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Abstract

The diploma thesis deals with a two dimensional simulation of the carrier transport
in thin film transistors made of pentacene. The simulation solves, based on a finite
element method, the drift diffusion equations for holes and ions self consistently with
the Poisson equation. With this modelling it is possible to calculate the I-V (current-
voltage) characteristics of pentacene thin film transistors by considering an additional
space charge layer at the front of the gate interface. The different effects of a layer with
a positive or a negative charge carrier density is simulated. Especially the underlying
effects of a ion drift and neutralization are studied. Also the influence of an NH3 gas on
the device is analyzed.



Zusammenfassung

Diese Diplomarbeit befasst sich mit zweidimensionalen Simulationen von organischen
Dünnschichttransistoren aus Pentacen. In den Simulationen werden Drift- Diffusionsglei-
chungen für Löcher und Ionen selbstkonsistent mit der Poissongleichung gelöst. Mit Hilfe
dieses Modells ist es möglich, I-V (Strom-Spannung) Kennlinien von Dünnschichttransistoren
aus Pentacen, mit zusätzlicher Flächenladungsschicht am Gatekontakt, zu simulieren.
Die unterschiedlichen Effekte einer positiv bzw. negativ geladener Ladungsschicht wer-
den simuliert. Insbesonders wurden die Effekte des Ionendrifts und der Ionenneutralisati-
on untersucht. Es wurde außerdem der Einfluss von NH3 auf die erwähnten Transistoren
analysiert.
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1 Introduction

The field-effect transistor (FET), is the basic component in modern electronics.
Today’s micro-chips are using hundreds of millions of such transistors. Many everyday
devices such as laptop, mobile phone or digital camera last unthinkable without these
components. Even in modern sensors, field-effect transistors are important nowadays.
Using a variety of such FETs can detect different gases and their concentrations can be
measured. Field-effect transistors which are sensitive to different gases can be combined
in one chip, which makes it possible to fulfill in a small space with only one device
many different tasks.

It make any difference, whether FETs measure the methane gas for early detecti-
on of broken gas lines, or operate as a component in intelligent clothes, both have one
in common: they should be simple and inexpensive for manufacturing. These properties
are to be expected by the so-called organic thin-film transistors (OTFTs). Unlike
traditional transistors, the active layer is not composed of a semiconductor material
such as silicon or germanium, it is made of a polymer. This can, for example, be
achieved by vapor deposition or spin coating to a support structure, which enables easy
and cost-efficient production. Because of the manufacturing process, it is also easy to
install intermediate layers, which change the properties of the OTFTs fundamentally.
This makes it possible to produce OTFTs optimized for a specific task. As active
layer, pentacene is often used in such OTFTs. For a better understanding of the
internal processes of such OTFTs a lot of research has been already done. For example,
the use of the MOSFET theory was proven by Alam et al. [1]. General top-contact
pentacene thin film transistors were simulated in [2]. The behavior of charge carriers
in OTFTs was studied by Demeyu et al. [3]. Especially for pentacene-based OTFTs,
modifications of the drift-diffusion equations were investigated [4]. Diffusion processes
at the surface of pentacene were studied [5]. Fast and stable simulation methods
for the special OTFTs geometry were presented by Yiming Li [6]. Pentacene-based
OTFTs show a hysteresis. This effect were studied by Ucurum et al. [7]. There exist
also modifications of pentacene as active material such as tris-isopropylsilylethynyl
(TIPS)-pentacene. The resulting device characteristics were studied by Gupta et al.
[8]. The dependence of the thickness of OTFTs was simulated by Gupta et al. [9].
This is only a small excerpt from the existing work on organic semiconductors that exist.

The aim of this thesis is to examine theoretically the effect of a special in-
terface layer consisting of a mixture of two trichlorosilanes, namely 4-(2-
(trichlorosilyl)ethyl)benzene-1-sulfonyl chloride (T-SC, 70 %) and a sulfonic acid
derivate 4-(2-(trichlorosilyl)ethyl)benzenesulfonic acid (T-SA, 30 %). Through this
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1 Introduction

layer, the OTFT characteristics exhibit a shift of the threshold voltage by several ten
volts. As active material in the OTFT pentacene is adopted. The effects of building a
space charge layer are modeled and their influence on the shape of the I-V characteristic
is studied in detail. The effects which appear by exposing the devices to ammonia
(NH3) gas are also simulated. The time development of the spread of ions from the
interface layer and the exposing of the devices with ammonia is studied in order to
gain a better understanding of the various processes. By varying the input parameters,
the current-voltage characteristics are simulated. Due to the time-resolved simulation,
information about the electric field and the particle densities in the device are available.
The simulations in combination with the existing measurements can be used to estimate
the speed of the various processes that take place in the device. Furthermore, it is
also possible to estimate the ion concentration in the space charge layer. This is done
by solving the continuity equations and the Poisson equation selfconsistently. The
devise geometry is discretized on a two-dimensional mesh under periodic and Dirichlet
boundary conditions. The differential equations are solved with the finite element
approach.

The thesis consists of six main chapters. We start by introducing the basic pro-
perties about organic thin-film transistors. The second chapter is devoted to the
theoretical aspects relevant for modeling the device. Chapter three gives a brief insight
into the fundamentals of the finite element method. The fourth chapter verifies with
the help of a simple model of a FET, the accuracy and stability of the finite element
simulations. Then, the available measurements are shown briefly. Finally, simulation
results are presented and discussed in detail.
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2 Pentacene based Organic Thin-Film
Transistors

This chapter provides a brief overview of the basics of a field-effect transistor. For more
detailed information the reader is referred to the bibliography.

A field effect transistor (FET) is a voltage-controlled switching element. It usually
consists of three contacts, source drain and gate. The current flow in the semiconducting
layer between source and drain is controlled by the electric field caused by the gate
electrode. This active layer is separated from the gate by an insulating layer as shown
in Fig. 5.2.

This structure is very similar to a plate capacitor. Source and drain form a plate
and the gate the other one. In the off state, source and gate are at the same electric
potential. Even if source and drain are at different potentials, only a few charge
carriers are located in the active layer. The current flow is negligible. By applying a
voltage between source and gate, an electric field between the plates is created. Charge
carriers (electrons or holes, depending on the material) are pushed into the active layer.
This forms a channel at the interface between insulator and active material, which
compensate the electric field. Due to the high density of charge carriers in the channel,
the flow of current between source and drain increases. The achievable output currents
depend inter alia on the mobility of charge carriers. The higher the mobility, the larger
the resulting current flow. The maximum switching frequency from the transistor also
depends on the mobility. In conventional field effect transistors the active material often
consists of crystalline silicon. The reason is that with silicon high mobility rates can be
achieved.

The production of such FET’s is very complicated and expensive. For many app-
lications, organic materials, which are cheapen to be produced, offer an interesting
alternative.

3



2 Pentacene based Organic Thin-Film Transistors

Fig. 2.1: Schematic structure of a field-effect transistors.

2.1 Organic Thin-Film Transistors

Organic materials offer many advantages. They can be flexible or transparent. Moreover,
their production is much less challenging and affordable. Such a material is, e.g., penta-
cene. In a pentacene FET the hole conduction plays a major role. Therefore, the device
is a so-called p-channel transistor. The mobility of holes in pentacene FETs can vary
greatly depending on the manufacturing process. The mobility in pentacene transistors is
normally in the range of 10−3 cm2V−1s−1 to 10−2 cm2V−1s−1. Using special methods, the
mobility in pentacene has been increased up to 58 cm2V−1s−1 [10] in the last few years.
Normal silicon transistors usually have in all three spatial directions similar dimensions
in the nm range. In contrast, pentacene transistors usually have very different dimen-
sions. The characteristic channel length (distance between source and drain) can be up
to 100 µm, whereas the source-drain distance can be just a few nm. Such a transistor
can be thought as a thin film. Because of these properties of organic transistors, there
are special demands on the device modeling and the simulation methods. For treating
the band structure in silicon based FETs a common simulation model used is the Boltz-
mann transport equation. Since the molecular structure of OTFTs is highly complex it
is not possible to determine the necessary microscopic simulation parameters. For this
reason, it seems reasonable to use a simulation model which does not depend directly
on these parameters. In the subsequent chapter, a suitable device model derived from
the Boltzmann equation, is presented.
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3 Device Model

This chapter deals with necessary equations for the simulation of the charge carrier trans-
port in organic semiconductors. For the simulation we need the drift-diffusion equations
for electrons and holes and the Poisson equation. The Poisson equation determines the
electrical potential due to the charge distribution and the external applied voltages. The
drift-diffusion equation and the Poisson equation are coupled by the charge distribu-
tion and the electric field strength. Processes in which particle species transform into
each other are described by rate equations. The distribution of non-charged particles
can be described by the diffusion equation. This chapter gives a brief introduction to
the necessary equations and shows how these equations are obtained. It consists of five
sections. The first section describes the derivation of the carrier continuity equation. In
the second section the drift-diffusion current equation and the diffusion equation are de-
rived. In the third section the recombination term is described. The fourth section deals
with the derivation of the Poisson equation and in the fifth section a short summary of
all equations is given. We begin with the carrier continuity equation.

3.1 Carrier Continuity Equation

For describing the motion of all involved particles we could use the Newtonian equations.
For a huge amount of particles this seems to be a bad idea. Since it does not matter
which of the involved particles have the momentum p at position r, one could also
define a probability density f(r,p, t) which describes the probability that a particle
with momentum p at position r exists at time t. If we neglect quantum mechanical
influences we can assume that the particles move on trajectories. Then the probability
that a particle exists at position r with momentum p at time t is equal to the probability
that the particle was at position r′ with momentum p′ at time t− dt. The position r′ is
expressed by

r′ = r− dr = r− dr

dt
dt = r− ṙ dt, (3.1)

while the momentum p′ is given by

p′ = p− dp = p− dp

dt
dt = p− ṗ dt. (3.2)

Now we can write for the probability density

f(r,p, t) = f(r− ṙ dt,p− ṗ dt, t− dt). (3.3)
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3 Device Model

As next step, we expand f(r−ṙ dt,p−ṗ dt, t−dt) in a Taylor series in powers of dt around
the position r, the momentum p and time t. Additionally, we make the assumption that
we can truncate the Taylor series after the first-order term and obtain

f(r,p, t) =f(r,p, t) + ṙ · ∂f(r,p, t)

∂r
dt + ṗ · ∂f(r,p, t)

∂k
dt +

∂f(r,p, t)

∂t
dt, (3.4)

or by rearranging the terms

∂f(r,p, t)

∂t
+ ṙ · ∂f(r,p, t)

∂r
+ ṗ · ∂f(r,p, t)

∂p
= 0. (3.5)

If we follow a particle along its trajectory, Eq. (3.5) predicts that the occupation proba-
bility does not change. This is accurately the case if we do not have a source or sink that
can generate or destroy particles and if we neglect the possibility of particle scattering.
To include this effects we have to extend Eq. (3.5) to

∂f(r,p, t)

∂t
+ ṙ · ∂f(r,p, t)

∂r
+ ṗ · ∂f(r,p, t)

∂p
=

∂f(r,p, t)

∂t

∣∣∣∣
col

+ G(r,p, t). (3.6)

In Eq. (3.6) the particle scattering is included by a collision term ∂f(r,p,t)
∂t

∣∣∣
col

, the influence

of a source or sink is considered by G(r,p, t). The equation (3.6) is named Boltzmann
equation [11][12]. In this thesis we consider charged particles in a solid. The assumption
that charged particles like electrons can move freely in the solid leads to the “free electron
model“[13]. We further assume that the relation between the kinetic energy of a particle
and the wave vector k is given by

W (k) =
~2k2

2m
. (3.7)

In Eq. (3.7) ~ is the reduced Planck constant and m denotes the effective mass of the
particle. The kinetic energy Wkin of a particle could also be expressed by the momentum
p of the particle:

W (p) =
p2

2m
(3.8)

based on the relation

p = ~k. (3.9)

Now we can transform Eq. (3.6) into a more common form:

∂f(r,k, t)

∂t
+ ṙ · ∂f(r,k, t)

∂r
+ k̇ · ∂f(r,k, t)

∂k
=

∂f(r,k, t)

∂t

∣∣∣∣
col

+ G(r,k, t). (3.10)

The next step is to define the collision term ∂f(r,p,t)
∂t

∣∣∣
col

. The determination of the collision

term of the Bolzmann equation is in general very complicated, for a more detailed
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3 Device Model

description, the reader is referred to [11]. If one assumes the semiclassical Bolzmann
collision operator for fermions, the Fermi-Dirac function

f0(r,k) =
1

1 + e
WC (r,k)−WF

kBT

(3.11)

results as the solution in the case of equilibrium. In Eq. (3.11), WF is the Fermi level,
T the temperature, kB the Boltzmann constant and WC(r,k) = W0(r) + W (k), the
carrier potential W0(r) plus the kinetic energy W (k).

We split the non-equilibrium probability density function

f(r,k, t) = fS(r,k, t) + fA(r,k, t), (3.12)

in an symmetric part fS(r,k, t) = fS(r,−k, t) and an anti-symmetric part fA(r,k, t) =
−fA(r,−k, t). In a non-equilibrium state we additionally assume that the symmetric
density function differs only slightly from a Fermi-Dirac distribution and we can fit it
with

fS(r,k, t) =
1

1 + e
WC (r,k)−Wn(t)

kBT

. (3.13)

In Eq. (3.13), the fit parameter Wn(t) is often named quasi Fermi level. Next we have
to specify the collision term more precisely:

∂f(r,k, t)

∂t

∣∣∣∣
col

=

∫
[S(k′,k)f(r,k′, t)− S(k,k′)f(r,k, t)] d3k′ (3.14)

In Eq. (3.14) we assumed nondegenerate conditions for the collision term. The function
S(k′,k) defines the probability that a particle with wave vector k′ transforms into a
particle with wave vector k during a collision. Inserting this collision term into Eq.
(3.10) yields the Boltzmann equation for nondegenerate conditions:

∂f(r,k, t)

∂t
+ ṙ · ∂f(r,k, t)

∂r
+k̇ · ∂f(r,k, t)

∂k
=∫

[S(k′,k)f(r,k′, t)− S(k,k′)f(r,k, t)] d3k′ + G(r,k, t).

(3.15)

The Boltzmann equation is far too complicated for a simulation of the carrier transport
in organic semiconductors. In organic semiconductors many input parameters of the
Boltzmann equation are unknown or not definable. We need macroscopic parameters
depending on the microscopic molecular structure. One way to derive a balance equation
for macroscopic variables from the very complex Boltzmann equation is the method of
moments. For this purpose, the whole equation is multiplied by a wave vector-dependent

7
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function ξ(k). Subsequently, the resulting equation has to be integrated over the whole
k-space:∫

ξ(k)
∂f(r,k, t)

∂t
d3k+

∫
ξ(k)ṙ · ∂f(r,k, t)

∂r
d3k +

∫
ξ(k)k̇ · ∂f(r,k, t)

∂k
d3k

=

∫ ∫
ξ(k)S(k′,k)f(r,k′, t) d3k′ d3k

−
∫ ∫

ξ(k)S(k,k′)f(r,k, t) d3k′ d3k +

∫
ξ(k)G(r,k, t) d3k.

(3.16)

If we now interchange the dummy variables k and k′ in the first integral of the right side
in Eq. (3.16) we get∫

ξ(k)
∂f(r,k, t)

∂t
d3k+

∫
ξ(k)ṙ · ∂f(r,k, t)

∂r
d3k +

∫
ξ(k)k̇ · ∂f(r,k, t)

∂k
d3k

=

∫ ∫
ξ(k′)S(k,k′)f(r,k, t) d3k d3k′

−
∫ ∫

ξ(k)S(k,k′)f(r,k, t) d3k′ d3k +

∫
ξ(k)G(r,k, t) d3k.

(3.17)

The collision terms can also be written in following form:∫
ξ(k)

∂f(r,k, t)

∂t
d3k+

∫
ξ(k)ṙ · ∂f(r,k, t)

∂r
d3k +

∫
ξ(k)k̇ · ∂f(r,k, t)

∂k
d3k

=

∫
ξ(k)f(r,k, t)

∫
S(k,k′)

[
ξ(k′)

ξ(k)
− 1

]
d3k′ d3k

+

∫
ξ(k)G(r,k, t) d3k. (3.18)

If we choose ξ(k) := k0 = 1 we obtain the carrier continuity equation. Integrating the
Boltzmann equation (3.18) over the entire k-space yields∫

∂f(r,k, t)

∂t
d3k︸ ︷︷ ︸

Term 1

+

∫
ṙ · ∂f(r,k, t)

∂r
d3k︸ ︷︷ ︸

Term 2

+

∫
k̇ · ∂f(r,k, t)

∂k
d3k︸ ︷︷ ︸

Term 3

=

∫
G(r,k, t) d3k︸ ︷︷ ︸

Term 4

, (3.19)

since the collision term vanishes. For reasons of clarity, the individual terms are simplified
separately. An exchange of integration and differentiation yields∫

∂f(r,k, t)

∂t
d3k =

∂

∂t

∫
f(r,k, t) d3k, (3.20)
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for the first term. To proceed we need the occupied volume of a single state 4Vk in the
k-space. Out of the “free electron model“[13] we get

4Vk =
(2π)3

V
. (3.21)

Now we are able to calculate the total amount of particles

N = 2
1

4Vk

∫
f(r,k, t) d3k. (3.22)

The factor two in Eq. (3.22) is due to the spin of fermions. If we consider that the particle
density is defined by

n(r, t) =
1

V
N =

1

V
2

V

(2π)3

∫
f(r,k, t) d3k =

1

4π3

∫
f(r,k, t) d3k, (3.23)

we get ∫
∂f(r,k, t)

∂t
d3k = 4π3 ∂

∂t
n(r, t). (3.24)

In order to simplify the second term we make use of the fact that the velocity ṙ does
not depend on r, which leads to∫

ṙ · ∂f(r,k, t)

∂r
d3k =

∂

∂r
·
∫

f(r,k, t)ṙ d3k (3.25)

for the second term. To continue we use the definition of the average velocity

v =

∫
f(r,k, t)ṙ d3k∫
f(r,k, t) d3k

, (3.26)

to simplify the second term. Now we are able to express∫
f(r,k, t)ṙ d3k = 4π3n(r, t)v (3.27)

with the carrier concentration n(r, t), Eq. (3.23), and the average velocity v. This leads
to ∫

ṙ · ∂f(r,k, t)

∂r
d3k = 4π3 ∂

∂r
· [n(r, t)v] , (3.28)

for the second term. Now we proceed with the third term. Due to the relation

F(r,p, t) =
dp

dt
(3.29)
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the expression ∂p
∂t

can be interpreted as an acting force F(r,p, t). In combination with
Eq. (3.9) we obtain

k̇ =
1

~
F(r,k, t). (3.30)

We use Eq. (3.30) in term three, which results in∫
k̇ · ∂f(r,k, t)

∂k
d3k =

∫
1

~
F(r,k, t) · ∂f(r,k, t)

∂k
d3k. (3.31)

In general, the force depends on the wave vector, therefore, we need the identity [14]:

A · ∇B = ∇ · (BA)−B∇A (3.32)

and get ∫
k̇ · ∂f(r,k, t)

∂k
d3k =

1

~

∫
∂

∂k
· [f(r,k, t)F(r,k, t)] d3k

− 1

~

∫
f(r,k, t)

∂

∂k
· F(r,k, t) d3k. (3.33)

With Gauss’ theorem we can transform the first part of Eq. (3.33) into a surface integral.
This surface integral vanishes, because f(r,k, t) is always finite and vanishes for |k| → ∞.
It follows ∫

k̇ · ∂f(r,k, t)

∂k
d3k = −1

~

∫
f(r,k, t)

∂

∂k
· F(r,k, t) d3k. (3.34)

To continue we assume that the force F(r,k, t) is given by

F(r,k, t) = e E(r, t). (3.35)

In Eq. (3.35), the charge of a particle is denoted by e and E(r, t) is the electric field.
Taking advantage of Eq. (3.35) yields for term three∫

k̇ · ∂f(r,k, t)

∂k
d3k = − e

~

∫
f(r,k, t)

∂

∂k
· E(r, t) d3k = 0. (3.36)

Last but not least we have to consider term four. The total number of particles generated
per unit volume and unit time is given by

R(r, t) =
1

V
2

V

(2π)3

∫
G(r,k, t) d3k =

1

4π3

∫
G(r,k, t) d3k. (3.37)

From this result we get ∫
G(r,k, t) d3k = 4π3R(r, t). (3.38)
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If we put the terms Eq. (3.24), Eq. (3.28), Eq. (3.36) and Eq. (3.38) together, we obtain

∂

∂t
n(r, t) +

∂

∂r
· [vn(r, t)] = R(r, t). (3.39)

The expression vn(r, t) defines the particle flow so that the current is given by

J(r, t) = e vn(r, t), (3.40)

where the charge of a particle is denoted by e. For electrons the charge e = −q =
−1.602176 ·10−19C, for holes the charge e = q. Inserting Eq. (3.40) into Eq. (3.39) yields
the carrier continuity equation:

∂

∂t
n(r, t) +

1

e

∂

∂r
· J(r, t) = R(r, t). (3.41)

This equation has three unknown functions R(r, t), n(r, t) and J(r, t) so that we need
further equations to get a unique solvable system of equations. One of the equations we
are looking for is named drift-diffusion current equation and will be derived in the next
section.

