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Abstract

A popular conjecture, which goes back to a problem raised by Lovász, states that every
finite connected Cayley graph with at least three vertices contains a Hamilton cycle.
Although this statement can not be claimed valid for all infinite graphs, it probably is for
some classes of them.

This thesis deals with the planar cubic Cayley graphs classified by their connectivity and
number of ends.

We provide a characterization of the Hamiltonian planar cubic Cayley graphs of connec-
tivity one or two. It turns out that there is a class of two-connected planar cubic Cayley
graphs with infinitely many ends which are nonhamiltonian. These graphs might provide
counterexamples to a problem presented by Georgakopoulos.

The finite or one-ended planar cubic Cayley graphs are the well-known regular spherical,
Euclidean or hyperbolic tessellations or the rotation subgroups of their symmetry groups.
All of them are shown to be Hamiltonian.

We prove that all two-ended three-connected cubic planar Cayley graphs with two gen-
erators have a Hamilton circle. Applying the twist-amalgamation or the twist-squeeze-
amalgamation introduced by Mohar and Georgakopoulos respectively to finite or one-
ended graphs, graphs with two or infinitely many ends are obtained. We show that all
graphs which are constructed as a twist-amalgamation are Hamiltonian. Some special
classes of graphs constructed as twist-squeeze-amalgamation are proved to be Hamilto-
nian.

Keywords Hamilton circle, Cayley graph, infinite graph, twist-squeeze-amalgamation,
twist-amalgamation, Lovász problem, tessellation, symmetry group.

Contact Walter Hochfellner, walter.hochfellner@gmail.com
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Kurzfassung

Eine berühmte Vermutung, die auf ein von Lovász aufgeworfenes Problem zurückgeht,
besagt, dass jeder endliche, zusammenhängende Cayley-Graph mit mindestens drei Kno-
ten einen hamiltonschen Kreis besitzt. Obwohl diese Aussage nicht für alle unendlichen
Graphen zutrifft, dürfte sie für einige Klassen von unendlichen Graphen gelten.

Diese Masterarbeit behandelt planare kubische Cayley-Graphen getrennt nach ihrer Zu-
sammenhangszahl und Anzahl der Enden.

Wir geben eine Charakterisierung der hamiltonschen kubischen planaren Cayley-Graphen
mit Zusammenhangszahl Eins oder Zwei an. Es stellt sich heraus, dass eine Klasse von
zwei-zusammenhängenden planaren kubischen Cayley-Graphen mit unendlich vielen En-
den existiert, die nicht hamiltonsch sind. Diese Graphen könnten Gegenbeispiele zu einem
von Georgakopoulos vorgelegten Problem liefern.

Die planaren kubischen Cayley-Graphen mit höchstens einem Ende sind die wohlbekann-
ten sphärischen, euklidschen oder hyperbolischen Parkettierungen oder die Drehungs-
Untergruppen ihrer Symmetriegruppen. Für alle von ihnen wird gezeigt, dass sie nicht
hamiltonsch sind.

Wir beweisen, dass alle zweiendigen, dreizusammenhängenden kubischen planaren Cayley-
Graphen mit zwei Erzeugern einen hamiltonschen Kreis haben. Indem man die von Mohar
bzw. Georgakopoulos eingeführte Twist-Amalgamation oder Twist-Squeeze-Amalgamation
auf endliche Graphen oder Graphen mit einem Ende anwendet, erhält man Graphen
mit zwei oder unendlich vielen Enden. Wir zeigen, dass alle Graphen, die als Twist-
Amalgamation gebildet werden, hamiltonsch sind. Für einige spezielle Klassen von Gra-
phen, die als Twist-Squeeze-Amalgamation konstruiert werden, wird nachgewiesen, dass
sie hamiltonsch sind.

Stichwörter Hamilton-Kreis, Cayley-Graph, Unendlicher Graph, Twist-Amalgamation,
Twist-Squeeze-Amalgamation, Lovász-Problem, Parkettierung, Symmetriegruppe.

Kontakt Walter Hochfellner, walter.hochfellner@gmail.com
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CHAPTER 1

Introduction

Cayley graphs are a very common method to display the structure of a group. There are
different variants including colored or uncolored, directed or undirected versions of such
graphs. In the present thesis, we study the uncolored, undirected Cayley graphs. More
precisely, the cubic planar Cayley graphs are considered. Cubic means that the graphs
are regular of degree 3.

The cubic planar Cayley graphs have been characterized by Georgakopoulos [Geo11b,
Geo11a]. There are finite graphs (graphs with finitely many vertices) and infinite graphs
among them. The infinite graphs can be classified by their number of ends. Ends are
equivalence classes of rays in the graph and can be imagined as directions where the graph
extends to infinity. There are infinite graphs with one, two or infinitely many ends.

In finite graphs, a Hamilton cycle is a closed walk that visits every vertex exactly once.
The notion of a Hamilton circle is the generalization of a Hamilton cycle to infinite graphs.

1.1. Motivation

The studied finite or one-ended graphs are regular tessellations of the sphere or the Eu-
clidean or hyperbolic plane or Cayley graphs of rotation subgroups (see chapter 4 for
details). Many of the famous artistic woodcuts and lithographs by M.C. Escher (1898–
1972) include repeating patterns in the Euclidean or hyperbolic plane, which are based on
regular or semi-regular tessellations. See [EBL82] for M.C. Escher’s artistic work.

When generating Escher-like repeated patterns using a computer, it is desired to find a
path through the underlying Cayley graph that visits every vertex exactly one time. If
this path is a ray, it forms a one-way infinite Hamilton path. If the spanning path is

1



1. Introduction

a double-ray, it forms a two-way-infinite Hamilton circle. Dunham [Dun09, dSJ03] uses
Hamilton paths in infinite Cayley graphs to render patterns originally designed by M.C.
Escher. Figure 1.1 shows M.C. Escher’s Circle limit I [EBL82, p. 319] and a Hamilton
path in the corresponding Cayley graph [dSJ03, p. 453]. This path has been used in
Dunham’s construction to draw the Circle limit I on a computer.

(a) Circle limit I by M.C. Escher (b) A Hamilton path in the corresponding graph.

Figure 1.1.: Dunham’s construction of repeating patterns.

A very popular conjecture, which goes back to a problem introduced in 1969 by Lovász, is
that every finite connected Cayley graph with at least 3 vertices contains a Hamilton cycle.
Many special classes of Cayley graphs, for example graphs of groups of prime-power order
or Abelian groups, are known to be Hamiltonian and hence support the Lovász-conjecture.

The conjecture can not be simply transferred to infinite graphs, since there are many
nonhamiltonian infinite Cayley graphs, for instance the graph of the free group on two
generators, depicted in figure 2.3. However, it seems probable that it is also true for some
classes of infinite Cayley graphs. Georgakopoulos conjectures that every finitely generated
3-connected planar Cayley graph is Hamiltonian (conjecture 2.7.6).

1.2. Overview

In chapter 2 we provide the definitions and background concerning Cayley graphs and
Hamilton circles. Cayley color digraphs and Cayley graphs are discussed in sections 2.3
and 2.4. Sabidussi’s theorem 2.4.3 offers a characterization of Cayley graphs. Since groups
are mostly defined in this thesis and in the related work by group presentations, we briefly
introduce free groups and presentations in section 2.1. Products, extensions and amal-
gamations make it possible to construct overgroups of given groups (section 2.2). These
operations allow to characterize multi-ended groups and decompose them in finitely many

2



1.3. Basic ideas

steps into finite or one-ended groups (theorem 2.6.2). In a similar way, many of the multi-
ended cubic planar Cayley graphs can be constructed as twist-amalgamation or as twist-
squeeze-amalgamation of a finite or one-ended cubic planar Cayley graph (section 2.6).
We cover the specifics of infinite graphs and related concepts such ends, topological end
space, circles in section 2.5. The classes of Cayley graphs which are already known to
have Hamilton circles are described in section 2.7.

The planar cubic Cayley graphs of connectivity 1 are nonhamiltonian (chapter 3). We
give a characterization of the Hamiltonian cubic Cayley graphs of connectivity 2 (theo-
rem 3.0.6). Of the eight different types of 2-connected graphs, only one contains non-
hamiltonian graphs.

The finite or one-ended graphs are considered in chapter 4. All of them are tessellations
or Cayley graphs of rotation subgroups (section 4.1). We prove that every finite or one-
ended planar cubic Cayley graph is Hamiltonian. Moreover, the studied finite or one-ended
graphs are used to obtain two-ended or infinitely-ended graphs by twist-amalgamation or
twist-squeeze-amalgamation.

The multi-ended graphs of connectivity 3 are treated in chapter 5. In section 5.1 we show,
that all 2-ended 3-connected cubic planar Cayley graphs with 2 generators have a Hamil-
ton circle. We prove that all graphs obtained by twist-amalgamation are Hamiltonian
(section 5.2). The twist-squeeze-amalgamation is more difficult to handle. Some classes of
graphs constructed as twist-squeeze-amalgamation are proved to be Hamiltonian. We use
both finite and one-ended graphs for this amalgamation operation. However, the transi-
tions applied in the corresponding proofs are rather complicated and can not simply be
transferred to all types of twist-squeeze-amalgamations. Therefore we can not offer a final
solution for all of the considered graphs.

Appendix B contains a list of graphs that are discussed in this master’s thesis.

1.3. Basic ideas

The finite or one-ended cubic planar Cayley graphs are (spherical, Euclidean or hyperbolic)
tessellations or graphs of rotation subgroups. For these graphs we can rely on many facts
already known. Thus, we are able to prove that all of them are Hamiltonian.

Among the multi-ended graphs, two classes are of special interest: those which can be
expressed as twist-amalgamation or as twist-squeeze-amalgamation of a finite or one-ended
graph.

To obtain the twist-squeeze-amalgamation of a cubic graph H, a copy of H is embedded
inside every monochromatic face of H and the copies are glued along the cycle bounding
the face. The glueing is done in a special way: One of the sides of the cycle is rotated so
that the edges incident with that cycle on either side do not have any common endvertex.
The embedding and glueing operations are repeated recursively for the new monochromatic
faces (see figure 1.2 and figure 2.5). The rotation assures that the resulting graphs are
cubic.

3



1. Introduction

(a) A finite cubic Cayley graph H. (b) First twist-graph. (c) Twist-amalgamation.

Figure 1.2.: A Hamilton circle in the twist-amalgamation of a finite Cayley graph H.

Starting with a Hamilton circle D in the finite or one-ended graph H (dashed line in
figure 1.2(a)), we try to find a transition that transforms D into a Hamilton circle of
the first twist-graph which embeds a copy of H in every monochromatic cycle of H (fig-
ure 1.2(b)). If this is done carefully enough, repeated application of this transition will
lead to a Hamilton circle in the twist-amalgamation of H (figure 1.2(c)).

When the monochromatic cycles of H are triangles, the desired transition is easy to find.
Consider a monochromatic triangle C of H, as outlined in figure 1.3(a) (the Hamilton
circle is black and dashed or dotted in this figure). We embed H inside C and glue the
graphs along C as described before. Figure 1.3(b) shows a Hamilton circle D′ of the newly
created graph. D′ uses the same type of edges in the same order inside and outside of
C (the path P appears twice in the figure). This transition has to be repeated for all
monochromatic triangles of H. An example of this construction is presented in figure 1.2.
See section 5.2 for details.

P

(a) The Hamilton circle D.

P

P

(b) The Hamilton circle D′ after
embedding H in the blue triangle.

Figure 1.3.: The transition if the monochromatic cycles are triangles.

In other cases, it is slightly more difficult to find suitable transitions. If H has a monochro-
matic cycle C of size ≥ 4, there may be two (finite or infinite) disjoint paths P and Q
connecting different pairs of vertices of C. A solution for some configurations containing
two such paths is depicted in figure 5.4.

4



1.3. Basic ideas

However, often it is not enough to take an arbitrary Hamilton circle D of H and find a
suitable transition for the monochromatic cycles where the embedded graphs are glued.
Instead we need appropriate Hamilton circles in the base graph H and compatible pairs
of monochromatic cycles which are merged. This results in different types of monochro-
matic cycles that are incident with the Hamilton circle. For each type we need a correct
transition.

It is not very difficult to prove that repeated application of the aforementioned transitions
leads to a connected infinite subgraph D of the twist-amalgamation of H that meets all
vertices exactly twice. Furthermore, every vertex of D has degree 2. Nevertheless, it is
not obvious that D is a circle, since it is not clear that every end has degree 2. Indeed,
the literature [Geo09] shows that the hardest part about the quest for Hamilton circles is
by far guaranteeing injectivity at the ends.

Consider for example G = Cay
〈
a, b | b2, a10, (a2b)3

〉
, which is the twist-amalgamation

of H = Cay
〈
a, b | b2, a5, (ab)3

〉
. H is shown in figure 1.4(a) with its Hamilton cycle D

dashed.

(a) H = Cay
〈
a, b | b2, a5, (ab)3

〉
.

P

(b) 5-cycle type 1.

P

Q

(c) 5-cycle type 2.

Figure 1.4.: A Hamilton cycle in H = Cay
〈
a, b | b2, a5, (ab)3

〉
.

Note thatH contains two different types of 5-cycles with respect toD. When we try to find
a method to transform D into a Hamilton cycle of the first twist-graph of H, the approach
shown in figure 1.5 might be the first solution. Every 5-cycle of type 1 (figure 1.4(b)) is
treated analogously to the triangles in our aforesaid example: The new Hamilton cycle D′

uses the same type of edges inside and outside of the 5-cycle (figure 1.5(a)). The 5-cycles
of type 2 (figure 1.5(a)) are handled according to figure 1.5(a). These transitions have to
be applied to all 5-cycles of H.

Repeated use of the described procedure leads to some problems in the limit graph. Let C
be a 5-cycle of type 2 in H. After applying the transition, there are ten vertices incident
to C. Let p1, p2, q1, q2 be vertices on C, so that p1Pp2 and q1Qq2 are subpaths of the
Hamilton cycle. Taking into account the chosen Hamilton cycle D of H, it follows from
the construction that there exists a (type 2) 5-cycle C1 of the first twist-graph of H that

5



1. Introduction

P

P

(a) Type 1.

P

Q

P

Q

(b) Type 2.

Figure 1.5.: A transition for the 5-cycles of H.

is incident with both P and Q. After applying the transition to C1 (and all other 5-cycles
of the first twist-graph of H), there are two subpaths p1P ′p2 and q1Q′q2 of the Hamilton
cycle, so that a (type 2) 5-cycle C2 of the second twist-graph of H is incident with both
P ′ and Q′. After k steps of this construction, we obtain a Hamilton circle Dk of the k-th
twist-graph of H and two subpaths p1P (k)p2 and q1Q

(k)q2 of Dk. Both paths P (k) and
Q(k) are incident with a (type 2) 5- cycle Ck. In the limit graph, the considered loops P (k)

and Q(k) converge to a common end ω. Hence, D∞ contains an end with degree ≥ 4.

The result of our first approach is not a Hamilton circle in the twist-amalgamation of H.
Fortunately, there is a possibility to repair it. In general, we can try

• to use different Hamilton cycles in the base graph H, or

• to modify the transitions.

In this example, the second method—modification of the second transition—is successful.
The solution can be found in figure 5.6. When considering the twist-amalgamation of
H = Cay

〈
a, b | b2, a4, (ab)4

〉
the same problem (ends with degree ≥ 4) occurs. In this

case, using a different Hamilton circle provides a solution (see figure 5.5).

The twist-squeeze-amalgamation is constructed similarly to the twist-amalgamation. This
time, a copy of H is embedded inside every alternately-colored face of H and the copies
are glued along the cycle bounding the face. However, this glueing operation includes
subdivision of edges as displayed in figure 1.6.

The first approach to find a Hamilton circle in the twist-squeeze-amalgamation is similar
to the above construction in twist-amalgamations. Starting with a Hamilton circle in the
basic graphH we distinguish different types of alternately-colored cycles C inH depending
on how the Hamilton circle runs through C. For each type we find a suitable transition
which allows us to preserve the Hamilton circle when we embed a copy of H inside C and
glue the graphs as required.

As an example, consider the cubic Cayley graph H in figure 1.7, which has three differ-
ent types of alternately-colored cycles with respect to the dashed Hamilton cycle shown.
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1.3. Basic ideas

(a) A finite cubic Cayley graph H. (b) First twist-squeeze-graph. (c) Twist-squeeze-amalgamation.

Figure 1.6.: The twist-squeeze-amalgamation of a finite Cayley graph H.

Figure 1.7(b) depicts a cycle of type 1 before applying the transition and figure 1.7(c) the
same cycle after applying the transition.

1

1

2 3

(a) A finite cubic Cayley
graph H.

1

P

(b) Cycle C before
transition.

P

3 1 2

(c) Cycle C after tran-
sition.

Figure 1.7.: A possible transition for twist-squeeze-graphs.

Together with suitable transitions for the other types this leads to a Hamilton circle in
the twist-squeeze-amalgamation of H. As before, the most difficult task is to prove that
every end has degree 2 in the resulting subgraph.

For the graph which is shown in figure 1.6 and some other twist-squeeze-amalgamations we
use a slightly different method to obtain a Hamilton circle. Starting with an alternately-
colored 4-cycle, in which a copy of H is embedded, we choose a path through the graph
and save this configuration as a module M1. We embed these two modules into the
alternately-colored 4-cycles of M1 to obtain a new module M2 and so forth. Glueing three
copies of the module Mk along the alternately-colored 4-cycles of H leads to a Hamilton
circle in the k-th twist-squeeze-graph. As the limit graph we get a Hamilton circle in the
twist-squeeze-amalgamation of H. The construction is depicted in figure 5.11. Hamilton
circles in twist-squeeze-amalgamation are discussed in detail in section 5.3.

The method of composing Hamilton cirlces in the basis graphs into a Hamilton cirlce in
the twist-amalgamation was proposed by Bojan Mohar (private communication), and we
are grateful to him for this idea.

7





CHAPTER 2

Definitions and Facts

In 1878, Arthur Cayley was the first to use colored digraphs (which he called diagrams) to
graphically represent finite groups [Cay78]. Today, Cayley graphs are a widely used tool
in geometric, algebraic and combinatorial group theory. The studied groups are in many
cases defined by presentations using generators and relations. For an overview of the basic
concepts, see [MKS66, chapter 1] or [LS77].

2.1. Free groups and group presentations

Definition 2.1.1. Let F be a group and X a subset of F . F is called free with basis
X or free on X if for every group G and every function φ : X → G there is a unique
homomorphism ψ : F → G extending φ such that the diagram in figure 2.1 commutes (ι is
the embedding of X into F ).

X F

G

ι

φ
ψ

Figure 2.1.: Definition of free groups.

Definition 2.1.2. Let F be a group with identity element e and X ⊆ F . A sequence
w = (vα1

1 , vα2
2 , vα3

3 , . . .) with vi ∈ X and αi ∈ {−1, 0, 1} for all i is called a word in X. The
constant sequence (e, e, e, . . .) is the empty word, denoted by ε.
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2. Definitions and Facts

If for some index n, vi = e for all i > n, then w is considered as a final word. The smallest
index, that satisfies this condition is called the length of w denoted by |w|. The empty
word is set to have length 0.

For a nonempty final word w in X of length n > 0 the spelling of w is an alternative
notation of the form

w = vα1
1 vα2

2 vα3
3 . . . vαn

n .

A final word w is reduced, if it satisfies one of the following two conditions:

• |w| ≤ 1,

• |w| = n, w = vα1
1 vα2

2 vα3
3 . . . vαn

n and vαi
i 6= v

−αi+1

i+1 and for all 1 ≤ i ≤ n − 1 it holds
that αi ∈ {−1, 1}.

