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Overview

A quite general class of models is the Jarrow-Yildirim model which extends the Heath-
Jarrow-Morton term structure model to the inflation setting. Following Mercurio we for-
mulate inflation market models which are similar to the well known LIBOR market models
of interest rates. These models can be viewed as special cases of the general Jarrow-
Yildirim model. The aim of this thesis is to give a detailed description of inflation market
models, including theoretical aspects as well as practical ones like calibration and Monte
Carlo valuation of general inflation-linked derivatives.

In the first chapter we introduce the consumer price index and talk about common
inflation-linked financial instruments like inflation-linked bonds or swaps. The second
chapter is divided into two parts. Part one discusses the general Jarrow-Yildirim infla-
tion model, while part two describes several specific (low-dimensional) models suitable for
practical purposes. In chapter three we first examine historical data and use this to choose
a specific model. We then tackle the question of how to calibrate the model parameters
using current market data. Finally we discuss how to use Monte Carlo simulation in this
framework.
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Remarks on notations

Financial instruments

We sometimes consider similar financial products in different markets. Quantities like
prices or rates related to such products always contain a subscript denoting the market to
which they belong.

n . . . nominal interest rate related,
R . . . real interest rate related,
I . . . inflation related.

For instance the price of a nominal zero coupon bond is denoted by Pn(t, T ), while fR(t, T )
denotes the instantaneous forward rate in the ”real” worlds. In case the index is omitted, we
always refere to nominal quantities. Some financial instruments incure with an additional
superscript index. They are then part of a market model and the index is linked to the
final payment date, e.g. F i

n denotes the nominal forward interest rate for the time interval
[Ti−1, Ti].

Brownian motions

Throughout this work we use several Brownian motions. For ease of reading we use different
letters in different contexts,

B(t) . . . Brownian motions under the real-world measure
(respectively before a measure change),

W (t) . . . Brownian motions under a risk-neutral measure,
Z(t) . . . Brownian motions used for market models.

Brownian motions are often used with a superscript. This superscript refers to the measure
under which they are Brownian motions (e.g. W T denotes a Brownian under the measure
QT
n ).

Day count convention

We often use time differences (most of the time denoted by δ), e.g. δ = Ti−Ti−1. Potential
time adjustments due to underlying day count conventions are assumed to be included.
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Correlations

Instantaneous correlations are denoted by ρ. The subscript n, R, I represents the market.
If there is a superscript, the quantity is referring to correlations of a market model (e.g.
ρi,jn,I denotes the correlation between a nominal forward rate F i

n and an inflation forward

CPI Ij).

Other notation guidelines

We denote a transpose with a superscript T . Notice that above we denoted Brownian
motions under the T -forwad measure with the same superscript. However, this will lead
to no confusion, since we won’t need to use transposes of Brownian motions and also it
should be clear out of context, where a transpose is to be used.

Index of notations

The index k ∈ {n,R} stands for nominal or real.

rk(t) instantaneous short rate

fk(t, T ) instantaneous forward rate for time T

Pk(t, T ) price of a zero coupon bond with maturity T

yk(t, T ) continuously compounded annualized yield (yk(t, T ) = − ln(Pk(t,T ))
T−t )

Fk(t, S, T ) simple compounded annualized forward rate for [S, T ]

F i
k(t) Fk(t, Ti−1, Ti)

fk(t, S, T ) continuously compounded annualized forward rate for [S, T ]

I(t) value of the consumer price index

I(t, T ) forward consumer price index value for time T

I i(t) I(t, Ti) or sometimes I(t, T2i)

FI(t, S, T ) simple compounded annualized forward inflation rate

F i
I(t) FI(t, Ti−1, Ti) or sometimes FI(t, T2(i−1), T2i)

Yi(t)
Ii(t)
Ii−1(t)

E [X] expectation of X

V[X] variance of X

(F t)0≤t a filtration

EQ [X| F t] conditional expectation of X given F t under

the probability measure Q

N(µ, σ2) a normal distribution with expectation µ and

variance σ2 (standard deviation σ)

2



1. Inflation markets

1.1. Introduction

In recent years the volumes traded in inflation-linked markets have been increasing contin-
uously. While inflation-linked bonds have been issued for some time, inflation derivatives
have become increasingly popular in the last years. The amount traded in US inflation
derivatives had an enormous boost in the last 7 years as can be seen in figure 1.1.

Figure 1.1.: Trading volume in inflation-linked derivatives [30]

With the increasing volume of those markets also the complexity of the traded inflation-
linked products has increased. Therefore sophisticated inflation models are necessary to
price these products. This thesis gives an overview of the models proposed and used in the
area of pricing inflation-linked derivatives.

1.2. Inflation and consumer price indices

Inflation is referred to as the rate of change of the average level of prices (see Burda and
Wyplosz [8], p. 8). In practice already measuring average price levels is a problem by itself.
A lot of literature is reviewing questions about which products to consider and how to weigh
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them in a basket of goods, as well as how weights and goods have to be adapted over the
years, how to include the fact that certain products will always get cheaper over time,
. . . . Regardless of the exact calculation method the final measurement is a consumer price
index (CPI) picturing an average price level and through its change inflation. Although
the calculation of those indices is very interesting, we shall not concern us with the details.
For our purpose we consider a given CPI index that we later model as a stochastic process.

One can find several CPIs measuring a countries (or regions) inflation. Some of the
most-used CPIs for inflation-linked products can be found in table 1.1. The most used
CPI index in the euro area is the HICP ex tobacco, the developement of which can be
found in figure 1.2.

Figure 1.2.: Eurozone HICP Ex Tobacco
Source: Bloomberg L.P. (2006), <CPTFEMU Index>: Jul. 05 to Jul.

11, retrieved 23 Sep. 2011

Before we introduce the most standard inflation-linked products we take a closer look
at the underlying CPIs. One problem is that CPIs are only published monthly and lag
behind. E.g. the march value of the euro HICP is only published in June. However,
for modelling purposes we don’t bother with this lag, since for cashflow calculations of
derivatives it is always the lagged CPI used and therefore we simply choose to model the
lagged CPI index instead of the actual one. Also because the CPI index is only published
monthly, to get values for dates in between publication dates one has to interpolate CPI
values. This is typically done either using the value at the last publication date before or
by linear interpolation. An overview of those features for the most common indices can be
found in table 1.1.
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CPI for All HICP Ex United Kingdom
Index name Urban Consumers Tobacco retail prices index

Country USA EU UK
Bloomberg Ticker CPURNSA Index CPTFEMU Index UKRPI Index
Lag 3 month 3 month 2 month
Interpolation linear no no

Table 1.1.: Inflation indices details

1.2.1. Seasonality

Another problem with inflation indices is seasonality. Because of certain periodic effects
there are patterns in the CPI developement. They can partly be explained by effects like
christmas shopping, holidays or seasons of the year. To model a CPI one has to account for
this. Introducing this directly in a model is rather complicated. Therefore one estimates
the seasonal effects from historical data and models the adjusted CPI (which results from
subtracting the seasonal effects from the CPI). To estimate the seasonal effects one can
resort to classical time series methods (see e.g. Hamilton [17]). One approach is to estimate
(additive or multiplicative) effects by a linear regression out of historical data. A second
approach is the use of ARIMA models as e.g. done by the United States Bureau of Labor
Statistics [35]. For simplicity we stick with the first approach, simply applying linear
regression on historical data. The results of such a seasonal detrending can be seen in
figure 1.2.

1.3. Inflation-linked products

1.3.1. Inflation-linked bonds

Historically the first inflation-linked products were inflation-linked bonds (ILBs) issued by
some governments. France and Italy were one of the first countries to issue such bonds. Also
the US ILBs, called treasury inflation-protected securities (TIPS), and Great Britain and
German ILBs can be found frequently in todays markets. We now describe the structure
of these inflation-linked products.

As mentioned before inflation-linked products are linked to a CPI (the time t value is
denoted by I(t)). The idea behind ILBs is not to fix the nominal amount at a certain level
like it is the case with nominal fixed coupon bonds, but to link the nominal amount to the
developement of a CPI index and therefore to inflation. Let us consider an ILB issued at
time T0 with maturity T . At the time of issuance the nominal amount of the ILB shall
be 1. At time t ≤ T prices measured by the CPI index I(t) will have changed. Following

the idea behind ILBs the nominal should now be I(t)
I(T0)

. At maturity the paid nominal

amount is then I(T )
I(T0)

. If the nominal amount is adjusted as above the bond holder got rid
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off inflation risk. Therefore ILBs can be viewed as a classical bond investment without
inflation risk. The definition of a inflation-linked zero coupon bond is as follows.

Definition 1.1: An inflation-linked zero coupon bond with issuance date T0 and maturity
T is a bond paying I(T )

I(T0)
at T . We denote the price of this bond at time t by PILB(t, T0, T ).

By classical theory of arbitrage-free pricing (see section A.2) assuming a riskless nominal
asset Bn with price

Bn(t) = exp

{∫ t

0

rn(s) ds

}
,

where rn(t) is the riskless nominal short rate, the price of such a zero coupon ILB is given
by

PILB(t, T0, T ) = EQ
[

exp

{
−
∫ T

t

rn(s) ds

}
I(T )

I(T0)

∣∣∣∣F t] . (1.1)

EQ denotes the expectation under a risk-neutral measure and F t - the σ-algebra generated
by the underlying processes up to time t.

In markets basically all ILBs issued are not zero coupon ILBs but fixed coupon ILBs.
Let us consider payment dates T0 < T1 ≤ · · · ≤ TN with typically annual (or semianual)
differences. At each payment date a real fixed rate bond will pay a certain coupon rate p
(e.g. 3 %) of the current nominal amount. Hence at time Ti, 1 ≤ i ≤ N there will be a
payment of

p · I(Ti)

I(T0)
,

and at maturity TN additionally the nominal amount of I(TN )
I(T0)

will be payed back. In
analogy to nominal fixed rate bonds a real fixed rate bond can be viewed as a combination
of several zero coupon ILBs. Assuming there exist prices for fixed coupon ILBs for all
maturities T one can as in the case of nominal bonds bootstrap the prices of zero coupon
ILBs (see Hull [25]).

Remark: In reality the redemption of ILBs (e.g. TIPS) is floored at 1, therefore guaran-
teeing a payment as high as the original nominal amount. Quoted market prices of ILBs
include the value of this option. However, in most markets, e.g. US and euro markets,
the value of this option is neglible, since central banks basically guarantee no long-lasting
deflation (negative inflation). Hence markets have been ignoring these included options
which has the big advantage of allowing for simple valuation of real fixed rate bonds given
a real yield curve. Rigorous treatment would require to calculate included option values
when using market data, but since the value of these options is neglible, in practice this
is mostly ignored. Formulas for valuation of those included options can be found in e.g.
Henrard [21].

In (1.1) we see that the time t price of a zero coupon ILB depends also on the issuance
date T0 (i.e. the CPI value at that time) of the bond. We could consider a zero coupon
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ILB with the same maturity T and a different issuance date T̃0. For t ≥ max{T0, T̃0} we
have the following relationship

PILB(t, T0, T ) = EQ
[

exp

{
−
∫ T

t

rn(s) ds

}
I(T )

I(T0)

∣∣∣∣F t]
= EQ

[
exp

{
−
∫ T

t

rn(s) ds

}
I(T )

I(T̃0)

I(T̃0)

I(T0)

∣∣∣∣F t
]

=
I(T̃0)

I(T0)
PILB(t, T̃0, T ).

Given the history of the CPI index and the price of one zero coupon ILB we can therefore
calculate zero coupon ILB prices for arbitrary issuance dates (and the same maturity). We
could e.g. choose a zero coupon ILB issued at T0, where I(T0) = 1. This zero coupon ILB
has a payoff of I(T ) at maturity T . We make the following definition.

Definition 1.2: A real zero coupon bond with maturity T (also called real T -bond) is a bond
paying I(T ) at time T . We denote its price by PILB(t, T ). Especially PILB(T, T ) = I(T ).

Now consider

PR(t, T ) :=
PILB(t, T )

I(t)
= EQ

[
exp

{
−
∫ T

t

rn(s) ds

}
I(T )

I(t)
| F t
]

= PILB(t, t, T ), (1.2)

which satisfies PR(T, T ) = 1. It can be interpreted as the price of a real zero coupon bond
in terms of CPI units. By the last equation it can be also interpreted as the price of a zero
coupon ILB issued at time t. One has to be careful not to interprete this as the price of
a tradable asset since for different t PR(t, T ) gives the price of different zero coupon ILBs
(issued at different dates).

We can consider a fictional world, where the currency is CPI units. This world is often
referred to as the real interest rate world. In this world PR(t, T ) is the equivalent of a
classical nominal zero coupon bond price (since it is paying one CPI unit at time T ). We
can use classical interest rate theory and consider forward rates, yields or other instruments
in this fictional world. E.g. the real yield can be defined as

yR(t, T ) = − 1

T − t
ln (PR(t, T ))

and this allows us to calculate a yield curve out of given real bond prices. This interpreta-
tion has been used by practicioners and a market for real interest instruments developed.
Instruments are priced using real yields and then converted to nominal prices by multiply-
ing with the CPI value I(t) (a consequence of (1.2)). The US yield curves for the nominal
and real euro market of 23 Sep. 2011, bootstrapped out of nominal bonds, ILBs and the
underlying CPI can be seen in figure 1.3. This allows the interpretation of nominal and
real interest rate markets as a domestic and foreign market linked together with the CPI

7



Figure 1.3.: US nominal and real yields
Source: Bloomberg L.P. (2006), <USGG> and <USGGT> retrieved

23 Sep. 2011

taking the part of an exchange rate. This is called the foreign-currency analogy and we use
this analogy later for developing a model allowing us to value more complex derivatives.

Remark: Note that real rates are sometimes negative. Negative nominal interest rates
would theoretically allow for arbitrage (borrow money from the bank and store it under
your pillow), however this is no problem with real interest rates. They are a ”fictional”
quantity and we are not able to trade them. We have to consider the possiblity of negative
rates when we want to build an inflation model later.

1.3.2. Zero coupon inflation-indexed swaps

A second big market for inflation-linked derivatives is the inflation-indexed swap (IIS)
market. There exist two different types of IIS, the zero coupon IIS (ZCIIS) and the year-
on-year IIS (YYIIS).

Definition 1.3: A ZCIIS with start date T0 and maturity T is a contract where at time T
the buyer receives the performance of the underlying CPI index

I(T )

I(T0)
− 1

in exchange for paying a fixed amount C at time T .

8



The value of such a contract using arbitrage-free pricing theory is

EQ
[

exp

{
−
∫ T

t

rn(s) ds

}(
I(T )

I(T0)
− 1− C

) ∣∣∣∣F t] = PILB(t, T0, T )− (1 + C)Pn(t, T ),

where Pn(t, T ) denotes the time t price of a T -zero coupon bond (a bond paying 1 nominal
unit at time T ).

The market quotes not prices but the rates rendering a ZCIIS contracts with T0 = t and
maturity T zero. Rates are usually available for several full year maturities from today
(T = T0 +M,M ∈ N).

Definition 1.4: The ZCIIS rate is the constant K(t, T ) solving the equation

PR(t, T ) = PILB(t, t, T ) = (1 +K(t, T ))T−tPn(t, T ). (1.3)

Note that this equation results from setting C = (1+K(t, T ))T−t−1 which lets us interprete
K(t, T ) as an average annual inflation rate. The current values for US ZCIIS rates are
plotted in figure 1.4.

Figure 1.4.: US ZCIIS swap rates
Source: Bloomberg L.P. (2006), <USSWIT>, retrieved 23 Sep. 2011

1.3.3. Forward CPIs

Definition 1.5: A forward CPI contract is the agreement to exchange at time T the (at
time t unknown) CPI value I(T ) against a (at time t) fixed amount K.
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The value of such a contract is

EQ
[

exp

{
−
∫ T

t

rn(s) ds

}
(I(T )−K)

∣∣∣F t] = I(t)PILB(t, T )−KPn(t, T ).

The rate K rendering such a contract zero is called the forward CPI.

Definition 1.6: The time t forward CPI for maturity T is

I(t, T ) := I(t)
PR(t, T )

Pn(t, T )
=
PILB(t, T )

Pn(t, T )
. (1.4)

Remark: Note that I(t, T ) can be directly calculated out of the prices of nominal bonds
and zero coupon ILBs. We will see that this is not possible for YYIIS rates. We also note
the close correspondence between ZCIIS rates and forward CPIs. We have

I(t, T ) = I(t)(1 +K(t, T ))T−t.

We now use the change of numeraire technique which is reviewed in section A.2. Under
the measure QT

n induced by the numeraire Pn(t, T ) we have

PILB(t, T ) = EQ
[

exp

{
−
∫ T

t

rn(s) ds

}
I(T )

∣∣∣∣F t] = Pn(t, T )EQTn [I(T )| F t] .

This together with (1.4) proves

I(t, T ) = EQTn [I(T )| F t]

and implies that I(t, T ) is a QT
n -martingale. A very convenient approach to model inflation

is to model CPI forwards under this T -forward measure QT
n . This leads to forward CPI

market models.

1.3.4. Differences between ZCIIS implied and bond implied real rates

Looking at (1.3) one notices that if the nominal zero coupon prices are known we are able
to calculate ZCIIS rates out of zero coupon ILB prices and vice versa. However in todays
markets this is not so. The ZCIIS rates calculated out of (bootstrapped) prices of zero
coupon ILBs don’t necessarily coincide with market quoted ZCIIS rates. An example of
the resulting differences can be seen in figure 1.5.

Considering only interest and inflation risk this is a clear arbitrage-opportunity. There
exist several reasons causing those differences (as discussed in Fleckenstein et al. [12]).
Some of them are

• Differences in liquidity for the underlying financial instruments,

• ILBs contain higher credit risk,

10



Figure 1.5.: Differences between real yield implied by TIPS and ZCIIS
implied real yield

Source: Bloomberg L.P. (2006), calculated from <USGG> and
<USGGT>, <USSWIT> rates, retrieved 23 Sep. 2011

• Systemic risk,

• Asset purchases by central banks.

For calculation one has to choose which rates to use. In practice the market-quoted ZCIIS
rates seem the better choice, since they possess less credit risk and prices don’t include
unaccounted options.

1.3.5. Inflation forwards

The annualized inflation forward rate FI(t, S, T ) for a time interval [S, T ] is the rate C for
which the time t value of a contract which exchanges the annualized CPI increase

1

T − S

(
I(T )

I(S)
− 1

)
against C is zero. FI(t, S, T ) is therefore determined by solving the following equation
w.r.t. C:

0 =EQ
[

exp

{
−
∫ T

t

rn(s) ds

}(
1

T − S

(
I(T )

I(S)
− 1

)
− C

) ∣∣∣∣F t] ,
= Pn(t, T )EQTn

[
1

T − S

(
I(T )

I(S)
− 1

) ∣∣∣∣F t]− CPn(t, T ).

11



The second line is again the change of numeraire technique (see section A.2). We use this
frequently throughout this work, most of the time not mentioning this explicitely.

Definition 1.7: The annualized inflation forward rate for time [S, T ] is

FI(t, S, T ) := EQTn
[

1

T − S

(
I(T )

I(S)
− 1

) ∣∣∣∣F t] 0 ≤ t ≤ T. (1.5)

We cannot express FI(t, S, T ) in terms of bond prices, therefore given only bonds and a
riskless account as tradable assets one has to use a model to be able to calculate forward
inflation rates.

Remark: After time S an inflation forward can actually be expressed by a CPI forward
since then I(S) is known and

FI(t, S, T ) =
1

T − S

(
1

I(S)
EQTn [I(T )| F t]− 1

)
=

1

T − S

(
I(t, T )

I(S)
− 1

)
.

Remark: Leung and Wu [29] propose a different definition for FI(·, S, T ), namely

F̃I(t, S, T ) =
1

T − S

(
I(t, T )

I(t, S)
− 1

)
,

arguing that this rate is arbitrage-free for the annualized CPI increase. However their
argument seems unfounded. To prove that this rate is arbitrage-free they use a non-
adapted replication strategy. In the appendix they argue to buy (using the notation of this

work) I(S)
I(t)

real forward contracts at time t which isn’t possible since the amount I(S)
I(t)

isn’t
known at time t.

Although normally not directly traded in markets, inflation forwards are an important
mathematical instrument. We will see that YYIIS are in fact a combination of several
inflation forwards. The situation is similar to caps and caplets. While caps are traded in
markets, caplets are the instruments one would like to consider in a mathematical context.
We will also see that like with caps and caplets there is a simple bootstrapping procedure
to calculate inflation forward rates out of YYIIS rates.

1.3.6. Year-on-year inflation-indexed swaps

The second type of IIS is the YYIIS. Contrary to ZCIIS the YYIIS is designed to exchange
annual inflation. We consider a tenor structure T = {T0 < T1 < · · · < TN}. At each
payment date Ti the buyer receives

I(Ti)

I(Ti−1)
− 1

12



and pays the fixed amount (Ti − Ti−1)K. At time t ≤ T1 the fair price of an individual
payment of such a contract is

EQ
[

exp

{
−
∫ Ti

t

r(s) ds

}(
I(Ti)

I(Ti−1)
− 1− (Ti − Ti−1)K

) ∣∣∣∣F t]
= Pn(t, Ti)EQ

Ti
n

[
I(Ti)

I(Ti−1)
− 1− (Ti − Ti−1)K

∣∣∣∣F t]
= Pn(t, Ti)(Ti − Ti−1) (FI(t, Ti−1, Ti)−K) ,

and the fair price of the entire contract is

N∑
i=1

Pn(t, Ti)(Ti − Ti−1)(FI(t, Ti−1, Ti)−K).

The YYIIS rate is defined as the rate K for which the above price is zero, i.e.

K = K(t,T) =

∑N
i=1 Pn(t, Ti)(Ti − Ti−1)FI(t, Ti−1, Ti)∑N

i=1(Ti − Ti−1)Pn(t, Ti)
. (1.6)

In YYIIS markets such rates are quoted. For a tenor structure T = {T0 < T1 < · · · <
TN}, where the Ti are annually spaced, we have rates K(t, Ti) := K(t, {T0, . . . , Ti}), i ∈
{1, . . . , N}. As mentioned before one needs model assumptions to calculate K(t, Ti). We
suppose most brokers use the later introduced Jarrow-Yildirim model. The situation
changes if inflation caplets and floorlets are liquidly traded options. Then the call/put
parity (see 1.3.8) can be used to calculate K(t, Ti) from market data. ZCIIS and YYIIS
rates are normally quite similar. The shape of the current US YYIIS curve is therefore
almost the same as the one in figure 1.4.

Bootstrapping

In interest rate markets one often wants to bootstrap caplet volatilities out of quoted cap
implied volatilities because they include information over disjoint intervals. Similar to
this we are interested in stripping annual inflation forward rates out of YYIIS rates. Let
F i
I(t) := FI(t, Ti−1, Ti) be the inflation forward rate for the period [Ti−1, Ti]. The procedure

to bootstrap those rates out of annual YYIIS rates is straightforward. Consider two YYIIS
rates with maturity Ti and Ti−1. Since the value of both contracts is zero by definition of
the YYIIS rate we can subtract their contract values, so that all floating payments except
the additional payment of the longer contract cancel out. The value of the last floating
payment is Pn(t, Ti)(F

i
I(t)−K(t, Ti)) and including the fixed payments we have

Pn(t, Ti)(F
i
I(t)−K(t, Ti)) +

i−1∑
j=1

Pn(t, Tj)(K(t, Ti−1)−K(t, Ti)) = 0.

13



Hence

F i
I(t) = K(t, Ti) +

i−1∑
j=1

Pn(t, Tj)

Pn(t, Ti)
(K(t, Ti)−K(t, Ti−1)) . (1.7)

If nominal zero coupon bond prices are known we can bootstrap annual inflation forward
rates out of market given YYIIS rates. The results of this procedure for euro YYIIS can
be found in figure 1.6.

Figure 1.6.: Euro YYIIS rates and bootstrapped forward inflation rates
Source: Bloomberg L.P. (2006), <SWIL>, retrieved 18 Aug. 2011

We will get back to the valuation of YYIIS contracts later in chapter 2.