3.2 Drift-Diffusion Current Equation

To derive an equation for the current J(r, t) we start again from the Boltzmann equation.
For this purpose it is not necessary to consider a generation term. Multiplying the
Boltzmann equation (3.15) with an arbitrary function ξ(k) and integrating it over the
entire k-space results in∫

ξ(k)
∂f(r,k, t)

∂t
d3k︸ ︷︷ ︸

Term1

+

∫
ξ(k)v(k) · ∂f(r,k, t)

∂r
d3k︸ ︷︷ ︸

Term2

+

∫
ξ(k)k̇ · ∂f(r,k, t)

∂k
d3k︸ ︷︷ ︸

Term3

=

∫
ξ(k)f(r,k, t)

∫
S(k,k′)

[
ξ(k′)

ξ(k)
− 1

]
d3k′ d3k︸ ︷︷ ︸

Term4

. (3.42)

To obtain Eq. (3.42) we additionally made use of the relation

ṙ =
p

m
= v, (3.43)

between the momentum p, the mass m and the velocity v. For reasons of clarity, the
individual terms are simplified separately. It is possible to exchange integration and
differentiation which leads to∫

ξ(k)
∂f(r,k, t)

∂t
d3k =

∂

∂t

∫
ξ(k)f(r,k, t) d3k. (3.44)
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In the second term it is also possible to exchange integration and differentiation
which yields ∫

ξ(k)v(k) · ∂

∂r
f(r,k, t) d3k =

∂

∂r
·
∫

ξ(k)v(k)f(r,k, t) d3k. (3.45)

At this point it is useful to express the product

ξ(k)v(k) = g(k) (3.46)

by a new vector which yields∫
ξ(k)v(k) · ∂

∂r
f(r,k, t) d3k =

∂

∂r
·
∫

g(k)f(r,k, t) d3k. (3.47)

By taking advantage of Eq. (3.23) we get∫
ξ(k)v(k) · ∂

∂r
f(r,k, t) d3k =4π3 ∂

∂r
[gn(r, t)] (3.48)

with

g =

∫
g(k)f(r,k, t) d3k∫

f(r,k, t) d3k
. (3.49)

This term can also be written as∫
ξ(k)v(k) · ∂

∂r
f(r,k, t) d3k =4π3

{
∂

∂rx

[gxn(r, t)] +
∂

∂ry

[
gyn(r, t)

]
+

∂

∂rz

[gzn(r, t)]

}
(3.50)

with

r = (rx, ry, rz). (3.51)

Now, we proceed with the third term. Using Eq. (3.30) yields∫
ξ(k)k̇ · ∂f(r,k, t)

∂k
d3k =

∫
ξ(k)

1

~
F(r,k, t) · ∂f(r,k, t)

∂k
d3k. (3.52)

In order to further simplify the term we need Eq. (3.35) and obtain∫
ξ(k)k̇ · ∂f(r,k, t)

∂k
d3k =

e

~

∫
ξ(k)E(r, t) · ∂f(r,k, t)

∂k
d3k. (3.53)

Taking advantage of the vector identity (3.32) yields for term three∫
ξ(k)k̇ · ∂f(r,k, t)

∂k
d3k =

e

~

∫
∂

∂k
· [ξ(k)E(r, t)f(r,k, t)] d3k

− e

~

∫
f(r,k, t)E(r, t) · ∂

∂k
ξ(k) d3k. (3.54)
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With Gauss’ theorem we can transform the first part of Eq. (3.54) into a surface integral.
This surface integral vanishes, because f(r,k, t) is always finite and goes to zero for
|k| → ∞. It follows∫

ξ(k)k̇ · ∂f(r,k, t)

∂k
d3k =− e

~

∫
f(r,k, t)E(r, t) · ∂

∂k
ξ(k) d3k. (3.55)

Next we proceed with term four∫
ξ(k)f(r,k, t)

∫
S(k,k′)

[
ξ(k′)

ξ(k)
− 1

]
d3k′ d3k = −

∫
ξ(k)f(r,k, t)

1

τ(k)
d3k (3.56)

by defining

1

τ(k)
:=

∫
S(k,k′)

[
1− ξ(k′)

ξ(k)

]
d3k′, (3.57)

we obtain∫
ξ(k)f(r,k, t)

∫
S(k,k′)

[
ξ(k′)

ξ(k)
− 1

]
d3k′ d3k = − 1

τ(r, t)

∫
ξ(k)f(r,k, t) d3k (3.58)

with

1

τ(r, t)
=

∫
ξ(k)f(r,k, t) 1

τ(k)∫
ξ(k)f(r,k, t)

. (3.59)

Now, we make use of Eq. (3.27) and get∫
ξ(k)f(r,k, t)

∫
S(k,k′)

[
ξ(k′)

ξ(k)
− 1

]
d3k′ d3k = − 4π3

τ(r, t)
n(r, t)ξ (3.60)

with

ξ =

∫
ξ(k)f(r,k, t) d3k∫

f(r,k, t) d3k
. (3.61)

To continue, we now assume for the arbitrary function

ξ(k) =
~
m

ki, (3.62)

for i = x, y, z. If we further consider the relation (3.43) and Eq. (3.9), we can write

vi =
~
m

∫
kif(r,k, t) d3k∫
f(r,k, t) d3k

. (3.63)

for i = x, y, z. Using this result for term four yields

13
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∫
ξ(k)f(r,k, t)

∫
S(k,k′)

[
ξ(k′)

ξ(k)
− 1

]
d3k′ d3k = − 4π3

τ(r, t)
n(r, t)vi, (3.64)

for i = x, y, z. The ansatz, Eq. (3.62), in combination with Eq. (3.23) yields∫
ξ(k)

∂f(r,k, t)

∂t
d3k = 4π3 ∂

∂t
[vin(r, t)] , i = x, y, z (3.65)

for the first term.

In the next step we use Eq. (3.46) to obtain∫
ξ(k)v(k) · ∂

∂r
f(r,k, t) d3k =4π3 ∂

∂rx

[vivxn(r, t)] + 4π3 ∂

∂ry

[vivyn(r, t)]

+ 4π3 ∂

∂rz

[vivzn(r, t)] , i = x, y, z (3.66)

for the second term (3.50), where

vivj =
~2

m2

∫
kikjf(r,k, t) d3k∫

f(r,k, t) d3k
. (3.67)

Now we split the non-equilibrium probability density function f(r,k, t) into a symmetric
part fS(r,k, t) and an anti-symmetric part fA(r,k, t) as described in Eq. (3.12) and get

vivj =
~2

m2

∫
kikjfS(r,k, t) d3k +

∫
kikjfA(r,k, t) d3k∫

fS(r,k, t) d3k +
∫

fA(r,k, t) d3k
. (3.68)

This equation can be simplified due to the fact that the integral over an anti-symmetric
function is always zero which leads to

vivj =
~2

m2

∫
kikjfS(r,k, t) d3k +

∫
kikjfA(r,k, t) d3k∫

fS(r,k, t) d3k
. (3.69)

Now we have to distinguish between i = j and i 6= j for i = x, y, z and j = x, y, z.

For vivj with i 6= j we obtain

vivj =
~2

m2

1∫
fS(r,k, t) d3k

[∫ ∫
ky

∫
kx fS(r, kx, ky, kz, t) dkx dky dkz

+

∫
kx

∫
ky

∫
fA(r, kx, ky, kz, t) dkz dky dkx

]
, (3.70)

for instance for i = x and j = y. Since kx is anti-symmetric the pro-
duct kxfS(r, kx, ky, kz, t) is always anti-symmetric and, therefore, the integral
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∫
kxfS(r, kx, ky, kz, t) dkx is zero. The integral

∫
fA(r, kx, ky, kz, t)dkz in the second part

is still anti-symmetric and, therefore, zero which leads to

vivj = 0, (3.71)

for i = x, y, z and j = x, y, z and i 6= j.

For vivi we obtain

vivi =
~2

m2

1∫
fS(r,k, t) d3k

[∫ ∫ ∫
k2

x fS(r, kx, ky, kz, t) dkx dky dkz

+

∫
k2

x

∫ ∫
fA(r, kx, ky, kz, t) dkz dky dkx

]
, (3.72)

for instance for i = x. Again the integral
∫

fA(r, kx, ky, kz, t)dkz in the second part is
anti-symmetric and, therefore, zero which leads to

vivi =
~2

m2

∫
k2

i fS(r,k, t) d3k∫
fS(r,k, t) d3k

, (3.73)

for i=x, y, z. Next we fit the symmetric density function fS(r,k, t) with a Fermi-Dirac
function, Eq. (3.13), which yields

vivi =
~2

m2

∫
k2

i
1

1+e
WC (r,k)−Wn(t)

kBT

d3k∫
1

1+e
WC (r,k)−Wn(t)

kBT

d3k
, (3.74)

for i = x, y, z. In addition to the assumption of a parabolic energy dispersion, Eq. (3.7),
we must assume that the Fermi-Dirac function can be approximated by a Maxwell-
Boltzmann distribution. Due to this simplification we get

vivi =
~2

m2

∫
k2

i exp

[
−W0(r)+k2~2

2m
−Wn(t)

kBT

]
d3k

∫
exp

[
−W0(r)+k2~2

2m
−Wn(t)

kBT

]
d3k

, (3.75)

for i = x, y, z. Instead of Eq. (3.75) we can also write

vivi =
~2

m2

∫
k2

i exp

[
−W0(r)+

(k2
x+k2

y+k2
z)~2

2m
−Wn(t)

kBT

]
d3k

∫
exp

[
−W0(r)+

(k2
x+k2

y+k2
z)~2

2m
−Wn(t)

kBT

]
d3k

, (3.76)

for i = x, y, z. Reducing Eq. (3.76) yields

vivi =
~2

m2

∫
k2

i exp

[
−

k2
i ~2

2m

kBT

]
dki∫

exp

[
−

k2
i

~2

2m

kBT

]
dki

, (3.77)
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for i = x, y, z. To proceed we will first calculate the integral in the denominator. For a
better overview we summarize the constants in the exponential function

a =
~2

2mkBT
(3.78)

and obtain∫ ∞

−∞
exp

[
−

k2
i ~2

2m

kBT

]
dki =

∫ ∞

−∞
e−ak2

i dki =
1√
a

∫ ∞

−∞
e−y2

dy =

√
π√
a
, (3.79)

with

ak2
i = y2, (3.80)

ki =
1√
a
y, (3.81)

dki =
1√
a
dy, (3.82)

for i = x, y, z. Now we proceed with the nominator in Eq. (3.77) and obtain∫ ∞

−∞
k2

i e
−ak2

i dki = a−
3
2

∫ ∞

−∞
y2e−y2

dy = a−
3
2
1

2

√
π (3.83)

for i = x, y, z. Now we can insert Eq.(3.79) and Eq. (3.83) into Eq. (3.77) and get

vivi =
~2

m2

1
2

√
πa−

3
2

√
πa−

1
2

=
~2

2m2

1

a
, (3.84)

for i = x, y, z. Finally, we insert Eq. (3.78) into this result and get

vivi =
kBT

m
, (3.85)

for i = x, y, z. Inserting this result in combination with Eq. (3.71) into Eq. (3.66) yields∫
ξ(k)v(k) · ∂

∂r
f(r,k, t) d3k =4π3 ∂

∂ri

[vivin(r, t)]

=4π3kBT

m

∂

∂ri

n(r, t), (3.86)

for i = x, y, z.

If we now continue to simplify Eq. (3.55), we have to consider Eq. (3.62) and
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get∫
ξ(k)k̇·∂f(r,k, t)

∂k
d3k = − e

m

∫
f(r,k, t)E(r, t) ·

 ∂
∂kx

ki
∂

∂ky
ki

∂
∂kz

ki

 d3k

= − e

m

∫
f(r,k, t)

[
Ex(r, t)

∂

∂kx

ki + Ey(r, t)
∂

∂ky

ki + Ez(r, t)
∂

∂kz

ki

]
d3k

= − e

m
Ei(r, t)

∫
f(r,k, t) d3k, i = x, y, z (3.87)

for the third term. Finally we use Eq. (3.23) to obtain∫
ξ(k)k̇·∂f(r,k, t)

∂k
d3k = −4π3 e

m
Ei(r, t)n(r, t). (3.88)

for i = x, y, z.

Summarizing the terms Eq. (3.64), Eq. (3.65), Eq. (3.86) and Eq. (3.88) accor-
ding to Eq. (3.42) yields

∂

∂t
[vin(r, t)] +

kBT

m

∂

∂ri

n(r, t)− e

m
Ei(r, t)n(r, t) = − 1

τ(r, t)
n(r, t)vi, (3.89)

for i = x, y, z. These three equations are equivalent to

∂

∂t
[vn(r, t)] +

kBT

m

∂

∂r
n(r, t)− e

m
E(r, t)n(r, t) = − 1

τ(r, t)
n(r, t)v. (3.90)

Multiplying it with eτ(r, t) results in

τ(r, t)
∂

∂t
[evn(r, t)] +

eτ(r, t)

m
kBT

∂

∂r
n(r, t)− eτ(r, t)

m
eE(r, t)n(r, t) = −en(r, t)v.

(3.91)

Now we use (3.40) and get

τ(r, t)
∂

∂t
J(r, t) +

eτ(r, t)

m
kBT

∂

∂r
n(r, t)− eτ(r, t)

m
eE(r, t)n(r, t) = −J(r, t). (3.92)

We assume that in semiconductors the relaxation time τ(r, t) is small compared to
characteristic time constants in the drift-diffusion approximation. Hence, we can neglect
the first term in Eq. (3.92) [15]:

eτ(r, t)

m
kBT

∂

∂r
n(r, t)− eτ(r, t)

m
eE(r, t)n(r, t) = −J(r, t). (3.93)

To proceed we have to define the charge of the particles. Let us assume electrons which
have negative elementary charge e = −q = −1.602176 · 10−19C which leads to

−qτ(r, t)

m
kBT

∂

∂r
n(r, t)− qτ(r, t)

m
qE(r, t)n(r, t) = −J(r, t). (3.94)

17



3 Device Model

To bring the resulting equations in a well-known form we need the Einstein relation [13]

D(r, t) = µ(r, t)
kBT

q
, (3.95)

and the definition of the mobility [13]

µ(r, t) =
qτ(r, t)

m
. (3.96)

Taking advantage of this relations yields the drift-diffusion current equation for electrons:

Jn(r, t) = µn(r, t)qE(r, t)nn(r, t) + q Dn(r, t)
∂

∂r
nn(r, t). (3.97)

In Eq. (3.95), D(r, t) is the diffusion constant. In general, different particle types
have different mobilities µ(r, t) or diffusions constants D(r, t) so that the variables are
normally provided with an index for the particle species. As index for electrons in Eq.
(3.97) we used the subscript n.

For holes we obtain from Eq. (3.91) due to their charge of e = q = 1.602176 · 10−19C:

Jp(r, t) = µp(r, t)qE(r, t)np(r, t)− q Dp(r, t)
∂

∂r
np(r, t). (3.98)

As index for this particle species we used the subscript p. To obtain the drift-diffusion
equation for electrons we insert Eq. (3.97) into Eq. (3.41) and get

∂

∂t
nn(r, t)− 1

q

∂

∂r
·
[
µn(r, t)qE(r, t)nn(r, t) + q Dn(r, t)

∂

∂r
nn(r, t)

]
= R(r, t). (3.99)

Inserting Eq. (3.98) into Eq. (3.41) yields the drift-diffusion equation for holes:

∂

∂t
np(r, t) +

1

q

∂

∂r
·
[
µp(r, t)qE(r, t)np(r, t)− q Dp(r, t)

∂

∂r
np(r, t)

]
= R(r, t). (3.100)

For uncharged particles, which are not influenced by the electric field, the drift-diffusion
equation (3.99) or (3.100) can be simplified to the normal diffusion equation

∂

∂t
n(r, t)− ∂

∂r
·
[
D(r, t)

∂

∂r
n(r, t)

]
= R(r, t). (3.101)

Now we have to determine the source or sink term R(r, t), which is still unknown.

3.3 Source or Sink Term R(r, t)

The source or the sink term R(r, t) is still undefined. So we have to use additional
information to determine the function R(r, t). Under normal circumstances particles
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transform into each other, they do not simply disappear. For those conversion proces-
ses, normally approximations exists depending on the involved particles. One possible
approach is that particles can only transform during collisions with each other. For ex-
ample, we have three different particle types A, B and C. Each particle type is described
by its own drift-diffusion equation. Now we assume that a particle from type A and B
transforms into a single particle of type C if they collide. Based on this assumption the
sink term from particle type A, R(r, t)A, and particle type B, R(r, t)B, has to be equal.
As a consequence the source term of particle type C must be R(r, t)C = −R(r, t)A. It is
assumed that the probability that two particles of different type collide with each other
depend on the concentration of the different particle types. In this simplified view, the
sink term of the particle type A and B depend on the number of collisions between this
particle types and, therefore, on the concentration nA(r, t) of the particles A and the
concentration nB(r, t) of the particles B:

R(r, t)A = R(r, t)B ∼ nA(r, t)

R(r, t)A = R(r, t)B ∼ nB(r, t)

R(r, t)C = −R(r, t)A. (3.102)

This approach [16][17] leads to the equation

R(r, t)A = R(r, t)B = −R(r, t)C = −k nA(r, t)α nB(r, t)β, (3.103)

which describes this conversion process and couples the different particle species. Un-
der these circumstances the source and sink terms are also called reaction rates. In Eq.
(3.103) k is the rate coefficient. In general, the rate coefficient k can vary in space and
time because it can depend on a lot of conditions such as temperature, particle concen-
tration, light incident, electric or magnetic fields. As a simplification, we assumed that
the rate coefficient k is regarded as constant. The coefficients α and β characterize the
order of the equation. Using these parameters, the reaction can be divided into funda-
mental groups. Zeroth-order reaction are the first group. With a zeroth-order reactions
one means that the coefficients α and β are approximately zero. This leads to constant
reaction rates

RA(r, t) = RB(r, t) = −RC(r, t) = −k nA(r, t)0 nB(r, t)0 = −k. (3.104)

In this case the reaction rates are independent of the concentration of the particle types.
The second group is the first-order reaction group. A first-order reaction is a reaction in
which the reaction rate

RA(r, t) = RB(r, t) = −RC(r, t) = −k nA(r, t) (3.105)

depends only on the concentration of only one species. (α = 1 and β = 0). The next
group is the second-order reaction group. In a second-order reaction the reaction rates
depend on the concentration of the species A and B:

RA(r, t) = RB(r, t) = −RC(r, t) = −k nA(r, t)nB(r, t) (3.106)
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Both coefficients α and β are one. If the same species react with each other a second-order
reaction would be

RA(r, t) = −RC(r, t) = −k nA(r, t)nA(r, t) = −k nA(r, t)2. (3.107)

All concentration dependencies of higher order are included in the n-order reaction group.
A concentration-dependence of higher order as in Eq. (3.107) will lead to the n-order
reaction

RA(r, t) = −RC(r, t) = −k nn
A(r, t). (3.108)

Reactions in which more than two particle species are involved also lead to an n-order
reaction. For example a third-order reaction that depend on three particles:

RA(r, t) = RB(r, t) = −RC(r, t) = −k nA(r, t)nB(r, t)nC(r, t). (3.109)

In many cases, however, only two components in the reaction play a significant role.
Usually the other species can be neglected in the reaction. This again leads to a second-
order reaction. As next step, we have to clear what happens if there are reactions in both
directions. If there are forward and reverse reactions, we have to think about how this
reactions influence each other. The forward reaction rate Rf (r, t) on its own is described
by Eq. (3.103):

Rf (r, t) = Rf (r, t)A = Rf (r, t)B = −Rf (r, t)C = −k1 nA(r, t)α1nB(r, t)β1 . (3.110)

If we now assume that the additional reverse reaction rate does not depend on the
forward reaction process we could also describ the reverse reaction rate Rr(r, t) by

Rr(r, t) = Rr(r, t)C = −Rr(r, t)A = −Rr(r, t)B = −k2 nC(r, t)α2 , (3.111)

This approach leads to

RA(r, t) = RB(r, t) = −RC(r, t) = Rf (r, t)−Rr(r, t), (3.112)

for the entire reaction rate. Now we have a rate equation for the source or sink term
R(r, t), a carrier continuity equation for the particle density n(r, t) and a drift-diffusion
current equation for the current J(r, t) that occurs in the continuity equation. Since in
the drift-diffusion current equation the electric field appears, we need in addition the
Poisson equation.

