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Abstract

With this thesis we try to determine the feasibility of detecting face-to-face
social interactions based on standard smartphone sensors like Bluetooth,
Global Positioning System (GPS) data, microphone or magnetic field sen-
sor.

We try to detect the number of social interactions by leveraging Mobile Sens-
ing on modern smartphones. Mobile Sensing is the use of smartphones as
ubiquitous sensing devices to collect data. Our focus lies on the standard
smartphone sensors provided by the Android Software Development Kit
(SDK) as opposed to previous work which mostly leverages only audio sig-
nal processing or Bluetooth data.

To mine data and collect ground truth data, we write an Android2 app that
collects sensor data using the Funf Open Sensing Framework[1] and addi-
tionally allows the user to label their social interaction as they take place.

With the app we perform two user studies over the course of three days with
three participants each. We collect the data and add additional meta-data for
every user during an interview. This meta-data consists of semantic labels
for location data and the distinction of social interactions into private and
business social interactions. We collected a total of 16M data points for the
first group and 35M data points for the second group.

Using the collected data and the ground truth labels collected by our partici-
pants, we then explore how time of day, audio data, calendar appointments,
magnetic field values, Bluetooth data and location data interacts with the
number of social interactions of a person. We perform this exploration by
creating various visualization for the data points and use time correlation to
determine if they influence the social interaction behavior.

2http://en.wikipedia.org/wiki/Android_(operating_system)
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We find that only calendar appointments provide some correlation with the
social interactions and could be used in a detection algorithm to boost the
accuracy of the result. The other data points show no correlation during our
exploratory evaluation of the collected data. We also find that visualizing the
interactions in the form of a heatmap on a map is a visualization that most
participants find very interesting. Our participants also made clear that la-
beling all social interactions over the course of a day is a very tedious task.

We recommend that further research has to include audio signal process-
ing and a carefully designed study setup. This design has to include what
data needs to be sampled at what frequency and accuracy and must provide
further assistance to the user for labeling the data.

We release the data mining app and the code used to analyze the data as
open source under the MIT License3

3http://opensource.org/licenses/MIT
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Zusammenfassung

Mit dieser Arbeit wird untersucht, ob es möglich ist mithilfe von Standard
Smartphone Sensoren wie Global Positioning System (GPS), Bluetooth, Mi-
krophone oder Magnetfeld-Sensor, soziale Interaktionen, die von Angesicht
zu Angesicht stattfinden, zu erkennen.

Wir versuchen die Anzahl der sozialen Interaktionen zu einem gegebenen
Zeitpunkt mithilfe von Mobile Sensing zu erkennen. Mit Mobile Sensing
wird die Nutzung von Smartphones als Ubiqutious Sensing Device bezeich-
net. Smartphones dienen hier als Data Mining Geräte. Wir konzentrieren
uns hierbei im Gegensatz zu anderen Arbeiten auf die Standard Smartpho-
ne Sensoren. Andere Arbeiten konzentrieren sich meist auf Bluetooth oder
Audio-Signalverarbeitung.

Um Daten und die Ground Truth zu sammeln, wurde eine Android4 App
erstellt, die es, neben Data Mining, unseren Probanden erlaubt ihre sozialen
Interaktionen zu dem Zeitpunkt zu markieren an dem sie stattfinden.

Mit der App führten wir zwei Nutzerstudien durch. Beide Nutzerstudien
umfassten jeweils drei Probanden und dauerten jeweils drei Tage. Zusätz-
lich wurden von allen Probanden nach der Studie noch weiter Meta-Daten
erhoben. Diese Meta-Daten waren semantische Labels für die Positionsdaten
und eine Unterscheidung der sozialen Interaktionen in Privat und Geschäft-
lich. Für die erste Gruppe wurden 16 Mio. Datenpunkte erhoben, für die
zweite Gruppe 35 Mio.

Mit den erhobenen Daten wurde der Zusammenhang zwischen Tageszeit,
Audio Signalen, Kalendereinträgen, Magnetfeld-Stärke, Bluetooth Daten, Po-
sitionsdaten und den sozialen Interaktionen untersucht. Für die Untersu-
chung wurde ein explorativer Ansatz gewählt, bei dem für jedes Datenset

4https://de.wikipedia.org/wiki/Android_(Betriebssystem)
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und den sozialen Interaktionen geeignete Visualisierungen erstellt wurden,
die die zeitliche Korrelation zwischen den Sensordaten und den Interaktio-
nen zeigt.

Unsere Resultate zeigen, dass nur Kalendereinträge teilweise mit den sozia-
len Interaktionen korrelieren. Dieser Zusammenhang könnte helfen die Ge-
nauigkeit eines Erkennungsalgorithmus zu verbessern. Alle anderen Ansät-
ze zeigten keine Korrelation während unserer Analyse. Es zeigte sich auch,
dass die Visualisierung des Zusammenhangs zwischen Ort und Anzahl der
sozialen Interaktionen in der Form einer Heatmap von den Probanden sehr
interessant gefunden wurde. Unsere Probanden fanden außerdem das La-
beln der sozialen Interaktionen sehr anstrengend und mühsam.

Wir empfehlen, dass sich weitere Arbeiten auf diesem Gebiet auf Audiosignal-
Verarbeitung konzentrieren sollten und dass eine Nutzerstudie genau ge-
plant werden sollte, im Bezug auf welche Daten in welcher Frequenz und
wie lange gesammelt werden. Die Probanden sollten auch beim Markieren
der sozialen Interaktionen durch die App unterstützt werden.

Die Data Mining App, sowie der Code der zur Analyse verwendet wurde,
ist unter der MIT Lizenz5 veröffentlicht.

5http://opensource.org/licenses/MIT

vi

http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT


Contents

Abstract iii

1. Introduction 1

2. Related work 3
2.1. Classification of Mobile Sensing . . . . . . . . . . . . . . . . . . 6

2.1.1. Sensing Scale and Sensing Paradigm . . . . . . . . . . . 6
2.1.2. Areas of Mobile Sensing . . . . . . . . . . . . . . . . . . 7

2.2. Social Interaction Detection . . . . . . . . . . . . . . . . . . . . 14

3. Problem Setting and Research Approach 19

4. Data Collection and Visualization Prototype 21
4.1. Mobile Sensing and Labeling App . . . . . . . . . . . . . . . . 21

4.1.1. Funf Open Sensing Framework . . . . . . . . . . . . . . 22
4.1.2. Data Mining App . . . . . . . . . . . . . . . . . . . . . . 23

4.2. Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . 34

5. Data Collection and Exploration Study Setup 37
5.1. Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3. Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4. Collected Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5. Interview Structure . . . . . . . . . . . . . . . . . . . . . . . . . 40

6. Results 41
6.1. Statistics about the Collected Data . . . . . . . . . . . . . . . . 41
6.2. Social Interactions Versus Time of Day . . . . . . . . . . . . . . 42
6.3. Social Interactions and Audio Energy . . . . . . . . . . . . . . 44

vii



Contents

6.4. Calendar Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.5. Magnetic Field Value . . . . . . . . . . . . . . . . . . . . . . . . 49
6.6. Bluetooth Proximity Data . . . . . . . . . . . . . . . . . . . . . 51
6.7. Location Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.8. Open Source Release . . . . . . . . . . . . . . . . . . . . . . . . 53

7. Discussion 55
7.1. Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.1. FunF Framework . . . . . . . . . . . . . . . . . . . . . . 55
7.1.2. Bluetooth Proximity . . . . . . . . . . . . . . . . . . . . 56
7.1.3. Labeling Social Interactions . . . . . . . . . . . . . . . . 57

7.2. Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 57

8. Conclusion 59

Acronyms 63

Bibliography 65

A. Description of Collected Data 71
A.1. Archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2. LabelProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.3. CalendarProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.4. WifiProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.5. AccelerometerFeaturesProbe . . . . . . . . . . . . . . . . . . . . 75
A.6. AccelerometerSensorProbe . . . . . . . . . . . . . . . . . . . . . 77
A.7. AccountsProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.8. ActivityProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.9. AndroidInfoProbe . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.10.ApplicationsProbe . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.11.AudioFeaturesProbe . . . . . . . . . . . . . . . . . . . . . . . . 81
A.12.AudioMediaProbe . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.13.BatteryProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.14.BluetoothProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.15.CallLogProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.16.CellTowerProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.17.ContactProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

viii



Contents

A.18.GravitySensorProbe . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.19.GyroscopeSensorProbe . . . . . . . . . . . . . . . . . . . . . . . 91
A.20.HardwareInfoProbe . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.21.LightSensorProbe . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.22.LinearAccelerationSensorProbe . . . . . . . . . . . . . . . . . . 93
A.23.MagneticFieldSensorProbe . . . . . . . . . . . . . . . . . . . . . 94
A.24.OrientationSensorProbe . . . . . . . . . . . . . . . . . . . . . . 94
A.25.PressureSensorProbe . . . . . . . . . . . . . . . . . . . . . . . . 95
A.26.ProcessStatisticsProbe . . . . . . . . . . . . . . . . . . . . . . . 96
A.27.ProximitySensorProbe . . . . . . . . . . . . . . . . . . . . . . . 99
A.28.RotationVectorSensorProbe . . . . . . . . . . . . . . . . . . . . 100
A.29.RunningApplicationsProbe . . . . . . . . . . . . . . . . . . . . 101
A.30.ScreenProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.31.ServicesProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.32.SimpleLocationProbe . . . . . . . . . . . . . . . . . . . . . . . . 103
A.33.SmsProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.34.TelephonyProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.35.TemperatureSensorProbe . . . . . . . . . . . . . . . . . . . . . . 107
A.36.TimeOffsetProbe . . . . . . . . . . . . . . . . . . . . . . . . . . 108

ix





List of Figures

2.1. Fields of Application of Mobile Sensing . . . . . . . . . . . . . 8

4.1. Architecture Overview of FunF . . . . . . . . . . . . . . . . . . 23
4.2. Activating an Existing Label via Autocomplete . . . . . . . . . 26
4.3. Adding a New Label . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4. Sorting the View of Unused Labels . . . . . . . . . . . . . . . . 28
4.5. Edit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6. Adding Social Interactions after they Took Place . . . . . . . . 30
4.7. Settings Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8. Data Mining Architecture Overview . . . . . . . . . . . . . . . 32
4.9. Sequence of a Labeled Interaction . . . . . . . . . . . . . . . . . 33
4.10. Developed Data Models . . . . . . . . . . . . . . . . . . . . . . 35

6.3. Sample Audio Analysis Plot . . . . . . . . . . . . . . . . . . . . 46
6.4. Correlation of Social Activity with Calendar Appointments . . 48
6.5. Magnetic Field Sensor Readings . . . . . . . . . . . . . . . . . . 50
6.6. Location Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 52

xi





List of Tables

5.1. Demographic Overview of the Study Participants . . . . . . . 39

6.1. Data Collection and Labeling Statistics . . . . . . . . . . . . . . 42

7.1. Co-Occurence of Bluetooth Devices and Labels . . . . . . . . . 56

xiii





1. Introduction

This thesis explores the feasibility of detecting face-to-face social interactions
based on standard smartphone sensors.

This is an interesting question because a reliable detection would provide
some new and interesting possibilities to enhance interactions. We envision
a system that detects the social interaction as it takes place and also identifies
the interaction partner. Using this information, it could provide additional
information concerning the interaction partner, for example recent electronic
exchanges like e-mail or text messages.

Another use for the social interaction count would be in the health care sec-
tor, especially for stress related diseases. Social support and social groups are
linked to reduced impact of stress [11, 12]. We think that social interactions
correlate with social behavior and therefore the number of social interac-
tions during a day could be a good indicator on how well protected a person
is from stress.

To discover the conversations a person has over the day, we need sensor data.
We analyze this data and try to find hypothesis that allow us to determine
the number of interactions, based on sensor readings by the device. To get
this data, we need a device that fulfills following requirements:

• It is always with the person
• It does not interfere with the persons daily business
• It provides a multitude of different sensors

Eagle and Pentland [19] first stated that a smartphone fulfills all the require-
ments mentioned above. People take them everywhere they go, they provide
a multitude of sensors (see Chapter 2). This makes them ideal for this kind
of study.