The inverse word of w = vα1
1 vα2

2 . . . vαn
n is w−1 = v−αn

n . . . v−α2
2 v−α1

1

Theorem 2.1.3. Let X be a set. Then a free group F with basis X exists.

For a proof, see [Rot94, Theorem 11.1]. The free group F on X is constructed as follows.
The elements of F are defined by the reduced words in X. The product in F is the
concatenation of words, the identity element is the empty word and the inverse elements
are the inverse words.

Theorem 2.1.4. Every group G is a quotient of a free group.

Proof. Let X = {xg | g ∈ G}. Then φ : X → G, xg 7→ g is a bijection. According to
theorem 2.1.3 a free group F with basis X exists. Let ψ : F → G be a homomorphism
extending φ. Because ψ is surjective, G ∼= F/ kerψ by the first isomorphism theorem. �

By finding generators of kerψ, the presentation of G is obtained.

Definition 2.1.5. Let X be a set and F a free group with basis X. Furthermore, let W
be a family of words in X and R the normal subgroup of F which is generated by W . If
G ∼= F/R, then the ordered pair 〈X |W 〉 is called a presentation of G. X is called the set
of generators and W the set of relations.

Corollary 2.1.6 (Theorem 2.1.4). Every group G has a presentation.

Remarks.

• The relations W are sometimes written as equations rather than words (for example
w = 1 instead of w or u = v instead of uv−1).

• Every finite group G has a finite presentation.

Example 2.1.7. The free group F2 on two generators has the presentation 〈a, b | ∅〉.

Example 2.1.8. For n ∈ N the cyclic group Zn has the presentation 〈a | an〉.

Example 2.1.9. The dihedral group D5 has the presentation 〈a, b | a5, b2, abab〉.
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2.2. Products and extensions

2.2. Products and extensions

Let G = 〈XG |WG〉 and H = 〈XH |WH〉 be groups. Then the direct product

G×H = {(g, h) | g ∈ G, h ∈ H}

with multiplication
(g1, h1) · (g2, h2) = (g1g2, h1h2)

has the presentation

G×H = 〈XG ∪XH |WG ∪WH ∪W 〉,

where W =
{
aba−1b−1 | a ∈ G, b ∈ H

}
.

Definition 2.2.1. Consider two groups G = 〈XG |WG〉 and H = 〈XH |WH〉. Then the
group

G ∗H = 〈XG ∪XH |WG ∪WH〉

is called the free product of G and H.

Remarks.

• Both G and H are subgroups of G ∗H.

• If G and H are non-trivial groups, then |G ∗H| =∞.

Another way to construct groups is by amalgamating a common subgroup F in G and
H (Definition 2.2.2) or embed a group G in a new group H, such that two isomorphic
copies of subgroups A,B of G are conjugate in H (Definition 2.2.3). See [Ser77] or the
translation [Ser80] for details about these constructions.

Definition 2.2.2. Let F be a group and G = 〈XG |WG〉 and H = 〈XH |WH〉 groups
containing an isomorphic copy of F . ιG : F ↪→ G and ιH : F ↪→ H are the monomorphisms
embedding F into G and H respectively. Let

WF =
{
ιG(a)ιH(a)−1 | a ∈ F

}
.

Then the group

G ∗F H = 〈XG ∪XH |WG ∪WH ∪WF 〉

is called the free product of G and H with amalgamated subgroup F .

Remark. The free product G∗H is a special case of the free product with amalgamation
G ∗F H with trivial group F .

Another construction was given by Higman, Neumann and Neumann [HNN49].
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2. Definitions and Facts

Definition 2.2.3. Let G = 〈X |W 〉 be a group with two subgroups A and B isomorphic
by a mapping φ : A→ B. Choose

U = {t−1atφ(a)−1 | a ∈ A}.

Then the group

G∗φ = 〈X ∪ {t} |W ∪ u〉

is called the HNN-extension of G relative to φ. t is called the stable letter and A,B the
associated subgroups.

2.3. Cayley color digraphs

The term Cayley graph is not always defined in the same way. It is used for directed or
ordinary graphs, for labelled or colored or none of both. In the present work Cayley color
digraph stands for a colored digraph, Cayley digraph for an uncolored digraph and Cayley
graph for the underlying ordinary graph.

Definition 2.3.1. Let G be a group with identity element e. Let S be a finite subset
of the elements of G, such that e /∈ S. The Cayley color digraph—also known as Cayley
color diagram—Γ(G,S) of G with connection set S is defined as the arc-colored, directed
graph, such that

• for each s ∈ S there is a unique color cs,

• Γ(G,S) has |G| vertices which are identified with the elements of G,

• there is an cs-colored arc from g to h if and only if h = gs for some s ∈ S.

Remark (Bidirected-arc convention). If two vertices are joined by a pair of arcs (one
arc in each direction), the pair of arcs can be replaced by an undirected edge. This is the
case, if some s ∈ S is an involution, i.e. s = s−1.

Remarks.

• Depending on the chosen set S of generators, there may be different Cayley color
digraphs derived from the same group G.

• If 〈S |W 〉 is a presentation of G, the Cayley color digraph Γ(G,S) can be written
as Γ 〈S |W 〉.
• The underlying uncolored digraph of a Cayley color digraph is called Cayley digraph.

Example 2.3.2 (continued from example 2.1.9). The Cayley color digraph, Cayley
digraph and Cayley graph of the dihedral group D5 are shown in figure 2.2.

Example 2.3.3 (continued from example 2.1.7). The Cayley color digraph of the
free group F2 on two generators a (blue) and b (red) is shown in figure 2.3. Because
it is an infinite graph, the figure is limited to words of a maximum length of 7.
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2.3. Cayley color digraphs

e

a4

a3 a2

a

b

ab

a2ba3b

a4b

(a) Cayley color digraph of D5

e

a4

a3 a2

a

b

ab

a2ba3b

a4b

(b) Cayley digraph of D5.

e

a4

a3 a2

a

b

ab

a2ba3b

a4b

(c) Cayley graph of D5.

Figure 2.2.: Graphs of the dihedral group D5.

Proposition 2.3.4. Let G be a finite group and S a subset of G satisfying e /∈ S. Then
Γ(G,S) is weakly connected if and only if S generates G.

Proof. Assume that G is generated by S. For an arbitrarily chosen g ∈ G let

g = sm1
1 sm2

2 sm3
3 · · · smk

k , k ∈ N and for all 1 ≤ i ≤ k : mi ∈ {−1, 1}, si ∈ S.

be its expression by generators in S.

Then there is a sequence

a1 = (e = v0, v1), a2 = (v1, v2), a3 = (v2, v3), . . . , an = (vn−1, g = vn),

such that for all 1 ≤ i ≤ k

• ai is an csi-colored arc of Γ(G,S) if and only if mi = 1,

• ai = (vi, vi−1) is an csi-colored arc of Γ(G,S) if and only if mi = −1.

Hence, there is a path from e to g in the undirected version of Γ(G,S). Since this condition
holds for arbitrarily chosen g ∈ G, it follows that Γ(G,S) is weakly connected.

To prove the converse direction, assume that Γ(G,S) is weakly connected. Then for every
g ∈ G there is a path from e to g in the undirected version of Γ(G,S). Thus, a sequence

a1 = (e = v0, v1), a2 = (v1, v2), a3 = (v2, v3), . . . , an = (vn−1, g = vn)

as before exists. From this sequence the equation

g = sm1
1 sm2

2 sm3
3 · · · smk

k , k ∈ N and for all 1 ≤ i ≤ k : mi ∈ {−1, 1}, si ∈ S

is obtained. Since this works for every g ∈ G, it follows that S generates G.

This condition means that Γ(G,S) is weakly connected. �
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2. Definitions and Facts

Figure 2.3.: Cayley color digraph of the free group F2 on two generators.

An automorphism of a graph H is a permutation σ : V (H) → V (H) that preserves the
structure of H. This is, for a colored directed graph directed adjacency with respect to
the labels. For a Cayley color digraph Γ(G,S), this implies that a permutation

σ : V (Γ(G,S))→ V (Γ(G,S))

is an automorphism, if and only if for all g, h ∈ G, s ∈ S,

gs = h⇔ σ(g)s = σ(h)

holds.

In other words, σ is a Cayley color digraph automorphism, iff for all g ∈ G, s ∈ S,

σ(gs) = σ(g)s (2.1)

14



2.3. Cayley color digraphs

holds. Equivalently, σ is a Cayley color digraph automorphism, if and only if for all
g ∈ G, s ∈ S,

σ(gs−1) = σ(g)s−1. (2.2)

The set of automorphisms of H together with composition, forms the automorphism group
which is written as Aut(H).

If S is a generating set ofG, the Cayley color digraph Γ(G,S) fully describes the underlying
group G, as the following theorem states.

Theorem 2.3.5. Let Γ(G,S) be a Cayley color digraph on a group G with identity ele-
ment e and generating set S. Then

Aut(Γ(G,S)) ∼= G

holds independent of the choice of S.

Proof (cf. [Whi01, Theorem 4-8]). Consider

α : G→ Aut(Γ(G,S)); g 7→ σg (2.3)

with
σg : V (Γ(G,S))→ V (Γ(G,S)); h 7→ gh.

Now σg is a bijection and therefore a permutation of V (Γ(G,S)). Furthermore,

σg(h1h2) = gh1h2 = σg(h1)h2

proofs that σg is an automorphism. This shows that α is well-defined.

α is a group homomorphism

α(g1g2)(h) = σg1g2(h) = g1g2h = σg1(g2h) = σg1(σg2(h)) = α(g1)α(g2)(h).

and injective because
kerα = {e}.

Choose an arbitrary σ ∈ Aut(Γ(G,S)). Then σ(e) = g for some g ∈ G.
σ is an automorphism, so for any h ∈ G with

h = sm1
1 sm2

2 sm3
3 · · · smk

k , k ∈ N and for all 1 ≤ i ≤ k : mi ∈ {−1, 1}, si ∈ S.

repeated application of (2.1) and (2.2) leads to

σ(h) = σ(eh) = σ(esm1
1 sm2

2 sm3
3 · · · smk

k )

= σ(e)sm1
1 sm2

2 sm3
3 · · · smk

k = σ(e)h

= gh = σg(h) = α(g)(h).

Hence, α is surjective and therefore a bijection between G and Aut(Γ(G,S)). �
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2. Definitions and Facts

Corollary 2.3.6. Let G be a group with generating set S and let H be a group with
generating set T . If Γ(G,S) ∼= Γ(H,T ) then G ∼= H.

Definition 2.3.7. Let G be a group and X a non-empty set. The group action

G×X → X; (g, x) 7→ g · x

is called

• transitive, if for any x, y ∈ X there is a g ∈ G, such that g · x = y,

• regular, if for any x, y ∈ X there is exactly one g ∈ G, such that g · x = y.

Definition 2.3.8. A graph H is called vertex-transitive, if for any x, y ∈ V (H) a σ ∈
Aut(H) exists such that σ(x) = y.

A graph H is vertex transitive, if and only if Aut(H) acts transitively on V (H).

Proposition 2.3.9. Let Γ(G,S) be a Cayley color digraph on a group G with connection
set S. Then G acts regularly on V (Γ(G,S)).

Proof. Choose x, y ∈ V (Γ(G,S)) arbitrarily. Define a group action

◦ : G× V (Γ(G,S))→ V (Γ(G,S)); g ◦ v = gv. �

Now u ◦ x = y if and only if u = yx−1. Hence, the group action ◦ is regular.

Corollary 2.3.10. Let Γ(G,S) be a Cayley color digraph on a group G with connection
set S. Then Aut(Γ(G,S)) acts transitively on V (Γ(G,S)). If S is a generating set of G,
then Aut(Γ(G,S)) acts regularly on V (Γ(G,S)).

Proof. Define a group action

? : Aut(Γ(G,S))× V (Γ(G,S))→ V (Γ(G,S)); σ ? v = σ(v).

Choose x, y ∈ V (Γ(G,S)) arbitrarily and let α(yx−1) = σyx−1 be defined as in (2.3). Note
that α is not necessarily a bijection because S does not need to be a generating set of G.
Still, α(yx−1) = σyx−1 is an automorphism of Γ(G,S). Moreover,

σyx−1 ? x = y

holds. Hence, ? is a transitive group action.

If S generates G, then α is a bijection between G and Aut(Γ(G,S)). Every automorphism
σ ∈ Aut(Γ(G,S)) with σ(x) = y satisfies α−1(σ) = yx−1. Therefore, α(yx−1) is the only
automorphism with this property and the group action ? is regular. �

Corollary 2.3.11. Every Cayley color digraph is vertex transitive and therefore regular.
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2.3. Cayley color digraphs

The converse of Corollary 2.3.11 is not true, so vertex transitivity is not suitable to charac-
terize Cayley color digraphs. There are vertex-transitive graphs which are not the Cayley
color digraph of any group G, even if proper labels are chosen, see Corollary 2.4.5.

A better criterion to characterize Cayley color digraphs has been found by Sabidussi
[Sab64]. This leads to Theorem 2.3.13.

Definition 2.3.12. An arc-coloring of a digraph H is called proper, if for every vertex
u ∈ V (H) no pair of arcs (u, v), (u,w), v 6= w is assigned the same color.

Theorem 2.3.13. A properly arc-colored digraph H is a Cayley color digraph if and only
if a subgroup G of Aut(H) exists that acts regularly on V (H).

Proof. Let H be a Cayley color digraph of a group G with connection set S. Let α be
as defined in (2.3). Then

G = {α(g) | g ∈ G} = {σg | g ∈ G}

satisfies
G ∼= G ≤ Aut(H).

Furthermore, define the group action

� : G× V (Γ(G,S))→ V (Γ(G,S)); σg � v = σg(v) = gv.

Now � is a regular group action of G on V (H).

To prove the opposite direction, assume that L ≤ Aut(H) acts regularly on V (H). Then
H is a vertex transitive graph and |V (H)| = |L|. Take arbitrarily a v ∈ V (H) and identify
it by the identity element e ∈ L. Now for each w ∈ V (H) exists a unique automorphism
σw ∈ L such that σw(e) = w. Identify w by the automorphism σw. Denote the successor
set of e by S. For each s ∈ S identify the color of the arc (e, s) by cs. Since H is
vertex-transitive, all arcs of H are cs-colored, where s ∈ S.

Now let g ∈ V (H), h ∈ V (H), s ∈ S. H has an cs-colored arc from e to s. Since g, h, s
are automorphisms satisfying g(e) = g, g(s) = gs, there is an cs-colored arc from g to h
if and only if gs = h.

So H is the Cayley color digraph Γ(L, S). �

Corollary 2.3.14. A weakly connected properly arc-colored digraph H is a Cayley color
digraph if and only if Aut(H) acts regularly on V (H).

Proof. If Aut(H) acts regularly on V (H), then H is a Cayley color digraph according
to theorem 2.3.13.

In order to prove the converse direction, assume that H is a weakly connected Cayley color
digraph of a group G with connection set S. Proposition 2.3.4 ensures that S generates
G. Corollary 2.3.10 guarantees that Aut(H) acts regularly on V (H). �
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2. Definitions and Facts

2.4. Cayley graphs

By deleting all labels and edge directions from the Cayley color digraph Γ(G,S) and
merging parallel edges, the (undirected) Cayley graph Cay(G,S) is obtained.

Definition 2.4.1. Let G be a group with identity element e. Let S be a finite subset of
the elements of G, such that e /∈ S. The Cayley graph Cay(G,S) is defined as the graph,
such that

• Cay(G,S) has |G| vertices which are identified with the elements of G,

• two vertices g and h are joined by an edge if and only if h = gs for some s ∈ S or
s−1 ∈ S.

If 〈S |W 〉 is a presentation of G, the Cayley graph Cay(G,S) can also be written as
Cay 〈S |W 〉.

Remark. Although the Cayley graph Cay(G,S) is uncolored and undirected, its edges
are sometimes referred to by the colors and directions in the corresponding Cayley color
graph Γ(G,S). For s ∈ S the cs-colored arcs are also called s-colored arcs. Subpaths of the
Cayley graph can be defined by the sequence of edge-colors of the path and some vertices
which lie on the path, if this definition is unambiguous.

Proposition 2.4.2. The Cayley graph Cay(G,S) shares some properties with the Cayley
color digraph Γ(G,S). More precisely,

• Cay(G,S) is connected if and only if S generates G,

• G acts regularly on V (Cay(G,S)) by left multiplication,

• Aut(Cay(G,S)) acts transitively on V (Cay(G,S)) and hence, Cay(G,S) is vertex-
transitive and regular.

Moreover, the statement of Theorem 2.3.13 remains true for uncolored undirected Cayley
graphs:

Theorem 2.4.3. A graph H is a Cayley graph if and only if a subgroup G of Aut(H)
exists that acts regularly on V (H).

Vertex transitivity is not an appropriate criterion to characterize Cayley graphs. An
example for a vertex-transitive graph which is not a Cayley graph of any group G is the
Petersen graph P , see figure 2.4.

Proposition 2.4.4. The Petersen graph P is not a Cayley graph of any group G.
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2.4. Cayley graphs

{1, 2}

{4, 5}

{1, 3}{2, 5}

{3, 4}

{3, 5}

{2, 3}

{2, 4}{1, 4}

{1, 5}

Figure 2.4.: The Petersen graph (Kneser graph KG5,2).

Proof. Assume that G is a subgroup of Aut(P ) that acts regularly on V (P ).

|G| = 10, so G contains an element σ of order 5 (more precisely, G has to be the cyclic
group Z10 or the dihedral group D5). Since G acts regularly on V (P ), σ does not fix any
vertex of P . Hence, σ is of the form

σ = (v0 v1 v2 v3 v4) (w0 w1 w2 w3 w4),

where vi, 0 ≤ i ≤ 4 and wi, 0 ≤ i ≤ 4 are the vertices of P .

Due to the connectivity of P there is an edge connecting vi and wj for some i, j. Without
loss of generality let {v0, w0} ∈ E(P ). Therefore, {vi, wi} ∈ E(P ) for any i ∈ {0, 1, 2, 3, 4}.
As P is not bipartite, there is an edge connecting vertices in {v0, v1, v2, v3, v4} or in
{w0, w1, w2, w3, w4}. As a result, there are two cases.

• If {v0, v1} is an edge of P , then {vi, vi+1} ∈ E(P ) for any i ≡ 0, 1, 2, 3, 4 mod 5. P
is regular of degree 3, so there are two more edges connecting w0 and wi for some
i. If i ∈ {1, 4}, then P contains a cycle of length 4, which is a contradiction. Thus,
{wi, wi+2} ∈ E(P ) for any i ≡ 0, 1, 2, 3, 4 mod 5.

• If {v0, v2} is an edge of P , then {vi, vi+2} ∈ E(P ) for any i ≡ 0, 1, 2, 3, 4 mod 5. P
is regular of degree 3, so there are two more edges connecting w0 and wi for some
i. If i ∈ {2, 3}, then P contains a cycle of length 4, which is a contradiction. Thus,
{wi, wi+1} ∈ E(P ) for any i ≡ 0, 1, 2, 3, 4 mod 5.

Consider ρ ∈ G such that v0ρ = w0. Necessarily, ρ is an involution because otherwise
v0 has degree 4. Moreover, S = {σ, ρ} is the connection set of P . Hence, viρ = wi for
i ∈ {0, 1, 2, 3, 4}. Therefore, ρ is not an automorphism because not all edges are preserved.
This is a contradiction. �

Corollary 2.4.5. The Petersen graph P is not a Cayley color digraph of any group G.
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Proposition 2.4.6. The Petersen graph P is vertex-transitive.

