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Abstract

The development of new software or new features for software applications requires
an accurate inspection of the compliance to the quality standards. Modifications
of the software can lead to new bugs and malicious side effects as well as to failing
the desired requirements. To work against such regressions, automated test systems
are used during software development. Such systems often have a high complexity
and have to be customized to the needs of the application. Regression testing plays
a major role for the maintenance and is a critical success factor for most software
projects. The software development process of the combustion analysis program
“AVL IndiCom” applies such an automated testing solution. However, practice
has shown that the constant evaluation and maintenance of the results leads to a
high effort. This diploma thesis reveals the weakness of this system and shows how
improvements to the automation can be implemented.

1



Kurzfassung

Die Entwicklung von neuer Software oder neuen Features für den Anwendungsbere-
ich erfordert eine genaue Überprüfung der Einhaltung von Qualitätsanforderungen.
Modifikationen an der Software bergen stets die Gefahr von Fehlern, unerwünschten
Nebeneffekten sowie die Nichteinhaltung der verlangten Anforderungen. Um solchen
Rückschritten entgegen zu wirken werden verstärkt automatisierte Testverfahren in
der Softwareentwicklung eingesetzt. Solche Systeme sind jedoch oft sehr komplex
und müssen meist auf die zu testende Anwendung maßgeschneidert werden. Der Re-
gressionstest spielt speziell in der Wartung eine große Rolle und die wirtschaftliche
Durchführung des Regressionstests ist in vielen Projekten ein kritischer Erfolgsfak-
tor. In der Entwicklung des AVL Verbrennungsanalyse Programms ”AVL IndiCom”
wird eine solche automatisierte Testlösung eingesetzt. Allerdings hat sich gezeigt,
dass die ständige Wartung und Auswertung der Ergebnisse mit sehr hohem Aufwand
verbunden sind. Diese Arbeit zeigt die Schwächen dieses Systems auf und stellt
einige Verbesserungen der Testautomatisierung vor.
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Chapter 1

Introduction

AVL is a company dealing with the development of powertrain systems, with inter-
nal combustion engines as well as instrumentation and test systems. Processes in
the combustion engine are primarily not calculated with complete thermodynamic
models, but are measured systematically. By varying certain parameters like values
of the engine electronics, the combustion engine can be optimized. A variation of a
wrong parameters can lead to a serious harm of the engine, therefore the correctness
of the measured data is essential for the analysis of the combustion engine. A pre-
cise examination of the measurement data has to be done, before the measurement
software is delivered to the customer. The evaluation of the measured data is a
challenging and time consuming task, therefore an automation of this process has
been implemented.

1.1 Motivation

My first contact with test automation was during my employment for AVL as a
trainee and then as a part-time job during my studies. My task covered in particular
the maintenance of the automatic test system, the analysis of detected errors and
the reporting of these errors. The introduction of new agile software development
methodologies and the increasing maintenance effort for the automatic test required
an examination of the current automated test methods.

1.2 History

The term of “test automation” is a comprehensive term. Many test requirements
can be implemented in many different ways. Test automation can be applied in
different test phases, from component test to acceptance test. Test automation can
be applied to different activities, from automatic test case generation to automatic
execution of test plans. Therefore no uniform recipe for implementing an automated
test system can be found.

11



1.3. About this document

With the reasoned increase of new software development methodologies and
shorter release cycles, automated testing is becoming more and more important.
Test automation can also help to meet the “PI Objectives”1 and therefore con-
tributes to the business value.

1.3 About this document

This master thesis summarizes the results of my work. Subsequently, a coarse
overview of the topics in this thesis is presented.

The term combustion analysis is not a commonly known term in the field of
computer science and originates from the field of mechanical engineering. Therefore,
in chapter 2, the fundamentals about combustion analysis will be explained and
the functionality of AVL IndiCom which is relevant for the test automation will
be described. In chapter 3 the characteristics of the current implementation of
the automatic test system will be explained. Chapter 4 will focus on the current
automatic test system and analyse how the implementation meets the requirements.
The perceptions found in chapter 4 required a test of the robustness of the current
test evaluation method, which will be shown in chapter 5. The main work of this
master thesis was to find improvements for the test automation. This expertise will
be illustrated in chapter 6. At the end of this thesis I will provide the results of the
field test in chapter 7.

1 Program Increment Objectives, specific business and technical goals
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Chapter 2

Combustion Analysis with AVL
IndiCom

The combustion analysis of an engine depends basically on the evaluation of the
anticipated pressure chart and expected work based on the gas laws. Before Nikolaus
August Otto 1 launched the first four-stroke engine recorded on 18 May 1876, he
calculated the pressure chart and with this was able to confirm his calculations by
measuring the cylinder pressure on his test engine. These mechanically recorded
pressure traces are called indicator charts.[see Pis02, chap. 1]

Figure 2.1: Indicator chart recorded by Nikolaus August Otto (from Friedrich Sass:
”Geschichte des deutschen Verbrennungsmotorenbaus von 1860-1918”)

The engine instrumentation since then has changed considerably, however the
concept of “engine indicating” still remains. The crank angle-based measurement of

1 Nikolaus August Otto (10 June 1832, Holzhausen an der Haide, Nassau - 26 January 1891,
Cologne) was the German engineer of the first internal-combustion engine

13



2.1. Data acquisition

the pressure inside the cylinder in relation to the instantaneous position of the piston
is still a central parameter to understand the inside engine phenomena. Nowadays
the field of applications for combustion measurement has a wide range. Piezoelectric
pressure transducers and computer-supported data acquisition allows us to obtain
extensive information from the analysis of measured pressure curves.

Figure 2.2: Application areas of indicating technology

AVL IndiCom is an application designed for data acquisition, evaluation and
result transfer of crank angle based and time based measurement values from com-
bustion engines.

2.1 Data acquisition

This chapter will give a brief overview of the functioning of AVL IndiCom. The first
step to retrieve a measurement is to supply the engine with sensors and connect it
to a high-performance electric generator. With this generator the workload can be
varied as required. The sensor data is transmitted to the indication hardware and
then to a PC on which the data is evaluated by AVL IndiCom.

14



2.2. AVL IndiCom Components

Figure 2.3: Indicating measurement chain

AVL IndiCom provides two different measurement modes which will be relevant
for the automatic test. One is the single measurement over a defined number of
cycles and the other is the continuous acquisition of data.

2.1.1 Single Measurement

A single measurement (procedural measurement) is terminated automatically after
the defined measurement duration. The recorded cycles can then be viewed one by
one. [see Gmb11c, chap. 11]

2.1.2 Continuous Acquisition

In a continuous acquisition, curves and results are displayed continuously. The data
is continuously recorded in a ring buffer, and the most recent cycle is displayed. This
produces an oscilloscope-type display. This measurement mode is stopped manually
or can be switched over to a single measurement. The last cycles remain available
in the memory. [see Gmb11c, chap. 11]

2.2 AVL IndiCom Components

AVL IndiCom is a state-of-the-art user interface and control software for all AVL in-
dicating systems. Furthermore, this software also provides the possibility to acquire
data from other systems such as NI-DAQ card, CAN buses of ASAP3. Depending on

15



2.2. AVL IndiCom Components

the used devices and options the components in the following chapters will be avail-
able. Figure 2.4 shows the main components of AVL IndiCom and in the following
subsections the relevant components for the automatic test will be described. Basi-
cally, all calculations available with AVL IndiCom depend on the measured signals
based on parametrization of the measurement.

Figure 2.4: IndiCom Components

2.2.1 Parametrization

Before a measurement can be started, the utilized hardware, such as an indicating
or an simulated device, has to be parametrized. The software automatically detects
the connected devices and amplifiers. A graphical view of the devices shows the
available connections on the connected devices. This includes e.g. settings for crank
angle marks, engine geometry, TDC values, signal names and types, measurement
ranges and resolutions and calibration values. These settings can then be saved to a
file and can be loaded later [see Gmb11c, chap. 6]. The parametrization is necessary
for each measurement and therefore an essential part of the automatic test.

2.2.2 Formula/Script Editor

The Formula/Script Editor provides a complete development environment within
AVL IndiCom. Predefined control sequences are stored in Script files and may con-
tain a number of commands to be interpreted and executed by AVÃ– IndiCom. In
this way, in addition to the standard functions, AVL IndiCom provides a full-fledged
programming environment that can be used for developing individual applications.
[see Gmb11a, chap. 1] The script language is very similar to the interpreter language
VB and the Script Editor also contains debugging tools for the development. This
component is essential for the automatic test, as most of the IndiCom functionality
can be operated with these scripts.

16



2.2. AVL IndiCom Components

2.2.3 Graphical Formula Editor

CalcGraf is an intelligent formula interpreter which can be parametrized via a graph-
ical editor. CalcGraf can be used to generate graphic calculation models where var-
ious function blocks are linked and wired to inputs and outputs. Formula files are
generated for all outputs while the model is subsequently compiled. These formulas
act as virtual channels and can be selected in the channel list of an indicating data
file for use in diagrams and tables. When the formula is compiled, the outputs of the
model will be added to the output channel list and the calculation of those channels
will be executed when the channel is displayed. [see Gmb11b, chap. 5.7]

Figure 2.5: CalcGraf Formula - Model for calculation of the cylinder pressure

The output of each model will be a script which simulates a channel in the
measurement. These calculated results will also be checked by the automatic test.