1.3.7. Inflation caps and floors

Inflation caps and floors are calls and puts on inflation rates. Similar to interest rate
markets caps and floors consist of several caplets or floorlets. We denote inflation-linked
caplets as IC and inflation-linked floorlets as IF. The payoff at time T (which is when the

actual inflation rate FI(T, S, T ) = 1
T−S

(
I(T )
I(S)
− 1
)

for the period is known) of a contract

with strike κ is
(T − S)(FI(T, S, T )− κ)+

for a caplet and
(T − S)(κ− FI(T, S, T ))+

14



for a floorlet. The fair price at time t ≤ T of a caplet IC(t, S, T, κ)

IC(t, S, T, κ) = EQ
[

exp

{
−
∫ T

t

rn(s) ds

}
(T − S)(FI(T, S, T )− κ)+

∣∣∣∣F t]
= (T − S)Pn(t, T )EQTn

[
(FI(T, S, T )− κ)+

∣∣F t] ,
and the fair price for a floorlet IF (t, S, T, κ) is

IF (t, S, T, κ) = (T − S)Pn(t, T )EQTn
[
(κ− FI(T, S, T ))+

∣∣F t] .
Prices of caps and floors then follow as sum of the current values of the individual caplets
and floorlets. Cap and floor contracts almost always have a fixed tenor for the underlying
inflation rates, quite often a year and consist of caplets and floorlets with the same strike
κ.

1.3.8. The put/call parity in inflation markets

Consider the payoffs of an inflation caplet and floorlet for the time [S, T ] with the same
strike κ. We have

(T − S)(FI(T, S, T )− κ)+ − (T − S)(κ− FI(T, S, T ))+ = (T − S)(FI(T, S, T )− κ).

Multiplying this by Pn(t, T ) and taking the expectation value under QT
n given F t results

in

IC(t, S, T, κ)− IF (t, S, T, κ) = (T − S)Pn(t, T )EQTn [(FI(T, S, T )− κ)]

= (T − S)Pn(t, T ) (FI(t, S, T )− κ) . (1.8)

This put/call-parity for inflation markets is somewhat different from the classical put/call
parity, since we don’t really know the quantity FI(t, S, T ). Given call and put prices for
the same strikes we are able to calculate FI(t, S, T ), which is in fact one way to determine
FI(t, S, T ) out of market data.

1.3.9. CPI caps and floors

CPI caps and floors are calls and puts on the CPI. A CPI cap/floor with strike K and
maturity T guarantees a time T payoff of

(ω(I(T )−K))+,

where ω = 1 for a cap and ω = −1 for a floor. Therefore its value is

Pn(t, T )EQTn [(ω(I(T )−K))+| F t] = Pn(t, T )EQTn [(ω(I(T, T )−K))+| F t] .
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If one assumes lognormal dynamics (see appendix B) for the forward CPI I(·, T ) we
get a Black-like formula for the value of this cap/floor. This somewhat motivates the
developement of a forward CPI market model (see chapter 2).

1.4. Break-even rates, expected inflation and inflation
risk premia

Two very important concepts in inflation markets are the break-even rate and the inflation
risk premia. The break-even rate is the difference between nominal and real yields. Quite
often it is referred to as the expected inflation, motivated by the Fisher equation (Fisher
[11]), which states inflation has to be the difference between nominal and real interest. This
is not to be understood as a exact equation but as an economic principal and in reality
this is a somewhat simplified description, since the break-even rate consists of more than
just expected inflation. First of all the difference in bond prices is not just an inflation
component. The difference between nominal and real yields is influenced by

• different liquidity premiums,

• deflation protection premiums for ILBs,

• different risk premiums for interest risk (since there are differences in duration for
similar real and nominal bonds).

Removing all such effects we would observe a quantity which we call the inflation premia.
Still this cannot be interpreted as expected inflation since it still includes an inflation risk
premium an investor would expect for the risk of inflation. Thus we can summarize this
in a diagram as seen in figure 1.7.

Figure 1.7.: Break-even rate, expected inflation and inflation risk premium

The question of how to estimate the above quantities has also been extensively treated
in financial research, especially by central banks. Recently their have been attempts to use
financial market data to estimate those quantities (see e.g. Hördahl and Tristani [23] or
Garcia and Werner [13]).
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2. Model building

2.1. The Heath-Jarrow-Morton model

A general framework for interest rate models using diffusion processes is the Heath-Jarrow-
Morton (HJM) model as proposed in Heath et al. [20]. In this model the instantaneous
forward rates fn(t, T ) satisfy the stochastic differential equations (SDEs)

dfn(t, T ) = αn(t, T ) dt + σn(t, T )T dBn(t) , 0 ≤ t ≤ T ≤ T ∗, (2.1)

where Bn is a possibly multidimensional Brownian motion. The index n stands for nominal
and is introduced here to provide consistent notation throughout this work. The starting
values fn(0, T ) shall be given.

Remark: Given fn(t, T ), t ≤ T ≤ T ∗ the zero coupon bond prices Pn(t, T ), t ≤ T ≤ T ∗

are

Pn(t, T ) = exp

{
−
∫ T

t

fn(t, u) du

}
.

This implies

fn(t, T ) = −
∂
∂T
Pn(t, T )

Pn(t, T )
= − ∂

∂T
ln (Pn(t, T )) .

Hence we can calculate fn(0, T ) from given bond prices Pn(0, T ), 0 ≤ T ≤ T ∗ as

fn(0, T ) = − ∂

∂T
ln (Pn(0, T )) .

The dynamics of the forward rates define the evolving term structure of interests. For
fixed T such a model is arbitrage-free (under mild technical assumptions). However, if T
is allowed to vary the famous HJM drift condition has to be satisfied in order to produce
consistent (arbitrage-free) prices for bonds with different maturities. Define

α∗n(t, T ) :=

∫ T

t

αn(t, u) du and Σn(t, T ) :=

∫ T

t

σn(t, u) du , (2.2)

then the HJM drift condition is satisfied if the Girsanov kernel λ defining the equivalent
martingale measure (EMM) change, given by

α∗n(t, T ) =
1

2
‖Σn(t, T )‖2 + Σn(t, T )Tλ(t), (2.3)
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is independent of T . Technical details are omitted here, since the derivation of the Jarrow
Yildirim (JY) model in section 2.2 includes the results from the classical HJM model.

The dynamics of a nominal zero coupon bond Pn(·, T ) in the HJM model is

dPn(t, T ) = rn(t) dt + Σn(t, T )T dWn(t) , 0 ≤ t ≤ T,

where rn(t) = fn(t, t) is the nominal short rate and Wn is a Brownian motion w.r.t. the
EMM Q. The discrete forward rate Fn(·, S, T ) for an interval [S, T ] defined by

Fn(t, S, T ) =
1

T − S

(
Pn(t, S)

Pn(t, T )
− 1

)
, 0 ≤ t ≤ S

then follows the stochastic dynamics

dFn(t, S, T ) =
1

T − S
(1 + (T − S)Fn(t, S, T )) (Σn(t, T )− Σn(t, S))T ( dW (t) + Σn(t, T ) dt ).

By the change of numeraire technique (section A.2) and Girsanov’s theorem we can rewrite
this as

dFn(t, S, T ) =
1

T − S
(1 + (T − S)Fn(t, S, T )) (Σn(t, T )− Σn(t, S))T dW T

n (t) , (2.4)

where W T
n is a Brownian motion under QT

n . Therefore (Fn(t, S, T ))0≤t≤S is a (local) martin-
gale under QT

n . Modelling such forward rates as lognormally distributed random variables
is the idea behind the LIBOR market model.

Remark: We define Fn(t, S, T ) = Fn(S, S, T ) for t ≥ S. We will encounter several pro-
cesses Xt which are defined only up to some time S. If not stated otherwise we extend
their definition by setting Xt = XS for t > S.

2.1.1. LIBOR market model (LMM)

In LMMs one chooses to model the discrete LIBOR forward rates F k
n (t) := Fn(t, Tk−1, Tk),

1 ≤ k ≤ N for a time grid 0 = T0 < T1, · · · < TN , with the points usually 3, 6 or 12 month
(referred to as the Tenor) apart. The idea is to model these forward rates as analytically
easy tracable geometric Brownian motions, meaning that F k

n satisfies the SDE

dF k
n (t) = F k

n (t) σkn(t)T dZk
n,k(t) , 0 ≤ t ≤ Tk−1,

where σkn are positive deterministic functions and Zk
n,k are possibly correlated multidimen-

sional Brownian motions under the Tk forward measures. The starting values (discrete
forward rates) for these SDEs are obtained out of market data, e.g. swap rates and LIBOR
rates (see e.g. Hull [25] p. 84).

Remark: The restriction that σkn is positive is one of convenience. In fact if we don’t
assume σkn positive, we can always set σ̃kn(t) = |σkn(t)| (this is to be understood as an
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equation in each component of the vector). If we further use that we can express the
correlated Brownian motion Zk

n,k = Ak(t)Z̃k
n,k(t) where Z̃k

n,k(t) is an uncorrelated Brownian

motion, we have that F k
n (t) is given by

dF k
n (t) = F k

n (t)
(
σ̃kn(t) · sign(σkn(t))

)T
Ak(t) dZ̃k

n,k(t) ,

where the · denotes a pointwise product. We see that we can include the sign of the
volatility function into the correlation structure of the underlying Brownian motion. Since
we have assumed arbitrary correlations the class of possible models is still the same for σkn
being positive. The same holds for other market models introduced later and we always
choose involved volatility functions of market models to be positive.

One can interprete a LMM as a special case of a HJM model by comparing the LMM
forward rate dynamics with the general HJM setting, where F k

n follows the SDE defined
in (2.4). Setting δk = Tk − Tk−1 and choosing Σn(·, Tk) such that

1

δk
(
1 + δkF k

n (t)
)

(Σn(t, Tk)− Σn(t, Tk−1)T dW Tk
n (t)

d
= F k

n (t)σkn(t)T dZk
n,k ,

we can explicitely state such an HJM model.

Remark: Note that W Tk
n and Zk

n,k can be different Brownian motions with regards to
dimension and correlation (although the dimension of W Tk

n in a comparable HJM model
must be greater or equal than that of Zk

n,k). Quite often one chooses Zk
n,k to be N -

dimensional and σkn to be 0 in all components other than k. This corresponds to choosing
the Brownian motions Zk

n,k to be one-dimensional, which we will do in later parts of this
work.

Dynamics under the forward spot measure

We have defined the dynamics of each forward rate using Brownian motions under the
appropiate forward measure. However, for simulation purposes we need to have dynamics
using Brownian motions under one common measure. One could fix a a forward measure
and simulate under this measure, but it turns out that it is more convenient to use the
so-called forward spot measure.

The forward spot measure is basically the discrete equivalent of the risk-neutral measure
Q. Since the money account (the numeraire inducing Q) is continuous, while simulated
rates are discrete, simulating under Q would produce a lot of difficulties. Therefore one
chooses to simulate under the forward measure Qd

n (the d stands for discrete) induced by
the numeraire Bd

n defined by

Bd
n(t) =

β(t)−1∏
j=1

(1 + δjF j
n(Tj−1))Pn(t, Tβ(t)−1), 0 ≤ t ≤ TN , (2.5)

19



where β(t) = inf{j ∈ {1, . . . , N + 1} : t ≤ Tj−1} is the first forward rate that isn’t fixed
yet (F i

n(t) is fixed at time Ti−1). This means β(0) = 1, β(t) = i + 1 for Ti−1 < t ≤ Ti. B
d
n

is the price of a self-financing trading strategy where one invests 1 unit at time 0 with the
fixed forward rate F 1

n(0). At time Ti−1, i = 2, . . . , N this is then reinvested using the now
fixed forward rate F i

n(Ti−1). Therefore for Ti−1 < t < Ti the money is invested until time
Ti, when we will receive the amount

∏i
j=1(1 + δjF j

n(Tj−1)). Discounting this with Pn(t, Ti)
we know its time t value and we see that the above equation is indeed the value of such a
trading strategy. As will be shown later in the JY setting the dynamics of F k

n with Zd
n,k a

Qd
n-Brownian motion are

dF k
n (t) = σkn(t)TF k

n (t)

 k∑
j=β(t)

δjρj,kn (t)σjn(t)F j
n(t)

1 + δjF j
n(t)

dt + dZd
n,k(t)

 ,

where ρj,kn denotes the instantaneous correlation between F j
n and F k

n .

Linking interest forward rates of longer tenor

We later see, that e.g. due to market instrument specifications it is necessary to link forward
rates of different tenors. Consider two forward rates Fn(t, Ti−1, Ti) and Fn(t, Ti, Ti+1) driven
by one-dimensional Brownian motions Zi

n,i and Zi+1
n,i+1. We know

1 + (Ti+1 − Ti−1)Fn(t, Ti−1, Ti+1) = (1 + δiF i
n(t))(1 + δi+1F i+1

n (t))

and by Ito’s lemma we get

dFn(t, Ti−1, Ti+1) =

(
δiF i

n(t)

Ti+1 − Ti−1

+
δiδi+1F i

n(t)F i+1
n (t)

Ti+1 − Ti−1

)
σin(t) dZi

n,i(t) (2.6)

+

(
δi+1F i+1

n (t)

Ti+1 − Ti−1

+
δiδi+1F i

n(t)F i+1
n (t)

Ti+1 − Ti−1

)
σi+1
n (t) dZi+1

n,i+1(t) + {. . . } dt .

Denoting by σ(t) the volatility of Fn(t, Ti−1, Ti+1), setting

u1(t) =
1

Fn(t, Ti−1, Ti+1)

(
δiF i

n(t)

Ti+1 − Ti−1

+
δiδi+1F i

n(t)F i+1
n (t)

Ti+1 − Ti−1

)
,

u2(t) =
1

Fn(t, Ti−1, Ti+1)

(
δi+1F i+1

n (t)

Ti+1 − Ti−1

+
δiδi+1F i

n(t)F i+1
n (t)

Ti+1 − Ti−1

)
,

and taking quadratic variations in (2.6) we get

σ(t)2 = u1(t)2σin(t)2 + u2(t)2σi+1
n (t)2 + 2ρi,i+1

n (t)u1(t)σin(t)u2(t)σi+1
n (t). (2.7)

As opposed to σin, σ is usually not deterministic, since the weights u1, u2 are stochastic.

20



2.2. The Jarrow-Yildirim model (JY model)

The JY model was introduced in 1997 (Jarrow and Yildirim [26]). The general idea behind
this model is based on a foreign-currency analogy, meaning that one models two ”different”
economies - the real interest and the nominal interest world - and links them using an
exchange rate - in this case the CPI. This was motivated in section 1.3.1.

Jarrow and Yildirim propose two HJM models for real and nominal interest rates and
assume that the CPI follows a geometrical Brownian motion. Hence the underlyings are
assumed to have the following dynamics:

dfn(t, T ) = αn(t, T ) dt + σn(t, T )T dBn(t) , 0 ≤ t ≤ T ≤ T ∗ (2.8)

dfR(t, T ) = αR(t, T ) dt + σR(t, T )T dBR(t) , 0 ≤ t ≤ T ≤ T ∗ (2.9)

dI(t) = I(t)
(
µI(t) dt + σI(t)

T dBI(t)
)
, 0 ≤ t ≤ T ∗ (2.10)

where fn(t, T ) and fR(t, T ) denote the instantaneous nominal and real forward rates. While
Jarrow and Yildirim use one-dimensional Brownian motions, we use general d-dimensional
Brownian motions. So B = (Bn, BR, BI) is a correlated Brownian motion on a probability
space (Ω,A, P ) generating the completed filtration (F t)0≤t≤T ∗ (which then satisfies the
usual conditions allowing for the application of theorems out of stochastic analysis, see
Protter [37]). Bn, BR, BI are Brownian motions of dimensions dn, dR, dI with instantaneous
correlations ρn,R ∈ Rdn×dR , ρn,I ∈ Rdn×dI , ρR,I ∈ RdR×dI . The instantaneous correlation of
the whole process B shall be denoted by ρ. Starting values are deterministic and given.

Assumption 1: For the stochastic processes to be meaningfully defined we require for
0 ≤ T ≤ T ∗:

• αn(t, T ), αR(t, T ), µI(t) are F t-adapted one-dimensional measurable processes,

•
∫ T

0
|αn(t, T )|+ |αR(t, T )|+ |µI(t)| dt <∞ P-a.s.,

• σn(t, T ), σR(t, T ), σI(t) are F t-adapted measureable processes with dimensions dn, dR,
dI ,

•
∫ T

0
‖σn(t, T )‖2 + ‖σR(t, T )‖2 + ‖σI(t)‖2 dt <∞ P-a.s..

Let k ∈ {n,R}. The zero coupon bond prices are given by

Pk(t, T ) = exp

{
−
∫ T

t

fk(t, u) du

}
(2.11)

and the spotrates by rk(t) = fk(t, t). The money accounts are defined by

Sk(t) = exp

{∫ t

0

rk(s) ds

}
.
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Assumption 2: For the above instruments to be meaningfully defined (bounded and greater
0) we must have further regularity assumptions.

•
∫ T ∗

0
|fn(0, t)|+ |fR(0, t)| dt <∞,

•
∫ T ∗

0

∫ t
0
|αn(u, t)|+ |αR(u, t)| du dt <∞ P-a.s..

For 0 ≤ t ≤ T ≤ T ∗ it has to hold:

•
∫ t

0
‖
∫ T
t
σn(u, v) dv ‖2 + ‖

∫ T
t
σR(u, v) dv ‖2 du <∞ P-a.s.,

•
∫ t

0
‖
∫ t
u
σn(u, v) dv ‖2 + ‖

∫ t
u
σR(u, v) dv ‖2 du <∞ P-a.s..

The first goal is to extend the no-arbitrage conditions of the HJM model to this extended
framework. If we can find an EMM Q such that ∀0 ≤ T ≤ T ∗(

Pn(t, T )

Sn(t)

)
0≤t≤T

,

(
I(t)PR(t, T )

Sn(t)

)
0≤t≤T

are martingales, the model will be arbitrage-free.

Remark: The above assets and Sn are the tradable assets in our economy. Notice that
we cannot trade PR(·, T ) but only I(·)PR(·, T ) which is a nominal world price. Jarrow and
Yildirim [26] additionally use a real short rate account, but as shown in Hinnerich [22],
this is not necessary.

By Theorem A.5 for the here considered filtration every EMM can be described by an
adapted process λ(t) = (λn(t), λR(t), λI(t)) for which the exponential process (Zt)0≤t≤T ∗

with

Zt = exp

{∫ t

0

λ(s)T dB(s) − 1

2

∫ t

0

‖λ(s)‖2 ds

}
is a martingale. Then dQ

dP
= ZT ∗ and

W (t) = B(t)−
∫ t

0

λ(s) ds (2.12)

is a Brownian motion under Q with the same correlations as B.

Assumption 3: (Zt)0≤t≤T ∗ is a P-martingale. Sufficient for this is the Novikov condition

EP
[

exp

{
1

2

∫ T ∗

0

‖λ(s)‖2 ds

}]
.
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Calculation of the differentials of the above quantities

Inserting the dynamics (2.8) and (2.9) of fk(t, T ) into (2.11) we get

Pk(t, T ) = exp

{
−
∫ T

t
fk(0, u) du −

∫ T

t

∫ t

0
αk(s, u) ds du −

∫ T

t

∫ t

0
σk(s, u)T dBk(s) du

}
A.3
= exp

{
−
∫ T

t
fk(0, u) du −

∫ t

0

∫ T

t
αk(s, u) du ds −

∫ t

0

(∫ T

t
σk(s, u) du

)T
dBk(s)

}
.

Furthermore since rn(t) = fn(t, t) we can write

Sn(t) = exp

{∫ t

0
fn(u, u) du

}
= exp

{∫ t

0
fn(0, u) du +

∫ t

0

∫ u

0
αn(s, u) ds du +

∫ t

0

∫ u

0
σn(s, u)T dBn(s) du

}
A.3
= exp

{∫ t

0
fn(0, u) du +

∫ t

0

∫ t

s
αn(s, u) du ds +

∫ t

0

(∫ t

s
σn(s, u) du

)T
dBn(s)

}
.

Using the above relations and the representation (2.11) for Pn(0, T ) it follows that

Pn(t, T )

Sn(t)
= exp

{
−
∫ T

0

fn(0, u) du

−
∫ t

0

∫ T

s

αn(s, u) du ds −
∫ t

0

(∫ T

s

σn(s, u) du

)T
dBn(s)

}
=
Pn(0, T )

Sn(0)
exp

{
−
∫ t

0

α∗n(s, T ) ds −
∫ t

0

Σn(s, T )T dBn(s)

}
,

where

α∗k(t, T ) :=

∫ T

t

αk(t, u) du and Σk(t, T ) :=

∫ T

t

σk(t, u) du , k ∈ {n,R}. (2.13)

By Ito’s lemma we find

d
Pn(t, T )

Sn(t)
=
Pn(t, T )

Sn(t)

(
−α∗n(t, T ) dt − Σn(t, T )T dBn(t) +

1

2
‖Σn(t, T )‖2 dt

)
(2.12)

=
Pn(t, T )

Sn(t)

({
−α∗n(t, T ) +

1

2
‖Σn(t, T )‖2 − Σn(t, T )Tλn(t)

}
dt − Σn(t, T )T dWn(t)

)
To be a (local) martingale the drift term of this SDE has to vanish. Hence

α∗n(t, T ) =
1

2
‖Σn(t, T )‖2 − Σn(t, T )Tλn(t), (2.14)
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which is the classical HJM drift condition. Differentiating (2.14) with respect to T yields
the equivalent (since α∗(t, t) = 0 ∀t) formulation

αn(t, T ) = σn(t, T )TΣn(t, T )− σn(t, T )Tλn(t).

As in the case of the discounted nominal bond price we get

d
PR(t, T )

SR(t)
=
PR(t, T )

SR(t)

(
−α∗R(t, T ) dt − ΣR(t, T )T dBR(t) +

1

2
‖ΣR(t, T )‖2 dt

)
,

from which it follows by Ito’s lemma that

dPR(t, T ) = PR(t, T )

(
rR(t) dt − α∗R(t, T ) dt − ΣR(t, T )T dBR(t) +

1

2
‖ΣR(t, T )‖2 dt

)
.

Again by Ito’s lemma

d
PR(t, T )

Sn(t)
=
PR(t, T )

Sn(t)

({
rR(t)− rn(t)− α∗R(t, T ) +

1

2
‖ΣR(t, T )‖2

}
dt − ΣR(t, T )T dBR(t)

)
and

d
I(t)PR(t, T )

Sn(t)
=
I(t)PR(t, T )

Sn(t)

({
rR(t)− rn(t)− α∗R(t, T ) +

1

2
‖ΣR(t, T )‖2

}
dt

− ΣR(t, T )T dBR(t) + µI(t) dt + σI(t)
T dBI(t)

− ΣR(t, T )TρR,I σI(t) dt

)
(2.12)

=
I(t)PR(t, T )

Sn(t)

(
{µI(t) + rR(t)− rn(t) + σI(t)

TλI(t)} dt{
− ΣR(t, T )TλR(t)− α∗R(t, T )− ΣR(t, T )TρR,I σI(t)

+
1

2
‖ΣR(t, T )‖2

}
dt − ΣR(t, T )T dWR(t) + σI(t)

T dWI(t)

)
.

The drift term should vanish for all T ≥ t. For T = t we have ΣR(t, t) = α∗(t, t) = 0,
therefore it must hold

µI(t) = rn(t)− rR(t)− σI(t)TλI(t).

For all T > t we then must have

α∗R(t, T ) = −ΣR(t, T )TλR(t) +
1

2
‖ΣR(t, T )‖2 − ΣR(t, T )TρR,I σI(t). (2.15)
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Differentiating this with respect to T it follows

αR(t, T ) = −σR(t, T )TλR(t) + σR(t, T )TΣR(t, T )− σR(t, T )TρR,I σI(t)

= σR(t, T )T (ΣR(t, T )− λR(t)− ρR,I σI(t)) .

Since α∗R(t, t) = 0 for all t this condition is equivalent to (2.15). Hence for the model to be
arbitrage-free the following conditions have to be satisfied.

Assumption 4: Drift conditions in the JY model.
For all 0 ≤ t ≤ T ≤ T ∗ it has to hold:

αn(t, T ) = σn(t, T )T
(

Σn(t, T )− λn(t)
)
, (2.16)

µI(t) = rn(t)− rR(t)− σI(t)TλI(t), (2.17)

αR(t, T ) = σR(t, T )T
(

ΣR(t, T )− λR(t)− ρR,I σI(t)
)
. (2.18)

We have found necessary conditions for the model to be arbitrage-free. The assumptions
so far guarantee that (

Pn(t, T )

Sn(t)

)
0≤t≤T

,

(
I(t)PR(t, T )

Sn(t)

)
0≤t≤T

are local martingales.

Assumption 5: (
Pn(t, T )

Sn(t)

)
0≤t≤T

,

(
I(t)PR(t, T )

Sn(t)

)
0≤t≤T

are Q-martingales ∀ 0 ≤ T ≤ T ∗. Sufficient for this are the Novikov conditions:

EQ
[

exp

{
1

2

∫ T

0

‖Σn(t, T )‖2 dt

}]
<∞,

EQ
[

exp

{
1

2

∫ T

0

‖σI(t)‖2 + ‖ΣR(t, T )‖2 + 2ΣR(t, T )TρR,IσI(t) dt

}]
<∞.