3.4 The Poisson Equation

The Poisson equation is a partial differential equation of second order. It gives the electric
potential for a given charge distribution. A simple way to derive the equation is to start
from Gauss’ law:

div D(r, t) = %f (r, t). (3.113)
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In Eq. (3.113) D(r, t) denotes the electric displacement field, %f (r, t) is the free charge
density. Now we need the definition of the electric displacement field:

D(r, t) = ε0E(r, t) + P(r, t). (3.114)

In Eq. (3.114) ε0 is the permittivity of the free space and P(r, t) is the polarization of
the medium. If we suppose that the medium is linear and instantaneously respond to
changes in the electric field E(r, t), one can express the polarization by

P(r, t) = ε0χ(r)E(r, t), (3.115)

where χ(r) is the electric susceptibility of the medium. Inserting Eq. (3.115) into Eq.
(3.114) yields

D(r, t) = ε0 [1 + χ(r)]E(r, t). (3.116)

The expression 1 + χ(r) = εr(r) is the relative permittivity of the material. Therefore
we can also write

D(r, t) = ε0εr(r)E(r, t). (3.117)

Substituting this into Eq. (3.113) results in

div [ε0εr(r)E(r, t)] = %f (r, t). (3.118)

Now we consider Faraday’s law of induction

rot E(r, t) = −∂B(r, t)

∂t
, (3.119)

where B(r, t) denotes the magnetic flux field. By neglecting magnetic effects the curl of
the electric field vanishes,

rot E(r, t) = 0, (3.120)

and it can be represented by a scalar potential φ(r, t):

E(r, t) = −grad φ(r, t). (3.121)

Inserting this into Eq. (3.118) delivers the Poisson equation:

−div [ε0εr(r)grad φ(r, t)] = %f (r, t) (3.122)

As a short notation in the literature one often uses the nabla operator

∇r =
∂

∂r
=

[
∂

∂x1

,
∂

∂x2

,
∂

∂x3

]
(3.123)
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with r = (x1, x2, x3). Based on this compact notation, we get

ε0∇ · [εr(r)∇φ(r, t)] = −%f (r, t). (3.124)

The free charge density %f (r, t) can be expressed by

%f (r, t) = e n(r, t), (3.125)

which finally leads to

ε0∇ · [εr(r)∇φ(r, t)] = −e n(r, t). (3.126)

In Eq. (3.125) n(r, t) is the particle density and e stands for the electric charge of the
particles. For electrons the particle charge is the negative elementary charge e = −q =
−1.602176 ·10−19C, for holes the particle charge is e = q. Now, we have all the necessary
equations for the simulation of the charge carrier transport in organic semiconductors.
In the following chapter all the equations will be summarized.

3.5 Summary

In this section, a summary of the resulting equations is presented. For a briefer notation
we use the nabla operator ∇ = ∂

∂r
. The system consists of the Poisson equation, Sec.

3.4, the carrier continuity equation, Sec. 3.1, with the reaction rate R(r, t), Sec. 3.3, and
the drift-diffusion current equation, Sec. 3.2. If there are uncharged particles involved
also the diffusion equation, Sec. 3.2, must be added. However, to set up the system
of equations, one must first define which particles are considered. In a semiconductor
different kinds of particles can appear. We consider the case, that both electrons and
holes play a role in charge transport and that also neutral particles exist, which can
decay into electrons and holes. These neutral particles are called excitons [18]. They can
arise, for example, due to incident photons. For negatively charged electrons subscript
A, for positively charged holes subscript B and for excitons subscript C is used in the
following system of equations:

ε0∇ · [εr(r)∇φ(r, t)] = q [nA(r, t)− nB(r, t)]

∂

∂t
nA(r, t)− 1

q
∇ · JA(r, t) = R(r, t)A

∂

∂t
nB(r, t) +

1

q
∇ · JB(r, t) = R(r, t)B

∂

∂t
nC(r, t)−∇ · [DC(r)∇nC(r, t)] = R(r, t)C

JA(r, t) = −qµA(r, t)nA(r, t)∇φ(r, t) + qDA(r, t)∇nA(r, t)

JB(r, t) = −qµB(r, t)nB(r, t)∇φ(r, t)− qDB(r, t)∇nB(r, t)

R(r, t)A = R(r, t)B = −R(r, t)C = k2 nC(r, t)− k1 nA(r, t) nB(r, t). (3.127)
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In (3.127) we expressed the electric field E(r, t) through Eq. (3.121) and assumed that
the exciton decay is a first-order reaction. The corresponding rate constant is k2. For
the process of the exciton generation out of electrons and holes a second-order reaction
was assumed. The corresponding rate constant is k1. Furthermore, electron-hole recom-
bination effects have been neglected. To account for these effect the recombination term
R(r, t) in the equations must be supplemented accordingly. An analytical solution of
this system of equations is in most cases not possible. This system of partial differential
equation must be supplemented by both initial and boundary conditions. Due to the
boundary conditions, the problem depends also on the geometry of the semiconductor.
The geometry of organic semiconductors, which we study in this thesis, can vary stron-
gly. Hence, we need a numerical method to solve these partial differential equations. An
appropriate method is discussed in the next chapter.
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4 Finite Element Method

Many problems in physics can be described by differential equations. The explicit
solution of these equations is usually not possible. For this reason, we are directed
to methods which are able to solve approximately differential equations for a given
problem. A widely used method is the method of finite elements. The simulations in
this work were carried out based on this method.

This chapter consists of five sections. The first section describes a possible ap-
proach to the finite element method. Section two gives a brief insight into the
possibilities of the discretization process of the base region. Section three deals with
selected basis functions of individual element types used in this thesis. In the fourth
section, a widely used numerical method for calculating two-dimensional integrals of
polynomial functions is described. The last section deals with the resulting algebraic
system of equations. This chapter is inspired by the Book

”
Methode der Finiten

Elemente
”

[19]. For a detailed description of the finite element method and an efficient
implementation on the PC, the reader is referred to this book.

4.1 Method of Weighted Residuals

Two-dimensional time-dependent field problems, as they occur in this thesis, can in
general be described by

∂u(x, y, t)

∂t
=

∂

∂x

[
k1(x)

∂u(x, y, t)

∂x

]
+

∂

∂y

[
k2(y)

∂u(x, y, t)

∂y

]
− f(x,y,t), (4.1)

combined with certain initial and boundary conditions. The differential equation is
defined on a domain G ⊂ R2, see Fig. 4.1. The boundary C of the domain G consists of
two parts C1 and C2 with C1 ∪ C2 = C and C1 ∩ C2 = 0.

The idea of the method of weighted residuals is to approximate the unknown function
u(x, y, t) by using appropriately chosen basis functions ϕ0(x, y, t), ϕ1(x, y), . . . , ϕm(x, y)
in the form of

u = ϕ0(x, y, t) +
m∑

k=1

ck(t)ϕk(x, y). (4.2)

The functions ϕi have to be linearly independent. Thereby, ϕ0(x, y, t) is an arbitarly
chosen function, which fulfills the inhomogeneous boundary conditions. With the remai-
ning functions ϕk(x, y) k = 1, 2, . . . ,m, the homogeneous boundary conditions must be
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Fig. 4.1: Two-dimensional domain G on which the differential equation is defined.

met. This ensures that the function u(x, y, t) satisfies both the homogeneous and the
inhomogeneous boundary conditions throughout the domain G for any ck(t). At this
stage, the coefficients ck(t) are still not defined. Therefore, we need an additional con-
dition to define them. To achieve such a condition, we think about what would happen
if we used random coefficients ck(t) in the differential equation (4.2). In general the
differential equation would be fulfilled only poorly. There remains a so-called residual.
The smaller this residual is, the better is the differential equation fulfilled. Therefore,
the residual should be as small as possible inside the domain G. This can be achieved
by requiring that the integral of the residual weighted with special linearly independent
weight functions Wi(x, y), i=1,2,. . . ,m disappears. Based on the ansatz (4.2), this ap-
proach leads to m equations from which the coefficients ck(t) can be determined. In the
method of Galerkin, the still undefined weight functions Wi(x, y) are chosen to be equal
to the functions ϕk(x, y). Since the functions ϕk(x, y) are linearly independent, this is
always possible. To continue, we must consider a certain differential equation. First, we
will explain the solution procedure for a time-independent differential equation. As an
example, we choose the Poisson equation.

4.1.1 Application to a Stationary Field Problem

Let us consider the two-dimensional Poisson equation

u(x, y)xx + u(x, y)yy = f(x, y) (4.3)

and the Dirichlet boundary condition

u(ζ(s)) = γ1(s) (4.4)
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on a part C1 of the boundary as well as the Cauchy boundary conditions

∂u(ζ(s))

∂n(s)
+ α(s)u(ζ(s)) = γ2(s) (4.5)

on a second part C2 of the boundary. The function γ1(s) : [a, b] → R in Eq. (4.4) is a given
function which prescribe the values of u(x, y) on part C1 of the boundary. The parameter
s ∈ [a, b] is the path length of the boundary. The variables a and b are constants which
describe the beginning and the end of part C1. The function ζ(s) : [a, b] → R2 in Eq. (4.4)
and (4.5) transforms the path length into the spatial coordinates x and y. In Eq. (4.5)
∂u(ζ(s))

∂n(s)
is the partial derivation of u(ζ(s)) with respect to the outer normal direction:

n(s) =
grad u(ζ(s))

|| grad u(ζ(s)) ||
. (4.6)

The functions α(s) : [a, b] → R and γ2(s) : [a, b] → R are given functions. In the special
case that

α(s) = γ2(s) = 0, (4.7)

the boundary condition is also called Neumann boundary condition. Now, the function
ϕ0(x, y) should fulfill the inhomogeneous boundary conditions

ϕ0(ζ(s)) = γ1(s) on C1 and
∂ϕ0(ζ(s))

∂n(s)
+ α(s)ϕ0(ζ(s)) = γ2(s) on C2. (4.8)

The functions ϕ1(x, y),. . . ,ϕm(x, y) should satisfy the homogeneous boundary conditions

ϕk(ζ(s)) = 0 on C1 and
∂ϕk(ζ(s))

∂n(s)
+ α(s)ϕk(ζ(s)) = 0 on C2. (4.9)

Inserting the ansatz (4.2) into the differential equation (4.3), by considering ck as con-
stant coefficients, gives the residual

ϕ0(x, y)xx + ϕ0(x, y)yy +
m∑

k=1

ck [ϕk(x, y)xx + ϕk(x, y)yy]− f(x, y) = R(x, y). (4.10)

According to Galerkin’s method, the integrals∫∫
G

R(x, y)ϕj(x, y) dxdy = 0, j = 1, 2, . . . ,m (4.11)

have to disappear on the domain G. The insertion of Eq. (4.10) into Eq. (4.11) leads to∫∫
G

[ϕ0(x, y)xx + ϕ0(x, y)yy] ϕj(x, y) dxdy

+

∫∫
G

{
m∑

k=1

ck [ϕk(x, y)xx + ϕk(x, y)yy] ϕj(x, y)

}
dxdy

−
∫∫

G

f(x, y)ϕj(x, y) dxdy = 0, j = 1, 2, . . . ,m. (4.12)
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The integrands of the first two integrals have partial derivatives. They can be eliminated
with the help of Green’s formula∫∫

G

[u(x, y)xx + u(x, y)yy] v(x, y) dxdy =−
∫∫

G

grad u(x, y) grad v(x, y) dxdy

+

∮
C

∂u(ζ(s))

∂n(s)
v(ζ(s)) ds, (4.13)

which leads after interchanging integration and summation in connection with a multi-
plication by (-1) to

m∑
k=1

ck

{∫∫
G

grad ϕk(x, y) grad ϕj(x, y) dxdy −
∮

C

∂ϕk(ζ(s))

∂n(s)
ϕj(ζ(s)) ds

}
+

∫∫
G

grad ϕ0(x, y) grad ϕj(x, y) dxdy −
∮

C

∂ϕ0(ζ(s))

∂n(s)
ϕj(ζ(s)) ds

+

∫∫
G

f(x, y)ϕj(x, y) dxdy = 0. (4.14)

At the boundary C1 we have to consider that ϕj(ζ(s)) = 0 for j = 1, 2, . . . ,m. Further,
at the boundary C2 the derivatives can be replaced by the boundary conditions, Eq.
(4.8) and Eq. (4.9), which ultimately leads to

m∑
k=1

ck

{∫∫
G

grad ϕk(x, y) grad ϕj(x, y) dxdy +

∫
C2

α(s)ϕk(ζ(s))ϕj(ζ(s)) ds

}
+

∫∫
G

grad ϕ0(x, y) grad ϕj(x, y) dxdy +

∫
C2

[α(s)ϕ0(ζ(s))− γ2(s)] ϕj(ζ(s)) ds

+

∫∫
G

f(x, y)ϕj(x, y) dxdy = 0, (4.15)

for j=1,2,. . . ,m, which is a system of linear algebraic equations for the coefficients ck.
Now, let us consider a time-dependent problem. As an example, we choose the diffusion
equation.

4.1.2 Application to a Time-Dependent Field Problem

Transient diffusion problems can be described by the two-dimensional diffusion or heat
equation

u(x, y)xx + u(x, y)yy − f(x, y, t)− ∂u(x, y, t)

∂t
= 0 (4.16)

with (x, y) ∈ G, G ⊂ R2 and t ≥ 0. Given are the general time-dependent boundary
conditions

u(ζ(s), t) = γ1(s, t) on C1 for t > 0,

∂u(ζ(s), t)

∂n(s)
+ α(s)u(ζ(s), t) = γ2(s, t) on C2 for t > 0 (4.17)
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and the initial condition

u(x, y, 0) = u0(x, y) (4.18)

at time t = 0. The procedure for time-dependent problems consists again in representing
the function u(x, y, t) by

u(x, y, t) = ϕ0(x, y, t) +
m∑

k=1

ck(t)ϕk(x, y). (4.19)

In contrast to the previous example, the coefficients ck are now functions of time. The
arbitrarily chosen function ϕ0(x, y, t) must satisfy the inhomogeneous boundary condi-
tions on C1 and C2. The function ϕk(x, y), however, must fulfill the time-independent
homogeneous boundary conditions. Inserting the ansatz (4.19) into equation (4.16), re-
veals the residual as a function of space and time. This means that the integral over the
residual, weighted with the linear-independent functions ϕj(x, y), j = 1, 2, . . . ,m, must
disappear:∫∫

G

{
ϕ0(x, y, t)xx + ϕ0(x, y, t)yy +

m∑
k=1

ck(t) [ϕk(x, y)xx + ϕk(x, y)yy]− f(x, y, t)

−

[
∂ϕ0(x, y, t)

∂t
+

m∑
k=1

∂ck(t)

∂t
ϕk(x, y)

]}
ϕj(x, y) dxdy = 0. (4.20)

By applying Green’s formula with a subsequent interchange of integration and summa-
tion, the determining equations (4.20) can be transformed into
m∑

k=1

ck(t)

[
−

∫∫
G

grad ϕk(x, y) grad ϕj(x, y) dxdy +

∮
C

∂ϕk(ζ(s))

∂n(s)
ϕj(ζ(s)) ds

]
−

m∑
k=1

dck(t)

dt

∫∫
G

ϕk(x, y)ϕj(x, y) dxdy −
∫∫

G

grad ϕ0(x, y, t) grad ϕj(x, y) dxdy

+

∮
C

∂ϕ0(ζ(s), t)

∂n(s)
ϕj(ζ(s)) ds−

∫∫
G

f(x, y, t)ϕj(x, y) dxdy

−
∫∫

G

∂ϕ0(x, y, t)

∂t
ϕj(x, y) dxdy = 0. (4.21)

If we consider the boundary conditions (4.17) we obtain
m∑

k=1

dck(t)

dt

∫∫
G

ϕk(x, y)ϕj(x, y) dxdy

+
m∑

k=1

ck(t)

[∫∫
G

grad ϕk(x, y) grad ϕj(x, y) dxdy +

∫
C2

α(s)ϕk(ζ(s))ϕj(ζ(s)) ds

]
+

∫∫
G

{
grad ϕ0(x, y, t) grad ϕj(x, y) +

[
f(x, y, t) +

∂ϕ0(x, y, t)

∂t

]
ϕj(x, y)

}
dxdy

+

∫
C2

[α(s)ϕ0(ζ(s), t)− γ2(s)] ϕj(ζ(s)) ds = 0 (4.22)
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for j = 1, 2, . . . ,m, which is a system of ordinary differential equations of first order for
the coefficient functions ck(t).

Before we can solve this system of equations, we must define the still unknown
basis functions ϕ1(x, y), . . . , ϕm(x, y). The idea is to define this functions ϕk(x, y)
piecewise on subdomains Ge, e = 1, 2, . . . , z, by means of local basis functions lek:

ϕk(x, y) =


l1k(x, y), (x, y) ∈ G1,
l2k(x, y), (x, y) ∈ G2,

...
lzk(x, y), (x, y) ∈ Gz.

(4.23)

We define these subdomains Ge, called elements, through a partition of the fundamental
domain G into z parts. The boundary between two subdomains is always part of both
subdomains. The superscripts in Eq. (4.23) indicates the elements, it is not an exponent.
The discretisation process will be explained in the next section.

4.2 Partition of the Fundamental Domain

This section consists of two subsections. In the first subsection, the normalization
process for elements is described. In the second subsection, the requirements of the
functions for describing the elements are developed.

The elements Ge, e = 1, 2, . . . , z, should approximate the ground area G as well
as possible. On the other hand, the mathematical description of the elements should be
not too complicated. Figure 4.2 shows a possible partition of a two-dimensional area
using triangles and quadrangles. Also curvilinear elements, shown in Figure 4.3, are
possible. Usually, one achieves a better approximation of the fundamental domain than
with linear elements. This advantage is partly compensated by a higher computational
effort. Mostly, one reaches a good approximation with linear elements by a sufficiently
fine partition. When choosing the form of the elements, it is only necessary to ensure
that the angles of the elements are not too sharp or blunt, because these cause numerical
troubles. Since the elements can be freely combined, one obtains an extremely flexible
description which is perfectly adapted to the mathematical problem in the considered
domain. In three-dimensional problems, a partition using tetrahedral or square elements
takes place. In order not to define special functions lek(x, y) (e = 1, 2, . . . , z and
k = 1, 2, . . . ,m) for each element Ge, we transform the elements into unit elements
G0. Then, there is only one function type necessary per unit element. These functions
l0k(x, y) are called local basis functions and the transform process is called normalization.
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Fig. 4.2: Division of a given domain into subdomains with triangles and quadrangles.

4.2.1 Normalization of the Elements

When transforming the elements, we also have to consider the integral over the residuum,
Eq. (4.11). In the method of Galerkin integrals of the type

∫∫
Gi

u(x, y, t) dxdy, (4.24)∫∫
Gi

u2(x, y, t) dxdy, (4.25)∫∫
Gi

[
∂u(x, y, t)

∂x

]2

+

[
∂u(x, y, t)

∂y

]2

dxdy, (4.26)

for all elements of the area G could appear. For an efficient calculation of these integrals a
transformation into unit elements is a major advantage. Thus, the integrals will become
independent of the individual shape of the triangles or quadrangles. For this purpose, we
must find a bijective transformation for each type of elements. In order to standardize
the integration of the elements, the triangular elements will be transformed into unit
triangles, Fig. 4.4, and the parallelograms are transformed into unit quadrates, Fig. 4.5.
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Fig. 4.3: Division of a given domain into subdomains with curvilinear triangles and
quadrangles.

Fig. 4.4: a) General triangle T i before transformation.
b) Unit triangle T 0 after transformation.

Fig. 4.5: a) General parallelogram Qi before transformation.
b) Unit quadrate Q0 after transformation.
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A general triangle T i with corners P1 to P3 numbered counterclockwise is transformed
by

x = x1 + (x2 − x1)ξ + (x3 − x1)η, (4.27)

y = y1 + (y2 − y1)ξ + (y3 − y1)η

into a unit triangle T 0, as illustrated in Fig. 4.4. With the help of the ansatz

f(ξ, η) = α1 + α2ξ + α3η (4.28)

the transformation (4.27) can be determined. This requires that the coordinates of the
vertices

P1 = f(0, 0) = α1,

P2 = f(1, 0) = α1 + α2,

P3 = f(0, 1) = α1 + α3 (4.29)

are used. From which

α1 = P1,

α2 = P2 − α1 = P2 − P1,

α3 = P3 − α1 = P3 − P1 (4.30)

follows. Substituting Eq. (4.30) into Eq. (4.28) yields Eq. (4.27). To calculate the coef-
ficient for the transformation of the parallelogram (4.28), it is advantageous to choose
the same numbering as for the triangle (Fig. 4.5), since then the transformation (4.27)
is also valid for the unit quadrate. With the transformation (4.27), the complex inte-
grals over the different elements are converted to an integral over a standard region. The
integration variables dx and dy must to be transformed with the help of the Jacobian

J =

∣∣∣∣∣ ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣ (4.31)

by dxdy = Jdξ dη. Inserting (4.27) in (4.31) results in

J = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1). (4.32)

By using the chain rule, the partial derivatives

ux(x, y, t) = uξ(x(ξ, η), y(ξ, η), t)ξx + uη(x(ξ, η), y(ξ, η), t)ηx (4.33)

uy(x, y, t) = uξ(x(ξ, η), y(ξ, η), t)ξy + uη(x(ξ, η), y(ξ, η), t)ηy

of the integral (4.26) are determined. If now the functions (4.27) are derivated with
aspect to x and y, respectively, the relations

1 = (x2 − x1)ξx + (x3 − x1)ηx, (4.34)

0 = (y2 − y1)ξx + (y3 − y1)ηx,

0 = (x2 − x1)ξy + (x3 − x1)ηy,

1 = (y2 − y1)ξy + (y3 − y1)ηy,
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are obtained, from which we get

ξx =
1

(x2 − x1)− (x3−x1)(y2−y1)
(y3−y1)

=
y3 − y1

J
, (4.35)

ηx =
1

− (x2−x1)(y3−y1)
y2−y1

+ (x3 − x1)
= −(y2 − y1)

J
, (4.36)

ξy =
1

(y2 − y1)− (y3−y1)(x2−x1)
(x3−x1)

=
x3 − x1

J
, (4.37)

ηy =
1

− (y2−y1)(x3−x1)
x2−x1

+ (y3 − y1)
= −(x2 − x1)

J
. (4.38)

With this result we can now transform the integrals (4.24)-(4.26) into integrals over the
standard elements:

∫∫
Gi

u(x, y, t) dxdy =

∫∫
G0

u(x(ξ, η), y(ξ, η), t) J dξdη (4.39)∫∫
Gi

u2(x, y, t) dxdy =

∫∫
G0

u2(x(ξ, η), y(ξ, η), t) J dξdη (4.40)∫∫
Gi

[
∂u(x, y, t)

∂x

]2

+

[
∂u(x, y, t)

∂y

]2

dxdy =∫∫
G0

{
[uξ(x(ξ, η), y(ξ, η), t)ξx + uη(x(ξ, η), y(ξ, η), t)ηx]

2

+ [uξ(x(ξ, η), y(ξ, η), t)ξy + uη(x(ξ, η), y(ξ, η), t)ηy]
2} J dξdη (4.41)

=
(x3 − x1)

2 + (y3 − y1)
2

J

∫∫
G0

[
∂u(x(ξ, η), y(ξ, η), t)

∂ξ

]2

dξdη

+ 2
(x3 − x1)(x2 − x1) + (y3 − y1)(y2 − y1)

J

×
∫∫

G0

uξ(x(ξ, η), y(ξ, η), t)uη(x(ξ, η), y(ξ, η), t) dξdη

+
(x2 − x1)

2 + (y2 − y1)
2

J

∫∫
G0

[
∂u(x(ξ, η), y(ξ, η), t)

∂η

]2

dξdη.