17



Chapter 3

Characteristics of the automatic
test system

As described in the previous chapter, one of the basic functionalities of IndiCom
is the data acquisition and processing from various measurement devices. These
devices are normally plugged to different sensors on a combustion engine. Changes
on the data acquisition code can influence all results calculated by the software.

Since the test set-up for a combustion engine is not available during development,
the first consideration was to build a device, which can simulate the signals produced
by a combustion engine. A hardware element was developed which can playback
signals captured from a real combustion engine was developed. In the beginning
of the development of this software, all signals were checked simultaneously by a
manual measurement with an oscilloscope and then compared to the measured data
on the PC. This mostly is an extensive task and also requires a detailed knowledge
on combustion analysis.

To reduce the effort of manual testing, the next step was to automate this task
and build a regression test system. A regression test is not a common test method,
in fact it is the repetition of already completed tests. After a change to the program
code it is possible to detect side effects by repeating the tests and comparing the
results.

The principal of the regression testing is trivial. Two different versions of the
software need to be tested, an older version which is already tested and approved
and the current version. On behalf of the specification, the test results of the reliable
version are compared to the results of the current version. If the results of the current
version match the results of the reference version, this implies that the behaviour of
the software is the same and no regression was found. [see Pre07, chap. 8]

18



3.1. The test set-up

3.1 The test set-up

To execute an automatic test, the test environment has to be set up. This envi-
ronment consists of a PC running the latest version of AVL IndiCom. The PC is
connected to the Engine Simulator ant the simulator is connected to the measure-
ment device. Optionally, the measurement device can be connected to an amplifier.
Depending on the measurement hardware, the device is connected to the PC via
RJ45, USB or Firewire (see figure 3.1).

Figure 3.1: The test enrivonment

Over the years, new measurement devices were developed and the support for
new devices was implemented into AVL IndiCom. Different specifications of the
functionality and measurement accuracy of the measurement devices, made it nec-
essary to build multiple test set-ups.

3.2 Test preparation

To execute the automatic test routine, some manual preparation steps have to be
fulfilled first:

1. Check for the latest version of AVL IndiCom

2. Copy the setup files to a local directory

3. Copy the license files to a local directory

19



3.3. The test sequence

4. Set configuration entries in the setup INI file

5. Execute the AVL IndiCom setup

6. Checkout the test environment to the installation folder

7. Set configuration entries in the application INI file

8. Start AVL IndiCom

9. Exchange the standard work environment with the test environment

10. Start the test routine

These steps have to be repeated for every new AVL IndiCom build and for each
measurement device on different PCs.

3.3 The test sequence

To accomplish the automatic test, different steps have to be executed. This proce-
dure consists of a manual task, the test preparation, and an automatic task, the test
execution.

3.3.1 Test execution

Each test is implemented as an AVL IndiCom script which basically consists of the
same set of instructions.

Figure 3.2 shows the control sequence for one automatic test case. As a first
step the parametrization for the measurement has to be loaded. This file defines
which channels will be measured and determines the resolution of the measured
data. Then a first communication with the measurement device is initiated.

20



3.3. The test sequence

Figure 3.2: Control sequence for a single test

In the next step the Engine Simulator is initialized. A file containing the recorded
data from a measurement on a real combustion engine, is transmitted to the simu-
lator and then the simulation is started.

Now AVL IndiCom starts to communicate with the measurement device and the
measured data is transferred to the PC. Depending on the measurement mode, the
measurement will stop after a defined time period or a certain set of cycles.

3.3.2 Test evaluation

After the measurement has stopped, the reference data set and the tolerance values
are loaded. Due to timing differences between the simulator and environmental
influences on the measurement devices, an exact comparison of the measured signal
with the reference signal is not practicable.
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3.3. The test sequence

Single measurement

A single measurement always contains the same amount of data, e.g. one value per
crank angle. For this use case a statistical evaluation of the measured signal is made.

x = xn :=
1

n

n∑
i=1

xi (3.1)

σx =

√∑n
i=1(xi − x)2

(n− 1)
(3.2)

xmin = min(x1, x2, ..., xn) (3.3)

xmax = max(x1, x2, ..., xn) (3.4)

Equation (3.1) is the arithmetic mean of the measured data. Equation (3.2) is
the standard deviation of the data set and the equations (3.3) and (3.4) are the
highest and lowest measured values. [HEK05]

Figure 3.3 shows the comparison of a measured data set and the loaded reference
data set. Now the statistical evaluation of both signals is compared. As a standard
value a deviation of +/- 1 % of the reference value is defined in the tolerances
file. This condition has to be satisfied by all values, so that a test is considered
as passed. The standard deviation represents an exception. Because values can
possibly become very small, an absolute deviation of 0.05 is defined. This means,
that if the calculated standard deviation of the reference signal is lower than this
value, the deviation will be +/- 0.05.

Reference −1% +1% Measured Pass
xmin 44.800000 44.352000 45.248000 45.100000 TRUE
xmax 3515.200000 3480.048000 3550.352000 3517.900000 TRUE
x 382.192500 378.370575 386.014425 384.860139 TRUE
σx 655.720667 649.163460 662.277873 655.782997 TRUE

Table 3.1: Test evaluation for cylinder pressure [percent], successful test
Evaluation of the graph shown in in 3.3:

Table 3.1 shows the evaluation for the signals presented in figure 3.3. Since this
comparison method is highly sensitive to any environmental influences, like minimal
variations in the environment temperature, a definition of absolute tolerances was
necessary. Another problem is that the percentage depends on the value of the
reference, and if this value is very low, the tolerance is even lower.
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Figure 3.3: Measured signal and reference signal of cylinder pressure

Temperature fluctuation can influence the operating temperature of the measure-
ment devices and the integration of new measurement devices into the automatic
test can lead to substantial variations of the measured data. Due to this fact, the
introduction of absolute tolerance values was inevitable.

Figure 3.4 shows the result of a failed test, which was created with the AVL
IndiModul 621 device and measured with the new IndiCom Mobile device.

Reference −1% +1% Measured Pass
xmin 44.800000 44.352000 45.248000 43.645444 FALSE
xmax 3515.200000 3480.048000 3550.352000 3515.477658 TRUE
x 382.192500 378.370575 386.014425 382.203308 TRUE
σx 655.720667 649.163460 662.277873 655.698394 TRUE

Table 3.2: Test evaluation for cylinder pressure [percent], failed test
Evaluation of the graph shown in figure 3.4

This test will fail since the xmin value is not in the tolerance bound of +/- 1 %
of the reference minimum. For this reason, the tolerances can also be expressed as
absolute values. These values can be defined, for each test and measurement channel
in the tolerances file.

The tolerances are defined in the so called initialization file, which basically is a
text simple file. Adapting these tolerances requires high knowledge of the measured
signal, and the administration of these values is causing more and more effort.
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Figure 3.4: Measured signal and reference signal of cylinder pressure

Reference Tolerance -Tolerance +Tolerance Measured Pass
xmin 44.800000 1.17 43.63000 45.970000 43.645444 TRUE
xmax 3515.200000 0.28 3515.47766 3550.352000 3515.480000 TRUE
x 382.192500 0.02 382.20330 386.014425 382.212500 TRUE
σx 655.720667 0.03 655.69839 662.277873 655.750667 TRUE

Table 3.3: Test evaluation for cylinder pressure [absolute]
Test evaluation with absolute tolerance values for figure 3.4

Continuous measurement

During a continuous measurement the measurement signals are recorded by the
hardware and processed by a real time processor. This RTP data is continuously
transmitted to the PC. Depending on the computing power, signal count, resolution,
revolution speed and the defined calculations, the transmission of the data sometimes
is not possible. In this case, only the raw data of the current operating cycle is
transferred to the PC and continuously refreshed. All other measurement results will
be calculated when the measurement has finished and all data has been transferred.

Since the Engine Simulator and the PC are not synchronized, the start and stop
of the measurement can vary which influences the measurement result. Furthermore,
the values calculated after completion of the measurement, depend on the raw data
transferred and this impedes the comparison of those signals. The statistical evalua-
tion introduced in this chapter will fail in most cases for the described measurement
type. For this reason a sinus simulation record was created and this data will be
used for the time-based measurements.
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3.3. The test sequence

Figure 3.5: Measured time based signal and reference signal (resolution 0.025 sec)

Figure 3.5 shows the comparison of a measured time-based result data set and its
reference data set, with a time delay of 2.995 seconds. The start of the continuous
measurement depends on the current workload of the PC and the communication
with the measurement device. This delay is not predictable and normally ranges
between 0 and approximately 3 seconds.

For this reason, time-based signals will be compared by an absolute deviation,
which is a separate value in the tolerances file. To compare two time-based signals,
the first common values of the two signals have to be found by searching the nearest
rising or falling edge. Then the translation between the signals is calculated and
added to the measured signal. Now, each single value of the measured data set is
compared to its corresponding value in the reference signal.

xref(Min)(i) = xref (i) − µ (3.5)

xref(Max)(i) = xref (i) + µ (3.6)

x(i)Pass = (xcomp(i+ δ) > xref(Min)) AND (xcomp(i+ δ) < xref(Max)) (3.7)

Equation (3.7) shows the evaluation of a time based signal. In the equations (3.5)
and (3.6) the tolerance range is calculated, where µ is the tolerance value loaded
from the tolerances file. The value δ is the translational displacement of the two
signals. If the condition in (3.7) is not fulfilled, this test will fail.
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3.4 Endless test

Each single test is implemented as a script file which is executed with AVL IndiCom.
These test files are located in a folder in the “AutoTest” environment in the AVL
IndiCom program folder. In the endless test mode all scripts from the “AutoTest”
folder are executed one after another in alphabetical order of the script name.