1





2. Related work

In this chapter we will describe how this work fits into the existing work in
the field of Mobile Sensing.

First we will give a broad overview over Mobile Sensing, starting with a gen-
eral definition of the term. Then we will show different classifications for
Mobile Sensing and describe sample work for every category.

After the overview and classification, we go into further detail about the
area of social interaction detection. We describe notable prior work that in-
fluences this thesis.

Mobile Sensing, in general terms, is the use of smartphones as ubiquitous
sensing devices to collect data. This collected data is then used to provide
insight about the behavior of the user, a defined group, or to gain further
information about the environment the user inhabits.

Mobile Sensing uses smartphones because they[8]

• provide a multitude of built-in sensors (see Table 2.1)
• are widely available (estimates are that the worldwide total of smart-

phone users will be 1.75 billion by the end of 2014 1

• are a standardized platform in terms of Operating System (OS), hard-
ware capabilities and software

• offer a low-cost and low-energy platform for sensoring
• are widely compatible with existing wireless infrastructure (for exam-

ple Global System for Mobile Communications (GSM) or WiFi) out of
the box

• are easy to use, portable and will continue to improve in terms of minia-
turization, processing power and availability

1 http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/
1010536, Last visited: Jan. 16, 2014
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2. Related work

The above points show that smartphones are an interesting and viable choice
to implement sensing applications

Smartphones are also used because they are truly personal and ubiquitous
devices: one person - one device, and people carry them nearly everywhere

4



Sensor Function Technology Sample application

Accelerome-
ter

Rotating
Screen

Acceleration Vibration Sensors

Ambient
Light

Light Sensor Detection of
light
intensity

Screen brightness
adjustment & energy
saving

Camera Taking
picture &
video

Recording of
scene

Image analysis &
colorimetry

Digital
compass

Compass Meassuring
magnetic
fields by hall
effect

Magnetic field detection

Gyroscope Postures of
mobile
device

Measuring
angular rate
by Coriolis
effect

Detection of position &
stance

Global
Positioning
System
(GPS)

GPS receiver Radio
Frequency

Position & Clock

Microphone Conducting
voice

Sound Spectrum analyzer for
sound & noise
measurement

Near field
communica-
tion
(NFC)

Radio-
frequency
identifica-
tion
(RFID)

NFC Payment, ticketing &
security

Proximity Photoelectric
sensor

Detecting
distance

turn off screen

Table 2.1.: Typical sensors in smartphones and their usage.
Table recreated from [8]
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2. Related work

2.1. Classification of Mobile Sensing

Mobile Sensing is used as very broad term and implies many fields of appli-
cation and usage scenarios. In this section we describe two different classifi-
cation systems for Mobile Sensing and also classify this thesis in the context
of the two system.

2.1.1. Sensing Scale and Sensing Paradigm

Lane et al. [25] divide Mobile Sensing along two dimensions, “Sensing Scale”
and “Sensing Paradigm”. Every Mobile Sensing application falls into one
category of these two dimensions.

Sensing scale

The sensing scale defines the scope of the sensing application, with regard
to the size of the affected user group. Lane et al. [25] define three scales:

Personal Personal sensing applications provide information for a single
user. They mostly collect data about one user and refine the
data to be utilized by one person only

Group Group sensing application collect data from individuals with
similar interests and provide feedback and information for the
whole group. An example would be an exercise tracking app
where users can compete which each other. For groups privacy
can be a concern with regard to sharing information with others

Community Community sensing applications use large-scale data collec-
tion, data sharing and data analysis to provide helpful infor-
mation to a community. These applications need many data
points and therefore many participants that provide data to be-
come helpful. An example would be the generation of a “noise
map”, a visual representation of the average loudness (usually

6



2.1. Classification of Mobile Sensing

as a heat map2) of a given geographical area, for example a city
district or even a whole city

Sensing paradigm

The sensing paradigm specifies the user involvement. Or in other words,
how much or how often the user has to interact with the sensing applica-
tion.

Lane et al. [25] define two sensing paradigms:

Participatory The user actively takes part in the sensing and inputs addi-
tional data to the information gathered by the sensors. The
user may also be involved in the sensing. For example, the
sensing application may inquire to take pictures of certain
places or events. [23]

Opportunistic Sensing works completely autonomous. No further interac-
tion with the user is required.

Our application has a personal sensing scale. We try to sense the social in-
teractions of an individual user, and while we may employ data from other
participants in the analysis, the main benefit is for the individual user.

As a sensing paradigm, we use participatory sensing. The user has to label
the social interactions as they take place, so we are able to extract useful
correlations between the collected data and the social interactions.

2.1.2. Areas of Mobile Sensing

Khan et al. [23] analyzed various published papers and applications regard-
ing Mobile Sensing. They divide the fields of application in seven groups,
see Fig. 2.1

In this section, we explain the different fields in detail and describe some
interesting examples per field.

2For some examples of heat maps see http://en.wikipedia.org/wiki/Heat_map
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2. Related work

Areas of
Mobile Sensing

Health
Monitoring

Traffic
Monitoring

Envi-
ronment

Monitoring

Social
Interaction

Monitoring
Human
Behavior

Commerce

Special
Purpose
Appli-
cations

Figure 2.1.: Fields of application of Mobile Sensing. Figure recreated from [23]
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2.1. Classification of Mobile Sensing

Health Monitoring

There are several ways to use Mobile Sensing for health monitoring. In this
portion of the thesis we will provide a brief overview of the different inter-
esting approaches discussed in research.

Lu et al. [29] propose StressSense, a system that monitors the stress level
in the voice of the user. The use of smartphones provides the opportunity
to continuously and unobtrusively monitor the stress level during various
events and conditions over the course of the day.

Another interesting application of Mobile Sensing for health monitoring is
“SPA: A Smart Phone Assisted Chronic Illness Self-management System with
Participatory Sensing”. Sha et al. [40] propose a system where the users bio-
metric data is constantly measured via various sensors (for example a blood
oxymeter, or the build-in accelerometer to determine the user’s activity level)
which in turn use a smartphone to send the data to a central processing and
evaluation system. The mined data is used to find out what specific behav-
iors trigger symptoms and therefore aid in finding a custom fit treatment
plan for the user. Furthermore, based on the sensed data, the system could
also trigger alerts or notifications without additional human interference
and thus reduces the necessary involvement of health care personnel.

Oliver and Flores-Mangas [37] propose a system that uses the processing
capabilities of the smartphone to analyze sensor readings and present the re-
sults understandably to the user. More specifically, they use a blood oxymeter
to detect sleep apnea events.

Chen et al. [9] use the smartphone to analyze Electro-cardio gramm (ECG)
data to find abnormalities and alert the user or a health care professional
about it, if needed. Additionally, if an abnormality is detected, the ECG data
is sent to a server, where a doctor can review and monitor the data. Jin et al.
[22] also monitor ECG, but focus on the analysis of the data directly on the
smartphone.

There are also various systems to measure the user’s activity level or energy
expenditure versus the caloric intake. [20, 14, 15]

9



2. Related work

These are only some examples for the use of Mobile Sensing for health mon-
itoring. There are many possibilities to use the smartphone as sensing plat-
form to monitor the user’s health and well being.

Traffic Monitoring

Another field of application of Mobile Sensing is traffic monitoring. Here the
focus shifts away from the individual user towards the community.

Mohan, Padmanabhan, and Ramjee [35] use the various sensors on a smart-
phone to detect honking, potholes, bumps and sudden slowdowns. The aim
for this work is to detect various traffic conditions for roads in developing
regions, where traffic tends to be more chaotic and stressful than in the de-
veloped world.

A different use of Mobile Sensing for traffic monitoring is proposed by Thi-
agarajan et al. [41]. They developed a system that uses the data mined by
smartphones to detect traffic delays and to estimate the travel time in real
time. The basic idea is that the users wants to avoid congested streets (for
example a main street during rush hour). The system would reroute the user
around detected traffic hotspots to avoid delays.

Environment Monitoring

Another use of Mobile Sensing is environment monitoring. Environment
monitoring systems use the smartphone (and sometimes additional sensors)
to gather data about the environment of the users.

Maisonneuve et al. [30] propose a system that uses the microphone built
into smartphones to measure the noise pollution in the user’s environment.
The system allows citizens to measure there individual exposure to noise.
Additionally, every citizen can contribute his data to generate a noise map
for the whole community. Bilandzic et al. [4] describe a different approach
for the same idea.

10



2.1. Classification of Mobile Sensing

Rana et al. [39] also describe a system to generate a noise map for an urban
environment. Additionally, they try to solve the problem of sparse and in-
complete spatio-temporal data for the noise map. They propose using Com-
pressive Sensing (see [17] for the mathematical theory behind Compressed
Sensing) to extrapolate missing data. This enables the system to calculate
data for specific times of day or spatial coordinates, even if no sample was
yet recorded that matches these parameters.

While the first two examples try to determine the noise level of an urban
environment, Mun et al. [36] describe a system that measures the environ-
mental impact of the user. Their system measures the carbon footprint of the
user when traveling, how much smog the user experiences and, interestingly,
how many fast food restaurants the user passes on a journey.

Social Interaction

Mobile Sensing applications for social interactions focus on the user and his
social peers and how he or she interacts with her social environment

The work of Miluzzo et al. [32] focuses on providing new ways to interact
with people. Their system senses different aspects about the user and his
current environment (user is in conversation, walking, at the gym …) and
publishes theses aspects to various social networking sites or instant mes-
sengers, if the user wishes to do so.

Another interesting approach to enhance social interactions is proposed by
Beach et al. [3]. Their systems enables smartphones to exchange so called “so-
cial networks ids” with other smartphones int their vicinity via Bluetooth.
With these “social network IDs” further information about the user of the
smartphone may be obtained, for example from his facebook profile. As a
protoype for their framework they describe a context-aware music player,
that uses the system to obtain the music tastes of all users in its proximity to
adjust the play list according to the users tastes.

The work of Bao and Roy Choudhury [2] as a different perspective of the
purpose of Mobile Sensing in the context of social interactions. They use the
data mined by different smartphones to detect and capture interesting mo-
ments in a social setting. The interesting moments are then combined into a
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highlight reel of the event. They also describe several triggers to detect in-
teresting events, for example when the most users change their facing to the
same direction (they argue this can happen when a group turns towards a
public speech or a stage). Additionally, they describe different ways to de-
termine groups, based on audio signal processing and image processing of
regular snapshots provided by the smartphone camera.

Monitoring Human Behavior

Mobile Sensing applications that monitor human behavior are very focused
on the individual user, and try to determine the physical and even emotional
behavior or state of the user.

For example, Rachuri et al. [38] use audio signal processing on Nokia phones
to classify the users emotional state. They use the emotion classification and
various other classifiers to conduct psychological experiments.

While the previous work focuses on the emotional component, Kwapisz,
Weiss, and Moore [24] focus on the physical activity of the user and try to de-
termine the activity the user is currently performing. This includes walking,
jogging, ascending stairs, sitting or standing.

The work of Dong, Lepri, and Pentland [16] focuses on the relations between
members of a social group. They use the smartphone to mine data about the
co-location of group members and how this influences the development of
relationships and behavior in this group.

Commerce

While the previous areas of application focus on very different aspects of
users or user groups, the applications do not concern themselves with mon-
etization or applying Mobile Sensing to business processes.

Deng and Cox [13] and Bulusu et al. [7] both use the camera built in smart-
phones and Optical character recognition (OCR) to detect prices for gro-
ceries. The difference is that Deng and Cox [13] use the receipt of a store
transaction extract grocery prices, while Bulusu et al. [7] use the price tags

12
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of the products. Deng and Cox [13] additionally describe a system to detect
fuel prices by photographing the fuel price boards of fuel stations.

Special Purpose Applications

Lastly, there are some applications that can not be classified in one of the
previous categories. These are called “Special Purpose Applications” and
cover a wide range of topics.

