Hannes Wippel

SCHMIERMITTELEINFLUSS AUF DIE VORENTFLAMMUNGSNEIGUNG BEI HOCH AUFGELADENEN PKW DI-OTTOMOTOREN

Masterarbeit

Fakultät für Maschinenbau & Wirtschaftswissenschaften

Institut für Verbrennungskraftmaschinen und Thermodynamik Technische Universität Graz

Institutsvorstand:

Univ.-Prof. Dipl.-Ing. Dr.techn. Helmut Eichlseder

Betreuer:

Dipl.-Ing. Dr.techn. Peter Grabner

Graz, Dezember 2012

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly marked all material which has been quoted either literally or by content from the used sources.

Graz, am 23. November 2012

Hannes Wippel

Danksagung

Diese Arbeit entstand im Rahmen eines Forschungsprojekts der Forschungsvereinigung Verbrennungskraftmaschinen e.V. und wurde an der Technischen Universität Graz durchgeführt. Mein Dank gilt zunächst Univ.-Prof. Dipl.-Ing. Dr.techn. Helmut Eichlseder, Leiter des Instituts für Verbrennungskraftmaschinen und Thermodynamik an der Technischen Universität Graz, für die Ermöglichung dieser Abschlussarbeit. Des weiteren danke ich meinem Betreuer Dipl.-Ing. Dr.techn. Peter Grabner, sowie Dipl.-Ing. Reinhard Luef, die mir stets mit Rat und Tat zur Seite standen. Ich möchte mich auch bei Herrn Michael Barth für die ausgezeichnete Zusammenarbeit am Prüfstand bedanken. Ebenso gilt der Dank meinen Eltern, die mir nicht nur das Studium ermöglicht, sondern mich auch bei allen meinen Abenteuern und Vorhaben unterstützt haben. Zu guter Letzt danke ich meiner Freundin Katrin dafür, dass sie es schon all die Jahre mit mir aushält.

Graz, Dezember 2012

Hannes Wippel

Kurzfassung

Vorentflammungen sind ein Phänomen, welches seit geraumer Zeit wieder verstärkt in den Fokus der Forschung gerückt ist. Da die Ziele der notwendigen Verbrauchs- und Emissionsreduktion bei den meisten Herstellern über den Weg des Downsizing – reduzieren des Hubraums bei gleichzeitiger Aufladung – erreicht wird, werden bei eben solchen Motoren höchst bauteilschädigende Ereignisse aufgezeichnet. Diese Vorentflammungen treten stochastisch auf und erreichen Zylinderspitzendrücke von teilweise bis zu 300 bar oder auch darüber. Die Ursachen für diese Vorentflammungen zu erforschen, ist das Ziel einer Vielzahl von Forschungsarbeiten. Im Rahmen dieser Arbeit wird auf den Einfluss des Schmiermittels auf die Vorentflammungsneigung eines hoch aufgeladenen PKW DI-Ottomotors eingegangen. Zu diesem Zweck wurde am Prüfstand ein Einzylinder-Forschungsmotor eingesetzt und, nach einer umfassenden Basisvermessung, das zu untersuchende Schmiermittel in Kleinstmengen, entsprechend eines realen Ölverbrauchs, durch Übertrag über die Kolbenringe bzw. die Ventilschaftdichtungen sowie über den Abgasturbolader in das Saugrohr eindosiert.

Abstract

Pre-ignition is a phenomena, which got more and more attention by the engine development. Many OEM's try to meet the goals of decreasing the fuel consumption as well as emissions by using downsized engines. This means reducing the displacement and in most of the cases using turbocharging at the same time. Especially at this kind of engine a new phenomena was observed. These so called pre-ignitions occur extremely stochastic and can reach cylinder pressures up to about 300 bar. A lot of research was done to understand these pre-ignitions. The goal of this work is to identify the influence of the used engine oil on the occurrence of pre-ignitions. Therefore a single cylinder research engine was operated on an engine test bench and after basic investigations different test oils were injected into the intake manifold to analyse the addiction to pre-ignition of the injected oil.

Inhaltsverzeichnis

1	Einl	eitung	und Allgemeines	1
	1.1	Einlei	tung	1
	1.2	Downs	sizing	3
		1.2.1	Allgemeines	3
		1.2.2	Reduzierung des Motorhubvolumens	5
		1.2.3	Mitteldrucksteigerung	6
	1.3	Auflac	lung	7
	1.4	Gemis	schbildung	8
	1.5	Verbre	ennungsanomalien	10
		1.5.1	Klopfen	10
		1.5.2	Glühzündung	11
		1.5.3	Vorentflammung	12
	1.6	Schmi	erung von Verbrennungskraftmaschinen	13
		1.6.1	Aufgaben und Anforderungen	13
		1.6.2	Aufbau von Schmiermitteln	15
2	Prii	fstands	saufbau	21
_	2.1		andstechnik	
		2.1.1	Leistungsbremse	
		2.1.2	Konditionierung	22
		2.1.3	Aufladeaggregat	22
		2.1.4	Ansaugluftvorwärmung	23
	2.2	Forsch	${ m nungsmotor}$	24
		2.2.1	Allgemeine Daten	24
		2.2.2	Kolben und Pleuel	25
		2.2.3	Steuerzeiten	25
		2.2.4	Kraftstoffeinbringung	25
	2.3	Messte	echnik	26
		2.3.1	Allgemeine Messtechnik	27
		2.3.2	Indiziermesstechnik	28
		2.3.3	Abgasanalyse	31
		2.3.4	Messung des Luftverhältnisses	
	2.4	Schmi	ermitteleindosierung	
		2.4.1	Peristaltische Pumpe	

		2.4.2 Injektoreinheit	35
3	Krit	erien zur Erkennung von Vorentflammungen	36
	3.1	Eingeführte Kriterien	36
	3.2	Beispiel einer durchgeführten Analyse	37
4	Bas	isuntersuchungen	39
	4.1	Randbedingungen – gewählter Betriebspunkt	39
	4.2	Anfahren des Betriebspunktes	41
	4.3	Variation der Ladelufttemperatur	42
	4.4	Variation des Ladeluftdrucks	43
	4.5	Variation der Kühlmitteltemperatur	44
	4.6	Variation der Schmiermitteltemperatur	45
	4.7	Variation der Verdichtung	46
5	Unt	ersuchungen bei gedrehter Injektorlage	47
	5.1	Variation der Kühlmitteltemperatur	48
		5.1.1 Verifikation der Messung mit gedrehter Injektorlage	48
	5.2	Variation der Schmiermitteltemperatur	49
6	Sch	miermitteleindosierung in den Ansaugkanal	50
	6.1	Einleitung	50
	6.2	Ölverbrauch	50
	6.3	Optische Untersuchung	50
		6.3.1 Randbedingungen	51
		6.3.2 Ergebnis	52
	6.4	Randbedingungen	53
	6.5	Auswertung der Vorentflammungen	53
	6.6	Testprozedere	54
	6.7	Untersuchte Schmiermittel	55
		6.7.1 Erste Reihe von Versuchsölen	55
		6.7.2 Zweite Reihe von Versuchsölen	58
		6.7.3 Dritte Reihe von Versuchsölen	60
		6.7.4 Gebrauchtöle	63
7	Vor	entflammungen nach Kolbenwechsel	65
8	Zus	ammenfassung und Ausblick	67
	8.1	Zusammenfassung	67
	8 2	Ausblick	68

9	Anh	ang		69
	9.1	Aufge	tretene Schäden	69
		9.1.1	Klauenkupplung	69
		9.1.2	Ölpumpe	70
		9.1.3	Benzin-Hochdruckpumpe	. 70
		9.1.4	Kolben	71
		9.1.5	Radial-Wellendichtring	. 71
	9.2	Daten	blätter zu den eindosierten Testölen	. 72
Lit	terati	urverze	pichnis	111

Formelzeichen, Indizes und Abkürzungen

Lateinis: D f $H_{ m G}$, $\overline{H_{ m G}}$ $H_{ m u}$ i I $L_{ m st}$ M m	che Formelzeichen Bohrungsdurchmesser in mm Gewichtungsfaktor Gemischheizwert in MJ/m^3 unterer Heizwert in MJ/kg Faktor für Vier- oder Zweitaktprinzip Strom in A stöchiometrischer Luftbedarf in kg_L/kg_{Br} Drehmoment in Nm Masse in kg	$T_{ m KM}$ $T_{ m L}$ $T_{ m \ddot{O}L}$ U V $V_{ m H}$ $V_{ m h}$ $W_{ m e}$ z	Temperatur des Kühlmittels in °C Temperatur der Ladeluft in °C Temperatur des Motoröls in °C Spannung in V Volumen in m³ Hubvolumen des gesamten Motors in m³ Hubvolumen eines Zylinders in m³ effektive Arbeit in kW Zylinderanzahl sche Formelzeichen
$m_{ m B}$ $m_{ m E}$ $m_{ m Fr}$ $m_{ m L}$ $M_{ m Max}$ $m_{ m Rg}$ $m_{ m Sp}$ $m_{ m VG}$	zugeführte Brennstoffmasse in kg insgesamt einströmende Gasmasse in kg Frischladungsmasse in kg Luftmasse in kg maximales Drehmoment in Nm Restgasmasse in kg Spülmasse in kg Masse der ausströmenden Verbrennungsgase in kg Drehzahl in min-1	$egin{array}{l} lpha \ \eta \ \eta_{ m i} \ \eta_{ m m} \ arepsilon \ \lambda \ \lambda_{ m a} \ \lambda_{ m 1,L} \ ho_{ m L} \ \sigma \end{array}$	Gaspedalstellung in % effektiver Wirkungsgrad in % innerer Wirkungsgrad in % mechanischer Wirkungsgrad in % Verdichtung Luftverhältnis Luftaufwand Liefergrad des luftansaugenden Motors Dichte der Luft in kg/m³ Standardabweichung
$egin{array}{l} p \ P_{ m e} \ p_{ m L} \ P_{ m max} \ p_{ m mess} \ p_{ m me} \ p_{ m mi} \ p_{ m Zyl} \ p_{ m Zyl,max} \ R \ s \ S \ T \end{array}$	Druck in bar effektive Leistung in kW Ladeluftdruck in bar maximale Leistung in kW gemessene Druckerhöhung in bar effektiver Mitteldruck in bar indizierter Mitteldruck in bar Zylinderdruck in bar Zylinderspitzendruck in bar elektrischer Widerstand in Ω Hub in mm Schädigungspotential Temperatur in K oder °C	$\begin{array}{c} \textbf{Indizes} \\ \textbf{AGR} \\ \textbf{ATL} \\ \textbf{aw} \\ \textbf{BStd.} \\ \textbf{C} \\ \textbf{Ca} \\ \textbf{CH}_4 \\ \textbf{CO} \\ \textbf{CO}_2 \\ \textbf{COV} \\ \textbf{DI} \\ \textbf{DOHC} \end{array}$	Abgasrückführung Abgasturboaufladung anti wear Betriebsstunden Kohlenstoff Calcium Methan Kohlenmonoxid Kohlendioxid Coefficient of Variation Direct Injection Double Overhead Camshaft

EÖ Einlass öffnet
ep extreme pressure
ES Einlass schließt
FM Friction Modifier
FSN Filter Smoke Number

 H_2O Wasser

HC Kohlenwasserstoff
KW Kurbelwinkel
LET Low-End-Torque
LLK Ladeluftkühler
MFB1 1%-Umsatzpunkt

(Mass-Fraction-Burned)

MFB50 50%-Umsatzpunkt

(Mass-Fraction-Burned)

 $\begin{array}{ll} \mathrm{Mg} & \mathrm{Magnesium} \\ \mathrm{MoS} & \mathrm{Molybd\ddot{a}n\text{-}Sulfat} \\ \mathrm{NO_x} & \mathrm{Stickoxide} \\ \mathrm{O_2} & \mathrm{Sauerstoff} \\ \mathrm{OT} & \mathrm{oberer\ Totpunkt} \end{array}$

OT oberer Totpunkt
PKW Personenkraftwagen

 ${\bf VKM} \qquad {\bf Verbrennungskraftmaschine}$

VL Volllast ZOT Zünd-OT ZZP Zündzeit punkt

1 Einleitung und Allgemeines

In diesem Kapitel sollen allgemeine Zusammenhänge sowie das Ziel dieser Arbeit erläutert werden.

1.1 Einleitung

Mit der Erhöhung des LET (Low-End-Torque) bei PKW DI-Ottomotoren tritt vermehrt ein neues bauteilschädigendes Phänomen auf. Diese sogenannte Vorentflammung tritt äußerst stochastisch und mit Zylinderspitzendrücken von teilweise bis zu 300 bar auf.

Um die geforderte Verbrauchs- und Emissionsreduktion zu realisieren und die Kundenwünsche nach mehr Drehmoment im unteren Drehzahlbereich zu erfüllen, wurde beim Ottomotor die Abgasturboaufladung eingeführt.

Dazu wurden Downsizing-Konzepte angewandt, bei denen der Hubraum verringert und gleichzeitig der Motor aufgeladen wird; somit kann bei kleinerem Hubraum die selbe Leistung abgerufen werden. Gleichzeitig umgeht man den verbrauchssuboptimalen Bereich der Teillast und verschiebt die Lastpunkte zu verbrauchsgünstigeren, hochlastigeren Punkten.

Die bauteilschädigenden Vorentflammungen begrenzen den maximal möglichen Aufladegrad von modernen Ottomotoren. Um dennoch eine LET-Steigerung zu ermöglichen gilt es, die Ursache für Vorentflammugen zu erforschen, was auch in einigen Arbeiten [1, 2, 3, 18, 22] bereits begonnen wurde.

Eine grundlegende Erforschung des Themas erfolgte in [3], wo mögliche Auslösemechanismen identifiziert wurden, siehe Abbildung 1.1.

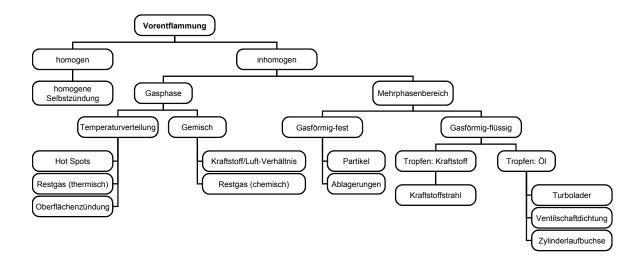


Abbildung 1.1: Mögliche Mechanismen zur Vorentflammung [3]

Im Rahmen dieser Arbeit wird auf den rechten unteren Teil von Abbildung 1.1, den Tropfen Öl, genau eingegangen. In Zusammenarbeit mit dem Öl- und Gasunternehmen OMV, das neben der FVVe.V. ein wesentlicher Finanzierungspartner im Projekt ist, wurde eine Reihe von Versuchsölen zusammengestellt und anschließend ins Saugrohr eindosiert.

Es wird angenommen, dass Öltropfen das Luft-Kraftstoff-Gemisch bereits vor Eintreten der elektrischen Funkenzündung entflammen können, was zu hohen Spitzendrücken im Brennraum führen kann. Die frühzeitige Verbrennung kann, muss aber nicht in einer heftig klopfenden Verbrennung enden.

Ziel dieser Arbeit ist dabei, mit Hilfe der eigens modellierten Versuchsöle, die schädlichen Bestandteile des Öles zu identifizieren, sodass zukünftige Motoröle so formuliert werden können, dass im Idealfall keine Vorentflammungen im normalen Motorbetrieb auftreten.

Im Rahmen dieses FVV-Vorhabens wird parallel an der Technischen Universität Wien auf die Einflüsse des verwendeten Kraftstoffs hinsichtlich der Vorentflammungsneigung eingegangen.

1.2 Downsizing

1.2.1 Allgemeines

"Downsizing" wird in der Motorenentwicklung als Reduzierung des gesamten Motorhubvolumens bezeichnet. Da eine reine Reduktion des Hubvolumens aber eine Verringerung der maximalen Leistung und des maximalen Drehmoments bewirkt, werden als logischer Schritt Maßnahmen getroffen um den Leistungsverlust zu kompensieren. "Downsizing-Konzepte", mit geringem Hubraum und hohem Leistungsvermögen, weisen demzufolge eine sehr hohe Leistungsdichte auf. Die Leistungsdichte bzw. spezifische Leistung ist definiert als:

$$\frac{P_{\rm e}}{V_{\rm H}} = i \cdot n \cdot p_{\rm me} \tag{1.1}$$

Der Faktor i berücksichtigt dabei den Unterschied in der Anzahl der Arbeitsspiele pro Umdrehung für Zweitakt (i = 1) oder Viertakt Motoren (i = 0.5).

Um die Leistungsdichte zu erhöhen kann man entweder die Nenndrehzahl oder den effektiven Mitteldruck erhöhen. Ersteres wird als Hochdrehzahlkonzept bezeichnet und ist bei Ottomotoren verhältnismäßig einfach möglich. Bei Letzterem spricht man von Hochlastkonzepten. Das spezifische Drehmoment (Drehmomentdichte) lässt sich hingegen nur durch anheben des effektiven Mitteldrucks steigern, siehe 1.2.

$$\frac{M}{V_{\rm H}} = p_{\rm me} \cdot \frac{i}{2\pi} \tag{1.2}$$

Zur besseren Darstellung der Leistungs- bzw. Mitteldrucksteigerung wird der Downsizing-Grad eingeführt. Er dient als Vergleich des neuen Konzeptes zur Basis.

Das Downsizing kann so erfolgen, dass bei reduziertem Motorhubvolumen die selbe Ausgangsleistung, oder bei gleichbleibendem Motorhubvolumen, eine höhere Ausgangsleistung erzielt wird. Je nach Konzept dient somit ein anderer Parameter als Basis zur Bestimmung des Downsizing-Grades.

$$\gamma_{\text{DS,P}_{\text{max}}} = \left(\frac{V_{\text{H},1} - V_{\text{H},2}}{V_{\text{H},1}}\right)_{\text{P}_{\text{max}} = \text{const}}$$

$$(1.3)$$

$$\gamma^*_{\text{DS,P}_{\text{max}}} = \left(\frac{P_{\text{max},2} - P_{\text{max},1}}{P_{\text{max},2}}\right)_{\text{V}_{\text{H}}=\text{const}}$$
 (1.4)

Mittels Downsizing lässt sich die Baugröße der Motoren verringern und gleichzeitig ist dabei eine Kraftstoffreduktion im Vergleich zu konventionellen Motorkonzepten, durch eine Lastpunktverschiebung, möglich.

Daher wird das Downsizing heutzutage eingesetzt, um Motoren zu entwickeln, die eine hohe Leistungsdichte bei geringem Verbrauch aufweisen, siehe Abbildung 1.2.

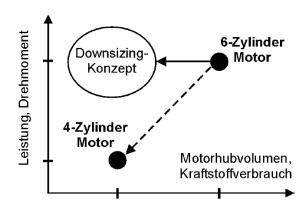
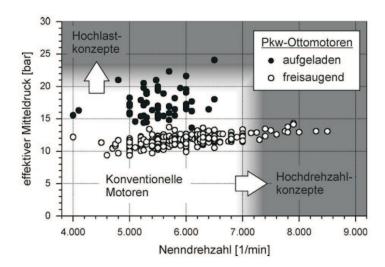



Abbildung 1.2: Hauptziele des Downsizing [7]

Durch die Reduzierung des Motorhubvolumens erfolgt eine Verlagerung der Betriebspunkte im Motorkennfeld. Bei einem Hochleistungskonzept erfolgt dies in Richtung höherer Last wohingegen bei einem Hochdrehzahlkonzept die Verschiebung des Betriebspunktes hin zu höheren Drehzahlen erfolgt.

