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Abstract

Graph cuts play a important role in computer vision. They are used as
central building blocks in a lot of applications. For these computer vision ap-
plications, often an approximation of the optimal cut is sufficient. Therefore,
fast approximation algorithms are desired, since computer vision problems
are often time critical.

Recently a new class of approximation algorithms for the max-flow and
min-cut problem, utilizing electrical flows, were developed. These algorithms
have a superior asymptotic runtime compared to other approximation algo-
rithms. In this thesis two algorithms, utilizing electrical flows, are presented
and evaluated on problem instances appearing in computer vision.

Furthermore, graph cut problems can also be solved by primal-dual algo-
rithms for convex optimization problems. Such a primal-dual algorithm is
presented and a modification for speeding up its runtime are evaluated.

It is well known that one can obtain the solution of a special class of
graph cuts by solving the famous Rudin-Osher-Fatemi (ROF) functional.
This functional can be solved by a recently presented and very fast method,
called block coordinate descent. This approach is discussed and compared to
the primal-dual algorithm and another state of the art graph cut algorithm.

Since graph cut instances in computer vision often have some special struc-
ture, the focus of the evaluation lies on such graphs.
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Kurzfassung

Graph cuts oder Min-Cut Probleme kommen als zentrale Komponenten in
vielen Computer Vision Anwendungen zum Einsatz. Da einerseits oftmals
eine Approximation des optimalen Cut ausreichend ist und andererseits diese
Anwendungen in den vielen Fällen laufzeitkritisch sind, sind schnelle Approx-
imationsalgorithmen von besonderem Interesse.

In letzter Zeit wurden einige Algorithmen publiziert, welche so genannte
elektrische Flüsse verwenden. Diese erlauben die Konstruktion von Algorith-
men mit stark verbesserter Laufzeit im Vergleich zu früheren Algorithmen.

In dieser Arbeit werden zwei Algorithmen, welche elektrische Flüsse ver-
wenden, vorgestellt. Weiters werden diese Algorithmen auf ihre praktische
Verwendbarkeit, insbesondere im Hinblick auf Probleminstanzen wie sie typ-
ischerweise in der Computer Vision auftreten, untersucht.

Durch die Formulierung als konvexes Optimierungsproblem können Min-
Cut Probleme auch mittels Primal-dual Algorithmen, wie sie aus der kon-
vexen Optimierung bekannt sind, gelöst werden.

Weiters können Min-Cut Probleme mit speziellen Strukturen mit Hilfe des
bekannten Rudin-Osher-Fatemi (ROF) Funktional berechnet werden.

Zur Lösung dieses Funktionals wurden vor kurzem Methoden vorgestellt,
welche ’block coordinate descent‘ Methoden verwenden. Die Herangehens-
weise dieser Methode wird wiederum präsentiert und mit den aktuellen State
of the Art Algorithmen verglichen.

Der Fokus liegt dabei wieder auf Probleminstanzen wie sie typischerweise
in der Computer Vision vorkommen.
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Introduction
Max-flow and min-cut problems are a class of fundamental problems which are encoun-
tered frequently in different fields of mathematics. Including theoretical combinatorial
problems like bipartite matching problems and graph connectivity problems, to name
but a few. Additionally various practical problems can be solved by max-flows and min-
cuts, like distributing water, or some more abstract quantity (like traffic for instance),
in some kind of network.

Another field where graph cuts are frequently used is computer vision where graph cuts
are used in various applications. The first computer vision model using graph cuts was
described by Greiget al. [30] in 1985. In their work the authors used graph cuts in order
to denoise binary images and the underlying idea is to treat each pixel as a vertex and
each neighbourhood pixel corresponds to an adjacent vertex. By this time graph cuts
allowed for a fast and exact solution compared to the previously used metaheuristics,
like simulated annealing.

In general, graph cuts can be used whenever some special kind of binary energy
minimization has to be performed. Energy functions which can be solved exactly by
graph cuts are called ‘submodular functions’ and this class is very well characterized [37].

Submodular functions arise when one tries to solve Markov random fields. The well
know agorithm ‘GrabCut’ [52] is an example of using this technique.

A third problem in computer vision that can be tackled by graph cuts is the stereo
correspondence problem [36, 11]. This problem can also be formulated with Markov
random fields and therefore again benefits from fast min-cut algorithms.

Other common vision problems that can be solved with the help of graph cuts are
multiview reconstruction and shape fitting, see for instance [43, 44, 10].

Since the problem of calculating minimal cuts and maximum flows is a basic problem,
a large number of algorithms for solving this problems have been created. The first
algorithm dates back to Ford and Fulkerson in 1956 [24]. Their paper also contains the
famous ‘max-flow min-cut theorem’, showing equivalence between these two problems.
The algorithm of Ford and Fulkerson is only pseudo polynomial and the first polyno-
mial algorithm was the algorithm of Edmunds and Karp [22]. During the next decades
improved algorithms were presented until in 1986 Goldberg and Trajan presented their
famous ‘push-relabel algorithm’ [28]. About ten years later Goldberg and Rao presented
another algorithm [27] featuring the best running time until in 2013 Orlin presented an
algorithm with superior runtime of O(mn) [48].
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Introduction

(a) Segmentation example: in the image at the right the major regions are identified1

(b) Stereo correspondence: find corresponding pixels in the two slightly different input images.
This allows the calculation of relative depth information2

(c) 3D reconstruction: calculate the 3D model from multiple images of the real world object3

Figure 0.0.: Three computer vision problems which can be modeled with graph cuts.

1image and ground truth taken from [46]
2image and ground truth taken from [55]
3image and ground truth taken from [57]
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The above mentioned algorithms are designed in order to achieve good asymptotic
runtimes for the general graph cut instances. Since in computer vision graph cuts often
have grid structure, specialized algorithms for these problem instances were proposed.
The algorithm of Boykov and Kolmogorov [8] is considered one of the fastest algorithms
for such problems. Unfortunately, it is not known if the asymptotic runtime of this
algorithm is polynomial [29].

Parallel to the development of these exact algorithms, approximation algorithms for
max-flows min-cut were developed. A very basic approximation method was developed
by Karger and Benczúr [34, 33, 5, 6]. Their approach is to reduce the number of edges
in a clever way and then solve this modified problem exactly.

Recently, another class of approximation algorithms, using so called ‘electrical flows’,
emerged [42, 19, 35, 45]. These algorithms depend on recent scientific results on ap-
proximately solving a special case of linear systems (to be precise: symmetric, diagonal
dominant and positive definite linear systems) [61, 60, 59, 40, 38].

Another approach for solving graph cuts is to model them as continuous optimization
problems and minimize this problem with classical methods from convex optimization.
Compared to the previous methods, these algorithms are not specially designed for graph
cuts, but they benefit from the fact that they can easily be parallelized and therefore
are well suited to be used on GPUs [62].

For graph cuts with a special structure a solution can be obtained by solving the fa-
mous Rudin-Osher-Fatemi (ROF) functional [14]. In order to solve the ROF functional
again common convex optimization algorithms can be used. Recently a new method
called ‘block coordinate descent’ has been proposed. This method can easily be paral-
lelized on CPUs and benefits from multicore CPUs [16].

In this thesis a short overview over two approximation algorithms utilizing electrical
flows, namely the algorithm of Christiano et al. [19] and the algorithm of Lee et al. [42],
is given. The algorithm of Christiano et al. was the first algorithm using electrical flows
in order to compute max-flows and min-cuts. The algorithm of Lee et al. gives a nice
interpretation of flows and cuts in conjunction with electrical flows. This is covered in
the first part of the thesis. The second part is more about convex optimization and how
graph cuts can be solved with algorithms of that particular field of optimization. All
these algorithms are described and the building blocks, required by these algorithms,
are provided. Besides the asymptotic runtime of these algorithms also their ‘real’ per-
formance based on a C++ implementation is analysed. It turns out that, while the
algorithms of Christiano et al. and Lee et al. have superior asymptotic runtime, the
runtime for typical computer vision problem instances is not of any practical relevance.

The outline of the thesis is as follows: in chapter 1 the most basic mathematical
definitions, used later in this thesis, are revised. Chapter 2 introduces electrical flows and
some of the most important properties of electrical flows are described. Furthermore, it is
shown how resistances influence electrical flows. Chapter 3 is dedicated to the algorithms
of Christiano et al. (section 3.2) and the algorithms of Lee et al. (section 3.3). These
algorithms are described and some experiments are performed and discussed to conclude
the first part.

The second part starts with some basic definitions and facts about convex optimiza-
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tion. Furthermore the equivalence between the binary min-cut problem and the contin-
uous (relaxed) min-cut is shown (section 4.4). The primal-dual algorithm of Chambolle
and Pock some of its modifications are presented in chapter 5. In chapter 6 it is dis-
cussed how the graph cut problem is a subproblem of the famous Rudin-Osher-Fatemi
Total Variation problem. Furthermore, it is discussed how this ROF problem can be
solved. The second part closes with a chapter comparing these algorithms to the very
fast algorithms of Boykov and Kolmogorov [8].
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Electrical flow algorithms
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1. Definitions and electrical flows
This chapter gives fundamental definitions of graph theory necessary to introduce the
max-flow and the min-cut problem. Furthermore, it is explained how the asymptotic
runtime of an algorithm is measured and how the quality of approximations is measured.

The experienced reader might skip this chapter, and fast-forward to chapter 2.

1.1. Basics
Starting with the very basics this section covers some definitions and notations of graphs
and how they can be represented.

Definition 1. ((un-) directed graph)
Let V be a (finite) set, the so called vertex set. The set E containing unordered pairs of
elements of V is called the edge set. The combination of these two sets is called a graph
and is denoted as G = (V,E).
In a directed graph the edge set E consists of ordered pairs, i.e. E ⊂ V × V .

If G is a directed graph and e = (u, v) ∈ E, u resp. v is called the initial resp. terminal
vertex of e. Unless specified otherwise by a ‘graph’ an undirected graph is meant.

In Figure 1.1 a visualization of a directed and undirected graph is shown.

1

2

3

4

5

(a) Undirected graph

1

2

3

4

5

(b) Directed graph

Figure 1.1.: Visualization of a graph with vertex set V = {1, 2, 3, 4, 5} and edge set
E = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)} in the directed case

If we want to refer explicitly to the edge set or vertex set of a graph G the following
notation is used:

Notation 1. For a given graph G, V (G) denotes the vertex set and E(G) denotes the
edge set of G.

9



1. Definitions and electrical flows

Sometimes it is convenient to consider only a smaller part of a graph, not consisting
of all vertices.

Definition 2. (Subgraph)
Let G = (V,E), S ⊂ V and E ′ = E ∩ (S × S) then the (vertex) induced subgraph G(S)
is defined as G(S) := (S,E ′)

Definition 3. (neighbours, degree)
Given an undirected graph G = (V,E), the neighbours of a vertex v ∈ V , denoted by
δ(v), are all vertices sharing an edge with v i.e.

δ(v) := {w ∈ V |∃e ∈ E : v ∈ e ∧ w ∈ e}

The degree of a vertex v is the number of neighbours and is denoted by d(v), i.e. d(v) =
|δ(v)|.
If G is a directed graph δ+(v) is defined as all edges where v is the initial vertex and
δ−(v) as the set of edges where v is the terminal vertex i.e.

δ+(v) = {(v, u) ∈ E|u ∈ V } δ−(v) = {(v, u) ∈ E|u ∈ V }

therefore, the neighbours of v are both sets together: δ(v) = δ+(v) ∪ δ−(v).

Two vertices vi and vj are called adjacent if there is an edge {vi, vj} ∈ E. Since the
tuples of all adjacent vertices are exactly the edges of a graph one can define the so
called adjacency matrix to represent a graph.

Definition 4. (Adjacency Matrix)
For a given graph G = (V,E) with V = {v1, . . . , vn}, E = {e1, . . . , em}, the adjacency
matrix A ∈ {0, 1}n×n is defined as A = (aij)ni,j=1 where

aij :=
1 if there is edge between vi and vj

0 else

The adjacency matrix is only defined for undirected graphs, therefore, the adjacency
matrix of an directed graph is constructed by removing all the orientations.

A closely related property is the property of incidence. While adjacency is a property
between two vertices, incidence is a property between an edge and a vertex. A vertex v
is incident to an edge e if v ∈ e. Similar to the adjacency matrix one can define the s.c.
incidence matrix by collecting all incidences of the graph:

Definition 5. (Incidence Matrix)
For a given graph G = (V,E) with V = {v1, . . . , vn}, E = {e1, . . . , em}, the Incidence
matrix B ∈ {0,−1, 1}m×n, B = (bij)i=1,...,m

j=1,...,n
is defined as:

bij :=


1 if ei ∈ δ+(vj)
−1 if ei ∈ δ−(vj)
0 else

10



1. Definitions and electrical flows

Note that in contrast to the adjacency matrix the incidence matrix is defined for
directed graphs. A third matrix associated with a graph is the Laplace matrix which
establishes a link between the adjacency matrix and the incidence matrix.

Definition 6. (Laplace matrix)
Let G = (V,E) be a directed graph and B its incidence matrix then the Laplacian
matrix L is defined as:

L := BtB

An equivalent definition of the Laplacian, involving the adjacency matrix is given by:

L = D − A (1.1)

where D is the s.c. degree matrix, which is the diagonal matrix of the vertex degrees,
i.e. D = diag(d(v1), · · · , d(vn)).

There is a own theory studying the properties of these matrices. This theory is called
spectral graph theory and links the properties of these matrices with properties of the
corresponding graph.

Equation (1.1) indicates that the Laplacian matrix is diagonal dominant. Further-
more, L is symmetric since A is a symmetric matrix. The third property of the Laplacian
is positive semidefiniteness. This can easily be observed by considering an eigenvalue λ
and the corresponding (normalized) eigenvector v of L. Then

λv = Lv ⇔ λ = vtLv = vtBtBv = (Bv)tBv = 〈Bv,Bv〉 ≥ 0 (1.2)

indicating that every eigenvalue is nonnegative which is the definition of positive semidef-
inite.
The properties symmetry, positive definiteness and diagonal dominance are abbreviated
by the term sdd and such a matrix L is called a sdd matrix.

The number of nonzeros in each row of the adjacency matrix is exactly the degree of the
vertex associated with this row. Since every nonzero entry is 1, one gets ∑n

j=1 aij = d(vi)
combining this with the observation from (1.1) it is clear that vector (1, 1, . . . , 1)t ∈
ker(L) and, therefore, L is singular.
One result of the previous mentioned spectral graph theory is that the graph G is
connected iff the second smallest nonzero eigenvalue of its laplacian matrix is positive.

A singular matrix does not have a inverse matrix but there is the concept of the pseudo
inverse matrix which has most of the properties of the inverse matrix but is defined for
singular and nonquadratic matrices.

Definition 7. (Moore-Penrose pseudo inverse)
For a given Matrix A ∈ Rn×m with m,n ∈ N, the matrix A+ with the following properties

• AA+A = A

• A+AA+ = A+

11



1. Definitions and electrical flows

• (A+A)t = A+A

• (AA+)t = AA+

is called the Moore-Penrose pseudoinverse (or simply pseudoinverse) of A.

If A ∈ Rn×n is a regular then A+ = A−1.
One important property of this pseudo inverse is that given a b ∈ Im(A), this x can

be expressed as b = Ay (for a suitable y ∈ Rm). Now

AA+Ay = Ay

AA+(Ay) = (Ay)
AA+b = b

A(A+b) = b

Thus one solution of the system Ax = b is given by x = A+b. Later the pseudoinverse
of L will be used to solve linear systems of the Laplacian.

One algorithm presented later will heavily use the following fact of the pseudoinverse:

• P = AA+ is a projection onto Im(A)

• ker(A+) = ker(At)

• Im(A+) = Im(At)

In general we will denote norms by ‖·‖, with ‖·‖2 being the euclidean norm, i.e. ‖x‖2 =√∑n
i=1 x

2
i , where x is a element of some n dimensional vector space. The other two

important norms, the infinity norm and the Manhattan norm are defined as usual:
‖x‖∞ = maxi∈{1,...,n} |xi| and ‖x‖1 = ∑n

i=1 |xi|.
In the following the set X ⊆ Rn will denote a simple subset, where n is of course

finite.

Definition 8. (convex set)
The set X is called convex if

λx+ (1− λ)y ∈ X ∀x, y ∈ X, ∀α ∈ [0, 1]

Closely related is the definition of a convex function

Definition 9. (convex function)
Let X ⊆ Rn be a convex set, a function f : X → R is called convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ X, ∀α ∈ [0, 1]

There are a lot of equivalent definitions and conditions for convex functions, we will
not go into detail. For a comprehensive overview see for example [51].

The, at least for our cases, most important property of a convex function is the fact,
that a local minima is equal to a global minima. In the general case, finding a global

12



1. Definitions and electrical flows

optima of a function is a very challenging task and one cannot hope to find global
solutions, but convexity makes this task actually traceable.

An additional property of a convex function is that, if the function is bounded on
a convex set, it is continuous at the interior of this set. This is a kind of intuitive
property since ‘jumps’ would violate the conditions in Definition 9 and for a closed
interval [a, b] the function f(b) = 1 and zero else is convex (on the interval) but certainly
not continuous. A mathematical proof of this property can be found in [54].

Another important property of functions is Lipschitz continuity:

Definition 10. (Lipschitz continuity)
A function f : X → Rn is called Lipschitz continuous if there exists a constant L ∈ R+,
such that

‖f(x1)− f(x2)‖ ≤ L ‖x1 − x2‖

The constant L is called the ‘Lipschitz constant’.

As we will see later the speed of convergence of many optimization algorithms will
depend on the Lipschitz constant of the objective function.

1.2. Flows and Cuts in a graph
It is often convenient to assign numerical values to the edges of a graph. This allows to
prioritize or weight the edges, hence such a graph is called a weighted graph.

Definition 11. (weighted graph)
Let G = (V,E) be a directed or undirected graph. A function w : E → R is called
weight function and the triple G = (V,E,w) is called a weighted graph.

If there is an total ordering of the edges the weight function is often written in vector
form w := (w(e1), w(e2) . . . , w(em))t. This vector w is called the weight vector.

Cuts

Now it is time to define a cut. For the sake of completeness we will start with the very
basic definition of a cut.

Definition 12. (cut)
Let G = (V,E) be a graph, a cut is a partition of the vertices into two nonempty sets,
i.e. if ∅ 6= S ⊂ V then (S, V \S) is a cut of G. If it is clear from context we may simply
say ‘S is a cut of G’

An edge (u, v) ∈ E is said to cross the cut iff u and v are in distinct sets. The cross
set is the set of all edges crossing the cut.

13



1. Definitions and electrical flows

Definition 13. (cut set/cross set)
The cut set or cross set of a graph G = (V,E) is denoted by C(S, V \ S) and defined as

C(S, V \ S) := {(u, v) ∈ E|(u ∈ S ∧ v /∈ S) ∨ (u /∈ S ∧ v ∈ S)}

Again if it is clear from context one may write C(S) := C(S, V \ S)

Since the cross set of a cut is unique and fully defines a cut, depending on the context,
the term ‘cut’ can refer to ether the ‘vertices of a cut’ or the cut set.

The previous definition of a cut is very basic and no specific properties of the under-
lying graph are used so far, therefore, if a weighted graph is considered the value of a
cut is generally of interest:

Definition 14. (value of a cut)
Let G = (V,E) be a graph and S ⊂ V a cut. The value of a cut, denoted by val(S, V \S)
or val(S), is defined as the summed weights of the edges in the cross set.

val(S) =
∑

(u,v)∈C(S)
w(u, v)

Another important definition in combination with cuts is the definition of a s-t cut.
A s-t cut is a cut with two distinct vertices denoted by s and t where s ∈ S and
t /∈ S. These s-t cuts are closely linked to the s.c. s-t flows, which will be defined
later in this section (see Definition 17). Additionally these s-t flows have a nice physical
interpretation compared to s-t cuts.

Definition 15. (s-t cut)
Given a graph G = (V,E), and two distinct vertices s, t ∈ V . A st-cut S ⊂ V is a cut
where s ∈ S ∧ t /∈ S.

At this point we have to stop for a moment and clarify some issues regarding directed
graphs. Usually the value of a cut is defined as the weights of the directed edges starting
at the set S and ending at the set V \ S. Furthermore, all weights are nonnegative.

In our case negative weights are not forbidden, therefore, all the edges between S and
V \ S have to be considered. The reason for this restrictions will become clear once
flows, and especially flows in undirected graphs, have been defined.

14
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s

1

2

3

4

t

S1 S3

S2

Figure 1.2.: Three different cuts: S1 = {s}, S2 = {s, 2, 4}, S3 = {s, 1, 2, 3, 4}

Now all prerequisites for the central definition of this thesis are complete and it is
time to define the min-cut problem.