For example, Zhang et al. [43] describe a system that accurately (2 cm median
error) measures the distance between two phones in real time. Their mea-
surement system cross-correlates audio signal measurements and timestamps
exchanged by the smartphones over WiFi to calculate the distance between
two phones while being robust against noise and Doppler effect issues. They
use the system to implement two prototype games, SwordFight and Chase-
Cat, that demonstrate the use of distance measurement in real time on smart-
phones.

Another, completely different usage of Mobile Sensing is the work of Liu
and Liao [27]. The propose PaperUI, where the smartphone is used to link
the printed and digital versions of a document together. With the help of
Augmented Reality (AR) the user can annotate the digital version of the doc-
ument by interacting with the paper print out on the smartphone.

There are also several works that try to infer the semantics of a place a user
visits. [26, 10]

Lastly, the work of Lu et al. [28] uses the smartphone to classify ambient noise
into sound events. They use the term “sound events” for distinct sounds
that the user encounters in his everyday life, for example car horns, vac-
uum cleaners and so on. They describe an unsupervised learning algorithm
that detects such sound events and allows the user to label them. Addition-
ally, they classify the ambient noise in three coarse categories: music, human
voice and general ambient noise and propose to further classify within these
categories. But they only describe a male/female classifier for human voice
in their prototype.
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We classify this thesis into the “social interaction” category. One could also
argue that this work falls into the “special purpose application” category,
because we only try to detect face to face social interactions, without trying
to further enhance the users social interactions.

2.2. Social Interaction Detection

As described in the previous section, there are lots of different applications
for mobile sensing. In this section we will describe various other works that
are closely related to detecting social interactions as we define them (see
Chapter 1).

First we want to discuss the work of Miluzzo et al. [32]. Their paper “CenceMe
– Injecting Sensing Presence into Social Networking Applications” is one of
the first that tries to detect if a person is actually talking to another person.
While the paper primarily describes a system that enhances a person’s so-
cial interactions by sharing sensed data on various social platforms, they
also describe a “Conversation detection” classifier. The classifier is a binary
classifier and detects if the user is in a conversation or not.

More specifically, it samples the ongoing audio stream provided by the smart-
phones built in microphone and performs a discrete Fourier transform (DFT)
on the samples [34]. The DFT works on a range of 250 Hz to 600 Hz, because
they determined that most of the signal power of a human voice is located
at this frequency spectrum. From the DFT result the mean and the standard
deviation are extracted as feature vectors for the classifier. The classifier itself
applies a threshold to mean and standard deviation to determine if “talking”
is present in the sample or not.

The result of the audio classifier is further evaluated at the backend server
of CenceMe. Because a conversation also includes pauses or moments of si-
lence, the backend uses a rolling window of five audio samples to determine
if the person is in a conversation or not. If two or more samples in the cur-
rent window indicate a conversation, the classifier returns “in conversation”.
Otherwise (four samples have state “silence”), it returns “not in conversa-
tion”.
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Another relevant paper is the work of Miluzzo et al. [33]. They describe a
system to perform speaker recognition on smartphones.

The paper details a novel approach for machine learning on smartphones.
In their system smartphones:

• automatically update their learned model with usable new samples for
a given model (Classifier evolution)

• share their learned models with other smartphones in the system to
increase the sensing capabilities and scalability of the system (Model
pooling)

• combine their sensing result with results from other adjacent phones
to boost the classification performance (Collaboration inference)

Their speaker recognition use case details the use of these three techniques
to perform speaker recognition.

They model the users voice via Gaussian Mixture Model (GMM) based on
the Mel Frequency Cepstral Coefficients (MFCCs) of the audio signal pro-
vided by the built in microphone of the smartphone.

Initially, every user only trains his speaker model with a 15 s voice sample
of his own voice. With the use of model pooling the different speaker mod-
els are distributed to all participating phones in the system. Classifier evolu-
tion increases the performance of the classifier for any given user over time,
as more data for the model is collected in different environments. The ever
increasing diversity of environments and the additional data gradually en-
hances the model of a speaker. They also describe how collaboration inference
boosts the system’s detection rate in various adverse environments, for ex-
ample detecting the speaker in a loud restaurant or during a walk on a busy
street, because different participating phones may be in a better position (on
the table / out of the trouser pocket, closer to the speaker or farther way
from noise and other variants) to correctly infer the speaker, and therefore
the combined result provides a better classification.

Rachuri et al. [38] also describe a system that performs speaker recognition
on smarpthones. They also use GMMs as model for the speaker recognition,
but use Perceptual Linear Predictive (PLP) coefficients. The main difference
between their work and the work of Miluzzo et al. [33] (described previously)
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is that they perform all their model training offline and a priori for every user
using their system.

Probably the most directly related work for this thesis is the work of Xu et al.
[42]. They describe a system to determine the number of speakers currently
talking. Their system requires no user interaction, no a priori training and,
additionally, needs to be deployed only on smartphones, which means that
there are no additional servers required.

To count the number of speakers, they split the incoming audio stream in
audio segments of 3 s length. After filtering out audio segments that do not
contain human voice using the pitch of the audio signal, they calculate the
MFCC vector of the segment using a frame length of 32 ms. The pitch and
MFCC vector a compared to the set of existing speakers. If pitch and vector
match an existing speaker, the model for the speaker is updated. If not, a new
speaker is added to the set of detected speakers. The match between an ex-
isting speaker and the given sample is determined via the Cosine Similarity
(CS) of the MFCC vector and the frequency range of the pitch. They use the
pitch frequency to determine the gender of the speaker. If the CS is below
an empirically determined threshold 𝜃u� and the gender matches, the sam-
ple belongs to the same speaker. If the sample is above another empirically
determined threshold 𝜃u� or the gender does not match, the sample belongs
to a new speaker. When none of the previous conditions apply, the system
abandons the sample.

They report an average error distance of 1.5 speakers to the real number of
speakers in a conversation. They also provide various performance evalua-
tions for different parameters like:

• Environment (indoor, outdoor)
• Noise level (noisy, quiet)
• Number of speakers
• Multiple distinct groups that are in conversation
• Utterance length
• Audio segment length

Most of the work described in this section tries to perform speaker recogni-
tion without any regard for the actual duration of the interaction. Further-
more, it also some a priori training required to be able to perform speaker
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recognition, except for Crowd++ [42], that is able to count speakers without
any a priori training and human interaction. But they also describe that they
use a duty cycle of 5 min signal processing and 15 min of sleep to save battery
life. So the system will not detect any interaction or conversation for 15 min.
They also state that the performance of the system degrades if the individ-
ual utterances are short. This is relevant because short utterances are usual
for casual conversations, where the participants only speak short sentences
and/or interrupt each other frequently. We also found that most social in-
teractions tend to be very short (see Table 6.1).
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3. Problem Setting and Research
Approach

As we have described in Section 2.2, previous work mainly focuses on Blue-
tooth proximity to determine social interaction or signal processing of audio
signals for speaker detection.

In contrast to the this, we focus on analyzing the standard smartphone sen-
sors as they are captured by FunF. In this work, we considered following
facets of the data:

• Audio
• Bluetooth
• Calendar Data / Appointments
• Social Media Apps
• Location Data (Global Positioning System (GPS))
• Magnetic field values

The main goal is to determine the feasibility of solely using standard sensor
data for social interaction detection, without further feature extraction.

The data of the sensors alone is not enough for this work. We addition-
ally need ground truth data to evaluate possible hypothesis. To capture the
ground truth and sensor data, we developed an Android1 app based on the
FunF Framework. With this app, the user can easily label his face-to-face so-
cial interactions at the moment they take place.

Thus, our overall research approach can be explained by the following three
steps:

1http://en.wikipedia.org/wiki/Android_(operating_system)
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3. Problem Setting and Research Approach

First, we developed an Android app that allows us to collect sensor data
from our participants while they can label their social interactions as they
take place. See Section 4.1 for further information.

Second, we conduct two user studies with three participants each. The par-
ticipants install the data collection app and label their social interactions dur-
ing three days. After the data collection phase, we conduct an interview with
every participant to gain additional meta-data. This meta-data consist of se-
mantic labels for their location data and labels for their social interactions
that divides them into social and business interactions. See Chapter 5 for
details on the collection setup.

As third and last step we analyze the collected data and use it to generate
visualizations. We show how the time of day, audio data, calendar appoint-
ments, magnetic field values, Bluetooth data and location data relate to social
interactions. The goal of this step is to visually explore the data for potential
features to use in other data mining algorithms. See Section 4.2 for imple-
mentation details about the visualization. We present results of our analysis
in Chapter 6.
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4. Data Collection and
Visualization Prototype to
Explore Mobile Sensing for
Social Interaction Detection

In this chapter we will detail our data collection app and how we performed
our exploratory data analysis.

We will start with a description of our app. This includes an introduction
to the Funf Open Sensing Framework[1], followed by an explanation of the
application concept and implementation. We will also describe the mined
data and how the user can interact with the application to label his social
interactions.

In the next section we describe our exploratory data analysis setup. We show
how we extract and transform the labeled data from the app into various
diagrams and statistics using data processing libraries for Python1

4.1. Mobile Sensing and Labeling App

To allow the users to efficiently and easily label their social interactions we
developed an app for Android smartphones using the Funf Open Sensing
Framework[1].

1https://www.python.org/
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First we will describe the data mining framework that is used by the imple-
mentation, after that we will describe the app itself. This includes a descrip-
tion of select implementation details and an overview of the user interaction
model.

4.1.1. Funf Open Sensing Framework

The Funf Open Sensing Framework[1] is a framework that enables researchers
to easily build Mobile Sensing apps for the Android OS. The framework con-
sists of following building blocks:

FunfManager The FunfManager is the central class for the whole FunF Frame-
work. It handles the interaction with the Android OS and
manages the data collection schedule and the configuration
(see below).

Pipeline The Pipeline encapsulates the configuration. This includes
the schedule for data collection, when to back up and upload
the collected data and when to fetch a new configuration, if
necessary.

Probe A Probe performs the actual data collection. It can perform an
arbitrary task. Every probes has the lifecycle states ENABLED,
DISABLED and RUNNING. The lifecycle is managed by the
FunfManager according to the configuration in the Pipeline

The framework additionally includes a persistence layer to store the collected
data in SQLite2 databases. Figure 4.1 shows a high level overview of the
framework and how the components interact with each other.

The primary data format for the FunF Framework is the JavaScript Object
Notation (JSON) [6]. JSON is a lightweight and easy to use data format. It
is primarily used because of its compact and simple syntax. It is used both
for the configuration of the framework and as data storage format of the
collected data.

2http://www.sqlite.org/
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4.1. Mobile Sensing and Labeling App

Android System

«interacts with»

«configures»

«notifies changes»

«registers Probes»

«triggers»

«submits data»

FunfManager

Pipeline

Probe

Storage

Figure 4.1.: High level architecture overview of the Funf Open Sensing Framework[1]

It is also important to note that all time stamps in FunF are in Unix time. This
implies that all timestamps are expressed as seconds, and smaller time units
are floating point numbers (as fractions of a full second).

4.1.2. Data Mining App

Our app is devided into two tiers:

User Interface The user interacts with an easy-to-use User Interface (UI) we
developed, that allows the user to label the interactions with
other people as they happen
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Data Collection The app performs the data mining via the FunF framework
in the background, and extends the data mining capabilities
of FunF to include the label data.

First we will describe the user interface and how it enables the user to easily
capture social interactions. We will provide a detailed description of how the
user can interact with the app.

After that, we will describe the data mining tier. This includes a description
of the data mining architecture and an overview of the collected data.

User Interface

Ease of use was our focus for the UI of the app. The user can label an interac-
tion partner quickly and efficiently, with minimal interruption and distrac-
tion of the natural flow of the interaction.

We define a label as a representation of a distinct interaction partner. Or in
other words, one label defines exactly one person with whom the user has
(potentially multiple) social interactions with. A label can only be in exactly
one of the three following states:

new A completely new label. It was not entered into the app before

active A label that is active tracks an ongoing social interaction

inactive When a social interaction is finished, the corresponding label is de-
activated and becomes inactive. This state could also be called un-
used

The flow of the app is centered around the concept of activating and deacti-
vating labels.