Proof. P can be considered as the Kneser graph KG5,2 as introduced by Kneser [Kne55].
Therefore, the vertices of P will be identified by the two-element subsets of {1, 2, 3, 4, 5},
such that a pair of vertices is adjacent if and only if their labels are disjoint (see figure 2.4).

For any σ ∈ S5 where S5 denotes the symmetric group on the set {1, 2, 3, 4, 5} define a
function λσ on V (P ):

λσ : V (P )→ V (P ); {x, y} 7→ {σ(x), σ(y)}.

Given two vertices {a, b}, {c, d} and a permutation σ ∈ S5, the following statements are
equivalent:

• {a, b} and {c, d} are adjacent,

• {a, b} and {c, d} are disjoint,

• {σ(a), σ(b)} and {σ(c), σ(d)} are disjoint,

• {σ(a), σ(b)} and {σ(c), σ(d)} are adjacent.

Hence, for each σ ∈ S5 the map λσ is an edge-preserving permutation and therefore an
automorphism of P .

Considering the injective group homomorphism

κ : S5 → Aut(P ); σ 7→ λσ,

it is clear that there is a subgroup H ≤ Aut(P ), such that S5 ∼= H. In fact, even
S5 ∼= Aut(P ) holds, see [HS93, Theorem 4.6].

Let {a, b} and {c, d} be two arbitrarily selected, different vertices of P . If {a, b} and {c, d}
are disjoint, choose π = (a, c, b, d) ∈ S5 (in cycle notation). Otherwise suppose without
loss of generality that a = c, b 6= d and choose π = (b, d) ∈ S5. Now κ(π) ∈ Aut(P ) and
κ(π)({x, y}) = {c, d}. Hence, P is vertex-transitive. �

2.5. Finite and infinite Graphs

Definition 2.5.1. Let G = (V,E) be a graph.

• An edge xy, such that G \ {x, y} is disconnected, is called a hinge.

• An edge, such that the removal of this edge separates G is called a bridge.

• G is k-connected if for every subset X ⊆ V with |X| < k, G \ X is connected.
The largest k ∈ N, such that G is k-connected is called the connectivity number or
connectivity κ(G).

• The girth g(G) is the length of a shortest circle contained in G. For acyclic graphs,
the girth is defined to be infinity.
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2.5. Finite and infinite Graphs

Chapter 8 of Diestel’s book [Die05] provides a good introduction to the theory of infinite
graphs.

Definition 2.5.2. A graph G is called locally finite if every vertex of G has a finite degree.

Remark. All graphs considered in the following chapters are finite or locally finite.

Definition 2.5.3. A one-way infinite path, that is a graph G = (V,E) with

V = {x0, x1, x2, . . .}
E = {x0x1, x1x2, x2x3, . . .},

such that xi 6= xj if i 6= j is a ray. A two-way infinite path, i.e. a graph G = (V,E) with

V = {. . . , x−2, x−1, x0, x1, x2, . . .}
E = {x−2x−1, x−1x0, x0x1, x1x2, x2x3, . . .},

such that xi 6= xj if i 6= j is a double ray.

Definition 2.5.4. Consider the following equivalence relation on the set of rays in G:
Two rays R1, R2 in G are equivalent if, for every finite subset S ⊆ V (G), both R1 and
R2 have a subray in the same connected component of G. This means that two rays are
equivalent if they can not be separated by a finite set of vertices. An equivalence class of
rays in G under this relation is called an end of G.

The set of ends of G is denoted by Ω(G).

Definition 2.5.5. The vertex-degree of an end is the maximum number of disjoint rays
(or arcs, see definition 2.5.7) in it and the edge-degree of an end is the maximum number
of edge-disjoint rays (or arcs) in it. Ends with infinite vertex-degree are called thick ends,
ends with finite vertex-degree are called thin ends.

Definition 2.5.6. Let G = (V,E) be an (infinite) graph with ends Ω(G). The topological
end space |G| is constructed as follows. Every edge e = uv is a homeomorphic image of
the interval [0, 1].

• As basic open sets around an inner point of an edge e choose the subsets of e that
correspond to open subintervals of [0, 1] by the homeomorphism.

• Let (uv)ε be the subset of uv corresponding to the interval [0, ε) by the homeomor-
phism between [0, 1] and uv. The basic open sets around the vertex u are the union
of all (uv)ε, for all 0 < ε < 1 and all neighbour vertices v of u in G.

• For every end ω and every finite S ⊆ V, let C(S, ω) be the connected component of
G− S that contains a ray of ω. Moreover, let Ω(S, ω) be the set of ends with a ray
in C(S, ω) and Eε(S, ω) the set of inner points of edges from S to C(S, ω) with a
distance less than ε to their endpoint (the metric is defined by the bijection between
[0, 1] and the edge).

The basic open sets around the end ω are all sets of the form

C(S, ω) ∪ Ω(S, ω) ∪ Eε(S, ω)

for every finite S ⊆ V and every 0 < ε ≤ 1.
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2. Definitions and Facts

Definition 2.5.7.

• X is the closure of X ⊆ |G|,

• a standard subspace of |G| is a subspace which fully contains every edge if an inner
point of the edge is included,

• an arc in |G| is the homeomorphic image of the interval [0, 1], the images of 0 and
1 are called its endpoints,

• a circle in |G| is the homeomorphic image of the unit circle S1 ⊆ R2,

• a circuit is the edge set of a circle.

Remark. If D is the circuit of a circle C, the closure of
⋃
D is C.

Lemma 2.5.8 ( [Die05, Lemma 8.5.6]). Let G be a locally finite graph. A closed
standard subspace of |G| is a circle if and only if

• C is connected and

• every vertex of C has degree 2 and

• every end of C has (vertex-)degree 2.

Definition 2.5.9. Let G be a locally finite graph. A family of (Di)i∈I of subsets of E(G)
is called thin if there is no edge which lies in Di for infinitely many i ∈ I. The sum∑

i∈I Di of a thin family is the set of all edges ei which lie in Di for an odd number of
i ∈ I. The (topological) cycle space C(G) is the set containing all sums of thin families of
circuits.

Lemma 2.5.10 ( [Die05, Theorem 8.5.8]). Let G be a connected, locally finite graph.
The cycle space C(G) contains exactly the subsets of F ⊆ E(G) such that every finite cut
of G contains an even number of edges of F . Moreover, every element of C(G) is a disjoint
sum of circuits.

2.6. Multi-ended groups and amalgamations

Definition 2.6.1. The number of ends of a group G is the number of ends of the Cayley
graph Cay(G,S) for an arbitrarily chosen generating set S.

Remarks ( [Geo08, Theorems 13.5.5 and 13.5.7]).

• The number of ends of every finite group is 0.

• The number of ends of every finitely generated group is well-defined (the number of
ends of a Cayley graph is independent of its generating set S).

• The number of ends of a finitely generated group is 0, 1, 2 or ∞.
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2.6. Multi-ended groups and amalgamations

Stallings characterized groups with infinitely many ends as those having a nontrivial de-
composition by HNN-extensions or free products with amalgamations (defined in sec-
tion 2.2).

Theorem 2.6.2 ( [Sta68], [Sta71]). A finitely generated group G has infinitely many
ends if and only if either

• G = K ∗F H where F is finite with index ≥ 2 in K and H and one of these indices
being ≥ 3

• G = H∗φ where the subgroups identified by φ have index ≥ 2 in H.

In his accessibility theory [Dun85], Dunwoody proved that every group with a finite pre-
sentation can be obtained from finite or one-ended groups using only finitely many steps
of the operations in theorem 2.6.2. On the other hand, there are finitely generated groups
which do not possess this property [Dun93].

Mohar [Moh06] constructed a similar amalgamation operation which he called tree amal-
gamation. He conjectured that, using the tree amalgamation, all planar Cayley graphs
could be decomposed into finite or one-ended planar Cayley graphs, which would be a
statement similar to theorem 2.6.2 for Cayley graphs instead of finitely generated groups.

To receive infinitely-ended (or two-ended) cubic planar Cayley graphs from one-ended
cubic planar Cayley graphs, Mohar proposed the twist-amalgamation.

Definition 2.6.3. Let G = Cay
〈
a, b | b2, an, (ab)m

〉
, n ≥ 3,m ≥ 2. Then G is a cubic

planar Cayley graph containing a-colored cycles of length n (see section 4.2).

For every a-colored cycle embed a copy of G in the face bounded by C and glue it along
C as follows. Every edge of C is divided into two a-colored edges. The b-colored edges on
C are alternately inwards and outwards. The embedded copy of G has the subdivision of
C as a face boundary. See figure 2.5 for the case n = 5,m = 2.

(a) G = Cay
〈
a, b | b2, a5, (ab)2

〉
. (b) First twist-graph. (c) Twist-amalgamation.

Figure 2.5.: Twist-amalgamation of G = Cay
〈
a, b | b2, a5, (ab)2

〉
.

After performing one step of this operation, a cubic planar graph G1 (the first twist-graph),
which has again a-colored cycles of length n is obtained. Another step of the described
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2. Definitions and Facts

operation embedding copies of G in the a-colored cycles of G1 leads to G2. After n steps
the n-th twist-graph Gn is produced. As n goes to infinity, the resulting graph G∞ is
called the twist-amalgamation of G.

Remarks.

• G0 = G.

• The twist-amalgamation of G = Cay
〈
a, b | b2, an, (aba−1b)m

〉
, n ≥ 3,m ≥ 1 is de-

fined analogously.

• The twist-amalgamation of a cubic planar Cayley graph is again a cubic planar
Cayley graph.

However, not all cubic planar Cayley graphs can be obtained from finite or one-ended
cubic planar Cayley graphs by twist-amalgamation. Georgakopoulos [Geo11a] suggested
another amalgamation operation, which he calls twist-squeeze-amalgamation.

Definition 2.6.4. Let G = Cay
〈
a, b | b2, an, (ab)m

〉
, n ≥ 3,m ≥ 2. Then G is a cubic

planar Cayley graph containing cycles of length 2m with alternating colors a and b.

For every such alternating cycle C embed a copy of G in the face bounded by C and glue
it along C as follows. Every a-colored edge of C is divided into three edges: two a-colored
edges and one b-colored edge in the middle. The embedded copy of G has the subdivision
of C as a face boundary. See figure 2.6 for the case n = 5,m = 2.

(a) G = Cay
〈
a, b | b2, a5, (ab)2

〉
. (b) First twist-squeeze-graph. (c) Twist-squeeze-amalgamation.

Figure 2.6.: Twist-squeeze-amalgamation of G = Cay
〈
a, b | b2, a5, (ab)2

〉
.

After performing one step of this operation, a cubic planar graph G1 (the first twist-
squeeze-graph), which has again alternately-colored cycles of length 2m, is obtained. An-
other step of the described operation embedding copies of G in the alternately-colored
cycles of G1 leads to G2. After n steps the n-th twist-graph Gn is produced. As n goes
towards infinity, the resulting graph G∞ is called the twist-squeeze-amalgamation of G.

Remarks.

• G0 = G.
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2.7. Hamiltonicity of Cayley graphs

• The twist-squeeze-amalgamation of other types of cubic planar Cayley graphs is
defined analogously.

• The twist-squeeze-amalgamation of a cubic planar Cayley graph is again a cubic
planar Cayley graph.

2.7. Hamiltonicity of Cayley graphs

Definition 2.7.1. A Hamilton cycle in a finite graph G is a closed walk that visits every
vertex exactly once. A graph G which contains a Hamilton cycle is called Hamiltonian.

This definition can be extended to infinite graphs using the topological end space.

Definition 2.7.2. A Hamilton circle is a circle in |G| (see Definition 2.5.7) that contains
every vertex of G. An infinite graph G is called Hamiltonian if |G| contains a Hamilton
circle.

Remark. Since a Hamilton circle is closed and contains every vertex it also contains every
end of G.

In 1969, Lovász asked, whether every finite connected vertex-transitive graph contains a
Hamiltonian path [Guy70, Problem 11]. In fact, there is no known example of a finite
vertex-transitive graph without a Hamiltonian path. Moreover, only four finite connected
vertex-transitive graphs with at least 3 vertices which do not have a Hamilton cycle are
known, cf. [GR01, p. 45] and [Bab95, p. 25].

Figure 2.7.: The Coxeter graph.
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2. Definitions and Facts

• The Petersen graph (see figure 2.4) is vertex transitive (see proposition 2.4.6) and
nonhamiltonian,

• the Coxeter graph (figure 2.7) is also nonhamiltonian (see [Tut60] for a proof) and
vertex-transitive,

• the two graphs which are obtained from the Petersen graph and the Coxeter graph
respectively by replacing each vertex by a triangle are nonhamiltonian and vertex-
transitive, cf. [GR01, p. 45] and [Bab95, p. 25].

None of these graphs is a Cayley graph. This leads to conjecture 2.7.3 and the weaker
conjecture 2.7.4, which are both widespread.

Conjecture 2.7.3. Every finite connected vertex-transitive graph with at least 3 vertices,
except the four graphs mentioned above, contains a Hamilton cycle.

Conjecture 2.7.4. Every finite connected Cayley graph with at least 3 vertices contains
a Hamilton cycle.

However, Babai did not agree and posed conjecture 2.7.5.

Conjecture 2.7.5 (Babai 1994). for some c > 0 there are infinitely many connected
Cayley graphs without cycles of length ≥ (1 − c)n, where n is the number of vertices of
the graph. Cf. [Bab95, p. 25]

Remarks.

• For Cayley digraphs, conjecture 2.7.4 is wrong. There are infinitely many counterex-
amples, namely

Γ (Sym(n), {(1, 2), (1, 2, 3, . . . , n)}) ,
where Sym(n) is the symmetric group of order n. Those digraphs are nonhamiltonian
if n is an even number with n ≥ 4. For a proof, see [GR01, Corollary 3.8.2].

• For infinite graphs, conjecture 2.7.4 is also not correct. Obviously, every Cayley
graph Cay(G,S) on a free group G of rank r ≥ 2 with minimal generating set S is
only 1-connected and therefore nonhamiltonian, see example 2.3.3.

Some special cases of conjecture 2.7.4 are solved:

• If G is a finite Abelian group, then all connected Cayley graphs Cay(G,S) are
Hamiltonian, see [CQ81] and [CQ83],

• if |G| = pk, where p is a prime and |G| 6= 2, then all connected Cayley graphs
Cay(G,S) are Hamiltonian [Wit86],

• if |G| can be expressed in one of the following possibilities (with p, q, r being distinct
primes)

? kp with 1 ≤ k ≤ 31 and k 6= 24,

? kpq with 1 ≤ k ≤ 5,
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2.8. Cubic planar Cayley graphs

? pqr,

? kp2 with 1 ≤ k ≤ 4,

? kp3 with 1 ≤ k ≤ 2,

then all connected Cayley graphs Cay(G,S) are Hamiltonian [KMM+10],

• ifG is a finitely generated, infinite Abelian group, then every Cayley graph Cay(G,S)
has a spanning double-ray and hence a Hamilton circle, see [Jun89] and [NW59].

As follows from the above, connected Cayley graphs on groups G with 3 ≤ |G| ≤ 71 are
Hamiltonian.

See the survey [CG96] and [KMM+10] for more results on Hamiltonicity of special classes
of Cayley graphs.

In [Geo09], Georgakopoulos asks if every connected 1-ended locally finite Cayley graph
has a Hamilton circle.

Conjecture 2.7.6 (Georgakopoulos [Geo11a]). Every finitely generated 3-connected
planar Cayley graph is Hamiltonian.

2.8. Cubic planar Cayley graphs

Motivated by the discovery of the amalgamation operations which are described in sec-
tion 2.6, Georgakopoulos characterized the planar cubic Cayley graphs of connectivity
two [Geo11b] and later all planar cubic Cayley graphs [Geo11a]. He used a rather com-
plex distinction of cases considering connectivity, number of ends, number of generators,
spin behavior, existence of one-colored or two-colored cycles, etc. Finally he got a classi-
fication containing 37 different types.

To distinguish the cases, some definitions are necessary concerning embeddings and spin
behavior of edges and colors.

Definition 2.8.1. An embedding σ of G is, unless stated differently, a topological embed-
ding of |G| in the Euclidean plane R2, which is a drawing without crossing edges.

Definition 2.8.2. For a fixed embedding σ of a Cayley graph Cay(G,S) = (V,E) define
the spin of x ∈ V as the cyclic order of S, such that s2 ∈ S is a successor of s1 ∈ S if the
edge {x, xs2} occurs immediatly after {x, xs1} when moving counter-clockwise around x.

Remark. If Cay(G,S) = (V,E) is cubic every vertex x ∈ V has exactly 3 neighbours and
there are only 2 possible spins.

Definition 2.8.3. Let Cay(G,S) = (V,E) be a cubic Cayley graph with a fixed embed-
ding σ. An edge e = xy ∈ E is called spin-preserving, if x and y have the same spin in σ.
Otherwise it is called spin-reversing.
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2. Definitions and Facts

Definition 2.8.4. An embedding σ of Cay(G,S) = (V,E) is consistent if there are no
two edges u, v ∈ E, such that u and v have the same color and u is spin-reversing and v
is spin-preserving.
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CHAPTER 3

Graphs of connectivity 1 or 2

A planar cubic Cayley graph G has connectivity 1, if and only if G has a bridge. Hence,
κ(G) = 1 if and only if one of the generators of G does not satisfy a cyclic relation.
Therefore, the only two types of 1-connected cubic planar Cayley graphs are

Cay
〈
a, b | b2, an

〉
, n ∈ (N \ {1, 2}) ∪ {∞},

Cay
〈
b, c, d | b2, c2, d2, (bc)n

〉
, n ∈ N ∪ {∞}.

Obviously, none of these is Hamiltonian since the removal of a single vertex disconnects
the graph.

Proposition 3.0.5. Let G be a cubic, planar Cayley graph with κ(G) = 1. Then G is
not Hamiltonian.

There are nine different types of cubic planar 2-connected Cayley graphs [Geo11b]. One
type is a degenerate case, the other types are listed in table 3.1 and table 3.2. Surprisingly,
not all of the graphs have a Hamilton circle. A class consisting of nonhamiltonian Cayley
graphs exists.

Theorem 3.0.6. Let G be a cubic, planar Cayley graph with κ(G) = 2. Then G is
Hamiltonian, unless G = Cay

〈
b, c, d | b2, c2, d2, (b(cb)nd)m

〉
, m ≥ 2, n ≥ 3.

Proof. The Hamiltonicity of the different types of cubic, planar Cayley graph with
κ(G) = 2 is discussed in the propositions of this chapter. The nonhamiltonian graphs
are considered in proposition 3.2.4. �

Corollary 3.0.7. Let G be a cubic, planar, nonhamiltonian Cayley graph satisfying
κ(G) = 2. Then G
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3. Graphs of connectivity 1 or 2

• is generated by 3 involutions,

• has no 2-colored cycle,

• has no hinge and

• all generators of G preserve spin.

Proof. See the classification of the graphs in table 3.1 and table 3.2. �

3.1. Graphs with two generators

The three different types of cubic planar Cayley graphs G with κ(G) = 2 which are
generated by two elements are listed in table 3.1.
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G = Cay
〈
a, b | b2, a4, (a2b)n

〉
, n ≥ 2

G is Hamiltonian, see proposition 3.1.1.

G = Cay
〈
a, b | b2, (ab)n

〉
, n ≥ 2

G is Hamiltonian, see proposition 3.1.2.