3.5 Reporting

The result of each single automatic test is recorded to a text file. This Log file will
also contain the execution time and duration of each test, as well as a primitive
evaluation of the memory consumed by this test. After the execution of all tests a
summary showing the passed and failed tests is displayed.

There is no automatic reporting to the test department or to the development
department. The results are checked after each run and failed tests will be executed
again manually. If the failed test is not reproducible, it will not be considered as
error. In case of a reproducible error, the test result will be entered into JIRA and
a bug in the software is reported.
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Chapter 4

Analysis of the automatic test
system

The securing of the correctness and reliability of software is vitally important to the
product life cycle of a software product. The cost trend shows a marked increase of
the software costs in comparison to the hardware costs. Hence, a cost reduction in
the area of software development is highly economic.

The analysis of the costs in the software development process leads to the result,
that the biggest portion of the expenses arises during the maintenance phase of
a software product which is already on the market. This is the consequence of
inadequate quality of the software. The cause are errors which originate during the
software development and which are found when the product is used by a customer.
If the source code is also poorly structured and insufficiently documented, the error
detection and correction can be a very expensive task. [see Lig09, chap. 1]

Software quality can be defined by many different characteristics. Common defi-
nitions are ’conformance to the requirements’ or ’fitness for use’, but these definitions
do not provide a mechanism to judge better quality when two products are equally
fit to be used [O’R14].The International Organization for Standardization defines
six quality characteristics which can be seen in table 4.1.
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Characteristic Description
Functionality This indicates the extent to which the required functionality is

available in the software
Reliability This indicates the extent to which the software is reliable.
Usability This indicates the extent to which the users of the software

judge it to be easy to use.
Efficiency This characteristic indicates the efficiency of the software
Maintainability This indicates the extent to which the software product is easy

to modify and maintain.
Portability This indicates the ease of transferring the software to a

different environment

Table 4.1: ISO-9126 Quality characteristics
[see O’R14, Table 1.1]

Since the automatic test itself is a software product, there should be the same
demands on quality as for a commercial software product. In this chapter I would
like to investigate, how the automatic test meets the quality characteristics described
in ISO-9126.

To evaluate the extent to which the above mentioned characteristics are met in
the automatic test, first the requirements have to be defined. Since no specification
and no documentation is available, the requirements defined in retrospect as follows:

1. The test should find errors in data acquisition

2. The test should find version conflicts

3. The test should run with different measurement devices

4. Different measurement types should be evaluated

5. The test should run as endurance test

6. The test should provide data for performance analysis

7. The system should be easy to maintain

8. Everybody should be able to create new test cases

9. It should be possible to reproduce errors

10. Different test plans should be executable

11. Everybody should be able to understand the test cases

12. The test results should be evaluated and easy to handle
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4.1 Functionality

The points 1, 2 and 4 describe the functionality of the automatic test. In the
following these points will be focused and examined, int terms of how the automatic
test meet those requirements.

4.1.1 Finding errors in the data acquisition

As described in section 3 each single test is executing a measurement and then
compares the results to a reference data set. A deviation from the reference will
result in an error and as consequence the test has failed. Related to this functional
requirement, the false positive and false negative detection rate has to be examined.

False Negatives

A false negative error occurs when a test fails when it actually should not fail.
Unfortunately this happens very often. New measurement devices, loose wiring
and especially environmental influences on the hardware influence the measurement
results. These circumstances produce slight measurement errors which lead to the
fact, that many tests will fail. Especially the xmin and xmax are sensitive to these
influences. Increasing the tolerances is only a temporary solution and will not solve
the problem.

Figure 4.1: Failed test due to one outlier

Figure 4.1 and table 4.2 show the result of a failed test due to one minimal
outlier. This result is not reproducible and a repetition of this test will most likely
produce correct results.
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Reference −1% +1% Measured Pass
xmin 44.800000 44.352000 45.248000 43.100000 FALSE
xmax 3515.200000 3480.048000 3550.352000 3517.900000 TRUE
x 382.192500 378.370575 386.014425 384.857361 TRUE
σx 655.720667 649.163460 662.277873 655.784443 TRUE

Table 4.2: Test evaluation for cylinder pressure [percent], failed test
Evaluation of the graph shown in in 4.1:

This behaviour shows that the evaluation method is not robust to false negative
errors and increases the immense effort during evaluation of the test results. A
detailed determination of the robustness of the current evaluation method will be
shown in chapter 5.

False Positives

A false positive error is a result, that indicates the given test has passed, when
it actually should not have passed. This case definitely does not comply to the
requirement. For some signal types this measurement evaluation is inadvisable.

Figure 4.2: Passed test with not correlated signals

Figure 4.2 shows the maximum pressure rise per degree for a set of 50 cycles.
Table 4.3 shows that for the measured data, which is considerably different to the
reference signal, the statistical values are in the tolerance scope. The reason is, that
the values allow no inference to the signal progression of the two signals. This shows
that the statistical evaluation is appropriate for very similar expected signals, like
in the case of cycle-based signals.
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Reference −1% +1% Measured Pass
xmin 126.920000 125.650800 128.189200 126.920000 TRUE
xmax 130.770000 129.462300 132.077700 130.770000 TRUE
x 129.514000 128.218860 130.809140 129.514200 TRUE
σx 0.840418 0.790418 0.890418 0.799309 TRUE

Table 4.3: Test evaluation for maximum pressure rise per degree [percent]
Evaluation of the graph shown in in 4.2:

4.1.2 Finding version conflicts

As already mentioned in chapter 3 the automatic test was developed for regression
testing. The reference files provided in the test environment were created with an
older and considered stable version of AVL IndiCom. As shown in the previous
chapters a deviation from these references leads to an error and a test failure.

The development of new features and calculation methods in the software and
the introduction of new measurement devices, leads to a lack of reference files. Since
the creation of such references is an expensive task and the references have to be
reviewed by an expert, this task has been neglected in the passed years.

The evaluation of the test results of the automatic test system showed, that no
faultless test run was completed in the last month. The reason was not that the
software had so many bugs, but the test environment was not stable enough.

At an average release cycle of the software of 1 to 2 versions per week no version
conflicts could be found.

4.1.3 Evaluation of different measurement types

The automatic test should be able to evaluate as many different signal types as
necessary. Currently, the main focus of the test are cycle based signals. As shown
in chapter 3.3.2 the evaluation of time-based signals at the moment is limited.

as section 4.1.1 demonstrated, poorly correlated signals fail the tolerance check.
This is essentially the case for very short signal periods with a very small value
spread. Therefore, the evaluation of different measurement types too, does not
comply with requirement.

4.1.4 Performance analysis

During the execution of all tests a log entry in the test result file is created with the
currently consumed private memory of the AVL IndiCom and AVL IndiPar process.
New data transfer methods implemented in AVL IndiCom lead to a heavy memory
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load. Transferring signals in a high resolution in real time processing mode can lead
to out of memory exceptions and as a consequence, to a program crash. Bugs in the
data transfer lead to inaccurate measurement results and performance impacts.

All tests scripts belonging to the automatic test are executed in the same order
for each test run. This impedes the discovery of memory problems because most
problems occur when tests with a high measurement resolution and therefore high
data amounts are executed one after another.

The current evaluation of the recorded performance data showed, that these
values are insufficient for a memory analysis. Furthermore, the runtime of the single
tests is not recorded in an evaluable format. For this reason variations in the runtime
of single tests can not be detected.

4.2 Reliability

The term software reliability is defined as the probability that the program will work
according to its requirements and for a given amount of time [see Pha00, chap. 1]. In
this section, the requirements mentioned in point 5 will examined. The continuous
monitoring of the automatic test and the runtime are key features of any automated
test environment.

4.2.1 Endurance test

The so-called endless test mode of the automatic test system executes all tests in
the order of the test name and after all tests have been executed, the same order is
repeated again, until the system is stopped manually or the program crashes.

Since the test script is implemented and executed in the software to be tested
itself, a crash of the software leads to the abortion of the endless test. The version
that is tested in most cases is a development version. Hence, errors and crashes are
very likely. Outside office hours no complete run of all tests is available next day.

4.2.2 Test runtime

The period of time between the release build of the software and supply of the
software to the customer may not exceed three days. Currently the automatic test
has an average runtime1 of 48 hours.

Since each test depends on the hardware and measurement time or defined cycles,
there is not much room for improvements. The evaluation of the measurement results
is computed in O(n) steps and is insignificant for the duration of a single test.

1 Depending on the amount of test cases
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4.3 Usability

The ISO 9126 standard defines usability as “a set of attributes that bear on the
effort needed for use and on the individual assessment of such use, by a stated
or implied set of users.” It then proposed a product-oriented usability approach.
Usability was seen as an independent factor of software quality and it focused on
software attributes, such as the interface, which makes it easy to use [see AKSS03,
chap. 3.2].

The point 8, 9 and 11 are focusing on the usability of the automatic test and
will be examined in the following sections.

4.3.1 Creation of new tests

The automatic test depends mainly on the simulation data provided by customers.
These simulation files are very hard to get, since the combustion analysis is primarily
used for engine prototypes. All available simulation files are already included in the
automatic test and the creation of new tests is rarely necessary.

