
Master’s Thesis

On Knowledge Discovery and Content
Analytics from Unstructured Biomedical

Textual Data Sets

Christof Stocker

Institute for Information Systems and Computer Media,
Graz University of Technology

Supervisor: Assoc. Prof. Dr. Andreas HOLZINGER, PhD, MSc, MPh, BEng, CEng,
DipEd, MBCS

Graz, October 14, 2013





Masterarbeit
(Diese Arbeit ist in englischer Sprache verfasst)

Über Wissensentdeckung und
Inhaltsanalyse von unstrukturierten

biomedizinischen textbasierten
Datensätzen

Christof Stocker

Institut für Informationssysteme und Computer Medien,
Technische Universität Graz

Betreuer: Assoc. Prof. Dr. Andreas HOLZINGER, PhD, MSc, MPh, BEng, CEng,
DipEd, MBCS

Graz, 14. Oktober 2013





Abstract

Electronic patient files contain increasingly large portions of data which has been
entered in non-standardized format, often referred to as free text. Especially in the
German speaking countries, text seems to be the preferred way of documentation
and communication when it comes to patient care. Interestingly, a lot of those
electronic patient files are in the PDF (or a similar) format. Even though most
clinics utilize a database in the background, which does contain some structured
information (e.g. patient names, IDs, and addresses), the medical information (i.e.
diagnosis, therapies, ...) is still encoded in electronic text.

The idea of this work was to create a prove of concept that tailored solutions
to specific biomedical domains can be realized in a realistic time frame and with
sufficient quality. Ultimately, our ongoing goal is to improve the efficiency and
quality of the patient’s care, by helping the medical professional navigate and process
the huge amount of electronically stored information at his or her disposal.

To test this idea, we applied information extraction (IE) techniques to electronic,
dermatology-specific out-patient cards in order to associate patients with extracted
information such as diagnosis, therapies, medicaments, tumor size, and so forth.
The extracted information are then used to not only navigate the data, but to
create chronological sequences to enable the medical professional to see trends and
correlations.

The backbone of this project was provided by IBM Content Analytics (ICA), an
UIMA-based framework that offers a modular component architecture with natural
language processing (NLP) functionality, an Eclipse-based development suite, and
an end-user interface that is aligned with our vision of including the human in the
loop.

In order to evaluate our hypothesis, we calculated the precision and recall of the
key annotations. We concluded, that because of the countless possible solutions to
an annotation-problem (where most of them are imprecise), the quality of the anno-
tations strongly depend on the skills of the developer formulating them. However,
our results and personal experience suggest that ICA is able to provide the necessary
flexibility and modularity to efficiently tailor solutions for the purpose of knowledge
discovery from unstructured biomedical textual data sets.
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text mining, information extraction, natural language processing, medical text, con-
tent analytics
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Kurzfassung

Arztbriefe sind eine wertvolle Ressource um die Kontinuität der Behandlung von
Patienten sicherzustellen. So geben sie, unter anderen, einen Überblick über den
Status des Patienten bei seiner Entlassung, über den Verlauf seiner Erkrankung(en),
und auch den veranlassten Therapien.

Eine Kollektion solcher Arztbriefe hat aber weit mehr - heute noch weitgehend
ungenutztes - Potential. Nehmen wir als Beispiel die Behandlung von Patienten.
Bereits bekannte Fälle mit ähnlichen Verlauf sind hier von großem Interesse für den
Mediziner, um ihn mit Vergleichswerten bei seinen Entscheidungen zu unterstützen.
Auf der anderen Seite sind auch statistische Informationen von großem Interesse,
wie zum Beispiel der Zusammenhang zwischen Therapien und Krankheitsverläufen.

Obwohl die meisten Kliniken sich mittlerweile auf eine elektronische Datenbank
stützen, sind ein Großteil der medizinisch relevanten Informationen noch immer in
unstrukturierter Form (z.B. elektronischer Text, Bilder) gespeichert. Um maschinell
an die im Fließtext umschriebenen, medizinisch relevanten Informationen heranzu-
kommen, müssen Algorithmen aus dem Natural Language Processing (NLP) Bereich
eingesetzt werden. Die Entwicklung, und der Einsatz effizienter und präziser Algo-
rithmen weisen jedoch auch so einige Hürden auf.

Wissenschaftliches Ziel dieses Projekts war die experimentelle Erprobung des von
IBM zur Verfügung gestellten Softwarepakets IBM Content Analytics (ICA) (einem
UIMA-basierten Frameworks für die Extraktion, Navigation, und Interpretation von
Informationen in Fließtexten) für den Einsatz im medizinischen Bereich.

Unsere Hypothese, auf die wir uns stützten, war dass zugeschnittene Lösungen
für bestimmte medizinische Domainen in realistischer Zeit und mit möglichst weni-
gen Ressourcen realisierbar sind. Um diese Hypothese zu testen, haben wir Informa-
tion Extraction (IE) Techniken auf Ambulanzkarten der Dermatologie angewandt,
um dadurch Informationen wie Diagnosen, Therapien, Medikamente, Tumordicke,
usw. zu extrahieren.

Für die Evaluierung haben wir für die Schlüssel-Annotationen sowohl Präzision
als auch Recall ermittelt. Aus den Ergebnissen und unseren persöhnlichen Erfahrun-
gen schließen wir, dass ICA die notwendige Flexibilität und Modualarität aufweist,
um effiziente Lösungen für das Ziel von Wissensentdeckung aus biomedizinischen
text-basierten Datenquellen zu realisieren.

Schlüsselwörter
Content Analyse, Informationsverarbeitung, Textmining, NLP

Ö-STAT Klassifikation
102020, 102015

ACM Klassifikation
Information Systems
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“The scientist only imposes two things, namely truth and sincerity,
imposes them upon himself and upon other scientists.”

– Erwin Schrödinger, Physicist

“Knowledge has to be improved, challenged, and
increased constantly, or it vanishes.”

– Peter Drucker, Management Consultant

“Never give up work. Work gives you meaning and
purpose and life is empty without it.”

– Steven Hawking, Theoretical Physicist

“I find that the harder I work, the more luck I seem to have.”
– Thomas Jefferson, President of the United States

“Whether or not you can never become great at something,
you can always become better at it.”

– Neil deGrasse Tyson, Astrophysicist
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1. Introduction and Motivation for Re-
search

The topic of this thesis is the computational extraction of information out of biomed-
ical textual data. This section will serve as a brief introduction and overview of the
associated problem domain of this topic. We will discuss why text - and in partic-
ular biomedical text - is such an interesting branch of data, and why solutions to
the associated problems of information extraction are desirable. Note that parts of
this work has been presented during the SouthCHI conference at the University of
Maribor (Holzinger, Stocker, Ofner, Prohaska, Brabenetz and Hofmann-Wellenhof,
2013).

1.1 Storing, Retrieving and Communicating In-
formation

Communication is a vital part of our every day life. Without communication and
memorization, there can be no progress. A very prominent medium of both is text.
Beside speech, digital text can nowadays be considered as one of the most natural
ways of communication. This is probably due to the prominence of handwriting, as
its origin and tradition goes back to the early cave painters (Balter, 2000).

But what is communication without memorization? Today, memory is not an
issue. Storing information feels as simple as it is cheap. However, retrieving in-
formation is not as easy, since most of the information is currently treated as un-
structured. This ambiguous term is often used for "everything that is not in a formal
database". Since the 90s, and partially because of this seemingly boundless collection
of “unstructured” information in the form of something referred to as “unstructured
data”, a large portion of statistic analysis shifted from data analysis to data mining
(Tufféry, 2011).

But what do the terms data, information and knowledge really mean? Defi-
nitions throughout literature vary greatly (Zins, 2007). Recently, the definitions
of the terms were revisited for the context of natural language (Holzinger, Stocker,
Ofner, Prohaska, Brabenetz and Hofmann-Wellenhof, 2013), as it usually just means
that the structure is un-modeled, difficult to model, or might be - in a way - self-
describing. Implicitly though, this hidden structure was already treated as such by
researchers all over the world and knowledge discovery methods were employed to
statistically approximate parts of this un-modeled structure. Be it by exploiting
domain knowledge, or without any.
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1.2 The Challenges of Text

A huge portion of this digital “unstructured” data is text (Stuckenschmidt and van
Harmelen, 2005). Naturally, information extraction and knowledge discovery out
of text is a hot scientific topic, since useful solutions would open a lot of business
opportunities.

Text, seen as transcription of natural language, poses a lot of challenges for com-
putational analysis. Natural language understanding is regarded as an AI-complete
problem (Waldrop, 1984). In analogy to NP-completeness from complexity theory
this means that the difficulty of the computational problem is equivalent to design-
ing a computer which is as intelligent as a human being (Weizenbaum, 1966), and
which brings us back to the very roots of the computational sciences (Turing, 1950).

It became evident over the past decades that the understanding of human lan-
guage requires extensive knowledge, not only about the language itself, but also
about the surrounding real world, because language is more than words, and mean-
ing depends on context, and “understanding” requires a vast body of knowledge
about this real world context (Waldrop, 1984) - we call this context-awareness (Yn-
durain et al., 2012). Consequently, natural language processing (NLP) is a term
that does not necessarily target a total understanding of language per se (Erhardt
et al., 2006).

However, even the extraction of information out of text is a challenging task.
The underlying structure of text is fairly complex and not easily understood by
computers. In return, the approaches to conquer the medium text are either quite
extensive, or specialized for the task at hand. In many applications, most of the
textual structure gets discarded and the structural focus depends on the context.
Furthermore, and beyond modeling difficulties, one has to deal with incorrect and
incomplete data, as the syntactical correctness of text can not be trusted in general.

1.3 On the Importance of Text in the Biomedical
Domain

Whereas some popular futurists deny the importance of text in the future, most
professionals regard text as fundamental for knowledge discovery in life science: in
basic research in Bioinformatics as well as in practical clinical research (e.g. Omics).
Hence, if we seriously do research in medical knowledge discovery, we simply cannot
ignore textual information; although we are aware of the huge difficulties of pro-
cessing text with our classical Von-Neumann machines. We do not have evidence,
whether text is a natural representation of human language, following evolution in
the sense of Darwin (Pinker and Bloom, 1990; Nowak et al., 2002) or if text is an
abstract, artificial and purely symbolic product of mankind (Hauser et al., 2002).

An interesting but difficult subcategory of biomedical text are in the form of
electronic patient records.

16



1.4 On the Importance of Electronic Patient Files
as Information Source

Electronic patient files contain increasingly large portions of data which has been
entered in non-standardized format, which is often and not quite correctly called
free text (Holzinger et al., 2008; Kreuzthaler et al., 2011). Interestingly, a lot of
those electronic patient files are in the PDF (or a similar) format. Even though
most clinics utilize a database in the background, which does contain some struc-
tured information (such as the patient names, addresses, and so forth), the medical
information (i.e. diagnosis, therapies, ...) is still encoded in electronic text.

Consequently, the introduction of a nationwide or international Electronic Health
Record (EHR) in the DACH1 area could prove very beneficial from a computational
point of view. An EHR is a systematic digital collection of health information about
individual patients or populations (Gunter and Terry, 2005). All three DACH na-
tions have their own approach towards an such a collection (Krüger-Brand, 2011).
Austria, for example, introduced the so-called ELGA law in 2013. ELGA stands
for the German term “Elektronische Gesundheitsakte” and is Austria’s version of
an EHR (Krüger-Brand, 2010). Its realization will be obligatory for medical pro-
fessionals starting 2015. Note that ELGA itself has absolutely nothing to do with
computational analysis of those medical files, it will however eventually enforce a
standard file format that might be beneficial to that cause.

ELGA will slowly introduce a standard format for electronic patient records
called Clinical Document Architecture (CDA) (Dolin et al., 2006). CDA is XML
based and supports the SNOMED (Cornet and de Keizer, 2008) standard for clinical
terms. This, in turn, could result in much-needed standardized structure for the
medical information in the patient files. However, CDA supports three different
levels of “structure”, with the lowest essentially resulting in free text again. This
could mean, that the actual level of structure in the information might still depend
on the acceptance in the medical community and could go either way; free text, or
fully structured information. Given the additional constraint of the rather passive
step-by-step introduction of CDA into actual practice, it seems that in the near
future, at least, NLP might be the only realistic approach to computationally access
the medical information in this data.

Consequently for many years, text mining was and is an essential area of med-
ical informatics, where researchers worked on statistical and linguistic procedures
in order to dig out (mine) information from plain text, with the primary aim of
gaining information from data. Although text can easily be created by medical pro-
fessionals, the support of (semi-) automatic analyses is extremely difficult and has
challenged researchers for many years (Gregory et al., 1995; Holzinger et al., 2000;
Lovis et al., 2000). The next big challenge is in Knowledge Discovery from this data.
Contrary to the classical text mining, or information retrieval approach, where the
goal is to find information, hence the medical professional knows what he wants, in

1DACH is a German abbreviation for the German speaking nations Germany, Austria, and
Switzerland
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knowledge discovery we want to discover novel insights, get new knowledge which
was previously unknown. To reach this goal, approaches from pure computer science
alone are insufficient, due to the fact that the “real” intelligence is in the brains of
the professionals; the next step consists of making the information both usable and
useful. Interaction, communication and sensemaking are still missing within the
pure computational approaches (Blandford and Attfield, 2010).

1.5 The Intention of this Work

The idea of this work is not the development of the most generic solution to medical
text processing, but a prove of concept that tailored solutions to specific domains
can be realized in a realistic time frame and with sufficient quality. Ultimately, our
ongoing goal is to improve the efficiency and quality of patient’s care, by helping the
medical professional navigate and process the huge amount of electronically stored
information at his or her disposal.

The big challenges - when confronted with text written by (German speaking)
medical professionals - are (a) the weak grammatical structure, (b) the mixture of
languages, and (c) the large portion of (non-standardized) abbreviations.