Definition 16. (min-cut Problem)
Let G = (V,E,w) be a weighted graph, s, t ∈ V , the min-cut problem is defined as

min
∅6=S⊂V
s∈S,t/∈S

val(S) (Pc)

In subsequent chapters further equivalent problem definitions will occur. This is due
to the fact that the above definition is often not very convenient to handle, from an
algorithmic point of view.

Flows

The concept of flows in a graph is probably easier to interpret than the concept of cuts.
In the very simply case one can interpret the edges of the graph as water pipes and
the vertices as connections of pipes. Therefore, the whole graph is a very simple water
network. Now a certain amount of water is steadily inserted into the network at a source
vertex s and removed at a sink vertex t. The water now flows from s to t and a certain
fraction (possibly nothing) of the inserted water flows through each pipe. By the term
‘flow’ the distribution of the water over all the pipes is meant. On the other hand by
congesting or removing certain pipes, one could prevent any water flowing from s to t.
These pipes would define one possible cut set.

After this informal description a bit more formalism has to be introduced. In our
example it was implicitly assumed that no water is lost inside the network and no water
is accumulated at the connections. This property is called flow preservation and is
essential for the basic definition of a flow:

Definition 17. (s-t Flow, flow preservation)
Given a directed graph G = (V,E), and designated vertices s, t ∈ V a s-t flow between
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1. Definitions and electrical flows

s and t is a function f : E → R, fulfilling the s.c. flow preservation defined as:

∀v ∈ V \ {s, t} :
∑

e∈δ−(v)
f(e) =

∑
e∈δ+(v)

f(e)
∑

e∈δ−(s)
f(e) =

∑
e∈δ+(t)

f(e)

The value of a st-flow is given by the sum of the flow outgoing from the source and
denoted by F , i.e.

val(f) =
∑

e∈δ−(s)
f(e)

Sometimes in the literature a flow is not allowed to have negative values but we
explicitly allow for negative values. Furthermore, the definition of the flow preservation
property and the value of a flow require a directed graph.
In this thesis undirected graphs are considered in most chapters and, therefore, this
definition has to be extended or a way of converting problems in undirected graphs into
problems in directed graphs has to be found.

One possibility to model flows in undirected graphs would be to simply duplicate each
edge and assign them different orientations. But now it would be possible to send an
arbitrary amount of flow through an edge (u, v) and return the flow immediately through
the associated edge (v, u). This would render the previous definition useless, since the
value of this flow could be infinite.

Similar to the standard flows for directed graphs only flows with nonnegative values
are considered in undirected graphs. Therefore, each edge is assigned an arbitrary ori-
entation and if an edge e has a negative flow this edge is considered orientated in the
opposite direction. The nonnegative flow of an undirected graph G = (V,E) is obtained
by taking the absolute value (of the flow in the associated arbitrarily orientated graph).

Similar to the weight vector (and by a slight abuse of notation), the flow vector for a
given graph G = (V,E) and a flow f is defined as f := (f(e1), f(e2), · · · , f(em)).

Now that f is a vector, the flow preservation property can be written as linear system.
Given a graph G = (V,E) and a vectors f , then f is a st-flow with value F iff

Btf = F (χs − χt) (1.3)

where B is the incidence matrix, χk is the k-th canonical unit vector, i.e. χk is 1 in the
k-th component and 0 elsewhere.

There will be situations, where flow is not only inserted/removed at two distinct
vertices but at possible every vertex. In this case the vector cext is used to describe the
amount of flow inserted or removed. If (cext)i is positive resp. negative then flow is
inserted resp. removed at vertex i. The amount of flow entering the graph at a specific
vertex v is called the ‘inflow/outflow at vertex v’.

In the example with the water flowing through some pipes there was no restriction on
the capacities of the pipes. The total amount of water may could flow through a single
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pipe. It is easy to imagine that this may not be very realistic since real world pipes have
a maximum capacity, restricting the flow through this pipe (e.g. diameter).

In order to model these observation in the graph, capacities are assigned to each edge.

Definition 18. (capacitated flow)
Let G = (V,E) and c : E → R s.c. capacity function, then f is a capacitated flow if it
is a flow as in Definition 17 and, furthermore,

• f : E → R≥0

• ∀e ∈ E : f(e) ≤ w(e)

An ‘uncapacitated’ flow is a capacitated flow where each weight is 1.

This type of flow is often called a combinatorial flow in order to distinguish it from a
electrical flow, introduced in section 2.

Similar to the flow vector the capacity vector is defined as c := (c(e1), . . . , c(em)).
Unless not specified otherwise, we will always consider capacitated flows in connection
with weighted graphs.

Getting back to the initial example it is now possible to ask the question: What is
the maximum amount of water able to flow through the pipe network? This leads to
the famous max-flow Problem:

Definition 19. (Max-Flow Problem)
Given a weighted graph G = (V,E,w), the Max-Flow Problem is defined as:

max
f st-flow

val(f) (Pf )

If f ∗ is a flow maximizing the flow value then f ∗ is called a maximal flow.

The problem of finding a maximal flow is closely related to the problem of finding a
minimal cut. This link is established be the famous max-flow-min-cut theorem.

Theorem 1 (max-flow-min-cut-theorem [24, 23]). Given a directed and weighted graph
G = (V,E,w) and two distinct vertices s and t, then the value of the maximal s-t flow
is equal to the value of the minimal s-t cut.

Note that the max-flow-min-cut theorem is formulated for directed graphs!

1.3. Landau-Notation, Approximation
Since we will deal with approximation algorithm one has to clarify what is meant by
an ‘approximation’ and how one can compare different algorithms. Both terms will be
described using the Landau notation, defined as follows

Definition 20. (Landau notation)
Let f, g : R→ R be two functions, then:

17
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(i) f(n) ∈ O(g(n)) ⇐⇒ lim supn→∞
∣∣∣f(n)
g(n

∣∣∣ <∞
(ii) f(n) ∈ Ω(g(n)) ⇐⇒ lim infn→∞

∣∣∣f(n)
g(n

∣∣∣ > 0

(iii) f(n) ∈ Θ(g(n)) ⇐⇒ f(n) ∈ O(g(n)) ∧ f(n) ∈ Ω(g(n))

(iv) f(n) ∈ o(g(n)) ⇐⇒ lim supn→∞
∣∣∣f(n)
g(n

∣∣∣ = 0

In literature it is sometimes common to write f(n) = O(g(n)) instead of f(n) ∈
O(g(n)). The notation in (i) is commonly referred as big O notation.

The most basic elements an algorithm is working with are simple numbers. An al-
gorithm performs simple operations on these numbers, i.e. typical operations are com-
parisons or arithmetic operations. It is assumed that each of these operations takes
constant time, regardless of the value of the involved number. In order to analyze the
performance of an algorithm the number of operations is determined and this value is
called the exact runtime of an algorithm. The number of operations will depend of
course on the size of the problem instance, therefore, the runtime is a function of the
problem size. To simplify the analysis the Landau-Notation is used and for an algorithm
with runtime f(n) ∈ O(g(n)) it is said that the asymptotic runtime of this algorithm is
O(g(n)). In general by runtime of an algorithm the asymptotic runtime is meant.

The algorithms presented in this thesis will often have a runtime of the form
O(n logc(n)) for some constant c. Since the log(n)c factor is of minor interest (compared
to the n factor) the following notation is used to hide it.

Definition 21. (Õ-Notation)

f(n) ∈ Õ(g(n)) ⇐⇒ f(n) ∈ O(g(n) logc(n)) for some constant c

Having discussed running times of algorithms we can proceed by discussing the nota-
tion of approximation.

Given a reel valued function f(x), called the objective function, which should be min-
imized (or maximized), i.e. find a x̄ such that f(x̄) ≤ f(x) for all x. An approximation
(or approximate solution) of f is a x̃ such that f(x̃) is close to f(x̄). The error is the
difference between the value of this approximation and the optimal solution. Sometimes
a distinction between absolute and relative error is made. The absolute error is simply
given by |f(x̃)− f(x̄)|, whereas the relative error is given by |(f(x̃)−f(x̄))/f(x̄)|.

Definition 22. ((1± ε)-approximation)
For a real valued function f with optimal solution x̄ and a ε > 0. A vector x̃ is called a

• (1 + ε)-approximation iff x̄ is a minima and

f(x̃) ≤ (1 +O(ε))f(x̄)

• (1− ε)-approximation iff x̄ is a maxima and

f(x̃) ≥ (1−O(ε))f(x̄)
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1. Definitions and electrical flows

Note that a (1±ε)-approximation is only asymptotically close to the optimal solution.
If approximation algorithms are compared their running time will depend on the problem
size and on ε, i.e. the runtime looks like O(f(n)g(ε)). This justifies the O-Notation in
the definition of the (1 + ε)-approximation, since O(ε) contains all functions of the form
cε for constants c > 0 and by computing a solution with parameter ε/c the approximate
solution will be not worse than (1 ± ε)f(x̄). Of course this hold only as long as g(·) is
not too bad (think of g(x) = xx), but in this thesis g(x) is always xc which does not
cause any problems.

Nevertheless we will often write (1+O(ε))-approximation to emphasize the asymptotic
dependence on ε.
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2. Electrical Flows
The algorithms presented in the subsequent chapters have one thing in common. They
heavily depend on some new results about solving linear systems of symmetric, diagonal
dominant matrices. As previously observed, the Laplacian matrix of a graph has these
properties.
In the following section a certain type of flows, the s.c. electrical flows are presented.
These flows correspond to solutions of Laplacian systems, meaning they are a solution
of a linear system involving the Laplacian matrix.
Unfortunately these flows do not fulfill any capacity constraints defined in the previous
section, still they fulfill the flow preservations (otherwise they would not be called flows).

The name electrical flow originates from the fact, that these flows model the distri-
bution of the currents in an electrical network1. Therefore, the edges are not seen as
water pipes any more, but are now treated as electrical conductors and each conductor
has a certain electrical resistance limiting the amount of electrical current, which is able
to flow through the conductor. In the field of physics there are two laws describing
these basic electrical flows. The first law is Kirchhoff’s law and the second one is Ohm’s
law. In the following some necessary definitions in order to formulate these two laws are
introduced.

2.1. Preliminaries, Definitions and Limitations
Since a electrical current can flow in both directions of a conductor2, we can restrict
ourself to undirected graphs. This is the reason why all flows were defined in undirected
graphs in chapter 1.

As mentioned in chapter 1 all undirected graphs are implicitly converted into directed
graphs by assigning a arbitrarily orientation to the edges.

Since electrical flows emerged from the field of physics, we will stick with their terms
and notations and we will define the following functions:

Definition 23. (resistance, current, voltage, potential)

r : E → R+ the resistance function
f : E → R the current function
φ : V → R the voltage function

1at least in a very simple model
2at least in this simple model
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the voltage function is also called the potential function.

Notation 2. Similar to the definition of the flow vector, the resistance vector is defined
as r := (r(e1), r(e2), · · · , r(em)) and analog for the current vector i and the voltage
vector u.

Notation 3. Very often potential differences (across a edge) will be used, i.e. f(v)−f(w)
for a edge (v, w) ∈ E. Instead of defining a new function the function φ is overloaded
for edges e = (u, v) by: φ(e) = φ(u) − φ(v). This overloaded function φ is called the
vector of potential differences.

As previously mentioned, voltage is inserted/removed at some vertices. This is covered
by the vector cext ∈ Rn where the value at i-th position of cext denotes the amount of
voltage inserted (if the value is positive) or removed (if value is negative) at vertex vi.
If a current of value F is inserted only at vertex s and removed at vertex t then, similar
as in the previous section, χ instead of cext is written.

Modeling Kirchhoff’s and Ohm’s law

There are actually two laws named after Kirchhoff. The first one is called Kirchhoff’s
current law and the second one Kirchhoff’s voltage law or sometimes simply Kirchhoff’s
first and second law. Kirchhoff’s current law simply says that the total amount of
current flowing into a vertex is equal to the total amount of current flowing out of a
vertex. This is exactly the flow preservations from Definition 17 and sometimes also
called the principle of ‘conservation of electric charge’. Kirchhoff’s potential law or the
‘principle of conservation of energy’ states that the sum of potential differences around
a circle is zero.

Kirchhoff’s laws describe the current and voltage inside a graph but they do not link
these two entities together. This link is established by Ohm’s law. Ohm’s law is described
by the famous equation: I = V/R. Where I resp. R is the current resp. resistance of
an conductor and V is the potential difference across this conductor, i.e. the voltage
difference of the endpoints of the edge.

Since Kirchhoff’s current law corresponds to the flow preservation, one can simply
reuse the property from Definition (1.3), which in terms of currents and resistances
reads:

Btf = cext (2.1)

As mentioned above, Ohm’s law states that the flow on each edge is the potential
difference divided by the resistance. In other words the following equation has to hold:

∀e = (v, w) ∈ E : f(e) = φ(v)− φ(w)
r(e)

or written as Matrix-Vector product:

f = diag(r)−1Bφ (2.2)
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Notation 4. Given a graph G = (V,E) and a resistance vector r then the tuple (G, r)
is called a electrical network.

Definition 24. (electrical flow)
Given a electrical network (G,R) and a vector cext. Then the the flow f is a electrical
flow if equations (2.1) and (2.2) for a φ are fulfilled.

For the sake of readability let R := diag(r) and by combining both equations (2.1)
and (2.2) one gets:

BtR−1Bφ = cext (2.3)

Now if all resistances would be equal to 1 the matrix one the left-hand side of (2.3)
is exactly the Laplacian of the graph. Since R is a diagonal matrix the matrix BtR−1B
could be interpreted as a reweighted version of the Laplacian matrix L. This motivates
the definition of the weighted Laplacian:

Definition 25. (weighted Laplacian)
Let G = (V,E) be a graph with weights w ∈ R|E|, B the incidence matrix and W =
diag(w) the diagonal matrix of the weights. Then the weighted Laplacian matrix or
weighted Laplacian of G is defined as:

L = BtWB

Note that both, the Laplacian and the weighted Laplacian are denoted by L, but this
will not be a problem since we will treat the Laplacian of unweighted graphs as weighted
Laplacians with weights 1.

It is straightforward to check that the Laplacian matrix is given by:

Lij =


∑
e∈δ−(i)∪δ+(i) we if i = j

−we if (i, j) ∈ E ∨ (j, i) ∈ E
0 else

It is easily observed that the weighted Laplacian is again symmetrically and diagonal
dominant. If the weights are non-negative and the same argument used as in (1.2) it
can be shown that the weighted Laplacian is also positive semidefinite.

Now one can write (2.3) in term of the Laplacian Matrix and it becomes clear that
computing an electrical flow is equivalent to solve the following linear system:

Lφ = cext (2.4)
⇔ φ = L+cext

Recently some groundbreaking results about approximately solving such sdd systems
were made by Spielman and Teng [60] and later simplified and improved by Koutis,
Miller and Peng [38, 39].
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Theorem 2 (Koutis et al. [38]). Let A be a (n × n) sdd matrix with m nonzero en-
tries, b ∈ Rn a vector and x ∈ Rn a unknown vector fulfilling Ax = b. Then there
exists an algorithm calculating a vector x̃ such that ‖x− x̃‖A < ε ‖x̃‖A for some ε > 0.
Furthermore, this algorithm has runtime Õ(m log(n) log(1/ε)).

The term ‖·‖A denotes the vector norm induced by the matrix A, i.e. ‖x‖A = 〈x, x〉A =
xTAx.

Energy in electrical flows

The energy of an edge e = (v, w) ∈ E is defined as (φ(v)−φ(w))2/r(e) = f(e)2r(e) =
(φ(v) − φ(w))f(e)). The total energy of a electrical network is simply the sum over all
these energies:

Definition 26. (total energy)
Given a electrical network (G, r). Let f be a flow fulfilling the flow preservation con-
straints. The total energy of f , EGr (f) is defined as the sum over all the energies, i.e.

EGr (f) :=
∑
e

ref
2
e = f tRf =

∥∥∥R1/2f
∥∥∥2

2

To simplify the notations, the superscript will be dropped if it is clear which graph is
meant. Furthermore, if it is clear from context ‘energy of f ’ instead of ‘total energy of
f ’ will be written.

If f is a electrical flow then the energy of an edge can be written in terms of potential
differences as well as in terms of current. This allows to express the total energy as:

Er(f) =
∑

(φu−φv)2/re =
∑

e=(u,v)
f(u, v)(φ(u)− φ(v))

The next theorem is a important one since it states that the electrical flow minimizes
the energy in an electrical network.

Theorem 3 (Dirichlet Principle, optimality of electrical flows). Let (G, r) be a electrical
network, cext the vector of sources/sinks. Then there exists a flow f , such that

• fi = (cext)i ∀i with (cext)i 6= 0

• f satisfies Ohm’s law

• f = arg minf̄flow,val(f̄)=F E(f̄)

For a proof see [7].
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Figure 2.1.: If all resistances and capacities are equal to one, the combinatorial flow on
every edges is 1. In the electrical flow the flow at the edge in the middle is
k. Therefore, the electrical flow violates the capacity constraint by a factor
of O(

√
m).

2.2. From electrical flow to combinatorial flows
In this section we discuss how electrical flows can be used to compute combinatorial
flows.

As observed previously, both types of flow share the flow preservation constraints but
Ohm’s law and capacity constraints are different concepts.

The probably most intuitive approach is to set the resistance of an edge e to 1/we.
This is justified by the rule ‘more resistance less flow’ but it is not enough to respect the
capacity constraints. This is not surprising since electrical flows minimize the energy,
which is a quadratic function, while (Pf ) is linear. A worst case example is given in
Figure 2.1. The maximal combinatorial flow is k and on each edge the flow is one. The
electrical flow with value k will send k/2 current over the edge in the middle. Since
k =
√
m− 2 on a single edge the difference between the electrical and the combinatorial

flow can be Θ(
√
m).

In the following section a few results, on how changing the resistances will influence
the electrical flow, are presented.
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Figure 2.2.: Difference between electrical flows of different resistances
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Figure 2.3.: Difference between electrical flow and combinatorial flow

2.2.1. Controlling resistances
The first theorem states that one can replace a electrical network with source s and sink
t by a single edge (s, t) without changing the energy in the network.

Theorem 4 (Rayleigh’s principle). Let f be a s-t flow with value F . Let g : V → R be
a arbitrary function on the vertices, then

(g(s)− g(t))F =
∑

(u,v)∈E
(g(u)− g(v))f(u, v)

Proof. Writing the right-hand side in terms of vertices, one gets:

∑
x∈V

g(x)
 ∑
y∈δ+(x)

f(x, y)−
∑

y∈δ−(x)
f(y, x)


︸ ︷︷ ︸

0 if x 6=s,t

= g(s)F − g(t)F

In the context of electrical flows this result states that one can replace the whole
s-t network by a single edge without changing the potential. Hence, this theorem is
sometimes called the ‘conservation of energy principle’.
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Definition 27. (effective resistance/effective conductance)
Let (G,R) be a elecrical network and φ a potential vector of some unit electrical flow f ,
i.e. the potential difference between φs and φt is one, then the effective conductance Ceff
is defined as the amount of current flowing form s to t. The effective resistance denoted
by Reff is Reff = 1/Ceff.

Writing the total energy of a electrical flow in terms of its potentials then it follows
from theorem 4 that the total energy is equal to (φs − φt)

∑
v∈δ(s) f(s, v).

Now if the potential difference between s and t is set to one, i.e. φs − φt = 1, then it
follows that the total energy, the flow value and the effective conductance have the same
value.
On the other hand if the flow value is 1 then it follows that the total energy, the potential
difference and the effective resistance have the same value. This can be seen by the
following argument: consider the flow f with value 1, then

E(f) := f tRf = φtBtR−1Bφ = φtLφ = φtχ = φ(s)− φ(t)

The first equation is due to equation (2.2) and the third due to (2.4).
Now it immediately follows:

Corollary 1. Let G = (V,E) and r ∈ Rm be a resistance vector, then

Ceff(r) = min
φ|φs=1,φt=0

∑
e=(u,v)∈E

(φu − φv)2

re

Reff(r) = min
f flow,valf=1

∑
e=(u,v)∈E

f(e)2re

The previous corollary basically says that: If the resistance of an edge is increased,
the effective resistance does not decrease. If the two vertices are shorted , the effective
resistance does not increase.

The next lemma answers the question how much the effective resistance changes if
one modifies the resistance of an edge.
Lemma 1. Let f be an electrical flow, r its resistance vector and h = (u, v) ∈ E with

f 2
hrh = β Reff(r)

If the resistance of edge h is modified by a multiple of γ,

r′ :=
γre if h = e

re else

then

Reff(r′) ≥ γ

β + γ(1− β) Reff(r)

In case of cutting this edge which is equivalent to γ =∞ the change is Reff(r′) ≥ Reff(r)
1−β .

In case of γ = 1+ε with ε ≤ 1 the change is Reff(r′) ≥ 1+ε
β+(1+ε)(1−β) Reff ≥ (1+ βε

2 ) Reff(r)
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2. Electrical Flows

The proof is quite technical and does not offer any specific insights, therefore, we refer
to [19].