G = Cay
〈
a, b | b2, (aba−1b−1)n

〉
, n ≥ 2

G is Hamiltonian, see proposition 3.1.3.

Table 3.1.: The cubic planar Cayley graphs of connectivity 2 with 2 generators.

Proposition 3.1.1. Every graph G = Cay
〈
a, b | b2, a4, (a2b)n

〉
, n ≥ 2 is Hamiltonian.
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3.1. Graphs with two generators

Proof. Let v0, v1, v2, . . . , v2n−1 be a cycle in G consisting of a-colored edges. Define two
double-rays

P = . . . aba−1baba−1b a︸︷︷︸
v0v1

ba−1b . . . = (aba−1b)∞

Q = . . . a−2n+3ba2n−3b a−2n+3︸ ︷︷ ︸
v2v3v4...v2n−1

ba2n−3b . . . = (a2n−3ba−2n+3b)∞

by their edge-colors, such that P contains v0v1 as an a-edge arc and Q contains a subpath
v2v3v4 . . . v2n−1 consisting of a-colored edges.

Now it is easy to see that

• P and Q are disjoint,

• V (P ∪Q) = V (G),

• P connects the two ends ω1, ω2 of G,

• Q connects ω1 and ω2,

• P ∪Q is a Hamilton circle in |G|. �

In figure 3.1 the Hamilton circle is black and dashed, a is blue and b is red.

v0

v1

v2

v3

v2n−3

v2n−2

v2n−1

Figure 3.1.: A Hamilton circle in G = Cay
〈
a, b | b2, a4, (a2b)n

〉
, n ≥ 2.

Proposition 3.1.2. Every graph G = Cay
〈
a, b | b2, (ab)n

〉
, n ≥ 2 is Hamiltonian.
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3. Graphs of connectivity 1 or 2

Figure 3.2.: A Hamilton circle in G = Cay
〈
a, b | b2, (ab)2

〉
.

Proof. Depending on the choice of n, this graph is either a 2-way infinite ladder, shown
in figure 3.2, or a graph with infinitely many ends, as shown in figure 3.3.

For n = 2, G is a 2-way infinite ladder and hence 2-ended. The ends are denoted ω1 and
ω2. When all rungs (i.e. all b-labelled edges) are deleted, the remaining graph H is the
disjoint union of two double-rays. Its closure H = H ∪ {ω1, ω2} is a Hamilton circle in
|G|, dashed in figure 3.2.

For n ≥ 3, let H be again the union of all a-labelled edges. Then the closure H of H in
|G|, that is the union of H with all ends of G, is again a Hamilton circle. In order to prove
this claim, construct a suitable mapping from H to the unit circle, i.e. a homeomorphism
from H to S1. The infinitely-ended graph G consists of alternately a- and b-colored cycles
of length 2n with every b-colored edge being a hinge. Take an arbitrary cycle C in G and
label the 2n vertices of C

00, 01, 10, 11, 20, 21, 30, 31, . . . , (n− 1)0, (n− 1)1

in clockwise order. Now consider a cycle B that shares an edge with C (called neighbour
circle). Two adjacent vertices of B are already labelled s0 and s1, where s is a string
consisting of the characters 0, 1, 2, . . . , n− 1. Label the vertices of B

s0, s00, s01, s10, s11, s1

in clockwise order. Repeat this procedure for all neighbour circles of C, then also for their
neighbour circles and so forth, to label all vertices of G. Now for every cycle except C
consider the edge between s01 and s10 (where s is the result of the label construction
before). By construction, this edge is a-labelled. Let Ds denote the double ray consisting
only of a-edges which contains the edge (s01, s10). Furthermore, let R0 be the double
ray consisting of a-edges containing the edge (00, 01) and Ri the double ray consisting of
a-edges containing the edge ((i− 1)1, i0), where 1 ≤ i ≤ n− 1.

Map R0 to one half of S1, such that the points corresponding to 21 and 00 occur in
clockwise order and split the other half into 2n−1 parts, as outlined in figure 3.2 for n = 3.
Leave every second part (starting with the first part) empty and map R1, R2, . . . , Rn−1 to
the remaining parts (in clockwise order), such that (i−1)i and i0 occur in clockwise order.
Split every empty part into three subparts and map D0, D1, . . . , Dn−1 to the subparts in
the middle (again in clockwise order). On Di, i01 and i10 are in clockwise order.

Now repeat the following steps infinitely often for 0 ≤ i ≤ n− 1 and suitable strings s:

• In the middle third of the empty part between Ri and Dis, map Dis0, such that s001
and s010 are in clockwise order,
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3.2. Graphs with three generators

• in the middle third of the empty part between Djs and Ri, map Djs1, such that
j ≡ i− 1 mod n, 0 ≤ j ≤ n− 1 and s101 and s110 are in clockwise order,

• in the middle third of the empty part between Ds0 and Ds, map Ds01, such that
s0101 and s0110 are in clockwise order,

• in the middle third of the empty part between Ds and Ds1, map Ds10, such that
s1001 and s1010 are in clockwise order.

The construction of the mapping is outlined for n = 3 in figure 3.2. Each vertex of G is
incident to exactly 2 edges of H and H forms a circle in |G|. So, H is a Hamilton circle
of |G|. �

Proposition 3.1.3. Every graph G = Cay
〈
a, b | b2, (aba−1b−1)n

〉
, n ≥ 1 is Hamiltonian.

Proof. Such as the graphs considered in the last proposition, G consists of alternately
a- and b-colored cycles of length 2n with every b-colored edge being a hinge. The only
difference to H = Cay

〈
a, b | b2, (ab)2n

〉
is the direction of some a-colored arcs. Every

vertex of G can be represented as a reduced word of the form

x = ak0bak1bak2b · · · akn−1bakn , n ∈ N0, k0, kn ∈ Z, ∀ 1 ≤ i ≤ n− 1 : ki ∈ Z \ {0}.

Now the function

φ : V (G)→ V (H);

φ(x) = φ(ak0bak1bak2b · · · akn−1bakn) = ak0ba−k1bak2ba−k3 · · · a(−1)n−1kn−1ba(−1)
nkn

is a graph-isomorphism between G and H. According to proposition 3.1.3, H is Hamilto-
nian. Therefore, G is also Hamiltonian. �

3.2. Graphs with three generators

The five non-degenerate types of cubic planar Cayley graphs G with two generators and
κ(G) = 2 are listed in table 3.2.

Proposition 3.2.1. Every graph G = Cay
〈
b, c, d | b2, c2, d2, (bc)2, (bcd)m

〉
, m ≥ 2 is

Hamiltonian.

Proof. The embedding of G is constructed step by step. Starting with the tetrahedral
graph G0 = Cay

〈
b, c, d | b2, c2, d2, bcd

〉
(see figure 4.1) in the first step, the d-colored arcs

of G0 are divided into m parts. Between each consecutive parts, a copy of G0 is placed. In
the resulting graph G1, m− 1 copies of G0 are placed on all new d-colored arcs to receive
G2 and so forth. See [Geo11b, Theorem 4.6, case 1] for details of the construction.

In G0, consider the path C0 with color-sequence bebe, where e is the same color as d.
The e-edges are the d-colored edges, which are replaced in the next step. Note that C0

is uniquely determined by its edge-color sequence. C0 is a Hamilton cycle in G0 formed
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3. Graphs of connectivity 1 or 2
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G = Cay
〈
b, c, d | b2, c2, d2, (bc)2, (bcd)m

〉
, m ≥ 2

G is Hamiltonian, see proposition 3.2.1.

G = Cay
〈
b, c, d | b2, c2, d2, (bc)2n, (cbcd)m

〉
, n,m ≥ 2

G is Hamiltonian, see proposition 3.2.2.

G = Cay
〈
b, c, d | b2, c2, d2, (bc)n, (bd)m

〉
, n,m ≥ 2

G is Hamiltonian, see proposition 3.2.3.

G = Cay
〈
b, c, d | b2, c2, d2, (b(cb)nd)m

〉
, n,m ≥ 2

G is Hamiltonian iff n = 2, see proposition 3.2.4.

G = Cay
〈
b, c, d | b2, c2, d2, (bcbd)n

〉
, n ≥ 1

G is Hamiltonian, see proposition 3.2.5.

Table 3.2.: The cubic planar Cayley graphs of connectivity 2 with 3 generators.
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3.2. Graphs with three generators

by all edges with colors b or d of G0. Performing one step of the construction of G, every
e-edge of C0 is replaced by d(bebd)m−1 to receive C1. Following the path of C1 with e = d
in G1, this is again a Hamilton cycle consisting of all b-colored or d-colored edges of G1.
Replacing all e-edges in C1 by d(bebd)m−1 and considering e = d leads to a Hamilton
cycle C2 of G2 etc. In every step of this construction, Cn is a Hamilton cycle of Gn which
consists of all edges with colors b or d.

Finally, the closure C of the circuit C = {e ∈ E(G) | e is b-colored or d-colored}, is a subset
of G that contains all vertices (and all ends since C is closed). In C, every vertex has
degree 2. From the structure of C it follows that any (standard subspace) neighbourhood
of an arbitrary end is connected by exactly two edges to the remaining graph. Hence, all
ends have vertex degree 2 and C is a Hamilton circle of G. �

Proposition 3.2.2. Every graph G = Cay
〈
b, c, d | b2, c2, d2, (bc)2n, (cbcd)m

〉
, n,m ≥ 2,

is Hamiltonian.

Proof. The arguments in this proof are analogous to the proof of proposition 3.2.1. The
construction of G starts with G0 = G = Cay

〈
b, c, d | b2, c2, d2, (bc)2n, cbcd

〉
. Again, every

d-edge is divided into m parts, placing a copy of G0 between each two consecutive parts.
See [Geo11b, Theorem 4.6, case 2] for a description of the construction. In G0, consider
the path C0 with color-sequence (be)6, where e is the same color as d. C0 is a Hamilton
cycle in G0 formed by all b-edges or d-edges of G0. In every step of the construction,

every e-edge of Cn−1 is replaced by
(
d (be)5 b

)m−1
d to obtain a Hamilton cycle Cn of

Gn. Finally, the closure C of the circuit C = {e ∈ E(G) | e is b-colored or d-colored}, is a
Hamilton circle of G. �

Proposition 3.2.3. Every graph G = Cay
〈
b, c, d | b2, c2, d2, (bc)n, (bd)m

〉
, n,m ≥ 2, is

Hamiltonian.

Proof. For n = m = 2, G is the 2-way-infinite ladder and hence Hamiltonian (see
proposition 3.1.3). For any other choice of n and m, G has the structure of semi-regular
trees merged at a common root, in which each vertex is replaced by a cycle. Two neighbour
cycles share a b-colored edge. Hence, the structure of G is similar to the structure of the
graphs in proposition 3.1.3. Let C = {e ∈ E(G) | e is c-colored of d-colored}. Then the
closure C is a Hamilton circle in G. The construction of a homeomorphism between C
and S1 is similar to the construction in the proof of proposition 3.1.3. �

Proposition 3.2.4. The graph G = Cay
〈
b, c, d | b2, c2, d2, (b(cb)nd)m

〉
, m ≥ 2, n ≥ 2, is

Hamiltonian if and only if n = 2.

Proof. Assume that C is a Hamilton circle in G = Cay
〈
b, c, d | b2, c2, d2, (b(cb)nd)m

〉
,

m ≥ 2, n ≥ 3. Using the notation of [Geo11b, Lemma 4.3], let D0 be a double ray in G
that is spanned by b and c and G0 be the graph which results from G after contracting all
edges that are not incident to D0. Then G0 consists of D0 together with an infinite set
P of pairwise disjoint d-colored paths of length 2. For every vertex x ∈ V (D0) there is a
path P ∈ P joining x and xb(cb)n.
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3. Graphs of connectivity 1 or 2

Take an arbitrary P ∈ P and let x, y ∈ V (G0) ⊆ V (G) be the endvertices of P . Let
e1, e2 ∈ E(G) be the two d-edges incident to x and y. Since deleting e1 and e2 disconnects
G, the Hamilton circle C necessarily contains those two edges. Moreover, x and y are
joined by an arc of C which does not contain any edge of D0.

For every v ∈ V (D0) ⊆ V (G), the vertices v and vb(cb)n are joined by an arc of C which
does not contain any edge of D0. Hence, C uses all d-edges of G incident to a vertex of
G0. Furthermore, C has to contain another edge of G0 because every vertex has degree
2 in C. Consider two cases. In the first case, C contains a b-colored edge of G0, in the
second case, it does not.

case 1 If C contains a b-colored edge of G0, it cannot contain any of the adjacent c-colored
edges. Therefore, C must use the b-colored edge adjacent to those c-colored edges
and so forth. Hence, in the first case, C has to contain all b-colored edges of G0 but
no other edges of G0. Choose x ∈ V (D0) arbitrarily and let

x1 = x, x2 = xbc, x3 = x(bc)2

be vertices of D0. Let R1 be the arc of C connecting x1 and an end of D0 which uses
the d-edge incident to x1. Denote the endpoint of R1 that is an end ω1. Consider
another arc R2 of C connecting x2 and ω1 which uses the d-edge incident to x2 and
an arc R3 of C connecting x3 and ω1 which uses the d-edge incident to x3.

Then R1 ∩D0 consists of the b-edges from x(bc)kn to x(bc)knb, R2 ∩D0 consists of
the b-edges from x(bc)kn+1 to x(bc)kn+1b and R3 ∩D0 consists of the b-edges from
x(bc)kn+2 to x(bc)kn+2b for k ∈ N0. Since n ≥ 3, the arcs R1, R2, R3 are pairwise
disjoint and have ω1 as a common endpoint.

Hence, the vertex-degree of ω1 in C is at least 3, which is a contradiction to the fact
that C is a circle.

case 2 If C contains no b-colored edge of G0, it has to contain a c-colored edge of G0.
Hence, C contains all c-colored edges of G0 but no other edges of G0. Analogously
to case 1, choose x ∈ V (D0) arbitrarily and define x1, x2, x3 and R1, ω1, R2, R3 in
the same way. As before, the arcs R1, R2, R3 are pairwise disjoint and have ω1 as a
common endpoint. Again, this is a contradiction to the fact that C is a circle.

Consider the special case G = Cay
〈
b, c, d | b2, c2, d2, (b(cb)2d)m

〉
, m ≥ 2. The edge set

D = {e ∈ E(G) | e is b-colored or d-colored} is the circuit of a Hamilton circle.

To prove this claim, note that, using the notation of the first part of this proof, the edge
set

D0 = {e ∈ E(G0) | e is b-colored or d-colored}
forms two disjoint double-rays connecting the ends ω1 and ω2 of G0 and containing all ver-
tices of G0. Hence C0 = D0 is a Hamilton circle of G0. Performing one step decontracting
a double-ray Di to transform Gi−1 into Gi, two circles containing D0∪D1∪· · ·∪Di−1 and
Di respectively are merged along their two common d-edges to obtain a circle Ci = Di,
where

Di = {e ∈ E(Gi) | e is b-colored or d-colored}.
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3.2. Graphs with three generators

In every step of this construction, Ci is a Hamilton circle.

C = D contains all vertices of G and (since it is closed) all ends of G. C is connected
and every vertex has degree 2. From the structure of C it follows that any (standard
subspace) neighbourhood of an arbitrary end is connected by exactly two edges to the
remaining graph. Hence, all ends of C have vertex degree 2 and C is a Hamilton circle.�

Remark. Georgakopoulos presented the following problem [Geo09, problem 2]:

Let G be a connected Cayley graph of a finitely generated group Γ. Prove that
G has a Hamilton circle unless there is a k ∈ N such that Γ is the amalgamated
product of more than k groups over a subgroup of order k.

The nonhamiltonian graphs in proposition 3.2.4 might provide counterexamples to this
problem.

Proposition 3.2.5. Every graph G = Cay
〈
b, c, d | b2, c2, d2, (bcbd)n

〉
, n ≥ 1, is Hamilto-

nian.

Proof. For n = 1, G is the 2-way-infinite ladder and hence Hamiltonian (see proposi-
tion 3.1.3). For any other choice of (n,m), G has the structure of regular trees merged
to a common root, where every vertex is replaced by a cycle with edge-colors (bcbd)n.
Two neighbour cycles are merged along a b-colored edge and all cycles have a length of 4n.
Hence, G is isomorphic to H = Cay

〈
b, c, d | b2, c2, d2, (bc)2n, (bd)2n

〉
, which is Hamiltonian

according to proposition 3.2.3. �

Proposition 3.2.6. Every graph G = Cay
〈
b, c, d | b2, c2, d2, (bc)n, cd

〉
, n ≥ 1, is Hamil-

tonian.

Proof. This is a degenerate case with two generators c and d being equal to each other.
The resulting graph is a cycle with n double edges and n single edges and hence Hamilto-
nian. �
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3. Graphs of connectivity 1 or 2
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Figure 3.3.: Construction of a mapping from G = Cay
〈
a, b | b2, (ab)3

〉
to S1.
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CHAPTER 4

Finite and one-ended graphs

The finite and one-ended cubic planar Cayley graphs play a special role among the graphs
considered in this thesis since they are used for twist-amalgamations and twist-squeeze-
amalgamations to obtain new cubic planar Cayley graphs with more than one end.

For illustration and description of the finite planar cubic vertex-transitive graphs see
[Zel77]. All of the finite or one-ended cubic planar Cayley graphs are 3-connected [Geo11a,
theorem 7.1]. Furthermore, all of them are regular tessellations (of the sphere or the Eu-
clidean plane or the hyperbolic plane) or Cayley graphs of rotation subgroups of the
symmetry group of semi-regular tessellations, which is proved in this chapter.

Theorem 4.0.7. Let G be a finite or one-ended, cubic, planar Cayley graph. Then G is
Hamiltonian.

Proof. There are 9 types of finite or one-ended, cubic, planar Cayley graphs. The graphs
with two generators are listed in table 4.1, the graphs with three generators in table 4.3.
The Hamiltonicity is proved in the propositions of the sections 4.2 and 4.3. �

4.1. Tessellations and symmetry groups

See chapters 4 and 5 of [CM72] for an overview of tessellations and symmetry groups.
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4. Finite and one-ended graphs

In the Euclidean space, a regular p-gon has an internal angle of φ = π
(

1− 2
p

)
. Therefore,

q regular p-gons can be placed around a common vertex, if

qφ = 2π

⇔ qπ

(
1− 2

p

)
= 2π

⇔ qp− 2p− 2q = 0

⇔ (q − 2)(p− 2) = 4.

For (p, q) ∈ N2, this equation has the solutions (3, 6), (4, 4) and (6, 3). Hence, there are
three regular tessellations of the Euclidean plane.

Definition 4.1.1. Let p, q ∈ N, such that p, q ≥ 2. Then {p, q} denotes regular tessella-
tion (of the sphere or the Euclidean plane or the hyperbolic plane) with q p-gons meeting
at each vertex.

The regular Euclidean tessellations are {3, 6}, {4, 4} and {6, 3}.

If (q − 2)(p − 2) < 4, a spherical geometry can be used to obtain a regular tessellation.
In this case, the internal angle φ of a p-gon is greater than π

(
1− 2

p

)
. This results in the

regular spherical tessellations

{2, q}, {3, 3}, {3, 4}, {3, 5}, {4, 3}, {5, 3}, {q, 2}

which correspond to the q-gonal hosedron (q great circles joining north- and south-pole),
the five platonic solids and the q-gonal dihedron (q points on the equator joined to a
circle).

If (q−2)(p−2) < 4, a hyperbolic geometry gives the regular hyperbolic tessellations {p, q}
with q p-gons meeting at each vertex. Here, the internal angle φ of a p-gon is less than
π
(

1− 2
p

)
.