We activate a label when a new social interaction with the particular person
(denoted by the label) starts. We deactivate a label as soon as the interaction
with the person ends. When we interact with multiple persons during a so-
cial interaction, we activate their respective labels at the start of the interac-
tion. We activate and deactivate labels as additional persons join or leave the
group, respectively.
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The user has several possibilities to activate labels. First, they can use the +
symbol in the main screen. This allows the users to either activate a label (via
the auto-complete function of the input, see Fig. 4.2) or create and activate
a label if it does not exist (see Fig. 4.3). Second, the user can activate labels
from the view of unused/deactivated labels. We describe these possibilities
in the following paragraphs.

Figure 4.2 shows the user interaction when an existing label is activated via
the auto-complete function. The user starts activating a label via the + symbol
in the main menu bar. After tapping the symbol, the input box for the label
text appears. As soon as the user starts typing, a menu to select unused labels
(that contain the entered text), appears. If the user selects one of the entries,
the corresponding label is activated.

Adding a new label via the main screen is accomplished in nearly the same
way. (Fig. 4.3) After opening the input box via the + symbol in the main menu
bar, the user can type in the text for the new label. After a tap on the “Go”
action of the on-screen keyboard, the app creates the new label and simul-
taneously activates it.

The previously described interactions to activate labels assume that the user
wants to activate only a few labels at a time or exactly knows what label to
activate. The app additionally provides a view for all inactive labels. This
allows for browsing and sorting of inactive labels, which in turn enables the
user to easily find labels or activate multiple labels at once.

The view of inactive labels is accessed by swiping the main screen from right
to left. In this view, the user can see a list of all unused labels. This list can
be sorted in three ways:

• by the label text (alphabetically, this is also the default sort option)
• by the date of last use (most recent first)
• by the number of usages of the label (most used first)

Figure 4.4 shows the three different sorting options.

During our development we conducted small test runs for our application.
The test runs showed that only activating and deactivating was not enough
to allow the users to label their interactions correctly. The app must allow
additional use cases, for example:
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Figure 4.2.: This screenshot series shows how the user can activate an existing label via the +
symbol in the main menu bar. After tapping the symbol (1) an input box for the
label appears (2). As soon as the user starts typing (3), the autocomplete function
suggests labels containing the typed text. If the user taps a suggestion (4), the
label is activated (5).
Note the highlighted box at the bottom of the last screenshot. The user can undo
every action in the app to avoid data collection errors
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Figure 4.3.: This figure shows the flow for adding a new label to the labeling app After tap-
ping the symbol (1) an input box for the label appears (2). After entering the text
for the new label (3), a tap on the “Go” action of the on-screen keyboard creates
a new label (5) and simultaneously activates it (6).
Note the highlighted section in the last screenshot. The user can undo every
action in the app to avoid data collection errors
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Figure 4.4.: The view of unused/inactive labels can be sorted by text of the label (1) which
is the default sorting option, last usage date (2) and number of usages (3).
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4.1. Mobile Sensing and Labeling App

Figure 4.5.: After a long press on a label the app enters the edit mode. Available options
are (1) selecting all labels, (2) discarding the label data (this does not record any
data) and (3) editing the timestamps of the activated labels

• labeling an interaction that already took place
• edit activation and deactivation time for a label
• discard an activated label (erroneous activation)

We implemented an edit function for active labels to fulfill these use cases.
A long press on a label in the list of active labels activates the edit mode
(Fig. 4.5). In the edit mode, the user can discard labels or edit label informa-
tion. If the user discards a label, no data for this activation is recorded.

The edit mode allows the user to label the social interactions after the fact.
This means, if the user forgets to to label a social interaction, they can en-
ter the data for the social interaction at a later time. First, the user activates
the correct labels for the interaction. Then, the user can set the correct times-
tamps using the edit mode. Figure 4.6 shows this interaction.

The settings screen is the last element in the UI we explain. The most impor-
tant setting for the user is probably the option to completely disable all data
mining functionality. As soon the checkbox for data mining in the settings
screen is unchecked, all data mining is stopped until the user enables the
checkbox again. We add this checkbox to address privacy concerns of our
users. See Fig. 4.7 for a screenshot of the settings screen.
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Figure 4.6.: The user can add data for social interactions after they took place. First he ac-
tivates the corresponding labels (1,2), then he uses the edit mode (3) to set the
correct start and end timestamps (4,5,6,7). After the save (8), the app adds the
interactions to the dataset (9).
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Figure 4.7.: The settings screen allows the user to completely disable the data mining of the
app (1), to force a new backup of the mined data (2) (per default, backups are
made periodically) and export all labels to a CSV file for further processing (3).

Data Collection

Our data mining app uses nearly all the probes provided by FunF . An overview
of the used probes including the structure of the data points and a brief de-
scription of the various fields per data point can be found in Appendix A

FunF encapsulates all the data mining logic in so called Probes (see Sec-
tion 4.1.1). This enables the developer of a data mining app to add additional
data collection logic without modifying the code of FunF itself. We created a
new android module that encapsulates the labeling framework. The module
includes a FunF probe that collects the label data for FunF and an Android
content provider3 that holds the mined data for the labels.

Figure 4.8 shows the individual components of the application and how they
interact with each other.

To gather data about social interactions, we ask the user to activate or deacti-
vate labels as described in Section 4.1.2.

3http://developer.android.com/guide/topics/providers/content-providers.
html
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create

setStartTime

Active label

setEndTime
Deactivate Label

sendData

destroy

queryData

User: ui:UserInterface lp:LabelProbe db:FunfStorage

a:ActiveLabel

Figure 4.9.: This figure shows the sequence of a labeled interaction through the system

Every time the user activates a label, the app starts tracking a new social
interaction for this label. The start timestamp for this particular social in-
teraction is set at the moment the user activates the label. When the user
deactivates the label, the system sets the end timestamp for the social inter-
action. Thus, every activation of the label indicates a new social interaction,
every deactivation implies the end of the social interactions.

With this recording method we can track individual social interactions and
their flow through time. Even in group interactions, accurate tracking of in-
dividual participants is possible and even encouraged.

We gather all social interactions in a Android content provider. The content
provider is implemented with a SQLite database, that holds the various la-
bels, currently active social interactions and not yet mined interactions.

The probe for FunF gathers all finished social interactions and exports them
to the FunF framework. The framework in turn collects this data in its own
database. These databases, with all the data collected by FunF, are then used
for data analysis. The social interaction probe additionally deletes the fin-
ished interactions after they were exported to FunF. This keeps the database
small and ensures that the interaction database does not become a perfor-
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mance bottleneck detrimental to the user experience. Figure 4.9 shows the
sequence of a captured interaction through the data mining process, start-
ing with the user interaction and ending with FunF, where the data is finally
stored.

In this section we described how the app is structured architecturally. We
also showed the possible user interactions with the app and explained how
the app persists the collected data. Additionally, we showed how the data
flows through the app.

4.2. Exploratory Data Analysis

In this section we describe our exploratory data analysis setup. We show
how we extract and transform the data from the archives generated by the
FunF framework data using Python4 and the Pandas Library5 [31].

As mentioned in Section 4.1.1, the primary data format of the FunF Frame-
work is JSON. FunF stores all data collected by the probes in one SQLite
table, data. The table consists of five columns:

1. _id unique identifier of the dataset within the table
2. name fully qualified name of the Probe that generated the dataset
3. timestamp time of the data point
4. value the value of the data point as JSON string

Additionally, FunF archives the SQLite database at regular intervals. Ev-
ery time the framework archives the database, a new database file is cre-
ated. This means that for a given data collection run, the data will be scat-
tered across many databases. Therefore, we need to combine all archived
databases in one dataset to be able to analyze the data. FunF provides some
sample data analysis scripts. We reuse this scripts to combine all archive files
into one database. This database contains on table that holds the combined
data, data. The structure of the table is similar to the table in the individual
archive files:

4https://www.python.org/
5http://pandas.pydata.org/
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ModelBase

AudioDataModel BluetoothModel

CalendarModel CallLogModel

LocationsModel MagneticFieldModel

SMSLogModel SocialInteractionsModel

Figure 4.10.: This figure shows the data models developed for this thesis. Every model con-
tains all necessary extraction and normalization logic to populate itself from a
FunF dataset

• id: unique identifier of the data point within the whole dataset
• device: unique identifier of the device the data point was recorded on

within the dataset
• probe: fully qualified name of the probe that recorded the dataset
• timestamp: timestamp of the data point
• value: the value of the data point as JSON string

Based on the combined dataset, we extract the data in so called data frames,
a data structure of the Pandas Library. A data frame is a two dimensional
data structure with labeled rows and columns. We provide a Python module
with custom data models for some probes of FunF. This data models have a
common interface and contain the necessary extraction and normalization
logic to conveniently analyze the data collected by FunF. See Fig. 4.10 for an
overview of all the data models used for analysis.
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With the data models we generate various diagrams to find correlations be-
tween social interaction activity and the sensor data collected by FunF. Ad-
ditionally, we ask our participants for more meta-data about their activity
during the data collection.

In this chapter we described how the app collects the data, how the user
can interact with the app and how we prepare and transform the raw data
to use it for further analysis. We also provided a detailed overview of the
architecture of FunF and of the architecture of the social interaction labeling
mechanism. We also showed how we use Python and the Pandas Library for
data analysis.
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5. Data Collection and Exploration
Study Setup

In this chapter we explain how we conducted our data collection. First, we
define the goal of the data collection. After that, we describe the setup and
how the participants have to collect the data. After that, we define the two
groups of participants in term of age, general occupation and further demo-
graphic parameters. Then provide a quick overview over the collected data.
Lastly, we describe the structure of the interview we hold with every partic-
ipant after the data collection run.

5.1. Goal

The goal of the data collection run was to collect as many sensor readings as
possible while asking the user to label their social interactions.

We want to have a diverse set of sensor readings, because we explore the
mined data to find correlations between sensor readings and social inter-
actions. Most of the related work concerning social interactions focuses on
the microphone as sensor (for voice or speaker recognition, see Section 2.2)
while we want to explore all options provided by FunF.

5.2. Setup

In this section we describe the setup of the data collection study. We explain
what the participants need to do and how we structure and conduct the
study.
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5. Data Collection and Exploration Study Setup

The study is conducted over the duration of three days. Every participant
installs the data collection app on their Android device, be it a smartphone
or a tablet. We require that all sensor on the device stay active during the
study period, this means that the participants have to keep GPS, Bluetooth
and WiFi enabled.

We assist the participants during the initial setup of the app and explain
how they need to label their social interactions. The participants are asked to
label their social interaction during the study period as exactly as possible. To
recap the detailed explaination in Section 4.1.2, the participant has to activate
(or create a new) label at the start of a social interaction with the person the
label indicates, and deactivate the label at the end of the social interaction
with the person. At group interactions, every participant of the interaction
should be tracked individually.

We do not impose any restriction on the participant’s activity during the
study period, we want to capture their every day social interactions and so-
cial activity.

When the three days are over, we download the mined data from the partic-
ipants device and conduct a brief interview about their activity during the
three days to gain additional meta-data (see Section 5.5).

5.3. Participants

We conducted two data collection runs during his thesis, each with a distinct
participant group.

The first group contains three male software development professionals, in
the age range of 25 - 35 years. Additionally, they share the same office space
and they collected their data simultaneously. The second group contains two
male and one female researcher(s) in the age range of 25 - 35 years. They
work in the same building. They collected the data sequentially on a device
provided by their research institute. Table 5.1 shows the summary of the two
participant groups that were so kind to provide data for this thesis.
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5.4. Collected Data

Group 1 2

Number of participants 3 3
Gender 3 male 2 male, 1 female
Age 25 - 30 25 - 35
Occupation Software

Development
Research

Modus Simultaneously Sequential

Table 5.1.: Demographic overview of the study participants. The modus describes if the par-
ticipants in a group collected the data during the same three days or if every
participant was collecting the data separately.

5.4. Collected Data

We collect all data provided by the FunF Framework. For an overview and
explanation of the collected data see Appendix A.

While we collect all that provided by the FunF Framework, we focus our
attention on the following Probes:

• LabelProbe: The social interactions as labeled by the participants. See
Appendix A.2 for details.