27



3. Algorithms
In this chapter the algorithm of Christiano et al. and the algorithm of Lee et al. are
presented. The algorithm of Christiano et al. was the first algorithm using electrical
flows in order to approximately solve max-flow and min-cut problems. The algorithm
of Lee et al. uses a totally different approach and has some very nice interpretations
in terms of projections to cycle and vertex space of the underlying graphs. For both
algorithms the main results are presented and afterwards some experiments are con-
ducted. Unfortunately, the runtime of both algorithm has very large constants (which
are hidden by the O-Notation) and these constants make the algorithms inefficient for
typical computer vision problems, as it will be shown by the experiments.

3.1. Overview and preliminaries
The main outline of both algorithms is practically the same. In this section the steps for
the min-cut algorithms are discussed (the steps for the max-flow algorithms are quite
similar).

First the algorithms reduce the number of edges in the graph such that the graph gets
sparse. In the next step the remaining edge weights are modified such that the ratio
between largest and smallest weight is (polynomially) bounded. Furthermore an upper
and a lower bound on the maximum flow value is calculated which gives an interval
containing the optimal value. This interval is searched with binary search, in order to
get a approximate solution. In order to perform this binary search, the algorithms use a
subroutine which answers the question whether a certain amount of flow can be routed
through the graph and if true returns a valid flow . This subroutine is the only difference
between the two algorithms. The basic outline of both algorithms looks like:

1. Random sample the graph

2. scale capacities

3. calculate a upper bound F̄ lower bound
¯
F

4. perform binary search on [
¯
F, F̄ ]

The ‘random sampling’ step reduces the number of edges from at most O(n2) to
O(n log(n)), while the cut values in this new graph do not change too much. This is
achieved by constructing a new sparse graph with the same vertex set but a different edge
set. While this technique is useful for the calculation of approximate min-cuts, it is not
known how to convert a valid flow in the spare graph to a valid flow in the original graph.
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Therefore, this step is only feasible for min-cut algorithms. Bounding the ratio between
the smallest and the largest weight ensures that the difference between lower and upper
bound is not too large. Furthermore, this reduces the number of binary search steps to
O(log(n)) steps. Since, this number occurs as a multiplicative factor in the total runtime
it does not affect the runtime measured in terms of the Õ-Notation. All these common
steps will be discussed in detail in the rest of this section. Additionally a method for
quickly approximating electrical flows will be presented, since both algorithms heavily
depend on this property.

3.1.1. Computing electrical flows
In this section it is outlined how to convert an approximate electrical flow into a valid
electrical flow. This is an important routine for the approximation algorithms relying on
electrical flow computations. As stated by Theorem 2 one can very efficiently calculate
an approximation of the electrical flow. In general this approximation is not a valid
electrical flow nor a valid flow.

In the following section it is assumed that (G, r) is a electrical network (i.e. G =
(V,E,w) with w = 1/r is a weighted graph) and χst the vector of the induced potentials
at s and t. As in chapter 1 the incidence matrix is denoted by B and the weighted
Laplacian by L. Furthermore, let f be the exact electrical flow of this network and F
its flow value. The resistances are assumed to lie in the interval [1, R] (otherwise they
can be scaled).

For their algorithm, Christiano et al. described a method to obtain a valid electrical
flow from an approximation calculated, by the approximation algorithm of Koutis et al.,
stated in Theorem 2.
Theorem 5 (Fast Approximation of Electrical Flows (Christiano et al. [19])). Let δ > 0,
F > 0 and r ∈ Rm be the vector of resistances with ratio between largest and smallest re-
sistance R := max(ri)/min(ri). The electrical flow with flow value F is denoted by f . In
time Õ(m logR/δ), on can compute a vector of vertex potentials φ̃ and the corresponding
s-t flow f̃ with value F fulfilling the following properties:

E(f̃) ≤ (1 + δ) E(f)(i)

∀e ∈ E
∣∣∣ref 2

e − ref̃ 2
e

∣∣∣ ≤ δ

2mR E(f)(ii)

φ̃s − φ̃t ≥
(

1− δ

12nmR

)
F Reff(r)(iii)

In the following the proof is given for property (i). The reason is that this proof is
constructive and the method to obtain such a flow is described. The proofs for (ii) and
(iii) are more technical and are omitted.

Proof. Since all the resistances lie between 1 and R and the value of the flow f is F one
has the following inequalities

F 2

m
≤ E(f) ≤ F 2Rm
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Recalling the definition of E (given by Definition 26), the first inequality follows by lower
bounding the resistances by 1 and applying Hölder’s inequality. The second inequality
follows from trivially bounding the sum.

Recall from chapter 2 that the potentials φ of the electrical flow are given by Lφ = Fχ.
Now the result of Koutis et al. is used to compute a vector φ̂ such that∥∥∥φ̂− φ∥∥∥

L
≤ ε ‖φ‖L

The approximated flow f̂ is given by f̂ = R−1Btφ̂, but in general Bf̂ 6= Fχst.
A convenient fact is that the energy and the potentials are linked by ‖φ‖2

L := φtLφ =
E(f). This allows to easily bound the energy of f̂ :

E(f̂) =
∥∥∥φ̂∥∥∥2

L
≤
(
‖φ‖L +

∥∥∥φ̂− φ∥∥∥
L

)2
≤ (1 + ε)2 ‖φ‖2

L = (1 + ε)2 E(f)

For the flow f̂ the overflow at each vertex is given by cext := Bf̂ . Since 〈cext, 1〉 = 0, cext
can be seen as a demand vector to a flow problem with multiple sources/sinks, therefore,
the task is to route the overflow given by cext. The difference of f̂ and this routing flow
is exactly a valid flow with flow value F . This new flow is denoted by f̃ and obeys the
flow preservation constraints:

Btf̃ = Fχst

The maximal amount of flow one has to reroute from/to a vertex is given by

η := ‖cext − Fχst‖∞ ≤ ‖cext − Fχst‖2 =
∥∥∥Lφ̂− Lφ∥∥∥

2
≤ ‖L‖2

∥∥∥φ̂− φ∥∥∥
L
≤ 2nε

√
E(f)

It is clear that this flow is bounded by nη and in order to compute such a flow it is
sufficient to consider the flow in a spanning tree of G. In a spanning tree T such a flow
can be computed in linear time.

Now the only thing left to show is that the energy of f̃ really is a (1+δ)-approximation
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of f .

E(f̃) =
∑
e

ref̃
2
e

≤
∑

re(f̃e + nη)2

≤ E(f̂) + (2nηF + n2η2)
∑
e

re

≤ E(f̂) +
[
2nF (2nε

√
E(f)) + n24n2ε2 E(f)

]
mR

≤ E(f̂) + ε E(f)
4n2 1√

E(f)
+ 4n4ε

mR
≤ E(f̂) + ε E(f)

[
4n2F

√
m

F
+ 4n4ε

]
mR

≤ E(f̂) + ε E(f)
[
4n2√m+ 4n4ε

]
mR

≤ E(f̂) + ε E(f)
[
4n3 + 4n4ε

]
mR

≤ E(f̂) + ε E(f)4n4mR
[ 1
n

+ ε
]

≤ E(f̂) + ε E(f)4n4mR

≤ E(f)((1 + ε)2 + ε6n4mR3/2)

In order to ensure that this new flow f̃ is a (1 + δ)-approximation ε has to be chosen as

ε = δ

12n4mR3/2 (3.1)

which yields:

E(f̃) = E(f)
(

1 + 2 δ

12n4mR3/2 + ( δ

12n4mR3/2 )2 + δ/2
)

≤ E(f)(1 + δ)

For the desired runtime simply plug the value of ε, given in (3.1), into Theorem 2.

3.1.2. Random Sampling
This section gives a short overview of the ‘random sampling’ methods of Benczúr and
Karger [6]. The first part is the actual random sampling method. This method allows
the reduction of the edges to O(n log(n)) for an arbitrary graph while nearly preserving
the cut values. The second part is a sampling algorithm for computing maximum flows
on graphs with small total flow.
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Graph compression

When connected graphs are considered the number of edges m can be quadratic in the
number of vertices n, i.e. m ∈ O(n2). The random sampling method of Benczúr and
Karger allows to construct a new graph G̃ with n vertices and O(n log(n)) edges with
similar cut properties. If S is a cut with value F in the original graph, then the value
of the cut in G̃ is at most (1 + ε)F . Since this holds for all cuts, every exact min-cut
algorithm can be converted into a (1 + ε)-approximation algorithm. However, the main
advantage of this method is the reduction of the edges in dense graphs, which can be
used as a preprocessing step for other algorithms.

As we will later see, graphs in computer vision often have only O(n) edges, therefore,
this technique is of minor interest. Nevertheless, the techniques are interesting from a
theoretical point of view and used in the algorithms later presented. In the early work
of Benczúr and Karger only cuts were considered [5] but later they provided sampling
methods which allowed the computations of approximate max flow [6]. In this section
only the results are presented since a in depth discussion would be beyond the scope of
this thesis.

Theorem 6 (Random Sampling [6]). Given a weighted graph G = (V,E,w) and a ε > 0,
in time O(m log3(n)) one can construct a graph G̃ = (V, Ẽ) such that

1. G̃ has O(n log(n)ε−2) edges

2. the value of every cut in G̃ is (1± ε) the value of the cut in G

For an unweighted graph the runtime is reduced to O(m log2(n)).

The strategy to achieve such a graph G̃ is to assign ‘important’ edges a higher proba-
bility where edges crossing a small cut are considered to be important. This is somehow
reasonable since the cut value of a small cuts is more sensitive with respect to the
sampled edges.

Sampling in residual graphs

This algorithm is a consequence of the results obtained from the random sampling pro-
cedures. The main idea is to search for augmenting paths in the residual network but
instead of searching in the whole network the search is performed only on a subset of
the edges. This subset is the same as the one obtained by the Random Sampling meth-
ods. Since these probabilities prefer edges crossing small cuts the number of augmenting
paths will decrease faster. This allows the construction of a max-flow algorithm with
runtime Õ(m+ nF )

3.1.3. Capacity Scaling
In this section a method is presented to bound the ratio of the capacities in a graph and
still get a valid (1 − ε)-approximate flow. One method is to rescale the capacities in a
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way such that the ratio between the minimal and maximal capacity is less than 2m2/ε. In
this modified graph a (1− ε/2)-approximate max flow is equal to a (1− ε)-approximate
flow in the original graph.

The following method is presented in the paper of Christiano [19] where bounded
capacities are an important requirement.

The basic idea is to calculate a maximum bottleneck (which can be computed quite fast
in O(m+n log n) time [56]). Afterwards, large capacities are bounded and (irrelevantly)
small capacities are removed.

For a given graph G = (V,E) with weights w, the problem of finding the maximum
bottleneck is given by:

max
P : s−t path

min
e∈P

w(e)

This can be solved by simply applying Dijkstra’s shortest-path algorithm with some
small changes:

• the start vertex is s

• the ‘distance’ of a vertex v is the minimal weight of all paths form s to v

• this distance is maximized

• for a marked vertex u, unmarked vertex v: d(v) = max (d(v),min(d(u), w(u, v)))

Dijkstra’s algorithm, if used with Fibonacci Heaps, has a worst case runtime of O(m+
n log n) [25].

Now let B denote this maximum bottleneck value. It follows immediately that the
maximum flow is at most mB and at least B, therefore, capacity larger than mB can
be reduced to capacity mB. On the other hand if edges with capacity less than εB/2m

are removed the change in the maximum flow is at most εB/2. In this modified graph,
the maximal possible ratio of the capacities is 2m2/ε as desired.

Let F ∗ be the optimal flow value in the original graph. The optimal value in the
modified graph is greater than F ∗ − εB/2 ≥ F ∗ − εF ∗/2 = F ∗(1− ε/2). If f is a (1− ε/2)-
approximation in the modified graph, and F its flow value. Then it holds that:

F ≥ (1− ε/2)F ∗(1− ε/2)
≥ F ∗ − 2ε/2F ∗ + ε2/4F ∗ ≥ (1− ε)F ∗

which indicates that f is a (1− ε)-approximation in the original graph.
Furthermore, the optimal value of the cut/flow lies in the interval [B,mB], therefore,

only O(log(m)) binary search steps have to be performed.

3.2. Algorithm of Christiano et al.
In the original paper of Christiano et al. [19] three algorithm are presented. The first
algorithm is a (1 − ε)-approximation of the max-flow problem, this algorithm has a
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runtime of Õ(m4/3ε−3). The second algorithm is a slight, but efficient, modification
of the first algorithm and improves the time complexity to Õ(m3/2ε−5/2). The third
algorithm is a min-cut approximation algorithm with runtime Õ(m + n4/3ε−8/3). Since
the algorithms are based on electrical flows they only work for undirected graphs. In the
paper they only consider integer capacities, but this should not be much of a problem
since one simply can rescale them (as long as they are rational). As we will see later these
algorithms have a very good asymptotic time complexity, unfortunately the constants
are quite high and the dependence on the parameter ε is quite drastic.

The central definition of the algorithm is the notion of congestion:

Definition 28. (congestion)
For a graph G = (V,E), with capacities u and a s-t flow f , the congestion of an edge
e ∈ E is defined as

congf (e) := |f | /ue

It is clear that the flow f respects the capacity constraints iff the congestion on every
edge is at most 1. The main idea of the flow algorithm is to find resistances, such that
for the corresponding electrical flow, the congestions are at most 1.

As described at the beginning of this chapter, all three algorithms have the form of
an oracle. They answer the question if a feasible flow, with a certain flow, value exists.
If such a flow exists the algorithm will return this flow, otherwise signalize that there is
no such flow (i.e. return fail)
With this oracle one can perform binary search in order to compute an optimal flow or
cut. In order to perform binary search, the technique presented in 3.1.3, is used to lower
and upper bound the maximum flow value. As demonstrated the maximum bottleneck
B can serve as a lower bound and m times this value is a upper bound. This reduces
the ‘search interval‘ to [B,mB] and since integer capacities are assumed, the number of
steps to find the optimum is logarithmic.

3.2.1. Maximum Flows
The simple Õ(m4/3ε−3) algorithm

As mentioned before the algorithm tries to adjust the resistances for a flow of a given
flow value. This is accomplished by adopting some ideas from the Multiplicative Weights
Update (MWU) method presented by Arora et al. [1]. The MWU method can be used
to approximately calculate a solution x ∈ Rn such that x ∈ P and Ax > b for a convex
set P , a matrix A and a vector b. Furthermore, a oracle, that returns a x ∈ P such
that ctx ≥ d for a vector c and a constant d, is required. If no such x exists the oracle
should return FAIL. This oracle is now queried multiple times for different c and d in
order to get a solution for the original problem. The runtime of this method depends
on the runtime of the oracle, but since the oracle only has to consider one constraint on
can probably solve this problem a lot faster. A overview over this technique is given in
the appendix (section A.1).
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While the main structure of the algorithm of Christiano et al. is very close to the
structure of the MWU-framework, the requirements for the oracle are quite different.

Oracle

The main part of the algorithm of Christiano et al. is the construction of a so called
(ε, ρ)-oracle. This oracle produces a flow where the congestion of every edge can be
greater than 1, but the congestion still is bounded by ρ. On the other hand not too
many edges are allowed to have a high congestion. Formally this is expressed in the
following definition:

Definition 29. ((ε, ρ) -Oracle)
Given G = (V,E), with capacities u. Let F ∗ be the flow value of the maximum flow.
Furthermore, let w ∈ R|E|, w ≥ 1 be some weight vector on the edges and ε, ρ, F > 0 are
given constants. Then a (ε, ρ)-oracle is a algorithm with the following return values:

1. if F ≤ F ∗, return flow f with
(i) |f | = F

(ii) ∑eww congf (e) ≤ (1 + ε)∑ewe

(iii) maxe congf (e) ≤ ρ

2. if F > F ∗ fail or a flow with conditions (i), (ii) and (iii).

If compared with the requirements for the oracles of section A.1.2 (i) is related to
x ∈ P , property (ii) is loosely based on ctx ≥ d and as we will later see (iii) kind of
bounds the penalties.

A (ε, 3
√

(m/ε)-oracle can be constructed by just setting

re = 1
u2
e

(
we + |w|1 ε3m

)

and calculating a (1 + 3ε)-approximation of the electrical flow with flow value F . The
pseudocode is given in algorithm 1, and the the runtime is given by the runtime of the
electrical flow calculation, i.e. the solver of the Laplacian system (see section 3.1.1).
For a proof why this algorithm really fulfills the requirements of an (ε, ρ)-oracle see [19].

The runtime of this oracle is dominated by the calculation of the electrical flow. Recall
that the ratio between maximum and minimum resistance is polynomial bounded and
with Theorem 5 it follows that the oracle has a runtime of Õ(m log(ε−1)).
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Algorithm 1 Christiano (ε, 3
√
m/ε) Oracle

Input: G = (V,E), capacities u, target flow value F , weight vector w
Output: flow f̄ or false indicating F > F ∗

re ← 1/u2
e

(
we + ε‖w‖1

3m

)
∀e ∈ E

calculate an ε/3-approximate electrical flow f̃ with resitances r and flow value F
if Er(f̃) > (1 + ε)‖w‖1 then

return false
else

return f̃

Algorithm 2 Christiano MWU iterations
Input: G = (V,E), capacities u, target flow value F and (ε, 3

√
m/ε)-Oracle O

Output: flow f̄ or false indicating F > F ∗

w0 ← 1, N ← 2ρ lnm
ε2

for i = 1 · · ·N do
f i = O(G, u, F, wi)
if O returned false then

return false
else

wie ← wi−1
e (1 + ε

ρ
congf i(e)) ∀e ∈ E . MWU step

return (1−ε)2/(1+ε)N
∑
i f

i
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MWU step

Using the (ε, 3
√
m/ε) oracle the rest of the algorithm is now straight forward and given

in Algorithm 2.
The main loop of this algorithm is exactly the same as in algorithm 14, where the

penalties are congf (e)/ρ. The convergence of this algorithm is given by the following
theorem:

Theorem 7 ((Christiano et al. [19]) Appr. Maximum Flow via MWU ). Given 0 <
ε < 1/2, ρ > 0 and a (ε, ρ) oracle with running time T (m, 1/ε, U) Algorithm 2 computes a
(1−O(ε))- approximate maximum flow in an capacitated, undirected graph with running
time Õ(ρ/ε2T (m, 1/ε, U)).

For a proof see again [19].
Combining this theorem with the oracle given by algorithm 1, which has runtime

Õ(m log ε−1), yields the claimed Õ(m3/2ε−5/2) max flow approximation algorithm. The
exact formulation of the theorem describing the runtime is:

Theorem 8 (Christiano [19]). For any 0 < ε < 1/2 the maximum flow problem can be
(1−O(ε))-approximated in Õ(m3/2ε−5/2) time.

The improved Õ(mn1/3ε−11/3) algorithm

Theorem 7 indicates that the value of ρ plays an important part in the runtime. Un-
fortunately ρ ∈ Θ(

√
m) has to be chosen. This is illustrated by the example given in

Figure 2.1. In this example one edge got half of the flow and the rest of the flow was
distributed equally on the rest of the edges/paths. The main observation now is the
following. If in the example the highly congested edge e = (s, t) is removed the flow on
the remaining edges is only doubled for each edge, therefore, it does not change severely.

This leads to a modified oracle which simply removes a edge permanently if this edge
is highly congested, see algorithm 3. The whole algorithm is given by algorithm 4.
Note that the main difference is the additional set H which covers the forbidden edges.
A edge is forbidden if its congestion exceeds 8m1/3 ln1/3(m)ε−1. The rests is basically
unchanged (besides the fact that if a edge is removed the oracle calculation is restarted).
The runtime is improved since ρ is smaller, therefore, the number of electrical flow
computations is reduced.

Theorem 9 (Christiano [19]). For any 0 < ε < 1/2, if ≤ F ∗ then Algorithm 4 returns a
feasible s− t flow of value (1−O(ε))F in time Õ(m4/3ε−3).