A document that describes the steps to create a new test case exists, however this
is only usable for people with programming skills. Since most people concerned with
the automatic test are specialists in indication technology, this can be a challenging
task. Furthermore, in this case, the requirement can be considered as not fulfilled.

4.3.2 Reproduction of errors

An automatic test is only valuable when its results can be reproduced. As mentioned
in chapter 4.1.1 the automatic test results in too many “false negative” findings.
Most of these findings were produced through temporary environmental influences
and are not reproducible.

4.3.3 Test plans

During the development of the automatic test, only one measurement device was
produced by AVL. The growth of the market and the great demand by the cus-
tomers lead to a diversification in the engine indication measurement sector. New
measurement devices were developed and the software was adopted to comply to
these devices.

As described in chapter 3.4 the execution order of the tests is based on the script
file name. Since there is only one central folder from where the tests are executed,
the changing of the order is very time-consuming. Therefore, the modification of
the execution order or even building test plans is not possible.
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4.3.4 Understandability of test cases

For analysing the test results, it is indispensable that the test cases are well doc-
umented. For this reason, a document containing all test cases with their name,
simulation file, measurement resolution and expected results was created.

The experience showed that the information contained in this file is not sufficient
to retrace the meaning of the test case. In addition, each test case contains the same
information in its script file. Hence, this information is redundant and has to be
maintained twice. To understand the meaning of a test case, additional information
like a description or the measured channels and the amount of cycles is absolutely
necessary.

4.4 Efficiency

Efficiency is “the capability of the software product to provide appropriate perfor-
mance, relative to the amount of resources used, under stated conditions”. Efficiency
is divided into 3 sub-characteristics: Time Behaviour, Resource Behaviour and Ef-
ficiency Compliance [FHRF12].

The characteristics time behaviour and performance complying to efficiency were
already described in this chapter. A key feature of an automatic test is the efficient
evaluation and reporting of the results. How fast can bugs in the software be de-
tected? How significant is the test result related to the quality of the software? In
the following sections I would like to answer these questions.

4.4.1 Evaluation of test results

When a test fails which actually should not fail, this test is repeated manually and
the fail is verified. Since the description of the test cases is insufficient, the reason for
the failure is difficult to find. Up to 100 different measurement results are evaluated
in one test case. If only one measurement result shows a deviation, this item has
to be identified and the values have to be checked. If the error is then verified by
another person, a new bug entry in the JIRA2 system is created.

4.4.2 Estimation of the result

Goal of any automatic test is, to make a statement regarding the stability and the
quality of the software product. In the case of AVL IndiCom all executed tests
have to get a positive result. Because of incompatibilities of the references with
different measurement devices, this condition was limited to the hardware device
“AVL IndiSet 670”. This condition is currently considered as sufficient, however the
extension of the automatic test for all devices has to be developed.

2 JIRA is a proprietary issue tracking product, developed by Atlassian
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4.5 Maintainability

The ISO 9126 standard defines maintainability as “a set of attributes that bear on
the effort needed to make specified modifications” [BAJ93]. The automatic test is
implemented in AVL IndiCom itself, therefore a knowledge of this software and the
involved script language is a prerequisite.

4.5.1 Maintenance of test cases

As already described in chapter 3, the execution for each single test is basically the
same. The parameters like parametrization, reference file and measurement set-up,
can be easily edited with AVL IndiCom. All files concerning the automatic test are
administered in a version control system3.

A more challenging and complex task is the administration of the tolerances.
The tolerances are defined in a text file for each test and each measurement result.
Since more and more absolute tolerances were needed, the administration with a
text file is not practicable any more.

4.5.2 Maintenance of the system

The test system itself consists of a set of macros and scripts implemented in AVL
IndiCom. Most of the mathematical functions used for the automatic test are also
productive features of the software and are also available in the released version.
Implementing new features and extensions to the automatic test is not a complex
task, given that the user has knowledge of the functionality of the system. To
improve the maintainability, a documentation and design document of the system
will be necessary.

4.6 Portability

Portability is defined as “a set of attributes that bear on the ability of software to be
transferred from one environment to another”‘[BAJ93]. Primarily the automatic test
was developed for a single measurement device and the portability of the system was
not considered. The porting of the system to another PC and a new measurement
device presumes that all hardware devices are available, connected and installed on
the new PC.

4.6.1 Compatibility to different measurement devices

If the hardware set-up is supplied, the normal initialization of the test environment
has to be done like described in chapter 3. The commissioning of the automatic test

3 CA Harvest software change manager, Version Control
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then is completed. The problem when porting the automatic test to a new hardware,
are the references and the organization of the test cases. An administration in the
version control system is possible but not recommended, since the maintenance of
the references and tolerances will increase.

4.6.2 Installation of the automatic test

The installation routine for the automatic test consists mainly of downloading the
work environment of the automatic test from the version control system into the
working folder of AVL IndiCom. Then this work environment folder has to be
loaded into AVL IndiCom and the test environment is ready to use.
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Chapter 5

Robustness of the signal
evaluation

This chapter will emphasize testing the comparison method used for the test eval-
uation against signal distortion. The chosen method for the comparison of the
reference signal to measured data was never tested against incompatible datasets.
Environmental influences on the measurement are hard to simulate in a real envi-
ronment and they are not predictable. Also, a lack of simulation files impedes the
investigation of the statistical analysis.

Different measurement devices vary in their precision of measurement as well
as in their functionality. Generating references for each single hardware device will
increase the effort for the maintenance considerably. Therefore, an analysis method
has to be found, which is robust against small deviations from measurement results.

5.1 Gaussian White Noise

A common method of simulating measurement influences is a white noise signal
having a Gaussian PDF1. Such a signal has a relatively flat signal spectrum density.
White Gaussian noise generators can serve as useful test tools in solving engineering
problems. Test and calibration of communication and electronic systems, cryptog-
raphy and RADAR jamming are examples of noise generator applications. White
noise contains all frequencies in equal proportion and therefore is a convenient sig-
nal for system measurements, and experimental design work. Furthermore, noise
generators are used in a variety of testing, calibration and alignment applications
especially with radio receivers. Consequently, white noise sources with calibrated
power density have become standard laboratory instruments. A few of the param-
eters that can be measured with these sources are: Noise Equivalent Bandwidth,
Amplitude Response and Impulse Response [AMKS08].

1 Probability Density Function

37



5.2. Experiments

n(x) = σ ∗ Φ (5.1)

f(x) = f(x)ref + n(x) (5.2)

Equation (5.1) is the definition of the white Gaussian noise which will be added
to distort the signal, where σ is the deviation factor and Φ is a set of normally
distributed random numbers2 with the size of the reference signal. The equation
shown in equation (5.2) defines the simulated measured signal by adding the noise
vector.

5.2 Experiments

Cycle based measurement results are considered as very similar. Hence, a cylin-
der pressure curve measured on a gasoline engine was chosen. Measurements on
other types of engines like diesel engines or even formula 1 engines do not differ
considerably from this curve progression.

For the simulation environment the multi-paradigm numerical computing envi-
ronment MATLAB was chosen. In the first experiment I will add a white Gaussian
noise in the range of D.

D = [0.01; 10] (5.3)

and with a step size of ∆σ = 0.01, for a set over 500 samples. This means,
that in this range for each σ, 500 random noise samples will be generated and each
sample is compared with the reference signal. The evaluation will then show, how
often the evaluation results in a violation of the +/- 1% deviation of the compared
value described in chapter 3.

2 Probability Density Function
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Figure 5.1: Evaluation for error tolerance

Figure 5.1 shows the result of the test run. The report shows, that a σ exceeding
a value of approximately 0.12 will result in an error. In the following see how the
single statistical values behave.

Figure 5.2:
Min, Max, x and σx for [σ >= 0.01;σ <= 10]

Figure 5.2 shows, that the minimum value is very sensible to interference of the
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signal. This is obvious since 1 % of a very small value result in an even smaller
value. This figure also indicates, that all other statistical values are not relevant
for a small σ, since they do not produce any errors in this range. To analyse the
behaviour of the other values, the range of σ will be extended from 10 to 100 with
∆σ = 0.1.

Figure 5.3:
Min, Max, x and σx for [σ >= 10;σ <= 100]

Figure 5.3 shows the trend of Min, Max, x and the standard deviation σx. While
the maximum value produces errors for a σ above 10, the threshold for the mean
value x and the standard deviation σx lies above a value of σ = 27.

An examination of the produced defective data sets showed, that a noise level
above a σ >= 6 is definitely to be considered as an error. Higher values show
considerable differences between the two signals.
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Figure 5.4: Cylinder pressure with noise σ = 5

Figure 5.4 shows a reference cylinder pressure chart and a chart with Gaussian
White Noise with σ = 5. Noise levels beneath this level can be considered as valid,
whereas noise levels beyond this level show heavy interferences as shown in figure
5.5.

Figure 5.5: Cylinder pressure with noise σ = 25
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5.3 Conclusion

The experiments in this chapter showed, that the current comparison method is not
appropriate for the evaluation of engine indication data. The values for Maximum
and Minimum depend on the value range of the signal and do not include the
measurement precision of the connected hardware. As shown in figure 5.3 the mean
value and the standard deviation are resistant too low noise levels but too insensitive
to detect measurement failures. It may be inferred, that the values for x and σx are
not capable for error detection, since the minimum value will always influence the
result.