Having normalized elements, we can think about the basis functions l0k(x, y) for k =
1, 2, . . . ,m.

4.2.2 Choice of the Basis Functions

Basis functions should be very flexible and, from the mathematical point of view, not
unnecessarily complicated. Polynomials satisfy these requirements and are particularly
suitable as basis functions. For example polynomials of the form

h(x, y) = c1 + c2x + c3y + c4xy + c5x
2y + c6xy2 + c7x

2 + c8y
2 + c9x

2y2 (4.42)
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could be used. Also, an approach of the form

g(x, y) = c1 + c2x + c3y + c4xy + c5x
2 + c6y

2 (4.43)

can be used. The choice of the polynomials depends, of course, on the geometry of the
underlying elements. Also the nature of the given problem affects the choice of the
polynomials. The basis functions need to be continuous in transition from one element
to another in order to correctly describe the whole area. Elements with such basis
functions are called conform. For the derivatives of the basis functions, the continuity
in the transition is generally not necessary. The practice shows often that very good
results can also be achieved with non-conform elements. Non-conform elements are
often used where the continuity requirements lead to a very large computational effort.
However, the use of non-conform elements should be avoided as far as possible. It also
proves to be a useful approach when all powers up to a certain degree occur in the
polynomial (4.42), or the polynomial is chosen at least symmetrically as in (4.43). Such
approaches are called geometrically isotropic, which means that their shape remains
unchanged under a linear coordinate transformation.

In a polynomial like (4.42) the coefficients ci should not be mixed up with the
coefficients ck(t) in Eq. (4.2). In order to determine these coefficients we fix the values
of the polynomial at certain points Pi, the so-called node points. Also derivatives
at these points of the polynomial could be used to determine the coefficients. They
are needed especially if also the derivatives should be continuous. This means, for
example, for a polynomial like (4.42) with six coefficients that we have to define
exactly six node points, if we do not consider the derivatives of the polynomial.
With continuous derivatives we would have to define three node points. In this
thesis we do not consider basis functions with continuous derivatives. Therefore, we ex-
pect the same number of node points per element as coefficients in the polynomial occur.

Node points must exist at all edges. The positions of the remaining node points
can be freely chosen. In the method of weighted residuals, the linear independence of
the functions ϕk(x, x) for k = 1, 2, . . . ,m is required. To ensure this linear independence
we demand

ϕi(xj, yj) =

{
0 for j 6= i

1 for j = i
(4.44)

with i = 1, 2, . . . ,m, j = 1, 2, . . . ,m and m is now the number of all node points in the
hole domain G. Here, xj denotes the x coordinate and yj the y coordinate of the node
point Pj. In addition to this global numbering of the node points one often defines a local
numbering, see Fig. 4.6, of these node points within a unit element. The mathematical
handling is then more convenient. As example, we consider a one-dimensional domain
G with elements consisting of two node points. In this simple case we get due to Eq.
(4.44) and Eq. (4.23) for the first global basis function ϕ1(x), x ∈ G at node point one

ϕ1(x1) = l11(x1) = 1. (4.45)
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At all other node points, ϕ1(xj) is zero. For the first global basis functions, we can write

ϕ1(x) =

{
l11(x), P1 ≤ x ≤ P2

0, P2 ≤ x ≤ Pm

. (4.46)

For the second basis function at node point two we get due to Eq. (4.44) and Eq. (4.23)

ϕ2(x2) = l12(x2) = l22(x2) = 1. (4.47)

At all other node points ϕ2(xj) is zero. The second global basis function is now given by

ϕ2(x) =


l12(x), P1 ≤ x ≤ P2

l22(x), P2 ≤ x ≤ P3

0, P3 ≤ x ≤ Pm

. (4.48)

For the third global basis function at node point three we get

ϕ3(x3) = l23(x3) = l33(x3) = 1. (4.49)

At all other node points ϕ3(xj) is zero. Hence, the third global basis function is given
by

ϕ3(x) =


0, P1 ≤ x ≤ P2

l23(x), P2 ≤ x ≤ P3

l33(x), P3 ≤ x ≤ P4

0, P4 ≤ x ≤ Pm

. (4.50)

The remaining global functions ϕk(x) are constructed in an analogous way. Figure 4.7
shows how the global basis functions ϕk(x) are composed of the local basis functions
lek(x) in this example. One can see form Fig. 4.7 that per element, except the first and
last one, only two local basis functions are different form zero. In general, there are
as many local basis functions different from zero as node points in an element exist.
We now assume that each element is transformed into a unit element and, therefore,
the local basis functions of all normalized elements must be identical. This mean for
our example that if all elements are transformed into unit elements, there are only two
different normalized local basis functions, see Fig. 4.8. Due to the fact that the number
of normalized local basis functions and the number of node points per unit element is
equal, we use the same local numbering for the normalized local basis functions as for
the local node numbering, see Fig 4.8. For the final construction of the normalized local
basis functions we must distinguish between different unit elements which is done in the
next section.

Fig. 4.6: Global and local node numbering.
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Fig. 4.7: Global basis functions ϕk(x) with corresponding local basis functions lek(x).

Fig. 4.8: Unit element with corresponding normalized local basis functions.
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4.3 Constructing Normalized Local Basis Functions

This section describes a process to construct normalized local basis functions depending
on the required element. For a more detailed description of the various elements and
its possible basis functions, the reader is referred to [20]. The starting point is the
general condition (4.44). This ensures that each basis function li(x, y) vanishes at the
nodes except one. We also want to achieve a good approximation of the function u(x, y)
with the basis functions li(x, y). Since the number of node points per element and thus
the number of coefficients is variable, we need to specify this parameter. Very good
interpolation methods based on polynomials already exist. As an approach for our basis
functions, we select the Lagrange interpolation polynomials. [21] In order to proceed, we
have to define the dimension of the elements.

4.3.1 One-dimensional Unit Elements

The Lagrange interpolation polynomials of order k are defined by

lj(x) =
k+1∏

i=1;i6=j

x− xi

xj − xi

, (4.51)

x ∈ G0, j = 1, 2, . . . , k + 1 and k + 1 is the number of the node points per unit element.
These polynomials are especially suitable, because they fulfill the condition (4.44). This
follows immediately from the fact that if x is equal to xj the numerators and the de-
nominators are identical and we get lj(xj) = 1. On the other hand, if x = xi one of
the numerators are always zero and due to the fact that i 6= j the denominator can not
become zero. Thus we get lj(xi) = 0 and (4.44) is fulfilled. To proceed we have to define
the coordinates of the node points.

x1 = −1,

x2 = 1 (4.52)

of the unit element, see Fig 4.9. If linear basis functions, k = 1, are used on a unit
element, one speaks from linear elements, if quadratic basis functions, k = 2, are used,
one speaks from quadratic elements.

Fig. 4.9: 1D unit element.
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4.3.1.1 Linear Elements

Linear elements have two nodes, which means k = 1. The choice of the node points

x1 = −1,

x2 = 1 (4.53)

at the boundaries of the unit element ensures the continuity between adjacent unit
elements. For linear elements the normalized local basis functions

l1(x) =
1

2
(1− x),

l2(x) =
1

2
(1 + x) (4.54)

are obtained by inserting the node points (4.53) into (4.51). To test if these basic func-
tions meet the condition (4.44) we insert the node points into the basis functions,

l1(x1) =
1

2
(1− x1) =

1

2
(1− (−1)) = 1,

l1(x2) =
1

2
(1− x2) =

1

2
(1− 1) = 0,

l2(x1) =
1

2
(1 + x1) =

1

2
(1− 1) = 0,

l2(x2) =
1

2
(1 + x2) =

1

2
(1 + 1) = 1, (4.55)

which immediately reveals the solution is correct. Fig. 4.10 shows a one-dimensional
linear Lagrange element with corresponding basis functions.

Fig. 4.10: One-dimensional linear Lagrange element with corresponding local basic
functions.
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4.3.1.2 Quadratic Elements

A quadratic Lagrange element, k=2, requires an additional node. It is possible to choose
freely the position of the additional node in the following way:

x1 = −1,

x2 = 0,

x3 = 1. (4.56)

According to (4.51), one obtains the local basis functions

l1(x) =
1

2
(x2 − x),

l2(x) = 1− x2,

l3(x) =
1

2
(x2 + x). (4.57)

It can be easily shown that these basis functions meet condition (4.44). Figure. 4.11
displays a one-dimensional quadratic Lagrange element with the corresponding local
basis functions.

Fig. 4.11: One-dimensional quadratic Lagrange element with the corresponding local
basis functions.
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4.3.2 Two-dimensional Quadrangle Elements

Two-dimensional quadratic Lagrange quadrangle elements are formed due to the linear
independence of the functions l1,l2 and l3 in the following way:

g1(x, y) = l1(x)l1(y),

g2(x, y) = l1(x)l2(y),

g3(x, y) = l1(x)l3(y),

g4(x, y) = l2(x)l1(y),

g5(x, y) = l2(x)l2(y),

g6(x, y) = l2(x)l3(y),

g7(x, y) = l3(x)l1(y),

g8(x, y) = l3(x)l2(y),

g9(x, y) = l3(x)l3(y). (4.58)

For two-dimensional quadratic Lagrange quadrangle elements we, therefore obtain

g1(x, y) =
1

4
(x2 − x)(y2 − y),

g2(x, y) =
1

2
(x2 − x)(1− y2),

g3(x, y) =
1

4
(x2 − x)(y2 + y),

g4(x, y) =
1

2
(1− x2)(y2 − y),

g5(x, y) = (1− x2)(1− y2),

g6(x, y) =
1

2
(1− x2)(y2 + y),

g7(x, y) =
1

4
(x2 + x)(y2 − y),

g8(x, y) =
1

2
(x2 + x)(1− y2),

g9(x, y) =
1

4
(x2 + x)(y2 + y) (4.59)

as basic functions. The position of the nodes

x1 = −1 y1 = −1,
x2 = −1 y2 = 0,
x3 = −1 y3 = 1,
x4 = 0 y4 = −1,
x5 = 0 y5 = 0,
x6 = 0 y6 = 1,
x7 = 1 y7 = −1,
x8 = 1 y8 = 0,
x9 = 1 y9 = 1

(4.60)
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results from the combination of the positions of the nodes in the 1D product formation.
Here, xi means the x position and yi the y position of the node point Pi. In Fig. 4.12 such
a quadratic Lagrange element with the corresponding nodes is shown. The numbering
of the nodes is a result of the arbitrary order in the product formation. One can choose
it in an arbitrary way. The normalized local basic functions of this element shows Fig.
4.13.

Fig. 4.12: Nodes P1 to P9 of a 2D normalized quadratic Lagrange quadrangle element.

Fig. 4.13: Two-dimensional normalized local basic functions of a quadratic Lagrange
quadrangle element.
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By forming the product of one-dimensional elements not all two-dimensional elements
can be generated. The basis functions of triangular elements can not be obtained by
the product of one-dimensional basis functions. There exists, however, an elegant way
how such basic functions, corresponding to the nodes, can be easily determined. With
the help of Pascal’s triangle [22], shown in Fig. 4.14, both the position of the nodes and
the local basis functions li(x, y) can be obtained. The first level of the Pascal’s triangle
corresponds to k = 0 in (4.51), the second one to k = 1 and so on.

To determine the nodes of the triangles, we associate the outer boundaries of the
corresponding Pascal’s triangle, beginning from the required order, to a closed triangle,
as shown in Fig. 4.14 (red dashed line). The terms 1, x, x2, . . . represent the nodes along
the border of the triangle. The corresponding polynomial consists of all involved terms.
To get an element for a quadrangle of the same order, we simply reflect the triangle
element downwards, Fig. 4.14 (green dashed line). Again connected terms represent the
nodes along the border of the quadrangle. Internal terms represent inner nodes.

Fig. 4.14: Pascal’s triangle to determine the node positions and the polynomial for
Lagrange triangle and Lagrange quadrangle elements.

For our quadratic quadrangle element, we get the relative position of the 9 node points
from Pascal’s triangle. We establish, therefore, the following 9 local basis functions

li(x, y) = ci
1 + ci

2x + ci
3y + ci

4x
2 + ci

5xy + ci
6y

2 + ci
7x

2y + ci
8xy2 + ci

9x
2y2, i = 1, . . . , 9.

(4.61)

We have 81 different coefficients ci
j for the nine basis functions. In contrast to (4.51), the

coefficients of the polynomials, obtained from Pascal’s triangle, are not yet determined.
To evaluate the coefficients, the absolute position and the numbering of the nodes has to
be fixed. The coordinates and the numbering of the nodes of the quadrangular elements
are defined in Fig. 4.15.
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Fig. 4.15: Normalized quadrangular element with nodes P1 to P9.

Due to the numbering in Fig 4.15, the coordinates of the nodes are

x1 = −1 y1 = −1,
x2 = 1 y2 = −1,
x3 = 1 y3 = 1,
x4 = −1 y4 = 1,
x5 = 0 y5 = −1,
x6 = 0 y6 = 1,
x7 = −1 y7 = 0,
x8 = 1 y8 = 0,
x9 = 0 y9 = 0,

(4.62)

where xi denotes the x position of the node point Pi and yi the y position. Once the
position of the nodes is determined, we obtain, based on Eq. (4.44), for each local basis
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function li, i = 1, 2, . . . , 9, defined by Eq. (4.61), a system of equations:

l1(x1, y1) = c1
1 + c1

2x1 + c1
3y1 + c1

4x
2
1 + c1

5x1y1 + . . . = 1,

l1(x2, y2) = c1
1 + c1

2x2 + c1
3y2 + c1

4x
2
2 + c1

5x2y2 + . . . = 0,

...

l1(x9, y9) = c1
1 + c1

2x9 + c1
3y9 + c1

4x
2
9 + c1

5x9y9 + . . . = 0,

l2(x1, y1) = c2
1 + c2

2x1 + c2
3y1 + c2

4x
2
1 + c2

5x1y1 + . . . = 0,

l2(x2, y2) = c2
1 + c2

2x2 + c2
3y2 + c2

4x
2
2 + c2

5x2y2 + . . . = 1,

l2(x3, y3) = c2
1 + c2

2x3 + c2
3y3 + c2

4x
2
3 + c2

5x3y3 + . . . = 0,

...

l2(x9, y9) = c2
1 + c2

2x9 + c2
3y9 + c2

4x
2
9 + c2

5x9y9 + . . . = 0,

...

l9(x1, y1) = c9
1 + c9

2x1 + c9
3y1 + c9

4x
2
1 + c9

5x1y1 + . . . = 0,

...

l9(x8, y8) = c9
1 + c9

2x8 + c9
3y8 + c9

4x
2
8 + c9

5x8y8 + . . . = 0,

l9(x9, y9) = c9
1 + c9

2x9 + c9
3y9 + c9

4x
2
9 + c9

5x9y9 + . . . = 1.

(4.63)

which can be written in a compact matrix form for i = 1, 2, . . . , 9:



1 x1 y1 x2
1 x1y1 y2

1 y2
1y1 x1y

2
1 x2

1y
2
1

1 x2 y2 x2
2 x2y2 y2

2 y2
2y2 x2y

2
2 x2

2y
2
2

1 x3 y3 x2
3 x3y3 y2

3 y2
3y3 x3y

2
3 x2

3y
2
3

1 x4 y4 x2
4 x4y4 y2

4 y2
4y4 x4y

2
4 x2

4y
2
4

1 x5 y5 x2
5 x5y5 y2

5 y2
5y5 x5y

2
5 x2

5y
2
5

1 x6 y6 x2
6 x6y6 y2

6 y2
6y6 x6y

2
6 x2

6y
2
6

1 x7 y7 x2
7 x7y7 y2

7 y2
7y7 x7y

2
7 x2

7y
2
7

1 x8 y8 x2
8 x8y8 y2

8 y2
8y8 x8y

2
8 x2

8y
2
8

1 x9 y9 x2
9 x9y9 y2

9 y2
9y9 x9y

2
9 x2

9y
2
9





ci
1

ci
2

ci
3

ci
4

ci
5

ci
6

ci
7

ci
8

ci
9


=



δi1

δi2

δi3

δi4

δi5

δi6

δi7

δi8

δi9


(4.64)
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For the coefficients of the basis functions we obtain

c1
1 = 0 c1

2 = 0 c1
3 = 0 c1

4 = 0 c1
5 = 1

4
c1
6 = 0 c1

7 = −1
4

c1
8 = −1

4
c1
9 = 1

4

c2
1 = 0 c2

2 = 0 c2
3 = 0 c2

4 = 0 c2
5 = −1

4
c2
6 = 0 c2

7 = −1
4

c2
8 = 1

4
c2
9 = 1

4

c3
1 = 0 c3

2 = 0 c3
3 = 0 c3

4 = 0 c3
5 = 1

4
c3
6 = 0 c3

7 = 1
4

c3
8 = 1

4
c3
9 = 1

4

c4
1 = 0 c4

2 = 0 c4
3 = 0 c4

4 = 0 c4
5 = −1

4
c4
6 = 0 c4

7 = 1
4

c4
8 = −1

4
c4
9 = 1

4

c5
1 = 0 c5

2 = 0 c5
3 = −1

2
c5
4 = 0 c5

5 = 0 c5
6 = 1

2
c5
7 = 1

2
c5
8 = 0 c5

9 = −1
2

c6
1 = 0 c6

2 = 0 c6
3 = 1

2
c6
4 = 0 c6

5 = 0 c6
6 = 1

2
c6
7 = −1

2
c6
8 = 0 c6

9 = −1
2

c7
1 = 0 c7

2 = −1
2

c7
3 = 0 c7

4 = 1
2

c7
5 = 0 c7

6 = 0 c7
7 = 0 c7

8 = 1
2

c7
9 = −1

2

c8
1 = 0 c8

2 = 1
2

c8
3 = 0 c8

4 = 1
2

c8
5 = 0 c8

6 = 0 c8
7 = 0 c8

8 = −1
2

c8
9 = −1

2

c9
1 = 1 c9

2 = 0 c9
3 = 0 c9

4 = −1 c9
5 = 0 c9

6 = −1 c9
7 = 0 c9

8 = 0 c9
9 = 1

(4.65)

Inserting the coefficients into (4.61) yields the basis functions of a quadratic quadrangle
element:

l1(x, y) =
1

4
(x− 1)x(y − 1)y,

l2(x, y) =
1

4
(x + 1)x(y − 1)y,

l3(x, y) =
1

4
(x + 1)x(y + 1)y,

l4(x, y) =
1

4
(x− 1)x(y + 1)y,

l5(x, y) = −1

2
(x2 − 1)(y − 1)y,

l6(x, y) = −1

2
(x2 − 1)(y + 1)y,

l7(x, y) = −1

2
(x− 1)x(y2 − 1),

l8(x, y) = −1

2
(x + 1)x(y2 − 1),

l9(x, y) = (x2 − 1)(y2 − 1). (4.66)

Due to the construction based on Pascal’s triangle again a Lagrange element arises. As
can be seen, the result is equivalent to (4.59). For this reason, the elements created with
the help of Pascal’s triangle are also often called Lagrange elements.
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4.3.3 Two-dimensional Triangle Elements

The basis functions of two-dimensional triangle elements can be determined again by
Pascal’s triangle. The evaluation based on Fig. 4.14 results in six basis functions for a
quadratic Lagrange triangle:

li(x, y) = ci
1 + ci

2x + ci
3y + ci

4x
2 + ci

5xy + ci
6y

2, i = 1, . . . , 6. (4.67)

The numbers and positions of the nodes for this quadratic triangle are shown in Fig.
4.16.