In Abbildung 1.3 ist eine Aufstellung von maximalem Mitteldruck und Nenndrehzahl aktueller PKW-Ottomotoren zu sehen (Stand 2005).

Abbildung 1.3: Maximaler Mitteldruck und Nenndrehzahl aktueller PKW-Ottomotoren (Stand 2005) [7]

Beide Konzepte haben Vor- und Nachteile, wie in Tabelle 1.1 ersichtlich [7]. Daraus erkennt man, dass für eine Verbrauchsreduktion nur ein Hochlastkonzept in Frage kommt.

Tabelle 1.1: Vor- und Nachteile von Hochdrehzahl- und Hochlastkonzept [7]

	Hochdrehzahlkonzept	Hochlastkonzept
Vorteile	einfach umzusetzen	geringer spezifischer Verbrauch durch Lastpunktverschiebung
	leichtere Bauweise	bei geeigneter Turbolader- Auslegung keine Einbußen im Fahrkomfort
		durch intensivere Gemischbildung ist eine Reduzierung der limitierten Schadstoffe möglich
Nachteile	Wirkungsgradabsenkung bei gleichbleibender Last und hö- herer Drehzahl durch steigen- de Reibung	höheres Gewicht
	im kundenrelevanten Fahrbe- trieb Abstriche beim Fahr- komfort und der Akustik	mehr Platzbedarf für Turbola- der
	fehlendes Drehmoment bei geringerer Drehzahl	höhere Bauteilbelastung infolge höherer Mitteldrücke

1.2.2 Reduzierung des Motorhubvolumens

Wie bereits erwähnt handelt es sich beim Downsizing um eine Reduzierung des Motorhubvolumens.

Das gesamte Motorhubvolumen $V_{\rm H}$ lässt sich wie folgt berechnen:

$$V_{\rm H} = z \cdot V_{\rm h} = z \cdot \frac{D^2 \cdot \pi \cdot s}{4} \tag{1.5}$$

Somit gibt es zwei Möglichkeiten das Motorhubvolumen zu senken. Einerseits durch Reduzieren der Zylinderanzahl z oder durch Verkleinern des Zylinderhubvolumens $V_{\rm h}$. Entscheidet man sich für die Reduktion der Zylinderanzahl, so kann man das Baukastenprinzip anwenden und die Kosten bleiben verhältnismäßig im Rahmen. Weitere Vorteile sind die geringeren Wandwärme- und Reibungsverluste bei größeren Zylindervolumina. Nachteilig ist hingegen die eventuelle Laufunruhe, die mittels Ausgleichswellen kompensiert werden muss.

Wird jedoch das Zylinderhubvolumen verringert, so bedeutet dies eine komplette Neuentwicklung des Motors und demnach einen hohen Investitionsaufwand. Des Weiteren sind höhere Einzelverluste in Kauf zu nehmen.

Wird bei der Motorauslegung der Weg eingeschlagen, das gesamte Motorhubvolumen zu reduzieren, so spricht man von **statischem Downsizing**.

Beim **dynamischen Downsizing** wird jedoch das "aktive" Motorhubvolumen dem aktuellen Drehmomentbedarf angepasst. Durch Zylinderabschaltung erfolgt die Energieumsetzung nur in Teilbereichen des Motors.

1.2.3 Mitteldrucksteigerung

Der Mitteldruck ist eine wichtige Größe zur Beurteilung der Leistungsfähigkeit einer Verbrennungskraftmaschine. Zur Herleitung des Mitteldrucks wird zunächst von der effektiven Arbeit innerhalb eines Zylinders ausgegangen:

$$W_{\rm e} = p_{\rm me} \cdot V_{\rm h} = m_{\rm B} \cdot H_{\rm u} \cdot \eta_{\rm i} \cdot \eta_{\rm m} \tag{1.6}$$

Die in den Zylinder eingebrachte Kraftstoffmasse berechnet sich aus:

$$m_{\rm B} = \frac{m_{\rm L}}{\lambda \cdot L_{\rm st}} \tag{1.7}$$

Für den luftansaugenden Motor ergibt sich der Luftaufwand aus der tatsächlich eingebrachten Luftmasse zur theoretisch möglichen Luftmasse:

$$\lambda_{\rm a} = \frac{m_{\rm E}}{\rho_{\rm L} \cdot V_{\rm h}} \tag{1.8}$$

Unter Verwendung von 1.7 und 1.8 in 1.6 ergibt sich der effektive Mitteldruck des luftansaugenden Motors zu:

$$p_{\text{me,L}} = \rho_{\text{L}} \cdot \frac{H_{\text{u}}}{L_{\text{st}}} \cdot \frac{1}{\lambda} \cdot \eta_{\text{i}} \cdot \eta_{\text{m}} \cdot \lambda_{\text{a}} = H_{\text{G}} \cdot \eta_{\text{e}} \cdot \lambda_{\text{a}}$$
(1.9)

Daraus kann man erkennen, dass zum Erreichen eines hohen effektive Mitteldrucks ein hoher Gemischheizwert, ein hoher effektiver Wirkungsgrad sowie ein hoher Luftaufwand nötig sind. Für einen hohen Gemischheizwert sollte das Luftverhältnis möglichst gering sein, dies ist aber beim Ottomotor unter Verwendung eines 3-Wege-Katalysators nur geringfügig realisierbar. Auch die Steigerung des effektiven Wirkungsgrads erweist sich als äußerst schwierig. Somit ist der Luftaufwand λ_a der Parameter mit der höchsten Stellmöglichkeit.

1.3 Aufladung

Zum Verdichten der Ansaugluft werden, wie bereits erwähnt, Aufladeaggregate eingesetzt. Man unterscheidet hier zwei Arten von Aufladung. Die Erste ist die mechanische Aufladung, wobei der Lader von der VKM über ein festes oder variables Übersetzungsverhältnis angetrieben wird. Der Lader kann nach dem Verdrängerprinzip (Roots-Gebläse, Hubkolbenlader) oder als Strömungsmaschine (Radial- oder Axialgebläse) ausgelegt werden.

Die zweite Variante der Aufladung ist die Verwendung von Abgasturboladern, wo eine Turbine vom Abgasstrom beaufschlagt wird und über eine Welle den Verdichter antreibt. Dies hat den Vorteil, die noch im Abgas steckende Energiereserve zu nutzen. Des Weiteren ist der Ladedruck nicht unmittelbar von der Motordrehzahl abhängig. Es bestehen grundsätzlich zwei Möglichkeiten die Turbine zu betreiben:

- Stauaufladung
- Stoßaufladung

Bei Mehrzylindermotoren sind die Ausschiebevorgänge der einzelnen Zylinder zeitversetzt. Dies kann zur Folge haben, dass sich die Zylinder untereinander beeinflussen. Die Stauaufladung unterbindet dies, indem die Krümmer zu einem Ausgleichsbehälter zusammengeführt werden und somit die Turbine gleichmäßig beaufschlagt wird. Die Stoßaufladung nutzt hingegen die Druckwellen im Abgasstrom als zusätzlichen Antrieb für die Turbine. Dazu werden zum Beispiel bei "Twin-Scroll"-Ladern die Auspuffkrümmer bei 4-Zylindermotoren paarweise getrennt direkt an das Turbinenrad geführt, um so die Überschneidung der Abgastrakte zu minimieren.

Einen Vergleich zwischen mechanischer Aufladung und Abgasturboaufladung liefert Abbildung 1.4. Wie in Abbildung 1.4 ersichtlich, wird eine Ladeluftkühlung verwendet, um die dem Motor zugeführte Luft zusätzlich abzukühlen. Dies hat einige Vorteile:

- mehr Leistung durch eine größere Luftmasse im Zylinder, was unter Erhaltung des Luftverhältnisses eine Steigerung der eingebrachten Brennstoffmasse ermöglicht
- geringere thermische Belastung durch kühlere Ansaugluft und dadurch niedrigerer Temperatur während des gesamten Arbeitsspiels
- durch geringere Temperaturen auch geringere NO_x-Emissionen

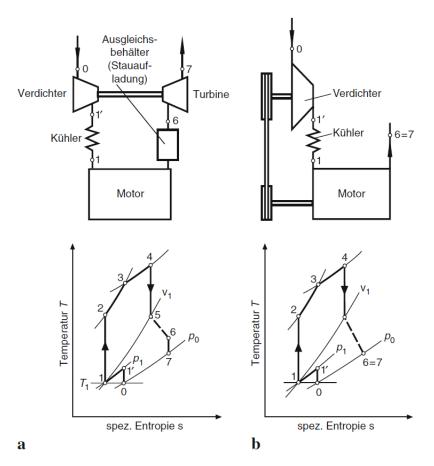


Abbildung 1.4: Einstufige Aufladekonzepte, Schema und Ts-Diagramm. a Abgasturboaufladung, b mechanische Aufladung. 0, Zustand vor Verdichter; 1', Zustand nach Verdichter und im Einlassbehälter; 1, Zustand nach Ladeluftkühler; 6, Zustand vor Turbine und im Auslassbehälter; 7, Zustand nach Turbine [4]

1.4 Gemischbildung

Grundsätzlich wird zwischen innerer und äußerer Gemischbildung unterschieden. Die äußere Gemischbildung wird aufgrund ihrer geringen Flexibilität immer mehr von der inneren Gemischbildung abgelöst.

Die ersten Ziele der Benzin-Direkteinspritzung lagen in der Leistungssteigerung von homogenen Brennverfahren. Mittlerweile erzielt man durch drosselfreien Betrieb und Ladungsschichtung eine Verbrauchsverbesserung, insbesondere im Teillastbetrieb.

Abbildung 1.5 zeigt unterschiedliche Betriebsmodi bei Direkteinspritzung. Erfolgt die Einspritzung im Ansaugtakt, nennt man dies homogenen Betrieb. Wird erst relativ

"spät" (in der Verdichtungsphase) einmal oder mehrfach eingespritzt, so handelt es sich um Schichtbetrieb, welcher luft-, wand- oder strahlgeführt erfolgen kann.

	Einfachein	spritzung	Mehrfacheinspritzung		
Betriebsart	homogen	geschichtet	homogen- geschichtet	geschichtet- geschichtet	geschichtet- homogen
Einspritzung	Einlass	Einlass	Einlass	Einlass Verdichtung	Verdichtung Verbrennung
Mischungs- vorgang	Luft	Luft	Mageres Gemisch	Mageres Gemisch	Verbranntes Gas
Luftzahl	0,8÷1,0	> 1,4	0,8 ÷ 1,2	> 1,1	1,0 ÷ 1,4
Ziel	Leistung	Verbrauch	Kat-Heizen, Klopfreduktion	Verbrauch	Kat-Heizen

Abbildung 1.5: Unterschiedliche Betriebsmodi bei Direkteinspritzung [4]

Homogene Brennverfahren mit Direkteinspritzung bringen Vorteile in der Leistungsausbeute und im Ansprechverhalten. Diese Vorteile resultieren einerseits aus einer Steigerung des Liefergrads durch das Ansaugen von reiner Frischluft und andererseits aus der Innenkühlwirkung des im Brennraum verdampfenden Kraftstoffes. Die kühlere Ladungstemperatur hat einen positiven Einfluss auf die polytrope Verdichtungsphase durch eine geringere Endtemperatur und begünstigt somit auch die Verbrennung hinsichtlich der Klopfneigung. Meist wird jedoch der Vorteil der inneren Ladungskühlung genutzt um das Verdichtungsverhältnis anzuheben und dadurch eine Wirkungsgradsteigerung zu erzielen. Beim Homogenbetrieb ist es wichtig, für eine geeignete Gemischbildung und -aufbereitung zu sorgen, da sonst der eingebrachte Kraftstoff die Berandungen des Brennraums treffen kann. Dies hätte hohe HC-Emissionen und eine Ölverdünnung zur Folge.

Um Vorteile im Teillastbetrieb zu erreichen, werden geschichtete Brennverfahren eingesetzt. Bei wandgeführten Brennverfahren wird das Kraftstoff-Luft-Gemisch über eine eigens ausgelegte Kolbenmulde zur Zündquelle geleitet. Bei luftgeführten Brennverfahren erfolgt die Einspritzung direkt in Richtung der Zündquelle. Durch beide Verfahren erreicht man eine zündfähige Gemischzusammensetzung an der Zündquelle. Diese Schichtverfahren der ersten Generation müssen durch eine gezielte Ladungsbewegung (Drall oder Tumble) unterstützt werden.

Schichtverfahren der zweiten Generation, strahlgeführte Brennverfahren, verfügen über einen größeren einsetzbaren Bereich der Schichtung und bringen weitere Vorteile hinsichtlich Verbrauch und Emissionen. Bei einem strahlgeführten Brennverfahren sind die Zündquelle und der Injektor unmittelbar nebeneinander positioniert und eine Kolbenmulde unterstützt die Gemischaufbereitung. Eine gezielte gasseitige Ladungsbe-

wegung ist nicht erforderlich, da die Zündquelle nahe am Einspritzstrahl liegt [4]. Die Zündung erfolgt noch während oder kurz nach dem Einspritzvorgang, dadurch ergiebt sich eine kurze Brenndauer und ein optimaler Umsatzpunkt, was sich in einem gesteigerten Wirkungsgrad niederschlägt.

1.5 Verbrennungsanomalien

Der Verbrennungsablauf kann neben der vom Zündfunken ausgelösten, normalen Verbrennung noch andere, unerwünschte Formen annehmen.

1.5.1 Klopfen

Als Klopfen bezeichnet man bei der ottomotorischen Verbrennung eine Selbstzündung des, noch nicht von der Flammenfront erreichten, Gemisches (Endgas). Zur Selbstzündung kommt es, da der thermodynamische Zustand (p,v,T) im Endgas den Ablauf der Vorreaktionen derart beschleunigt, dass diese bereits vor Eintreffen der Flammenfront abgeschlossen sind. Bei der darauffolgenden Detonation wird schlagartig eine große Energiemenge in Form eines starken Druck- und Temperaturanstiegs freigesetzt. Zusätzlich breiten sich im Brennraum Druckwellen mit hohen Amplituden aus, welche die Grenzschicht an den Brennraumwänden zerstören und den Wärmeeintrag lokal erhöhen.

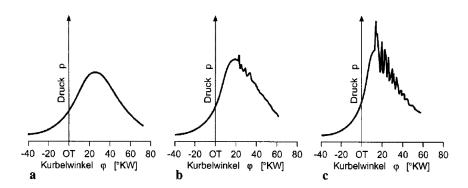


Abbildung 1.6: Druckverläufe: a normale Verbrennung b leicht klopfende Verbrennung c stark klopfende Verbrennung [16]

Zur Entstehung und zum Ablauf der klopfenden Verbrennung gibt es drei Theorien [16].

Die Verdichtungstheorie: An Stellen, wo die Gemischzusammensetzung und Temperatur eine geringe Zündenergie erfordert, wird der Selbstzündungszustand durch die Kolbenverdichtung und die Kompressionswirkung der Flammenfront erreicht [16]. Von

diesen Zündherden gehen schwache Druckwellen aus, die eine plötzliche Verbrennung des Endgases bewirken.

Die **Detonationstheorie**: Ausgehend von der sich ausbreitenden Flammenfront entstehen durch das Aufsteilen der Druckwellen Stoßwellen. In der Stoßfront werden Selbstzündungsbedingungen erreicht, so dass das Endgas zündet [16].

Die Kombinationstheorie: Hierbei handelt es sich um eine Kombination der Verdichtungsund Detonationstheorie. Ausgehend von Selbstzündung im Endgas kommt es zu einer schnellen Flammenausbreitung und bei stärker klopfenden Arbeitsspielen entstehen Stoß- und Detonationswellen [16].

Das Klopfen lässt sich mit der Verschiebung des Zündzeitpunktes kontrollieren, wodurch die Temperatur im Endgas sinkt und die Vorreaktionen langsamer ablaufen.

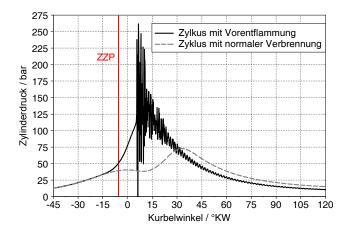
1.5.2 Glühzündung

Von einer Glühzundung spricht man bei einer Entzundung des Luft-Kraftstoff-Gemisches an heißen Bauteilen oder heißen Ablagerungen.

Durch den klopfenden Betrieb können sich Kanten und Ecken durch den erhöhten Wärmeeintrag stark erhitzen und als Zündherd fungieren, sobald die Bauteiltemperatur lokal die Selbstzündungstemperatur des eingespritzten Kraftstoffs überschreitet [5]. Dies hat zur Folge, dass das Gemisch noch früher zündet, das Klopfen beschleunigt und die gesamte Struktur im Brennraum sich noch weiter aufheizt.

Wenn sich das System weiter aufschaukelt, kann der Brennbeginn bereits so früh stattfinden, dass das gesamte Gemisch verbraucht ist, bevor eine Selbstzündung im Endgas stattfinden kann. Die dadurch nicht klopfende Verbrennung erreicht dennoch höhere Brennraumdrücke und -temperaturen mit Bauteilschädigungspotential.

Als häufigste Glühzündungsherde werden die Zündkerze, die Auslassventile, der Kolbenboden sowie die Quetschkante genannt [5]. Bei der Zündkerze wird die kritische Temperatur zuerst an der Spitze der Isolierung an der Mittelelektrode erreicht [5]. Das oft beobachtete Abschmelzen der Masseelektrode ist demnach nur eine Folgeerscheinung des Glühzündungsvorganges. Abhilfe kann ein geeigneter Wärmewert der Zündkerze sowie eine gute Wärmeabfuhr vom Kerzensitz bzw. vom Gewinde an das Kühlmittel schaffen.


Ein weiterer Glühzundungsherd sind von der Brennraumberandung (Kolben, Zylinderlaufbahn oder Zylinderkopf) gelöste, glühende Ablagerungen, die das Gemisch unerwünscht und unkontrolliert entzünden.

1.5.3 Vorentflammung

Bei der Vorentflammung handelt es sich um ein Phänomen, dass insbesondere in hoch aufgeladenen Motoren, bei niedrigen Drehzahlen und hohen Ladedrücken auftritt.

Ähnlich wie bei der Glühzundung findet eine Entflammung bereits vor der elektrischen Zündung statt, jedoch wurde bei einer Vorenflammung noch kein selbsterhaltendes oder selbstverstärkendes Verhalten beobachtet.

Ihr Vorkommen wird als äußerst stochastisch vermerkt und die auftretenden Druckamplituden sind äußerst motorschädigend. Durch ihr stochastisches Auftreten (eine einzige Vorentflammung gefolgt von Zyklen mit normaler Verbrennung) können sie durch den Zündwinkel nicht beeinflusst werden.