We now summarize the results.

Theorem 2.1: Under assumptions 1-5 the JY model is arbitrage-free. In terms of the
Q-Brownian motions Wn,WR,WI we have the dynamics

dPn(t, T ) = Pn(t, T )
(
rn(t) dt − Σn(t, T )T dWn(t)

)
, (2.19)

dPR(t, T ) = PR(t, T )
(
[rR(t) + ΣR(t, T )TρR,I σI(t)] dt − ΣR(t, T )T dWR(t)

)
, (2.20)

dI(t) = I(t)
(
[rn(t)− rR(t)] dt + σI(t)

T dWI(t)
)
, (2.21)
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dfn(t, T ) = σn(t, T )T (Σn(t, T )) dt + σn(t, T )T dWn(t) , (2.22)

dfR(t, T ) = σR(t, T )T (ΣR(t, T )− ρR,I σI(t)) dt + σR(t, T )T dWR(t) . (2.23)

2.2.1. Completeness of the JY model

A market with a finite number of assets is said to be complete if every (square) integrable
claim is attainable, where we define a claim X to be a positive random variable which is
measurable w.r.t. FT ∗ . Attainable means that there exist an admissible (self-financing and
sufficiently regular) trading strategy replicating the payoff of X a.s.. For exact definitions
we refer e.g. to Harrison and Pliska [19].

This is not directly translated in the JY or HJM setting where we consider an infinite
amount of assets which are only tradable up to a certain time T instead of T ∗. To adapt
this concept for this type of model we pick K assets different from the bank account which
are tradable at least until some time S. in [0, S] we then consider the market consisting of
those assets and the nominal bank account. For this market we can use the usual concept
of a complete market. Note that the bonds up to time S not chosen as one of the K assets
can be considered as attainable claims and their prices are uniquely defined. To rule out
arbitrage their price dynamics have to coincide with the model dynamics in Theorem 2.1.
This is the case if the JY drift condition (assumption 4) is satisfied.

Remark: For markets driven only by Brownian motions we usually have a relation between
the number of assets (K) and the number of driving Brownian motions (N). In a complete
market we are able to replicate every attainable claim. In order to hedge the randomness
of one Brownian motion we usually need one asset, therefore in order to hedge claims
depending on N Brownian motions we need K = N assets.

It is shown in Harrison and Pliska [19] that the completeness of a market is equivalent
to the uniqueness of the EMM Q. In the JY model Q is described by the process λ =
(λn, λR, λI) which has to satisfy assumption 4. If λ(t) is uniquely defined on [0, S] in terms
of the original parameters αn,Σn, αR,ΣR, µI , σI , ρ of the chosen K assets, we know that
the EMM Q is unique on FS and the considered market is complete.

Finally we say that the JY model is complete, if for every fixed S we can find K (K
might depend on S) assets, such that the market consisting of those assets and the nominal
bank account is complete.

So choose K assets and a fixed time horizon S. We then would like to know when λ
is uniquely defined on [0, S]. Looking at assumption 4 we first observe that in general for
dI > 1 λI is not uniquely defined. Therefore in order for the JY model to be complete we
require dI = 1. This can be motivated by the following consideration. All the tradable
asset prices depend directly on the value of the CPI. In case dI > 1 we cannot hedge a asset
depending only on W i

I (one Brownian motion of the multidimensional Brownian motion
WI) and the model is not complete.

Hence we have to restrict a complete JY model to dI = 1. Considering that we only
want to price derivatives depending on the CPI index directly (and not on the underlying
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driving factors) this doesn’t reduce the usefulness of this model. The effect of restricting
to dI = 1 is that we have fewer underlying Brownian motions and the generated Filtration
is smaller. Therefore the amount of FS-measurable claims is smaller and we have a better
chance that all are attainable.

Remark: We can always reduce a JY model with dI > 1 to a JY model with dI = 1 by
setting σ̃(t)2 = ‖σ(t)‖2 and substituting in (2.10)

B̃I(t) =
σI(t)

T

σ̃(t)
BI(t).

As long as all involved stochastic processes (αk,Σk, µI) are also measurable w.r.t. to the
smaller filtration generated by Bn, BR, B̃I the resulting models are equivalent for pricing
derivatives depending only on I(t) and interest rates.

Assuming now that dI = 1 we consider the tradable assets availabe. Nominal zero coupon
bonds depend only on Wn, while real zero coupon bonds (with price I(·)PR(·, T )) depend on
WI ,WR. Motivated by the above remark we therefore might want to consider dn nominal
zero coupon bonds and dR+dI = dR+1 real zero coupon bonds in order to hedge arbitrary
attainable claims. If for each 0 ≤ S ≤ T ∗ we can find bonds whose parameter functions
uniquely define λ on [0, S] by assumption 4 we know that the JY model is complete. A
sufficient condition is that we can find bonds with parameter functions satisfying that the
matrices (

Σn(t, T 1
n), . . . ,Σn(t, T dnn )

)
,
(
ΣR(t, T 1

R), . . . ,ΣR(t, T dR+1
R )

)
are Q-a.s. non-singular and for 0 ≤ t ≤ S σI 6= 0.

Assumption 6: dI = 1 and for each S ≤ T ∗ we can find nominal zero coupon bonds
with maturities S ≤ T 1

n < · · · < T dnn ≤ T ∗ and real zero coupon bonds with maturities
S ≤ T 1

R < · · · < T dR+1
R ≤ T ∗ such that(

Σn(t, T 1
n), . . . ,Σn(t, T dnn )

)
,
(
ΣR(t, T 1

R), . . . ,ΣR(t, T dR+1
R )

)
, σI(t)

are Q-a.s. non-singular for all t ∈ [0, S].

Theorem 2.2: Under assumption 1-6 the JY model is complete.

2.2.2. Changing the numeraire

Choosing the T -bond Pn(·, T ) as numeraire, the corresponding EMM QT
n such that all

price processes normalized by Pn(·, T ) are martingales, is given by the Radon-Nikodym
derivative (see section A.2)

dQT
n

dQ
=
Pn(T, T )

Sn(T )

Sn(0)

Pn(0, T )
=

1

Sn(T )Pn(0, T )
.
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Therefore the density process (Zt)0≤t≤T is given by

Zt = EQ
[

dQT
n

dQ

∣∣∣F t] = EQ
[

1

Pn(0, T )

Pn(T, T )

Sn(T )

∣∣∣F t] =
Pn(t, T )

Sn(t)Pn(0, T )
.

Since

d
Pn(t, T )

Sn(t)
= −Pn(t, T )

Sn(t)
Σn(t, T )T dWn(t)

we have

Zt = exp

{∫ t

0

−Σn(u, T )T dWn(u) − 1

2

∫ t

0

‖Σn(u, T )‖2 du

}
.

By assumption 5 this is a Q-martingale.
We use Girsanov’s theorem for correlated Brownian motions (Theorem A.4). Set W =

(Wn,WR,WI). In the notation of Theorem A.4 we have

H̃(u)Tρ−1 =
(
−Σn(u, T )T , 0TdR , 0

T
dI

)
,

with 0d the column vector with d zeros. Hence

H̃(u) = −

 Idn
ρR,n
ρI,n

Σn(u, T )

with ρR,n = ρTn,R and ρI,n = ρTn,I and by Theorem A.4

W T (t) = W (t) +

∫ t

0

 Idn
ρR,n
ρI,n

Σn(u, T ) du , 0 ≤ t ≤ T (2.24)

is a Brownian motion with correlation ρ under QT
n . Using (2.24) twice we get that the

Brownian motion W S (under QS
n) can be written as

W S(t) = W (t) +

∫ t

0

 Idn
ρR,n
ρI,n

Σn(u, S) du

= W T (t)−
∫ t

0

 Idn
ρR,n
ρI,n

Σn(u, T ) du +

∫ t

0

 Idn
ρR,n
ρI,n

Σn(u, S) du

= W T (t)−
∫ t

0

 Idn
ρR,n
ρI,n

 (Σn(u, T )− Σn(u, S)) du , 0 ≤ t ≤ min{S, T} . (2.25)
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2.2.3. The forward CPI

We want to calculate the dynamics of the forward CPI

I(t, T ) =
I(t)PR(t, T )

Pn(t, T )
.

(I(t, T ))0≤t≤T is a martingale under QT
n , since it is a tradable asset divided by the numeraire

Pn(t, T ). Its dynamics follow by repeatedly using Ito’s lemma. Remembering

Pn(t, T ) = Pn(0, T ) exp

{∫ t

0

rn(s) ds −
∫ t

0

Σn(s, T )T dWn(s)

}
,

it follows that

dPn(t, T )−1 = Pn(t, T )−1
({
−rn(t) + ‖Σn(t, T )‖2

}
dt + Σn(t, T )T dWn(t)

)
, (2.26)

Together with (2.20) this yields

d
PR(t, T )

Pn(t, T )
=
PR(t, T )

Pn(t, T )

(
+
{
rR(t) + ΣR(t, T )TρR,I σI(t)

}
dt − ΣR(t, T )T dWR(t)

+
{
−rn(t) + ‖Σn(t, T )‖2

}
dt + Σn(t, T )T dWn(t)

+ Σn(t, T )Tρn,R ΣR(t, T ) dt

)
.

Combining this with (2.21) we get

d
PR(t, T )I(t)

Pn(t, T )
=
PR(t, T )I(t)

Pn(t, T )

({
‖Σn(t, T )‖2 + Σn(t, T )T ρn,R ΣR(t, T ) + ΣR(t, T )T ρR,I σI(t)

}
dt

− ΣR(t, T )T dWR(t) + Σn(t, T )T dWn(t) + σI(t)T dWi(t)

+ Σn(t, T )T ρn,I σI(t) dt − ΣR(t, T )T ρR,I σI(t) dt

)

=
PR(t, T )I(t)

Pn(t, T )

({
‖Σn(t, T )‖2 + Σn(t, T )T ρn,R ΣR(t, T ) + Σn(t, T )T ρn,I σI(t)

}
dt

− ΣR(t, T )T dWR(t) + Σn(t, T )T dWn(t) + σI(t)T dWi(t)

)
.
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Using (2.24) we finally obtain:

d I(t, T ) = I(t, T )

(
Σn(t, T )T dWn(t) − ΣR(t, T )T dWR(t) + σI(t)

T dWI(t)

+ ‖Σn(t, T )‖2 dt − ΣR(t, T )TρR,n Σn(t, T ) dt + Σn(t, T )TρI,n σI(t) dt

)
= I(t, T )

(
Σn(t, T )T dW T

n (t) − ΣR(t, T )T dW T
R (t) + σI(t)

T dW T
I (t)

)
= I(t, T ) σ(t, T )T dW T (t) , (2.27)

where we write

σ(t, T ) :=

 Σn(t, T )
−ΣR(t, T )
σI(t)

 . (2.28)

Note that the forward CPIs, like the CPI I are therefore always strictly positive, as one
would expect from a reasonable model.

2.2.4. Approaching forward inflation

We now take a look at inflation forward rates FI(·, S, T ). Since I(t, T ) = EQTn [I(T )| F t]
we can rewrite (1.5) for t ≤ S

FI(t, S, T ) = EQTn
[

1

T − S

(
I(T )

I(S)
− 1

) ∣∣∣∣F t]
= EQTn

[
1

T − S

(
I(T, T )

I(S, S)
− 1

) ∣∣∣∣F t]
= EQTn

[
1

T − S

(
EQTn

[
I(T, T )

I(S, S)

∣∣∣∣FS]− 1

) ∣∣∣∣F t]
= EQTn

[
1

T − S

(
I(S, T )

I(S, S)
− 1

) ∣∣∣∣F t] . (2.29)

By (2.25) and (2.27) we get

d I(t, S) = I(t, S)σ(t, S)T

 dW T (t) −

 Idn
ρR,n
ρI,n

 (Σn(t, T )− Σn(t, S)) dt

 , (2.30)
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and using Ito’s lemma

d I(t, S)−1 = I(t, S)−1

(
− σ(t, S)T

 dW T (t) −

 Idn
ρR,n
ρI,n

 (Σn(t, T )− Σn(t, S)) dt


+ σ(t, S)Tρ σ(t, T ) dt

)
.

Combining this with (2.27) for I(·, T ) we arrive at

d
I(t, T )

I(t, S)
=
I(t, T )

I(t, S)

(
− σ(t, S)T

 dW T (t) −

 Idn
ρR,n
ρI,n

 (Σn(t, T )− Σn(t, S)) dt


+ σ(t, S)Tρ σ(t, T ) dt + σ(t, T )T dW T (t) − σ(t, S)Tρ σ(t, T ) dt

)
=
I(t, T )

I(t, S)

(
(σ(t, T )− σ(t, S))T

(
dW T (t) − ρTσ(t, S) dt

)
+ σ(t, S)

 Idn
ρR,n
ρI,n

 (Σn(t, T )− Σn(t, S)) dt

)
. (2.31)

If Σn(·, T ),ΣR(·, T ), σI(·) are deterministic, I(S,T )
I(S,S)

| F t is lognormally distributed (see section

B.3) and we can find an explicit expression for FI(t, S, T ). In general this is not the case.
Since forward inflation rates are instruments we might want to calibrate models to, this
is problematic. One way around this is to choose appropiate approximations of forward
inflation rates as done in Mercurio [31] to get usable formulas. We will take a look at this
in later sections.

2.2.5. Forward interest rates

We also want to calculate the dynamics of simple compounded forward interest rates

Fk(t, S, T ) =
1

T − S

(
Pk(t, S)

Pk(t, T )
− 1

)
k ∈ {n,R}, 0 ≤ t ≤ S. (2.32)

They are the rates K zeroing the price of a forward rate contract at time t, which at time
T exchanges the at time t unknown amount Fn(S, S, T ) against K.

A remark on the interpretation of real forward rates

In the nominal interest rate market the interpretation of the nominal forward rate is rather
obvious. It’s the rate one would be guaranteed now for a future investment. The forward
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contract difference at time T (ignoring the scaling with (T − S)) is

(K − Fn(S, S, T )) = K + 1− 1

Pn(S, T )
.

Prooving that the definition of Fn(t, S, T ) is the only possible arbitrage-free one is then
easily done.

Trade t S T

sell a forward contract (at forward rate K) 0 0 K + 1− 1
Pn(S,T )

buy one unit of a S-bond Pn(t, S) 1 0

at time S buy T -bonds for 1 unit 0 −1 1
Pn(S,T )

buy Pn(t,S)
Pn(t,T )

T -bonds −Pn(t, T ) 0 Pn(t,S)
Pn(t,T )

sum 0 0 1 +K − Pn(t,S)
Pn(t,T )

Therefore the above definition is meaningful. By the foreign currency analogy this is
assumed to hold for the real forward rate as well. But since we can only trade in the
nominal world and not the real world, this needs some further attention. The economic
meaning of the real forward rate is as follows. Assume we want to invest 1 unit of currency
inflation-protected until time S, receiving the current real interest rate FR(t, t, S), and
reinvest it at time S in the same manner at the real forward rate K. The alternative
investment would be to directly invest it inflation protected until time T . Therefore if the
market is arbitrage-free we must have the following relationship

(1 + FR(t, t, S))
I(S)

I(t)
(1 +K)

I(T )

I(S)
= (1 + FR(t, t, T ))

I(T )

I(t)
.

Hence a forward contract has to allow us to invest I(S) at the rate K. This would then
result in a payment of (1 + K)I(T ) at time T . So a real forward contract is somewhat
different from a nominal one since the nominal notional for this contract is only fixed in
the future. The difference in the time T payment compared to investing this at the rate
FR(S, S, T ) is then

I(T )(K − FR(S, S, T )) = (1 +K)I(T )− I(T )

PR(S, T )
.

and a hedge can then be found by:
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Trade t S T

sell the forward contract 0 0 (1 +K)I(T )− I(T )
PR(S,T )

hedge (1 +K) T -CPI forwards Pn(t, T )(1 +K) I(t, T ) 0 −(1 +K)I(T )

at S buy 1
PR(S,T )

real T -bonds 0 −I(S) I(T )
PR(S,T )

hedge 1 S-CPI forward −Pn(T, S) I(t, S) I(S) Pn(t,S)
Pn(t,T )

sum
(1+K)I(t)PR(t,T )
−I(t)PR(t,S) 0 0

Therefore we see that the definition in (2.32) is meaningful for real forward rates as well.

Calculation of the dynamics

We now want to calculate the dynamics of the forward rates starting with the nominal
ones. Using Ito’s lemma with (2.19) and (2.26) we have that

d
Pn(t, S)

Pn(t, T )
=
Pn(t, S)

Pn(t, T )

(
(Σn(t, T )− Σn(t, S))T dWn(t) + (‖Σn(t, T )‖2 − Σn(t, S)TΣn(t, T )) dt

)
(2.24)

=
Pn(t, S)

Pn(t, T )
(Σn(t, T )− Σn(t, S))T dW T

n (t) .

Then the dynamics of Fn(t, S, T ) is

dFn(t, S, T ) =
1

T − S
(1 + (T − S)Fn(t, S, T )) (Σn(t, T )− Σn(t, S))T dW T

n (t) , (2.33)

which of course coincides with the special case of the HJM model (2.4).
For the real forward rate note first that by (2.20)

dPR(t, T )−1 =
1

PR(t, T )

((
‖ΣR(t, T )‖2 − rR(t)− ΣR(t, T )TρR,IσI(t)

)
dt + ΣR(t, T )T dWR(t)

)
.

Using (2.20) again we obtain

d
PR(t, S)

PR(t, T )
=
PR(t, S)

PR(t, T )

(
‖ΣR(t, T )‖2 − rR(t)− ΣR(t, T )TρR,IσI(t)

)
dt + ΣR(t, T )T dWR(t)

+
(
rR(t) + ΣR(t, S)TρR,IσI(t)

)
dt − ΣR(t, S)T dWR(t)

− ΣR(t, T )TΣR(t, S) dt

)
=
PR(t, S)

PR(t, T )
(ΣR(t, T )− ΣR(t, S))T

(
dWR(t) + (ΣR(t, T )− ρR,IσI(t)) dt

)
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(2.24)
=

PR(t, S)

PR(t, T )
(ΣR(t, T )− ΣR(t, S))T

(
dW T

R (t)

+ (ΣR(t, T )− ρR,IσI(t)− ρR,nΣn(t, T )) dt

)
=
PR(t, S)

PR(t, T )
(ΣR(t, T )− ΣR(t, S))T

(
dW T

R (t) −
(
ρR,n, IdR , ρR,I

)
σ(t, T )

)
,

where we used the definition (2.28) for σ(·, T ). Hence

dFR(t, S, T ) =
1

T − S
(1 + (T − S)FR(t, S, T )) (ΣR(t, T )− ΣR(t, S))T

(
dW T

R (t)

+
(
ρR,n, IdR , ρR,I

)
σ(t, T ) dt

)
. (2.34)

Remark: W T is a Brownian motion under QT
n . Hence Fn(·, S, T ) is a (local) martingale,

but FR(·, S, T ) is generally not a martingale under this measure. However, under the
measure QT

R induced by the numeraire I(·)PR(·, T ) it would be, since

FR(t, S, T ) =
1

T − S

(
I(t)PR(t, S)− I(t)PR(t, T )

I(t)PR(t, T )

)
is then a sum of tradable assets divided by the numeraire. Therefore the term next to
dW T

R (t) in (2.34) must be the Girsanov kernel of the measure change from QT
n to QT

R.

Remark: Note that the dynamics of both forward rates are general enough to allow for
positive and negative rates. While for nominal interest rates this is not really a desirable
property, for real rates it is, since real rates can and have become negative.

2.2.6. The discrete bank account measure (forward spot measure)

We later introduce inflation market models, where one models discrete rates introduced
earlier. Like with the classical LMM it is convenient to use a measure induced by a discrete
bank account. We now show how to change to this measure by the change of numeraire
technique (section A.2).
Consider some time structure T = {0 = T0, T1, . . . , TN} with δi = Ti−Ti−1 and the in (2.5)
defined discrete bank account

Bd
n(t) = Pn(t, Tβ(t)−1)

β(t)−1∏
j=0

(1 + δiFn(Tj−1, Tj−1, Tj)), 0 ≤ t ≤ TN .
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Here β(t) = inf{j ∈ {1, . . . , N + 1} : t ≤ Tj−1} for 0 ≤ t ≤ TN . The dynamics of this
account depend on the dynamics of a single bond only

dBd
n(t) =

β(t)−1∏
j=0

(1 + δiFn(Tj−1, Tj−1, Tj)) dPn(t, Tβ(t)−1) .

Now consider for arbitrary T ≤ TN the forward measure QT
n (induced by Pn(·, T )). The

measure Qd
n can then be described by

dQd
n

dQT
n

=
Bd
n(T )

Pn(T, T )

Pn(0, T )

Bd
n(0)

= Bd
n(T )Pn(0, T ).

Since Bd
n is the value of a self-financing (admissible) trading strategy, ( Bdn(t)

Pn(t,T )
)0≤t≤T is a

martingale w.r.t. QT
n . The density process Zt for this measure transformation is then given

by

Zt = EQTn
[
Pn(0, T )

Bd
n(T )

Pn(T, T )
| F t
]

= Pn(0, T )
Bd
n(t)

Pn(t, T )
, 0 ≤ t ≤ T.

By (2.19) and (2.26) we get the dynamics of Zt as

dZt = Zt
(
rn(t) dt − Σn(t, Tβ(t)−1)T dWn(t) − rn(t) dt − ‖Σn(t, T )‖2 dt

+ Σn(t, T )T dWn(t) − Σn(t, Tβ(t)−1)TΣn(t, T ) dt
)

= Zt(Σn(t, T )− Σn(t, Tβ(t)−1))T
(

dWn(t) − Σn(t, T ) dt
)

(2.24)
= Zt(Σn(t, T )− Σn(t, Tβ(t)−1))T dW T

n (t) .

Using the notation of Theorem A.4 we see

H̃(u) =

 Idn
ρR,n
ρI,n

 (Σn(u, T )− Σn(t, Tβ(t)−1)),

and hence

W d(t) = W T (t)−
∫ t

0

 Idn
ρR,n
ρI,n

 (Σn(u, T )− Σn(t, Tβ(t)−1)) du , 0 ≤ t ≤ T (2.35)
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is a Brownian motion under Qd
n with correlation ρ. In terms of W d the dynamics of

Fn(t, S, T ) reads

dFn(t, S, T ) =
1 + (T − S)Fn(t, S, T )

T − S
(Σn(t, T )− Σn(t, S))

(
dW d

n(t)

+ (Σn(t, T )− Σn(t, Tβ(t)−1)) dt
)
. (2.36)

Similary by (2.27)

d I(t, T ) = I(t, T )σ(t, T )T

 dW d(t) +

 Idn
ρR,n
ρI,n

 (Σn(t, T )− Σn(t, Tβ(t)−1)) dt

 . (2.37)

2.3. Inflation models in practice

2.3.1. Short rate inflation model (Jarrow, Yildirim)

Although we concentrate on market models, we shortly report the model proposed in the
original paper (Jarrow and Yildirim [26]). They assume extended Vasicek models for both
nominal and real interest worlds. This means, that one models the short rate under the
risk neutral measure according to the dynamics

drk(t) = (θk(t)− akrk(t)) dt + σk dWk(t) , k ∈ {n,R},

where θk(t) is a deterministic functions and ak, σk are constants. This process is mean
reverting, a very desirable property, since interest rates tend to stay at a certain level.
θk(t) is the mean level, ak is the mean reverting speed and σk is the volatility. It can be
shown that given instantaneous forward rates (fk(0, T ))0≤T≤T ∗ (one assumption of the JY
model) the parameter θk(t) is uniquely defined by no-arbitrage conditions. Therefore the
only free parameters in this model are ak and σk. One can further show that such a model
is equivalent to a JY model with the special choice

σk(t, T ) = σke
−ak(T−t).

The model can be summarized as:

dfn(t, T ) = σn(t, T )T (Σn(t, T )− λn(t)) dt + σn(t, T )T dWn(t) ,

dfR(t, T ) = σR(t, T )T (ΣR(t, T )− λR(t)− ρR,I σI(t)) dt + σR(t, T )T dWR(t) ,

dI(t) = I(t)
(
[rn(t)− rR(t)] dt + σI(t)

T dWI(t)
)
.