The runtime in this theorem is also the total runtime for the maximum flow problem
since O(log(m)) binary search steps are performed which are already included by the
Õ-notation.
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Algorithm 3 Christiano modified oracle
Input: G = (V,E), capacities u, target flow value F , weights w and H ⊂ E the set of

forbidden edges
Output: flow f̄ , H ⊂ E or false indicating F > F ∗

ρ← 8m1/3 ln1/3m
ε

. added
re ← 1

u2
e

(
we + ε|w|1

3m

)
∀e ∈ E

GH ← (V,E \H)
f̃ ← (1 + ε/3)-approximate electrical flow in GH with resitances r and flow value F
if Er(f̃) > (1 + ε) |w|1 or s,t are not connected then

return false
if ∃e : congf̃ (e) > ρ then

H ← H ∪ {e}
return Om(G,w, F,H)

return (f̃, H)

Algorithm 4 Christiano MWU modified
Input: G = (V,E), capacities u, target flow value F and a modified oracle Om

Output: flow f̄ or false indicating F > F ∗

w0 ← 1, ρ← 8m1/3 ln1/3 m
ε

, N ← 2ρ lnm
ε2 , H ← ∅

for i = 1 . . . N do
f i, H ′ = Om(G,wi, F,H)
if O returned false then

return false
else

H ← H ′

wie ← wi−1
e (1 + ε

ρ
congf i(e)) ∀e ∈ E . MWU step

return (1−ε)2/(1+ε)N
∑
i f

i
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3.2.2. Minimum Cuts
Similar to the max-flow algorithm presented previously, Christiano et al. also present a
min-cut algorithm in their paper. The max-flow-min-cut theorem states that the flow
value of the maximum flow is equal to the value of the minimum cut. This implies that
all the edges in the minimum cut have congestion 1. The cut algorithm of Christiano
builds on the observation that in small cuts the edges are more likely to be high congested
compared to the edges in large cuts. Of course one has to consider that edges of a small
cut also lie in large cuts. Similar to the maximum flow algorithms of the previous
section the min-cut algorithm increases the weights according to the congestion, where
high congestion means more weight in the next iteration. At the end most of the weight
is concentrated on edges lying in small cuts (with respect to the total weight).

In order to define a measurement, indicating how much weight is already concentrated
on small cuts, the properties of the effective conductance/resistance (see Definition 27)
are used.

Given some potentials φ ∈ [0, 1]n with φs = 1, φt = 0 then one can obtain a valid
cut by thresholding, this is sometimes called ‘sweep cut’. If thresholding at a random
value, the expected value of the resulting cut is ∑e=(u,v)∈E |φu − φv|we, see Theorem 17
in Section 5.2.3 for a discussion of this property. For this value Christiano et al. provided
the following bound:
Lemma 2. Given a graph G = (V,E) and resistances r. Let φ ∈ [0, 1]n the potentials
of the electrical flow, then:

∑
e∈E

φeue ≤

√√√√∑e∈E u2
ere

Reff(r)

If the φ are the potentials of an approximate electrical flow calculated according to The-
orem 5 with δ < 1/3 (and scaled to lie in [0, 1]n), then:∑

e∈E
φeue ≤ (1 + 2δ)

√∑
e∈E u

2
ere/Reff(r)

Proof. recall that Ceff(r) = ∑
e=(u,v)∈E |φu−φv |/re and that the effective resistance Reff(r)

is the inverse of Ceff(r).

∑
e∈E

φeue ≤
√√√√ ∑
e=(u,v)∈E

|φu − φv|
re

∑
e

u2
ere =

√√√√∑e u2
er2

Reff(r)

The first inequality is the Cauchy-Schwarz inequality. The second part of the theorem
follows from Theorem 5 (i) and (iii).

In the rest of the analysis of the algorithm Christiano et al. showed that after N =
5ε−8/3m1/3 lnm iterations the resistances fulfill

Reff(r) ≥ (1− 7ε) µ
F 2

Combining this equation with Lemma 2 the following theorem follows:
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Theorem 10 (Christiano et al. [19]). Given ε < 1/7 and a F ≥ F ∗, Algorithm 5 returns
a cut with value less than F/(1−7ε) and has time complexity Õ(m4/3ε−8/3).

Which indicates that there is a cut smaller than 1
1−7εF for some ε < 1/7 this clearly

yields and (1 +O(ε))-approximate cut.

Algorithm 5 Christiano cut algorithm
Input: graph G = (V,E), capacities u, target flow value F
Output: A cut S ⊂ V with value ≤ (1 + ε)F or fail if no such cut exist

1: w0 ← 1, ρ← 3m1/3ε−2/3, N ← 5ε−8/3m1/3 ln(m), δ ← ε2

2: for i := 1, . . . , N do
3: ri−1 = wi−1/u2

e

4: calculate a (1 + δ) approximate flow f̃ i−1 and potentials φ
5: wie = wi−1

e + ε
ρ

congf̃ i−1(e)wi−1
e + ε2

mρ
|wi−1|

6: scale φ s.t. φs = 1, φt = 0
7: chose a x ∈ (0, 1) uniformly
8: Sx ← φ > x . sweep cut
9: if val(Sx) ≤ F

(1−7ε) then
10: return Sx
11: return fail

In Section 5.2.3 another sweep cut algorithm, calculating the optimal threshold, is dis-
cussed (Algorithm 9). This optimal algorithm could be used instead of random thresh-
olding in line 8 of Algorithm 5 without affecting the (asymptotic) runtime. On the other
hand the theoretical properties do not change ether.

3.2.3. Discussion and Experiments
The previous algorithms are only of theoretical interest. For a practical use they are
way to slow since the constants, hidden in the O-Notation of the runtime, are too big.
This is illustrated by the following observation: if for a certain flow value a feasible flow
exists, the flow algorithm requires 2ρ ln(m)ε−2 oracle calls where ρ = 8m1/3 ln1/3(m)ε−1.
In total

N = 16m1/3(ln(m))4/3ε−3

oracle calls. Suppose that ε = 0.1 which is a conservative choice (the solution can
deviate by 10%) and set m = 1000 (which is a very small image as we will discuss later)
more than 2000000 oracle calls (i.e. electrical flow computations) have to be performed.
In this calculation the ε−3 term is the critical one since it accounts for most of the
2000000 oracle calls. Of course if m gets larger the influence of this term decreases
(for m = 10000 about 6500000 calls have to be made) but as seen later the primal-
dual Algorithm needs (in practice) less iteration and every iterations is cheaper then a
electrical flow computation.
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Also note that these calculations do not yet include the O(log(m)) binary search steps.
While not every search step will require the total amount of N oracle calls and the upper
bound for the maximum flow, m times the maximum bottleneck, is very crude. But in
practice this sure has an impact if an algorithm has to run multiple times.

In the cut algorithm the number of oracle call is a little bit less:

N = 5ε−8/3m1/3 lnm

Still, around 16000 calls are necessary for m = 1000.

Experiments

A Matlab implementation of the cut algorithm of Christiano was run with different
instances. The results were performed on a Intel Core i7-4820K CPU (4 cores + hyper-
threading, 3.7Ghz) running Ubuntu 14.04LTS (64 bit) and Matlab 2013a. The input was
a simple segmentation task of an image with resolutions 16x16, 32x32 and 64x64 pixels.
For the simple segmentation task every pixel was assigned to a vertex, this vertex was
connected to its 4 neighbours (or less on the border of the image). Furthermore, every
vertex was connected to the source and the sink. The weights were calculated from the
gray values of the pixels. More details about how these values are obtained will be given
later in section 4.1.

Figure 3.1.: Result of the Algorithm of Christiano, difference to the real solution

The value of ε was 0.1, i.e. an error of 10 percent was acceptable. To the best of our
knowledge no implementations of a near linear time solver exists. Therefore, for most of
the computations the electrical flows were commutated with the built-in preconditioned
gradient descent method (PCG), as preconditioner the incomplete LU decomposition
(ilu) was used. Compared to the standard Matlab ‘\’ operator or mldivide, this method
turned out to be much more robust against numerical issues (the underlying linear
systems are very ill conditioned). Additional the Lean Algebraic Multigrid (LAMG)[41],
developed by Livne and Brandt was used. Unfortunately, probably because of the high
overhead, this solver was slower the PCG.

In table 3.1 the basic characteristics are given.
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resolution 16x16 32x32 64x64
n 258 1026 4098
m 965 3868 15612

wrong labels 0 0 25
cut value 6440 15609 61300 (gt: 61258)

ρ 137.6037 218.5831 348.0226
N 157605 300934 560072

maxwi 7.728× 1016 1.358× 1020 2.886× 1023

maxw
∑
iwi 1.175× 1019 4.091× 1022 3.365× 1026

time ∼ 27 min ∼ 177 min ∼ 20h

Table 3.1.: Run time and other characteristics for a simple example

The most noticeable fact is probably the very high runtime. This of course is due
to the high number of N, i.e. the maximum number of iterations. The approximation
parameter ε was chosen quite conservative but still the two smaller problem instances
were solved exactly and the third one was only slightly away from the optimum (the
relative error is within 10−3).

Because of the already very high runtimes no calculations for larger problem instances
were carried out.

Even for these small instances the weights w in the algorithm grew quite large. Matlab
uses the double precision floating point format, specified by the standard IEEE 754, for
the calculations. The precision of the significand is 53 bits, this means that values
larger than 253 ≈ 1016 may not be represented exactly in this format. As shown by
the experiments even in the smallest problem instance some values are exceeding this
number. For calculations carried out in single precision, only values up to 223 ≈ 107.2 can
be represented exactly. If 1026 is represented as a single precision number the difference
to the next closest single precision number can be as large as 1018. While a overflow is not
imminent (the largest value a single precision floating point value can represent is around
1038) the calculations would be far from being exact. Since, nowadays computations are
often performed on the GPUs, most of them optimized for single precision calculations,
these large values may could lead to problems.

Nevertheless, the asymptotic runtime of the algorithm is outstanding and justifies this
kind of algorithms.

3.3. Algorithm of Lee et al.
3.3.1. Preliminaries
In this section two algorithm are presented. The first one is a max-flow algorithm and
the second one a min-cut algorithm. Both algorithm appear in the paper of Lee et al.
[42], hence the name. Both algorithm are somehow special in the sense that their (main)
result is valid only for uncapacitated graphs, i.e. graphs with capacity 1 for each edge.
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The runtime in the general case is much worse and can not compete with the other
algorithms presented in this thesis. Nevertheless, the algorithms provide some interesting
interpretation about max-flow problems.

The main difference to the algorithm of Christiano (see Section 3.2) is that this al-
gorithm does not punish edges according to their overflow (and thus does not use the
MWU framework) but instead tries reroute the overflow. This rerouting is accomplished
using electrical flows.

The algorithm basically consists of Nesterov’s Accelerated Gradient Descent Method
and a ‘error correction procedure’ to ensure that the output satisfies the capacity con-
straints.

The algorithm uses the terminology of cycle and cut spaces and in order to justify
these names we have to link vector spaces with graphs.

For a given graph G the most basic vector spaces are the s.c. vertex space and edge
space. The vertex space denoted by CV is simply is the space of all functions from the
vertex set V (G) into the C. Similar the edge space CE is the space of all function from
E(G) into C. The dimension of the CV is |V | = n and the dimension of CE is |E| = m.
A element f ∈ CV can be written as a vector (f(v1), . . . , f(vn)) and analog for the
elements of CE.

Now let G = (V,E) be a directed graph and S of G. The cut vector yS ∈ CE is defined
as follows:

(yS)i :=


1 if ei = (u, v) with u ∈ S, v /∈ S
−1 if ei = (u, v) with u /∈ S, v ∈ S
0 if ei /∈ C(S)

The cut space of G denoted by C(G) is the space spanned by all cut vectors for all
possible cuts of G.
Analog to the cut space one can define the cycle space by creating the cycle vector yP
of a cycle P = p1p2 . . . pk

(yP )i :=


1 if ∃j|ei = (pj, pj+1)
−1 if ∃j|ei = (pj+1, pj)
0 else

Now the cycle space of G is the space spanned by all the cycles and is denoted by C⊥(G).
If it is clear from context, which graph is meant, the subscript is dropped and C and C⊥

is written.
It is easy to see that C and C⊥ are orthogonal since for arbitrary cut vectors ys and

cycle vectors yP , 〈yP , yS〉 is the difference of the number of edges from S to V \ S and
the number of edges from V \ S to S in the circle P . Therefore, 〈yP , yS〉 = 0, indicating
that the vectors are orthogonal. Furthermore, it is a well known fact the sum of C and
C⊥ spans the whole cutspace (see [7] for a proof).
A central result in algebraic graph theory is that the cut space and the cycle space are
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described by the incidence matrix of the graph:

C = Im(B)
C⊥ = ker(Bt)

again see[7] for a proof. The following algorithms makes heavy use of (orthogonal)
projections onto the space C⊥. Therefore, let Π denote this orthogonal projection, the
projection matrix is given by:

Π = BL+Bt

It is easy to verify that this matrix is a projection matrix and that the projection is
orthogonal. Analog the projection onto the cycle space is denoted by Π⊥ and, by the
simple rules of projection matrices, is given by

Π⊥ = I − Π = I −BL+Bt

3.3.2. Maximum Flows
Finding a feasible flow

Recall that the flow preservation can be expressed as Btf = Fχ for a flow f , incidence
Matrix B, flow value F and χ the vector identifying s and t. Therefore, the set of feasible
s-t flows with flow value F , denoted by Fst,F , is given by:

Fst,F : =
{
f : Btf = Fχ

}
=
{
f : BL+Btf = FBL+χ

}
= {f : Πf = Ffst}

where fst := BL+χ is the unit electrical flow from s to t.
By further rewriting Fst,F one gets:

Fst,F = {f : Πf = Ffst}
= Ffst + {f : Πf = 0} = Ffst +

{
f : BL+Btf = 0

}
= Ffst +

{
f : Btf = 0

}
= Ffst + ker(Bt)

= Ffst + C⊥

The last equation describes a translation of the cyclespace by the electrical s-t flow
with current F . Furthermore, this electrical flow is given by the projection:

Ffst = PFst,F (0)

See figure 3.2 for a graphical illustration.
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PFst,F
(0)

Im(B)

ker(B⊥)

F yst + ker(B⊥)

Figure 3.2.: Illustrating the projections of the feasible flows for the 1-dimensional case

As mentioned earlier the main results are only valid for uncapacitated flows (i.e. all
capacities are 1) and for now only this case will be considered. Therefore, the flow
on every vertex has to lie in the interval [−1, 1], and every feasible flow f must be an
element of the unit sphere of the infinity norm (denoted by Bm

∞) and an element of the
set of feasible flows Fst,F . Therefore, in order to answer the question whether a flow with
flow value F exists one has to find a f ∈ Bm

∞∩Fst,F . This can by achieved by minimizing
‖f‖∞ inside Fst,F but since this problem is not differentiable one can instead minimize
the distance to the projected point, i.e.

min
f∈Fst,F

1
2
∥∥∥f − PBm∞(f)

∥∥∥2

2︸ ︷︷ ︸
φ(f)

(3.2)

This problem is convex, has Lipschitz constant 1 and the gradient is given by ∇φ(f) =
f − PBm∞(f).

A projection onto a box (located at the center and aligned to the axis) is a achieved
by truncating the coordinates.

Note that the gradient is given by:

(∇φ(f))i =
0 fi < ci = 1
fi − ci else

Therefore, the gradient is exactly the amount of ‘overflow’, i.e. the amount of flow
exceeding the constraints.

The gradient for f constrained to Fst,F is given by:

∇φFst,F (f) = Π⊥∇φ(f) = (I −BL+Bt)∇φ(f)
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Gradient descent steps for the objective function g are of the form ‘xi+1 = xi −∇g(xi)’.
In this case this would be:

f i+1 = f i −∇φ(f i) +BL+Bt∇φ(f i)

Which can be interpreted as subtracting the overflow and adding an electrical flow were
at each vertex Bt∇φ(f i) current is induced, i.e. cext = Bt∇φ(f i)

Now any gradient descent method can be used to minimize the problem given in (3.2).
Let f ∗ be a solution of (3.2) then this flow will fulfill the flow preservation constraints.
The initial question, whether a flow with value F exists, can be answered by checking if
f ∗ additionally fulfills the capacity constraints.

Since only a (1 − ε)-approximation is required one may stop the gradient descent
scheme before it is fully converged. One drawback of this approach is that in this case
the approximate solution may not be feasible and violates the capacity constraints. In
order to get a feasible flow a s.c. ‘drain procedure’ is required to reroute this overflow.

Drain procedure

Let G = (V,E) be a directed graph and suppose that f is a approximative solution of
(3.2) yielded by some gradient descent like method. The task is to convert, or round,
this flow to a feasible s-t flow.

First of all G is converted into a directed graph, such that all the edges have nonneg-
ative flow. Recall that actually only nonnegative flows are considered. Now if the flow
value at a edge is negative, this edge is considered orientated in the opposite direction,
i.e. by reversing the orientation of an edges the sign of its flow changes. Therefore, by
reversing all edges with negative flow, the resulting graph has nonnegative flow.

Let D = {(s1, t1), · · · , (sk, tk)} be the set of congested edges. Now a new vertex d is
added to the graph. For each congested edge (si, ti) ∈ D two new edges (si, d) and (d, ti)
are created. A new flow f̄ is created on this new graph where the flow on each original
edge ei is given by f̄(ei) = min(f(ei), c(ei)) and the flow for the new edges are given by
f̄(si, d) = f̄(d, ti) = f(si, ti) − c(si, ti). This augmented flow f̄ is a feasible flow (the
capacity on the newly created edges are set to infinity). In order to get a s-t flow in the
original graph G one has to ‘drain’ the flow going through the newly created vertex d.
This is achieved by iteratively finding paths from d to t along the edges with non zero
flow value. Searching for the minimum flow along this path and subtracting this value
from all the edges on the path. Analog for paths from s to d. If there is no path from
s to d (or d to t) then no flow is passing through d. By removing d (and its incident
edges) one obtains a feasible s-t flow in G.

From the above description it is observed that it is crucial to perform the following
steps very quickly: find a path from d to s and t, find the minimum flow value along
this path and augment the flow along this path. In their paper Lee et al. used Dynamic
Trees[58] also known as Link/Cut trees to obtain the desired O(m log(n)) runtime of the
drain procedure. This is formulated in the following Lemma
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Lemma 3 (Lee et al. [42], Lemma 2 (Overflow Drainage)). Suppose f is a (not neces-
sarily feasible) s-t flow of value F . Then there is a feasible s-t flow f ′ of value at least
F −∑e∈E |max(0, f(e)− c(e))|. Moreover, there is an algorithm Drain which finds such
an f ′ in O(m log(n)).

The max-flow algorithm

In order to solve optimization problem (3.2) the Nesterov’s Accelerated Gradient Descent
Method is used, since it converges faster than the standard gradient descent method. For
a short outline of this method see Section A.2. This algorithm is only run for 2/ε

√
m/F

iterations and the resulting solution is converted into a valid flow by the drain procedure.
Putting all the steps together this results in the following algorithm:

Algorithm 6 Lee et al. max-flow
Input: G = (V,E), target flow value F, ε > 0
Output: A feasible flow (if there exists one)
y0 = FBL+χ
yT = NESTEROV(Π⊥∇φ, 1, 0, 2

ε

√
m
F
, y0)

f = Drain(yT/(1 + ε), F )

Theorem 11 (Lee [42], Max Flow). If a feasible flow with value F exists then algorithm 6
finds a feasible flow of value (1− 4ε)F after O(1

ε

√
m
F
m log2 n) time.

See the original paper for a prove. In contrast to Christiano et al., Lee et al. never
mentioned what happens when no feasible flow exists in their paper. The simplest
approach would be to check if the result of the algorithm really is a flow with flow value
> (1 − ε)F and output fail. But from carefully reading the proof of the theorem one
can see that if more than 2εF edges are heavily congested (congestion > ε), the return
value should be fail.

As mentioned at the beginning of this chapter binary search has to be performed in
order to find a maximum flow.

If the queried flow value F is greater than (m
nε

)2/3 this algorithm has a runtime of
Õ(mn1/3ε3/2). If the F < (m

nε
)2/3 then the algorithm of Karger-Levine introduced in

Section 3.1.2, which has a good running time in graphs with small flow, is used. This
algorithm has time complexity Õ(m+ nF ).

Combining these two methods yields the following result:

Theorem 12. A (1 − O(ε))-approximation of the maximum s-t flow problem can be
computed in time Õ(mn1/3ε3/2).
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3.3.3. Minimum Cuts
The algorithm for the min-cut problem is quite similar to the max-flow algorithm. The
main part is again Nesterov’s Accelerated Gradient Descent Algorithm. The gradient of
the objective function again contains a projection, therefore, the result again rely heavily
on a fast SDD solver.