The following excerpt highlights typical examples of abbreviation-heavy text:

St.p. MM , TD 1,5 mm, OS li. innen, 11/2010

St.p. NE und sentinel node Biopsie ing links (tumorfrei) 01/2011

� . . . Abbreviation for “status post” (state that follows an intervention)
� . . . Abbreviations for medical terms, such as malign melanoma
� . . . Abbreviations for location and direction specification

Furthermore, medical professionals from the German speaking nations tend to
use both German, as well as Latin words for medical terms. This means that in order
to understand the text, the “reader” has to (at least partially) have knowledge of
the vocabulary of both languages.

The following string is a typical example for Latin terms within medical text:

Fil hep. kut, intraabdom und iliacal (ED 11/2012)

To test our idea, we applied IE techniques to electronic, dermatology-specific
out-patient cards in order to associate patients with extracted information such
as diagnosis, therapies, medicaments, tumor size, and so fourth. The extracted
information are then used to not only navigate the data, but to create chronological
sequences to enable the medical professional to see trends and correlations; or in
other words: apply knowledge discovery.

The backbone of this project was provided by IBM Content Analytics (ICA), as
it offers a stable framework, basic NLP functionality, and a user interface that is
aligned with our vision of including the human in the loop.
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1.6 The Organization of this Work

The rest of this work is organized as follows:
We will start in Sec. 2 with the basic terms, definitions, and background neces-

sary to understand this work; reader familiar with the theory of computation and
computational linguistics should have no problem by skipping that section.

In Sec. 3 we will discuss how other scientists approached the topic of knowledge
discovery in medical text.

The sections 4 and 5 will describe the underlying data sets and tool, as well as
how we utilized those to reach our goals.

We will then present you with our results in Sec. 6 and end with a discussion
(Sec. 7), our conclusion (Sec. 8), and an outlook to our future work (Sec. 9).
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2. Theoretical Background

This chapter will provide a clear description of the terms and definitions needed to
understand the content of this document. Note that, since this is not a textbook,
most proofs for already established propositions, theorems and corollaries will be
omitted. However, I will explicitly cite to sources that do list the corresponding
proofs.

2.1 Mathematical Notions and Terminology

We will start by laying down the mathematical foundation by introducing sets,
sequences, functions and relations. We will then describe the notions of formal
language theory by defining terms such as alphabet and language.

2.1.1 Basic Terms and Definitions

We begin with discussing basic mathematical concepts, that we will need to be able
to understand more complicated subjects. First, let us introduce the notion of a set.
We will base our definitions in this section on the way they are depicted in the work
of Sipser (1996).

Definition 1 (Set). A set is a group of objects represented as a single unit. It may
contain any type of object, such as numbers, symbols, and other sets.

A set is usually denote by an upper case Latin letter, such as A, or as upper
case Greek letters for special sets. The symbol ∈ denotes set membership while 6∈
denotes nonmembership of the set. We refer to the objects of a set as its elements.
The order of the elements within a set doesn’t matter, nor does repetition.

There are a couple of ways to formally describe a set. A set with no members is
called the empty set and is denoted as ∅. If we want to describe the content of a
set with a rule, we write A = {n | rule about n}. Another way is to simply list its
elements inside curled brackets.
Example 1. The set {n | n = m2 for some m ∈ N} describes the set of perfect
squares. The set A = {4, 7, 23} contains the elements 4, 7, and 23. We write 7 ∈ A
since 7 is a member of A, but we write 8 6∈ A, because 8 is not a member of A.

For two sets A and B, we say that A is a subset of B, denoted as A ⊆ B, if
each element x ∈ A is also an element of B (x ∈ B). We say that A is equal to B
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if A is a subset of B and B is also a subset of A. A is called a proper subset of
B, denoted A ⊂ B, if A is a subset of B, but A is not equal to B.

A special set, that we are going to use a lot after introducing logic, is the set of
truth values.

Definition 2 (Truth values). There are two truth values, “TRUE” and “FALSE”,
denoting truth and falsity (Simpson, 2011).

A countable set is a set, that has the same cardinality as some subset of the set
of natural numbers. An infinite set contains infinity many objects, and renders us
unable to list all its elements. To describe its contents we will often use the three
dots ... notations to say “continue forever”.
Example 2. The infinite set of natural numbers is defined as N = {1, 2, 3, ...}.

If we take two sets A and B, the union of those, written A ∪ B, is the set we
gain by combining all elements of A and all elements of B into a single set. On the
other hand, the intersection of A and B, written A ∩ B, is the set that contains
only those elements that are contained in both sets. In the case of A ∩ B = ∅, we
call the sets disjoint.

Definition 3 (Sequence). A sequence of objects is a list of those objects in a specific
order.

As we know, the order of the elements doesn’t matter in a set. In a sequence,
however, it does. On the other hand, while repetition doesn’t matter in a set, it does
in a sequence. We denote a sequence using round brackets. Similar to sets, sequences
can be finite or infinite. Finite sequences are usually called tuples. A sequence with
k elements is thus a k-tuple. For convenience a 2-tuple is often referred to as pair,
and a 3-tuple as tripled.

The next term we are going to introduce is a function. Functions, also commonly
referred to as mappings, are objects that set up an input-output relationship and
are central to mathematics.

Definition 4 (Function). A (unary) function f is an objects that maps elements of
some input set D, called domain, to an output set R, called its range. We denote
such a function as

f : D −→ R.

If b ∈ R is the output value that f associates with the input value a ∈ D, we write
f(a) = b.

If the input of a function f is a k-tuple (a1, a2, ..., ak) for ai ∈ Ai (1 ≤ i ≤ k),
we call f a k-ary function. The ai are then called the arguments of f . Its domain is
denoted as A1 × ...× Ak.

For k = 2, we will call a function binary. Certain binary functions are usually
written in a infix notation (i.e. instead of +(a1, a2) we write a1 + a2).

Definition 5 (Predicate). A predicate is a function whose range is {TRUE,FALSE}.
A unary predicate is called a property.
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Definition 6 (Relation). A k-ary relation is a predicate whose domain is a k-tuple
A× ...× A of one set A.

Let R be a k-ary relation, then R(ai, ..., ak) means that R(ai, ..., ak) = TRUE. A
2-ary relation is called a binary relation. As with binary function, binary relations
also commonly use the infix notation.

A special type of binary relation is the equivalence relation which denotes that
two objects are equal in some feature.

Definition 7 (Equivalence relation). Let R be a binary relation. We say that R is
an equivalence relation, iff

1. R is reflexive (i.e. for every x, xRx),

2. R is symmetric (i.e. for every x and y, xRy implies yRx), and

3. R is transitive (i.e. for every x, y, and z, xRy and yRz implies xRz).

2.1.2 Formal Language Theory

Next we are going to jump into formal language theory. We will base our definitions
in this section on the way they are depicted in the work of Clark et al. (2010),
Mitkov (2003) and Sipser (1996).

A language is defined in respect to some alphabet usually denoted as Σ or Γ.

Definition 8 (Alphabet). An alphabet is a non-empty finite string of symbols.

Remark 1. Some authors (see Mitkov, 2003) also refer to an alphabet as vocabulary.
In this document, however, we do not define the term vocabulary to avoid confusion
later on (see also 24).

The symbols of an alphabet are also called its letters. A string over an alphabet,
also called word, is a finite sequence of symbols from that alphabet. Given an
alphabet Σ, the set of all strings over Σ is denoted as Σ∗. Let Σ be some alphabet
and w be a string over Σ, the length of w is denoted as |w| and is the number of
symbols in the sequence w. A string with the length 0 is referred to as an empty
string, denoted as ε.

Let Σ be some alphabet and w1, w2 be strings over Σ. We say that w1 is a
substring of w2 if w1 appears consecutively within w2.

This brings us to the definition of a formal language.

Definition 9 (Formal language). Let Σ be an alphabet. A formal language L over
Σ is any subset of Σ∗, L ⊆ Σ∗.

Next, we are going to introduce the formalization of a generative grammar first
proposed by Chomsky (1956), which can be used to generate languages. Further-
more, grammars allow us to classify languages into specific classes.
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Definition 10 (Formal grammar). A formal grammar is a tuple G = (Γ,Σ, S, P ),
where Σ and Γ are disjoint alphabets, S ∈ Γ, and P is a set of pairs (w, v), such
that each w, v ∈ (Γ ∪ Σ)∗ and w contains at least one letter from Γ.

Γ is called the non-terminal alphabet, Σ the terminal alphabet, S the initial
letter, an P is called the set of productions.
Remark 2. In the context of formal grammars a pair (w, v) in P is usually written
as w → v.

Given a grammar G and w, v ∈ (Γ ∪ Σ)∗, we say that a direct derivation,
written w ⇒G v, holds iff: (1) u1, u2 ∈ (Γ ∪ Σ)∗ exist such that w = u1αu2 and
v = u1βu2, as well as (2) α→ β ∈ P exists.

More generally, given a grammar G and w, v ∈ (Γ ∪ Σ)∗, we say that a deriva-
tion, written w ⇒∗G v, holds iff: (1) either w = v, or (2) z ∈ (Γ ∪ Σ)∗ exists such
that w ⇒∗G z and z ⇒∗G v.

With this notation we can now describe the unique language a grammar generates

Definition 11. The unique language generated by a grammar G is defined by

L(G) = {w | S ⇒∗G w with w ∈ Σ} (2.1)

The interesting property of grammars is, that they can be classified into different
types according to their productions. A grammar is said to be of type:

• 0 or Phrase-Structure Grammar (RE) iff there are no restrictions on the
form of the productions in P .

• 1 or Context-Sensitive Grammar (CS) iff every production in P is of the
form:

u1Nu2 → u1wu2,

where u1, u2, w ∈ (Γ ∪ Σ)∗, N ∈ Γ, and w 6= ε (except for the rule S → ε, iff
S does not occur on any right-hand side of a rule).

• 2 or Context-Free Grammar (CF) iff every production in P is of the form:

N → w,

where N ∈ Γ and w ∈ (Γ ∪ Σ)∗.

• 3 or Regular Grammar (REG) iff every production in P is in the form:

A→ wB, or

A→ w,

where A,B ∈ Γ and w ∈ Σ∗

A language is said to be of type i, i = 0, 1, 2, 3 if its generated by a grammar of
type i. The family of type i languages is denoted as Li.
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With this notation introduced, we can now state one of the most important
early results in formal language theory, which is called the Chomsky hierarchy of
languages (Chomsky, 1956):

L3 ⊂ L2 ⊂ L1 ⊂ L0 (2.2)

One of the most important linguistic formalisms that we need are regular ex-
pressions. Every well-formed regular expression denotes a set of strings, or a
language (Clark et al., 2010).

Definition 12 (Regular expression). Let Σ be an alphabet. Given Σ, the set of
regular expressions over Σ is defined as follows (Clark et al., 2010):

• ∅ is a regular expression;

• ε is a regular expression;

• if a ∈ Σ is a letter, then a is a regular expression;

• if e1 and e2 are regular expressions, then so are (e1 + e2) and (e1 · e2);

• if e is a regular expression, then so is (e)∗;

• nothing else is a regular expression over Σ.

As the next step, we need to define a mapping, commonly referred to as deno-
tation, from regular expressions to sets of strings over Σ.

Definition 13 (Denotation). Let e be a regular expression. Given e, its denotation,
written as[[e]], is a set of strings defined as follows (Clark et al., 2010):

• [[∅]] = {}, the empty set;

• [[ε]] = {ε}, the singleton set containing the empty string;

• if a ∈ Σ is a letter, then [[a]] = {a}, the singleton set containing a only;

• if e1 and e2 are two regular expressions whose denotations are [[e1]] and [[e2]],
respectively, then [[(e1 + e2)]] = [[e1]] ∪ [[e2]] and [[(e1 · e2)]] = [[e1]] · [[e2]];

• if e is a regular expression whose denotation is [[e]] then [[(e)∗]] = [[e]]∗

It is important to note, that the class of languages that can be expressed as
the denotation of regular expressions is called the class of regular languages (Clark
et al., 2010), (Mitkov, 2003).
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2.2 Logic and Reasoning

We will base our definitions in this section on the way they are depicted in the work
of Papadimitriou (1994), Simpson (2011), and Lifschitz (2009).

The reason, that logic is explained in such detail is two-fold. First of all, logic is
a very common tool in knowledge discovery in databases (KDD) and should not be
ignored in this work. Secondly, the definitions are important to be able to state its
limitations.

2.2.1 Boolean Logic

Let X be a countable infinite alphabet of Boolean variables X = {x1, x2, ...}. Such
a Boolean variable can take either one of the two truth values. We can combine
Boolean variables using connectives.

Definition 14 (Boolean connectives). The Boolean connectives consists out of two
binary connectives conjunction (∧), disjunction (∨), as well as one unary con-
nective called negation (¬).

Definition 15 (Boolean expression). A Boolean expression can be any one of the
following:

1. A Boolean variable xi ∈ X,

2. An expression of the form ¬φ, where φ is a Boolean expression,

3. An expression of the form (φ1� φ2), where φ1 and φ2 are Boolean expressions
and � is a binary Boolean connective.

Now that we have defined the syntax of Boolean expressions, we can think about
giving them meaning by stating the semantics. We start by defining the set of
Boolean variables X(φ) given a Boolean expression φ.

Definition 16. Let X be a countable infinite alphabet of Boolean variables, φ , ψ1
and ψ2 be Boolean expressions, and � be a binary Boolean connective. We define
the set X(φ) ⊂ X of the boolean variables appearing in φ inductively as follows:

1. If φ is a Boolean variable xi, then X(φ) = {xi},

2. If φ = ¬ψ1, then X(φ) = X(ψ1),

3. If φ = (ψ1 � ψ2), then X(φ) = X(ψ1) ∪X(ψ2).

Definition 17 (Truth assignment). A truth assignment T is a mapping from a finite
set X ′ of Boolean variables, X ′ ⊂ X to the set of truth values. Let φ be a Boolean
expression. If X(φ) ⊂ X ′, we call a truth assignment appropriate to φ.