Fig. 4.16: Quadratic Lagrange triangle element with nodes P1 to P6.

Setting up the system of equations due to Eq. (4.44) and Eq. (4.67) results in


1 x1 y1 x2

1 x1y1 y2
1

1 x2 y2 x2
2 x2y2 y2

2

1 x3 y3 x2
3 x3y3 y2

3

1 x4 y4 x2
4 x4y4 y2

4

1 x5 y5 x2
5 x5y5 y2

5

1 x6 y6 x2
6 x6y6 y2

6




ci
1

ci
2

ci
3

ci
4

ci
5

ci
6

 =


δi1

δi2

δi3

δi4

δi5

δi6

 (4.68)
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with i = 1, 2, . . . , 6. For the coefficients we obtain

c1
1 = 1 c1

2 = −3 c1
3 = −3 c1

4 = 2 c1
5 = 4 c1

6 = 2

c2
1 = 0 c2

2 = −1 c2
3 = 0 c2

4 = 2 c2
5 = 0 c2

6 = 0

c3
1 = 0 c3

2 = 0 c3
3 = −1 c3

4 = 0 c3
5 = 0 c3

6 = 2

c4
1 = 0 c4

2 = 4 c4
3 = 0 c4

4 = −4 c4
5 = 4 c4

6 = 0

c5
1 = 0 c5

2 = 0 c5
3 = 0 c5

4 = 0 c5
5 = 4 c5

6 = 0

c6
1 = 0 c6

2 = 0 c6
3 = 4 c6

4 = 0 c6
5 = −4 c6

6 = −4

(4.69)

Inserting the coefficients into (4.67) yields

l1(x, y) = 2x2 + 4xy − 3x + 2y2 − 3y + 1,

l2(x, y) = 2x2 − x,

l3(x, y) = −4x2 − 4xy + 4x,

l4(x, y) = −4x2 − 4xy + 4x,

l5(x, y) = 4xy,

l6(x, y) = −4xy − 4y2 + 4y. (4.70)

In Fig. 4.17, the basis functions of such a quadratic Lagrange triangle element with the
corresponding nodes are shown.
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Fig. 4.17: Two-dimensional local basic functions of a quadratic Lagrange triangle
element.

Since we have completely defined the basis functions we can now calculate the residual
integrals which is done in the next section.

4.4 Calculation of the Residual Integrals

If one uses quadratic Lagrange triangle or quadrangle elements, an analytical calculation
of the integrals (4.39) up to (4.41) would be possible. The resulting formulas are usually
complex and, therefore, time-intensive in the evaluation. For geometrically more complex
elements, such as curvilinear elements, a Gauss-Legendre integration method [23] is often
used. This integration method is a variant of the so-called Gaussian quadrature. It is
assumed that the elements were already transformed into unit elements in ξ and η. In
the one-dimensional case, the integral∫ b

a

f(ξ) dξ =

∫ b

a

Φ(ξ)ω(ξ) dξ ≈
∫ b

a

p(ξ)ω(ξ) dξ (4.71)

over a function f(ξ) is separated into a weight function ω(ξ) and a remaining function
Φ(ξ). This remaining function is than approximated by a polynomial p(ξ) of the degree
n. This integral ∫ b

a

p(ξ)ω(ξ) dξ =
n∑

i=1

p(ξi)ωi (4.72)
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can then be converted again into a sum with integration points ξi and weights ωi. In-
tegration points should not be mixed up with the node points Pi in Sec. 4.3. If the
function f(ξ) is a polynomial of degree (2n− 1) the integration is even accurate. This is
of particular importance as the basis functions are polynomials. The minimum number n
of integration points is thus directly related to the degree of the polynomials describing
the element. The weights

ωi =

∫ b

a

ω(ξ)
n∏

j=1,j 6=i

ξ − ξj

ξi − ξj
dξ (4.73)

depend on the Interwall [a, b], the weight function ω(ξ) and on the integration points ξi.
If we choose the weight function ω(ξ) = 1 and and a = −1, b = 1 (most popular), then
we get the Gauss-Legendre integration. The integration points are then the zeros of
the Legendre polynomials. Weights for various elements can also be found in literature
[24, 25, 26].

The basis functions of a quadratic element can be created by the product of two
one-dimensional basis functions, Eq. (4.58), therefore, we can apply Eq. (4.72) to these
one-dimensional functions and obtain

∫∫
Q0

f(ξ)g(η) dξdη ≈
n∑

i=1

n∑
j=1

p(ξi)q(ηj)ω̂iω̃j. (4.74)

In the case of triangular elements a similar form results. Ready formulas for determining
the integration points with the corresponding weights can be found in [27, 28]. In Fig.
4.18 a possible distribution of integration points for the unit triangle and the unit square
is shown. In Tab. 4.1-4.3 the coordinates of integration points and corresponding weights
for quadratic elements with 3, 9 and 16 integration points are shown.

Tabelle 4.1: Coordinates of integration points and corresponding weights for
quadratic elements with 3 integration points.

point ξi ηj ω̂i ω̃j

1 0,788675 0,788675 0,50 0,50
2 0,788675 0,211325 0,50 0,50
3 0,211325 0,788675 0,50 0,50
4 0,211325 0,211325 0,50 0,50
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Fig. 4.18: Unit square with 4x4 integration points.

Tabelle 4.2: Coordinates of integration points and corresponding weights for
quadratic elements with 9 integration points.

point ξi ηj ω̂i ω̃j

1 0,887295 0,887295 0,277775 0,277775
2 0,887295 0,5 0,277775 0,44444
3 0,887295 0,112705 0,277775 0,277775
4 0,5 0,887295 0,44444 0,277775
5 0,5 0,5 0,44444 0,44444
6 0,5 0,112705 0,44444 0,277775
7 0,112705 0,887295 0,277775 0,277775
8 0,112705 0,5 0,277775 0,44444
9 0,112705 0,112705 0,277775 0,277775
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Tabelle 4.3: Coordinates of integration points and corresponding weights for
quadratic elements with 16 integration points.

point ξi ηj ω̂i ω̃j

1 0,069435 0,069435 0,17392 0,17392
2 0,069435 0,33001 0,17392 0,32607
3 0,069435 0,930565 0,17392 0,32607
4 0,069435 0,66999 0,17392 0,17392
5 0,33001 0,069435 0,32607 0,17392
6 0,33001 0,33001 0,32607 0,32607
7 0,33001 0,930565 0,32607 0,32607
8 0,33001 0,66999 0,32607 0,17392
9 0,930565 0,069435 0,32607 0,17392

10 0,930565 0,33001 0,32607 0,32607
11 0,930565 0,930565 0,32607 0,32607
12 0,930565 0,66999 0,32607 0,17392
13 0,66999 0,069435 0,17392 0,17392
14 0,66999 0,33001 0,17392 0,32607
15 0,66999 0,930565 0,17392 0,32607
16 0,66999 0,66999 0,17392 0,17392

Now we are in the position to solve the system of differential equations (4.22) which is
done in the next section.

4.5 Solving the Differential Equations

First, we transform the system of differential equations (4.22) by defining the matrices

A = (ajk) =

∫∫
G

grad ϕk(x, y) grad ϕj(x, y) dxdy +

∫
C2

α(s)ϕk(ζ(s))ϕj(ζ(s)) ds,

(4.75)

B = (bjk) =

∫∫
G

ϕk(x, y)ϕj(x, y) dxdy (4.76)

and the vectors

c(t) = (c1(t), c2(t), c3(t), . . . , cm(t))T ,

d(t) = (d1(t), d2(t), d3(t), . . . , dm)T , (4.77)

with

dj(t) =

∫∫
G

{
grad ϕ0(x, y, t) grad ϕj(x, y) +

[
f(x, y, t) +

∂ϕ0(x, y, t)

∂t

]
ϕj(x, y)

}
dxdy

+

∫
C2

[α(s)ϕ0(ζ(s), t)− γ2(s)] ϕj(ζ(s)) ds, (4.78)
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4 Finite Element Method

into a compact form

Ac + B
d

dt
c(t) + d(t) = 0. (4.79)

Due to the definition of the basis functions (4.23) the integrals over the domain G decay
into a sum of integrals over the Elements Gi

A =
z∑

i=1

∫∫
Gi

grad lik(x, y) grad lij(x, y) dxdy +

∫
C2

α(s)ϕk(ζ(s))ϕj(ζ(s)) ds, (4.80)

B =
z∑

i=1

∫∫
Gi

lik(x, y)lij(x, y) dxdy (4.81)

and

dj(t) =
z∑

i=1

∫∫
Gi

{
grad ϕ0(x, y, t) grad lij(x, y) +

[
f(x, y, t) +

∂ϕ0(x, y, t)

∂t

]
lij(x, y)

}
dxdy

+

∫
C2

[α(s)ϕ0(ζ(s), t)− γ2(s)] ϕj(ζ(s)) ds. (4.82)

Now we can normalize each Element Gi (see Sec. 4.2.1) and therefore, it is possible to
use the integrations method of Sec. 4.4 to calculate the integrals.

The matrices are symmetric. The vector d(t) depends on t if the boundary con-
ditions depend on t. For the integration of (4.79) an initial condition for the vector c(t)
is required. Due to the definition of (4.19) we choose the ansatz

ϕ0(x, y, 0) +
m∑

k=1

ck(0)ϕk(x, y) = u0(x, y). (4.83)

This condition is generally not fulfilled for all the points in G. Therefore, we apply
Galerkin’s principle, which results in

m∑
k=1

ck(0)

∫∫
G

ϕk(x, y)ϕj(x, y) dxdy +

∫∫
G

(ϕ0(x, y, 0)− u0(x, y)) ϕj(x, y) dxdy = 0

(4.84)

for j = 1, 2, . . . ,m. The solution of this system of linear algebraic equation yields ck(0),
k = 1, 2, . . . ,m.

The system of differential equations (4.79) is linear, allowing a simple numerical
integration method. Such a method is the trapezoidal method [29]. First, we transform
(4.79) into an explicit form

d

dt
c(t) = −B−1Ac(t)−B−1d(t) (4.85)

52



4 Finite Element Method

so that the formal integration step

cn+1 = cn −
1

2
∆t

(
−B−1Acn −B−1dn + B−1Acn+1 + B−1dn+1

)
(4.86)

can be executed with the step size ∆t at the time t = n∆t. Then, the equation has to be
multiplied with B and sorted. Finally, we obtain the linear system of algebraic equations(

B +
1

2
∆tA

)
cn+1 =

(
B +

1

2
∆tA

)
cn +

1

2
∆t (dn − dn+1) (4.87)

with the coefficient matrix B + 1
2
∆tA.

For complex problems an algorithm which use matrix inversions to solve Eq.
(4.87), is generally not the best idea, because the matrices are usually much too large
for direct inversion. For this reason, the system of algebraic equations (4.87) is solved
approximately by using iterative algorithms. A standard procedure would be, for
example, the conjugate gradient method [30]. For the selection of a suitable algorithm,
it is important to know that the matrices are generally not filled symmetrically.
However, they are filled weakly. This fact allows an intelligent storage of the matrix
at the PC, so that the memory needed is minimized for the matrices. Since the RAM
memory is much faster than the memory on the hard disk one will always try to store
the hole matrices in the RAM. For the size of the matrices, the numbering of the
elements and the associated structure plays a major role. The structure of the matrix
also affects the convergence speed of the algorithm. An overview of the various options
for numbering the elements after discretization, and the various storage methods for
sparse matrices can be found in [19]. A very stable and highly efficient algorithm
for solving unbalanced sparse linear systems Ax = b offers the program library
UMFPACK by Timothy A. Davis, University of Florida. This library is available under
the GNU GPL license. A more detailed description of this process would go beyond
the scope of this thesis. For this reason, the reader is referred to the official home page
“www.cise.ufl.edu/research/sparse/umfpack/ “.

But even the best algorithm is no guarantee for correct values, because the achieved
accuracy depends also on the used mesh. For a stationary solution, this problem is
usually solved by using a coarse grid in the first solution process. After that the achieved
solution is used to build a finer and better mesh. With the new mesh a new solution
can be calculated. If two consecutive solutions no longer differ, the correct stationary
solution is found. But if one is interested in the time evolution of the involved particles,
checking the achieved accuracy is not so easy anymore. During the time evolution, the
particle density can change in the device, which can cause a move of areas with high
particle density difference. But this areas need a fine grid. Since one can not know
exactly where these areas are during the time evolution, it is necessary to ensure that
the entire mesh is fine enough. This problem is dealt with in Sec. 5.
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5 Calculation of the Capacity of
OTFTs as Accuracy and Stability
Test

In order to check the accuracy of the time evolution of the simulated quantities, we
design a simple test model that can be verified. Normally, we are interested in the
steady state of the device. The time evolution of the variables after switching on is
often not evaluated separately. In this thesis the temporal evolution of H+ ions in a
pentacene-based OTFT is required. In order to make correct conclusions, the achieved
accuracy of the calculated values during the time evolution is important, a precisely
calculated steady state is not sufficient in this case. To calculate the error of the time
evolution, an indirect attempt is made. To determine if the mesh size requirements are
fulfilled, we calculate a time-independent value (amount of stored charge in the FET)
from a time-dependent quantity (in- and out-flowing currents). Then we calculate the
same value from a stationary quantity (stationary carrier density). If they match, the
mesh should be fine enough.

Starting point is an organic thin film transistor with a structure as shown Fig.
5.1.

Fig. 5.1: Organic thin-film transistor with the channel length lk and device length ld.

To reduce the device to a two-dimensional problem, it is cut along the red line in Fig.
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5 Calculation of the Capacity of OTFTs as Accuracy and Stability Test

5.1. The resulting cross section is plotted in Fig. 5.2. This structure can be considered
as a capacitor as illustrated in Fig. 5.3. The dielectric of the capacitor is pentacene with

Fig. 5.2: Two-dimensional section through the transistor.

Fig. 5.3: Schematic design of the plate capacitor.

the dielectric constant ε1 = εr1ε0 and the silicon dioxide with the dielectric constant
ε2 = εr2ε0. The dielectric constant of vacuum ε0 = 8.854187 · 10−12AsV −1m−1.

5.1 Simulation Model

The charge transport in pentacene, based on holes, are described by the drift diffusion
equation (3.100) in combination with the Poisson equation (3.126). The Poisson equation
is given by

ε0∇ [εr(r)∇φ(r, t)] = −q n(r, t) (5.1)

where

εr(r) =

{
εr1(r) in pentacene,

εr2(r) in SiO2,
(5.2)

and

n(r, t) =

{
np(r, t) in pentacene,

0 in SiO2.
(5.3)
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5 Calculation of the Capacity of OTFTs as Accuracy and Stability Test

Here np is the hole density, q = 1, 602 · 10−19 the elementary charge and φ the electric
potential. The drift-diffusion equation which consist of the continuity equation (3.41)
and the drift-diffusion current equation (3.98) are given by

∂

∂t
np(r, t) = −1

q
∇Jp(r, t) (5.4)

and

Jp(r, t) = −qµpnp(r, t)∇φ(r, t)− µpkBT∇np(r, t) (5.5)

in pentacene, where Jp is the hole current density, µp the hole mobility and kB =
1, 380·10−23 J/K represents the Boltzmann constant. In Eq. (5.5) we replaced the electric
field E(r, t) by the electric potential φ with the help of Eq. (3.121).

5.2 Numerical Calculation

In order to determine the amount of charge in the channel and, therefore, the capacitance
of the FET, the in- and out-flowing currents I1 and I2, as shown in Fig. 5.4, are simulated
temporally resolved. By integrating the x-component of the current density Jp along the
semiconductor at the channel entrance and exit, the currents

I1(t) =

∫ d1

y=0

[
qµpnp(x1, y, t)Ex(x1, y, t)− µpkBT

∂np(x1, y, t)

∂x

]
dy, (5.6)

I2(t) =

∫ d1

y=0

[
qµpnp(x2, y, t)Ex(x2, y, t)− µpkBT

∂np(x2, y, t)

∂x

]
dy (5.7)

can be determined. The dash-dotted red line in Fig. 5.4 represents the beginning of the
channel at the position x1 and the end of the channel at the position x2. The time-
integrated difference between the two currents

Q = ld

∫ ∞

t=0

(I1(t)− I2(t)) dt (5.8)

results in the amount of charge stored in the channel. To check the accuracy of Q, we
integrate also the resulting stationary carrier density np(x, y) in the channel to obtain
the total charge

Q = ld

∫ lk

x=0

∫ d1

y=0

np(x, y) dxdy. (5.9)
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Fig. 5.4: Geometry of the two-dimensional model for the organic thin film transistor.

Boundary conditions: For the numerical simulation boundary conditions must be set
in addition to the input parameters (initial conditions). In Fig. 5.5, the device with
the appropriate boundary conditions is shown. Source, drain, and gate are at a given
potential. Therefore, Dirichlet boundary conditions

φ(x, y) = US on Cs,

φ(x, y) = UD on Cd,

φ(x, y) = UG on Cg (5.10)

are suitable for the potential. At the interface between the organic layer and the source
and drain, respectively, we adopt contacts with constant hole density cpSD. [31][32][33].
Assuming an injection barrier4E between the organic layer and gold contacts of 0.47 eV
[34]. the particle densities at source and drain are then given by

cpSD = cpSource = cpDrain = cpi e
−q 4E

kBT . (5.11)

The constants are the temperature T = 298.15 K, the elementary charge q = 1.602 ·
10−19 C and the Boltzmann constant kB = 1.38 · 10−23 J/K. The intrinsic hole densities
cpi of the contacts is in the order of 1027 m−3. Due to the exponential relationship
between the particle density cpSD and the injection barrier 4E the resulting particle
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density is very sensitive to changes of the injection barrier [35][36][37][38]. It can vary in
a range of 1018 − 1024 m−3. However, the carrier concentration at the interface between
the contacts and pentacene plays a minor role for the capacity of the FET. For the hole
densities, therefore, also Dirichlet boundary conditions

np(x, y) = cpSD on Cs and Cd (5.12)

are suitable at the contacts. The length of the contacts is a few mm, equipotential lines
between source and drain contact and gate pass in some µm distance from the channel
parallel to the contacts. For this reason, it is justified for the lateral boundaries Cb and
Ce to adopt Neumann boundary conditions

∂φ(x, y)

∂x
= 0 on Cb and Ce,

∂np(x, y)

∂x
= 0 on Cb . (5.13)

Due to the channel length the electric field can be assumed to be parallel to Cb, so that

∂φ(x, y)

∂y
= 0 at Ca (5.14)

can be adopted as boundary condition. For the holes, the interface pentacene-SiO2 and
pentacene-air provides a impenetrable barrier, therefore,

∂np(x, y)

∂y
= 0 at Ca and Cc (5.15)

holds.

Fig. 5.5: Boundary conditions of the organic thin film transistor.
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Discretisation of the device: Because of the geometry of the device, a discretization
by rectangular elements is useful. As basis functions quadratic Lagrange quadrangle
elements were chosen. These elements are described in Sec. 4.3. As can bee seen in Fig.
5.6, the area is discretized very fine near the contacts. At the interface between pentacene
and SiO2 also a very fine discretization is chosen. Because of the very long channel, it is
inefficient to realize this fine discretization over the entire channel length.

Fig. 5.6: Schematic representation for the discretization of the domain.

For this reason, the elements are chosen in a way so that they grow in area exponentially
from the channel beginning towards th channel center as can be seen in Fig. 5.6. The
area marked in red symbolizes the zoom range of Fig.5.7.

Fig. 5.7: Zoomed area of Fig. 5.6.

Simulation results: We start with Tab. 5.1 in which all input parameters required for
the simulation are given. The simulation results are presented graphically and analyzed.
To validate the numerical accuracy, the numerically calculated stored charge (capaci-
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tance) of the FET is compared between two different methods. The charging of the
capacitor channel is also plotted.

Tabelle 5.1: Parameters for the simulation

εr1 / A1s1V −1m−1 3.4
εr2 / A1s1V −1m−1 4.5

d1 / nm 35
d2 / nm 147
lk / µm 50
ld / mm 7
US / V 0
UD / V -2
UG / V -60

µp / m2V −1s−1 1 · 10−6

cpSD /m−3 1 · 1024

T / K 298.15

The simulation based on the parameters in Tab. 5.1 yields a charge amount of Qn1 =
5.56 · 10−9 As in the channel. This amount of charge is calculated by subtracting the
current flowing out of the channel from the current flowing into the channel, as can be
seen in Fig. 5.8. The direct integration of the charge density np in the channel based on
Eq. (5.9) resulted in a charge amount of Qn2 = 5.597 · 10−9 As. Furthermore, one can
see in Fig. 5.8 that the charging time of such a FET is in the range of 3 ·10−5 seconds. It
turns out that the loading process runs fairly uniform as can be seen in Fig. 5.9a. This
is due to the slow decrease of the difference between inflowing and outflowing currents
ever a period of ≈ 10−5 sec (Fig. 5.9b). After that point the difference rapidly goes to
zero and one can stop the simulation. The deviation of the two numerically determined
amounts of charge Qn1 and Qn2, is less than one percent. This demonstrates that the
calculation of the hole densities as shown in Fig. 5.10-5.11 and the resulting currents
during the time evolution provide reliable data.
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Fig. 5.8: Charging of the capacitor over time.