In order to use the same framework as in the flow algorithm one has to find a convenient
description of the cut space. Now consider the following LP-formulation of the min-cut
problem:

min
x∈Rn
〈x,χ〉=1

‖Bx‖1 (3.3)

See section 4.1 for a proof why this is a valid formulation of the graph cut problem.
Since χ ∈ Im(Bt) = Im(L) it holds that χ = LL+χ = BtBL+χ, therefore, the inner
product in equation (3.3) can be reformulated as:

min
x∈Rn

〈Bx,BL+χ〉=1

‖Bx‖1

by setting f := Bx, this is equivalent to:

min
f∈Im(B)∩{〈f,fst〉=1}

‖f‖1

For the sake of readability let Cst := Im(B) ∩ {〈f, fst〉 = 1}. This is a subspace of the
cutspace C more precisely the space of s-t cuts. In order to use the projected gradient
descent method one can rewrite the constraint f ∈ Cst as linear System Af = b. It is
easy to check that the matrix

A := Π⊥ + fstf
t
st

‖fst‖2

and the vector

b := fst
‖fst‖2

fulfills the requirement.
The problem in (3.3) is non-differentiable, therefore, the smooth and convex approxi-

mation lµ(f) := ∑m
i=1

√
f 2
i + µ2 is used. The gradient of ∇lµ is straight forward and can

be computed in linear time, since
∂

∂fi
lµ(f) = fi√

f 2
i + µ2

The partial derivatives of ∇lµ are given by

∂2

∂2fi
lµ(f) = µ2/(f2

i +µ2)3/2
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which clearly is bounded by µ−1 and therefore the Lipschitz constant is µ−1. This re-
laxed objective function lµ is now minimized by Nesterov’s Accelerated Gradient Descent
Method. As previously for the flow algorithms, after T iterations Nesterov’s Method is
stopped. At this point the L1 norm of the resulting vector fT will be less than (1 + ε)F .
The corresponding approximate cut vector xT will of course not be binary. In order to
get a binary solution this vector is rescaled such that xTs = 1 and xTt = 0 and thresholded
at a random ρ ∈ (0, 1). Analog as for the min-cut algorithm of Christiano the optimal
sweep cut algorithm, in order to calculate the optimal thresholding value, could be used
(Algorithm 9). Again using this optimal algorithm would not influence the asymptotic
runtime nor the theoretical properties.

Theorem 17 and the fact that only unweighted graphs are considered yields that the
resulting cut is less than∑

(u,v)∈E

∣∣∣xTu − xTv ∣∣∣ =
∥∥∥BxT ∥∥∥

1
= ‖y‖1 ≤ (1 + ε)F

Putting all these steps together gives the following theorem.
Theorem 13 (Lee et al. [42], Min Cut). If there exists a s-t cut with value F in G =
(V,E). Then algorithm 7 will find a cut of value at most (1 + ε)F in time

O
(1
ε

√
m

F
m log2 n

)
For the proof see again the original paper. Again Lee et al. never mentioned what to

Algorithm 7 The algorithm of Lee et al.. The check if the obtained cut really is valid
does not appear in their paper(6)
Input: G = (V,E), target flow value F, ε > 0
Output: A s-t cut (if there exists one), False otherwise
f0 = fst

‖f2
st‖2

= BL+χ
‖BL+χ‖2

fT = Nesterov((Π− fstf tst
‖fst‖2

)∇lµ, 1
µ
, 0, 4

ε

√
2m
F

)
xT = L+BtfT
choose α ∈ (0, 1) uniformly
φ = xT > α . random thresholding
if ‖Btφ‖1 > (1 + ε)F then

return False
return S

do if a cut with value F does not exist. But again one simply has to check if the value
of the obtained cut is smaller than (1 + ε)F . Now again one is able to perform a binary
search in order to obtain a min cut.

Analog to the Max-Flow algorithm the algorithm of Karger-Levine is used if the max-
imal flow is very small (F < m

nε2/3
). This yields the claimed runtime of Õ(mn1/3ε−2/3)

Theorem 14. A (1+ε)-approximation of the minimum s-t cut problem can be computed
in time Õ(mn1/3ε−2/3).
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3.3.4. Discussion and Experiments
The restriction to uncapacitated graphs is quite a drawback of the two algorithms. Of
course one could convert a edge with integer weight into multiple edges with weights one.
This is of course at the expense of the runtime since the algorithm would become pseudo-
polynomial. Nevertheless for small weights this could be possible, although the practical
running time would again increased since the number of gradient descent iterations
depends on m.

But as seen from table 3.2 the runtime for small problem instances is already very
high, therefore, these ‘improvement’ are more of a theoretical interest.

Experiments

For the experiments the same problem instances as for the algorithm of Lee was used
(section 3.2.3). In order to get a uncapacitated problem, edges with high weights were
included and edges with low weights were dropped.

Table 3.2 shows the running time for different image resolutions. Notice that the
algorithm always calculated the correct cut, this indicates that the number of gradient
descent iterations may be an ‘overkill’ and one could stop earlier for such small instances.

resolution 16x16 32x32 64x64 128x128 256x256
n 258 1026 4098 16386 65538
m 714 2377 10155 42661 179492

cut value 15 15 70 266 1404
wrong labels 0 0 0 0 32

time ∼ 1 min ∼ 3 min ∼ 9 min ∼ 40 min ∼ 167 min

Table 3.2.: Running time and other characteristics for a simple example
Despite all these drawbacks the algorithm offers some very interesting theoretical

insights and clearly is ‘a new approach’. Same as the algorithm of Christiano et al. the
asymptotic running time of the algorithms are clearly outstanding.
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4. Basic Definitions and Properties
In this chapter the graph cut problem is now formulated as a continuous convex optimiza-
tion problem. The first section will cover different problem formulations and afterwards
the essential definitions needed for the convex optimization algorithms are given.

4.1. Graph Cut Formulations
4.1.1. The standard graph cut
In this section some different but equivalent formulations of graph cut will be discussed.
Starting with the most basic definition, which unfortunately are very abstract and not
very practical for algorithmic purposes, some more practical formulations will be derived.

The most basic definition was already given by Problem (Pc) and was

min
∅6=S⊂V
s∈S,t/∈S

∑
(u,v)∈C(S)

w(u, v)

where C(S) was the cut set. Using the indicator function one can slightly reformulate
the sum as

min
∅6=S⊂V
s∈S,t/∈S

∑
e=(u,v)∈E

1C(S)(e)w(u, v) (4.1)

where the indicator function 1C(e) is one if e is in the cut set and zero else.
Of course the indicator function can also be used for vertices and the set S. For a

edge e = (u, v) ∈ E this allows the reformulation of 1C(e) as 1C(e) = |1S(u)− 1S(v)|.
Now lets fix a cut S and define the vector x ∈ {0, 1}|V | as the incidence vector of the
vertices belonging to that cut, i.e. for a vertex u ∈ V let xu := 1C(S)(u).

Plugging this into (4.1) on gets

min
x∈{0,1}n
xs=1,xt=0

∑
(u,v)∈E

w(u, v) |xu − xv|

assuming that the weights are nonnegative, this is equivalent to

min
x∈{0,1}n
xs=1,xt=0

‖diag(w)Bx‖1 (4.2)

where B is the incidence matrix of the graph.
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From the sake of readability, on let K := diag(w)B, i.e. K could be seen as some kind
of ‘weighted incidence matrix’ of the graph.

The problem in (4.2) is still a binary problem and from the algorithmic point of view
this makes it a hard problem. By dropping the binary constraint one gets a new (and
hopefully easier) problem, the s.c. relaxed problem. In general the optimal solution of
the binary problem and its relaxed version does not have to coincide. But for the graph
cut problem this is the case, therefore, instead of solving (4.2) it is sufficient to solve

min
x∈[0,1]n
xs=1,xt=0

‖Kx‖1 (4.3)

In particular the solution of the continuous problem will be binary.
For graph cuts with directed graphs this results still holds, which is a basic result

in linear optimization. This is due to the s.c. unimodularity of the (directed) max-
flow/min-cut problem which is the criterion for integer solutions of linear programs, see
for instance [13]. In section 4.4 a proof (not using the concepts from linear optimization)
will be presented.

In the previous section where Lee’s algorithm was presented the following formulation
was used:

min
x∈Rn
‖Kx‖1 s.t. 〈x, χ〉 = 1

where χs = 1, χt = −1 and χi = 0 for all i 6= s, t, and therefore, the constraint simply
states xs−xt= 1. In order to see that this formulation is equivalent to the previous ones,
observe that for every optimal solution x∗ the vector x = x∗ + 1λ is another solution,
since 1 ∈ ker(K). Therefore, it is justified to fix xs and xt:

min
x∈Rn
‖Kx‖1 s.t. xs = 1

xt = 0

The restrictions to the interval [0, 1] is no real restriction, since one can easily check that
for a vector x ∈ Rn the projection to [0, 1]n does not has a worse objective value.

4.1.2. Graph cuts in computer vision
In computer vision very often a different formulation is used. This is due to the fact that
in computer vision images are often represented by a M×N regular grid graph and each
pixel is represented by a vertex. Depending on the task, each pixel has a neighbourhood.
In computer vision these neighbourhoods are 4-neighbourhoods or 8-neighbourhood
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Figure 4.1.: The neighbours of a pixel in a 4 and an 8-neighbourhood

Finally very vertex is connected to the source s and to the sink t. See Figure 4.2 for
an illustration of a typical computer vision cut.

For the case where 4-neighbourhoods of pixels are considered the incidence matrix of
the vertices (without s and t) is given by the backward-derivative operator. With this
observation the problem in (4.2) becomes:

min
x∈{0,1}

∥∥∥diag(wb)∇x
∥∥∥

1
+ 〈1− x,ws〉+ 〈x− 0, wt〉

where ∇ is the gradient operator/backward difference, wb are the weights between the
pixels, ws resp. wt weights between the vertices and the source s resp. sink t. This can
be further simplified to

min
x∈{0,1}

∥∥∥diag(wb)∇x
∥∥∥

1
+ 〈x,wt − ws︸ ︷︷ ︸

wu

〉+ 〈1, ws〉 (4.4)

The weights wu are called unary weights and wb are called binary weights, which makes
sense if one restricts itself to the vertices corresponding to pixels and ignores the vertices
s and t.

Furthermore, the last summand is a constant and can be dropped if one is only
interested in the solution x and not its optimal value.

Note that by exchanging ∇ with the incidence matrix of the subgraph V − {s, t} in
(4.4) and setting wsi to zero if (s, vi) /∈ E (and analogous for wt) the problem in (4.4)
is the same as in (4.2), hence every min-cut problem can be formulated with unary and
binary weights.

s

t

Figure 4.2.: An instance of a typical computer vision cut
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4.2. Definitions
In this subsection some basic definitions and properties of convex functions are revised.
All the algorithm presented later will depend on these properties. Since convex analysis
and convex optimization are extensive theories in mathematics only the important defi-
nitions, required for the later presented algorithms, are discussed. For a comprehensive
introduction into the whole theory see [51]. The fundamental definitions of convex sets,
convex function and Lipschitz continuity was already given in section 1.1.

In the following let X ⊆ Rn denote a subset, for some n ∈ N.

4.2.1. Further properties of functions
Only functions with Lipschitz continuous gradient will be studied.

Definition 30. (lower semi-continous)
A function f : X → R is called lower semi-continuous, abbreviated lsc, iff

lim inf
y→x f(y) ≥ f(x)

Definition 31. (proper)
A function is called proper the function value is finite at least for one element, i.e.

∃x ∈ X : f(x) <∞

Definition 32. (spectral norm)
Let A ∈ Rm×n then the spectral norm of A is defined as

‖A‖2 = max
‖x‖2=1

‖Ax‖2 =
√
λmax(AtA)

where λmax denotes the largest eigenvalue. Furthermore, the spectral norm is equal
to the largest singular value of A.

4.2.2. Subderivative, subgradients and subdifferentials
Recall that not every continuous function is differentiable. A well known candidate for
such a function is the absolute value function, which is differentiable everywhere except
at the origin.

Subderivative, subgradients and subdifferentials try to generalize the main properties
from differential calculus for non differentiable and even non continuous functions.

First of all only convex functions will be considered in the next section. The derivative
of a convex function, f : R → R, at a certain point, describes the slope of a tangent
line at that point. If f is differentiable, this tangent line is unique and given by f(x) +
〈f ′(x), y − x〉. If f is not differentiable this line is not unique.
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It is a well know fact, that a convex function has to lie over all its tangent lines, i.e.
for a differentiable function f : X ⊆ R→ R it holds

f(y) ≥ f(x) + 〈f ′(x), y − x〉

This property is used to define subderivatives:

x

y

x0 〈p0, x− x0〉

〈p1, x− x0〉

〈p1, x− x0〉

〈p1, x− x0〉

f(x)

Figure 4.3.: two subderivatives at x

Definition 33. (Subderivative, -gradient, -differential)
For a open interval X ⊆ R and a function f : X → R, a subderivative of a function f at
point x ∈ X is a point p ∈ R such that

f(y) ≥ f(x) + 〈p, y − x〉 ∀y ∈ X

The subgradient is the generalization to higher dimensions, i.e. X ⊆ Rn and p ∈ Rn.
The subdifferential at a point x is the collection of all subgradients at this point and is
denoted as ∂f(x).

Note that if f is differentiable at x, then the subdifferential only consists of ∇f(x).
The nice property of the gradients and convex functions is that they characterize the

minima, i.e. x∗ is a minima iff ∇f(x∗) = 0. Subdifferentials expand this property to
non-differentiable functions.

Corollary 2. Let f and X as in the previous definition, then

x∗ = min
x∈X

f(x) ⇐⇒ 0 ∈ ∂f(x∗)

The proof follows immediately from the definition of the subdifferential. It is possible
to use the subgradients directly in order to optimize the function f in gradient descent
like fashion, i.e. update step is: xi+1 = xi + αp with p ∈ ∂f(xi). However, this so called
subgradient method has a very slow convergence rates [63].
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4.2.3. Convex conjugate
The second important concept is the concept of the convex conjugate or also known as
Fenchel transformation. Most of the following definitions will work on Banach spaces.
But only the space (Rn, ‖.‖2) (which of course is a Banach space) will be considered,
since this will be enough for our purposes. For the more general cases see again [12].

Notation 5. In order to shorten the notation let R∞ := R ∪ {∞}.

The convex conjugate of a function is defined as follow:

Definition 34. (convex conjugate)
For a function f : Rn → R∞ the convex conjugate, f ∗ : Rn → R∞, is defined as

f ∗(y) := sup
x∈Rn
〈x, y〉 − f(x)

The convex conjugate is a convex function, since it is the piecewise supremum over
convex functions.

A nice interpretation is given by the biconjugate function f ∗∗, the conjugate of f ∗.
From the definition of the convex conjugate it immediately follows that

f ∗(y) ≥ 〈x, y〉 − f(x)⇔ f(x) ≥ 〈x, y〉 − f ∗(y)
supy=⇒ f(x) ≥ f ∗∗(x)

indicating that the biconjugate is a convex function below the (possible non convex)
function f . Moreover, it can be shown that the biconjugate is the largest convex function
below f . If f was already convex f ∗∗ = f follows.

4.3. Primal and dual problem and the primal-dual gap
4.3.1. Primal-dual problem
In this section the following minimization problem is considered:

min
x∈X

F (Kx) +G(x) (P)

where F : Y ⊆ Rm → R∞, G : X ⊆ Rn → R∞ are proper, convex and lower semi-
continuous functions. K : X → Y is a linear and continuous map, i.e. in this case a
(m× n)-matrix over R. This problem is called the primal problem.

If one assumes that the primal problem has a solution, the minimum can be replaced
with the infimum. Furthermore, since F is convex F = F ∗∗ holds and the primal problem
can be rewritten as

inf
x∈X

sup
y∈Y
〈x,Kty〉 − F ∗(y) +G(x) (4.4)
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if one assumes that everything is nice (i.e.. the supremum and infimum can be exchanged
and a maximum exists) it follows:

max
y∈Y
−F ∗(y) + inf

x∈X
〈x,Kty〉+G(x)

max
y∈Y
−F ∗(y)− sup

x∈X
〈x,−Kty〉 −G(x)

max
y∈Y
−F ∗(y)−G∗(−Kty)

The problem in the last line is called the dual problem. The calculations reveal that the
dual problem can be seen as rewriting Problem (P) in terms of the convex conjugates of
F and G. Furthermore, the terms primal and dual could be interchanged easily, but in
general, the primal problem is the given problem to be solved (hence the name).

Of course the above calculation is simplified and will not hold in general. Nevertheless,
the following theorem specifies the conditions and states that the primal problem and
the dual problem are equivalent.

Theorem 15 (Fenchel Rockafellar duality). Let F : Y ⊆ Rm → R∞ and G : X ⊆ Rn →
R∞ proper, convex and lower semi-continuous. Furthermore, let K ∈ Rm×n and x∗ a
solution of the primal problem:

min
x∈R

F (Kx) +G(x)

If there exists a point x̄ ∈ X such that F (Kx̄), G(x̄) <∞ and F continuous at Kx̄ then
the primal problem and the dual problem are equal, i.e.

min
x∈R

F (Kx) +G(x) = max
y∈Y
−F ∗(y)−G∗(−Kty)

Furthermore, the pair of the optimal solutions can easily be characterised, this char-
acterisation is given by the next corollary.

Corollary 3. With the same requirements as in Theorem 15, let x∗ ∈ X and y∗ ∈ Y .
The pair (x∗, y∗) is a solution of the primal and dual problem iff

−Kty∗ ∈ ∂G(x∗) ∧ y∗ ∈ ∂F (Kx∗)

For a proof of Theorem 15 and Corollary 3 see [12] or (with a quite different nota-
tion [51]).

4.3.2. The minmax Problem and Saddle Points
The pair of solutions (x∗, y∗) is often called a saddle point. From the previous definitions
and calculations it is not quite clear why this is the case.

The standard definition of a saddle point says that x is a saddle point of a function
f , if the first derivative and the second derivative are zero. Or in higher dimensions the
gradient has to be zero and the Hesse matrix indefinite. Recall that the functions F and
G are only lower semi-continuous and therefore not necessarily differentiable, for this
case there exists a different definition.
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Definition 35. (Saddle point)
Let f : X × Y → R∞, where X ⊆ Rn, Y ⊆ Rm. A pair (x̄, ȳ) ∈ X × Y is called a saddle
point of f if

f(x̄, y) ≤ f(x̄, ȳ) ≤ f(x, ȳ) ∀x ∈ X̄ ∀y ∈ Ȳ

or if

f(x, ȳ) ≤ f(x̄, ȳ) ≤ f(x̄, y) ∀x ∈ X̄ ∀y ∈ Ȳ

where X̄, Ȳ are some (topological) neighbourhood of X and Y .

The two different conditions of a saddle point arise from the fact that one could
exchange the order of the coordinates, i.e. g(y, x) := f(x, y) and (x̄, ȳ) would still be a
saddle point but the inequalities for f would not hold for g any more, see Figure 4.4.

x
y

x
y

Figure 4.4.: Saddle point of f(x, y) = x2 − y2 and f(x, y) = y2 − x2

To see that Definition 35 indeed generalizes the definition of saddle points in the
differentiable case, consider a function f : R2 → R∞ with (x∗, y∗) as a saddle point. By
definition it holds that

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗) (4.5)

for x, y in a neighbourhood of (x∗, y∗). This indicates that x∗ (resp. y∗) is a local minima
(resp. maxima) of f |y=y∗(x, y) (resp. fx=x∗(x, y)). Therefore, the gradient of f is zero,
but since f(x∗, y∗) is not a minima nor a maxima the Hesse matrix has to be indefinite.
This argument can of course be generalized to higher dimensions, i.e. x ∈ Rn, y ∈ Rm.

This motivates the following corollary

Corollary 4. Let

L : X × Y → R∞ L(x, y) := 〈Kx, y〉 − F ∗(y) +G(x)

then the pair (x∗, y∗) is a solution of the primal and dual problem iff it is a saddle point
of L.
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Proof. Since it is assumed that a solution of the primal and dual problem exists, they
are equivalent to the problem given in (4.3.1) which is infx∈X supy∈Y L(x, y). Now it
follows that

L(x∗, y) ≤ sup
y∈Y

L(x∗, y) = L(x∗, y∗) = inf
x∈X

L(x, y∗) ≤ L(x, y∗)

On the other hand, if (x∗, y∗) is a saddle point it follows from (4.5) that

L(x∗, y∗) ≥ L(x∗, y)⇒ L(x∗, y∗) ≥ sup
y∈Y

L(x∗, y)

L(x∗, y∗) ≤ L(x, y∗)⇒ L(x∗, y∗) ≤ inf
x∈X

L(x, y∗)

hence

sup
y∈Y

L(x∗, y) ≤ inf
x∈X

L(x, y∗)

Applying the Fenchel transformation

F (Kx∗) +G(x∗) ≤ −F ∗(y∗)−G∗(−Kty∗)

follows.
Theorem 15 indicates that the left-hand side is always greater than the right-hand

side, therefore equality follows and the the saddle point really is a optimal solution.

Combining this corollary with the definition of a saddle point one gets another equiv-
alent formulation of the primal problem. The problem of finding a saddle point is simply
called saddle point problem and is given by the following minmax problem

min
x∈X

max
y∈Y
〈Ax, y〉 − F ∗(y) +G(x) (MinMax)

4.3.3. Primal and dual energy, primal-dual gap
The next definition is about the energy of a function, in terms of optimization this is
the same as the value of the objective function. But to coincide with the literature the
term energy will be used in this thesis.