Further literature concerning how to price certain options in this model can be found in
Henrard [21] or Huang and Yildirim [24].
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2.3.2. Mercurio’s first market model

Mercurio’s first model (Mercurio [31]) is based on the idea to use LMM models for nominal
and real forward rates. Consider a time structure T = {0 = T0, T1, . . . TN} and define
forward rates F i

k(t) := Fk(t, Ti−1, Ti), k ∈ {n,R}. Set δi := Ti − Ti−1. The dynamics of
those rates in the JY model (see (2.33) and (2.34)) are given by

dF i
n(t) =

1

δi
(
1 + δiF i

n(t)
)

(Σn(t, Ti)− Σn(t, Ti−1))T dW Ti
n (t)

= F i
n(t)

(1 + δiF i
n(t))

δiF i
n(t)

(Σn(t, Ti)− Σn(t, Ti−1))T dW Ti
n (t) , (2.38)

dF i
R(t) = F i

R(t)
(1 + δiF i

R(t))

δiF i
R(t)

(ΣR(t, Ti)− ΣR(t, Ti−1))

(
dW Ti

R (t)

−
(
ρR,n, IdR , ρR,I

)T
σ(t, Ti) dt

)
. (2.39)

The idea behind LMMs is to choose the volatility

(
( d ln(F ik(t)) )

2

dt

) 1
2

of the chosen forward

rates as deterministic. For nominal forward rates this can be done by choosing Σn(·, Ti) so
that

σin(t) :=
(1 + δiF i

n(t))

δiF i
n(t)

‖Σn(t, Ti)− Σn(t, Ti−1)‖

is deterministic. Then define

Zi
n,i(t) :=

(Σn(t, Ti)− Σn(t, Ti−1))T

‖Σn(t, Ti)− Σn(t, Ti−1)‖
W Ti
n (t).

Zi
n,i is a Brownian motion under QTi

n and we can write

dF i
n(t) = σin(t)F i

n(t) dZi
n,i(t) . (2.40)

Remark: Zi
n,i denotes a Brownian motion under the measure QTi

n (the superscript). The
subscript i represents the underlying forward rate F i

n modelled by this Brownian motion.
We later also consider dynamics of rates using Brownian motions under a different measure,
which is why we have to use two index. E.g. Zj

n,i would represent a Brownian motion under

Q
Tj
n and we could represent the dynamics of F i

n as

dF i
n(t) = F i

n(t)
(
{. . . } dt + σin(t) dZj

n,i(t)
)
.
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For real forward rates similary set

σiR(t) :=
(1 + δiF i

R(t))

δiF i
R(t)

‖ΣR(t, Ti)− ΣR(t, Ti−1)‖,

Zi
R,i(t) :=

(ΣR(t, Ti)− ΣR(t, Ti−1))T

‖ΣR(t, Ti)− ΣR(t, Ti−1)‖
W Ti
R (t),

making Zi
R,i a QTi

n -Brownian motion and choose ΣR(·, Ti) so that σiR is deterministic. Re-

member that in the JY model forward CPIs I i(t) := I(t, Ti) are given by (see (2.27)):

d I i(t) = I i(t) σ(t, Ti)
T dW Ti(t) .

The instantaneous correlation ρi,jI,R between I i and F j
R is

ρi,jI,R(t) :=
dI i(t) dF j

R(t)√
dI i(t) 2 dF j

R(t) 2

=
(ΣR(t, Tj)− ΣR(t, Tj−1))T

‖ΣR(t, Tj)− ΣR(t, Tj−1)‖
(
ρR,n, IdR , ρR,I

) σ(t, Ti)

σ(t, Ti)Tρσ(t, Ti)
.

By setting
σiI(t)

2 := σ(t, Ti)
Tρσ(t, Ti)

we can write (2.39) as

dF i
R(t) = F i

R(t)
(
−ρi,iI,Rσ

i
I(t)σ

i
R(t) dt + σiR(t) dZi

R,i(t)
)
. (2.41)

Remark: Note that under the measure QTi
R induced by the numeraire I(·)PR(·, Ti) the real

forward rate F i
R is a martingale satisfying

dF i
R(t) = F i

R(t)σiR(t) dZ̃i
R,i (t),

where Z̃i
R,i is a QTi

R -Brownian motion. Therefore by choosing σiR deterministic we could
value real interest rate caps and floors in real markets using Black’s formula for the nu-
meraire I(·)PR(·, Ti).

We choose ρi,jI,R, i, j = 1, . . . , N in (2.41) as deterministic (which means choosing σ(t, Ti),
1 ≤ i ≤ N accordingly) and would like to choose σiI , i = 1, . . . , N deterministic as well.
However, it turns out that this is only possible for a single i, as first described in Schloegl
[40]. The problem is that after choosing σiI deterministic for one i, all the other σjI are in
fact stochastic. To motivate this choose an index i for which we set σiI deterministic. Now
take a look at

I(t, Ti)

I(t, Ti−1)
=

PR(t, Ti)

P (t, Ti−1)

Pn(t, Ti−1)

Pn(t, Ti)
=

1 + δiF i
n(t)

1 + δiF i
R(t)

, t ≤ Ti−1. (2.42)
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Calculating the quadratic variation of the logarithm of both sides we find for the left side
(using (2.31)):

(σ(t, Ti)− σ(t, Ti−1))Tρ(σ(t, Ti)− σ(t, Ti−1)) =σiI(t)
2 + σi−1

I (t)2

− 2ρi,i−1
I (t)σiI(t)σ

i−1
I (t), (2.43)

where ρi,i−1
I is the deterministic chosen instantaneous correlation between I i and I i−1.

Since

d ln(1 + δiF i
n(t)) = {. . . } dt +

δiF i
n(t)

1 + δiF i
n(t)

σin(t) dZi
n,i(t) ,

d ln(1 + δiF i
R(t)) = {. . . } dt +

δiF i
R(t)

1 + δiF i
R(t)

σiR(t) dZi
R,i(t) ,

the quadratic variation for the right side is((
δiF i

n(t)

1 + δiF i
n(t)

)2

σin(t)2 +

(
δiF i

R(t)

1 + δiF i
R(t)

)2

σiR(t)2

+
δiF i

R(t)

1 + δiF i
R(t)

δiF i
n(t)

1 + δiF i
n(t)

σin(t)σiR(t)ρi,in,R(t)

)
dt , (2.44)

where ρi,in,R is the deterministically chosen instantaneous correlation between F i
n and F i

R.

(2.44) is obviously stochastic while in (2.43) all factors except σi−1
I are chosen to be

deterministic. Therefore σi−1
I has to be stochastic as well.

Mercurio suggests to approximate σi−1
I by freezing the forward rates at their current

value. Using (2.43) and (2.44) after freezing the drifts we can solve this quadratic equation
to approximate σi−1

I deterministically. However, in his second model Mercurio suggests a
different framework not having this problem which is why we focus on this approach.

A big drawback of the first model is that by assuming a LMM for the real rates they have
a lognormal distributions. Therefore real rates can never become negative. As mentioned
earlier this is very undesirable and this is another reason why we focus on the second
model.

Note that

Zi
I,i(t) :=

σ(t, Ti)

σiI(t)
W Ti(t)

is QTi
n -Brownian motion and that we can write the forward CPI dynamics (2.27) as

d I i(t) = I i(t)σiI(t) dZi
I,i(t) .

Remark: The problem of non-deterministic volatilities was first reviewed in Schloegl [40].
There Schloegl argues that in foreign exchange markets assuming lognormal dynamics
for forward rates in both countries can only be combined with lognormal dynamics for
one forward exchange rate (in this case forward CPIs). This is exactly the problem we
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encountered above. A second choice is to model forward rates and the forward exchange
rates (here CPIs) to be lognormal. This will however result in nonlognormal distribution
for the second market. This choice corresponds Mercurio’s second model.

Summarizing the discussion above we get the following model, where we choose the index
i of the lognormal forward CPI to be the index N .

Model: Consider a time structure T = {0 = T0, T1, . . . TN} and for i = 1, . . . , N nominal
and real forward rates F i

n(t) = Fn(t, Ti−1, Ti), F i
R(t) = FR(t, Ti−1, Ti) as well as a single

forward CPI IN(t) = I(t, TN) given by

dF i
n(t) = σin(t)F i

n(t) dZi
n,i(t) , 0 ≤ t ≤ Ti−1,

dF i
R(t) = F i

R(t)
(
−ρi,iI,R(t)σiI(t)σ

i
R(t) dt + σiR(t) dZi

R,i(t)
)
, 0 ≤ t ≤ Ti−1,

d IN(t) = IN(t)σNI (t) dZN
I,N(t) , 0 ≤ t ≤ TN ,

where Zi
k,i, k ∈ {n,R}, ZN

I,N are QTi
n (QTN

n )-Brownian motions with deterministic in-
stantaneous correlations. σin, σiR, σNI are positive and deterministic and starting values
of the SDEs are given. ρi,iI,R denotes the deterministic instantaneous correlation between

I i = I(t, Ti) (defined in (1.4)) and F i
R.

Remark: The above dynamics are given using Brownian motions under different measures
QTi
n . However, the above model also specifies the dynamics of the rates with Brownian

motions under a fixed measure Q
Tj
n (j fixed). This follows from the change of numeraire

technique (section A.2). It is easy to check that the measure change from QTi
n to Q

Ti−1
n is

given by the density process

Pn(t, Ti−1)

Pn(t, Ti)
= 1 + δiF i

n(t),

whose dynamics then follow from the model assumptions.

Remark: We choose all instantaneous correlations of this model as deterministic func-
tions. In order to find an equivalent JY model we need to choose the dimensions of the
JY-Brownian motions W = (Wn,WR,WI) high enough, so that the parameter functions
have enough degrees to allow instantaneous correlations between the Brownian motions
Zi
n,i, Z

i
R,i, Z

N
I,N to be deterministic.

Note that the forward CPI volatilities for i 6= N can then be calculated taking quadratic
variations in (2.42).

Valuation of YYIIS

Given (approximately) deterministic forward CPI volatilities to price YYIIS in this model
we have to calculate

F i
I(t) = EQ

Ti
n

[
1

δi

(
I(Ti)

I(Ti−1)
− 1

) ∣∣∣∣F t] =
1

δi
EQ

Ti
n

[
I(Ti)

I(Ti−1)

∣∣∣∣F t]− 1,
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where for t ≤ Ti−1 by (1.4) and (2.32)

EQ
Ti
n

[
I(Ti)

I(Ti−1)

∣∣∣∣F t] = EQ
Ti
n

[
1

I(Ti−1)
EQ

Ti
n
[
I(Ti)|FTi−1

] ∣∣∣∣F t]
= EQ

Ti
n

[
I i(Ti−1)

I i−1(Ti−1)

∣∣∣∣F t]
= EQTn

[
PR(Ti−1, Ti)

PR(Ti−1, Ti)

Pn(Ti−1, Ti−1)

Pn(Ti−1, Ti)

∣∣∣∣F t]
= EQTn

[
1 + δiF i

n(Ti−1)

1 + δiF i
R(Ti−1)

∣∣∣∣F t] .
All the coefficients in (2.40) and (2.41) are deterministic and(

ln

(
F i
n(Ti−1)

F i
n(t)

)
, ln

(
F i
R(Ti−1)

F i
R(t)

))∣∣∣∣F t ∼ N2(µ,Σ),

where the parameters of this two-dimensional normal distribution depend on

σiI , σ
i
n, σ

i
R, ρ

i
I,R.

Therefore the expectation value can be calculated analytically (as done in Mercurio [31]
for constant volatilities).

2.3.3. Mercurio’s second market model (forward CPI market model)

Using the notation of the previous section we now want to model all forward CPIs I i(t)
and nominal forward rates F i

n(t) as geometric Brownian motions. From equation (2.42) we
see that then also the processes F i

R, 1 ≤ i ≤ N are fixed.

Model: Consider a time structure T = {0 = T0, T1, . . . TN} and for i = 1, . . . , N nominal
forward rates and forward CPIs given by

dF i
n(t) = σin(t)F i

n(t) dZi
n,i(t) , 0 ≤ t ≤ Ti−1,

d I i(t) = I i(t)σiI(t) dZi
I,i(t) , 0 ≤ t ≤ Ti,

Zi
n and Zi

I are one-dimensional QTi
n -Brownian motions with a deterministic instantaneous

correlation structure given by(
(ρi,jn )i,j=1,...,N (ρi,jn,I)i,j=1,...,N

(ρj,in,I)i,j=1,...,N (ρi,jI )i,j=1,...,N

)
.

The starting values and the parameter functions σin, σ
i
I are positive and deterministic.
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This corresponds to a JY model by setting

Zi
n,i(t) :=

(Σn(t, Ti)− Σn(t, Ti−1))T

‖Σn(t, Ti)− Σn(t, Ti−1)‖
W Ti
n (t),

Zi
I,i(t) :=

σ(t, Ti)
T

σ(t, Ti)Tρσ(t, Ti)
W Ti(t),

and choosing σ(t, Ti), i = 1, . . . N so that

σin(t) =
(1 + δiF i

n(t))

δiF i
n(t)

‖Σn(t, Ti)− Σn(t, Ti−1)‖, (2.45)

σiI(t)
2 = σ(t, Ti)

Tρ σ(t, Ti), (2.46)

ρi,jn (t) =
dZi

n,i dZj
n,j

dt
=

dF i
n(t) dF j

n(t)√
( dF i

n(t) )2
√(

dF j
n(t)

)2

=
(Σn(t, Ti)− Σn(t, Ti−1))T

‖Σn(t, Ti)− Σn(t, Ti−1)‖
(Σn(t, Tj)− Σn(t, Tj−1))

‖Σn(t, Tj)− Σn(t, Tj−1)‖
, (2.47)

ρi,jI (t) =
dZj

I,j dZi
I,i

dt
=

d Ij(t) d I i(t)√
( d Ij(t) )2

√
( d I i(t) )2

=
σ(t, Tj)

T

σ(t, Tj)Tρσ(t, Tj)
ρ

σ(t, Ti)
T

σ(t, Ti)Tρσ(t, Ti)
, (2.48)

ρi,jn,I(t) =
dZi

n,i dZj
I,j

dt
=

d Ij(t) dF i
n(t)√

( d Ij(t) )2

√
( dF i

n(t) )2

=
σ(t, Tj)

T

σ(t, Tj)Tρσ(t, Tj)

 Idn
ρR,n
ρI,n

 (Σn(u, Ti)− Σn(u, Ti−1))

‖Σn(u, Ti)− Σn(u, Ti−1)‖
(2.49)

are deterministic. Here we used the results and notation from (2.33) and (2.27).
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Valuation of YYIIS

Using the introduced notation we can write (2.31) as

d
Ii(t)
Ii−1(t)

=
Ii(t)
Ii−1(t)

(
σiI(t) dZiI,i(t) − σi−1

I (t) dZi−1
I,i−1(t)

+
(
σi−1
I (t)2 − σi−1

I (t)ρi,i−1
I (t)σiI(t)

)
dt

)
=
Ii(t)
Ii−1(t)

(
σiI(t) dZiI,i(t) − σi−1

I (t) dZiI,i−1(t) (2.50)

+

(
σi−1
I (t)2 − σi−1

I (t)ρi,i−1
I (t)σiI(t) + σi−1

I (t)
σin(t)δiF in(t)

(1 + δiF in(t))
ρi,i−1
n,I (t)

)
dt

)
,

where using the above definitions of σin, σ
i
I , ρ

i,j
n,i and the results from (2.25) we have that

Zi
I,i−1(t) := Zi−1

I,i−1(t) +

∫ t

0

σin(s)δiF i
n(s)

(1 + δiF i
n(s))

ρi,i−1
n,I (s) ds

=
σ(t, Ti−1)T

σi−1
I (t)

W Ti−1(t) +

∫ t

0

σ(s, Ti−1)T

σi−1
I (s)

 Idn
ρR,n
ρI,n

 (Σn(s, Ti)− Σn(s, Ti−1)) ds

=
σ(t, Ti−1)T

σi−1
I (t)

W Ti(t)

is a Brownian motion under QTi
n . One would now like to use these dynamics to value

forward inflation rates, which means calculating the expectation

EQ
Ti
n

[
I i(Ti−1)

I i−1(Ti−1)

∣∣∣∣F t] .
The problem is that the drift term has stochastic components. However, freezing the value
of F i

n(t) at its current value the term becomes deterministic and we can use the calculation
of B.2. This approximation procedure yields the following result:

δi(1 + F i
I(t)) = EQ

Ti
n

[
I i(Ti−1)

I i−1(Ti−1)

∣∣∣∣F t] ≈ eD
i(t) I

i(t)

I i−1(t)
, (2.51)

where

Di(t) =

∫ Ti−1

t

σi−1
I (u)2 − σi−1

I (u)ρi,i−1
I (u)σiI(u) + σi−1

I (u)
σin(u)δiF i

n(t)

(1 + δiF i
n(t))

ρi,i−1
n,I (u) du .
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Valuation of inflation caps & caplets

Consider a caplet for the inflation rate F i
I with strike κ and price

IC(t, Ti−1, Ti, κ) = δiPn(t, Ti)EQ
Ti
n
[
(F i

I(Ti)− κ)+| F t
]
.

We can write the expectation as

δi EQ
Ti
n
[
(F i

I(Ti)− κ)+| F t
]

= EQ
Ti
n

[(
I(Ti)

I(Ti−1)
−K

)
+

∣∣∣∣F t]

= EQ
Ti
n

[
EQ

Ti
n [(I(Ti)−KI(Ti−1))+| FTi−1

]

I(Ti−1)

∣∣∣∣∣F t
]
,

where K = 1 + δiκ. Then knowing that I(Ti)| FTi−1
is distributed lognormally as a simple

forward CPI we have by sections B.3 and B.4

EQ
Ti
n [(I(Ti)−KI(Ti−1))+| FTi−1

] = I i(Ti−1)Φ

 ln
(
Ii(Ti−1)
KI(Ti−1)

)
+ 1

2

∫ Ti
Ti−1

σiI(u)2 du(∫ Ti
Ti−1

σiI(u)2 du
) 1

2


−KI(Ti−1)Φ

 ln
(
Ii(Ti−1)
KI(Ti−1)

)
− 1

2

∫ Ti
Ti−1

σiI(u)2 du(∫ Ti
Ti−1

σiI(u)2 du
) 1

2

 .

Hence we have that

δi EQ
Ti
n
[
(F i

I(Ti)− κ)+| F t
]

= EQ
Ti
n

 I i(Ti−1)

I i−1(Ti−1)
Φ

 ln
(
Ii(Ti−1)
KI(Ti−1)

)
+ 1

2

∫ Ti
Ti−1

σiI(u)2 du(∫ Ti
Ti−1

σiI(u)2 du
) 1

2


−KΦ

 ln
(
Ii(Ti−1)
KI(Ti−1)

)
− 1

2

∫ Ti
Ti−1

σiI(u)2 du(∫ Ti
Ti−1

σiI(u)2 du
) 1

2


∣∣∣∣∣∣∣F t

 . (2.52)

Again fixing the drifts in (2.50) by section B.3 we know approximately that

ln

(
I i(Ti−1)

I i−1(Ti−1)

) ∣∣∣F t ∼ N

(
ln

(
I i(t)
I i−1(t)

)
+Di(t)− 1

2
V i(t)2, V i(t)2

)
, (2.53)

where

V i(t)2 =

∫ Ti−1

t

σiI(u)2 + σi−1
I (u)2 − 2ρi,i−1

I (u)σi−1
I (u)σiI(u) du .
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Hence for the second part of (2.52) we can apply Lemma B.1 with

µ = ln

(
I i(t)
I i−1(t)

)
+Di(t)− 1

2
V i(t)2,

σ2 = V i(t)2,

a =
1(∫ Ti

Ti−1
σiI(u)2 du

) 1
2

,

b =
− ln (K)− 1

2

∫ Ti
Ti−1

σiI(u)2 du(∫ Ti
Ti−1

σiI(u)2 du
) 1

2

,

so that

KEQ
Ti
n

[
Φ

(
a ln

(
I i(Ti−1)

I i−1(Ti−1)

)
+ b

)∣∣∣∣F t] ≈ KΦ

 ln
(

Ii(t)
K Ii−1(t)

)
+Di(t)− 1

2
Vi(t)2

Vi(t)

 ,

where

V i(t)2 =

∫ Ti−1

t

σiI(u)2 du + V i(t)2.

For the first part we use Lemma B.2 with a, µ, σ as above and

b =
− ln (K) + 1

2

∫ Ti
Ti−1

σiI(u)2 du(∫ Ti
Ti−1

σiI(u)2 du
) 1

2

to arrive at

EQ
Ti
n

[
Ii(Ti−1)

Ii−1(Ti−1)
Φ

(
a ln

(
Ii(Ti−1)

Ii−1(Ti−1)

)
+ b

)∣∣∣∣F t

]
≈ Ii(t)
Ii−1(t)

eD
i(t)Φ

 ln
(
Ii(t)

K Ii−1(t)

)
+Di(t) + 1

2V
i(t)2

Vi(t)

 .
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In the end we have to discount the expected cashflow to get

IC(t, Ti−1, Ti, κ) ≈ Pn(t, Ti)

 I i(t)
I i−1(t)

eD
i(t)Φ

 ln
(

Ii(t)
K Ii−1(t)

)
+Di(t) + 1

2
V i(t)2

V i(t)


− KΦ

 ln
(

Ii(t)
K Ii−1(t)

)
+Di(t)− 1

2
V i(t)2

V i(t)


(2.51)
≈ Pn(t, Ti)

(1 + δiF i
I(t))Φ

 ln
(

(1+δiF iI (t))

1+δiκ

)
+ 1

2
V i(t)2

V i(t)


− (1 + δiκ)Φ

 ln
(

(1+δiF iI (t))

1+δiκ

)
− 1

2
V i(t)2

V i(t)

 ,

where for the second equation we used the approximation developed in (2.51). Note that
this corresponds to a shifted lognormal valuation formula (see B.4.3). This is the reason
we refer to this model as a market model, since typically such formulas are the first ones
used by market practicioners.

Dynamics under the spot forward measure

We now calculate the dynamics of the modelled rates under a common measure, namely the
earlier introduced forward spot measure induced by the discrete bank account. Remember
the dynamics (2.36) and note that

Σn(t, Tk)− Σn(t, Tβ(t)−1) =
k∑

j=β(t)

(Σn(t, Tj)− Σn(t, Tj−1)).

Furthermore by (2.45) and (2.47)

(Σn(t, Ti)− Σn(t, Ti−1))T (Σn(t, Tj)− Σn(t, Tj−1)) = ρi,jn (t)σin(t)
δiF in(t)

1 + δiF in(t)
σjn(t)

δjF jn(t)

1 + δjF jn(t)
.
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Therefore (2.36) reads

dF i
n(t) =

1 + δiF i
n(t)

δi
(Σn(t, Ti)− Σn(t, Ti−1))T dW d

n(t)

+
1 + δiF i

n(t)

δi

i∑
j=β(t)

(Σn(t, Ti)− Σn(t, Ti−1))T (Σn(t, Tj)− Σn(t, Tj−1)) dt

= F i
n(t)σin(t)

 dZd
n,i(t) +

i∑
j=β(t)

ρi,jn (t)σjn(t)
δjF j

n(t)

1 + δjF j
n(t)

dt

 . (2.54)

We now do the same thing for forward CPIs where by (2.49), (2.45) and (2.46) we have

σ(t, Ti)

 Idn
ρR,n
ρI,n

 (Σn(t, Tj)− Σn(t, Tj−1)) = ρj,in,I(t)σ
i
I(t)σ

j
n(t)

δjF j
n(t)

1 + δjF j
n(t)

.

Inserting this into (2.37) we get

d I i(t) = I i(t)

σ(t, T )T dW d(t) +
i∑

j=β(t)

σ(t, T )T

 Idn
ρR,n
ρI,n

 (Σn(t, Tj)− Σn(t, Tj−1)) dt


= I i(t)σiI(t)

 dZd
I,i(t) +

i∑
j=β(t)

ρj,in,I(t)σ
j
n(t)

δjF j
n(t)

1 + δjF j
n(t)

dt

 . (2.55)

Hence we have calculated everything we need for simulation.

