodynami
 quantities [7℄. Today a variety of di�erent methods are available for treating the singleimpurity Anderson model in an approximate way. It took about �fty years from the �rst experimentalobservations around 1930 to a sound theoreti
al understanding of the physi
s of magneti
 impurities inmetals. Even today some issues still remain unsolved, like for example the size and stru
ture of thes
reening 
loud [8℄. The extension to many-impurity models (like the periodi
 Anderson model), and theinterplay between impurities bares an even more elusive problem. This be
omes important in the bran
hof heavy fermion physi
s, Kondo insulators, spin liquids or when studying the 
ompetition with RKKYintera
tion in a Donia
h phase diagram [9℄.A renewed interest in methods to solve su
h models originated in the 1990's for the des
ription of quantumdots and other mesos
opi
 devi
es [10℄. In these arti�
ial elements quantum e�e
ts, resembling 
loselythose of magneti
 impurities in metals, be
ome important. A great advantage over bulk systems lies inthe tunability of all system parameters, whi
h enables a better 
omparison to theoreti
al models. A widerange of te
hnologi
al appli
ations like nano or mole
ular ele
troni
s depend on the understanding ofe�e
ts like the giant magneto resistan
e, 
oulomb blo
kade or quantized 
ondu
tion. These models arealso important in the �eld of quantum information pro
essing [11℄. The advent of dynami
al mean �eldtheory [12, 13, 14, 15℄ fueled the interest in 
omputational methods to obtain dynami
 quantities of thesingle impurity Anderson model, whi
h a
ts as an auxiliary problem in that powerful method.The aim of this thesis is three-fold: The �rst step is to extend and apply 
luster perturbation theory andthe variational 
luster approa
h to the single impurity Anderson model. The goal is to obtain dynami

orrelation fun
tions and stati
 expe
tation values. The model is studied in great detail by means ofthese methods to establish a solid base upon whi
h further appli
ations and models of this 
lass may be
onstru
ted. Parts of the results presented in this 
hapter have re
ently been published by the authorin 
ollaboration with Wolfgang von der Linden, Enri
o Arrigoni and Markus Ai
hhorn in ref. [16℄. All
al
ulations done in this theses are for zero temperature, although the methods may be extended to the�nite temperature 
ase.On
e the methods are shown to yield good results for a single impurity in an equilibrium situation, the1



methods are extended to the non-equilibrium 
ase and the transport properties through a strongly 
orre-lated quantum dot are studied. The non-equilibrium properties of mesos
opi
 devi
es, exhibiting strong
orrelation phenomena are still not understood in detail today, but 
ru
ial for future te
hnology [17℄.As a third part, magneti
 va
an
ies in Graphene are studied as an appli
ation to disordered quantumimpurity problems. This part is motivated by re
ent studies [18℄, whi
h showed that va
an
ies indu
edinto the Graphene latti
e behave like magneti
 defe
ts. Here the appli
ability of the method to stronglydisordered problems will be outlined.This work is stru
tured as follows: The methods to ta
kle quantum impurity problems, used in this thesis,
luster perturbation theory and the variational 
luster approa
h, will be dis
ussed in detail in 
h. 2. Therest of the thesis, whi
h 
ontains the results of the work whi
h I 
arried out within my Master thesis work,is stru
tured into three main parts. The �rst one presenting results for the single impurity Andersonmodel in equilibrium (see 
h. 3). These results have been already published in ref. [16℄ by the authorin 
ollaboration with Wolfgang von der Linden, Enri
o Arrigoni and Markus Ai
hhorn. The se
ond, onproviding data obtained for a strongly 
orrelated quantum dot out of equilibrium (see 
h. 4). Finally thethird part presents results obtained for the disordered problem of magneti
 va
an
ies in Graphene (see
h. 5).
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2. Numeri
al MethodsIn general the intera
ting quantum many-body problem is unsolvable (ex
ept for some limiting 
ases),although the governing equations are known exa
tly. Condu
ting severe simpli�
ations and devisinga suitable model/e�e
tive Hamiltonian or a
tion for a given many-body system usually leads to anunsolvable problem again. To gain insights into these models one has to resort to sophisti
ated, often very
omputationally demanding, numeri
al methods. These methods may involve brute for
e 
al
ulations,further approximations and/or �nite size s
aling. Today a large variety of numeri
al methods exist to�nd (approximate) solutions of intera
ting quantum many-body models. Amongst the most famous are� mean �eld approa
hes (MF),� (diagrammati
) perturbation theory (PT),� exa
t diagonalization (ED),� Quantum Monte Carlo (QMC) methods, whi
h is a very diverse �eld of its own,� Numeri
al- and Fun
tional-Renormalization Group (NRG/FRG),� methods based on variational wavefun
tions,� the density matrix renormalization group (DMRG) or more generally matrix produ
t state (MPS)methods,� dynami
al mean �eld theory (DMFT) and� many-body 
luster methods.Today's most a

urate method to treat the single impurity problem may be the NRG [6℄ whi
h wasspe
i�
ally designed for this model. The extension to the 
ase of several impurities proofs troublesomefor this approa
h. Continuous time QMC [19℄ is a statisti
ally exa
t method yielding spe
tra in imaginaryfrequen
y, whi
h need to be 
ontinued to the real energy axis in an ill-de�ned inversion pro
ess, using forexample the maximum-entropy method [20, 21℄. This work is mainly 
on
erned with 
luster perturbationtheory (CPT) [22, 23℄ and the variational 
luster approa
h (VCA) [24℄ whi
h are many-body 
lustermethods. An advantage of these methods is the �exible extensibility from a single- to the many- impurityproblem. It is adaptable to any geometries and dimensions. In addition dynami
 quantities, su
h as theGreen's fun
tion, may be obtained as a fun
tion of a 
omplex variable z , whi
h may espe
ially be taken tobe the real energy axis ω. Two well known methods whi
h belong to the same family but are not furtherexplored in this work are 
luster/
ellular dynami
al mean �eld theory (CDMFT) and its momentumspa
e analogon the dynami
al 
luster approximation (DCA).This 
hapter is organized as follows: First 
luster perturbation theory is introdu
ed and a review on themethod of Green's fun
tion in 
ontext with CPT is presented in se
. 2.1. Then the variational extension ofCPT, the variational 
luster approa
h is introdu
ed in se
. 2.3. An extension of VCA for in�nite referen
esystems is presented in se
. 2.3.2. An alternative formulation of VCA previously introdu
ed in the 
ontextof non-equilibrium systems is des
ribed in se
. 2.3.4. A short review of exa
t diagonalization algorithmsis given in se
. 2.2 as in this work we use it as the ba
kbone for CPT/VCA. VCA furthermore relieson methods for �nding stationary points in many dimensions or in an alternative formulation roots ofmultivariate fun
tions, both will be reviewed shortly in se
. 2.3.3 and se
. 2.3.5. The re
ently introdu
ednon-equilibrium VCA [25℄ is reviewed in se
. 2.4.2. This method is based on the Keldysh Green's fun
tionte
hnique, whi
h is introdu
ed in se
. 2.4.1.2.1. Cluster Perturbation TheoryIn this se
tion the main 
on
epts of CPT will be reviewed. This se
tion serves also the purpose of settingthe notation for this do
ument. It is widely based on the ex
ellent review arti
le by Séné
hal [26℄. Inthe following we 
onsider a general model Hamiltonian on any given (large/in�nite) latti
e. The idea ofCPT [22, 23℄ is to use the results of a small system and extrapolate them to the thermodynami
 limit as3



dis
ussed in the following. The rigorous derivation of CPT whi
h is possible within fun
tional integralformalism (see for example ref. [27℄) and may be found for example in ref. [28℄ will not be given here.Instead the fo
us lies on the te
hni
al implementation. As a 
ompromise a heuristi
 argument for theCPT equation is given. A good overview of the topi
 is also presented in ref. [29℄.CPT yields the single-parti
le Green's fun
tion Gσσ′
ij (z), whi
h is a matrix in site/spin spa
e and ingeneral a fun
tion of a 
omplex variable z. This argument z may be 
hosen to be z = iω + i0+ (where ω isa real energy) to yield the retarded Green's fun
tion, z = iω − i0+ to yield the advan
ed Green's fun
tionor z = iω to yield the Green's fun
tion on the Matsubara axis [30, 31℄. Here i0+ is short for

f(i0+) ≡ lim
η→0+

f(η) ,where the limit has to be taken at the end of all operations (i.e. integrals, . . . ). The single-parti
leGreen's fun
tion is one of the most important quantities in theoreti
al 
ondensed matter physi
s sin
e itallows the 
al
ulation of the single-parti
le spe
tral fun
tion
A(k, ω) = −

1

π
ImG(k, ω + i0+) . (2.1)This quantity may be measured in experiments by photo emission spe
tros
opy (PES), inverse photoemission spe
tros
opy (IPES) or angle resolved photo emission spe
tros
opy (ARPES), depending if oneis interested in the momentum dependen
e or not.Using exa
t methods, like exa
t diagonalization, it is possible to �nd the exa
t ground-state and the single-parti
le Green's fun
tion for small latti
es. Exa
t diagonalization is limited to system sizes of a few (upto ≈ 20) sites/orbitals whi
h is 
learly far from the large/in�nite systems we are interested in here. ForCPT the latti
e under 
onsideration is �rst broken apart into smaller, exa
tly solvable tiles. The 
lusterGreen's fun
tion G′ is obtained for the tiles by an exa
t method (for example exa
t diagonalization). Inthe end the 
luster Green's fun
tions are sewed ba
k together to yield the total Green's fun
tion G. Nextthe pro
ess of breaking apart a latti
e will be outlined. How a Green's fun
tion may be obtained for a
luster is dis
ussed in se
. 2.2. Be
ause this 
onstitutes a major part of CPT and is a powerful te
hniqueof its own, it is presented in its own se
tion in detail, not to interrupt the introdu
tion to CPT. Thepro
ess of 
onstru
ting the total Green's fun
tion within the CPT approximation is dis
ussed in se
. 2.1.2.2.1.1. Cluster tilingConsider a large latti
e γ of Lγ sites and its tiling into 
lusters C of LC sites ea
h. This 
reates asuperlatti
e Γ of LΓ sites. The original latti
e γ is re
overed upon atta
hing one 
luster C at ea
h site ofthe superlatti
e Γ. The 
oordinates of the latti
e may be expressed as

r
γ
i = r

Γ
I + r

C
α , i→ (I,α) .The Lγ re
ipro
al spa
e ve
tors kγ in the �rst Brillouin zone (BZ) of the original latti
e BZγ may beexpressed as

k
γ =K + kΓ ,whereK belongs to both the re
ipro
al superlatti
e Γ−1 and to BZγ while kΓ belongs to the Brillouin zoneof the superlatti
e BZΓ. The pro
ess of 
onstru
ting a 
luster tiling is illustrated for simple 
ubi
 latti
esin one-, two- and three- dimensions in �g. 2.1. How the exa
t solution for one 
luster may be obtained byexa
t diagonalization is des
ribed in se
. 2.2. Next we assume to have the ground-state properties and thesingle-parti
le Greens's fun
tion G′ of the 
luster obtained by some means and pro
eed by 
onstru
tingthe Green's fun
tion of the total system G.2.1.2. Obtaining the total Green's fun
tionCPT is a 
luster extension of strong 
oupling perturbation theory [32, 33℄, valid to �rst order in theinter-
luster hopping. It 
an be shown that the �rst order result for the latti
e Green's fun
tion G isG−1(z,k) = G′(z) −T(k) , (2.2)where G′ is the 
luster Green's fun
tion and T 
ontains only the single-parti
le inter-
luster terms. Thismeans usually the hoppings, whi
h 
onne
t the 
lusters. This equation may be motivated heuristi
ally4
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Figure 2.1.: Visualization of 
luster tilings for simple 
ubi
 latti
es in one- (top row), two- (middle row)and three-(bottom row) dimensions. The plot axis are s
aled with the latti
e parameter
a. The one-dimensional latti
e is a Nγ = 10 site latti
e with N c = 2 site 
lusters. In thetwo-dimensional 
ase a Nγ = 6 × 6 site latti
e with N c = 2 × 2 site 
lusters is shown. For thethree-dimensional 
ase a Nγ = 4×4×4 site latti
e with N c = 2×2×2 site 
lusters was 
hosen.The left 
olumn shows the real spa
e latti
e rγ , super-latti
e rΓ and 
luster rC . The right
olumn shows the respe
tive k-spa
e pi
ture where k

γ =K + kΓ.5



Figure 2.2.: Cluster tiling of a one-dimensional tight-binding model with on-site energy ǫ and nearest-neighbor hopping t. The 
hain is split into three-site 
lusters Ĥ′ (green). The matrix elementsof T, whi
h are the inter-
luster hoppings are indi
ated in red.by 
onsidering Dyson's equation for the total system, as well as for the 
lusterG−1 = G−10 −ΣG′−1 = G′−10 −Σ
′ ,where the subs
ript 0 denotes free Green's fun
tions and Σ/Σ′ the self-energy of the total system/
luster.Approximating the self-energy of the total system by the self-energy of the 
luster Σ = Σ′ it follows thatG−1 = G−10 −Σ′

= G−10 − (G′−10 −G′−1)
= G′−1 − (G′−10 −G−10 )
= G′−1 − ((z −H ′) − (z −H))
= G′−1 − (H −H ′)
= G′−1 −T ,where H/H ′ are the one-parti
le terms of the total Hamiltonian Ĥ / 
luster Hamiltonian Ĥ′. One seesthat all that is left in T are those single-parti
le terms of the Hamiltonian not present in the 
lusterHamiltonian Ĥ′, whi
h are the inter-
luster hoppings. This is illustrated in �g. 2.2 for a one-dimensionaltight-binding system with on-site energy ǫ and nearest-neighbor hopping t. The 
hain is split into three-site 
lusters whi
h have to be solved individually. The matrix elements of T, whi
h are the inter-
lusterhoppings are indi
ated in red. The pro
ess of performing a CPT 
al
ulation is visualized in a �ow diagramin �g. 2.5. Next some important, exa
t relations for CPT will be dis
ussed.2.1.3. Exa
t relations for CPTCPT be
omes exa
t in three limiting 
ases:� CPT yields the exa
t solution for intera
tion-strength U → 0. This means that for non-intera
tingsystems, where the self-energy Σ vanishes, CPT is exa
t.� It is exa
t in the limit hopping t→ 0, where one re
overs the atomi
 problem.� CPT 
onverges to the exa
t total Green's fun
tion when the 
luster size LC approa
hes the systemsize Lγ : LC → Lγ . Usually one 
onsiders systems of in�nite size, then CPT is exa
t in the limit

LC →∞.Better approximations within CPT are usually not 
onstru
ted by 
onsidering higher orders in pertur-bation theory but by in
reasing the 
luster size LC .6



In the next se
tion an outline of how to handle Green's fun
tions within CPT and derive important quan-tities like the ground-state energy, the momentum distribution and the density of states is presented. The
ase of a Green's fun
tion 
onsisting of a set of isolated poles as it is the 
ase for translationally invariantintera
ting model Hamiltonians is 
onsidered in se
. 2.1.4. This will be needed for the study of defe
ts inGraphene. Then an overview of the analogous pro
edure for the 
ase of a not translationally invariantsystem 
oupled to a 
ontinuous bath is given in se
. 2.1.5, whi
h requires a radi
ally di�erent treatment.This will later be applied to the study of the single impurity Anderson model.2.1.4. CPT Green's fun
tions for dis
rete spe
tra of translationally invariantmodelsIn this se
tion the 
al
ulation of CPT Green's fun
tions for dis
rete spe
tra is outlined. For the basi
sof the Q-matrix formalism the reader is referred to se
. 2.2.2. The CPT Green's fun
tion is determinedby the Green's fun
tion of the 
luster G′ and the inter-
luster hopping matrix T by eq. (2.2). Insertingeq. (2.14) into eq. (2.2) one obtains in Q-matrix notationG(ω,k) = (11 −G′(ω)T(k))−1 G′
= (11 −Q′g′(ω)Q′�T(k))−1Q′g(ω)Q′�
= (11 +Q′g′(ω)Q′�T(k) + ...)Q′g′(ω)Q′�
= (Q′g′(ω) +Q′g′(ω)Q′�T(k)Q′g′(ω) + ...)Q′�
= Q′g′(ω) (11 +Q′�T(k)Q′g′(ω) + ...)Q′�
= Q′g′(ω) (11 −Q′�T(k)Q′g′(ω))−1Q′�
= Q′ 1

g′(ω)−1 −Q′�T(k)Q′Q′� .In the se
ond line the fra
tion has been Taylor expanded and in the �fth line the terms have been re-
olle
ted. The resulting expression is exa
t. Introdu
ing a diagonal matrix for the ex
itation energies λ′of the 
luster
Λ′γγ′ ∶= λ

′
γδγγ′ , (2.3)one 
an further rewrite the expression for the Green's fun
tionG(ω,k) = Q′ 1

ω − (Λ′ +Q′�T(k)Q′)Q′� .Note that the energy ω-dependen
e is ni
ely separated from the waveve
tor k-dependen
e in this expres-sion. The dependen
e on k only appears in T(k).To put this into an even more handy form we introdu
e the matrixMk ∶= Λ′ +Q′�T(k)Q′ ,so that the CPT Green's fun
tion is then given byG(ω,k) = Q′ 1

ω −M(k)Q′� . (2.4)Upon solving the (ω-independent) eigenvalue problemMkXk =XkΛk, (2.5)it is possible to rewrite the fra
tion appearing in eq. (2.4) as
1

ω −Mk

=Xk (ω −Λk)
−1

X−1k .The Λk are diagonal matri
es holding the ex
itation energies of the full system on the diagonal. Theyare the k-dependent equivalent to the Λ′ de�ned in eq. (2.3) for the 
luster solution. Inserting this result
7



into eq. (2.4) one obtains the k-dependent weights Qk for the CPT Green's fun
tionG(ω,k) = Q′Xk

²Q
k

(ω −Λk)
−1

X−1k Q′�
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶Q�

k

, (2.6)
[L ×L] = [L ×Nγ][Nγ ×Nγ][Nγ ×L] .The last line indi
ates the matrix dimensions of the quantities above. HereNγ is the number of ex
itationsin Q and L the 
luster size. A slight 
ompli
ation arises here be
ause the 
luster tiling breaks thetranslational symmetry of the model.Green's fun
tion periodizationThe fa
torization of the total latti
e into 
lusters breaks the translational symmetry of the latti
e. There-fore the total Green's fun
tion G depends on two wave ve
tors k and k

′, whi
h is 
ertainly not 
orre
tfor a periodi
 latti
e. This may be 
ir
umvented by a periodization pres
ription that provides a totalGreen's fun
tion G(ω,k), depending only on the indi
es of the physi
al unit 
ell and one wave ve
tor k.As outlined for example in ref. [26℄ one may impose a periodization upon the self-energy Σ or the Green'sfun
tion G. Here the Green's-fun
tion periodization is pursued due to good results obtained by thatmethod. The periodization pres
ription proposed for systems with a single orbital unit 
ell in ref. [34℄reads: G(ω,k) = 1

L

L

∑
rC ,rC

′
e
−ik⋅(rC−rC′) GrCrC

′ (ω,k)
=
1

L

L

∑
i,j

e−ik⋅(ci−cj) Gij(ω,k) .The ci are the 
luster basis ve
tors. This expression may be generalized for physi
al unit 
ells 
onsistingof more than one atom: Gαβ(ω,k) = Lphys.
L
∑
i∈α
∑
j∈β

e−ik⋅(ci−cj) Gij(ω,k) ,where α,β denote the translationally inequivalent latti
e sites of the model under 
onsideration and Lphys.the size of the physi
al unit 
ell. Consider for example the 
ase of a six-site ring 
luster in Graphenewhi
h has a two-site physi
al unit 
ell:Gαβ(k, ω) = 2

6
∑

i∈{1,3,5}
∑

j∈{2,4,6}
e
−ik⋅(cC6

i
−cC6

j
) Gij(ω,k) .There is an elegant way to impose this periodization pres
ription upon the total Greens' fun
tion eq. (2.6).Introdu
ing the matrix F�

k
of dimension [Lphys. ×L]
F�

k
=

√
Lphys.
L

⎛⎜⎝
e−ik⋅ui e−ik⋅uj ...

e−ik⋅ui e−ik⋅uj ...

... ... ...

⎞⎟⎠ . × ζα,i , (2.7)where .× denotes an element wise produ
t and the matrix ζα,i is one for 
luster sites i whi
h are trans-lationally equivalent to the site α of the physi
al unit 
ell (i.e. belongs to the same Bravais-sub-latti
e),and zero otherwise:
ζα,i =

⎧⎪⎪⎨⎪⎪⎩
1 if 
luster site i is translationally equivalent to site α of physi
al unit 
ell
0 otherwise .The periodized Green's fun
tion Gper is obtained by applying the transformation eq. (2.7) to eq. (2.6)Gper(ω,k) = F�

k
Qk²Qper,k (ω −Λk)−1 Q�

k
Fk²Q�per,k (2.8)

[Lphys. ×Lphys.] = [Lphys. ×Nγ][Nγ ×Nγ][Nγ ×Lphys.] .8



It follows that the periodized weights Q�per,k are given byQper,k = F�
k
Q′XkQ�per,k =X−1k Q′�Fk .Eq. (2.8) 
on
ludes the derivation of the expression for the single-parti
le Green's fun
tion. Next wederive some useful quantities from this fun
tion. Note that within CPT only the single-parti
le Green'sfun
tion is available. Be
ause CPT builds upon an intera
ting ground-state, Wi
k's theorem [35℄ doesnot hold. This prevents the 
al
ulation of higher 
orrelation fun
tions by standard means.Quantities derived from the Green's fun
tionThe (retarded) Green's fun
tion enables the 
al
ulation of the single-parti
le spe
tral fun
tion A(ω,k)eq. (2.1). In this se
tion all quantities are matri
es in the spa
e of orbitals of the unit 
ell i and spin σ(and of energy ω and waveve
tor k). For spin symmetri
 Hamiltonians one usually obtains the Green'sfun
tion G for one spin dire
tion only, so all 
al
ulated quantities have to be multiplied by a fa
tor oftwo. The single-parti
le spe
tral fun
tion A(ω,k) provides information about the density of states ρ(ω)

ρ(ω) = ∫
1.BZ. dk A(ω,k) = 1

N
∑
k

A(ω,k) ,where N is the number of k-points in the �rst BZ. The momentum distribution n(k) is given by
n(k) = ∫ ǫF

−∞
dω A(ω,k) .A quantity of parti
ular interest is the average o

upan
y < n >ij (matrix in spa
e of physi
al unit 
ell)

< n >ij = ∫
1.BZ. dk n(k) = 1

N
∑
k

n(k)
=

1

N
∑
k
∫

ǫF

−∞
dω A(ω,k)

=
1

N
∑
k
∫

0

−∞
dω δ(ω − ωγ)Wγ

=
1

N
∑
k

∑
λ∶ωλ<0

Qper,kQ�per,k .Here Wγ denotes the weight of ex
itation γ. The average o

upan
y per site is given by < n >
< n > =

1

N
∑
k

∑
λk<0

1

Lphys. tr (Qper,kQ�per,k) .Note that the spin index is absorbed into the index of the site in this notation. The ground-state energyper site is given by
ωo = ∫

ǫF

−∞
dω ω ρ(ω)

=
1

N
∑
k

∑
λk<0

1

Lphys. tr (Qper,kΛkQ�per,k) .The single-parti
le gap ∆sp is simply given by the sum of the magnitude of the lowest positive and highestnegative eigenvalue of M eq. (2.5)
∆sp = min

λγ>0
λγ +max

λγ<0
λγ .Next the 
ase of 
lusters with mixed dis
rete/
ontinuous spe
tra is dis
ussed.

9



2.1.5. CPT Green's fun
tions for mixed dis
rete/
ontinuous spe
tra of modelswithout translational symmetryUp to now we have dealt with translationally invariant models. These were broken apart into tiles -whi
h were all equal. One su
h representative tile 
ould be solved exa
tly for the single-parti
le Green'sfun
tion G′ whi
h was made up of a set of dis
rete poles. Dealing with non-translationally invariantmodels, or models where the translational period is too large to be represented by one, exa
tly-solvable,
luster, one 
an imagine breaking su
h models into di�erent tiles. Consider for example the 
ase of thesingle impurity Anderson model outlined in se
. 3.1. Su
h tiles may involve 
lusters (for example in�nitenon-intera
ting baths) whi
h yield 
ontinuous spe
tra/bran
h 
uts of the Green's fun
tion on the realaxis ω. These 
an not be represented 
onveniently by a �nite number of poles, whi
h makes the Q-matrixformalism not a good 
hoi
e. Some intera
ting parts of the system however may be most 
onvenientlyexpressed in this formalism. In the end we are left with 
lusters whi
h are only partly representable in theform of Q-matri
es. The way to pro
eed here is to evaluate G′Q, the part of the Green's fun
tion whi
hwas represented in Q-matrix form, and G′C , the part whi
h was represented by other means, separately.From there on one has to work with those fun
tions evaluated at dis
rete points zi. One therefore losesthe favorable representation of all quantities whi
h follows from the single-parti
le Green's fun
tion, interms of eigenvalue problems, and has to resort to numeri
al integration of G′(zi).Expli
itly the (numeri
ally stable) 
al
ulation of single-parti
le expe
tation values from the Green's fun
-tion G(zi) will be outlined in the following. Note that here G stands for any Green's fun
tion, not justthe one of the total system. This dis
ussion is of 
ourse also appli
able to systems dis
ussed in the lastse
tion, but it is absolutely ne
essary here. A zero temperature expe
tation value of a single-parti
leoperator in terms of the fermioni
 Green's fun
tion is given by
< cic�j > = 1

β
∑
ωn

Gij(ωn)eiωn0
+

= −∫
C

dz

2πi
Gij(z) ez0+

= −∫
CA

dz

2πi
Gij(z) − Q�Q

z − ρ

=
δij

2
+
1

π
∫
∞

0
dωReGij(iω) .Here β denotes the inverse temperature. The integration of the Green's fun
tion along the real axis isvery troublesome due to the numeri
ally ne
essary 
onvergen
e fa
tor 0+. To a
hieve a stable integration,the integral is deformed to the 
omplex plane (for 
ontour CA see �g.D.2) and re-expressed as an integralover the Matsubara axis. The integral is regularized by the large 
onstant δ (see app.D). The details ofthis 
al
ulation are analogous to those for the integral for the grand potential, outlined in detail in app.D.In the next se
tion a review of exa
t diagonalization is given, whi
h is used to obtain the ground-stateproperties of Green's fun
tions of 
lusters, in this work.2.2. Solving 
lusters - Exa
t DiagonalizationTo gain insight into the physi
s governed by a parti
ular Hamiltonian operator one may want to 
al
ulatevarious ground- and ex
ited state properties. In order to evaluate any observables or 
orrelation fun
tionsthe stationary many body S
hrödinger equation

Ĥ ∣Ψ⟩n = En ∣Ψ⟩n ,has to be solved. This represents an algebrai
 eigenvalue problem of large dimension. The Hamiltonian Ĥhas to be expressed in a suitable basis resulting in a hermitian / symmetri
 matrix in the 
omplex / real
ase. There is a great variety of methods available to solve su
h problems numeri
ally. Even greater asthe variety of methods itself are the means by whi
h one may 
ategorize them. Maybe the most relevant
riterion for our appli
ation is the separation of methods whi
h are sometimes termed full solvers andmethods whi
h are often referred to as sparse solvers. A full solver is one whi
h usually needs to store thefull matrix representation of the Hamiltonian in memory and will yield the entire eigenvalue spe
trumand all 
orresponding eigenve
tors. Sparse solvers on the 
ontrary may be used with a matrix storedin a sparse format (i.e. omitting the storage of zeros) and will in general yield one or some eigenvaluesonly. The very di�erent nature of these two 
lasses of eigensolvers makes them favorable for di�erentappli
ations. The big issue in quantum many-body problems is that the size of the Hilbert spa
e grows10



exponentially with system size [36℄. Therefore the dimension of the Hamiltonian matrix and the stateve
tors ∣Ψ⟩ may ex
eed a 
riti
al size exponentially fast. Consider for example the size of the Hilbertspa
e M for the Hubbard model [37℄
M =

L

∑
N↑

L

∑
N↓

L!

N↑! (L −N↑)! L!

N↓! (L −N↓)! = 4L ,where L is the number of latti
e sites and N↑ andN↓ are the number of ele
trons with spin up and downrespe
tively. Depending on the hard- and software a double pre
ision �oating point number takes 64 bits(whi
h makes it a

urate to about 16 de
imal digits). Taking into a

ount that in general one has to dealwith 
omplex numbers it will take 16 byte to store one matrix element or one 
oe�
ient for a basis ve
tor.So for a system 
onsisting of L = 4 sites the amount of memory needed to store the full hamiltonian matrixwill be roughly one megabyte, whi
h is of 
ourse nothing on modern ma
hines. Examining a model madeup of six sites the same matrix will already take about 300 megabytes. To see the dilemma one is fa
ing
onsider eight sites: In this 
ase the matrix needs more or less 79 gigabytes of memory. Finally the matrixrepresentation of a twenty site system would need the extraordinary number of ≈ 1016 gigabytes. As anamusing side remark it may be mentioned that a system of only seventy sites would need 1080 bits to bestored whi
h is about the estimated number of atoms in the whole known universe. It should be notedat this point that in general it is possible to take into a

ount symmetries of the Hamiltonian to redu
ethe size of the Hilbert spa
e 
onsiderably making 
al
ulation of slightly enlarged systems feasible. Theexponential growth of the size however 
annot be 
ir
umvented. Another dramati
 aspe
t is runtime.Full eigenvalue solvers in general s
ale like N3, where N is the dimension of the problem. To 
on
ludethis short dis
ussion about feasibility it is to be mentioned that solving the full eigenvalue problem isnumeri
ally exa
t and yields a

ess to all physi
al quantities. The appli
ation of full eigenvalue solvers ishowever only possible for systems not ex
eeding matrix sizes of N ≈ 2000×2000 (whi
h translates to eightsites for typi
al many body models) due to runtime reasons. The only way to expand in system size isto use sparse eigenvalue solvers. One of su
h methods, the Lan
zos algorithm, is used extensively in thiswork to 
al
ulate the groundstate of system for up to sixteen sites. The Band Lan
zos algorithm 
an beused to obtain information about ex
ited states, like the single-parti
le Green fun
tion, in a very goodapproximation. In the se
tions to follow, a method for full diagonalization the QR methods is brie�ymentioned in se
. 2.2.3 as it is used in this work to deal with small systems (system size L < 7). Themain fo
us here will lie on sparse solver for hermitian matri
es. The Lan
zos algorithm will be dis
ussedin some detail in se
. 2.2.1 as it is an essential part of this work. Se
. 2.2.2 reviews the Band Lan
zosmethod whi
h is used to obtain the single-parti
le Green fun
tion and degenerate groundstates ve
tors.2.2.1. Groundstate properties - The Lan
zos algorithmThe method 
ommonly known as Lan
zos algorithm [38℄ is an iterative proje
tion method suitable tosolve large hermitian eigenvalue problems. In this work the Lan
zos algorithm is used to obtain thegroundstate properties of 
lusters for CPT/VCA. Here a short overview of the method should be provided.This paragraph is loosely based on the good and pra
ti
al overview of eigenvalue solvers by Bai et al. [39℄and the short but very good review in ref. [29℄.The Lan
zos algorithm is appli
able to the standard hermitian eigenvalue problem
H ∣v⟩ = E ∣v⟩ .This method yields a few extremal eigenvalues and eigenve
tors of H with high pre
ision. The matrix His the matrix-representation of the Hamiltonian Ĥ in the Fo
k-basis H = ⟨n1, n2, ..., nM ∣ Ĥ ∣n′1, n′2, ..., n′M ⟩.This method may be 
onsidered a standard tool of many-body physi
s be
ause it has 
omparativelylow memory requirements. In the most primitive version only three state ve
tors ∣vi⟩ and the sparseHamiltonian need to be stored in memory.The algorithm starts out with a (random) initial ve
tor ∣v0⟩ upon whi
h the orthonormal basis V of theKrylov subspa
e K is 
onstru
ted by sequential appli
ation of the matrix H . The Krylov subspa
e after

n-iterations is given by
Kn(H, ∣v0⟩) = span{∣v0⟩ ,H ∣v0⟩ ,H2 ∣v0⟩ ,H3 ∣v0⟩ , . . . ,Hn ∣v0⟩} .An approximation for H is obtained after n iterations by proje
ting H onto the Krylov subspa
e

H̃ ≈ V T H V , (2.9)
11



where V 
ontains the n ve
tors ∣vi⟩ as 
olumns. The matrix V is of dimensions [M × n] where M isthe dimension of H . Therefore the approximation to H , H̃ is a small matrix of dimensions [n × n] =[n ×M][M ×M][M × n]. Diagonalization of H̃ yields
UT H̃ U =D , (2.10)where the eigenve
tors of H̃ are the 
olumns of U and the diagonal matrix D 
ontains the 
orrespondingeigenvalues of H̃ . Plugging eq. (2.10) ba
k into eq. (2.9) one �nds that D 
ontains the approximativeeigenvalues (Ritz values) of H

UT V T´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
XT

H V U±
X

≈D ,from whi
h one 
an also see that the 
olumns of X ≈ V U are the approximate eigenve
tors of H .Next the individual steps of the algorithm will be dis
ussed. The starting point is a random ve
tor ∣v0⟩of dimension M . The su

essive Krylov ve
tors are 
onstru
ted by appli
ation of H and 
onse
utiveorthogonalization (and normalization):̃
∣vn+1⟩ =H ∣vn⟩ − ǫn ∣vn⟩ − βn ∣vn−1⟩ (2.11)

ǫn = ⟨vn∣H ∣vn⟩
βn =

√⟨̃vn∣ṽn⟩ = ⟨̃vn∣ vn⟩
∣vn+1⟩ = ∣̃vn+1⟩√⟨̃vn+1∣ṽn+1⟩ ,Here tilded quantities ∣̃v⟩ denote non-orthonormal ve
tors, while ∣vn⟩ denote the orthonormal ones. Theproje
tion H̃ of H onto the Krylov subspa
e may be read o� from eq. (2.11)

⟨vm∣H ∣vn⟩ = ⟨vm∣ ṽn+1⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
βn+1δm,n+1

+ǫn ⟨vm∣vn⟩´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
δm,n

+βn ⟨vm∣ vn−1⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δm,n−1

,whi
h leads to a tridiagonal form of the Hamiltonian
H̃ =

⎛⎜⎜⎜⎜⎜⎝

ǫ0 β1 0 0 ⋯
β1 ǫ1 β2 0 ⋯
0 β2 ǫ2 β3 ⋯
0 0 β3 ǫ3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎠
,whi
h has to be diagonalized by some other standard method. Convergen
e is rea
hed when the 
hangein the ground state energy between two su

essive iterations is smaller than a given limit

∣ωn
0 − ω

n−1
0 ∣ ≤ lim .Additionally the iteration has to stop when the Krylov subspa
e is exhausted for a given starting ve
tor∣v0⟩

βn =
√⟨̃vn∣ṽn⟩ ≤ lim .Espe
ially for small systems the results should be 
he
ked by running the algorithm twi
e with di�erentstarting ve
tors. A saver 
onvergen
e-
riterion is to monitor the ≈ 5 lowest lying energies individuallyto noti
e 
rossings after some iterations. This algorithm is used in this work to obtain the ground-stateof Ĥ. Its extended version, the Band Lan
zos algorithm, is introdu
ed in the next se
tion to deal withsingle-parti
le Green's fun
tions.2.2.2. Single-parti
le Green's fun
tions - The Band Lan
zos algorithmThe Band Lan
zos algorithm is used in this work to 
ompute the single-parti
le Green's fun
tions. Thedes
ription of the me
hani
s of the algorithm, given here, follows ref. [39℄ 
losely. The spe
tral (Lehmann)representation of the single parti
le Green's fun
tion for the zero temperature 
ase in the energy domain12



is given byGσσ′
ij (z) =∑

α

⎛⎝∑n
α⟨Ψ0∣ cσi ∣n⟩α α⟨n∣ cσ′�j ∣Ψ0⟩α

z − (ωα
n − ωα

0 ) − η ∑
m

α⟨Ψ0∣ cσ′�j ∣m⟩α α⟨m∣ cσi ∣Ψ0⟩α
z + (ωα

m − ωα
0 )

⎞⎠ . (2.12)The sum over α denotes a sum over a possibly d-fold degenerate set of groundstates. For groundstatesof �xed parti
le number, the sums over n and m denote the subspa
es with N0 + 1 (parti
le part) and
N0 − 1 (hole part) parti
les respe
tively (all other matrix elements vanish identi
ally). The index η is −1for Fermions and +1 for Bosons.This may be re
ast in a 
onvenient matrix form the so-
alled Q-matri
es [40℄Gσσ′

ij (z) =∑
α

⎛⎝∑γ Qσ
iγ

1

z − λγ

Q
σ′�
jγ

⎞⎠
α

(2.13)Qσ�
iγ =
⎧⎪⎪⎨⎪⎪⎩

1√
d
< γ∣ĉσ�i ∣Ψ0 > parti
le part

1√
d
< Ψ0∣ĉσ�i ∣γ > hole part

λγ =
⎧⎪⎪⎨⎪⎪⎩
ωγ − ω0 parti
le part
ω0 − ωγ hole part .To ease the notation the degenera
y index α is suppressed on the individual quantities. Furthermorethe sum over γ is over a set of orthonormal basis-states having one more parti
le than the groundstate(parti
le part) and one less parti
le than the groundstate (hole part). The ex
ited state energies aredenoted by ωγIntrodu
ing the diagonal matrix
gγγ′(ω) ∶= δγγ′

ω − λγ

,the Green's fun
tion may be rewritten in matrix formG(ω) = Q g(ω)Q� (2.14)[L ×L] = [L ×Nγ][Nγ ×Nγ][Nγ ×L] .HereNγ is the size of the ex
ited state spa
e and L the size of the physi
al system. It should be noted thatthe dimension of the Green's fun
tion is of system size (in general of system-size times spin multipli
ity).The matri
es Q, 
ontaining the weights of the ex
itations, are of dimension L ×Nγ . The matrix g is theonly dynami
 quantity and is diagonal of size Nγ ×Nγ .The Band Lan
zos method uses a blo
k of L starting ve
tors, whi
h are, in our 
ase, 
onstru
ted fromthe appli
ation of the respe
tive 
reation c
σ�
i and annihilation c

σ
i operators on the ground state ∣Ψ0⟩ ofan L-site system

{∣v1⟩ = cσ�1 ∣Ψ0⟩ , ∣v2⟩ = cσ�2 ∣Ψ0⟩ , . . . , ∣vL⟩ = cσ�L ∣Ψ0⟩} ,
{∣v1⟩ = cσ1 ∣Ψ0⟩ , ∣v2⟩ = cσ2 ∣Ψ0⟩ , . . . , ∣vL⟩ = cσL ∣Ψ0⟩} .As the previous lines indi
ate this pro
edure has to be done for the N0 + 1 parti
le se
tor and for the

N0−1 parti
le se
tor individually. If the model is spin symmetri
 it su�
es to 
onsider one spin dire
tion
σ - otherwise one has to take 
are of di�erent spin dire
tions too. In this work the groundstate ∣Ψ0⟩ isdetermined beforehand by the Lan
zos algorithm. The Band Lan
zos algorithm pro
eeds similarly to theoriginal Lan
zos algorithm by 
onstru
ting the blo
k Krylov subspa
e, this time starting from L ve
tors
Kn(H, ∣v⟩i) = span{∣v⟩1 , ∣v⟩2 , . . . , ∣v⟩L ;H ∣v⟩1 ,H ∣v⟩2 , . . . ,H ∣v⟩L ; . . . ;Hn ∣v⟩1 ,Hn ∣v⟩2 , . . . ,Hn ∣v⟩L} .Again an orthonormal basis of n ve
tors is 
onstru
ted to proje
t H onto this subspa
e. While in the
ase of the Lan
zos algorithm the �rst o

urren
e of a linearly dependent ve
tor in the Krylov subspa
eindi
ates that the subspa
e is exhausted, for the Band Lan
zos pro
edure this point is more subtle.Starting with a set of L ve
tors the �rst o

urren
e of a linearly dependent ve
tor does not mean thatthe blo
k Krylov subspa
e is exhausted. It simply indi
ates that the linearly dependent ve
tor and allve
tors 
onstru
ted from 
onse
utive appli
ation ofH onto this ve
tor do not 
ontain any new information.Therefore this ve
tor is removed from the sequen
e in a pro
ess termed de�ation. The 
ondition for linear13



dependen
y is
βn =

√⟨̃vn∣ṽn⟩ ≤ lim .After L de�ations the algorithm has to be stopped be
ause the blo
k Krylov subspa
e is exhausted. After
n iterations the algorithm has generated n orthonormal basis ve
tors and L −D 
andidates for the nextpossible ve
tors. Here D denotes the number of de�ations undergone in the �rst n iterations. The BandLan
zos algorithm will generate a banded matrix H̃ whose eigenvalues are the approximate eigenvalues of
H . Orthogonality only has to be expli
itly enfor
ed among 2(L−D)+ 1 
onse
utive Lan
zos ve
tors andon
e de�ation has o

urred, against D earlier ve
tors. Therefore the resulting matrix H̃ is banded withbandwidth 2(L−D)+1, where the bandwidth is redu
ed by 2 every time a de�ation o

urs. Additionallyea
h de�ation 
auses H̃ to have nonzero elements p in a row/
olumn outside of the banded part atrow/
olumn index n−L+D(k) where n is the number of the iteration at whi
h the de�ation has o

urredand D(k) is the number of de�ations already o

urred at iteration n. As an example, 
onsider the 
ase of
L = 4 starting ve
tors and assume that during the �rst n = 10 iterations, de�ations have o

urred at steps
n1 = 7 and n2 = 9. These two de�ations 
orrespond to deleting the ve
tors H2 ∣v⟩3 and H3 ∣v⟩1 as well asall ve
tors whi
h would be 
onstru
ted from them by appli
ation of H . The stru
ture of the generatedmatrix H̃ would then be

H̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x x x x

x x x x x x

x x x x x x p p p p

x x x x x x x

x x x x x x x x

x x x x x x x p p

p∗ x x x x x x

p∗ x x x x x x

p∗ p∗ x x x x

p∗ p∗ x x x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
Here x denotes potentially nonzero entries within the banded part and p denotes potentially nonzeroentries due to de�ations. Note that the two de�ations have redu
ed the initial bandwidth 2L + 1 = 9 to
2(L −D) + 1 = 5.To obtain the Q matrix representation eq. (2.13) of the Green's fun
tion we need both the ex
itationenergies ωγ for the position of the ex
itations and the ex
ited state-ve
tors ∣γ⟩ for the respe
tive weights.The ex
itation energies are obtained as the eigenvalues of the matrix H̃ . The weights follow from the jthiteration ve
tor

∣vj⟩ = 1

Nj

(∣̃vj⟩ − j−1
∑
i=1
∣vi⟩ ⟨vi∣ ṽj⟩) , (2.15)where Nj =

√⟨̃vj ∣ṽj⟩ is the norm of the ve
tor. To evaluate the weight of for example the N0 + 1 parti
lese
tor Q�
γi = ⟨γ∣ cσ�i ∣Ψ0⟩, eq. (2.15) has to be rearranged

∣̃vj⟩ =Nj ∣vj⟩ + j−1
∑
i=1
∣vi⟩ ⟨vi∣ ṽj⟩ .Multiplying this equation by ⟨γ∣, one obtainsQ�

γi = ⟨γ∣ ṽj⟩ = Nj ⟨γ∣vj⟩ + j−1
∑
i=1
⟨γ∣ vi⟩ ⟨vi∣ ṽj⟩ .All quantities o

urring in this equation are a

essible within the Band Lan
zos pro
edure. The norm Njand ⟨vi∣ ṽj⟩ are 
al
ulated at the orthogonalization step and ⟨γ∣ is the 
omplex 
onjugate of the eigenve
torof the matrix H̃ whi
h is an approximate eigenve
tor of H .One 
an understand the su

ess of this method sin
e the Lan
zos method 
onverges to the extremaleigenvalues in a given subspa
e. One 
an target the 
orre
t subspa
e for single-parti
le ex
itations by theexpli
it 
hoi
e ∣vi⟩ = c�i /ci ∣Ψ0⟩ as the starting ve
tors for Band Lan
zos. Then the algorithm will yieldthose ex
itations having the largest weight very a

urately. In the 
al
ulations 300 ex
itations in the

N0+1- and Nγ = 300 in the N0−1 se
tor are evaluated, although it turns out that for most Hamiltonians,14



at system sizes suitable for ED, Nγ ≈ 100 ex
itations in total are more than su�
ient to exhaust the sumrule
−
1

π
∑
k
∫
∞
−∞

dω ImG(ω,k) = 1 , (2.16)and therefore obtain an a

urate Green's fun
tion within numeri
al pre
ision. This means although theBand Lan
zos method is an iterative algorithm yielding not all eigenvalues and eigenve
tors in prin
ipleneeded for the determination of the Green's fun
tion, it turns out to be a more or less exa
t method forthis appli
ation.For small systems it is possible to obtain all eigenvalues and eigenve
tors by full diagonalization. Thisyields all the required information about the system.2.2.3. Full diagonalizationAlthough the fo
us of this work is 
learly on large s
ale sparse eigenvalue problems for whi
h iterativealgorithms like the Lan
zos- (or Arnoldi- in the non-hermitian 
ase) algorithm are appropriate, it is often
onvenient to have a full eigenvalue solver at hand. A full solver yields all eigenvalues and eigenve
tors.Su
h solvers are e�
iently implemented in standard numeri
al pa
kages like LAPACK [41℄. In this workthe QR method [42, 43℄ is used to fully diagonalize small systems (L ≤ 6). A summary of this method isunfortunately beyond the s
ope of the present work. For a re
ent review see for example Watkins [44℄.Having all eigenvalues and eigenve
tors of a given matrix at hand, it is straight forward to 
ompute theGreen's fun
tion by using the spe
tral representation eq. (2.12). The ex
ited state ve
tors ∣γ⟩ are theeigenve
tors of the 
orresponding subspa
e of the Hamiltonian whi
h are all obtained within numeri
ala

ura
y by full diagonalization. The ex
itation energies ωγ are the respe
tive eigenvalues. Using QR forsystem-sizes between two and six sites and Band Lan
zos between seven and sixteen sites, the questionarises if one 
an go to larger systems. The limiting fa
tor for Band Lan
zos besides runtime is mainlymemory 
onsumption. It turns out that a method is 
urrently under development, whi
h enables a

essto larger systems, as will be dis
ussed in the next se
tion.2.2.4. A possibility to rea
h larger systems - Matrix Produ
t State Lan
zosRe
ently an iterative Lan
zos based eigensolver using matrix produ
t states has been developed [45℄.The advantage of this method is the minimal memory 
onsumption at the 
ost of a trun
ation of theHamiltonian whi
h indu
es a new sour
e of error ea
h time the Hamiltonian is applied to a state-ve
tor.For 
omputing Green's fun
tions this algorithm 
urrently works very well for the ≈ 10 poles with largestweight. Enabling a

ess to system sizes whi
h are easily double the size rea
hable with a '
lassi
' Band-Lan
zos method. However the Band Lan
zos method is able to really reprodu
e enough poles with
orresponding weights a

urately to exhaust the sum rule eq. (2.16). It turns out that the ≈ 10 a

uratepoles obtained by MPS-Lan
zos la
k approximately 1% of the sum rule for system sizes not rea
hablewith Band Lan
zos. For Hubbard systems up to ≈ 14 sites, the results of the two methods are the same.The interfa
e to CPT is provided again by the Q-matrix formalism. As preliminary 
al
ulations for theSIAM show (see se
. 3.3.7) the missing spe
tral weight, in the MPS method, manifests itself in a spuriousbehavior of the single-parti
le spe
tral fun
tion A(ω) in the vi
inity of ω = 0 after CPT/VCA. This meansthat CPT/VCA are extremely sensitive to an a

urate 
luster solution for the Green's fun
tion. Thisalgorithm is still under development and gives hope to double the CPT/VCA 
luster/referen
e system Lsizes in the near future. After dis
ussing some options for solving 
lusters we turn to a method whi
h isable to improve dramati
ally on CPT results.2.3. Variational Cluster Approa
hIn this se
tion the variational 
luster approa
h will be reviewed. An alternative self-
onsistent formulationof the VCA suitable for equilibrium as well as non-equilibrium problems will be dis
ussed. An expressionfor the grand potential for in�nite-size referen
e systems will be presented. VCA is in general 
apable ofdealing with fermioni
- [46, 47, 48, 49, 50, 51℄ as well as bosoni
- [52℄ systems. In 
ontrast to CPT it maybe applied in broken symmetry phases [53, 54, 55℄. Disordered systems [56, 57℄ may be treated using VCA.Re
ently an extension of VCA to non-equilibrium problems was introdu
ed [25℄. The models whi
h havebeen investigated by VCA are numerous. VCA was inter alia applied to the fermioni
 Hubbard model [58℄,the Bose-Hubbard model [59℄, the Fali
o�-Kimball model [60℄, the Periodi
 Anderson model [61℄ andthe Jaynes-Cummings-Latti
e model [62℄. Re
ently VCA was 
ombined with ab-initio band-stru
ture15



Figure 2.3.: Diagrammati
 de�nition of the Luttinger-Ward fun
tional Φ[G]. The double lines denotethe fully intera
ting propagator G, the dashed lines the intera
tion.
al
ulations [63℄. Appli
ations to spin systems [64℄ however have failed up to now.In the following a short introdu
tion to this method shall be presented.2.3.1. Variational Cluster Approa
h - TheoryThe variational 
luster approa
h may be seen as a variational extension of CPT based on the self-energyfun
tional approa
h (SFA) [65, 66℄. This se
tion is widely based on the review arti
le by Pottho� [67℄ aswell as ref. [52℄.We are interested in the intera
ting single-parti
le Green's fun
tion G of a given Hamiltonian
Ĥ(x, U) = ĤI(x) + ĤII(U) , (2.17)
onsisting of a one-parti
le part ĤI and a two-parti
le intera
tion part ĤII . In the SFA the Luttinger-Ward fun
tional Φ[G] [68℄ is used as a starting point to 
onstru
t the generalized grand potential fun
-tional Ω[G,G0]

Ω[G,G0] = Φ[G] −Tr{(G−10 −G−1)G} +Tr{ln (−G)} , (2.18)where the subs
ript 0 denotes the non-intera
ting Green's fun
tion. The tra
e Tr is short for Tr ≡ 1
β ∑

ωn

tr,where β is the inverse temperature, the sum is over fermioni
 Matsubara frequen
ies and the small formtra
e tr denotes a sum over latti
e sites and spin. The Luttinger-Ward fun
tional Φ[G] is de�ned as thesum over all two-parti
le irredu
ible diagrams. The fun
tional derivative of Φ[G] with respe
t to theintera
ting Green's fun
tion yields the self-energy Σ

δΦ[G]
δG = Σ , (2.19)as may be inferred from its diagrammati
 de�nition (see �g. 2.3). Taking a derivative 
orresponds inthe diagrammati
 language roughly to taking out an intera
ting propagator. At this point it should bementioned, that VCA may be 
onstru
ted 
ompletely non-perturbatively [69, 67℄. It 
an be shown thatexpression eq. (2.19) is lo
ally invertible. Legendre transforming the Luttinger-Ward fun
tional Φ[Σ]

F [Σ] = Φ[Σ] −Tr{ΣG} ,allows for expressing Σ[G]
β
δF [Σ]
δΣ

= −G[Σ] .one may rewrite eq. (2.18)
Ω[Σ,G0] = F [Σ] −Tr ln (−G−10 +Σ) . (2.20)The fun
tional derivative of the self-energy fun
tional Ω[Σ,G0] with respe
t to Σ yields Dyson's equationat the stationary point
δΩ[Σ,G0]

δΣ
= −G + (G−10 −Σ)−1 != 0 . (2.21)This is an equation for the physi
al self-energy Σ given the Luttinger-Ward fun
tional F [Σ] and thefree Green's fun
tion G0. Eq. (2.19) and eq. (2.21) 
omprise a set of two equations for the two unknown16



Figure 2.4.: The spa
e of self-energies Σ is restri
ted by those whi
h may be generated by the single-parti
le parametrization of an exa
tly solvable referen
e-system Σ′.fun
tions G and Σ.The Luttinger-Ward fun
tional is a universal fun
tional in the sense, that only depends on the intera
tionand is not a fun
tional of G0. This means systems sharing the same intera
tion part in their Hamiltonianhave the same Luttinger-Ward fun
tional. This fa
t is exploited in introdu
ing a so 
alled �referen
esystem�
Ĥ′(x′, U) = Ĥ′I(x′) + ĤII(U) ,de�ned on the same latti
e and having the same two-parti
le term ĤII as the original Hamiltonianeq. (2.17), but may di�er in the one-parti
le terms x′. Here primed quantities denote quantities belongingto the referen
e system. This means it di�ers from the the original system in G0. The point of ere
tingthis auxiliary system is to 
hoose it to be an exa
tly solvable one. To be de�nite one usually 
hooses itto be a 
luster de
omposition of the original system. The Luttinger-Ward fun
tional is eliminated fromthe equations by 
omparing eq. (2.20) for the original and the referen
e system

Ω[Σ,G0] = F [Σ] −Tr{ln (−G−10 +Σ)}
− Ω′[Σ,G′0] = − (F [Σ] −Tr ln (−G′−10 +Σ))
⇒ Ω[Σ,G0] = Ω′[Σ,G′0] −Tr ln (−G′−10 +Σ) +Tr ln (−G−10 +Σ)

= Ω′[Σ,G′0] −Tr ln (−G′[Σ]) +Tr ln (−G[Σ]) . (2.22)Note that for bosoni
 systems the ±-signs of the se
ond and third term are inter
hanged. Also notethat in VCA the self-energy Σ is taken to be the self energy of the referen
e system Σ′, whi
h is usuallynot expli
it in the notation. Eq. (2.22) is still exa
t if the referen
e system is able to provide the exa
tself-energy of the full system. In pra
ti
e the single-parti
le parameters x
′ of the referen
e system arefree to be varied sin
e this does not 
hange the intera
ting part and eq. (2.18) still holds. This meansthat the fun
tional Ω[Σ,G0] eq. (2.22) be
omes a fun
tion of those parameters

Ω(x′) = Ω′(x′) +Tr ln (−G(x, x′)) −Tr ln (−G′(x′)) , (2.23)The VCA approximation 
onsists therefore in restri
ting the spa
e of available self-energies to thoseprodu
e-able by the referen
e system and its single-parti
le parametrization (see �g. 2.4). The stationarity
ondition determining the physi
al parameters eq. (2.21) is then given by
∇x

′Ω(x′) != 0 . (2.24)Note that this is a dynami
 variational prin
iple sin
e it involves G(ω) and therefore ex
ited states. TheGreen's fun
tion G of the physi
al system Ĥ is obtained by the CPT equation (eq. (2.2)). This time in
ontrast to CPT the matrix T = G′−10 −G−10 
ontains all single parti
le terms not in
luded in the referen
esystem as well as the deviation, introdu
ed by VCA, ∆x ≡ x′ − x of the single-parti
le parameters of thereferen
e system x
′ with respe
t to the ones of the original system x. Some remarks about the de�nitionof signs in G′ and T are appropriate. The signs of the variational parameters are �xed by the Dyson

17



equation eq. (2.21) G−1 = G′−1 −T
= (ω −H) −T
= ω − (H +T) .This means that if a variationally introdu
ed parameter δα for a one parti
le quantity is de�ned in H (andtherefore G) as: (α + δα)Ô, it, of 
ourse, is negative in T: −δα. For parameters whi
h are intrinsi
allynegatively de�ned in H (i.e. usually the hopping t) it is like follows: in H (and therefore G): −(α+ δα)Ôand in T: +δα. For the evaluation of Dyson's equation eq. (2.21) several forms may be usedG−1 = G′−1 −TG = G′ +G′TG = G′ +GTG′G = (11 −G′T)−1G′ .The last one is parti
ularly useful for numeri
al 
al
ulations be
ause only one inversion is needed. Thepro
ess of performing a CPT/VCA 
al
ulation is summarized in a �ow diagram in �g. 2.5. Next we turnto the question of how the self-energy fun
tional eq. (2.23) may be evaluated numeri
ally.2.3.2. Evaluation of the self-energy fun
tionalThe grand potential in the form of eq. (2.23) has to be evaluated numeri
ally in order to �nd its stationarypoint and thus the optimal single-parti
le parameters x′stat. In ref. [26℄ two methods to evaluate eq. (2.23)have been proposed. One is based on an exa
t (analyti
) frequen
y integration, whi
h yields an expressioninvolving sums over ex
itation energies. Therefore it is espe
ially suited for problems, where the full Q-matrix representation of the 
luster as well as the total system is available (see se
. 2.1.4). The se
ondoption would be a numeri
 frequen
y integration. This is the way to go in dealing systems, whoseex
itations 
an not be put into Q-matrix form entirely (see se
. 2.1.5). As we shall see the real integralshave to be transformed to 
omplex 
ontour integrals in order to a
hieve a stable numeri
al routine. Inthe following both 
ases will be dis
ussed. The �rst one is needed for the 
al
ulations for Graphene,although here the numeri
al integration would be appli
able too, however with slightly less a

ura
y.The se
ond method is used for the single impurity Anderson model, where the spe
trum is not expli
itlyrepresentable by a �nite number of poles.The evaluation of the �rst term of eq. (2.23): Ω′(x′), whi
h is the grand potential of the 
luster, is thesame in both 
ases. It may be 
al
ulated from the partition fun
tional

Z = e−βΩ′(x′) =∑
n

e−β ω′n ,whi
h redu
es in the limit of zero temperature (β → +∞) to the 
ontribution of the ground state energyof the 
luster ω′0 only
lim

β→+∞∑n e−β ω
′
n = e−β ω

′
0 .Therefore, in the zero temperature 
ase, the grand potential of the 
luster Ω′(x′) is given by its ground-state energy ω′0

Ω′(x′) = ω′0 .Next we turn to the two di�erent approa
hes of evaluating the additional terms in eq. (2.23).Exa
t frequen
y integrationThis method of evaluating the grand potential eq. (2.23) is used for systems, where the full Q-matrixrepresentation of the 
luster as well as the total system is available. In this work this is the 
ase in thestudy of defe
ts in Graphene (see 
h. 5). The results (for example obtained in ref. [26℄) will be statedhere without derivation, sin
e the 
al
ulation is rather lengthy and was not part of this work. It may for
18
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Figure 2.5.: Flow 
hart diagram for a CPT/VCA 
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example be found in ref. [29℄. The analyti
 frequen
y integration of eq. (2.23) (for fermions) leads to
Ω(x) = Ω′(x′) + 1

β
∑
γ

ln ∣1 − e−β λ′γ ∣ − 1

β

1

NΓ
∑
kΓ

∑
γ

ln ∣1 − e−β λγ(kΓ)∣ ,whi
h redu
es in the 
ase of zero temperature (β → +∞) to
Ω(x) = Ω′(x′) − ∑

Reλ′γ<0 λ′γ + 1

NΓ
∑

Reλγ(kΓ)<0
λγ(kΓ) .Note that in the bosoni
 
ase the ±-signs in front of term two and three are ex
hanged. The ex
itationenergies of the 
luster λ′γ are obtained in eq. (2.3), while the ex
itation energies of the total system fora given superlatti
e waveve
tor kΓ are available from the diagonalization of eq. (2.5). Note that the lastsum goes over the 1st BZ of the superlatti
e Γ. NΓ is the number of points on the superlatti
e Γ, i.e.the number of 
lusters in the total system. All quantities in this expression are readily available. Nextwe turn to the 
ase where those quantities are not easily a

essible in Q-matrix form and a numeri
frequen
y integration has to be used.Numeri
al frequen
y integration for in�nite referen
e systemsIn this se
tion we have in mind a spe
ial kind of referen
e system, whi
h is not expressible in Q-matrixform and of in�nite extent. This is the 
ase for the single impurity Anderson model, although theexpressions derived in this se
tion are appli
able to any system of that kind. We 
onsider a referen
esystem 
onsisting of two parts, one being a �nite intera
ting system, the 
luster, and one a non-intera
tingsystem of in�nite size, the environment. The grand potential Ω′(x′) is given by the sum of the grand-potentials of the 
luster part of the referen
e system (Ω′
luster) and of the environment part of the referen
esystem (Ω′env). The last part being in�nite but 
onstant and we 
onsider from now on the shifted grandpotential Ω(x) −Ω′env.We start out by dis
ussing the Green's fun
tion G for an in�nite referen
e system. This system isrepresented by the Green's fun
tion of the referen
e system and G′ and TG′ = (G′cc G′ceG′ec G′ee) , T = (Tcc TceTec 0

) ,where the subs
ript c denotes the sites of the 
luster part of the referen
e system, while the 
olle
tiveindex e denotes the sites of the environment part of the referen
e system. Up to this point all matri
esinvolving environment indi
es have in�nite size. As far as the Green's fun
tion itself is 
on
erned thisis no problem as we are primarily interested in the 
luster part of the referen
e system given by Gcc forwhi
h the Dyson equation redu
es toGcc = G′cc +G′ccTccGcc +G′ccTceGecGec = G′eeTecGccGcc = G′cc +G′ccΣ̃ccGcc

Σ̃cc ∶= Tcc +TceG′eeTecAs far as the grand potential is 
on
erned, the 
al
ulation to eliminate the in�nite environmental degreesof freedom is rather lengthy and presented in app.C. Based on this result the numeri
al frequen
yintegration of eq. (2.23) is possible. Again this results in tedious work following ref. [26℄, whi
h is donein detail in app.D. Starting out from
Ω(x′) = Ω′(x′) −Tr ln (11 −TG′(x′)) ,and performing a transformation to a 
omplex 
ontour integral as well as an integral regularization, oneends up with

Ω(x′) −Ω′env = ω′0,
luster(x′) + tr (T)
−
1

π
∑
σ
∫
∞

0
dω ln ∣det (11cc − Σ̃cc(iω)G′cc(iω))∣ .This integral may be evaluated as suggested in ref. [26℄ by integrating from 0 to Λ1, from Λ1 to Λ2 and from

Λ2 to ∞. Λ1 and Λ2 represent two 
hara
teristi
 s
ales in the problem (for example the smallest/largest20



eigenvalue of the Hamiltonian matrix). For the last part of the integral a substitution ω̃ = 1
ω
is performed.In this work an adaptive Gauss Legendre integrator (see for example ref. [70℄) for the evaluation of theintegrals is used. Having dis
ussed how the grand potential is evaluated for a given set of single-parti
leparameters x′ we pro
eed by dis
ussing methods to �nd its stationary point.2.3.3. Finding stationary points of the grand potentialIn VCA the stationary point of the grand potential fun
tional has to be determined. The stationarypoint of the grand potential Ω(x′) whi
h is in general a multivariate fun
tion may be a maximum, aminimum or a saddle-point. Generally enormously large deviations from the physi
al parameters x donot make sense. Therefore it is di�
ult to apply a standard numeri
al algorithm. In fa
t I am notaware of an algorithm whi
h �nds arbitrary stationary points of a (often quite 
ompli
ated) multivariatefun
tion with boundary 
onstraints. Literature exists for the so 
alled Nudged elasti
 band [71℄ anddimer methods [72℄ whi
h are not suitable for the problem at hand. The approa
h taken here is toseparate 
al
ulations involving low dimensional (one to two variational parameters) parameter spa
es,where the nature of the stationary point is often known from the general higher dimensional 
ase, whereit is impossible to predi
t the nature of the stationary point. For example it is known that varying the
hemi
al potential (or on-site energy), the stationary point is always a maximum. We furthermore foundthat varying the hopping, there exist in most parameter regions three stationary points, one whi
h is anunphysi
al maximum and two equivalent minima. For further dis
ussion see se
. 3.3.1.In this work a Brent method [70℄, whi
h 
ombines a paraboli
 interpolation with the golden se
tionalgorithm is used for one variational parameter if the stationary point is known to be a minimum or amaximum. For higher dimensional 
ases, where the stationary point is known to be either a minimumor a maximum, a derivative free Nelder-Mead simplex algorithm [73℄ is used. Both these algorithms areavailable from standard numeri
al libraries like GSL [74℄. For the me
hani
s of these methods the readeris referred to the literature sin
e a des
ription of these algorithms would go beyond the s
ope of thiswork. In the general 
ase where the nature of the stationary point is not known a self-made algorithmis used whi
h is based on paraboli
 interpolation. The idea is that the fun
tion Ω(x′) is �tted by a highdimensional paraboloid, whereby the 
onse
utive points, by whi
h the paraboloid is �t, 
ontra
t to thestationary point. Sin
e this method was developed spe
i�
ally for this appli
ation it is presented in thefollowing. A similar method may exist in literature, but no perfe
tly suitable standard-algorithm 
ouldbe found. During the �nalisation of this thesis E. Arrigoni pointed out to me a similar method presentedin ref. [53℄ se
. III.D, whi
h in
ludes a suggestion for improvement.Finding stationary points in many dimensionsOur goal here is to �nd the stationary point of the Nx dimensional fun
tion Ω(x). Therefore we approx-imate this fun
tion by a quadrati
 form

(xi)T C x
i ,where C is a symmetri
 matrix with

NC =
N2

x
+ 3Nx + 2
2

,independent unknown 
oe�
ients. To identify the 
oe�
ients of C, NC trial ve
tors xi, i = [1, . . .NC]are needed
x
i =

⎛⎜⎜⎜⎜⎜⎝

xi
1

xi
2

⋮
xi
Nx

1

⎞⎟⎟⎟⎟⎟⎠
.This leads to a system of equations for the 
oe�
ients of C

(xi)T C x
i = Ω(xi), i = [1, . . . NC] . (2.25)
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Consider as an example the two-dimensional 
ase: Nx = 2, whi
h leads to NC = 6. We need six, three-dimensional trial points xi to obtain the system
(xi)T C x

i = Ω(xi)
(xi

1 xi
2 1)⎛⎜⎝

C11 C12 C13

C12 C22 C13

C13 C13 C33

⎞⎟⎠
⎛⎜⎝
xi
1

xi
2

1

⎞⎟⎠ = Ω(xi
1, x

i
2)

C11(x1
1)2 +C22(x1

2)2 + 2C12x
1
1x

1
2 +C33 + 2C12x

1
1 + 2C13x

1
2

C11(x2
1)2 +C22(x2

2)2 + 2C12x
2
1x

2
2 +C33 + 2C12x

2
1 + 2C13x

2
2

C11(x3
1)2 +C22(x3

2)2 + 2C12x
3
1x

3
2 +C33 + 2C12x

3
1 + 2C13x

3
2

C11(x4
1)2 +C22(x4

2)2 + 2C12x
4
1x

4
2 +C33 + 2C12x

4
1 + 2C13x

4
2

C11(x5
1)2 +C22(x5

2)2 + 2C12x
5
1x

5
2 +C33 + 2C12x

5
1 + 2C13x

5
2

C11(x6
1)2 +C22(x6

2)2 + 2C12x
6
1x

6
2 +C33 + 2C12x

6
1 + 2C13x

6
2

=

Ω(x1
1, x

1
2)

Ω(x2
1, x

2
2)

Ω(x3
1, x

3
2)

Ω(x4
1, x

4
2)

Ω(x5
1, x

5
2)

Ω(x6
1, x

6
2)

.The NC trial ve
tors are 
hosen in the vi
inity of an initial guess for the stationary point xS
0

x
i = xS

0 +∑
j

gijβjej , (2.26)where the fun
tion gij may be 
hosen to take integer values ∈ [0,±1,±2, . . .] to en
age x
S
0. A guess forthe stationary point of Ω(x) is given by the stationary point of its lo
al quadrati
 approximation by

∇Ω(x) ≈ ∇((xS)T C x
S) != 0 ,where the 
oe�
ients of C are known from eq. (2.25). This leads to another system of equations for theapproximation of the stationary point xS

∇(xS)T C x
S + (xS)T ∇C x

S != 0

2C x
S != 0 ,whi
h may be solved by bringing the 
onstant terms to the right. Again for the two-dimensional examplethis takes the form

C11x
S
1 +C12x

S
2

C12x
S
1 +C22x

S
2

=
−C13

−C23
.The newly obtained approximation for the stationary point xS is then taken to be a new guess xS

0 andthe pro
edure is repeated until the point stabilizes from one iteration to the next. One important pointto note here is that the 
onvergen
e is strongly dependent on the fun
tion βj whi
h is used to quantifythe size of the 
age around x
S
0 in eq. (2.26). This fun
tion has to 
ontra
t to a point, the 
loser one
omes to the true stationary point to avoid instabilities. This 
on
ludes the dis
ussion of VCA based onthe grand potential Ω. Next we turn to a di�erent, self-
onsistent formulation of VCA.2.3.4. Self 
onsistent VCAIn this work we 
ompare results obtained by the 
onventional VCA whi
h we from now on term VCAΩ toan alternative formulation VCASC. The need for an alternative formulation is motivated by the extensionof VCA to non-equilibrium systems whi
h will be dis
ussed in se
. 2.4. The 
onventional VCAΩ may notbe straight forwardly used in the non-equilibrium situation sin
e it relies on the grand potential whi
h isnot well de�ned in this 
ase. The self-
onsistent reformulation of VCA: VCASC was re
ently developedin ref. [25℄ to treat systems out of equilibrium, although it 
an equally be adopted in equilibrium. Up tonow this formulation la
ks a rigorous fundamental mathemati
al justi�
ation although it may be relatedto CDMFT in some limits [25℄.In VCASC the variational parameters x

′ are determined by 
omparing stati
 expe
tation values of thereferen
e system and the total system. The idea of this self-
onsistent approa
h is to use a referen
esystem whi
h resembles the full system best. The strategy is to �nd those values x
′ for the set ofparameters of the referen
e system whi
h let the expe
tation values of their 
orresponding single-parti
leoperators < Ô >
luster,x′ 
oin
ide with those of the full system < Ô >CPT,x,x′ . Here, the angle bra
ketsdenote expe
tation values in the referen
e and the full system 
oupled by CPT or VCA respe
tively.Consider the on-site energies ǫ′f and ǫ′s as variational parameters. One then has to look for those 
luster22



parameters ǫ′f and ǫ′s whi
h ful�ll the relations
⟨n̂f

σ⟩
luster,ǫ′
f
,ǫ′s

!= ⟨n̂f
σ⟩CPT,ǫf ,ǫs,ǫ

′
f
,ǫ′s

(2.27)
L−1
∑
i

⟨n̂i
σ⟩
luster,ǫ′

f
,ǫ′s

!=
L−1
∑
i

⟨n̂i
σ⟩CPT,ǫf ,ǫs,ǫ

′
f
,ǫ′s

.The sum is over all non-intera
ting sites in
luded in the 
luster. Eq. (2.27) amounts to solving a systemof non-linear equations in ea
h step of the self 
onsisten
y 
y
le. In general it is possible to vary ea
hsingle parti
le parameter separately. For reasons of keeping the numeri
s tra
table in this work we restri
tourselves to one ǫ′s only, whi
h we take to be the same for ea
h site. Extension to a larger number of
ǫ′s is straightforward. To �x this parameter we require the average parti
le density on the nonintera
t-ing sites to ful�ll the 
ondition eq. (2.27). In some situations, the hybridization matrix element V ′ andthe intra-
luster hopping t′ will alternatively be 
onsidered as variational parameters. Then the parti-
le number expe
tation values in eq. (2.27) are repla
ed by hopping expe
tation values. Again for t weuse a single variational parameter for hopping between all un
orrelated sites and �x it by requiring themean value of hopping in the 
luster and the full system to 
oin
iden
e. An improved multidimensionalNewton-Rhapson algorithm is used to �nd the roots of the system eq. (2.27). In some parameter regionsno solution may be found.2.3.5. Finding the roots of multi-variate fun
tionsIn 
ontrast to the standard formulation where one has to �nd stationary points of the grand potential
Ω, the self-
onsistent formulation requires �nding the roots of a non-linear system of equations. In thiswork a modi�ed Newton-Rhapson method [70℄ is used to solve a non-linear system like eq. (2.27). TheNewton-Rhapson pro
edure 
onverges to a root by an iterative pro
ess. A starting point x0 for the roots,is updated by the pres
ription

xn+1 = xn − [Jf(xn)]−1 f(xn) ,where Jf is the Ja
obian de�ned as
Jf(x) =

⎛⎜⎜⎜⎜⎝

∂f1
∂x1

∂f1
∂x2

⋯ ∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

⋯ ∂f2
∂xN

⋮ ⋮ ⋱ ⋮
∂fN
∂x1

∂fN
∂x2

⋯ ∂fN
∂xN

⎞⎟⎟⎟⎟⎠
,whi
h is 
al
ulated by a �nite-di�eren
e approximation to the partial-derivative.The self-
onsistent VCASC introdu
ed in the last two se
tions provides the basis for the non-equilibriumformulation of VCA, whi
h will be dis
ussed in the next se
tion.2.4. Non-equilibrium Variational Cluster Approa
hThe extension of CPT/VCA to the non-equilibrium 
ase was started by Balzer et al. [75℄ who studiedshort-time behavior using CPT. Knap et al. [25℄ were investigating the long-time, steady-state of two-dimensional Hubbard systems using a self-
onsistent VCASC. In this work the long-time, steady-statebehavior of a strongly 
orrelated quantum dot, modeled by the SIAM, is investigated by VCASC. Inthis se
tion the non-equilibrium extension of VCA will be presented. First a short introdu
tion to theKeldysh-Green's fun
tion te
hnique, on whi
h the non-equilibrium VCA is based, is presented in se
. 2.4.1.Then the self-
onsistent VCASC introdu
ed in se
. 2.3.4, will be extended to the non-equilibrium 
ase inse
. 2.4.2.2.4.1. The Keldysh-Green's fun
tion te
hniqueHere the basi
s of the Keldysh-Green's fun
tion te
hnique are outlined. This se
tion is based on the veryni
e review arti
le by Jauho [76℄. Further information on the topi
 is available at the more 
omprehensivereviews ref. [77℄ or ref. [78℄. Introdu
tory le
ture notes are available in ref. [79℄ and ref. [80℄. A goodoverview is presented in the book by Haug and Jauho [81℄. The 
ontour ordered (Keldysh-) Green'sfun
tion te
hnique was named after the pioneering work by Keldysh [82℄, although earlier 
losely related23



approa
hes exist, for example by S
hwinger [83℄ and Feynman and Vernon [84℄.One great advantage of non-equilibrium Keldysh Green's fun
tion theory is that it is formally similar tothe equilibrium theory. Consider a system des
ribed by a general Hamiltonian
Ĥ = Ĥ0 + Ĥ1(t) ,where the time dependent part is assumed to vanish in the distant past t→ −∞, so

Ĥ1(t) ≡ 0 for t < 0 ,Adiabati
ally swit
hing on the intera
tion Ĥ1(t) = e−0+∣t∣ V̂ (t), the intera
tion attains its full strength attime t = 0. Note that this implies that at time t → −∞ all operators in the Heisenberg-pi
ture OH equaloperators in the intera
tion representation with respe
t to Ĥ0, OI,Ĥ0(−∞). Zero-temperature equilibriummany-body theory may be formulated in terms of the time-ordered Green's fun
tion [85, 86℄GT

ÂB̂
(x1, t1;x2, t2) = −i ⟨Ψ0∣ ˆ̂T (ÂH(x1, t1)B̂H(x2, t2)) ∣Ψ0⟩⟨−∞∣−∞⟩ . (2.28)The index x, representing spa
e, spin, . . . will be suppressed from now on to fo
us on the important indexin this 
hapter whi
h is time t. The time-ordering operator is de�ned as

ˆ̂
T (Â(t)B̂(t′)) = ⎧⎪⎪⎨⎪⎪⎩

Â(t)B̂(t′) if t > t′
B̂(t′)Â(t) if t′ > t (2.29)

= θ(t − t′) Â(t)B̂(t′) + η θ(t′ − t) B̂(t′)Â(t) , (2.30)where η = +1 for bosons and η = −1 for fermions. Note that averages over thermal ensembles in the �nitetemperature formalism are not 
onsidered in this work, and therefore no referen
e to them is made inthis se
tion. An extension of the 
on
epts presented here however is easily possible. A troublesome thingwith expression eq. (2.28) is that it involves the unknown ground-state ∣Ψ0⟩ of an intera
ting Hamiltonian
Ĥ. We assume that the ground-state at time t → −∞ is given by the solvable ground-state ∣−∞⟩ of Ĥ0.Thus the intera
ting ground-state ∣Ψ0⟩ is given by time evolution

∣Ψ0⟩ = S(0,−∞) ∣Φ0⟩ .It is 
onvenient to transform to the intera
tion representation with respe
t to Ĥ0

∣ΨI,Ĥ0(t)⟩ = S(t,−∞) ∣ΨH⟩ = S(t,−∞) ∣−∞⟩
ˆOH(t) = S(−∞, t)ÔI,Ĥ0(t)S(t,−∞)

S(t2, t1) = ˆ̂
T (e−i ∫ t2

t1
dt′ Ĥ1(t′)) .This yields an expression for the time-ordered Green's fun
tion eq. (2.28) for t1 > t2GT

ÂB̂
(t1, t2) = −i ⟨−∞∣S(−∞, t1)ÂI,Ĥ0(t1)S(t1,−∞)S(−∞, t2)B̂I,Ĥ0(t2)S(t2,−∞) ∣−∞⟩⟨−∞∣−∞⟩ .Using S(t1,−∞)S(−∞, t2) = S(t1, t2) and re-introdu
ing the time-ordering whi
h permits us to ex
hangeoperators at di�erent times within it, one obtainsGT

ÂB̂
(t1, t2) = −i ⟨−∞∣S(−∞, t1) ˆ̂T (S(t1,−∞)ÂI,Ĥ0(t1)B̂I,Ĥ0(t2)) ∣−∞⟩

⟨−∞∣−∞⟩ ,where S(−∞, t1) 
an not be pulled inside ˆ̂
T sin
e it is itself not time-ordered, remember −∞ < t2 < t1 < ∞by 
onstru
tion. Expressing ⟨−∞∣ = ⟨∞∣S(+∞,−∞) and 
ombining S(∞,−∞)S(−∞, t1)S(t1,−∞) =

S(∞,−∞) yields an operator whi
h is time-ordered by itself and may be pulled inside the time-ordered
24



Figure 2.6.: The Keldysh 
ontour (
losed-time-
ontour) for systems without initial 
orrelations. Opera-tors are de�ned at a time t and on a bran
h c on the 
omplex 
ontour.produ
t at the 
ost of introdu
ing the state in the distant future ∣+∞⟩GT

ÂB̂
(t1, t2) = −i ⟨+∞∣

ˆ̂
T (S(+∞,−∞)ÂI,Ĥ1(t1)B̂I,Ĥ1(t2)) ∣−∞⟩

⟨+∞∣S(+∞,−∞) ∣−∞⟩ . (2.31)The way the time-dependent part of the Hamiltonian Ĥ1(t) was introdu
ed it is adiabati
ally swit
hedon and o� again. We therefore assume that the system �nds its way ba
k to the ground-state of Ĥ0at times t → +∞ and we have ∣+∞⟩ = eiφ ∣−∞⟩. This relation is made rigorous in the Gell-Mann andLow theorem [87℄, whi
h is satis�ed in this 
ase (Ĥ(t → +∞) = Ĥ(t → −∞) = Ĥ0, plus adiabati
 time-dependen
e in-between). Therefore one ends up withGT

ÂB̂
(t1, t2) = −i ⟨−∞∣

ˆ̂
T (S(+∞,−∞)ÂI,Ĥ1(t1)B̂I,Ĥ1(t2)) ∣−∞⟩

⟨−∞∣S(+∞,−∞) ∣−∞⟩ , (2.32)whi
h serves as a starting point for perturbation theory.At this point the non-equilibrium 
ase starts to deviate. In the non-equilibrium situation it is notreasonable that by adiabati
ally swit
hing o� the intera
tion, the system will return to its non-intera
tingground-state. This means ∣+∞⟩ = eiφ ∣−∞⟩ does not hold any longer and we are left without knowledgeof the �nal state. This for
es us to take the unknown ∣+∞⟩ out of eq. (2.31) to obtainGT

ÂB̂
(t1, t2) = −i ⟨−∞∣S(−∞,+∞) ˆ̂T (S(+∞,−∞)ÂI,Ĥ1(t1)B̂I,Ĥ1(t2)) ∣−∞⟩

⟨−∞∣S(−∞,+∞)S(+∞,−∞) ∣−∞⟩ ,where again S(−∞,+∞) 
an not be pulled inside the time-ordering. The 'tri
k' here is to introdu
e theso-
alled 
losed-path or Keldysh- 
ontour (see �g. 2.6) and de�ne ea
h obje
t not only at a 
ertain time tbut also on a 
ertain bran
h of the 
ontour c = {+,−}. Note that this 
ontour is valid for systems withoutinitial 
orrelations, where t0 may be taken to −∞. Extending the time-ordering operator ˆ̂
T eq. (2.30) tothe 
ontour-ordering operator ˆ̂

Tc

ˆ̂
Tc (Â(t, c)B̂(t′, c′)) = ⎧⎪⎪⎨⎪⎪⎩

Â(t, c)B̂(t′, c′) if {t, c} > {t′, c′}
B̂(t′, c′)Â(t, c) if {t′, c′} > t, c} ,whi
h orders operators along the 
ontour, it is possible again to pull everything inside the orderingGTc

ÂB̂
(t1, c1; t2, c2) = −i ⟨−∞∣

ˆ̂
Tc (S(−∞,−;+∞)S(+∞;−∞,+)ÂI,Ĥ1(t1,+)B̂I,Ĥ1(t2,+)) ∣−∞⟩

⟨−∞∣S(−∞,−;+∞)S(+∞;−∞,+) ∣−∞⟩ , (2.33)This means one lets the system evolve in the forward time dire
tion from − ∣∞⟩ to ∣+∞⟩ and then ba
kfrom ∣+∞⟩ to ∣−∞⟩ in the ba
kwards time dire
tion. Thereby all intera
tions are unwind. This essentially
omes along with a doubling of degrees of freedom sin
e every operator a
ting at time t now a
ts at time
t on 
ontour c. Eq. (2.33) de�nes the four-
omponent single-parti
le Green's fun
tion in Keldysh spa
e
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G++(t1, t2) = GTc

cc�(t1,+; t2,+) = GT (t1, t2) = −i < ˆ̂
T (c(t1)c�(t2)) > time-ordered Green's fun
tion,G+−(t1, t2) = GTc

cc�(t1,+; t2,−) = G<(t1, t2) = −η i < c�(t1)c(t2) > lesser Green's fun
tion, (2.34)G−+(t1, t2) = GTc

cc�(t1,−; t2,+) = G>(t1, t2) = −i < c(t1)c�(t2) > greater Green's fun
tion, (2.35)G−−(t1, t2) = GTc

cc�(t1,−; t2,−) = GT̄ (t1, t2) = −i < ˆ̄̂
T (c(t1)c�(t2)) > anti-time-ordered Green's fun
tion .These four Green's fun
tions are not linearly independent, sin
eGT +GT̄ = G> +G< = GK .This allows performing a rotation in Keldysh-spa
e

(GT G<G> GT̄)↦ (GR GK

0 GA) = G̃ , (2.36)where the rotated form is denoted G̃ and will be used in this work. The individual Green's fun
tions
ontained in G̃ areGR
cc�(t1, t2) = 1

2
(GT −GT̄ −G< −G>) = θ(t1 − t2) (G> −G<) retarded Green's fun
tion,GA

cc�(t1, t2) = 1

2
(GT −GT̄ +G< −G>) = θ(t2 − t1) (G< −G>) advan
ed fun
tion,GK

cc�(t1, t2) = 1

2
(GT +GT̄ +G< +G>) = G< +G> Keldysh Green's fun
tion . (2.37)Sin
e the greater- and the lesser- Green's fun
tion G>/ G< are by de�nition anti-hermitian (see eq. (2.35)and eq. (2.34)), two handy relations follow GA = (GR)�GK = −(GK)� . (2.38)In the next se
tion the marriage of VCA with the 
on
epts presented here will be des
ribed.2.4.2. Non-equilibrium VCASCIn non-equilibrium VCA [25℄ the single-parti
le Green's fun
tion is 
al
ulated in Keldysh-spa
e G̃ eq. (2.36).This means that it is in general a matrix in Keldysh, site, spin, . . . indi
es and a fun
tion of energy ω andwaveve
tor k. Sin
e the original formulation of VCA based on the grand potential is not well de�ned inthe non-equilibrium situation, here the alternative- self-
onsistent formulation presented in se
. 2.3.4 willbe used.One may rewrite eq. (2.27) in a more formal way in the non-equilibrium 
ase

∫
∞
−∞

dω

2π
tr τ̂1 ∂ (G̃′0)−1

∂x′
(G̃′ − G̃) = 0 ,Where τ̂1 is the �rst Pauli matrix in Keldysh spa
e. Having the variational 
riterion and the foundationsof Keldysh-Green's fun
tions at hand it is straight forward to apply non-equilibrium VCA. Consider asystem 
onsisting of an intera
ting region and a non-intera
ting environment of in�nite size. At time

t → −∞ these two 
omponents are de
oupled until at a 
ertain time the 
oupling is swit
hed on. Weare interested in the long-time, steady-state behavior of the 
oupled system. As in the non-equilibrium
ase, the referen
e-systems (i.e. intera
ting 
luster and non-intera
ting environment) have to be exa
tlysolvable. The retarded Green's fun
tion is then 
al
ulated as in the equilibrium 
ase, from whi
h theadvan
ed Green's fun
tion may be obtained by taking the hermitian-
onjugate. The Keldysh part of theGreen's fun
tion for fermions, before 
oupling to the environment is given byGK(ω,µ) = (GR(ω)−GA(ω)) (1 − 2pFD(ω,µ,β)) , (2.39)where pFD(ω,µ,β) is the Fermi-Dira
 distribution eq. (D.1). The last part of this equation may berewritten in the zero temperature 
ase as (1 − 2pFD(ω,µ,β)) = sign(ω − µ). Note that this is the onlyquantity in whi
h the 
hemi
al potential µ enters. This pro
edure will be illustrated by the parti
ularexample of a quantum dot in 
h. 5. It is interesting to mention here, that the authors of ref. [75℄ found that26



the short-time dynami
s of a non-equilibrium system are remarkably well 
aptured within CPT. Howeverthe long-time behavior 
annot be expe
ted to 
ome out reasonable within CPT, sin
e the system does notknow that it is subje
ted to a non-equilibrium situation. The self-
onsisten
y within VCASC introdu
esthis 
ru
ial and ne
essary feedba
k. In the following the 
al
ulation of several important quantities likesingle-parti
le expe
tation values, the steady-state 
urrent-density and the e�e
tive-distribution fun
tionshall be outlined.Stati
 single-parti
le expe
tation valuesIn this paragraph an expression for single-parti
le expe
tation values is presented to be used in the self-
onsisten
y 
ondition se
. 2.3.4. The expe
tation value is expressed in terms of the Keldysh Green'sfun
tion as follows
< c�icj > = 1

2
(< c�icj > + < c�icj >)

=
1

2
< c�icj − cjc�i + δij >

=
δij

2
−
i

2
(i < c�icj > −i < cjc�i >)

=
δij

2
−
i

2
(G<ji +G>ji)