Abbildung 1.7: Beispiel eines Druckverlaufs bei Vorentflammung, resultierend in einer heftig klopfenden Verbrennung, und bei normaler Verbrennung

Um das Entstehen von Vorentflammungen zu verstehen, wurden in den letzten Jahren schon unterschiedlichste Untersuchungen durchgeführt. So zum Beispiel am Institut für Kolbenmaschinen an der Technischen Universität Karlsruhe, wo mögliche Ursachen für die Entstehung von Vorentflammungen aufgelistet wurden, siehe Abbildung 1.1. Hier wird zwischen einer homogenen Selbstzündung, wie beim HCCI Verfahren, und inhomogener Selbstzündung unterschieden. Bei Letzterem kann die Zündung im Gas erfolgen, ähnlich dem Klopfen, wo die Vorreaktionen durch erhöhte Temperaturen im Endgas (durch z. B. heißes Restgas), oder an heißen Bauteilen, sogenannte "hot spots", schon vorzeitig abgeschlossen sind.

Im Mehrphasenbereich wird zwischen der Entzündung durch heiße Ablagerungen und durch Tröpfchen, entweder Kraftstoff oder Öl unterschieden. Im Falle einer Entzündung durch heiße Ablagerungen wird in [14] eine Zündung des Gemisches von heißen kohlenstoffhaltigen Ablagerungen erwähnt, die durch ihren starken Druckanstieg weitere Ablagerungen loslösen können. Verbleiben diese losgelösten Ablagerungen im

Brennraum, so werden sie im nächsten Arbeitstakt erhitzt und können im übernächsten Takt zu einer erneuten Vorentflammung führen. Dies würde die charakteristische Abfolge von Vorentflammungen erklären, bei der auf eine Vorentflammung immer ein Arbeitstakt mit normaler Verbrennung folgt.

Kommt es zu einer Zündung ausgehend von Gemischinhomogenitäten, so wird in [5] von einer Wandanlagerung mit Kraftstoff ausgegangen, die sich im Laufe des Betriebs aufbaut und in einem Arbeitstakt eine Vorentflammung auslöst.

Im Falle einer Zündung des Gemischs durch heiße Öltropfen kann von unterschiedlichen Quellen ausgegangen werden. Einerseits kann das Schmiermittel mitangesaugt werden – Ölwurf vom Turbolader, Leckage an den Ventilschäften oder Öltropfen/nebel vom ins Saugrohr eingeleitetem Blow-By – oder Schmiermitteltropfen werden von der Zylinderwand losgelöst. Bei Letzterem kann ein Zusammenspiel von der Wandbenetzung durch Kraftstoff und dem Loslösen von Öltropfen durch eine Verdünnung des Öls erfolgen [3].

1.6 Schmierung von Verbrennungskraftmaschinen

Das Schmiermittel hat in der Verbrennungskraftmaschine noch einige andere Aufgaben zu erfüllen als lediglich die Reibung zu verringern. Was diese Aufgaben sind und wie die hohen Anforderungen an das Schmiermittel erfüllt werden, wird auf den folgenden Seiten erklärt.

1.6.1 Aufgaben und Anforderungen

Die Aufgaben des Schmiermittels sind in [13] wie folgt zusammengefasst:

- schmieren
- kühlen
- Kräfte übertragen
- abdichten
- reinigen
- schützen

Für den Verbrennungsmotor ergeben sich noch detailliertere Anforderungen, siehe Tabelle 1.2.

Um all diese hohen Anforderungen zu erfüllen, werden dem Grundöl Additive beigemengt.

Tabelle 1.2: Anforderungen an das Schmiermittel und zugehörige Eigenschaften [13]

Anforderungen	Eigenschaften
Verminderung der Reibung zwischen sich re- lativ zueinander bewegenden Teilen und Ver- ringerung des an den Schmierstellen auftre- tenden mechanischen Verschleißes	Ausreichende Viskosität bei Betriebstemperatur und Verbesserung der Tragfähigkeit durch Friction Modifier und Extreme Pressure Zusätze.
Abführung der an den Reibstellen enstehenden Wärme (ausreichende Kühlwirkung)	Ausreichende Öldurchflussmenge gewährleisten und Öltemperatur beachten; geringe Verdampfungsneigung und gute thermische Stabilität
Ausreichende Sauberkeit des Motors (Abführung von Verschleißteilen aus der Reibstelle sowie Aufnahme von Schmutz)	Entsprechende Detergent-Dispersant Wirkung
Abdichtung an engen Spalten zwischen sich relativ zueinander bewegenden Teilen (insbe- sondere zwischen Kolbenring und Zylinder- laufbuchse)	Ausreichende Viskosität bei Betriebstemperatur
Korrosionsschutz an den Lagern und Rost- schutz an den weiteren, nicht ständig vom Schmiermittel benetzten Metalloberflächen	Korrosionsschützende Wirkung durch geeignete Additivierung
Verhinderung des, durch die sauren Verbrennungsprodukte auftretenden, korrosiven Verschleißes	Öl mit genügend alkalischer Reserve und der richtigen Additivierung
Keine negative Beeinflussung des Verbrennungsprozesses	Möglichst niedriger Aschegehalt des Öles, Oxidationswiderstand
Ausreichendes Startverhalten des Öles	Tiefer Stockpunkt und gutes Viskositäts- Temperatur-Verhalten (hoher Viskositätsin- dex); geeignete Viskositätslage bei tiefen Temperaturen
Gleichbleibendes Viskositäts-Temperatur- Verhalten über einen bestimmten Zeitraum bei Mehrbereichsölen	Möglichst scherstabiles Verhalten der Viskositäts-Index-Verbesserer, Oxidationswi- derstand
Möglichst lange Schmierstoffeinsatzdauer	Gute Alterungsbeständigkeit und guter Oxidationswiderstad des Grundöles, verstärkt duch Oxidationsinhibitoren; geringe Schaumbildungsneigung; geringe Verdampfungsneigung

1.6.2 Aufbau von Schmiermitteln

Ein Schmiermittel besteht im Prinzip aus einem Grundöl als Basis und einer Vielzahl von Additiven. Im folgenden Teil wird auf diese Bestandteile näher eingegangen.

Grundöl

Beim eingesetzten Grundöl kann es sich um ein Mineralöl, ein auf Mineralöl basierendes Syntheseöl oder ein vollsynthetisches Öl handeln [20].

Mineralische Grundöle

Diese Mineralöle sind Produkte des Raffinationsprozesses und bestehen aus Kohlenwasserstoffen, die in verschiedenen Arten gebunden sein können. Die Molekülstruktur ist dabei ausschlaggebend für grundlegende Eigenschaften, wie das Verdampfungsverhalten oder das Verhalten bei tiefen Temperaturen.

Synthetische Grundöle auf Mineralölbasis

Die verschiedenen Molekülstrukturen haben jeweils ihre Vor- und Nachteile. Erfahrungen zeigten, dass manche Strukturen aufgrund ihrer Eigenschaften zu bevorzugen sind. Dies macht es wünschenswert, ein Basisöl herzustellen, das rein aus Molekülgruppen mit der selben Struktur besteht (z. B. Isoparaffine oder Alkylaromaten). Die Ausgangsstoffe kommen hier aus Mineralölen, die in spezieller Weise weiterverarbeitet werden.

Vollsynthetische Grundöle

Vollsynthetische Öle können in ihren Eigenschaften nahezu beliebig geformt werden. Sie werden mittels Hydrogenerierung und Oligomersation von Olefinen hergestellt und sind dabei qualitativ hochwertiger als reine Mineralöle. Als Beispiel sei hier Ethylen als Basis zur Herstellung verschiedener synthetischer Basisöle, z. B. Ester, genannt.

Additive

Additive sind chemische Wirkstoffe, die dem Grundöl beigemengt werden um:

- 1. vorhandene Eigenschaften des Grundöls zu verändern (z. B. Viskositätsverbesserer),
- 2. unerwünschte Eigenschaften des Grundöls zu unterdrücken (z. B. Schauminhibitoren) oder
- 3. dem Grundöl neue Eigenschaften zu verleihen (z. B. Detergents/Dispersants).

Sie sind ölfremde, meist öllösliche Stoffe mit einer Dichte, welche jener des Grundöls entspricht.

Im folgenden Abschnitt wird auf die einzelnen Aufgaben, Funktionen und Wirkungsweisen der wichtigsten Additive eingegangen.

Detergents und Dispersants

Die beim ottomotorischen Prozess entstehenden Verbrennungsprodukte können zu kleinen Teilen über das sogenannte Blow-By ins Kurbelwellengehäuse gelangen und somit ins Schmieröl eingetragen werden. Diese Verbrennungsprodukte verursachen Schlammbildung, die Bildung einer Lackschicht und auch Ablagerungsaufbau auf etwaigen Metalloberflächen. Um dies zu verhindern werden dem Grundöl Detergents und Dispersants beigemengt.

Detergents haben die Aufgabe, Schlamm und Lackbildner zu lösen und im Schmiermittel schwebend zu halten. Sie haben somit eine reinigende Wirkung und halten den Motor sauber. Ca- und Mg-Sulfonate, Phenolate und Salycilat sind typische Vertreter von Detergents.

Dispersants verteilen und zerstreuen die Schmutzteilchen, welche ins Öl eingetragen wurden und verhindern eine Kumulierung derselben. Beispiele für Dispersants sind Polyisobutylen, Ethylen-Propylen oder Oligomere mit Stickstoff und/oder Sauerstoff als Funktionsgruppe.

Die Funktion und Wirkungsweise der Detergents und Dispersants kann in 3 Gruppen aufgeteilt werden [20]:

- Peptisierung
- Solubilisierung
- Neutralisation

Peptisierung

Bei der Peptisierung werden feste Partikel von aschelosen Dispersants oder Metalldetergents umhüllt.

Dies verhindert das Absetzen dieser Schmutzpartikel an metallischen Oberflächen und des Weiteren wird ein Agglomerieren der Teilchen zu ölunlöslichen Bündeln verhindert. Eine schematische Darstellung dieses Vorganges ist in Abbildung 1.8 ersichtlich.

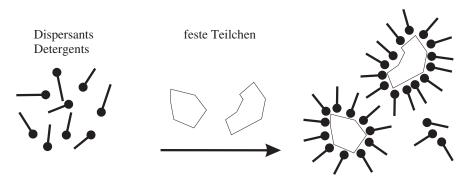


Abbildung 1.8: Peptisierung [20]

Solubilisierung

Bei der Solubilisierung werden flüssige, ölunlösliche Bestandteile, ähnlich wie bei der Peptisierung, vom aschelosen Dispersant eingeschlossen und somit ihre negative Wirkung verhindert, siehe Abbildung 1.9.

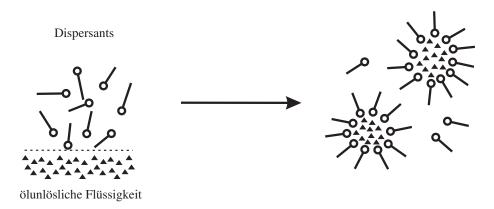


Abbildung 1.9: Solubilisierung [20]

Neutralisation

Im Gegensatz zu den vorherigen zwei Mechanismen, welche mechanischer Natur sind, ist die Neutralisation ein rein chemischer Prozess. Dabei werden saure Bestandteile des Öles mittels Detergents zu Salzen umgewandelt, die entweder im Öl löslich oder unlöslich sein können, siehe Abbildung 1.10.

Abbildung 1.10: Neutralisation [20]

Viskositätsverbesserer

Die in der Verbrennungskraftmaschine eingesetzten Schmiermittel sind einem weiten Temperaturbereich ausgesetzt unter dem sie ihre Funktionalität gewährleisten müssen. So ist es notwendig, dass auch bei tiefsten Temperaturen das Motoröl noch dünnflüssig genug ist, um einen Kaltstart des Motors zu ermöglichen. Dies erfordert meist Öle mit geringer Viskosität, was wiederum bei hohen Temperaturen zu höheren Verdampfungsverlusten führt.

Viskositätsverbesserer haben also die Aufgabe, die Viskosität des Öles bei hohen Temperaturen anzuheben, ohne die Eigenschaften des Öles bei niedrigen Temperaturen negativ zu beeinflussen. Durch die höhere Viskosität bei hohen Temperaturen bleibt der Schmierfilm auch dort erhalten.

Oxidations- und Korrosionsinhibitoren

Ist ein Schmiermittel hohen Temperaturen unter der Anwesenheit von Sauerstoff ausgesetzt, so nennt man die auftretende chemische Veränderung Oxidation.

Bei dieser chemischen Veränderung entstehen saure Reaktionsprodukte, welche die Bildung von Lack- und Ablagerungsschichten hervorrufen. Ursprünglich verfügten die Rohöle von Haus aus über Antioxidantien, diese verflüchtigen sich allerdings bei der Raffination des Öls, mit dem Ziel, einen höheren Viskositätsindex zu erlangen. Um den Alterungsprozess bzw. die Oxidation zu verzögern, werden deswegen dem Schmiermittel synthetische Antioxidantien zugesetzt, z. B. Phenole oder Phosphonate.

Das selbe gilt für die Eigenschaft des Schmiermittels, die Metalloberfläche vor Korrosion zu schützen. Nach dem Raffinationsprozess verfügt das Produkt über keine oder wenig natürliche Inhibitoren gegen Korrosion. Daher gelingt es Wasser- und Sauerstoffmolekülen durch das Schmiermittel zur Metalloberfläche zu diffundieren. Durch den Zusatz von geeigneten Korrosionsinhibitoren, welche eine dünne, für Wasser und Sauerstoff undurchlässige Schicht an der Metalloberfläche ausbilden, kann dies verhindert werden.

Stockpunktverbesserer

Der Stockpunkt einer Flüssigkeit ist jener Punkt, an dem die Viskosität des Fluids so hoch ist, dass es nicht mehr fließt. Dies kann, je nach chemischem Aufbau des Öles, unter der Bildung von Kristallen erfolgen, was jedoch nicht immer der Fall ist.

Die eingesetzten Additive haben also die Aufgabe, den Stockpunkt hin zu niedrigen Temperaturen, welche in der Praxis so gut wie nicht vorkommen, zu verschieben.

Schaumdämpfer

Die Schaumbildung ist in der Verbrennungskraftmaschine als negativ zu bewerten, da sie dem Motorbetrieb schaden kann. Die Haupteinflussfaktoren auf die Neigung zur Schaumbildung sind die Oberflächenspannung und die Viskosität des Schmieröles.

Beim Schmieröl unterscheidet man zwischen Oberflächenschaum, welcher durch geeignete Additive unterbunden werden kann, und im Öl eingeschlossene Luftblasen (Aeroemulsionen), welche von Additiven nicht beeinflusst werden können.

Ein Schaumdämpfer hat also die Aufgabe, die Oberflächenspannung des Schmiermittels zu erhöhen und somit eine mögliche Schaumbildung zu unterbinden, dazu werden z. B. flüssige Silikone eingesetzt.

Hochdruckzusätze und Verschleißschutz-Additive

Verschleiß ist der unerwünschte Matarialabtrag infolge der auftretenden Reibung bei einer Relativbewegung zweier Oberflächen zueinander. Man unterscheidet vier Hauptverschleißmechanismen [20]:

- Abrasion: Materialabtrag durch ritzende Beanspruchung (z. B. Sand). Diese Verschleißart lässt sich durch Additive nicht beeinflussen, lediglich der Einsatz von Öl- und Luftfilter schafft Abhilfe.
- Tribochemische Reaktion: Chemische Reaktion zwischen den drei beteiligten Gruppen (Grundkörper, Gegenkörper und angrenzendes Medium)
- Adhäsion: Kaltverschweißen und anschließendes Wiederauftrennen der zwei Reibpartner
- Oberflächenzerrüttung: Rissbildung und Ermüdung der Oberfläche infolge von Wechselbeanspruchungen.

Die drei zuletzt genannten Mechanismen lassen sich durch gezielten Einsatz von Additiven im Schmiermittel positiv beeinflussen.

Zur Adhäsion kommt es, wenn die Bauteiloberflächen unter Belastung direkt in Kontakt miteinander stehen. Durch die lokal hohen Drücke und Temperaturen kommt es zur Verformung und Verschweißung der Stahloberflächen. Von hier rührt auch der Begriff Hochdruckzusatz (Extreme Pressure Additive), aber auch die Bezeichnung Verschleißschutz-Additive (Anti Wear Additive) wird verwendet.

Diese Additive (Metalldithiophosphate oder Carbonate) bewirken durch chemische Vorgänge, dass sich auf der Metalloberfläche eine Reaktionsschicht ausbildet, welche das Verschweißen der Reibpartner verhindert, siehe Abbildung 1.11.

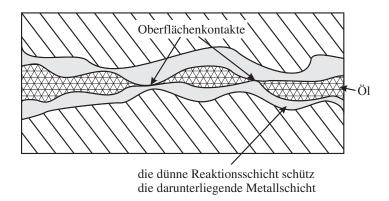


Abbildung 1.11: Reaktionsschicht [20]

Friction Modifier

Friction Modifier (FM) werden eingesetzt, um im Bereich der Mischreibung den Anteil der Festkörperreibung zu verringern. Dies kann mechanisch oder chemisch erfolgen. Bei ersterem werden Festkörperschmierstoffe die im Schmiermittel verteilt sind verwendet, bei letzterem werden öllösliche Moleküle verwendet, welche an der Metalloberfläche absorbiert werden oder, ähnlich wie Hochdruckzusätze, eine dünne Schutzschicht aufbauen.

Der Unterschied zu Hochdruck- und Verschleißzusätzen liegt allerdings darin, dass diese erst beim kompletten Versagen des Schmierfilms zum Tragen kommen.

FM's dagegen sollen schon bei gewöhnlichen Betriebsbedingungen, der "milden Mischreibung", Wirkung zeigen.

Typische Vertreter der FM's sind MoS-Verbindungen, Alkohole, Ester und Fettsäureamide.

2 Prüfstandsaufbau

Nachfolgend wird auf den Prüfstandsaufbau sowie die verwendete Meßtechnik eingegangen. Des Weiteren wird das System zum Eindosieren des Schmiermittels ins Saugrohr vorgestellt.

Einen allgemeinen Überblick über den Prüfstandsaufbau liefert Abbildung 2.1.

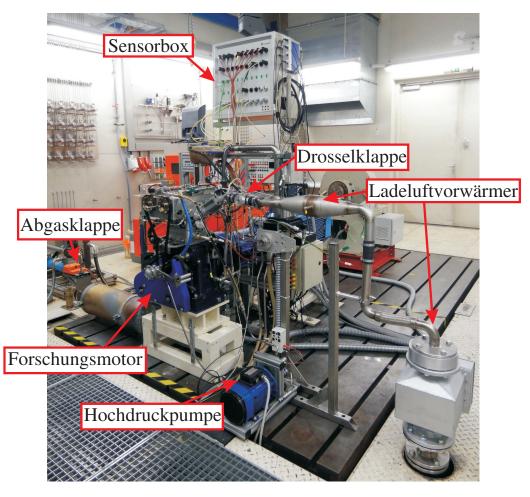


Abbildung 2.1: Prüfstandsaufbau

2.1 Prüfstandstechnik

In diesem Kapitel wird auf die gesamte Prüfstandstechnik eingegangen. Als Prüfstandsprogramm zur Steuerung des gesamten Prüfstands wurde ein Produkt der Firma Kristl-Seibt-Engineering mit dem Namen Tornado verwendet. Es ermöglicht die Steuerung und Regelung aller Aktoren, der Leistungseinheit und die Erfassung von Messdaten.