2.3.4. Adjusting for different forward CPI tenors

The basic idea behind the LMM is to have a model resulting in Black formulas for interest
cap markets. The underlyings of this market are mostly 6-month LIBOR rates, which is
why we would like to model those rates. Contrary inflation markets (YYIIS, inflation caps)
are based on annual inflation rates. Hence one would like to use a 1-year tenor for the
modelled forward CPIs. We now adjust Mercurio’s second model allowing for a natural
calibration of both markets. We consider a nominal tenor structure

Tn = {T0, T1, . . . , T2N},

where we want to have δin = Ti−Ti−1 ≈ 0.5, i ∈ {1, . . . , 2N} and an inflation tenor structure

TI = {T0, T2, T4, . . . , T2N}
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with δiI = T2i − T2(i−1) ≈ 1, i ∈ {1, . . . , N}. Given this tenor structures we model the rates

F i
n(t) = Fn(t, Ti−1, Ti) and I i(t) = I(t, T2i)

according to the dynamics

dF i
n(t) = F i

n(t)σin(t) dZi
n,i(t) , i ∈ {1, . . . , 2N},

d I i(t) = I i(t)σiI(t) dZi
I,i(t) , i ∈ {1, . . . , N},

where Zi
n,i are Brownian motions under QTi

n and Zi
I,i are Brownian motions under QT2i

n ,
which have deterministic instantaneous correlations. Similar to the previous section this
can again be interpreted as a JY model and we can also repeat the steps to derive dynamics
under the measure Qd

n induced by the discrete bank account (defined using the tenor
structure Tn). We can then summarize this model as follows

Model: Consider a tenor structure {0 = T0, T1, . . . , T2N} with δi = Ti − Ti−1 and forward
rates F i

n, i = 1, . . . , 2N and forward CPIs I i, i = 1, . . . , N following the SDEs

dF i
n(t) = F i

n(t)σin(t)

 dZd
n,i(t) +

i∑
j=β(t)

ρi,jn (t)σjn(t)
δjF j

n(t)

1 + δjF j
n(t)

dt

 , 0 ≤ t ≤ Ti−1,

d I i(t) = I i(t)σiI(t)

 dZd
I,i(t) +

2i∑
j=β(t)

ρj,in,I(t)σ
j
n(t)

δjF j
n(t)

1 + δjF j
n(t)

dt

 , 0 ≤ t ≤ T2i,

where Zd
n,i and Zd

I,i are Brownian motions under Qd
n with deterministic instantaneous cor-

relation structure (
(ρi,jn )i,j=1,...,2N (ρi,jn,I)i=1,...,2N,j=1,...,N

(ρj,in,I)i=1,...,2N,j=1,...,N (ρi,jI )i,j=1,...,N

)
.

and β(t) = inf{j ∈ {1, . . . , 2N + 1} : t ≤ Tj−1}. The parameter functions σin, σiI and the
starting values are positive and deterministic.

The formulas are very similar to (2.54) and (2.55). Only for I i(t) the number of sum-
mands in the drift term has changed. Also prices for inflation forward rates and inflation
caps can be derived in a similar fashion resulting in slightly adjusted formulas, which we
state here. Set δiI = T2i − T2(i−1), then

δiI(1 + FI(t, T2(i−1), T2i)) = EQ
T2i
n

[
I i(T2(i−1))

I i−1(T2(i−1))

∣∣∣∣F t] ≈ exp
{
Di(t)

} I i(t)
I i−1(t)

,
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where

Di(t) =

∫ T2(i−1)

t

σi−1
I (u)2 − σi−1

I (u)ρi,i−1
I (u)σiI(u)

+ σi−1
I (u)

(
σ2i
n (u)δ2iF 2i

n (t)

1 + δ2iF 2i
n (t)

ρ2i,i−1
n,I (u) +

σ2i−1
n (u)δ2i−1F 2i−1

n (t)

1 + δ2i−1F 2i−1
n (t)

ρ2i−1,i−1
n,I (u)

)
du .

IC(t, T2(i−1), T2i, κ) ≈ Pn(t, T2i)

 I i(t)
I i−1(t)

eD
i(t)Φ

 ln
(

Ii(t)
K Ii−1(t)

)
+Di(t) + 1

2
V i(t)2

V i(t)


− KΦ

 ln
(

Ii(t)
K Ii−1(t)

)
+Di(t)− 1

2
V i(t)2

V i(t)

 ,

≈ Pn(t, T2i)

(1 + δiIF
i
I(t))Φ

 ln
(

(1+δiIF
i
I (t))

1+δiIκ

)
+ 1

2
V i(t)2

V i(t)


− (1 + δiIκ) Φ

 ln
(

(1+δiIF
i
I (t)

1+δiIκ

)
− 1

2
V i(t)2

V i(t)

 , (2.56)

where

V i(t)2 =

∫ T2(i−1)

t

σiI(u)2 + σi−1
I (u)2 − 2ρi,i−1

I (u)σi−1
I (u)σiI(u) du +

∫ T2i

T2(i−1)

σiI(u) du .

Remark: Note that the formulas for YYIIS and inflation caplets only contain information
about parts of the correlation structure, basically rates with similar times of expiry. If one
wants to use this model for Monte Carlo simulation one needs the whole correlation matrix.
Since there is no way of getting this information out of the reviewed market instruments,
we have to resort to historical estimation to be able to determine these essential parameters
(see section 3.1).

2.3.5. Forward CPI models - another approach

The idea of the so far presented forward CPI model is to model each forward CPI with
a lognormal process driven by one Brownian motion. At all this results in N Brownian
motions driving the forward CPIs. An alternative approach (as done in Mercurio and
Moreni [34]) would be to use N Brownian motions and let the i-th forward CPI be driven
by the first i Brownian motions.
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So IN(t) shall be driven by all N Brownian motions. We therefore choose the dynamcis

d IN(t) = IN(t)

 N∑
j=βI(t)

σjI(t) dZN
I,j(t)

 , 0 ≤ t ≤ T2N , (2.57)

where βI(t) = 2 infj{t ≤ T2j}, (ZN
I,j)0≤t≤T2N are Brownian motions under QT2N

n with de-

terministic instantaneous correlation structure (ρk,lI )k,l=1,...,N . Also we model the nominal
interest market using a LMM as in section 2.3.4, where the Brownian motions Zi

n,i, i =
1, . . . , 2N have a deterministic instantaneous correlation with ZN

I,j denoted again by

(ρk,ln,I)k=1,...,2N,l=1,...,N . We then define for i = 1, . . . N − 1, j = 1, . . . , i

Zi
I,j(t) := ZN

I,j(t)−
∫ t

0

2N∑
k=2i

ρk,jn,I(s)σ
k
n(s)

δkF k
n (s)

1 + δkF k
n (s)

ds , 0 ≤ t ≤ T2j (2.58)

and define the dynamics of the i-th forward CPI ( i = 1, . . . , N − 1) as

d I i(t) = I i(t)

 i∑
j=βI(t)

σjI(t) dZi
I,j(t)

 , 0 ≤ t ≤ T2i. (2.59)

We now translate this in the JY setting and show that Zi
I,j is a Brownian motion under

QT2i
n . We have the economic interpretation that each Brownian motion models the inflation

for one year. The i-th forward CPI depends on the inflation of all the years before its fixing
time T2i as represented in (2.59).

To interprete this in a JY setting we look at the dynamics of Ii(t)
Ii−1(t)

, which using the

definitions of (2.58) and (2.59) are

d
I i(t)
I i−1(t)

=
I i(t)
I i−1(t)

σiI(t) dZi
I,i(t) +

i∑
j=βI(t)

σjI(t)ρ
i,j
I (t)σiI(t) dt (2.60)

−
i∑

j=βI(t)

σjI(t)

(
δ2iσ2i

n (t)F 2i
n (t)

1 + δ2iF 2i
n (t)

ρ2i,j
n,I (t) +

δ2i−1σ2i−1
n (t)F 2i−1

n (t)

1 + δ2i−1F 2i−1
n (t)

ρ2i−1,j
n,I (t)

)
dt

 .

Comparing this with (2.31) and taking quadratic variations of both we find

σiI(t)
2 = (σ(t, T2i)− σ(t, T2(i−1)))

Tρ(σ(t, T2i)− σ(t, T2(i−1))),

and that we have the following relationship

ZN
I,j(t)

d
=

(σ(t, T2j)− σ(t, T2(j−1)))
T

σjI(t)
2

W T2N (t), j = 1, . . . , N. (2.61)
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We can express ρi,jI in an equivalent JY model as

ρi,jI (t) =
dZN

I,i(t) dZN
I,j(t)

dt
=

d Ii(t)
Ii−1(t)

d Ij(t)
Ij−1(t)√

( d Ii(t)
Ii−1(t)

)2

√
( d Ij(t)
Ij−1(t)

)2

(2.31)
=

(σ(t, T2i)− σ(t, T2(i−1)))
T

σiI(t)
ρ

(σ(t, T2j)− σ(t, T2(j−1)))

σjI(t)

and

ρi,jI,n(t) =
dZN

I,i(t) dZj
n,j(t)

dt
=

d Ii(t)
Ii−1(t)

dF j
n(t)√

( d Ii(t)
Ii−1(t)

)2

√
( dF j

n(t) )2

=
(σ(t, T2i)− σ(t, T2(i−1)))

T

σiI(t)

 Idn
ρR,n
ρI,n

 Σn(t, Tj)− Σn(t, Tj−1)

‖Σn(t, Tj)− Σn(t, Tj−1)‖
.

Furthermore in a equivalent JY setting for the nominal LMM we again require (see 2.3.4)

σin(t) =
(1 + δiF i

n(t))

δiF i
n(t)

‖Σn(t, Ti)− Σn(t, Ti−1)‖,

ρi,jn (t) =
dZi

n,i(t) dZj
n,j(t)

dt
=

dF i
n(t) dF j

n(t)√
( dF i

n(t) )2
√

( dF j
n(t) )2

=
(Σn(t, Ti)− Σn(t, Ti−1))T

‖Σn(t, Ti)− Σn(t, Ti−1)‖
(Σn(t, Tj)− Σn(t, Tj−1))

‖Σn(t, Tj)− Σn(t, Tj−1)‖
.

If we choose σ(t, Ti), i = 1, . . . , 2N so that all the above relations are fulfilled we can find
such an equivalent JY model.

We can then use previous results to show that the stochastic processes defined in (2.58)
are really Brownian motions under the appropiate forward measure. Since we know that
σ(t, TβI(t)−1) = 0 (the forward CPI is fixed at that time already) we have

σ(t, T2i) =
i∑

j=βI(t)

(σ(t, T2j)− σ(t, T2(j−1))).

Also

Σn(t, T2i)− Σn(t, T2(i−1)) = (Σn(t, T2i)− Σn(t, T2i−1)) + (Σn(t, T2i−1)− Σn(t, T2(i−1)))
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so that we have

Zi
I,j(t) =ZN

I,j(t)−
∫ t

0

2N∑
k=2i

ρk,jn,I(s)σ
k
n(s)

δkF k
n (s)

1 + δkF k
n (s)

ds

(2.61)
=

(σ(t, T2j)− σ(t, T2(j−1)))
T

σjI(t)
W T2N (t)

−
∫ t

0

2N∑
k=2i

(σ(s, T2j)− σ(s, T2(j−1)))
T

σjI(s)

 Idn
ρR,n
ρI,n

 (Σn(s, Tk)− Σn(s, Tk−1)) ds

(2.12)
=

(σ(t, T2j)− σ(t, T2(j−1)))
T

σjI(t)
W T2i(t)

is indeed a Brownian motion under QT2i
n . Similary using the result from (2.35) we have

that

Zd
I,i(t) = Zi

I,i(t) +

∫ t

0

2i∑
j=β(s)

δjσjn(s)F j
n(s)

1 + δjF j
n(s)

ρj,in,I(s) ds

is a Brownian motion under Qd
n. We again want to use Qd

n-Brownian motions for actual

modelling. Comparing (2.59) and (2.60) we see that it is more convenient to model Ii(t)
Ii−1(t)

since under Qd
n the dynamics of (2.59) would include a double sum. Hence we denote

Y i(t) = Ii(t)
Ii−1(t)

and model this quantity instead. Summarizing this we have the following

model.

Model: Consider a time structure {0 = T0, T1, . . . , T2N} and define the following dynamics
under Qd

n

dF in(t) = F in(t)σin(t)

 dZdn,i(t) +

i∑
j=β(t)

ρi,jn (t)σjn(t)
δjF jn(t)

1 + δjF jn(t)
dt

 ,

dY i(t) = Y i(t)

σiI(t) dZdI,i(t) + σiI(t)
2i∑

j=β(t)

δjσjn(t)F jn(t)

1 + δjF jn(t)
ρj,in,I(t) dt +

i∑
j=βI(t)

σjI(t)ρ
i,j
I (t)σiI(t) dt

−
i∑

j=βI(t)

σjI(t)

(
δ2iσ2i

n (t)F 2i
n (t)

1 + δ2iF 2i
n (t)

ρ2i,j
n,I (t) +

δ2i−1σ2i−1
n (t)F 2i−1

n (t)

1 + δ2i−1F 2i−1
n (t)

ρ2i−1,j
n,I (t)

)
dt

 .

Zd
n,i and Zd

I,i are one-dimensional Brownian motions with a deterministic instantaneous
correlation structure given by(

(ρi,jn )i,j=1,...,2N (ρi,jn,I)i=1,...,2N,j=1,...,N

(ρj,in,I)i=1,...,2N,j=1,...,N (ρi,jI )i,j=1,...,N

)
.

The starting values of F i
n and Yi, as well as the parameter functions σin and σiI are positive
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and deterministic.

Valuation of forward inflation rates and inflation caps

Valuation of YYIIS and inflation caplets can now be done using the same drift freezing
approximations as in the previous approaches resulting in similar formulas:

F i
I(t) ≈

1

δiI

(
eD

i(t) I
i(t)

I i−1(t)
− 1

)
,

IC(t, T2(i−1, T2i, κ) ≈ Pn(t, T2i)

(1 + δiIF
i
I(t))Φ

 ln
(
δiI(1+δiIF

i
I (t))

1+δiIκ

)
+ 1

2
V i(t)2

V i(t)


− (1 + δiIκ) Φ

 ln
(
δiI(1+δiIF

i
I (t)

1+δiIκ

)
− 1

2
V i(t)2

V i(t)

 ,

where

Di(t) =

∫ T2(i−1)

t

i∑
j=βI(t)

σjI(u)ρi,jI (u)σiI(u)

−
i∑

j=βI(t)

σjI(u)

(
δ2iσ2i

n (u)F 2i
n (t)

1 + δ2iF 2i
n (t)

ρ2i,j
n,I (u) +

δ2i−1σ2i−1
n (u)F 2i−1

n (t)

1 + δ2i−1F 2i−1
n (t)

ρ2i−1,j
n,I (u)

)
du ,

V i(t)2 =

∫ T2i

t

σiI(u)2 du .

We see that there is one big difference. The convexity adjustment now depends not only
on the subdiagonal of the correlation matrices but on the whole correlation matrix. This
is an advantage, since it theoretically allows us to calibrate the whole correlation matrix to
market data. In practice this is problematic since we will see that the order of magnitude of
the convexity adjustment is in fact so small, that sometimes even bid/ask spreads are wide
enough to include possible convexity adjustments. Therefore market data is not reliable
enough to calibrate all the correlation parameters and we loose this advantage.

The main advantage of this model is that the k-th simulated Brownian motion can be
interpreted as the CPI development for the k-th year, while in the earlier version the k-th
Brownian motion could be interpreted as the CPI development until up to the k-th year.
In this approach each Brownian motion represents disjoint development therefore allowing
for a more intuitive interpretation of the parameters of the model.

The main drawback is that this results in more drift terms for the simulated rates,
therefore making simulation and calibration computationally more costly.
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2.3.6. Other models and extensions

Forward inflation market models

So far we have considered market models where we try to model the forward CPIs with
starting values given by ZCIIS rates. To be able to price YYIIS we used approximations by
fixing drifts to be deterministic. Following this approach we derived approximate dynamics
of forward inflation rates, which are then of a shifted lognormal kind.

However, one could coil this up the other way around. We defined forward inflation
rates to be martingales under the appropiate forward measure. One could choose to model
those forward inflation rates as shifted lognormal martingales with some deterministic
volatility. Then pricing inflation caps and floors would be straightforward resulting in
Black-like formulas allowing for instant calibration to YYIIS rates (being starting values).
The problem then is valuing ZCIIS, for which no closed form formulas have been found.
One would have to use non-standard approximation techniques to get formulas usable for
calibration. Since ZCIIS markets are far more liquid than YYIIS it seems the better choice
to exactly (and instantly) fit ZCIIS rates (see Mercurio and Moreni [34]).

Further models

The here presented model can be extended to account for volatility smiles - either in nom-
inal markets or in inflation markets. Mercurio and Moreni extend it first via Heston-like
model (Mercurio and Moreni [33]) and later via SABR dynamics (Mercurio and Moreni
[34]). Kenyon [27] proposes normal mixture models for inflation while Hinnerich [22] ex-
tends the JY framework allowing for jumps. All these models allow for smile modelling in
inflation markets.

A different approach is chosen in Falbo et al. [10], where the authors model the nominal
short-rate as a CIR (Cox, Ingersoll, Ross) process and the instantaneous inflation via a
Vasicek model. Their approach has the advantage of additionally allowing to estimate the
inflation risk premia.
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3. Implemenation of a inflation market
model

As we have seen, the JY model is an extension of the HJM model. In order to calibrate
a JY model we have to take two steps. Before we can tackle the task of calibrating to
inflation markets, we first have to calibrate an interest rate model (in our case a LMM).
This is our first goal in this chapter. There are two approaches to calibrate a model:

• Fitting market data: For this approach one uses market prices of liquid instru-
ments, where the prices depend on the parameters of the model one wants to cali-
brate. One then minimizes the difference between the theoretical model prices and
the actual market prices, therefore generating a minimization problem to find the
parameters.

• Historical estimation: Here one uses historical time series of market instruments
and then tries to estimate the parameters used in the model.

Fitting is a forward-looking procedure (since market prices depend on future expectations)
while historical estimation is backward looking. In general it is a good idea to first use
historical data to get some idea about the shape of the parameters one wants to estimate
and then fit parameters of a certain range using market data. Since we have no knowledge
about the parameters used in our model yet, we first take a look at historical data.

3.1. Historical estimation of model parameters

In order to estimate the parametes of the reviewed models we want to observe nominal
forward rates and forward CPIs (or fractions of those). The problem is that those quantities
are not directly available, so one first has to calculate them out of available market data,
in our case swap and ZCIIS rates.

We used daily data of the past 6 years, i.e. data from 1 Aug. 2005 to 29. Jul 2011. We
normally split the data in 6 one-year periods allowing us to repeat the estimation procedure
6 times. This allows us to gain information about how parameters change over time.

3.1.1. Calculating the yield curve and forwards

The first step is to calculate the yield curve and thereof the nominal forward rates. We
use euro swap rates with maturities of 1, 2, 3, 5, 7, 10, 20, 30 years as input data (see table
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S1(t) S2(t) S3(t) S5(t) S7(t) S10(t) S20(t) S30(t)

01.08.2005 2,252 2,418 2,572 2,849 3,098 3,393 3,830 3,927
02.08.2005 2,258 2,426 2,581 2,865 3,114 3,410 3,845 3,940

. . .
29.07.2011 1,868 1,919 2,074 2,488 2,824 3,159 3,567 3,445

Table 3.1.: Swaprates (in percent) for maturities of 1, 2, 3, 5, 7, 10, 20, 30
years from 1 Aug. 2005 to 29 Jul. 2011

Source: Bloomberg L.P. (2006), <EUSA>, retreived 20 Aug. 2011

3.1). We are given data for 6 years (1 Aug. 2005 ≤ t ≤ 29 Jul. 2011) and the swap
rates Si(t) = St,t+i(t) (defined in section 3.2.2) at each time t are then given for maturities
t+ i, i ∈ {1, 2, 3, 5, 7, 10, 20, 30}.

Swap rates from bloomberg are quoted for terms of semiannual floating payments linked
to the 6-month EURIBOR (ACT/360) and fixed payments of 1 year (30/360).

Step 1: Calculation of a yield curve:

We first need to interpolate the 8 given swap rates to get annual swap rates Sk(t), k =
1, . . . , 30. We decided to use B-splines (see Boor [4]) for this. Given annual swap rates we
can calculate annual discount factors by

Pn(t, t+ k) =
1−

∑k−1
i=1 Sk(t)Pn(t, t+ i)

1 + Sk(t)
,

and then continuously compounded annual yield rates

y(t, t+ k) =
− ln (Pn(t, t+ k))

k
.

Interpolating these yields (again using B-splines) we are then given a yield curve y(t, T ), t ≤
T ≤ t+ 30 for each day of the six years.

Step 2: Calculation of the forward rates:

We now calculate semiannual forward rates for a fixed tenor structure T0 = 1. Aug. 2005,
T1 = 1. Mar. 2006, . . . , T60 = 1. Aug. 2035. Given the above calculated yield curves we
can do this by

F i
n(t) := Fn(t, Ti−1, Ti) =

1

Ti − Ti−1

(
ey(t,Ti)(Ti−t)−y(t,Ti−1)(Ti−1−t) − 1

)
, β(t) ≤ i ≤ 60,

(3.1)
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where β(t) = inf{j ∈ {1, . . . , 61} : t ≤ Tj−1} is the index of the first forward rate not fixed
yet.

Finally we end up with forward rates F i
n(t) for T0 ≤ t ≤ min{Ti−1, 29 Jul. 2011} and we

can use those for estimation.

3.1.2. Estimating volatility and correlation

We define volatility as the standard deviation of the annualized log returns of a financial
asset and denote the annualized log return of an asset S over some period [ti−1, ti] by

ri = ln (Sti)− ln
(
Sti−1

)
.

Remark: The term volatility is widely used in financial markets. Although originally
motivated by the above definition it is nowadays used in a lot of contexts. A general exact
definition is therefore not possible. Nevertheless one can always understand volatility as a
concept of standard deviation of returns (a term also not uniquely defined).

If we assume that the price S of this asset follows a geometric Brownian motion with
constant parameters µ, σ:

dS(t) = S(t) (µ dt + σ dW (t) ) ,

then

S(t) = S(0) exp

{(
µ− σ2

2

)
t+ σW (t)

}
.

Choosing n periods (t0 < t1 < tn) of equidistant spacing 4 we see that

ri
iid∼ N

((
µ− σ2

2

)√
4, σ2

)
and that a possible estimator for σ2 is the classical variance estimator

σ̂2 =
1

n− 1

n∑
i=1

(
ri −

1

n

n∑
i=1

ri

)2

.

Accordingly we have estimators for covariances and correlations.

Remark: Practicioners often define volatility as the annualized percentage returns of an
asset. Given a geometric Brownian motion we have

d ln (St) d ln (St) =
dSt
St

dSt
St

= σ2 dt ,

which is why infinitesimally log returns and percentage returns are the same. However,
for a discrete equidistant grid the percentage returns are only assymptotically identically
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distributed. Nevertheless percentage returns are widely used for volatility estimation.

Remark: When using market data, one doesn’t have equidistant spaced data, since there
are holidays, weekends and sometimes data errors. Nevertheless for estimation we assume
that each data point corresponds to one day of a year with about 250 days. Therefore in
our case 4 ≈ 1

250
.

There are far more sophisticated procedures for estimating volatilities, however we stick
to this simple standard approach. An overview of alternative estimators can be found in
Brandt and Kinlay [5].

3.1.3. Estimating nominal forward volatilities and correlations

We go ahead and use the above estimator on the forward rates we calculated according to
section 3.1.1. As mentioned earlier we partition the data in 6 intervals of one year. Using
the notation of 3.1.1 this are the 6 intervals Ii = [T2(i−1), T2i), i = 1, . . . , 6. For each of the
intervals we use the available calculated forward rates to estimate the volatility. Formally
we assume the forward rates to follow a stochastic processes

dF i
n(t) = F i

n(t)({. . . } dt + σin(t) dZP
n,i(t) ),

where ZP
n,i are correlated P -Brownian motions and σin(t) and the instantaneous correlations

are constant on each interval Ij, j = 1, . . . , 6. The drift term is in practice not constant,
but since drift changes are of small magnitude we can ignore it anyway and use the classical
variance and correlation estimates on each interval Ij.

Volatility

The resulting volatility curves (relating estimated volatility to the payment time of the
underlying forward rate) are then presented in figure 3.1. The title of the individual
graphs represents the data used for this estimation.

The results of this procedure are unexpected. We sometimes get strong rising volatility
for longer maturities. This is definitely not a behaviour expected and described in literature
(see e.g. Rebonato [38]). Taking a look at the volatilities of the used swap rates (figure
3.2) we find that this behaviour is not present at all (here we plotted the estimates of a
constant volatility for Si(t) against its maturity i).

We think the effect for forward rate volatilities is due to numerical instabilities. If
we consider equation (3.1), we see that one forward rate has to balance out the interest
differences of possibly many years. While for short maturities this isn’t too bad, for longer
maturities this leads to oscillating behaviour.

One could argue that the observed behaviour should be accounted for in a model since
the rates obviously show this feature. The problem is that only swap rates are traded and
while their observed volatility should be realistic this doesn’t have to be true for the non-
traded forward rates. We think if forward rates were actually traded, their behaviour would
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Figure 3.1.: Estimated volatilities of nominal forward rates with maturities up to 2035

Figure 3.2.: Estimated volatilities of nominal swap rates
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somewhat mirror that of swap rates. In fact if we look at forward rates with maturities up
to 15 years, where the effect should not be as strong, we see (figure 3.3) that the behaviour
is then similar to that of swap rates.

Then the volatility typically has a humped structure, meaning that volatilities are highest
for forward rates with maturity (expiry) 2-3 years ahead and are decreasing for rates with
farther ahead maturities. This is actually a behaviour stated in most literature and we
include this behaviour in later model specification.