The symmetry group of {p, q} is generated by three reflections R1, R2, R3 in the side of a
(spherical, Euclidean or hyperbolic) triangle with angles π

p ,
π
q and π

2 .

Definition 4.1.2. Let p, q ∈ N, such that p, q ≥ 2. The symmetry group of {p, q} is
denoted by [p, q].

A presentation of this symmetry group is

[p, q] =
〈
R1, R2, R3 | R2

1, R
2
2, R

2
3, (R1R2)

p, (R1R3)
2, (R2R3)

q
〉
.

The Cayley graph of [p, q] can be embedded as a semi-regular tessellation where a 2q-gon,
a 2p-gon and a square meet at each vertex.

An important subgroup of [p, q] is the rotation subgroup [p, q]+.
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4.1. Tessellations and symmetry groups

Definition 4.1.3. Let p, q ∈ N, such that p, q ≥ 2. The subgroup of [p, q] generated by
the three rotations

R = R1R2, S = R2R3, T = R1R3.

is denoted by [p, q]+.

However, the generating set {R,S, T} is not minimal since two of the elements are sufficient
to generate [p, q]+. Hence, the presentations

[p, q]+ =
〈
S, T | Sq, T 2, (ST )p

〉
=
〈
R,S | Rp, Sq, (RS)2

〉
are obtained. If (p− 2)(q − 2) < 4, the order of [p, q]+ is

4pq

4− (p− 2)(q − 2)
,

otherwise the group is infinite. A possible embedding of the Cayley graph of [p, q]+ is a
semi-regular tessellation, where two 2p-gons and one q-gon meet at each vertex.

These definitions can be generalized using the reflections R1, R2, R3 in the side of a (not
necessarily perpendicular) triangle with angles π

p ,
π
q and π

r . If
1
p+ 1

q + 1
r > 1, the underlying

spherical geometry gives a finite symmetry group, if 1
p + 1

q + 1
r ≤ 1, the Euclidean or

hyperbolic geometry results in an infinite symmetry group. In all cases,

[p, q, r] =
〈
R1, R2, R3 | R2

1, R
2
2, R

2
3, (R1R2)

p, (R1R3)
r, (R2R3)

q
〉
.

The rotation subgroup is

[p, q, r]+ = 〈R,S, T | Rp, Sq, T r〉 .

Moreover, the Cayley graph of [p, q, r]+ can be embedded as the semi-regular tessellation
(of the sphere or the Euclidean plane or the hyperbolic plane) with one 2p-gon, one 2q-gon
and one 2r-gon meeting at each vertex.

For hyperbolic symmetry groups and their rotation subgroups, some results concerning
Hamiltonicity are known, see [DJW95].

Lemma 4.1.4 (cf. [Rap59]). Let G be a connected, locally finite, one-ended graph
which fulfills the following conditions.

1. There is a set C of pairwise-disjoint cycles containing every vertex just once and a
set R of (not necessarily disjoint) 4-cycles containing every vertex.

2. Whenever two of the 4-cycles in R intersect, the intersection is only a single vertex
and whenever one of the cycles in C intersects a 4-cycle in R, the intersection is a
single edge.

3. Every edge of G lies on one of the cycles in C or on one of the 4-cycles in R or both.

Then G is Hamiltonian.
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4. Finite and one-ended graphs

A proof of this lemma can be found in [DJW95, theorem 3.1]. The Hamilton circle is
constructed as the limit of a sequence of cycles. Every cycle is the boundary of a union
Ui of faces in G. In every step, a polygon Ci+1 of C is annexed to the present union Ui,
such that a 4-cycle Ri+1 of R connects Ci+1 to some polygon Cj , j ≤ i.

Lemma 4.1.5 (cf. [Geo10]). Every cubic, 1-ended planar graph G of girth g(G) ≥ 6 is
Hamiltonian.

A modified version of Georgakopoulos’ proof is provided here.

Proof. Let x be an arbitrary face of G. By induction, construct a decomposition of the
faces of G into disjoint sets R0 = {x}, R1, R2, . . ., such that for i ≥ 1 :

• The faces in Ri can be arranged in an order f1, f2, . . . , fn such that fj shares precisely
one edge with fk if j ≡ k ± 1 mod n and fj does not share an edge with any other
face in Ri.

• The boundary of
⋃
Ri consists of two disjoint cycles Ci and Di. The interior Ui of⋃

Ri divides G into two parts. One of the two components of G\Ui is Fi =
⋃
j<iRj .

The boundary of Fi is Ci.

• For any face f of Ri, i ≥ 1, the number of faces in Ri−1 that share an edge with f
is exactly one or two.

Suppose that R0, R1, . . . , Ri−1 are already defined and fulfill the above requirements. D0

is the boundary of x.

Let Ri be the collection of all faces f of G such that f contains an edge of Di−1, but f
is not contained in Ri−1. The following steps are going to show that this collection meets
the requirements for the induction.

Let Di−1 = v1v2v3 . . . vnv1 and for 1 ≤ j ≤ n let ej be the edge such that ej is incident to
vj and ej is not contained in Di−1. Choose a face f1 of Ri, such that f1 contains v1 and
for 2 ≤ j ≤ n let fj be the face of Ri that shares the edge ej−1 with fj−1.

Assume that there is a face f in Ri that shares three subsequent edges e1, e2, e3 with faces
in Ri−1. Suppose that e1, e2, e3 occur in this order on Di−1. Let gj be the face in Ri−1
incident with ej for 1 ≤ j ≤ 3. By the induction hypothesis, g2 shares not more than two
edges with Ri−2. Moreover, there is one edge between g1 and g2 and one edge between g2
and g3. Together with e2 there are not more than 5 edges on the boundary of g2. Hence,
G contains a cycle of length ≤ 5. This is a contradiction.

Assume that fj and fj+1 mod n share two edges e1 = x1x2 and e2 = y1y2. W.l.o.g. let
x1, x2, y1, y2 be the clockwise order of those vertices on the boundary of fi+1. Then there
are two cycles C ′ = x2Q1y1P1x2 and C ′′ = x1Q2y2P2x1 such that P1∪P2 is the boundary
of fj and Q1∪Q2 is the boundary of fi+1. Either the side S1 of C ′, which does not contain
x1, or the side S2 of C ′′, which does not contain x2 is a finite component of G. If S1 is
finite, consider the first twist-graph (see definition 2.6.3) of S1 along C ′. This leads to
a finite, cubic, planar graph H of girth ≥ 6. Since every edge belongs to two faces and
every face consists of at least six edges, |F (H)| ≤ 3|E(H)|. Furthermore H is cubic, which
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4.1. Tessellations and symmetry groups

means |E(H)| = 6|V (H)|. Together with Euler’s formula |V (H)| − |E(H)|+ |F (H)| = 2,
this is a contradiction. If S2 is finite, the twist-graph of S2 along C ′′ gives the same
contradiction.

Assume that for some k 6= j : fk = fj . Then there are two edges y1y2 and y2y3 in
fk ∩Di−1. Suppose that y1, y2, y3, y4 lie on Di−1 in this order. Consider the cycle C, such
that C = y2Py3Qy2 and Q is a subpath of Di−1, P is a subpath of the boundary of fk.
Since no face in Ri shares three subsequent edges e1, e2, e3 with faces in Ri−1 and the
girth of G is ≥ 6, both sides of C are non-empty. One of the sides of C contains a finite
component S of G. The twist-graph of S along C is a cubic, planar graph with girth ≥ 6.
Again, this is a contradiction.

Assume that fj and fk share an edge e = x1x2, where j 6≡ i+ 1 mod n. Consider
the edges y1y2 of fj ∩ Di−1 and y3y4 of fk ∩ Di−1. Let C be a cycle in G, such that
C = x1P1y3Qy2P2x1 and Q is a subpath of Di−1, P2 is a subpath of the boundary of fj ,
P1 is a subpath of the boundary of fk. Because of the same argument given above, this
leads to a contradiction.

Hence, the boundary of
⋃
Ri consists of two cycles Ci and Di and all conditions of the

induction are satisfied. This is also true for R1, which provides the induction basis.

Therefore, the sequence R0, R1, . . . , Ri−1 exists as claimed. This fact can be used to
construct a double ray T spanning G.

Every vertex v ∈ G lies on Di for some i ≥ 0. Call a vertex v ∈ Di good if v is adjacent to
some vertex w ∈ Di+1. Otherwise, v is adjacent to some vertex w ∈ Di−1 and v is called
bad.

Assume that v and w are adjacent vertices on Di and both v and w are bad. Then a face
f of Ri exists, such that Ri ∩ Di = vw. Since E(f ∩ Di−1) ≤ 2, the boundary of f is a
cycle of length ≤ 5. This is a contradiction. Hence, the neighbour vertices on Di of a bad
vertex are always good.

Start with a path T0 spanning D0. Note that all vertices of T0 are good. Let pi, qi be the
endvertices of Ti. Let p′i and q

′
i be the unique vertices of Di+1 that are adjacent to pi and

qi respectively. Both p′i and q
′
i are bad. Consider the disjoint subpaths Pi and Qi of Di+1,

such that

• V (Pi) ∪ V (Qi) = V (Di+1),

• Pi has endvertices p′i and q′′i ,

• Qi has endvertices q′i and p′′i ,

• p′ip′′i is an edge of Di+1,

• q′iq′′i is an edge of Di+1.

Then
Ti+1 = q′′i Pip

′
ipiTiqiq

′
iQip

′′
i

is a path spanning
⋃
j≤i+1Dj with good endvertices pi+1 = p′′i and qi+1 = q′′i .
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4. Finite and one-ended graphs

Finally, D =
⋃
j≥0 Pj is a spanning double ray of G. �

Remark. Consider one side F of the Hamilton circle in the aforementioned proof. Then
F is the union of faces g1, g2, g3, . . ., such that gi and gi+1 intersect in exactly one edge
and gi ∩ gj = ∅ if j 6= i ± 1. This fact is important for the construction of a Hamilton
circle in the twist-amalgamation of G. See lemma 5.2.1 for details.

Corollary 4.1.6. Let q ∈ N, with q ≥ 6 and letG be the (graph of the) regular tessellation
{q, 3} of the Euclidean or hyperbolic plane. Then G is Hamiltonian.

Corollary 4.1.7. G = Cay([3, 6]+) = Cay
〈
S, T | S6, T 2, (ST )3

〉
is Hamiltonian.

Proof. G can be embedded as the regular tessellation {6, 3}. �

Lemma 4.1.8. Let p, q ∈ N, such that (p − 2)(q − 2) > 4. Then G = Cay([p, q]) is
Hamiltonian.

Proof. G can be embedded as the semi-regular tessellation of the hyperbolic plane, where
a 2q-gon, a 2p-gon and a square meet at each vertex. G is connected, locally finite and
one-ended. Let R be the collection of squares in G and C the collection of 2p-gons in G.
Then the requirements for lemma 4.1.4 are satisfied. Hence, G is Hamiltonian. �

Lemma 4.1.9 ( [DJW95, theorem 8.3]). Let q ∈ N, with q ≥ 7 and let G be the
(graph of the) regular tessellation {q, 3} of the hyperbolic plane. Then G is Hamiltonian.

Lemma 4.1.10 ( [DJW95, theorem 6.2]). Let p, q ∈ N, with (p − 2)(q − 2) > 4 and
q ≥ 4. Then

G = Cay([p, q]+) = Cay
〈
S, T | Sq, T 2, (ST )p

〉
is Hamiltonian.

Dunham et. al start with G as the tessellation of the hyperbolic plane with two 2p-gons
and one q-gon at each vertex. After contracting all edges of q-gons the regular tessellation
{p, q} is obtained. In this tessellation, a set P = {P1, P2, P3, . . .} of p-gons is determined,
such that

• the union of the p-gons in P contains all vertices of the tessellation,

• Pi and Pi+1 intersect in exactly one vertex for i ≥ 0.

I is defined as the union of all q-gons of G together with the 2p-gons corresponding to the
p-gons in P . Then the boundary C of I is a Hamilton circle of G.

Remarks.

• One side of C contains all q-gons. This fact will be used in lemma 5.2.2, which is an
important argument to prove the Hamiltonicity of the twist-amalgamation of G.

• Note that Dunham’s construction only works if q ≥ 4. Otherwise there is no such
set P of polygons in the tessellation as required in his proof.
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4.1. Tessellations and symmetry groups

To get rid of this restriction, a construction for the case q = 3 is provided here.

Lemma 4.1.11. Let p, q ∈ N, with (p− 2)(q − 2) > 4. Then

G = Cay([p, q]+) = Cay
〈
S, T | Sq, T 2, (ST )p

〉
is Hamiltonian.

Proof. If q > 3, apply lemma 4.1.10. Now consider q = 3.

Embed G as the tessellation with two 2p-gons and one q-gon at each vertex. Contract all
edges of q-gons to obtain the regular tessellation G′ = {p, q}. According to lemma 4.1.5,
G′ is Hamiltonian.

When decontracting the triangles to transform G′ into G, the Hamilton circle C ′ of G′

can be transformed into a Hamilton circle C of G.

Consider an arbitrarily chosen triangle t of G. This triangle t is contracted to a vertex vt
of G′, which lies on the Hamilton circle C ′. Let vs ∈ G′ and vu ∈ G′ be the neighbours of
vt on C ′ and s and u the triangles of G corresponding to vs and vu. Let s1, s2, s3 ∈ V (G)
be the vertices of s and t1, t2, t3 ∈ V (G) the vertices of t and u1, u2, u3 ∈ V (G) the vertices
of u, such that t1 is adjacent to s1 and t2 is adjacent to u1.

When decontracting the vertex vt to a triangle t, replace the subpath stu of C ′ in G′ by
the path s1t1t3t2u1. The resulting subgraph is still a Hamilton circle.

Perform the same decontractions for all vertices of G′ to obtain a Hamilton circle C of
G. �

Lemma 4.1.12 ( [DJW95, theorem 3.2]). Let p, q ∈ N, with (p− 2)(q − 2) > 4. The
graph

G = Cay([p, q]) = Cay
〈
R1, R2, R3 | R2

1, R
2
2, R

2
3, (R1R2)

p, (R1R3)
2, (R2R3)

q
〉
,

where (p− 2)(q − 2) > 4, is Hamiltonian.

Proof. G is a semi-regular tessellation of the hyperbolic plane with one square, one 2p-
gon and one 2q-gon meeting at each vertex. Let C be the collection of 2p-gons and R
the collection of squares. Then the requirements of lemma 4.1.4 are satisfied and G is
Hamiltonian. �

Proposition 4.1.13. G = Cay([6, 3]+) = Cay
〈
S, T | S3, T 2, (ST )6

〉
is Hamiltonian.

Proof. G can be embedded as the semi-regular tessellation of the Euclidean plane con-
sisting of dodecagons and triangles. In each vertex, two dodecagons and one triangle
intersect. By contracting the edges of all triangles, a new graph G′ is obtained. G′ is
a regular tessellation of the plane with hexagons. According to lemma 4.1.7, G′ has a
Hamilton circle C ′.

The decontraction of the triangles to transform G′ into G is done in the same way as in
the proof of lemma 4.1.11 to obtain a Hamilton C of G. �
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4. Finite and one-ended graphs

(a) G = Cay
〈
a, b | b2, a2b

〉
. (b) G = Cay

〈
b, c, d | b2, c2, d2, bcd

〉
.

Figure 4.1.: The tetrahedral graph.

Proposition 4.1.14. G = Cay([4, 4]+) = Cay
〈
S, T | S4, T 2, (ST )8

〉
is Hamiltonian.

Proof. G can be embedded as the semi-regular tessellation of the Euclidean plane con-
sisting of squares and octagons (two octagons and one square meet at each vertex). If we
contract the edges of all squares of G, the resulting graph G′ is a regular tessellation of
the plane with squares.

Let S be an arbitrary square of G′ and C0 = {S}. Define a sequence

Ci = {T |T is a square of G′ and
⋃
Ci−1 ∩ T ⊆ V (G′)}

and consider
C′ =

⋃
i≥0

Ci.

C′ is a collection of squares in G′. Let C′ be the collection of octagons of G corresponding
to the squares of G′ in C and R be the collection of all squares of G. The sets C and R
satisfy the requirements of lemma 4.1.4. See figure 5.5(a) for an outline of the resulting
Hamilton circle. �

Remark. The aforementioned construction ensures that the Hamilton circle of G uses ex-
actly two non-adjacent edges of every square ofG. Therefore, the conditions of lemma 5.2.1
are fulfilled. This allows to prove that the twist-amalgamation of G is also Hamiltonian.

Corollary 4.1.15. The Cayley graphs

G1 = Cay([2, 4, 4]+) = Cay
〈
R,S, T | R2, S4, T 4

〉
,

G2 = Cay([4, 4]) = Cay
〈
R1, R2, R3 | R2

1, R
2
2, R

2
3, (R1R2)

4, (R1R3)
2, (R2R3)

q
〉

are Hamiltonian.

Proof. Consider G = Cay([4, 4]+) = Cay
〈
S, T | S4, T 2, (ST )8

〉
. Then G ∼= G1

∼= G2,
because all of these graphs can be embedded as semi-regular tessellations of the Euclidean
plane where two octagons and one square meet at each vertex. G is Hamiltonian according
to proposition 4.1.14. �
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4.2. Graphs with two generators
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G = Cay
〈
a, b | b2, an, (aba−1b)m

〉
, n ≥ 3,m ≥ 1

G is Hamiltonian, see proposition 4.2.1.

G = Cay
〈
a, b | b2, an, (ab)m

〉
, n ≥ 3,m ≥ 2

G is Hamiltonian, see proposition 4.2.2.

G = Cay
〈
a, b | b2, (a2b)m

〉
,m ≥ 2,

G is Hamiltonian, see proposition 4.2.3.

G = Cay
〈
a, b | b2, (a2ba−2b)m

〉
,m ≥ 1

G is Hamiltonian, see proposition 4.2.4.

Table 4.1.: The finite or one-ended cubic planar Cayley graphs with 2 generators.

4.2. Graphs with two generators

Proposition 4.2.1. Every graph G = Cay
〈
a, b | b2, an, (ab)m

〉
, n ≥ 3,m ≥ 2, is Hamil-

tonian.

Proof. G is the Cayley graph of the rotation subgroup [m,n]+ (see definition 4.1.3).

If (n− 2)(m− 2) < 4, the group [m,n]+ is finite and has order

4nm

4− (n− 2)(m− 2)
.

All choices of (n,m) which result in finite groups are listed in table 4.2. Unless m = 2,
the order of [m,n]+ is an element of {12, 24, 60}. Cayley graphs on groups of these orders
are Hamiltonian (see section 2.7). The case (n,m) = (n, 2), n ≥ 3 leads to the k-prism
graph which contains an−1ban−1b as a Hamilton cycle. All finite graphs of this type are
shown in figure 4.2 with their Hamilton cycles boldly dashed.

If (n−2)(m−2) = 4, the group [m,n]+ is infinite and G can be embedded as a semi-regular
tessellation of the Euclidean plane. There are only three possible choices of (n,m):
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4. Finite and one-ended graphs

n m |G| Hamilton cycle

n ≥ 3 2 2n (an−1b)2

3 3 12 (a2ba−2b)2

3 4 24 ((a2b)2(a−2b)2)2

3 5 60 ((a2b)3(a−2b)3(a2ba−2b)2)2

4 3 24 (a3ba−3b)3

5 3 60 a4ba−1ba2b(a−1bab)3a−2baba−4ba−1b(a−2b)3a2ba−2b(a2b)3ab

Table 4.2.: The finite cases of G = Cay
〈
a, b | b2, an, (ab)m

〉
, n ≥ 3,m ≥ 2.