Definition 36. (primal energy, dual energy)
For a given x ∈ X the primal energy, denoted by p(x), is defined as

p(x) := F (Kx) +G(x)

analog for y ∈ Y , the dual energy, denoted by d(y), is defined as

d(y) := −F ∗(y)−G∗(−Kty)
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From Theorem 3 it is clear that

p(x) ≤ d(y) ∀x ∈ X y ∈ Y

This motivates the definition of the so called primal-dual gap or sometimes also called
duality gap.

Definition 37. (primal-dual gap)
Let (x, y) ∈ X × Y then the value of p(x)− d(y) is called the primal-dual gap at (x, y)
and is denoted by G(x, y)

With the same argument used to show the connection between the primal and the
dual problem, a different definition of the primal/dual energy could be given, by writing
F , G in terms of their convex conjugate. If F (Kx) is rewritten in terms of the convex
conjugate one gets

p(x) = sup
y∈Y
〈Kx, y〉 − F ∗(y) +G(x)

similar for the dual energy and the convex conjugate of G∗(−Kty)

d(y) = inf
x∈X
〈x,Kty〉 − F ∗(y) +G(x) (4.6)

Now the saddle point problem (MinMax) is equal to minimizing resp. maximizing the
primal resp. dual energy.

Sometimes it is easier to consider the primal-dual gap only on a subset of X and Y ,
this leads to the definition of the restricted primal-dual gap:

Definition 38. (restricted primal-dual gap)
For two sets B1 ⊆ X, B2 ⊆ Y the restricted primal-dual gap is defined as

GB1,B2(x, y) = sup
ȳ∈B2
〈Kx, ȳ〉 − F ∗(ȳ) +G(x)− inf

x̄∈B1
〈x̄, Kty〉 − F ∗(y) +G(x̄)

It is clear that the restricted gap is always larger or equal to the (unrestricted) gap,
as soon as B1 ×B2 contains a saddle point.

4.3.4. Proximal map
The proximal map can be seen as a generalization of a projection onto a (convex) set.

Definition 39. (proximal operator, proximal map)
Let f : X → R be a convex function, then the proximal operator or proximal map is
given by

proxf (x) = arg min
y∈X

‖x− y‖2
2

2 + f(y) (4.7)
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If f is the characteristic function of a convex set, the proximal maps becomes a
projection onto this set. Notice that the minimization problem in the definition is
strictly convex, therefore, proxf (x) is unique. In the general case the proximal map of a
point x is a point with a better function value but still ‘close’ to x.

Using subgradient calculus one can easily derive the optimality condition for the right-
hand side of (4.7)

0 ∈ −x+ y + ∂f(y)
x ∈ y + ∂f(y)
x ∈ (I + ∂f)(y)
y = (I + ∂f)−1(x)

this allows to write proxf (x) = (I + ∂f)−1(x).
One identity which will be useful for calculating proximal maps of convex conjugated

functions, is the Moreau’s identity given by:

Corollary 5 (Moreau’s identity). For σ > 0 it holds that

x = proxσf (x) + σ prox1/σf∗(x/σ)

A proof for σ = 1 is given in [51], the case for general σ is obtained by substituting
σf for f .

4.4. Equivalence between the relaxed and the binary
problem

In this section it is shown that the binary problem and the continuous relaxed problem
have the same solution, in particular the solution of the continuous problem is binary.
The proof of this properties, is from a paper of Chambolle [14] and it works not only for
graph cuts but also for the more wider class of minimization problems of the form:

min
x∈{0,1}n

λJ(x) + 〈s−G, x〉 (Ps)

where J : Rn → [0,∞] is a convev, lsc, positively one-homogenious function satisfying
the s.c. generalized coarea formula. A positively k-homogenious function simply sat-
isfies J(αu) = αkJ(u) for α > 0. The generalized coarea formula is a little bit more
sophisticated and defined as

J(u) =
∫ ∞
−∞

J([u > t])dt

where the Iverson brackets [u > t] are understand pointwise, i.e. [u > t] :=
(
[ui > t]

)n
i=1

and [ui > t] is one if ui > t and zero otherwise.
The following proposition states that the optimal solution of a (binary) problem with

the same form as (Ps) is also a solution of the relaxed problem.
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Proposition 1 (Chambolle[14]). Any solution of (Ps) is a solution of

min
x∈[0,1]n

λJ(x) + 〈s−G, x〉 (P̄s)

and vice versa.

Proof. Note that for c ∈ R and the vector y = (c, c, · · · , c), J(y) = 0, otherwise J(x) =
−∞ for all x ∈ Rn, which would be a boring minimization problem. Let x ∈ [0, 1]n, it
follows that

λJ(x) =
∫ ∞
−∞

λJ([x > t])dt

=
∫ 1

0
λJ([x > t])dt+

∫ 0

−∞
λJ(0)dt+

∫ ∞
1

λJ(1)dt

=
∫ 1

0
λJ([x > t])dt

Furthermore, xi =
∫ 1

0 [xi > t]dt, this allows to rewrite the inner product:

〈s−G, x〉 =
n∑
i=1

(s−Gi)xi =
n∑
i=1

(s−Gi)
∫ 1

0
[xi > t]dt =

∫ 1

0
〈s−G, [x > t]〉dt

Putting these two conversions together, it follows:

λJ(x)− 〈s−G, x〉 =
∫ 1

0

{
λJ([x > t])− 〈s−G, [x > t]〉

}
dt (4.8)

For the sake of readability lets rewrite equation (4.8) as f(x) =
∫ 1
0 f([x > t])dt.

First, let x∗ be a solution of the binary problem (Ps), clearly it follows that f(x∗) ≤
f([x > t]) for all t ∈ [0, 1] and for all x ∈ Rn. Therefore minimizing both sides for x
yields:

min
x∈[0,1]n

f(x) = min
x∈[0,1]n

∫ 1

0
f([x > t])dt ≥

∫ 1

0
f(x∗)dt = f(x∗) := min

x∈{0,1}n
f(x)

Equality follows since the left problem is a relaxation of the right one.
Now let x∗ be a solution of minx∈[0,1]n f(x). Then of course:

f(x∗) = min
x∈[0,1]n

f(x) ≤ f([x∗ ≥ t]) (4.9)

for all t. From (4.8) we know that f(x∗) =
∫ 1

0 f([x∗ > t])dt and and since f(x∗) =∫ 1
0 f(x∗)dt, inequality (4.9) yields:∫ 1

0
f([x∗ > t])− f(x∗)︸ ︷︷ ︸

≥0

dt = 0
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indicating f([x∗ > t]) = f(x∗) almost everywhere. As a function of t, f([x∗ > t]) is
almost everywhere constant. Furthermore, the function value only (but not necessarily)
changes on the entries of x∗. Let x∗σ(i) denote the i-th smallest entry of x∗, then the
function is constant on right-closed intervals

(
x∗σ(i), x

∗
σ(i+1)

]
(this hold even for x∗σ(i+1) =

x∗σ(i)). Therefore,

n−1⋃
i=1

(
x∗σ(i), x

∗
σ(i+1)

]
∪ (−∞, x∗σ(1)] ∪ (x∗σ(n),∞) = R

f([x∗ > t]) = f(x∗) holds for all t ∈ R.
Together with (4.9) it follows that f([x∗ > t]) = minx∈[0,1]n f(x).

By simple calculations one can check that
∥∥∥diagwbBx

∥∥∥
1

satisfies the coarea formula
and the rest of the requirements for J . Setting s = 0 and G = −wu reveals that the
min-cut problem actually can be formulated in the form given in (Ps). Therefore, the
restrictions to binary solutions can be dropped in (Ps).
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derivates

This section covers the primal-dual algorithm of Pock and Chambolle [15] and the basic
algorithm for optimizing the saddle point problem MinMax is given. Furthermore, the
iteration steps for the graph cut problem will be derived, a method for speeding up the
primal-dual algorithm for binary problems and how to calculate (1 + ε)-approximations
will be discussed.

5.1. The standard algorithm
The primal-dual algorithm is used to minimize problems of the form (P). The name
‘primal-dual algorithms’ originates from the fact that these algorithm optimize the pri-
mal and the dual problem in alternating fashion. Hence, a solution for the dual problem
is calculated as well.

Recall that it was required, that F : Y ⊆ Rm → R∞, G : X ⊆ Rn → R∞ are proper,
convex and lower semi-continuous functions and K : X → Y is a linear and continuous
map.

Now, given with the definitions from the previous section the primal-dual algorithm,
in its most basic form, can be written down in a very compact form:

Algorithm 8 Primal-dual algorithm
1: choose σ, τ > 0
2: choose (x0, y0) ∈ X × Y
3: x̄0 = x0, k = 0
4: while not converged do
5: yk+1 = (I + σ∂F ∗)−1(yk + σKx̄k)
6: xk+1 = (I + τ∂G)−1(xk − τKtyk)
7: x̄k+1 = 2xk+1 − xk
8: k ← k + 1

In line 5 and 6 the calculation of a proximal map is required. Hence, this calculations
should be possible and not too time consuming. Note, that because of the Moreau’s
identity, one does not have to explicitly calculate the proximal map of F ∗. Therefore,
a simple proximal map of F , G may be stated as an additional requirement for the
algorithm.
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In line 6 the algorithm updates the current dual solution and in line 5 the primal
solution is updated. With this observation the primal-dual gap can serve as a stopping
criterion. If the gap is zero (or small enough) a saddle point is found.

The following theorem states the convergence rate of the algorithm

Theorem 16 (Primal-dual algorithm (Chambolle and Pock [15, 17])). Let L = ‖K‖
and choose σ and τ such that στL2 < 1. Furthermore, assume that Problem (MinMax)
has a solution and denote this solution by (x∗, y∗). Let n, xn, yn, x̄n as in Algorithm 8,
then it holds that

(i) for any k > 0∥∥∥yk − y∗∥∥∥2

2
2σ +

∥∥∥xk − x∗∥∥∥2

2
2τ ≤ (1− στL2)−1

(
‖y0 − y∗‖2

2
2σ + ‖x

0 − x∗‖2
2

2τ

)

(ii) Let x̃N := ∑N
k=1 x

k/N , analog ỹN := ∑N
k=1 y

k/N and B1 ×B2 ⊆ X × Y a bounded
set. Then the restricted primal-dual gap is bounded by

GB1×B2(x̃N , ỹN) ≤ sup
(x,y)∈B1×B2

1
N

(
‖y0 − y‖2

2
2σ + ‖x

0 − x‖2
2

2τ − 〈K(x− x0), y − y0〉
)

(iii) if the dimension of X and Y is finite the (xk)k≥0 and (yk)k≥0 converge to a saddle
point.

Despite its simple structure the proof of convergence is quite long and the algorithm
is only guarantied to converge on average. Recall that, if B1 × B2 contains a saddle
point, the primal-dual gap is always smaller than the restricted primal-dual gap, hence
(ii) gives a real upper bound of the gap. Together with (iii) it follows that, in finite
dimensions, the algorithm converges with rate O(1/N). Later, when discussing how to
calculate approximate solutions of min-cut problems, (ii) will prove useful again in order
to estimate the quality of approximation.

5.2. Primal-dual graph cut formulations and updates
In this section it is discuss how to solve graph cut problems with the primal-dual algo-
rithm, i.e. how graph cuts can be written in the form of problem (P).

5.2.1. The standard Problem formulation
All the previous problem formulations were constraint problems. Moreover, the con-
straints were of the form x ∈ A for some convex set A. Problems with such constraints
can easily be converted into unconstraint problems by using the characteristic function.
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5. The primal-dual algorithm and its derivates

For a set A ⊆ Rn the characteristic function χA is defined as

χA(x) :=
0 x ∈ A
∞ x /∈ A

This functions allows the elegant formulation of the problem given in (4.3) as

min
x∈Rn
‖diag(w)Bx‖1︸ ︷︷ ︸

:=F (Kx)

+χC(x)︸ ︷︷ ︸
:=G(x)

where C = {c ∈ [0, 1]n|cs = 1 , ct = 0}. While the choice of G is clear, for F one can
ether choose F := ‖·‖1 or F := ‖diag(w)·‖1. The update steps for the two different cases
are slightly different. For the case F = ‖·‖1 they are given by:yk+1 = P [−1,1](yk + σK(2xk − xk−1))

xk+1 = PC(xk − τKtyk+1)

for the other case: yk+1 = P [−w,w](yk + σB(2xk − xk−1))
xk+1 = PC(xk − τBtyk+1)

Not required by the algorithm itself but useful for the stopping criterion is the dual
energy. From the definition of the dual energy, given in (4.6), it follows that:

d(y) = inf
x∈Rn
〈x,Kty〉 − F ∗(y) +G(x)

= inf
x∈Rn
〈x,Kty〉 − χ[−1,1]m(y) + χC(x)

since y ∈ [−1, 1]m during the algorithm, we can further simplify

d(y) = inf
x∈C
〈x,Kty〉 = inf

x∈C

n∑
i=1

xi(Kty)i

The infimum is attained if xi = 0 if (Kty)i > 0 and xi = 1 otherwise, for all i /∈ {s, t}.
Note that the formula for the dual energy is the same for both cases F = ‖·‖1 and
F = ‖diag(w)·‖1 (but of course K is different).

Now one can try to give an interpretation of the dual variable or the dual energy.
Because if formulated as linear program the dual of the max-flow problem is the min-cut
problem (and vice versa). But in this case one does not has a linear program anymore
and the duality is not the same as in linear programs. The dual problem is to maximize
the dual energy and therefore

max
y∈[−1,1]

n∑
i=1
i 6=s,t

(Kty)i[(Kty)i ≤ 0] + (Kty)s
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5. The primal-dual algorithm and its derivates

Now observe that in general the term (Kty)i should be maximized but only until they
they are positive. Furthermore, if one thinks of y as something like a flow, then (Kty)i is
the overflow at vertex i, i.e. the sum of the inflow minus the outflow. A value less than
zero means that more ‘flow’ is leaving the vertex than entering it, and as soon as the
overflow gets positive interest for this vertex is lost. Or in other words, try to achieve a
nonnegative overflow at all vertices.

5.2.2. Computer vision formulations
The update steps for computer vision graphs are only slightly differentyk+1 = P [−wb,wb]n(yk + σ∇(2xk − xk−1))

xk+1 = P [0,1]n(xk − τ(∇tyk+1 + wu))
(5.1)

Note that in this case F :=
∥∥∥diag(wb)·

∥∥∥
1

was used.
The dual energy for the computer vision graph formulation is given as:

d(y) = inf
x∈[0,1]n

〈x,wu +Kty〉 =
n∑
i=1

(wu +Kty)i[(wu +Kty)i < 0]

where the calculations are the same as in the standard case.

5.2.3. Stopping criterion
In most implementation the primal-dual algorithm is stopped if the primal-dual gap is
smaller than a certain tolerance. First of all this is because often a approximation of
the problem is enough, secondly due to hardware restrictions the calculations cannot be
performed exactly and small rounding errors are imminent. Because of the hardware
restrictions it is even possible that the primal-dual gap never becomes exactly 0. For
the graph cut problems binary solutions are needed, therefore, the result is rounded to
0 or 1. The question now is of course when to stop the calculations with respect to the
primal-dual gap.

Assume that the weights are rounded to an increment of γ, i.e. the weights are
chosen from the set {γz|z ∈ Z}. Let xN be the solution after N iterations and let x̄N
be the vector resulting from optimal rounding xN to binary values (the ‘current binary
solution’). Now, if G(x̄N , yN) < γ then x̄N is optimal since the smallest possible change
in the cut values is at least γ. Note that it is important to use a binary solution but
obtaining the optimal rounding strategy could be challenging because simply rounding
the values to the next integer (i.e. thresholding at 0.5) is not necessarily the best strategy.
See figure 5.1 for an illustration. Of course one can always obtain a binary solution by
thresholding not only at 0.5 but any other value between 0 and 1 and iterate until the
gap for this solution is less than γ.
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0.5001 0.5001
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1.1
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Figure 5.1.: Example showing how the value of a cut can change by an arbitrary small
number, the optimal cut value is 2.3 and the current cut value is 2.30004 but
simple thresholding at 0.5 does yield a cut with value 2.4, a better threshold
would be at a value > 0.5001 (or < 0.4999)

Sweep Cuts

Random thresholding is not optimal but is in a way justified by the following theorem
from the paper of Christiano et al. [19]:

Theorem 17. Given a vector φ ∈ [0, 1]n, where φs = 1 and φt = 0. Then the expected
value of the cut, obtained by thresholding φ at a value randomly chosen from the interval
[0, 1], is exactly ∑

(u,v)∈E
|φu − φv|w(u, v) (5.2)

Furthermore this implies that there exists a t ∈ [0, 1] such that the value of the cut
obtained by thresholding at t is better or equal to the expected value.

Proof. Since x is chosen uniformly and the probability that a edge (u, v) ∈ E is cut is
exactly |φu − φv|. Therefore, the expected value of the cut is given by (5.2) and indicates
that there exists a cut whose value is less than or equal to (5.2).

If one is rather interested in the optimal thresholding value one can calculate the cut
for every of the n thresholding values and pick the best. This can be achieved in an
iterative fashion by first sorting the potentials and afterwards iteratively adding vertices
to S and updating the current cut value. The change in each iteration can be calculated
by examining all edges, incident with the currently added vertex and add/subtract the
weight from the cut value. All these steps are summarized in Algorithm 9.

If the graph is very sparse the runtime is dominated by sorting the potential vector
(in O(n log n) time), otherwise each edge is checked twice (in O(m) time), therefore, the
total runtime is O(max {m,n log n}).
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5. The primal-dual algorithm and its derivates

Algorithm 9 SweepCut
Input: potential vector x ∈ Rn

Output: minimal cut that can be obtained by thresholding x
x← Sort(x), c∗ ←∞, c← 0 . x0 ≈ s
for v = 0, . . . , n do

for u ∈ δ(v) do
if v > u then

c← c+ w((u, v))
else

c← c− w((u, v))
if c < c∗ then

c∗ ← c
return {i|xi > c∗}

5.3. Global Relabeling for Graph Cuts
Unger et al. [62] presented a possible way to speed up the primal-dual algorithm for
problems which have a binary solution. The main idea is to threshold the current con-
tinuous solution in order to get a binary solution. If this binary solution is significantly
better, the algorithm continues with the obtained binary solution, otherwise the binary
solution is discarded. Unger et al. called this process ‘global relabeling’.

This strategy is motivated by the observation that the convergence of primal-dual gap
is very fast at the start but becomes slow towards the end. In figure 5.2 the evolution
of the primal-dual gap during the algorithm is plotted and it can be clearly seen that
convergence of the standard primal-dual algorithm is taking quite long. In contrast
the global relabeling significantly speeds up the convergence and after less than 500
iterations the optimal value is found.

Of course as illustrated in figure 5.1 finding the optimal thresholding value can be
challenging. Therefore, Unger et al. proposed to threshold only at the values {0, 0.01,
0.05, 0.1, 0.5, 0.9, 0.95, 0.99}, which already yields good results. Relabeling at every it-
eration does not makes sense since the runtime would increase drastically. Therefore in
their paper Unger et al. suggested to perform a relabeling step every I = max(M,N)
iterations, where M is the image heights and N is the image widths.

Since the quality of the current solutions is measured with the respect to the normal-
ized primal-dual gap and after each thresholding the primal variable changes severely,
the dual variable has to be updated as well. Updating the dual variable is the same as
in the primal-dual algorithm with the exception that a higher value of σ is used.

Furthermore, a parameter µ ∈ [0, 1] is used in order to perform a relabeling step only
if the new binary solution would be a significant improvement.

Algorithm 10 shows the global relabeling algorithms, ȳkt denotes the updated dual
variable for the binary solution [xk > t].
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Figure 5.2.: Evolution of the primal-dual gap during the algorithm, after every 100 iter-
ations a global relabeling step is performed

5.4. Calculating (1 + ε)-Approximations of Min-Cut
Problems

If one is interested in the rate of convergence of the primal-dual Algorithm, the second
statement of Theorem 16 gives some insights about the partial primal-dual gap. After
N iterations it holds:

GB1,B2(xN , yN) ≤ 1
N

(
sup

(x,y)∈B1×B2

‖x− x0‖2

2τ + ‖y − y
0‖2

2σ

)

Algorithm 10 Global relabeling
1: choose I, choose µ
2: while not converged do
3: for I iterations do
4: do primal-dual update steps for xk,yk

5: Gmin ← min
{
Gmin, G(xk, yk)

}
6: (x̃, ỹ)← arg mint∈(0,1) G(xk > t, ȳkt )
7: if G(x̃, ỹ) < µGmin then
8: (xk, yk)← (x̃, ỹ)
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For xN = ∑N
k=1 xk/N , yN = ∑N

k=1 yk/N and B1 ×B2 ⊂ X × Y .
Since the graph cut problem is bounded (observe that both update steps involve pro-

jections to bounded sets) one can simply replace B1 resp. B2 by [0, 1]|V | resp. [−1, 1]|E|
(or [−wb, wb]).