2.1.1 Leistungsbremse

Bei der verwendeten Leistungsbremse handelt es sich um eine Asynchronmaschine der Firma ABB. Mit ihr war es möglich, den Motor sowohl zu schleppen als auch zu bremsen. Die beim Bremsen gewonnene Energie wurde ins Netz eingespeist.

2.1.2 Konditionierung

Der Einzylinder-Forschungsmotor verfügt hinsichtlich der Betriebsmittel über keinerlei Eigenperipherie. Deswegen ist es notwendig, ihn mit solchem zu versorgen. Hierzu, aber auch um die Betriebsmittel getrennt zu konditionieren, wurden Konditionieranlagen für Kühlmittel und Motoröl gefertigt, siehe Abbildung 2.2 und Abbildung 2.3.

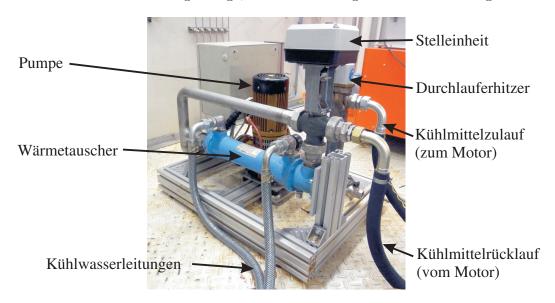


Abbildung 2.2: Kühlmittelkonditionieranlage

2.1.3 Aufladeaggregat

Der Ladeluftdruck wurde über einen, im Keller platzierten, Kompressor vom Typ GA30W der Firma Atlas Copco auf den gewünschten Druck eingestellt.

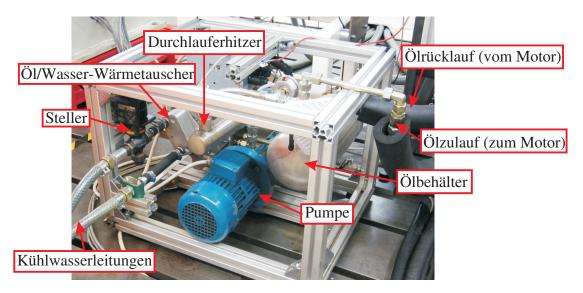


Abbildung 2.3: Motorölkonditionieranlage

Da bei heutigen Serienmotoren die Aufladung meist über einen, vom Abgas angeströmten, Turbolader erfolgt und somit ein höherer Abgasgegendruck entsteht als bei Kompressoraufladung wurde im Abgassystem eine Klappe eingebaut, die diesen erhöhten Abgasgegendruck simulieren kann.

Als Zielwert dieser Regelung wurde ein Druckgefälle von p_L - 0.5 bar gewählt, um das gewünschte Spülen des Zylinders zu ermöglichen.

2.1.4 Ansaugluftvorwärmung

Die komprimierte Luft wurde über zwei elektrische Heizer auf die gewünschte Ladelufttemperatur vorgewärmt. Bei dem zweiten Heizer handelt es sich um eine modifizierte Variante eines heizbaren Katalysators, bei dem der katalytische Einsatz entfernt wurde.

2.2 Forschungsmotor

2.2.1 Allgemeine Daten

Bei dem verwendeten Versuchsträger handelt es sich um einen Einzylinder-Forschungsmotor mit Fremdzündung.

Die wesentlichen Daten sind Tabelle 2.1 zu entnehmen.

Tabelle 2.1: Daten des Einzylinder-Forschungsmotors

Bohrung	84 mm
Hub	90 mm
Hubvolumen	$498.76 \mathrm{cm}^3$
Verdichtung	einstellbar $(9.0, 10.5, 12.0)^1$
max. Drehzahl	$6000{\rm min}^{-1}$
max. Zylinderdruck	$150\mathrm{bar}$
Ventiltrieb	4 Ventile, DOHC, Zahnriemen,
	Steuerzeiten
	Spreizungen:
	Auslaß: $160 - 80$ °KW vWOT
	Einlaß: $80 - 160$ °KW nWOT
	Standardspreizung:
	Ein-/Auslaß: $110 {}^{\circ}{\rm KW}/110 {}^{\circ}{\rm KW}$
Ventilspielausgleich	Hydrostößel
Massenausgleich	1. Ordnung
Steuerzeiten bei 0.1 mm Hub	bei Standardspreizung
• Einlaß (EÖ/ES)	8°KW vWOT/114°KW vZOT
• Auslaß (AÖ/AS)	132°KW nZOT/18°KW nWOT
max. Ventilhub	,
• Einlaß	$9.7 \mathrm{\ mm}$
• Auslaß	9.7 mm
Motorsteuerung	GEMS EM36

 $^{^1}$ durch unterschiedliche Unterlegscheiben frei wählbar bis max. ca. $\varepsilon=13.5$

Die Brennraumgeometrie entspricht den von BMW in Serienmotoren eingesetzten Abmessungen. Der Vorteil des Forschungsmotors liegt in der großen Variabilität bezüglich Verdichtung, Einspritzposition und Steuerzeiten, sowie in der leichten Zugänglichkeit.

Abbildung 2.4 zeigt einen Schnitt durch den Forschungsmotor. Man sieht die zwei Bohrungen für die seitliche und zentrale Injektorlage, sowie die Möglichkeit zur Saugrohreinspritzung. Der verwendete zentrale Injektor stammt, sowie das Common-Rail, der Kolben und das Pleuel, aus einem BMW-Serienottomotor. Der Zahnriemen treibt zwei obenliegende Nockenwellen an (DOHC), welche die zwei Ein- und Auslassventile

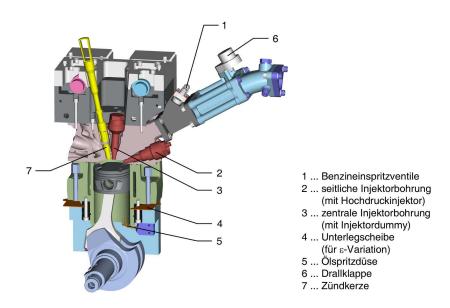


Abbildung 2.4: Schnitt durch den Forschungsmotor [8]

betätigen. Die Steuerzeiten sind frei verstellbar und wurden auf maximale Ventilüberschneidung eingestellt, um beim gefahrenen Lastpunkt möglichst geringe Restgasmengen im Zylinder zu haben.

2.2.2 Kolben und Pleuel

Beim verwendeten Kolben und Pleuel handelt es sich um Serienprodukte aus dem BMW-Ottomotor mit der Bezeichnung N20. Der Kolbenboden verfügt über eine Mulde, welche die Gemischaufbereitung bei direkter Einspritzung unterstützt.

2.2.3 Steuerzeiten

Die Steuerzeiten sind beim Einzylinderforschungsmotor einfach zu verstellen. Die gewählten Einstellungen ermöglichen maximales Spülen, so dass durch die große Ventilüberschneidung der Zylinder mit Frischgas gespült wird. Dies bringt, durch die geringere Restgasmenge im Brennraum und der verringerten Neigung zu Verbrennungsanomalien, einen Leistungsvorteil.

2.2.4 Kraftstoffeinbringung

Beim verwendeten Aufbau handelt es sich um einen Ottomotor mit Direkteinspritzung. Der Kraftstoff wird mit einer Hochdruckpumpe auf 200 bar verdichtet und über ein Common-Rail dem Benzin-Injektor zugeführt.

Abbildung 2.5: Kolben BMW N20

Abbildung 2.6: Pleuel BMW N20

Die Ansteuerung des Injektors erfolgte über eine ETU 427 (electronical timing unit) der Fa. AVL, welche die gewünschte Einspritzdauer und den Einspritzzeitpunkt an den Signalverstärker PROVEBO der Fa. Hörbiger übergibt. Von dort aus wird der Magnet-Injektor mit dem korrekten Signal angesteuert.

2.3 Messtechnik

Man unterscheidet langsame und schnelle Messgrößen. Schnelle Messgrößen sind jene, die in Grad Kurbelwinkel aufgelöst gemessen werden. Die übrigen bezeichnet man als langsame Messgrößen.

2.3.1 Allgemeine Messtechnik

Hier werden alle langsamen Messgrößen besprochen. Die langsamen Messgrößen werden von der Sensorbox am Galgen zum Messschrank, welcher auch den Echtzeitrechner beeinhaltet, weitergegeben. Anschließend können die Werte im Tornado angezeigt und bei Bedarf aufgezeichnet werden.

Temperaturen

Zur Temperaturmessung wurden sowohl Widerstandstemperatursensoren (Pt100) als auch Thermoelemente (NiCr-Ni) verwendet. Die wichtigsten Temperaturmessstellen sind die Kühlmitteltemperaturen am Ein- und Austritt, die Öltemperaturen (ebenfalls am Ein- und Austritt), die Ladelufttemperatur und die Abgastemperatur. Die Umgebungstemperatur hat, im Gegensatz zur Luftfeuchtigkeit, weniger Relevanz, da die Ansauglufttemperatur explizit eingestellt wurde.

Drücke

Es sind sowohl Absolutdrucksensoren, als auch Relativdrucksensoren in Verwendung. Die Druckmessung ist ein wichtiger Punkt, um eine korrekte Versorgung des Motors mit den Betriebsmitteln zu gewährleisten. Der Öldruck wird sowohl in der Konditionieranlage, als auch am Hauptölkanal und an der Nockenwelle gemessen. Der Kühlmitteldruck wird am Kühlmittelausgang überwacht.

Um die Regelung des Ladeluftdrucks betreiben zu können, wird auch im Saugrohr der Druck gemessen.

Luftmasse

Die Luftmasse wurde mittels Drehkolbengaszählers der Fa. Aerzen bestimmt. Der Drehkolbengaszähler vom Typ Ze 039.1 bestimmt den Volumenstrom über das verdrängte Volumen bei gemessener Drehzahl. Mittels der Messgrößen "Temperatur" und "Druck" am Drehkolbengaszähler lässt sich die Luftmasse berechnen.

Kraftstoffverbrauch

Der Kraftstoffmassenstrom wurde direkt mittels Coriolis-Massendurchflussmesser Sitrans-Mass 2100 der Fa. Siemens gemessen. Der Vorteil dieses Messprinzips ist die direkte Bestimmung des Massenflusses, ohne von der Dichte des zu messenden Mediums abhängig zu sein.

Drehmoment

Die Drehmomentmessung erfolgte über einen, im Abtrieb eingebauten, Messflansch T10F der Firma HBM. Der Messbereich liegt zwischen 0 und 200 Nm, das gemessene

Hersteller		AVL	AVL
Drucksensortyp		GU21C	QC34D
		AV. ISTR	255
Messbereich	bar	0 - 250	0 - 250
Empfindlichkeit	m pC/bar	35	19
Linearität	%FSO	$<\pm0.3$	$<\pm0.2$

Tabelle 2.2: Spezifikationen der verwendeten piezoelektrischen Druckaufnehmer

Drehmoment wird als Spannungssignal an das Prüfstandsprogramm Tornado und als Frequenzsignal an das Indiziersystem IndiSet gesendet.

Drehzahl

Die Drehzahlmessung erfolgt einerseits über einen induktiven Aufnehmer an der Schwungscheibe, welche mit Rastermarken versehen ist und andererseits über die E-Maschine.

2.3.2 Indiziermesstechnik

Unter Indizierung versteht man in der Brennverfahrensentwicklung, das Messen eines Signales in Bezug zum Kurbelwinkel, sozusagen ein kurbelwinkelbasiertes Messen. Die auf diese Weise gemessenen Größen werden als schnelle Messgrößen bezeichnet, wohingegen zeitbasierte Größen, wie bereits erwähnt, als langsame Messgrößen bezeichnet werden. Die schnellen Messgrößen sind in diesem Fall der Zylinderdruck pzyl, der Saugrohrdruck pL, der Abgasdruck pAbg, sowie die Ansteuersignale der Zündung und der Einspritzung, welche mittels Strommesszangen abgegriffen wurden.

Die ersten drei Teile der Druckmesskette sind der Druckaufnehmer selbst, das Übertragungskabel und der Messverstärker. Diese drei Komponenten sind sehr kritisch, da es sich bei der Messgröße um elektrische Ladung handelt und als solches von Störgrößen von außen leicht beeinflusst werden kann. Vom Ladungsverstärker geht es weiter zum AVL IndiSet Advanced 631, welches die Messgrößenerfassung übernimmt. Das IndiSet erlaubt nun in Verbindung mit einem Kurbelwinkelgeber und der Software AVL IndiCom eine Echtzeit-Verbrennungsanalyse. Die weitere Auswertung der Daten erfolgte

im Anschluss mit dem Programm Concerto der AVL.

Da sich diese Arbeit mit dem Erfassen und der Analyse von Vorentflammungen befasst, wurde eine spezielle Messsteuerungsart verwendet, welche eine Messung bei Eintreten eines Ereignisses startet. Bei einer Vorentflammung handelt es sich um eine Entzündung des Kraftstoff-Luft-Gemisches vor dem eigentlichen Zündzeitpunkt. Dies hat eine frühzeitige Druckerhöhung zufolge, welche einen höheren Brennraumdruck im Arbeitsspiel hervorruft. Diese Tatsache ermöglicht es eine Schwelle für den Zylinderdruck zu definieren, ab welcher eine abnormale Verbrennung stattfindet. Wird die definierte Schwelle überschritten, wird eine Messung gestartet, bei der 20 Zyklen vor und 80 Zyklen nach Eintreten des Ereignisses abgespeichert werden.

Eine weitere Schwelle wurde eingerichtet, um bei zu hohem Zylinderdruck eine Bauteilschädigung zu verhindern. Hierzu wird am COM-Port des Indiziergerätes bei Überschreitung der definierten Schwelle ein Bit gesetzt, welches mittels einer eigens entworfenen Schaltung dem Prüfstandsprogramm Tornado das Auftreten einer Grenzwert- überschreitung mitteilt, siehe Abbildung 2.7. Als Ausgangssignal liegt ein TTL-Pegel an, welcher mittels der unten gezeigten Schaltung einen Schalter betätigt. Dieser schaltet den 24V-Pegel vom SPS-Modul im Messschrank potentialfrei durch. Dieser potentialfreie Schalter wird von einem Optokoppler dargestellt.

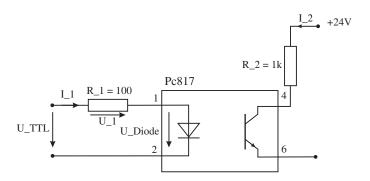


Abbildung 2.7: Potentialfreier Schalter zur Abschaltung der Einspritzung

Die Ströme I_1 und I_2 sind vom Optokoppler begrenzt, deswegen wurden die Widerstände R_1 und R_2 so dimensioniert, dass sie einerseits den Strom begrenzen und andererseits im Fall von R_1 auch als Spannungsteiler fungieren.

Anhand des Datenblattes für den Optokoppler PC817 [19] wurden die Widerstände

wie folgt berechnet:

$$I_1 = 20 \, mA$$
 $R_1 = \frac{U_{\rm TTL} - U_{\rm Diode}}{I_1} = \frac{23.7 \, V - 1.4 \, V}{20 \, mA} = 95 \Omega$
 $I_2 = 24 \, mA$
 $R_2 = \frac{24 \, V}{24 \, mA} = 1 \, k\Omega$

Beobachtungen ergaben, dass eine Vorentflammung für sich alleine steht und somit meist ein Zyklus mit normaler Verbrennung folgt. Daher ist eine Abschaltung der Einspritzung nur notwendig, wenn mehrere Zylinderdrucküberschreitungen direkt aufeinander folgen und sich das System aufschaukeln zu droht. Aus diesem Grund wurde ein Zähler im Tornado eingerichtet, der bei jeder Überschreitung um 1 erhöht wird. Erreicht der Zählerstand den Wert 6, ohne von Hand resetiert zu werden, wird die Ansteuerung der Einspritzung abgeschaltet.

Drehwinkelgeber

Als Bezugssignal bei der Indizierung wird der Drehwinkel herangezogen. Dies gilt, im Vergleich zur Zeitbasis als sinnvoll, da die Winkelgeschwindigkeit im Motor nicht konstant ist. Der Drehwinkel wird dabei an einem freien Wellenende mit einem optischen System gemessen. Als Messprinzip kommt das eines Lichtschranken zur Verwendung, wobei es sich je nach Anordnung um ein Durchlicht- oder ein Reflexionsverfahren handelt [14].

Bestimmung des oberen Totpunktes

Zur exakten Verbrennungsanalyse ist eine OT-Bestimmung unabdingbar. Diese wurde sowohl mittels kapazitivem OT-Sensor, als auch über den thermodynamischen Verlustwinkel durchgeführt.

- OT-Bestimmung mittels kapazitiver OT-Sonde: Mittels einer kapazitiven OT-Sonde ist es möglich den tatsächlichen oberen Totpunkt mit einer Genauigkeit von ±0.1 °KW zu messen. Dazu wird die Sonde mit Adapter in der Zündkerzenbohrung montiert und der Motor geschleppt betrieben.
- OT-Bestimmung über den thermodynamischen Verlustwinkel: Aufgrund von Wärme- und Leckageverlusten liegt beim geschleppten Motor das gemessene Zylinderdruckmaximum vor dem oberen Totpunkt. Die Differenz der Lage des gemessenen Druckmaximums und der Lage des tatsächlichen oberen Totpunktes wird als thermodynamischer Verlustwinkel bezeichnet. Aus Erfahrungswerten bezüglich dieser Abweichung kann der gemessene Druckverlauf um den Verlustwinkel hin zur korrekten Lage des oberen Totpunktes verschoben werden.

Zylinderdruckeinpassung

Bei der Messung des Zylinderdrucks erfolgt lediglich das Messen des wechselnden Druckanteils. Um den tatsächlichen Absolutdruckwert zu bekommen, muss der gemessene Druck um den Betrag $\Delta p_{\rm n}$ angehoben werden. Bei dieser Anhebung spricht man von einer Nulllinienverschiebung.

$$p_{\rm Zvl}(\varphi) = p_{\rm Mess}(\varphi) + \Delta p_{\rm n}$$
 (2.1)

Mittels Niederdruckindizierung im Saugrohr kann bei komplett geöffnetem Einlassventil der gemittelte Saugrohrdruck als Einpassung herangezogen werden. Eine weitere Möglichkeit ist die thermodynamische Einpassung, bei der mittels berechnetem Schleppdruckverlauf das Druckniveau im Zylinder ermittelt wird. Allerdings sind für die Berechnung des Schleppdruckverlaufs einige Informationen bezüglich des Wärme-übergangs, der Leckage sowie der tatsächlichen Ladungsmasse notwendig [14].

2.3.3 Abgasanalyse

Bei der verwendeten Abgasanalyse handelt es sich um ein Produkt der AVL mit dem Namen CEB II, siehe Abbildung 2.8.