Correlation

The second nominal quantity of interest is the correlation matrix of forward rates. We
analyze this by looking at heatmaps for the estimated correlations (figure 3.4).

Here we only used forward rates of maturities up to 2020 since we do not want to
distort our estimations by the earlier described behaviour of forward rate volatilities. There
is an obvious structure for forward rate correlations. Adjacent forward rates are highly
correlated and the correlation decreases for farther apart rates. A second more subtle point
is that adjacent forward rates with higher maturities are typically stronger correlated than
adjacent ones with lower maturities. Correlation values are greater than zero. Parametric
forms representing this behaviour will be discussed in section 3.2.4.

3.1.4. Estimation using forward CPIs

K1(t) K2(t) K3(t) K5(t) K7(t) K10(t) K20(t) K30(t)
01.08.2005 1,939 2,039 2,064 2,097 2,120 2,149 2,270 2,340
02.08.2005 1,942 2,042 2,067 2,100 2,130 2,160 2,273 2,350

. . .
29.07.2011 1,868 1,888 1,941 2,033 2,139 2,240 2,367 2,453

Table 3.2.: ZCIIS rates (in percent) for maturities of 1, 2, 3, 5, 7, 10, 20, 30
years from 1 Aug. 2005 to 29 Jul. 2011

Source: Bloomberg L.P. (2006), <EUSWIT>, retreived 20 Aug. 2011

The second part of our historical analysis is about inflation. For this we consider ZCIIS
rates (see table 3.2) based on the euro HICP index for the same maturities as the swap
rates (1, 2, 3, 5, 7, 10, 20, 30 years). Hence we are given ZCIIS rates Ki(t) := K(t, t+ i) for
1 Aug. 2005 ≤ t ≤ 29 Jul. 2011, where K(t, T ) was defined in (1.3).

We then want to calculate CPI forwards I i(t) = I(t, T2i) for the dates T2 =1. Aug 2006,
T4 = 1. Aug. 2007, . . . , T60 = 1. Aug. 2035. Here we use the relationship

I(t, T ) = I(t)(1 +K(t, T ))T−t.
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Figure 3.3.: Estimated volatilities for nominal forward rates with maturities up to 2020

Figure 3.4.: Estimated correlations of nominal forward rates
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We see that in order to calculate the CPI forwards we also need the historical values of
the underlying index (see 1.2). The historical CPI values include seasonal effects while the
rates K(t, T ) being only quoted for full year maturities don’t. For the forward CPIs I i to
be without seasonal effects we therefore have to first seasonally adjust the historical CPI
values. This is done by estimating monthly effects via linear regression and then adjusting
the historical values of the CPI (see section 1.2.1). Given this seasonally detrended time
series we then use linear interpolation to get daily historical CPI values.

Also note that in order to calculate I(t, T2i) we need ZCIIS rates for arbitrary T . There-
fore we need to interpolate the rates Ki(t). We again use smoothing B-splines for this.
Combining all this we can calculate

I i(t) = I(t)(1 +K(t, T2i))
T2i−t, βI(t) ≤ i ≤ 30,

where βI(t) = 2 infj{t ≤ T2j}. Finally we end up with forward CPIs I i(t) for T0 ≤ t ≤
min{T2i, 29 Jul. 2011}.

Now we can calculate again log returns and use the standard variance estimation formula.
Formally we have to assume that

d I i(t) = I i(t)({. . . } dt + σiI(t) dZP
I,i ,

where ZP
I,i are correlated P -Brownian motions and σiI(t) and instantaneous correlations

(also those between ZP
I,i and ZP

n,j) are constant on each one of the six intervals Ij, j =
1, . . . , 6. Again the drift is not constant, but changes are of a small magitude.

Volatility

The estimated volatility of forward CPIs can be found in figure 3.5, where we again plot
the estimated volatility against the maturity T2i of the forward CPI. Again the title of each
graph represents the interval of the data used for estimation.

We can see increasing volatilities with increasing maturity of the forward CPI. Remem-
bering the instabilities for nominal forward rates we also take a look at the ZCIIS volatility.
Since the ZCIIS rates can become negative , we can’t assume lognormal dynamics. There-
fore we first transform the ZCIIS rates to 1+Ki(t) and then use the same concept as before
(this corresponds to a shifted lognormal model). The results can be found in figure 3.6.
Here the estimated volatility is plotted against the maturity i of the ZCIIS rate.

We see that for ZCIIS rates the volatility is decreasing with increasing maturity. Com-
paring this to the behaviour of forward CPIs this is rather disturbing. Looking for an
explanation we take a look at the definition of the forward CPI. Denoting by I(KM) the
forward CPI for M years depending on the ZCIIS rate (I(KM) = (1 +KM)M) we see that

∂(I(KM )
∂KM

I(KM)

/
∂KM
∂KM

KM

=
(1 +KM)M−1MKM

(1 +KM)M
=

MKM

1 +KM

. (3.2)
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Figure 3.5.: Estimated forward CPI volatility

Figure 3.6.: Estimated ZCIIS volatility
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Figure 3.7.: Estimated forward CPI correlation

Since | KM
1+KM

| remains rather constant since ZCIIS rates typically around 2 %, we see that
the percentage change of the forward CPI after a one percent change in the underlying
ZCIIS rate is increasing linearly with increasing maturity.

This is an explanation for different forward CPI and ZCIIS volatilities, but we are still
left with the question if we want to express the observed forward CPI volatility behaviour
in a model. Again we think this to be rather dangerous since forward CPIs are not directly
available. Hence we use this information carefully.

Correlations

We now take a look at the the forward CPI correlations (figure 3.7) using similar plots as
for nominal forward rate correlation. We see a behaviour similar to nominal forward rate
correlations. Forward CPIs with adjacent maturities are higly correlated and correlation
is decreasing the further they are apart. Again correlation is rather increasing for farther
apart maturities. Values are always positive and above .2. Again this is plausible and we
will use this for modelling later.

The last step is the estimation of the correlations between nominal forward rates and
forward CPIs. Resulting heat maps can be found in figure 3.8. There is no obvious
behaviour visible. At best we can see that there is typically a peak between short-term
interest rates and medium-term forward CPIs. This might be explained by the fact the
central banks inflation targets are controlled by central banks interference on short term
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Figure 3.8.: Estimated correlation between nominal forward rates and forward CPIs

interest rate markets. However correlation values are mostly between .2 and .4. Looking
at (assymptotic) confidence intervals, which are mostly bigger than .2 we conclude that
correlation between different nominal forward rates and forward CPIs is rather similar.
Therefore we propose to use constant correlation. The general interest rate level and the
general inflation level are definitely correlated, but other than that not much can be said.

3.1.5. Estimation with forward CPI fractions

We have reviewed an alternative approach to model fractions of forward CPIs instead of
forward CPIs in section 2.3.5. We now use those quantities (the returns of Yi(t) = Ii(t)

Ii−1(t)
)

instead of the returns of forward CPIs for estimation. Again formally assuming piecewise
constant volatilities and instantaneous correlations (now for Y i instead of I i) the results
for volatility estimation can be found in figure 3.9.

First we notice the wild oscillating behaviour. This should be due to the interpolation
of the ZCIIS. Notice that e.g. the lows for rates 15 or 25 years ahead from the considered
data are where the biggest gaps in our available market data (1,2,3,5,7,10,20,30 year rates)
are. Besides this oscilation we see that volatility is typically decreasing. One can even see
a humped shape with humps at the 2 year rates. Therefore the behaviour is quite similar
to that of the nominal forward rates and might be modelled accordingly.

The next step is to look at the correlation between indivdiual forward CPI fractions.
The heat maps are plotted in figure 3.10. We see that the correlation is lowest for rates
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Figure 3.9.: Estimated forward CPI fraction volatility

Figure 3.10.: Estimated forward CPI fraction correlation
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Figure 3.11.: Estimated correlation between nominal forward rates and forward CPI frac-
tions

a few years apart (in fact clearly negative) and then increases for rates very close or far
apart. Again rates with farther ahead maturities are longer correlated.

Finally we look again at the correlation between nominal forward rates and forward
CPI fractions (figure 3.11). The results are similar to the forward CPI case. There is no
obvious behaviour and correlation are at the same levels. Therefore this results in the same
conclusion as for forward CPIs.

3.1.6. Comparison of the two approaches

One would expcect the CPI fraction approach to produce easier interpretable results. It
turns out that this is not the case. We were able to guess the behaviour of volatilities,
which are in fact somewhat similar to that of nominal forward rates, but especially for
the correlation between nominal and inflation quantities we didn’t get a clearer result.
We would have expected that correlations are high for quantities with similar maturities
considering that they contain information about the same time horizons (an idea in fact
purchased in Mercurio and Moreni [34]). Surprisingly nothing like this was observed. Also
the result on correlation of forward inflation rates was not necessarily expected and we
have found no obvious explanation.

Because of this we do not want to draw any conclusion about which approach to favour.
Considering that the first approach is numerically a bit faster, we stick to this approach in
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our implementation. Also as mentioned earlier because of the small order of magnitude of
convexity adjustments, correlation calibration to market data is not meaningful for either of
the two models and we have to make use of the results in this section to specify correlations.
Therefore we especially focus on the results for correlation behaviour and here we favour
the first approach. We take a closer look at this in section 3.3.

3.2. Calibration of a LIBOR market model

For calibrating LMMs one basically uses two types of instruments, interest rate caps and
floors and interest rate swaptions. Both markets are very liquid and the motivation of
the LMM was in fact to ”intuitively” calibrate to caps and floors. Hence we first want
to present the pricing formulas for interest rate caplets and floorlets and then discuss the
matter of valuing swaptions in a LMM.

3.2.1. Caplets and floorlets

A caplet (Cpl) on the discrete forward rate Fn(t, S, T ) with strike K guarantees a time T
payment of

(T − S)(Fn(S, S, T )−K)+.

Under a LMM the forward rate dynamics with Z a QT
n -Brownian motion are given by

dFn(t, S, T ) = Fn(t, S, T )σ(t) dZ(t) .

Hence by section B.4 the arbitrage free value of this contract is

Cpl(t, S, T,K) = (T − S)Pn(t, T )EQTn [(Fn(S, S, T )−K)+| F t]
= (T − S)Pn(t, T ) (Fn(t, S, T )Φ(d+)−KΦ(d−)) ,

where

d± =
1

σ
√
S − t

(
ln

(
Fn(t, S, T )

K

)
± 1

2
σ2(S − t)

)
,

σ2 =
1

S − t

∫ S

t

σ(u)2 du .

For a floorlet a similar result follows.

Remark: This formula is often referred to as Black’s formula or Black76 formula and was
motivated by the famous Black-Scholes formula for derivatives (Black and Fischer [3]).
The rigorous mathermatical derivation by the change of numeraire technique, as in fact
used above, was only introduced later. The market has been using this formula for a long
time now and todays prices are quoted as the implied volatilities (σ) calculated using this
formula.
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Note that the price of caplets only depends on the average (squared) volatility of the un-
derlying forward rate. Caplets therefore contain no information about correlations between
individual forward rates. We will get back to this in sections 3.2.3 and 3.2.4.

Caps and floors

Caps (or floors) are a combination of several caplets (or floorlets). Consider a time structure
T0, T1, . . . Tn, then a cap with strike K consists of individual caplets with strike K on
the forward rates F i

n(t), i = 1, . . . , n. Valuation is easily done by pricing the individual
contracts and summing them up. The time differences normally are of a fixed tenor, mostly
3 or 6 month.

Market data & volatility smile

Caps 0,02 0,025 0,03 0,035 0,04 0,05 0,06 0,07 0,1

1 52,30% 50,70% 49,60% 49,00% 48,50% 47,90% 47,30% 47,10% 60,37%

2 60,10% 58,60% 57,30% 56,20% 55,30% 53,80% 52,10% 51,20% 49,40%

3 51,30% 48,50% 46,40% 45,00% 43,90% 42,60% 41,60% 41,20% 40,90%

5 47,10% 43,40% 40,40% 38,30% 36,80% 35,20% 34,30% 34,10% 35,99%

7 43,24% 39,80% 36,73% 34,60% 33,10% 31,40% 30,60% 30,50% 31,10%

10 39,29% 35,23% 32,75% 30,90% 29,20% 27,40% 26,60% 26,50% 27,00%

12 37,25% 34,00% 30,74% 28,90% 27,20% 25,40% 24,60% 24,40% 24,90%

15 35,27% 30,76% 28,83% 27,20% 25,50% 23,70% 23,00% 22,90% 23,50%

20 33,67% 29,48% 27,44% 26,30% 24,51% 23,20% 22,50% 22,40% 23,00%

30 32,40% 30,40% 26,58% 26,50% 23,92% 22,84% 22,48% 22,42% 22,79%

Table 3.3.: Implied volatilities for interest rate caps. Columns represent the strike
level and rows the maturity of the caps. One and two year caps have a 3 month
tenor, other maturities a 6 month tenor.

Source: Bloomberg L.P. (2006), <EUCV>, retreived 29. Sep. 2011

In markets one can usually not find caplet (implied) volatilities but implied volatilities
for caps and floors. However one would like to have caplet volatilities since then each
volatility contains information about a single forward rate and not about a combination of
several. By no-arbitrage arguments these can be calculated with a bootstrapping method.

Caps and floors quoted in markets have a 3-month or 6-month tenor structure and are
availabe for full-year maturities and for a certain range of strikes. Example data can be
found in table 3.3. Note that the implied volatilities are different for different strike levels.
This is called the volatility smile and shows that the classical LMM is not fully capable of
representing market reality. There is a huge amount of literature how to extend the LMM
to acchieve different implied volatilities for different strikes. Popular examples include the
constant elasticity of variance (CEV) model (see Andersen and Andreasen [1]), the square
root stochastic volatility model (see Wu and Zhang [42]) or the rather recent SABR model
(Hagan and Lesniewski [16]).
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Figure 3.12.: Interest rates cap smile

Remark: This effect is often referred to volatility smile because of the original observed
smile in market data for equities. Interest data is rather skewed (see 3.12), which makes
term volatility skew also quite common. Today the term volatility smile is a synonym for
arbitrary shapes.

Bootstrapping

The bootstrapping method can be described as follows. Consider given cap prices (e.g.
given by implied volatility) for maturities with half-year differences (since most of the
quoted contracts are based on 6-month LIBOR rates) and a common strike price K (this
is essential for markets with volatility smiles). Then two adjacent caps only differ by
one caplet. Therefore by substracting two prices of adjacent caps we get a fair price
for this individual caplet. We can then calculate implied caplet volatilities out of those
caplet prices. Although this procedure is straightforward in theory, implementing this faces
several difficulties.

• As mentioned above market data is only available for full year maturities and even
there not for every year. This means that we do not have cap prices with half year
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differences and one has to resort to some kind of interpolation. The easiest is to use
linear interpolation on cap implied volatilites, but this can (and mostly will) result
in implied caplet volatilities jumping up and down. To get rid of this undesired
behaviour one can instead use smoothed B-splines (see Boor [4]). This is what we do
in our implementation.

• Another problem is that some caps have 3-month LIBOR rates as underlyings. Al-
though volatilities normally do not differ greatly for 3-month and 6-month caps,
this isn’t always true. Especially during the financial crisis starting in 2008 it was
observed that those volatilities can be quite different (see Mercurio [32]).

One can of course use the above bootstrapping method with a 3-month tenor for
short-term maturities, but in the end one still has to convert those volatilities since
for a LMM one normally wants to choose a fixed tenor, in our case a tenor of 6
month. A method to convert volatilities of different tenors is presented below.

Figure 3.13.: Bootstrapped implied volatilities of interest rate caplets

Applying this procedure for different strike levels K one can calcualate implied caplet
volatilities. The results are plotted in figure 3.13.
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Converting volatilities of different tenors

As we have seen short-term caps have underlying LIBOR rates of 3 month, while most
caps have underlying rates of 6 month. We now use (2.7) to convert the quoted 3-month
volatilities to 6-month volatilities.

Consider a 3-month tenor structure T3M = {T0, T1, . . . , T2N} with a corresponding 6-
month tenor structure T6M = {T0, T2, T4, . . . , T2N}. We are given implied volatilities σi for
caplets with maturities in T3M and want to calculate implied volatilities for caplets with
maturities in T6M (with according underlying rates). Assume a LMM for the 3-month
forward rates

dF i
n(t) = F i

n(t)σin(t) dZi(t) .

Using (2.7) we can calculate the implied volatility σ(T2(i−1), T2i) of a 6-month caplet.

σ(T2(i−1), T2i) =
1

T2(i−1)

∫ T2(i−1)

0

u1(t)2σ2i−1
n (t)2 + u2(t)2σ2i

n (t)2 dt

+ 2

∫ T2(i−1)

0

ρ2i,2i−1
n (t)u1(t)σ2i−1

n (t)u2(t)σ2i
n (t) dt ,

where

u1(t) =
1

Fn(t, T2(i−1), T2i)

(
δ2i−1F 2i−1

n (t)

T2i − T2(i−1)

+
δ2i−1δ2iF 2i−1

n (t)F 2i
n (t)

T2i − T2(i−1)

)
,

u1(t) =
1

Fn(t, T2(i−1), T2i)

(
δ2iF 2i

n (t)

T2i − T2(i−1)

+
δ2i−1δ2iF 2i−1

n (t)F 2i
n (t)

T2i − T2(i−1)

)
.

σ(T2(i−1), T2i) is stochastic since the coefficients u1, u2 are stochastic. So first we freeze the
forward rates at their current value allowing us the approximation

σ(T2(i−1), T2i) ≈ u1(0)2 1

T2(i−1)

∫ T2(i−1)

0

σ2i−1
n (t)2 dt + u2(0)2 1

T2(i−1)

∫ T2(i−1)

0

σ2i
n (t)2 dt

+ 2u1(0)u2(0)
1

T2(i−1)

∫ T2(i−1)

0

ρ2i,2i−1
n (t)σ2i−1

n (t)σ2i
n (t) dt .

Since we want to do those calculations before an actual calibration we do not know σin yet.
Therefore we approximate them assuming the volatility functions to be constants equal to
the given implied volatilities. Also we assume ρ2i,2i−1

n to be constant. This results in

σ(T2(i−1), T2i) ≈ u1(0)2(σ2i−1)2 + u2(0)2(σ2i)2 + 2ρ2i,2i−1
n u1(0)u2(0)σ2i−1σ2i. (3.3)

Everything except ρ2i,2i−1
n in (3.3) is then given by market data. For ρ2i,2i−1

n we have to
resort to historical estimates (see 3.1).
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ATM caplets

As we mentioned above the LMM is not capable to capture prices across different strikes
correctly. Since the topic of this work is inflation modelling, we want to concentrate on this
and not on the topic of smile modelling. Therefore instead of using different strikes we use
only one strike price for each maturity, namely the at-the-money (ATM) strike. For ATM
caplets the current forward rate is their strike. In our notation for a caplet on the LIBOR
rate F i

n(Ti−1) this is its current value F i
n(0). To get the correct implied volatility we have

to interpolate the bootstrapped volatility surface of figure 3.13. Certain smile models, e.g.
the SABR model, have become so popular that they are sometimes used for interpolation
(see Brigo and Mercurio [7]). For simplicity we resort to bilinear interpolation. One then
calculates implied volatilities for a range of ATM caplets and uses them for calibration.

3.2.2. Swap rates and swaptions

Consider a time structure T = {Tα, Tα+1, . . . , Tβ}. A swap with rate K is a contract
guaranteeing the payments δi(F i

n(Ti−1)−K) at each time Ti, i ∈ {α+ 1, . . . , β}. The time
t value of such a contract is

β∑
i=α+1

Pn(t, Ti)δ
iEQ

Ti
n
[
F i
n(Ti−1)−K| F t

]
=

β∑
i=α+1

Pn(t, Ti)δ
i(F i

n(t)−K)

=

β∑
i=α+1

Pn(t, Ti)(
Pn(t, Ti)

Pn(t, Ti−1)
− 1− δiK)

= Pn(t, Tα)− Pn(t, Tβ)−
β∑

i=α+1

Pn(t, Ti)δ
iK.

The rate K rendering the value of this contract 0 is called the swaprate Sα,β(t). It is

Sα,β(t) =
Pn(t, Tα)− Pn(t, Tβ)∑β

i=α+1 δ
iPn(t, Ti)

=

β∑
i=α+1

wi(t)F
i
n(t), (3.4)

where

wi(t) =
δiPn(t, Ti)∑β

k=α+1 δ
kPn(t, Tk)

.

Remark: Notice that we could choose
∑β

i=α+1 δ
iPn(t, Ti) as a numeraire. This induces a

measure Qα,β
n under which the swaprate must be a martingale (two tradable assets divided

by the numeraire). If one chooses to model swap rates under this measure, this leads to
so-called swap market models. One can show that LMMs and swap market models are
inconsistent, meaning that fixing lognormal LIBOR dynamics doesn’t allow for lognormal
swap rate dynamics and the other way around. Although swap market models allow for
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easy valuation of swaptions (but not of caps and floors), they have not become as popular
as LMMs and nowadays mostly LMMs are used.

Swaptions

A swaption with strike K is a contract allowing one to enter a swap contract with rate K
at time Tα. Hence its value at time Tα is(
Pn(Tα, Tα)− Pn(Tα, Tβ)−

β∑
i=α+1

δiKPn(Tα, Ti)

)
+

= (Sα,β(Tα)−K)+

β∑
i=α+1

δiPn(Tα, Ti),

since we only exercise this option if the value at Tα is positive. Using the change of
numeraire technique (see section A.2) we can price a swaption according to

Swaption(t, α, β,K) = EQ
[

exp

{
−
∫ Tα

t
rn(s) ds

}
(Sα,β(Tα)−K)+

β∑
i=α+1

δiPn(Tα, Ti)

∣∣∣∣F t
]

=

(
β∑

i=α+1

δiPn(t, Ti)

)
EQ

α,β
n [(Sα,β(Tα)−K)+| F t] .

Assuming lognormal dynamics for the swap rate under Qα,β
n the value of this swaption

can be expressed with Black’s formula. More precisely if

dSα,β(t) = Sα,β(t)vα,β dZ(t) ,

where Z is a Qα,β
n -Brownian motion, we get

Swaption(t, α, β,K) =

(
β∑

i=α+1

δiPn(t, Ti)

)
(Sα,β(t)Φ(d+)−KΦ(d−)) , (3.5)

where

d± =
ln
(
Sα,β(t)

K

)
± 1

2
(vα,β)2(Tα − t)

vα,β
√
Tα − t

.

The market again uses this and quotes implied volatilities according to this formula. How-
ever, since we focus on LMMs we want to value swaptions in a LMM setting, which doesn’t
allow for such an easy solution.

Valuation of swaptions in the LMM

There exist several ideas to price swaption in a LMM. A good overview can be found in
Brigo and Mercurio [7]. We present two valuation formulas here, which are both based on
the idea to approximate the LMM equivalent of the implied vola used in Black’s formula
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(3.5). Therefore we are interested in the quantity

(vα,βLMM)2Tα =

∫ Tα

0

( dln(Sα,β(t) )( dln(Sα,β(t) ). (3.6)

1. Rebonato’s formula:

Remember that Sα,β(t) =
∑β

i=α+1 wi(t)F
i
n(t) with

wi(t) =
δiPn(t, Ti)∑β

k=α+1 δ
kPn(t, Tk)

=
δi Pn(t,Ti)
Pn(t,Tα)∑β

k=α+1 δ
k Pn(t,Tk)
Pn(t,Tα)

=
δi
∏i

j=α+1(1 + δjF j
n(t))−1∑β

k=α+1 δ
k
∏k

j=α+1(1 + δjF j
n(t))−1

. (3.7)

The wi(t) are stochastic. We freeze them at their current value and approximate

Sα,β(t) ≈
β∑

i=α+1

wi(0)F i
n(t).

Then

dSα,β(t) ≈ (. . . ) dt +

β∑
i=α+1

wi(0) dF i
n(t)

and

d lnSα,β(t) =
dSα,β(t)

Sα,β(t)
≈ {. . . } dt +

∑β
i=α+1 wi(0) dF i

n(t)

Sα,β(t)

resulting in

(vα,βLMM)2Tα ≈
∫ Tα

0

β∑
i,j=α+1

wi(0)F i
n(t)wj(0)F j

n(t)ρi,jn (t)σin(t)σjn(t) dt

Sα,β(t)2

≈
β∑

i,j=α+1

wi(0)F i
n(0)wj(0)F j

n(0)

Sα,β(0)2

∫ Tα

0

ρi,jn (t)σin(t)σjn(t) dt

where we again froze the forward rates at their current value.