Definition 18. Let φ, ψ1 and ψ2 be Boolean expressions, and T be a truth as-
signment appropriate to those. We say that T satisfies φ (written T |= φ) for the
following situations:
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1. If φ is a Boolean variable xi ∈ X(φ) where T (xi) = true,

2. If φ = ¬ψ1 where T 6|= ψ1 (meaning T |= ψ1 does not apply),

3. If φ = (ψ1 ∨ ψ2) where either T |= ψ1 or T |= ψ2,

4. If φ = (ψ1 ∧ ψ2) where both T |= ψ1, as well as T |= ψ2 hold.

Definition 19 (Equivalence). Let φ1, φ2 be Boolean expressions. We call φ1, φ2
equivalent, written φ1 ≡ φ2, if for any truth assignment T appropriate to them,
T |= φ1, iff T |= φ2, or in short T |= (φ1 ⇔ φ2).

Two equivalent Boolean expressions can be used interchangeably, as they can be
considered as different representation of the same object.

Proposition 1. Let φ1, φ2 and φ3 be arbitrary Boolean expressions. Then:

1. (φ1 ∨ φ2) ≡ (φ2 ∨ φ1),

2. (φ1 ∧ φ2) ≡ (φ2 ∧ φ1),

3. ¬¬φ1 ≡ φ1,

4. ((φ1 ∨ φ2) ∨ φ3) ≡ (φ1 ∨ (φ2 ∨ φ3)),

5. ((φ1 ∧ φ2) ∧ φ3) ≡ (φ1 ∧ (φ2 ∧ φ3)),

6. ((φ1 ∧ φ2) ∨ φ3) ≡ ((φ1 ∨ φ3) ∧ (φ2 ∨ φ3)),

7. ((φ1 ∨ φ2) ∧ φ3) ≡ ((φ1 ∧ φ3) ∨ (φ2 ∧ φ3)),

8. ¬(φ1 ∨ φ2) ≡ (¬φ1 ∧ ¬φ2),

9. ¬(φ1 ∧ φ2) ≡ (¬φ1 ∨ ¬φ2),

10. (φ1 ∨ φ1) ≡ φ1,

11. (φ1 ∧ φ1) ≡ φ1.

Proof. Trivial. Properties (1) to (5) are immediate consequences of the connective’s
definitions, while (6) to (11) can easily be shown trough the use of truth tables.

Definition 20 (Satisfiable). Let φ be a Boolean expression. If there exists a truth
assignment T appropriate to φ such that T |= φ, we call φ satisfiable.

Definition 21 (Valid). Let φ be a Boolean expression. If T |= φ for all truth
assignment T appropriate to φ, we call φ valid, or a tautology and denote it |= φ.

Proposition 2. A Boolean expression is unsatisfiable, iff its negation is valid .

Proof. Let φ be an unsatisfiable Boolean expression and consider ¬φ. Obviously for
any truth assignment T appropriate to φ, T 6|= φ, and thus T |= ¬φ.
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Definition 22 (Disjunctive normal form). An expression is said to be in disjunctive
normal form if it is of the form C1 ∨ ... ∨ Cm, where each clause Ci, i = 1, ...,m, is
of the form A1 ∧ ... ∧ An, and each Aj, j = 1, ..., n is either a Boolean variable or
the negation of a Boolean variable.

Definition 23 (Conjunctive normal form). An expression is said to be in conjunctive
normal form if it is of the form C1 ∧ ... ∧ Cm, where each clause Ci, i = 1, ...,m, is
of the form A1 ∨ ... ∨ An, and each Aj, j = 1, ..., n is either a Boolean variable or
the negation of a Boolean variable.

2.2.2 First-Order Logic

First-order logic is distinguished from propositional logic by the use of predicates
and quantifiers. It provides a syntax capable of expressing detailed mathematical
statements, as well as semantics to determine the meaning behind its expressions.

The approach to define FOL varies from author to author. Two of them are more
common then others: (1) A more simplistic approach starting with the signature σ
(Papadimitriou, 1994), and (2) a more traditional approach starting with a language
L and a predicate logic without operations (Simpson, 2011).

Syntax

We will describe the more simplistic approach using the signature and mention
parallels to other definitions.

Definition 24 (Signature). A signature, sometimes referred to as vocabulary, σ =
(Φ,Π, r) is a 3-tuple containing two disjoint countable sets Φ and Π, and the arity
function r.

1. A set Φ of function symbols.

2. A set Π of relation symbols.

3. An arity function r mapping Φ ∪ Π to the non-negative integers.

The notation for a signature varies from author to author, but since we use Σ to
denote an alphabet, we will use σ for a signature.

The arity function tells us how many arguments each function- and relation
symbol takes.
Example 3. Let Φ be a set of function symbols and r the arity function. A function
symbol f ∈ Φ with r(f) = n is called a n-ary function symbol. The same principle
applies to relation symbols.

Concerning the arity of the relation symbols, it might be interesting to note, that
while some author say that a relation symbol can never be 0-ary (Papadimitriou,
1994), other say that 0-ary relation symbol behave as propositional atoms (Simpson,
2011). If 0-ary relations symbols are allowed, then every formula of propositional
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logic is also a formula of first-order logic and thus predicate calculus could be seen
an extension of the propositional calculus (Simpson, 2011), which is the approach
we will follow.

The alphabet Σ consists of logical and non-logical symbols. We already know the
non-logical symbols, defined as the atoms of our signature. The set of logical symbols
contain: (1) The Boolean connectives including implication (⇒) and biimplication
(⇔), (2) parentheses, brackets and other punctation symbols, (3) a fixed, countably
infinite set of object variables {x, y, z, ...}, (4) a special1 binary equality symbol =
sometimes known as identity symbol, (5) and the two quantifier.
Remark 3. Even though the equality relation is mentioned separately, there is no
reason to treat it that way in terms of semantics, as we will see later.
Remark 4. It might be interesting to note, that sometimes implication and biimpli-
cation are not explicitly stated as connective, since given the Boolean expressions φ1
and φ2: φ1 ⇔ φ2 is shorthand for ((φ1 ⇒ φ2)∧(φ2 ⇒ φ1)) and φ1 ⇒ φ2 is shorthand
for (¬φ1 ∨ φ2) (Papadimitriou, 1994).

Definition 25 (Quantifier). We introduce the universal quantifier (∀), read as “for
all”, and the existential quantifier (∃), read as “there exists”.

Remark 5. It might be interesting to note, that sometimes the existential quantifier
(∃) is not treated extra, but as a special case of the universal quantifier (∀) defined
as follows (Lifschitz, 2009): ∃xφ ≡ ¬∀x¬φ (We will see what ≡ means in FOL
further down).

Since FOL is a formal language, it can be mechanically determined whether some
expression is legal. There are two kinds of legal expressions: terms and formulas.
In short, terms represent objects, while formulas express predicates that can take
the two truth values.

Definition 26 (Term). Let σ = (Φ,Π, r) be a signature. A term can be any one of
the following:

1. An object variable,

2. An object constant,

3. If f ∈ Φ is a n-ary function symbol with n > 0, and t1, ..., tn are terms, then
f(t1, ..., tn) is a term.

Remark 6. An object constant is a function constant of arity 0.

Definition 27 (Atomic formula). Let σ = (Φ,Π, r) be a signature and R ∈ Π an
n-ary relation symbol. If t1, ..., tn are terms, then the expression R(t1, ..., tn) is called
an atomic formula, or atomic expression.

Definition 28 (First-order formula). A of first-order formula, also known as first-
order expression, can be anything of the following:

1The equality symbol is sometimes just assumed to be contained within Π
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1. An atomic formula,

2. An expression of the form ¬φ, where φ is a formula,

3. An expression of the form (φ1 � φ2), where φ1 and φ2 are formulas and � is
a binary propositional connective,

4. An expression of the form ∀xφ or ∃xφ, where φ is a formula and x is a variable,

Semantics

On to semantics. To determine truth of an expression we introduce the notion of a
model as an analog of truth assignment in Boolean logic. However, its a far more
complicated object, since variables, functions, and relations can now take on much
more complex values than just true or false.

Definition 29 (Model). Let σ = (Φ,Π, r) be a signature. A modelM appropriate to
σ is a pairM = (U, µ), where U is a non-empty set called the universe ofM , and µ is
a function mapping the symbols of σ and the variables to elements in U . The special
equality symbol = is always assigned to the relation =M defined as (u, u) : u ∈ U .

Essentially a model is a mathematical structure, where µ is the interpretation
function, σ is the signature and U is the domain. Sometimes the interpretation
function is called unique valuation denoted as vM . There are also cases where µ is
used to denote just a variable assignment additionally to an interpretation function
I.
Remark 7. Let x be a variable. We introduce a convention for convenience that
metalanguage expressions of the form µ(x) will be written as xM .

Concerning the interpretation function µ, this means that each variable x will be
mapped to an element xM ∈ U , each n-ary function symbol f ∈ Φ will be mapped
to an actual function fM : Un −→ U , and each n-ary relation symbol R ∈ Π will be
mapped to an actual relation RM ⊆ Un. So, concerning the semantics of terms, if t
is a variable or a constant, then tM is explicitly defined by µ. On the other hand,
if t = f(t1, ..., tn), where f is an n-ary function symbol and t1, ..., tn are terms, then
tM = fM(tM1 , ..., tMn ).

Now to the notion of satisfiability, starting with atomic expressions.

Definition 30. LetM be a model, φ be an atomic expression, R be an n-ary relation
symbol, and t1, ..., tn be terms. We say that M satisfies φ, if (tM1 , ..., tMn ) ∈ RM .

Definition 31 (Satisfaction). Let M be a model, x a variable, U be the universe of
M , φ, ψ1, and ψ2 be a first-order expression. We say that M satisfies φ, M |= φ
inductively as follows:

1. If φ = ¬ψ1 where T 6|= ψ1 (meaning T |= ψ1 does not apply),

2. If φ = (ψ1 ∨ ψ2) where either T |= ψ1 or T |= ψ2,

30



3. If φ = (ψ1 ∧ ψ2) where both T |= ψ1, as well as T |= ψ2 hold,

4. If φ = ∀xψ1 where for any u ∈ U (with Mx=u being the model identical to M
in all details, expect that xMx=u = u) it must be that Mx=u |= ψ1.

A special case of satisfiability is validity. As we now know, a (first-order) expres-
sion is satisfiable if a model exists that satisfies it. However, if some expression φ is
satisfied by any model, we say that the expression is valid, denoted |= φ.
Remark 8. There are three basic reasons why a first-order expression might be valid:

1. Being a tautology similar to boolean logic. For example an expression of the
form φ ∨ ¬φ.

2. The properties of equality. For example: x = x, where x is a variable, will
always be valid.

3. The meaning of quantifiers. For example: Let x1, x2, and y be variables.
R(x1, x2)⇒ ∃yR(x1, y) will always be valid, because if R(x1, x2) evaluates to
true, then by definition there must exists an y such that R(x1, y).

Now that we know validity, we can easily define the metalanguage equality in
analog to Boolean logic:

Definition 32 (Equivalence). Let φ1 and φ2 be first-order formulas. φ1 and φ2 are
said to be logically equivalent, written φ1 ≡ φ2, if φ1 ⇔ φ2 is logically valid.

Remark 9. Note that logical equivalence ≡ is not the same as the binary equivalence
=, which is part of the alphabet. Logical equivalence is a metalanguage relation used
to state that expressions have the same meaning.

And interesting consequence concerning validity is the following proposition used
in proof systems as the main method for acquiring new valid sentences.

Proposition 3 (Modus Ponens). Let φ1 and φ2 be first-order expressions. If φ1 and
φ1 ⇒ φ2 are valid, then φ2 is valid Papadimitriou (1994).

Validity is also a convenient source for simplification. To be precise we can use a
few propositions to a first-order expressions into the prenex normal form as defined
below:

Definition 33 (Prenex normal form). A formula is said to be in prenex normal
form if it is of the form Q1x1...Qnxnψ, where each Qi is a quantifier, each xi is a
variable, and ψ is contains no quantifier.

Before stating some useful propositions, let us first introduce the notion of sub-
stitution, that we will need a couple of times henceforth.

Definition 34 (Substitutable). Let φ1 and φ2 be a first-order expression, x and y
be variables, and t a term. We say that t is substitutable for x in φ1, iff there is no
y in t, such that some part of φ1 of the form ∀yφ2 contains a free occurrence of x.
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Making sure that a term is substitutable is simply a safety net to avoid unin-
tended bindings.

Definition 35 (Substitution). Let φ be a first-order expression, x a variable, and t
a term. Let t be substitutable for x in φ. We define the substitution of t for x in φ,
denoted as φ[x← t], to be the expression resulting by replacing each free occurrence
of x in φ with t.

Let us state a few propositions concerning substitution.

Proposition 4. Let φ be a first-order expression, x a variable, and t a term. Any
expression of the form ∀xφ⇒ φ[x← t] is valid (Papadimitriou, 1994).

Proposition 5. Let φ be a first-order expression and x a variable. if φ is valid,
then so is ∀xφ (Papadimitriou, 1994).

Proposition 6. Let φ be a first-order expression and x a variable. If x does not
appear free in φ, then φ⇒ ∀xφ is valid (Papadimitriou, 1994).

Proof. Any model that satisfies φ will also satisfy ∀xφ, as the x = u part of the
definition of satisfaction becomes irrelevant (Papadimitriou, 1994).

As we know, we can replace any first-order expression with an equivalent one.
We now list a few equivalence relations (without proof), that can be used to put
any first-order expression into the prenex normal form:

Proposition 7. Let φ1 and φ2 be first-order expressions. Let x and y be variables.
Then (Papadimitriou, 1994):

1. ∀x(φ1 ∧ φ2) ≡ (∀xφ1 ∧ ∀xφ2).

2. If x does not appear free in φ2, ∀x(φ1 ∧ φ2) ≡ (∀xφ1 ∧ φ2).

3. If x does not appear free in φ2, ∀x(φ1 ∨ φ2) ≡ (∀xφ1 ∨ φ2).

4. If y does not appear free in φ1, ∀xφ1 ≡ ∀y(φ1[x← y]).

Now that we understand validity, we can concern ourselves with finding a system
to reveal validity of expressions. As we have seen, there are three basic kinds of
validity, (1) Boolean validity, (2) the properties of equality, and (3) the properties
of quantifier. For the system that we are going to use (Papadimitriou, 1994), we
assume that the signature σ is fixed.