Dieses Abgasanalysesystem ermöglicht die kontinuierliche Erfassung der Konzentrationen von CO, CO_2 , NO_x , THC und O_2 im Abgas.

Ebenso wurde der gefahrene stationäre Betriebspunkt hinsichtlich der Rußbildung vermessen. Hierzu wurde ein Smoke Meter der Firma AVL, Abbildung 2.9, eingesetzt um die Rußkonzentration und die Filter Smoke Number (FSN) zu ermitteln.

Abbildung 2.8: Abgasanalyse AVL CEB II [9]

Abbildung 2.9: AVL Smoke Meter 415s [11]

2.3.4 Messung des Luftverhältnisses

Beim gewählten Betriebspunkt mit maximaler Ventilüberschneidung ist das Luftverhältnis im Zylinder während des Arbeitstaktes zwar 1, jedoch ergibt sich durch den Spülvorgang im Abgas ein Luftverhältnis von über 1.

Um dennoch das Luftverhältnis λ im Abgas messen zu können wurde eine Breitbandsonde eingesetzt. Mit ihr ist es möglich nicht nur den Übergang vom fetten zum mageren Gemisch zu bestimmen, sondern das tatsächliche Luftverhältnis zu messen. Die Breitbandsonde besteht aus der Sensorzelle (Nernst-Konzentrationszelle) und der Sauerstoff-Pumpzelle, die für den Transport der Sauerstoffionen zuständig ist. Zwischen der Sensorzelle und der Sauerstoff-Pumpzelle befindet sich ein Diffusionsspalt in dem zwei poröse Platinelektroden (Pump- und Nernstelektrode) angebracht sind. Durch eine Bohrung steht der Diffusionsspalt mit dem Abgas in Verbindung, welches an die Elektroden der Sauerstoff-Pumpzelle und der Nernst-Konzentrationszelle durch diffundiert.

Dabei wird der Pumpstrom durch die Sauerstoff-Pumpzelle so geregelt, dass im Diffusionsspalt eine konstante Gaszusammensetzung von $\lambda=1$ herrscht. Ist das Gemisch fetter, so muss mehr Sauerstoff in den Diffusionsspalt gepumpt werden. Bei magerem Gemisch wird die Stromrichtung umgedreht und Sauerstoff aus dem Diffusionsspalt abgezogen. Der eingestellte Pumpstrom ist dabei proportional zur Sauerstoffkonzentration im Abgas. In Abbildung 2.10 ist die Sondenspannung über dem Luftverhältnis aufgetragen.

Die Messung der Zusammensetzung übernimmt dabei die Nernstzelle, welche mit dem Referenzgas (Luft) in Verbindung steht.

Der Messbereich der Breitbandsonde liegt zwischen $0.65 < \lambda < \text{Luft}$ [12].

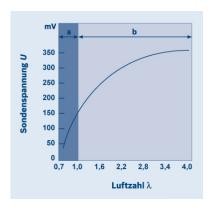


Abbildung 2.10: Sondenspannung einer Breitband-Lambdasonde [12]

2.4 Schmiermitteleindosierung

Das Hauptziel dieser Arbeit ist, verschiedene Schmiermittel auf ihre Affinität zur Vorentflammung zu testen. Hierzu ist es nötig das jeweilige zu testende Schmiermittel genauestens dosiert in den Brennraum einzubringen.

Für die Schmiermitteleinbringung standen mehrere Varianten zur Auswahl. Allerdings wurde die erste Methode, das gesamte Motoröl zu wechseln, abgelehnt, da große Mengen vom zu testenden Schmiermittel nötig gewesen wären und auch eine Querbeeinflussung von verbleibenden Ölresten an der Zylinderwand nicht ausgeschlossen werden konnten. Auch die Variante, das Schmiermittel mit Kraftstoff zu vermischen und über die Hochdruckeinspritzung dem Brennraum zuzuführen wurde verworfen, da eine Beeinflussung der Verbrennung vermutet wurde. Schließlich wurde, um eine gezielte Aussage bezüglich des Schmiermittels alleine treffen zu können, eine Eindosierung ins Saugrohr als günstigste Methode mit dem besten Nutzen-Aufwand-Verhältnis gefunden.

Für die Eindosierung im Saugrohr wurde eine Apparatur aufgebaut, welche aus einer Pumpe und einer Injektoreinheit besteht.

2.4.1 Peristaltische Pumpe

Für die genaueste Zudosierung des zu testenden Schmiermittels wurde eine peristaltische Pumpe (oder Schlauchpumpe genannt), von der Firma Saier mit der Bezeichnung Concept 420 SM verwendet.

Abbildung 2.11: Schlauchpumpe Saier Concept 420 SM

Allgemeine Daten

Die Pumpe wird über einen Schrittmotor angetrieben, welcher Drehzahlen im Bereich von 0.1 bis 100 Umdrehungen pro Minute erlaubt. Weitere Daten sind Tabelle 2.3 zu entnehmen.

Tabelle 2.3: Daten der peristaltischen Pumpe

Ansteuerung	Einstellbare Förderleistung
Steuergröße	Potentialfreier Schließer
Schlauch	Material: FKM
	Innendurchmesser: d_i =0.8 mm
Förderleistung:	0.007 - $7\mathrm{ml/min}$
Maximaler Gegendruck:	3.7 bar
Besonderheit	verschleißfreier Schrittmotor; bis $\max. 2/3$ der Nenndrehzahl ist eine
	Einschaltdauer von 100% möglich

Ansteuerung

Wie in Tabelle 2.3 ersichtlich, ist für die Ansteuerung der Pumpe ein potentialfreier Schließer notwendig. Da lediglich ein Modul verfügbar war, welches einen 24 V Pegel als Einschaltsignal durchschaltet, wurde eine Schaltung entworfen, um den potentialfreien Schaltkontakt zu realisieren. Die zugehörige Schaltung ist Abbildung 2.12 zu entnehmen.

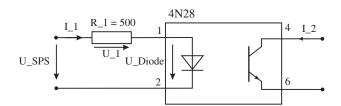


Abbildung 2.12: Schaltung – potentialfreier Schalter

Anhand des Datenblattes für den Optokoppler 4N28 [6] wurde der Vorwiderstand wie folgt berechnet:

$$\begin{array}{lcl} I_1 & = & 40\,mA & {\rm Durchschaltstrom} \\ U_1 & = & U_{\rm SPS} - U_{\rm Diode} = 23.7\,V - 1.4\,V = 22.3\,V \\ R_1 & = & \frac{U_1}{I_1} = 557.5\,\Omega \\ P_{\rm R_1} & = & U_1 \cdot I_1 = 892\,mW \end{array}$$

2.4.2 Injektoreinheit

Das von der Pumpe geförderte Schmiermittel wurde über ein Rückschlagventil und einen Öl/Öl-Wärmetauscher dem Injektor zugeführt, siehe Abbildung 2.13. Der Öl/Öl-Wärmetauscher hat den Zweck das Versuchsöl mittels Motoröl vorzuwärmen und somit einen realitätsnahen Ölwurf, wie ihn beispielsweise ein Turbolader hat, zu erzeugen. Das Rückschlagventil schützt die Pumpe vor zu großen Gegendrücken.

Da der Einzylinder-Forschungsmotor bereits über die Peripherie zur Saugrohreinspritzung verfügt, wurde lediglich ein Dummy zum Öl-Injektor modifiziert.

Abbildung 2.13: Injektor zur Schmiermitteleindosierung

3 Kriterien zur Erkennung von Vorentflammungen

3.1 Eingeführte Kriterien

Zur Bestimmung der Vorentflammungsneigung des Einzylinder-Forschungsmotors wurden zu Beginn grundlegende Untersuchungen angestellt.

Hierzu wurden einzelne Parameter, unter Konstanthaltung der restlichen Parameter, variiert und der Motor am gewählten Betriebspunkt stationär betrieben.

Die Erkennung einer Vorentflammung erfolgte rein über den aus der Indiziermessung resultierenden Zylinderdruck- und Heizverlauf, dazu wurden 3 Kriterien festgelegt:

- Zylinderspitzendruck
- Zylinderdruck zum Zündzeitpunkt
- 1%-Umsatzpunkt

Bei einem gemessenen Zyklus handelt es sich um eine Vorentflammung, wenn jedes einzelne Kriterium die 3σ -Bedingung erfüllt. Dies bedeutet, dass der gemessene Wert um das Dreifache der Standardabweichung vom Mittelwert abweichen muss, um das Kriterium zu erfüllen.

Die Standardabweichung σ ergibt sich für normalverteilte Messwerte aus der Wurzel der Varianz. Die Varianz ist dabei der gemittelte Abstand der Messwerte zum arithmetischen Mittelwert:

$$\sigma^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (\bar{x} - x_i)^2 \tag{3.1}$$

Im Falle normalverteilter Messwerte befinden sich 99.73% der Werte innerhalb des definierten 3σ -Bereichs liegen, siehe Abbildung 3.1.

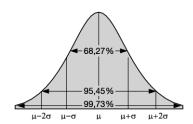


Abbildung 3.1: Gauß'sche Normalverteilung [10]

3.2 Beispiel einer durchgeführten Analyse

Zur Veranschaulichung der Erkennung einer Vorentflammung seien hier der Zylinderdruckund Brennverlauf eines Einzelzyklus gegeben, siehe Abbildung 3.2.

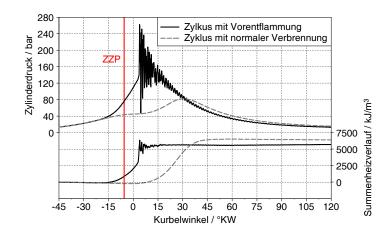


Abbildung 3.2: Veranschaulichung einer Vorentflammung

Es ist gut zu erkennen, dass der Zylinderdruck zum Zündzeitpunkt bei einer Vorentflammung deutlich höher ist, als bei einer normalen Verbrennung. Des Weiteren sieht man auch am Summenheizverlauf, dass der Kraftstoff schon früher umgesetzt wird.

Eine Einzelmessung besteht aus 100 Zyklen. Aus dieser Grundmenge wurden die statistischen Kennwerte, und daraus, die Grenzen zur Vorentflammungserkennung berechnet.

In Abbildung 3.3 sind die Spitzendrücke der Einzelzyklen als Punkte dargestellt, die Grenze ergibt sich durch die dreifache Standardabweichung vom Mittelwert und ist als rote Linie eingetragen. Selbiges Kriterium wird anschließend auf den Zylinderdruck

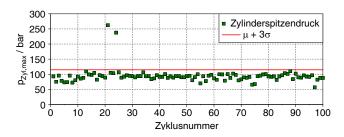


Abbildung 3.3: Auswertung des Spitzendruckkriteriums

zum Zündzeitpunkt angewandt. In Abbildung 3.4 ist der Druck zum Zündzeitpunkt des jeweiligen Zyklus als Punkt dargestellt und die berechnete Grenze als rote Linie. Überschreitet der Druck die Grenzlinie, so ist das Einzelkriterium erfüllt. Als letz-

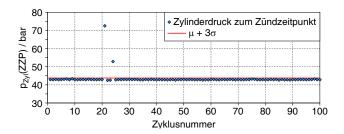


Abbildung 3.4: Auswertung des Zylinderdrucks zum Zündzeitpunkt

tes Kriterium gilt es den 1%-Umsatzpunkt zu kontrollieren. Wird hier die definierte Grenze unterschritten, beginnt die Verbrennung früher als bei 99.73% der restlichen Zyklen und somit ist auch dieses Einzelkriterium erfüllt. Sind alle drei Einzelkriterien

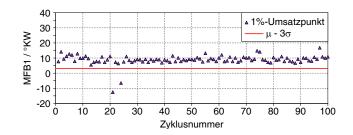


Abbildung 3.5: Auswertung des 1 %-Umsatzpunktes

erfüllt, so wird der Zyklus als Vorentflammung gewertet. Im gezeigten Fall sind dies die Zyklen Nr. 21 und 24.

4 Basisuntersuchungen

Bei den Basisuntersuchungen wurde die Injektorlage (inkl. Einspritzrichtung) ähnlich wie beim Serienmotor BMW N20 gewählt. Aufgrund der geometrischen Gegebenheiten des vorhandenen Zylinderkopfs war keine exakte Nachstellung der Serienverhältnisse möglich. Die Unterschiede in Neigungswinkel und Lage des Injektors sind jedoch gering. Es wurden Ladelufttemperatur, Ladeluftdruck, Verdichtungsverhältnis, Kühlmitteltemperatur und Schmiermitteltemperatur unabhängig voneinander variiert, um den Einfluss des jeweiligen Parameters auf die Vorentflammungsneigung zu bestimmen.

4.1 Randbedingungen – gewählter Betriebspunkt

Aus der Literatur geht hervor, dass Vorentflammungen insbesondere bei niedrigen Drehzahlen und hohen Lasten auftreten [21]. Aus diesem Grund wurde ein solcher Betriebspunkt, Drehzahl $n=1500\,\mathrm{min^{-1}}$ und Volllast gewählt.

Da die Peripherie wie Kolben, Pleuel und Kraftstoffinjektor vom Serienmotor BMW N20 kommen, wurden die Randbedingungen entsprechend angepasst. Eine genaue Aufstellung liefert Tabelle 4.1.

Tabelle 4.1: Randbedingungen für die Basisuntersuchungen

	$1500{\rm min}^{-1}$
Steuerzeiten	maximale Ventilüberschneidung
Drosselklappenstellung	100% geöffnet
Injektorposition	zentral, Einspritzrichtung wie BMW N20
Einspritzdruck	$200\mathrm{bar}$
Zündzeitpunkt	leistungsoptimiert an der Klopfgrenze
Motoröl	OMV BIXXOL C3 special
Luftverhältnis (im Abgas)	$\lambda{=}1.3$
${ m Abgasgegendruck}$	Ladedruck - 0.5 bar
Versuchsdauer	$180.000 \text{ Zyklen} \stackrel{\wedge}{=} 4 \text{ BStd.}$
${\bf Ladeluft temperatur}$	$40^{\circ}\mathrm{C}$
Ladeluftdruck	$1.25\mathrm{bar_{rel.}}$
Verdichtungsverhältnis	10.5
${ m K\ddot{u}hlmitteltemperatur}$	$90^{\circ}\mathrm{C}$
Schmiermitteltemperatur	100 °C

Beim gewählten Betriebspunkt wird mit voller Ventilüberschneidung gefahren (Ventilspreizung von Auslass und Einlass je 80 °KW). Durch die große Ventilüberschneidung wird das gesamte Zylindervolumen mit Frischluft gespült und der Restgasanteil im Arbeitstakt dementsprechend gering gehalten.

Als Maß für die Reinheit der Ladung im Zylinder wird der Spülgrad λ_s verwendet. Er berechnet sich aus dem Verhältnis der Frischladung $m_{\rm Fr}$ zur gesamten Ladungsmasse m im Zylinder, die sich aus Frischladung und Restgas zusammensetzt.

$$\lambda_{\rm s} = \frac{m_{Fr}}{m} = \frac{m_{\rm Fr}}{m_{\rm Fr} + m_{\rm Rg}} \tag{4.1}$$

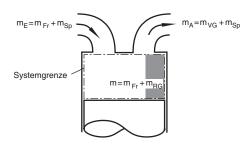


Abbildung 4.1: Massenaufteilung im Ladungswechsel [14]

Der Spülvorgang, auch Scavenging genannt, hat in der Volllast den Vorteil, dass der Brennraum durch das Frischgas gekühlt wird und somit, durch die daraus resultierende Verschiebung der Klopfgrenze, der Zündzeitpunkt in Richtung "früh" gelegt werden kann. Diese Verschiebung erhöht den Wirkungsgrad und somit auch den erreichbaren Mitteldruck.

Nachteilig sind dabei höhere Stickoxid-Emissionen, da die Temperatur bei der Verbrennung aufgrund des geringen Inertgasanteils ansteigt.

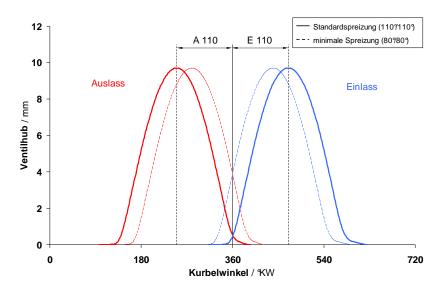


Abbildung 4.2: Ventilerhebungskurven Forschungsmotor

4.2 Anfahren des Betriebspunktes

Wie bereits erwähnt, ist das Luftverhältnis durch den Spülvorgang im Abgas > 1. Um dennoch im Brennraum ungefähr $\lambda=1$ zu gewährleisten, musste der Betriebspunkt mit Hilfe der Abgasanalyse angefahren werden. Aus Abbildung 4.3 ist zu entnehmen, dass das Maximum der Stickstoffdioxid-Emissionen um den Bereich $\lambda=1.1$ liegt. Durch Variation der Einspritzmenge wurde das Maximum der Stickstoffdioxid-Emissionen ermittelt und daraufhin mit Hilfe der Werte für die CO-Emissionen $\lambda=1$ im Brennraum eingestellt.

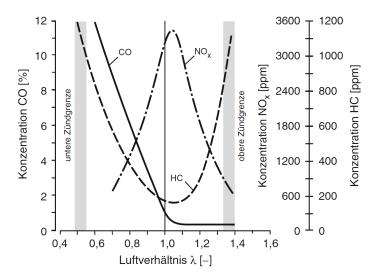


Abbildung 4.3: Schadstoffkonzentrationen im Rohabgas beim Ottomotor [14]

4.3 Variation der Ladelufttemperatur

Die Ladelufttemperatur wurde in 4 Schritten variiert und bei jeder Stufe wurde der Motor 4 Stunden stationär betrieben. Die gewählten Variationsschritte waren 30° C, 40° C, 50° C und 60° C.

Um den Motor weiter an der Klopfgrenze zu betreiben, war bei den tiefen Temperaturen eine Verstellung der Zündung in Richtung "früh" nötig, wohingegen bei höheren Ansaugtemperaturen der Zündzeitpunkt nach "spät" verlegt werden musste.

Obwohl bei höherer Ansauglufttemperatur eine verstärkte Klopfneigung vorhanden ist, hatte dies keine negative Auswirkung auf die Vorentflammungsneigung des Motors. Das Ergebnis der Kühlmitteltemperaturvariation ist in Abbildung 4.4 zu sehen, die Unterschiede zwischen den Variationsstufen sind zu gering, um von einem Trend sprechen zu können.