• (n,m) = (3, 6) leads to the regular tessellations of the Euclidean plane with hexa-
gons. G is Hamiltonian according to corollary 4.1.7. Figure 5.7 depicts a part of the
Hamilton circle.

• (n,m) = (4, 4) gives a semi-regular tessellation with squares and octagons which is
Hamiltonian according to proposition 4.1.14.

• (n,m) = (6, 3) results in a semi-regular tessellation with triangles and dodecagons.
G is Hamiltonian, see proposition 4.1.13.

If (n−2)(m−2) > 4, the group [m,n]+ is infinite and G can be embedded as a semi-regular
tessellation of the hyperbolic plane. The conditions of lemma 4.1.11 are satisfied and G is
Hamiltonian. �

Proposition 4.2.2. Every graph G = Cay
〈
a, b | b2, an, (aba−1b)m

〉
, n ≥ 3,m ≥ 1, is

Hamiltonian.

Proof. G can be embedded as a semi-regular tessellation of the sphere, Euclidean plane
or hyperbolic plane, depending on the values of m,n. In each vertex, two 4m-gons and
one n-gon intersect. Hence, G is isomorphic to the Cayley graph of the group [2m,n]+ and
G ∼= Cay

〈
a, b | b2, an, (ab)2m

〉
. The Hamiltonicity of G follows from proposition 4.2.1. �

Proposition 4.2.3. Every graph G = Cay
〈
a, b | b2, (a2b)m

〉
,m ≥ 1, is Hamiltonian.

Proof. G can be embedded as the regular tessellation {3m, 3} (see definition 4.1.1).

If m = 1, this is the tetrahedral graph (see figure 4.1) and therefore Hamiltonian.

The case m = 2 results in the hexagonal tiling of the Euclidean plane If m ≥ 3, G
tessellates the hyperbolic plane.

G is Hamiltonian according to corollary 4.1.6. �

Proposition 4.2.4. Every graph G = Cay
〈
a, b | b2, (a2ba−2b)m

〉
,m ≥ 1, is Hamiltonian.

Proof. G can be embedded as the regular tessellation {6m, 3} and contains a Hamilton
circle, see corollary 4.1.6. �
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4.3. Graphs with three generators

(a) m = 2 (b) n = 3,m = 3 (c) n = 3,m = 4 (d) n = 4,m = 3

(e) n = 3,m = 5 (f) n = 5,m = 3

Figure 4.2.: Finite cases of G = Cay
〈
a, b | b2, an, (ab)m

〉
, n ≥ 3,m ≥ 2.

4.3. Graphs with three generators

Proposition 4.3.1. Every graph G = Cay
〈
b, c, d | b2, c2, d2, (bcd)n

〉
, n ≥ 1 is Hamilto-

nian.

Proof. G can be embedded as the regular tessellation {3n, 3} and is isomorphic to
Cay

〈
a, b | b2, (a2b)n

〉
. Depending on the values of n, G is the tetrahedral graph (fig-

ure 4.1), or a tessellation of the Euclidean or hyperbolic plane. In all cases, G has a
Hamilton circle, see proposition 4.2.3. �

Proposition 4.3.2. Every graph G = Cay
〈
b, c, d | b2, c2, d2, (cbcdbd)n

〉
, n ≥ 1 is Hamil-

tonian.

Proof. G can be embedded as the Euclidean or hyperbolic regular tessellation {6n, 3}.
It is isomorphic to Cay

〈
a, b | b2, (a2ba−2b)n

〉
and Hamiltonian, see proposition 4.2.4. �

Proposition 4.3.3. Every graph G = Cay
〈
b, c, d | b2, c2, d2, (bc)n, (bdcd)m

〉
with n ≥ 2,

m ≥ 1 is Hamiltonian.
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4. Finite and one-ended graphs
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G = Cay
〈
b, c, d | b2, c2, d2, (bcd)n

〉
, n ≥ 1

G is Hamiltonian, see proposition 4.3.1.

G = Cay
〈
b, c, d | b2, c2, d2, (cbcdbd)n

〉
, n ≥ 1

G is Hamiltonian, see proposition 4.3.2.

G = Cay
〈
b, c, d | b2, c2, d2, (bc)n, (bdcd)m

〉
, n ≥ 2,m ≥ 1

G is Hamiltonian, see proposition 4.3.3.

G = Cay
〈
b, c, d | b2, c2, d2, (bc)n, (cd)m, (db)p

〉
, n,m, p ≥ 2

G is Hamiltonian, see proposition 4.3.4.

Table 4.3.: The finite or one-ended cubic planar Cayley graphs with 3 generators.

Proof. G can be embedded as a semi-regular tessellation with two 4m-gons and one
2n-gon meeting at each vertex. It is the Cayley graph of [2m, 2n]+ and isomorphic to
Cay

〈
a, b | b2, a2n, (ab)2m

〉
, n ≥ 3,m ≥ 2. According to proposition 4.2.1, G is Hamilto-

nian. �

Proposition 4.3.4. Every graph G = Cay
〈
b, c, d | b2, c2, d2, (bc)n, (cd)m, (db)p

〉
, where

n,m, p ≥ 2 is Hamiltonian.

Proof. G is the Cayley graph of the hyperbolic rotation subgroup [p, q, r]+. Hence, G
can be embedded as the semi-regular tessellation with one 2p-gon, one 2q-gon and one
2r-gone meeting at each vertex.

The involutions b, c, d can be exchanged without altering the graph. That is why the
definition is symmetric in terms of m,n, p. Without loss of generality assume m ≤ n ≤ p.

If 1
m + 1

n + 1
p > 1, a tessellation of the sphere and hence a finite graph is obtained. This
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4.3. Graphs with three generators

(a) n = 2,m = 3, p = 3. (b) n = 2,m = 3, p = 4.

(c) n =
m = 2.

(d) n = 2,m = 3, p = 5.

Figure 4.3.: Finite cases of G = Cay
〈
b, c, d | b2, c2, d2, (bc)n, (cd)m, (db)p

〉
.

leads to the (up to permutation of m,n, p) unique finite cases

(m,n, p) ∈ {(2, 2, p ≥ 2), (2, 3, 3), (2, 3, 4), (2, 3, 5)},

see table 4.4. If (m,n, p) = (2, 2, p ≥ 2), G is the 2p-prism graph which contains
a2p−1ba2p−1b as a Hamilton cycle. All other finite graphs of this type are also Hamil-
tonian, see figure 4.3. The Hamilton cycles are boldly dashed in this picture.

If 1
m + 1

n + 1
p = 1, G is a semi-regular Euclidean tessellation. This is the case, if

(m,n, p) ∈ {(2, 3, 6), (2, 4, 4), (3, 3, 3)}.

• (m,n, p) = (2, 3, 6) results in a semi-regular tessellation of the Euclidean plane with
squares, hexagons and dodecagons. In this case,

G = Cay
〈
b, c, d | b2, c2, d2, (bc)2, (cd)3, (db)6

〉
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4. Finite and one-ended graphs

n m p |G| Hamilton cycle

2 2 p ≥ 2 4p (c(db)p−1d)2

2 3 3 24 (cdbd)2bd(cd)2bdcd(bd)2cd
2 3 4 48 dc(dcdb)3dbdc(db)3dcd(cdbd)3bdc(db)3

2 3 5 120 cb(cbcd)4cdcbcdc(bcdcbc)4dcb(cd)4cbc(bcdc)4dcb(cdcbcd)4

(cd)2cb(cd)4

Table 4.4.: The finite cases of G = Cay
〈
b, c, d | b2, c2, d2, (bc)n, (cd)m, (db)p

〉
.

is the Cayley graph of the Euclidean symmetry group [3, 6], which is Hamiltonian
due to lemma 4.1.12.

• (m,n, p) = (2, 4, 4) yields a semi-regular tessellation of the Euclidean plane with
squares, hexagons and dodecagons.

G = Cay
〈
b, c, d | b2, c2, d2, (bc)2, (cd)4, (db)4

〉
is the Cayley graph of the Euclidean symmetry group [4, 4], which is Hamiltonian
due to corollary 4.1.15.

• (m,n, p) = (3, 3, 3) results in the hexagonal tiling {6, 3} of the Euclidean plane.

G = Cay
〈
b, c, d | b2, c2, d2, (bc)3, (cd)3, (db)3

〉
can be embedded as the regular tessellation {6, 3}, which is Hamiltonian according
to corollary 4.1.6.

If 1
m + 1

n + 1
p < 1, G is a semi-regular hyperbolic tessellation.

Consider n = 2 first. In this case, G is a tessellation with one square, one 2m-gon and
one 2p-gon meeting in each vertex. Moreover,

1

m
+

1

2
+

1

p
< 1

⇔ mp− 2m− 2p > 0

⇔ (p− 2)(m− 2) > 4

Hence, G is isomorphic to the Cayley graph of the hyperbolic symmetry group [m, p].
According to lemma 4.1.12, G contains a Hamilton circle.

Now consider the case n ≥ 3. The girth of G is greater or equal to 6. From lemma 4.1.5
the Hamiltonicity of G follows. �
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CHAPTER 5

Multi-ended graphs of connectivity 3

Georgakopoulos describes 18 different types of 3-connected multi-ended graphs. The six
types which have two generators are two-ended graphs (section 5.1) or twist-amalgama-
tions (section 5.2) or twist-squeeze-amalgamations (section 5.3).

The multi-ended graphs generated by three involutions are difficult to handle so we provide
only some results for special cases which follow from the considered graphs with two
generators.

5.1. Two-ended graphs of connectivity 3 with 2 generators

Among the cubic planar Cayley graphs of connectivity 3 with 2 generators, there are only
two classes consisting completely of two-ended graphs, namely

• G = Cay
〈
a, b | b2, (a2b)2, (ab)2m

〉
, m ≥ 2,

• G = Cay
〈
a, b | b2, a2ba−2b, (baba−1)m

〉
, m ≥ 2.

All of those are Hamiltonian, which is proved in the two propositions of this chapter.

Theorem 5.1.1. Let G be a cubic planar Cayley graphs of connectivity 3 with 2 gener-
ators. Then G has a Hamilton circle.

Proposition 5.1.2. Every graph G = Cay
〈
a, b | b2, (a2b)2, (ab)2m

〉
, m ≥ 2, is Hamilto-

nian.
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5. Multi-ended graphs of connectivity 3

Proof. Choose an arbitrary vertex v ∈ V (G) and let

x = vb, y = va−2, z = yb.

For m ≥ 3, define two double-rays P,Q

P = . . . (ba)2m−4(baba−1)2 b︸︷︷︸
vx

a(ba)2m−5(baba−1)2 . . . =
(

(ba)2(m−2)(baba−1)2
)∞

,

Q = . . . (ba)2m−4(baba−1)2 b︸︷︷︸
yz

a(ba)2m−5(baba−1)2 . . . =
(

(ba)2(m−2)(baba−1)2
)∞

,

by their arc-colors such that P contains vx as a b-edge and Q contains yz as a b-edge. For
m = 2, let

P = . . . (baba−1)2 b︸︷︷︸
vx

aba−1baba−1(baba−1)2 . . . =
(
(baba−1)2

)∞
,

Q = . . . (baba−1)2 b︸︷︷︸
yz

aba−1baba−1(baba−1)2 . . . =
(
(baba−1)2

)∞
.

Now it is easy to see that

• P and Q are disjoint,

• V (P ∪Q) = V (G),

• P connects the two ends ω1, ω2 of G,

• Q connects ω1 and ω2,

• P ∪Q is a Hamilton circle in |G|.
In figure 5.1 the Hamilton circle is black and dashed, a is paleblue and b is red. �

Proposition 5.1.3. Every graph G = Cay
〈
a, b | b2, a2ba−2b, (baba−1)m

〉
, m ≥ 2, is

Hamiltonian.

Proof. Similar to the graphs considered in proposition 5.1.2, the faces of G are bounded
by cycles consisting of 4 a-edges and 2 b-edges and the structure of the graphs is identical.
The only difference between G and H = Cay

〈
a, b | (a2b)2, (ab)2m

〉
is the direction of some

a-colored arcs. Every vertex of G can be represented as a reduced word of the form

x = ak0bak1bak2b · · · akn−1bakn , n ∈ N0, k0, kn ∈ Z, ∀ 1 ≤ i ≤ n− 1 : ki ∈ Z \ {0}.

The function

φ : V (G)→ V (H);

φ(x) = φ(ak0bak1bak2b · · · akn−1bakn) = ak0ba−k1bak2ba−k3 · · · a(−1)n−1kn−1ba(−1)
nkn

is a graph-isomorphism between G and H. According to proposition 5.1.2, H is Hamilto-
nian. Therefore, G is also Hamiltonian. �
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5.2. Twist-amalgamations

v

y

x

z

Figure 5.1.: A Hamilton circle in G = Cay
〈
a, b | b2, (a2b)2, (ab)2m

〉
, m ≥ 2.

5.2. Twist-amalgamations

Definition 2.6.3 specifies how the application of the twist-amalgamation on finite or one-
ended graphs yields multi-ended graphs. The twist-amalgamation of a graph

G = Cay
〈
a, b | b2, an, (ab)m

〉
, n ≥ 3, m ≥ 2

(see proposition 4.2.1) is

G∞ = Cay
〈
a, b | b2, a2n, (a2b)m

〉
, n ≥ 3, m ≥ 2.

In theorem 5.2.8 it will be proved that G∞ is Hamiltonian for all n ≥ 3, m ≥ 2.

To describe the construction of a Hamilton circle in G∞ consider the case n = 3 first.
Start with a Hamilton circle C0 in G = G0, which exists according to proposition 4.2.1. In
every step, a copy of G is embedded inside every a-colored triangle of Gk to obtain Gk+1.
The Hamilton circle Ck of Gk can be transformed into a Hamilton circle Ck+1 of Gk+1 as
explained below. By induction, Gk is Hamiltonian for every k ≥ 0.

Obviously, Ck uses exactly two edges of every a-colored triangle in Gk. Hence, ba2b or
ba−2b is a subpath of Ck. W.l.o.g. let Ck = ba2bP (if necessary, reverse the orientation in
Ck), where P is a subarc of Ck and a2 are the edges of a triangle, see figure 5.2(a). Let
C0 = ba2bP ′.

Transform the Hamilton cycle Ck = ba2bP to babP ′ba3bP. This yields again a Hamilton
circle as depicted in figure 5.2(b). Apply this transformation in every triangle of Gk to
obtain a Hamilton circle Ck+1 of Gk+1.
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5. Multi-ended graphs of connectivity 3

P

(a) The Hamilton circle Ck.

P

P ′

(b) The Hamilton circle after em-
bedding G in the blue triangle.

Figure 5.2.: The transition in the twist-graph construction for the case n = 3.

Now consider the limit graph C∞ which is a subset of G∞. It is clear that

• C∞ visits all vertices of G∞,

• C∞ is connected (it meets every finite vertex cut),

• every vertex of C∞ has degree 2.

There may be two different types of ends in C∞. If G is a finite graph, all ends are obtained
by repeated application of the twist operation. If G is one-ended, there are additional ends
which correspond to the ends of copies of G that are used in the construction.

By lemma 2.5.8, in order to show that C∞ is a Hamilton circle we need to check that every
end ω of G∞ has degree 2 in C∞. If ω is one of the ends of copies of G, then this follows
easily from the fact that C0 is a Hamilton circle of G and therefore ω has degree 2 in C0.
For an end ω that is not of this kind, note that there is a basis of open neighbourhoods of
ω, each of which is separated by the three b edges incident with a subdivided triangle as
in figure 5.2(b) on one of its sides. Since C∞ always uses 2 of the three edges from such a
cut, it follows that ω has degree 2 in C∞ as desired.

Lemma 5.2.1. Let H = Cay
〈
a, b | b2, an, (ab)m

〉
, n ≥ 3, m ≥ 2. Then H has a Hamil-

ton circle D, such that for every a-colored cycle C of H, either

• D uses exactly n− 1 edges of C, or

• D uses exactly n− 2 edges of C and the two unused edges are non-adjacent.

Proof. Consider the case n = 3 first. The a-colored cycles of H are triangles. Since H
is a cubic graph and D is a Hamilton circle, D uses exactly two edges of every triangle C.
For the rest of the proof, let n ≥ 4.

• If (n − 2)(m − 2) < 4, H is a finite graph and the a-colored cycles are of length n.
In figure 4.2, all finite graphs of this type are displayed with their Hamilton cycle
dashed. It may be checked that the requirements are fulfilled.

• If (n−2)(m−2) = 4, embed H as a semi-regular tessellation of the Euclidean plane.
The possible pairs of values of (n,m) are (6, 3), (4, 4).

56



5.2. Twist-amalgamations

? The first case (n,m) = (6, 3) leads to a regular tessellation {6, 3}. According
to lemma 4.1.5 this gives a Hamiltonian graph. The conditions of lemma 5.2.1
are satisfied (see the remark after the proof of lemma 4.1.5).

? The case (n,m) = (4, 4) results in a tessellation with squares and octagons.
Proposition 4.1.14 shows that G has a Hamilton circle D. According to the
remark after that proposition, D has the required form.

• If (n−2)(m−2) > 4, embed H as a semi-regular tessellation of the hyperbolic plane.
Since n ≥ 4, the construction of a Hamilton circle in G is outlined in lemma 4.1.10.
Again, the resulting Hamilton circle meets the requirements. �

P

(a) The Hamilton circle Ck.

P

P ′

(b) The Hamilton circle after
embedding H in the blue cycle.

Figure 5.3.: The transition in the twist-graph construction if Ck uses n− 1 edges of C.

Lemma 5.2.2. Let

H = Cay
〈
a, b | b2, an, (ab)m

〉
, n ≥ 3, m ≥ 2, (n,m) /∈ {(4, 4), (5, 3), (6, 3)}.

Then H has a Hamilton circle D, such that either

• D uses exactly n− 1 edges of every a-colored cycle, or

• one side of D contains (the interior of) all a-colored cycles.

Proof. For n = 3 or (n− 2)(m− 2) < 4, the argument remains the same as in the proof
of lemma 5.2.1.

The only remaining case is (n− 2)(m− 2) > 4 and n ≥ 4, which results in a semi-regular
tessellation of the hyperbolic plane. Lemma 4.1.10 ensures the existence of a Hamilton
circle D, such that one side of D contains all a-colored cycles (see the remark after the
proof of this lemma). �

Theorem 5.2.3. Let H = Cay
〈
a, b | b2, an, (ab)m

〉
, n ≥ 3, m ≥ 2 and k ∈ N. Then the

k-th twist-graph Hk is Hamiltonian.
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5. Multi-ended graphs of connectivity 3

Proof. In every step of the construction of Hk, a copy of H is embedded inside every a-
colored cycle of the graph. Throughout the following proof it is described how a Hamilton
circle Ck in Hk can be transformed to yield a Hamilton circle Ck+1 in Hk+1 for k ≥ 0.

Start with a Hamilton circle C0 in H = H0. In every step, the Hamilton circle Ck satisfies
the conditions of lemma 5.2.1 and if (n,m) /∈ {(4, 4), (5, 3), (6, 3)}, the requirements of
lemma 5.2.2 are also fulfilled. By induction it holds true that Hk has a Hamilton circle
for every k ≥ 0.

Consider an a-colored cycle C of Hk. Then Ck uses either exactly n− 1 edges or exactly
n− 2 edges of C.