Fig. 5.9: a.) Logarithmic plotted charging Q(t) of the capacitor over time.
b.) Difference I between the currents flowing in and out of the channel.
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(a) Hole density np at the time t = 10−20. (b) Potential φ at the time t = 10−20.

(c) Hole density np at the time t = 10−11. (d) Potential φ at the time t = 10−11.

(e) Hole density np at the time t = 10−10. (f) Potential φ at the time t = 10−10.

(g) Hole density np at the time t = 10−7. (h) Potential φ at the time t = 10−7.

Fig. 5.10: Distribution of the potential φ and the charge carrier density np in the
device in the first 10−7 seconds after the switch on.
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(a) Hole density np at the time t = 2× 10−6. (b) Potential φ at the time t = 2× 10−6.

(c) Hole density np at the time t = 4× 10−6. (d) Potential φ at the time t = 4× 10−6.

(e) Hole density np at the time t = 10−5. (f) Potential φ at the time t = 10−5.

(g) Hole density np at the time t = 10−4. (h) Potential φ at the time t = 10−4.

Fig. 5.11: Distribution of the potential φ and the charge carrier density np in the
device between 10−7 and 10−4 seconds (stady state) after the switch on.
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6 Experimental Results

This chapter consists of three sections. In the first section the construction of the organic
thin-film transistor is described. The second section contains the measurements and the
last section deals with interpretations of the results.

6.1 Architecture of the Organic Thin-Film Transistor

All experimental data shown and discussed are obtained from measurements on OTFTs
built and characterized by Ausserlechner [39] in the period from 2009-2010. The OTFT
is based on an active layer of pentacene with a thickness of 35nm. An additional layer of
two trichlorosilanes, namely 4-(2-(trichlorosilyl)ethyl)benzene-1-sulfonyl chloride (T-SC,
70 %) and a sulfonic acid derivate 4-(2-(trichlorosilyl)ethyl)benzenesulfonic acid (T-SA,
30 %) is arranged between the SiO2 and pentacene as shown in Fig. 6.1. The thickness
of this layer is 1 nm.

The outer dimensions of this OTFT are identical to those in Sec. 5 (see, Fig. 5.3 and Tab.
5.1). The device width ld = 7 mm (see Fig. 5.1) and the channel length lk = 50 µm. For
investigating the behavior of the interfacial layer, three different oxide layer thicknesses
d2 = 100, 147.5 and 245 nm were considered. As a reference for the measurements also
transistors without an interfacial layer for each oxide thickness were produced.

Fig. 6.1: Schematic structure of the organic thin-film transistors with an interfacial
layer.
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6.2 Measurements

This section presents the electrical characterization of OTFTs with oxide thicknesses
of 100 nm, 147.5 nm and 245 nm. All the necessary measurements were performed by
Ausserlechner [39]. Mobility measurements of the pentacene devices yield a hole mobility
of about 10−6 m2V−1s−1.

Transistors With an Oxide Thickness of 100, 147.5 and 245 nm: In total eight
devices with a SiO2 layer of 100 nm were investigated. The first four transistors are
endowed with the interfacial layer being one nm thick. The remaining four transistors
are produced without the interfacial layer and serve as a reference. In total six devices
with an SiO2 layer thickness of 147 and 245 nm were measured. The first three
transistors with 147 and 245 nm were equipped with the interfacial layer. The remaining
transistors are produced without the interfacial layer to serve again as a reference.

In Fig. 6.2, Fig. 6.6 and Fig. 6.10 the transfer characteristic of the reference de-
vices are shown. From the plots it can be seen that the threshold voltage of all reference
devices is about 0 V. The threshold voltage Uth is defined as the gate voltage at which
a charge-carrier layer is formed at the interface between the insulating material and
the pentacene. After reaching the Uth, the source-drain current begins to rise. The
transistors with the interfacial layer and an oxide thickness of 100 nm, however, have a
threshold voltage of about 30 V, as can be seen in Fig. 6.3 and 6.4. The transistors with
the interfacial layer and an oxide thickness of 147.5 nm have a threshold voltage of about
60 V, as can be seen in Fig. 6.7 and Fig. 6.8, and the transistors with the interfacial
layer and an oxide thickness of 245 nm have a threshold voltage of approximately 120
V, as can be seen in Fig. 6.11 and 6.12. The figures show a significant hysteresis. To,
nevertheless, analyze the data, the measured values were averaged by

y(xn) =
y1(xn) + y2(xn)

2
for n = 1, 2, . . . ,m, (6.1)

to obtain a unique function of all m values. In Eq. (6.1), y1(xn) denotes the higher and
y2(xn) the lower measured current value ID at a gate voltage Ug = xn. Then, the resulting
transfer curve is interpolated in the linear region between UG = 0 V and UG = 25 V
using a linear least-squares fit [40]. Fig. 6.5 shows the interpolated function and the
linear fit for the first device with an oxide thickness of 100 nm. Figure 6.9 shows the
interpolated function and the linear fit for one of the 147.5 nm devices with interfacial
layer and Figure 6.13 shows the interpolated function and the linear fit for one of the
245 nm devices with interfacial layer. The so calculated threshold voltage for all 100 nm
devices is displayed in Tab. 6.1, the threshold voltages of the 147.5 nm devices are listed
in Tab. 6.2 and the threshold voltage of the 245 nm devices is listed in Tab. 6.3.
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Tabelle 6.1: Threshold voltages for the four transistors with an an interfacial layer
and a 100 nm thick SiO2 layer.

Parameter Value
U1th / V 35.4
U2th / V 29.5
U3th / V 33.4
U4th / V 35.9

Tabelle 6.2: Threshold voltages for the three transistors with an an interfacial layer
and a 147.5 nm thick SiO2 layer.

Parameter Value
U1th / V 62.8
U2th / V 63.9
U3th / V 50.54

Tabelle 6.3: Threshold voltages for the three transistors with an an interfacial layer
and a 245 nm thick SiO2 layer.

Parameter Value
U1th / V 122.1
U2th / V 125.2
U3th / V 125.0
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Fig. 6.2: Measured transfer characteristics of the 100 nm transistor without interfacial
layer.

Fig. 6.3: Measured transfer characteristics of the 100 nm transistor with interfacial
layer.
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Fig. 6.4: Logarithmic plot of the measured transfer characteristics of the 100 nm
transistor with interfacial layer.

Fig. 6.5: Determination of the threshold voltage for one of the 100 nm transistors
with an interfacial layer by a linear fit.
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Fig. 6.6: Measured transfer characteristics of the 147.5nm transistor without
interfacial layer.

Fig. 6.7: Measured transfer characteristics of the 147.5nm transistor with interfacial
layer.
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Fig. 6.8: Logarithmic plot of the measured transfer characteristics of the 147.5nm
transistor with interfacial layer.

Fig. 6.9: Determination of the threshold voltage for one of the 147.5 nm transistors
with an interfacial layer by a linear fit.
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Fig. 6.10: Measured transfer characteristics of the 245nm transistor without
interfacial layer.

Fig. 6.11: Measured transfer characteristics of the 245nm transistor with interfacial
layer.
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Fig. 6.12: Logarithmic plot of the measured transfer characteristics of the 245nm
transistor with interfacial layer.

Fig. 6.13: Determination of the threshold voltage for one of the 245 nm transistors
with an interfacial layer by a linear fit.
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6.3 Evaluation of the Measured Results

In the devices with an interfacial layer, a shift of the threshold voltage by several ten
volts compared to the one in the reference devices occurred. It seems likely that this is
attributable to the sulfonic acid groups of the T-SA molecules being deprotonated. The
resulting H+ ions can then diffuse into the pentacene. This results in the formation of a
space charge layer consisting of the negative acidic residue. Due to the shift we propose a
proton doping mechanism with the proton attaching to the central ring of the pentacene
molecule shown in Fig. 6.14 and Fig. 6.15.

This is supported by the observation that Uth decreases to zero, when exposing the
devices to an ammonia (NH3) gas. The NH3 molecules react with the protons and the
acidic residue groups, [41] resulting in a disappearance of the pentacene doping and of
the space charge layer as shown in Fig. 6.16.

The formation of the charge layer is very slow; it takes two to three weeks until the
steady state is reached. This raises the question what process is in part responsible for
the long time duration. The compensation process with NH3 just takes a few seconds.

Chapter 7 tries to verify this hypothesis and attempts to give answers to open questions
by means of numerical simulations.

Fig. 6.14: This image shows the interface between pentacene and the interfacial layer
at the beginning of the doping process.
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Fig. 6.15: This image shows the interface between pentacene and the interfacial layer
at the end of the doping process.

Fig. 6.16: This image shows the interface between pentacene and the interfacial layer
after exposure of NH3.
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7 Space Charge Layer Formation in
Pentacene Based Organic Thin-Film
Transistors

This chapter is divided into six sections. The first section briefly describes the discreti-
zation of the device for the finite element method. Then in the second section, a simple
base model for the simulation of the Organic Thin-Film Transistors with the interface
layer is presented. The simulations based on this model are compared with the measured
values. With the help of this simulation results an improved model is developed. In the
third section this improved model is introduced. The simulation results of the improved
models are again compared with the measured values. The findings of that will be re-
used to improve the simulation model. In sections four and five, the model is evolved
based on the results of its predecessor. Section six deals with the influence of NH3 on
the device.

7.1 Discretisation of the Device

Because of the geometry of the device, a discretization by rectangular elements is use-
ful. As basis functions quadratic Lagrange functions were chosen. These elements are
described in more detail in Sec. 4.3. As seen in Fig. 7.1 and Fig. 7.2, the area was dis-
cretized very fine in near the contacts. At the interface between pentacene - SAM and
SAM - SiO2 also a very fine discretization was chosen. Because of the very long channel,
it is inefficient to obtain this fine division over the entire channel length. To reach an
efficient simulation with greatest possible accuracy, the elements were chosen so that
there extension grow, starting from the beginning and end of the channel towards the
channel center, exponentially. The area in Fig. 7.1 marked in red symbolizes the zoom
range from Fig. 7.2.
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Fig. 7.1: Schematic representation of the discretization of a pentacene based organic
thin film transistor with a SAM.

Fig. 7.2: Zoomed area of Fig. 7.1.

7.2 Standard Model

First the standard model for simulating the organic thin film transistor is described
briefly. Then the boundary conditions are fixed. The simulation results are presented
next. The last part of this chapter deals with the evaluation of the simulation results.
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Simulation Model: As a first attempt we try to simulate the measurements of a FET
without the interfacial layer. Due to the high injection barrier at the contacts we neglect
the influence of electrons for the charge transport. The charge transport in pentacene,
is modeled as in Sec. 5.1, the boundary conditions are as in Sec. 5.2.

Simulation Results: This section presents the simulation results of the standard mo-
del. All parameters for the model are listed in Tab. 7.2. As one can see in Fig. 7.3 and
Fig. 7.4 the agrement between the simulation and the measured data is poor. Measu-
rements of the devices (Sec. 6), yield a hole mobility of about 1 × 10−6 m2V−1s−1 in
pentacene. For gate voltages of just a few volts, the simulation of the transfer curve
is near the measurements as one can see in Fig. 7.3. But for gate voltages above 20V
the measured current increases much stronger than predicted through the simulation.
The consistency of the simulation with the measurements can be improved for higher
voltages by a higher mobility. With a higher mobility, the simulation provides wrong
results in the section below UG=−30V as can be seen in Fig. 7.4.

Tabelle 7.1: Parameters for the simulation of the standard model

Parameter Value
εr1 / A1s1V −1m−1 3.4
εr2 / A1s1V −1m−1 4.5

d1 / nm 35
d2 / nm 147
lk / µm 50
ld / mm 7
US / V 0
UD / V -2
UG / V −80 . . . 20

µp / m2V −1s−1 1 · 10−6; 1 · 10−5;
4E /eV 0.47
cpi / m−3 1 · 1027

T / K 298.15
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Fig. 7.3: Linear plot of the transfer characteristic of the simulation. (d2 = 147nm)

Fig. 7.4: Logarithmic plot of the transfer characteristic of the simulation.

To get better results in the simulation it is necessary to take into account the electric
field dependence of the mobility. According to the Poole-Frenkel effect one use an ap-
proximation of the mobility which depends on the square root of the electric field [2].
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For the mobility in the device we get:

µp = µp0e

�
−q Θ

kBT
+q

h
β

kBT
−γ

i√
||E||

�
(7.1)

It depends on the temperature T , on the norm of the electric field E, on the zero field
mobility µp0, on the zero field activation energy Θ, on the Poole-Frenkel factor β and on a
fit parameter γ. For the zero field mobility µp0 we use the mobility from the measurements
of 10−6. We assume for the zero field activation energy Θ = 0.1 eV and for the Poole-
Frenkel factor β = 3.58× 10−5 eV(cmV−1)1/2 as proposed in [2]. In the simulation, the
fit parameter is γ = 10−4 (cmV−1)1/2. As one can see in Fig. 7.5 the consistency with the
measured values is now much better. One sees that the measurements show a hysteresis
which does not occur in the simulation. To simulate this hysteresis we must still consider
traps in pentacene[42]. However, this would not provide significant new insights because
we are interested in a change of the threshold voltage through an additional layer in the
device. In order to get along with a minimum of parameters, the influence of traps will
be ignored throughout this thesis and are discussed in [43].

Tabelle 7.2: Parameters for the simulation of the standard model

Parameter Value
εr1 / A1s1V −1m−1 3.4
εr2 / A1s1V −1m−1 4.5

d1 / nm 35
d2 / nm 147
lk / µm 50
ld / mm 7
US / V 0
UD / V -2
UG / V −80 . . . 20

µp0 / m2V −1s−1 2 · 10−6

θ / eV 0.1
β / eV (cm/V )1/2 3.58 · 10−5

γ / (cm/V )1/2 1 · 10−4

4E /eV 0.47
cpi / m−3 1 · 1027

T / K 298.15
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Fig. 7.5: Logarithmic plot of the transfer characteristic of the simulation with field
dependent mobility.

7.3 Model 1

In the first sub-section the model 1 for simulating the organic thin film transistor is
described briefly. Then the boundary conditions are fixed. The simulation results are
presented in the third subsection. Chapter four deals with the evaluation of the simula-
tion results.

Simulation Model: As a first attempt we try to simulate the results with a very simple
base model to better understand the working principle. Leakage currents between source
and gate or drain and gate are neglected. The charge transport in pentacene, based on
holes, is described by the drift diffusion equation (3.100) in combination with the Poisson
equation (3.126). Chemical reactions such as the formation of H+ ions in the SAM are
neglected. It is assumed that at the beginning of the simulation in the SAM, a constant
positive H+ ion density cI = cI−SAM with a mobility µI is present. The H+ ion density
can be estimated by assuming that from 0.1 to a maximum of one molecule of SAM
(4-(2-(trichlorosilyl)ethyl)benzenesulfonic acid) per nm2 one H+ ion is released. This
assumption leads to an H+ ion density cI−SAM of about 1026 m−3 up to a maximum of
1027 m−3. The relative permittivity of the SAM is not known. Since the SAM is with a
single nm very thin, an average value of εr−SAM ≈ 4 between pentacene and SiO2 will be
assumed. It is also assumed that the mobility of H+ ions in the SAM and pentacene is
identical. The negative acidic residue cr = cI−SAM has the same density as the H+ ions
so that charge neutrality is preserved. The negative acidic residue has no mobility. The
H+ ions can diffuse in the pentacene but not in the SiO2. The H+ ions cannot escape
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into the vacuum or on the contacts. The number of H+ ions in pentacene and SAM is
thus a conserved quantity. To consider the electric potential of holes and H+ ions in the
device we use the Poisson equation (3.126). The Poisson equation for this model is given
by

ε0∇ [εr(r)∇φ(r, t)] = −q [n(r, t) + c(r, t)] (7.2)

where

εr(r) =


εPenta(r) in pentacene,

εSAM(r) in the SAM,

εSiO2(r) in SiO2,

(7.3)

and

n(r, t) =


np(r, t) in pentacene,

0 in the SAM,

0 in SiO2,

(7.4)

c(r, t) =


cI(r, t) in pentacene,

−cI(r, t) + cr in the SAM,

0 in SiO2.

(7.5)

The drift-diffusion equations which consists of the continuity equation (3.41) and the
drift-diffusion current equation (3.98) are given by

∂

∂t
np(r, t) = −1

q
∇Jp(r, t), (7.6)

∂cI(r, t)

∂t
= −1

q
∇JI(r, t) (7.7)

and

Jp(r, t) = −qµp(r, t)np(r, t)∇φ(r, t)− qµp(r, t)kBT∇np(r, t), (7.8)

JI(r, t) = −qµIcI(r, t)∇φ− qµIkBT∇cI(r, t) (7.9)

with

µp(r, t) = µp0e

�
−q Θ

kBT
+q

h
β

kBT
−γ

i√
||E(r,t)||

�
. (7.10)

Boundary Conditions: In addition to the input parameters (initial conditions) boun-
dary conditions must be set for the numerical simulation. In Fig. 7.6 the device with
the appropriate boundary conditions is shown. For this model we have to adapt the
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boundary conditions of Sec. 5.2. Additionally to the conditions in Sec. 5.2 we adopt for
the lateral boundaries Cb,Cf and Ce of the simulation, Neumann boundary conditions:

∂φ(x, y)

∂x
= 0 at Cb,Cf and Ce,

∂np(x, y)

∂x
= 0 at Cb and Cf ,

∂cI(x, y)

∂x
= 0 at Cb and Cf . (7.11)

For the ions, the interface pentacene-SiO2 and pentacene-air provides a barrier, therefore,

∂cI(x, y)

∂y
= 0 at Ca and Ch (7.12)

holds.

Fig. 7.6: Boundary conditions of the device with model 1.

7.3.1 Simulation Results

This section presents the simulation results of Model 1. The section consists of three
parts. In the first part the H+ ion mobility is varied and the resulting changes are
presented. In the second part the existing H+ ion density in the SAM is varied. In the
last part of this section the simulation results are compared with the results of the
measurements. All the general parameters for the model 1 are listed in Tab. 7.3.
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To assess the impact of individual parameter changes in the individual cases con-
sidered below, the total charge Q of ions

Q(t) = ld

∫ lk

x=0

∫ d1

y=0

cI dxdy (7.13)

in pentacene will be determined. The more H+ ions are located in the pentacene the
larger is the potential shift of the threshold voltage.

Tabelle 7.3: General parameters for the model

Parameter Value
εPenta / A1s1V −1m−1 3.4
εSiO2 / A1s1V −1m−1 4.5
εSAM / A1s1V −1m−1 4

d1 / nm 35
d2 / nm 147
lk / µm 50
ld / mm 7
US / V 0
UD / V -2
UG / V -60
4E /eV 0.47
cpi / m−3 1 · 1027

T / K 298.15
µp0 / m2V −1s−1 2 · 10−6

θ / eV 0.1
β / eV (cm/V )1/2 3.58 · 10−5

γ / (cm/V )1/2 1 · 10−4

7.3.1.1 Variation of H+ Ion Mobility

Since the mobility of the H+ ions is not known, the mobility is varied to study the
effects in the simulation. The simulation based on the input parameters in Tab. 7.3, and
Tab. 7.4. This raises the question how large the influence of the H+ ion mobility on the
process speed of space charge building is, and if it influences the threshold voltage. The
shift of the threshold voltage in the experiment requires up to four weeks until a steady
state is reached.

Tabelle 7.4: Parameters for the simulation of “Variation of the H+ ion mobility “

Parameter Value
µI / m2V −1s−1 1 · 10−6 . . . 1 · 10−15

CI−SAM / m−3 4 · 1026
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Fig. 7.7: Temporal formation of the ionic charge amount Q in pentacene for different
H+ ion mobilities with model 1.

As can be seen from Fig. 7.7, the amount of ionic charge Q in pentacene in the steady
state is not affected by different H+ ion mobilities. The H+ ion mobility does not play
a role for the period necessary to establish steady state, as can be seen out of Fig. 7.7,
because the propagation time of the H+ ions moved in the range of milliseconds. Even
the unrealistic assumption of an extremely low mobility of µI = 10−15m2V−1s−1 leads
to a process duration of a few milliseconds only.

7.3.1.2 Variation of the H+ Ion Density in the SAM

Since the exact density of the freely moving H+ ions in the SAM is unknown, the density
of the H+ ions in the SAM is varied to study the effects in the simulation. The simulation
based on the input parameters in Tab. 7.3, and Tab. 7.5. The aim is to determine the
H+ ion density in the simulation, which reproduces the threshold voltage shift from the
experiment. As one can see from Fig. 7.8, an increasing initial density cI−SAM generates
a rising amount of H+ ions in the pentacene. A cut through the distribution of H+ ions
in pentacene in the steady state can be seen in Fig. 7.10. Fig 7.9 shows the position
of the cut in the device. One can see that the main part of the H+ ion is close to the
SAM. A few nm away from the SAM, the density is to low to contribute significantly to
the total amount of H+ ions in pentacene. Therefore, the variation of the initial density
cI−SAM has practically no influence on the charge in pentacene. This is also reflected in a
negligible threshold voltage shift as can be seen from Fig. 7.11. Even a highly unrealistic
assumption of an initial density of cI−SAM = 32× 1026 leads only to a threshold voltage
shift of about 6 V.
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Tabelle 7.5: Parameters for the simulation “Variation of the H+ ion density in the
SAM “

Parameter Value
Us / V 0
Ud / V -2
Ug / V -60 . . . +10

µI / m2V −1s−1 1 · 10−7

CI−SAM / m−3 1 · 1026 . . . 32 · 1026

Fig. 7.8: Temporal formation of the ionic charge amount Q in pentacene for different
initial densities cI−SAM with model 1 at UG = −60V.