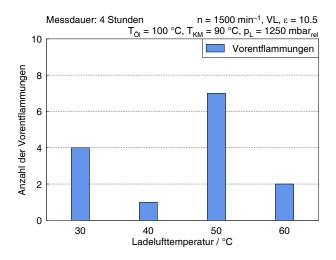
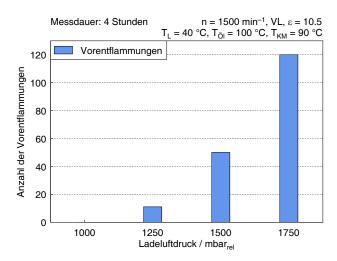



Abbildung 4.4: Anzahl der Vorentflammungen bei Variation der Ladelufttemperatur

4.4 Variation des Ladeluftdrucks

Hier wurde der Ladeluftdruck in 4 Schritten (1 bar, 1.25 bar, 1.5 bar, 1.75 bar Überdruck) variiert, während die anderen Parameter unverändert blieben. Es ist ein deutlicher Trend erkennbar, wie ihn auch andere Publikationen bereits erwähnen [17]. Die Anzahl der Vorentflammungen steigt mit steigendem Ladeluftdruck und ist somit ein beschränkender Faktor für den Aufladegrad in diesem Betriebspunkt. Tendenziell lässt sich sagen, dass durch eine Steigerung des effektiven Mitteldrucks $p_{\rm m,e}$ die Vorentflammungsneigung zunimmt. Die höhere Gastemperatur im Brennraum sowie der höhere Verdichtungsenddruck begünstigen somit die Entstehung von Vorentflammungen.

Abbildung 4.5: Anzahl der Vorentflammungen bei Variation des Ladeluftdrucks; die Ergebnisse bei $p_{\rm L}=1.5$ und $p_{\rm L}=1.75$ wurden extrapoliert

4.5 Variation der Kühlmitteltemperatur

Die Kühlmitteltemperatur wurde in 4 Stufen (70 °C, 80 °C, 90 °C und 100 °C) variiert. Auch hier bestätigt sich die Aussage diverser Publikationen [3], dass mit sinkender Kühlmitteltemperatur die Vorentflammungsneigung zunimmt. Dies ist vermutlich auf die geänderte Zylinderverformung, den Einfluss der Wandtemperatur auf den dortigen Schmierfilm an der Zylinderwand, sowie größerer Kraftstofftröpfchen durch eine schlechtere Verdampfung des Kraftstoffes im Brennraum, und somit einer veränderten Ölverdünnung an der Zylinderwand, zurückzuführen.

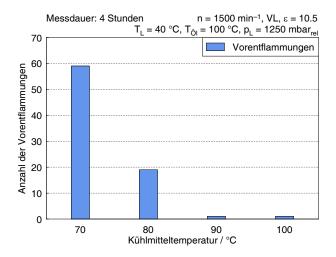
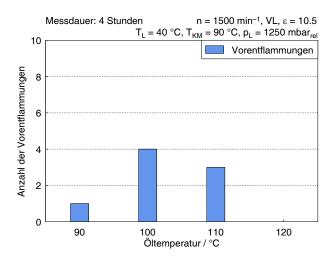



Abbildung 4.6: Anzahl der Vorentflammungen bei Variation der Kühlmitteltemperatur

4.6 Variation der Schmiermitteltemperatur

Die Schmiermitteltemperatur wurde in 4 Stufen (70 °C, 80 °C, 90 °C und 100 °C) variiert. Zwar wurde im Vorhinein ein Einfluss der Schmiermitteltemperatur vermutet, allerdings blieb diese Vermutung unbestätigt. Die Unterschiede in den Häufigkeiten sind viel zu gering, um eine Aussage bezüglich einer klaren Tendenz machen zu können. Somit hat die Schmiermitteltemperatur im untersuchten Fall nur geringen bis keinen Einfluss auf die Vorentflammungsneigung.

Abbildung 4.7: Anzahl der Vorentflammungen bei Variation der Öl- bzw. Schmiermitteltemperatur

4.7 Variation der Verdichtung

Um das Verdichtungsverhältnis des Forschungsmotors zu bestimmen wurden folgende Schritte durchgeführt: Als erster Schritt wurde das verdrängte Volumen des Kolbens ausgelitert. Anschließend wurde der Quetschspalt gemessen und das übrige Schadvolumen, welches sich im Zylinderkopf durch den Ventilwinkel ergibt, aus den Konstruktionszeichnungen entnommen.

Mit Hilfe dieser Größen lässt sich das Verdichtungsverhältnis ε mit den folgenden Gleichungen berechnen:

$$\varepsilon = 1 + \frac{V_{\rm h}}{V_{\rm c}} \tag{4.2}$$

Das Hubvolumen V_h ergibt sich dabei aus Bohrungsdurchmesser D und Kolbenweg s wie folgt:

$$V_{\rm h} = \frac{\pi}{4} \cdot D^2 \cdot s \tag{4.3}$$

Das Kompressionsvolumen V_c errechnet sich aus dem Schadvolumen des Kolbens und des Kopfes, sowie aus dem vom Quetschspalt erzeugten Volumen:

$$V_{\rm c} = V_{\rm Kopf} + V_{\rm Kolben} + \frac{\pi}{4} \cdot D^2 \cdot h_{\rm quetsch}$$
 (4.4)

Zur Variation des Verdichtungsverhältnisses in 3 Schritten ($\varepsilon = 9, 10.5, 12$) wurde der Quetschspalt durch eine Variation von Unterlegscheiben (vgl. Abbildung 2.4) dementsprechend angepasst.

In Abbildung 4.8 ist das Ergebnis der Verdichtungsvariation ersichtlich. Die Anzahl der Vorentflammungen nimmt mit steigender Verdichtung zu, was sich mit der Aussage über den Einfluss des effektiven Mitteldrucks $p_{m,e}$ bei der Ladeluftvariation deckt.

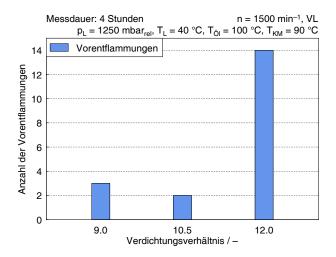


Abbildung 4.8: Anzahl der Vorentflammungen bei Variation des Verdichtungsverhältnisses

5 Untersuchungen bei gedrehter Injektorlage

Um den Einfluss der Einspritzrichtung sowie der Wandbenetzung abzudecken wurde der Injektor um 180° gedreht und die restlichen Randbedingungen aus Tabelle 4.1 bei verkürzter Messdauer von 2 Stunden beibehalten. Bei dem vorhandenen Zylinderkopf entsprach der Neigungswinkel des Kraftstoffinjektors nicht exakt jener von BMW im N20 eingesetzen. Während der Injektor im Serienmotor senkrecht eingebaut ist, ist er in unserem Fall um ca. 4.5°geneigt. Da zum verwendeten Kraftstoffinjektor keine

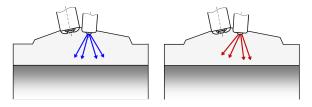


Abbildung 5.1: Einspritzrichtung in Basislage (rechts) und gedrehter Injektorlage (links)

Tabelle 5.1: Daten zum verwendeten Kraftstoffinjektor

Typ	Serienprodukt (BMW N20)
Düse	6 Loch
Spraywinkel	$60^{\circ}70^{\circ}$
${ m Auslenkung}$	5°10°

genauen Daten zur Verfügung standen, wurde die Auslenkung ausgemessen. Dabei handelt es sich aber lediglich um Anhaltswerte. Bei der originalen Einbaulage erfolgt die Kraftstoffeinspritzung in Richtung Auslass, wohingegen bei der gedrehten Einbaulage der Kraftstoff Richtung Einlass gespritzt wird. Die Verbrennung an sich war durch einen erhöhten COV als schlechter zu bewerten.

5.1 Variation der Kühlmitteltemperatur

Die Variationsschritte blieben gleich: 70 °C, 80 °C, 90 °C und 100 °C. Abbildung 5.2 zeigt den Vergleich der gemessenen Vorentflammungen bei den eingestellten Kühlmitteltemperaturen zwischen der Basislage und der gedrehten Lage des Injektors. Es ist zu erkennen, dass die Anzahl der Vorentflammungen mit gedrehtem Injektor deutlich geringer ist. Wodurch dies zustande kommt, lässt sich aufgrund fehlender simulatorischer Unterstützung nicht eruieren. Die Vermutung liegt nahe, dass die Gemischbildung bei Injektor in Basislage schlechter ist und dass eventuell in diesem Fall auch eine Wandbenetzung stattfindet.

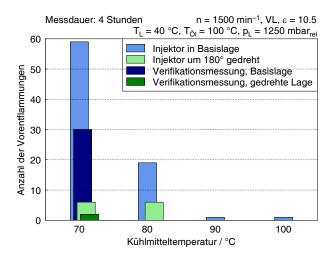


Abbildung 5.2: Auftrittshäufigkeit von Vorentflammungen bei Injektor in Basis- und gedrehter Lage über der Kühlmitteltemperatur

5.1.1 Verifikation der Messung mit gedrehter Injektorlage

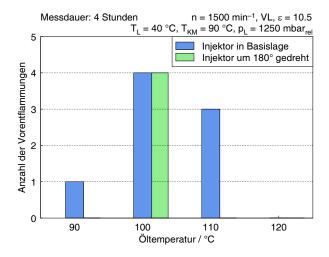

Wie in Abbildung 5.2 zu erkennen, ist der Unterschied zwischen der seriennahen Injektorlage und der gedrehten Injektorlage signifikant. Die Messung der gedrehten Injektorlage erfolgte allerdings mit bereits gebrauchtem Öl. Um den Einfluss des unterschiedlichen Ölalters bei den Messungen ausschließen zu können, wurde eine Verifikationsmessung direkt nach einem Ölwechsel durchgeführt, bei der beide Messpunkte hintereinander gefahren wurden. Zwar ist die Anzahl der Vorentflammungen bei beiden Messungen geringer, dennoch zeigt sich die gleiche Tendenz.

Tabelle 5.2: Ergebnis der Verifikationsmessung bei 70 °C Kühlmitteltemperatur

Messpunkt	Anzahl der Vorentflammungen
Injektor in Serienlage	30
Injektor in gedrehter Lage	4

5.2 Variation der Schmiermitteltemperatur

In Abbildung 5.3 ist der Vergleich zwischen Basislage und gedrehter Injektorlage über der Schmiermitteltemperatur dargestellt. Auch hier ist eine leichte Tendenz erkennbar, dass bei gedrehter Lage die Vorentflammungsneigung sinkt, wobei hier die absolute Vorentflammungsanzahl zu gering ist, um eine belastbare Aussage zu tätigen.

Abbildung 5.3: Auftrittshäufigkeit von Vorentflammungen bei Injektor in Basis- und gedrehter Lage über der Schmiermitteltemperatur

6 Schmiermitteleindosierung in den Ansaugkanal

6.1 Einleitung

In Zusammenarbeit mit dem Mineralölkonzern OMV wurden verschiedene Öle auf ihre Neigung zur Vorentflammung getestet.

Seitens der OMV gab es bereits gewisse Vermutungen, welche Inhaltsstoffe des Öles für die Vorentflammung verantwortlich sein können. Mit diesem Hintergrundwissen wurde eine erste Reihe von 8 Ölen am Forschungsmotor vermessen, um im Anschluss, auf diese Ergebnisse aufbauend, eine neue Reihe von Testölen herstellen zu können.

6.2 Ölverbrauch

Aus Erfahrungswerten weiß man, dass sich der Ölverbrauch eines modernen PKW DI-Ottomotors im Bereich zwischen 0.3- $0.5\,\mathrm{g/kWh}$ bewegt. Ausgehend von diesen Werten wurde der erste Testlauf mit einer eingestellten Ölmenge von $0.3\,\mathrm{g/kWh}$, was bei einer Leistung von $14\,\mathrm{kW}$ einer Menge von $4.2\,\mathrm{g/h}$ entspricht, durchgeführt.

Diese Menge musste allerdings nach dem ersten Lauf im gefeuerten Betrieb gesenkt werden, da der Kolbenboden übermäßig mit Öl benetzt war. Für die gesamten Untersuchungen wurde daraufhin das Schmiermittel mit einer konstanten Menge von $0.15\,\mathrm{g/kWh}$ eindosiert.

6.3 Optische Untersuchung

Um die Funktionalität der Eindosierung zu testen, wurde ein optischer Zugang, in Form eines Glasrohres zwischen Zylinderkopf und Saugrohrinjektoraufnahme, eingebracht. Eine Hochgeschwindigkeitskamera zeichnete dabei im geschleppten Motorbetrieb den Vorgang der Eindosierung auf. Der Aufbau ist in Abbildung 6.1 zu sehen. Die Kamera wurde über dem optisch zugänglichen, gläsernen Saugrohr platziert. Die Beleuchtung erfolgte indirekt über ein Milchglas von unten, um ein Schattenbild zu erzeugen.

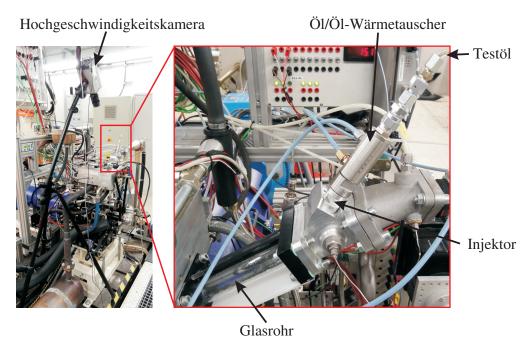


Abbildung 6.1: Optischer Aufbau zur Visualisierung der Schmiermitteleindosierung

6.3.1 Randbedingungen

Die optischen Untersuchungen erfolgten im geschleppten Betrieb am Standardbetriebspunkt:

Tabelle 6.1: Randbedingungen für die optische Untersuchung der Schmiermitteleindosierung

Drehzahl	1500 min ⁻¹ , geschleppt
Steuerzeiten	maximale Ventilüberschneidung
${\bf Drosselk lappenstellung}$	100% geöffnet
Abgasgegendruck	Ladedruck - 0.5 bar
${\bf La deluft temperatur}$	$40^{\circ}\mathrm{C}$
Ladeluftdruck	$1.25\mathrm{bar}$
Verdichtungsverhältnis	10.5
${ m K\ddot{u}hlmitteltemperatur}$	$90^{\circ}\mathrm{C}$
${f Schmier mittelt emperatur}$	$100^{\circ}\mathrm{C}$
eindosierte Menge	$0.3\mathrm{g/kWh}$

6.3.2 Ergebnis

Als Resultat der optischen Untersuchung lieferte die Hochgeschwindigkeitskamera Bilder der Tröpfehenbewegung im Saugrohr, siehe Abbildung 6.2. Anfangs bildet sich ein kleiner Tropfen, welcher von der Strömung in Richtung Einlass mitgerissen wird. Sobald das Einlassventil öffnet, verformt sich der Tropfen durch die im Saugrohr wandernde Druckwelle und wird dann sofort von der enorm beschleunigten Strömung mitgerissen und dabei verformt.

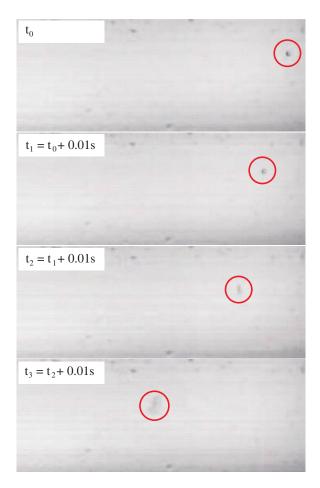


Abbildung 6.2: Ergebnis der optischen Untersuchung

6.4 Randbedingungen

Bei ersten Testläufen mit Eindosierung des Standardöls OMV BIXXOL special C3 wurde ersichtlich, dass, um eine Vorentflammung zu provozieren, die Temperatur im Brennraum angehoben werden muss. Um dies zu verwirklichen, wurden einige Randbedingungen geändert: Die Steuerzeiten wurden so eingestellt, dass keine Ventilüberschneidung vorhanden ist. Die dadurch erhöhte Restgasmenge im Brennraum führt zu einer höheren Gastemperatur. Zusätzlich wurde die Ansauglufttemperatur erhöht und die Öltemperatur (Steigerung der Kolbentemperatur über die Ölspritzdüsen) geändert, wie in Tabelle 6.2 ersichtlich.

Bei der anschließenden Vermessung des Betriebspunktes traten keine Vorentflammungen auf.

Tabelle 6.2: Randbedingungen für die Untersuchungen mit Schmiermitteleindosierung

Steuerzeiten	praktisch keine Ventilüberschneidung
	$(Standardspreizung 110^{\circ}/110^{\circ})$
Luftverhältnis	$\lambda = 1.0$
Ladelufttemperatur	$60^{\circ}\mathrm{C}$
Schmiermitteltemperatur	110 °C
eindosierte Ölmenge	$0.15~\mathrm{g/kWh}$

6.5 Auswertung der Vorentflammungen

Da die bei der Eindosierung aufgetretenen Vorentflammungen in ihrer Stärke von Öl zu Öl stark varrierten, wurde zur Quantifizierung der auftretenden Vorentflammungen eine Klassierung des Zylinderspitzendrucks eingeführt. Jeder Klasse wurde dabei ein Gewichtungsfaktor f zugeordnet und das Schädigungspotential S der eindosierten Öle anhand der gemessenen Spitzendrücke $p_{\text{max,i}}$ berechnet. Somit ist es möglich die Versuchsöle objektiv zu bewerten.

$$S = \sum_{\mathrm{i}=1}^{n} \left(p_{\mathrm{max,i}} \cdot f \right) \qquad \mathrm{mit} \qquad f = \left\{ \begin{array}{ll} 0.005 & : & p_{\mathrm{max,i}} & < 100 \, bar \\ 0.01 & : & 100 & \leq p_{\mathrm{max,i}} & < 120 \, bar \\ 0.05 & : & 120 & \leq p_{\mathrm{max,i}} & < 150 \, bar \\ 0.15 & : & 150 & \leq p_{\mathrm{max,i}} & < 200 \, bar \\ 0.3 & : & 200 & \leq p_{\mathrm{max,i}} & < 250 \, bar \\ 0.485 & : & 250 & \leq p_{\mathrm{max,i}} \end{array} \right.$$

n ist dabei die Anzahl der gemessenen Vorentflammungen.

6.6 Testprozedere

Bei der Untersuchung der verschiedenen Testöle musste größter Wert auf die Reinheit der Dosiereinheit sowie des Ansaugkanals und des Brennraums gelegt werden, da sich die Testöle in ihren Additivkonzentrationen nur gering unterscheiden und somit eine Querbeeinflussung möglich gewesen wäre.

Um diese Querbeeinflussung zu unterbinden wurde ein Prozedere vereinbart, welches für jedes der getesteten Öle beibehalten wurde. Dies gewährleistete konstante Bedingungen für jede Messung.

Der genaue Ablauf des Prozederes ist Abbildung 6.3 zu entnehmen.

Abbildung 6.3: Testprozedere bei der Schmiermitteleindosierung

6.7 Untersuchte Schmiermittel

6.7.1 Erste Reihe von Versuchsölen

Die erste Testreihe bestand aus 8 Ölen, wobei zusätzlich noch das für den Forschungsmotor als Schmiermittel verwendete Motoröl OMV BIXXOL special C3 als erstes Öl mit der Nummer 0 eindosiert wurde.