Definition 36 (Axioms). Let φ1 and φ2 be first-order expressions, x be a variable,
and any t or ti be a term. We introduce a countable infinite set of logical axioms
denoted as Λ containing the generalization of the following axioms (Papadimitriou,
1994):

• Any expression whose Boolean form is a tautology

• Any expression of the form t = t
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• Any expression of the form
(

n∧
i=1

(ti = t′i)
)
⇒

(
f(t1, ..., tn) = f(t′1, ..., t′n)

)
,

where f is a n-ary function symbol.

• Any expression of the form
(

n∧
i=1

(ti = t′i)
)
⇒

(
R(t1, ..., tn) = R(t′1, ..., t′n)

)
,

where R is a n-ary relation symbol.

• Any expression of the form ∀xφ1 ⇒ φ[x← t].

• Any expression of the form φ1 ⇒ ∀xφ1, with x not free in φ.

• Any expression of the form (∀x(φ1 ⇒ φ2))⇒ (∀xφ1 ⇒ ∀xφ2).
Remark 10. A first-order theorem consists out of a set of axioms in a particular
signature. We assume that our σ is fixed, so that we avoid having to state it explicitly
all the time.

Starting from the axioms the system we use will generate new valid first-order
expressions by a method based on Modus Ponens.
Definition 37 (First-order theorem). Let S be a finite sequence of first-order ex-
pressions S = (φ1, φ2, ..., φk), and Λ be a set of axioms. The expression φk is called
a first-order theorem, denoted ` φk, if for each expression φi, 1 ≤ i ≤ k either
(a) φi ∈ Λ, or (b) there are two expressions of the form ψ, ψ ⇒ φi among the
expressions φ1, ..., φi−1. We say that S is the proof of φk.

But what if we ask ourselves, not whether a sentence is satisfied by all models,
but by our favorite model (whatever this may be)? One way to bridge that gap
would be the axiomatic method. However, in general our favorite model may have
an axiomatization that consists of infinite set of expressions. Thus, to answer our
question, we need a proof system that allows for proofs from infinitely many premises.
Definition 38 (Valid consequence). Let ∆ be a set of expressions, and φ 6∈ ∆ be
another expression. We say that φ is a valid consequence of ∆, written ∆ |= φ, if
any model that satisfies each expression in ∆ also satisfies φ.

This implies that the valid consequences would be all the properties (and only
those) of our favorite model. Hence generating those in a systematic way would be
desirable. For this purpose we extend the proof system to be helpful in identifying
valid consequences ∆ (Papadimitriou, 1994).
Definition 39 (∆-first-order theorem). Let ∆ be a set of expressions. Let S be
a finite sequence of first-order expressions S = (φ1, φ2, ..., φk), and Λ be a set of
expressions. The expression φk is called a ∆-first-order theorem, denoted ` φk, if
for each expression φi, 1 ≤ i ≤ k either (a) φi ∈ Λ, or (b) φi ∈ ∆, or (c) there are
two expressions of the form ψ, ψ ⇒ φi among the expressions φ1, ..., φi−1. We say
that S is the proof of φk from ∆.
Remark 11. A ∆-first-order theorem would be an ordinary first-order theorem if we
allowed all the expressions in ∆ to be added to our logical axioms. In that context
the expressions of ∆ are called to non-logical axioms of the system (Papadimitriou,
1994).
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Computational Questions

There are some important computational questions that are worth mentioning. As
we know, first-order expressions can be encoded as strings in an appropriate alphabet
Σ. The same alphabet can also encode proofs, which, as we have seen, are just
sequences of expressions.
Question 1 (THEOREMHOOD). Given the encoding of an expression φ, is φ a
first-order theorem (` φ)?

Proposition 8. THEOREMHOOD is recursively enumerable.

Proof. The Turing machine, that accepts the language of THEOREMHOOD, tries
all possible finite sequences of expressions (proofs) and reports “yes”, if one of them
is indeed a proof of the given expression (Papadimitriou, 1994).

Question 2 (VALIDITY). Given the encoding of an expression φ, is it valid?

Using the ∆-first-order theorem, we can simplify even proofs of validity (Pa-
padimitriou, 1994). This can be done using three interesting results that formalize
pattern of thought very common in mathematical reasoning, namely the deduction
technique, arguing by contradiction, and justified generalization.

Theorem 1 (The Deduction Technique). Let φ1, φ2 be expressions, and ∆ be a set
of expressions. If ∆ ∪ {φ1} ` φ2, then ∆ ` φ1 ⇒ φ2 (Papadimitriou, 1994).

The next proof method is arguing by contradiction. Basically, that means that
if we want to φ, we assume ¬φ and arrive at a contradiction.

Definition 40 (Contradiction). Let φ be an arbitrary expression, then a contradic-
tion can be defined as φ ∧ ¬φ.

Definition 41 (Consistency). Let ∆ be a set of expressions. If ∆ ` φ, for any
expression φ (including contradictions) we say that ∆ is inconsistent. If no contra-
diction can be proved from ∆, then we say ∆ is consistent.

Theorem 2 (Arguing by Contradiction). Let φ be an expressions, and ∆ be a set
of expressions. If ∆ ∪ {φ} is inconsistent, then ∆ ` φ (Papadimitriou, 1994).

Theorem 3 (Justified Generalization). Let φ be an expressions, x be a variable,
and ∆ be a set of expressions. If ∆ ` φ and x is not free in any expression of ∆,
then ∆ ` ∀xφ (Papadimitriou, 1994).

Next we are going to state reassuring property of this proof system, called the
soundness theorem, showing that the proof system only proves valid consequences

Theorem 4 (The Soundness Theorem). Let φ be an expressions, and ∆ be a set of
expressions. If ∆ ` φ, then ∆ |= φ (Papadimitriou, 1994).

Furthermore, the reverse of the soundness theorem, called the completeness the-
orem due to Kurt Gödel, states that the proof system is able to prove all valid
consequences (Papadimitriou, 1994).
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Theorem 5 (Gödel’s Completeness Theorem). Let φ be an expressions, and ∆ be
a set of expressions. If ∆ |= φ, then ∆ ` φ (Papadimitriou, 1994).

Let φ be some first-order expression. If we take a look a the last two theorems,
it is now clear that |= φ, if and only if ` φ, and we can revisit the initial question
concerning the computational problem VALIDITY. Since soundness and complete-
ness theorems identify valid sentences with first-order theorems, it is the same as
THEOREMHOOD.

Corollary 1. VALIDITY is recursively enumerable (Papadimitriou, 1994).

But this is not the only consequence of the completeness theorem, as the following
important property of first-order logic shows.

Theorem 6 (The Compactness Theorem). If all finite subsets of a set of sentences
∆ are satisfiable, then ∆ is satisfiable (Papadimitriou, 1994).

Corollary 2. If a sentence has a model, it has a countable model (Papadimitriou,
1994).

Of course, a countable model can still be either finite or infinite. So is it true,
that all models have a countable infinite model?

Theorem 7 (Löwenheim-Skolem Theorem). If a sentences φ has finite models of
arbitrary large cardinality, then it has an infinite model (Papadimitriou, 1994).

We will see why this is important, when we take a look at the limitations of
first-order logic.

Limitations

Although powerful, first-order logic has his limitations. First of, FOL is undecid-
able, which means that a sound, complete and terminating decision algorithm is
impossible.

Let us use the Löwenheim-Skolem theorem to show a limitation of the expressive
power of first-order logic. Without proof, let us state that any graph property can
be expressed by a sentence φ. The corresponding computational problem is called
φ-GRAPHS and has polynomial time. Now an interesting computational question
arises:
Question 3. Are all polynomial graph properties expressible?

The answer is no. The reason for this is the property called REACHABILITY
that is described by the following question
Question 4 (REACHABILITY). Given a graph G and two nodes x and y of G, is
there a path from x to y?

Corollary 3. There is no first-order expression φ, such that φ-GRAPHS is the same
as REACHABILITY (Papadimitriou, 1994).
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Figure 2.1: Data, information, and Knowledge. The agent and its interaction
with the world, as depicted by Boisot and Canals (2004).

This inexpressibility of REACHABILITY by first-order logic is very interesting,
because it is a non-trivial impossibility theorem. This has motivated the study of
possible extensions of first-order logic, such as second-order logic.

Concerning computation linguistics, first order logic is able to formalize many
simple quantifier constructions in natural language. However, many features of
natural language need a much richer structure and cannot be expressed with first
order logic. This is in addition to already restricting complexity limitations.

2.3 Data, Information, and Knowledge

Our understanding of terms such as “data” is a little uncommon, but based on what
we think are good reasons. One being that natural language understanding is an
AI-complete problem (Waldrop, 1984). It makes more sense to ground the semantics
of those terms closer to human understanding rather than “traditional” computer
models.

Let us now state our understanding of certain basic terms; namely data, infor-
mation, and knowledge. These terms are interpreted quite differently throughout
the scientific literature (Zins, 2007).

We ground our definitions on Boisot and Canals (2004) and their sources. They
describe data as originating in discernible differences in physical states-of-the-world,
registered through stimuli. Theses states are describable in terms of space, time, and
energy. Significant regularities in this data - whatever one qualifies as significant -
then constitutes information. This implies that the information gained from data,
depends on the agent extracting it - more precisely: his expectations, or hypotheses.
This set of hypotheses held by an agent can then be referred to as knowledge and is
constantly modified by the arrival of information. Figure 2.1 visualizes those stated
definitions with the help of an agent-in-the-world (Boisot and Canals, 2004).

Since what qualifies as significant depends on the agents individual disposition,
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information can only appear to be objective, if what constitutes as significant regu-
larities is established through convention (Boisot and Canals, 2004).

It might be interesting to note, that based on these definitions, the commonly
used term “unstructured data” refers to complete randomness, or noise.

2.3.1 Unstructured Information

Unstructured information often refers to natural language, be it in the form of
written documents, speech, audio, images or video (Ferrucci et al., 2009). This
implicit definition makes sense, as it is used to split information into two easily
understood classes: databases content and everything else. The reason for this is
mostly business motivated, as the term “unstructured” is then used to convey the
message of computational inaccessibility through information retrieval methods to
the “stored” information, and hence a necessity for action. For example Ferrucci and
Lally (2004b) define structured information as information whose intended meaning
is unambiguous and explicitly represented in the structure or format of the data and
unstructured information as information whose intended meaning is only loosely
implied by its form. Still, the term “unstructured information” is just vaguely
defined by discussing it in contrast to “structured information”, without defining
the term “information” itself.

Let us state a somewhat different but similar approach to a definition based on
the last section:

Definition 42 (Unstructured information). Unstructured Information is the subset
of information, where the information itself describes parts of what constitutes as
significant regularity.

What this essentially means, is that information and its structure are not com-
pletely separable. The best example for unstructured information is in text. The
meaning of the text - its nouns, verbs, markers and so fourth - partly depends on the
text itself - on the context and discourse. Even for humans it can be difficult to un-
derstand the text. Sometimes sentences have to be re-read to be understood, or are
misunderstood completely. While processing text, our knowledge-base is constantly
being updated by the text itself, and a combination of our previous knowledge and
updated knowledge is used to overcome and interpret uncertainties. A physician
would most certainly extract completely different information out of a patient file,
than a linguist.

2.3.2 Knowledge Discovery

The term knowledge discovery (KD) was coined on the application on databases
(Maimon and Rokach, 2005), with the goal of identifying valid, novel, useful and
understandable patterns in mind. Holzinger (2013) states, that the term gained its
popularity through the paper of Fayyad et al. (1996), who described a nine stage
process of knowledge discovery from data (KDD):
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1. Learning from the application domain

2. Creating a target data set

3. Data cleansing and pre-processing

4. Data reduction and projection

5. Choosing the function of data mining

6. Choosing the data mining algorithm

7. Data mining

8. Interpretation

9. Using discovered knowledge

So, the central core of this process is data mining, choosing the appropriate
algorithm, and somehow discover interesting patterns. These patterns, that we
previously referred to as significant regularities, would be the ominous information
that we’d be hoping for, to then hopefully be able to learn something useful. Even
though, these definitions evolved around structured data in databases, they go hand
in hand with our understanding of knowledge

Let us state a definition based on our interpretation of what knowledge is:

Definition 43 (Knowledge Discovery). If knowledge consists of a set of hypotheses,
then knowledge discovery is the process of finding or generating new hypotheses out
of information.

Although KDD is associated with the automatic analysis and modeling of large
data repositories (Holzinger, 2013), I strongly believe that real knowledge discovery
is, at least for now, a process in which the human intelligence is far superior over ma-
chine intelligence. Consequently, utilizing the tools of Human-Computer Interaction
(HCI) to assist the human in this process might yield very fruitful results.

For this reason, we will strongly distinguish between KDD, which is an estab-
lished field that deals manly with aspects of machine intelligence and automatic
data mining (Holzinger, 2013), and KD, which is the process of generation new
hypotheses out of information.

2.3.3 Human-Computer Interaction (HCI)

The field of HCI evolved from the interest of computer science in input-output
technology. Today it deals mainly with human perception, cognition, intelligence
and sense-making in the context of computer science (Holzinger, 2013). So its focus
is literally the interaction between humans and machines.

Recently, Holzinger (2013) stated HCI’s main research question as: “What is
interesting?”
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This essential question, however, does not always have a simple logical answer.
Beale (2007) describes this “interest” as a perspective on relationships between data,
which is influenced by tasks and prior knowledge. Thus “interest” is essentially a
human construct.

2.3.4 HCI-KDD

Consequently, a novel approach is to combine HCI & KDD (Holzinger, 2012) in order
to enhance human intelligence by computational intelligence. The main contribution
of HCI-KDD is to enable end users to find and recognize previously unknown and
potentially useful, usable, and interesting information. Yet, what is interesting is a
matter of research (Beale, 2007).

HCI-KDD may be defined as the process of identifying novel valid, and poten-
tially useful data patterns, with the goal to understand these patterns (Funk and
Xiong, 2006). This approach is based on the assumption that the domain expert
possesses explicit domain knowledge and by enabling him to interactively look at his
data sets, he may be able to identify, extract and understand useful information, as
to gain new - previously unknown - knowledge (Holzinger, Scherer, Seeber, Wagner
and Müller-Putz, 2012).