Fig. 7.9: Position of the cut through of the H+ ion distribution in pentacene from Fig.
7.10.
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Fig. 7.10: Cut in the y direction through the H+ ion distribution in pentacene and
SAM. (UG = −60V)

Fig. 7.11: Threshold voltage shift for different initial densities cI−SAM with model 1
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7.3.1.3 Evaluation of the Model

The simulations shows that this simple model is not suitable to reproduce the results.
Even extremely high H+ ion densities in the SAM did not lead to the measured threshold
voltage shift. Realistically assumed H+ ion densities in the SAM lead to a threshold
voltage shift of less than one volt. According to measurements, however, a threshold
voltage shift arising from approximately 60 V.

Fig. 7.12: Dependence of the threshold voltage shift from the initial density cI−SAM

in the SAM with model 1.

This means that the results can only be reproduced if the positive H+ ions are neutralized
by an initially undetermined process and leave behind a negatively charged layer at the
SAM. The H+ ions cannot escape, since they should have a vanishing vapor pressure in a
solid. Moreover, such a hypothesis would be inconsistent with the measurement results of
devices that have been exposed to NH3. The threshold voltage shift upon neutralization
by NH3 could not be explained, because for the neutralization of the space charge layer
the positive H+ ions are required. If the H+ ions would escape the device, they are no
longer available for the neutralization process by NH3. However, in the case that the
H+ ions remain in the pentacene, a sufficiently large negative space charge density can
be achieved only if these H+ ions are neutralized within the pentacene layer. In the
following chapters, the current model is extended accordingly.
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7.4 Model 2

In the first sub-section the model 2 of the organic thin film transistor is described briefly.
Then the boundary conditions are fixed. The simulation results are presented in the third
subsection. Chapter four deals with the evaluation of the simulation results.

Simulation Model: The Model 2 is based on the assumption that the H+ ions are
neutralized by protonation of pentacene [41]. When the H+ ions protonate the pentacene
it would arise a hole which ensures the charge neutrality. This process is also reversible
and is, therefore, not in contradiction with the NH3 measurements. If after the formation
of a space charge layer a voltage is applied at the contacts, the holes can flow through
the contacts and a negatively charged space charge layer remains in the SAM. This
space charge layer caused the threshold voltage shift. To simulate this process it will
be assumed that in pentacene a H+ ion can be converted into an hole. The protonated
pentacene molecule which is created in addition to the hole is not considered in this
model because it is neutral and immobile. To incorporate this fact, Model 1 needs to
be extended by a recombination term Γ. Based on (7.6) it results for the drift diffusion
equation of the holes

∂np(r, t)

∂t
= −1

q
∇Jp(r, t) + Γp(r, t) (7.14)

with

Γp(r, t) = k1cI(r, t)− k2np(r, t) (7.15)

as recombination term. k1 and k2 denotes the still undefined rate coefficients. cI denotes
the H+ ion concentration and np the hole concentration. Based on (7.7) it results

∂cI(r, t)

∂t
= −1

q
∇JI(r, t) + ΓI(r, t) (7.16)

for the drift diffusion equation of H+ ions with

ΓI(r, t) = −k1cI(r, t) + k2np(r, t) (7.17)

as recombination term.

Boundary Conditions: The boundary conditions of the model 2 are identical to those
of model 1 in Sec. 7.3

7.4.1 Simulation Results

This section presents the simulation results of Model 2. The section consists of six parts.
In the first part the H+ ion mobility is varied and the resulting changes are presented. In
the second part, the hole mobility varied. In the third part the existing H+ ion density
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in the SAM is varied. Part four deals with the variation of the rate coefficient k1. Part
five deals with the variation of rate coefficient k2 and in the last part of this section the
simulation results are compared with the results of the measurements. All the general
parameters for the model 2 are listed in Tab. 7.3.

7.4.1.1 Variation of H+ Ion Mobility

Due to the changes from Model 1 to Model 2, we again vary the H+ ion mobility to to
see if the insights gained from model 1 are still valid. The simulation based on the input
parameters in Tab. 7.3, and Tab. 7.6.

Tabelle 7.6: Parameters for the simulation “Variation of H+ ion mobility “

Parameter Value
µI / m2V −1s−1 1 · 10−9 . . . 1 · 10−15

CI−SAM / m−3 4 · 1026

k1 / s−1 1 · 10−5

k2 / s−1 1 · 10−8

Fig. 7.13: Temporal formation of the ionic charge amount Q in pentacene for different
H+ ion mobilities with model 2 at UG = −60V.

As can be seen from Fig. 7.13, the H+ ion mobility still plays no role in building the
space charge layer. A fundamental change is, however, the added possibility to convert
H+ ions into holes. Fig. 7.13 shows a significant increase in the H+ ions density in
pentacene compared to the situation described by Model 1 in Fig. 7.7. To calculate the
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ionic charge Q in pentacene both the freely moving H+ ions and the protonated H+ ions
were counted.

7.4.1.2 Variation of Hole Mobility

The hole mobility for the devices is known and is approximately 10−6 m2V−1s−1. Ne-
vertheless, the hole mobility was varied to investigate whether it has an impact on the
simulation. The simulation based on the input parameters in Tab. 7.3, and Tab. 7.7.

Tabelle 7.7: Parameters for the simulation “Variation of hole mobility“

Parameter Value
µI / m2V −1s−1 1 · 10−7

CI−SAM / m−3 4 · 1026

µh / m2V −1s−1 1 · 10−7 . . . 1 · 10−15

k1 / s−1 1 · 10+4

k2 / s−1 1 · 10+1

Fig. 7.14: Temporal formation of the ionic charge amount Q in pentacene for different
hole mobilities with model 2 at UG = −60V.

As can be seen in Fig. 7.14 the hole mobility has no influence on the ionic charge Q in
pentacene and, therefore no influence on the formation of a space charge layer in the
SAM.
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7.4.1.3 Variation of the H+ Ion Density in the SAM

The density cI−SAM of the available H+ ions in the SAM is varied as in Model 1. Accor-
ding to Fig. 7.15, the charge amount of H+ ions in pentacene increases at the beginning
similarly to the first model with increasing initial density cI−SAM . After about 10−5 se-
conds a preliminary H+ ion maximum is reached in pentacene. Until that time, Model
1 and Model 2 provide identical data. After about 102 seconds, the conversion of H+

ions into holes shows an effect as can be seen from Fig. 7.16. This characteristic time
constant depends of course on the rate coefficient. This coefficient was chosen so that
the increase of the ionic charge in pentacene based on the protonated H+ ions could be
clearly separated from that H+ ions which are present in the model 1. Fig. 7.15 shows,
that a change in the H+ ion density cI−SAM has now much more significant effect on the
ionic charge in pentacene and thus on the threshold voltage shift. The simulation based
on the input parameters in Tab. 7.3, and Tab. 7.8.

Tabelle 7.8: Parameters for the simulation “Variation of the H+ ion density in the
SAM“

Parameter Value
µI / m2V −1s−1 1 · 10−7

CI−SAM / m−3 4 · 1026 . . . 8 · 1026

k1 / s−1 1 · 10−2

k2 / s−1 1 · 10−6

Fig. 7.15: Temporal formation of the ionic charge amount Q in pentacene for different
initial densities cI−SAM with model 2 at UG = −60V.
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Fig. 7.16: Zoom from Fig. 7.15.

7.4.1.4 Variation of the Generation Coefficient k1 for Protonated Pentacene

For the generation coefficient k1 of holes we can make only a vague estimate due to the
available measurements. To get more information it will be varied to possibly related
effects. The simulation based on the input parameters in Tab. 7.3, and Tab. 7.9. If the
ratio of k1 to k2 does not change as in this simulation, the amount of ionic charge Q in
the steady state will be constant as seen from Fig. 7.17. As one would expect a variation
of the coefficient generation k1 changes only the time from when the conversion of H+

ions into holes shows an effect. As seen in Fig. 7.17 for a generation coefficient of around
k1 = 10−3 the construction of the space charge layer in the SAM needs about of two
weeks. In the measurements we have such a behavior.

Tabelle 7.9: Parameters for the simulation “Variation of the generation coefficient k1“

Parameter Value
µI / m2V −1s−1 1 · 10−7

CI−SAM / m−3 4 · 1026

µh / m2V −1s−1 1 · 10−6

k1 / s−1 1 · 10−4 . . . 1 · 10+4

k2 / s−1 k1 · 1 · 10−4
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Fig. 7.17: Temporal formation of the ionic charge amount Q in pentacene for different
generation coefficients k1 with model 2.

7.4.1.5 Variation of the Recombination Coefficient k2 for Protonated Pentacene

It should now be checked how much a change in the recombination coefficient k2 effects
the simulation results. The simulation based on the input parameters in Tab. 7.3, and
Tab. 7.10. As seen in Fig. 7.18, a change in the ratio of k1 to k2 causes a change in the
ionic charge Q in pentacene in the steady state. The larger k2, the smaller is the H+ ion
charge in pentacene and thus the resulting threshold voltage shift. The time at which
the H+ ion conversion begins to play a role is not influenced by k2 as one can see from
Fig. 7.19.

Tabelle 7.10: Parameters for the simulation “Variation of the recombination
coefficient k2“

Parameter Value
µI / m2V −1s−1 1 · 10−7

CI−SAM / m−3 4 · 1026

µh / m2V −1s−1 1 · 10−6

k1 / s−1 1 · 10−4

k2 / s−1 1 · 10−4 . . . 1 · 10−8
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Fig. 7.18: Temporal formation of the ionic charge amount Q in pentacene for different
recombination coefficient k2 with model 2.

Fig. 7.19: Zoom from Fig. 7.18.

7.4.1.6 Evaluation of the Model

This model already provides far better simulation results, however, this model can not
completely reproduce the measurements. Although it is possible with a suitable choice
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of the generation coefficient k1 to generate a similarly long duration of the space charge
layer formation. Furthermore, it is also possible with the help of the recombination
coefficient k2 to get the desired amount of H+ ions into the pentacene to reach the
measured threshold voltage shift. Such a parameter set, independent of the physical
meaningfulness, is not possible because the measurements with NH3 show, that the
threshold voltage shift can be fed back in a few seconds. If the generation coefficient
k1 and the recombination coefficient k2 would be selected so that the measurements for
the formation of space charge layer is fulfilled, the reduction of the space charge layer
with NH3 would also be in the range of weeks. The time limiting factor may not be in
pentacene. Realistically, a slow generation of the H+ ions take place in the SAM. This
has been neglected in the current model. The Model 2 also neglected the protonated
pentacene by the direct conversion of H+ ions into holes. This leads to high conversation
rates in the near of the interface which could correspond to unrealistic high protonated
pentacene amounts at this point. For this reason, in Model 3, the protonated pentacene
considered explicitly to ensure physical processes.

7.5 Model 3

In the first sub-section model 3 of the organic thin film transistor is described briefly.
Then the boundary conditions are fixed. The simulation results are presented in the
third subsection. Subsection four deals with the evaluation of the simulation results.

Simulation Model: Based on model 2 the protonated pentacene particles must be
installed into the simulation to ensure physical processes. This is achieved with neutral
pentacene particles with the concentration cpenta = cDoPentaMax and neutral protonated
pentacene particles with the concentration cDoPenta = 0. The protonated pentacene par-
ticle density can be estimated by assuming that 0.1 to a maximum of one pentacene
molecule per nm2 is protonated. This assumption leads to a maximum density of proto-
nation cDoPentaMax of around 1026 m−3 up to a maximum of 1027 m−3. Both pentacene
and protonated pentacene particles are at rest and electrically neutral and, therefore, do
not affect the electric potential. The problem is thus reduced to a simple rate equation
(see Sec. 3.3):

∂cpenta(r, t)

∂t
= ΓI(r, t) (7.18)

and

∂cDoPenta(r, t)

∂t
= −ΓI(r, t). (7.19)

Now a conversion of an H+ ion in a hole depends on the concentration cpenta. To achieve
that this conversion depends on the concentration cpenta the recombination term Γp,
(7.15), has to be extended to

Γp(r, t) = k1cI(r, t)cpenta(r, t)− k2np(r, t)cDoPenta(r, t). (7.20)
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The recombination ΓI from (7.17) is also extended to

ΓI(r, t) = −k1cI(r, t)cpenta(r, t) + k2np(r, t)cDoPenta(r, t). (7.21)

Boundary Conditions: The boundary conditions of the model 3 are identical to those
of model 1 in Sec. 7.3

7.5.1 Simulation Results

This section presents the simulation results of Model 3. The section consists of to parts.
In the first part, the maximum concentration of protonated pentacene is varied and the
resulting changes are presented. In the second part, the simulation results are compared
with the results of the measurements. All the general parameters for the model 3 are
listed in Tab. 7.3.

7.5.1.1 Variation of the Maximum Concentration of Protonated Pentacene

At this stage we do not known exactly at which position the H+ ion dock on the pentacene
molecule and if it is possible that more than one H+ ions can dock on a pentacene
molecule. Therefore, it is not possible to specify an exact maximum concentration of
protonated pentacene. So we vary the parameter to determine how big the effects are in
the simulation. As one can see from Fig. 7.20, the effect of the variation is not high. The
value of cDoPentaMax can be varied over a range of 1027 1

m
up to 1025 1

m
without incurring

any inconsistence. An effect which should be considered is, however, a slower process
speed as seen in Fig. 7.21. At the beginning enough protonated pentacene molecules are
near the interface, later on the H+ ions have to penetrate further into the pentacene in
order to find unprotonated pentacene molecules. And this slows down the process speed.
The simulation is based on the input parameters in Tab. 7.3, and Tab. 7.11.

Tabelle 7.11: Parameters for the simulation “Variation of the maximum
concentration of doped pentacene“

Parameter Value
µI / m2V −1s−1 1 · 10−7

CI−SAM / m−3 4 · 1026

µh / m2V −1s−1 1 · 10−9

k1 / m3s−1 1 · 10−26

k2 / m3s−1 1 · 10−30

CDoPentaMax / m−3 1 · 1025 . . . 1 · 1027
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Fig. 7.20: Temporal formation of the ionic charge amount Q in pentacene for different
maximum concentration of protonated pentacene with model 3.

Fig. 7.21: Zoom from Fig. 7.20.

7.5.1.2 Evaluation of the Model

The explicit consideration of the pentacene particles did not yield any significant changes
in the simulation behave. Slowing down the process flow is going in the right direction
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but is still far too little to explain the long duration of the space charge layer formation.
Thus, we additionally have to take into account the deprotonation of the sulfonic acid
groups of the T-SA molecules in the SAM.

7.6 Model 4

In the first subsection model 4 of the organic thin film transistor is described briefly.
Then the boundary conditions are fixed. The simulation results are presented in the
third subsection. Subsection four deals with the evaluation of the simulation results.

Simulation Model: To explain the long duration of the the space charge layer
formation, the decay process of sulfonic acid groups in the T-SA molecules must be
considered. Since the chemical processes in the SAM during the decay is not well
known, this process again is described with rate equations (see Sec. 3.3). Therefore, we
start from a constant density of sulfonic acid groups cSAG instead of a constant H+ ion
density cI−SAM in the SAM. These sulfonic acid groups are now described by a rate
equation to decay with the generation coefficient k3 into negative H+ ions and a fixed
rest with the density cr. The recombination coefficient k4 enables us to recover the
initial particles from H+ ions and the negative residual.

The resulting rate equations are

∂cSAG(r, t)

∂t
= −k3cSAG(r, t) + k4cr(r, t) (7.22)

∂cr(r, t)

∂t
= k3cSAG(r, t)− k4cr(r, t) (7.23)

for the two kinds of particles in the SAM. The recombination term for the H+ ions in
the SAM results in

ΓI(r, t) = k3cSAG(r, t)− k4cr(r, t). (7.24)

Boundary Conditions: The boundary conditions of the model 4 are identical to those
of model 1 in Sec. 7.3

7.6.1 Simulation Results

This section presents the simulation results of Model 4. The chapter consists of six
parts. In the first part the generation coefficient k1 is varied and the resulting changes
are presented. Afterwards the H+ ion generation coefficient k3 is varied. In the third part
the recombination coefficient k4 for H+ ions in the SAM is varied. Then the parameters
are optimized to the measured displacement. In part five, the threshold voltage shift
for different oxide thicknesses is studied. In the last part of this section, the simulation
results are compared with the results of the measurements. All the general parameters
for the model 4 are listed in Tab. 7.3.
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7.6.1.1 Variation of the Generation Coefficient k1 for Protonated Pentacene

For the extension of the model it is necessary to vary the generation coefficient k1 to
see if there are changes in the behavior of the model. The simulation is based on the
input parameters in Tab. 7.3, and Tab. 7.12. As can bee seen in Fig. 7.22, the first
increase of the ionic charge in pentacene vanishes. This is because at the beginning of
the simulation free H+ ions do not exist, they must be generated with the help of the
generation coefficient k3 from the sulfonic acid groups. Also the second increase of the
ionic charge due to deprotonation of pentacene occurs later. As one can see in Fig. 7.23,
the variation of the generation coefficient k1 has no effect until the formation of H+ ions
from the sulfonic acid groups expires slower.

Tabelle 7.12: Parameters for the simulation “Variation of the generation coefficient
k1“

Parameter Value
µI / m2V −1s−1 1 · 10−7

CSAG / m−3 4 · 1026

µh / m2V −1s−1 1 · 10−9

CDoPentaMax / m−3 5 · 1026

k1 / m3s−1 1 · 10−21 . . . 1 · 10−27

k2 / m3s−1 k1 · 10−4

k3 / s−1 1 · 10−7

k4 / s−1 1 · 10−10

Fig. 7.22: Temporal formation of the ionic charge amount Q in pentacene for different
generation coefficient k1 with model 4.
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Fig. 7.23: Zoom from Fig. 7.22.

7.6.1.2 Variation of the Generation Coefficient k3 for H+ Ions in the SAM

Since the deprotonation of pentacene is not the time limiting factor (see the previous sub-
section), it remains only the generation coefficient k3 for H+ ions to cause the duration.
With a variation of the generation coefficient k3, followed by a comparison with the
measured data, it should be possible to determine the generation coefficient k3. The
simulation is based on the input parameters in Tab. 7.3, and Tab. 7.13. As one can see
from Fig. 7.24 an increase in the generation coefficient k3 leads to an acceleration of the
process flow. From the point at which the H+ ion generation is faster than the absorption
in pentacene, model 4 is equivalent to model 3. From the measurements we now that
the space charge layer has completely formed out after about two weeks (≈ 1.2 × 106

seconds). To achieve such a behavior, the generation coefficient k3 has to be in the order
of 10−6 s−1, see Fig. 7.25. Since a chemical decomposition process is simulated, such a
value of k3 seems to be not impossible.
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Tabelle 7.13: Parameters for the simulation “Variation of the generation coefficient
k3 for Ions“

Parameter Value
µI / m2V −1s−1 1 · 10−7

CSAG / m−3 4 · 1026

µh / m2V −1s−1 1 · 10−9

CDoPentaMax / m−3 5 · 1026

k1 / m3s−1 1 · 10−26

k2 / m3s−1 1 · 10−30

k3 / s−1 1 · 10−7 . . . 1 · 10+3

k4 / s−1 k3 · 10−3

Fig. 7.24: Temporal formation of the ionic charge amount Q in pentacene for different
generation coefficient k3 with model 4.
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Fig. 7.25: Zoom from Fig. 7.24.

7.6.1.3 Variation of the Recombination Coefficient k4 for H+ Ions in the SAM

In this section, the effect of the recombination coefficient k4 on the amount of ionic
charge in pentacene is studied. The simulation is based on the input parameters in Tab.
7.3, and Tab. 7.14. As can be seen from Fig. 7.26, the ratio of generation coefficient to the
recombination coefficient k3/k4 influences the ionic charge in pentacene significantly. A
negligible recombination reproduces the charge amount of H+ ions from the third model.
But if the value of the recombination coefficient becomes comparible with the value of
the generation coefficient, the magnitude of the ionic charge in pentacene decreases
significantly. This has a direct impact on the threshold voltage shift. To explain the
threshold voltage shift with an increasing recombination coefficient k4 an increase of the
sulfonic acid groups density cSAG is necessary. Consequently, the two parameters are not
independent of each other. Since neither of the two parameters is accurately determined
by measurements, it is at this stage not possible to determine the exact value of both
parameters.
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Tabelle 7.14: Parameters for the simulation “Variation of the recombination
coefficient k4“

Parameter Value
µI / m2V −1s−1 1 · 10−7

CSAG / m−3 4 · 1026

µh / m2V −1s−1 1 · 10−9

CDoPentaMax / m−3 5 · 1026

k1 / m3s−1 1 · 10−24

k2 / m3s−1 1 · 10−28

k3 / s−1 1 · 10−7

k4 / s−1 1 · 10−15 . . . 1 · 10−7

Fig. 7.26: Temporal formation of the ionic charge amount Q in pentacene for different
recombination coefficient k4 with model 4.