Details zu den eindosierten Ölen

Nr. 0: OMV BIXXOL special C3 SAE 5W-30

Nr. 1: Grundöl API Group I:

- Ziel/Ansatz: dünnes Grundöl (mineralisch)
- Beschreibung:
 - typisches Spindelöl
 - hohe Verdampfung (NOACK) bzw. Aromaten
 - mittelmäßige chemische Homogenität
 - dient als Modelöl für Stellöle von Additiven nach Verdampfung

Nr. 2: Grundöl API Group III:

- Ziel/Ansatz: Grundkomponente/Trägeröl für SAE 5W-X
- Beschreibung:
 - typisches "state of the art" Grundöl für moderne PKW-Motoröle
 - hohe chemische Homogenität, überwiegend paraffinische, weniger ungesättigte Bestandteile, wenige Aromaten (Koks-/Ablagerungsbildungspotential)
 - reduzierte Verdampfungsneigung (NOACK)

Nr. 3: 10% VM-1 in Versuchsöl Nr. 2:

- Ziel/Ansatz: Einfluss von Viskositätsindex-Verbesserern
- Beschreibung:
 - VM-1: "viscosity modifier"
 - OCP-Typ: Olefin-Copolimer
 - charakteristisch und typisch für viele Mehrbereichsöle
 - "Massenprodukt" oft eingesetzt, eher eine kostengünstige Variante
 - 10 %ige Lösung in Versuchsöl 2

Nr. 4: 20 % VM-2 in Versuchsöl Nr. 2:

- Ziel/Ansatz: Einfluss von Viskositätsindex-Verbesserern
- Beschreibung:
 - VM-2: "viscosity modifier"
 - SDC-Typ: Styrd-Dien-Copolimer
 - Repräsentant für viele moderne VM-Additive
 - auch enthalten in OMV BIXXOL special C3
 - hohe Dosierungsrate: Polimer vorgelöst in Stellöl (ca. 5 % Polimer im Grundöl)

Nr. 5: 3 % DET-1 in Versuchsöl Nr. 2:

- Ziel/Ansatz: Auswirkung von Detergentien
- Beschreibung:
 - DET-1: aschehaltiges, detergierendes Additiv
 - überbasisches Kalziumsulfonat
 - typische (für PKW eher erhöhte) Dosierungsrate
 - Trägeröl (97%): Versuchsöl Nr. 2

Nr. 6: 3 % DET-2 in Versuchsöl Nr. 2:

- Ziel/Ansatz: Auswirkung von Detergentien
- Beschreibung:
 - DET-1: aschehaltiges, detergierendes Additiv
 - überbasisches Kalziumsalyzilat
 - zum Vergleich mit Versuchsöl Nr. 5

Nr. 7: 1.5 % ZnDTP-1 in Versuchsöl Nr. 2:

- Ziel/Ansatz: Auswirkung von Verschleißschutz-Additiven
- Beschreibung:
 - ZnDTP-1: Zinkdithiophosphat, Verschleißschutz-Additiv
 - der "Repräsentant" in Zusammensetzungen von Motorenölen

Nr. 8: 1.5% ZnDTP-2 in Versuchsöl Nr. 2:

- Ziel/Ansatz: Auswirkung von Verschleißschutz-Additiven
- Beschreibung:
 - ZnDTP-1: Zinkdithiophosphat, Verschleißschutz-Additiv
 - zum Vergleich mit Versuchsöl Nr. 7

Ergebnis der ersten Versuchsreihe

Die Vermessung der Öle 0 - 8 zeigte, dass das Versuchsöl Nr. 2 zwar nicht am häufigsten aber am stärksten vorentflammt Aus diesem Grund wurde das Schädigungspotential von Nr. 2 als Bewertungsbasis für die Normierung aller Versuchsöle herangezogen.

Das verwendete Motorenöl OMV BIXXOL special C3 (Nr. 0) zeigte nur geringe Neigung zur Vorenflammung.

Das Spindelöl Nr. 1 hatte zwar eine Vorentflammung mehr als Nr. 2, aber insgesamt waren alle Vorentflammungen eher schwach, was sich auch im berechneten Schädigungspotential widerspiegelt.

Im Vergleich der Viskositätsverbesserer zeigte Öl Nr. 4 im Vergleich mit Nr. 3 geringere Neigung zu Vorentflammungen.

Der Unterschied zwischen den mit Detergentien additivierten Ölen (Nr. 5 & 6) ist zu gering, um eine Aussage treffen zu können.

Auffällig ist hingegen der Unterschied zwischen dem berechneten Schädigungspotential von Versuchsöl Nr. 7 und Nr. 8, welche beide mit dem gleichen Masseanteil Zinkdithiophosphat-Verschleißschutz-Additiv unterschiedlicher Hersteller versehen sind, und dabei starke Unterschiede im Schädigungspotential aufweisen.

Eine genaue Aufstellung der Ergebnisse ist Abbildung 6.4 zu entnehmen.

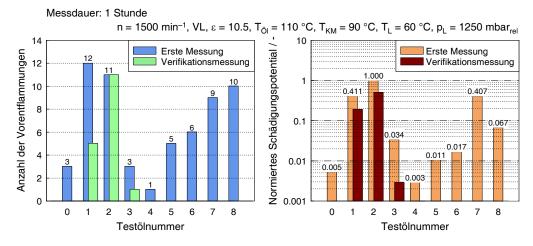


Abbildung 6.4: Ergebnisse der ersten Testreihe

6.7.2 Zweite Reihe von Versuchsölen

Die zweite Testreihe bestand aus 2 fertig formulierten Gasmotorölen, einer Reihe von Ölen mit unterschiedlichen Masseanteilen von Detergentien im Grundöl, sowie drei Ölen mit detergierenden Additiven unterschiedlicher Hersteller.

Details zu den eindosierten Ölen

Nr. 9: Gasmotoröl-1 SAE 40:

- Ziel/Ansatz: Vollformuliertes Motoröl, Vergleich mit Nr. 0
- Beschreibung:
 - Standardöl für stationäre Gasmotoren
 - SAE 40; enthält API Gr. I (mineralisch); höhere Viskositätslage, geringe Verdampfungsneigung
 - reduzierter Sulfatasche-Gehalt (<5 % Masseanteil)
 - enthält "typische" Motoröl-Bestandteile, jedoch in anderen Verhältnissen/Dosierungsraten
 - als "Kontrast"/zur Gegenüberstellung zu OMV BIXXOL special C3

Nr. 10: Gasmotoröl-2 SAE 40:

- Ziel/Ansatz: Vollformuliertes Motoröl, Vergleich mit Nr. 0 & Nr. 9
- Beschreibung:
 - wie Versuchsöl Nr. 9, nur höhere Dosierung von Detergentien (ähnlich wie Nr. 6, DET-2)
 - anfällig für Vorentflammungen nach ca. 1500 Betriebsstunden in einem Gasmotor mit Holzgas im Feld (Güssing)

Nr. 11: 1% DET-1 in Versuchsöl Nr. 2:

- Ziel/Ansatz: Masseanteilvariation von Detergentien
- Beschreibung: wie Versuchsöl Nr. 5, nur mit geringerer Dosierung

Nr. 12: 6 % DET-1 in Versuchsöl Nr. 2:

- Ziel/Ansatz: Masseanteilvariation von Detergentien
- Beschreibung: wie Versuchsöl Nr. 5, nur mit höherer Dosierung

Nr. 13: 9 % DET-1 in Versuchsöl Nr. 2:

- Ziel/Ansatz: Masseanteilvariation von Detergentien
- Beschreibung: wie Versuchsöl Nr. 5, nur mit höherer Dosierung

Nr. 14: 3 % DET-3 in Versuchsöl Nr. 2:

- Ziel/Ansatz: Typenvariation von Detergentien
- Beschreibung: aschehaltiges, detergierendes Additiv; überbasisches Kalziumsulfonat

Nr. 15: 3 % DET-4 in Versuchsöl Nr. 2:

- Ziel/Ansatz: Typenvariation von Detergentien
- Beschreibung: aschehaltiges, detergierendes Additiv; überbasisches Kalziumsulfonat

Nr. 17: 3 % DET-6 in Versuchsöl Nr. 2:

- Ziel/Ansatz: Typenvariation von Detergentien
- Beschreibung: aschehaltiges, detergierendes Additiv; überbasisches Kalziumsulfonat

Ergebnisse der zweiten Versuchsreihe

Die Vermessung der zweiten Reihe von Versuchsölen brachte, neben den nicht vorentflammenden Gasölen Nr. 9 und Nr. 10, interessante Erkenntnisse:

Bei den Ölen Nr. 11 bis 13 handelt es sich um eine Variation der Detergentien-Masseanteile im Trägeröl Nr. 2. Durch die Steigerung des Anteils von Detergentien sinkt die Stärke der Vorentflammungen. Dies ist deswegen interessant, weil genau gegenteiliges Verhalten vermutet wurde. Eine detaillierte Aufstellung der Ergebnisse ist Abbildung 6.5 zu entnehmen.

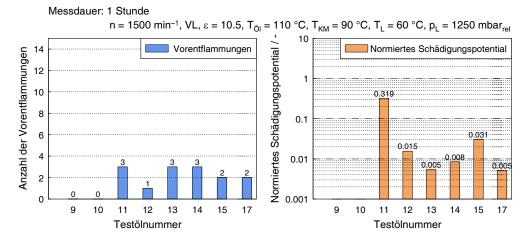


Abbildung 6.5: Ergebnisse der zweiten Testreihe

6.7.3 Dritte Reihe von Versuchsölen

Bei der dritten Versuchsölreihe handelt es sich, ausgehend von den Ergebnissen der ersten Reihe, um eine Variation unterschiedlicher, am Markt erhältlicher Basisöle.

Details zu den eindosierten Ölen

Nr. 28: Mogulol HC-2S – Grundöl API Group II

- Ziel/Ansatz: "Dieseling"-Effekt durch Ölverdampfung?
- Beschreibung:
 - ISO VG 2: extrem dünnflüssiges Grundöl
 - "Diesel-Kraftstoff"
 - Vergleich mit anderen Grundöltypen

Nr. 29: Mogulol HC-5S – Grundöl API Group II

- Ziel/Ansatz: "Dieseling"-Effekt durch Ölverdampfung?
- Beschreibung:
 - ISO VG 5: extrem dünnflüssiges Grundöl
 - "Diesel-Kraftstoff"
 - Vergleich mit anderen Grundöltypen

Nr. 30: PUR 60 – Grundöl API Group II

- Ziel/Ansatz: Kritische Viskositätsbereiche?
- Beschreibung:
 - ISO VG 10: dünnflüssiges Spindelöl
 - "Diesel-Kraftstoff"
 - Vergleich mit anderen Grundöltypen

Nr. 31: Ester DITA – Grundöl API Group V

- Ziel/Ansatz: Grundölvergleich
- Beschreibung: DITA: Di-Iso-Tridezyl-Adipate

Nr. 32: PAO 4 – Grundöl API Group IV

- Ziel/Ansatz: Grundölvergleich
- Beschreibung:
 - PAO: Polyalphaolefin

 synthetisches Grundöl für SAE 0W-X und 5W-X Motorölformulierungen

Nr. 33: NB 3080 – Grundöl API Group III

- Ziel/Ansatz: Grundölvergleich
- Beschreibung:
 - Hydrocracköl hochwertiges Grundöl
 - viskoses, dickflüssiges Grundöl

Nr. 34: PAO 8 – Grundöl API Group IV

- Ziel/Ansatz: Grundölvergleich
- Beschreibung:
 - synthetisches, viskoses Grundöl
 - Vergleich vor allem mit Nr. 33

Nr. 35: PAO 40 – Grundöl API Group IV

- Ziel/Ansatz: Grundölvergleich
- Beschreibung:
 - extrem homogenes, hochviskoses Grundöl
 - nicht typisch für Motorölformulierungen

Nr. 36: NB 3020 – Grundöl API Group III

- Ziel/Ansatz: Grundölvergleich
- Beschreibung:
 - ISO VG 7 Hydrocracköl
 - "Diesel-Kraftstoff" \rightarrow synthetisch
 - äußerst homogen; extrem niedrige kinematische Viskosität
 - Vergleich vor allem mit Nr. 28, 29 und 30

Nr. 37: NB 3030 – Grundöl API Group III

- Ziel/Ansatz: Grundölvergleich; kritische kinematische Viskosität?
- Beschreibung:
 - sehr niedrige kinematische Viskosität ($\approx 11.5cSt$)
 - Simulation des Ölverbrauchs durch Verdampfung
 - Bestimmung des kinematischen Viskositätsbereichs

Nr. 38: NB 3050 – Grundöl API Group III

- Ziel/Ansatz: Grundölvergleich; kritische kinematische Viskosität?
- Beschreibung:
 - Hydrocracköl
 - wichtig für SAE 5W-X bzw. 10W-X Motorölformulierungen

Nr. 39: Esteröl – Grundöl API Group V

- Ziel/Ansatz: Grundölvergleich; kritische kinematische Viskosität?
- Beschreibung:
 - API Group $V \rightarrow$ "Sonder"-Grundöl
 - Esteröl TMPCC (Komplex-Ester)
 - Vergleich insbesondere mit Nr. 31

Ergebnisse der dritten Versuchsreihe

Eine detaillierte Aufstellung der Ergebnisse ist Abbildung 6.6 zu entnehmen. An den Polyalphaolefinen (PAO) sieht man eine Abnahme des Schädigungspotentials bei gleichzeitiger Steigerung der kinematischen Viskosität. Die beiden getesteten Grundöle auf Esterbasis Nr. 31 und Nr. 39 zeigten keinerlei Schädigungspotential, selbiges gilt für die Grundöle von Mogulol. In Summe weißt keines der getesteten Grundöle ähnliches Schädigungspotential wie Versuchsöl Nr. 2 auf. Somit wäre es möglich in zukünftigen Motorölen, von Versuchsöl Nr. 2 als Grundöl, auf andere Grundöle auszuweichen.

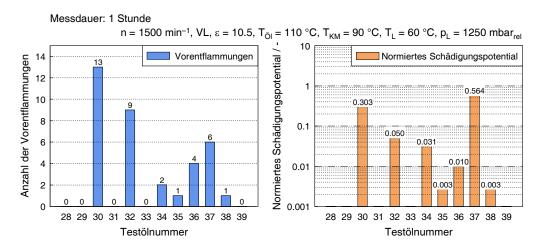


Abbildung 6.6: Ergebnisse der dritten Testreihe

6.7.4 Gebrauchtöle

Der OMV ist bekannt, dass, speziell bei Großgasmotoren, ab einer gewissen Anzahl von Betriebsstunden mit dem selben Motoröl die Häufigkeit der Vorentflammungen zunimmt. Um dies zu verifizieren wurden unter anderem Gebrauchtöle eines stationären Großgasmotors sowie anderer Motoren auf ihre Neigung zu Vorentflammungen untersucht.

Details zu den eindosierten Ölen

- Nr. 23: Gasmotoröl, gebraucht
 - Ziel/Ansatz: Vergleich mit Nr. 9 und 10
 - Beschreibung:
 - stark gealtertes Gasmotoröl nach Ölwechsel
 - "Kontrast" zu Frischöl
 - OMV gas LEG
- Nr. 24: Ottomotoröl, gebraucht
 - Ziel/Ansatz: Vergleich mit Frischöl
 - Beschreibung:
 - OMV eco extra SAE 5W-30
 - vermutlich von einem 1.6 l Opel Ottomotor
- Nr. 25: Ottomotoröl, gebraucht
 - Ziel/Ansatz: Vergleich mit Frischöl
 - Beschreibung:
 - OMV eco extra SAE 5W-40
 - vermutlich von einem 1.6 l Opel Ottomotor
- Nr. 26: Dieselmotoröl, gebraucht
 - Ziel/Ansatz: Vergleich mit Frischöl
 - Beschreibung:
 - OMV BIXXOL special C3 SAE 5W-30
 - vermutlich von einem 1.9 l Opel Dieselmotor

Nr. 27: Dieselmotoröl, gebraucht

• Ziel/Ansatz: Vergleich mit Frischöl

• Beschreibung:

- SAE 5W-30

- vermutlich von einem 1.9 l Opel Dieselmotor

Nr. 40: Gasmotoröl Nr. 10 nach 1400 BStd.

Nr. 41: Gasmotoröl Nr. 10 nach 1500 BStd.

Nr. 42: Gasmotoröl Nr. 10 nach 2000 BStd.

Ergebnisse der Gebrauchtöle

Hier zeigten lediglich zwei Öle eine Neigung zur Vorentflammung, wobei Nr. 25, das stark gebrauchte Ottomotoröl, das Schädigungspotential von Nr. 2 übertrifft und somit das am stärksten vorentflammende Versuchsöl ist.

Obwohl bei dem Gasmotor in Güssing Vorentflammungen ab ca. 1500 Betriebsstunden mit dem gleichen Öl auftraten, zeigten die Öle Nr. 40, 41 & 42 keinerlei Vorentflammungen. Da keine Informationen vorliegen, wie häufig die Vorentflammungen beim Gasmotor nach 1500 BStd. auftreten, liegt die Vermutung nahe, dass die gewählte Messdauer von einer Stunde für dieses Öl zu gering ist.

Eine detaillierte Aufstellung der Ergebnisse ist Abbildung 6.7 zu entnehmen.

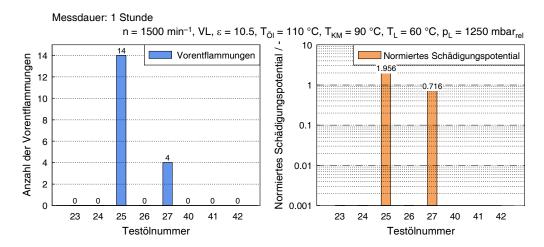


Abbildung 6.7: Ergebnisse der Gebrauchtöle

7 Vorentflammungen nach Kolbenwechsel

Aufgrund eines Kolbenschadens nach 80 Betriebsstunden mit dem ersten Kolben wurde in weiterer Folge der Kolben nach jeweils 40 Betriebsstunden gewechselt. Beim Kolbenwechsel erfolgte ein Ölauftrag auf die Lauffläche sowie auf das Kolbenringpaket. Bei der darauffolgenden Einfahrphase wurden Vorentflammungen gemessen, die in ihrer Stärke und Häufigkeit mit fortschreitender Zeit abnahmen.

Abbildung 7.1 zeigt dieses Verhalten als aufsummiertes Klopfintegral über der Zeit. Das Klopfintegral errechnet sich aus der Fläche unter den gefilterten und gleichgerichteten Klopfschwingungen bei einem Vorentflammungsereignis. Da es vorkam, dass innerhalb einer Messdatei von 100 Zyklen mehrere Vorentflammungen stattfanden, wurde pro Messdatei das Klopfintegral aufsummiert.

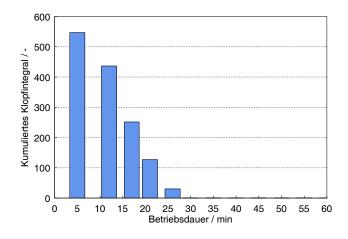


Abbildung 7.1: Aufgetretene Vorentflammungen nach Kolbenwechsel

Da nach einer Stunde Einfahrzeit unter den gewählten Randbedingungen (minimale Ventilüberschneidung) keine Vorentflammungen mehr gemessen wurden, kann davon ausgegangen werden, dass die Ursache für die Vorentflammungen das beim Wechsel aufgetragene Schmiermittel ist, welches im Lauf der Zeit in den Brennraum geschleudert wird. Diese Tatsache bestätigt die Vermutung, dass bei sinkender Kühlmitteltemperatur, durch die veränderte Bauteilausdehnung, ein erhöhter Schmiermitteleintrag über die Kolbenringe erfolgt, siehe Abbildung 7.2.