2.4 Computational Linguistics (CL)

The term "Computational Linguistics" stands for an interdisciplinary field that stud-
ies the statistical and rule-based modeling of natural language from a computational
perspective. It belongs to the cognitive sciences and has applied as well as theo-
retical components, that come from linguistics, computer science, psychology, and
mathematics (Uszkoreit, 2000). Over the past decades, there have been great ad-
vantages in the area of computational methods for extracting meaning from text
(McNamara, 2010; Rosenfeld, 2000).

2.4.1 Morphology

Most natural languages have some system to generate words and word forms from
smaller units in a systematic way (Clark et al., 2010; Mitkov, 2003). The seemingly
infinity of words in a language is produced by a finite collection of smaller units
calledmorphemes. Simply put, morphology deals with the structure of words. These
morphemes are either semantic concepts like door, house, or green, which are also
called roots, or abstract features like past or plural (Mitkov, 2003). Their realization
as part of a word are then called morph, such as door or doors.

The information expressed with morphology varies widely between languages.
In Indo-European languages for example, distinct features are merged into a single
bound form (Mitkov, 2003). These languages are typically called inflectional lan-
guages. Inflections do not change the POS category, but the grammatical function.
Inflections and derivations convey information such as tense, aspect, gender or case.
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2.4.2 Lexicography

The term “computational lexicography” can have different meanings. Hanks (Mitkov,
2003) listed two common interpretations:

1. Restructuring and exploiting human dictionaries for computational purposes

2. Using computational techniques to compile new dictionaries

In this paper we refer to the exploiting of human dictionaries for computational
purposes.

2.4.3 Finite-State Technology

Many of the basic steps in NLP, such as tokenization and morphological analysis,
can be carried out efficiently by the means of finite-state transducers (Mitkov, 2003).
These transducers are generally compiled from regular expressions, which is a formal
language for representing sets and relations (Mitkov, 2003).

2.4.4 Text Segmentation

Text segmentation is an important step in any NLP process. Electronic text in its
raw form is essentially just a sequence of characters. Consequently it has to be
broken down into linguistic units. Such units include words, punctation, numbers,
alphanumerics, etc. (Mitkov, 2003). This process if also referred to as tokenization.
Most NLP techniques also require the text to be segmented into sentences and maybe
paragraphs as well (Mitkov, 2003).

2.4.5 Part-of-Speech Tagging

Most tasks NLP require the assignment of classes to linguistic entities (tokens)
(Clark et al., 2010). Part-of-Speech (POS), for instance, is an essential linguistic
concept in NLP, and POS tagger are used to assign syntactic categories (e.g. noun,
verb, adjective, adverb, etc.) to each word (Clark et al., 2010; Manning and Schütze,
1999).

Automatic part-of-speech taggers have to handle several difficulties, including the
ambiguity of word forms in their part-of-speech (Schmid, 1994), as well as classifica-
tion problems due to the ambiguity of periods (’.’), which can be either interpreted
as part of a token (e.g. abbreviation), punctuation (full stop), or both (Clark et al.,
2010).

2.4.6 Information Extraction

The build-in tools of ICA follow the idea of information extraction (IE). Grishman
(2003) (Clark et al., 2010; Mitkov, 2003) defines IE as the process of automatically
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identifying and classifying instances of entities, relations and events in a text, based
on some semantic criterion.

Typical task are name-, entity-, relation- and event extraction (Clark et al.,
2010).

2.5 Unstructured Information Management Ar-
chitecture (UIMA)

Initially developed by IBM, UIMA now is an established OASIS standard2. Its
objective is to support inter-operability of analytics, which is the term they use
for a software object or network service that performs some sort of analysis, across
platforms, frameworks, and modalities (Ferrucci et al., 2009).

To be more precise, Ferrucci and Lally (2004b) describe UIMA’s high-level ob-
jective as two fold:

1. To accelerate scientific advances by enabling the rapid combination of best of
breed solutions (frameworks) for different modalities.

2. To accelerate the transfer of analytics implementations to the product by pro-
viding an architecture (and framework) that promotes reuse and supports
flexible deployment options.

2.5.1 History and Motivation

IBM realized that marked indicators suggested an increasing marked need for com-
mercial applications in text- and voice analytics (Ferrucci and Lally, 2004b). These
application areas they identified included life sciences, e-commerce, technical sup-
port, advanced search, as well as national and business intelligence. Ferrucci and
Lally (2004b) reported that IBM had over 200 employees from six major labs all over
the world working on Unstructured Information Management (UIM) technologies.
Their primary focus being NLP at that time.

The idea was to overcome a few major challenges when dealing with (third-party)
UIM assets, by creating a common framework and engineering discipline. Ferrucci
and Lally (2004b) state the following:

• Organizational Structure. Geographically dispersed teams make jointly
development and reuse of technologies difficult.

• Skills Alignment. Inefficiencies arise when forcing specialists to perform
tasks that do not fall into their skill set, but are better of delegated to where
the actual expert knowledge resides.

• Development Inefficiencies. Reuse and integration often requires too much
effort for adaption, resulting in unnecessary “reinvention of the wheel”.

2As of March 2009
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• Speed to product. Technology transfer from the research lab to the com-
mercial products often requires a significant rewrite effort for researchers.

As stated before, skills alignment was a major challenge that needed to be ad-
dressed. Language technology experts, for example, might not be trained software
engineers. Yet one of UIMA’s objectives is to enable efficient deployment in robust
and scalable system architecture.

As a result, Ferrucci and Lally (2004b) identified the following development roles
analogous to the separation of roles in Sun’s J2EE platform:

• Annotator Developer. The focus lies on developing core algorithms, be it
of statistical or rule-based nature. Its their job to define the interfaces, de-
scriptions, and algorithms in an UIMA conform way. The annotator developer
is insulated from technical inter-operability, external control, distribution, and
deployment concerns.

• Analysis Engine Assembler. The analysis engine assembler combines var-
ious annotators created by the developer, by considers available engines in
terms of their capabilities for the task at hand. The assembler is insulated
from: algorithm development, technical interoperability, external control, dis-
tribution and deployment concerns.

• Analysis Engine Deployer. The analysis engine deployer decides how these
assembled analysis engines, as well as the required resources, are deployed on
particular hardware.

2.5.2 Specification

To begin with, Ferrucci et al. (2009) introduce and describe the following terms and
we will follow their definitions:

The subject of analysis (sofa) is referred to as an artifact. If, for example, we
analyze a collection of documents, than each document would be an artifact. The
artifact modality is the “mode of communication” the artifact represents (text,
sound, video, etc.). The union of an artifact and its meta-data is called artifact
data.

We stated earlier, that the principal objective of the UIMA specification was to
support inter-operability among analytics. This objective was subdivided into the
following four design goals (Ferrucci et al., 2009):

1. Data Representation. Support the common representation of the artifacts
and their meta-data independently of their initial representation.

2. Data Modeling and Interchange. Render the transfer of the artifacts and
their meta-data platform independent.

3. Discovery, Reuse and Composition. Support the discovery, reuse and
composition of independently-developed analytics.
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4. Service-Level Inter-operability. Support concrete inter-operability of in-
dependently developed analytics based on a common service description.

There are seven elements to the UIMA standard. Following, we will provide a
brief summary of their description, as initially depicted by Ferrucci et al. (2009).

Common Analysis Structure (CAS)

The subsystem of UIMA is the Common Analysis System (CAS), which handles data
exchanges between the various UIMA components, including analysis engines and
unstructured information management applications. CAS supports data modeling
via a type system and is independent of any programming language. It provides
data access through a powerful indexing mechanism, hence provides support for
creating annotations on text data (Gotz and Suhre, 2004). Furthermore, it delivers
a neutral, object-based representation scheme that is aligned with UML (Ferrucci
et al., 2009).

To break it down, CAS is the common data structure containing the artifact and
its meta-data (annotations). The meta-data is essentially an object graph generated
by the analysis work-flow, where objects are instances of classes (types) in a type
system. The reason, why the artifact and its annotations are separate, is to support
the stand-off annotation model. This means, that the artifact itself is not modified
in the process. All changes are made to the meta-data.

Type System Model

One of the design goals was data modeling and interchange. To support that goal,
UIMA requires each CAS to be conform to a user-defined schema, called type system
(Ferrucci et al., 2009). A type system is essentially a collection of type definitions,
each of which can specify various attributes.
Example 4. Lets say we want to create an annotator that identifies persons and
organizations within some text documents. We might end up utilizing a type system
that specifies the following types and attributes: (1) One type called Person with
attributes along the line of First Name and Last Name, and (2) another type called
Organization that has the attributes Name and Location.

Base Type System

To establish a basic level of inter-operability, UIMA specifies a base type system
providing definitions for commonly-used, domain-independent types (Ferrucci et al.,
2009). The most significant of which is the Annotation and Sofa Type System.
However, the basic type system also includes:

• Primitive Types,

• Views, and

• Source Document Information
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Abstract Interfaces

The abstract interfaces of UIMA define standard component types and operations
that UIMA services implement (Ferrucci et al., 2009). As mentioned before, all
UIMA services operate on the CAS. To enable that, abstract interfaces have to be
specified.

The super-type of all UIMA components is called Processing Element (PE),
which defines methods to access the PE meta-data. Analytic is a subtype of PE
and performs some form of analysis on the CAS. Another subtype of PE is called
Flow Controller. Its purpose is to specify the route a CAS takes through different
analytics.

Behavioral Meta-data

The behavioral meta-data of an analytic describes what that analytic does (Ferrucci
et al., 2009). It specifies what types of CAS it can process, what elements (or
annotations) it needs as input (be it required or optional), as well as what kind
of chances the analytic does to the CAS. These changes can include the creation,
deletion, or simply modification of annotations.

It might be interesting to note that analytics are not required to declare behav-
ioral meta-data.

Processing Element Meta-data

On the other hand, each PE is required to specify its processing element meta-
data (Ferrucci et al., 2009). This meta-data describes the PE itself by specifying
identification information (i.e. a unique name), possibly configuration parameters
for its implemented algorithm, behavioral meta-data, the utilized type system, and
beyond-UIMA extensions.

WSDL Service Descriptions

Essentially, this element facilitates inter-operability by specifying a WSDL descrip-
tion of the UIMA interfaces (Ferrucci et al., 2009). It also specifies a binding to a
concrete SOAP interface that must be implemented by compliant services.
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3. Related Work

For many years, IBM research groups from various countries are working on the de-
velopment of systems for text analysis, and text-mining methods to support problem
solving in life science. The best known system today is called Biological Text Knowl-
edge Services and integrates research technologies from multiple IBM research labs.
BioTeKS is the first major application of the so-called Unstructured Information
Management Architecture (UIMA) initiative (Ferrucci and Lally, 2004a). These
attempts go back to a text mining technology called TAKMI (Text Analysis and
Knowledge MIning), which has been developed to acquire useful knowledge from
large amounts of textual data - not necessarily focused on medical texts (Nasukawa
and Nagano, 2001).

BioTeKS was originally intended to analyze biomedical text from MEDLINE
abstracts, where the text is analyzed by automatically identifying terms or names
corresponding to key biomedical entities (e.g., proteins, drugs, etc.) and concepts or
facts related to them (Mack et al., 2004). MEDLINE has been often used for testing
text analytics approaches and meanwhile a large number of Web-based tools are
available for searching MEDLINE. However, the non-standardized nature of text
is still a big issue, and there is much work left for improvement. A big issue is
in end-user centred visualisation and visual analytics of the results, required for
the support of the sensemaking processes amongst medical professionals (Holzinger,
Simonic and Yildirim, 2012; Holzinger, Yildirim, Geier and Simonic, 2013).

Many solutions for data analytics are available either as commercial or open-
source software, ranging from programming languages and environments providing
data analysis functionality to statistical software packages to advanced business
analytics and business intelligence suites.

Prominent tools focusing on statistical analysis are IBM SPSS, SAS Analytics
as well as the open-source R project for statistical computations. Each of the afore-
mentioned tools provides additional packages for text analysis, namely IBM SPSS
Modeler, a data mining and text analytics workbench, SAS Text Analytics and the
tm package for text mining in R.

Software focusing on text mining and text analysis like the Apache UIMA project
or GATE (General architecture for text engineering) are aimed at facilitating the
analysis of unstructured content. Several projects based on the UIMA framework
provide additional components and wrappers for 3rd-party tools, with the purpose
of information extraction in the biomedical and the healthcare domain, including
Apache cTAKES (clinical Text Analysis and Knowledge Extraction System) and
the BioNLP UIMA Component Repository. Other solutions for knowledge anal-
ysis utilize machine learning algorithms and techniques, with the most prominent
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frameworks Weka (Waikato Environment for Knowledge Analysis) and RapidMiner.
In the medical field, the secondary use of electronic health record (EHR) data

is an important domain. Chute et al. (2011) state, that the entire categories of
clinical research are fundamentally dependent on effective secondary use of clinical
information. This includes - but is not limited to - clinical trials, outcomes research,
and best evidence discovery. A big step towards an effective and ethical use of
EHR data for secondary purposes is SHARPn (Chute et al., 2011). The SHARPn
project focuses on three main themes, namely Normalization, Phenotypes, and Data
Quality/Evaluation. It is described as - and I quote - “a collaboration among 16
academic and industry partners committed to the production and distribution of
high-quality software artifacts that support the secondary use of EMR data” (Chute
et al., 2011).

Concerning medical standards for UIMA, Wu et al. (2013) created a common
type system for clinical NLP that is fully functional in cTAKES, with an end target
of deep semantics based on Clinical Element Models.

Kano et al. (2009) describe U-Compare, a joint project between the University
of Tokyo, the University of Colorado School of Medicine and the National Centre for
Text Mining at the University of Manchester. Its purpose is to share and compare
text mining tools with UIMA and claimed to provide the world’s largest collection
of typesystem compatible UIMA resources.