=
δij

2
−
i

2
GK

ji(t, t)
=
δij

2
+
1

2
∫
∞
−∞

dω

2π
ImGK

ij (ω) .Here the 
orrelator was �rst symmetrized and re-expressed in terms of lesser- and greater- Green's fun
tion(eq. (2.34) and eq. (2.35)) in line four. Then those were 
ombined to yield the equal-time Keldysh Green'sfun
tion eq. (2.37) in line �ve. Finally an equal-time Fourier-transformation was applied to express theKeldysh Green's fun
tion in the energy domain. Note that upon numeri
ally evaluating this integral a
onvergen
e study in 0+ is absolutely ne
essary. Too small values of 0+ will yield zero for the 
orrelatorwhile too large values will yield arbitrarily wrong numbers. The problem is that GK does not possess theanalyti
 properties of a Green's fun
tion (like GR) and behaves rather like a spe
tral fun
tion. Thereforerewriting this integral as a 
omplex 
ontour integral as in app.D is not possible.Next an expression for the steady-state 
urrent density will be presented.Steady-state 
urrent densityHere a representation for the steady-state 
urrent density in terms of Keldysh-Green's fun
tions in sitespa
e is given. For a detailed derivation see ref. [81℄ or ref. [76℄. We 
onsider a general Hubbard-likeintera
ting model system. The Hamiltonian is given by
Ĥ =∑

i

ǫin̂i +∑
i

Uin̂
↑

i n̂
↓

i − ∑
<ij>/{l,r}

tijc
�
icj − tlr (c�l cr + c�rcl) ,where l and r are the two sites between whi
h we intend to measure the 
urrent. The notation of otherquantum numbers is suppressed here. The 
urrent-density from site l to site r is given by the timeevolution of the expe
tation value of the total parti
le-number to the left of site l

j = −e < ˙̂
NL(t) >

= − < i [Ĥ,∑
i≤l

n̂i] >
= −i∑

i≤l
∑
m

< [tm+1m c
�
m+1cm + tmm+1 c�mcm+1, n̂i] >

= −i∑
i≤l

< ti−1i c�ici−1 − tii+1 c�i+1ci + tii+1 c�ici+1 − ti−1i c�i−1ci >
= −i( l

∑
i=1

tii+1 < c�ici+1 − c�i+1ci > − l−1
∑
i=1

tii+1 < c�ici+1 − c�i+1ci >) , (2.40)where in the �rst line the o

urren
e of the ele
troni
 
harge e was indi
ated, whi
h is then set to one inthe spirit of this do
ument. Note that also the expli
it dependen
e on time t, indi
ated in the �rst line27



is dropped in favor of a 
onvenient notation. It is important to keep in mind that all operators c and
c� a
t at the same time t here. The last line may be obtained sin
e n̂l 
ommutes with the rest of theHamiltonian and we are interested in the 
urrent to the right! This 
an be seen from the 
ommutators

[n̂i, c
�
j] = c�icic�j − c�jc�ici = c�icic�j + c�ic�jci
= c�icic�j + c�i (δij − cic�j) = c�iδij (2.41)

[n̂i, cj] = c�icicj − cjc�ici = c�icicj − (δij − c�icj) ci
= c�icicj − δijci − c�icicj = −ciδij (2.42)

[n̂i, n̂j] = [n̂i, c
�
j]cj + c�j[n̂i, cj] = c�iδijcj − c�jciδij = 0 , (2.43)whi
h follow from the elementary fermioni
 
ommutators

{ci, c�j} = δij , {ci, cj} , = 0 {c�i , c�j} = 0 , (2.44)and the relations
[â, b̂ĉ] = [â, b̂]ĉ + b̂[â, ĉ] = {â, b̂}ĉ − b̂{â, ĉ} . (2.45)Here [â, b̂] = âb̂ − b̂â denotes the 
ommutator and {â, b̂} = âb̂ + b̂â the anti-
ommutator. Pro
eeding withthe evaluation of the sums left in eq. (2.40) (, whi
h partially 
an
el,) we end up with an expression forthe 
urrent

j = −i tlr < c
�
l
cr − c�rcl >

= −i
tlr

2
< c�

l
cr − crc

�
l
+ δlr − c�rcl + clc�r − δrl >

= −
tlr

2
(i < c�

l
cr > −i < crc

�
l
> −i < c�rcl > +i < clc�r >)

= −
tlr

2
(G<rl +G>rl −G<lr −G>lr)

= −
tlr

2
(GK

rl −GK
lr )

= −
tlr

2
(ReGK

rl + iImGK
rl −ReGK

lr − iImGK
lr )

= −
tlr

2
(−ReGK

lr + iImGK
lr −ReGK

lr − iImGK
lr )

= tlrReGK
lr (t, t)

= tlr ∑
σ
∫
∞
−∞

dω

2π
ReGKσ

lr (ω) . (2.46)Here the operators were symmetrized in the se
ond line to obtain an expression for the 
urrent in termsof the Keldysh Green's fun
tion instead of lesser Green's fun
tions. In the third line the de�nition of thelesser- and greater- Green's fun
tions (eq. (2.34) and eq. (2.35)), and in the fourth line the de�nition ofthe Keldysh Green's fun
tion eq. (2.37) were used. In the sixth line eq. (2.38) was used to ex
hange the
r, l labels of the Keldysh Green's fun
tion. From the se
ond-last to the last line a Fourier transformationof the equal-time Keldysh Green's fun
tion to energy spa
e was done. In the last line the tra
e over spin
omponents was added, whi
h has to be exe
uted to 
al
ulate the total 
urrent of all spin �avors. In VCAeq. (2.46) may be evaluated be
ause GK

lr 
an be dire
tly obtained. One may also use the symmetrizedform
jij =

tij

2
∑
σ
∫
+∞
−∞

dω

2π
Re (GKσ

ij (w) −GKσ
ji (w)) . (2.47)The 
ontinuity equation is ful�lled for that relation, but numeri
al simulations show that it will beviolated if the 
urrent is 
al
ulated with a �nite numeri
al broadening 0+. Therefore it is very importantto set 0+ ≡ 0 when obtaining Green's fun
tions for 
urrent 
al
ulations.To round up the dis
ussion about non-equilibrium properties, the e�e
tive distribution fun
tion is de�nedin the next paragraph.
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E�e
tive distribution fun
tionIn equilibrium the Keldysh 
omponent of the Green's fun
tion is given by eq. (2.39). One may de�ne ane�e
tive distribution fun
tion in non-equilibrium
pe�(ω,µ) = 1

2
−

GK(ω,µ)
2 (GR(ω) −GA(ω)) . (2.48)Note that GR,A,K are still matri
es in site, spin, . . . spa
e and the above relation is not well de�ned. Ingeneral the e�e
tive distribution fun
tion 
an not be expe
ted to be the same for ea
h element after the
oupling to the environment has been swit
hed on. In this work three parti
ular de�nitions are explored

p
(1)e� (ω,µ) = 1

2
−

GK
ff(ω,µ)

2 (GR
ff(ω) −GA

ff(ω))
p
(2)e� (ω,µ) = 1

2
−

tr (GK
ij (ω,µ))

2tr (GR
ij(ω) −GA

ij(ω))
p
(3)e� (ω,µ) = 1

2
−

∑
ij

(GK
ij (ω,µ))

2∑
ij

(GR
ij(ω) −GA

ij(ω)) .The �rst option is taking a parti
ular site (i.e. the 
orrelated site when dealing with quantum-dotsystems), the se
ond option may be to tra
e over the Green's fun
tion matri
es in site/spin spa
e anda third to average over all matrix elements. They all show qualitatively the same pi
ture, although the�rst version gives the best result. Remarkably the imaginary part of the e�e
tive distribution fun
tionstays almost zero as it should be, but 
an not be expe
ted from the de�nition. Results for the e�e
tivedistribution fun
tion are obtained in se
. 4.2.This 
on
ludes the 
hapter on the methods used throughout this thesis. In the next 
hapter, resultsobtained for the SIAM will be presented.
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3. The single impurity Anderson model inequilibriumThe single impurity Anderson model (SIAM) is one of the most widely studied models in 
ondensedmatter physi
s. It was introdu
ed to des
ribe the e�e
ts of magneti
 transition metal impurities im-mersed in metalli
 hosts [2, 88℄. Originally it was derived to 
apture remarkable physi
al propertieslike the resistan
e minimum [5, 3℄ at a spe
i�
 temperature s
ale TK [89℄ or the anomalous magneti
sus
eptibility and spe
i�
 heat of su
h materials. Quantum impurity models have further been appliedto understand the adsorption of atoms onto surfa
es [90, 91, 92℄. In addition, they are of theoreti
alinterest as solvable models of quantum �eld theories [6, 93℄. A renewed interest in understanding and 
al-
ulating dynami
 quantities of these models was 
reated with the advent of dynami
al mean-�eld theory(DMFT) [15, 12, 13℄. In the foundations of this theory quantum impurity models have to be solved asan auxiliary problem. The behavior of various magneti
 phenomena and the remarkable bran
h of heavyfermion physi
s is des
ribed by strongly 
orrelated quantum impurity models [94, 95℄, like the periodi
Anderson impurity model.As one 
an imagine, be
ause of the enormously large area of appli
ation, a wide range of methods and ap-proximations have been suggested for the solution of the SIAM. They however prove to be a very deli
atesubje
t be
ause standard perturbative approa
hes diverge [89℄. Prominent te
hniques in
lude a self 
onsis-tent perturbative expansion [96℄ and Bethe Ansatz te
hniques [97℄ for one dimensional problems. The lowenergy physi
s are very well des
ribed by numeri
al renormalization group (NRG) [98℄, fun
tional renor-malization group (FRG) [99, 100, 101℄ and density matrix renormalization group (DMRG) [102, 103, 104℄.There is a range of slave parti
le methods [105, 106℄ available as well as methods based on Hubbard'sX-operator te
hnique [37, 107℄ and 
al
ulations using variational wavefun
tions [90℄. Valuable physi-
al insight has been gained by using equation of motion te
hniques applying di�erent approximations
hemes [81℄. Quantum Monte Carlo (QMC) methods in general su�er from the sign problem for this
lass of models [19℄. Early results were nevertheless a
hieved for example in ref. [108℄. For moderatesystem sizes the Hirs
h-Fye QMC [109℄ algorithm has proven to a
hieve good results. In the past yearsdi�erent approa
hes to 
ontinuous time QMC [19℄ have been applied very su

essfully to solve quantumimpurity models espe
ially in appli
ation with DMFT. In this 
ontext exa
t diagonalization methodshave been used to solve small systems [110℄.As of today some limits of quantum impurity models are understood with great pre
ision but there ap-pear several gaps to be bridged. The low energy properties of these models are reprodu
ed very wellby renormalization group based approa
hes. These approa
hes in general have trouble to 
apture thehigh energy parts of the spe
trum. The same may be said about QMC methods whi
h if appli
able yielddynami
 quantities in imaginary time. The analyti
 
ontinuation to the real energy axis is ill 
ondi-tioned. Spe
tra obtained by for example the maximum-entropy method [20, 21℄ have a large un
ertaintyfor higher energies. Exa
t diagonalization methods, in prin
iple, grant a

ess to low as well as highenergy parts of the spe
trum at the same time. Due to the prohibitively large Hilbert spa
e however onlysmall systems (about ten to twenty sites) may be treated with this method, whose low-energy behavioris expe
ted to deviate from the one of the in�nite latti
e. Nevertheless, the advantage 
onsists in the fa
tthat the spe
tral properties may be determined dire
tly on the real energy axis. Besides the issue of thelow energy s
ale, also the �exibility to adapt to various impurity 
on�gurations and geometries is limitedin most methods.Here, 
luster perturbation theory (CPT) [22, 23℄ and the variational 
luster approa
h (VCA) [24, 65, 66℄are applied to the single impurity Anderson model. These 
luster methods attempt at bridging the gapbetween diagrammati
 approa
hes and exa
t diagonalization. In 
ontrast to QMC based methods, dy-nami
 quantities may be evaluated dire
tly on the real energy axis. The 
omputational 
ost of performinga CPT/VCA 
al
ulation is moderate, i.e. of the order of standard exa
t diagonalization. We will showthat these methods reprodu
e important features of the low energy part as well as of the high energy partof the spe
trum. The great �exibility and versatility of the method allows for treatment of all sorts ofimpurity 
on�gurations in any dimension. The CPT/VCA results for the SIAM presented in this 
hapterhave already been published by us in a slightly less exhaustive manner in ref. [16℄.We start out by de�ning the SIAM. 30



3.1. The single impurity Anderson modelIn real spa
e the SIAM is de�ned by the model Hamiltonian
ĤSIAM = Ĥ
ondu
tion + Ĥimpurity + Ĥhybridization . (3.1)A tight binding band of non-intera
ting ele
trons with nearest neighbor hopping ⟨i, j⟩ is des
ribed by
ĤL
ondu
tion = ǫs L

∑
i

∑
σ

c
�
iσ ciσ − t ∑

⟨i, j⟩σ
c
�
iσ cjσ , (3.2)where ǫs is the on-site energy of the parti
les and t is the overlap integral between neighboring sites. Theoperators c�iσ and ciσ, respe
tively, 
reate and annihilate ele
trons on site i with spin σ. The parameter

L is taken to be in�nity and is introdu
ed here for 
onvenient notation in later 
hapters where thisHamiltonian will be de
omposed in real spa
e. The impurity Hamiltonian 
onsists of a single site withlo
al Coulomb repulsion U ,
Ĥimpurity = ǫf ∑

σ

f �
σ fσ +U n̂

f
↑
n̂
f
↓
, (3.3)with f �

σ 
reating an ele
tron with spin σ and on-site energy ǫf lo
ated at the impurity. The parti
lenumber operator is de�ned as n̂f
σ = f

�
σ fσ. Finally the 
oupling between the non-intera
ting bath orbitalsand the impurity is given by

Ĥhybridization = −V ∑
σ

(c�
Iσ

fσ + f
�
σ cIσ) , (3.4)where V is the hybridization matrix element between the free ele
troni
 site I ∈ [1, L] and the impurity(see �g. 3.2 for illustration).The Anderson width ∆ is de�ned as

∆ ≡ π V 2 ρs(ǫF = 0) = V 2

t
, (3.5)where, for simpli
ity, we have taken ∆ at the 
enter of the bath density of states. The lo
al densityof states of the 
ondu
tion ele
trons ρs(0) is given for the model de�ned in eq. (3.2) by ρs(0) = 1

π t(see eq. (3.23)). In the forth
oming dis
ussion we refer to the parti
le-hole symmetri
 
ase when we set
ǫf = −U

2
.A �rst impression of the behavior of this model may be obtained by 
onsidering the 
ondu
tion ele
tronsand the impurity in isolation (V = 0). This atomi
 limit then 
onsists of an s-ele
tron Fermi sea withFermi energy ǫF and a single state of the f-ele
trons. For ǫf < ǫf +U and ǫf < ǫF , the impurity is doublyo

upied and for ǫF < ǫf + U and ǫF < ǫf , the impurity is uno

upied. The interesting lo
al momentregion arises in a parameter regime where the impurity is singly o

upied.In dis
ussing the physi
s of an impurity one often resorts to an e�e
tive Hamiltonian whi
h fo
uses onthe essential spin �u
tuations (the Kondo Hamiltonian) and then applies renormalization group ideas toharvest its physi
s. A dis
ussion of those important ideas is beyond the s
ope of this work and may befound for example in ref. [111, 89℄.The detailed dis
ussion of this model will be started by a mean �eld analysis in se
. 3.2, to get a �rstimpression of the physi
s of this model. Then the two-site problem, the Anderson mole
ule, will bepresented in se
. 3.3.3. It provides di�erent kinds of insights into the behavior of the SIAM. The basi
results of this 
al
ulation will be 
arried over to be used as a 
luster perturbation theory (CPT) /variational 
luster approa
h (VCA) referen
e system in a semi-analyti
al way. Finally we will turn to thedis
ussion of the CPT/VCA results.3.2. Mean �eld analysis of the Single Impurity Anderson ModelIt is instru
tive to attempt a mean �eld analysis of the SIAM. This analysis was �rst undertaken byAnderson [2℄. The 
al
ulation, ornated with some helpful explanations and �gures, is also available inthe overview arti
le by Coleman [112℄.To pro
eed analyti
ally with the SIAM, a Hartree-type mean �eld de
oupling is undertaken. Note thatin Hubbard-type models, with lo
al intera
tions only, the ex
hange part is always zero. The four fermion
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part of the Hamiltonian eq. (3.1) is split by the pres
ription
(∆n̂f

σ) (∆n̂
f−σ) = (n̂f

σ− < n
f
σ >)(n̂f−σ− < nf,−σ >)

= n̂f
σn̂

f−σ − n̂f
σ < n

f−σ > −n̂f−σ < nf,σ > + < nf
σ >< n

f−σ >
!= 0 .Introdu
ing the order parameters φσ ∶=< nf

σ > the intera
tion part of Ĥimpurity may be re
ast in a quadrati
form
ĤMFimpurity = ǫf∑

σ

f �
σfσ +U (n̂f

σφ−σ + n̂
f−σφσ − φσφ−σ) .In a higher order equation of motion treatment of this model, it may be seen expli
itly that this typeof mean �eld treatment negle
ts �u
tuations in the f o

upan
y altogether. As we will see later this isa terrible approximation for this model, sin
e the main physi
s at low temperatures 
omes exa
tly fromthese �u
tuations.The stru
ture of the following 
al
ulation is as follows. At �rst the bare f-ele
tron propagator gσff(ω) willbe determined by the equation of motion te
hnique and so will the s-ele
tron propagator gσss(ω). The self-energies arising due to the hybridization Σhybridization and the Coulomb intera
tion ΣU are determined.Note that Σhybridization, stri
tly speaking, is not a true self-energy be
ause it arises from one-parti
leterms. These four ingredients will be put together, using Dyson's equation, to generate the mean �eldresult for the f-ele
tron propagator.The bare f-ele
tron Green's fun
tion is given by

ω gσff(ω) = ω << fσ;f �
σ >>ω =< {fσ, f �

σ} > + << [fσ, Ĥf];f �
σ >>ω

= 1+ << [fσ, ǫf∑
σ

f �
σfσ];f �

σ >>ω

= 1 + ǫf << [fσ, n̂f
σ];f �

σ >>ω
= 1 + ǫf << fσ;f �

σ >>ω

gff(ω) = 1

ω − ǫf
. (3.6)In the third line relation eq. (2.42) was applied. A similar 
al
ulation yields the bare s-ele
tron Green'sfun
tion

gss(ω) = 1

ω − ǫk
. (3.7)The Coulomb self-energy ΣU is given by

ΣσU = Uφ−σ . (3.8)The hybridization self-energy Σhybridization is given by
Σhybridization =∑

k

∣Vk∣2
ω − ǫk

= ∫
∞
−∞

dǫ

π

π∑
k

∣Vk∣2δ(ǫ − ǫk)
ω − ǫ

.Assuming that V is lo
al in real spa
e, it is a 
onstant in k spa
e and 
an be taken out of the sum.Usually this expression is further simpli�ed by approximating the 
ondu
tion ele
tron density of states
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∑
k

δ(ǫ − ǫk) by its value at the Fermi energy. Then the approximate self-energy reads
Σhybridization(ω + i0+) ≈ ∫ D

−D
dǫ

π

∣V ∣2πρ(ǫ)
ω + i0+ − ǫ

(3.9)
=
∆

π
∫

D

−D
dǫ

1

ω + i0+ − ǫ

=
∆

π
(iπδ(ω − ǫ) sign (0+) +ReP∫ D

−D
dǫ

1

ω − ǫ
)

=
∆

π
(iπ +Re ln(ω +D

ω −D
))

≈
∆

π
(iπ + 2 ω

D
+O( ω

D
)3) .D denotes the half bandwidth 2t. For the evaluation of the integral in the third line in the sense ofa distribution the well known result of Sokhozky-Plemelj was used. In the last line the logarithm wasexpanded for small ω

D
. The �nal approximate expression for the self-energy valid at low energies/wide-bands therefore is

Σhybridization(ω + i0+) ≈ ∆

πt
ω + i∆ ≈ i∆ . (3.10)The real part is small and may be ignored or put into a small renormalization of ǫf . Approximationeq. (3.10) is good in the Kondo regime, where the spe
trum is peaked at the Fermi energy only. Thisapproximation breaks down, when the intera
tion strength ex
eeds a 
riti
al value Uc and the spe
trumsplits into two peaks. Having all ne
essary quantities at hand we pro
eed by �nding an expression forthe full Green's fun
tion Gσ

ff(ω) of the f-ele
trons. Using Dyson's equation, Einstein's 
onvention forsummation, and auxiliary indi
es i and j whi
h run over s and f ea
h, we �nd
Gσ

ff(ω) = gff(ω) + gfi(ω)Tij(ω)Gjf (ω)
= gff(ω) + gfs(ω)Tss(ω)Gsf(ω)
+ gfs(ω)Tsf(ω)Gff(ω)
+ gff(ω)Tfs(ω)Gsf(ω)
+ gff(ω)Tff(ω)Gff(ω) .The o�-diagonal free Green's fun
tions gfs(ω) are zero as well as the element Tss(ω). So we have

Gσ
ff(ω) = gff(ω) + gff(ω)Tfs(ω)Gsf(ω) + gff(ω)Tff(ω)Gff(ω) . (3.11)To pro
eed we need the o� diagonal Green's fun
tion Gsf (ω) whi
h is obtained in an analogous way

Gσ
sf(ω) = gsf(ω) + gsi(ω)Tij(ω)Gjf (ω)

= gss(ω)Tsf(ω)Gff(ω) . (3.12)Inserting eq. (3.12) into eq. (3.14) we obtain the full f Green's fun
tion
Gσ

ff(ω) = gff(ω) + gff(ω)Tfs(ω)gss(ω)Tsf(ω)Gff(ω) + gff(ω)Tff(ω)Gff(ω)
=
⎛⎜⎜⎜⎝
1 − gff(ω)Tfs(ω)gss(ω)Tsf(ω)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Σhybridization −gff(ω)Tff(ω)´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
ΣU ⎞⎟⎟⎟⎠

−1

gff(ω) . (3.13)Inserting the expressions for the free Green's fun
tions eq. (3.6) and eq. (3.7) and for the self-energieseq. (3.10) and eq. (3.8) into eq. (3.13) we 
an write
Gσ

ff(ω) = 1

ω − ǫf −Σhybridization −ΣU
=

1

ω − (ǫf +Uφ−σ) + i∆ . (3.14)
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From the result eq. (3.14) one 
an now pro
eed and evaluate a quantity of interest, the density of statesof the f-ele
trons
ρσf (ω) = − 1

π
ImG

σ,ret
ff
(ω)

= −
1

π

∆

(ω − (ǫf +Uφ−σ))2 + (∆)2 . (3.15)To determine the mean �eld parameters self 
onsistently one may evaluate the f parti
le numbers perspin nf
σ

nf
σ = ∫

0

−∞
dωρσf (ω)

= −
∆

π
∫

0

−∞
dω

1

(ω − (ǫf +Uφ−σ))2 + (∆)2
= −

1

π
∫
− (ǫf +Uφ−σ)

∆

−∞
dχ

1

χ2 + 1

=
1

π
ar

ot( ǫf +Uφ−σ

∆
) . (3.16)It is 
onvenient to introdu
e an o

upan
y nf =< ∑

σ
nf
σ > and a magnetization Mf =< n

f
↑
− nf

↓
>. Themean �eld equations then be
ome

nf =
1

π
∑
σ

ar

ot(ǫf + U
2
(nf − σMf)
∆

) (3.17)
Mf =

1

π
∑
σ

σar

ot( ǫf + U
2
(nf − σMf)
∆

) (3.18)The mean �eld equations eq. (3.18) enable us to 
al
ulate the density of states of the f-ele
trons eq. (3.14)expli
itly. To do so the following iteration may be applied:1. Guess starting order parameters φ(0)
↑

and φ
(0)
↓

.2. Cal
ulate the density of states ρσ,(i)
f

for ea
h spin by using equation eq. (3.15).3. Cal
ulate the o

upation number n(i)
f

and the magnetization M
(i)
f

using equation eq. (3.18).4. Che
k if the n
(i)
f
= n(i−1)

f
and M

(i)
f
= M (i−1)

f
. If the o

upation number and magnetization is not
hanging any more within a 
ertain a

ura
y the iteration has 
onverged. If not start again from1) with new φ

(i)
↑
= 1

2
(n(i)

f
+M (i)

f
) and φ

(i)
↓
= 1

2
(n(i)

f
−M (i)

f
).It should be mentioned that the mean �eld self-
onsisten
y 
onverges in all parameter regions. The
onvergen
e is slowest in the vi
inity of the 
riti
al intera
tion strength Uc. Starting order parameters of

< nf
↓
>= 0.8 and < nf

↑
>= 0.2 as well as a mixing s
heme for the order parameter

Φi = (1 − χ)Φi−1 + χΦsuggested
i ,where the mixing parameter χ was taken to be 0.75, to obtain 
onvergen
e in all parameter regions,within ten to twenty iterations (see �g. 3.1 (mid left)).One more quantity worth investigating is the 
riti
al intera
tion strength Uc for whi
h a lo
al momentwill form. We set the magnetization to Mf = 0+ in eq. (3.18) and repla
e the se
ond equation with itsderivative with respe
t to Mf .

nf =
2

π
ar

ot⎛⎝ ǫf + Uc

2
nf

∆

⎞⎠
1 =

Uc

∆π

1

1 + ( ǫf+Uc
2

nf

∆
)234



Rewriting the �rst of these equations
ǫf + Uc

2
nf

∆
= 
ot(πnf

2
)and inserting into the se
ond yields

Uc = π∆(1 + 
ot(πnf

2
)) (3.19)The impurity density of states ρσf (ω) for di�erent intera
tion strengths U , in the parti
le-hole symmetri

ase, is examined in the mean �eld approximation. The density of states of the s-ele
trons was taken froma semi-in�nite, one-dimensional, tight-binding 
hain eq. (3.23). The hybridization used was ∆ = 0.1. Thisresembles the setup used in the more sophisti
ated CPT/VCA treatment of the SIAM in later se
tions.The mean �eld spe
trum undergoes an unphysi
al 
rossover to a magneti
ally polarized solution at

Uc

∆
= π(1 + 
ot (π

2
)) = π (see eq. (3.19)). This observed splitting into spin up and spin down 
omponentsis unphysi
al and 
an be tra
ed ba
k to be a remnant of the mean �eld approximation. The spe
tra,indi
ating a phase-transition, 
aused by a zero-dimensional impurity are therefore unphysi
al. To make itexpli
it, the mean �eld treatment predi
ts a quantum phase transition, whi
h is not there. Nevertheless a
omparison of the, often applied, approximation for the hybridization self-energy Σhybridization eq. (3.10)with the numeri
ally exa
t expression of Σhybridization eq. (3.9) was undertaken. In �g. 3.1 (bottom left)the impurity density of states is shown as it was obtained applying the approximation eq. (3.10), forvarious values of intera
tion strength U . In �g. 3.1 (bottom right) the same is shown for the numeri
allyexa
t expression of Σhybridization eq. (3.9). It may be observed that as long as the spe
trum 
onsists of asingle peak at the Fermi energy (U < Uc), the results obtained with approximate Σhybridization eq. (3.10)are identi
al to those obtained with the numeri
ally exa
t expression of Σhybridization eq. (3.9). As soon asthe peaks split, the approximate self-energy starts to deviate. A 
omparison of the spe
tra obtained withthe two di�erent treatments of the hybridization self-energy is shown in �g. 3.1 (mid right). Note thatthe sum rule eq. (2.16) is ful�lled for all 
urves although the results obtained with the exa
t hybridizationself-energy have a higher amplitude than those obtained within the approximation. The splitting (gap) ofthe spin up and spin down 
omponents as a fun
tion of intera
tion strength U is shown in �g. 3.1 (top left)for both ways of treating the hybridization self-energy. The order-parameters nf , Mf , < nf

↓
> and < nf

↑
>are visualized in as a fun
tion of intera
tion strength U in �g. 3.1 (top right), using the approximate

Σhybridization as well as the exa
t Σhybridization. The result for a mean �eld 
rossover diagram is shown inse
. 3.3.10 together with the CPT/VCA result. These mean �eld results will be used in se
. 4.5 to get anidea of the non-equilibrium behavior of a quantum dot. Having a rough idea of the physi
s of the SIAMwe pro
eed by a more sophisti
ated treatment of the SIAM in terms of CPT/VCA.3.3. CPT/VCA for the single impurity Anderson modelTo apply this approa
h to the SIAM we start by splitting the physi
al model under 
onsideration intoappropriate pie
es (see �g. 3.2), whi
h will serve as referen
e systems. Here we 
onsider a referen
e system
onsisting of two parts. One part, 
onsisting of a 
luster of size L, whi
h 
ontains the intera
ting impuritysite
Ĥ
luster = ĤL−1
ondu
tion + Ĥimpurity + Ĥhybridization , (3.20)and a se
ond part, the environment, whi
h 
ontains the rest of the 
ondu
tion band

Ĥenvironment = Ĥ∞
ondu
tion . (3.21)The original Hamiltonian may now be rewritten as
ĤSIAM = Ĥ
luster + Ĥenvironment +Tinter . (3.22)Here Tinter is the part of T des
ribing the hopping from 
luster to environment, whi
h is the only termnot in
luded in the referen
e system. For the SIAM the two bare Green's fun
tions G′
luster and G′envneeded for eq. (2.2) may be evaluated separately. Be
ause G′
luster is representable by a dis
rete set ofpoles, the Q-matrix formalism (see se
. 2.2.2) is used. G′env has a bran
h 
ut along the real axis and is notQ-matrix representable. Therefore, for the SIAM, the version of CPT as dis
ussed in se
. 2.1.5 applies.The 
luster Green's fun
tion G′
luster is determined by exa
t diagonalization of eq. (3.20). Open boundary35
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Figure 3.1.: Results obtained by the mean �eld treatment of the SIAM in the parti
le-hole symmetri

ase. The parameters used here were V = 0.3162, ǫs and t = 1. (Top Left) Unphysi
alsplitting of the mean �eld spin up and spin down 
omponents in the density of states as afun
tion of intera
tion strength U . The 
ross marks the analyti
al result for the transitioneq. (3.19). (Top Right) Order parameters as a fun
tion of intera
tion strength U . The resultfor the approximate hybridization self-energy (ΣV is short for Σhybridization) is plotted in
olor, while the result for the exa
t hybridization self-energy is indi
ated in dashed bla
k.(Mid Left) The evolution of the order parameters of a single run using U
∆
= 2. (Mid Right)Single-parti
le spe
trum as a fun
tion of intera
tion strength U . A 
omparison for resultsobtained with the approximate and the exa
t hybridization self-energy is shown. Again theexa
t results are plotted in bla
k. (Bottom Left) Single-parti
le spe
trum as a fun
tion ofintera
tion strength U obtained with the approximate hybridization self-energy. (BottomRight) Single-parti
le spe
trum as a fun
tion of intera
tion strength U obtained with theexa
t hybridization self-energy. 36



Figure 3.2.: Illustration of the single impurity Anderson model. The model 
onsists of a 
hain of non-intera
ting sites with nearest neighbor hopping t and on-site energy ǫs. An impurity sitemay be added to one of the sites representing a se
ond orbital with on-site energy ǫf andlo
al Coulomb intera
tion U . This orbital hybridizes with the 
ondu
tion ele
trons via ahybridization matrix element V . The in�nite non-intera
ting 
hain is trun
ated at some site
L yielding a 
luster of variable size in
luding the impurity site and a 
hain of non-intera
tingsites. These de
omposed systems are in the end 
oupled via a hopping element t.
onditions are used throughout this work. The Lan
zos algorithm is applied to �nd the groundstate anda Band Lan
zos method to obtain the Green's fun
tion as des
ribed in se
. 2.2. The Green's fun
tionof the environment G′env is given analyti
ally by the Green's fun
tion of a semi-in�nite tight binding
hain [113℄ genv,i,j(z) = f0,i−j(z)− f0,i+j(z) (3.23)

fi,j(z) = −i sign(Imz)√
4∣t∣2 − (z − ǫs)2

⎛⎝ − z − ǫs
2∣t∣

+ i sign(Imz)
¿ÁÁÀ

1 − (z − ǫs
2∣t∣ )

2⎞⎠
∣i−j∣ ,where fi,j is the retarded / advan
ed Green's fun
tion of the in�nite tight binding 
hain if the imaginarypart of ω is positive / negative. It should be noted that the density of states obtained from this Green'sfun
tion has a semi-
ir
ular shape and may be expressed as

ρs(ω) = − 1
π
Im (genv,i,j(ω + i0+)) =Re⎛⎝√4t2 − (ω − ǫs)2

2πt2
⎞⎠ . (3.24)The CPT/VCA 
al
ulations are for numeri
al 
onvenien
e performed with hopping t = 1 and hybridization

V = 0.3162 whi
h yields ∆ = 0.1. However we plot all quantities in units of ∆. The on-site energy ǫs istaken to be zero unless expli
itly stated.First we dis
uss the 
hoi
e of the variational parameters used in VCA for this model (see se
. 3.3.1). Thein�uen
e of the position of the impurity within the �nite 
luster part of the referen
e system is explainedin se
. 3.3.2. We start our dis
ussion of the CPT/VCA results in se
. 3.3.3 by investigating the two-siteproblem (Anderson mole
ule) analyti
ally and performing a semi-analyti
 CPT/VCA. This serves alsothe purpose of making the reader familiar with the CPT/VCA pro
edure using a small referen
e system,where all quantities may be expressed on paper. Then the question of dimensionality of the model isdis
ussed in se
. 3.3.6 by presenting results for an impurity embedded in a two- and three- dimensionalbath. We explore the in�uen
e of the stru
ture of the environment in se
. 3.3.4 by deforming the bath'sdensity of states. The question of how large the 
luster part of the referen
e system has to be 
hosen willbe dis
ussed in se
. 3.3.5. The possible use of very large 
luster parts of the referen
e system is dis
ussedin se
. 3.3.7. Then we turn to the a
tual physi
al results of the model. Several ben
hmarking dynami
quantities of the SIAM were evaluated. In the following se
tions, results for the impurity density ofstates will be presented and 
ompared to NRG and DMRG data. We will elaborate on the strengths andweaknesses of the method as well as the 
omparison of CPT to VCA. Furthermore, we will dis
uss therelation between VCASC, where the variational parameters are determined self 
onsistently via eq. (2.27)and VCAΩ, where the variational parameters are de�ned at the stationary point of the grand potential.We will show that the Kondo resonan
e is reprodu
ed within the framework of CPT/VCA and that thevariational results ful�ll 
ertain analyti
 relations like the Friedel sum rule (eq. (3.45)). The method willbe shown to provide reasonably a

urate results in a wide range of parameter regimes of the model. Low37



energy properties related to the Kondo temperature TK will be dis
ussed in 
ontext with renormalizationgroup results. The imaginary frequen
y Green's fun
tion and self-energy will be 
ompared to CT-QMCresults. A modi�ed referen
e system, with expli
itly broken spin symmetry is examined in se
. 3.3.13.We start out by dis
ussing the 
hoi
e of variational parameters within VCA.3.3.1. Choi
e of variational parametersIn VCA one 
an, in prin
iple, optimize all possible single-parti
le parameters whi
h are present in theoriginal model, as well as additional ones. By adding bath sites not present in the original model, onein
ludes dynami
al 
ontributions to the 
luster Green's fun
tion. The numeri
al di�
ulty in
reases withthe number of variational parameters. For the VCASC 
ase a multidimensional root �nding algorithmhas to be adopted. For the VCAΩ 
ase, a saddle point in many dimensions has to be lo
ated. Sin
e theallowed set of variational parameters limits the sear
h spa
e for the self-energies one will �nd a solution inthis restri
ted spa
e only. It is therefore desirable to vary as many single parti
le quantities as possible.A balan
e has to be found between a large spa
e of available self energies and numeri
ally feasiblemultidimensional algorithms. Many works have addressed the question of whi
h parameters are the mostne
essary to vary and how the 
hoi
e of variational parameters will in�uen
e or limit the results [26℄.As dis
ussed in refs. [46, 114℄, it is important to in
lude an overall 
hemi
al potential as a variationalparameter in order to preserve thermodynami
 
onsisten
y. As a 
ompromise, we will take two variationalparameters x = {ǫf , ǫs}, whi
h 
overs the overall 
hemi
al potential. Note that this amounts to shiftingan overall on-site energy in the whole 
luster plus an extra independent shift at the 
orrelated site. Forthe variation of on-site energies we observe the grand potential Ω to be maximal at the stationary pointwhi
h is in agreement with results for other models. Further parameters in the SIAM are the hopping
t and the hybridization V . As dis
ussed for example in ref. [115℄, the variation of hopping parametersis not straightforward. For the VCAΩ approa
h, we observe a maximum of Ω at ∆V = −V in the 
enterof two symmetri
 stationary points (see �g. 3.5 (right)). The two symmetri
 lying minima are equivalentand are due to the fa
t that the self-energy is an even power of V . As one tunes the parameters away fromparti
le hole-symmetry this stationary point is lost in the 
rossover region from the Kondo plateau to adoubly or uno

upied impurity (see se
. 3.3.9). In this parameter region the hopping t and hybridization
V are probably not appropriate to be used as variational parameters within VCAΩ.In the following, we always 
hoose the set x = {V } or x = {V, t} for 
al
ulations at parti
le-hole symmetrysin
e the variation of on-site energies will always yield zero deviations from the physi
al parameters andthus reprodu
e the CPT result here. For all other parameter regions it is su�
ient to 
onsider x = {ǫf , ǫs}as variational parameters.Sin
e the 
luster part of the referen
e system is a �nite system, we expe
t spurious e�e
ts dependingon the lo
ation of the impurity within the 
luster. How the position of the impurity within the 
lusterin�uen
es the results is dis
ussed in the next se
tion.3.3.2. Even-Odd E�e
t - 
hoi
e of the impurity positionCPT/VCA rely on the Green's fun
tion of a 
luster of size L whi
h is obtained by exa
t diagonalization.Due to this fa
t it is unavoidable that some e�e
ts of the �nite size 
luster a�e
t the solution of thefull system. (Ex
ept in the 
ase of vanishing intera
tion strength (U = 0).) Therefore suitable 
lustershave to be 
hosen on a basis of physi
al results. Some aspe
ts of this are dis
ussed by Balzer et al. [114℄in the 
ontext of DMFT and VCA and by Hand et al. [116℄ in the 
ontext of DMRG. In this work we
onsider 
lusters of even size only. For these systems the groundstate does in general not su�er from spindegenera
y. Furthermore, the spatial position of the impurity is important. This 
an be inferred from thebath's density of states, whi
h vanishes for ω = 0 at every se
ond site. It may also be seen in the stru
tureof the groundstate, for whi
h the size of the degenerate se
tors alternates with the geometri
al size of the
luster. In the forth
oming 
al
ulations we always pla
e the impurity at the far end of the in�nite 
hain,although essentially the same results are a
hieved by atta
hing it to site two, four, et
. inside the 
hain.We start out our dis
ussion of the physi
al results by treating an Anderson mole
ule in isolation and then
arrying its solution over to a CPT/VCA referen
e system. This enables a semi-analyti
al treatment interms of CPT and VCA. Then the more sophisti
ated evaluation using numeri
 CPT/VCA for largerreferen
e systems will follow.3.3.3. Semi-analyti
al expressions for VCA of the two-site problemThe parti
le-hole symmetri
 two-site SIAM is 
onsidered here in detail to gain a better understandingof the behavior of CPT/VCA. The ground-state energy is obtained by diagonalization. A solution forthe 2 × 2 
luster Green's fun
tion G′ is presented as well as an expression for the CPT/VCA Green's38



fun
tion G after 
oupling to a semi-in�nite 
hain. The only non vanishing natural variational parameterfor this system is the hybridization V . Expressions for the self-energy Σ(∆V ), the grand potential
Ω(∆V ) and the grand potential derivative dΩ(∆V )

d∆V
are found. Finally the optimal 
luster parameter

V ′stat.(U) = V +∆Vstat.(U), the e�e
tive mass m∗(U) (see se
. 3.3.11) and the Kondo temperature TK(U)(see se
. 3.3.11) are obtained as a fun
tion of intera
tion-strength U .Consider a 
orrelated site des
ribed by annihilation and 
reation operators fσ and f �
σ with Coulombintera
tion U and on-site energy ǫf 
oupled to a non-intera
ting site with 
orresponding annihilation and
reation operators cσ and c�σ and on-site energy ǫs. The Hamiltonian for this system is given by

Ĥ2site = U n̂↑
f
n̂↓
f
+ ǫf ∑

σ

f �
σfσ + ǫs ∑

σ

c�σcσ − (V +∆V )∑
σ

(f �
σcσ + c

�
σfσ)

= U n̂↑
f
n̂↓
f
−
U

2
∑
σ

n̂σ
f − V

′ ∑
σ

(f �
σcσ + c

�
σfσ) . (3.25)In the se
ond line the transition to the parti
le-hole symmetri
 
ase was made by setting ǫs = 0 and

ǫf = −U
2
. For CPT V ′ = V the parameter of the original model. For VCA V ′stat.(U) = V +∆V stat.(U)where ∆V stat.(U) is determined via the stationary point of the grand potential Ω within VCAΩ (seese
. 2.3.1) or self 
onsistently via single parti
le expe
tation values within VCASC (see se
. 2.3.4).The two-site Hamiltonian will be 
oupled to a semi-in�nite non-intera
ting environment

Ĥenv. = −t ∑
<ij>
∑
σ

(c�σcσ + c�σcσ) , (3.26)by CPT/VCA via
Ĥ
e = −t∑

σ

(c�3,σcσ + c�σc3,σ) ,where c3 denotes the �rst site of the semi-in�nite 
hain eq. (3.26) and c the un
orrelated site in the 
luster3.25.The CPT equation for the Green's fun
tion de�nes the variational parametersG−1 = G′−1 −T
= ω − (Ĥ2site +T) .So T 
onsists of of the inter-
luster hopping and the term whi
h has been subtra
ted from the referen
esystem eq. (3.25) ∆V : T = TCPT +TVCA ,TCPT = Ĥ
e ,TVCA =∆V ∑

σ

(f �
σcσ + c

�
σfσ) .The matrix form of T is expli
itly given byT = ⎛⎜⎝ 0 ∆V 0

∆V 0 −t
0 −t 0

⎞⎟⎠ . (3.27)Ground state energyAs a �rst step the ground state energy for this system shall be obtained by diagonalization of the Hamil-tonian eq. (3.25). To make work easy, it is advisable to �nd nonintera
ting subspa
es by investigatingthe symmetries of this system. The Hamiltonian 
onserves the number of parti
les
N̂ =∑

i

∑
σ

n̂σ
i =∑

σ

(n̂σ
f + n̂

σ
c ) .
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To show this we evaluate
[Ĥ2site, N̂ ] = U ∑

σ′
[n̂↑

f
n̂↓
f
,(n̂σ′

f + n̂
σ′
c )]

−
U

2
∑
σ

∑
σ′
[n̂σ

f ,(n̂σ′
f + n̂

σ′
c )]

− V ′ ∑
σ

∑
σ′
[(f �

σcσ + c
�
σfσ) ,(n̂σ

′
f + n̂

σ
′

c )] . (3.28)Using the identities eq. (2.45), the elementary fermioni
 
ommutators eq. (2.44), the 
ommutators eq. (2.41),eq. (2.42), eq. (2.43) and
[c�icj , n̂k] = [c�icj, c�kck] = −[c�k, c�icj]ck − c�k[ck, c�icj]

= − ({c�
k
, c

�
i}cj − c�i{c�k, cj}) ck − c�k ({ck, c�i}cj − c�i{ck, cj})

= δjkc�icj − δikc�icj . (3.29)on eq. (3.28) it follows immediately that
[Ĥ2site, N̂ ] = 0 .The total spin proje
tion Ŝz is de�ned as

Ŝz =
1

2
∑
i

(n̂↑i − n̂↓i) .In the same manner as above it is easy to show that the Hamiltonian 
onserves the total spin proje
tion
[Ĥ2site, Ŝz] = 0 .In addition the Hamiltonian 
ommutes with the total Spin Ŝ