As already shown in chapter 4.1.1, this method is totally inadequate for other
signal types. Data sets with very small values cannot be evaluated with this method,
because it shows no link between the reference and the compared signal.
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Chapter 6

Improvements

In chapter 4, some serious problems of the current automatic test system were
identified. These knowledge lad to examine other procedures for signal comparison
and to evaluate some proceedings which could improve the automatic test system.
In this chapter I will provide some implementations and tools, which will improve
the stability and performance of the testing system.

Figure 6.1: Structure chart of the Automatic Test Framework

Figure 6.1 shows the structure of the new framework. The automatic installer
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tool will permanently check for new AVL IndiCom builds and then automatically
install the new application and download all resources required to execute the au-
tomatic test. This tool will improve the maintainability and usability considerably.
For the creation of new test cases, programming skills were needed and this was a
reason why this task was neglected. Therefore, a test design environment to ease
this task was created. The system observer tool will measure the performance of
memory and time consumption. The execution of different test plans for different
measurement devices was not supported by the automatic test system and the eval-
uation of the results was confusing and often not informative. This problem could
be solved by integrating the automatic test cases into “HP Quality Center”1. The
execution of the prepared test plans will be performed by the test scheduler. Failed
test cases were analysed and compared with an older version of AVL IndiCom. This
is sufficient to detect version incompatibilities and for regression testing, but for
the creation of new test cases there was no proof of the references and comparison
results. For this reason a analysis tool was developed in MATLAB.

The following sections I will emphasize the tools and improvements based on
ISO-9126 standards from chapter 4.

6.1 Functionality

The main requirements to the automatic test system are locating inconsistencies in
data acquisition, detecting version conflicts in the software and performances losses.
Almost all requirements could not be satisfied or were only partially implemented.
The enhancement of these requirements was a mandatory task for this thesis.

6.1.1 Signal evaluation

The unsuitability of the current comparison method was shown in chapter 3. In
this section an alternative method will be introduced, which will not only reduce
the “false positives” and “false negatives” detections but also will be applicable to
different measurement types.

Pearson correlation coefficient

The Pearson product-moment correlation coefficient is a dimension-
less index, which is invariant to linear transformations of either variable.
Pearson2 first developed the mathematical formula for this important

1 HP Quality Center is a quality management software offered from HP Software Division of
Hewlett-Packard

2 Karl Pearson (27 March 1857, London - 27 April 1936, Coldharbour, Surrey), British statis-
tician, leading founder of the modern field of statistics
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measure in 1895:

r =

∑
(Xi −X)(Yi − Y )

[
∑

(Xi −X)2
∑

(Yi − Y )2]
1
2

(6.1)

This, or some simple algebraic variant, is the usual formula found in
introductory statistics textbooks. In the numerator, the raw scores are
centred by subtracting out the mean of each variable, and the sum of
cross-products of the centred variables is accumulated. The denominator
adjusts the scales of the variables to have equal units. Thus Equation 6.1
describes r as the centred and standardized sum of cross-product of two
variables. Using the Cauchy-Schwartz inequality, it can be shown that
the absolute value of the numerator is less than or equal to the denomi-
nator [e.g. LBN08, Lord and Novic 1968, p. 87]; therefore, the limits of
t 1 are established for r. Several simple algebraic transformations of this
formula can be used for computational purposes. [LRN88].

With regard to the problem definition, we define x as the reference data set and
y as the measured data set.

r =
sxy

sx ∗ sy
=

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
(6.2)

In equation 6.2 sxy is the empirical covariance, sx and sy are the empirical stan-
dard deviations, x and y are the mean values of the two signals and n is the amount
of data point pairs (xi, yi).

If the correlation coefficient r > 0, a positive relation exists and if r < 0 a nega-
tive relation exists. There is no linear relation if r = 0. The correlation coefficient
always lies between -1 and +1. If r is close to 0 there is only a weak linear connec-
tion between the data sets. There are no consistent rules for the evaluation of the
correlation coefficient, but the following definition is often found in the literature:

0.0 <= r <= 0.2 => no to weak linear connection
0.2 < r <= 0.5 => weak to moderate linear connection
0.5 < r <= 0.7 => significant linear connection
0.8 < r <= 1.0 => high to perfect linear connection

Table 6.1: Interpretation of the correlation coefficient r

To test the robustness of this statistical value on indication data, the same
experiments as in the previous chapters (5) will be executed for the correlation
coefficient r.

45



6.1. Functionality

First, signals with a Gaussian white noise in the range of D will be examined,

D = [0.01; 10] (6.3)

with a step size of ∆σ = 0.01 for a set of 500 randomly generated samples.

Figure 6.2: Evaluation of r in the range of σ = [0.01; 10]

Figure 6.2 shows the result of the test run. The report shows that a σ exceeding
a value of approximately 6.56 is the threshold for a perfect linear connection. The
sign of r is not relevant for the evaluation, because we are not interested in the type
of linear relationship. Therefore we assume r = abs(r). This experiment shows that
the correlation coefficient is robust against noise for a small σ.
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Figure 6.3: Evaluation of r in the range of σ = [10; 100]

Figure 6.3 demonstrates that r is insensitive against noise even for a very high
σ. For the automatic test this implies, that a strong correlation with abs(r) > 0.999
will be a good evidence for the similarity of the two data sets.

The correlation coefficient seems to fit perfect for the comparison of the two
data sets, but there is one obstacle. The correlation coefficient is invariant against
translations an scaling of the values, it only provides information about the linear
connection of the two signals. The translational displacement can be ignored for
cycle based data because the x range will always be the same [−360◦ : +360◦]. This
is ideal for time based measurements, since they will always have a time delay like
described in section 3.3.2.

To avoid errors referring to the scale, a tolerance area has to be defined. For the
calculation the signal range of the reference signal will be used.

Rref = Max(fref ) −Min(fref ) (6.4)

T = (Rref/1000) ∗ µ (6.5)

tupper = Max(fref ) + T (6.6)

tlower = Min(fref ) − T (6.7)

Equation 6.4 calculates the range of the signal on behalf of its spatial expansion
(Rref ) . In equation 6.5 the tolerance is calculated on behalf of the range, where µ
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is a scale factor. A set of tests showed, that 3 per thousand is an adequate value for
µ.

Figure 6.4: Reference signal and compare signal [σ = 6.0, µ = 3]

A test of time-based measurements shows the same results.

Figure 6.5: Time-based signals with tolerance area [µ = 3]

Figure 6.5 shows the evaluation of time based signals and a time delay of 2.995
seconds. The results demonstrate, that the correlation coefficient does not change
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considerably since r = 0.991. The translational displacement influences the linear
connection because of the 0 values at the beginning of the measurement, but the
correlation is still considered as perfect. It is assumed that for a time-based mea-
surement a correlation r > 0.99 is sufficient.

Finally, the correlation behaviour is checked against totally different signals,
which passed the former comparison method like shown in section 4.1.1.

Figure 6.6: Bad correlated signals [µ = 3]

Figure 6.6 shows that the correlation coefficient changed considerably under the
threshold of 0.999 and now this test wil fail.

The experiments in this section show, that the Pearson Correlation Coefficient is
an adequate measurement for the similarity of indication signals. The tolerances can
be reduced to an absolute value for r and the scale factor µ for the tolerance area.
Also time-based signals can be evaluated with this method and the same tolerance
parameters.

This comparison method was implemented as an AVL IndiCom script and inte-
grated into the automatic test system. The effort was manageable and the calcula-
tion of r does not change the runtime, since r can also be calculated in O(n).

6.1.2 Performance analysis

Memory profiling and run time analysis are important tasks during automatic test-
ing. No other testing method provides the possibility of tracking the usage of par-
ticular instructions in the program code. Profiling not only serves to detect program
failures, it also serves to aid program optimization.
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As shown in chapter 4, the current performance values obtained from the au-
tomatic test are not sufficient. The requirements to the automatic test demand
a tracing of the memory consumption and the runtime. The development of new
measurement devices and interfaces requires also a tracking of the network load as
well as the utilization of the CPU kernels.

Basically, there are two methods for how these performance parameters can be
obtained. One possibility is to include the profiling code into the source code itself.
Alternatively there is a large number of profiling tools available. The automatic test
is a program instance of its own and should test the functionality of the software
without interfering with the development.

Including the profiling code into the program bears the risk of er-
rors in the final product. Therefore, the act of inserting profiling codes
into a program can slightly modify its behaviour. Thus, in implement-
ing a profile checker, the profiler can avoid the program being profiled
to help identify profiling errors. The checker observes the runtime be-
haviour of a program the same way a human uses a debugger to debug
a program: by single stepping, setting breakpoints, running until break-
points are reached, and examining the memory space of the program.
In the process, the checker counts the profiling events as they appear
and checks whether the resulting counts match those generated by the
profiler. The checker also controls the execution of the original program
on the original input file and takes the event counts data as an input and
produces diagnostics and verification output as appropriate. [see OB10,
p. 123-125]

Different profiling tools were evaluated, but most of them were not suitable for
the automatic test, while some were to expensive and others exceeded the require-
ments and were too complicated. Therefore the decision in favour was to implement
a tool that suited the requirements of the automatic test.