• If Ck uses n − 1 edges of C, it can be expressed as Ck = ban−1bP, where P is a
subarc of Ck and an−1 is a subpath of both C and Ck (see figure 5.3(a)).

Let D be a Hamilton cycle in H, such that D = ban−1bP ′, where P ′ is a subarc of D.
The existence of such a cycle D is trivial for k = 0 and follows from the subsequent
construction for other values of k. Replace Ck = ban−1bP by ba2n−3bP ′ba−1bP
to obtain a Hamilton circle in the graph Hk with H embedded inside C (see fig-
ure 5.3(b)).

• If Ck uses n−2 edges of C, it can be expressed as Ck = baibQbajbP, where i+j = n−2
and P and Q are subarcs of Ck and ai and aj are subpaths of C (see figure 5.4(a)).

Let D be a Hamilton cycle in H, such that D = baibQ′bajbP ′, where P ′ and Q′ are
subarcs of D and ai and aj are subpaths of the same a-cycle. The existence of such a
cycleD is trivial for k = 0 and follows from the subsequent construction for other val-
ues of k. Replace Ck = baibQbajbP by ba2i−1bQ′ba−1bQba2j−1bP ′ba−1bP to obtain
a Hamilton circle in the graph Hk with H embedded inside C (see figure 5.4(b)).

P

Q

(a) The Hamilton circle Ck.

P

Q

P ′

Q ′

(b) The Hamilton circle after
embedding H inside C.

Figure 5.4.: The transition in the twist-graph construction if Ck uses n− 2 edges of C.
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5.2. Twist-amalgamations

Repeat these transformations for all a-cycles of Ck to get a Hamilton circle Ck+1 ofHk+1.�

Corollary 5.2.4. Every graph

G = Cay
〈
a, b | b2, a2n, (a2b)m

〉
, n ≥ 3, m ≥ 2, (n,m) /∈ {(4, 4), (5, 3), (6, 3)}

is Hamiltonian.

Proof. G is the twist-amalgamation H∞ of H = Cay
〈
a, b | b2, an, (ab)m

〉
. For every

k ≥ 0 the Hamilton circle Ck of Hk is constructed as in theorem 5.2.3. The most difficult
part is to prove that all ends of C∞ have degree 2.

Every end ω which is an end of a copy of H has degree 2, since D is a Hamilton circle
of H and ω has degree 2 in D. In the rest of the proof we only consider ends which are
obtained by repeated application of the twist operation.

If the Hamilton circle D uses exactly n − 1 edges of every a-colored circle of H, all
transitions are of the type shown in figure 5.3. In this case, P ′ is connected only by two
edges to the a-colored cycle C (and hence to the rest of the graph). All faces incident with
C are bounded by alternately-colored cycles. Since the alternately-colored circles remain
unchanged, the separation of the subgraph of Ck which lies inside C is preserved in all
further steps of the construction. Hence, C∞ uses only two of the b-colored edges incident
to C. Consider an arbitrarily chosen end ω of G (obtained by repeated application of the
twist operation). There is a base of open neighbourhoods of ω each of which is separated
by n b-colored edges incident with an a-colored circle. As a consequence of the facts
mentioned above, C∞ always uses two of the n edges from such a cut. Therefore ω has
degree 2 in C∞ as desired.

If D does not use exactly n − 1 edges of every a-colored circle of H, there may be two
different types of transitions, shown in figure 5.3 and figure 5.4. The first type of transitions
is the same as before, so we consider the transition depicted in figure 5.4. The paths P ′

and Q′ appear in the construction of Ck+1. P ′ and Q′ are lying inside an a-colored
circle C. It follows from lemma 5.2.2, that P ′ and Q′ do not visit any common a-colored
cycle. Therefore, P ′ and Q′ are separated by alternately-colored cycles. As before, all
faces incident with C are bounded by alternately-colored cycles and such cycles remain
unchanged in all further steps. This makes it easy to separate P ′ from Q′ and C (or to
separate Q′ from P ′ and C). C∞ always uses two edges of the corresponding cuts, namely
the edges connecting P ′ and C (or the edges connecting Q′ and C). As a result, ω has
degree 2 in C∞.

C∞ is a Hamilton circle of G, since

• C∞ visits all vertices of G∞,

• C∞ is connected (it meets every finite vertex cut),

• every vertex of C∞ has degree 2,

• every end of C∞ has degree 2. �
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5. Multi-ended graphs of connectivity 3

Remark. For (n,m) ∈ {(4, 4), (5, 3), (6, 3)} and the Hamilton circles of chapter 4 the
above construction does not yield a Hamilton circle C∞.

In H there exists an a-colored n-cycle C, so that the considered Hamilton circle D of H
uses n− 2 edges of C. Let D = baibQ0ba

jbP0, where ai and aj are subpaths of the same
a-cycle and i+j = n−2. Let p1, p2 be the endvertices of bP0b and q1, q2 be the endvertices
of bQ0b. As a consequence, there is an n-cycle F0, such that both P0 and Q0 contain at
least one edge of F0. Therefore, D uses exactly n− 2 edges of F0.

Applying one step of theorem 5.2.3 gives a Hamilton circle C1 of H1. By construction,
C1 contains subpaths P1 and Q1, such that p1, p2 are the endvertices of bP1b and q1, q2
are the endvertices of bQ1b and both P1 and Q1 contain an edge of a common a-colored
n-cycle F1. Repeated use of this approach shows that for all k ≥ 0 the Hamilton circle
Ck contains subpaths bPkb and bQkb with endvertices p1, p2 and q1, q2 respectively and Pk
and Qk being adjacent with the same a-colored n-cycle Fk.

As a result, the limit graph C∞ has at least one end with degree ≥ 4.

To obtain a Hamilton circle for (n,m) ∈ {(4, 4), (5, 3), (6, 3)}, it is necessary to modify the
construction, such that the situation mentioned above can be avoided.

Proposition 5.2.5. The graph G = Cay
〈
a, b | b2, a8, (a2b)4

〉
is Hamiltonian.

Proof. G is the twist-amalgamation of H = Cay
〈
a, b | b2, a4, (ab)4

〉
.

(a) The inner part of a Hamilton circle D1 in G. (b) A replacement for the inner part of D1.

Figure 5.5.: Two different Hamilton circles in G = Cay
〈
a, b | b2, a4, (ab)4

〉
.

Figure 5.5(a) shows the part of a Hamilton circle D1 in H that is created after 25 steps
of the instructions in the proof of lemma 4.1.4 (see [DJW95, theorem 3.1]).

Replace the part of D1 which is shown in figure 5.5(a) by the graph shown in figure 5.5(b)
and do not modify the other steps of the construction to obtain a Hamilton circle D of H.
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5.2. Twist-amalgamations

Consider the green-filled 4-cycle C in figure 5.5(b). The Hamilton circleD can be expressed
as D = babQbabP where the two a-edges belong to C. There is no a-colored 4-cycle F in
H such that both P and Q contain an edge of F .

Thus, applying the construction of theorem 5.2.3 and corollary 5.2.4 results in a Hamilton
circle of G. �

Proposition 5.2.6. The graph G = Cay
〈
a, b | b2, a10, (a2b)3

〉
is Hamiltonian.

Proof. G is the twist-amalgamation of H = Cay
〈
a, b | b2, a5, (ab)3

〉
. Figure 4.2(f) shows

a Hamilton circle D of H. We will apply the construction of theorem 5.2.3 with some
modifications.

Start with a Hamilton circle C0 in H = H0. In every step, the Hamilton circle Ck satisfies
the conditions of lemma 5.2.1

Consider an a-colored 5-cycle C of Hk. Then Ck uses either exactly 4 edges or exactly 3
edges of C.

• If Ck uses 4 edges of C, it can be expressed as Ck = ba4bP, where P is a subarc of
Ck and a4 is a subpath of both C and Ck. Let D be a Hamilton cycle in H, such
that D = ba4bP ′, where P ′ is a subarc of D. Replace Ck = ba4bP by ba7bP ′ba−1bP
to obtain a Hamilton circle in the graph Hk with H embedded inside C.

• If Ck uses 3 edges of C, it can be expressed as Ck = ba2bQbabP , where P and Q are
subarcs of Ck and a2 and a are subpaths of C. (see figure 5.6(a)).

Let D be a Hamilton cycle in H, such that D = ba2bQ′babP ′, where P ′ and Q′

are subarcs of D and a2 and a are subpaths of the same a-cycle. Replace Ck =
ba2bQbabP by ba−1bP ′ba2bQ′ba−1bQba2bP to obtain a Hamilton circle in the graph
Hk with H embedded inside C (see figure 5.6(b)).

P

Q

(a) The Hamilton circle Ck.

P

Q

P ′

Q ′

(b) The Hamilton circle after em-
bedding H in the blue cycle C.

Figure 5.6.: The transition in the twist-graph construction if (m,n) = (3, 5).

Repeat this transformation for all 5-cycles of Ck to get a Hamilton circle Ck+1 of Hk+1.
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5. Multi-ended graphs of connectivity 3

These modifications avoid the critical situation that leads to ends with degree ≥ 4 in C∞.
Consider a common a-colored cycle C ′ of the subpaths P ′ and Q′ of Ck for some k ≥ 0.
Let p1, p2 be the endpoints of bP ′b and q1, q2 be the endpoints of bQ′b.

By construction either P ′∩C or Q′∩C remains unchanged in Ck+1.W.l.o.g let R = P ′∩C
be the (unchanged) subpath of Ck+1. Since no other a-colored cycle than C ′ is adjacent
to R, the path R does not change in any further step. Hence, for all K > k there are no
subpaths bPKb, bQKb of CK with endpoints p1, p2 and q1, q2 respectively, such that PK
and QK are adjacent with a common a-colored n-cycle.

As in corollary 5.2.4, P ′ and Q′ are separated in the following steps. As a result, all ends
of C∞ have degree 2, so C∞ is a Hamilton cycle of G. �

Proposition 5.2.7. The graph G = Cay
〈
a, b | b2, a12, (a2b)3

〉
is Hamiltonian.

Proof. G is the twist-amalgamation of H = Cay
〈
a, b | b2, a6, (ab)3

〉
. We will apply the

construction of theorem 5.2.3 with some modifications. Start with a Hamilton circle C0

in H = H0 as constructed in lemma 4.1.5. In every step, the Hamilton circle Ck satisfies
the conditions of lemma 5.2.1. Furthermore, H contains two or three different types of
a-colored 6-cycles.

Consider one side F of the Hamilton circle C0 inH. F is the union of hexagons g0, g1, g2, . . .
and gi and gj intersect in exactly one edge if i = j ± 1 and are disjoint otherwise. If the
border of g0 is an a-colored 6-cycle C, then Ck uses 5 edges of C and C is of type 1. From
all other 6-cycles, Ck uses exactly 4 edges. Type 2 denotes those a-colored 6-cycles C,
through which Ck runs as shown in figure 5.8(a), type 3 is shown in figure 5.8(c). The
construction of C0 as described in lemma 4.1.5 yields 6-cycles of all three types, as can be
easily seen in figure 5.7.

1

3

2

Figure 5.7.: A part of the Hamilton circle C0 in H = Cay
〈
a, b | b2, a6, (ab)3

〉
.

Let C be an a-colored 6-cycle of Hk.

• If Ck uses 5 edges of C, it can be expressed as Ck = ba5bP (type 1). Let D be a
Hamilton cycle in H, such that D = ba5bP ′, where P ′ is a subarc of D. Replace
Ck = ba5bP by ba9bP ′ba−1bP to obtain a Hamilton circle in the graph Hk with H
embedded inside C.
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5.2. Twist-amalgamations

• If Ck uses 4 edges of C, it can be expressed as Ck = ba3bQbabP (figure 5.8(a),
type 2) or Ck = ba2bQba2bP (figure 5.8(c), type 3).

? If Ck = ba3bQbabP , let D = ba2bQ′ba2bP ′ be a Hamilton cycle in H, where
both a3 and a are subpaths of the same a-colored 6-cycle. Replace Ck by
ba−1bP ′ba4bQ′ba−1bQba2bP. The transition is depicted in the figures 5.8(a)
and 5.8(b).

? If Ck = ba2bQba2bP, let D = ba3bQ′babP ′ be a Hamilton cycle in H, where
both copies of a2 are subpaths of the same a-colored 6-cycle. Replace Ck by
ba−1bQ′ba2bP ′ba−1bQba4bP. The transition is depicted in the figures 5.8(c) and
5.8(d).

P

Q

(a) The Hamilton circle Ck = ba3bQbabP .

P

Q

P ′

Q ′

(b) The Hamilton circle after embed-
ding H inside C.

P

Q

(c) The Hamilton circle Ck = ba2bQba2bP .

P

Q

Q ′

P ′

(d) The Hamilton circle after embed-
ding H inside C.

Figure 5.8.: The transitions in the twist-graph construction if (m,n) = (3, 6).

Repeat this transformation for all 6-cycles of Ck to get a Hamilton circle Ck+1 of Hk+1.

Consider a common a-colored cycle C ′ of the subpaths P ′ and Q′ of Ck for some k ≥ 0. As
in the previous proposition either P ′ ∩ C or Q′ ∩ C remains unchanged in Ck+1. W.l.o.g
let R = P ′ ∩ C be the (unchanged) subpath of Ck+1. Since no other a-colored cycle than
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5. Multi-ended graphs of connectivity 3

C ′ is adjacent to R, the path R does not change in any further step. This assures that P ′

and Q′ are separated in the following steps and all ends have degree 2. �

Combining corollary 5.2.4 and the propositions 5.2.5, 5.2.6 and 5.2.7 yields the main result
of this section.

Theorem 5.2.8. Every graph G = Cay
〈
a, b | b2, a2n, (a2b)m

〉
, n ≥ 3, m ≥ 2 is Hamilto-

nian.

Corollary 5.2.9. The graphs

G1 = Cay
〈
a, b | b2, a2n, (a2ba−2b)m

〉
, n ≥ 3, m ≥ 1,

G2 = Cay
〈
b, c, d | b2, c2, d2, (bcd)m, (bc)n

〉
, n ≥ 3, m ≥ 2,

G3 = Cay
〈
b, c, d | b2, c2, d2, (bcdcbd)m, (bc)n

〉
, n ≥ 3, m ≥ 1

are Hamiltonian.

Proof. G1 is the twist-amalgamation H∞1 of

H1 = Cay
〈
a, b | b2, an, (aba−1b)m

〉
, n ≥ 3, m ≥ 1.

H1 is isomorphic to
H0 = Cay

〈
a, b | b2, an, (ab)2m

〉
,

see proposition 4.2.2. The twist-amalgamation G0 = H
∞
0 has a Hamilton circle. Hence,

G1 = H
∞
1
∼= H

∞
0 = G0 and G1 is Hamiltonian.

G2 and G3 are isomorphic to G0 and G1 if m,n are chosen suitably, see [Geo11a, theo-
rem 9.4]. �

5.3. Twist-squeeze-amalgamations

Proving the Hamiltonicity of twist-squeeze-amalgamations (see definition 2.6.4) is slightly
more complicated than in the case of twist-amalgamations.

The twist-squeeze-amalgamation of a graph

G = Cay
〈
a, b | b2, an, (ab)m

〉
, n ≥ 3, m ≥ 2

(see proposition 4.2.1) is

G∞ = Cay
〈
a, b | b2, (a2b)n, (ab)2m

〉
, n ≥ 3, m ≥ 2.

Consider the case (n,m) = (4, 2) first. As in section 5.2, start with a Hamilton circle
C0 in G = G0. In every step, a copy of G is embedded inside every 4-cycle of Gk with
alternating colors a, b to obtain Gk+1. Using the construction below, the Hamilton circle
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5.3. Twist-squeeze-amalgamations

Ck of Gk can be transformed into a Hamilton circle Ck+1 of Gk+1. By induction over k
the Hamiltonicity of Gk follows.

For all k ≥ 0 and every 4-cycle C of Gk with alternating colors a, b one of the following
conditions is satisfied (if necessary, reverse the orientation of Ck which means that a is
replaced by a−1 and vice versa).

1. Ck = aba−1baP, where P is a subarc of Ck and ba−1b is a subpath of C,

2. Ck = aaba−1a−1P, where P is a subarc of Ck and aba−1 is a subpath of C,

3. Ck = aaaPa−1a−1a−1Q, where P,Q are subarcs of Ck and a, a−1 are edges of C as
displayed in figure 5.10(c),

4. Ck = abaPabaQ, where P,Q are subarcs of Ck and the two b-edges lie on C,

It can be easily tested, that C0, as defined in proposition 4.2.1, fulfills these requirements
(see figure 5.9).

2

2

3 4

Figure 5.9.: The Hamilton circle C0 in G0 = Cay
〈
a, b | b2, a4, (ab)2

〉
.

For all cycles C of

• type 1, replace aba−1baP by aba−4ba−4baP (see figure 5.10(a)),

• type 2, replace aaba−1a−1P by a(ab)2a−3ba−3a−1P (see figure 5.10(b)),

• type 3, replace aaaPa−1a−1a−1Q by aa3ba3aPa−1a−1ba−1a−1Q (see figure 5.10(c)),

• type 4, replace abaPabaQ by aaba−1bab−1baaPabaQ (see figure 5.10(d)).

Apply this transformation to all 4-cycles C of Gk. The resulting graph Ck+1 is a Hamilton
circle of Gk+1. All of the 4-cycles of Gk+1 are one of the 4 types, as can be seen in
figure 5.10.

By induction Gk is Hamiltonian for all k ≥ 0.

Similarly to the arguments in the proofs of section 5.2, it follows that

• C∞ visits all vertices of G∞,

• C∞ is connected (it meets every finite vertex cut),
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1P

P 2 3 3

(a) Type 1.

2

P

P

4 2 3

(b) Type 2.

3

P

Q

P

Q

4 2 3

(c) Type 3.

P Q4

(2)

P Q

(3)

1 1 1

(d) Type 4.

Figure 5.10.: The transitions in the twist-squeeze-graph construction if (m,n) = (2, 4).

• every vertex of C∞ has degree 2,

• there is a basis B of open neighbourhoods for the topology of |G|, such that every
element of B is separated by exactly 4 edges from the rest of the graph, two of which
are contained in C∞. Therefore, every end of C∞ has degree 2.

Finally, C∞ is a Hamilton circle of G∞.

Remark. Depending on the order in which the 4-cycles C are considered and the replace-
ments are applied, different Hamilton circles Ck may be obtained.

Proposition 5.3.1. Every graph

G = Cay
〈
a, b | b2, (a2b)n, (ab)4

〉
, n ≥ 3, n ≡ 0 mod 2

is Hamiltonian.

Proof. G is the twist-squeeze-amalgamation of

H = Cay
〈
a, b | b2, an, (ab)2

〉
.

Start with a Hamilton circle C0 of H = H0. As in the previous case n = 4 there are the
same four different types of alternately-colored 4-cycles C in Hk and suitable transitions.
Thus we can repeat the operations of figure 5.10 to obtain a Hamilton circle Ck+1 of Hk+1.
Again, C∞ is a Hamilton circle in G = H∞. �

Now consider G = Cay
〈
a, b | b2, (a2b)3, (ab)4

〉
, that is the twist-squeeze-amalgamation of

H = Cay
〈
a, b | b2, a3, (ab)2

〉
, which is shown in figure 5.12(a). Applying similar transitions

as in proposition 5.3.1 causes some problems.
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5.3. Twist-squeeze-amalgamations

The Hamilton cycle C0 of H = H0 is unique up to isomorphism. One of the 4-cycles C
of H contains two b-edges which also lie on C0. Hence, C0 = abaPabaQ. If the outside
(containing P and Q) of C has to remain unchanged, the transition for the cycle C is also
unique: abaPabaQ is replaced by a6Pa6Q to obtain a Hamilton cycle in the graph which
embeds H in C. The transitions for the new 4-cycles inside C are not unique. In any case
they result in a 4-cycle D of H2, such that two b-edges of D lie on the Hamilton cycle C2.