To our knowledge there are only a few publications concerning the integration
of UIMA into clinical routine:

Garvin et al. (2012) built a natural language processing system to extract in-
formation on left ventricular ejection fraction, which is a key component of heart
failure, from “free text” echocardiogram reports to automate measurement reporting
and to validate the accuracy of the system using a comparison reference standard
developed through human review. For this purpose they created a set of regular
expressions and rules to capture “ejection fraction” using a random sample of 765
echocardiograms. The authors assigned the documents randomly on two sets: a set
of 275 used for training and a second set of 490 used for testing and validation. To
establish a reference standard, two independent experts annotated all documents
in both sets; a third expert resolved any incongruities. The test results for doc-
umentlevel classification of EF of < 40% had a sensitivity (recall) of 98.41%, a
specificity of 100%, a positive predictive value (precision) of 100%, and an F mea-
sure of 99.2%. The test results at the concept level had a sensitivity of 88.9% (95%
CI 87.7% to 90.0%), a positive predictive value of 95% (95% CI 94.2% to 95.9%),
and an F measure of 91.9% (95% CI 91.2% to 92.7%) - consequently, the authors
came to the conclusion that such an automated information extraction system can
be used to accurately extract EF for quality measurement (Garvin et al., 2012).
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4. Materials

In our experiment, we are interested to investigate the potential to support a med-
ical doctor (dermatologist) in his research by applying NLP techniques to selected
medical sample records in the form of jointed electronic doctor’s letters called out-
patient cards. These files contain a number of structured information, such as patient
name and date of birth, but most of it is unstructured information in the form of
written electronic text. To realize this, we used IBM Content Analytics (ICA) in
combination with ICA Studio 3.0 and the Apache UIMA framework.

4.1 Electronic Patient Files

As of now, electronic patient files contain large portions of data which has been
entered in non-standardized format. Especially in the German speaking countries,
text seems to be the preferred way of documentation and communication when it
comes to patient care.

One interesting type of an electronic patient file is the electronic doctor’s let-
ter. Its primary purpose is the communication between physicians. The content
of a doctor’s letter usually consists of a summary of the patients status, a review
and interpretation of the patients disease-progression, a description of the induced
therapies and medications, as well as a possible recommendation for further steps.

In our case, the doctor’s letters where dermatology specific and limited to one
clinic. This, of course, has influence on the required complexity of the NLP rule-
set. And a positive at that, since this limits the domain to one medical field of one
hospital and we only have to deal with a very small variation of “doctor’s dialects”.

However, the idea was to investigate the NLP possibilities with very limited
structure available, in order to support backwards compatibility. With the restric-
tion in place that the files are fully digital PDFs (and not scanned images). This also
means, that linebreaks and punctation can in general not be trusted. Essentially
the only data source was a collection of out-patient cards. An out-patient card is
the complete union of all available doctor’s letters of a single patient. This implies
that each patient was represented by one PDF file, and each PDF file resembled the
collective information of one single patient.

An illustration of a out-patient card can be seen in Fig. 4.1. Each visit represents
one doctor’s letter. In the PDF these doctor’s letters are separated via horizontal
lines. The content of such a letter is usually divided into different subsections. There
are different kinds of subsections, that may or may not occur in the file, but it always
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starts with a brief summary of the diagnosis. This summary usually lists the past
intervention, as well as the patients status afterwards.

Let us state the most commonly occurring subsections (Indicated in Fig: 4.1 by
the placeholder-word “Subsection”) and their content:

• Letzte Durchuntersuchungen. Lists the dates and results of the past ex-
aminations. These can, for example, include summaries of Sonograph, or CT
results.

• Anamnese. The medical history (English translation) of a patient according
to the patient or other people that know the patient. It is information gained
by a physician by asking specific questions.

• Inspektion und Palpation. The results of the inspection and palpation
(touching) of the patients body by the physician.

• Auflichtmikroskopischer Befund. The reflected-light microscopy is a non-
invasive diagnostic method in dermatology for early detection of malign melanoma.
This subsection lists the corresponding results and interpretation.

• Digitale Dokumentation. References to other digital documentation asso-
ciated with the patient.

• Histologie. This subsection documents the results of tissue analysis; It also
lists the associated dates.

• Labor. All the performed Labor results, such as EKG measurements or Liver
function tests.

• Therapie. This subsection lists all the recommended or running therapies of
the patient.

• Kontrolle. Lists suggestions or dates for future examinations.

• Untersuchung durch. The name of the doctor that performed the current
examination that this doctor’s letter is documenting.

4.2 Apache UIMA Framework

Apache UIMA is an open-source implementation of the UIMA OASIS standard (see
also 2.5). There are two basic frameworks: One for C++ and one for Java. These
frameworks support the configuration, description, deployment, all the way up to ac-
tually executing pipelines of annotator components in a run-time environment. The
Java implementation also provides an Eclipse-based (Eclipse Foundation, 2004) de-
velopment environment for using UIMA. The framework also allows for the creation
of annotators in Perl, Python, and TCL.
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Figure 4.1: An illustration of a typical out-patient card. Note that the num-
ber of pages varied between 1 and 90.
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4.3 IBM Content Analytics with Enterprise Search
(ICAwES)

IBM Content Analytics (ICA), formerly known as IBM Cognos Content Analytics,
is intended to provide enterprises with tools to enable them to identify new revenue
opportunities, improve customer satisfaction, and provide early problem detection.
Although its full name is ICAwES, its mostly abbreviated as ICA. It follows the
NLP idea of information extraction. In their publicly available Redbook, Zhu et al.
(2011) describe ICA’s key capabilities as follows:

• Discover new relationships in the content.

• Refine that content to provide business context by using search capabilities.

• Deliver new insight to the business users to enable focused decision making.

4.3.1 Terms and Definitions

To begin with, Zhu et al. (2011) introduce and describe the following terms and we
will follow their definitions:

In the context of this work, the term unstructured content refers to free text.
Following that definition, text analytics is the automatic process of converting
unstructured content into structured information. A content analytics collection,
or document corpus, is the entire group of documents available to the application
for analytics purposes. Note that ICA supports multiple collections. The facets
represent the different aspects or dimensions of the collection; They are a mechanism
for navigation in the text miner application, which is the user interface. As we
will see, facets can be populated with values obtained from either a structured or
unstructured information source.

4.3.2 Architecture

Zhu et al. (2011) describe the six major components of ICA as depicted in the
following paragraphs; We will essentially provide a summary of their work in this
subsection. The interconnection between the various components can be seen in Fig.
4.2.

Crawlers extract textual data from various supported data sources. The intervals,
at which the crawlers check for new or updated content, can be configured via
the administration console. Out of the box, there are a number of different
crawlers available for different data sources.

• Web-based crawlers
• Crawlers for IBM products as data source
• File systems crawlers
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Figure 4.2: The component architecture of IBM Content Analytics according
to Zhu et al. (2011)

• Relational database crawlers
• Email crawlers

Most crawlers can be set-up to crawl multiple data sources of the same type.
It is also possible to write your own custom crawler is needed; This, however,
requires programming experience, while using built-in crawlers does not.

Document Processors are responsible from processing the crawled documents,
as well as preparing them for indexing. Each document processor is utilizing
an UIMA conform pipeline of annotators; Some of those are build-in out of
the box, while others can be plugged-in according to ones needs.

Indexer is responsible for building an optimized index of document content. It
is based on the open source Apache Lucene indexer. When active, the index
automatically indexes process documents. Manual rebuild of the index, among
other options the administration console offers, is also supported.

Search Runtime is a server-based component responsible for servicing the client’s
search- and analytics-requests. These client service requests are made by using
the Java-based programming interface called IBM Search and Indexing API
(SIAPI); It operates remotely by using the HTTP/HTTPS protocol. Every
collection is associated with at least one search runtime. It is possible to have
more than one if needed.
It might be interesting to note, that in order to provide continuous operation,
the search runtime operates on copies of their associated collection.

Text Miner Application This is the component that performs the text analytics.
It provides a browser-based user interface that communicates with the text
miner’s web application; It runs under either Jetty or a WebSphere Application
Server. The web application issues SIAPI client requests to the search run
time.

Administration Console is - as the name suggests - the administrative compo-
nent of the system. Through the console, you can create and administer col-
lections, start and stop components, as well as monitor system activity and
log files. It also provides security options, such as a user account system that
can be configured.
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Figure 4.3: The document processor architecture in IBM Content Analytics
according to Zhu et al. (2011)

For the Document Processor, ICA utilizes a UIMA pipeline as depicted in Fig.
4.3 and described in the following paragraphs. This pipeline includes a set of fun-
damental annotators; Note that the first two can not be changed, while the other
can be configured according to ones needs.

Language Identification annotator Identifies the language of the document. This
fundamental information can be utilized to branch in specialized parsing rule
sets. Note that the language identification is document wide. If the language
is known beforehand for all documents, it can also be set manually.

Linguistic Analysis annotator Applies basic linguistic analysis, such as POS, to
each document. Default tagging can in later stages be influenced and improved
by defining own types, such as real numbers or dates, by means of character
rules for the disambiguation of punctations.

Dictionary Lookup annotator Matches words from dictionaries with words in
the text. Note that stemming, as well as the definition of synonyms is sup-
ported. This stage can be configured in the administration console.

Named Entity Recognition annotator This annotator can only be activated or
deactivated and not configured as of now. It extracts person names, locations
and company names.

Pattern Matcher annotator Identifies those pattern in the text that are specified
via rules.

Classification Module annotator Performs automatic classification. It uses nat-
ural language processing as well as semantic analysis algorithms to determine
the true intent of words and phrases. It combines contextual statistical anal-
ysis with a rule-based, decision-making approach.

Custom annotator Custom annotators are essentially java programs that obey a
given UIMA interface. This program has access to all annotations made by

52



Figure 4.4: Screenshot of the standard tabs of the browser-based Text Miner
Application. Each tab represents and activates a different view
on the data.

the previous annotators. It is very common that this stage is developed with
ICA Studio.

The out-of-the-box text miner application provides the user with a number of
different views and ways to interact with the annotated documents. The typical
tabs associated with the views can be seen in Fig. 4.4.

The most important views in our project were the first three.

1. Dokumente. Shows the documents that fit the search query. Note that
the search query can be generated by simply clicking through the data and
annotations

2. Facetten. The facet view shows the facet tree generated by the developer.
This tree is then filled accordingly with the extracted annotations of the files.
Note that only the annotations of those documents that fit the search query
are listed. This view is very useful for navigation.

3. Zeitreihen. Shows time plots. Note that any date can be used; even extracted
ones.

4.4 IBM Content Analytics Studio

ICA Studio is an Eclipse-based (Eclipse Foundation, 2004) development suite for the
creation of UIMA-conform annotators. The Studio does not depend on ICA itself,
but as the name suggests it does work particularly well with ICA. This is mainly
because of the build-in deployment functionality to ICA’s custom annotator stage.

There are three basic means to create annotations:

• Character rules are based on regular expressions. This is useful to specify
character patterns of interest such as dates or phone numbers. Those character
sequences following these patterns can then be annotated and that way be used
accordingly for relation extraction.
The syntax is based on JRegex, which is regular expression library for Java.

• Dictionaries. The creation of dictionaries in ICA is useful to create word
classes. For example a dictionary “MonthNames” could be used to identify
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mentioning of months within a text documents. The dictionaries also offer the
possibility to associate other information with other features. For example
“Oktober” could then be associated with “10” to in turn easily normalize date
information.
When defining dictionaries, ICA Studio supports the manual definition of any
custom morph or synonym, as well as providing the automatic generation of
inflections. The canonical form is then defined as the lemma.
The dictionaries also allow the user to assign the part-of-speech to special
words or word classes - if needed - which can be later exploited in the process
of designing parsing rules.
For many supported languages, such as German and English, standard dictio-
naries are already build-in.

• Parsing rules. The modeling of relations can be done by defining parsing
rules, that can operate on different levels, such as phrase or entity, as well as
different scopes, such as sentence, paragraph or document. These parsing rules
can also automatically be derived out of sample text passages and manually
changed and optimized as needed, speeding up the process.

An interesting plug-in functionality in the ICA studio are the so called normal-
izers. They can be used to convert different formats of the same concept into one
standardized format. For example: “12.10.1987” and “1987-10-12” describe the same
concept - a date. The normalizers can also be used to overcome different points of
reference, or units. For example: “100 pounds” could automatically be tagged with
the normalized feature “45.359 kg”. It is also possible to plug-in your own custom
normalizers created in Java.
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5. Methods

In this section we discuss and document our project; how we approached it and how
we used the materials at our disposal

5.1 Information of Interest to the Physician

In the beginning of our project, we sat down with the physician and discussed what
kind of information would be of interest to him. To be more specific, we asked him
what questions he would ask the computer about the content of the out-patient
cards, if a computer were - for the sake of argument - able to completely understand
the content of those documents.

In this process, we identified a few sample questions that indicate the physicians
information interest:

• How many patients had a malign melanoma on their right upper arm?

• Does the patient have metastasis?

• What’s the associated Breslow index (tumor thickness) of the melanoma?

• When are specific diagnosis common?

• What therapies does the patient have in place?

We analyzed those sample questions in order to derive the key information that
need to be extracted from each document.

5.2 Naming Convention

The purpose of a naming convention is to allow the deduction of useful information
from the component names. In this case, the components are the annotations.
As mentioned before there are three basic ways of creating annotations: (1) via
character rules, (2) via dictionaries, or (3) via parsing rules.

It turned out to be very helpful during development to have a way of quickly
knowing the source of the annotation. We decided to use the following pre- and
postfixes when creating annotations:
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• Dict-. This prefix is used for every annotation created by dictionaries. For
example, the annotation created by the dictionary containing the months of a
year is called DictMonth.

• Token-. Character rules can have one of two prefixes. The prefix Token- is
used when the character rules influence tokenization.

• Char-. On the other hand, if the character rules don’t influence the tokeniza-
tion the use the prefix Char-.

• Raw-. Parsing rules in general do not need a prefix. However, it is often very
convenient to utilize an extra stage to fuse the annotations of various sources
(e.g. character rules, dictionaries, ...) together and perform normalization. In
that case, the pre-normalization annotation has the same name as the final
annotation, but with the added prefix Raw-. For example RawNumber.