2.Therefore the many-parti
le basis may be 
onstru
ted respe
ting these symmetries. This results in non-intera
ting subspa
es for (N = 0, Sz = 0), (N = 1, Sz = ± 1
2
), (N = 2, Sz = 0,±1), (N = 3, Sz = ± 1

2
),(N = 4, Sz = 0). Sin
e the Hamiltonian is parti
le-hole symmetri
 it su�
es to investigate the N = 0(N = 4), N = 1 (N = 3) and N = 2 subspa
es:� The N = 0 (N = 4) subspa
eis spanned by ∣0,0⟩ (∣↑↓, ↑↓⟩) where the naming 
onvention is ∣s, f ⟩. The 
orresponding matrixelement is ⟨0,0∣ Ĥ2site ∣0,0⟩ = 0. So the eigenenergies EN,Sz

i and eigenve
tors ∣Ψ⟩N,Sz

i are given by
∣Ψ⟩000 = ∣0,0⟩ , E00

0 = 0∣Ψ⟩400 = ∣↑↓, ↑↓⟩ , E40
0 = 0� The N = 1 (N = 3) subspa
eis spanned by {∣ ↑,0 >, ∣0, ↑>} ({∣ ↑, ↑↓>, ∣ ↑↓, ↑>}) (and the spin symmetri
 states). The 
orrespondingmatrix elements 
an be read o� straight forwardly from the Hamiltonian:

∣ ↑,0 > ∣0, ↑>∣ ↑,0 > 0 −V ′∣0, ↑> −V ′ −U
2

40



The eigenenergies EN,Sz

i and eigenve
tors ∣Ψ⟩N,Sz

i are given by
∣Ψ⟩1,+ 1

2

0 = −
U −
√
U2 + 16V ′2
4V ′

∣ ↑,0 > +∣0, ↑> , E
1,+ 1

2

0 = −
1

4
(U +√U2 + 16V ′2)

∣Ψ⟩1,+ 1

2

1 = −
U +
√
U2 + 16V ′2
4V ′

∣ ↑,0 > +∣0, ↑> , E
1,+ 1

2

1 = −
1

4
(U −√U2 + 16V ′2)

∣Ψ⟩1,− 1

2

0 = −
U −
√
U2 + 16V ′2
4V ′

∣ ↓,0 > +∣0, ↓> , E
1,− 1

2

0 = −
1

4
(U +√U2 + 16V ′2)

∣Ψ⟩1,− 1

2

1 = −
U +
√
U2 + 16V ′2
4V ′

∣ ↓,0 > +∣0, ↓> , E
1,− 1

2

1 = −
1

4
(U −√U2 + 16V ′2)

∣Ψ⟩3,+ 1

2

0 = −
U −
√
U2 + 16V ′2
4V ′

∣ ↑, ↑↓> +∣ ↑↓, ↑> , E
3,+ 1

2

0 = −
1

4
(U +√U2 + 16V ′2)

∣Ψ⟩3,+ 1

2

1 = −
U +
√
U2 + 16V ′2
4V ′

∣ ↑, ↑↓> +∣ ↑↓, ↑> , E
3,+ 1

2

1 = −
1

4
(U −√U2 + 16V ′2)

∣Ψ⟩3,− 1

2

0 = −
U −
√
U2 + 16V ′2
4V ′

∣ ↓, ↑↓> +∣ ↑↓, ↓> , E
3,− 1

2

0 = −
1

4
(U +√U2 + 16V ′2)

∣Ψ⟩3,− 1

2

1 = −
U +
√
U2 + 16V ′2
4V ′

∣ ↓, ↑↓> +∣ ↑↓, ↓> , E
3,− 1

2

1 = −
1

4
(U −√U2 + 16V ′2)� The N = 2 subspa
eis spanned by {∣ ↑, ↑>, ∣ ↓, ↓>, ∣ ↑, ↓>, ∣ ↓, ↑>, ∣0, ↑↓>, ∣ ↑↓,0 >}. The 
orresponding matrix elements are:

∣ ↑, ↑> ∣ ↓, ↓> ∣ ↑, ↓> ∣ ↑↓,0 > ∣0, ↑↓> ∣ ↓, ↑>∣ ↑, ↑> −U
2∣ ↓, ↓> −U

2∣ ↑, ↓> −U
2

−V −V∣0, ↑↓> −V 0 −V∣ ↑↓,0 > −V 0 −V∣ ↓, ↑> −V −V −U
2Here one 
an identify the three triplet states

∣Ψ⟩2,+10 = ∣ ↑, ↑> , E
2,+1
0 = −

U

2

∣Ψ⟩2,−10 = ∣ ↓, ↓> , E
2,−1
0 = −

U

2

∣Ψ⟩2,00 = ∣ ↓, ↑> −∣ ↑, ↓> , E
2,0
0 = −

U

2
.Note that the minus sign in the last triplet state arises due to the minus sign when ex
hanging twofermions. The other three states are

∣Ψ⟩21 = ∣0, ↑↓> −∣ ↑↓,0 > , E2
1 = 0

∣Ψ⟩22 = ∣ ↑, ↓> −U −
√
U2 + 64V ′2
8V ′

∣ ↑↓,0 > −U −
√
U2 + 64V ′2
8V ′

∣0, ↑↓> +∣ ↓, ↑> ,
E2

2 = −
1

4
(U +√U2 + 64V ′2)

∣Ψ⟩23 = ∣ ↑, ↓> −U +
√
U2 + 64V ′2
8V ′

∣ ↑↓,0 > −U +
√
U2 + 64V ′2
8V ′

∣0, ↑↓> +∣ ↓, ↑> ,
E2

3 = −
1

4
(U −√U2 + 64V ′2) .The energy levels of the two-site model (Anderson mole
ule) are plotted in �g. 3.3 for various parameters.There one 
an ni
ely see the e�e
ts of hybridization and intera
tion. The plots show the behavior ofdegenera
ies and level (anti-) 
rossings. For positive U the groundstate energy is found in the N = 2se
tor and is given by

E0 = −
1

4
(U +√U2 + 64V ′2) .41



We will next turn to the 
onstru
tion of the system's Green's fun
tion.Cluster Green's fun
tionThe 
luster Green's fun
tion G′ may be obtained from the Lehmann representation using the results ofthe previous se
tion. Here we pursue a di�erent often very useful way. We 
onstru
t the 
luster Green'sfun
tion from the Green's fun
tion of the 
orrelated site f by using the equation of motion te
hnique.It is always possible to 
onstru
t all elements of Gij if the Green's fun
tions of the 
orrelated sites areknown exa
tly.S
hönhammer and Brenig 
al
ulated the Green's fun
tion of the 
orrelated site for this model perturba-tiveley and showed that their expression be
omes exa
t in the limit of vanishing bandwidth [90℄. Thisis exa
tly the 
ase 
onsidered here, where the impurity site is 
oupled to a single non-intera
ting site,providing a bath with vanishing bandwidth. They obtainedG′ff(z) = 1

z − Γ′(z) −Σ′(z) ,where the hybridization Γ′(z) in our 
ase is given by
Γ′(z) = V ′2

z
,and the self-energy Σ′(z) is given by

Σ′(z) = U2

4

z − 9Γ′(z) . (3.30)The G′ff is the 1,1 element of G′ij . Sin
e we are 
onsidering a two-site system the other elements may be
onstru
ted by solving the Green's fun
tion of a one-site 
hain G′0ss and 
oupling it via V ′ to the f-site.The Green's fun
tion of the free site is given byG′0ss(z) = 1

z
. (3.31)G′ij may be then be obtained from a Dyson-like equationG′fs = G′0fs +G′fαHαβG′0βs

= G′0fs +G′ffHffG′0fs +G′ffHfsG′0ss +G′fsHsfG′0fs +G′fsHssG′0ss .
Hαβ denotes the o�-diagonal single-parti
le terms of the Hamiltonian eq. (3.25)

Hαβ = ( 0 −V ′
−V ′ 0

) .Sin
e Hαβ 
ontains only o�-diagonal elements and G′0fs = 0 we are left with:G′fs(z) = G′ff(z)HfsG′0ss(z)
= −V ′G′ff(z)G′ss(z) .Due to symmetry G′sf (z) = G′fs(z). The last missing element is obtained as followsG′ss = G′0ss +G′sαHαβG′0βs

= G′0ss +G′sfHfsG′0ss
= G′0ss + V ′2G′0ssG′ffG′0ss .This general pro
edure of obtaining all elements of the intera
ting 
luster Green's fun
tion from theGreen's fun
tion of the intera
ting site (whi
h has to be obtained exa
tly by some method beforehandfor a system of length L) and the matrix Green's fun
tion of a free 
hain of length L − 1 is outlined in
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app. E. The Green's fun
tion of the semi-in�nite environment is given byG′ee(z) = z − i sign (Imz)√4t2 − z2
2t2

.The 
luster Green's fun
tion for the two-site Anderson system and environment is �nally given byG′(z) = ⎛⎜⎜⎜⎜⎝ 1
z−Γ′(z)−Σ′(z) −

V ′
z

z−Γ′(z)−Σ′(z) 0

−
V ′
z

z−Γ′(z)−Σ′(z)
1−Σ

′(z)
z

z−Γ′(z)−Σ′(z) 0

0 0
z−i sign (Imz)√4t2−z2

2t2

⎞⎟⎟⎟⎟⎠
. (3.32)Next we will use the CPT equation to obtain the Green's fun
tion of the total system.CPT/VCA Green's fun
tionFor the CPT/VCA pro
edure it is more 
onvenient to use the inverse G′−1(z)G′−1(z) = ⎛⎜⎝z −Σ′(z) V ′ 0

V ′ z 0

0 0 G′−1ee (z)
⎞⎟⎠ . (3.33)Here T is the inter-
luster hopping matrix in
luding the variational parameter ∆V for VCA. The inverseof the total Green's fun
tion is then given byG−1(z) = G′−1(z) −T

=
⎛⎜⎝
z −Σ′(z) V 0

V z t

0 t G′−1ee (z)
⎞⎟⎠ .After some algebra one may extra
t the total Green's fun
tion of the 
orrelated siteGff(z) = zG′−1ee (z) − t2(z −Σ′(z))(zG′−1ee (z)− t2) − V 2G′−1ee (z)

=
1

z − V 2 ( 1
z−t2G′ee ) −Σ′(z)

=
1

z − V 2 ( 2

z+i sign (Imz)√4t2−z2
) −Σ′(z)

=
1

z − V 2 (z−i sign (Imz)√4t2−z2

2t2
) −Σ′(z)

=
1

z − V 2G′ee(z)−Σ′(z)
=

1

z − Γ(z)−Σ′(z) .Note that due to the CPT/VCA approximation the self-energy stays the self energy of the 
luster! Theonly term 
hanging from the 
luster to the total Green's fun
tion, is the hybridization to the environment.So instead of the hybridization to an isolated site Γ′(z) = V ′2G′0ss the Green's fun
tion now depends onthe hybridization to an in�nite 
hain Γ(z) = V 2G′ee. Furthermore the variational parameter ∆V appearsin the self energy Σ′(z) only.To perform a VCA 
al
ulation, an expression for the grand potential is needed.Grand Potential Ω(∆V )The grand potential Ω is given by (see eq. (2.23))
Ω(∆V ) = ω′0(∆V ) + tr (T (∆V )) − 1

π
∫
∞

0
dωRe (tr (ln (11 −T(∆V )G′(iω,∆V )))) .
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Plugging in the 
luster groundstate eq. (3.31), the 
luster Green's fun
tion eq. (3.33) and the matrix T(eq. (3.27)) one obtains a semi-analyti
 expression for the grand potential Ω(U,V,∆V, t)
Ω(U,V,∆V, t) = 1

4
(−U −√U2 + 64V ′)2) − 2

π
∫
∞

0
dω ln⎛⎝ 1

N1(ω)
⎛⎝72V 4 +U2w2 + 44V 2w2 + 4w4 + 36∆V 2 (2V 2 +w2) + 72∆V V (2V 2 +w2)
+w
√
4t2 +w2 (36∆V 2 +U2 + 72∆V V + 4 (9V 2 +w2))⎞⎠⎞⎠ ,

N1(ω) = 2⎛⎝36∆V 4 + 144∆V 3V + 36V 4 +U2w2 + 40V 2w2 + 4w4

+ 8∆V 2 (27V 2 + 5w2) + 16∆V (9V 3 + 5V w2)⎞⎠ .The grand potential Ω(U,∆V ) is shown in �g. 3.5 (right) for t = 1.0 and V = 0.3162. To �nd its stationarypoint, the derivative with respe
t to ∆V is needed.Stationary point of the grand potential Ω(∆V )The stationary point of Ω with respe
t to ∆V is given by the derivative
dΩ(∆V )
d (∆V ) = ∇∆V ω

′
0(∆V ) + ∇∆VTr (T (∆V )) − ∇∆V

1

π
∫
∞

0
dωRe (tr (ln (11 −T(∆V )G′(iω,∆V ))))

= ∇∆V ω
′
0(∆V ) − 1

π
∫
∞

0
dωRe (tr (∇∆V ln (11 −T(∆V )G′(iω,∆V ))))

= ∇∆V ω
′
0(∆V ) − 1

π
∫
∞

0
dωRe⎛⎝tr⎛⎝(11 −T(∆V )G′(iω,∆V ))−1 (∇∆VT(∆V )G′(iω,∆V ))

+ (11 −T(∆V )G′(iω,∆V ))−1 (T(∆V )∇∆VG′(iω,∆V ))⎞⎠⎞⎠ .The se
ond term in the �rst line vanishes be
ause T (eq. (3.27)) has o�-diagonal elements only. Uponplugging in the 
luster groundstate eq. (3.31), the 
luster Green's fun
tion eq. (3.33) and the matrix T
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(eq. (3.27)) one obtains a semi-analyti
 expression for the derivative of the grand potential Ω
dΩ

d (∆V ) = −16V ′√
U2 + 64V ′2

+
16V ′
π
∫
∞

0
dω

1

N2(ω)
⎛⎝648V 2V ′4 (3.34)

+ 18 (18∆V 4 + 72∆V 3V + 26V 4 + 2∆V V (U2 + 44V 2) +∆V 2 (U2 + 116V 2))w2

+ (72∆V 2 +U2 + 144∆V V + 80V 2)w4 + 4w6

+
√
4t2 +w2 (4w5 +w3 (U2 + 72V ′2) +w (18V ′2 (U2 + 18V ′2)))⎞⎠ ,

N2(ω) = (2592V 2V ′6) + ⎛⎝36V ′2⎛⎝36∆V 4 + 144∆V 3V + 3U2V 2 + 124V 4 (3.35)
+ 2∆V V (U2 + 160V 2) +∆V 2 (U2 + 304V 2)⎞⎠⎞⎠w2

+
⎛⎝1584∆V 4 +U4 + 6336∆V 3V + 84U2V 2 + 2192V 4

+ 4∆V 2 (19U2 + 2528V 2) + 8∆V (19U2V + 944V 3)⎞⎠w4

+ (8 (38∆V 2 +U2 + 76∆V V + 42V 2))w6 + 16w8

+
√
4t2 +w2

⎛⎝w (36V ′4 (U2 + 36V ′2)) +w5 (8 (U2 + 38V ′2)) + 16w7

+w3⎛⎝1584∆V 4 +U4 + 6336∆V 3V + 76U2V 2 + 1584V 4

+∆V 2 (76U2 + 9504V 2) + 8∆V (19U2V + 792V 3)⎞⎠⎞⎠ .Setting the derivative to zero one obtains a nonlinear integral equation. An analyti
 evaluation of theintegral is not possible. The roots may be obtained numeri
ally. The integrand of eq. (3.34) is shown in�g. 3.4. The derivative of the grand potential eq. (3.34) is plotted for various values of U in �g. 3.5 (left).The root in the 
enter at ∆V = −V is unphysi
al be
ause it would yield a 
luster solution 
orrespondingto an atomi
 limit and therefore will never be able to reprodu
e the thermodynami
 limit with in
reasing
luster size. Furthermore 
areful examination of eq. (3.34) shows that the equation breaks down for
∆V = −V , be
ause all ∆V drop out. The evolution of V ′ with U is shown in �gure �g. 3.5 (right). Herewe dire
tly try to get a handle on the low energy properties by 
al
ulating the e�e
tive mass, whi
h isinversely proportional to the Kondo temperature.E�e
tive MassThe e�e
tive mass is de�ned in eq. (3.48). Inserting the self-energy for the two-site system eq. (3.30) oneobtains

m∗(U)
m∗(0) = 1 − U2

4

d

dω
Im( iω

−ω2 − 9V ′2
) ∣

ω=0+

= 1 +
U2

4

d

dω
( ω

ω2 + 9V ′2
) ∣

ω=0+

= 1 +
1

36
( U
V ′
)2 . (3.36)Note that for U = 0 the e�e
tive mass is one as it is supposed to be. Furthermore one sees that within thisapproximation (self energy of the two site 
luster), the Kondo temperature whi
h is inversely proportionalto the e�e
tive mass be
omes proportional to

TK(U)∝ (V ′stat.(U)
U

)2 .46
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Unfortunately the 
luster parameter V ′stat, whi
h makes the Grand Potential stationary, 
annot be de-termined analyti
ally but a numeri
al determination of the roots of eq. (3.34) is feasible. This results ina perfe
t exponential behavior of m∗(U) and TK(U). The exponent may be obtained by an exponential�t (R2 = 1) and is given by
TK ∝ e−γ π

8∆
U ,with

γ = 0.6511 .The e�e
tive mass is plotted in �g. 3.7 (right). As a referen
e the Bethe Ansatz result for T −K1 and valuesobtained by FRG [100℄ are plotted. The fa
tor α = 1 ex
ept for the VCA data α = 1
γ
to a

ount for themismat
h in the exponent. The issue of obtaining an exponential s
ale but not the 
orre
t exponent forthe fun
tional dependen
e on U is observed in various methods (see for example variational wavefun
tionswhere the issue was 
ured by introdu
ing a better Ansatz by S
hönhammer [117℄ or FRG [118℄).After showing that VCAΩ is 
apable of 
reating an exponential s
ale in U , it is interesting to investigatethe behavior of VCASC.Self 
onsistent VCAHere we attempt to obtain the VCASC solution for the two-site problem. The only variational parameteris ∆V and therefore we determine the expe
tation value of < f �c > self 
onsistently. The hoppingexpe
tation value is given by

< f �c >= − 2
π
∫
∞

0
dωG12(iω) .Evaluation of this expe
tation value in the 
luster yields

< f �c >
luster = − 2
π
∫
∞

0
dω

4(∆V + V ) (9(∆V + V )2 +w2)
36(∆V + V )4 + (U2 + 40(∆V + V )2)w2 + 4w4

. (3.37)Evaluation of this expe
tation value in the total system gives
< f �c >CPT= − 2

π
∫
∞

0
dω

8V

8V 2 +
w(U2+36(∆V +V )2+4w2)(w+√4t2+w2)

9(∆V +V )2+w2

. (3.38)Upon requiring the two expe
tation values to 
oin
ide
< f �c >
luster !=< f �c >CPT , (3.39)the optimal value of ∆V is obtained.The numeri
al evaluation of eq. (3.39) as a fun
tion of V ′ = V +∆V is shown for U = 1 and t = 1 in �g. 3.6(top). A 
omparison of the hopping expe
tation value in the 
luster eq. (3.37) and after 
oupling to theenvironment eq. (3.38) is shown in �g. 3.6 (bottom). It is immediately obvious that VCASC does notful�ll the same limits as VCAΩ for U → 0. In VCAΩ the grand potential be
omes �at in this limit andno stationary point 
an be found. In VCASC however the two expe
tation values do not 
oin
ide in thislimit. However the equation breaks down at this point. The optimal value for the 
luster parameter V ′is shown in �g. 3.7 (left) and yield no satisfa
tory behavior. The e�e
tive mass (�g. 3.7 (right)) obtainedwith those values of V ′ does not show an exponential dependen
e on U .This 
on
ludes the dis
ussion of the two-site problem. We now pro
eed by investigating the e�e
ts ofthe environment density of states on the 
luster part of the referen
e system.3.3.4. Comparing a �at band to a semi-
ir
ular density of states of theenvironmentThe density of states, 
reated by disse
ting the one-dimensional tight-binding 
hain at any site, has asemi-
ir
ular shape. The 
orresponding Green's fun
tion may be evaluated analyti
ally (see eq. (3.23))and is shown in �g. 3.8 (left). The parameters 
hosen for the plot were ǫs = 0 and t = 1.In this se
tion the in�uen
e of the shape of the density of states of the bath on the results shall beevaluated. For that purpose the 'natural' semi-
ir
ular density of states of the model is repla
ed by a �at48
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Figure 3.6.: Self 
onsistent VCA results. (Top row) Numeri
al evaluation of eq. (3.39) as a fun
tion of
V ′ = V +∆V for t = 1 and various U (see legend). The roots indi
ate the optimal 
lusterparameter. (Bottom row) The 
luster- eq. (3.37) and CPT eq. (3.38) expe
tation values ofthe hopping from the impurity to the 
hain as a fun
tion of U/t (see legend) for t = 1. (LeftColumn) V = 0.3162, (Right Column) V = 1.0.
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Figure 3.7.: Behavior of the variational parameter and the e�e
tive mass. (Left) Optimal parameter V ′of the referen
e system as obtained by the semi-analyti
al equations for VCAΩ eq. (3.34)and VCASC eq. (3.39). As a referen
e the L = 2 data of our numeri
al simulation is showntoo. (Right) The e�e
tive mass eq. (3.48) obtained by the optimized parameter V ′ of thereferen
e system (see left �gure). Additionally shown is the Bethe-Ansatz [89℄ eq. (3.46) andNRG [100℄ result as a referen
e.band
A�at(ω) = ⎧⎪⎪⎨⎪⎪⎩ 1

2D
−D < ω <D

0 else ,where D denotes the half-bandwidth and the 
onstant is 
hosen to respe
t the sum rule eq. (2.16). TheGreen's fun
tion for this density of states may be 
onstru
ted by �rst inverting eq. (3.43) whi
h yields theimaginary part Im (G�at(z)) = − π
2D

within the band. Then one may use Kramers-Kronig relations [1℄
Re (G�at(ω)) = 1

π
P ∞∫
−∞

Im (G�at(ω′))
ω′ − ω

dω′ ,to obtain the real part. The Green's fun
tion of the �at band therefore is given byG�at(z) = − 1

2D
ln(z −D

z +D
) ,In the following this density of states of the environment will be 
ompared to the semi-
ir
ular one.Therefore the half-bandwidth is 
hosen to be D = π

2
t for the �at density of states, to obtain the same ∆as in the semi-
ir
ular 
ase (see eq. (3.5)). The Green's fun
tion of the �at band is shown in �g. 3.8 (left).CPT results for the impurity density of states, for a L = 8-site 
luster, are shown in �g. 3.8 (mid, right).The plots show 
urves for di�erent values of intera
tion strength U (using ∆ = 0.1). The data in themiddle shows results obtained by using the semi-
ir
ular tight-binding density of states, while the rightplot shows data using the �at band. The spe
tra are very similar. Espe
ially in the low energy region,there is no di�eren
e, sin
e they depend predominantly on the value of the environmental density of statesat the Fermi energy. Several other quantities (like the e�e
tive mass or the stati
-spin sus
eptibility) wereevaluated for both kinds of environment giving more or less equivalent results.The 
luster part of the referen
e system is of �nite length. To examine the severity of this approximationspin-spin and density 
orrelation fun
tions are evaluated in the next se
tion.3.3.5. Estimating the ne
essary extent of the referen
e system: spin/density
orrelationsIn this se
tion an attempt is made to estimate the ne
essary extent of the 
luster part of the referen
esystem to a
hieve good results within CPT/VCA. Cal
ulations of stati
 expe
tation values (see se
. 3.3.9)revealed, that mu
h smaller 
lusters su�
e in the parameter region where the impurity is essentially zero-50



−30 −20 −10 0 10 20 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ω/∆

G
en

v

 

 

Re G
TB

A
TB

Re G
flat

A
flat

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

ω/∆

ρ f

 

 

U/∆=0
U/∆=4
U/∆=8
U/∆=12
U/∆=20

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

ω/∆

ρ f

 

 

U/∆=0
U/∆=4
U/∆=8
U/∆=12
U/∆=20

Figure 3.8.: (Left) Density of states and real part of the Green's fun
tion of the environment. Shown isthe "natural" density of states of a semi-in�nite tight binding 
hain (semi-
ir
ular) as wellas the �at density of states examined in this se
tion. Note that here the x-axis was s
aledwith ∆ = 0.1 although this parameter does not enter in this 
al
ulation. (Mid) Single-parti
lespe
tral fun
tion for the parti
le-hole symmetri
 SIAM at various intera
tion-strengths U/∆(see legend). Further parameters used were V = 0.3162, t = 1 and 0+ = 10−6. The bath'sdensity of states used was the semi-
ir
ular DOS of the semi-in�nite tight binding 
hain.(Right) The same but 
al
ulated using a �at DOS in the environment.or double o

upied. In the Kondo- and the 
rossover region large 
lusters are expe
ted to be ne
essary,be
ause the CPT results look far from 
onverged for 
luster sizes examined here. In the following thespin-spin and 
harge-
harge 
orrelations inside the referen
e system are 
al
ulated, whi
h are expe
tedto give a hint on the ne
essary size of the 
lusters.To evaluate the spin-spin 
orrelation fun
tion
< Ŝi Ŝj > =< Ŝz

i Ŝ
z
j²̂

Z

+ Ŝx
i Ŝ

x
j + Ŝ

y
i Ŝ

y
j´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F̂

> , (3.40)for the SIAM, we transform this expression to one involving fermioni
 operators (and number operators)instead of spins. Using
Ŝz =

1

2
(n̂↑ − n̂↓) ,�rst operator Ẑ transforms to

Ẑ =
1

4
(n̂↑i − n̂↓i)(n̂↑j − n̂↓j) .Expressing the x and y 
omponents of the spin by spin-ladder operators

Ŝ+ = Ŝx + iŜy = c↑�c↓ (3.41)
Ŝ− = Ŝx − iŜy = c↓�c↑ , (3.42)the se
ond part of eq. (3.40) F̂ takes the form
F̂ =

1

2
(Ŝ−i Ŝ+j + Ŝ+i Ŝ−j ) .Representing the spin-ladder operators by fermioni
 operators eq. (3.42) one arrives at the fermioni
representation of F̂

F̂ =
1

2
(c↓�i c

↑

i c
↑�
j c
↓

j + c
↑�
i c
↓

i c
↓�
j c
↑

j ) .Furthermore the density-density 
orrelation fun
tion < ninj > is examined, whi
h 
onsists of four Fermi-operators.The typi
al behavior of the spin-spin ve
tor, spin-spin z and density-density 
orrelations as a fun
tion ofdistan
e away from the impurity is shown in �g. 3.9 (left), for the non-intera
ting 
ase in a ten-site 
luster.The lo
al values at the impurity 
an be 
al
ulated easily and are < Sz2
0 >= 0.125 and < S2

0 >= 0.375. Aplot of the spin-spin ve
tor 
orrelation < S0Send > of a large parameter region of the SIAM is shown51
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Figure 3.9.: (Left) The spin-spin ve
tor, spin-spin z and density-density 
orrelations as a fun
tion ofdistan
e away from the impurity are shown. Note that the density-density 
orrelations arevisualized as < ninj > −1. The data is shown, as a representative for the typi
al behaviorof the 
orrelators, for an intera
tion strength U = 0 in a L = 10 site 
luster. (Right) Thespin-spin ve
tor 
orrelation: < S0Send > between the impurity and the site farthest away fromthe impurity inside the 
luster is shown in all parameter regions. The intera
tion strengthfor this 
al
ulations was U
∆
= 2, the 
luster length L = 6.in �g. 3.9 (right). This means the 
orrelation of the impurity with the site farthest away from it ismeasured. The intera
tion strength used was U

∆
= 2. For details of the parameter regions of the SIAM seese
. 3.3.10. As is 
learly visible from the �gure, the 
orrelations have already faded away in the regionswhere the impurity is zero- or doubly o

upied and are still there in the Kondo- and 
rossover regime.Similar 
al
ulations for larger systems (up to L = 16) showed essentially the same behavior. Based onan extrapolation in system size L of the spin-spin 
orrelation fun
tions we estimate the need of ≈ 50-site
lusters in the Kondo regime of the SIAM for CPT. This dis
ussion does not apply to VCA, where thesituation is entirely di�erent and mu
h smaller 
lusters are su�
ient as will be shown in the forth
omingdis
ussion. This behavior 
an be well understood from the involved physi
s. In the Kondo regime belowa temperature s
ale TK , the impurities lo
al moment gets s
reened by the 
ondu
tion ele
trons to makeup a singlet state. The question of how many ele
trons 
ontribute to the s
reening and how large thiss
reening 
loud is, is still open today. Many 
on
epts have been suggested but up to now 
ontroversialtheoreti
al predi
tions exist [8, 119℄. New ideas may require very di�erent ways of thinking [120℄. It hasnever been possible to measure this extent in experiment. Bulk measurements are mu
h too less sensitiveto dete
t this length s
ale ξK = TK

vF
(vF denotes the Fermi velo
ity), whi
h typi
ally behaves like
χ(r) = χ0 +

cos (2kF r)
r2

f ( r

ξK
)These experiments measure for example the Knight-shift, but the 1

r2
dependen
e of the sus
eptibilityrenders the parameter ξK invisible. Experiments on nano-devi
es up to now have been fruitless be
auseof the extent of the s
reening 
loud into the leads. Very re
ent s
anning tunneling mi
ros
opy (STM)based measurements only 
an give hints [121℄.We model the SIAM by an in�nite tight-binding 
hain. The e�e
ts of embedding an impurity in higherdimensions is investigated in the next se
tion.3.3.6. E�e
ts of an impurity embedded in higher dimensionsIn this work the SIAM is modeled by a one-dimensional 
hain. The e�e
ts of embedding the impurity intwo- or three dimensions are studied here within CPT. The two- or three dimensional bath is obtained bya mapping of the one-dimensional 
hain to an e�e
tive higher dimensional model, whi
h is only possiblein the 
ase of a single impurity. This pro
ess, involving a res
aling of the hopping parameters in the
hain, is outlined in detail in app. F.In �g. 3.10, the impurity density of states is shown for an impurity embedded in di�erent dimensions.The results were obtained using CPT based on L = 10-site 
lusters. The result for one-, two-, and threedimensions shows the same 
hara
teristi
 features. Therefore we 
on
lude, that dimensionality does not52
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Figure 3.10.: Lo
al density of states in the impurity obtained by CPT. The 
al
ulations were done foran intera
tion strength of U = 0.0,0.4,0.8,1.2 and 2.0, a hybridization of V = 0.3162 anda hopping of t = 1. The 
luster-size used was L = 10 sites and the numeri
al broadening
0+ = 10−6. (Left) An impurity embedded in a one-dimensional tight-binding system. (Mid)An impurity embedded in a two-dimensional tight-binding system. (Right) An impurityembedded in a three-dimensional tight-binding system.play a 
riti
al role in these kinds of 
al
ulations. Note that a s
aling of energies with ∆ was not donein this se
tion sin
e ∆ depends on the density of states (see eq. (3.5)) of the 
ondu
tion ele
trons at theFermi-energy, whi
h is very di�erent in a one-, two- and three-dimensional tight-binding system. This isthe reason why the Kondo-resonan
e in the three plots has a di�erent height in ea
h, although they allful�ll their respe
tive Friedel sum rule eq. (3.45).The �nite size of the 
luster part of the referen
e system is limited to 16-sites within our Band Lan
zostreatment. A method whi
h enables a

essing larger systems is assessed in the next se
tion.3.3.7. Using larger referen
e systems: MPS Lan
zos resultsThe memory requirements of the Band Lan
zos 
luster solver limit the size of the 
luster part of thereferen
e system to 16-sites for the SIAM. The Matrix produ
t state Lan
zos method des
ribed in se
. 2.2.4would be a 
andidate 
luster solver for larger systems. This promising method, however is still underdevelopment by P. Dargel [45℄. In this se
tion an overview of the 
urrent status of the ongoing work tomerge this method with CPT/VCA shall be given.The Q-matri
es and 
orresponding ex
itation energies for the SIAM on six to twenty sites were 
al
ulatedby Piet Dargel using the MPS Lan
zos method. The 
luster solution of the single-parti
le spe
tral fun
tionfor a six- and twelve site 
luster is shown in �g. 3.12 (left), the 
orresponding CPT solution for the in�nitesystem in �g. 3.12 (right). One 
an see that for larger system-sizes, the sum-rule eq. (2.16) is not ful�lledany more by the MPS method. A 
omparison to six to twelve site Band Lan
zos results is shown in�g. 3.11. Shown is the single-parti
le spe
tral fun
tion of the impurity site for the total system. For smallsystems the Band Lan
zos and the MPS Lan
zos results agree. For larger systems, not a

essible to BandLan
zos, the MPS Lan
zos produ
es a spurious result in the vi
inity of ω = 0 due to missing weight in theQ-matri
es. As we are interested espe
ially in the behavior of the low energy region, no further resultsbased on this 
luster solver will be presented in the forth
oming dis
ussion. However this method is apromising tool for future extensions of CPT/VCA.After these preliminary dis
ussions, we now turn to the a
tual physi
s of the SIAM within CPT/VCA.3.3.8. Spe
tral propertiesThe single-parti
le spe
tral fun
tion Aσ

ii is obtained from the retarded Green's fun
tion Gσ,ret
ii (ref. [27℄)

Aσ
ii(ω) = − 1

π
ImGσ,ret

ii (ω) . (3.43)The diagonal element at the impurity site Aσ
ff(ω) des
ribes the impurity density of states ρσf (ω). Aphysi
al property of the SIAM whi
h poses a 
hallenge to numeri
al methods is the Kondo-Abrikosov-Suhl resonan
e often referred to as Kondo peak [3℄. It arises in the parameter regime where the magneti
moment of the impurity is s
reened by the 
ondu
tion ele
trons to form a singlet state [112℄. The parti
le-hole symmetri
 model lies in the 
enter of this Kondo region. This quasiparti
le ex
itation is for examplenot 
aptured in mean �eld approa
hes (see se
. 3.2). With in
reasing intera
tion strength U the numeri
alsolution be
omes in
reasingly 
hallenging. 53
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Figure 3.11.: Lo
al single-parti
le spe
tral fun
tion as a fun
tion of ω. For intera
tion strength U
∆
= 8,on-site energy ǫf

∆
= −4 and a numeri
al broadening of 0+ = 10−6. The CPT results based ona Band Lan
zos 
luster solver for system sizes L = 6 to L = 12 are denoted BL. The CPTresults based on a MPS Lan
zos 
luster solver for system sizes L = 6 to L = 20 are denotedMPS. For small systems the Band Lan
zos and the MPS Lan
zos results agree. For largersystems, not a

essible to Band Lan
zos, the MPS Lan
zos produ
es a spurious result inthe vi
inity of ω = 0 due to missing weight in the Q-matri
es. This behavior is expe
ted tobe 
ured in the near future be
ause the method is still under development.In this se
tion we elaborate on the results for the density of states in the parti
le-hole symmetri
 
ase.Results for the single-parti
le spe
tral fun
tion eq. (3.43) of the impurity site are shown in �g. 3.13. Asa referen
e, the spe
tra obtained with NRG and DMRG from Peters [104℄ are plotted. Renormalizationgroup approa
hes like NRG are espe
ially suited to reprodu
e the low energy quasi parti
le ex
itations ofthis model and therefore serve as a referen
e for our data. The CPT spe
tral weight at ω = 0 appears toobroad in the plot in 
omparison with the NRG result. This is partly due to a large numeri
al broadeningof 0+ = 0.05. Due to the nature of the CPT method we 
annot expe
t it to reprodu
e the low energyspe
trum as well as RG 
al
ulations do. The height of the Kondo resonan
e is too small in this �gurebe
ause of the large 0+ whi
h was used to 
ompare to DMRG data only. However the height 
onvergeswith 0+ → 10−6 to the result predi
ted by s
attering theory (see se
. 3.3.9). The energeti
ally higherex
itations like the Hubbard bands lo
ated at ω ≈ −ǫf and ω ≈ −ǫf + U develop more and more within
reasing length of the 
luster part of the referen
e system L. A 
omparison of the 
enter of gravityfor those developing bands of the L = 14 site CPT result and the L = 50 site DMRG result are in goodqualitative agreement. There are spurious stru
tures in the spe
tral density, originating from the 
lusterGreen's fun
tion of the �nite system, preventing 
ontinuous bands to form. We would like to note thatthe a

urate determination of the Green's fun
tion of the referen
e system is of prime importan
e. Anina

ura
y in pole-positions or pole-weights for very small but non-vanishing weights will yield spuriousartifa
ts in the spe
tra in the vi
inity of ω = 0 as shown in se
. 3.3.7.To improve upon the result of CPT we 
onsidered the hopping matrix element t and the hybridizationmatrix element V as variational parameters. The parameters used for the evaluation of the referen
esystem were determined with two di�erent methods. VCAΩ results are depi
ted in the plot for a L = 10site 
luster. As shown in the �gure this method strongly redu
es the �nite size peaks in the Hubbardbands. The width of the Hubbard bands is reprodu
ed 
orre
tly for high values of U where the FWHMwithin VCA is given by ≈ 1.9∆. This 
omes very 
lose to the expe
ted 2∆ [90, 122℄ of the atomi
 bands.This method improves the spe
tral properties of the Kondo resonan
e with respe
t to CPT, bringingit 
loser to the L = 50 site DMRG result. The data obtained using the self 
onsistent VCA approa
hVCASC agree very well with the result based on VCAΩ. One should note that the two broad Lorentzianhigh energy peaks (in VCAΩ as well as VCASC) 
onsist of many ex
itations whi
h will be revealedupon repeating this 
al
ulation with smaller 0+. The low 
omputational e�ort of CPT/VCA proofsadvantageous at 
al
ulating spe
tra. The VCA pro
edure (for a twelve site 
luster) usually 
onvergesin minutes to hours on a standard workstation PC, while more demanding numeri
al methods oftenneed days to a week to 
onverge. Furthermore, the spe
tra are exa
tly determined from the Lehmannrepresentation and no ill-posed analyti
al 
ontinuation is required in 
omparison to methods working inimaginary time or imaginary frequen
y spa
e. To our knowledge the most a

urate spe
tra available forthis model so far are published in ref. [123℄. 54
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Figure 3.12.: Cluster- and CPT solution of a six- and a twelve-site intera
ting 
luster for the single-parti
lespe
tral fun
tion of the SIAM. The left 
olumn shows the 
luster-, the right 
olumn, theCPT result. The top row shows the L = 6-site results, while the bottom row shows the
L = 12-site results. The bla
k 
urves indi
ate the results obtained by a Band Lan
zos
luster solver - the yellow, dashed lines those obtained by a MPS Lan
zos solver. Furtherparameters used were V = 0.3162, t = 1 and 0+ = 10−6.
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A spatially resolved image of the spe
tral fun
tion, 
al
ulated with CPT, for the parameter set used in�g. 3.13 (
) is shown in �g. 3.14 (left). The qualitative pi
ture would be the same in VCA, merely thestru
tures are slightly shifted. This in
reased pi
ture reveals how the perturbation introdu
ed by theimpurity is fading away slowly in an alternating fashion. At every se
ond site away from the impurity adip at ω = 0 is present, whi
h is usually referred to as Fano dip.A zoom to the Kondo peak in the lo
al density of states of the impurity is shown in �g. 3.14 (right) fordi�erent values of intera
tion strength U , in the parti
le-hole symmetri
 
ase, obtained by VCAΩ. Thepinning of the height of the Kondo resonan
e may be observed, as well as an exponential narrowing ofits width. A more detailed look on the spe
tral region of the Kondo resonan
e is provided in �g. 3.15.The CPT/VCAΩ data is 
ompared to NRG and FRG data as well as results obtained from a restri
tedHartree-Fo
k 
al
ulation from Karras
h et al. [100℄. The CPT/VCA results are plotted for lengths ofthe 
luster part of the referen
e system L = 2,4,6,8 and 10 for two di�erent sets of parameters. Theresults for higher L are always lo
ated towards the 
enter of the �gure. The results 
orresponding to theresonan
e at ω = 0 were obtained for the parti
le-hole symmetri
 model. For this set of parameters weused the hybridization V as a variational parameter. The se
ond peak shown 
entered around ω/∆ ≈ 0.8
orresponds to a parameter set right at the border of the Kondo region. The variational parameters usedaway from parti
le-hole symmetry are x = {ǫf , ǫs}. One 
an see that the CPT result is not 
onverged forthe L = 10 site 
luster yet. In 
ontrast, the VCAΩ result seems to 
onverge mu
h faster. Although inthe plot it looks like the VCA result does not improve mu
h upon a restri
ted Hartree-Fo
k 
al
ulation,in the following we will show that CPT/VCA yields results in all parameter regimes of the SIAM whi
h
annot be reprodu
ed within a mean �eld treatment (see se
. 3.2).The variational parameters obtained for the two sets of parameters shown in �g. 3.15 (left) are presentedin �g. 3.14 (right). In addition to the VCAΩ parameters, whi
h were used for the results above, thevariational parameters obtained in VCASC are also depi
ted. We plotted the di�eren
e of the parameterof the referen
e system x
′ to the physi
al parameter x: ∆x. All parameters appear to 
onverge to zero within
reasing length of the 
luster part of the referen
e system L. Noti
e that the self 
onsistent approa
halways leads to a ∆x of greater magnitude with respe
t to VCAΩ. Remarkably, the spe
trum obtained byVCAΩ and VCASC for the parameter set x = {ǫf , ǫs} is in very good agreement although the variationalparameters are rather di�erent. The most striking di�eren
e is that the self 
onsistent approa
h yields anegative ∆ǫf while the Ω based VCA yields a positive ∆ǫf . This is however 
ompensated by the di�erent