This construction leads to a similar situation as in the remark after corollary 5.2.4. Two
loops of Ck converge to a common end as k goes towards infinity. This end has degree
≥ 4 and hence C∞ is no Hamilton circle of G.

To avoid those circumstances, the construction of a Hamilton circle in G is done the
other way around. Start with a 4-cycle of Hk, in which a copy of H is embedded (see
figure 5.11(a)). The course of the Hamilton circle (aba−1b)2is displayed as a dashed black
line. This configuration can be used as a module M1 to build new configurations one level
above (in Hk−1).

(a) The module M1.

M1

M1

(b) Two copies of M1

are combined to yield
M2.

(c) The module M2.

M2

M2

(d) Two copies of M2

are combined to yield
M3.

Figure 5.11.: The transitions in the twist-squeeze-graph construction if (m,n) = (2, 4).

The module M1 in figure 5.11(a) is used to construct a Hamilton cycle C1 = (aba−1b)6

in H1 (see figure 5.12) or to get a new module M2 = (aba−1b)5 (see figures 5.11(b)
and 5.11(c)). Since, viewed from the outside, M1 and M2 look identical, M2 can be used
to build a Hamilton cycle C2 = (aba−1b)15 inH2 or to construct a moduleM3 = (aba−1b)11

(see figure 5.11(d)).

After repeating the described steps k times, a new Hamilton cycle

Ck = (aba−1b)−3+9·(2k−1)

of Hk is obtained.

Note that the set of alternately-colored 4-cycles yields a basis B of open neighbourhoods
for the ends of G, such that every element of B is separated by exactly 4 edges from the
rest of the graph, of which two of these edges are contained in C∞. Therefore, every end
has degree 2 in C∞. Because in addition all vertices have degree 2 and C∞ is a connected
subspace that contains all vertices and ends of G, C∞ is a Hamilton circle in G.
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5. Multi-ended graphs of connectivity 3

M1M1

M1

(a) Three copies of M1 are combined to a
Hamilton cycle C1.

(b) The Hamilton cycle C1.

Figure 5.12.: The construction of a Hamilton circle C1 of H1.

Proposition 5.3.2. Every graph

G = Cay
〈
a, b | b2, (a2b)n, (ab)4

〉
, n ≥ 3, n ≡ 1 mod 2

is Hamiltonian.

Proof. G is the twist-squeeze-amalgamation of H = Cay
〈
a, b | b2, an, (ab)2

〉
.

The construction of a Hamilton circle in G is analogous to the above case n = 3. Start
with a 4-cycle of Hk, in which a copy of H is embedded. The course of the Hamilton circle
is (aba−1b)

n+1
2 . This module M1 can be used to build a Hamilton cycle

C1 = (aba−1b)
n2+n

2

in H1 or to build a new module M2 = (aba−1b)A(n,2) and further modules

Mk = (aba−1b)A(n,k)

where k ≥ 1. To calculate the exponent A(n, k), solve the recurrence

A(n, 1) =
n+ 1

2
,

A(n, k) = 1 + (n− 1)A(n, k − 1),

which gives the explicit representation

A(n, k) =
n(n− 1)k − 2

2(n− 2)
.

As before, the described construction leads to Hamilton cycles

Ck = (aba−1b)
n

n(n−1)k−2
2(n−2)

of Hk and finally to a Hamilton circle C∞ in G. �
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5.3. Twist-squeeze-amalgamations

The ideas of the propositions 5.3.1 and 5.3.2 also work for twist-squeeze-amalgamations
of infinite graphs. Choose (n,m) = (4, 4). The infinitely-ended graph

G = Cay
〈
a, b | b2, (a2b)4, (ab)8

〉
is the twist-squeeze-amalgamation of the one-ended graph

H = Cay
〈
a, b | b2, a4, (ab)4

〉
.

Proposition 5.3.3. The graph

G = Cay
〈
a, b | b2, (a2b)4, (ab)8

〉
,

is Hamiltonian.

Because the figures that are used in the following proof cover more than 10 pages, some
of them are contained in appendix A.

1 2 2 2 1

2 1 2 1 2

2 2 4 2 2

2 1 1 2 2

1 2 2 1

1 2 2 1

2 1 1 2

2 4 2 2

1 2 1 2

Figure 5.13.: A part of the Hamilton circle C0 in H = H0 = Cay
〈
a, b | b2, a4, (ab)4

〉
.

Proof. Start with a Hamilton circle C0 in H0 as outlined in figure 5.13 (see lemma 4.1.4).
As in proposition 5.3.1, embed a copy of H in every alternately-colored 8-cycle of Hk

to build Hk+1. Applying the transitions described below, the circle Ck in Hk will be
transformed into a Hamilton circle Ck+1 of Hk+1. By induction, Hk is Hamiltonian for
every k ≥ 0.

For all k ≥ 0, every alternately-colored 8-cycle C of Hk is of one of the ten types displayed
in figure 5.14. It can be easily examined that the Hamilton circle C0 contains only the
types 1, 2, 3 and 4 (see figure 5.13).
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5. Multi-ended graphs of connectivity 3

(a) Type 1. (b) Type 2. (c) Type 3. (d) Type 4.

(e) Type 5. (f) Type 6. (g) Type 7.

(h) Type 8. (i) Type 9. (j) Type 10.

Figure 5.14.: The ten different types of alternately-colored cycles C.

Consider an 8-cycle C of type 1 (figure 5.14(a) and figure A.1(a) in appendix A). To find a
suitable transition for the present Hamilton circle D when embedding a copy of H into C,
exchange the inside and outside of C. The graph H is now lying in the outside of C while
D is in the inside of C (see figure A.1(b)). As a next step, find suitable (infinite) paths
through H as outlined in figure A.1(c) to receive a new circle. Such paths through H are
shown in figure A.1(e). Since H is an infinite graph, not the full paths are shown in this
figure. The paths have to be extended to all vertices of H in a similar way as explained
in the proof of proposition 5.2.5, which is not a difficult task (extend the paths in the
manner of a spiral towards the outside). Now exchange inside and outside of C again to
yield a new Hamilton circle of the graph which embeds H into C (see figure A.1(d)).

Analogously, the transitions for the types 2–10 are shown in appendix A. Applying those
transitions for all 8-cycles of Hk, a Hamilton circle Ck+1 in Hk+1 is constructed.

Consider the limit graph C∞.
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5.3. Twist-squeeze-amalgamations

As in some other proofs of this chapter,

• C∞ visits all vertices of G∞,

• C∞ is connected (it meets every finite vertex cut),

• every vertex of C∞ has degree 2,

To argue why every end has degree 2 is more difficult than in the proofs before since the
transitions are more complex. Transitions like the types 2, 3, 4, 6, 7, 8, 9, 10 do not cause
problems, since they draw only one loop to the inside of a octagon. Type 1 draws two loops
to the inside, but those loops are separated in the following steps (as in proposition 5.2.6).
Type 5 draws four loops to the inside. They are also separated in the following steps
in the style of proposition 5.2.6. As a result, any (standard subspace) neighbourhood of
an arbitrary end is connected by exactly two edges to the remaining graph and therefore
every end of C∞ has degree 2. Thus, C∞ is a Hamilton circle of G. �

The results of section 5.3 are combined in the following theorem.

Theorem 5.3.4. Every graph

G = Cay
〈
a, b | b2, (a2b)n, (ab)2m

〉
, n ≥ 3, m ≥ 2

is Hamiltonian for m = 2 or (m,n) = (4, 4).

The construction of a Hamilton circle in Cay
〈
a, b | b2, (a2b)4, (ab)8

〉
has been rather com-

plex. Surprisingly, the case (n,m) = (3, 3) that leads to G = Cay
〈
a, b | b2, (a2b)3, (ab)6

〉
,

which is the twist-squeeze-amalgamation of a finite graph, seems to be even more compli-
cated.

1

1

1

(a) The unique Hamilton cycle in
H = Cay

〈
a, b | b2, a3, (ab)3

〉
.

4

3

2

(b) The transition for type 1. (c) There is no transition for
type 2.

Figure 5.15.: Complications in the case (n,m) = (3, 3).

The Hamilton cycle in the underlying finite graph H = Cay
〈
a, b | b2, a3, (ab)3

〉
is unique

up to isomorphism. All alternately-colored cycles in H are of the same type (outlined
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5. Multi-ended graphs of connectivity 3

in figure 5.15(a)). If a transition as in proposition 5.3.1 or in proposition 5.3.3 is to be
applied, the transition is also unique (see figure 5.15(b)). In H2, there are three different
types of alternately-colored cycles. Consider the type that is marked 2 in figure 5.15(b).
For a cycle C of this type, it is impossible to find a transition which covers all vertices of
the copy of H embedded inside C without changing the path outside C (see figure 5.15(c)).

Hence, the approach of proposition 5.3.1 fails in this case. The method of proposition 5.3.2
also does not provide an immediate solution. It is possible to build 8 different modules in
the way of proposition 5.3.2 where all vertices of H are covered. The use of these modules
allows the construction of different non-isomorphic Hamilton cycles in H2. However, it
is apparently difficult to put the modules together in order to get new ones which can
be applied in the same way as the already considered 8 modules. Therefore, the case
(n,m) = (3, 3) remains unsolved.
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CHAPTER 6

Concluding remarks

Of the 37 types of planar cubic planar Cayley graphs in [Geo11a, table 1], we proved 2 to
be nonhamiltonian, 22 to be Hamiltonian and 1 to be Hamiltonian if and only if n = 2.

In particular, a planar cubic Cayley graph G turns out to be Hamiltonian, if

• G is finite or one-ended or

• G is two-ended and has two generators or

• κ(G) = 2 and G 6= Cay
〈
b, c, d | b2, c2, d2, (b(cb)nd)m

〉
or

• G is the twist-amalgamation of a finite or one-ended graph.

Appendix B contains an overview of all graphs treated in this master’s thesis sorted by
connection number, number of ends, generators and relations of the underlying group and
spin-behavior.

6.1. Limitations

For the twist-squeeze-amalgamations, we can not give a final answer. We showed that

Cay
〈
a, b | b2, (a2b)n, (ab)2m

〉
, n ≥ 3, m ≥ 2

is Hamiltonian if m = 2 or (m,n) = (4, 4) are chosen. For other values of n and m, the
question of the Hamiltonicity remains open.

The infinitely-ended graphs

G = Cay
〈
a, b | b2, (a2ba−2b)m, (baba−1)n

〉
, n ≥ 2, m ≥ 2
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6. Concluding remarks

are the twist-squeeze-amalgamations of

H = Cay
〈
b, c, d | b2, c2, d2, (bc)n, (cd)m, (db)n

〉
, n ≥ 2, m ≥ 2

along the alternately b- and c-colored cycles. Those graphs are also not covered in this
thesis.

Furthermore, we did not study the multi-ended graphs G with κ(G) = 3 and 3 generators,
which can not be expressed as twist-amalgamation or twist-squeeze-amalgamation of a
finite or one-ended graph.

6.2. Open problems

This thesis supports the conjecture that all planar cubic 3-connected Cayley graphs are
Hamiltonian, which is a subcase of conjecture 2.7.6, see [Geo11a, conjecture 1.3]. The
question if all finitely generated 3-connected planar Cayley graphs have a Hamilton circle
remains open.

It might be worthwhile to extend the approaches of chapter 5 to other classes of multi-
ended graphs, especially those which can be expressed as twist-squeeze-amalgamation of
a finite or one-ended graph. However, this analysis could turn into excessive distinction
of cases, as can be seen in section 5.3.

It could be another interesting problem to characterize the planar cubic Cayley digraphs
which admit a (directed) Hamilton circle.
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APPENDIX A

Transitions in proposition 5.3.3

Proposition 5.3.3 states that every graph

G = Cay
〈
a, b | b2, (a2b)4, (ab)8

〉
,

is Hamiltonian.

Because the figures that are used in the proof cover more than ten pages, some of them
are printed here.

Figure 5.14 shows ten different types of 8-cycles in the construction of a Hamilton circle.

On the following pages, the transitions for the ten types of cycles are provided.
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A. Transitions in proposition 5.3.3

(a) Type 1. (b) After ex-
changing inside
and outside.

(c) The transition. (d) After changing inside
and outside again.

1 2 2 2 1

2 4 4 4 2

2 3 1 3 2

2 2 4 2 2

1 2 2 1

1 3 3 1

2 6 4 2

2 6 4 2

4 1 1 2

(e) The path in the neighbourhood of C.

Figure A.1.: The transition for type 1.
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(a) Type 2. (b) After ex-
changing inside
and outside.

(c) The transition. (d) After changing
inside and outside
again.

1 2 2 2 1

2 1 5 9 3

2 3 9 3 2

2 1 3 1 2

1 2 2 1

1 10 7 6

2 7 2 10

2 6 6 2

1 2 4 2

(e) The path in the neighbourhood of C.

Figure A.2.: The transition for type 2.

77



A. Transitions in proposition 5.3.3

(a) Type 3. (b) After ex-
changing inside
and outside.

(c) The transition. (d) After changing in-
side and outside again.

1 3 3 3 1

2 3 5 1 2

2 5 3 1 2

2 3 5 3 2

1 3 3 1

4 6 6 4

10 8 10 3

10 8 7 2

4 6 6 2

(e) The path in the neighbourhood of C.

Figure A.3.: The transition for type 3.
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(a) Type 4. (b) After ex-
changing inside
and outside.

(c) The transition. (d) After changing in-
side and outside again.

1 3 2 3 1

3 5 1 2 2

3 9 3 1 2

3 3 2 4 2

1 2 2 4

6 10 1 4

7 4 4 2

6 10 2 3

4 2 2 3

(e) The path in the neighbourhood of C.

Figure A.4.: The transition for type 4.
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A. Transitions in proposition 5.3.3

(a) Type 5. (b) After exchang-
ing inside and out-
side.

(c) The transition. (d) After changing inside
and outside again.

1 2 2 2 1

2 4 2 1 2

2 5 6 2 2

2 6 10 3 2

1 2 2 1

1 2 2 1

3 3 1 2

3 5 1 2

1 3 4 2

(e) The path in the neighbourhood of C.

Figure A.5.: The transition for type 5.
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(a) Type 6. (b) After exchang-
ing inside and out-
side.

(c) The transition. (d) After changing inside
and outside again.

1 2 2 2 1

2 4 2 1 2

2 6 6 2 2

2 6 10 3 2

1 2 2 1

1 2 2 1

3 3 1 2

3 5 1 2

1 3 4 2

(e) The path in the neighbourhood of C.

Figure A.6.: The transition for type 6.
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A. Transitions in proposition 5.3.3

(a) Type 7. (b) After exchang-
ing inside and out-
side.

(c) The transition. (d) After changing inside
and outside again.

1 2 2 2 1

2 4 2 1 2

2 7 6 2 2

2 6 10 3 2

1 2 2 1

1 2 2 1

3 3 1 2

3 5 1 2

1 3 4 2

(e) The path in the neighbourhood of C.

Figure A.7.: The transition for type 7.
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(a) Type 8. (b) After exchang-
ing inside and out-
side.

(c) The transition. (d) After changing inside
and outside again.

1 2 2 2 1

2 4 2 1 2

2 8 6 2 2

2 6 10 3 2

1 2 2 1

1 2 2 1

3 3 1 2

3 5 1 2

1 3 4 2

(e) The path in the neighbourhood of C.

Figure A.8.: The transition for type 8.
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A. Transitions in proposition 5.3.3

(a) Type 9. (b) After exchang-
ing inside and out-
side.

(c) The transition. (d) After changing inside
and outside again.

1 2 2 2 1

2 4 2 1 2

2 9 6 2 2

2 6 10 3 2

1 2 2 1

1 2 2 1

3 3 1 2

3 5 1 2

1 3 4 2

(e) The path in the neighbourhood of C.

Figure A.9.: The transition for type 9.
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(a) Type 10. (b) After exchang-
ing inside and out-
side.

(c) The transition. (d) After changing in-
side and outside again.

1 3 2 3 1

3 5 1 2 2

3 9 3 1 2

3 3 2 4 2

1 2 2 4

6 10 1 4

7 10 4 2

6 10 2 3

4 2 2 3

(e) The path in the neighbourhood of C.

Figure A.10.: The transition for type 10.
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APPENDIX B

Classification of the graphs

The following table lists the graphs G = Cay(L) studied in this thesis. L = 〈X |W 〉 is
a presentation of the underlying group (see section 2.1) and S ⊆ X is the set of spin-
preserving colors (see definition 2.8.3).

κ(G) |Ω(G)| X W S Ham. discussed in

1 ∞ a, b b2, an –1 no chapter 3
1 ∞ b, c, d b2, c2, d2, (bc)n –1 no chapter 3
2 2 or ∞ a, b b2, (ab)n a, b yes proposition 3.1.2
2 2 or ∞ a, b b2, (aba−1b−1) a yes proposition 3.1.3
2 2 a, b b2, a4, (a2b)n b yes proposition 3.1.1
2 2 or ∞ b, c, d b2, c2, d2, (bc)2, (bcd)m b, c, d yes proposition 3.2.1
2 2 or ∞ b, c, d b2, c2, d2, (bc)2n, (cbcd)m c yes proposition 3.2.2
2 2 or ∞ b, c, d b2, c2, d2, (bc)n, (bd)m ∅ yes proposition 3.2.3
2 ∞ b, c, d b2, c2, d2, (b(cb)nd)m b, c, d iff n = 2 proposition 3.2.4
2 2 or ∞ b, c, d b2, c2, d2, (bcbd)m b yes proposition 3.2.5
2 0 b, c, d b2, c2, d2, (bc)n, cd –1 yes proposition 3.2.6
3 0 or 1 a, b b2, an, (ab)m a, b yes proposition 4.2.1
3 0 or 1 a, b b2, an, (aba−1)m a yes proposition 4.2.2
3 0 or 1 a, b b2, (a2b)m b yes proposition 4.2.3
3 0 or 1 a, b b2, (a2ba−2b)m ∅ yes proposition 4.2.4
3 0 or 1 b, c, d b2, c2, d2, (bcd)n b, c, d yes proposition 4.3.1
3 0 or 1 b, c, d b2, c2, d2, (cbcdbd)n c, d yes proposition 4.3.2
3 0 or 1 b, c, d b2, c2, d2, (bc)n, (bdcd)m d yes proposition 4.3.3

1This graph does not have a unique consistent embedding.
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B. Classification of the graphs

κ(G) |Ω(G)| X W S Ham. discussed in

3 0 or 1 b, c, d b2, c2, d2, (bc)n, (cd)m, (db)p ∅ yes proposition 4.3.4
3 2 a, b b2, a2ba−2b, (baba−1)n ∅ yes proposition 5.1.3
3 2 a, b b2, (a2b)2, (ab)2m b yes proposition 5.1.2
3 ∞ a, b b2, (a2b)ma2n b yes theorem 5.2.8
3 ∞ a, b b2, (a2ba−2b)ma2n ∅ yes corollary 5.2.9
3 ∞ b, c, d b2, c2, d2, (bcd)m(bc)n b, c, d yes theorem 5.2.9
3 ∞ b, c, d b2, c2, d2, (bcdcbd)m, (bc)n b, c yes theorem 5.2.9
3 ∞ a, b b2, (a2b)n, (ab)2m b ? section 5.3
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