• SimpleLocationProbe: The GPS data of the user during the data col-
lection study. See Appendix A.32 for details.

• BluetoothProbe: This probe reports all discovered Bluetooth devices.
See Appendix A.14 for details.

• CalendarProbe: Collects all appointments in the Android calendar for
a given day. For details see Appendix A.3

• MagneticFieldSensorProbe: This probe periodically records the mag-
netic field values (Appendix A.23)

• AudioFeaturesProbe: This probe collects and analyzes the audio sen-
sor readings. Appendix A.11 describes this probe in detail.

We discuss the data and the analysis in detail in Chapter 6.
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5. Data Collection and Exploration Study Setup

5.5. Interview Structure

After the data collection, we perform an exit interview with the participants.
We try to answer following question with our participants, based on prelim-
inary data analysis results of the data of a participant.

• How do you evaluate the usability of the app?
• How do you rate labeling your social interactions?
• Classify your labeled interactions in following categories:

– business
– personal

• Classify your location clusters in the following categories:
– work
– home
– leisure

• What did you like about the data mining?
• What did you dislike about the data mining?
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6. Results

In this chapter we present the result of our data analysis. We show how the
social interactions correlate with various sensor readings collected by our
participants during the duration of three days. We visually explore the data
to find potential features to use for data mining or machine learning.

First we provide some descriptive statistics about the collected data, then we
present the visualizations we use for data analysis. We will discuss how

• Time of day
• Audio data
• Calendar appointments
• Magnetic field values
• Bluetooth data
• Location data

influence the interaction frequency, interaction duration and other factors.

6.1. Statistics about the Collected Data

As discussed in Section 5.3, we have two distinct user groups four the data
collection. Table 6.1 shows descriptive statistics about the social interactions
labeled by both groups. This includes the total number of collected data
points across all sensor probes, the total number of labeled social interac-
tions, the average number of social interactions per person and the shortest,
longest, median and average interaction duration per group.

The demographic statistics of the groups are shown in Table 5.1.
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6. Results

Group 1 2

Total datapoints (all
sensors)

approx. 16M approx. 35M

Total number of social
interactions

211 126

Average number of
interactions per person

70 42

Shortest interaction 00:00:01 00:00:01
Longest interaction 02:06:19 02:31:53
Median interaction
duration

00:02:24 00:03:53

Mean interaction
duration

00:09:49 00:17:54

Table 6.1.: Data Collection and labeling statistics for the two user groups

6.2. Social Interactions Versus Time of Day

Our first focus is how the social interactions are spread out during the time
of day. For this purpose, we counted the number of social interactions during
every hour of a week and generated a heatmap based on the binned social
interactions.

Figure 6.1 shows the day-time heatmaps for the first group. This group la-
beled their social interactions simultaneously. Therefore, the days in th differ-
ent heatmaps correspond to each other. As can be seen, most of the social
interactions of this group take place before noon. This can be attributed to
their workplace, where they interact with a lot of different people. Another
interesting finding is the spike on Monday between 08:00 and 09:00. We were
able to attribute this spike to a meeting taking place during this time.

Figure 6.2 shows the distribution of social interaction over the labeled days
for the second group. Note that this group performed their data mining se-
quentially and independent from each other. Therefore the days shown in
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6.2. Social Interactions Versus Time of Day

Figure 6.1.: This heatmaps show the distribution of social interactions over the course of
the monitored timespan. Most of the social interactions take place in the morn-
ing hours, with a spike at Mon from 08:00 - 09:00. This spike is attributed to a
meeting taking place at this time.
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6. Results

Figure 6.2.: Here the heatmaps of the distribution of social interaction during the week are
shown for the second group. Because Group 2 labelled their social interactions
sequentially, the days in the different heatmaps do not correspond to each other.

the heatmaps do not correspond to each other. But still there are some sim-
ilarities, especially for the second and third heatmap, where the majority of
social interactions on Monday take place from 10:00 - 14:00. We attribute this
to the fact that both subjects work in the same research group

We see that the number of social interactions for most of the subjects in both
groups take place during the working hours of the week, with a reduce dur-
ing the afternoon and the evening hours.

6.3. Social Interactions and Audio Energy

Next, we look at social interactions and if they correlate to audio signal strength,
more specifically, how they correlate to Power Spectral Density (PSD). The
FunF framework provides a probe that computes the PSD across four fre-
quency bands:

• 50 Hz to 250 Hz
• 250 Hz to 500 Hz
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6.3. Social Interactions and Audio Energy

• 500 Hz to 1000 Hz
• 1000 Hz to 2000 Hz

For this purpose, we plot the signal strength over time and overlay it with
a step plot of the social interactions. We can then search for specific signal
strengths on the frequency bands that correlate with a high social interaction
count.

Figure 6.3 shows such a plot. The green line indicates the audio signal over
time, will the blue steps show the social interactions. We choose a step plot
for the interactions because the label can only be active or not active, and the
step edges show the range of how long a specific number of interactions is
active very well. We calculated such a plot for every frequency band. During
our analysis we also use plots where we subtract the mean or median energy
from the individual data points.

We are not able to determine a specific signal band or signal energy that
correlates with social interactions. See Chapter 7 for a further investigation
of this topic.
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6.4. Calendar Data

The next point of our analysis is calendar data. We propose that calendar
data can correlate with social interactions, because in our experience most
appointments in a calendar correspond to events where interactions occur,
for example business meetings or an appointment to meet friends.

This assumption holds true for some of our participants. Figure 6.4 shows the
interaction data of one of our participants for whom we got calendar data.
As we can see, some appointments correspond to increased social interaction
activity, especially the appointment between 09:00 and 10:30 at the first day
(shaded orange) and the appointments between 06:00 and 12:00 of the first
and second day (shaded in green and blue, respectively).

For further analysis of this correlation we need additional data of multiple
participants over a longer period. We also need different professions and per-
sonal styles of calendar usage, for example some people might add dates to
their calendar as personal reminders as opposed to appointments involving
other people.
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6.5. Magnetic Field Value

6.5. Magnetic Field Value

Inspired by IndoorAtlas1, we try to use magnetic field values to determine if
participants are near each other, and in turn, have social interactions. Haver-
inen and Kemppainen [21] describe a system that performs indoor position-
ing by comparing magnetic field value readings with an a-priori generated
field value map of an indoor location.

For this purpose we plotted the magnetic field sensor readings of our first
group, that performed their data mining simultaneously and compared the
data. Unfortunately, the magnetic field values are very susceptible to mis-
calibration and other errors. We find the comparison of raw, uncalibrated
field values not viable to determine proximity.

Figure 6.5 shows a slice of the magnetic field value readings for the first
group. During the shown slice all participants where in the same office. Un-
fortunately, their proximity does not translate to similar sensor readings. We
guess this is due to the uncalibrated sensors and the unsynchronized sens-
ing intervals of the different data collection apps on the smartphones of our
participants.

1http://www.indooratlas.com/
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6. Results

Figure 6.5.: This figure shows the magnetic field values of the first day of the first group.
During the shown timeframe all participants where in the same office. Note the
different sensor readings and the different times the magnetic field values where
sampled
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6.6. Bluetooth Proximity Data

6.6. Bluetooth Proximity Data

Our next focus is on the bluetooth proximity data of our participants. Blue-
tooth proximity is used very often to infer social relationships of an observed
group (for example [18, 1, 5, 32] and many others)

We try to find correlations between specific labels (and thus persons) and
the Bluetooth devices discovered by FunF. We build a co-occurrence table of
discovered Bluetooth devices and Label-Id, based on their temporal relation.
When a Bluetooth device (uniquely identified by its hardware address) is
discovered at the same time a label is active, we count one co-occurrence.

We found numerous co-occurrences with a high count for all our partici-
pants, but these co-occurrences are not directly related with social interac-
tions. We elaborate this further in Chapter 7.

6.7. Location Data

Lastly, we look at the location data of our participants. We generate a heatmap
of the social interactions based on their time-correlated GPS information. We
mark a spot on the heatmap at the location the user is at the time of a social
interaction.

Additionally, we cluster the location data and count the social interactions
taking place at every cluster. For this purpose, we group the raw location
data into clusters of 100 m radius. For each cluster we determine the time
frames the user was at this location, and count the social interactions taking
place during these time frames.

Figure 6.6 shows the result of our location data analysis. The heatmap iden-
tifies areas where social interactions occur. The pins donate the centers of
the cluster our algorithm calculates. For most of our participants the social
ineractions are centered around two distinct locations, their home and their
workplace (identified by our participants during the interview). The figure
shows an atypical result. The participant labeled during a weekend. On this
weekend social interactions occurred on various locations, which indicates
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6. Results

Figure 6.6.: The result of our GPS data analysis. The pins denote the centers of the clusters
we calculate with our cluster algorithm. The heatmap shows the areas where
most social interactions occur. Black pins donate clusters of location data where
the participant did not label any social interactions
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6.8. Open Source Release

the participant was visiting friends, shopping in the city or involved in other
social activity outside their immediate family or work environment.

We also found that the geographic location strongly correlates with a specific
group of people. Social interactions with colleagues happen mostly at the
probands work place, while interactions with their significant others mostly
happen at home.

While we hit some roadblocks as described in the previous section, we think
that we have found some interesting results that can warrant further explo-
ration.

Additionally, several users told their interest in location heatmap visualiza-
tion. We think this heatmap would be interesting to get a sense where some-
ones social hotspots are and to provide some interesting feedback for a per-
son if they want to gain some insight in their social interaction patterns.

6.8. Open Source Release

We release all code written for this thesis as open source under the MIT Li-
cense2. Note that the FunF Framework is licensed under the LGPL License3

The repository is located here:

https://github.com/mpern/master_thesis

2http://opensource.org/licenses/MIT
3http://www.gnu.org/licenses/lgpl.html
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7. Discussion

In this chapter we discuss our findings from Chapter 6. We evaluate how
well FunF works as a framework for data collection on mobile phones and
discuss some of our results in greater detail. We elaborate how labeling of
social interactions on a smartphone impacts our participants. After that, we
give recommendations on how infer social interactions on a smartphone and
discuss possible future approaches.

7.1. Lessons Learned

In this section, we will show the challenges of our approach and discuss how
these influence our result. We will assess the FunF Framework, elaborate our
difficulties with Bluetooth proximity and give a summary of the feedback by
our participants.

7.1.1. FunF Framework

While the FunF Framework serves as a good starting point for data mining
on smartphones, it has also some flaws to consider. First and foremost, the
framework itself is not yet stable enough. For this thesis, we used version
0.4, the current version at the time of writing is 0.5RC1. We tried using the
new version for our app, but the new version has serious bugs that renders it
unusable. We fixed several bugs for 0.4 to make it usable on modern smart-
phones. The major drawback of FunF is that all probes run on the user inter-
face thread, which makes any app using it prone to so called “Application
Not Responding” Errors of Android, especially if the app uses many probes
and/or calculation intensive probes.
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7. Discussion

Label (Hash) BTID Co-Occurrences

535e7ed454… 0C:89:10:0B:79:E2 34
bbe83a32be… 0C:89:10:0B:79:E2 33
4094786d50… 0C:89:10:0B:79:E2 33
bbe83a32be… 2C:D0:5A:87:77:E8 33
535e7ed454… 74:E5:43:52:F5:8D 32

Table 7.1.: This table shows the top five co-occurrences of Bluetooth devices with social in-
teractions for one of our participants. As we can see, multiple labels co-occur with
the same device, while some labels co-occur with other devices with nearly equal
frequency.

7.1.2. Bluetooth Proximity

While numerous publications use Bluetooth proximity to infer social dy-
namics, we were not able to infer significant correlations (see Section 6.6).
This is mainly because for modern Bluetooth devices, the device can not be
discovered by other devices per default. This also holds true for all modern
smartphones, which in turn means we are not able to associate a smartphone
to a label. For all our participants, we were not able to find a device or a
set of devices that highly co-occurs with one of the labels. We propose that
most devices are more correlated with a specific location (for example, the
Bluetooth-enabled television in the living room is discoverable per default.
Therefore, all social interactions taking place in this room co-occur with this
device.) It could be possible to generate “device fingeprints” that identify a
location based on the discovered Bluetooth devices.