AVL IndiCom is developed exclusively for Windows platforms. So the imple-
mentation of this tool in C# was obvious. The “System.Diagnostics” name space
in the .NET Framework 4.5 provides classes that allow you to interact with system
processes, event logs, and performance counters. With the “Process” class it is pos-
sible, to monitor system processes across the network and to start and stop local
system processes. It is possible to retrieve lists of running processes as well as the
current CPU usage. An instance of this class is used to monitor the AVL IndiCom
process3. With the “PerformanceCounter” class it is possible to monitor the system
and process performance. [Mic]

3 Conc32.exe
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For this reason a tool called the “System Observer” was implemented. This tool
runs as an instance of its own and is executed in parallel to the automatic test.
When the AVL IndiCom process is started, it records the process information on a
certain time interval. It also can receive triggers and can then record the information
at a specific moment.

Figure 6.7: The “System Observer” configuration

In figure 6.7 the configuration page of the profiling tool is shown. In the menu
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bar the process to be observed can be selected, the time interval for automatic
observation can be set and the network interface which should be tracked can be
selected. A manual trigger can simply be made by calling the executable file over the
command line. By passing a text as parameter over the command line, the profiling
record can be tagged with this text. Before and after the execution of an automatic
test, the system observer is triggered and the current process profiling information
is saved. This is realized by simply serializing the process information into a file.

In figure 6.7 all recorded process parameters can be seen. The widespread of the
captured values ranges from network load to CPU load and memory consumption.
A specification of the single values is shown by selecting the value, therefore this
will not be emphasized. Each measurement series can be saved and loaded for
comparison later on.

Figure 6.8: Comparison of the profiling results
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The collection of performance data is useless, if the obtained data is not analysed.
The “System Observer” provides the possibility to surf through the collected data
and to compare data sets with each other. Figure 6.8 shows the evaluation page.
The two top frames provide the possibility to step through the current measurement
or to compare the current measurement to a previously captured reference data set.
The bottom frame displays the calculated ∆ results between the two data sets.

To ease the comparison between two data sets, a graphical display was imple-
mented. There, the single profiling values can be displayed in a chart. In figure 6.9
the comparison of a reference data set with a current performance measurement is
shown. Any number of data sets can be loaded and compared.

Figure 6.9: Performance chart [Processor time on kernel 4]

6.2 Reliability

The term software reliability was already defined as the probability, that the program
will work according to its requirements and for a given amount of time [see Pha00,
chap. 1]. In chapter 4 the problem of frequent program crashes was described, which
influences the result of the automatic test and extends the runtime considerably.
Since the automatic test routine is implemented in the software to be tested, this
was a challenging task.

6.2.1 Endurance test

To estimate the reliability of the current development build, the automatic test
should deliver its results constantly. For this reason a method to remote control

53



6.2. Reliability

AVL IndiCom had to be found.

In practice, combustion analysis is not a task which is executed separately. On
an engine test bench, many different engine parameters are measured and analysed.
This means, that a series of different hardware devices and software programs have
to communicate and exchange data with another. The main test bench applica-
tion of AVL is the “AVL PUMA Automation Platform”’, a software which provides
precise control of measuring devices, test cell facilities, units under test and all
safety-relevant monitoring features, in addition to standard features, such as fully
automated test runs or manual operation. Since combustion analysis had to be inte-
grated into the automation platform, an interface, the “IndiComRemoteLib.dll” was
implemented. This interface provides the basic commands to control a measurement
and it also provides the possibility to execute scripts.

All functionality for opening an AVL IndiCom instance, starting and stopping a
measurement and the execution of script files. Therefore, the decision to implement
the automatic test with this interface was made. The key advantage of this imple-
mentation is, that program crashes can be detected and a new instance can then be
started. A more detailed description will be found in chapter 6.3.

6.2.2 Test runtime

Because of shorter release cycles of the software, an improvement of the runtime of
the automatic test had to be found. The automatic test system was inflexible in
changing the test sequence and the administration of the test cases was decentralized.
One good approach to reduce the runtime of the automatic test is the application
of equivalence class partitioning.

6.2.3 Equivalence class partitioning

Equivalence class partitioning result in a partitioning of the input
domain of the software-under-test. The technique can also be used to
partition the output domain, but this is not a common usage. The finite
number of partitions or equivalence classes that result allow the tester
to select a given member of an equivalence class as a representative of
that class. It is assumed that all members of an equivalence class are
processed in an equivalent way by the target software.

Using equivalence class partitioning a test value in particular class is
equivalent to a test value of any other member of that class. Therefore,
if one test case in a particular equivalence class reveals a defect, all the
other test cases based on that class would be expected to reveal the same
defect. We can also say that if a test case in a given equivalence class
did not detect a particular type of defect, then no other test case based
on that class would detect the defect (unless a subset of the equivalence
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class falls into another equivalence class, since classes may overlap in
some cases). [Bur03, chap. 4.5]

As described in chapter 4, the automatic test executes measurements on different
simulation files. These simulation files are resumed in different resolutions to verify
the accuracy of the results.

Engine Cylinders Resolution [◦] Measurement Mode
Gasoline 4 0.1 CA
Gasoline 4 0.2 CA
Gasoline 4 0.5 CA

...
Gasoline 4 0.1 RTP
Gasoline 4 0.2 RTP

...
Diesel 6 0.5 CA
Diesel 6 1.0 CA

...

Table 6.2: Excerpt of the automatic test plan

Table 6.2 shows an excerpt of the current test plan. The same simulation is
repeated for different measurement resolutions. Such a set of repetitions can be
considered as one equivalence class. The test case with the highest resolution will
be used as representative of this class as any other test case of this class would be
expected to reveal the same defect.

The definition of equivalence classes leads us to the next improvement of the
automatic test, the creation of test plans which will be treated in the next section.

6.3 Usability

The main problems concerning the usability of the automatic test are planning of
the test runs, the creation and administration of test cases and the execution of pre
defined test plans.

6.3.1 Creation of new tests

As already mentioned, the creation of a new test case required a good knowledge
and understanding of the test procedure as well as good programming skills. Since
the automatic test should be operable by any member of the AVL IndiCom team, a
simplification of that task had to be found.
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Models are used to understand, specify and develop systems in many
disciplines. From DNA and gene research to the development of the
latest fighter aircraft, models are used to promote understanding and
provide a reusable framework for product development. In the software
engineering process, models are now accepted as part of a modern object
oriented analysis and design approach by all of the major OO method-
ologies.

Modelling is a very economical means of capturing knowledge about
a system and then reusing this knowledge as the system grows. For a
testing team, this information is gold; what percentage of a test engi-
neer’s task is spent trying to understand what the System Under Test
(SUT) should be doing? (Not just is doing.) Once this information is
understood, how is it preserved for the next engineer, the next release, or
change order? If you are lucky it is in the test plan, but more typically
buried in a test script or just lost, waiting to be rediscovered. By con-
structing a model of a system that defines the systems desired behaviour
for specified inputs to it, a team now has a mechanism for a structured
analysis of the system. Scenarios are described as a sequence of actions
to the system [as it is defined in the model], with the correct responses
of the system also being specified. [AD97]

Thus, a model-based test design approach for the automatic test system would
be optimal. The AVL IndiCom remote interface constitutes a good basis for the
abstraction to such a model. Therefore, the “AutoTesting GUI” was implemented,
which simplifies the creation and maintenance of the test cases.

Each remote interface command and each script, contained in the automatic test
environment, can be seen as single entity which has input parameters and output
parameters. A sequence of such entities then forms a test case. As described in
[Bei95] such a model can be defined as Finite State Machine (FSM).
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Figure 6.10: The “AutoTesting GUI” showing a standard test case

Figure 6.10 shows the prototype of the “AutoTesting GUI”. A test case sequence
can easily be created by simply dragging the commands from the toolbox (on the
right side of the form) to the flow chart window. The sequence will then be executed
from top to bottom. Each node in the graph has input parameters and a result.
By selecting the node in the graph, its properties will be shown in the properties
window, which is located on the left side. By selecting a property, its description
will be shown below, which should ease the handling.

The remote interface only consists of a limited set of commands but can be
extended by using the “ExecuteScript” command. The “AutoTesting GUI” then
automatically checks the input parameters of this script, which can then be edited
in the properties window of the “ExecuteScript” node.
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Figure 6.11: The “ExecuteScript” parameters for starting the simulator

Figure 6.11 shows the properties of the “StartCDMSimulator” script, which will
be executed before the measurement to initialize the simulator hardware. Each
parameter can be changed and adapted to the needs of the current test case.

All nodes have some properties in common. The Name property is also the ID
of the node. The time out property defines a maximum runtime for this operation.
Once this time has exceeded, this node will produce an error. The “Last Error”
property is usually empty, but will show the last error message the respective node
has produced. If the node executes successfully, the value is set to empty again. All
nodes also posses properties which define the appearance of the node in the graph
like colour, caption and size. The “Enable” property defines, whether the node is
executed or the transition from its ancestor to the successor is taken.

Of course, the model can be executed in the environment immediately and a
counter can be set to define the amount of iterations. It is also possible to set
breakpoints on the nodes, so that a test case model can be debugged. Each model
then is serialized to an XML file when saved. This eases the handling of the test
cases because formerly, the test cases consisted of many different scripts. The output
window at the bottom of the window shows the log output for the execution.

This test design environment was developed with different open source code
libraries. An extension to conditional statements is planned in the future.

6.3.2 Test plans

Basically, the functionality for creating test plans was available in the former auto-
matic test by removing or adding the test scripts from/to the “Test” folder. The set
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contained in this folder was then executed in an endless loop in the order of the file
names. Therefore it was not possible to execute different test sets one after another
as is needed, when working with equivalence classes 6.2.3 and the test order cannot
be changed.