2. Hull & White’s formula:

The difference is that for this formula drifts are frozen at a later point in the derivation,
allowing for a slightly refined version of the above formula. First calculating the stochastic
dynamics of dSα,β and only freezing the forward rates at their current value afterwards to
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calculate the quantity (3.6) leads to

(vα,βLMM)2Tα ≈
β∑

i,j=α+1

wi(0)F i
n(0)wj(0)F j

n(0)

Sα,β(0)2

∫ Tα

0

ρi,jn (t)σin(t)σjn(t) dt ,

where

wj(t) = wj(t) +

β∑
i=α+1

F in(t)
δjwi(t)

1 + δjF jn(t)

( ∑β
k=j δ

k
∏β
l=α+1(1 + δlF ln(t))−1∑β

k=α+1 δ
k
∏β
l=α+1(1 + δlF ln(t))−1

− I {i ≥ j}

)
.

The adjustment of the weights is a correction for the first derivatives of wi coming from
only later freezing the forward rates. Brigo and Mercurio [7] argue that the difference
between those two formulas is quite small. Therefore normally it is sufficient to use the
first formula. This drift freezing procedure works quite well especially in times of low
volatilities and therefore not too widely fluctuating forward rates. In turbulent times this
is not always the case. Also for long-dated maturities these freezing procedures can be
problematic. Therefore it might still be worth the extra effort to calculate those adjusted
weights.

Market data

The market quotes swaption implied volas with maturities (Tα) from 1 to 30 years and
underlying swap lifetimes (Tβ − Tα) of 1 to 30 years. An example matrix of such data can
be found in table 3.4. The underlying swaps are for one year tenors and the strike rates
are ATM - meaning they have a strike equal to the current forward swap rate.

2 3 4 5 6 7 8 9 10 15 20 25
01 0,544 0,483 0,445 0,440 0,423 0,403 0,400 0,399 0,398 0,375 0,381 0,397
02 0,442 0,402 0,376 0,364 0,356 0,351 0,347 0,344 0,342 0,328 0,336 0,348
03 0,372 0,350 0,332 0,323 0,318 0,313 0,310 0,308 0,306 0,295 0,302 0,312
04 0,326 0,312 0,302 0,293 0,289 0,296 0,284 0,282 0,282 0,274 0,280 0,291
05 0,296 0,287 0,289 0,271 0,278 0,275 0,274 0,263 0,264 0,260 0,266 0,276
07 0,261 0,255 0,258 0,241 0,251 0,238 0,239 0,241 0,244 0,243 0,248
10 0,217 0,216 0,216 0,217 0,219 0,221 0,225 0,229 0,233 0,232 0,234
15 0,226 0,230 0,233 0,236 0,241 0,245 0,249 0,253 0,256 0,244
20 0,260 0,261 0,263 0,264 0,267 0,269 0,308 0,310 0,310
25 0,269 0,315 0,314 0,313

Table 3.4.: Implied volatilites of swaption. Rows state the maturity and columns the
underlying swap lifetime.

Source: Bloomberg L.P. (2006), <EUSV>, retreived 29. Sep. 2011

Here we only have ATM swaptions, however like with caps, swaptions smile depending
on the call level. One could use swaption values for different strikes (resulting in fact in
a 3-dimensional grid: maturity, swap lifetime, strike) for calibration, but one would need
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to extend the LMM, e.g. in one of the ways proposed earlier, to be able to correctly fit
data for different strikes. But again since the focus of this work is on pricing inflation
instruments we do not focus on this.

Taking care of the different tenors

As mentioned earlier swaps underlying swaptions are of one-year tenor, while forward
rates of caps are of 6-month tenor. Assuming one is simulating 6-month forwards one
has to calculate the volatility of the one-year forward rates. This is very similar to the
problem with short-term caplets and one could use the same approximations. However, for
calibration purposes using the presented swaption formulas one may adept the derivation
of the swaption formulas to get a more exact result.

Therefore consider the 6-month tenor structure Tn = {0 = T0, T1, . . . ,T2N} which un-
derlying forward structure (denoted F i

n) we want to model. Then we can write the annual
swap rate (3.4) also as

Sα,β(t) =

2β∑
i=2α+1

wi(t)F
i
n(t)

with

wi(t) =
δiPn(t, Ti)∑β

k=α+1(T2k − T2(k−1))Pn(t, T2k)
=

δi
∏i
j=2α+1(1 + δjF jn(t))−1∑β

k=α+1(T2k − T2(k−1))
∏2k
j=2α+1(1 + δjF jn(t))−1

We can then apply the same drift freezing procedures as before and e.g. get in Rebonato’s
case

(vα,βLMM)2Tα ≈
2β∑

i,j=2α+1

wi(0)F i
n(0)wj(0)F j

n(0)

Sα,β(0)2

∫ Tα

0

ρi,jn (t)σin(t)σjn(t) dt . (3.8)

3.2.3. Instantaneous volatility

We have seen that e.g. caplet prices depend on the average volatility of forward rates. To
specify a LMM we need to determine the volatility function, not just its average value. To
do that we impose certain structural characteristics on the volatility functions. We can
use the analysis of section 3.1 for this. One observable characteristic is time homogenity,
meaning that the volatility only depends on the time to maturity (time till expiry) of a
forward rate, mathematically

σkn(t) = σn(Tk − t).

Although this already poses quite a restriction, there are still a lot of ways how to choose the
volatility functions. Two approaches chosen commenly are to either use piecewise constant
functions between the Ti or to impose a parametric shape on the volatility function. We
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resort to the second method. The volatility function we choose is

σn(τ) = (aτ + b)e−cτ + d. (3.9)

This volatility function can describe (next to other shapes) the two shapes most commonly
found in interest rate caplet markets. Representative plots are found in figure 3.14 and we
see that also estimated historical data (see 3.1) is of this type.

(a) Vola Shape in normal times (b) Vola Shape in distress times

Figure 3.14.: Possible forward rate volatility shapes

An economical explanation for those two shapes is as follows. In normal times interest
markets are greatly influenced by central bank decisions. Since central bank policies are
aimed at a medium time horizon, which is a few years, this is the greatest source of
uncertainty. Therefore the volatility is highest for these maturities. Contrary in times
of distress markets become very volatile, which is why then the volatility is highest for
short-dated forward rates, explaining the second type.

Remark: The proposed volatility function is able to capture both cases, but once chosen
it is fixed. It doesn’t allow for changes between the two shapes, therefore a chosen model
does not allow e.g. later times of financial distress after currently quiet markets. Hence
it is not capable of reproducing this aspect of reality, which is one reason why LMMs are
not able to capture the volatility smile while certain extension (e.g. stochastic volatility
extensions) are.

We now explain, how the individual parameters contribute to the shape of the yield
curve.

d: This parameter determines the volatility level when the forward rate is still a long
way from expiry (note that τ is big and the other terms are damped),
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b: This parameter explains the volatility level shortly before expiry (the level then is
b+ d),

a: This parameter influences the height and the direction of the hump in the volatility
structure,

c: This represents the damping of the first term and therefore explains how long the
volatility stays at its long-term level d before volatility typically increases at times
closer to the forward expiry.

With this information we are able to find acceptable starting values for minimization
procedures.

The proposed volatility function has some desirable features. However, having only four
parameters it can be hard to get a reasonably good fit for a lot of market data. Since the
LMM is actually designed to have the same valuation formulas for caps, one would even
like to have an exact fit to this data. One solution to this is to add multiplicative factors
φk to the general volatility function in order to acchieve a perfect fit. Given the parameters
a, b, c, d one can easily calculate the necessary values of φk by solving

(σk)2 =
1

Tk−1

∫ Tk−1

0

σkn(t)2 dt = φ2
k

1

Tk−1

∫ Tk−1

0

((aτ + b)e−cτ + d)2 dτ .

Hence we have to set

φ2
k =

(σk)2

1
Tk−1

∫ Tk−1

0
((aτ + b)e−cτ + d)2 dτ

.

If the resulting parameters φk are close to one, this doesn’t really destroy the motivated
structure of the instantaneous volatility, while still guaranteeing an exact fit. Doing this
we will actually loose cap data as calibration instruments for the parameters a, b, c, d and
we have to imply those parameters from other financial instruments, in our case swaptions.

3.2.4. Correlation structures

To specify an arbitrary N ×N -correlation matrix one has to determine N(N−1)
2

parameters
(a correlation matrix is symmetric with ones in the diagonal). In most cases this number is
too high for calibration purposes. Therefore one wants to reduce the number of parameters
of such a correlation matrix.

Empirical analysis of section 3.1 shows that correlation structures of forward rates typ-
ically have the following two properties.

1. Correlation decreases for forward rates with farther apart maturities.

2. Correlation of forward rates with a fixed difference of maturities increases with larger
maturities (ρi,jn with j − i fixed is increasing in i).
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For computational simplicity we decided to use constant correlation structures in our imple-
mentations. Nevertheless we also present some non-constant correlation parametrizations.
Although computationally more efficient, constant correlations pose a problem if we want
to include the second property above. It is no problem to find a constant correlation
parametrizations having the second property. But assume that we use such a constant
correlation structure. In a LMM we simulate forward rates with fixed maturities. Today
the correlation structure is reasonable for these forward rates. But a few years later this is
different. Now rates who had large maturities at the beginning are closer to maturity and
should have a different correlation structure. But due to constant correlations they still
have the same now too high correlations. Therefore satisfying the second condition might
not be desirable when one wants to use constant correlation matrices.

We now present some possible parametrizations for correlation matrices:

1. Classical two-parameters parametrization:

ρi,jn = ρ∞ + (1− ρ∞) exp {−β|Ti − Tj|} , β ≥ 0, |ρ∞| ≤ 1 (3.10)

This correlation structure satisfies only the first condition. The parameter β determines
how fast correlation between rates with farther apart maturities decreases, while the pa-
rameter ρ∞ determines the minimum correlation between interest rates. Although this
allows for negative correlation (ρ∞ < 0), in general nominal forward rates show positive
correlation.

2. Two-parameters square-root parametrization:

ρi,jn (t) = ρ∞ + (1− ρ∞) exp
{
−β|

√
Ti − t−

√
Tj − t|

}
, β ≥ 0, |ρ∞| ≤ 1 (3.11)

This form is proposed by Rebonato [38]. It satisfies both conditions. However the cor-
relation is time-dependent, resulting in harder to compute integrals. One could substiute
Ti − t by Ti in the square roots therefore resulting in constants, however this would have
the drawback mentioned above.

3.Three-parameters parametrization:

ρi,jn = ρ∞+ (1−ρ∞) exp {−β exp {−αmin{Ti, Tj}} |Ti − Tj|} , α, β ≥ 0, |ρ∞| ≤ 1 (3.12)

This form was also proposed by Rebonato and is another way to satisfy the second con-
dition. The damping factor β is itself damped for larger maturities of the rates. This
introduces a third parameter perhaps allowing for a better fit, but again has the draw-
backs discussed above.

All the now proposed parametrization produce full rank matrices. The rank of the corre-
lation matrix determines the number of driving Brownian motions of a LMM. Therefore all
these parametrizations lead to full rank models. However, it might be desirable to reduce
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Figure 3.15.: Nominal euro yield curve

the number of driving Brownian motions and there exist several approaches how this can
be acchieved. An overview can be found in Brigo and Mercurio [7] or Brigo [6].

3.2.5. Summary and results

We now give a short summary of the calibration of an LMM and also state our used
specifications and data. All data is from Bloomberg L.P., retreived 29. Sep. 2011.

1. Preparing of market data

• Generate a yield curve out of market data (see section 3.1)

We use swap rates and additionally LIBOR rates for the short end of the curve.
The calculated yield curve can be found in figure 3.15.

• Bootstrap implied 6-month ATM caplet volatilities out of cap data

This procedure was described in section 3.2.1. We used cap volatilities of dif-
ferent strikes and maturities (3.4) to bootstrap caplet data, afterwards tenor-
adjusting volatilities for short-dated caplets. The bilinear interpolated ATM
caplet volatilities can be found in figure 3.16.

2. Calibration

• Choose volatility function
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Figure 3.16.: ATM caplet volatilities

We choose our volatility functions to be of the following form:

σkn(t) = φk((a(Tk−1 − t) + b)e−c(Tk−1−t) + d,

φ2
k =

(σk)2

1
Tk−1

∫ Tk−1

0
((aτ + b)e−cτ + d)2 dτ

,

guaranteeing an exact fit to ATM caplet data.

• Specify correlation matrix
We decide to choose our correlation function as

ρi,jn = ρ∞ + (1− ρ∞) exp {−β|Ti − Tj|} ,

since we want to use a constant correlation function.

• Fitting procedure
We use a minimization procedure to fit the values of a, b, c, d, β, ρ∞ under rea-
sonable parameter restrictions. We minimize the sum of quadratic differences
between theoretical swaption prices (3.8) and market prices (table 3.4). Fur-
thermore we introduce a penalty term for φ values which are not close to 1 and
might destroy the desired volatility structure. For this we consider a treshold of
.2 and then sum up the quadratic differences between φi and the area of [0.8, 1.2]
to include this as a penalty. The resulting parameters can be found in table 3.5.
The resulting differences for swaption volatilities are plotted in figure 3.17.
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a b c d β ρ∞
0.044 0.378 0.140 0.056 0.394 0.370

Table 3.5.: Fitted nominal parameters

Figure 3.17.: Errors between calibrated model swaption prices and market swaption prices

3.3. Calibration of a inflation market model

Having calibrated a LMM to nominal data we go ahead to calibrate the inflation part.
Note that out of the calibration of the LMM we are given the nominal volatilities σin and
the correlation matrix ρn. So the parameters we still have to determine are

• the volatility functions of the forward CPIs - σiI(t),

• the correlation of the forward CPIs - (ρi,jI )i,j=1,...,N ,

• the correlation between forward CPIs and forward rates (ρi,jn,I)i=1,...,2N,j=1,...,N .

We again choose correlations to be constant for computational simplicity.

3.3.1. Inflation swap rate data

Euro market data can be found in table 3.6. YYIIS rates are calculated by bloomberg with
a JY kind of model.
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We used the bootstrapping method developed in section 1.3.6 to calculate forward inflation

ZCIIS YYIIS
1 YR 1,396 1,395
2 YR 1,374 1,3826
3 YR 1,466 1,4747
4 YR 1,52 1,5265
5 YR 1,563 1,5686
6 YR 1,616 1,6194
7 YR 1,664 1,66275
8 YR 1,706 1,6985
9 YR 1,745 1,73565

10 YR 1,78 1,7673
12 YR 1,82 1,80365
15 YR 1,884 1,85865
20 YR 1,922 1,89445
25 YR 1,95 1,92025
30 YR 2,028 1,9766

Table 3.6.: Inflation-indexed swap data
Source: Bloomberg L.P. <SWIL>, retreived 29. Sep. 2011

rates and compared them to the rates Yi(t) = Ii(t)
Ii−1(t)

. As mentioned before the difference

between those two rates is very small, in fact most of the time smaller than quoted bid/ask
spreads for IIS rates.

Therefore this data shouldn’t be used for calibration purposes. Remember that those
rates are the only instruments we have reviewed (and which are available in the market),
which would allow a fitting of correlations between nominal and inflation world. Hence we
have to use historical estimates for correlations.

We also saw that the prices of inflation caplets/floorlets depend on this forward inflation
rates. Considering that the differences between Yi and the actual forward inflation are so
small using the rates Yi for the pricing of inflation caplets should not result in too much
distortion. This is actually what practicioners do considering that reasonable YYIIS rates
are hard to come by (note again that the data quoted in 3.6 is also only calculated via
model assumptions and is no market-determined price).

3.3.2. Inflation caplets

Inflation cap data is available, e.g. on bloomberg using <SWIL>. Caps are quoted via
several different methods. One is via implied volatilities, either for a shifted lognormal
model or a normal model. Classical implied volatilities are not meaningful for inflation
caplets, since inflation can be negative, which can’t be accounted for with a lognormal
model. The two formulas are presented in the appendix (section B.4). While the shifted
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lognormal formula is the obvious extension of the Black formula to allow for negative rates,
the normal rate is used, since next to the here presented (shifted lognormal) market models,
there have also been ideas to model inflation via normal dynamics (see e.g. Kenyon [27]).

Denote by ICpl(t, S, T, κ) the price of an inflation caplet for the time [S, T ] with strike
κ. Then under a normal model we have FI(T, S, T )| F t ∼ N(FI(t, S, T ), σ2(T − t)) and by
Lemma B.3 we have

ICpl(t, S, T, κ)

(T − S)Pn(t, T )
= EQTn [(FI(T, S, T )− κ)+| F t]

= (FI(t, S, T )− κ)Φ

(
FI(t, S, T )− κ
σ
√
T − t

)
+ σ
√
T − tφ

(
κ− FI(t, S, T )

σ
√
T − t

)
.

For the shifted lognormal model, where we choose the shift parameter to be −1 (to allow
for inflation as small as −100%), we assume the following forward inflation dynamics using
the QT

n Brownian motion Z

d(1 + (T − S)FI(t, S, T )) = (1 + (T − S)FI(t, S, T ))σ dZ(t) .

We then have that

ln (1 + (T − S)FI(T, S, T )) | F t ∼ N( ln (1 + (T − S)FI(t, S, T ))− 1

2
σ2(T − t), σ2(T − t))

and by B.4.3

ICpl(t, S, T, κ)

Pn(t, T )
= EQTn [((T − S)FI(t, S, T )− (T − S)κ)+| F t]

= (1 + (T − S)FI(t, S, T ))Φ

 ln
(

1+(T−S)FI(t,S,T )
1+(T−S)κ

)
+ σ2(T−t)

2

σ
√
T − t


− (1 + (T − S)κ)Φ

 ln
(

1+(T−S)FI(t,S,T )
1+(KTS)κ

)
− σ2(T−t)

2

σ
√
T − t


The formulas for floors follow directly. Solving those two equations for σ we get the implied
volatilities σNI , σ

SLN
I . Notice that in order to solve for this equations we already need to

know the forward inflation rates (or equivalently YYIIS rates) or approximate them via
Yi(t). This is one reason why most of the time data is also quoted in basispoints (10−5),
which then is the amount of money you have to pay for a caplet with nominal 1 and
therefore a cashflow of (T − S)(FI(T, S, T )−K)+.
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Floor Floor Floor Floor Floor Floor Floor Cap Cap Cap Cap Cap

-0,03 -0,02 -0,015 -0,01 -0,005 0 0,01 0,02 0,03 0,04 0,05 0,06
1 1 2 2 3 5 8 10 20 6 2 1 1
2 8 10 13 16 21 30 67 56 23 12 7 5
3 21 29 35 45 57 71 128 128 68 44 34 28
4 42 54 63 79 97 117 193 206 118 81 65 55
5 69 108 118 131 148 172 261 285 166 120 96 81
6 95 115 132 160 191 221 331 383 239 175 147 129
7 121 198 213 231 255 288 408 472 297 224 187 164
8 149 178 202 242 284 324 463 572 370 279 239 212
9 178 211 239 285 333 377 530 666 437 333 288 257

10 209 324 345 370 403 447 603 748 484 374 318 284
15 340 516 543 555 619 656 858 1152 754 591 509 481
20 451 666 699 708 789 829 1067 1490 981 776 674 643
30 595 894 936 940 1052 1093 1389 2121 1381 1080 933 893

Table 3.7.: Inflation cap/floor data quoted in basis points. Rows represent the matu-
rity, columns the strike level.

Source: Bloomberg L.P. (2006), <EUISC> or <EUISF>, retreived 29. Sep. 2011

Market data and bootstrapping

Market data is available for several different strikes and maturities, example data can be
found in table 3.7. Depending on the strike it is either a cap or a floor beeing quoted.

Similar to interest rate caps we have prices of caps, but for calibration purposes it would
be more convenient to have caplet data. We can derive caplet prices out of cap prices by
taking the differences for caps with maturities differing by one year. Since we do not want
to interpolate prices we use the shifted lognormal formula, where we use the rates Yi(t)
calculated out of ZCIIS rates, to calculate implied volatilities and interpolate those using
B-splines. Using interpolated volatilities we can then calculate cap prices for arbitrary
maturities, subtract them and then calculate shifted lognormal caplet volatilities. Since
the formulas developed in chapter 2 are also of a shifted lognormal type we will later use
those for calibration.

Like interest rate caplet inflation caplets/floorlets also display a volatility smile. There-
fore we again have to apply the bootstrapping procedure for each strike individually and
afterwards interpolate the surface to get ATM volatilities. Results are plotted in figure
3.18.

3.3.3. Forward CPI volatility

We now have to specify a certain structure for the volatilities of forward CPIs. Since we
have not found a clear shape in the historical data we use the very basic assumption of
constant volatilities for each forward CPI. This has the advantage that given correlations
ρi,i−1
I this allows for an exact fit to ATM inflation data by setting V i/Ti in (2.56) equal to
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Figure 3.18.: Inflation caplet/floorlet smile - shifted lognormal volatilities

the market caplet volatility (here denoted by σiI). Then we have

(σiI)± = ρi,i−1
I σi−1

I

Ti−1

Ti
±

√(
Ti−1

Ti
ρi,i−1
I σi−1

I

)2

− Ti−1

Ti
(σi−1

I )2 + (σiI)
2. (3.13)

Only the solution (σiI)+ makes sense, since otherwise we would have a monotonically de-
creasing behaviour.

3.3.4. Correlations

As mentioned earlier there are no market instruments available allowing for a market
calibration of correlations and we have to resort to historical estimation. We use the data
of section 3.1, i.e. the data of the last year (30 Jul. 2010 to 29 Jul. 2011). For the forward
CPI correlation matrix we again fit a parametric correlation structure of the form

ρi,jn = ρ∞ + (1− ρ∞) exp {−β|Ti − Tj|} .
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Minimizing the sum of the quadratic differences we get the parameters of ρ∞ = 0.500, β =
0.107. The estimated and fitted correlations are plotted in figure 3.19.

Figure 3.19.: Fitted forward CPI correlation

The second step is to estimate the correlations between the forward inflation rates and
the forward CPI. As mentioned earlier we choose to represent this by a single constant
correlation. Again fitting to the sum of the quadratic differences we get ρn,I = 0.344 (see
figure 3.20).

Remark: We should make sure that the estimated correlation matrix is positive semidef-
inite. Since the correlation structures resulting from (3.10) are in fact positive definite
as mentioned by Rebonato [38] and we just have an additional constant the resulting full
correlation matrix is also positive definite.

3.3.5. Result of inflation calibration

Having specified the correlation strcuture we can now use (3.13) to exactly fit constant
volatilities to ATM inflation caplet/floorlet data. The results can be found in figure 3.21.
and we have then specified all parameters of the model and can go ahead to use the fitted
model for Monte Carlo pricing.
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Figure 3.20.: Fitted correlation between forward CPIs and forward interest rates

Figure 3.21.: Fitted forward CPI volatilities
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3.4. Monte Carlo pricing

A general introdcution into Monte Carlo methods can be found in Glasserman [14] or Korn
et al. [28]. In this work we only consider a few aspects and the interested reader is reffered
to one of the two books.

3.4.1. Discretization of diffusion processes

The most famous discretization of a SDE is the Euler-Maruyama method. For this consider
a SDE

dX(t) = a(t,X(t)) dt + σ(t,X(t))T dW (t) , X(0) = x0,

where W (t) is a Brownian motion with correlation ρ.
Lets say we want to simulate X(t) until time T . Then choose a time grid 0 = t0, t1, . . . ,

tn = T , possibly with equidistant spacing, meaning 4i = ti+1 − ti = 4, and denote by
X̂(tk) the simulated value of the stochastic process. The Euler-Maruyama scheme then is

X̂(tk+1) = X̂(tk) + a(tk, X̂(tk))4k + σ(t, X̂(tk))
T
√
4k ε,

where ε ∼ N(0, ρ) is a multivariate normal random variable. Setting X̂(t) = X̂(tk), where
k = sup{j : tj ≤ t} one can show that under some regularity assumptions this discretization
has a strong convergence of order 1

2
, which means

E
[

sup
0≤t≤T

|X(t)− X̂(t)|
]
< C4

1
2 ,

where C is a constant and 4 = supk{4k}. In fact under the additional restriction that
σ(t,X(t)) = σ(t), meaning the diffusion term does not depend on X, one can show that
the Euler-Maruyama method coincides with the more sophisticated Milstein method and
has in fact strong convergence of order 1. This will become important for us, since by
using a log transformation of the forward rates the drift is in fact deterministic and we
have convergence of order 1.

In the case of deterministic diffusion coefficients we have another benefit. Notice that∫ tk+1

tk

σ(t)T dW (t) ∼ N

(
0,4k

∫ tk+1

tk

σ(t)Tρ(t)σ(t) dt

)
.