∆ǫs. Using the hybridization V as a variational parameter, the ∆V obtained by VCAΩ and VCASC agreerather well. Remarkably, the resulting density of states is very di�erent, whi
h shows that the 
al
ulationis extremely sensitive to this parameter.Overall one 
an 
on
lude that VCA reprodu
es the medium and high energy regions of the spe
trumreasonably well. The VCA result improves enormously upon the CPT data. In general, the results fromVCAΩ and VCASC agree very well with ea
h other. Next we turn to the examination of stati
 expe
tationvalues.3.3.9. Impurity density of states and o

upationThe o

upation of the impurity site is given at temperature T = 0 by
< nf

σ > =
1

2
+
1

π
∫
∞

0
dωReGσ

ff(iω) . (3.44)This integral may be evaluated from the imaginary frequen
y Green's fun
tion, whi
h in turn is dire
tlya

essible within CPT/VCA.To see whether CPT/VCA are good approximations in all parameter regions of the SIAM, we vary theon-site energy of the impurity ǫf at �xed intera
tion strength U . The lo
al impurity density of states atthe 
hemi
al potential (ω = µ = 0) and the impurity o

upation number are plotted for various lengths ofthe 
luster part of the referen
e system L = 2,4,6 and 8 for the same model parameters. The VCAΩ resultis shown in �g. 3.16 (left), the CPT data in �g. 3.17 (left) and in �g. 3.16 (right) a VCASC 
al
ulation. Westart out by dis
ussing the VCAΩ result (�g. 3.16 (left)). The variational parameters x used within VCAΩare the on-site energy of the impurity ǫf and the on-site energies of the un
orrelated 
luster sites ǫs. Thedensity of states ρf(0) displays a pronoun
ed plateau whi
h is related to the existen
e of a quasiparti
lepeak (Kondo resonan
e) pinned at the 
hemi
al potential. The parameter regions leading to an empty(ǫf < 0) or to a doubly o

upied (ǫf > U) impurity do not show the Kondo resonan
e, as expe
ted. In thehalf �lled region whi
h lies in between, virtual spin �u
tuations lead to a pronoun
ed quasi parti
le peakat the 
hemi
al potential. We observe that the result 
onverges with in
reasing length of the 
luster partof the referen
e system L to the physi
ally expe
ted result. Due to the variational parameters 
onsidered,the deviations of the results as a fun
tion of L are rather small as 
ompared to CPT where the results56
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Figure 3.13.: Spe
tral fun
tion at the impurity site at parti
le-hole symmetry for di�erent intera
tionstrengths U . The intera
tion strengths shown are U/∆ = 4 in the upper left �gure (a),
U/∆ = 8 in the upper right �gure (b), U/∆ = 12 in the lower left �gure (
) and U/∆ = 20in the lower right �gure (d). Ea
h plot shows the results obtained by CPT for a length ofthe 
luster part of the referen
e system of L = 14 (dashed-red), VCAΩ with two variationalparameters: the hopping t and the hybridization V whi
h are determined by the stationarypoint of the grand potential Ω at a length of the 
luster part of the referen
e system of
L = 10 (blue), VCASC with the same variational parameters determined self 
onsistently ata length of the 
luster part of the referen
e system of L = 10 (
yan). All results have beenobtained for a large numeri
al broadening 0+ = 0.05. As a referen
e the NRG and DMRGresults of Peters [104℄ are plotted in yellow and dash-dotted-dark brown respe
tively.
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Figure 3.14.: (Left) The lo
al density of states eq. (3.43) is shown resolved in real spa
e. The spe
trumwas obtained using CPT on a L = 14 site 
luster. The impurity parameters were U/∆ = 12,
ǫf /∆ = −6 and the numeri
al broadening was set to 0+ = 0.05. The spe
trum shown in�g. 3.13 (
) 
orresponds to the data shown for site 14 where the impurity is lo
ated. (Right)Zoom to the region of the Kondo peak in the lo
al density of states of the impurity site. Thespe
tra are plotted for several values of intera
tion strength U/∆ = [0, . . . ,40]. The 
urveswere obtained for the parti
le-hole symmetri
 
ase, ∆ = 0.1, for 0+ = 10−6 using VCAΩ.
hange signi�
antly with in
reasing size of the referen
e system (see �g. 3.17 (left)). It is di�
ult toestimate the size of the referen
e system whi
h is ne
essary to rea
h full 
onvergen
e. We expe
t CPT
al
ulations in the empty or doubly o

upied regions to 
onverge rather fast (within a few sites) while
al
ulations in the Kondo regime, and parti
ularly in the 
rossover region, may fully 
onverge only atlarger sizes (L ≈ 50) of the referen
e system (see ref. [116℄ as well as se
. 3.3.5). This is inferred from thespin-spin 
orrelation fun
tion in the 
luster whi
h is observed to de
ay su�
iently fast outside the Kondoplateau (i.e. it is e�e
tively zero at the boundary of the 
luster) but shows long range 
orrelations insidethe plateau. The VCASC results are obtained with one variational parameter x = {ǫf}. The reason fornot using x = {ǫf , ǫs} again, is that the result is almost the same as the one obtained with VCAΩ (see�g. 3.16 (left)). However in some (small) parameter regions the numeri
al evaluation be
omes di�
ult.The data shown in �g. 3.16 (right) shows a 
lear improvement as 
ompared to CPT but does not rea
hthe quality of the VCAΩ result in terms of 
onvergen
e in system size. Note that for VCASC only onevariational parameter was 
onsidered as 
ompared to two in the VCAΩ 
al
ulation.The Friedel sum rule (FSR) [124, 125, 89℄ provides an exa
t relation between the extra states indu
edbelow the Fermi energy by a s
attering 
enter and the s
attering phase shift. It also holds true forintera
ting systems. This gives a relation between the f o

upation < nf

σ >, and the density of states:
ρf,σ(0) = Nf

π∆
sin2 (π < nf

σ >
Nf

) . (3.45)Here Nf denotes the degenera
y of the f orbital and < nf
σ > its mean o

upation. In our 
ase Nf = 2and the mean o

upation in the Kondo regime < nf >≈ 1. Note that the Friedel sum rule represents theanalogon of Luttinger's theorem [126℄ in the theory of Fermi-liquids [127℄. This is why the physi
s ofthe impurity is often referred to as lo
al Fermi liquid behavior. Sin
e both of these quantities 
an beevaluated independently, we 
an 
he
k the validity of the Friedel sum rule in our approximation. Resultsare shown in �g. 3.16 applied to the L = 8 site VCAΩ results. The VCAΩ results ful�ll the Friedel sumrule almost in the whole Kondo region. At the 
rossover to a zero or doubly o

upied impurity the Friedelsum rule is not ful�lled exa
tly any more but approximated very well. In the region farther outside itagain is perfe
tly ful�lled. The variational parameters of VCA are 
ru
ial to ful�ll the Friedel sum ruleas 
an be seen from a CPT 
al
ulation (�g. 3.17) whi
h violates it in all parameter regions. It appearsas if VCAΩ with variational parameters x = {ǫf , ǫs} naturally drives the system to ful�ll this 
ondition.The VCASC result (�g. 3.16 (right)) violates the sum rule too. This is not a feature of VCASC in generalbut rather has to do with the 
hoi
e of variational parameters, whi
h was just x = {ǫf} in this 
ase. TheVCASC result for two variational parameters x = {ǫf , ǫs} looks qualitatively like the respe
tive VCAΩresult. 58
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Figure 3.15.: (Left) Magni�
ation of the Kondo resonan
e in the density of states of the impurity site.Shown are 
al
ulations at two di�erent sets of parameters. The resonan
e at ω = 0 
or-responds to the parti
le-hole symmetri
 
ase: U/∆ = 20, ǫf /∆ = −10, while the resonan
eaway from zero 
orresponds to a set of parameters right at the edge of the Kondo region:
U/∆ = 20, ǫf /∆ = 0. For 
omparison we show NRG (yellow) and FRG (dark brown) dataas well as results obtained from a restri
ted Hartree-Fo
k 
al
ulation (blue) from Karras
het al. [100℄ (The NRG results are partially hidden by the FRG results.). The CPT result(
yan) is shown for lengths of the 
luster part of the referen
e system L = 2,4,6,8 and 10.Results for higher L are always lo
ated towards the 
enter of the plot. In the parti
le-holesymmetri
 
ase VCAΩ (magenta) was performed with variational parameters x = {V } for
L = 2,4,6,8 and 10. Away from parti
le-hole symmetry VCAΩ was performed with varia-tional parameters x = {ǫf , ǫs} for the same lengths of the 
luster part of the referen
e system
L. For the CPT/VCA 
al
ulations a numeri
al broadening of 0+ = 10−6 was used. The insetshows a zoom to the top region of the peaks. (Right) Magni�
ation of the Kondo resonan
ein the density of states of the impurity site. Shown are 
al
ulations at two di�erent setsof parameters. The resonan
e at ω = 0 
orresponds to the parti
le-hole symmetri
 
ase:
U/∆ = 20, ǫf /∆ = −10, while the resonan
e away from zero 
orresponds to a set of param-eters right at the edge of the Kondo region: U/∆ = 20, ǫf /∆ = 0. For 
omparison we showNRG (yellow) and FRG (dark brown) data as well as results obtained from a restri
tedHartree-Fo
k 
al
ulation (blue) from Karras
h et al. [100℄ (The NRG results are partiallyhidden by the FRG results.). The CPT result (
yan) is shown for lengths of the 
luster partof the referen
e system L = 2,4,6,8 and 10. Results for higher L are always lo
ated towardsthe 
enter of the plot. In the parti
le-hole symmetri
 
ase VCAΩ (magenta) was performedwith variational parameters x = {V } for L = 2,4,6,8 and 10. Away from parti
le-hole sym-metry VCAΩ was performed with variational parameters x = {ǫf , ǫs} for the same lengthsof the 
luster part of the referen
e system L. For the CPT/VCA 
al
ulations a numeri
albroadening of 0+ = 10−6 was used. The inset shows a zoom to the top region of the peaks.(Right) Evolution of the variational parameters for the data shown in �g. 3.15. Shown isthe di�eren
e of the parameters of the referen
e system x

′ to the physi
al parameter x:
∆x = x

′ − x. Parameters obtained by VCAΩ (
rosses) are 
ompared to those obtained byVCASC (
ir
les). The variational parameters ∆ǫf (dark brown) and ∆ǫs (yellow) 
orre-spond to the 
al
ulation away from parti
le-hole symmetry in �g. 3.15 while the parameter
∆V (olive) 
orresponds to the 
al
ulation at parti
le-hole symmetry. Lines are only guidesto the eye.
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Figure 3.16.: (Left) Density of states of the impurity site (solid lines) obtained via VCAΩ at ω = 0 andaverage o

upation of the impurity (dashed lines) for di�erent lengths of the 
luster partof the referen
e system L = 2,4,6 and 8 (blue, green, red and 
yan) as a fun
tion of theimpurity on-site energy ǫf . The Coulomb intera
tion U is kept 
onstant at U/∆ = 20. Thenumeri
al broadening used is 0+ = 10−6. The set of single parti
le parameters 
onsideredfor variation within VCAΩ is x = {ǫf , ǫs}. Note that here the point ǫf = −U
2

orresponds tothe parti
le-hole symmetri
 
ase. The Friedel sum rule (eq. (3.45)) was applied to the L = 8result (dotted-violet). It is ful�lled to a very good approximation in the Kondo region andfar outside of it. Small deviations from the Friedel sum rule arise at the 
rossover regionto an empty or doubly o

upied impurity. The inset shows a zoom to the Kondo plateau.(Right) Density of states of the impurity site (solid lines) obtained via VCASC at ω = 0 andaverage o

upation of the impurity (dashed lines) for di�erent lengths of the 
luster partof the referen
e system L = 2,4,6 and 8 (blue, green, red and 
yan) as a fun
tion of theimpurity on-site energy ǫf . The Coulomb intera
tion U is kept 
onstant at U/∆ = 20. Thenumeri
al broadening used is 0+ = 10−6. The set of single parti
le parameters 
onsideredfor variation within VCASC is x = {ǫf}. Note that here the point ǫf = −U

2

orresponds tothe parti
le-hole symmetri
 
ase. The Friedel sum rule (eq. (3.45)) was applied to the L = 8result (dotted-violet). It is ful�lled outside of the Kondo region only.S
anning the intera
tion strength U at �xed impurity on-site energy ǫf 
on�rms the presen
e of theKondo behavior. Shown in �g. 3.17 (right) are results obtained with VCAΩ using the same variationalparameters x = {ǫf , ǫs} as above. In the weakly 
orrelated part (U/∆ ≲ 5) the density of states at the
hemi
al potential is low. The intermediate region (5 ≲ U/∆ ≲ 15) signals the 
rossover to the Kondoregime. For larger U the Kondo regime is rea
hed with an impurity o

upation of < nf >≈ 1, whi
h maybe inferred from the Friedel sum rule. In the inset of the �gure, the CPT result for the same lengths ofthe 
luster part of the referen
e system L are shown. The CPT results are by far not 
onverged for the
luster sizes 
onsidered here. This emphasizes the importan
e of the variational parameters.The results in �g. 3.16 and �g. 3.17 (right) agree very well with those of 
al
ulations based on X-operatorte
hnique exer
ised by Lobo et al. [107℄. In their work a strong 
oupling perturbation theory is appliedstarting from the Anderson mole
ule as a basis and using the Friedel sum rule as a 
ondition to �x theposition of an in�nitely narrow 
ondu
tion band.The results of this se
tion 
learly show that VCA is able to 
apture the physi
s of the SIAM in everyparameter region. The improvement obtained by going over from CPT to VCA is 
ru
ial to ful�ll exa
tanalyti
 relations. The results of this 
hapter are extended in the next se
tion by 
onstru
ting a 
rossoverdiagram.3.3.10. Crossover diagramTo delve into the CPT/VCA results for the whole parameter range of the SIAM a �phase diagram� ispresented in this se
tion. This is to be understood to be a mere s
an of the parameters U and ǫf be
ausethe model does not undergo a phase transition, unlike indi
ated in the mean �eld results presented inse
. 3.2. The density of states of the impurity at the 
hemi
al potential ρf(0) is shown in �g. 3.18 ina density plot. The left result was obtained using VCAΩ, the result shown in the right by CPT. Thisplot essentially shows the height of the Kondo resonan
e as a fun
tion of intera
tion strength and on-site60
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Figure 3.17.: (Left) Density of states of the impurity site (solid lines) obtained via CPT at ω = 0 andaverage o

upation of the impurity (dashed lines) for di�erent lengths of the 
luster partof the referen
e system L = 2,4,6 and 8 (blue, green, red and 
yan) as a fun
tion of theimpurity on-site energy ǫf . The Coulomb intera
tion U is kept 
onstant at U/∆ = 20. Thenumeri
al broadening used is 0+ = 10−6. Note that here the point ǫf = −U
2

orresponds tothe parti
le-hole symmetri
 
ase. The Friedel sum rule (eq. (3.45)) was applied to the L = 8result (dotted-violet). It is drasti
ally violated. However the results are far from 
onvergedfor the small lengths of the 
luster part of the referen
e system 
onsidered here. (Right)Density of states of the impurity site at ω = 0 for di�erent lengths of the 
luster part of thereferen
e system L = 2,4,6 and 8 (dark brown, 
yan, olive and magenta) as a fun
tion ofthe intera
tion strength U . The impurity on-site energy ǫf is kept 
onstant at ǫf /∆ = −10.The numeri
al broadening is 
hosen to be 0+ = 10−6. The set of single parti
le parameters
onsidered for variation within VCAΩ is x = {ǫf , ǫs}. The inset shows the CPT results.energy of the impurity. The di�erent regimes of the SIAM, as obtained by an atomi
 limit 
al
ulation(see se
. 3.1), are indi
ated by bla
k lines. These lines divide the physi
s into regions where the impurityis doubly, singly or not o

upied. In the singly o

upied region (U

2
> ∣ǫf + U

2
∣) lo
al moments and theirs
reening is expe
ted to appear. This region whi
h bestrides the 
one en
losed by bla
k lines is theregion where Kondo physi
s may take pla
e within this approximation. The parameter regions where theimpurity is empty or doubly o

upied lie above and below this 
one. More sophisti
ated methods will leadto a smearing out of the border of these regions and introdu
e a 
rossover area with 
ompeting e�e
ts. Aboundary expe
ted between a single resonan
e and a lo
al moment behavior where the single resonan
eis split into two for spin up and spin down respe
tively is given by mean �eld theory (see se
. 3.2). Themean �eld boundary is obtained from eq. (3.19). The plot shows that the Kondo plateau is reprodu
edvery well by VCAΩ. The Friedel sum rule eq. (3.45) is ful�lled in all parameter regions in 
ontrast to theCPT result, whi
h 
learly shows a weak behavior. The VCAΩ results are almost 
onverged for lengths ofthe 
luster part of the referen
e system L ≈ 6. In
reasing L yields better results in the 
rossover region.Results obtained by means of CPT do not reprodu
e the Kondo plateau very well for small length ofthe 
luster part of the referen
e system. We estimate that CPT needs a length of the 
luster part ofthe referen
e system of L ≈ 50 to reprodu
e the Kondo plateau as good as VCA with L = 6 sites. Thespurious spe
tral weight arising in the plot in some regions of U < 0 may arise as a numeri
al artifa
t ofthe VCA pro
edure.The average impurity o

upation for the same parameter region is shown in �g. 3.19. The result obtainedwith VCAΩ (�g. 3.19 (left)) 
learly shows the Kondo plateau where the impurity is singly o

upied. Theparameter regions of a doubly o

upied or empty impurity lead to a density of states in the impuritywhi
h is zero at the 
hemi
al potential (
ompare to �g. 3.18). The CPT result (�g. 3.19 (right)) againshows, that CPT would need mu
h larger 
luster sizes. A similar behavior is also found at examiningthe spin-spin 
orrelations of the 
luster part of the referen
e system (see �g. 3.9 (right)). Note that 
utsat 
ertain parameter values through the plots: �g. 3.18 and �g. 3.19 are presented in �g. 3.16 (left) and�g. 3.17 (left) for a more detailed overview. The results of this se
tion have been obtained using VCAΩwith variational parameters x = {ǫf , ǫs}. It should be noted that using only x = {ǫf} already yields goodresults. As mentioned in se
. 3.3.9, CPT needs quite large lengths of the 
luster part of the referen
esystem L to 
onverge to the VCA results. Having shown that VCA produ
es overall good results in all61
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ates the di�erent regions obtained from an atomi
 limit 
al
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one lo
al moments are to be expe
ted. While in the upper region the impurity isexpe
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urve showsthe onset of a magneti
 state as obtained by a mean �eld treatment (see text). (Left) Theresults where obtained with VCAΩ for a set of variational parameters x = {ǫf , ǫs}, a lengthof the 
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le density in the impurity < nf > as a fun
tion of U and ǫf for the sameparameters as in �g. 3.18. (Left) The VCAΩ result. (Right) The CPT result.
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parameter regions for the general features of the spe
tra, we turn to the mu
h harder a

essible 
ase ofthe low energy properties.3.3.11. Low energy properties, Kondo TemperatureIn this se
tion we examine the low energy properties of the symmetri
 SIAM. In the strong 
oupling limita single s
ale, the Kondo temperature TK , governs the low energy physi
s. This s
ale may be extra
tedfrom the width of the Kondo resonan
e in the lo
al density of states.The Kondo temperature TK is known from Bethe Ansatz results for the parti
le-hole symmetri
 SIAM [7,128℄
TK =

√
∆U

2
e−γ π

8∆
U , γ = 1 . (3.46)This s
ale whi
h is inversely proportional to the spin-�ip rate of the impurity divides the physi
s ofthe SIAM into two regions. A lo
al moment behavior of the impurity, where the spin is free and alow temperature region where the lo
al spin and the 
ondu
tion ele
trons be
ome entangled and form asinglet state [111℄.Quantities whi
h depend inversely on TK are the e�e
tive mass m∗ and the stati
 spin sus
eptibility

χm. We investigate and 
ompare the results for the s
ale TK obtained from the dire
t determinationof TK (from the full width at half maximum and the spe
tral weight of the Kondo resonan
e) and theinverse quantities m∗ and χm. We �nd that the results of all four measurements turn out to yield the
orre
t qualitative behavior in VCAΩ. However in a region where the dependen
e of TK is exponentiallydependent on the intera
tion strength U the exponential prefa
tor is not predi
ted 
orre
tly. Thereforewe introdu
e a s
aling fa
tor γ eq. (3.46) whi
h turns out to be the same for all four ways of determining
TK . In parti
ular this fa
tor is independent of the set of parameters used. The s
aling fa
tor may be
al
ulated semi-analyti
ally for a referen
e system 
onsisting of a two site 
luster and the semi-in�niteenvironment within VCAΩ and VCASC (x = {V }) (see se
. 3.3.3). The 
al
ulation for VCAΩ leads to anintegral expression for the stationary point of the grand potential Ω with respe
t to ∆V from whi
h theoptimal ∆V 
an be obtained numeri
ally (see se
. 3.3.3). The Kondo s
ale may be determined from theso obtained values of V ′(U) =∆V (U) + V by

TK(U)∝ (V ′(U)
U
)2 . (3.47)This leads to a perfe
t exponential behavior with an exponent de�ned in eq. (3.46) where

γ = 0.6511 .In the following subse
tions the numeri
al results obtained by VCAΩ will be plotted in semi-logarithmi
plots over a s
aled x-axis: α U
∆
, where α = 1

γ
for the VCAΩ results. The issue of obtaining an exponentials
ale but not the 
orre
t exponent for the fun
tional dependen
e on U is 
ommon to various approximatemethods (for example variational wavefun
tions where the issue was 
ured by introdu
ing an extendedAnsatz by S
hönhammer [117℄, saddle-point approximations of a fun
tional integral approa
h [129℄ orFRG [118℄). A faint analogy may be drawn here to Gutzwiller approximation, where an exponentialenergy s
ale in U arises by a renormalized hybridization parameter V [9℄, whi
h seems also to be the 
asefor VCAΩ.The self-
onsistent 
al
ulation for VCASC also leads to an integral expression for the determination of

∆V . This expression is obtained by requiring the expe
tation values of the hopping from the impuritysite to the �rst site in the 
hain in the 
luster to be the same as the expe
tation value in the full solution.This pro
edure does not yield an exponential s
ale in U . The optimal 
luster parameter V ′ shows spuri-ous behavior as a fun
tion of U (see se
. 3.3.3). We 
on
lude that VCASC with x = {V } 
annot reprodu
ethe low energy properties of the SIAM, while VCAΩ yields the 
orre
t behavior apart from a fa
tor.
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E�e
tive Mass - Quasiparti
le RenormalizationThe e�e
tive mass m∗ is de�ned as the quasiparti
le renormalization [100℄
m∗(U)
m∗(0) = 1 −

d[ImΣσ
ff(iω,U)]
dω

∣
ω=0+

=
d[ImGσ

ff(iω,U)]
dω

∣
ω=0+
×

(d[ImGσ
ff(iω,0)]
dω

∣
ω=0+
)−1 , (3.48)where we introdu
ed the dependen
e on the intera
tion strength U expli
itly. In the Kondo regime, thisquantity be
omes inversely proportional to the Kondo temperature.We want to answer the question whether the Kondo s
ale is 
aptured by CPT/VCA or not. Therefore we
ompare the fun
tional form and the exponent obtained from the e�e
tive mass and the analyti
 resultfor TK eq. (3.46). The result for the e�e
tive mass obtained within V CAΩ is shown in �g. 3.20 (left).The variational parameter used was x = {V }. The fun
tional form is reprodu
ed well by VCAΩ(i.e. itstarts out quadrati
ally and goes over to an exponential behavior in the Kondo region). However theexponent ( π

8∆
) is not reprodu
ed 
orre
tly. VCAΩ yields a lower exponent of ≈ (γ π

8∆
). The fa
tor γ isde�ned in se
. 3.3.3, determined from a semi-analyti
al 
al
ulation of TK within VCAΩ. This additionalfa
tor is the same for all initial parameters (within the Kondo regime), it is parti
ularly independent of

∆. Therefore the x-axis for the CPT/VCA results is s
aled by α = 1
γ
to see that the fun
tional form of thee�e
tive mass mat
hes the NRG result [100℄ to a very good approximation. The VCA results are already
onverged for small 
luster sizes of L = 6 while the CPT results 
onverge rather slowly. An attempt wasmade to extrapolate the CPT data to L → ∞. It is interesting to observe that this extrapolated 
urve
oin
ides ni
ely with the VCA result (L=6) in the low U region. Note that for this quantity the VCAresult is almost independent of the length of the 
luster part of the referen
e system as will be motivatedin se
. 3.3.12.Kondo Spe
tral Weight and Half WidthSin
e the height of the Kondo resonan
e is �xed by the Friedel sum rule eq. (3.45) the width and theweight (area) of the peak are proportional to the Kondo temperature TK . Obtaining the spe
tral weightor full width at half maximum (FWHM) of the Kondo resonan
e from the spe
trum introdu
es a largeun
ertainty. Nevertheless we made an attempt, to get an idea of the behavior of TK . We �xed the spe
tralweight by the �rst minimum to the left and to the right of the 
entral peak. In general the e�e
tive massand stati
 spin sus
eptibility will yield more reliable results but it is instru
tive to 
ompare these fourways of determining TK .Shown in �g. 3.20 (right) is the evolution of the spe
tral weight and the FWHM of the Kondo resonan
ewith in
reasing intera
tion strength U . The data were 
al
ulated using VCAΩ with a variational param-eter x = {V } for the parti
le-hole symmetri
 SIAM. For the results shown in the plot the x-axis of theVCA result has been s
aled by the same fa
tor α as in the previous se
tion for easier 
omparison to theBethe Ansatz result.Stati
 spin sus
eptibilityThe stati
 spin sus
eptibility χm is given by the linear response to an applied magneti
 �eld B in zdire
tion

χm(U) = −d (⟨nf↑⟩ − ⟨nf↓⟩)
dB

∣
B=0

. (3.49)In the Kondo regime this quantity too be
omes inversely proportional to the Kondo temperature. For the
al
ulations in this se
tion we introdu
e an additional spin dependent term in the impurity Hamiltonianeq. (3.3)
Ĥmagneti
 =∑

σ

σ
B

2
f �
σ fσ. (3.50)
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Figure 3.20.: (Left) E�e
tive mass m∗ of the Kondo resonan
e eq. (3.48) as a fun
tion of intera
tionstrength U . We plot CPT results for lengths of the 
luster part of the referen
e system
L = 2,4,6,8 and 10 (magenta), the to L → ∞ extrapolated CPT result (olive), as well asVCAΩ results (blue). The data points for the CPT result in the low U region are not shownto avoid messing up the plot. The variational parameter used for the VCAΩ result was
x = {V }. The VCAΩ data was obtained for a referen
e system of length L = 6. For CPTas well as VCAΩ we used a numeri
al broadening of 0+ = 10−6. For 
omparison the resultsobtained by NRG (yellow) and FRG (dark brown) are shown [100℄. The fa
tor α on thex-axis is α = 1 for NRG and FRG data and α = 1

γ
for CPT as well as VCAΩ results (seetext). (Right) VCAΩ results for the spe
tral weight (blue) and full width at half maximum(olive) of the Kondo resonan
e as a fun
tion of intera
tion strength U . The variationalparameter used was x = {V }. A length of the 
luster part of the referen
e system of L = 6sites and a numeri
al broadening of 0+ = 10−6 were used for this 
al
ulation. Data pointsmarked with a 
ir
le were used for the �t of the exponential fun
tion in the Kondo region.The bla
k line shows the Kondo temperature TK as obtained by Bethe Ansatz 
al
ulationseq. (3.46). The fa
tor α on the x-axis is α = 1 for Bethe Ansatz data and α = 1

γ
for VCAΩdata (see text).
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Figure 3.21.: The stati
 spin sus
eptibility χm eq. (3.49) is shown as a fun
tion of intera
tion strength
U . The variational parameter used was x = {V }. The data were obtained for L = 6 sitesand 0+ = 10−6. For 
omparison the results obtained by NRG (blue) and FRG (green) areshown [100℄. The fa
tor α on the x-axis is α = 1 for NRG as well as FRG results and α = 1

γfor VCAΩ data (see text).The stati
 spin sus
eptibility χm as obtained with VCAΩ is shown in �g. 3.21. The variational parameterused was x = {V }. As in the two pre
eding se
tions the x-axis was s
aled by α for the VCAΩ data. Asa referen
e the results of NRG and FRG [100℄ are shown. The behavior of the VCA result is good forsmall intera
tion strength U . The VCA result shown for L = 6 sites is already 
onverged while the CPTresult would require mu
h larger systems.We would like to highlight that VCA reprodu
es an energy s
ale TK . Results from dire
t 
al
ulationof TK and 
al
ulation of the e�e
tive mass m∗ and the stati
 spin sus
eptibility χm yield the 
orre
tfun
tional form but not the right exponent. The results of this se
tion are further explored in the nextparagraph, when the result for the CPT/VCA self-energy is 
ompared to CT-QMC data.3.3.12. Ben
hmarking CPT/VCA against 
ontinuous time Quantum MonteCarloIn this se
tion we 
ompare CPT/VCA results to QMC data. We obtained the Monte Carlo results usingthe 
ontinuous time Quantum Monte Carlo (CT-QMC) 
ode of the TRIQS [130℄ toolkit and its imple-mentation of the hybridization expansion (CT-HYB) [131℄ algorithm using Legendre polynomials [132℄.This method enables a

ess to very low temperatures and is espe
ially suited to obtain low energy prop-erties [19℄. The CT-QMC data provides statisti
ally exa
t and reliable results to test our data.All CT-QMC 
al
ulations were done for a single impurity orbital at U = 0.8 and ǫf = −0.4. We used asemi
ir
ular hybridization fun
tion with half bandwidth D = 2 and V = 0.3162. This setup 
orrespondsto the same model under investigation here. The value for the intera
tion strength U = 0.8 was 
hosenbe
ause of the relatively low expe
ted Kondo temperature of βK = 1
TK
≈ 100. For all 
al
ulations 1.2×109MC updates where 
ondu
ted, with a sweep size of 100 updates, plus a 10% thermalization period.To ensure that the Kondo resonan
e is 
orre
tly reprodu
ed by CT-QMC we evaluated the MatsubaraGreen's fun
tion for various values of inverse temperature β. The height of the Kondo resonan
e is givenby the Friedel sum rule eq. (3.45) to be Im(Gff(iω = 0)) = −10 for the parameters used here (∆ = 0.1). Toobtain Im(Gff(iω = 0)) we extrapolate twi
e, �rst in iω → 0 for ea
h β, then we use these results and ex-trapolate to T → 0. The extrapolation to iω → 0 is done linearly using the �rst two Matsubara frequen
ies.The imaginary part of Gff(iω) and the extrapolated value to iω → 0 are shown in the inset of �g. 3.22(left) for β ∈ [10,1200]. Those extrapolated values are plotted as a fun
tion of temperature (�g. 3.22(left)). These data points are then extrapolated to T → 0 using a �t by a rational model fun
tion. Theresult 
learly shows the onset of the Kondo resonan
e when the temperature is lowered below the Kondotemperature TK . The extrapolation to T = 0 shows very good agreement (Im(Gff(iω = 0)) ≈ −10.1) withthe result expe
ted from the Friedel sum rule within the un
ertainty. It is important to note that theCT-QMC results 
onverge very ni
ely in β. Although for higher β lower Matsubara frequen
ies be
omeavailable, the overall shape of the Green's fun
tion does not 
hange signi�
antly.Therefore we may 
ompare the T = 0 CPT/VCA results for the Green's fun
tion and self-energy to the66
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Figure 3.22.: (Left) CT-QMC result for the imaginary part of the impurity Green's fun
tion extrapolatedto iω = 0. An extrapolation to zero temperature is attempted, whi
h yields a good agreementwith the result predi
ted by the Friedel sum rule (green 
ir
le) within the un
ertainty (redtriangle). The inset shows the imaginary part of the impurity Green's fun
tion for various
β (see legend) and the extrapolated points at iω = 0. (Right) Comparison of the Matsubaraimpurity Green's fun
tion Gff(iω) obtained by CT-QMC (β = 400), CPT and VCAΩ. TheCPT/VCA results were obtained for lengths of the 
luster part of the referen
e system of
L = 2,4,6,8 and 10. The real part shown in the lower part of the �gure is zero. The Friedelsum rule predi
tion of Im(Gff(iω = 0)) = −10 is ful�lled by all methods. The legend of this�gure serves as well as legend for �g. 3.23 (left) and �g. 3.23 (right). That is why the lastentry (large iω exp.) is displayed in the legend but is missing in the graph of this �gure.CT-QMC data. The Matsubara Green's fun
tions of the impurity site Gff(iω) obtained by CT-QMC(β = 400), CPT and VCA are shown in �g. 3.22 (right). We use β = 400 as a 
ompromise between lowtemperatures and still reliable CT-QMC results (within manageable 
omputation time). The β = 400result was obtained using 65 Legendre 
oe�
ients. A detailed analysis has shown that this number issu�
ient to get high frequen
y moments of the self-energy Σ a

urately. The VCAΩ results were obtainedwith one variational parameter x = {V } for U = 0.8, ∆ = 0.1 and 0+ = 10−6 in the parti
le-hole symmetri

ase. For the CPT 
al
ulation we used the same parameters. For both methods we 
onsidered lengthsof the 
luster part of the referen
e system of L = 2,4,6,8 and 10. The imaginary part of the CPT result
onverges with in
reasing length of the 
luster part of the referen
e system to the expe
ted result. TheVCA result lies near the CT-QMC data but underestimates the slope of the 
urve at low iω. The VCAresult provides a huge improvement upon CPT for the lengths of the 
luster part of the referen
e systemshown here. The real part of Gff(iω) is exa
tly zero within CPT/VCA as it is supposed to be. Notethat the value of Gff(iω = 0) whi
h is �xed by the Friedel sum rule is exa
tly reprodu
ed within CPTand VCA for the parti
le-hole symmetri
 
ase. The same is shown for the self-energy of the impurity site

Σff(iω) in �g. 3.23 (right). From the imaginary part of Σff(iω) one 
an infer the 
onvergen
e of theCPT/VCA result with larger length of the 
luster part of the referen
e system L. The real part of theself-energy Re(Σff(iω) = µ = −ef = U
2
= 0.4) is again exa
tly reprodu
ed within CPT/VCA.In the following, we dis
uss the self-energy Σ(iω) for the two interesting 
ases of very low and very highMatsubara frequen
y. We start out by 
ondu
ting an expansion of the self-energy Σ(z) for high Mat-subara frequen
ies (z = iω → ∞) whi
h shall be outlined here brie�y. The self-energy matrix is de�nedby

Σ(z) = G−10 −G−1
= z −T −G−1 .Here T is the one-parti
le part of the Hamiltonian. In the parti
le-hole symmetri
 
ase 
onsidered hereit 
ontains all the hoppings as well as the on-site energy of the impurity ǫf = −U

2
. We 
ondu
t a seriesexpansion in powers of z−1 of Σ(z). Apart from the real 
onstant Tii all z-dependent terms of Σii(z) areanti-symmetri
 in z. Therefore even powers in z±2l , l > 0 vanish. Expanding the Green's fun
tion G(z)
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Figure 3.23.: (Left) Comparison of the self-energy of the impurity Σff(iω) times energy ω obtained byCT-QMC (β = 400), CPT and VCAΩ. The CPT/VCA results were obtained for lengthsof the 
luster part of the referen
e system of L = 2,4,6,8 and 10. CPT as well as VCAΩbe
ome exa
t for high Matsubara frequen
ies. The legend for this �gure is the same asfor �g. 3.22 (right) and is displayed there. (Right) Comparison of the imaginary part ofthe self-energy of the impurity Im(Σff(iω)) obtained by CT-QMC (β = 400), CPT andVCAΩ. The CPT/VCA results were obtained for lengths of the 
luster part of the referen
esystem of L = 2,4,6,8 and 10. An expansion of Σ(iω) for large iω eq. (3.51) is additionallyshown (straight line at − (U
2
)2). CPT/VCA always reprodu
es the exa
t self-energy for highMatsubara frequen
ies. The legend for this �gure is the same as for �g. 3.22 and is displayedthere.yields for the self-energy Σ(z)

Σ(z) = −T − z ∞
∑
m=1
(−1)mXm ,

X =
∞
∑
n=1

z−nCn ,
(Cn)ij = ⟨Ψ0∣ai (∆Ĥ)na�j ∣Ψ0⟩

+ (−1)n ⟨Ψ0∣a�j(∆Ĥ)nai ∣Ψ0⟩ ,where ∆Ĥ = Ĥ − ω0. Colle
ting powers of z yields a 
umulant-like expansion for the self-energy Σ(z)
Σ(z) = ∞∑

n=1
z−nΣn , where

Σ0 = −T +C1 , and
Σ1 = C2 −C2

1 .Here we 
onsider the zeroth and �rst order in z−1 only and obtain for Σ(iω)
Σff(iω) = U

2
−

i

ω
(U
2
)2 +O( 1

iω
)3 , (3.51)where the self-energy at the impurity site Σff is the only non-vanishing matrix element of Σij . This resultis plotted as a referen
e in �g. 3.23 (right). Due to the nature of the CPT/VCA approximation thesemethods always yield the exa
t self-energy for high Matsubara frequen
y as shown in �g. 3.23 (left). Thelow energy properties examined in the previous se
tion depend basi
ally on the slope of the MatsubaraGreen's fun
tion at (iω) = 0+. The results shown in �g. 3.22 (right) and �g. 3.23 (right) show that thisslope is underestimated by CPT/VCA in 
omparison to CT-QMC, at least at the small lengths of the
luster part of the referen
e system available. The qualitative pi
ture however shows a good agreementwith the expe
ted physi
s. 68
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Figure 3.24.: (Left) Grand potential Ω−Ω′0,env (eq. (D.18)) as a fun
tion of the intera
tion strength U/∆(see legend). The data was obtained by studying a L = 4 site 
luster 
oupled to an in�nitelead. The numeri
al broadening used was 0+ = 10−6. The 
rosses indi
ate the respe
tiveminimum of the grand potential. There exists a 
riti
al Uc/∆ ≈ 4.3 above whi
h a �nite
B′x is preferred by the system. (Right) The splitting of the Kondo resonan
e 
aused by anapplied magneti
 �eld in x dire
tion is shown for di�erent values of the auxiliary �eld B′x.The plots were obtained using VCA (i.e. the physi
al �eld Bx is always zero). Instead oftaking the parameter B′x at the stationary point of the grand potential (this value wouldbe B′x/∆ ≈ 1.9 for the parameters used) we expli
itly plug in a �xed value for B′x. Thelength of the 
luster part of the referen
e system used was L = 6 for the model parameters
U/∆ = 12. The numeri
al broadening used was 0+ = 10−6.The above results suggest a possible appli
ation of VCA as an impurity solver for zero temperatureDMFT. The results would not su�er from a bath trun
ation error as in exa
t diagonalization basedDMFT. A big advantage would be the low demand on 
omputational power of VCA and the qualitatively
orre
t lo
al density of states. To round the dis
ussion up, a symmetry breaking �eld is introdu
ed inthe referen
e system in hope for better results.3.3.13. Introdu
ing a symmetry breaking �eldWe explore the possibility to improve the VCAΩ results a
hieved by varying the internal single parti
leparameters of the model by introdu
ing a symmetry breaking 'spin �ip �eld' at the impurity site. Theterm added to the impurity Hamiltonian eq. (3.3)

Ĥ�ip = Bx (f �
↑
f
↓
+ f �
↓
f
↑
) , (3.52)expli
itly breaks the 
onservation of spin in the 
luster solution. We are interested in the model with aphysi
al parameter Bx = 0 so this variable may only attain a �nite value as a variational parameter B′xin the referen
e system. This is motivated by the a
tual physi
s of the impurity at whi
h 
ondu
tionele
trons undergo spin �ip s
attering. Our �ndings indi
ate that any �nite value of B′x splits the Kondoresonan
e and has thus to be dis
arded on physi
al grounds for the physi
al system under investigation.While this prevents the appli
ation of this �eld to improve the VCA results, it gives very ni
e insightin the physi
s of the SIAM as des
ribed by CPT/VCA. We �nd that a 
riti
al intera
tion strength Udepending on the length of the 
luster part of the referen
e system exists, whi
h separates solutions whi
hwould prefer a �nite B′x from those whi
h would prefer B′x = 0. The 
riti
al intera
tion strength for L = 4is given by Uc/∆ ≈ 4.3. The grand potential Ω −Ω′0,env is plotted for various intera
tion strengths U in�g. 3.24 (left). For an analogous 
al
ulation for L = 6 site 
lusters a value of Uc/∆ ≈ 4.1 is a
hieved. Themean �eld result would yield a 
riti
al intera
tion strength Uc/∆ = π for the parameters used here. Weinterpret this value as a signature of the onset of lo
al moment behavior. The values for Uc are of 
oursenot to be taken literally, they depend very mu
h on the �nite size of the 
luster under investigation.However, the fa
t that a 
riti
al U exists, signals that the essential physi
s of the SIAM is reprodu
ed byour approa
h.The splitting of the Kondo resonan
e 
aused by a non-zero variational �eld B′x is shown in �g. 3.24(right). The value of U/∆ = 12 used for this 
al
ulation lies in the region above Uc where the system69



prefers a nonzero �eld B′x. This ends the dis
ussion of the CPT/VCA results in equilibrium. In the nextse
tion we turn to the non-equilibrium 
ase.
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4. Non-equilibrium transport through astrongly-
orrelated quantum dotSin
e the early 1990's the �eld of (then) bulk Kondo physi
s was enri
hed by the study of arti�
ial nano-s
ale stru
tures, exhibiting similar physi
s in a mu
h more 
ontrol- and tune-able way [133, 134, 135℄.Numerous experimental studies [10, 136, 137, 138, 138℄ established a new �eld for both equilibriumKondo physi
s as well as non-equilibrium phenomena in those devi
es. One espe
ially remarkable devi
eproviding su
h a playground for quantum impurity models is a quantum dot [139℄. These small unitsmay be used in a single-ele
tron transistor setup, exhibiting Coulomb blo
kade e�e
ts. Quantum dots,sometimes referred to as arti�
ial atoms, resemble the physi
s of a magneti
 impurity in a metal, when
onne
ted to metal leads by tunneling barriers. In a metal the magneti
 moment of the impurity, above theKondo temperature TK provides a lo
al moment, usually in a, singly o

upied, narrow f-orbital. Loweringthe temperature below TK , the s
reening of this moment leads to the remarkable Kondo physi
s. Quantumdots, with an odd number of ele
trons, are 
apable of resembling this behavior as shown in �g. 4.1. Thegreat advantage of arti�
ial nano stru
tures is, that ea
h parameter may be 
ontrolled experimentally.A quantum dot, 
onne
ted to left-, and right leads, as well as a gate ele
trode, may be modeled bythe SIAM. The tunnel 
ouplings to the leads VL and VR, are the analogues of the hybridization matrixelements of f- and s-ele
trons in a bulk impurity system and may be 
ontrolled by the gate voltage. Theenergy levels of the dot and 
orrelation e�e
ts may be engineered by using di�erent materials, sizes andgeometries of the dot. Su
h devi
es are subje
ted to strong 
orrelations be
ause of the ma
ros
opi
allyentangled states arising from virtual spin �ip s
attering [10℄.The non-equilibrium behavior of su
h systems under bias poses an unsolved issue even today. Early worksref. [140, 141, 142, 143℄ gave some essential insight into the basi
 non-equilibrium physi
s. A good overviewof semi-
lassi
al approa
hes is presented in the book by Ri
hter [144℄. A sound theoreti
al base of thenon-equilibrium Kondo physi
s was developed during the last twenty years ref. [145, 146, 147, 148, 149℄.Qualitative results for any bias voltage are extremely hard to obtain be
ause it is expe
ted, that the dotstays in the strong 
oupling regime also at high bias voltages [150℄ (Vbias > TK). Several ideas to ta
kle theintera
ting non-equilibrium problem are presented in ref. [151℄. A 
omparison of many body perturbationtheory and time dependend density fun
tional theory is available in ref. [152℄. The involved time s
alesare dis
ussed for example in ref. [153℄. Some progress was made in re
ent years using non-equilibriumFRG [154, 155, 156℄, QMC [157, 158℄, dual-fermion approa
hes [159, 160℄ and with the introdu
tion ofs
attering Bethe Ansatz [161, 162℄. The appli
ability of a master-equation was explored in ref. [163℄.DMRG was used to get insight into one-dimensional problems ref. [164, 165℄. Re
ently it was noted thatthe logarithmi
 dis
retization used in NRG 
auses problems, when one wants to predi
t the long-timebehavior of non-equilibrium systems [166℄. In this publi
ation we do not 
onsider any additional 
harging
Figure 4.1.: S
hemati
 energy diagram of a quantum dot (reprodu
ed from ref. [10℄). The spin-degeneratelevel of the dot is singly o

upied. A depopulation as well as a double-o

upation of the dot isenergeti
ally unfavorable. The tunnel 
ouplings to the left and right lead are denoted ΓL and