Therefore, a decision had to be taken and different options were evaluated. Since
AVL introduced the quality management software “HP Quality Center” to the com-
pany and all other test methods had to be handled by this software, it was obvious
to find a way to manage the automatic test with this tool. “HP Quality Center” can
be seen as the industry standard for quality management and provides a wide func-
tionality for managing test plans and reporting figures. Hewlett Packard provides
a COM interface for communicating with the central “HP Quality Center” server.
Therefore, the test plans can be accessed and the results of the single test cases can
be transferred to the quality database.

Figure 6.12: “HP Quality Center” work flow

Figure 6.12 shows the basic workflow in “HP Quality Center”. In a first step, all
test cases are created in the so called “Test Lab”. Here a detailed description for
each test case has to be entered and the XML file created with the “AutoTesting
GUI” has to be linked as well, so that the case is complete.
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In the second step shown in figure 6.12, the test plans are created. Each plan
consists of a subset of the test cases from the “Test Lab”. The order of test cases
can be arranged as needed. The maintenance of the test plans is intuitive and lots of
tools from copying and moving test case from one test plan to another are available.
A detailed documentation of these tools can be found in the documentation library
inside the “HP Quality Center”.

For executing the test plans created in “HP Quality Center” a test execution
tool was created, which allows the user to load test plans from the web server and
execute them on the local machine. The results will then be sent back to the “HP
Quality Center” and then they can be evaluated with the tools provided by the
software. A more detailed description of the test execution tool can be found in
6.3.4.

6.3.3 Understandability of test cases

In the former version of the automatic test, the test cases were poorly documented
and for people with no programming skills they were difficult to comprehend. This
should now change now considerably, since the documentation of each test case in
the “HP Quality Center” is mandatory. The “AutomaticTesting GUI” should also
contribute to ease the comprehensibility of the work flow of each test.

6.3.4 Execution of test plans

To execute the predefined test plans from “HP Quality Center”, a test execution
tool was implemented. To obtain the test plans from the quality center database,
an authentication to the “HP Quality Center” has to be made. Figure 6.13 shows
the login dialog for the execution tool. If the authentication succeeds, the user can
select the test domain and the test project from “HP Quality Center”. By pressing
login, the test configuration will be loaded from the quality server. Alternatively
the tool can be started in offline mode, where no connection is necessary and the
test XML files can be loaded from a local path.
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Figure 6.13: “Test Execution Tool” Login dialog

Figure 6.14 shows the administration page of the ”Execution Tool”. If logged in
to “HP Quality Center”, the predefined test plans will be shown in the tree control
on the left side of the dialog. The right side will contain the test cases for this plan.
The menu bar contains controls for reordering the test cases and filter possibilities.
Single tests can be selected by a check box and only checked items will be executed
by the tool. On the top left side, the execution controls can be found. The execution
can be started, paused and stopped. In addition, options for an endless test and
random-order test execution (Ω) are available.

If the tool is connected to the “HP Quality Center”, the result of each test case
will be sent to the server immediately after execution. Therefore, the current state
for every test station can be ovserved through the web interface of “HP Quality
Center”. The tool aslo has an included browser plug-in and by pressing the “HP
Quality Center” button the project homepage of the test project will be shown.
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Figure 6.14: “Test Execution Tool” Test plan execution

6.4 Efficiency

In chapter 4, the problems related to the efficiency of evaluating the test results
and the analysis of failed tests were identified and various tools to ease this task are
introduced. In this chapter I have already introduced some tools that will ease this
task.

6.4.1 Evaluation of test results

The whole evaluation was outsourced to “HP Quality Center”, where the sum of
all test results from the different work stations can be found. On the local test
machines, the “Test Execution Tool” shows the current status and the results of the
test cases executed. This represents a great improvement compared to the former
test system, where all results were stored in log files on the particular test machine.
Now, the test results from the automatic test can be administrated in the same way
as for other test modeslike the manual test. At the end of the test phase an overall
status of the testing can be generated.

6.4.2 Error Analysis

The “AutoTesting GUI” was already introduced in 6.3.1. With this tool the de-
bugging and execution of single test cases is now possible without any previous
knowledge. When executed, the “AutoTesting GUI” will show the error state of
each node.
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Figure 6.15: Test analysis, failed test case

Figure 6.15 shows the analysis of a failed test. In this case the parameter file that
defines the measurement parameters could not be loaded. By selecting the node the
error log will be displayed in the output window on the bottom of the “AutoTesting
GUI” as you can see in figure 6.16.

Figure 6.16: Log window of “AutoTesting GUI”

Additionally, a log file containing all results of the automatic test in textual
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form is stored on the local machine. Therefore, an analysis in case the test could be
executed on one machine while failing on another is facilitated.

6.5 Maintainability

As shown in chapter 6.1.1, the effort for maintenance could be reduced because of a
new signal evaluation. There is no need of managing a huge data set of tolerances
any more.

6.5.1 Maintenance of test cases

As already described extensively in the previous chapters, it was possible to imporve
the maintenance of the test cases and test plans considerably due to the application
of the “HP Quality Center”.

6.5.2 Maintenance of the system

The entire test environment is maintained with the source control software “CA
Harvest software change manager” in oreder to prevent data loss. Errors in the
test tools cannot be ruled out, but the tools are still in development and will be
improved continously. The core functionality of the automatic test is still included
in AVL IndiCom as scripts, so that the changes to the system itself were minimal.
The developed tools written in C# are maintained by the development team and
underlie a continuous quality control through code reviews.

6.6 Portability

The installation routine for the automatic test is a time-consuming task. All the
steps described in section 3.2 have to be repeated on each testing work station.
Investing in the development of a tool that automates these steps will improve the
performance of the automatic test as well as the portability to new hardware devices.

6.6.1 Installation of the automatic test

In order to automate the installation routine, an automatic installer tool was imple-
mented. Basically, this tool executes the steps described in section 3.2. To provide
more flexibility a configuration interface was designed.
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Figure 6.17: Configuration of the “Automatic Installer”

Figure 6.17 shows the configuration settings for the AVL IndiCom Version 2.3
installation. The tool periodically scans the defined remote path for a new build
folder. Since the names of the build folder can change, the search string is expressed
as a regular expression. Before the installation is executed, the license files have to
be copied and some configuration values have to be set, which is illustrated in the
“Setup Settings” section. After the installation, various post-installation tasks as
setting conguration values have to be done and the new application is started. All
properties are well documented and a description of the property is shown below
when the item is selected. The settings can be saved as XML file and transferred to
another testing environment.
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Figure 6.18: Automatic installation routine

Figure 6.18 shows the automatic installation of the last available AVL IndiCom
build. Only the latest available version is installed, older versions are ignored. The
program contains full logging in order to detect installation problems. The tool will
be started with the operating system and will then run as a background task in the
windows task bar, so that the current installation status can be checked at any time.

6.6.2 Compatibility to different measurement devices

The main problems when porting the automatic test to a new hardware, were in-
compatible references or the determination of the correct tolerance values for the
comparison. With the implementation of a new signal comparison method it was
possible to solve these problems. In the current state, the automatic test is prepared
for an arbitrary number of new hardware devices.
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Field Test

At the time of publication of this thesis, the data migration of the test cases to the
’HP Quality Center’ had not been finished. A small set of test cases as well as some
equivalence classes have already been created.

Figure 7.1: Comparison of the automatic test and improvements

In figure 7.1 a comparison of some common tasks related to the automatic test
is shown. The evaluation shows promising results. For the same set of 50 test
cases the detection of ’false negatives’ shows, that with the improved comparison
method it was possible to eliminate this problem. Errors in the implementation of
the automatic test and program crashes of AVL IndiCom lead to the abortion of the
automatic test. By outsourcing the test control, the automatic test now runs stable
and no cancellation of the test routine could be detected.
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The creation of new test cases was an expensive task, since new scripts had to
be created and each reference had to be generated manually. A comparison shows
that the time for creating a new test case could be reduced to one third of the
time required before. Furthermore, the analysis of failed tests could be considerably
reduced, because there is no need of searching through log files any more and no
debugging of source code has to be done. The initialisation of the automatic too, was
simplified. The manual installation routine took about 5 minutes and this had to be
done on each test environment for each measurement device. Now, the installation
is executed automatically and simply needs to be checked.

In this early stage of launching the improvements, new errors were already de-
tected, which resulted simply from changing the test case order of the test cases. The
execution of measurements with a high-resolution scope produces huge data sets. If
such test cases are executed one after another the result are memory problems of
AVL IndiCom. The recording of the performance figures with “System Observer”
tool facilitated the analysis of the problems and some of them could already be
solved. The commissioning of a new test environment for a new measurement hard-
ware was also realized without any problems.

The conversion of the test cases into the XML format currently is still in progress
and will continue to take time and occupy test resources. However, this is a unique
task and the advantages are obvious, since each test case now has to be documented
and the administration can be done in ’HP Quality Center’.
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Conclusion

First this master thesis was intended to analyse the benefit of the automated test
system and to verify the test methods. Some studies (see chapter 4) showed, that
the automated test is too sensitive to environmental changes and is unsuitable for
different measurement modes and different measurement devices. An analysis of the
runtime and stability put the benefit of the automatic test into doubt. Therefore,
an investigation on alternative evaluation methods and improvements of the test
process was accomplished.