For practical purposes we might acchieve higher accuracy by using

X̂(tk+1) = X̂(tk) + a(tk, X̂(tk))4k + ε,

with

ε ∼ N

(
0,

∫ tk+1

tk

σ(t)Tρ(t)σ(t) dt

)
.
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Application to inflation modelling

Remember the dynamics of forward interest rates and of forward CPIs developed in section
2.3.3 given by

dF i
n(t) = F i

n(t)σin(t)

 dZi
n(t) +

i∑
j=β(t)

ρi,jn (t)σjn(t)
δF j

n(t)

1 + δF j
n(t)

dt

 ,

d I i(t) = I i(t)σiI(t)

 dZi
I(t) +

2i∑
j=β(t)

ρj,in,I(t)σ
j
n(t)

δF j
n(t)

1 + δF j
n(t)

dt

 .

The involved Brownian motions have a constant correlation structure denoted by ρ. The
diffusion coefficient is stochastic, but taking the logarithm by Ito’s lemma we have

d lnF i
n(t) = σin(t)

 dZi
n(t) +

i∑
j=β(t)

ρi,jn (t)σjn(t)
δF j

n(t)

1 + δF j
n(t)

dt − 1

2
σin(t) dt

 ,

d ln I i(t) = σiI(t)

 dZi
I(t) +

2i∑
j=β(t)

ρj,in,I(t)σ
j
n(t)

δF j
n(t)

1 + δF j
n(t)

dt − 1

2
σiI(t) dt

 ,

and simulating these stochastic processes applying the Euler-Maruyama scheme we have
convergence of order 1.

Remark: This kind of simulation gives rise to another problem. The general idea in fi-
nancial models is to generate arbitrage-free models for pricing. While theoretical models
in this work are arbitrage-free, this is not necessarily true for the discretized versions.
Glasserman and Zhao [15] research this problem and propose a solution by instead mod-
elling transformations of the above quantities, which are martingales, therefore generating
discretized models that are also arbitrage-free. However, this transformation results in
stochastic diffusion coefficients and may reduce the quality of numerical simulation.

3.4.2. Monte Carlo standard error and variance reduction methods

We want to use Monte Carlo methods to calculate the risk-free value of stochastic cashflows.
Denoting this cashflow by Π(T ) we therefore want to calculate

EQ
[

exp

{
−
∫ T

0

r(t) dt

}
Π(T )

]
= Pn(0, T )EQTn [Π(T )] = EQdn

[
Π(T )

Bd
n(T )

]
.
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We can estimate this expectation value by simulating S evolutions of interest rates and
inflation rates to calculate

1

S

S∑
j=1

Π(T )j
Bd
n(T )j

.

Notice that we have to simulate under the measure induced by the numeraire we use for
discounting, in this case Bd

n. By the central limit theorem we then know that for S →∞∑S
j=1

(
Π(T )j
Bdn(T )j

− EQdn
[

Π(T )
Bdn(T )

])
√
S VQdn

[
Π(T )
Bdn(T )

] d→ N(0, 1).

It follows that

Qd
n

(∣∣∣∣∣ 1S
S∑
j=1

Π(T )j
Bd
n(T )j

− EQdn
[

Π(T )

Bd
n(T )

]∣∣∣∣∣ < ε

)
≈ P

|N(0, 1)| < ε

√√√√ S

VQdn

[
Π(T )
Bdn(T )

]


= 2Φ

ε√√√√ S

VQdn

[
Π(T )
Bdn(T )

]
− 1.

Using

V̂ =
1

S

S∑
j=1

(
Π(T )j
Bd
n(T )j

−
S∑
j=1

Π(T )j
Bd
n(T )j

)2

as an estimator for VQdn

[
Π(T )
Bdn(T )

]
we can then define approximative confidence intervals for

the mean EQdn
[

Π(T )
Bdn(T )

]
. E.g. the (1− α) confidence interval then is 1

S

S∑
j=1

Π(T )j
Bd
n(T )j

− Φ−1(1− α)

√
V̂
S
,

1

S

S∑
j=1

Π(T )j
Bd
n(T )j

− Φ−1(1− α)

√
V̂
S

 .
In order to generate small confidence intervals one has two options. One is to increase the
number of simulations. However the central limit theorem only has a convergence of order
1
2
, therefore e.g. to improve the accuracy by a factor 10 we have to increase our simulations

by a factor of 100. Since we normally want our valuation procedures to be fast this is only
possible up to a certain point.

The second option is to somehow reduce the variance of the estimated quantity. There
are a lot of suggestions how this can be done. Depending on the application some work well
while other don’t. In this case two ideas seem to work quite well. One is to use antithethic
random variables, the other is to use control variate estimators. A good overview how to
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use those procedures can be found in Korn et al. [28].

3.4.3. Arbitragefree interpolation

A LMM and a market model for inflation only specifies a few discrete forward rates. A
finite number of forward rates (CPIs) doesn’t fully specify the yield curve or all forward
CPI. If one needs rates not directly simulated, interpolation is necessary. Hence for a
specification of a full model one has to specify an interpolation method. One can again
resort to B-spline interpolation or even just use linear interpolation, but this interpolation
methods have the drawback of possibly creating arbitrage possibilities. However, one can
show that there are ways to interpolate simulated rates and still hold on to an arbitrage-free
model.

In Werpachowski [41] the author presents an interpolation method that is arbitrage-free,
consistent (calculated forward rates are fitted exactly) and guarantees positive rates as
long as the simulated rates are positive. Additionally they provide an extension having the
above properties and additionally providing a smooth volatility term structure meaning
that interpolated rates have a volatility of the same order of magnitude as the simulated
ones.

Using the standard notation (see section 2.3.4) the interpolation scheme is defined by

Fn(t, S, Tη(S)) = fSF
η(S)
n (t), where fS :=

Fn(0, S, Tη(S))

F
η(S)
n (0)

, (3.14)

where η(t) = inf{j ∈ 1 . . . , 2N : t ≤ Tj} (not to confuse with β(t) = η(t) + 1). As
mentioned earlier we have also set F i

n(t) = F i
n(Ti−1) for t ≥ Ti−1.

Using this together with the no-arbitrage relationship

(1 + (T − S)Fn(t, S, T )) = (1 + (T ′ − S)Fn(t, S, T ′))(1 + (T − T ′)Fn(t, T ′, T )), (3.15)

we have

1 + (T − Tη(T )−1)Fn(t, Tη(T )−1, T ) =
1 + (Tη(T ) − Tη(T )−1)F

η(T )
n (t)

1 + (Tη(T ) − T )Fn(t, T, Tη(T ))

(3.14)
=

1 + (Tη(T ) − Tη(T )−1)F
η(T )
n (t)

1 + (Tη(T ) − T )fTF
η(T )
n (t)

. (3.16)

Combining (3.14), (3.15) and (3.16) we can then interpolate an arbitrary forward rate by

Fn(t, S, T ) =
1 + (Tη(S) − S)fSF

η(S)
n (t)

1 + (Tη(T ) − T )fTF
η(T )
n (t)

η(T )∏
i=η(S)+1

(1 + δiF i
n(t)), (3.17)

where we use the convention that an empty product equals 1.
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As discussed in Werpachowski [41] this interpolation of the forward rates is in fact
equivalent to an discount factor interpolation. We define discount factors P (t, Ti) as

P (t, Ti) =

{
(1 + (Tη(t) − t)F η(t)

n (t))−1
∏i

j=η(t)+1(1 + δjF j
n(t))−1 t ≤ Ti

(1 + (Tη(t) − t)F η(t)
n (t))−1

∏η(t)
j=i+1(1 + δjF j

n(t)) Ti < t
.

Then the discount factor interpolation reads as

Pn(t, T ) =
(Tη(T ) − T )fT
Tη(T ) − Tη(T )−1

P n(t, Tη(T )−1) +

(
1−

(Tη(T ) − T )fT
Tη(T ) − Tη(T )−1

)
P n(t, Tη(T )), . (3.18)

To extend this interpolation to provide a smooth volatility structure note that some of
the forward rates used in (3.17) may have already been fixed at time t. Therefore they don’t
change anymore resulting in a lower volatility of interpolated rates. To fix this problem
Werpachowski [41] simulate the used rates a little longer (F i

n until Ti instead of Ti−1) and
denote those zombie rates by F̃ i

n(t). For those rates we then have

F̃ i
n(t) =

{
F i
n(t) t ≤ Ti−1

F̃ i
n(t) 6= F i

n(Ti−1) Ti−1 < t < Ti
.

The interpolation scheme then reads as

Fn(t, S, T ) =
1 + (Tη(S) − S)fSF̃

η(S)
n (t)

1 + (Tη(T ) − T )fT F̃
η(T )
n (t)

η(T )∏
i=η(S)+1

(1 + δiF̃ i
n(t)). (3.19)

The simulation of the zombie rates is done using the standard LMM drift and volatility
terms. The only question remaining is how to choose the parameters which are not defined
for t ≥ Ti−1. Werpachowski [41] propose to have a smooth volatility structure it is sufficient
to just flat extrapolate the parameter functions with their last defined value. We also stick
to this approach.

Note that for the discount factor interpolation in (3.18) to use this approach one has to
define the discount factors P n(t, Ti) using the simulated zombie rates instead of the real
ones.

Remark: For the forward CPI we choose to simply linearly interpolate the resulting for-
ward CPI structure. We are well aware that the resulting forward CPIs need not be
arbitrage-free, but considering we have already used procedures like seasonality adjust-
ments this effect seems neglible.
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3.4.4. Remarks on choosing the simulation grid and computational
aspects

We have introduced discretization procedures in section 3.4.1. For practical purposes we
have requirements for choosing the simulation grid. In addition to a small enough step size
for numerical accuracy we want payment dates to be in the simulation grid, so that we are
able to have simulated values at those dates. Additionally we want to have the fixing dates
of the forward rates included in the simulation grid. Therefore it is not always possible
to find a not too small equidistant spacing still including all those dates, which is why we
have to use a non-equidistant time grid. One way to do this is to choose a stepsize and
generate a grid according to this. Afterwards we simply add the dates mentioned above
and choose this as our final simulation grid.

It is sometimes convenient to price several instruments at once to save time and resources.
Since the biggest effort is the calculation of the simulated rates for a large amount of
simulations we might save a lot of computing time by choosing a time grid with only
one day difference, which would allow us to price arbitrary (concerning payment dates)
instruments. However depending on the instrument there might be additional factors to
consider and one maybe has to adjust simulation techniques or even model specifications
itself.

Conclusion

We have calibrated a market model consistently to current market data and introdcued
some aspects of how to use Monte Carlo simulation in this framework. There are still
a lot of ways to extend and improve the involved models, be it with regards to smile
modelling or with the application to special derivatives like multicallable bonds or similar
instruments. However, using this framework we are able to price all except rather exotic
financial derivatives linked to interest rates and inflation, which exist in todays markets.
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A. A few theoretical results

A.1. Ito’s lemma

Theorem A.1 (Ito’s lemma): Let X be a d-dimensional stochastic process given by

dXi(t) = ai(t) dt + σi(t)
T dB(t) ,

where B is a n-dimensional Brownian motion with correlation ρ = (ρi,j)i,j=1,...,n ∈ Rn×n

and ai and σi are sufficiently regular adapted processes to allow for a solution to the SDE.
Let F be a function in C2(Rd,R). Then

dF (X(t)) =
d∑
i=1

∂F

∂xi
(X(t)) dXi(t) +

1

2

d∑
i,j=1

∂2F

∂xi∂xj
(X(t))σi(X(t))Tρσj(X(t)) dt . (A.1)

In the special case d = 2, σi = 0 in all components except i, ρ1,2 = ρ and F (x, y) = xy
this yields

d(X1(t)X2(t)) = X1(t) dX2(t) +X2(t) dX1(t) + ρσ1(t)σ2(t) dt . (A.2)

A.2. Arbitrage free pricing & numeraires

Consider a probability space (Ω,A, P ) with a filtration (F t)0≤t≤T ∗ (all filtration throughout
this work are assumed to be right continuous and P-complete, see e.g. Protter [37]) and
K + 1 traded assets whose price processes are modeled by a K + 1-dimensional adapted
positive semimartingale (St)0≤t≤T ∗ . The asset S0 represents a risk-free bank account and
it’s prices dynamics is

dS0
t = rtS

0
t dt ,

where rt is the instantaneous shortrate. LetQ be an equivalent martingale measure (EMM),
meaning that Q ∼ P and(

Sit
S0
t

)
0≤t≤T ∗

is a Q-martingale for i = 1, . . . K.
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Then Harrison and Pliska [18] show that the model is arbitrage-free and that the price πt
of any attainable (see Brigo and Mercurio [7]) payoff H at T is uniquely given by

πt = EQ
[

exp

{
−
∫ T

t

rs ds

}
H

∣∣∣∣F t] = S0
t E

Q

[
H

S0
T

∣∣∣∣F t] . (A.3)

In the definition of an EMM every price process is divided by S0, which can be interpreted
as expressing it in units of S0. S0 is called a numeraire. Sometimes it is more convenient
to use a different numeraire than the shortrate account S0.

Lemma A.2: Let (Ut
S0
t
)0≤t≤T be a strictly positive Q-martingale. Then there exists a prob-

ability measure Q̃ ∼ Q such that for every Q-martingale (
S1
t

S0
t
)0≤t≤T the process (

S1
t

Ut
)0≤t≤T is

a Q̃-martingal and for every FT -measurable random variable CT

S0
tEQ

[
CT
S0
T

| F t
]

= UtEQ̃
[
CT
UT
| F t
]
.

Furthermore, the Radon-Nikodym derivative defining Q̃ is given by

dQ̃

dQ
=
S0

0

U0

UT
S0
T

. (A.4)

A.3. Fubini’s theorem for stochastic integrals

Theorem A.3: Let X be a semimartinale on (Ω,A, P ) and (E, E , µ) a measurable space ,
where µ is a σ-finite measure. Consider a measurable stochastic process H : R+×Ω×E →
R, such that (∫

E

H(t, ω, e)2µ( de )

) 1
2

is integrable w.r.t. X and for each e He(t) = H(t, ·, e) is a measurable process which is
integrable w.r.t. X. Let Ze(t) =

∫ t
0
He(s) dX(s) also be measurable and cadlag. Then we

have ∫
E

Ze(t)µ( de ) =

∫
E

∫ t

0

He(s) dX(s)µ( de )

exists and is a cadlag version of∫ t

0

∫
E

He(t)µ( de ) dX(s) .

Proof: see Protter [37] p. 207-208

Remark: Note that most assumptions in this theorem are about measurability and inte-
grability. In our work, using only brownian motions this is quite easy to varify and similar
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to the classical Fubini theorem. The interesting assumption is the integrability of(∫
E
H(t, ω, e)2µ( de )

) 1
2

.

While for the classical Fubini theorem one just assumes integrability here we have to
assume square-integrability. One can find counterexamples to show that this square inte-
grability is really necessary.

A.4. Girsanov’s theorem

Girsanov’s theorem for correlated Brownian motion

Theorem A.4: Let (W (t))0≤t≤T be a d-dimensional Brownian motion on a probability
space (Ω,A, P ) with (positive definite) correlation ρ. Define

dQ

dP
= exp

{∫ T

0

H̃(u)Tρ−1 dW (u) − 1

2

∫ T

0

H̃(u)Tρ−1H̃(u) du

}
.

which defines an EMM Q if EP
[

dQ
dP

]
= 1. Then W̃ (t) = W (t)−

∫ t
0
H̃(u) du is a Brownian

motion with correlation ρ under Q.

Proof: Because ρ is positive definite we can write ρ = LLT and B = L−1W is a standard
Brownian motion. By Girsanov’s theorem for Q given by

dQ

dP
= exp

{∫ T

0

H(u)T dB(u) − 1

2

∫ T

0

‖H(u)‖2 du

}
B̃(t) := B(t)−

∫ t
0
H(u) du is a Brownian motion under Q. Therefore

W̃ (t) = LB̃(t) = LB(t)−
∫ t

0

LH(u) du =: W (t)−
∫ t

0

H̃(u) du

is a Brownian motion with correlation ρ under Q. The measure transformation dQ
dP

can be
rewritten in terms of W as

dQ

dP
= exp

{∫ T

0

(L−1LH(u))T dL−1LB(u) − 1

2

∫ T

0

‖L−1LH(u)‖2 du

}
= exp

{∫ T

0

H̃(u)Tρ−1 dW (u) − 1

2

∫ T

0

H̃(u)Tρ−1H̃(u) du

}
.
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Converse Girsanov theorem

Theorem A.5: Let (Bt)0≤t≤T be a Brownian motion on the probability space (Ω,A, P )
and be (F t)0≤t≤T the completed filtration generated by B. Assume there exists a probability
measure Q ∼ P on FT . Let

Zt = E[
dQ

dP
| F t]

be the density process of the measure transformation. Then there exists an adapted process
λ(t) such that

Zt = E
((∫ t

0

λ(s)T dBs

)
0≤t≤T

)
t

,

where E(X)t denotes the exponential process, that means the solution to the SDE

dE(X)t = E(X)t dXt , E(X)0 = 1.

Remarks:

• Since the density process Z is then an exponential process, the classical Girsanov
theorem tell us that Bt −

∫ t
0
λ(s) ds is a Q-Brownian motion.

• This means that under the filtration generated by the Brownian motion every equiv-
alent measure change is obtained by a Girsanov transformation (for arbitrary filtra-
tions this is not the case).

Proof: Applying the martingale representation theorem to the integrable martingal Zt
(see Protter [37] p. 186) tells us that there exists a proces γ(t) such that dZt = γ(t)T dBt .
Setting

λ(t) =
1

Zt
γ(t),

which is possible since Zt > 0 P -a.s. since P ∼ Q. We arrive at

dZt = Zt (λ(t)T dBt ).

Therefore Zt is given by an exponential process as statet in the theorem.

Corollary A.6: If B is a Brownian motion with positive definite correlation structure ρ
the above result holds as well.

Proof: Since ρ is positive definite we can find L(t) so that ρ = L(t)L(t)T . Then W (t) =
L(t)−1B(t) is an uncorrelated brownian motion and the result holds. Then we have

Zt = E
((∫ t

0

λ(s)T dWs

)
0≤t≤T

)
t

= E
((∫ T

0

λ(s)TL(t)−1 dBs

)
0≤t≤T

)
t

and by choosing λ̃(t)T = λ(t)TL−1 we have the result.

99



B. Some useful calculations

B.1. E [Φ(aX + b)]

Lemma B.1: Let X ∼ N(µ, σ2). Then we have that

E [Φ(aX + b)] = Φ

(
aµ+ b√
1 + a2σ2

)
.

Proof: We first prove this for X̃ ∼ N(0, 1).

E
[
Φ(aX̃ + b)

]
=

1

2π

∫
R

∫ ax+b

−∞
e−

x2+y2

2 dy dx

Now using the orthogonal transformation(
x
y

)
=

1√
1 + a2

(
1 −a
a 1

)(
u
v

)
we get

E
[
Φ(aX̃ + b)

]
=

1

2π

∫
R

∫ b√
1+a2

−∞
e−

u2+v2

2 du dv = Φ

(
b√

1 + a2

)
.

For arbitrary X we then have

E [Φ(aX + b)] = E
[
Φ

(
a

(
σ
X − µ
σ

+ µ

)
+ b

)]
= E

[
Φ(aσX̃ + (aµ+ b))

]
= Φ

(
aµ+ b√
1 + a2σ2

)
.

Lemma B.2: Let X ∼ N(µ, σ2). Then we have that

E
[
eXΦ(aX + b)

]
= eµ+ 1

2σ2 Φ

(
a(µ+ 1

σ2 ) + b
√

1 + a2σ2

)
.
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Proof:

E
[
eXΦ(aX + b)

]
=

1

2π

∫
R

ex
∫ ax+b

−∞
e−

y2

2 dy e−
(x−µ)2

2σ2 dx

=
1

2π

∫
R

∫ ax+b

−∞
e−

y2

2 dy exp

{
−(x− (µ+ σ2)2

2σ2

}
eµ+ 1

2
σ2

dx

= eµ+ 1
2
σ2E
[
Φ(aX̃ + b)

]
Lemma B.1

= eµ+ 1
2
σ2

Φ

(
a(µ+ σ2) + b√

1 + a2σ2

)
,

where X̃ ∼ N(µ+ σ2, σ2).

B.2. Convexity adjustments

Consider an exponential process given by the SDE

dX(t) = X(t)
(
D(t) dt + σ(t)T dB(t)

)
,

where D(t) is deterministic. Define

Y (t) := exp

{
−
∫ t

0

D(u) du

}
X(t).

Then
dY (t) = Y (t) σ(t)T dB(t) ,

and we see that Y (t) is a local martingale. We suppose that Yt is in fact a martingale,
which is e.g. guaranteed if σ(t) is deterministic or if the Novikov condition

E
[

exp

{
1

2

∫ T

0

σ(t)2 dt

}]
<∞

is satisfied. This then allows the following calculation

E[X(t)| F s] = E[ exp

{∫ t

0

D(u) du

}
Y (t)| F s] = exp

{∫ t

0

D(u) du

}
E[Y (t)| F s]

= exp

{∫ t

0

D(u) du

}
Y (s) = exp

{∫ t

0

D(u) du

}
exp

{
−
∫ s

0

D(u) du

}
X(s)

= exp

{∫ t

s

D(u) du

}
X(s).

The term exp
{∫ t

s
D(u) du

}
is often referred to as the convexity adjustment.
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B.3. Lognormal distribution of SDEs

Consider a possibly multidimensional SDE of the following form

dX(t) = X(t)
(
µ(t) dt + σ(t)T dB(t)

)
where B(t) is a Brownian motion with correlation structure ρ. Then

d ln(X(t)) = µ(t) dt + σ(t)T dB(t) − 1

2
σ(t)Tρσ(t) dt ,

and for deterministic parameter functions

ln(X(t)) ∼ N

(
ln(X(0)) +D(t)− 1

2
V (t)2, V (t)2

)
,

where

D(t) =

∫ t

0

µ(u) du ,

V (t) =

∫ t

0

σ(u)Tρσ(u) du .

B.4. Valuation of calls/puts in simple models

In this section we value Calls/Put options. Set ω = 1 for a call and ω = −1 for a put.

B.4.1. Valuation in a normal model

Lemma B.3: Consider a random variable X ∼ N(µ, σ2),

E [(ω(X −K))+] = ω(µ−K)Φ

(
ω
K − µ
σ

)
+ ωσφ

(
ω
K − µ
σ

)
Proof: Using Z ∼ N(0, 1) we have

E [(X −K)+] = E [(µ+ σZ −K)+] =

∫ ∞
K−µ
σ

(µ+ σz −K)φ(z) dz

= (µ−K)

(
Φ(∞)− Φ

(
K − µ
σ

))
+ σ

∫ ∞
K−µ
σ

z
1√
2π

e−
z2

2 dz

= (µ−K)Φ

(
µ−K
σ

)
+ σφ

(
K − µ
σ

)
.

For a put this follows in the same way.

102



B.4.2. Valuation in a lognormal model

Lemma B.4: Consider a lognormally distributed random variable X such that ln(X) ∼
N(µ, σ2). Then

E [(ω(X −K))+] = ωeµ+σ2

2 Φ

(
ω
µ− ln (K) + σ2

σ

)
− ωKΦ

(
ω
µ− ln (K)

σ

)
.

Proof:

E [(ω(X −K))+] = E
[
(ω( exp

{
σ

ln (X)− µ
σ

+ µ

}
−K))+

]
=

∫ ∞
−∞

(ω( exp {σz + µ} −K))+
1√
2π

e−
z2

2 dz

=

∫ ω∞

ln(K)−µ
σ

(ω( exp {σz + µ} −K))
1√
2π

e−
z2

2 dz

= eµ+σ2

2

∫ ω∞

ln(K)−µ
σ

1√
2π

e−
(z−σ)2

2 dz −K
∫ ω∞

ln(K)−µ
σ

1√
2π

e−
z2

2 dz

= eµ+σ2

2

∫ ω∞

ln(K)−µ
σ

+σ

1√
2π

e−
u2

2 du −K
(

Φ(ω∞)− Φ

(
ln (K)− µ

σ

))
= eµ+σ2

2 ωΦ

(
−ω ln (K)− µ+ σ2

σ

)
−KΦ

(
−ω ln (K)− µ

σ

)
.

B.4.3. Valuation in a shifted lognormal model

Lemma B.5: Consider a random variable Y = X + c where ln (X) ∼ N(µ, σ2). Then

E [ω(Y −K)+] =E [ω(X − (K − c))+]

B.4
=ωeµ+σ2

2 Φ

(
ω
µ− ln (K − c) + σ2

σ

)
− ω(K − c)Φ

(
ω
µ− ln (K − c)

σ

)
,

Remark: The parameter c is referred to as the shift parameter. Quite often one uses
c = −1, since the random variable then assume values in (−1,∞). In financial markets
one often observes returns (or in our case inflation rates) and by modelling these with a
shifted lognormal random variable the possible values range from total loss (-100 %) to
infinite earings (∞).
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