ΓR. Those leads 
onsist of Fermi seas �lled up to their respe
tive 
hemi
al potential µL and
µR. A possible virtual spin �ip event, whi
h is the essen
e of the Kondo e�e
t, is depi
tedhere. (Left) Initial state of the quantum dot: single-o

upation. (Mid) The dot's ele
tronmay tunnel o� the 
orrelated region in a virtual pro
ess. (Right) It is repla
ed by an ele
tronof another spin �avor. Another pro
ess for su
h an event may be a virtual double-o

upation.71



Figure 4.2.: Density of states in a quantum dot (reprodu
ed from ref. [10℄). The Kondo e�e
t revealsitself as a 
hara
teristi
 resonan
e in the lo
al density of states of the quantum dot. (Left)In an equilibrium situation the resonan
e is lo
ated at the Fermi-energy. (Right) In a non-equilibrium situation the Kondo peak splits into two, one pinned at the 
hemi
al potentialof the left lead, and one pinned at the 
hemi
al potential of the right lead.e�e
ts, whi
h are important for a real devi
e. A study of su
h e�e
ts and the involved s
reening andrelaxation time s
ales was done in ref. [167℄ using perturbative methods. Very re
ent results obtainedby a non-equilibrium extension of the FRG for the intera
ting resonant level model be
ame available inref. [168℄.The expe
ted non-equilibrium behavior is pi
tured in �g. 4.2. A splitted Kondo resonan
e is pinned atthe 
hemi
al potentials of the respe
tive leads [169℄.In this 
hapter we use the non-equilibrium formulation of VCA (see se
. 2.4) to obtain non-equilibriumproperties of the SIAM in the strongly 
orrelated regime. Results for the e�e
tive distribution fun
tion arepresented in se
. 4.2. An expression for the 
urrent in the non-intera
ting 
ase is obtained in se
. 4.3. Thelinear-response 
urrent in the Kondo-regime will be dis
ussed in se
. 4.4. A 
omparison of the CPT/VCAresults to mean �eld theory is presented in se
. 4.5. Finally results for the 
urrent and density of states asobtained by CPT/VCA are dis
ussed in se
. 4.6. The behavior of the VCA variational parameters will bedis
ussed there. All parameter regions of the SIAM will be explored and also systems with asymmetri

oupling to left and right leads will be investigated. We start out by presenting the model of a quantumdot within CPT/VCA in se
. 4.1.4.1. Modeling of a quantum dot system out of equilibriumTo obtain non-equilibrium properties for the quantum dot system, the SIAM out of equilibrium has tobe solved, as explained in the last se
tion. The non-equilibrium VCA may be applied to this problem insplitting the in�nite system into three parts (see �g. 4.3). A left (un
orrelated) lead, whi
h is modeledby a semi-in�nite tight-binding 
hain (see eq. (3.23)). A 
entral 
orrelated region, whi
h 
onsists of aSIAM (see eq. (3.1)) in real spa
e on a �nite size 
luster. And a right lead, whi
h is again modeled bya semi-in�nite tight-binding 
hain. Note that it is 
ru
ial that the leads (reservoirs) are of in�nite size,otherwise no steady state will be rea
hed. The pro
edure of splitting is similar to the one 
onsideredin the equilibrium 
ase and is des
ribed in se
. 3.3. The Green's fun
tions of the referen
e system areobtained as in the equilibrium 
ase. However here a two by two Keldysh Green's fun
tion is used (seese
. 2.4). The 
luster part of the referen
e system, this time, 
onsists of the impurity, sitting in themiddle of the 
luster. The sites to the left of the impurity belong formally to the left lead (and thereforehave on-site energies ǫL and 
hemi
al potential µL). The sites to the right of the impurity belong to theright lead and have the respe
tive parameters. In in
reasing the size of the 
luster part of the referen
esystem symmetri
ally to the left and right of the impurity, we treat more and more sites of the leadsexa
tly, whi
h would ultimately 
onverge to the exa
t solution of the total system when L→∞. Pra
ti
alsystem sizes however are limited again to L ≤ 16. A bias voltage may be applied by shifting the 
hemi
alpotential and the on-site energies of the leads simultaneously. This is always done in an asymmetri
manner: µL = ǫL = −ǫR = −µR = Vbias
2

. Note again that the un
orrelated sites in the 
luster whi
h aresituated to the left (right) of the impurity formally belong to the lead and therefore also have on-siteenergies of ǫL(ǫR). To maintain parti
le-hole symmetry we are therefore limited to 
lusters with anodd-number of sites L = 3,5,7,9,11,13 and 15. Observations showed that every se
ond of these systems
L = 5,9 and 13 su�ers from a �nite-size gap, whi
h 
loses with in
reasing 
luster size. This arises due to72



Figure 4.3.: A quantum dot is modeled within VCA by the SIAM. The referen
e system 
onsists of threeparts: A left (un
orrelated) lead, whi
h is modeled by a semi-in�nite tight-binding 
hain. A
entral 
orrelated region, whi
h 
onsists of a SIAM in real spa
e on a �nite size 
luster. Anda right lead, whi
h is again modeled by a semi-in�nite tight-binding 
hain.the fa
t that an even number of sites sits to the right as well as to the left of the impurity. Therefore inthe following only L = 3,7 and 11 site 
lusters will be used.The e�e
tive distribution fun
tion will be dis
ussed in the next se
tion.4.2. E�e
tive distribution fun
tionThe e�e
tive distribution fun
tion was de�ned in eq. (2.48). We start out by analyti
ally evaluating itfor a generi
 system. Suppose we have again a semi-in�nite left lead l, a �nite size, 
entral (intera
ting)region c and a semi-in�nite right lead r. To evaluate the e�e
tive distribution fun
tion we need to obtainthe retarded, advan
ed and Keldysh 
omponents of the total Green's fun
tion in the 
entral region. The
luster Green's fun
tion in Keldysh spa
e is given in blo
k formG̃′ = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
G′Rl G′KlG′Rc G′KcG′Rr G′KrG′Al G′Ac G′Ar

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,where R,K and A denote retarded, Keldysh and advan
ed Green's fun
tions respe
tively. In general ea
hGreen's fun
tion in this expression again is a matrix in site/spin spa
e. Coupling the environments to theleads by CPT eq. (2.2) requires the inverse 
luster Green's fun
tion G̃′−1 and the inter-
luster hoppingmatrix in Keldysh spa
eG̃′−1 = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝G′R−1l

−G′R−1
l

G′K
l

G′A−1
lG′R−1c −G′R−1c G′Kc G′A−1cG′R−1r −G′R−1r G′Kr G′A−1rG′A−1

l G′A−1c G′A−1r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T̃ = ⎛⎜⎜⎜⎜⎜⎜⎜⎝ t

t t

t

t

t t

t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.The CPT equation G̃−1 = G̃′−1 − T̃, yields the total Green's fun
tion in Keldysh spa
e. The Keldysh
omponent is given byG̃K = ⎛⎝

G′A
l

G′R
l

t2(G′Kc +G′Ac G′Rc G′Kr t2)+G′K
l
(−1+G′Ac G′Ar t2)(1−t2G′Rc G′Rr )

(1−t2G′Ac (G′A
l
+G′Ar ))(−1+G′Rc (G′R

l
+G′Rr )t2)

t(G′Kc G′R
l
+G′Ac (G′K

l
+G′Rc (G′R

l
G′Kr −G′K

l
G′Rr )t2))

(−1+G′Ac (G′A
l
+G′Ar )t2)(−1+G′Rc (G′R

l
+G′Rr )t2)

t(G′Kc G′A
l
+G′Rc G′K

l
+G′Ac G′Rc (−G′K

l
G′Ar +G′A

l
G′Kr )t2)

(1−t2G′Ac (G′A
l
+G′Ar ))(1−t2G′Rc (G′R

l
+G′Rr ))

G′Kc +G′Ac G′Rc (G′K
l
+G′Kr )t2

(1−t2G′Ac (G′A
l
+G′Ar ))(1−t2G′Rc (G′R

l
+G′Rr ))

t2(G′Ac G′A
l

G′Kr +G′Kc G′A
l

G′Rr +G′Rc G′K
l

G′Rr −G′Ac G′Rc (G′A
l

G′R
l

G′Kr +G′K
l

G′Ar G′Rr )t2)
(1−t2G′Ac (G′A

l
+G′Ar ))(1−t2G′Rc (G′R

l
+G′Rr ))

G′Kc G′Rr t+G′Ac t(G′Kr −G′Rc G′R
l

G′Kr t2+G′Rc G′K
l

G′Rr t2)
(−1+G′Ac (G′A

l
+G′Ar )t2)(−1+G′Rc (G′R

l
+G′Rr )t2)(4.1)

t2(G′Ac G′K
l

G′Ar +G′Kc G′R
l

G′Ar +G′Rc G′R
l

G′Kr −G′Ac G′Rc (G′A
l

G′R
l

G′Kr +G′K
l

G′Ar G′Rr )t2)
(−1+G′Ac (G′A

l
+G′Ar )t2)(−1+G′Rc (G′R

l
+G′Rr )t2)

t(G′Kc G′Ar +G′Rc (G′Kr +G′Ac (G′K
l

G′Ar −G′A
l

G′Kr )t2))
(−1+G′Ac (G′A

l
+G′Ar )t2)(−1+G′Rc (G′R

l
+G′Rr )t2)G′Ar G′Rr t2(G′Kc +G′Ac G′Rc G′K

l
t2)+G′Kr (−1+G′Ac G′A

l
t2)(−1+G′Rc G′R

l
t2)

(−1+G′Ac (G′A
l
+G′Ar )t2)(−1+G′Rc (G′R

l
+G′Rr )t2)

⎞
⎠ . (4.2)
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The retarded/advan
ed 
omponents areG̃R/A
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

G′R/A
l

(1−t2G′R/Ac G′R/Ar )
1−t2G′R/Ac (G′R/A

l
+G′R/Ar )

tG′R/Ac G′R/A
l

1−t2G′R/Ac (G′R/A
l

+G′R/Ar )
t
2G′R/Ac G′R/A

l
G′R/Ar

1−t2G′R/Ac (G′R/A
l

+G′R/Ar )
tG′R/Ac G′R/A

l

1−t2G′R/Ac (G′R/A
l

+G′R/Ar )
G′R/Ac

1−t2G′R/Ac (G′R/A
l

+G′R/Ar )
tG′R/Ac G′R/Ar

1−t2G′R/Ac (G′R/A
l

+G′R/Ar )
t2G′R/Ac G′R/A

l
G′R/Ar

1−G′R/Ac t2(G′R/A
l

+G′R/Ar )
tG′R/Ac G′R/Ar

1−t2G′R/Ac (G′R/A
l

+G′R/Ar )
G′R/Ar (1−t2G′R/Ac G′R/A

l
)

1−t2G′R/Ac (G′R/A
l

+G′R/Ar )

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.The e�e
tive distribution fun
tion pe� is given by pe� = 1

2
− GK

c

2(GR
c −GA

c ) (see eq. (2.48)). Here we 
onsiderthe �rst de�nition, where all Green's fun
tions are evaluated at a spe
i�
 site.
pe� = G′Ac +G′Kc −G′Rc + t2G′Ac G′Rc (G′Al +G′Kl −G′Rl +G′Ar +G′Kr −G′Rr )

2 (G′Ac −G′Rc + t2G′Ac G′Rc (G′Al −G′Rl +G′Ar −G′Rr )) (4.3)From here on we 
onsider the 
entral region to 
onsist of a single-non-intera
ting site, although thedis
ussion is also valid for multi-site intera
ting 
entral regions. The 
luster Green's fun
tions before
oupling (at zero temperature), are then given by (see eq. (2.39))G′R/Ac (ω) = 1

ω ± i0+
(4.4)G′R/A/K

c/l/r (ω) = (G′Rc/l/r(ω, ǫc/l/r) −G′Ac/l/r(ω, ǫc/l/r)) sign(ω − µc/l/r) . (4.5)Plugging eq. (4.4) and eq. (4.5) into eq. (4.3) and 
olle
ting terms (G′Rc/l/r −G′Ac/l/r) = 2iIm(G′Rc/l/r) =
−2πiρc/l/r one obtains

pe� = πt2 (ρl + ρr − ρlsign(ω − µl) − ρrsign(ω − µr))) + (0+ − 0+sign(ω − µc))
2 (πt2(ρl + ρr) + 0+) .Upon taking the limit 0+ → 0, one sees that all 
ontributions of the 
luster drop out

pe�(ω,Vbias) = 1

2
−
1

2

ρl(ω, ǫl)sign(ω − µl) + ρr(ω, ǫr)sign(ω − µr)
ρl(ω, ǫl) + ρr(ω, ǫr) . (4.6)This shows that the e�e
tive distribution fun
tion at zero temperature, de�ned via one site of the 
entralregion, does not depend on the 
entral region at all. More importantly it does not depend on theintera
tion U , but solely on the applied bias voltage Vbias = µl −µr with ǫl = µl and ǫr = µr. Furthermoreit is purely real as it is to be expe
ted for a distribution fun
tion. It redu
es to the Fermi-Dira
 distributionin the limit Vbias = 0.An expli
it result for a non-intera
ting tight-binding system under bias whi
h 
onsists of two semi-in�niteleads and a single-site 
entral region is plotted in �g. 4.4. The densities of states for the left and right lead,needed for the evaluation of eq. (4.6) are given in eq. (3.23). This generi
 behavior does not 
hange within
reased system size and is independent of the 
luster parameters in
luding intera
tion, as mentionedbefore. Note that the top point of the trapezoid-shaped stru
ture in the lower part of �g. 4.4 at Vbias

∆
= 40o

urs exa
tly at the point where the density of states of the left and right lead stop overlapping.Using the basi
 results for the Green's fun
tion obtained here, a referen
e expression for the 
urrent ofa non-intera
ting system will be presented in the next se
tion.4.3. Current in the non-intera
ting 
aseThe 
urrent in the non-intera
ting 
ase (U = 0), for both spin dire
tions, may be evaluated using theformula for the 
urrent eq. (2.47) and the Keldysh Green's fun
tion GK

lc and GK
cl evaluated in eq. (4.2)

j = ∫
∞
−∞

dωRe⎛⎝ − (G′Al −G′Rl )V 2

N ⎛⎝ − 2i0+sign(ω − µc) + 2i0+sign(ω − µl)
+ V 2(G′Ar (−sign(ω − µr) + sign(ω − µl)) +G′Rr (−sign(ω − µl) + sign(ω − µr)))⎞⎠⎞⎠

N = 2π (0+ + i ((G′Rl +G′Rr )V 2 − ω)) (0+ − i(G′Al +G′Ar )V 2 + iω) ,74



Figure 4.4.: E�e
tive distribution fun
tion eq. (4.6) for a tight-binding 
hain under bias. The hopping tis 
hosen to be one. A bias of Vbias = µl − µr, with ǫl = µl and ǫr = µr, was applied by anti-symmetri
ally shifting the 
hemi
al potentials of the left and right lead starting from zero.The axis are s
aled with ∆ = 0.1, to make 
omparison to other plots more easy. (Left) Zoomto the relevant parameter region of this work. (Right) The same but for a larger parameterspa
e.whi
h may be simpli�ed by taking the limit 0+ → 0

j = 2πV 4∫
∞
−∞

dω
ρlρr(sign(ω − µl) − sign(ω − µr))((G′Al +G′Ar )V 2 − ω)((G′Rl +G′Rr )V 2 − ω)

= 4πV 4∫
µr

µl

dω
ρlρr((G′Al +G′Ar )V 2 − ω)((G′Rl +G′Rr )V 2 − ω) , (4.7)All 
urrents in this thesis will be given in units of hopping t = 1. The expression in the integrand ispurely real, be
ause GR = (GA)�. Here the left/right Green's fun
tions of the environment are givenin eq. (3.23). It is interesting to 
ompare this result to ref. [170℄, where an expression for the 
urrentthrough an intera
ting region is derived. The 
urrent under bias is obtained from this expression bysetting Vbias

2
= ǫl = µl = −µr = −ǫr. The 
urrent under doping is obtained by setting d

2
= µl = −µr = and

ǫr = ǫl = 0. These two 
urrents are plotted in �g. 4.5. One 
an 
learly see the e�e
ts of the leads' bandsin the biased 
ase.As a referen
e value for CPT/VCA 
al
ulations, the linear response 
urrent in the Kondo-regime willbe derived in the next se
tion.4.4. Linear response in the Kondo regimeA

ording to ref. [140, 81℄, the 
ondu
tan
e may be 
al
ulated using a Landauer-type formula generalizedto intera
ting systems
σ =

i e2

h̵
∑
σ
∫
∞
−∞

dω

2π

dpFD(ω,µ,β)
dω

Γσ
L(ω)Γσ

R(ω)
Γσ
L
(ω) + Γσ

R
(ω)2iIm (Gσ(ω + i0+)) . (4.8)This formula is valid for proportional leads ΓL(ω) = αΓR(ω) in a steady-state situation. Here − 1

π
Im (Gσ(ω + i0+))is the intera
ting density of states in the system. Γσ

i are the hybridizations with the i = L,R left andright lead
Γσ
i (ω) = 2π∑

k

∣V σ
k ∣2 δ(ω − ωσ

k ) .As always we use units of e = h̵ = 1. We are interested in the zero temperature 
ondu
tan
e for a parti
le-hole symmetri
 system with 
hemi
al potential µ = ǫF = 0 and symmetri
 leads ΓL(ω) = ΓR(ω). Thereforethe derivative of the Fermi-Dira
 distribution fun
tion pFD(ω,µ,β) redu
es to δ(ǫF = 0). The 
oupling75
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current under biasFigure 4.5.: Current under bias/doping in the non-intera
ting 
ase obtained by eq. (4.7). The modelparameters were hybridization V = 0.3162 and hopping t = 1. The 
urrent is given in unitsof hopping t = 1.of one site to symmetri
 leads by a lo
al hopping V gives a spin independent hybridization fun
tion

ΓL(R) = Γ(ω) = πV 2ρL(R)(ω) , (4.9)where ρ(ω) is the lo
al density of states of the �rst site of the non-intera
ting lead (i.e. here a semi
ir
ularLDOS of a semi-in�nite tight binding 
hain). Plugging all this information into eq. (4.8) the 
ondu
tan
efor both spin 
hannels is given by
σ = 2i∫

∞
−∞

dω

2π
δ(0)Γ(ω)

2
(−π)(− 1

π
Im (G(ω + i0+)))

= Γ(0)Im (G(i0+)) .The hybridization at the Fermi energy, for the semi-in�nite tight binding 
hain (hopping t), is given by
Γ(0) = πV 2 1

tπ
=
V 2

t
=∆ .For a symmetri
 impurity the height of the Kondo resonan
e at ω = 0 is given by 1

π∆
. So

−
1

π
Im (G(ω + i0+)) = 1

π∆
.This result is only valid in the Kondo regime at zero temperature and for very small bias voltages.Therefore we are left with a linear-response 
ondu
tan
e (for both spin 
hannels) of

σ =
1

π
, (4.10)whi
h remarkably is independent of all system parameters (∆, t, V, ...) and espe
ially independent of theintera
tion strength U , as long as the system is in the Kondo regime. This of 
ourse arises from thepinning and 
onstant height of the Kondo peak. Note that this is exa
tly the result for the 
ondu
tan
equantum

σ0 =
2e2

h
=

e2

πh̵
,whi
h reprodu
es in units of e = h̵ = 1 the above result 4.10.Although mean �eld theory produ
es qualitatively wrong results for the SIAM (see se
. 3.2), it is inter-esting to 
ompare CPT/VCA to some other te
hnique before pro
eeding further.
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4.5. Doped leads: A 
omparison of 
luster perturbation theory tomean �eld resultsIn this se
tion we examine the 
ase of lead-doping (instead of applying a bias voltage). In this 
ase thebands of the leads do not shift altogether (ǫl,r = 0), only the 
hemi
al potentials of the leads are shiftedin an asymmetri
 manner with doping d
2
= µl = −µr. This 
an be a
hieved, for example, by introdu
ingdopants into the lead material, or by applying pressure to suitable materials. This 
ase is interesting,be
ause it allows for 
omparison to a spe
i�
 form of the Meir-Winegreen-Lee formula [140, 81℄. Thisform is obtained by rewriting eq. (4.8) for our purpose here

j = i∑
σ
∫
∞
−∞

dω

2π
(pFD,L(ω,µ,β) − pFD,R(ω,µ,β)) Γσ

L(ω)Γσ
R(ω)

Γσ
L(ω) + Γσ

R(ω)2iIm (Gσ(ω + i0+)) ,whi
h is again only valid for the 
ase of a bias voltage in the wide band limit, or the 
ase of doping witharbitrary bands. Inserting eq. (4.9) and the Fermi-Dira
 distributions at zero temperature eq. (D.1) oneobtains for the 
urrent
j = πV 2∑

σ
∫

µR

−µL

dω ρE(ω)ρσf (ω) . (4.11)To arrive at this expression, we assumed that the right and left leads have an equal density of states ρE .The 
urrent therefore is given essentially by the density of states in the intera
ting site ρσf .To obtain a rough estimate for the 
urrent, the mean �eld results for the intera
ting impurity ρσf are used(see se
. 3.2). As noted there, the mean �eld single-parti
le spe
tra are qualitatively wrong. Furthermore,using the density of states ρσf from the mean �eld equations gives an equilibrium density of states whi
his not a good approximation for large doping. Results for the 
urrent under doping are shown in �g. 4.6(left) with the approximate hybridization self-energy and �g. 4.6 (right) with the exa
t hybridizationself-energy. Note that all 
urrents are evaluated in both spin 
hannels. This approa
h provides a startingpoint to 
ompare more sophisti
ated methods to.In the following the mean �eld results for the 
urrent obtained by eq. (4.11) are 
ompared to CPT resultsof L = 3,7 and 11 site 
lusters in �g. 4.7. The mean �eld 
urrents are obtained by eq. (4.11) using themean �eld density of states eq. (3.15). The CPT 
urrents are obtained by eq. (2.47) using the CPTpro
edure. The 
urrent was obtained by CPT as well as MF for various values of intera
tion-strength Uin the parti
le-hole symmetri
 
ase. The hybridization was 
hosen to be V = 0.3162 and the hopping inthe 
hain was t = 1. As 
an be seen from the plots, CPT performs dramati
ally better than MF be
auseit 
orre
tly reprodu
es the Kondo resonan
e. The CPT results show a pronoun
ed �nite-size stru
ture.It is however questionable if CPT is a good approximation for large doping, be
ause the CPT self-energyagain does not "know of" the non-equilibrium situation. This point may be 
ured by introdu
ing a self-
onsistent feedba
k as it is done in non-equilibrium VCA in the next se
tion. As the results in equilibriumsuggest, VCA with variational parameters x = {V, t} may strongly redu
e the CPT �nite-size e�e
t (see�g. 3.13 and dis
ussion there). It is interesting to note that the integration in eq. (4.11) is essentiallyover a semi-
ir
le from ρE(ω) times a Lorentz peak at ω = 0 from ρσf (ω). This is true as long as themean �eld solution does not break the symmetry. The semi-
ir
le may be approximated by a �at band ofheight 1
πt
, be
ause away from ω = 0, ρσf (ω) is essentially zero. Putting this into eq. (4.11) and examiningthe 
ase of large doping (µL = −µR greater than the bandwidth) the 
urrent takes the value of 2∆. After
omparing CPT/VCA to mean �eld results, we turn to the more interesting and more di�
ult 
ase of astrongly 
orrelated quantum dot under bias.4.6. A biased quantum dot: CPT/VCA resultsHere we 
onsider a 
orrelated quantum dot whi
h is 
oupled to two leads (left, right). To study theperforman
e of CPT/VCA we split the referen
e system into three parts: left lead, intera
ting regionand right lead. The intera
ting region 
onsists of the 
orrelated site and additional un
orrelated sites tothe left and to the right of it whi
h belong to the leads but are treated within the diagonalization of the
luster - thereby 
reating a better approximation. The 
hemi
al potential of the left lead µL as well as theon-site energy ǫL are set equal. To apply a bias voltage to the devi
e this parameter is then s
anned fromzero to some value and the 
orresponding parameter for the right lead is tuned in exa
tly the negativedire
tion asymmetri
ally. So we have µL = ǫL = −ǫR = −µR = Vbias

2
. Note that the un
orrelated sites inthe 
luster whi
h are situated to the left (right) of the impurity formally belong to the lead and thereforealso have on-site energies of ǫL(ǫR). 77
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Figure 4.6.: Mean �eld results, in the parti
le-hole symmetri
 
ase, for the 
urrent under doping obtainedby eq. (4.11). The legend indi
ates di�erent values of intera
tion strength U
∆
. The hybridiza-tion was 
hosen to be V = 0.3162 and the hopping in the 
hain was t = 1. A spurious mean�eld gap opens at the 
riti
al intera
tion strength Uc

∆
= 3.14. (Left) Results obtained usingthe approximate MF hybridization self-energy. (Right) Results obtained using the exa
t MFhybridization self-energy.
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Figure 4.7.: Comparison of the CPT and MF 
urrents under doping. Shown are the CPT results for
L = 3,7 and 11 site 
lusters as well as the MF results using the exa
t hybridization self-energy. All 
urves are for parti
le-hole symmetri
 parameters. The hybridization was 
hosento be V = 0.3162 and the hopping in the 
hain was t = 1. The plots from top, left to bottomright show results for intera
tion strength U

∆
= 0,4,12,20,40 and 80. The linear responseresult, valid in the Kondo regime, eq. (4.10) is also indi
ated. The analyti
 result for U = 0was 
al
ulated using eq. (4.7).
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In the following CPT and non-equilibrium VCA 
al
ulations are performed for the SIAM under bias. Thenon-equilibrium VCA results in this 
hapter were 
al
ulated with one variational parameter x = {∆t}.This variational o�set was added to all hoppings, in the 
luster (t′ = t +∆t) as well as the hybridization(V ′ = V + ∆t) to the 
orrelated site, uniformly. The variational parameter is �xed by requiring theaverage over all expe
tation values in the 
luster to 
oin
ide with the 
orresponding average in the totalsystem after 
oupling to the leads. All 
al
ulations were done for three di�erent sizes of the 
luster partof the referen
e system L = 3,7 and 11. The hybridization parameter was 
hosen to be V = 0.3162 andthe hopping to be t = 1, whi
h yields again ∆ = 0.1. All 
al
ulations were done in three parameterregions. In the parti
le-hole symmetri
 
ase: ǫf = −U
2
(Kondo regime), in a parameter region where theimpurity is zero-o

upied: ǫf = −U

2
+2U and in a parameter region, where the impurity is doubly-o

upied:

ǫf = −U
2
− U . Di�erent values of intera
tion-strength U

∆
= 4,8,12 and 20 where investigated in ea
h ofthese 
ases. Results for the behavior of the variational parameters will be given, as well as data obtainedfor the 
urrent and the non-equilibrium density of states.4.6.1. Behavior of the variational parametersThe resulting parameter-shift ∆t = t′ − t is shown for di�erent intera
tion strengths U

∆
and 
luster sizes

L in �g. 4.8 in the parti
le-hole symmetri
 
ase: ǫf = −U
2
(Kondo regime). The same data is shownin �g. 4.9 in a parameter region where the impurity is zero-o

upied: ǫf = −U

2
+ 2U and in �g. 4.10 ina parameter region, where the impurity is doubly-o

upied: ǫf = −U

2
− U . A similar behavior for allintera
tion strengths is observed.4.6.2. CurrentThe 
urrent-density eq. (2.46) (for both spin 
hannels) is examined here, for di�erent values of the inter-a
tion strength U

∆
= 4,8,12 and 20. The 
urrent was measured between the left lead and the �rst site ofthe system and it was 
he
ked that the 
ontinuity equation is ful�lled. This is a
hieved by 
al
ulatingthe 
urrent with 0+ = 0.The 
urrent for a singly-o

upied impurity is plotted in �g. 4.11. The CPT/VCA 
urrent yields the 
or-re
t linear response 
urrent for small bias voltages. It is interesting to observe, that VCA always departssooner from the linear response behavior than CPT with in
reasing intera
tion strength U . This is tobe expe
ted due to an exponential thinning of the Kondo resonan
e with in
reasing U [171℄. The linearresponse 
urrent is independent of the intera
tion strength U in the Kondo regime. This is due to thefa
t, that CPT as well as VCA respe
t the Friedel sum rule in the parti
le hole symmetri
 
ase. The
urrent under bias goes to zero as soon as the bands of the leads stop overlapping (here at Vbias/∆ = 40).In those 
ases, where this happens before rea
hing this bias voltage, the vanishing of the 
urrent is dueto e�e
ts in the dot. As expe
ted non-equilibrium VCA strongly suppresses the �nite-size e�e
ts of the
luster. This is also seen in equilibrium where VCA leads to the formation of 
ontinuous Hubbard bandswhile CPT yields more separated peaks for small system sizes (see �g. 3.13 and dis
ussion there). Forlower intera
tion strengths (see for example U/∆ = 4), the CPT/VCA results for di�erent 
luster sizes
oin
ide almost. For large intera
tion strength (see for example U/∆ = 20) they depart from ea
h other,respe
ting the linear response and high voltage limits. A pronoun
ed two-peak stru
ture seems to evolvefor the non-equilibrium VCA L = 7 result with in
reasing intera
tion-strength U . The maximum 
urrentde
reases monotoni
ally with intera
tion-strength U .The 
urrent for a zero-o

upied impurity is plotted in �g. 4.12. As one 
an see by 
omparing to the linearresponse 
urrent of the Kondo regime, the 
urrent here is mu
h smaller than in the Kondo regime. It isremarkable that the CPT and VCA results for all 
luster sizes lie almost on top of ea
h other. Note thatin this 
ase ea
h plot has a di�erently s
aled y-axis.The 
urrent for a doubly-o

upied impurity is plotted in �g. 4.13. Again the 
urrent is mu
h smaller thanin the Kondo regime and CPT and VCA perform very similar.4.6.3. Density of statesThe lo
al density of states in the impurity is shown in �g. 4.14 for the parti
le-hole symmetri
 
ase, for

L = 3, L = 7 and L = 11 site 
lusters respe
tively. The LDOS is plotted in a density plot as a fun
tion ofenergy ω (horizontal) and applied bias voltage (verti
al). The splitting of the Kondo resonan
e, whi
hresides at ω = 0 for zero bias, is observed in both CPT and non-equilibrium VCA. In the non-equilibriumsituation the Kondo resonan
e splits into two peaks. A linear splitting, depending on intera
tion strength
U , is observed in non-equilibrium VCA. For high voltages the LDOS seems to saturate. Note that the79
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= 4,8,12 and 20.These results are for the singly-o

upied impurity: ǫf = −U

2
. The hybridization was 
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Figure 4.11.: Non-equilibrium VCA 
urrent under bias. Shown are results for system-sizes L = 3,7 and 11in ea
h plot. The �gures from top, left to bottom, right are for di�erent intera
tion-strengths
U
∆
= 4,8,12 and 20. These results are for the singly-o

upied impurity: ǫf = −U

2
. Thehybridization was 
hosen to be V = 0.3162 and the inter-
hain hopping t = 1. The linear-response result for the 
urrent, valid for this setup, is shown in addition. Note that the

L = 11-site VCA data for U
∆
= 12 and 20 is missing due to repeated trouble with the �lesystem at lengthy 
al
ulations.
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Figure 4.12.: Non-equilibrium VCA 
urrent under bias. Shown are results for system-sizes L = 3,7 and 11in ea
h plot. The �gures from top, left to bottom, right are for di�erent intera
tion-strengths
U
∆
= 4,8,12 and 20. Note that the linear-response result for the 
urrent in the Kondo regimeis indi
ated as a guide for the eye. This devi
e is not in the Kondo regime. Also note thedi�erent s
ale on the y-axis. These results are for the zero-o

upied impurity: ǫf = −U

2
+2U .The hybridization was 
hosen to be V = 0.3162 and the inter-
hain hopping t = 1.
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Figure 4.13.: Non-equilibrium VCA 
urrent under bias. Shown are results for system-sizes L = 3,7 and 11in ea
h plot. The �gures from top, left to bottom, right are for di�erent intera
tion-strengths
U
∆
= 4,8,12 and 20. Note that the linear-response result for the 
urrent in the Kondo regimeis indi
ated as a guide for the eye. This devi
e is not in the Kondo regime. These resultsare for the doubly-o

upied impurity: ǫf = −U

2
− U . The hybridization was 
hosen to be

V = 0.3162 and the inter-
hain hopping t = 1.
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L = 11-site VCA results look a bit broader, whi
h is due to the lower resolution of the images. While theCPT results produ
e a periodi
 stru
ture in bias voltage, the VCA data shows a linear splitting of theKondo peak up to a saturation region.The lo
al density of states in the impurity is shown in �g. 4.15 in the zero-o

upied 
ase. The lo
al densityof states in the impurity is shown in �g. 4.16 in the doubly-o

upied 
ase. In the zero- and doubly-o

upied
ase, the DOS shows one of the Hubbard bands. Otherwise it looks pretty unspe
ta
ular. As alreadymentioned when dis
ussing the 
urrent, in these parameter regions CPT and VCA yield similar resultsfor all 
luster sizes.After examining these three distin
t parameter sets, i.e. a singly-, doubly-, and un-o

upied impurity,in detail, a wider pi
ture resolving the whole parameter spa
e of the SIAM shall be presented.4.6.4. Current in all parameter regionsIn this se
tion the 
urrent through the dot under bias is analyzed as a fun
tion of the impurity on-siteenergy ǫf at �xed intera
tion strength U . The three 
ases studied in detail in the last se
tion are of 
oursein
luded. By sweeping ǫf and 
al
ulating the 
urrent under bias at ea
h ǫf , it is possible to study thebehavior of the 
urrent in the di�erent parameter regimes of the SIAM. Due to demanding 
omputationaltime needed for these 
al
ulations, we limit ourselves to L = 3-site CPT/VCA here. The whole pro
edureand parameters are virtually identi
al to those used in the last se
tion. The results for the 
urrent as afun
tion of bias voltage and on-site energy are shown in �g. 4.17 for intera
tion strengths U/∆ = 4 and 8and in �g. 4.18 for intera
tion strengths U/∆ = 12 and 20. In both �gures CPT and VCA results for
L = 3 and ∆ = 0.1 are shown. As noted already previously the di�eren
es between CPT and VCA for lowintera
tion strength (see U/∆ = 4) are rather small. However going to larger intera
tion strength theybe
ome large (see U/∆ = 20). Note that this is the three-site result, so no two-peak stru
ture developsin the VCA 
urrent, as seen in �g. 4.11. It is interesting to observe that in all 
ases the largest 
urrent isobtained exa
tly at the 
rossover points from the Kondo to the un- or doubly o

upied impurity (theseregions are marked by bla
k-dashed lines in the plots). It is also interesting that the VCA pro
edureyields a mu
h more uniform 
urrent upon variation of the on-site energy in the Kondo regime as the CPT
al
ulation does. This result undermines on
e more that outside of the Kondo plateau CPT and VCAyield virtually the same result for all system sizes.Next we brie�y tou
h upon the 
ase of di�erent 
ouplings to the two leads: ΓL ≠ ΓR.4.6.5. Asymmetri
 tunneling to the leadsIn this se
tion the e�e
ts of an asymmetri
 
oupling of the dot to the left and right lead are explored. A
oupling to the leads is 
hosen of VL = V

1.5
and VR = 1.5V where V = 0.3162. The hopping everywhere elsein the 
hain is t = 1 and a value for ∆ = 0.1 is 
al
ulated using V . The results for the 
urrent, variationalparameters and density of states are shown in �g. 4.19 for U/∆ = 4, in �g. 4.20 for U/∆ = 8, in �g. 4.21for U/∆ = 12 and in �g. 4.22 for U/∆ = 20. As predi
ted in ref. [169℄ under bias the Kondo resonan
esplits into two 
omponents with di�erent weight. The one with higher weight lo
ated at the 
hemi
alpotential of the lead whi
h 
ouples stronger. A pinning of the resonan
es at the respe
tive 
hemi
alpotentials of the leads 
annot be observed here. However the e�e
t of more weight in the peak 
loserto the 
hemi
al potential of the stronger 
oupling lead is predi
ted. It is interesting to observe in thedensity of states, that there seems to be a 
rossover to totally di�erent behavior at some bias voltages.These 
rossovers are not due to problems with degenera
y when �nding the 
luster solution. Sin
e inthe whole thesis all 
al
ulations are done grand 
anoni
ally and the degenera
y of the groundstate istaken 
are of (see eq. (2.13)). I suspe
t these 
rossovers to arise due to 
luster symmetry, �nite size andboundary 
onditions. Su
h 
rossovers o

ur more often for larger 
lusters. The CPT density of statesfor low bias voltages does not look very promising. However the VCA result does. It yields a reasonabledensity of states also in the low bias region. Furthermore it redu
es the amount of spurious 
rossovers toa minimum. There is however a narrow region at medium bias voltages where the VCA result undergoessome 
rossovers. This 
an also be seen in the behavior of the variational parameters and the 
urrent.The 
urrent in this region most probably 
annot be trusted. It is furthermore interesting that the VCA
urrent is in most parameter regions larger than the CPT 
urrent.This 
on
ludes the dis
ussion about non-equilibrium VCA. We now turn to the des
ription of Graphenewith magneti
 va
an
ies.
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Figure 4.14.: Lo
al density of states in the impurity for sizes of the 
luster part of the referen
e systemof L = 3,7 and 11 as a fun
tion of the applied bias voltage. The results shown are for thesingly-o

upied impurity. Note that zero bias voltage amounts to the equilibrium situation.The maximum peak height in the high bias area may be up to three times as high asindi
ated in the 
olorbar. The 
olorbar was 
hosen to resolve also the �ner stru
tures atlow bias. The sum rule eq. (2.16) is ful�lled at ea
h applied bias voltage. From left-
olumnto right-
olumn the intera
tion strength in
reases: U
∆
= 4,8,12, and 20. (First row) CPTresult for L = 3. (Se
ond row) Non-equilibrium VCA result for L = 3. (Third row) CPTresult for L = 7. (Fourth row) Non-equilibrium VCA result for L = 7. (Fifth row) CPTresult for L = 11. (Sixth row) Non-equilibrium VCA result for L = 11.87



Figure 4.15.: Lo
al density of states in the impurity for sizes of the 
luster part of the referen
e system of
L = 3,7 and 11 as a fun
tion of the applied bias voltage. The results shown are for the zero-o

upied impurity. Note that zero bias voltage amounts to the equilibrium situation. Themaximum peak height in the high bias area may be up to three times as high as indi
ated inthe 
olorbar. The 
olorbar was 
hosen to resolve also the �ner stru
tures at low bias. Thesum rule eq. (2.16) is ful�lled at ea
h applied bias voltage. From left-
olumn to right-
olumnthe intera
tion strength in
reases: U

∆
= 4,8,12, and 20. (First row) CPT result for L = 3.(Se
ond row) Non-equilibrium VCA result for L = 3. (Third row) CPT result for L = 7.(Fourth row) Non-equilibrium VCA result for L = 7. (Fifth row) CPT result for L = 11.(Sixth row) Non-equilibrium VCA result for L = 11.88



Figure 4.16.: Lo
al density of states in the impurity for sizes of the 
luster part of the referen
e systemof L = 3,7 and 11 as a fun
tion of the applied bias voltage. The results shown are forthe doubly-o

upied impurity. Note that zero bias voltage amounts to the equilibriumsituation. The maximum peak height in the high bias area may be up to three times as highas indi
ated in the 
olorbar. The 
olorbar was 
hosen to resolve also the �ner stru
tures atlow bias. The sum rule eq. (2.16) is ful�lled at ea
h applied bias voltage. From left-
olumnto right-
olumn the intera
tion strength in
reases: U
∆
= 4,8,12, and 20. (First row) CPTresult for L = 3. (Se
ond row) Non-equilibrium VCA result for L = 3. (Third row) CPTresult for L = 7. (Fourth row) Non-equilibrium VCA result for L = 7. (Fifth row) CPTresult for L = 11. (Sixth row) Non-equilibrium VCA result for L = 11.89
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Figure 4.17.: The 
urrent under bias is shown as a fun
tion of on-site energy ǫf at �xed intera
tionstrength U . Thereby the behavior of the 
urrent in di�erent parameter regimes of theSIAM is probed. The upper group of four images show results for intera
tion strength
U/∆ = 4. The �rst row shows the CPT and the se
ond row the VCA x = {∆t} result.The lower group of four images show results for intera
tion strength U/∆ = 8. The CPTresult is depi
ted in the third row, while the VCA results are plotted in the fourth row.(Left 
olumn) The 
urrent is shown for several sele
ted values of on-site energy ǫf . (Right
olumn) The 
urrent is shown in a density plot as a fun
tion of on-site energy ǫf and biasvoltage. 90
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Figure 4.18.: The 
urrent under bias is shown as a fun
tion of on-site energy ǫf at �xed intera
tionstrength U . Thereby the behavior of the 
urrent in di�erent parameter regimes of theSIAM is probed. The upper group of four images show results for intera
tion strength
U/∆ = 12. The �rst row shows the CPT and the se
ond row the VCA x = {∆t} result.The lower group of four images show results for intera
tion strength U/∆ = 20. The CPTresult is depi
ted in the third row, while the VCA results are plotted in the fourth row.(Left 
olumn) The 
urrent is shown for several sele
ted values of on-site energy ǫf . (Right
olumn) The 
urrent is shown in a density plot as a fun
tion of on-site energy ǫf and biasvoltage. 91
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Figure 4.19.: Results for asymmetri
 
oupling to the leads: VL = V
1.5

, VR = 1.5V for an intera
tion-strengthof U/∆ = 4 in the parti
le-hole symmetri
 
ase. All results have been obtained by CPT andVCA for L = 3 and 7. (Top left) The behavior of the VCA variational parameter t. (Topright) Current obtained by CPT/VCA. (Mid left) Density of states as obtained by L = 3-siteCPT. (Mid right) Density of states as obtained by L = 3-site VCA. (Bottom left) Densityof states as obtained by L = 7-site CPT. (Bottom right) Density of states as obtained by
L = 7-site VCA.
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Figure 4.20.: Results for asymmetri
 
oupling to the leads: VL = V
1.5

, VR = 1.5V for an intera
tion-strengthof U/∆ = 8 in the parti
le-hole symmetri
 
ase. All results have been obtained by CPT andVCA for L = 3 and 7. (Top left) The behavior of the VCA variational parameter t. (Topright) Current obtained by CPT/VCA. (Mid left) Density of states as obtained by L = 3-siteCPT. (Mid right) Density of states as obtained by L = 3-site VCA. (Bottom left) Densityof states as obtained by L = 7-site CPT. (Bottom right) Density of states as obtained by
L = 7-site VCA.
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Figure 4.21.: Results for asymmetri
 
oupling to the leads: VL = V
1.5

, VR = 1.5V for an intera
tion-strengthof U/∆ = 12 in the parti
le-hole symmetri
 
ase. All results have been obtained by CPT andVCA for L = 3 and 7. (Top left) The behavior of the VCA variational parameter t. (Topright) Current obtained by CPT/VCA. (Mid left) Density of states as obtained by L = 3-siteCPT. (Mid right) Density of states as obtained by L = 3-site VCA. (Bottom left) Densityof states as obtained by L = 7-site CPT. (Bottom right) Density of states as obtained by
L = 7-site VCA.
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Figure 4.22.: Results for asymmetri
 
oupling to the leads: VL = V
1.5

, VR = 1.5V for an intera
tion-strengthof U/∆ = 20 in the parti
le-hole symmetri
 
ase. All results have been obtained by CPT andVCA for L = 3 and 7. (Top left) The behavior of the VCA variational parameter t. (Topright) Current obtained by CPT/VCA. (Mid left) Density of states as obtained by L = 3-siteCPT. (Mid right) Density of states as obtained by L = 3-site VCA. (Bottom left) Densityof states as obtained by L = 7-site CPT. (Bottom right) Density of states as obtained by
L = 7-site VCA.
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5. Magneti
 va
an
ies in GrapheneA single layer of Graphite, one allotrope of 
arbon, is named Graphene. Graphene 
onsists of a singlelayer of 
arbon atoms, pa
ked in a honey
omb latti
e, with a 
arbon-
arbon distan
e of a = 0.142nm.This remarkable two-dimensional material, developed into one of the hottest topi
s in resear
h duringthe last years. This 
an be attributed both to the amazing fundamental phenomena and the promisingfuture appli
ations. The interest in Graphene was furthermore fueled by the Nobel pri
e in physi
s 2010,whi
h was awarded to Geim and Novoselov for the produ
tion and isolation of this, previously thoughtunstable, material [172, 173℄. Graphene is a playground for fas
inating physi
s like the quantum Halle�e
t, Dira
 fermions and Klein tunneling. It has remarkable me
hani
al and ele
tri
al properties. Beinga transparent 
ondu
tor, it is me
hani
ally stronger than steel and stret
hable. Both the thermal andele
tri
al 
ondu
tivity are very high. It is 
losely related to nano-stru
tures, like fullerenes and 
arbon-nanowires, whi
h 
an be thought of as rolled up Graphene. A good review of the ele
troni
 properties ofGraphene 
an be found in ref. [174℄. A des
ription in terms of a tight-binding Hamiltonian in ref. [175℄.The motivation for this work stems from a re
ent study of another remarkable feature of Graphene.Chen et al. found that va
an
ies, introdu
ed by proton-irradiation, behave like magneti
 defe
ts [18℄.Therefore a Kondo-like behavior is observed. Su
h e�e
ts have previously been reported in irradiatedGraphene [176, 177℄ and apply as well to magneti
 ad atoms on the surfa
e [178, 179, 180℄. The theoreti
alstudy is however di�
ult, be
ause in addition to an intera
ting many-body problem whi
h has to besolved, the material is strongly disordered. A study of what to expe
t from di�erent forms of defe
tsin Graphene was performed by Ding in ref. [181℄. How disorder may be modeled in this material isdes
ribed in ref. [182℄. Some studies of defe
ts in Graphene are available. Magneti
 impurities werestudied by QMC [183℄, DMFT [184℄ and analyti
 work [185℄. The topi
 was furthermore related toquantum 
riti
ality [186℄. A mean �eld/QMC study of the Hubbard model on a honey
omb latti
e wasperformed re
ently by Feldner et al. [187℄.In the following we build a model for disordered magneti
 va
an
ies in Graphene. This model is looselybased on the SIAM, whi
h was shown to yield good results within VCA in previous 
hapters. The new
omponent here is a s
heme of in
orporating the randomness of disorder. This 
hapter is organized asfollows. First the latti
e stru
ture of Graphene will be examined in 
ontext with CPT/VCA 
luster tilingsin se
. 5.1. The superlatti
e-waveve
tor transforms for this model are given there too. Then a CPT/VCAextension to random va
an
ies, a spe
ial form of disorder, will be dis
ussed in se
. 5.2. To test the methodresults for the homogeneous Hubbard model on the Graphene latti
e are presented in se
. 5.3. Finallyresults for the in�uen
e of magneti
 va
an
ies in Graphene, on the single-parti
le spe
tra, are given inse
. 5.4.5.1. Cluster de
omposition of GrapheneGraphene is a purely two-dimensional material. In this se
tion the de
omposition of the Graphene latti
einto two-site-, six-site ring- and ten-site double-ring- 
lusters is presented. These 
luster de
ompositionsare needed for CPT as well as the VCA treatment of Graphene. We start out by dis
ussing the latti
estru
ture of Graphene shown in �g. 5.1.5.1.1. Graphene Latti
e γThe two dimensional Graphene latti
e is not a Bravais latti
e. This means it 
annot be 
onstru
ted by aone atom unit 
ell. The smallest unit 
ell possible is one 
onsisting of two atoms. The Graphene latti
eis then built up by pla
ing this two atom element on a triangular latti
e. The latti
e ve
tors Rγ of thiselementary latti
e γ are given by
R