Table 7.1 show the top five co-occurences of social interactions with Blue-
tooth devices for one of our participants. As we can see, several labels co-
occur with the same Bluetooth device, while some labels co-occur with differ-
ent Bluetooth devices. The results for our other participants look similar. We
were only able to determine one meaningful co-occurrence that links one
specific label to one specific Bluetooth device.
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7.1.3. Labeling Social Interactions

We ask all our participants how the labeling of social interactions impacts
them. All our participants report that the UI is easy to use, but remark that
the labeling itself is a difficult task. The primary reasons that make labeling
hard are:

• A lot of social interactions are very brief (for example, a few words at
the coffee machine in the office or a spontaneous meeting of a friend on
the street). This makes it hard to label the interaction correctly, with re-
gard to activating and deactivating the label and the correct moments.

• Sometimes our participants just forget to deactivate a label. This is to
be expected during a busy day. We included a way to manually set
the start and end time for a label to mitigate this, but it still happened
during our data collection phase.

• Labeling every social interaction during the day is very tiresome. It
especially breaks the flow of group interactions because you have to
constantly adjust your active labels.

With this section we show that there are some problems with our approach.
In the next section we give recommendations on how to avoid these prob-
lems and what future works on the topic of our thesis could use to generate
better results.

7.2. Recommendations

Based on our results and the points we raise before, we will now give some
recommendations and ideas for future attempts to detect social interactions
on smartphones.

First and foremost, we think a future approach has to include advanced au-
dio signal processing. Xu et al. [42] show how audio signal processing can be
used to infer the speaker count of meeting or similar setting. One approach
would be to program a new FunF Probe and include it in the data collections.
We think the estimated count would be a very good indicator for the social
interactions a person has at a given moment.
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Another consideration is the FunF Framework. Because of its architecture,
one has to carefully choose which and how many Probes to use. We think
for the next approach has to consider which data to mine and only configure
Probes for the selected data. The configuration itself needs to be cautiously
evaluated. We find that data mining can drain the battery of smartphones
at a very high rate. Therefore, every duty cycle for every Probe has to be
weighted against the energy drain and adapted to the requirements of the
next approach.

Additionally, the duty cycles should be synchronized between all partici-
pants. Figure 6.5 illustrates the reason for this requirement very well. As we
can see, the data points do not occur at the same time, but shifted between
the participants. To perform time correlation, the system time of the smart-
phones and schedules of the Probes need to be synchronized. The short du-
ration of most social interactions proposes a challenge for every duty cycle.
Make it too long and there will be no data available for many interactions.
Make it too short and the energy drain becomes unacceptable.

The next data collection run has to include a greater number of participants
that perform the labeling for a longer time period. This allows us to capture
a more diverse behavior sample for scenarios like weekends, vacation days
and others. We also think that only simultaneous data mining for all partic-
ipants of a group leads to viable results.

Another point brought up by the user study is how hard it is to label social
interactions. The app should assist the user in labeling. One idea would be
to use the output of the Crowd++ [42] algorithm to suggest to the user that a
social interaction has happened. Based on the output, the app could suggest
the count of participants and the estimated start and end times. The user
could then activate labels and adjust the timestamps accordingly.
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8. Conclusion

With this thesis we tried to determine the number of persons a user has face-
to-face social interactions for a given timestamp. Using nearly all data min-
ing capabilities of the FunF Framework, we performed a user study with six
participants divided into two groups. We collected a total of more than 50M
data points for all our participants.

Using this dataset, we visualized how and if the time of day, bluetooth prox-
imity data, magnetic field values, location data and audio signal energy cor-
relate with the labeled social interactions.

Writing the data mining app was a great opportunity to gain an insight into
the Android Software Development Kit (SDK) and into the FunF Framework
and learn about the inner workings of the sensors a typical smartphone pos-
sesses.

Performing a data collection helped us understand the difficulties that arise
when working with persons that know nothing about your research and how
to convey information so that everyone can understand it.

During the visualization phase we gained valuable knowledge on how to
process, normalize and visualize time-series data using the Pandas Data
Analysis Library in conjunction with matplotlib1. It also deepened our un-
derstanding of the Python programming language.

We think that this thesis provides a good starting point for social interaction
detection on smartphones. We show numerous approaches and ideas and
how they pan out. We also discuss all our findings and problems, so that
further research on this topic can benefit from this information by avoiding

1http://matplotlib.org/
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8. Conclusion

our problems and getting ideas on new approaches. Additionally, we pro-
vide numerous considerations and ideas for future work in Section 7.2.

While it was unfortunate that we were not able to find some strong corre-
lations between social interactions and our mined sensor data, we think the
large data sample can be used by future work to verify their results or as
initial training data for other algorithms. We also think that our data set in-
cludes some interesting patterns, that may trigger new ideas on this topic.
We think the correlation between calendar appointments and social inter-
actions warrants further investigation and could provide an easy way to in-
crease the accuracy of a possible algorithm that detects social interactions in
smartphone sensor data.

Additionally, we provide all code that was written for this thesis (this in-
cludes the data mining app and all scripts to normalize, analyze and visual-
ize the data) as open source, so that some of it may be used again.

With this thesis we present a first exploration on how to detect social interac-
tions on mobile phones via Mobile Sensing. We implemented a smartphone
data mining app, with which we conducted two user studies with three par-
ticipants each over the course of three days. We analyzed and visualized the
connection between time of day, audio data, calendar appointments, mag-
netic field values, Bluetooth data and location data and discussed theses re-
sults and provided several recommendations how future works on this topic
could improve on our study.
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Acronyms

AR Augmented Reality. 13

CS Cosine Similarity. 16

DFT discrete Fourier transform. 14

ECG Electro-cardio gramm. 9

GMM Gaussian Mixture Model. 15
GPS Global Positioning System. iii, v, 19, 38, 39, 51, 52, 104
GSM Global System for Mobile Communications. 3

JSON JavaScript Object Notation. 22, 34, 35

MFCC Mel Frequency Cepstral Coefficient. 82
MFCC Mel Frequency Cepstral Coefficient. 15, 16

NTP Network Time Protocol. 108

OCR Optical character recognition. 12
OS Operating System. 3, 22

PLP Perceptual Linear Predictive. 15
PSD Power Spectral Density. 44, 76, 82

SD Secure Digital. 71
SDK Software Development Kit. iii, 59, 80, 85
SMS Short Messaging Service. 106

UI User Interface. 23, 24, 29, 57
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Appendix A.

Description of Collected Data

Here we describe the data and the configuration of the various probes (for
the description of the Probe concept see Section 4.1.1) we use in our data col-
lection app. For every probe we will include a brief description, the relevant
configuration and a sample data point. Additional descriptions of the fields
will be included as needed.

If a field starts with "ONE_WAY_HASH" it means that the value is the SHA-1
hash of the original value. The hashing is used to protect privacy sensitive
information. We also shortened the hash in the sample data to the first five
digits. The remaining hash is indicated by “…”.

We shortened some data points if the data structures where particularly
complex. This is indicated by “…”.

A.1. Archive

Interval Duration
1 hour -

Description

The Archive action saves all collected data to the external memory (the Se-
cure Digital (SD)-Card if the phone provides one)
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Appendix A. Description of Collected Data

Please note that the archive function of FunF is not implemented as probe!
We included this section to provide information about the archiving inter-
val.

A.2. LabelProbe

Interval Duration
30 min -

Description

This probe adds the collected interaction data to the dataset. All finished
interactions, that are not yet archived, are added to the dataset.

Sample Data

{
"_id":15,
"activated_ts":1390074710,
"deactivated_ts":1390075274,
"label_id":13,
"label_text":"manuel",
"timestamp":1.39007471E+9

}

A.3. CalendarProbe

Interval Duration
24h -
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A.4. WifiProbe

Description

This probe syncs all calendar events for the current day.

For a description of the fields see CalendarContract.Events1, CalendarCon-
tract.Instances2 and CalendarContract.Attendees3 The keys in the data struc-
ture correspond to the constants defined in these interfaces.

Note: The calendar content provider is only available since Android version
4.0, “Ice Cream Sandwich”. For all previous versions of Android this probe
will report no data.

Sample Data

{
"ATTENDEES": [],
"_id": 544,
"begin": 1395826200,
"end": 1395829800,
"event_id": 780,
"hasAttendeeData": true,
"timestamp": 1395826200,
"title": "{\"ONE_WAY_HASH\":\"b1079...\"}"

}

A.4. WifiProbe

Interval Duration
5 min -

1http://developer.android.com/reference/android/provider/
CalendarContract.Events.html

2http://developer.android.com/reference/android/provider/
CalendarContract.Instances.html

3http://developer.android.com/reference/android/provider/
CalendarContract.Attendees.html
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Appendix A. Description of Collected Data

Interval Duration

Description

This probe records data about all WiFi networks currently in range.

For a description of the fields see ScanResult4. Note: the original timestamp
of the ScanResult is preserved in the field tsf.

Sample Data

{
"BSSID": "50:9f:27:e2:37:48",
"SSID": "3WebCube3746",
"capabilities": "[WPA2-PSK-CCMP+TKIP][WPS][ESS]",
"distanceCm": -1,
"distanceSdCm": -1,
"frequency": 2462,
"level": -86,
"timestamp": 1389908808.917,
"tsf": 1219760760436,
"wifiSsid": {

"octets": {
"buf": [
51,
87,
101,
98,
67,
117,
98,
101,
51,

4http://developer.android.com/reference/android/net/wifi/ScanResult.html
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A.5. AccelerometerFeaturesProbe

55,
52,
54,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
],
"count": 12

}
}

}

A.5. AccelerometerFeaturesProbe

Interval Duration
2m 15s
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Appendix A. Description of Collected Data

Description

Absolute central moment5, Standard deviation, Max deviation, PSD6 per axis

The default frequency band edges for the PSD are defined as follows in the
source code:

@Configurable
private double[] freqBandEdges = {0,1,3,6,10};

Sample Data

{
"diffFrameSecs":0.000000,
"numFrameSamples":73,
"timestamp":1390403180.353338,
"x":{

"absoluteCentralMoment":0.20370956292137365,
"maxDeviation":1.139627123260274,
"mean":-1.017327929260274,
"psdAcrossFrequencyBands":[

10.888577705504122,
13.104709450845048,
12.874202781714772,
6.484905577113416

],
"standardDeviation":0.29490550854615283

},
"y":{

"absoluteCentralMoment":0.0880777692249952,
"maxDeviation":0.2918075219178071,
"mean":5.484327521917807,
"psdAcrossFrequencyBands":[

0.24340133699038946,

5http://en.wikipedia.org/wiki/Central_moment
6http://en.wikipedia.org/wiki/Spectral_density#Power_spectral_density
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A.6. AccelerometerSensorProbe

0.5365554433102747,
1.5222832409664304,
1.8080624684578268

],
"standardDeviation":0.1151088059813906

},
"z":{

"absoluteCentralMoment":0.19776735916682292,
"maxDeviation":1.2028540753424668,
"mean":8.279079924657534,
"psdAcrossFrequencyBands":[

0.2595266054708534,
19.818497668580576,
21.093091502129425,
17.31872895277045

],
"standardDeviation":0.33603985335287434

}
}

A.6. AccelerometerSensorProbe

Interval Duration
2m 15s

Description

This probe records the raw accelerometer sensor data as it is emitted by the
Android framework.

For a description of the values see Sensor.TYPE_ACCELEROMETER7

7http://developer.android.com/reference/android/hardware/Sensor.html#
TYPE_ACCELEROMETER
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Appendix A. Description of Collected Data

Sample Data

{
"accuracy":0,
"timestamp":1390063524.900984440,
"x":-0.28593445,
"y":4.5034027,
"z":8.959442

}

A.7. AccountsProbe

Interval Duration
1 hour -

Description

This probe reports the accounts that are stored on the phone.