Since the graph cut problem has a solution a saddle point is containd in these sets,
therefore, the primal-dual gap is smaller then the partial primal-dual gap.

Let again F ∗ denote the optimal value of the optimal (combinatorial) flow/cut, and
(xN , yN) the solutions after N iterations. Same as in the previous sections p(xN) denotes
the primal energy (the value of the cut) and d(yN) denotes the dual energy. The current
solution xN is a (1 + ε)- approximation if p(xN) ≤ (1 + ε)F ∗. The same holds for the
dual variable: if d(yN) ≥ (1− ε)F ∗ then yN is a (1− ε)-approximation.

Now for xN and yN two (1± ε)-approximations the primal-dual gap is bounded by:

G = p(xN)− d(yN) ≤ (1 + ε)F ∗ − (1− ε)F ∗ = 2εF

However, of practical interest is the other direction. Since the primal and dual variable
may converge with different speed this inequality would only grant that one variable is
a (1 ± ε)-approximation. Suppose that the primal variable is optimal, i.e. p(xN) = F ∗

then error of d(yN) could still be 2εF ∗ without violating the inequality. See Figure 5.3
for a illustration.

In order to ensure that the primal energy and the dual energy is a (1 ± ε)- approxi-
mation one has to ensure that:

G(xN , yN) ≤ εF ∗

F ∗

(1 + ε)F ∗

(1− ε)F ∗

primal Energy

dual Energy

G < 2εF ∗
G < εF ∗

n1 n2
n

Figure 5.3.: An example evolution of the primal and the dual energy during the primal-
dual algorithm; after n1 iterations the dual variable is already a (1 − ε)-
approximation but the primal is no (1 + ε)-approximation yet
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Combining this observation with Theorem 16 it follows that algorithm has to be run
until:

1
N

sup
x,y∈B1×B2

‖x− x0‖2

2τ + ‖y − y
0‖2

2σ ≤ εF ∗

or

N ≥ 1
εF ∗

sup
x,y∈B1×B2

‖x− x0‖2

2τ + ‖y − y
0‖2

2σ

Recall that B2 was ether [−1, 1]m or [−wb, wb]. In the first case the supremum is O(m)
indicating that the number of iterations could be bounded by is O(m/εF ∗), which is quite
high. In the second case the supremum is O(

∥∥∥wb∥∥∥) = O(mmax(wbi )2). Now one could
try to scale down wb in order to get a better bound at the iterations as O(m), i.e. scale
wb such that maxi(wbi )2 = O(1/m). But this is not the case. First one does not get a
better problem than in the first case, since the K = diag(wb)B and σ and τ depend on
the condition number of K. If this condition number gets smaller σ and τ can be chosen
larger.

Second this would change the optimal value F ∗ of the problem and therefore xN and
yN would not be (1± ε)-approximations any more.

During the algorithm the running time of the algorithm is dominated by the two
matrix-vector products (vector additions and projections are less expensive). Since every
row has only two non-zero entries, it makes sense to use sparse matrices, therefore each
matrix-vector product takes O(m) time. Hence the total time per iteration is O(m)
which gives total running time of O(m2(εF ∗)−1) for a (1 + ε)-approximation.

Compared with the electrical flow algorithm from previous part the asymptotic run-
time is worse. The runtime of the algorithm of Lee is O(m

√
m(εF ∗)−1 log2(n)) while the

logarithmic terms are neglectable, the difference between m and
√
m is quite drastic.

But as we will see later, on typical instances in computer vision, the primal-dual
algorithm clearly outperforms both electrical flow algorithms.
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6. Graph cuts via the ROF model
In the previous chapters the graph cut problem was solved directly by minimizing the
objective function.

In this section a more ‘indirect’ approach is discussed. As we will see later the graph
cut problem is closely related to the very famous image denoising model of Rudin, Osher
and Fatemi, abbreviated as ROF model or ROF problem.

By solving a such a ROF problem one can get solutions for a whole class of graph cut
problems. This approach will be covered in this chapter.

6.1. Solving Graph Cuts via the ROF Model
The Rudin-Osher-Fatemi Total Variation model [53] (ROF model) is a well known con-
tinuous image denoising model. Presented in 1992, it was the first model that uses Total
Variation minimization in order to denoise an image. The usage of Total Variation allows
solutions with sharp discontinuities, furthermore, the calculation of a numerical solution
is possible. At this time, other models with similar properties often were very complex
and solutions could only be calculated for special cases.

For this thesis we will only consider the discretized versions of the ROF model. For a
detailed introduction of the continuous model and its properties see [18, 12].

The ROF model is a special case of a energy minimization model:

min
u

Φ(u) + 1
λ

Ψ(u, f)

where f is the noisy input image and λ ∈ R. The function Φ(u) is called the regular-
ization term and measures on how likely it is that u is an actual image. The function
Ψ(u, f) is the data term and ensures that the solution does not differ too much from the
input image.

One version of the discretized ROF model is:

min
u∈RM×N

∑
i,j

√
(ui,j − ui+1,j)2 + (ui,j − ui,j+1)2 + 1

2λ‖u− f‖
2
F

Where ‖·‖F is the Frobenius norm, i.e. ‖x‖F :=
√∑

x2
i,j. Since, this formulation is not

differentiable the s.c. anisotropic Total Variation, given a

min
u∈RM×N

∑
i,j

|ui,j − ui+1,j|+ |ui,j − ui,j+1|+
1

2λ‖u− f‖
2
F
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is used. Or written in matrix-vector form

min
u
‖∇u‖1 + 1

2λ‖u− f‖
2
F (6.1)

where ∇ is the backward-difference operator.
In the following the images will not be seen as elements from the space RM×N but as

elements from space RMN . In particular this allows to use the euclidean norm instead
of the Frobenius norm.

Now, with the same notation and properties for J as in section 4.4 a slightly more
abstract version (called the abstract ROF model) of this problem is considered:

min
x∈Rn

J(y) + 1
2λ‖G− x‖

2
2 (ROF)

In the rest of this section the link between the problems (ROF) and the graph cut
problem (Ps), from section 4.4, is established. The original proof is from Chambolle [14].
Recall that (P̄s) denotes the relaxed version of problem (Ps).

Proposition 2 (Chambolle [14] Proposition 3).

(i) Let x be a solution of (ROF) then [x > s] and [x ≥ s] is a solution of (P̄s)

(ii) Let x be a solution of (P̄s) and w a solution of (ROF), then

xi = 1⇒ wi ≥ s

xi = 0⇒ wi ≤ s

In particular this proposition allows to solve the problems (P̄s) for all s ∈ R by solving
the problem (ROF). On the other hand given the solutions of (P̄s) for all s the solution of
(ROF) can be deduced. While solving the problem for all s is not practically, Chambolle
showed how to get some approximation if one allows some restrictions of the ROF Model.

For the proof of Proposition 2 another result is needed

Proposition 3 (Chambolle [14], Lemma 1). Consider two problems of the form (P̄s):

(i) x∗ = arg minx∈[0,1]n λJ(x) + 〈s−G1, x〉

(ii) y∗ = arg minx∈[0,1]n λJ(x) + 〈s−G2, x〉

with G1
i ≥ G2

i , i = 1, . . . , n. Then x∗i ≥ y∗i , i = 1, . . . , n.

The proof of this lemma requires further properties of J and is therefore omitted in
this thesis, see again [14].

Notation 6. In the next proof problems of the form (Ps) with different values for s will
be considered, therefore, for a t ∈ R the term (Pt) simply means substituting t for s in
Problem (Ps).
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Sketch of proof. (of Proposition 2) First a simple fact about the solutions of (P̄s) for
different s. Let s > s′ and x∗ be a solution of (P̄s) and y∗ a solution of (P̄s′) then

(Ps′) = min
x∈[0,1]n

λJ(x) + 〈s− (s− s′ +G)︸ ︷︷ ︸
:=G′

, x〉

and it follows

s > s′ =⇒ G′ > G
Prop.3=⇒ y∗ ≥ x∗

Now lets define w = (w1, . . . , wn) as follows

xi := sup
{
t ∈ R

∣∣∣∃z solution of (Pt) with zi = 1
}

In order to prove (i) it has to be shown that [x > s] is a solution of (Ps) for all s:

(a) xi < s then there is no solution y of (Ps) with yi = 1, or in other words for all
solutions of (Ps) it follows that yi = 0.

(b) Let xi > s then one can find a v such that wi > v > s where (Pv) has a solution
y with yi = 1 (since xi is a supremum v can be arbitrarily close to wi) since v > s
it follows that x ≥ y for all y solutions of (Ps) in particular xi ≥ yi = 1.

If xi = s, than also [x ≥ s] is a solution.
Now for (ii) it has to be shown that w is a solution of (ROF ):

For a x ∈ Rn let s′ := mini xi, now the following relation is given:∫ ∞
s′

(s−Gi)[xi > s]ds =
∫ xi

s′
s−Gids = 1

2
(
(xi −Gi)2 − (s′ −Gi)2

)
writting this relation in vector notation and adding λJ(x) (recall that J(x) = 0 if xi = 0
for all i) yields: ∫ ∞

s′
λJ([x > s]) + 〈s−G, [x > s]〉ds =

λJ(x) +
∫ ∞
s′
〈s−G, [x > s]〉ds =

λJ(x) + 1
2‖x−G‖2 −

1
2‖s

′ −G‖2

Since we assumed that (i) holds, [x > s] solves (Ps) for all s this means that the left-
hand side is minimized, therefore, the right-hand side is minimized, but this is exactly
the problem (ROF ) (plus some constant term).
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(a) Input image (b) Graph cut solution

(c) ROF solution

Figure 6.1.: Solving a graph cut problem via ROF model

The problem (P0) is case equal to the other problem formulations given earlier. One
advantage of this problem formulation is that the objective function is uniformly con-
vex, this allows the use of the special version of the primal-dual algorithm with faster
convergence. Furthermore, another, very fast, method for solving ROF model is given
later in this thesis in Section 6.3. Of course on the other hand it is clear that solving
the ROF problem is not easier than solving a graph cut.
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6.2. Primal-dual for ROF problem
The primal-dual algorithm is well suited for minimizing problems like (ROF) or one of
its concrete version, like the problem in (6.1). Note that in the classical ROF problem
the underlying graph is 4-connected and all binary weights are 1. Since the previous
results hold for the abstract ROF model one can easily use this method for arbitrary
weighted graphs by defining J(x) :=

∥∥∥diag(wb)Bx
∥∥∥

1
.

Formulating the ROF Problem as a saddlepoint problem by defining:

F (Kx) := J(x) G(x) := 1
2λ‖x− w

u‖2

The primal-dual algorithm requires the proximal maps of F ∗ and G. Since F is the same
as in the (5.1) the proximal map is again a projection onto [−wb, wb]

The proximal map of G is given as:

proxτG(x) = λx+ τwu

λ+ τ

Hence, the update steps areyk+1 = P [−wb,wb]n(yk + σB(2xk − xk−1))
xk+1 = (λxk−λτ(Btyk+1+wu)+τwu)/(λ+τ)

Furthermore G is uniformly convex with parameter 1
λ

which allows the usage of the
faster primal-dual algorithm, given in Algorithm 11.

Definition 40. (uniformly convex)
A convex function f is called uniformly convex with parameter µ if ∀x, y of the domain
of f and ∀λ ∈ [0, 1]

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− λ(1− λ)µ(‖x− y‖)

holds.
This is a generalization of the concept of strong convexity.

This algorithm has a convergence rate of O(1/k2) which is a large improvement over
the convergence rate of O(1/k) of the standard algorithm.

6.3. Block coordinate descent and 1D TV minimization
In the following section another approach for solving the ROF problem will be discussed.
This approach uses block coordinate descent, which is a well known optimization tech-
nique, see for instance [2]. The main idea of block coordinate descent is to split up the
variables into blocks and optimize each block individually.
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Algorithm 11 Primal-dual algorithm for uniformly convex F or G
1: choose σ0, τ0 > 0, σ0τuL

2 ≤ 1
2: choose (x0, y0) ∈ X × Y
3: x̄0 = x0, k = 0
4: while not converged do
5: yk+1 = (I + σn∂F

∗)−1(yk + σkKx̄
k)

6: xk+1 = (I + τk∂G)−1(xk − τkKtyk)
7: θk = 1/√1+γτk
8: τk+1 = θkτk
9: σk+1 = σk/θk

10: x̄k+1 = xk+1 + θk(xk+1 − xk)
11: k ← k + 1

The following method for solving the ROF Problem is based on the work of Chambolle
and Pock [16].

If the underling graph is a 4-connected image, the ROF model, in terms of total
variation can be written as

min
u
λJ(u) + 1

2‖G− u‖
2
2 = min

u
λTV (u) + 1

2‖G− u‖
2
2 (6.2)

Furthermore, only the case λ = 1 will be considered since for graph cuts only this case
is of interest.

Recall that the anisotropic version of the total variation is given as

TV (u) :=
∑
i,j

|ui+1,j − ui,j|+ |ui,j+1 − ui,j|

This allows to split up into the horizontal and the vertical total variation:

TVh(u) :=
∑
i,j

|ui,j+1 − ui,j| =
∑
i

∑
j

|ui,j+1 − ui,j|

TVv(u) :=
∑
i,j

|ui+1,j − ui,j| =
∑
j

∑
i

|ui+1,j − ui,j|

which allows us to rewrite problem in (6.2) as:

min
u

TVh(u) + TVv(u) + 1
2‖G− u‖

2
2

and introducing two additional variables for u, the following constrained problem is
obtained:

min
u,u1,u2

TVh(u1) + TVv(u2) + 1
2‖G− u‖

2
2

s.t. u1 = u, u2 = u
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The standard technique for solving such a constrained optimization problem is to add
Lagrangian multipliers (p1 and p2), which will transform the problem into:

max
p1,p2

min
u,u1,u2

TVh(u1) + TVv(u2) + 1
2‖G− u‖

2
2 + 〈u− u1, p1〉+ 〈u− u2, p2〉 (6.3)

Now it can be observed that the terms containing u1 do not depend on terms containing
u2 which allows to group them and minimize separately.

Furthermore, the minimization problem for u1 is the convex conjugate of the total
variation, i.e.

min
u1

TVh(u1)− 〈u1, p1〉 = −max
u1
〈u1, p1〉 − TVh(u1) = −TV∗h(p1)

and analog for u2, p2. This allows to write (6.3) as:

max
p1,p2

min
u
−TV∗h(p1)− TV∗v(p2) + 〈u, p1 + p2〉+ 1

2‖u−G‖
2
2

Minimizing for u is simple, since the optimality condition is given by

(p1 + p2) + u−G = 0

and expressing u in terms of p1, p2 and G the problem becomes

max
p1,p2
−TV∗h(p1)− TV∗v(p2) + 〈G, p1 + p2〉 −

1
2‖p1 + p2‖2

2

By changing from the maximization problem to the minimization problem (by multiply-
ing with −1) and adding a constant factor of 1

2‖G‖
2
2 on gets:

min
p1,p2

TV∗h(p1) + TV∗v(p2) + 1
2‖(p1 + p2)−G‖2

2

Compared to the original problem this one does not has any constraints.
Using the idea of coordinate descent the idea is now to alternately minimize for p1

and p2, i.e. for p1 (and analog for p2)

pnew1 = arg min
p1

TV∗h(p1)︸ ︷︷ ︸
:=f(p1)

+ 1
2‖p1 + (p2 −G)‖2

2︸ ︷︷ ︸
:=g(p1)

+ TV∗v(p2)︸ ︷︷ ︸
:=c

(6.4)

since the last term is constant it can be dropped.
The general method of splitting the variables into blocks and optimize each of these

blocks alternatively converges with sublinear rate of O(1/n)[2].
But first one wants to get rid of the dual of the TV, or at least do not explicitly

calculate it. Problems of the form minx f(x) + g(x) (where f convex, g smooth, convex
and with Lipschitz continuous gradient L) can be solved by the s.c. proximal gradient
algorithm [63]. The iterates of this algorithm are very simple and given by:

xk+1 = proxtf (xk − t∇g(xk))
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6. Graph cuts via the ROF model

this algorithm converges for t ∈ (0, 2/L). The advantage of an iteration step of this form
is that, with the help of the Moreau identity, one can circumvent the explicit calculation
of the convex conjugate of the total variation:

proxTV∗h
(x) = x− proxTVh(x) = x−

(
arg min

y

1
2‖x− y‖

2
2 + TVh(y)

)

The gradient of problem (6.4) is ∇g(p1) = p1 + p2 − G and its Lipschitz constant is 1,
therefore, an iteration step of the proximal point algorithm is given by:

pk+1
1 = (G− pk2)− arg min

y

[1
2
∥∥∥y + pk2 −G

∥∥∥2

2
+ TVh(y)

]
As one easily can observe this update step now is again a ROF problem.

The whole procedure for alternatively optimize for p1 and p2 is shown in Algorithm 12.

Algorithm 12 Block coordinate for the ROF problem
1: k = 0, choose p0

1, p0
2

2: while not converged do
3: pk+1

1 = (G− pk2)− arg miny
[

1
2

∥∥∥y + pk2 −G
∥∥∥2

2
+ TVh(y)

]
4: pk+2

2 = (G− pk1)− arg miny
[

1
2

∥∥∥y + pk1 −G
∥∥∥2

2
+ TVv(y)

]
5: k ← k + 1

return u← G− (pk1 + pk2)

Moreover these update steps in line 3 and 4 can be simplified further since:

arg min
y

1
2‖y + p2 −G‖2

2 + TVh(y) =

arg min
y

∑
i,j

1
2(yi,j + (p2)i,j −Gi,j)2 +

∑
i,j

|yi,j+1 − yi,j| =

∑
i

arg min
y

∑
j

1
2(yi,j + (p2)i,j −Gi,j)2 + |yi,j+1 − yi,j| (6.5)

Equation (6.5) indicates that the update steps are now reduced to multiple indepen-
dent 1-dimensional ROF problems. These independent problems can easily be solved in
parallel.

The 1-dimensional ROF problem is a special case of of the s.c. Fused Lasso Signal
Approximator (FLSA) [26] and there exists various methods for this problem, see for
instance [31, 21].

The proximal gradient algorithm has a convergence rate of O( 1
k
) but there exists a

accelerated version called FISTA [3] which has a convergence rate of O( 1
k2 ) and as shown
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6. Graph cuts via the ROF model

Algorithm 13 Accelerated block coordinate for the ROF problem
1: k = 0, choose: p0

1, p0
2 = p−1

2 , t1 = 1
2: while not converged do
3: tk+1 = (1+

√
1+4(tk)2/2

4: p̄k2 = pk2 + tk−1/tk+1(pk2 − pk−1
2 )

5: pk+1
1 = (G− p̄k2)− arg miny

[
1
2

∥∥∥y + p̄k2 −G
∥∥∥2

2
+ TVh(y)

]
6: pk+1

2 = (G− pk1)− arg miny
[

1
2

∥∥∥y + pk1 −G
∥∥∥2

2
+ TVv(y)

]
7: k ← k + 1

return u← G− (pk1 + pk2)

by Chambolle and Pock block coordinate descent methods can also be accelerated in a
FISTA like manner, if the problem is splitt into exactly two blocks [16]. This allows to
accelerate Algorithm 12 which results in Algorithm 13.

The decomposition into the blocks is arbitrary and not restricted to blocks containing
the vertical and horizontal chains. In their paper Chambolle and Pock also presented a
version for the ROF model with squares instead of chains.

While convergence of the accelerated algorithm is only guaranteed for two blocks we
will later see that decomposing 8-connected graphs into four blocks also yields promising
results and all the examples converge.

These 8-connected graphs will be decomposed into four blocks. Same as for 4-
connected graphs one block will contain all vertical, one block all horizontal weights.
Furthermore, two additional blocks one containing the ‘northeast’ weights and the other
containing the ‘northwest’ weights are used. See figure 6.2 for an illustrations of this
decomposition.

Furthermore, experiments for 6-connected graphs, representing three dimensional rect-
angular boxes, will be performed. These graphs are decomposed into three blocks, each
block grouping all weights in a specific direction, i.e. one block for all edges in x-direction,
etc.

The Algorithms 12 and 13 only gave the steps for two blocks, now if l blocks are use
one get variables p1, . . . , pl and the update steps for this variables, in these Algorithms
will become:

pk+1
i =

(
G−

l∑
j=1,j 6=i

pkj

)
− arg min

y

[
1
2

∥∥∥∥∥∥y +
l∑

j=1,j 6=i
pkj )−G

∥∥∥∥∥∥
2

2

+ TVv(y)
]

In the accelerated verion the extrapolation step has to be performed for all variables
beside p1.
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6. Graph cuts via the ROF model

(a) Vertical and horizontal chains (b) Diagonal chains

Figure 6.2.: The different blocks for the block coordinate descent algorithm
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7. Experiments and Discussion
In this last chapter of the thesis the previously described algorithms are evaluated and
the results are presented. Afterwards this results are discussed and interpreted.