γ
1 =

a√
3
( 3

2√
3
2

) , R
γ
2 =

a√
3
( 3

2

−
√
3
2

) , (5.1)where a is the latti
e 
onstant, whi
h is set to 1 in this work. This latti
e is depi
ted in �g. 5.2 (left). Inliterature the latti
e ve
tors of hexagonal type latti
es are often given with the latti
e 
onstant a s
aled96



Figure 5.1.: The two dimensional latti
e of Graphene. The Bravais latti
e is a triangular two dimensionallatti
e (eq. (5.1)). The bla
k arrows (r1, r2) indi
ate the latti
e ve
tors of the latti
e γ. A twosite unit 
ell is atta
hed at ea
h latti
e point (eq. (5.2)). Shown is a 
luster de
ompositioninto six-site ring 
lusters (green). The green numbers show the labeling of the sites inside the
luster (eq. (5.2)). The blue arrows (R1,R2) indi
ate the latti
e ve
tors of the superlatti
e Γ.The Bravais latti
e here is a jolted triangular latti
e given in eq. (5.1). The latti
e 
onstantwas 
hosen to be a = 1.
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Figure 5.2.: (Left) Latti
e of Graphene γ eq. (5.1). The latti
e ve
tors are indi
ated in red and the twoatoms of the unit 
ell are labeled a

ording to eq. (5.2). (Mid) The latti
e of the six-site ring
luster Γ6 eq. (5.5). The latti
e ve
tors are indi
ated in red and the six atoms of the unit
ell are labeled a

ording to eq. (5.6). (Right) The latti
e of the ten-site double ring 
luster
Γ10 eq. (5.9). The latti
e ve
tors are indi
ated in red and the ten atoms of the unit 
ell arelabeled a

ording to eq. (5.10). The latti
e 
onstant was 
hosen to be a = 1.
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Figure 5.3.: (Left) Re
ipro
al latti
e of Graphene γ (eq. (5.3)). Some spe
ial points in the Brillouin zone(purple triangles) are given in eq. (5.4). (Mid) The re
ipro
al latti
e of the superlatti
e
Γ6 (eq. (5.7)). Spe
ial points in the Brillouin zone (purple triangles) are given in eq. (5.8).(Right) The re
ipro
al latti
e of the superlatti
e Γ10 (eq. (5.11)). Spe
ial points in the Bril-louin zone (purple triangles) are given in eq. (5.12). The latti
e 
onstant was 
hosen to be
a = 1. 97



by √3. This often leads to 
onfusing fa
tors of √3 when one is used to working with the bare a. Here Itried to make a 
ompromise and pull the fa
tor √3 expli
itly out of the expressions whi
h makes themreadable in both 
onventions. The two atoms in the unit 
ell C2 are lo
ated at
c
C2

1 =
a√
3
(0
0
) , c

C2

2 =
a√
3
(− 1

2√
3
2

) . (5.2)The re
ipro
al latti
e ve
tors Kγ are given by
K

γ
1 =

2π
√
3

a
( 1

3
1√
3

) , K
γ
2 =

2π
√
3

a
( 1

3

− 1√
3

) . (5.3)The re
ipro
al latti
e and the Brillouin zone are shown in �g. 5.3 (left). Spe
ial points in the Brillouinzone are given by
Γγ = (0

0
) , P γ =

2π
√
3

a
( 04
27

) , Mγ =
2π
√
3

a
(13
0
) , Kγ =

2π
√
3

a
( 1

3
1

3
√
3

) . (5.4)5.1.2. Six-site ring superlatti
e Γ6We now 
onsider one possible 
luster tiling whi
h is motivated by the latti
e symmetry. The latti
eve
tors of the superlatti
e Γ6 for six-site ring 
lusters are given by
R

Γ6

1 =
a√
3
( 3

2
3
√
3

2

) , R
Γ6

2 =
a√
3
( 3

2

− 3
√
3

2

) . (5.5)The six atoms in the 
luster C6 are lo
ated at
c
C6

1 =
a√
3
(− 1

2√
3
2

) , c
C6

2 =
a√
3
(0
0
) , c

C6

3 =
a√
3
(1
0
) ,

c
C6

4 =
a√
3
( 3

2√
3
2

) , c
C6

5 =
a√
3
( 1√

3
) , c

C6

6 =
a√
3
( 0√

3
) . (5.6)This latti
e is depi
ted in �g. 5.2 (mid). The re
ipro
al latti
e ve
tors KΓ6 are given by

K
Γ6

1 =
2π
√
3

a
( 1

3
1

3
√
3

) , K
Γ6

2 =
2π
√
3

a
( 1

3

− 1

3
√
3

) . (5.7)The re
ipro
al latti
e and the Brillouin zone are shown in �g. 5.3 (mid). Spe
ial points in the Brillouinzone are given by
ΓΓ6 = (0

0
) , PΓ6 =

2π
√
3

a
( 0

2

9
√
3

) , MΓ6 =
2π
√
3

a
(13
0
) , KΓ6 =

2π
√
3

a
( 1

3
1

9
√
3

) . (5.8)5.1.3. Ten-site double ring Superlatti
e Γ10Another possible 
luster tiling whi
h is motivated by the latti
e symmetry is a ten-site double ring 
luster.The latti
e ve
tors of the superlatti
e Γ10 are given by
R

Γ10

1 =
a√
3
( 3

2
3
√
3

2

) , R
Γ10

2 =
a√
3
( 3

−2
√
3
) . (5.9)The ten atoms in the 
luster C10 are lo
ated at

c
C10

1
= a√

3
(0
0
) , c

C10

2
= a√

3
( 1

2−√3

2

) , c
C10

3
= a√

3
( 3

2−√3

2

) , c
C10

4
= a√

3
( 2

−√3
) , c

C10

5
= a√

3
( 3

−√3
) ,

c
C10

6
= a√

3
( 7

2−√3

2

) , c
C10

7
= a√

3
(3
0
) , c

C10

8
= a√

3
(2
0
) , c

C10

9
= a√

3
( 3

2
√

3

2

) , c
C10

10
= a√

3
( 1

2
√

3

2

) .(5.10)
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Figure 5.4.: (Left) The re
ipro
al latti
e points of the latti
e γ for a 7× 7 system with periodi
 boundary
onditions. (Mid) The re
ipro
al latti
e points of the latti
e Γ6 for a 7 × 7 system withperiodi
 boundary 
onditions. (Right) The re
ipro
al latti
e points of the latti
e Γ10 for a
7 × 7 system with periodi
 boundary 
onditions.This latti
e is visualized in �g. 5.2 (right). The re
ipro
al latti
e ve
tors KΓ10 are given by

K
Γ10

1 =
2π
√
3

a
( 4

15
2
√
3

15

) , K
Γ10

2 =
2π
√
3

a
( 1

5

− 1

5
√
3

) . (5.11)The re
ipro
al latti
e and the Brillouin zone are shown in �g. 5.3 (right). Spe
ial points in the Brillouinzone are given by
ΓΓ10 = (0

0
) , PΓ10 =

2π
√
3

a
( 1

45√
3

15

) , MΓ10 =
2π
√
3

a
(1045
0
) , KΓ10 =

2π
√
3

a
( 11

45√
3

15

) . (5.12)After dis
ussing several possible 
luster tilings, the re
ipro
al spa
e of these latti
es is to be examined.5.1.4. Brillouin zones of the Graphene latti
esThe k-points of the �rst Brillouin zone are needed for 
omputing integrals in re
ipro
al spa
e by evalu-ating sums over k dependent quantities (k out of the �rst Brillouin zone). For an in�nite system thereexist spe
ial s
hemes how to 
hoose spe
ial k-points [188, 189, 190℄ representative for the whole system.Sampling k-points is not a good option in this 
ase be
ause one wants to 
ompare results obtained bydi�erent 
al
ulations and one would have to ensure the use of the same sampled k-points. We deal with�nite latti
es (with periodi
 boundary 
onditions). Here the k-points 
an be obtained exa
tly by �rst
reating a mesh of k-points along the re
ipro
al latti
e ve
tors
kp =

n1

N1

K1 +
n2

N2

K2 ,where Ni is the number of latti
e points along re
ipro
al latti
e ve
tor Ki and ni runs from −[Ni

2
] to[Ni

2
]. Here [ ] denotes the Gauss bra
ket. Not all the points kp will lie within the �rst Brillouin zone andsome need to be folded ba
k to it. This pro
edure depends on the shape of the Brillouin zone. The �rstBrillouin zones of the 2,6 and 10-site 
lusters are shown in �g. 5.4. The 
omputational e�ort of sums in

k-spa
e may be redu
ed 
onsiderably by taking Brillouin zone symmetries into a

ount.For CPT/VCA the inter-
luster hopping matrix T is needed in a superlatti
e wave ve
tor transformedform, whi
h will be dis
ussed in the following.
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5.1.5. Superlatti
e wave ve
tor transformConsidering a latti
e γ of in�nite extent, the superlatti
e-wave ve
tor transform of the hopping matrixTrr′ is given byTRR′(k̃) = ∑̃
r∈Γ

eik̃⋅r̃ Trr′ where ⎧⎪⎪⎨⎪⎪⎩r = R

r
′ = r̃ +R′

,Tij(k̃) = ∑
n1,n2∈{−1,0,1}

eik̃⋅(n1R
Γ

1
+n2R

Γ

2
) Ti, j+n1 a
tion of RΓ

1
(j)+n2 a
tion of RΓ

2
(j) , (5.13)where r are latti
e ve
tors of the latti
e γ, R are lo
ations inside the 
luster and r̃ are latti
e ve
tors ofthe superlatti
e Γ. We now turn to the spe
i�
 
ases of the 
luster de
ompositions dis
ussed above.5.1.6. One-site Cluster TilingAlthough the unit 
ell of Graphene 
onsists of two atoms, it is possible to 
onstru
t single-site 
lustersby attributing the intra-unit 
ell hopping to the hopping matrix T and solving the atomi
 problem forthe 
luster Green's fun
tion. The superlatti
e is then given by the elementary Graphene latti
e γ. Thesuperlatti
e-wave ve
tor transformed hopping matrix is given byT(1)ij (k) = ⎛⎝

∆ǫ −t (1 + e−ik⋅Rγ
2 + e+ik⋅(R

γ
1
−Rγ

2
))

−t (1 + e+ik⋅Rγ
2 + e−ik⋅(R

γ
1
−Rγ

2
)) ∆ǫ

⎞⎠ , (5.14)where t is the uniform nearest neighbor hopping matrix element. The quantity ∆ǫ is introdu
ed by theVCA pro
edure as variational parameter.Note that in the 
ase of one-site 
lusters no Green's fun
tion periodization is ne
essary.5.1.7. Two-site Cluster TilingThe superlatti
e here again is given by the elementary Graphene latti
e γ. For two-site 
lusters thesuperlatti
e-wave ve
tor transformed hopping matrix is given byT(2)ij (k) = ⎛⎝
∆ǫ ∆t − t (e−ik⋅Rγ

2 + e+ik⋅(R
γ
1
−Rγ

2
))

∆t − t (e+ik⋅Rγ
2 + e−ik⋅(R

γ
1
−Rγ

2
)) ∆ǫ

⎞⎠ . (5.15)The quantities ∆ǫ and ∆t are introdu
ed by the VCA pro
edure as variational parameters. Note that inthe 
ase of two-site 
lusters no Green's fun
tion periodization is ne
essary.5.1.8. Six-site Ring Cluster TilingFor a six-site ring 
luster the superlatti
e is given above by the latti
e Γ6. The superlatti
e-wave ve
tortransformed hopping matrix is given by
T(6)ij (k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆ǫ ∆t 0 −t e−ik⋅(R
Γ6

1
+RΓ6

2
)

0 ∆t

∆t ∆ǫ ∆t 0 −t e−ik⋅R
Γ6

1 0

0 ∆t ∆ǫ ∆t 0 −t e+ik⋅R
Γ6
2

−t e+ik⋅(R
Γ6

1
+RΓ6

2
)

0 ∆t ∆ǫ ∆t 0

0 −t e+ik⋅R
Γ6

1 0 ∆t ∆ǫ ∆t

∆t 0 −t e−ik⋅R
Γ6

2 0 ∆t ∆ǫ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(5.16)For six site 
lusters the general periodization pres
ription for Green's fun
tionsG(k, ω) = 1

NC
∑

R,R′
e−ik⋅(R−R

′) GRR′(k, ω)
=

1

NC
∑
i,j

e−ik⋅(ci−cj) Gij(k, ω) , (5.17)
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may be generalized to Gαβ(k, ω) = 1

NC
∑
i∈α
∑
j∈β

e−ik⋅(ci−cj) Gij(k, ω) , (5.18)where α,β denote the two translationally inequivalent latti
e sites of the two-site unit 
ell C2 and i and
j denote the sites of the 
luster under 
onsideration. The spe
i�
 appli
ation to the six-site ring 
lusteryields Gαβ(k, ω) = 1

NC
∑

i∈{1,3,5}
∑

j∈{2,4,6}
e
−ik⋅(cC6

i
−cC6

j
) Gij(k, ω) . (5.19)5.1.9. Ten-site Ring Cluster TilingFor a ten-site ring 
luster the superlatti
e is given above by the latti
e Γ10. The superlatti
e-wave ve
tortransformed hopping matrix is given by

T(10)ij (k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆ǫ ∆t ∆t

∆t ∆ǫ ∆t

∆t ∆ǫ ∆t ∆t

∆t ∆ǫ ∆t

∆t ∆ǫ ∆t

∆t ∆ǫ ∆t

∆t ∆ǫ ∆t

∆t ∆t ∆ǫ ∆t

∆t ∆ǫ ∆t

∆t ∆t ∆ǫ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ −t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e
−ik⋅(RΓ10

1
+R

Γ10
2

)

e
−ik⋅R

Γ10
1

e
−ik⋅R

Γ10
1

e
ik⋅R

Γ10
2

e
+ik⋅(RΓ10

1
+R

Γ10
2

)

e
+ik⋅R

Γ10
1

e
+ik⋅R

Γ10
1

e
−ik⋅R

Γ10
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(5.20)For ten site 
lusters the general periodization pres
ription for Green's fun
tions eq. (5.17) may begeneralized to Gαβ(k, ω) = 1

NC
∑

i∈{1,3,5,7,9}
∑

j∈{2,4,6,8,10}
e
−ik⋅(cC10

i
−cC10

j
) Gij(k, ω) . (5.21)This 
on
ludes the basi
s about the Graphene latti
e stru
ture and its 
luster de
ompositions. In thenext se
tion a model for randomly positioned magneti
 va
an
ies is introdu
ed.5.2. Disorder Model for 
orrelated sitesIn this se
tion a model for randomly positioned magneti
 va
an
ies in Graphene, within CPT/VCA, isintrodu
ed. Disordered systems have previously been des
ribed by the SFA [56℄ and also by VCA [57℄.The approa
h to disorder in this work is based on both these studies and is a dire
t extension of ref. [57℄.Irradiation indu
ed va
an
ies in Graphene are reported to exhibit lo
al magneti
 moment behavior [18℄.In the VCA framework, Graphene is modeled by a tight binding Hamiltonian on a honey
omb latti
e,des
ribed by the one-band Hubbard model parameters (U = 0, ǫ = 0, t = 1). The magneti
 impuritiesmay either be added upon introdu
ing a spin-spin term like in a Kondo Hamiltonian [191℄ or in a betterapproximation by related impurity terms like in the SIAM. Here we 
hoose to model the magneti
va
an
ies as interstitial impurities v, having high intera
tion strength Uv, an on-site energy whi
h makesthe system parti
le-hole symmetri
: ǫv = −Uv

2
and a hybridization to the surrounding 
arbon atoms of101



tv << t. Those va
an
ies are randomly distributed on the Graphene latti
e:
Ĥ = −t L−Nv

∑
⟨i, j⟩σ

c
�
iσ cjσ −

U

2

Nv

∑
ασ

v�ασ vασ +Uv

Nv

∑
α

n̂v
α↑ n̂

v
α↓ − tv ∑

⟨α, i⟩σ
(c�iσ vασ + v�ασ ciσ) .Here the c

�
iσ/ciσ 
reates/annihilates an ele
tron with spin σ at site i. The operators v�ασ/vασ 
reate/an-nihilate ele
trons at the 
orrelated va
an
y sites α. This setup 
orresponds to lo
al moment behaviorin the va
an
ies (impurities) above TK and Kondo s
reening below, in a

ordan
e with experiment [18℄.Sin
e Graphene is a two-dimensional material it is to be expe
ted, that randomly indu
ed va
an
ies (withlo
al moment behavior) have a similar e�e
t as magneti
 adsorbates on Graphene making this approa
hsuitable for the treatment of adsorbates as well. We pro
eed by dis
ussing how this in�nite disorderedlatti
e may be treated within CPT/VCA.The va
an
ies are produ
ed by irradiation in a random fashion. This randomness has to be in
luded inthe resulting Green's fun
tion G. Approa
hing the problem using CPT/VCA, the solution is based on�nite size 
lusters of length L. The idea is to 
al
ulate the 
luster Green's fun
tion G′ for di�erent 
lassesof va
an
y 
on�gurations. There will be

NC = L + 1
lasses Cα 
orresponding to α = 0 up to α = L va
an
ies inside the 
luster. These 
lasses make up the set
C = {Cα}, α ∈ [0, L] .Ea
h of these 
lasses has a multipli
ity of

mα = (L
α
) ,
orresponding to the di�erent possibilities to spread the α va
an
ies inside the 
luster.For example the va
an
y 
lass C0 denotes 
lusters with no va
an
ies present (multipli
ity mα = 1),another one may be to have one va
an
y in the 
luster C1 (multipli
ity mα = L).Note that this 
lassi�
ation of 
lusters into groups having the same number of impurities, does not meanthat 
lusters within one group have the same properties. Consider as an example a larger 
luster withtwo va
an
ies. Then the 
orrelations will be strongly dependent on the distan
e between the two va
an
ysites. However this 
lassi�
ation makes sense be
ause the probability of �nding a 
luster will in a �rstapproximation depend only on the number of va
an
ies in it.To emulate a disordered latti
e with a given 
on
entration of va
an
ies the 
lasses Cα have to be mixedin an appropriate fashion. It is to be expe
ted, that more va
an
ies inside the same 
luster are less likely.How this is done in pra
ti
e will be outlined in se
. 5.2.1.There are two ideas for averaging the solution for the Green's fun
tion over the va
an
y realizations:1. Averaging of the 
luster Green's fun
tion. The ideas presented in ref. [192℄ have to be extended intwo points. Here we 
onsider a weighed average of the 
luster Green's fun
tion 
orresponding todi�erent va
an
y 
lasses. The se
ond more 
ru
ial point has to do with the modeling of the va
an
iesand the latti
e geometry. Sin
e the hopping on the latti
e t is uniform, ex
ept for hopping intothe va
an
y tv << t, one has to deal with a di�erent inter-
luster hopping matrix for ea
h disorder
on�guration! This may only be treated on this level by averaging not only G' but also T . Detailsof this approa
h will be des
ribed in detail in se
. 5.2.2.2. Averaging of the total Green's fun
tion after CPT/VCA 
oupling. This is ad-ho
 and it will beshown below that this approa
h does not yield an a

eptable result. This approa
h will be outlinedin se
. 5.2.3.The probability to �nd a 
ertain amount of va
an
ies inside one 
luster will be dis
ussed in the nextparagraph.
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5.2.1. Weighing disorder 
on�gurationsEa
h 
luster 
on�guration η belongs to a va
an
y 
lass Cα. Depending on the multipli
ity mα thenormalized reweighing fa
tors are de�ned as
pα =

wα

mα

NC∑
α=1

wα

.Any average may then be 
al
ulated by multiplying ea
h 
omponent by the appropriate pα and summingover all of them An averaged quantity A is 
al
ulated as
A =

1
NC∑
α=1

wα

NC

∑
Cα∈C

wα

mα

mα

∑
η∈Cα

Aη . (5.22)The 
on
entration of va
an
ies is given by the ratio of the number of va
an
ies Nv and the number oftotal sites available L
Pv =

Nv

L
=

NC∑
α=1

αwα

L
NC∑
α=1

wα

.Spe
ifying a desired va
an
y 
on
entration Pv a probability distribution fun
tion for the weights wα hasto be found ful�lling additional 
onstraints:� All weights have to be positive:
wα > 0 ∀ α .� For zero va
an
y 
on
entration only 
on�gurations involving no va
an
ies may 
ontribute:

wα = 0 ∀ α > 0 ∧ w0 > 0 if Pv = 0 .� For a va
an
y 
on
entration of one only 
on�gurations ∈ CL may 
ontribute:
wα = 0 ∀ α < L ∧ wL > 0 if Pv = 1 .It is to be expe
ted that for a given va
an
y 
on
entration Pv the weight of a 
luster of size L having αva
an
ies present is given by the binomial distribution [193℄

wα(L,Pv) = Pα
v (1 −Pv)(L−α) (L

α
) , (5.23)whi
h ful�lls the above 
onstraints. The distribution of 
luster weights is shown in �g. 5.5 for various valuesof the desired va
an
y 
on
entration and 
luster sizes. This in prin
iple would still leave some freedomin weighing di�erent 
on�gurations having the same number of va
an
ies, whi
h is not investigated here.Note that this is an approximation be
ause the s
attering o� nearest-neighbor va
an
ies is 
ertainlydi�erent from the s
attering of two separated va
an
ies. Next, two examples for weighing 
lusters willbe presented to illustrate the above notation.Example I: weighing for two-site 
lustersConsider a system of two-site 
lusters L = 2. There may exist α = 0,1 or 2 va
an
ies inside a single 
luster.This gives NC = L+1 = 3 va
an
y 
lasses. The multipli
ity of the 
lasses is given by mα = [1,2,1] be
ausethere exist two ways to arrange one va
an
y in a two-site 
luster. The overall number of di�erent 
luster
on�gurations is 4 (not taking symmetry into a

ount). One may 
hoose three weights wα a

ording to
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Figure 5.5.: Distribution of 
luster weights a

ording to the binomial distribution eq. (5.23) for 
lustersizes L = 1,2,6,10,14 and 16 and va
an
y 
on
entrations of Pv = 1% (six pi
tures in top left
orner), Pv = 5% (six pi
tures in top right 
orner), Pv = 10% (six pi
tures in bottom left
orner), Pv = 25% (six pi
tures in bottom right 
orner). Note that for higher values of Pvthe distribution does not de
rease monotoni
ally with the number of va
an
ies per 
luster.
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eq. (5.23) to obtain the desired impurity 
on
entration Pv

Pv =
(w1 + 2w2)

2 (w0 +w1 +w2) .An average quantity is expli
itly 
al
ulated
A =

1
NC∑
α=1

wα

NC

∑
Cα∈C

wα

mα

mα

∑
η∈Cα

Aη

=
1

w0 +w1 +w2

(w0

1
A0 +

w1

2
(A1

1 +A
2
1) + w2

1
A2) .Example II: weighing for six-site 
lustersConsider a system of six-site 
lusters L = 6. There may exist α = 0,1,2,3,4,5 or 6 va
an
ies inside asingle 
luster. This gives NC = L + 1 = 7 va
an
y 
lasses. The multipli
ity of the 
lasses is given by

mα = [1,6,15,20,15,6,1] 
orresponding to the number of possibilities to arrange the va
an
ies insidea six-site 
luster. The overall number of di�erent 
luster 
on�gurations is 64 (not taking symmetryinto a

ount). One may 
hoose six weights wα a

ording to eq. (5.23) to obtain the desired impurity
on
entration Pv

Pv =
(w1 + 2w2 + 3w3 + 4w4 + 5w5 + 6w6)
6 (w0 +w1 +w2 +w3 +w4 +w5 +w6) .We will now pro
eed by introdu
ing the averaging of Green's fun
tions for di�erent va
an
y 
on�gurationswithin CPT/VCA.5.2.2. Approa
h to disorder (I): Averaging on 
luster levelHere I will present details for what will be referred to as disorder approa
h I: averaging on the 
lusterlevel. This is the 
on
eptually 
orre
t way for averaging as outlined in ref. [56, 57℄. The 
luster Green'sfun
tion of a single va
an
y 
on�guration is given byG′η = Qη g′η Q�

η, η ∈ Cα . (5.24)The averaged 
luster Green's fun
tion will then be given by eq. (5.22)G′ = 1
NC∑
α=1

wα

NC

∑
Cα∈C

wα

mα

mα

∑
η∈Cα

Qη g′η Q�
η

=
NC

∑
Cα∈C

mα

∑
η∈Cα

⎛⎜⎜⎜⎜⎝
¿ÁÁÁÁÀ

wα

mα

NC∑
α=1

wα

Qη

⎞⎟⎟⎟⎟⎠
g′η ⎛⎜⎜⎜⎜⎝¿ÁÁÁÁÀ wα

mα

NC∑
α=1

wα

Q�
η

⎞⎟⎟⎟⎟⎠
=

NC

∑
Cα∈C

mα

∑
η∈Cα

Q̃η g′η Q̃�
η ,where one 
an read o� the de�nitions of the tilded quantities. This may be rewritten in matrix notationde�ning Q̃ = (Q̃η=1, Q̃2, ...)Q̃�
= (Q̃�

1; Q̃�
2; ...)g̃′ = diag(g′1,g′2, ...) ,in the usual form G′ = Q̃ g̃′ ˜Q� .
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The CPT/VCA Green's fun
tion is then given byG = Q̃ 1

ω − (Λ̃ − Q̃�TQ̃) Q̃�
= (11 −G′T)−1 G′ ,where
Λ̃ = diag (Λ̃1, Λ̃2, ...) .Note that here Q may also stand for Qper as de�ned in 
h. 2.1.4. An issue with the problem at hand isthat T, even in CPT, is di�erent for every va
an
y 
on�guration η (not 
lass α). This arises due to thedi�erent hoppings into the va
an
ies tv, whi
h sit on di�erent sites in ea
h 
on�guration. One way todeal with this would be to average T in the same way as the 
luster Green's fun
tion is averaged:T = 1
NC∑
α=1

wα

NC

∑
Cα∈C

wα

mα

mα

∑
η∈Cα

Tη .The full averaged Green's fun
tion within this approximation is given byGI = (11 −G′T)−1 G′ .Please note again that in this approa
h all quantities are averaged on 
luster level. These averagedquantities G′ and T go into one CPT equation eq. (2.2) to yield the total Green's fun
tion G.Next averaging at another level of the 
al
ulation is des
ribed.5.2.3. Approa
h to disorder (II): Averaging of the full Green's fun
tionThis approa
h is not 
ontrolled and just for reasons of 
omparison. Averaging on 
luster level, leavesthe problem of separately averaging the matrix T. It is interesting to see what happens if ea
h va
an
y
on�guration η is treated with the 
orresponding Tη at the level of the "CPT-Dyson" equation. Howeverthen the averaging has to be done at the level of the CPT/VCA-Green's fun
tion G. The 
luster Green'sfun
tion of a single va
an
y 
on�guration G′η is again given by eq. (5.24). A 
on�guration spe
i�
 matrixTη is used to 
al
ulate a CPT/VCA-Green's fun
tion Gη for ea
h 
on�gurationG−1η = G′−1η −Tη .The averaged CPT/VCA-Green's G is then simply given byGII =
1

NC∑
α=1

wα

NC

∑
Cα∈C

wα

mα

mα

∑
η∈Cα

Q̃η

1

ω − (Λ̃η − Q̃η Tη Q̃η) Q̃�
η

=
1

NC∑
α=1

wα

NC

∑
Cα∈C

wα

mα

mα

∑
η∈Cα

Gη . (5.25)So here the CPT equation is applied to ea
h 
on�guration η and the total Green's fun
tions Gη are thenaveraged over. The biggest issue, besides it's general un
ontrolledness, with this approa
h is straightforward to see. At least some of the 
al
ulated Green's fun
tions Gη will be of the 
lass η ∈ C0. Thismeans that no va
an
ies are present within the 
luster and the spe
trum may in general be gapless (whilespe
tra for η ∈ Cα α > 0 are expe
ted to be gapped). It 
an now be seen from eq. (5.25) that no matterhow many va
an
y 
on�gurations will be mixed with this Gη=0 the spe
trum will stay gapless. I 
onsiderthis unphysi
al. Therefore in the following we will pursue disorder approa
h (I).In the next se
tion, results for the homogeneous Hubbard model on a honey
omb latti
e are presentedand 
ompared to other methods.
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Figure 5.6.: (Left) Density of states of Graphene plotted along a 
ommon path in the Brillouin-zone:
Γ −M −K −Γ. The result for U = 0 (tight binding model) is shown whi
h was 
al
ulated forall 
luster sizes within CPT and VCA as a 
he
k. The bla
k line shows the analyti
al resultfor the nearest-neighbor tight-binding dispersion relation of Graphene eq. (5.26). (Right)The gap as a fun
tion of intera
tion strength U obtained by CPT using 1,2,6, and 10 site
lusters as well as with VCAΩ using 2 and 6 site 
lusters. The variational parameter used isthe hopping t sin
e the model is parti
le-hole symmetri
. As a referen
e the mean �eld andQMC results by Feldner et al. [187℄ are plotted.5.3. Cal
ulations for homogeneous GrapheneIn this se
tion the CPT/VCA method shall be tested on the two-dimensional honey
omb latti
e. There-fore results for the tight-binding model and the Hubbard model will be presented. First the density ofstates is dis
ussed. Then the band gap as a fun
tion of intera
tion-strength U will be 
ompared to othermethods.5.3.1. Density of statesIn this se
tion results obtained by CPT/VCA are dis
ussed for L = 1,2,6 and 10 -site 
lusters. Results forthe density of states in the non-intera
ting 
ase (tight-binding model) reprodu
e the analyti
 solution [175℄

ǫ(k) = ǫ − t ∗√1 + 4 cos(√3kx a
2
) cos(ky a

2
) + cos(ky a

2
)2 , (5.26)as expe
ted for all 
luster sizes (see �g. 5.6 (left)). Data for a (homogeneous) Hubbard model is shownin �g. 5.7 for U = 1 and ǫ = −0.5, in �g. 5.8 for U = 2 and ǫ = −1, in �g. 5.9 for U = 3 and ǫ = −1.5 and in�g. 5.10 for U = 4 and ǫ = −2. The data was obtained by CPT as well as by VCAΩ with one variationalparameter x = {t}. The model is parti
le-hole symmetri
, so a variation of on-site energies would alwaysyield a zero deviation from the physi
al parameter. An expe
ted band gap opens for all studied 
lustersizes. The result for two-site 
lusters exhibits a mu
h wider band gap as the six-site result. Also thenarrowing of the bands, observed for six-site 
lusters is absent in the two-site result. The six and tensite results look qualitatively similar, while the two site results deviate. It is interesting to note thatVCA always tends to predi
t a smaller gap than CPT. The gap at the K point also be
omes less wide forlarger 
luster sizes. This indi
ates an overestimation of the gap in CPT/VCA, whi
h is gradually 
uredby 
onsidering larger 
lusters.Next the band gap as a fun
tion of intera
tion-strength U as obtained by CPT/VCA will be 
omparedto other methods.5.3.2. CPT/VCA band gapThe single parti
le gap is obtained by adding the lowest (in magnitude) positive ex
itation energy of thetotal system λU

k at k = K and the lowest in magnitude negative ex
itation energy of the total system
λL
k (λk is de�ned in se
. 2.1.4). The gap as a fun
tion of intera
tion strength U , obtained by CPT using107



Figure 5.7.: Density of states of Graphene plotted along a 
ommon path in the Brillouin-zone: Γ−M−K−
Γ. The result for U = 1 (Hubbard model) is shown from left to right for L = 2,6 and 10 site
lusters. The bla
k line indi
ates the analyti
al result for the nearest-neighbor tight-bindingdispersion relation of Graphene eq. (5.26). (Top row) Results obtained by CPT. (Bottomrow) Data obtained by VCA with variational parameter x = {t}.

Figure 5.8.: Density of states of Graphene plotted along a 
ommon path in the Brillouin-zone: Γ−M−K−
Γ. The result for U = 2 (Hubbard model) is shown from left to right for L = 2,6 and 10 site
lusters. The bla
k line indi
ates the analyti
al result for the nearest-neighbor tight-bindingdispersion relation of Graphene eq. (5.26). (Top row) Results obtained by CPT. (Bottomrow) Data obtained by VCA with variational parameter x = {t}.

108



Figure 5.9.: Density of states of Graphene plotted along a 
ommon path in the Brillouin-zone: Γ−M−K−
Γ. The result for U = 3 (Hubbard model) is shown from left to right for L = 2,6 and 10 site
lusters. The bla
k line indi
ates the analyti
al result for the nearest-neighbor tight-bindingdispersion relation of Graphene eq. (5.26). (Top row) Results obtained by CPT. (Bottomrow) Data obtained by VCA with variational parameter x = {t}.

Figure 5.10.: Density of states of Graphene plotted along a 
ommon path in the Brillouin-zone: Γ −M −
K −Γ. The result for U = 4 (Hubbard model) is shown from left to right for L = 2,6 and 10site 
lusters. The bla
k line indi
ates the analyti
al result for the nearest-neighbor tight-binding dispersion relation of Graphene eq. (5.26). (Top row) Results obtained by CPT.(Bottom row) Data obtained by VCA with variational parameter x = {t}.
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1,2,6, and 10 site 
lusters as well as with VCAΩ using 2 and 6 site 
lusters, is shown in �g. 5.6 (right).The variational parameter used is the hopping t sin
e the model is parti
le-hole symmetri
. The resultsshow 
onvergen
e to the QMC data. The mean �eld and QMC data was obtained by Feldner et al. inref. [187℄. It is interesting to observe that the VCA result for a 
ertain 
luster size almost rea
hes thequality of the CPT result for the next higher 
luster size. After testing CPT/VCA on the homogeneousHubbard model we pro
eed by investigating Graphene with random magneti
 va
an
ies.5.4. Results for Graphene with randomly positioned magneti
va
an
iesGraphene with randomly positioned magneti
 va
an
ies, in a given 
on
entration, is studied within thetwo disorder approa
hes presented above. The magneti
 va
an
ies are modeled by the system parameters:
t = 1, Uv/t = 2, ǫv = −Uv/2, tv/t = 0.3162. Those numbers where 
hosen be
ause it is to be expe
ted, thata magneti
 va
an
y behaves like having a strong Coulomb repulsion with a low hopping parameter.Otherwise they are 
hosen arbitrarily, more realisti
 values are part of future work.The data obtained by CPT for the averaged single parti
le spe
tral fun
tion, within disorder approa
hI (i.e. averaging on 
luster level), is shown in �g. 5.11. Results are shown for va
an
y 
on
entrations of
Pv = 1%,5%,10% and 25%. The mixing of the disorder 
on�gurations was done a

ording to a Binomialdistribution as outlined in se
. 5.2.1. The 
al
ulations were done for 
luster sizes of L = 1,2,6 and 10. Theun-natural 
hoi
e of one-site 
lusters 
auses spurious spe
tra without a va
an
y-indu
ed band gap. Onemay observe two gaps opening in the spe
trum away from ω = 0 with in
reasing va
an
y 
on
entration.The 
ase of one-site 
lusters will be ex
luded from further dis
ussions here. All other system sizes behavein prin
iple similar. A gap opens at the K point, at the Fermi energy ǫF = 0, with in
reasing va
an
y
on
entration. The gap opens already at low va
an
y 
on
entrations of about 1%. In the extreme limitof 25% va
an
ies the latti
e starts to seperate into smaller pie
es 
ausing �at dis
onne
ted parts inthe spe
tra, like in a dimerized latti
e. This basi
ally is a lo
alization phenomenon. It is interestingto observe, that in the L = 2-site 
ase the spe
trum at the K point starts out almost linearly. The
L = 6- and 10-site 
al
ulations agree on an almost quadrati
 spe
trum at K. This is in a

ordan
e withthe results for homogeneous Graphene (see se
. 5.3). Furthermore two symmetri
, non-dispersing bandsof low weight evolve in the vi
inty of the Fermi energy, at a va
an
y 
on
entration of ≈ 10% in the 
ase of
L = 2−,6- and 10-site 
lusters. The larger the 
lusters, the more gaps away from the Fermi-energy open.This may be an issue of the Green's fun
tion periodization. One 
an also observe, that the larger the
lusters get, the smaller the gap at the Fermi-energy will be predi
ted. This is in a

ordan
e with theresult for a homogenous Hubbard model (see �g. 5.6 (right)). There it was shown, that smaller 
lustersalways overestimate the size of the gap in 
omparison to QMC. The general form of the tight-bindingdispersion relation on a honey
omb latti
e eq. (5.26) is preserved in the L = 1− and 2-site 
ase. The resultsobtained by L = 6 − and 10-site 
lusters distort the original dispersion mu
h more. It is interesting toobserve that the one-site result and the six-site result agree reasonably well on the position of the indu
edopenings in the band away from ω = 0. Another interesting result however is, that all 
luster sizes yieldalmost the same spe
trum at the Γ point. A Kondo-resonan
e at ω = 0 is not observed.It may be interesting to 
ompare the results obtained for magneti
 va
an
ies with randomly positionednon-magneti
 impurities. These are modeled by the system parameters: t = 1, Uv/t = 0, ǫv/t = −1, tv/t =
0.3162, to be able to 
ompare to the 
ase examined before. The spe
tra obtained for this setup for thesame 
on
entration of impurities and 
luster sizes as before are plotted in �g. 5.12. The spe
tra look quitesimilar to those obtained before. Therefore we may 
on
lude that the general features of the spe
tra arisedue to the e�e
ts of disorder and not a �nite intera
tion strength U at the impurity lo
ations. There arehowever some details, like in the additionally introdu
ed �at bands in the vi
inity of the Fermi-energy.In this 
ase only one of those develops, as opposed to two in the previous 
ase of magneti
 va
an
ies.As expe
ted results obtained by averaging the total Green's fun
tion (disorder approa
h II) do not yielda physi
al result (see �g. 5.13). Note that the general features of the spe
tra obtained for various 
lustersizes agree very well qualitatively.
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Figure 5.11.: Density of states of Graphene with randomly distributed magneti
 va
an
ies plotted alonga 
ommon path in the Brillouin-zone: Γ −M −K −Γ. The averaged single parti
le spe
tralfun
tion obtained by CPT for a va
an
y 
on
entration of Pv = 1% (top row), Pv = 5%(se
ond row), Pv = 10% (third row), Pv = 25% (bottom row). Data is shown for 
lustersizes of L = 1 (�rst 
olumn), L = 2 (se
ond 
olumn), L = 6 (third 
olumn) and L = 10(fourth 
olumn). The spe
tra were 
al
ulated by the disorder approa
h I where the Green'sfun
tion and single parti
le hopping matrix is averaged on 
luster level. The bla
k line showsthe analyti
al result for the nearest-neighbor tight-binding dispersion relation of Grapheneeq. (5.26).
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Figure 5.12.: Density of states of Graphene with randomly distributed non-magneti
 defe
ts plotted alonga 
ommon path in the Brillouin-zone: Γ −M −K −Γ. The averaged single parti
le spe
tralfun
tion obtained by CPT for a va
an
y 
on
entration of Pv = 1% (top row), Pv = 5%(se
ond row), Pv = 10% (third row), Pv = 25% (bottom row). Data is shown for 
lustersizes of L = 1 (�rst 
olumn), L = 2 (se
ond 
olumn), L = 6 (third 
olumn) and L = 10(fourth 
olumn). The spe
tra were 
al
ulated by the disorder approa
h I where the Green'sfun
tion and single parti
le hopping matrix is averaged on 
luster level. The bla
k line showsthe analyti
al result for the nearest-neighbor tight-binding dispersion relation of Grapheneeq. (5.26).
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Figure 5.13.: Density of states of Graphene with random randomly distributed magneti
 va
an
ies plottedalong a 
ommon path in the Brillouin-zone: Γ −M −K − Γ. The averaged single parti
lespe
tral fun
tion obtained by CPT for a va
an
y 
on
entration of Pv = 1% (top row),
Pv = 5% (se
ond row), Pv = 10% (third row), Pv = 25% (bottom row). Data is shown for
luster sizes of L = 1 (�rst 
olumn), L = 2 (se
ond 
olumn), L = 6 (third 
olumn) and
L = 10 (fourth 
olumn). The spe
tra were 
al
ulated by the disorder approa
h II where thefull Green's fun
tion is averaged over. The bla
k line shows the analyti
al result for thenearest-neighbor tight-binding dispersion relation of Graphene eq. (5.26).
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6. Con
lusionsIn this thesis 
luster perturbation theory and the variational 
luster approa
h have been extended andapplied to quantum impurity models. Cal
ulations done for the single impurity Anderson model, thebuilding blo
k of the majority of quantum impurity models, yield good results. An expression for the
hange of the grand potential originating from the 
oupling of the impurity to the in�nite bath wasderived. A self 
onsistent formulation of the variational 
luster approa
h, previously introdu
ed in the
ontext of non-equilibrium problems [25℄, was explored. Results obtained by the self 
onsistent approa
hshow good qualitative agreement with results obtained by VCA based on the grand potential. It waspossible to show that the essential physi
s of the single impurity Anderson model is 
aptured by CPTand VCA. Using VCA, the results 
onverge at moderate 
luster sizes while the CPT results require pro-hibitively large 
lusters to 
onverge. Comparison to results obtained from Bethe Ansatz, renormalizationgroup approa
hes and data obtained from X-Operator based 
al
ulations shows good agreement for allquantities investigated. VCAΩ yields qualitatively 
orre
t spe
tral properties for the single impurityAnderson model. It reprodu
es the Kondo resonan
e and an exponential s
ale in intera
tion strength U .Furthermore the position and width of the Hubbard satellites 
omes out 
orre
t. For the asymmetri
model the Friedel sum rule is ful�lled in all parameter regions implying that the Kondo resonan
e ispinned at the 
hemi
al potential in the Kondo region. A 
lose look at the Kondo resonan
e showed thatthe variational 
luster approa
h is able to reprodu
e the resonan
e and the fun
tional behavior of theKondo temperature remarkably well. The Kondo temperature is expe
ted to show exponential behaviorin intera
tion strength in the Kondo regime. VCA tends to underestimate the exponent. Comparison ofdynami
 quantities to 
ontinuous time Quantum Monte Carlo shows good agreement. In 
on
lusion VCAis a �exible and versatile method whi
h provides reasonably a

urate results with modest 
omputationalresour
es.Based on the su

ess of VCA in an equilibrium simulation, a non-equilibrium extension of VCA was ap-plied to a strongly-
orrelated quantum dot. A value for the linear response 
urrent in the Kondo regimewas determined as well as an expression for the e�e
tive distribution fun
tion. In the non-equilibriumappli
ation again the extension from CPT to VCA proofed to be 
ru
ial. We investigated the 
urrent andnon-equilibrium density of states in all parameter regions. A linear splitting of the Kondo resonan
e wasobserved in VCA, as well as an interesting behavior of the steady-state 
urrent: A two peak stru
tureevolves for higher intera
tion-strength in the Kondo regime. Furthermore the 
urrent in the Kondo regimeis very stable against variations of the model parameters. The highest peak-to-peak 
urrent however isobserved exa
tly at the 
rossover point from the Kondo plateau to the zero- or doubly o

upied impurity.In the third part of this work randomly positioned magneti
 va
an
ies in Graphene were studied usingCPT/VCA. This made an extension to a strongly disordered, intera
ting problem ne
essary. A s
hemefor treating va
an
ies/impurities in a latti
e within CPT/VCA was developed and applied. The resultsfor the single-parti
le spe
tra and the behavior of the band gap looks promising for future appli
ations.The good behavior of VCA for the SIAM makes an eventual use as a 
luster-solver for DMFT appealing.
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A. AbbreviationsList of abbreviations (in alphabeti
al order)� ARPES ... angle resolved photo emission spe
tros
opy� BZ ... Brillouin zone� CDMFT ... 
luster/
ellular dynami
al mean �eld theory� CPT ... 
luster perturbation theory� CT-QMC ... 
ontinuous time quantum Monte Carlo� CT-HYB ... 
ontinuous time hybridization expansion quantum Monte Carlo� DCA ... dynami
al 
luster approximation� DMFT ... dynami
al mean �eld theory� DMRG ... density matrix renormalization group� DOS ... density of states� ED ... exa
t diagonalization� FRG ... fun
tional renormalization group� FSR ... Friedel sum rule� FWHM ... full width at half maximum� IPES ... inverse photo emission spe
tros
opy� LDOS ... lo
al density of states� MF ... mean �eld theory� MPS ... matrix produ
t states� NRG ... numeri
al renormalization group� PES ... photo emission spe
tros
opy� PT ... perturbation theory� QD ... quantum dot� QMC ... quantum Monte Carlo� SFA ... self-energy fun
tional approa
h� STM ... s
anning tunneling mi
ros
ope� SIAM ... single impurity Anderson Model� VCA ... variational 
luster approa
h� VCAΩ ... variational 
luster approa
h based on the grand potential� VCASC ... variational 
luster approa
h based on self-
onsisten
y
1