The outcome showed, that an improved comparison of the measurement results
reduced the amount of software errors that were detected by mistake. With the im-
plementation of a new comparison method the stability of the automatic test could
be improved and new errors were detected. With the use of new tools and the propri-
etary development of supporting tools it was possible to improve the performance of
the automated test system. A connection of the automatic test to the “HP Quality
Center” facilitates the evaluation and administration of the test cases and results
and meets the requirements for a standardized and centralized test management
within the entire company.

The provided tools described in this master thesis facilitate working with the
automated test and raise awareness of the team members regarding the importance
of test automation. The automatic test is now a set component of the development
process.

An automatic test is certainly not a sufficient method to improve the quality of a
software product. Tests during development or test driven development mechanisms
should be promoted, since they are State-of-the-Art. During the software develop-
ment process, multiple steps of testing can develop, starting with component tests,
integration tests and finally a system test or, if required, an acceptance test. All
these steps can contain redundant checks for the same feature in the software. For
this reason, the coordination and planning of the test routine is a key factor for the
efficiency of the test and the quality of the software.
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Almost all steps mentioned above can be automated, from component tests with
xUnit1, to system tests with “Capture and Replay” tools like UIA2.

Advantages and disadvantages of the manual test:

+ Usability testing

+ Intuitive testing

+ Detailed testing

- High personnel costs

- High costs over the whole development period

- Formal test instructions are needed

Advantages and disadvantages of the automatic test:

+ Test results are reproducible

+ Faster than human

+ Always available

- High initial (development) costs

- High costs over the whole development period

With respect to the advantages and disadvantages of the manual and the auto-
matic test, it can be assumed that it is worth to invest in a test automation system,
when considering the financial and quality aspects. Assessing the whole development
time for a requirement, the test cases can be executed and repeated on a regular
basis and in a more efficient way. The development can be done during office hours
and the testing is executed over night. Of course, the development of an automated
test system requires additional capital costs, but on a long term view it can reduce
the overall development costs.

In summary, it would appear that everything that can be tested automatically,
should be tested automatically. This however bears the risk of loosing sight of tests
that cannot be automated, like the usability of the software or the intuitive testing.
An important advantage of the manual test is the direct intervention as well as
the execution of intuitive tests and the benefit of the expert knowledge of the end

1 xUnit is the collective name for several unit testing frameworks
2 Microsoft UI Automation, Application Programming Interface
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user. A manual test can test “beyond the obvious” and detect vulnerabilities which
influence the quality of a software to a greater higher detail.

But, a test automation must not be economically viable. If, in the long-term
view, no money can be saved, the automation is an end in itself. For example, the
execution of a test takes 10 minutes in average. The test case can be automated
within one month of development and then only takes just under 5 minutes.

10x = 9600 + 5x

x = 1920
(8.1)

Equation 8.1 shows the calculation for the example with an average working time
of 160 hours (9600 minutes) per month.The result for x shows that 1920 runs are
required for the test automation to become profitable. If the test runs once per day,
it will pay off only after 5 years (see figure 8.1).

Figure 8.1: Pay-off of an automatic test case after 1920 iterations

If we assume that the same test only takes 1 minute when automated, then the
threshold will decrease to 1067 iterations as shown in equation 8.2.

10x = 9600 + 1x

x = 1066, 667
(8.2)
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This result is better but still not satisfying, since the test case will pay-off after
nearly 3 years (see figure 8.2).

Figure 8.2: Pay-off of an automatic test case after 1067 iterations

If the development time for the automation of this test is reduced to 1 week,
then the automation will pay off after 267 iterations as shown in equation 8.3.

10x = 2400 + 1x

x = 266, 667
(8.3)

Figure 8.3 shows that for a short development time, the amortization period
could be reduced to less than one year.
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Figure 8.3: Pay-off of an automatic test case after 267 iterations

Therefore, the automation will be a good investment if the test is executed
every day for a long term. The examples above show, that the effort for creating
an automated test and the execution time influence the economic efficiency of the
automation. If tests are difficult to automate or the software does not provide
automation mechanisms, the meaningfulness of the automation has to be put into
question.
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Chapter 9

Outlook

The field test of the improved automatic test showed that it was possible to detect
new errors and the stability of the test environment was improved. For the future
usability and reliability of the automatic test system, a consequent maintenance
of the test cases and test plans is necessary. Through the simplification of the test
creation process, new test cases will be generated but nevertheless, the automation of
every test requirement still will not be possible. Small changes in the software, which
do not have a high potential of causing an error, do not need to be tested manually
over and over again while complex and variable procedures can be automated.

The introduction of new agile software development methodologies requires an
increased degree of automation. The efforts for standardization of the tools used for
software testing in the company will require the implementation of new extensions
and interfaces to other test tools.

A topic which was renounced in this master thesis is the automated GUI1 testing.
The introduction of an automation is considered however, since not all measured
results can be displayed, the verification of the measured data is indispensable.

1 Graphical User Interface
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Appendix A

Code Listing

A.1 Tolerance Area [MATLAB]

1 function [upperBand , lowerBand] = ToleranceRange(signal , scale)
2 % Calculates the tolerance range for a signal
3 % signal The reference signal
4 % scale Scale factor for \mu (per thousend)
5 % returns:
6 % upperBand upper tolerance border for this signal
7 % lowerBand lower tolerance border for this signal
8

9 refMax = max(signal);
10 refMin = min(signal);
11

12 range = refMax - refMin;
13 tolerance = (range / 1000) * scale;
14

15 upperBand = zeros(size(signal));
16 lowerBand = zeros(size(signal));
17

18 upperBand = upperBand + (refMax + tolerance);
19 lowerBand = lowerBand + (refMin - tolerance);
20

21 end
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A.2. Pearson Correlation Coefficient [Concerto]

A.2 Pearson Correlation Coefficient [Concerto]

1 // Pearson Correlation Coefficient
2 // value btw. -1 and 1 showing the similarity of 2 datasets.
3 // Arguments:
4 // X - original dataset
5 // Y - distorted dataset
6 // Threshold -
7 // Return:
8 // -1 the two datasets are inverse
9 // 0 the two datasets are totally different

10 // 1 the two datasets are identical
11 arg X, Y, From=1, To=0
12 TINY = 0.000000000000001 //1.0e-15 to prevent a division

trough zero
13 sumXX = 0
14 sumYY = 0
15 sumXY = 0
16 if (To = 0) then
17 To = X.Count
18 endif
19 if(From > X.Count or From > Y.Count) then
20 // Invalid Startpoint
21 TraceError("CORR: Invalid Startpoint , FROM:=" +
22 From + ", X:=" + CStr(X.Count) + " Y

:=" + CStr(Y.Count))
23 return 0
24 endif
25 if(To > X.Count or To > Y.Count) then
26 // Invalid Endpoint
27 TraceError("CORR: Invalid Endpoint , TO:=" +
28 To + ", X:=" + CStr(X.Count) + " Y:="

+ CStr(Y.Count))
29 return 0
30 endif
31 avgX = Avg(X)
32 avgY = Avg(Y)
33 for i = From to To
34 tX = X.y[i] - avgX
35 tY = Y.y[i] - avgY
36 sumXX = sumXX + (tX * tX)
37 sumYY = sumYY + (tY * tY)
38 sumXY = sumXY + (tX * tY)
39 next i
40 div = sqrt(sumXX*sumYY) + TINY
41 r = sumXY / div
42 return r
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A.3. White Gaussian Noise Analysis [MATLAB]

A.3 White Gaussian Noise Analysis [MATLAB]

1 function [noiseAnalysis] =
2 NoiseAnalysis(signal , minSigma , maxSigma , stepSize , sampleCnt)
3 % Generates samples with White Gaussian Noise and
4 % compares the results with statistical measures
5 % signal The reference signal
6 % minSigma The minimum /sigma ot the range
7 % maxSigma Upper bound of the /sigma range
8 % stepSize The step size for /sigma
9 % sampleCnt Amount of samples which will be

10 % generated
11 % noiseAnalysis A result matrix with the statistical values
12 % as columns and one row forech /sigma
13 range = minSigma:stepSize:maxSigma;
14 range = transpose(range);
15 overall = zeros(size(range));
16 min = zeros(size(range));
17 max = zeros(size(range));
18 mean = zeros(size(range));
19 std = zeros(size(range));
20 correlation = zeros(size(range));
21 resultMatrix = [range , overall , min , max , mean , std ,

correlation ];
22 for set = 1:1: sampleCnt
23 for i = 1:1: length(resultMatrix)
24 sigma = resultMatrix(i,1);
25 noise = sigma * randn(size(signal));
26 compare = signal + noise;
27 %Calculation of statistical values
28 [result , value , failMin , failMax ,
29 failMean , failStd , corr , text] = evaluate(signal ,

compare);
30 if result == 0
31 resultMatrix(i,2) = resultMatrix(i,2) + 1;
32 end
33 if failMin == 1
34 resultMatrix(i,3) = resultMatrix(i,3) + 1;
35 end
36 if failMax == 1
37 resultMatrix(i,4) = resultMatrix(i,4) + 1;
38 end
39 if failMean == 1
40 resultMatrix(i,5) = resultMatrix(i,5) + 1;
41 end
42 if failStd == 1
43 resultMatrix(i,6) = resultMatrix(i,6) + 1;
44 end
45 resultMatrix(i,7) = resultMatrix(i,7) + corr;
46 end
47 end
48 for i = 1:1: length(resultMatrix)
49 resultMatrix(i,7) = resultMatrix(i,7) / sampleCnt;
50 end
51 noiseAnalysis = resultMatrix;
52 end
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