• -Candidate. This postfix indicates, that there is a high chance that the
annotation might be a false positive. The context is investigated in the further
steps of the pipeline; thus reducing or eliminating the uncertainty. Since text
passages can be convert by more than one annotation, a false positive at this
stage does not influence other interpretations of the same passage in any way.
Naturally, this postfix can not occur in combination with the prefix Token-.
For example RawDateCandidate for isolated (possible) year specifications such
as “2006”.

5.3 Designing an Annotation Pipeline

With the questions of interest identified, we started to design an annotation pipeline
for ICA’s custom annotator. This pipeline is of course able to access POS annota-
tions out of the box, as it is build-in into the ICA’s basic functionality. The pipeline
of the custom annotator can be seen in Fig. 5.1.

The implementation of it’s annotators was mostly done with ICA Studio 3.0 ; the
exceptions are one special annotator and three custom normalizer that were written
with Eclipse in Java.

5.4 Custom Normalizer

In order to meet our goals we had to write three custom normalizer to compliment
the functionality of ICA Studio 3.0.

5.4.1 FormulaSolver

By investigating the out-patient cards, we realized that we had to deal with nu-
merical values a lot. For this purpose we implemented a custom normalizer called
FormulaSolver.
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Figure 5.1: An illustration of the custom pipeline design realized in ICA Stu-
dio. The green annotators with the white background are context
sensitive; they filter out negations and suspicions.

The formula solver supports three value types:

1. Numerical. Any integer or real number. Examples: 2, 4.23, -1, -4.323

2. Boolean. Any boolean. Examples: true, false

3. String. Have to be enclosed in quotations. Examples: “test”, “any str”

Internally, the formula solver is a string interpreter, that tries to compute the
string that you feed him as input and returns the result. A few typical examples
can be seen in Table 5.1.

There are a number of different operators build-in. A list of all supported oper-
ators can be seen in Table 5.2.

Table 5.1: Some example inputs and the corresponding output that the for-
mula solver would return.

Input Output
(6 + 2 * 2) / 2 5.0
2 * 3 6.0
"abc" + "def" abcdef
3 > 2 true
2*4 != 16 / 2.0 false
-1.32 * -1 1.32
2^(10) 1024
(3.5 > 3) && (3.5 < 4) true
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Table 5.2: The build-in operators of the FormulaSolver.
Type Operators
Logical operators &&, ||, ==, !=, >=, <=, >, <, !
Arimetric operators +, -, *, /, ^
Functions abs, sqrt
Special toFormat

The special toFormat operator is used as a wrapper for Java’s DecimalFormat
class. It’s purpose is - as the name suggests - to format reel numbers in a specified
way. For example to limit the number of positions after the decimal point.

5.4.2 DistanceNormalizer

Understanding length measurements is very important when dealing with medical
records from dermatology. Both, tumor thickness and invasion depth are specified
in either millimeter or centimeters.

The distance normalizer is a tool written by us for ICA Studio, than can convert
length measurements from one unit of distance to another. This is important for
normalization, because the tumor thickness, for example, is sometimes specified in
centimeter and sometimes in millimeter.

The supported units of the distance normalizer are: mm, cm, m, km, inch, and
feet.

5.4.3 DateDifferenceCalculator

Naturally the age of a person changes over time. Thus a document containing the
complete medical history of a patient holds various information that is associated
with different aged versions of the patient.

To determine the patients age at specific points within the document two dates
are needed: The birth date of the patient, and a date of reference.

Essentially the DateDifferenceCalculater is a custom normalizer for ICA Studio.
It’s functionality is pretty straight forward: It outputs the age difference between
the two dates it gets as input.

5.5 Extract Basic Annotations to Build on

Quite early in our investigation, we realized that we needed a few key annotations
to build on. These basic annotations are independent of the actual task and even
unrelated to medicine.

Since everything else will depend on the precision and recall of those annotations,
it was very important to devote much thought into their implementation. Those
annotations include:

58



• Reel Numbers. Out of the box, the current version of ICA Studio (i.e. 3.0)
does not recognize real numbers. A reel number in German is separated with
a colon (e.g. “1,32”, “0,01235”, “123”, etc.).

• Length Measurements. We needed the recognition of reel numbers mostly
for length measurements, such as the tumor thickness.

• Enumerations. Enumerations are generally important for date recognition
in the German language. Although dates are often denoted in a standard
numerical manner (e.g. “12.10.1987”), they can also be described with the
use of enumerations.

• Dates. There are a lot of ways to denote dates; especially in the German
language. Our goal was to recognize the most common ones and create anno-
tations in a convenient format to operate on.

5.5.1 Annotation for (Reel) Numbers

Natural and reel numbers can be denoted in fairly different ways. We decided to
support the following (absolute positive) ways:

1. Numeral. The usual mathematical way, but with a colon as separator. e.g.:
“1,32”, “0,01235”, “123”

2. Textual. Denotation with words. This is sometimes done for positive natural
numbers. e.g.: “fünf ” (meaning five), “hundert” (meaning hundert).

3. Implicit. It is quite common for medical professionals to denote smaller
numbers implicitly. In our case we approximated them with the typical values
suggested by the physician. e.g.: “wenigen” (meaning a few), “ein paar”
(meaning a couple).

4. With multiplier. Rather rare in the medical field but quite common when
dealing with amounts of money. e.g.: “1k” (meaning 1000)

We implemented 1. and 4. with the means of character rules. The annotations
they create are called CharNumber, TokenNumber, and TokenNumberNeedMultiplier
respectively.

Type 2. and 3. are realized with custom dictionaries. Their annotations are
called DictNumber and DictImplicitNumber

All the five annotations above are then fused and normalized into one annotation
called Number as depicted in Fig. 5.2. Its features are the value (with a dot as
separator) and a boolean called is_integer that is true if the value is indeed an
integer.
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CharNumber TokenNumber DictNumber

DictImplicitNumber

TokenNumberNeedMultiplier

RawNumber

Number

Figure 5.2: The annotation pipeline for numbers. Note that the last step is
for normalization.

5.5.2 Annotation for Length Measurements

The length measurements build on the number annotation. Essentially, if there is
a number in front of a length unit it will be recognized as a length measure. The
following example showcases a length measurement with some text.

Malignes Melanom interscapulär re (Invasionstiefe 1,3 mm ) 5/2010

� . . . Number annotation
� . . . Unit of length: Millimeters

In some cases there is no space between the number and the unit, resulting in
the tokenizer misinterpreting the string as just one token. This case is separately
annotated via character rules as TokenLength.

Another special case rises from the way length is commonly described in natural
language. The following example demonstrates a number representing a length
measurement that can only be identified by context called RawLengthByContext:

... winzige, 1 bis 2 mm im DM haltende Verdichtungsbezirke ...

� . . . Number annotation that indeed is a length measurement by context
� . . . Length annotation defining the unit of length (in this case millimeter)
� . . . Length by context indicator. Other examples are “auf” and “und”

All these annotations are fused into an annotation called Length as depicted in
Fig. 5.3. Its features are the value_as_mm, value_as_cm, value_as_m; all created
with the DistanceNormalizer.

5.5.3 Annotation for Enumerations

Enumerations are fairly similar to numbers. The difference is the context. For
example “2.”, “first” and “2nd” are all English enumerations. To be more precise
the following ways of denoting enumerations are supported:

1. Numeral. The same as natural numbers. It is not clear if this indeed is an

60



Number

RawLengthExplicit

Numbernormalize

RawLengthExplicit

RawLengthByContext
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TokenLength

LengthByContext
Indicator

Figure 5.3: The annotation pipeline for length measurements. Note that the
last step is for normalization.

normalize

TokenEnumeration DictEnumeration CharEnumerationCandidate

RawEnumeration

Enumeration

Figure 5.4: The annotation pipeline for enumerations. Note that the last step
is for normalization.

enumeration; there is uncertainty involved. e.g.: “2”, “5”, “7.”

2. Explicit. This means that the token can not be confused with anything else.
e.g.: “3ter”, “15-ten”,

3. Textual. Denotation with words. e.g.: “erster” (meaning first), “vierter”
(meaning fourth).

The annotation pipeline for Enumeration is depicted in Fig. 5.4. It’s features
are value, posssible_day, and possible_month. The last two are Booleans; they are
true if the enumeration could possible denote a day or a month respectively. For
example “13th” can not possible denote a month.

5.5.4 Annotation for Dates

Correct recognition of dates is very important. Luckily its is uncommon for medical
experts to denote the dates in a textual manner; so most dates were numerical and
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RawDate
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Figure 5.5: The annotation pipeline for dates. Note that the last step is for
normalization.

easy to annotate with character rules. To be more precise the following ways of
notation are supported:

1. Explicit. This means that the token can not be confused with anything
else. e.g.: “12.10.1987”, or “4/1987”. Note that in German dates are usually
denoted dd.mm.yyy or mm/yyyy.

2. Textual. Denotation in combination with month names. e.g.: “April 2009”,
or “Oktober 2012”.

The annotation pipeline can be seen in Fig. 5.5. The features of Date are day,
month, year, normalized, as well as two Booleans year_explicit (e.g. “19.02.14” is
not explicit) and year_specified (e.g. “2. April” has no year specified).

5.6 Extract Semi-Structured Information

Since our requirement was to use only the PDF versions of the out-patient cards as
information source, we had to extract the actual patient information (i.e name, birth
date, ID, ...) from the documents as well; normally those are available in a rational
data base. Luckily, the way these information are stored within the documents is
standardized. That fact made it quite easy to tailor simple parsing rules with a
100% recall and precision.

The following example indicates how the patients name and birth date were
encoded on every page except the first one. The surrounding “separators” were
used as triggers.

Patient: Mustermann , Max , 10.10.1910 ¶

� . . . Surname of the patient
� . . . First name of the patient
� . . . Birth date of the patient
� . . . Separator of the annotations
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The patient ID was - strangely enough - not always present in the files. However,
in those cases it was present it was also encoded easily recognizable.

The corresponding annotations are listed below:

• PatientName. Has the features first_name, last_name, and full_name.

• PatientID. The unique ID of the patient. This annotation does not always
exist, since not all files contain the patient ID. Has the feature id.

• BirthDate. The identified Date that represents the date of birth of the patient.
It has the same features as Date.

• PatientAge. Every date of visit is associated with the according age of the
patient at that time. This annotation is created with the help of the DateD-
ifferenceCalculater. It’s feature is age.

5.7 Extract Medical Information

The more challenging part of this work was the extraction of the medical information
of interest. This is partly because of the various non-standardized multilingual
abbreviations.

5.7.1 Annotation for Breslow’s depth

The Breslow’s depth, commonly referred to as Breslow-index or Breslow-Level, is
used as a prognostic factor in melanoma of the skin as a description of the depth
of the tumor. The system was named after its original creator Alexander Breslow
(Breslow, 1970).

The Breslow’s depth, if there is any, is usually specified in the diagnosis summary
of a doctor’s letter. The measurement itself is mostly abbreviated with “TD” fol-
lowed by the actual value and it’s unit; the emphasis is on mostly, because there are
variations. Still, some synonym of “tumor thickness” is always present. A typical
example can be seen below:

St.p. MM , TD 1,5 mm , OS li. innen, 11/2010

� . . . Abbreviation for “Malign Melanoma”, specifying the tumor
� . . . Abbreviation for “Tumordicke” (meaning tumor thickness)
� . . . Annotation of a length specification
� . . . Annotation of a date specification

To begin with, we extract the actual measurement which results in the annotation
Breslowindex.

If this annotation is in close proximity on the right side of a Tumor annotation
of the type “Malignes Melanom”, the annotation DiagMMBreslow is created. There
are two variations of this annotation: (1) With or (2) without a specified date.
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A date is present if the Breslow’s depth is specified in the sentence that states
the tumor’s removal. In that case, the date is either at the beginning or at the end
of the sentence. However, since the Breslowindex annotation requires an actual
measurement of the tumor thickness to be present, the precision of the recognition
was expected to be high either way (meaning that a false positive should be highly
unlikely).

5.7.2 Annotation for the Stadium of a Malign Melanoma

The stadium of a malign melanoma is specified in a similar way; most of the time it
is located in the diagnosis summary of a doctor’s letter. A typical example can be
seen below:

Malignes Melanom Stadium IV (pT-4b, N-O, M-1b AJCC 2009)

B-RAF V600E

� . . . Annotation for a tumor of the type “Malign Melanoma”
� . . . Keyword used as trigger for a following stadium specification
� . . . Character string or number specifying the stadium

Analogous to Breslowindex the stadium specification itself is extracted sepa-
rately as Stadium. If this annotation is in close proximity on the right side of a
Tumor annotation of type “Malign Melanoma”, it is extracted as DiagMMStadium.
Note, that since an actual stadium value is specified, a false positive was expected
to be highly unlikely.

5.7.3 Annotation for Location Information

There are various things in a doctor’s letter that can be associated with a location,
such as tumors and performed diagnostic methods. However, before a location can
be linked to another concept, it has to be annotated first.

We approached the annotation Location by detecting two basic specifications
adjacent to each other; namely a location and a direction. These two annotations
were realized with the use of dictionaries. A typical example of a complete location
specification can be seen below:

Z.n. Melanom Knie rechts (Tumordicke 1,25mm, Level III) OP 8/2001

� . . . DictLocation: Specification of a location. Associated with body part “Bein” (leg)
� . . . DictDirection: Specification of a direction.

The dictionary DictLocation hold common words that specify a location on
the human body; it also associates these words with other information, such as the
body part and body system it belongs to (such as cardiovascular, lymphatic, or
respiratory). For example: the location “lung” is part of the body part “chest” and
belongs to the “respiratory system”.

Additional information can be provided via direction specification. Note that a
direction does not need to be specified for the location to be recognized. Common
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words specifying a direction, such as “left” or “right”, are stored in the dictionary
DictDirection.

The annotation Location has the features body_part, direction, payload (which
is the lemma of the recognized word), and normalized (with is the fusion of location
and direction).