Sample Data

{
"name":"{\"ONE_WAY_HASH\":\"87431...\"}",
"timestamp":1389908498.182,
"type":"com.beeminder.beeminder"

}

A.8. ActivityProbe
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A.9. AndroidInfoProbe

Interval Duration
2m 15s

Description

This probe reports an “activity level” based on the variance sum of the ac-
celeration for the X, Y and Z axis (see Appendix A.6). The thresholds for the
three levels (low, medium, high) are defined as follows:

if (varianceSum >= 10.0f) {
data.addProperty(ACTIVITY_LEVEL, ACTIVITY_LEVEL_HIGH);

} else if (varianceSum < 10.0f && varianceSum > 3.0f) {
data.addProperty(ACTIVITY_LEVEL, ACTIVITY_LEVEL_LOW);

} else {
data.addProperty(ACTIVITY_LEVEL, ACTIVITY_LEVEL_NONE);

}

Sample Data

{
"activityLevel":"high",
"timestamp":1389893298.639

}

A.9. AndroidInfoProbe

Interval Duration
1 hour -
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Appendix A. Description of Collected Data

Description

This probe reports the build number, firmware version, and SDK level of the
phone.

Sample Data

{
"buildNumber":"occam-user 4.4.2 KOT49H 937116 release-keys",
"firmwareVersion":"4.4.2",
"sdk":19,
"timestamp":1389925801.197

}

A.10. ApplicationsProbe

Interval Duration
1 hour -

Description

This probe reports all apps on the phone. This also includes currently unin-
stalled apps.

For a description of the fields see ApplicationInfo8

8http://developer.android.com/reference/android/content/pm/
ApplicationInfo.html
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A.11. AudioFeaturesProbe

Sample Data

{
"compatibleWidthLimitDp":0,
"dataDir":"/data/data/com.google.android.ears",
"descriptionRes":0,
"enabled":true,
"enabledSetting":0,
"flags":8961605,
"icon":2130837525,
"installLocation":-1,
"installed":true,
"installedTimestamp":null,
"labelRes":2131230720,
"largestWidthLimitDp":0,
"logo":0,
"nativeLibraryDir":"/data/app-lib/com.google.android.ears-1",
"packageName":"com.google.android.ears",
"processName":"com.google.android.ears",
"publicSourceDir":"/system/app/GoogleEars.apk",
"requiresSmallestWidthDp":0,
"seinfo":"default",
"sourceDir":"/system/app/GoogleEars.apk",
"targetSdkVersion":17,
"taskAffinity":"com.google.android.ears",
"theme":0,
"timestamp":1389893397.398,
"uiOptions":0,
"uid":10024

}

A.11. AudioFeaturesProbe
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Interval Duration

Interval Duration
10min 1 min

Description

This probe calculates and reports PSD9, Mel Frequency Cepstral Coefficients
(MFCCs)10, L1/L2/L_Infinity Norm11 of the current audio stream recorded
by the phone.

The standard frequency band edges for the PSD are defined as follows in the
source code of FunF:

private static double[] FREQ_BANDEDGES = {50,250,500,1000,2000};

Sample Data

{
"diffSecs":1.0,
"l1Norm":22.984625,
"l2Norm":28.85640093636072,
"linfNorm":9.9498743710662,
"mfccs":[

79.89206072209798,
7.446925849002253,
2.639189540920471,
2.290348643340287,
2.5271848690643544,
1.2880679340115282,
1.422433897642004,

9http://en.wikipedia.org/wiki/Spectral_density#Power_spectral_density
10http://en.wikipedia.org/wiki/Mel-frequency_cepstrum
11http://en.wikipedia.org/wiki/Norm_(mathematics)
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A.12. AudioMediaProbe

2.092365094262467,
2.7298077884122636,
0.8105104856889456,
-0.7024508446031763,
-1.3647949765935876

],
"psdAcrossFrequencyBands":[

15226814.391497899,
2280275.170662274,
624375.5262948957,
146985.84662805777

],
"timestamp":1389893400.6

}

A.12. AudioMediaProbe

Interval Duration
10 hours -

Description

This probe reports meta-data about audio files stored on the phone.

For a description of the fields see MediaStore.Audio.AudioColumns12

Sample Data

{
"_display_name":"hangout_dingtone.m4a",

12http://developer.android.com/reference/android/provider/MediaStore.
Audio.AudioColumns.html
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Appendix A. Description of Collected Data

"_id":"23",
"_size":17294,
"album":"Notifications",
"album_id":1,
"artist":"",
"artist_id":1,
"date_added":1360783791,
"date_modified":1360784724,
"duration":1045,
"is_alarm":false,
"is_music":false,
"is_notification":true,
"is_ringtone":false,
"mime_type":"audio/mp4",
"timestamp":1360784724,
"title":"Join Hangout",
"track":0,
"year":0

}

A.13. BatteryProbe

Interval Duration
5 min -

Description

This probe reports statistics about the battery used by the phone.

For a description of the fields and their values see BatteryManager13

13http://developer.android.com/reference/android/os/BatteryManager.html
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A.14. BluetoothProbe

Sample Data

{
"health":2,
"icon-small":17302941,
"invalid_charger":0,
"level":91,
"plugged":2,
"present":true,
"scale":100,
"status":2,
"technology":"Li-ion",
"temperature":321,
"timestamp":1389907380.173,
"voltage":4245

}

A.14. BluetoothProbe

Interval Duration
5 min -

Description

This probe reports discovered Bluetooth devices in the vicinity.

For a description of the fields see the Android SDK about BluetoothDevice.AC-
TION_FOUND14

14http://developer.android.com/reference/android/bluetooth/
BluetoothDevice.html#ACTION_FOUND
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Appendix A. Description of Collected Data

Sample Data

{
"android.bluetooth.device.extra.CLASS":{

"mClass":4063500
},
"android.bluetooth.device.extra.DEVICE":{

"mAddress":"E0:2A:82:99:5C:AB"
},
"android.bluetooth.device.extra.NAME":"LISA-HP",
"android.bluetooth.device.extra.RSSI":-82,
"timestamp":1389907383.415

}

A.15. CallLogProbe

Interval Duration
10 hours -

Description

This probe reports all call logs (incoming, outgoing).

For the description fo the Fields see CallLog.Calls15

The hash of the phone number is calculated from last 10 digits of the actual
phone number, where all non-digit character were removed.

Note: The same call can be logged multiple times. A duplicate check of the
data is necessary.

15http://developer.android.com/reference/android/provider/CallLog.Calls.
html
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A.16. CellTowerProbe

Sample Data

{
"_id":1,
"date":1360783930571,
"duration":0,
"name":"{\"ONE_WAY_HASH\":\"\"}",
"number":"{\"ONE_WAY_HASH\":\"286dd...\"}",
"numberlabel":"{\"ONE_WAY_HASH\":\"\"}",
"numbertype":"{\"ONE_WAY_HASH\":\"\"}",
"timestamp":1360783930.571,
"type":1

}

A.16. CellTowerProbe

Interval Duration
1h -

Description

Data about nearby cellular towers. The value of type is either of Telephony-
Manager.PHONE_TYPE_CDMA16,

TelephonyManger.PHONE_TYPE_GSM17 or TelephonyManager.PHONE_TYPE_NONE18

16http://developer.android.com/reference/android/telephony/
TelephonyManager.html#PHONE_TYPE_CDMA

17http://developer.android.com/reference/android/telephony/
TelephonyManager.html#PHONE_TYPE_GSM

18http://developer.android.com/reference/android/telephony/
TelephonyManager.html#PHONE_TYPE_NONE
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Appendix A. Description of Collected Data

The remaining fields are from CdmaCellLocation19 or GsmCellLocation20,
depending on the type of the cell tower.

Sample Data

{
"cid":2445946,
"lac":59952,
"psc":45,
"timestamp":1389893397.823,
"type":1

}

A.17. ContactProbe

Interval Duration
7 days -

Description

This probe collects the contact data of the phone.

For a description of how the contact data in android is structured, see Con-
tactsContract.Data21

Note that the phone number of the contact is transformed as follows:

1. all non-digit characters are removed

19http://developer.android.com/reference/android/telephony/cdma/
CdmaCellLocation.html

20http://developer.android.com/reference/android/telephony/gsm/
GsmCellLocation.html

21http://developer.android.com/reference/android/provider/
ContactsContract.Data.html
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A.17. ContactProbe

2. only the last ten digits of the result of the previous step are saved

Sample Data

{
"contactData":[

{
"_id":47,
"data1":"{\"ONE_WAY_HASH\":\"b0dec...\"}",
"data2":3,
"data4":"{\"ONE_WAY_HASH\":\"\"}",
"data_version":2,
"is_primary":1,
"is_super_primary":0,
"mimetype":"vnd.android.cursor.item/email_v2",
"raw_contact_id":7

},
...
{

"_id":1994,
"data3":0,
"data4":14,
"data5":0,
"data_version":0,
"is_primary":0,
"is_super_primary":0,
"mimetype":"vnd.android.cursor.item/vnd.googleplus.profile.comm",
"raw_contact_id":281

}
],
"contact_id":7,
"custom_ringtone":"{\"ONE_WAY_HASH\":\"\"}",
"display_name":"{\"ONE_WAY_HASH\":\"eba1e...\"}",
"in_visible_group":1,
"last_time_contacted":0,
"lookup":"3063i16e9885f0d92b055.3698ee%3At..scholz%40nonomy..net",
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Appendix A. Description of Collected Data

"photo_id":0,
"send_to_voicemail":0,
"starred":0,
"times_contacted":0,
"timestamp":1389893398.94

}

A.18. GravitySensorProbe

Interval Duration
1h 1min

Description

This probe collects the readings of the gravity sensor, if available.

See Sensor.TYPE_GRAVITY22 for an explanation of the fields and their val-
ues.

Sample Data

{
"accuracy":3,
"timestamp":1390063525.329695378,
"x":-0.39721924,
"y":4.516546,
"z":8.695598

}

22http://developer.android.com/reference/android/hardware/Sensor.html#
TYPE_GRAVITY
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A.20. HardwareInfoProbe

A.19. GyroscopeSensorProbe

Interval Duration
30 min 1 min

Description

This probe collects the data of the built-in gyroscope, if available.

See Sensor.TYPE_GYROSCOPE23 for an explanation of the fields and their
values

Sample Data

{
"accuracy":3,
"timestamp":1390063525.329695378,
"x":-0.39721924,
"y":4.516546,
"z":8.695598

}

A.20. HardwareInfoProbe

Interval Duration
7 days -

23http://developer.android.com/reference/android/hardware/Sensor.html#
TYPE_GYROSCOPE
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Appendix A. Description of Collected Data

Description

This probe reports hardware information of the used phone.

Sample Data

{
"androidId":"d9c3057650b79129",
"bluetoothMac":"10:68:3F:25:F8:91",
"brand":"google",
"deviceId":"353918052579394",
"model":"Nexus 4",
"timestamp":1390064288.154,
"wifiMac":"f8:0c:f3:ff:d1:98"

}

A.21. LightSensorProbe

Interval Duration
5 min 1 min

Description

This probe reports the values of the light sensor, if available.

See Sensor.TYPE_LIGHT24 for a description of the fields and their values

24http://developer.android.com/reference/android/hardware/Sensor.html#
TYPE_LIGHT
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A.22. LinearAccelerationSensorProbe

Sample Data

{
"accuracy":0,
"lux":8.0,
"timestamp":1390063544.574729086

}

A.22. LinearAccelerationSensorProbe

Interval Duration
1 h 1 min

Description

This probe reports the value of the linear acceleration sensor provided by
the Android framework.

Sensor.TYPE_LINEAR_ACCELERATION25 explains how “linear accelera-
tion” is defined in context of the Android framework.

Sample Data

{
"accuracy":3,
"timestamp":1390063528.613216563,
"x":0.84480834,
"y":-1.0073481,
"z":-0.5863557

}

25http://developer.android.com/reference/android/hardware/Sensor.html#
TYPE_LINEAR_ACCELERATION
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Appendix A. Description of Collected Data

A.23. MagneticFieldSensorProbe

Interval Duration
1 h 1 min

Description

This probe reports the values of the magnetic field sensor, if available.