B. Units, Libraries and Infrastru
tureIn this do
ument units of
h̵ = e = kB = 1 ,are used. The redu
es Plan
k's 
onstant is denoted h̵, the (positive) ele
troni
 
harge e and Boltzmann's
onstant kB . The hopping integral for free ele
trons on a latti
e, t is set to one unless otherwise noted.The numeri
al 
al
ulations done in this work were performed using a self-written program in C++. Theprogram was developed in E
lipse Helios using a GNU C 
ompiler v4.4. Use was made of several librariesfor C++: Boost, Lapa
k, Arpa
k, Blas and GSL v1.15. A wrapper library for some numeri
al routinesdeveloped by Ralf Gamils
heg and Mi
hael Knap, BoostTools was used. Some parts of the work, espe-
ially data evaluation, were done using Matlab v7.11.0. For the CT-QMC 
al
ulations I used the TRIQStoolkit. All 
al
ulations were done on an Intel quad-
ore I7, with 16 gigabytes of RAM, operated by aDebian 6.0 Linux system. For this do
ument LATEX was used.
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C. Detailed analysis of the grand potentialfor in�nite referen
e systemsIn the following it will be shown that for a formally in�nite system 
onsisting of one or more 
lusters andan environment a regular expression for the grand potential Ω 
an be obtained. The part of the systemwhi
h may be troublesome is hidden in the nonintera
ting environment of in�nite extent whi
h will blowup the tra
e. We �rst examine the third part of eq. (2.23)Tr ln (−G) = ln (det(−G)) . (C.1)To �nd a pra
ti
able notation we write the matrix Green's fun
tions in terms of its elements in blo
kindi
es, where the index c stands for 
luster and the index e for environment. These indi
es denote blo
kswhi
h are of in�nite extent. To ease the notation the spin index is depressed as it is just a parameter. Allin�nite terms are those 
ontaining trG′ee. The idea is to �rst rewrite the intera
ting Green's fun
tionsGαβ (α,β ∈ [c, e]) in terms of the nonintera
ting Green's fun
tions G′αβ and the 
oupling matrix Tαβ .Note that for the problem under 
onsideration here Gαβ is a full matrix. The Green's fun
tion of thereferen
e system G′αβ is of 
ourse diagonal in blo
k indi
es. Finally the 
oupling matrix Tαβ has in CPTonly o� diagonal elements, but in VCA a further 
ontribution Tcc enters, arising from the variationalparameters. We are now going to identify and separate the problemati
 terms. To see how these termsin the end drop out 
onsider the right hand part of eq. (C.1) in the form
X ∶= ln(det(−( Gcc GceGec Gee

))) ,and insert an identity matrix to the left and to the right of G
X =ln⎧⎪⎪⎨⎪⎪⎩det⎡⎢⎢⎢⎢⎣( 1 0

0 −G′ee ) ( 1 0
0 −G′ee )−1 × (−1)

( Gcc GceGec Gee
) ( 1 0

0 −G′ee )−1 ( 1 0

0 −G′ee )⎤⎥⎥⎥⎥⎦⎫⎪⎪⎬⎪⎪⎭ ,whi
h 
an be written as
X = ln⎧⎪⎪⎨⎪⎪⎩det (−G′ee) det( −Gcc GceG′−1eeG′−1ee Gec −G′−1ee GeeG′−1ee

)
× det (−G′ee)⎫⎪⎪⎬⎪⎪⎭ . (C.2)The intera
ting Green's fun
tion Gαβ is determined in terms of the nonintera
ting Green's fun
tions gαβand the 
oupling matrix Tαβ straightforwardly by Dyson's equationGcc = rccG′cc (C.3a)Gee = G′ee +G′eeTecGccTceG′ee (C.3b)Gec = G′eeTecGcc (C.3
)Gce = GccTce ree , (C.3d)where the abbreviation rcc has been de�ned as

rcc = (1 −G′ccTcc −G′ccTceG′eeTec)−1 . (C.4)It is important to note that all o

urring terms in
luding rcc (whi
h depends just on the proje
tion ofG′ee on the �nite 
luster spa
e) are well behaved under the tra
e, ex
ept for gee whi
h has in�nite tra
e.3



Inserting eqs. (C.3) into eq. (C.2) we obtain
X =2Tr ln (−G′ee) (C.5)
+ ln(det( −Gcc GccTceTecGcc −G′−1ee −TecGccTce

)) .To get rid of the last troublesome term G′−1ee we rewrite the above expression using Sylvester's theoremdet (X +AB) = det (X) det (1 +BX−1A) , (C.6)whi
h is valid for non singular X . A suitable form of eq. (C.5) is
X =2Tr ln (−G′ee) + ln⎧⎪⎪⎨⎪⎪⎩det⎡⎢⎢⎢⎢⎣( −Gcc 0

0 −G′−1ee

)
+ ( 0 GccTecGcc −TecGcc

) ( 1 0

0 Tce
)⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ .Applying theorem eq. (C.6) we may write

X =2Tr ln (−G′ee) + ln⎧⎪⎪⎨⎪⎪⎩det (−Gcc) det (−G′−1ee )det⎡⎢⎢⎢⎢⎣11 + ⎛⎝ 0 −1
−TceG′eeTec´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

pcc

Gcc +TceG′eeTec´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pcc

Gcc
⎞⎠
⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ .Here we have identi�ed pcc as another well behaved quantity whi
h just depends on the proje
tion of thein�nite environment onto the �nite 
luster. Finally we end up with

X =Tr ln (−G′ee) +Tr ln (−Gcc)+Tr ln⎧⎪⎪⎨⎪⎪⎩11 + ( 0 −1
−pccGcc +pccGcc

)⎫⎪⎪⎬⎪⎪⎭ .The last term vanishes as we see as follows. With the abbreviation a = pccGcc it readsTr ln⎧⎪⎪⎨⎪⎪⎩11 + ( 0 −11
−a a

)⎫⎪⎪⎬⎪⎪⎭ = lndet(
11 −11
−a 11 + a)We use a S
hur 
omplement type of de
omposition by seeking an upper tridiagonal matrix whi
h appliedfrom the right eliminates the upper right blo
k of the original matrix and only 
hanges the lower rightblo
k. In the present 
ase it reads

( 11 −11
−a 11 + a) × (11 11

0 11
) = ( 11 0

−a 11
) .The inverse of a matrix

(11 F

0 11
)−1 = (11 −F

0 11
) ,and we get

ln det( 11 −11
−a 11 + a) = lndet( 11 0

−a 11
) + ln det(11 −11

0 11
)

= 2 ln(1) = 0.
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Adding now the �rst two terms of equation eq. (2.23) the grand potential Ω is given by
Ω = Ω′ −Tr ln (−G′ee) −Tr ln (−G′cc)
+Tr ln (−G′ee) +Tr ln (−Gcc) + 0
= Ω′ −Tr ln (−G′cc) +Tr ln (−Gcc) + 0
= Ω′ +Tr ln (rcc)
= Ω′ −Tr ln (11 −G′ccΣ̃cc) , (C.7)
Σcc ∶= Tcc +TceG′eeTec .This shows that the in�nite environment 
ontributions drop out and we may use eq. (D.18) to obtain a�nite value for the grand potential Ω.

5



D. Evaluation of the grand potentialThe goal of this appendix is to �nd an expression for the grand potential Ω in terms of the Green'sfun
tions available in a CPT/VCA approa
h. The system we have in mind here is a fermioni
 
luster
oupled to a formally in�nite environment. The 
al
ulation done here in full detail follows [26℄ 
losely.Similar 
al
ulation for bosoni
 systems may be found in [52, 29℄. The new aspe
t of this result is that itmay be used for formally in�nite systems.The grand potential Ω for fermions 
an be 
ast into the form of eq. (2.23) [194, 68, 85℄. Where G and G′ arethe CPT/VCA Green's fun
tion and the Green's fun
tion of the referen
e system respe
tively. Note thatfor Bosons the minus sign in front of G′ and the plus sign in front of G are ex
hanged. The minus signsinside the logarithms are ne
essary to meet the 
onvention for the bran
h 
ut of the 
omplex logarithmi
fun
tion in standard numeri
al methods. The tra
e Tr denotes a sum over Matsubara frequen
ies and asum over latti
e sites and spin whi
h is denoted tr
Tr ≡

1

β
∑
ωn

tr .Here β = 1
kBT

is the inverse temperature. The fermioni
 Matsubara frequen
ies wn =
(2n+1)π

β
are de�nedas the poles of the Fermi-Dira
 distribution fun
tion [30℄

pFD(z) = 1

eβz + 1
. (D.1)The Green's fun
tion G is given by G = (11 −G′T)−1G′ , (D.2)within the CPT/VCA approximation. As shown in app.C the expression for Ω in eq. (2.23) is 
onvergentalso for the formally in�nite referen
e system 
onsidered here. This means that the formally in�nitematri
es G′ and T may be folded ba
k to dimensions L + c, where L is the size of the 
luster part ofthe referen
e system and c is the number of environment sites 
oupled to the 
luster. Therefore wemay rewrite the expression for the grand potential (eq. (2.23)) using the CPT/VCA approximation for G(eq. (D.2)) and obtain

Ω = Ω′ +Tr ln ((11 −G′T)−1) +Tr ln (−G′) −Tr ln (−G′)
= Ω′ −Tr ln (11 −G′T) . (D.3)Our goal is to show that this tra
e is integrable and to 
ast it into a form whi
h may be 
al
ulatede�
iently numeri
ally.We start out by analyzing the asymptoti
 behavior of the se
ond term in eq. (D.3) whi
h we will refer toas I. Examining the tra
e

I = Tr ln (11 −G′T) = 1

β
∑
ωn

tr ln (11 −G′T) , (D.4)and knowing that G′(ω) ω→∞Ð→ 1

ω
,we �nd that tr ln (11 −G′T) ω→∞Ð→ tr ln(1 − T

ω
)

= tr − T
ω
−
1

2
(T
ω
)2 −O (T

ω
)3

≈ −
1

ω
trT∝ 1

ω
.Where we Taylor expanded the logarithm and we used that the matrix T is ω independent. Sin
e theintegral of 1

ω
diverges, one introdu
es a 
onvergen
e fa
tor eiωn0

+ .6



Figure D.1.: Deformation of the integration 
ontour CFD (left) to CFD′ (middle). Note that in the pro
essthe 
ontour is 
ut on
e at in�nity and re
onne
ted the other way round to end up with CAB(right).We are going to repla
e the sum over Matsubara frequen
ies by an integral using the residue theorem [195℄
∮
C
f(z)dz = 2πi∑

p

Res (f(z, zp)) . (D.5)whi
h is valid for any fun
tion f(z) whi
h is meromorphi
 inside the region C. It was mentioned beforethat the poles of the Fermi-Dira
 distribution eq. (D.1) are the fermioni
 Matsubara frequen
ies ωn. Wewill now use a 
ommon tri
k from many body theory for sums like this [35, 196℄. We 
onstru
t a fun
tion
f(z) whi
h has as residuals exa
tly the integrand we are looking for

1

2πi

1

β
tr ln (11 −G′(z)T) ez0+ , (D.6)where the integration 
ontour used en
loses all poles of the Fermi-Dira
 distribution CFD (see �gureD.1 (left)). Note that in this 
ontext the Fermi-Dira
 distribution pFD is sometimes 
alled Matsubaraweighing fun
tion [197℄. Making an edu
ated guess the fun
tion f(z) we are looking for is

f(z) = − 1

2πi
pFD(z)tr ln (11 −G′(z)T) ez0+ . (D.7)To show this we will 
al
ulate the residuals of eq. (D.7) with respe
t to the poles of the Fermi-Dira
distribution fun
tion and end up with eq. (D.6). The residuals are given byRes (f(z,ωn)) = − 1

2πi
lim
z→ωn

z − ωn

eβz + 1
tr ln (11 −G′(z)T) ez0+ .The numerator as well as the denominator go to zero in the limit z → ωn. By using the theorem ofDel'Hospital and di�erentiating the numerator and the denominator separately with respe
t to z weobtainRes (f(z,ωn)) = − 1

2πiβ
lim
z→ωn

1

eβz
ez0

+tr ln (11 −G′(z)T) + 1

eβz
(z − ωn)( ∂

∂z
ez0

+tr ln (11 −G′(z)T))
= −

1

2πiβ
tr ln (11 −G′(ωn)T) 1

eβωn
eωn0

+

=
1

2πi

1

β
tr ln (11 −G′(ωn)T)eωn0

+

.To end up at the last line we used that eβωn = −1. So far we repla
ed the sum over Matsubara frequen
iesby a 
omplex 
ontour integral and rendered the integral 
onvergent by a 
onvergen
e fa
tor
I = −

1

2πi
∮
CFD

dz
1

eβz + 1
tr ln (11 −G′(z)T) ez0+ . (D.8)Note that the integrand has also poles along the real axis arising from G′(z).To evaluate the integral we try to deform the integration 
ontour into something more usable. Some7



Figure D.2.: Three possible integration 
ontours for the T=0 
ase. We use 
ontour CA whi
h is depi
tedto the far right and 
an be split into two integrals CA′ along an in�nite semi
ir
le and CIalong the imaginary axis from +i∞ to −i∞.possibilities are shown in �gure D.1. In some of the proposed 
ontours the limits where 
ut at in�nityand 
losed the other way round. Having in mind an integration 
ontour CAB like the one in �gureD.1 (right), we are interested in the zero temperature result (β → ∞). In this limit the Fermi-Dira
distribution goes to zero in the region B (Re(z) > 0) aslim
β→∞

1

eβz + 1
= lim

β→∞
1

eβRe(z)eβIm(z) + 1
=

1

e∞ξ2e∞χ + 1
→ 0 .It goes to one in the region A (Re(z) < 0)lim

β→∞
1

eβz + 1
= lim

β→∞
1

eβRe(z)eβIm(z) + 1
=

1

e−∞ξ2e∞χ + 1
→ 1 .For zero temperature we are therefore left with only the integration in the negative real half plane. Somepossible integration 
ontours are drawn in �gure D.2. Choosing the 
ontour CA and splitting it into two
ontributions CA′ and CI (see �gure D.2 (right)) we evaluate the integral along the in�nite semi
ir
le

CA′ �rst
I ′ = − 1

2πi
∮
CA′

dz
1

eβz + 1
tr ln (11 −G′(z)T) ez0+

= lim
R→∞ −

1

2πi
∫

1

2
π

3

2
π

dφ iReiφtr ln (11 −G′(Reiφ)T)eiReiφ0+ .Where in the integral the substitution z = lim
R→∞Reiφ was done. For large arguments we know that theGreen's fun
tion G′ behaves like 1

ω
so we 
an pro
eed with

I ′ = − 1

2π
lim
R→∞R∫

π
2

3

2
π
dφeiφtr ln(11 − T

Reiφ
) eiReiφ0+

= −
1

2π
lim
R→∞R∫

π
2

3

2
π
dφeiφtr − T

Reiφ
eiReiφ0+

= −
trT
2π

lim
R→∞∫

3

2
π

π
2

dφeiRe
iφ

0
+

.
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From the �rst to the se
ond line the logarithm was expanded. Next we try to �nd an estimate for theupper bound of the absolute value of this integral
∣∫ 3

2
π

π
2

dφeiReiφ0+ ∣ = ∣∫ 3

2
π

π
2

dφeiR(cosφ+i sinφ)0+ ∣
≤ ∫

3

2
π

π
2

dφ ∣e−R sinφ0
+ ∣

≈ ∫
π
2

0
dφ ∣e− 2

π
Rφ0+ ∣

= ∣− π

2R0+
e−

2

π
Rφ0

+ ∣π20 ∣
= ∣ π

2R0+
(1 − e−R0+)∣ . (D.9)As one 
an see eq. (D.9) goes to zero for R → ∞ and therefore the integral I′ vanishes. Note that thelimit R to in�nity has to be exe
uted before the limit 0+ to zero. The only part of the integral whi
h
ontributes to I is

I = −
1

2πi
∮
CI

dz tr ln (11 −G′(z)T) ez0+ , (D.10)where the 
ontour CI runs along the imaginary axis from +i∞ to −i∞.At evaluating the integral numeri
ally the 
onvergen
e fa
tor ez0+ is very unpleasant. The next step isto get rid of it. We will add to the integrand a fun
tion r(z) whi
h has only poles on the outside of theintegration 
ontour. These are 
hosen to lie on the positive real axis in our approa
h. Furthermore r(z)should behave like 1
ω
in the limit ω → ∞ to 
an
el the − 1

ω
behavior of the integrand. Su
h a fun
tionr(z) may be 
hosen to be

r(z) = trT
z − ρ

, (D.11)where ρ is a large positive real number. The expression for I takes the form
I = −

1

2πi
∮
CI

dz tr ln (11 −G'(z)T) + T
z − ρ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∝ 1

ω2

. (D.12)The added term r(z) will not 
ontribute to the integral as the poles lie outside the region of integrationbut it will render the integral 
onvergent be
ause the expression within the tra
e now goes like 1
ω2 as
ompared to the 1

ω
before. Therefore the 
onvergen
e fa
tor may be dropped.It is possible to further rewrite the integral using the property of retarded Green's fun
tionsG(−iω) = G∗(iω) ,whi
h also holds true for the fun
tion r(z). The resulting integral

I = −
1

2πi
∫
−i∞
+i∞

dω tr ln (11 −G′(ω)T) + T
ω − ρ

=
1

2πi
∫
+∞
−∞

idω tr ln (11 −G′(iω)T) + T
iω − ρ

=
1

2π
(∫ 0

−∞
dω tr ln (11 −G′(iω)T) + T

iω − ρ

+∫
+∞

0
dω tr ln (11 −G′(iω)T) + T

iω − ρ
)

=
1

2π
(∫ ∞

0
dω tr ln (11 −G′(−iω)T) + T

−iω − ρ

+∫
+∞

0
dω tr ln (11 −G′(iω)T) + T

iω − ρ
)

=
1

2π
∫
∞

0
dω tr ln (11 −G′(iω)T) + T

iω − ρ
+ 

 . (D.13)
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The integration variable ω was on
e impli
itly negated in this pro
ess.The integral over r(ω) + 

 may be evaluated having in mind the form of T (see �gure D.3)
1

2π
∫
∞

0
dω tr T

iω − ρ
+

T
−iω − ρ

=
1

2π
trT∫ ∞

0
dω

1

iω − ρ
−

1

iω + ρ

=
1

2π
trT (−2ρ)∫ ∞

0
dω

1

ω2 + ρ2

= −
1

π
trTρ1

ρ
ar
tan(ω

ρ
) ∣∞0

= −
1

π
trT(π

2
− 0)

= −
trT
2

= −L∆µ , (D.14)where ∆µ is the on-site part of T. The tra
e of T is given by trT = 2L∆µ for homogeneous systems,where the fa
tor 2 is due to spin. Here L is the size of the referen
e system. The value ∆µ is the di�eren
eof the 
hemi
al potential of the referen
e system to the variational 
hemi
al potential in VCA.Putting everything together we obtain
I = −L∆µ +

1

2π
∫
∞

0
dω tr ln (11 −TG′(iω)) + 



= −L∆µ +
1

2π
∫
∞

0
dω tr 2Re(ln (11 −TG′(iω)))

= −L∆µ +
1

π
∑
σ
∫
∞

0
dω ln ∣det (11 −TG′σσ(iω))∣ . (D.15)A numeri
al 
onvergen
e analysis for integrals of this kind is undertaken in [26℄. There it is shown thatthe 
onvergen
e is in general very good. The method used to evaluate eq. (D.15) is a Gauss-Legendreintegration. The region of integration from zero to in�nity is split into three regions. Region one withabout twenty points on the interval [0,Λ1) where Λ1 is the low energy s
ale of the problem (i.e. thesmallest eigenvalue of the hamiltonian, up to some minimum). Region two with about twenty points onthe interval [Λ1,Λ2) where Λ2 is the high energy s
ale of the problem (i.e. the largest eigenvalue of thehamiltonian up to some maximum). Region three on the interval [Λ2,∞) where in the integrand onesubstitutes u = 1

ω
and integrates from 0 to Λ−12 :

1

π
∫

1

Λ2

0
dω ω−2ln ∣det(11 −TG′( i

ω
))∣ . (D.16)The integrand vanishes very fast for large arguments and so the 
ontributions from the third region aresmall.Finally putting everything together the expression for the grand potential at zero temperature is

Ω = Ω′ − I

= ω′0 + trT − 1

π
∑
σ
∫
∞

0
dω ln ∣det (11 −TG′σσ(iω))∣ (D.17)

= ω′0 +L∆µ −
1

π
∑
σ
∫
∞

0
dω ln ∣det (11 −TG′σσ(iω))∣ . (D.18)To round this dis
ussion up, some interesting 
omments follow. Note that det (11 −G′(iω)T) = det (11 −TG′(iω))due to Sylvester's theorem. The tra
e in expression D.18 still in
ludes spin. For systems where the dif-ferent spins do not 
ouple and Gσ is 
al
ulated for one spin σ only a fa
tor 2 may repla
e the sum over

σ. As test for the 
orre
t implementation may serve the fa
t that for non-intera
ting systems the grandpotential has to be a 
onstant in all variational parameters. This arises from the fa
t that whatevervalues are 
hosen for the variational parameters, CPT/VCA yields the exa
t result. Equation D.18 alsopermits to see very easily why the nonintera
ting in�nite system will not 
ause this grand potential todiverge. A full proof for this fa
t is given in app.C. Consider an in�nite nonintera
ting lead 
oupled to a�nite intera
ting 
luster. The lead part in the Green's fun
tion G′ will be diagonal and o

upy the blo
kof G′ from index L + 1 to ∞. Note also the matrix T (whi
h is now also in�nite) will maintain its form(see �gure D.3). The matrix 11−G′T will be in general a full matrix in the blo
k [1, L+2] if two leads are10



Figure D.3.: Generi
 form of the matrix representation of the 
luster Green's fun
tion G′ (left) and theinter-
luster hopping matrix T (right).
oupled to the 
luster or [1, L + 1] if one lead is 
oupled to the 
luster. It will have ones in the diagonalfrom [L + 2,∞] or [L + 1,∞] and no further o� diagonal elements. So taking the log (whi
h is a matrixlogarithm) and then the tra
e will be �nite (only zeros will be added up for the in�nite non intera
tingsystem). This arises of 
ourse from the fa
t that just a �nite number of sites of the environment are
oupled to the 
luster.
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E. Obtaining the matrix Green's fun
tionfrom the Green's fun
tion of the
orrelated siteA general pro
edure for obtaining all elements of the intera
ting 
luster Green's fun
tion G′ij from theGreen's fun
tion of the intera
ting site G′ff (whi
h has to be obtained exa
tly by some method beforehandfor a system of length L) and the matrix Green's fun
tion of a free 
hain of length L − 1 G′ss′ , s, s′ ∈[1, ..., L − 1] is outlined here. A similar dis
ussion using T-matrix representation in k-spa
e is given inref. [198℄. We dis
uss the spe
ial 
ase of a single impurity at the far end of a non-intera
ting 
hain, butthe method is appli
able to systems with a �nite number of impurities and the generalization is straightforward. The advantage provided by this method is that in any 
al
ulation only the lo
al impurityGreen's fun
tion needs to be 
al
ulated. From this Green's fun
tion the lo
al Green's fun
tion on everyother site as well as the o�-diagonal terms may be re
onstru
ted.The L ×L 
luster Green's fun
tion G′ij is built up su

essively by making use of the equation of motionmethod whi
h results in a Dyson-like equation. We start out by 
reating the blo
k diagonal un
oupledGreen's fun
tion G′0ij , where G′011 = G′ff and G′0ij = G′ss′ , i, j ∈ [2, ..., L]. Then one pro
eeds by obtainingthe 
luster Green's fun
tion by G′ij = G′0ij +G′0iαTαβG′βj .Here Tαβ has just an entry −V for the 
oupling of the impurity to the �rst site of the 
hain and thehermitian 
onjugate. Therefore the equation redu
es toG′ij = G′0ij +G′0i1T12G′2j +G′0i2T21G′1j
= G′0ij − V (G′0i1G′2j +G′0i2G′1j) . (E.1)This looks like an ordinary CPT 
oupling of an isolated impurity to the �rst site of some other system.However in this 
ontext there is a major di�eren
e! The Green's fun
tion of the impurity G′ff wasalready obtained for the spe
i�
 system of length L under 
onsideration. So we merely re
onstru
t theother matrix elements, whi
h is exa
t! It is important to note that we have to pro
eed iteratively andnot by a matrix operation:1. One starts out at the impurity setting G′11 = G′011 = G′ff .2. Then one may 
al
ulate G′i1, i ∈ [2, ..., L] by eq. (E.1):G′i1 = G′0i1 − V (G′0i1G′21 +G′0i2G′11)
= −VG′0i2G′11 .Note that the index for i starts at 2, so the element 1,1 whi
h was set in the before, is not tou
hed!The elements of G of the �rst row and �rst 
olumn are therefore built up from the impurity Green'sfun
tion G′ff and the Green's fun
tions of a tight-binding 
hain with open boundary 
onditionsG′0i2. Sin
e G′ is symmetri
 G′1i = G′i1.3. Then one may pro
eed and 
al
ulate the diagonal elements G′ii, i ∈ [2, ..., L] by eq. (E.1):G′ii = G′0ii − VG′0iiG′1i .4. From here on all missing o� diagonal elements are 
al
ulated in the same fashion using eq. (E.1).Starting at 
al
ulating G′i2, then G′i3 up to G′iL always not tou
hing previously 
al
ulated elements.To illustrate the pro
edure a short outline of the 
orresponding algorithm is helpful:12



#Obtain Green's fun
tions of tight binding 
hain and impurity site
Gff ← Cal
ulate the lo
al impurity Green's fun
tion for a SIAM of length L

G
hain ← Cal
ulate the matrix Green's fun
tion for a tight binding model of length L − 1#Initialize G0G0
11 ← GffG0
(2∶L,2∶L) = G
hain#Obtain GG11 ← G0

11for j = 1→ L dofor i = j → L doif !((i ==1)&&(j==1)) thenGij ← G0
ij − VG0

i1G2j − VG0
i2G1jGji ← Gijend ifend forend for

13



F. Mapping a one dimensional 
hain toe�e
tive higher dimensionsConsider a single 
orrelated orbital at the far end of a semi-in�nite 
hain whi
h is one possible realizationof the single impurity Anderson model
Ĥ = −ǫf∑

σ

f
�
iσfiσ +U

ˆ
n
f
↑
n
f
↓
− V ∑

σ

(f �
σciσ + fiσc

�
σ)

− t ∑
<ij>σ

c
�
iσcjσ − µ∑

iσ

c
�
iσciσThe non-intera
ting semi-in�nite one dimensional 
hain will generate a semi-
ir
ular lo
al density of statesat the impurity site. For this spe
ial setup it is however possible to renormalize the hopping parametersin the 
hain and obtain a model for an impurity embedded in higher dimensions. Note that after thisrenormalization the sites of the 
hain 
annot be identi�ed with real orbitals any more but a
t as anauxiliary bath whi
h produ
es the desired density of states in the impurity. To obtain the renormalizedhoppings we apply a Lan
zos pro
edure where we 
onsider hopping from a 
entral impurity. For theLan
zos pro
edure we identify the starting ve
tor ∣v0⟩ = ∣1⟩ the impurity site. Normalized ve
tors willalways be denoted as ∣v⟩ while for unnormalized ones ∣̃v⟩ will be used. The 
onstru
tion pro
edure now
onsists of su

essive single parti
le hopping out of the impurity

∣̃vn+1⟩ = Ĥ ∣vn⟩ − ǫn ∣vn⟩ − βn ∣vn−1⟩
ǫn = ⟨vn∣ Ĥ ∣vn⟩
βn =

√⟨̃vn∣ṽn⟩ = ⟨̃vn∣ vn⟩
∣vn+1⟩ = ∣̃vn+1⟩√⟨̃vn+1∣ ,whi
h leads to a tridiagonal form of the Hamiltonian
⎛⎜⎜⎜⎜⎜⎝

ǫ0 β1 0 0 ...

β1 ǫ1 β2 0 ...

0 β2 ǫ2 β3 ...

0 0 β3 ǫ3 ...

... ... ... ... ...

⎞⎟⎟⎟⎟⎟⎠
.F.0.1. Mapping a semi-in�nite one dimensional 
hain to a two dimensionalmodelHere we build up the renormalized hopping parameters 
onsidering one Manhattan distan
e after theother. Ea
h site is labeled by its Manhattan distan
e and an arbitrary index (see �g. F.1).1. Manhattan distan
e 0

∣̃v0⟩ = ∣0,1⟩∣v0⟩ = ∣0,1⟩2. Manhattan distan
e 1We would like to �nd the �rst iteration Krylov ve
tors
∣̃v1⟩ = Ĥ ∣v0⟩ − ǫ0 ∣v0⟩ − β0 ∣v−1⟩ .

14



Figure F.1.: Hopping to a two dimensional bath. The impurity is lo
ated in the 
enter. Ea
h site islabeled by its Manhattan distan
e and an arbitrary index.Therefore we evaluate the a
tion of the Hamiltonian onto the impurity
Ĥ ∣v0⟩ = −ǫ ∣1⟩ − V (∣1,1⟩ + ∣1,2⟩ + ∣1,3⟩ + ∣1,4⟩)

= −ǫ ∣1⟩ − V {∣1,X⟩} ,
{∣1,X⟩} is short for a weighed sum over all orbitals within Manhattan distan
e one. Furthermorewe evaluate

ǫ0 = ⟨v0∣ Ĥ ∣v0⟩ = −ǫ
β0 =

√⟨̃v0∣ṽ0⟩ = 1 .Plugging this ba
k into the equation for ∣̃v1⟩ we get
˜∣v1⟩ = −ǫ ∣1⟩ − V {∣0,X⟩} − (−ǫ) ∣v0⟩ − 1 ∗ 0
= −V {∣1,X⟩} .The norm of ∣̃v1⟩ is given by

⟨̃v1∣ṽ1⟩ = (−V )(1 + 1 + 1 + 1)(−V ) = 4V .So we end up with the normalized ve
tor
∣v1⟩ = − 1√

4
{∣1,X⟩} .3. Manhattan distan
e 2We pro
eed by 
al
ulating the se
ond iteration ve
tor

˜∣v2⟩ = Ĥ ∣v1⟩ − ǫ1 ∣v1⟩ − β1 ∣v0⟩ .
15



The a
tion of the Hamiltonian onto ∣v1⟩ is given by
Ĥ ∣v1⟩ = − 1√

4

⎛⎝ − µ ∣1,X⟩ − 4V ∣0,1⟩
− t (∣2,1⟩ + ∣2,2⟩ + ∣2,8⟩ + ∣2,2⟩ + ∣2,3⟩ + ∣2,4⟩ + ∣2,4⟩ + ∣2,5⟩ + ∣2,6⟩ + ∣2,6⟩ + ∣2,7⟩ + ∣2,8⟩)⎞⎠
=

1√
4

⎛⎝µ ∣1,X⟩ + 4V ∣0,1⟩ + t ∣2,X⟩⎞⎠ ,where
∣2,X⟩ = (∣2,1⟩ + 2 ∣2,2⟩ + ∣2,3⟩ + 2 ∣2,4⟩ + ∣2,5⟩ + 2 ∣2,6⟩ + ∣2,7⟩ + 2 ∣2,8⟩) .Furthermore we evaluate

ǫ1 = ⟨v1∣ Ĥ ∣v1⟩ = − 1√
4
⟨1,X∣ 1√

4
µ ∣1,X⟩ = µ

4
(12 + 12 + 12 + 12) = −µ

β1 =
√⟨̃v1∣ṽ1⟩ = 2V .Plugging this into the expression for ∣̃v2⟩ we get

˜∣v2⟩ = 1√
4

⎛⎝µ ∣1,X⟩ + 4V ∣0,1⟩ + t ∣2,X⟩ ⎞⎠ − (−µ) − 1√
4
{∣1,X⟩} − 2V ∣0,1⟩

=
t√
4
∣2,X⟩ .The norm of ∣̃v2⟩ is given by
⟨̃v2∣ṽ2⟩ = t√

4
(1 + 22 + 1 + 22 + 1 + 22 + 1 + 22) t√

4
= 5t2 .So we end up with the normalized ve
tor

∣v2⟩ = 1√
20
∣2,X⟩ ,4. Manhattan distan
e 3The third Lan
zos ve
tor is given bỹ

∣v3⟩ = Ĥ ∣v2⟩ − ǫ2 ∣v2⟩ − β2 ∣v1⟩ .

16



The a
tion of the Hamiltonian onto ∣v2⟩ is given by
Ĥ ∣v2⟩ = 1√

20

⎛⎝−µ ∣2,X⟩ − t ∑<ij> c�icj ∣2,X⟩⎞⎠
=

1√
20

⎛⎝ − µ ∣2,X⟩ − t⎛⎝ ∣1,1⟩ + 2 ∣1,1⟩ + 2 ∣1,2⟩ + ∣1,2⟩ + 2 ∣1,2⟩ + 2 ∣1,3⟩ + ∣1,3⟩ + 2 ∣1,3⟩
+ 2 ∣1,4⟩ + ∣1,4⟩ + 2 ∣1,4⟩ + 2 ∣1,1⟩ ⎞⎠
− t
⎛⎝ ∣3,1⟩ + ∣3,2⟩ + ∣3,12⟩ + 2 ∣3,2⟩ + 2 ∣3,3⟩ + ∣3,3⟩ + ∣3,4⟩ + ∣3,5⟩ + 2 ∣3,5⟩ + 2 ∣3,6⟩ + ∣3,6⟩

+ ∣3,7⟩ + ∣3,8⟩ + 2 ∣3,8⟩ + 2 ∣3,9⟩ + ∣3,9⟩ + ∣3,10⟩ + ∣3,11⟩ + 2 ∣3,11⟩ + 2 ∣3,12⟩⎞⎠⎞⎠
=

1√
20

⎛⎝ − µ ∣2,X⟩ − 5t ∣1,X⟩ − t ∣3,X⟩ ⎞⎠ ,with
∣3,X⟩ = (∣3,1⟩ + 3 ∣3,2⟩ + 3 ∣3,3⟩ + ∣3,4⟩ + 3 ∣3,5⟩ + 3 ∣3,6⟩ + ∣3,7⟩ + 3 ∣3,8⟩ + 3 ∣3,9⟩ + ∣3,10⟩ + 3 ∣3,11⟩ + 3 ∣3,12⟩) .Furthermore we evaluate

ǫ2 = ⟨v2∣ Ĥ ∣v2⟩ = 1√
20
⟨2,X∣ 1√

20
− µ ∣2,X⟩ = −µ

20
(20) = −µ

β2 =
√⟨̃v2∣ṽ2⟩ =√5t .Plugging this into the expression for ∣̃v3⟩ we get

˜∣v3⟩ = − t√
20
∣3,X⟩ .The norm of ∣̃v3⟩ is given by

⟨̃v3∣ṽ3⟩ = −t√
20
(4 + 72) −t√

20
=

√
76

20
t2 .So we end up with the normalized ve
tor

∣v2⟩ = − 1√
76
∣3,X⟩ .5. Manhattan distan
e 4The fourth Lan
zos iteration ve
tor is given by

˜∣v4⟩ = Ĥ ∣v3⟩ − ǫ3 ∣v3⟩ − β3 ∣v2⟩ .The a
tion of the Hamiltonian onto ∣v3⟩ is given by
Ĥ ∣v3⟩ = − 1√

76

⎛⎝−µ ∣3,X⟩ − t ∑<ij> c�icj ∣3,X⟩⎞⎠
=

1√
76

⎛⎝µ ∣3,X⟩ − t⎛⎝terms involving ∣2, i⟩ and terms involving ∣4, i⟩ ⎞⎠ ,where the hopping terms ∣2, i⟩ and ∣4, i⟩ 
an not be written as α ∣2,X⟩ + β ∣4,X⟩. Therefore theseterms will not 
an
el with the expressions 
oming from ǫ3 ∣v3⟩ and β3 ∣v2⟩ like in the previous 
ases.This makes it hardly possible to 
ontinue analyti
ally (see �g. 5).17
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Figure F.2.: Evolution of the sites a�e
ted in a 
ertain Manhattan distan
e in the Lan
zos pro
edurefor the mapping of a one dimensional 
hain to an e�e
tive two dimensional model. Thered dots indi
ate the 
urrent starting ve
tor superposition. The green dots denote the states
ontributing at the appli
ation of the Hamiltonian. Note that for a Manhattan distan
e <= 3,a ni
e 'hopping' outwards takes pla
e, while for distan
es >= 4 hopping inside and outsidetakes pla
e making the analyti
 evaluation of the 
oe�
ients not feasible.F.0.2. Mapping a semi-in�nite one dimensional 
hain to a three dimensionalmodelThe pro
edure for the mapping to a three-dimensional model is 
ompletely analogous to the two-dimensional 
ase and will not be outlined in detail at this point.F.0.3. Numeri
al results for two and three dimensionsA numeri
al evaluation of the iteration however is easily feasible. The res
aled hopping 
oe�
ients
t(i) = ci t ,are displayed in �g. F.0.3 for the mapping to a two-dimensional model (left) and a three-dimensionalmodel (right) and are listed in tab. F.1. The 
al
ulation of the res
aled hopping parameters be
omesmore and more demanding and time 
onsuming with in
reasing distan
e from the impurity. For thetwo-dimensional mapping the 
oe�
ients alternate in sign and the two bran
hes may be extrapolatedseparately with very high a

ura
y

c1 = 2

c2l =
1.999999087638(2l)2+ 3.666362617826(2l)− 1.616035541467(2l)2 + 1.799469717153(2l)− 0.988115961204 . . . l = [1,2,3, . . .]

c2l+1 =
2.000306397205(2l)2+ 4.968914151507(2l)+ 4.012272194344(2l)2 + 2.521186264485(2l)+ 2.112147532948 . . . l = [1,2,3, . . .] .For the three-dimensional 
ase an extrapolation is more di�
ult be
ause of the errati
 behavior of the
oe�
ients. It is however su�
ient to use the �rst twenty or so 
oe�
ients and set the rest to theasymptoti
 value c∞ = 3.The resulting lo
al density of states at the 
orrelated site ρf(ω) may be evaluated using a 
ontinued

18
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Figure F.3.: E�e
tive hopping 
oe�
ients ci for mapping a 
hain to two dimensions (left) and to threedimensions (right).
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Figure F.4.: E�e
tive lo
al density of states at the intera
ting site using the 
oe�
ients ci for mapping a
hain to two dimensions (left) and to three dimensions (right). The model parameters usedwere U = 0, t = 1, V = 1.fra
tion representation of the Green's fun
tion
ρfω = −

1

π

⎛⎝ 1

ω+ − ǫf − (c1V )2
ω+−ǫ− (c2t)2

ω+−ǫ−
(c3t)2

ω+−ǫ−...

⎞⎠ .The lo
al density of states are displayed in �g. F.0.3 for the mapping to a two-dimensional model (left)and a three-dimensional model (right).Table F.1.: Hopping 
oe�
ients ci for the mapping of a one dimensional 
hain to a two- and a three-dimensional e�e
tive model.distan
e i ... 
oe�
ient at bond i away from 
orrelated site2D ci ... 
oe�
ient for the mapping to two-dimensions3D ci ...
oe�
ient for the mapping to three-dimensionsdistan
e i 2D ci 3D ci distan
e i 2D ci 3D ci

c1 2.000000 2.449490 c15 1.989657 3.005940
c2 2.236077 3.000000 c16 2.011621 3.001386
c3 1.949377 3.073182 c17 1.990959 2.993073
ontinued on next page19



Table F.1 � 
ontinuationdistan
e i 2D ci 3D ci distan
e i 2D ci 3D ci

c4 2.074883 2.924988 c18 2.010051 3.008736
c5 1.967931 3.049102 c19 1.991982 2.993337
c6 2.041942 2.983285 c20 2.008840 3.002119
c7 1.976995 2.990363 c21 1.992806 3.002684
c8 2.028360 3.023338 c22 2.007881 2.994256
c9 1.982234 2.976134 c23 1.993483 3.006018
c10 2.021124 3.014898 c24 2.007103 2.996264
c11 1.985607 2.997686 c25 1.994050 3.000146
c12 2.016693 2.991709 c26 2.006460 3.003107
c13 1.987946 3.013275 c27 1.994530 2.995299
c14 2.013729 2.988102 ...
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