5.7.4 Annotation for the Location of a Malign Melanoma

If a Tumor of type “Malign Melanoma” is close to a Location it will be annotated
as DiagMMLocation. A typical sentence specifying the location of a melanoma can
be seen below:

Z.n. Melanom Knie rechts (Tumordicke 1,25mm, Level III) OP 8/2001

� . . . Annotation of a tumor of type “Malign Melanoma”.
� . . . Annotation of a complete location.

The features of DiagMMLocation are type (which is inherited from Tumor), body_part,
direction, and normalized.

5.7.5 Annotation for Diagnostic Methods

A performed diagnostic method is always linked to a location. An example would
be an MRI of the head. However, some locations are implied by the method, such
as a electrocardiography, which is always associated with the heart.

A problem of the German language, however, is that it is very common to fuse
words together. A typical example of this would be the word “Oberbauchsono”,
which is the union of the concepts sonography and upper abdomen.

To realize this annotation despite the obstacles, we used two dictionaries called
DictDiagnosticMethods for the methods alone, and DictDiagnosticMethodsLocation
for commonly fused words.

If a DictDiagnosticMethods annotation is very close to a Location annotation
or the method is self-describing (such as an ECG), it is recognized as DiagnosticMethod.
A typical example of how a performed diagnostic method is documented can be seen
below:

Radiologischer Befund: Dr. Mustermann Nirvana vom 23.10.2012

CT Schädel : unauffällig. Falxmeningeom, playueförmig,

rostralseitig, 2x 1 cm groß

� . . . Abbreviation for computed tomography; a diagnostic method
� . . . Annotation of a location.

On the other hand, a DictDiagnosticMethodsLocation annotation is also treated
as self-describing and annotated accordingly.

The last annotation DiagnosticMethod has the features method, body_part, lo-
cation, and direction.
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5.7.6 Annotation for Therapeutic Methods

Therapeutic methods will be the focus of the follow-up project, and thus received
very litte attention. They are annotated using a dictionary called DictTherapeuticMethods
and result in the annotation TherapeuticMethod without any context check. This
means that negations and suggestions of therapeutic methods get wrongly recog-
nized as well. It’s features are type, and category.

5.7.7 Annotation for Symptoms and Medication

Symptoms and Medication are annotated through a dictionary called DictSymptom
and DictMedication respectively. As of now, there is no check in place to rec-
ognize negations. The presence of a word results in the annotations Symptom and
Medication.

5.7.8 Annotation for Diagnosis

The annotation Diagnosis is created to later provide an overview in ICA. Its feature
is called type and describes the actual diagnosis; for example “Malign Melanoma”
or “Metastasis”.

For example: a malign melanoma is annotated as a diagnosis, if either a tumor
depth, a stadium, or a location of a malign melanoma was identified in the file.
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6. Results

In this section we will present the results of this project. First we will show the final
implementation from a user’s point of view. After that, we will state the quality of
the discussed main annotations.

For the duration of this project, we’ve had a total of 127 unique out-patient cards
at our disposal; this corresponds 1:1 to unique patients. It took a total of 6 hours
to annotate all documents.

6.1 User Interface

To enable the user to navigate the collection, we build a facet tree for ICA according
to the information of interest to the physician. A screenshot of the text miner
application in the facet view can be seen in Fig. 6.1.

There are eleven main facets; some of which contain multiple child facets.

• Aktuelle Fälle. The first facet serves as navigation assistance for current
cases. It is divided in today, this week, this month, and this year. The associ-
ated dates are taken from the “Ambulanzdatum” facet.

• Ambulanzdatum. Displays all the dates where one or more patients where
at the hospital, clinic, or other in the files mentioned institution.

• Diagnosen. The diagnosis facet itself displays all the possible diagnosis and
the number of patients where such a diagnosis was performed. It’s sub-facets
are “Malignes Melanom” and “Metastasen”.

• Geburtsdatum. It displays all the birth dates of the patients. This facet is
divided into ten year intervals, i.e. 10 years ago, 20 years ago, up to 90 or
more years ago.

• Lokalisation. The localization facet displays all body parts and body systems
with the associated number of patients that have had something performed or
diagnosed at that location. The catalog for localization is based on NHUMI.

• Patienten. Displays the semi-structured information about the patients. It
is divided in first name, last name, id, and age.

• Ambulanz. Also concerned with semi-structured information about the de-
partments. This facet lists all the departments with the number of patients
that visited the department at least once.
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Figure 6.1: Screenshot of the text miner application’s facet view. The facet
tree is located on the left side of the screen. Selecting a facet
results in the corresponding annotations to be displayed on the
right side. These annotations can be selected and their presence
in a document made obligatory; this is a way to limit the docu-
ments to those of interest to the user. You can see the number of
documents that fit the currently selected requirements near the
top left corner.

• Therapien. Displays all extracted therapies and therapy categories.

• Medikamente. This facet lists all medicaments with the number of patient
files in which the medicament was mentioned. It is a simple dictionary match.

• Untersuchungen. The facet displaying the diagnostic methods with the
number of patient that had the method performed at least once.

• Symptome. This facet lists all symptoms with the number of patient files in
which the symptom was mentioned. Just like the medicaments facet, it is a
simple dictionary match.

As mentioned before, we extracted two possible diagnosis. Each of which can
be present on its own, not at all, or in combination with the other; these diagnosis
are malign melanoma and the existence of metastasis. A screenshot of the selected
facet can be seen in Fig. 6.2.

The diagnosis facet has two child-facets, namely “Malignes Melanom” and “Metas-
tasen”. When selecting the malign melanoma facet, all the identified locations of
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Figure 6.2: Screenshot of the diagnosis facet. It displays the supported di-
agnosis with the number of patients where such a diagnosis is
present.

Figure 6.3: Screenshot of the malign melanoma facet; a sub-facet of diagnosis.
It displays the identified locations of the malign melanoma found
in the patient files, and the number of patients where such a
diagnosis is present.

melanomas (limited to the currently available patients) are displayed (See Fig. 6.3).
The melanoma facet has three sub-facets for tumor depth, diagnosis date, and sta-
dium.

Selecting the metastasis facet results in the listing of all the identified metastasis.
However only the location of specific metastasis are known. A screenshot of the facet
and the possible metastasis locations can be seen in Fig. 6.4.

The localization facet shows all the body parts and body systems with the as-
sociated number of patients that have had something performed or diagnosed at
that location. There are eight basic body parts; namely head, neck, thorax, back,
abdomen, pelvis, arm, and leg. The body systems contain the cardiovascular-, lym-
phatic-, respiratory-, urinary-, and digestive- system. Each body part has its own
sub-facet that displays the information associated with that particular part. A
screenshot of the localization facet can be seen in Fig. 6.5, while Fig. 6.6 illustrates
the information associated with the head sub-facet.
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Figure 6.4: Screenshot of the metastasis facet; a sub-facet of diagnosis. It
show the identified metastasis with the number of patients where
such a diagnosis is mentioned.

Figure 6.5: Screenshot of the localization facet. It displays all the body parts
and body systems. The digits on the right show the number of
patient files where something that belongs to the associated part
or system is mentioned. Note that each body part has its own
sub-facet.

The facets can also be used to perform correlation analysis. This can be done
by switching to the correlation view and selecting the two facets of interest. Figure
6.7 illustrates a correlation analysis between the location of a malign melanoma and
the existence of various metastasis.

An other potentially interesting view on the data are the time plots. Figure 6.8,
for example, shows a plot that demonstrates the number of patients each year that
have at least one malign melanoma diagnosed.

Similar to the time plots are the deviation plots. Figure 6.8 shows a deviation
plot that demonstrates the number of patients over their birth year that received
the corresponding diagnosis at least once in their life.
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Figure 6.6: Screenshot of the facet for the head; a sub-facet of localization.
It displays the information associated with the head of a patient,
e.g. brain metastasis, MRI of the scull, etc.

Figure 6.7: Screenshot of a correlation analysis between the location of a ma-
lign melanoma and the existence of various metastasis.
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Figure 6.8: Screenshot of a time plot that displays the number of patients
over the years where they had a malign melanoma diagnosed.

Figure 6.9: Screenshot of a deviation plot. This particular example displays
the number of patients over their year of birth that received the
corresponding diagnosis at least once in their life.
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Table 6.1: The precision and recall of the key annotations.
Annotation Precision Recall

Diagnosis: Malign Melanoma 97 % 85 %
Diagnosis: Metastasis 91 % 81 %
Malign Melanoma: Breslow’s depth 95 % 89 %
Malign Melanoma: Location 86 % 78 %

6.2 Annotation Quality

We tested the annotation pipeline on 127 documents, corresponding to 127 unique
patients. The quality of the key annotations, measured as precision and recall,
were calculated by comparing the results against those of a human. To be more
precise, 10 of the 127 documents were analyzed at the beginning of the project
while the remaining 117 documents where analyzed after the computational results
were established; this was done in order to reduce the bias of the rule sets. An
overview of the results can be seen in Tab. 6.1.

First of all, the annotation of the “semi-structured” information (e.g. patient
information) was tailored to the standardized document layout, resulting in a preci-
sion and recall of both 100 %. This, however, is not to be considered as a meaningful
result, as it is to be expected.

The detection of patients, that had a malign melanoma diagnosed at some point
in their life, yielded a precision of 97 % with a recall of 85 %. The tumor depth
(Breslow’s depth) annotation yielded a precision of 95 % with a recall of 89 %. Lower
results were obtained for the annotation of the malign melanoma’s location, with a
precision of 86 % and a recall of only 78 %.

In contrast to malign melanoma, the annotation rules for metastasis detection are
not context sensitive. This means that every occurrence of a word (or its inflections)
that is present in the metastasis dictionary was annotated as a diagnosed metastasis.
The detection of diagnosed metastasis yielded a precision of 91 % with a recall of
also 91 %. Interestingly, the whole reason that the recall was not 100 % in that
case, is that the word “Mikrometastase” was not present in the dictionary. The low
precision is of course a result of the missing context sensitivity.

73



74



7. Discussion and Lessons Learned

The idea and motivation behind this work was to create a prove of concept that
tailored solutions to the (bio)medical domain could be realized in a realistic time
frame and with sufficient quality.

The point of this particular project was to investigate the potential of IBM
Content Analytics in the biomedical field; a domain that presents a lot of obstacles
for computational linguistics. As briefly mentioned before, those main obstacles are
(a) the weak grammatical structure, (b) the mixture of languages, and (c) the large
portion of (non-standardized) abbreviations.

Realizing an annotation scheme is an iterative task. Even though we as humans
know which information is important to us (e.g. the type and length of a therapy),
formulating a rule to identify such information is not a trivial undertaking.

Concerning ICA, we feel that the simple and easy-to-use interface enables the
developers to perform fast prototyping. The on-the-fly testing gives you fast feed-
back of the “quality” of your rules. On the other hand, a lot of basic - and needed
- functionality, such as POS tagging and named entity identification, is already
build in. The supported scalability for the document collection and the supported
parallelization for the document processor’s pipeline are also crucial.

In order to indicate and to some extend demonstrate that ICA enables the devel-
oper to quickly tailor quality annotation schemes to a specific domain, we calculated
the precision and recall of the key annotations. Even though we are happy with those
results, there are a few shortcomings and grey areas of this project worth discussing.

Firstly, we put our main focus on the detection of information concerning malign
melanoma. This resulted in other conditions and diagnosis to be ignored completely.
However, since our goal was to test ICA’s potential in the medical field and not to
implement a marketable product, this kind of shortcoming was to be expected.

The reason for the low quality of the location annotation for a malign melanoma,
is that the location was linked to a malign melanoma by proximity; as it turns out
there are quite a few cases where that was wrongly considered to imply a connection
between the location specification and the melanoma.

A gray area is the interpretation of the concrete numerical annotation quality
results. Of course, rule-based annotation schemes perform well when tailored to
a small document collection. We did, however, design the rule-sets as generic as
possible to allow for scalability. It might be worth mentioning, that the recall of
the melanoma detection would be well above 90 % if the dictionaries containing the
words that describe a location (such as hand or finger) had a few more entries. The
reason for the lack of dictionary entries is that the human analysis of the whole
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document collection was done after the computational results were known; which
we did on purpose to reduce the bias of the results.
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8. Conclusions

Given its complex nature, general solutions to text understanding are not available
yet, however, the business need is here now. This problem can meanwhile only be
successfully addressed with specialized approaches, such as rule-based or statistical
annotation schemes, to the domain or customer needs. This in return shifts the
need to enable developers to quickly develop and test these annotation schemes. By
speeding up the development process and providing rapid feedback, the developer
can focus more time into building and improving the annotation schemes them-
selves. Because of the many possible solutions to a problem, where most of them
are imprecise, the quality of the annotations strongly depend on the skills of the
developer formulating them.

Our personal experience suggests that ICA is able to provide the necessary flex-
ibility and modularity to efficiently tailor solutions for the purpose of knowledge
discovery from unstructured biomedical data. To clarify: ICA/UIMA is not in-
tended as a substitute to MATLAB when researching and testing methods, but as
a means to test those methods in combination with human intelligence. This is
aligned with our vision of HCI-KDD.
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9. Future Work

Since computational linguistics is still far from achieving natural language under-
standing, there are seemingly endless possibilities for future research. Our intentions
are twofold.

Now that we identified ICA and UIMA as a flexible and modular backbone with
an adequately user friendly client application, we would like to shift our attention
to the investigation of new methods for the purpose of NLP.

The (semi-)automatic identification of similar patient cases, for example, is an
important and interesting topic. In this work, we addressed this problem by heavily
including the human in the loop and providing him/her with navigational tools to
select the conditions that should be present in the patient file. On the other hand,
the work of Wagner et al. (2012) raised our interest in the application of topological
methods to identify similarities within a collection of text documents. Thus we
will move forward, build on our current ICA/UIMA backbone and are eager to
investigate computational topology for knowledge discovery from biomedical text
documents.

Concerning a successor to this work: The physician we worked with shares our
enthusiasm about ICA’s potential for the medical field (Holzinger, Stocker, Ofner,
Prohaska, Brabenetz and Hofmann-Wellenhof, 2013). With this prove-of-concept
project concluded, we would like to pursue a longer project with more resources in
order to realize a solution intended as prototype for future clinical practice.
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