See Sensor.TYPE_MAGNETIC_FIELD26 for an explanation of the fields and
their values

Sample Data

{
"accuracy":3,
"timestamp":1390063528.706722423,
"x":23.278809,
"y":-18.899536,
"z":-29.579163

}

A.24. OrientationSensorProbe

Interval Duration
3 min 15 sec

26http://developer.android.com/reference/android/hardware/Sensor.html#
TYPE_MAGNETIC_FIELD
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A.25. PressureSensorProbe

Description

This probe reports the orientation of the device, if the needed sensors are
available.

See Sensor.TYPE_ORIENTATION27 for an explanation of the fields and their
values

Sample Data

{
"accuracy":3,
"azimuth":262.7669,
"pitch":-47.684673,
"roll":-12.561616,
"timestamp":1390063530.688650074

}

A.25. PressureSensorProbe

Interval Duration
1 h 1 min

Description

This probe collects the data of the pressure sensor, if available.

See Sensor.TYPE_PRESSURE28 for an explanation of the fields and their val-
ues

27http://developer.android.com/reference/android/hardware/Sensor.html#
TYPE_ORIENTATION

28http://developer.android.com/reference/android/hardware/Sensor.html#
TYPE_PRESSURE
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Appendix A. Description of Collected Data

Sample Data

{
"accuracy":0,
"pressure":963.0907,
"timestamp":1390063540.148264020

}

A.26. ProcessStatisticsProbe

Interval Duration
5 min -

Description

This probe reports information regarding currently running processes and
additionally parses various data points from the /proc file system

For additional information regarding the fields and their values use follow-
ing table:

Top Level Key Additonal Information
RUNNING_PROCESS_INFO ActivityManager.RunningAppProcessInfo29

RUNNING_PROCESS_MEMORY_INFO Debug.MemoryInfo30

ERRORED_PROCESS_INFO ActivityManager.ProcessErrorStateInfo31

CPU_LOAD see probe source code
MEM_INFO see probe source code
NET_DEV see probe source code

29http://developer.android.com/reference/android/app/ActivityManager.
RunningAppProcessInfo.html

30http://developer.android.com/reference/android/os/Debug.MemoryInfo.html
31http://developer.android.com/reference/android/app/ActivityManager.

ProcessErrorStateInfo.html
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A.26. ProcessStatisticsProbe

Sample Data

Note: Sample data is shortened due to the high number of fields reported by
this probe.

{
"CPU_LOAD":{

"BootTime":1388689048,
"ContextSwitch":758735866,
"CpuTotalTime":14823899,
"Processes":762939,
"cpu":{

"freq":13.53,
"nice":0.32657614,
"system":8.068511,
"total":18.49101,
"user":10.095923

}
},
"ERRORED_PROCESS_INFO":null,
"MEM_INFO":{

"Active(anon):":681356,
"Active(file):":481756,
"Active:":1163112,
"Buffers:":241264,
"Cached:":595732,
"HighFree:":8248,
"HighTotal:":1286140,
"Inactive(anon):":4520,
"Inactive(file):":349560,
"Inactive:":354080,
"LowFree:":49920,
"LowTotal:":592648,
"MemFree:":58168,
"MemTotal:":1878788,
"Mlocked:":0,
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Appendix A. Description of Collected Data

"SwapCached:":0,
"SwapFree:":0,
"SwapTotal:":0,
"Unevictable:":1116

},
"NET_DEV":{

"rev_rmnet1:":{
"RxBytes":0,
"RxPackets":0,
"TxBytes":0,
"TxPackets":0

},
"rev_rmnet5:":{

"RxBytes":0,
"RxPackets":0,
"TxBytes":0,
"TxPackets":0

},
"rmnet1:":{

"RxBytes":0,
"RxPackets":0,
"TxBytes":0,
"TxPackets":0

},
"rmnet6:":{

"RxBytes":0,
"RxPackets":0,
"TxBytes":0,
"TxPackets":0

},
"rmnet_usb2:":{

"RxBytes":0,
"RxPackets":0,
"TxBytes":0,
"TxPackets":0

}
},
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A.27. ProximitySensorProbe

"RUNNING_PROCESS_INFO":[
{

"flags":4,
"importance":100,
"importanceReasonCode":0,
"importanceReasonImportance":0,
"importanceReasonPid":0,
"lastTrimLevel":0,
"lru":0,
"pid":1349,
"pkgList":[

"com.sand.airdroid"
],
"processName":"com.sand.airdroid",
"uid":10116

},
...

],
"timestamp":1389908809.587

}

A.27. ProximitySensorProbe

Interval Duration
5 min 15 sec

Description

This probe reporst the data of the proximity sensor, if available.

See Sensor.TYPE_PROXIMITY32 for an explanation of the fields and their

32http://developer.android.com/reference/android/hardware/Sensor.html#
TYPE_PROXIMITY
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Appendix A. Description of Collected Data

values

Sample Data

{
"accuracy":3,
"distance":5.000305,
"timestamp":2779512955.522638

}

A.28. RotationVectorSensorProbe

Interval Duration
5 min 15 sec

Description

This probe records the data provided by the rotation sensor, if available.

See Sensor.TYPE_ROTATION_VECTOR33 for an explanation of the fields
and their values

Sample Data

{
"accuracy":3,
"cosThetaOver2":0.68528765,
"timestamp":1390063530.074733897,
"xSinThetaOver2":0.35262012,

33http://developer.android.com/reference/android/hardware/Sensor.html#
TYPE_ROTATION_VECTOR
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A.29. RunningApplicationsProbe

"ySinThetaOver2":0.26114565,
"zSinThetaOver2":0.58123547

}

A.29. RunningApplicationsProbe

Interval Duration
- -

Description

This probe emits the applications that are currently open or in use via a
polling method.

The probe polls the currently active app. When a new app is active, the probe
logs the previously running app, because now the probe can determine the
duration the previous app was running.

Sample Data

{
"duration":5.010,
"taskInfo":{

"baseIntent":{
"mAction":"android.intent.action.MAIN",
"mCategories":[

"android.intent.category.HOME"
],
"mComponent":{

"mClass":"com.android.launcher2.Launcher",
"mPackage":"com.android.launcher"

},
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"mFlags":274726912
},
"id":1,
"persistentId":1,
"stackId":0

},
"timestamp":1389909641.554

}

A.30. ScreenProbe

Interval Duration
- -

Description

This probe records when the screen turns on and off.

Sample Data

{
"screenOn":true,
"timestamp":1389909641.55

}

A.31. ServicesProbe

Interval Duration
1 hour -
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A.32. SimpleLocationProbe

Description

This probe reports all running services.

For a description of the fields see ActivityManager.RunningServiceInfo34

Sample Data

{
"activeSince":237800,
"clientCount":1,
"clientLabel":17040560,
"clientPackage":"android",
"crashCount":0,
"flags":0,
"foreground":false,
"lastActivityTime":243362,
"pid":1420,
"process":"net.dinglisch.android.taskerm",
"restarting":0,
"service":{

"mClass":"net.dinglisch.android.taskerm.MyAccessibilityService",
"mPackage":"net.dinglisch.android.taskerm"

},
"started":false,
"timestamp":1389907376.846,
"uid":10094

}

A.32. SimpleLocationProbe

34http://developer.android.com/reference/android/app/ActivityManager.
RunningServiceInfo.html

103

http://developer.android.com/reference/android/app/ActivityManager.RunningServiceInfo.html
http://developer.android.com/reference/android/app/ActivityManager.RunningServiceInfo.html
http://developer.android.com/reference/android/app/ActivityManager.RunningServiceInfo.html


Appendix A. Description of Collected Data

Interval Duration
30 min -

• goodEnoughAccuracy: 50

Description

This probe filters the set of locations reported by the GPS sensor for the most
accurate location within a max wait time, ending early if it finds a location
that has at most the goodEnoughAccuracy (default=80). For the description
of accuracy, see Location.getAccuracy()35

For a description of the fields see Location36

Sample Data

{
"mAccuracy":24.344,
"mAltitude":0.0,
"mBearing":0.0,
"mElapsedRealtimeNanos":1204282882397069,
"mExtras":{

"networkLocationType":"wifi",
"nlpVersion":2005,
"noGPSLocation":{

"mAccuracy":24.344,
"mAltitude":0.0,
"mBearing":0.0,
"mElapsedRealtimeNanos":1204282882397069,
"mExtras":{

"networkLocationType":"wifi",

35http://developer.android.com/reference/android/location/Location.html#
getAccuracy()

36http://developer.android.com/reference/android/location/Location.html

104

http://developer.android.com/reference/android/location/Location.html#getAccuracy()
http://developer.android.com/reference/android/location/Location.html
http://developer.android.com/reference/android/location/Location.html#getAccuracy()
http://developer.android.com/reference/android/location/Location.html#getAccuracy()
http://developer.android.com/reference/android/location/Location.html


A.33. SmsProbe

"nlpVersion":2005,
"travelState":"stationary"

},
"mHasAccuracy":true,
"mHasAltitude":false,
"mHasBearing":false,
"mHasSpeed":false,
"mIsFromMockProvider":false,
"mLatitude":47.0744566,
"mLongitude":15.4501974,
"mProvider":"network",
"mSpeed":0.0,
"mTime":1389893330976

},
"travelState":"stationary"

},
"mHasAccuracy":true,
"mHasAltitude":false,
"mHasBearing":false,
"mHasSpeed":false,
"mIsFromMockProvider":false,
"mLatitude":47.0744566,
"mLongitude":15.4501974,
"mProvider":"network",
"mSpeed":0.0,
"mTime":1389893330976,
"timestamp":1389893331.327

}

A.33. SmsProbe

Interval Duration
10 hours -
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Description

This probe reports the Short Messaging Service (SMS) log of the phone.

For the description of the data see Telephony.TextBasedSmsColumns37

Note: The probe records the same message multiple times, therefore a du-
plicate check is necessary.

Sample Data

{
"address":"{\"ONE_WAY_HASH\":\"27cf6...\"}",
"body":"{\"ONE_WAY_HASH\":\"a8426...\"}",
"date":1361656254322,
"locked":false,
"person":"{\"ONE_WAY_HASH\":\"286dd...\"}",
"protocol":0,
"read":true,
"reply_path_present":false,
"service_center":"+436990005999",
"status":-1,
"subject":"{\"ONE_WAY_HASH\":\"\"}",
"thread_id":7,
"timestamp":1361656254.322,
"type":1

}

A.34. TelephonyProbe

Interval Duration
7 days -

37https://developer.android.com/reference/android/provider/Telephony.
TextBasedSmsColumns.html
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A.35. TemperatureSensorProbe

Description

This probe records the mobile network information.

For a description of the fields see TelephonyManager38

Sample Data

{
"callState":0,
"deviceId":"353918052579394",
"deviceSoftwareVersion":"06",
"hassIccCard":true,
"line1Number":"{\"ONE_WAY_HASH\":\"bad34...\"}",
"networkCountryIso":"at",
"networkOperator":"23203",
"networkOperatorName":"tele.ring",
"networkType":3,
"phoneType":1,
"simCountryIso":"at",
"simOperator":"23207",
"simOperatorName":"",
"simSerialNumber":"89430700001271195285",
"simState":5,
"subscriberId":"232072503251308",
"timestamp":1390066495.261,
"voicemailAlphaTag":"Mailbox",
"voicemailNumber":null

}

A.35. TemperatureSensorProbe

38http://developer.android.com/reference/android/telephony/
TelephonyManager.html
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Appendix A. Description of Collected Data

Interval Duration
20 min 10 sec

Description

This probe records the temperature. Implementation depends on the device,
therefore the probe is not available on all devices.

Some devices will record temperature of battery, others the temperature of
CPU or environment

see Sensor.TYPE_AMBIENT_TEMPERATURE39

A.36. TimeOffsetProbe

Interval Duration
1 h -

Description

This probe reports the current system time offset compared to a major Net-
work Time Protocol (NTP) server in seconds.

The default NTP server is defined in the source code as follows:

@Configurable
private String host = "2.north-america.pool.ntp.org";

39http://developer.android.com/reference/android/hardware/Sensor.html#
TYPE_AMBIENT_TEMPERATURE
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A.36. TimeOffsetProbe

Sample Data

{
"localTimeOffset":-9.901,
"roundTripDelay":0.284,
"timestamp":1389950854.598

}
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