7.6.1.4 Optimizing the Parameters to the Measured Displacement

In this section, different parameter sets are tested concerning the threshold voltage shift
to filter out the parameter combinations which agree to the measurement results. The
simulation based on the input parameters in Tab. 7.3, and Tab. 7.15. Fig. 7.27 shows a
threshold voltage shift with respect to all the simulated parameter combinations. For a
147 nm pentacene based organic thin-film transistor, the measurements yield a threshold
voltage shift of 60 V (see Sec. 6.2). As it is evident from Fig. 7.28, with a density cSAG

less than 1 × 1026 m−3 no combination of the remaining simulation parameters k1, k2,
k3 and k4 lead to a threshold voltage shift greater than 45 V. The density cSAG must,
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therefore, be larger than 1×1026 m−3. For a sulfonic acid groups density cSAG of 2×1026

m−3, the parameter sets nine and eight produce a threshold voltage shift of about 60
V as one can see from Fig. 7.29. Both parameter sets are possible. At a sulfonic acid
groups density cSAG of 3 × 1026 m−3, the parameter sets 13, 15, 18 and 22 provide a
meaningful threshold voltage shift. This can be seen from Fig. 7.30. Parameter set 13
has a ratio k1/k2 and k3/k4 of one which seems to be reasonable. Parameter set 15
with a ratio k1 to k2 of 100 is still within the bounds of possibility. Parameter set 18 is
due to the ratio of k1/k2 very unlikely. Parameter set 22 uses a ratio of k3/k4 = 100,
which seems to be still possible. Fig. 7.31 shows that at a sulfonic acid group density
of cSAG = 4 × 1026 m−3 (parameter set 28) still provides the correct threshold voltage
shift. Even this combination of parameters could not completely be excluded.
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Tabelle 7.15: Parameters for the simulation “Optimizing the parameters to the
measured displacement“

Parameter CI−SAM k1 k2 k3 k4

Parameter Set 1 1E+26 1E-20 1E-20 1E-07 1E-07
Parameter Set 2 1E+26 1E-20 1E-21 1E-07 1E-07
Parameter Set 3 1E+26 1E-20 1E-20 1E-07 1E-08
Parameter Set 4 1E+26 1E-20 1E-21 1E-07 1E-08

Parameter Set 5 2E+26 1E-20 1E-20 1E-07 1E-07
Parameter Set 6 2E+26 1E-20 1E-21 1E-07 1E-07
Parameter Set 7 2E+26 1E-20 1E-20 1E-07 1E-08
Parameter Set 8 2E+26 1E-20 1E-21 1E-07 1E-08
Parameter Set 9 2E+26 1E-20 1E-21 1E-07 1E-09
Parameter Set 10 2E+26 1E-20 1E-22 1E-07 1E-09
Parameter Set 11 2E+26 1E-20 1E-22 1E-07 1E-10
Parameter Set 12 2E+26 1E-20 1E-23 1E-07 1E-10

Parameter Set 13 3E+26 1E-20 1E-20 1E-07 1E-07
Parameter Set 14 3E+26 1E-20 1E-21 1E-07 1E-07
Parameter Set 15 3E+26 1E-20 1E-22 1E-07 1E-07
Parameter Set 16 3E+26 1E-20 1E-23 1E-07 1E-07
Parameter Set 17 3E+26 1E-20 1E-24 1E-07 1E-07
Parameter Set 18 3E+26 1E-20 1E-25 1E-07 1E-07
Parameter Set 19 3E+26 1E-20 1E-26 1E-07 1E-07
Parameter Set 20 3E+26 1E-20 1E-20 1E-07 1E-08
Parameter Set 21 3E+26 1E-20 1E-21 1E-07 1E-08
Parameter Set 22 3E+26 1E-20 1E-20 1E-07 1E-09
Parameter Set 23 3E+26 1E-20 1E-21 1E-07 1E-09
Parameter Set 24 3E+26 1E-20 1E-22 1E-07 1E-09
Parameter Set 25 3E+26 1E-20 1E-20 1E-07 1E-10

Parameter Set 26 4E+26 0E+00 1E+00 1E-07 1E-08
Parameter Set 27 4E+26 1E-20 1E-20 1E-07 1E-07
Parameter Set 28 4E+26 1E-20 1E-21 1E-07 1E-07
Parameter Set 29 4E+26 1E-20 1E-20 1E-07 1E-08
Parameter Set 30 4E+26 1E-20 1E-21 1E-07 1E-08
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Fig. 7.27: Overview of the threshold voltage shift of all simulations.

Fig. 7.28: Possible threshold voltage shift at a sulfonic acid groups density cSAG of
1× 1026 m−1.
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Fig. 7.29: Possible threshold voltage shift at a sulfonic acid groups density cSAG of
2× 1026 m−1.

Fig. 7.30: Possible threshold voltage shift at a sulfonic acid groups density cSAG of
3× 1026 m−1.

107



7 Space Charge Layer Formation in Pentacene Based Organic Thin-Film Transistors

Fig. 7.31: Possible threshold voltage shift at a sulfonic acid groups density cSAG of
4× 1026 m−1.

7.6.1.5 Comparison of the Shift of the Threshold Voltage for Different Oxide
Thicknesses

In this subsection, the simulation model is applied to different oxide layer thicknesses.
The results are compared with the available measured, values see Sec. 6.2. As shown in
Fig. 7.32 the simulation model shows with increasing oxide thickness basically the same
behavior as the measured results. The threshold voltage increases with increasing oxide
thickness. For 245 nm oxide thickness there is a significant deviations of the simulation
from the experimental result. The measured threshold voltage shift is around 30V greater
than that of the simulation. This could be due to a yet unexplained dependence of the
H+ ions on the oxide thickness, but it could also be a parasitic effect caused through the
different SiO2 wafer. With measurements at only three oxide layer thicknesses, a parasitic
effect cannot completely be excluded. An additional dipole of the protonated pentacene
molecules could cause a further shift independence of oxide thickness. Throught such a
shift, the measurement results could be reproduced, but due to the lack of different oxide
layer thicknesses it is not entirely clear whether the increase of the threshold voltage is
linear with increasind oxide thickness as predicted by the model, or not.

108



7 Space Charge Layer Formation in Pentacene Based Organic Thin-Film Transistors

Fig. 7.32: Dependence of the threshold voltage shift on the oxide layer thickness d2.

7.6.1.6 Evaluation of the Model

With this model it is possible to reproduce the experimental results. The problem of the
previous models with the NH3 test results could be solved, because now the chemical
separation process of H+ ions in the SAM causes the time delay. This makes it possible
to adjust the pentacene trap rate k1 to the NH3 measurements without any adaption
of the space charge layer formation. As can bee seen in Fig. 7.33, first the pentacene
molecules near the interfaces become protonated. With advancing time, the protonation
is more and more aligned. Finally in the steady state the protonated molecules are
almost equally distributed over the entire device. Fig. 7.33 shows a cut through the
channel in the y direction (see Fig. 7.9). According to the simulations, the threshold
voltage shift dependence of the sulfonic acid groups density cSAG is linear as shown in
Fig. 7.34. The threshold voltage shift variation, due to a change of the ratio of k1/k2, is
also linear in an range of one up to 104 as can be seen from Fig. 7.35. Thereafter the
ionic charge go into saturation in pentacene. The ratio k3/k4 in contrast has not a linear
behavior of the threshold voltage shift. Fig. 7.36 clearly shows a saturation for the ratio
k3/k4 > 10. The maximum shift of the threshold voltage caused by changing the ratio
of k3/k4 is 15 V as can be seen in Fig. 7.36. This is much less than the shift due to a
change of the protonation-deprotonation ratio k1/k2. It could cause a shift variation of
up to 40 V as can be seen in Fig. 7.35. We cannot say much about the quantity of the
recombination coefficient k3 with the currently available measurement results. Since the
influence on the simulation is low, an exact determination is not very important.

We assumed that the H+ ion production in the SAM is based on chemical pro-
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cesses in which the activation energy must be overcome. Based on this assumption
measurements with UV light could significantly accelerate the H+ ion production rate.
This would cause a change in the generation coefficient k3 and, therefore, a change
of the ratio k3/k4. After irradiation, the original threshold voltage shift should be
reached again. With the help of these measurements it might be possible to estimated
the recombination coefficient k4. The storage of the devices in the dark would be
also interesting, maybe that the H+ ion generation and, therefore, the space charge
formation is influenced. The recombination coefficient of k2 can be estimated with
the help of the NH3 measurements. Therefore, it is necessary to expand the existing
simulation model by a diffusion equation for NH3 molecules.

Fig. 7.33: Temporal evolution of the distribution of the protonated pentacene
cDoPenta.
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Fig. 7.34: Dependence of the threshold voltage VTH from the sulfonic acid groups
density cSAG.

Fig. 7.35: Dependence of the threshold voltage VTH from the generation
recombination ratio k1/k2.
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Fig. 7.36: Dependence of the threshold voltage VTH from the generation
recombination ratio k3/k4.

7.7 Model 5

The model 5 is concerned with the influence of NH3 on the device. The first subsection,
presents the description of model 5 to simulate the organic thin film transistor in an
NH3 environment. Then the boundary conditions are fixed. The simulation results are
given in the third subsection. Subsection four deals with the evaluation of the simulation
results.

Simulation Model: After the space charge layer formation, the device will be exposed
to the NH3 gas. To simulate this, the steady state result of Model 4 is set as the initial
state. The NH3 gas can diffuse into the pentacene through the contact surface Ca in Fig.
7.6. The NH3 gas is electrically neutral and, therefore, does not affect the electric poten-
tial. We need only an additional diffusion equation (3.101) for the NH3 concentration
cNH3 in the pentacene and SAM:

∂cNH3(r, t)

∂t
−∇(DNH3∇cNH3(r, t)) = ΓNH3(r, t) (7.25)

We assumed that the diffuion coefficient DNH3 for NH3 molecules in pentacene and SAM
is equivalent. Moreover, the NH3 recombination term with the recombination coefficient
k5 has to be defined:

ΓNH3(r, t) = −k5cI(r, t)cr(r, t)cNH3(r, t) (7.26)
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In addition, an adaptation of the H+ ion recombination term:

ΓI(r, t) = k3cSAG(r, t)− k4cr(r, t)− k5cI(r, t)cr(r, t)cNH3(r, t) (7.27)

is necessary.

Boundary Conditions: For this simulation, the boundary conditions from Model 1 in
Sec. 7.3 can be easily extended. It is assumed that the device is exposed to a uniformly
distributed NH3 concentration, therefore, for the interface air-pentacene Ca (Fig. 7.6),
a Dirichlet boundary condition

cNH3(x, y) = cNH3−Air at Ca (7.28)

can be assumed. For the NH3 molecules density in the air cNH3−Air a value of 1.2× 1022

m−3 (≈0.2 g/m3) is fixed. For the NH3 molecules the interface SAM− SiO2 provides a
barrier, therefore,

∂cNH3(x, y)

∂y
= 0 at Ch (7.29)

holds. For the lateral boundaries Cb,Cf and Ce we adopt, as in the models before,
Neumann boundary conditions

∂cNH3(x, y)

∂x
= 0 on Cb and Cf . (7.30)

7.7.1 Simulation Results

This section presents the simulation results of Model 5. The section consists of six
subsections. In the first subsection the dedoping coefficient k2 for protonated pentacene
is varied and the resulting changes are presented. Then the effects of different ammonia
diffusion constants DNH3 in pentacene are investigated. In the subsection three the effects
of different H+ ion mobilities are studied. Afterwards, the recombination coefficient k5 for
H+ ions in the SAM is varied in the fourth subsection. In the fifth subsection the effect of
different ammonium concentrations cNH3 in the air are tested. In the last subsection the
simulation results are compared with the results of the measurements. All the general
parameters for the model 5 are listed in Tab. 7.3.

7.7.1.1 Variation of the Dedoping Coefficient k2 for Protonated Pentacene in a
NH3 Environment

If a device with a SAM, that has already caused a threshold shift, is exposed to ammonia,
the space charge layer disapears within seconds. From this information, the dedoping
coefficient k2 can be estimated. Fig. 7.37 shows how the amount of stored charge Q in
pentacene is melting due to ammonia. The simulation is based on the input parameters
in Tab. 7.3, and Tab. 7.16. For a dedoping coefficient k2 smaller than 10−22 the temporal

113



7 Space Charge Layer Formation in Pentacene Based Organic Thin-Film Transistors

evolution of the charge decay is no longer changing, because the speed of the charge
decay is then limited by other process parameters, such as the H+ ion mobility µI . With
a dedoping coefficient k2 close to 10−24 the charge decay in pentacene would be just
inside the period of time based on the measurements.

Tabelle 7.16: Parameters for the simulation “Variation of the generation coefficient
k1“

Parameter Value
µI / m2V −1s−1 1 · 10−7

CSAG / m−3 4 · 1026

µh / m2V −1s−1 1 · 10−9

CDoPentaMax / m−3 5 · 1026

k1 / m3s−1 k2 ∗ 104

k2 / m3s−1 1 · 10−20 . . . 1 · 10−25

k3 / s−1 1 · 10−7

k4 / s−1 1 · 10−10

k5 / m6s−1 1 · 10−42

DNH3 / m2s−1 2.5 · 10−10

CNH3−Init / m−3 1 · 1022

Fig. 7.37: Temporal formation of the ionic charge amount Q in pentacene for different
dedoping coefficient k2 with model 5.
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7.7.1.2 Variation of the Ammonia Diffusion Coefficient

Due to different grain sizes of pentacene, the ammonia diffusion coefficient of the device
may diver form device to device. For this reason, simulations are performed with different
ammonia diffusion coefficients DNH3 to study these effects. The simulation based on the
input parameters in Tab. 7.3, and Tab. 7.17. As shown in Fig. 7.38 the diffusion coefficient
of ammonia has almost no effect on the charge reduction of H+ ions in pentacene. Even
with an unrealistically low diffusion coefficients the space charge layer would be removed
within seconds.

Tabelle 7.17: Parameters for the simulation “Variation of ammonia mobility“

Parameter Value
µI / m2V −1s−1 1 · 10−7

CSAG / m−3 4 · 1026

µh / m2V −1s−1 1 · 10−9

CDoPentaMax / m−3 5 · 1026

k1 / m3s−1 1 · 10−18

k2 / m3s−1 1 · 10−22

k3 / s−1 1 · 10−7

k4 / s−1 1 · 10−10

k5 / m6s−1 1 · 10−42

DNH3 / m2s−1 2.5 · 10−8 . . . 2.5 · 10−14

CNH3−Init / m−3 1 · 1022

Fig. 7.38: Temporal formation of the ionic charge amount Q in pentacene for different
NH3 diffusion coefficients DNH3 with model 5.
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7.7.1.3 Variation of H+ Ion Mobility

The H+ ion mobility in pentacene is varied to examine the impact on the charge reduction
in pentacene. The simulation is based on the input parameters in Tab. 7.3, and Tab.
7.18. Fig. 7.39 shows the great impact of the H+ ion mobility µI in pentacene on the H+

ion charge reduction. The simulation of the H+ ion charge reduction in combination with
the measurements of the devices expose to NH3 permits an H+ ion mobility µI > 10−8

m2V−1s−1 as can bee seen in Fig. 7.39. A smaller mobility would slow down the ionic
charge reduction too much.

Tabelle 7.18: Parameters for the simulation “Variation of H+ ion mobility“

Parameter Value
µI / m2V −1s−1 1 · 10−6 . . . 1 · 10−10

CSAG / m−3 4 · 1026

µh / m2V −1s−1 1 · 10−9

CDoPentaMax / m−3 5 · 1026

k1 / m3s−1 1 · 10−18

k2 / m3s−1 1 · 10−22

k3 / s−1 1 · 10−7

k4 / s−1 1 · 10−10

k5 / m6s−1 1 · 10−42

DNH3 / m2s−1 2.5 · 10−10

CNH3−Init / m−3 1 · 1022

Fig. 7.39: Temporal formation of the ionic charge amount Q in pentacene for different
H+ ion mobilities with model 5.
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7.7.1.4 Variation of the Recombination Coefficient k5 for NH3 in the SAM

Since the recombination coefficient k5 for NH3 in the SAM is not precisely determined,
it is varied to study the impact on the time behavior of the threshold voltage shift. As
can bee seen from Fig. 7.40, the variation of the recombination coefficient k5, has an
effect only in the final stage of the H+ ion charge decay. A recombination coefficient k5

larger than 10−43 m6s−1 does no more evolution the ionic charge decay. Due to this the
influence of the recombination coefficient k5, should not be a time-limiting factor. To
say more about the recombination coefficient k5, additional measurements are needed.

Tabelle 7.19: Parameters for the simulation “Variation of H+ ion mobility“

Parameter Value
µI / m2V −1s−1 1 · 10−8

CSAG / m−3 4 · 1026

µh / m2V −1s−1 1 · 10−9

CDoPentaMax / m−3 5 · 1026

k1 / m3s−1 1 · 10−18

k2 / m3s−1 1 · 10−22

k3 / s−1 1 · 10−7

k4 / s−1 1 · 10−10

k5 / m6s−1 1 · 10−42 . . . 1 · 10−45

DNH3 / m2s−1 2.5 · 10−10

CNH3−Init / m−3 1 · 1022

Fig. 7.40: Temporal formation of the ionic charge amount Q in pentacene for different
ion recombination coefficients k5 with model 5.
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7.7.1.5 Variation of Ammonia Concentration in the Air

As the device was exposed to ammonia the concentration was not precisely determined.
In this simulation the concentration of the ammonia is varied to find out if the device
is sensitive to changes in the concentration of NH3. As can bee seen in Fig. 7.41 an
concentration of NH3 greater than 1020 does not lead to any significant changes in the
time behavior below 100 seconds of the charge decay of H+ ions. Only at an NH3 density
in the range of cNH3−Init = 1019 m−3 the charge reduction would run noticeably slower.

Tabelle 7.20: Parameters for the simulation “Variation of ammonia concentration“

Parameter Value
µI / m2V −1s−1 1 · 10−8

CSAG / m−3 4 · 1026

µh / m2V −1s−1 1 · 10−9

CDoPentaMax / m−3 5 · 1026

k1 / m3s−1 1 · 10−18

k2 / m3s−1 1 · 10−22

k3 / s−1 1 · 10−7

k4 / s−1 1 · 10−10

k5 / m6s−1 1 · 10−42

DNH3 / m2s−1 2.5 · 10−10

CNH3−Init / m−3 1 · 10−20 . . . 1 · 10−23

Fig. 7.41: Temporal formation of the ionic charge amount Q in pentacene for different
ammonia concentration in the air with model 5.
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7.7.1.6 Evaluation of the Model

All measurements can in principle be reproduced through this simulation. With the
existing measurements, it is unfortunately, not possible to determine all the parameters
of the simulation exactly, since different combinations of parameters are able to reproduce
the measured values. The simulation results from Sec. 7.7.1.4 and Sec. 7.7.1.5, however,
suggest that the devices respond even to very small amounts of ammonia. Additional
measurements with different ammonia concentrations would be very interesting.
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8 Conclusion

This thesis gives a brief overview of the derivation of the Boltzmann equation. Subse-
quently a detailed derivation of the carrier continuity equation and the drift-diffusion
current equation from the Boltzmann equation is given. The Poisson equation is derived
from the Gauss’ and Faraday’s law. Also a short overview of handling sources and sinks
in drift-diffusion equations is presented. As a method to solve the resulting differential
equations, the method of finite elements is presented. A detailed presentation of the
resulting algebraic equations is derived.

In the second part of my thesis, I studied how a SAM made of 4-(2-(trichlorosilyl)
ethyl) benzene-1-sulfonyl chloride (T-SC, 70 %) and a sulfonic acid derivate 4-(2-
(trichlorosilyl)ethyl)benzenesulfonic acid (T-SA, 30 %) influences the threshold voltage
of an organic thin film transistor. As active layer in the OTFT pentacene is used. Ba-
sed on measurements it is assumed that such a SAM release H+ ions into the active
layer. The applied drift-diffusion model, which describes the transport of holes and the
motion of H+ ions, is solved self-consistently with the Poisson equation. In addition,
rate equations are included to model chemical conversation processes. With this model
it was possible to show that the H+ ions are neutralized in the pentacene. Because of
this neutralization a space charge is formed in the SAM, which cause a threshold voltage
shift. Moroeover, the simulation shows that the neutralization process takes place on a
time scale less than a second. As a result, the long duration of time, to reach the steady
state, is based on the chemical separation process of H+ ions in the SAM. Furthermore,
simulations which an additional diffusion and rate equation for NH3 molecules were ma-
de. Measurements have shown that an OTFT with such a SAM is responsive to the NH3

gas. By means of simulations it was possible to show that the neutralization process of
ions is reversible. In this way it was demonstrated that an OTFT with such a SAM is
very sensitive to small quantities of NH3 molecules in the air.
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