7.1. Experiments
In this sections the results of the primal-dual algorithm, the global relabeling method and
the block coordinate descent algorithm are presented and compared to the algorithm of
Boykov and Kolmogorov[8], which is considered one of the fastest algorithm for computer
vision problems.

7.1.1. Details
Implementation details

For the experiments Walter Bell’s implementation of Boykov’s and Kolmogorov’s algo-
rithm was used. The code is available at his homepage [4]. This algorithm requires
integer weights, therefore, the weights were scaled such they to lie in the interval [1, 256]
and rounded.

For the sake of readability the algorithm of Boykov will be denoted by boy, the stan-
dard primal-dual algorithm is denoted as pd and the primal-dual algorithm with global
relabeling as pd-gr . The block coordinate descent algorithm is denoted by bc and its
accelerated version as bc-ac.

The algorithm are implemented in MATLAB(R) 2013a and the (time) critical parts
were implemented in C/C++. The operating system was Debian 7 (wheezy) and as
compiler GNU g++ 4.7.2 was used.

The experiments are performed on a computer with two Intel® Xeon® CPU X5680
with 3.33GHZ, therefore in total 12 physical cores could be used.

While the CPU’s offer 24 logical cores (and the operating system reports 24 cores)
using more than 12 cores does not provide any speedups and actually resulted in an
increased runtime.

For parallelization the Open MP library was used.
For the 1-dimensional TV optimization the algorithm of Johnson [31], which has linear

runtime, was used.
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7. Experiments and Discussion

Input data

For the 4-connected and the 8-connected problem instances binary weights (wb) and
the unary weights (ws, wt) were calculated from an input image f ∈ [0, 1]MN with the
following functions:

wti := af 2
i

wsi := a(fi − 1)2

wbi := exp(−b |(Bf)i|)

where a = 1 and b = 20. As input some old standard classic test images were used [20].
Since this collection do not contain high resolution images some additional images
from [50] were used.

Some tests with 6-connected graphs were performed as well. As input the ‘Bunny’
dataset used by Lempitsky et al. [43] and the ‘Liver’ datasets used by various papers of
Boykov et al. [9] were used. Both datasets can be found at on the homepage of Computer
Vision Research Group at the University of Western Ontario [47].

7.1.2. 4 and 8-connected graphs
In Table 7.1 the number of iterations of the block chain algorithm and the primal-dual
algorithms were compared. Table 7.2 compares the running times of the block coordinate
descent algorithms to the algorithm boy (note that this algorithm is single threaded).

bc-ac bc pd-gr
birds 192x128 1 1 53

384x256 1 1 102
768x512 4 7 102

1536x1024 4 7 202
pedestrian 192x128 46 169 446

384x256 28 101 345
768x512 55 137 421

1536x1024 - - 2302
birds 192x128 2 2 60

384x256 2 2 56
768x512 3 3 102

1536x1024 7 13 202
pedestrian 192x128 10 23 202

384x256 45 311 502
768x512 65 387 902

1536x1024 - 4782 1692

Table 7.1.: Comparisons of the number of iterations, the first half of the table are 4-
connected graphs and the second half 8-connected, the algorithm was stopped
after 5000 iterations
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7. Experiments and Discussion

In order to decrease the runtime, the solution of the 2-dimensional ROF problem was
only calculated after every 100 iterations. Therefore, the stopping criterion of these
algorithms were only evaluated every 100th iteration.

8 connected 4 connected
#cores boy bc-ac bc pd-gr pd boy bc-ac bc pd-gr pd

1 0.55 7.80 14.50 56.04 463.36 0.25 3.17 5.87 13.41 76.18
3 3.49 6.58 42.89 362.95 1.14 2.17 13.09 75.90
6 1.99 3.53 41.79 426.47 0.85 1.54 22.74 134.80
12 1.78 2.50 57.51 378.56 0.53 1.01 15.50 84.25

Table 7.2.: Number of cores vs runtime in seconds, the input image had a resolution of
512x512

In Table 7.3 the performance of the global relabeling method for different relabeling
intervals is shown.
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7. Experiments and Discussion

I
100 max(I,J)/2 max(I,J) primal-dual

birds 192x128 53 53 53 53
384x256 102 194 307 307
768x512 102 265 265 265

1536x1024 202 770 929 929
3072x2048 202 1082 1082 1082

pedestrian 192x128 446 482 415 4328
384x256 345 386 770 1519
768x512 421 770 1538 2801

1536x1024 2302 1700 3188 14296
3072x2048 4602 3074 6146 15810

birds 192x128 60 60 60 60
384x256 56 56 56 56
768x512 102 342 342 342

1536x1024 202 609 609 609
3072x2048 225 1538 1616 1616

pedestrian 192x128 202 194 194 217
384x256 502 578 770 4109
768x512 902 1154 1538 5755

1536x1024 1692 2306 3074 4139
3072x2048 1202 4610 6146 12900

Table 7.3.: Table showing the number of iterations until the global relabeling algorithm
converges. I is the number of primal-dual steps until the next relabeling
step is performed. The rightmost column gives the number of iterates the
standard primal-dual algorithm without relabeling needs. The upper half of
the table are 4-connected problems and the lower half 8-connected problems.

87



7. Experiments and Discussion

7.1.3. 6-connected graphs
For the small version of the ‘bunny’ dataset the accelerated block coordinate descent
algorithms performed over 26800 iterations until the optimal cut was found. At this time
the primal-dual gap of the ROF problem was less then 10−15. But the non accelerated
version found the optimal value after 1000 iterations. Nevertheless, the 1000 iterations
took around 45 seconds while algorithm boy needed a little bit more than one second.
For the larger instances both versions of the block coordinate descent algorithm did not
find the optimal solution within 40000 iterations.

7.1.4. (1 + ε)-Approximations
In Section 5.4 a bound of the number of iterations the primal-dual algorithms needs for a
(1 + ε) approximation. As seen in table 7.4 this bound is very crude for computer vision
instances. Nevertheless, table 7.4 shows that the primal-dual algorithm only needs very
few iterations in order to calculate a (1+ε)-approximate solution for reasonable ε values.

ε
0.1 0.01 0.001 N

airplane 16x16 6 37 55 29.9176 · ε−1

32x32 6 51 101 51.2702 · ε−1

64x64 8 36 81 53.0279 · ε−1

128x128 9 39 69 53.6555 · ε−1

256x256 9 40 98 53.5296 · ε−1

512x512 10 46 151 53.4626 · ε−1

Table 7.4.: Number of iterations for different ε. The value in the last column is the
theoretical bound from Section 5.4 (for the different sizes the cut values are
different, which explains why the theoretical bounds are nearly the same)

88



7. Experiments and Discussion

(a) Input Image (b) Optimal solution

(c) 1.1-approximation (d) Difference 1.1-approximation and optimal
solution

Figure 7.1.: (1 + ε)-Approximation Example, for ε = 0.1

7.2. Discussion
In this section the experimental results from the previous section are discussed. First
some notes are given about the primal-dual algorithm and global relabeling. Afterwards
the approach of solving graph cuts via the ROF model are discussed and in particular
some numerical problems with block coordinate decent approach are addressed.
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7.2.1. Primal-Dual algorithm and Global Relabeling
As one can clearly see from table 7.3 global relabeling provides a huge improvement over
the standard primal-dual algorithm regarding iterations and of course also the runtimes
are much better as table 7.2 indicates.

During the experiments a relabeling step was performed every 100 iterations, since
this offered better convergence speed, see table 7.3. If relabeling steps are performed
after max(M,N) iterations, for some resolutions, the algorithm already fully converged
before the first relabeling step takes place.

In general the global relabeling algorithm can not compete with the highly optimized
algorithm boy. The reason why the primal-dual algorithm is extensively used in com-
puter vision is due to the fact that it can easily be parallelized on GPUs which offers a
huge speed-up compared to a standard CPU implementation. For a discussion see for
instance [62].

7.2.2. The ROF model and block coordinate descent
One problem of this approach is that one has no control over the cut energy for a specific
value of s. In other words while the primal-dual gap of the ROF problem is decreasing
no information about the energy of the cut value (beside thresholding and calculating
manually) is known.

Furthermore, the rate of convergence of the cut energy is unknown, only if the ROF
problem is solved exactly the cut is solved exactly. While the current ROF solution can
be close to the optimal solution, the cut obtained by thresholding can be arbitrarily
large. Figure 7.2 illustrates this property.

Especially entries of the ROF solution close to 0 are critical since a small change in
the ROF solution could severely change the cut solution. Since, for practical reasons,
all calculation are performed with finite precision floating point numbers, this problem
is hard to come by.

The plots in Figure 7.3 illustrate this fact by showing how the energy of the cut can
advance while solving the ROF model on the left side. On the right side the number of
labels changing from one partition to the other is shown.

The first example is a ‘good’ one, the energy of the cut is slowly decreasing until
the optimum is reached. The energy in the second example again decreasing fast but
then for over a quarter of the total iterations, nothing happens. Between iteration 1250
and iteration 2000 the solution does not change but the optimal value is not reached
ether. Contrary in the third example the optimum is found quite fast and shortly
before reaching the optimal solution a lot of change happens. The last example is a
combination between the second and third example. At the beginning fast convergence
can be observed, afterwards there is no change and at the end a lot of labels are changing.
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Figure 7.2.: Difference between cut energy and the optimal value and the primal-dual
gap of the ROF problem, note that the optimal solution would be found
at iteration 15600 but is lost afterwards, nevertheless the gap of the ROF
problem gets decreased

Block Coordinate Descent

The ROF problem is always solved much faster by the accelerated version of the Block
Coordinate Descent algorithm. In a few rare cases it happens that the non-accelerated
algorithm finds the optimal cut faster than the accelerated algorithm.

In general, at the beginning of the algorithm, the cut value is decreasing faster for the
accelerated version, but the optimal value is not exactly reached. This is probably due
to the fact that the ROF gap is decreased very fast but afterwards the changes of the
ROF solution are getting very small, therefore it is unlikely for some variable to change
from being larger to being smaller than the threshold value.

For 4 and 8-connected graphs the Kahan summation algorithm[32] had to be used for
the calculation of the primal and dual energy. Without this summation algorithm the
primal-dual gap was severely wrong and even got negative. As seen in table 7.1 there
are again instances which are solved immediately and instances which are not solved
after 5000 iterations.

Since the 6-connected problem instances are much larger ( 5 million vertices) these
instances are more sensible to numerical errors. This is further illustrated by the fact,
that the difference between the primal energy, calculated with the Kahan summation
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algorithm and without can be as large as 1.
Nevertheless, as seen in table 7.2, for smaller instances the block coordinate descent

methods are very fast. For the 4-connected problem the runtime of boy is twice as fast
and there clearly is hope that with around 24 physical cores the runtimes are nearly the
same.
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Figure 7.3.: On the left the cut values during the algorithm and on right side the number
of labels changing from one partition into the other. Note that the values
for first two hundred iterations are not ploted. For all four examples the
input was a 4-connected 512x512 grid graph
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Conclusion

In the first part two algorithms for approximating graph cuts were pre-
sented. While these algorithms have a superior asymptotic running time,
the experiments showed that even for very small computer vision instances
the computations are very time-consuming and can not compete with other
algorithms. This indicates that the runtime constants are very high and the
used problem sizes were to small. For increased problem sizes these algo-
rithms may become more competitive. Another drawback of the algorithm
of Lee et al. is that the algorithm is only suitable for problems where all
weights are set to the same value, which is a very strong restriction.

In the second part the primal-dual algorithm of Chambolle and Pock was
presented and it was shown that global relabeling clearly improves the per-
formance of this algorithm. Furthermore, it was shown how one can obtain
a graph cut solution by solving the Rudin-Osher-Fatemi functional. Solving
this functional with accelerated coordinate descent method, which can be
parallelized easily, is a competitive approach compared to state of the art
graph cut algorithms for computer vision problems. Unfortunately, for very
large problem instances numerical instabilities could be observed.
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A. Appendix

A.1. Multiplicative weights update method
In this section a short overview over the multiplicative weights update method (MWU)
is given. According to Christiano et al. their algorithm uses the MWU framework, but
it is more a ‘is inspired by’. The basic idea was used for some time and in different
contexts (e.g. ADA Boost, . . . ) but the method was first generalized by Arora et al. [1].

A.1.1. The general framework
The every abstract setting for the MWU Framework is the following: There are random
event and there are experts who can make predictions about the outcomes of these
events. The quality of the experts differs, meaning that some experts make more accurate
predictions than others. In order to achieve good prediction accuracy one is interested
in identifying experts with high prediction accuracy.

Therefore, a weight is assigned to each expert, this weight corresponds to the (esti-
mated) quality of the expert, i.e. experts with high weights are supposed to make more
accurate predictions. Furthermore it is assumed that at the beginning no information
about the quality of the experts is known, therefore, the weights are the same for each
expert.

If a prediction about the upcoming event is needed, based on the weights an expert
is chosen to make this prediction.

After the event happened and the outcome is known the weights of the experts are
adjusted. If a expert would have made a wrong prediction then its weight is decreased
and if the prediction would have been correct the weight is increased. If this is iterated
for multiple events and their outcomes one can identify the reliable experts.

In order to formalize this idea let us define the following variables and functions. The
number of experts is denoted by n and the number of all possible outcomes is denoted
by m. The MatrixM∈ Rn×m is the so called penalty matrix or penalty function where,
M(i, j) denotes the penalty for expert i if the output of the event is j. Furthermore, it
is assumed the values of M(i, j) are bounded by the width ρ:

M(i, j) ∈ [−l, ρ], 0 < l ≤ ρ, ∀i, j

Note that the penalty can be positive as well, in this case the term ‘reward’ would be
more adequate.

The variable t is used to indicate the number of the iteration. The weights, assigned
to the experts after t iterations, are denoted by wt := (wt1, wt2, . . . , wtn). As mentioned
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above a random expert is chosen to make the prediction about the outcome of event
t. The probability distribution is given by pt := wt/

∑n

j=1 w
t
j, therefore expert i is chosen

with probability pti = wti/
∑n

j=1 w
t
j

All the distributions grouped together are denoted by Dt := (pt1, . . . , ptn).

Algorithm 14 Multiplicative Weights Update method
1: while t > 0 do
2: pick expert according to Dt to predict outcome of the next event
3: let jt denote the acutal outcome . the real outcome
4: for all i ∈ {1, . . . , n} do . update all weights
5: if M(i, jt) ≥ 0 then
6: wt+1

i ← wti(1− ε)
M(i,jt)/ρ . punish

7: else
8: wt+1

i ← wti(1 + ε)−M(i,jt)/ρ . reward

The multiplicative updates in line 6 and line 8 explain the name of the algorithm. In
order to have a measurement of the quality of the prediction at iteration t one can define
the s.c. ‘expected penalty for outcome jt’. This is denoted by M(Dt, jt) and simple is
defined as:

M(Dt, jt) :=
n∑
i=1

ptiM(i, jt)

Analog the ‘expected total loss’ after T rounds is given by ∑T
t=1M(Dt, jt)

Theorem 18 (Main theorem of MWU, Arora et al. [1]). For given ε ≤ 1/2 and for any
expert i. After T rounds the expected total loss can be bounded by:

T∑
t=1
M(Dt, jt) ≤ ρ lnn

ε
+ (1 + ε)

∑
1≤t≤T
M(i,jt)≥0

M(i, jt) + (1− ε)
∑

1≤t≤T
M(i,jt)<0

M(i, jt)

Remark 1. Theorem 18 also holds if the update step in algorithm 14 is formulated as

wt+1
i = wti(1− εM(i, jt))

In the following section the following corollary of theorem 18 will be used:

Corollary 6 (Arora et al. [1]). Let δ > 0 and ε = min( δ
4ρ ,

1
2). After T = 16ρ2 ln(n)

δ2

iterations for every expert i the following bound holds:∑
tM(Dt, jt)

T
≤ δ +

∑
tM(i, jt)
T

For proofs of Theorem 18 and corollary 6 see [1].
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A.1.2. Solving Linear Programs via MWU Framework
One application of the MWU is to approximately solve linear programs, this method
goes back to Plotkin et al. [49]. The algorithm of Christiano uses a similar results but
with quite different proofs. The following method is given for completeness and may
provide some structural insights.
The general question is if there exists a x ∈ Rn, such that

Ax ≥ b x ∈ P
where A ∈ Rm×n and P is a convex set.
Furthermore, we assume that there exists an oracle which answers the question if a
x ∈ P exists, such that

ctx ≥ d (A.1)
where c = ∑m

j=1 pjAj (Aj is row j of A) and d = pibi for a probability distributions
(p1, . . . , pm) and i ∈ {1, . . . ,m}. Therefore, one can rewrite (A.1):

m∑
j=1

pjA
t
jx =

m∑
j=1

pj(Ax)j ≥ pibi (A.2)

Since one is interested in an approximation the goal is to compute a solution x ∈ P ,
with Aix ≥ bi − δ or conclude that no such x exists, for some small δ.

The overall task is still to find a x satisfying all the constraints, whereas the oracle
only has to find a x satisfying one constraint, which in general is easier to accomplish.
This oracle will be queried multiple times with different constraints.

In the MWU terminology of experts and events, the experts corresponds to the con-
straints and the events corresponds to x. A experts prediction is correct if the constraint
is satisfied, therefore, the penalties for expert i and event x is Aix− bi, i.e. the amount
of how much a constraint is violoated. Furthermore, the penalties have to be restricted
to [−ρ, ρ]. This is done by requiring the oracle to yield solutions x that satisfies this
property.

Now the MWU-algorithm is run for T iterations and in each iteration the oracle is
called with c = ∑

i piAi and d = ∑
i pibi, if the oracle fails at some iteration, the return

value is fail. If all oracle calls returned a xt then Corollary 6 with ε = δ
4ρ yields,∑T

t=1
∑
j(Ajxt − bj)
T︸ ︷︷ ︸
≥0

≤ δ +
∑T
t=1(Aixt − bi)

T

which implies that Ai
∑T
i=1

xt/T ≥ bi − δ and ,therefore, x̄ := ∑T
i=1

xt/T is the desired
approximate solution. On the other hand, if the oracle does not find a solution then one
can assume that the system is infeasible. For a detailed proof see the paper of Arora et
al..

A closer look reveals that if the penalty for expert i is greater than zero, this means
the constraint is fulfilled, the weight is decreased. On the other hand if the constraint
is violated the weight gets increased. Therefore, violated constraints are getting more
critical in (A.2).
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A.2. Nesterov’s Accelerated Gradient Descent Method
This section gives a short overview of Nesterov’s Accelerated Gradient Descent Method.
This is a accelerated Gradient descent method, i.e. it takes modified gradient steps and
converges faster.

Basically, minimization problems of the following form are considered

min
x∈Rn

f(x) (P1)

where f is smooth, convex, differentiable and the gradient has Lipschitz constant L. The
standard method for (iteratively) solving problems of this form is ‘gradient descent’. The
main idea of gradient descent is that (in some neighbourhood of x) the gradient of f at
a point x points into the direction of the strongest ascent. Therefore, a (small) step in
the opposite direction of the gradient would yield the strongest descent of the function.

Algorithm 15 Gradient descent
choose x0 and a stepsize α
while not converge do

xi+1 = xi − α∇f(xi)

It is well known that this algorithm converges for α ∈ (0, 2/L) with convergence rate
O(1/k), see for instance[63].

In Nesterov’s Accelerated Gradient Descent Method the steps of Algorithm 15 are
modified and a momentum step is added.

Algorithm 16 Nesterov’s Gradient method
function NESTEROV(∇f, L, c, T, x0)

set i = 0, z0 = x0 and choose a stepsize α
while i < T do

xi+1 = zi − 1/L∇f(zi)
if c = 0 then

αk+1 = (1+
√

4α2
k
+2)

2
zk+1 = xk + αk−1

αk+1
(xk − xk−1)

else
zk+1 = xk +

√
L−√c√
L+
√
c
(xk − xk−1)

return xT

The parameter c denotes the strong convexity parameter of f . In general this algo-
rithm has a convergence rate of O(1/k2) which already is a huge improvement over the
simple gradient descent method. The algorithm converges even faster if f is strongly
convex with parameter c > 0. In this case after O(log 1/ε) iterations the absolute error
is less than ε. Furthermore, if only a ε approximation is required one can bound the
number of necessary iterations:
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Theorem 19 (Nesterov). Let f : Rn → R, L the Lipschitz parameter of ∇F and c > 0
the strong convexity parameter. Let x∗ be the optimal solution of (P1) and x0 some
initial vector. Algorithm 16 produces a vector xT with

f(xT )− f(x∗) ≤ ε

after

T = min
2
√
L

ε
‖x0 − x∗‖2,

√
L

c
log

(
4‖x0 − x∗‖2

ε

)
iterations.
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