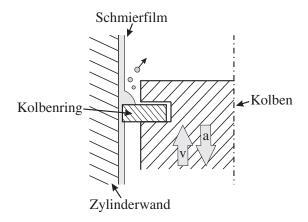


Abbildung 7.2: Öltropfen-Quelle am Kolben [3]

8 Zusammenfassung und Ausblick

8.1 Zusammenfassung

Im Rahmen der Basisuntersuchungen haben sich die Aussagen aus der Literatur bestätigt. So wurde eine tiefere Kühlmitteltemperatur als negativer Einfluss auf die Vorentflammungsneigung des hoch aufgeladenen PKW DI-Ottomotors identifiziert. Es bestätigte sich ebenfalls, dass eine Steigerung des LET (Low-End-Torque) durch Anheben der Verdichtung und des Ladedrucks einen äußerst negativen Einfluss auf die Vorentflammungsneigung hat. Die Schmiermittel- und Ladelufttemperatur zeigten hingegen nur geringen Einfluss auf die Vorentflammungsneigung des eingesetzten Forschungsmotors.

Im Rahmen der Schmiermitteleindosierung wurden in Summe 37 Versuchsöle auf ihre Neigung zur Vorentflammung untersucht und dabei für die Bewertung der Öle ein Schädigungspotential, basierend auf den auftretenden Druckmaxima, eingeführt.

Bei der Vermessung der ersten Testreihe zeigte sich, dass Versuchsöl Nummer 2, welches u.a. als Basisöl für das im Forschungsmotor verwendete OMV BIXXOL special C3 verwendet wird, das größte Schädigungspotential aufweist. Ein Vergleich der Versuchsöle Nr. 7 und 8 zeigte, dass auch die Wahl des Additivherstellers einen Einfluss auf die auftretenden Vorentflammungen haben kann. So hatte Versuchsöl Nr. 7 ein weit höheres Schädigungspotential als Nr. 8, bei gleichem Masseanteil an Detergentien im selben Trägeröl.

Bei der anschließenden zweiten Testreihe wurde festgestellt, dass eine Additivierung des Versuchsöls Nr. 2 mit Detergentien in einer Verringerung des Schädigungspotentials resultiert und des Weiteren eine Steigerung des Additivanteils im Trägeröl das Schädigungspotential noch weiter senken kann.

Bei der dritten Testreihe handelte es sich um eine Vermessung von unterschiedlichsten Basis- oder Trägerölen, bei denen sich aber keines als schädlicher erwies als Versuchsöl Nr. 2.

Bei der abschließenden Vermessung der Gebrauchtöle wurde Öl Nr. 25, das stark gebrauchte Ottomotoröl, als schädlichstes Öl aller 37 getesteten Versuchsöle identifiziert. Selbst die getesteten Dieselgebrauchtöle erwiesen sich als nicht so schädlich wie jenes gebrauchte Ottomotoröl.

8.2 Ausblick

Basierend auf den Ergebnissen dieser Arbeit sollen vollformulierte Motoröle entwickelt und an einem Vollmotor eingesetzt werden. Dies soll einen Vergleich zwischen den neu entwickelten Ölen und dem, am Forschungsmotor verwendeten, OMV BIXXOL special C3 erlauben.

Des Weiteren besteht am Forschungsmotor die Möglichkeit einen Verschleiß der Kolben/Liner Paarung zu simulieren, indem man die Menge des, in das Saugrohr eindosierten, Schmiermittels variiert.

9 Anhang

9.1 Aufgetretene Schäden

Angesichts der durchgeführten Untersuchungen und den dabei aufgetretenen, extremen Belastungen, auf die der Forschungsmotor nicht ausgelegt ist, ist es erstaunlich, dass der komplette Kurbeltrieb, sowie der Zylinderkopf und der Motor als Ganzes diese Testläufe überstanden haben. Dennoch sind Arbeiten am Püfstand immer mit unvorhersehbaren Vorfällen verbunden. Diese Vorfälle haben sich im Rahmen dieses Projektes zwar in Grenzen gehalten, aber dennoch traten einige Schäden auf. In diesem Kapitel wird zur Dokumentation kurz auf diese Schäden eingegangen.

9.1.1 Klauenkupplung

Die Klauenkupplung musste zu Beginn der Untersuchungen ersetzt werden. Sie diente als Verbindungsglied zwischen dem Forschungsmotor und dem E-Motor, war aber für die starken Wechselbelastungen des Einzylinders zu schwach. Als Folge dieser Fehldimensionierung schmolz die Dämpfungseinlage zwischen den Klauen, siehe Abbildung 9.1. Da ein Ersetzten der elastischen Einlage wohl zum selben Schadensbild ge-

Abbildung 9.1: Defekte Klauenkupplung

führt hätte, wurde eine lange Welle mit Dämpfungselementen in den Flanschen links und rechts als Ersatz eingesetzt.

9.1.2 Ölpumpe

Der nächste Schaden trat bei der Ölpumpe in der gebauten Ölkonditionieranlage auf. Die Pumpe wies am Flansch eine Undichtigkeit auf, woraufhin die Dichtungen erneuert wurden. Bei der darauffolgenden Wiedermontage brach der Flansch an der Druckseite, siehe Abbildung 9.2.

Abbildung 9.2: Defekte Ölpumpe

9.1.3 Benzin-Hochdruckpumpe

Ein weiterer Schaden trat nach rund 60 Betriebsstunden an der Hochdruckpumpe auf. Dabei handelte es sich um einen Wellenbruch, der exakt am Übergang der Welle zu einem Gewinde auftrat. Des Weiteren war das Wellenverbindungsstück aus Aluminium, welches den E-Motor mit der Pumpe verbindet, stark ausgeschlagen. Es erfolgte ein Austausch der Pumpe und das Wellenverbindungsstück wurde aus Edelstahl gefertigt. In Abbildung 9.3 sieht man die zerlegte HD-Pumpe.

Abbildung 9.3: Defekte und bereits zerlegte Benzin-Hochdruckpumpe, von links beginnend: Wellenverbindungsstück, abgebrochenes Antriebsteil der HD-Pumpe, Pumpengehäuse mit Taumelscheibe, zweiter Pumpenteil mit den drei Verdichtern und die Druckregeleinheit rechts oben

9.1.4 Kolben

Wie bereits erwähnt ging nach etwa 80 Betriebsstunden und einigen Spitzendrucküberschreitungen der erste Kolben zu Bruch, siehe Abbildung 9.4.

Tabelle 9.1: Anzahl der Spitzendruck-Überschreitungen bis zum Kolbenbruch

$p_{Zyl,max} > 150 bar$	127 mal
$p_{Zyl,max} > 200 bar$	98 mal
$p_{Zyl,max} > 250 bar$	70 mal

Abbildung 9.4: Kolbenschaden nach 80 Betriebsstunden

Nach diesem ersten Kolbenschaden wurde beschlossen, den Kolben aus Sicherheitsgründen bereits nach 40 Betriebsstunden zu wechseln. Insgesamt wurde der Kolben somit vier Mal gewechselt, wobei der fünfte, noch verbaute Kolben nach Abschluss der Messungen bereits 50 Betriebsstunden gelaufen ist.

9.1.5 Radial-Wellendichtring

Nur wenige Betriebstunden nach dem Kolbenschaden fiel eine Undichtigkeit am Kurbelwellenausgang auf. Grund dafür war ein spröder Wellendichtring der ausgewechselt werden musste. In Abbildung 9.5 sind die Risse im Dichtring rot markiert.

Abbildung 9.5: Spröder Radial-Wellendichtring

9.2 Datenblätter zu den eindosierten Testölen

√ericht SM (KADE)

Seite: 1 / 1

Versuch	söl Nr. 1 Grunda	[APIG	roup I	20	12/027031
Kunde	Competence Center Lubes	<u> </u>	Auftragsnummer	S04	038 / 5T
Probenherkur	oft LVSM 3660 A		Einsatzzeit	0	
Termin bis	23.06.2012 14:37		Gesamt Einsatzzeit	0	
Erstellt am	18.06.2012 14:39		Probenahme	18.0	6.2012 14:37
Aufgabenstell	ung Kennwerte				
Interne Inform	, , , , , , , , , , , , , , , , , , , ,		1	,	
Ziel/	Ansatz: dünnes	Grundol	<i>[mineral</i>	isch	
Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
460001	Mischung		erledigt		
469701	Aussehen	Methode MK1-LBT	klar		
469601	Geruch	Methode MK1-LBT	frisch		
469902	IR-Aufnahme	DIN 51451	in Datei		
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	<0,01	%М	
060102	Viskosität 40 Grad C	DIN 51562/T1	15,68	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	3,608	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	113		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	827,7	kg/m³	
064040	Additivelemente RFA	TQL-7929	х		
064004	Phosphor	TQL-7929	<3	mg/kg	
064005	Schwefel	TQL-7929	74	mg/kg	
064006	Chlor	TQL-7929	15	mg/kg	
064008	Calcium	TQL-7929	<10	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<2	mg/kg	
460014	ABLAGEORDNER		Projekt Vorentflammun g		
Beschr	eibung: * typisch • hohe Ver • mittelm • Dient a	abige ch (s Model a	elől g(Noack) emischer d, Für S	tomo	genitai
	Addition	ien nach	1 Verdam	of au	19

Probenbericht SM (KADE) Seite: 2/8

	# A		1.	1	
Versuc	hsöl Nr. 2 Grundöl	API Group III	I (100%	201	2/027032
Kunde	Competence Center Lube	s A	Auftragsnummer /	S040	38 / 5T
Probenherk	unft LVSM 3660 B	E	Einsatzzeit	0	
Termin bis	23.06.2012 14:37	(Gesamt Einsatzzeit	0	
Erstellt am	18.06.2012 14:40	F	Probenahme	18.06	.2012 14:37
Aufgabenste					
Interne Infor	rmation Projekt Vorentflammung			1	
Ziel,	/Ansatz: Grundka	omponente/1	ragero	l für	SHEDW
A mahuaa	Charakta	etisier und c	als Repr	a sen	rant
Analyse	Komponente	Norm 10	vvert	Еплен (srenzwerte
460001	Mischung		erledigt		
469701	Aussehen	Methode MK1-LBT	klar		
469601	Geruch	Methode MK1-LBT	frisch		
469902	IR-Aufnahme	DIN 51451	in Datei		
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	<0,01	%M	
060102	Viskosität 40 Grad C	DIN 51562/T1	20,30	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	4,318	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	121		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	831,9	kg/m³	
064040	Additivelemente RFA	TQL-7929	x		·
064004	Phosphor	TQL-7929	<1	mg/kg	
064005	Schwefel	TQL-7929	20	mg/kg	
064006	Chlor	TQL-7929	15	mg/kg	
064008	Calcium	TQL-7929	<10	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<2	mg/kg	
460014	ABLAGEORDNER		Projekt Vorentflammun		
Roser	eibung: typisches	deteration	rt"-Gruy	Mäl	fürmade
NC 301	AMA TINGES	195000	V Olar	, ~ U	, wi 11/00/1
		54 × ((3)/ (m) / ()			
	· hoche che	mische Homo	paenität	, uber	-Wiege
	paroffini	Sche Wenio	eruncia	17525	afe Bei
	Loil & IND	Wige ATOM	tonikal	S-/ Dh	MORTING
	DILL W	Tay to the	, LOTI NOK	7-1 17	my will
	bildung-1	mische Homo Sche, Wenie Chige Aroma btential)	7 - 4 - 14 - 1	. /	11
	· reduzier	ce verdampt	ungsneig	ungl	Noack
			0	<u> </u>	

aktualisiert am: 26/06/2012 13:29:52

LIMS_Probenbericht_SM_LINK.rep (v3.0) [limsauto003]

Seite: 3 / 8

Versuch	nsöl Nr. 3 10% VM-1	in Grundöl	Gr.II	20	12/027033
Kunde	Competence Center Lubes	F	Auftragsnummer	S04	038 / 5T
Probenherku	nft LVSM 3660 C	E	Einsatzzeit	0	
Termin bis	23.06.2012 14:37		Gesamt Einsatzzeit	t 0	
Erstellt am	18.06.2012 14:41		Probenahme	18.0	06.2012 14:37
Aufgabenstel					
Interne Inforn					10.21
Ziel	/Ansatz: Modelč	l zum le	rgleich r	nit N	24/Nº 4
Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
460001	Mischung		erledigt		
469701	Aussehen	Methode MK1-LBT	klar		
469601	Geruch	Methode MK1-LBT	frisch		
469902	IR-Aufnahme	DIN 51451	in Datei		
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	<0,01	%M	
060102	Viskosität 40 Grad C	DIN 51562/T1	47,59	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	8,925	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	171		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	835,7	kg/m³	
064040	Additivelemente RFA	TQL-7929	x		
064004	Phosphor	TQL-7929	<3	mg/kg	
064005	Schwefel	TQL-7929	457	mg/kg	
064006	Chlor	TQL-7929	14	mg/kg	
064008	Calcium	TQL-7929	<10	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdan	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<2	mg/kg	
460014	ABLAGEORDNER		Projekt Vorentflammun g		
Besch	reibung: · VM-1:	Viskosifatsii	adox 1 bo	Dese	erer
	· Charak	yp: Olefin teristisch	und ty	P15(,h fär v
	Menroe	reichsöle produkt of junstige Vo Losung i	teinges	etet	, eher e
	· 10%-ige	e Losang i	n Versud	1621	2
tualisiert am: 2	6/06/2012 13:29:52		Probenbericht_SM_L		

aktualisiert am: 26/06/2012 13:29:52

LIMS_Probenbericht_SM_LINK.rep (v3.0) [limsauto003]

Seite: 4 / 8

Versuch	söl Nr. 4 20% VM-2	in API GO	T	2012/027034		
Kunde	Competence Center Lubes	P	Auftragsnummer	S04038 / 5T		
Probenherkur	ift LVSM 3660 D	E	Einsatzzeit	0		
Termin bis	23.06.2012 14:37	(Gesamt Einsatzzeit	0		
Erstellt am	18.06.2012 14:41	F	Probenahme	18.06.2012 14:37		
Aufgabenstell	ung Kennwerte					
Interne Inform	ation Projekt Vorentflammung NSQt2; Modele(2	um Veralei	ch mit N	1º2/Nº3		
Analyse	Komponente	Norm		Einheit Grenzwerte		
460001	Mischung		erledigt			
469701	Aussehen	Methode MK1-LBT	klar			
469601	Geruch	Methode MK1-LBT	frisch			
469902	IR-Aufnahme	DIN 51451	in Datei			
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	<0,01	%M		
060102	Viskosität 40 Grad C	DIN 51562/T1	50,31	mm²/s		
060104	Viskosität 100 Grad C	DIN 51562/T1	9,902	mm²/s		
060202	Viskositätsindex	DIN ISO 2909	187			
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	833,8	kg/m³		
064040	Additivelemente RFA	TQL-7929	x			
064004	Phosphor	TQL-7929	3	mg/kg		
064005	Schwefel	TQL-7929	25	mg/kg		
064006	Chlor	TQL-7929	15	mg/kg		
064008	Calcium	TQL-7929	<1	mg/kg		
064017	Zink	TQL-7929	<1	mg/kg		
064019	Molybdän	TQL-7929	<1	mg/kg		
064026	Barium	TQL-7929	<2	mg/kg		
460014	ABLAGEORDNER		Projekt Vorentflammun 9			
Sechreibung: VM-2: Viskositäts index-Verbesserer • SDC-Typ: Styrol-Dien-Copolimer • "Repräsentant" fär viele moderne VM-Additive • enthalten in OMV BIXXOL special C3 • hothe Dosirungsrate: Polimer vorgelöst in Stelli (ca. 5% Polimer in Grundöl), Einfluss von Stellöl?						
	· "Keprasen" · enthalten · hohe Dosign	tant tar i in OMV B ungsrate: 1	riele Moo (XXOL sp Polimer i	ccial C3 lorgelost in Sto		
	(ca.5% Polio	ger in Grav	idól), Eiv	14 Luss von Stellol		

Seite: 5 / 8

Versuch	ISÖI Nr. 5 3% DET-/	I in APIE	ir.II	20	12/027035	
Kunde	Competence Center Lubes		Auftragsnummer	\$04	038 / 5T	
Probenherku	nft LVSM 3660 E		Einsatzzeit	0		
Termin bis	23.06.2012 14:37		Gesamt Einsatzzeit	. 0		
Erstellt am	18.06.2012 14:41		Probenahme	18.0	06.2012 14:37	
Aufgabenstel	iung Kennwerte					
Interne Inforn						
Ziel	Ansatz: Modelol,	Auswirkur	19 VOU De	eterg	cntien	
Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte	
460001	Mischung		erledigt			
469701	Aussehen	Methode MK1-LBT	klar			
469601	Geruch	Methode MK1-LBT	frisch			
469902	IR-Aufnahme	DIN 51451	in Datei			
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	1,21	%M		
060102	Viskosität 40 Grad C	DIN 51562/T1	21,11	mm²/s		
060104	Viskosität 100 Grad C	DIN 51562/T1	4,459	mm²/s		
060202	Viskositätsindex	DIN ISO 2909	125			
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	839,5	kg/m³		
064040	Additivelemente RFA	TQL-7929	x			
064004	Phosphor	TQL-7929	<3	mg/kg		
064005	Schwefel	TQL-7929	324	mg/kg		
064006	Chlor	TQL-7929	14	mg/kg		
064008	Calcium	TQL-7929	4724	mg/kg		
064017	Zink	TQL-7929	<1	mg/kg		
064019	Molybdän	TQL-7929	<1	mg/kg		
064026	Barium	TQL-7929	<2	mg/kg		
460014	ABLAGEORDNER		Projekt Vorentflammun q			
Beschreihung: DET-1: aschehaltiges, detergierendes Abdit überbasisches Kalziumsultonat tupische (für PKW eher erhöhte) Dosierungs						
	o uper pas	SISUIES Kal	tlumsul	-140)		
	· typische	(FUT PKW	ever erno) ULC)	rosician	
	rafe Tragere					
	1000	~ (~ / / /) .	- 1	•		

Seite: 6 / 8

Analyse Ko 460001 Mi 469701 Au 469601 Go 469902 IR	on Projekt Vorentflammung NSQ12: Model of Att componente lischung ussehen ieruch	US WITKUNG Norm Methode MK1-LBT	witragsnummer Einsatzzeit Gesamt Einsatzzeit Probenahme VON Deli Wert erledigt	0 0 18.0 gent	038 / 5T 06.2012 14:37
Termin bis Erstellt am Aufgabenstellung Interne Informatio Ziel Ai Analyse Ko 460001 Mi 469701 Au 469601 Go 469902 IR	23.06.2012 14:37 18.06.2012 14:41 Kennwerte Projekt Vorentflammung NSQLE: Modelo(All componente dischung ussehen seruch	Norm Methode MK1-LBT	Gesamt Einsatzzeit Probenahme VON Delli Wert	0 18.0 gent	ien
Erstellt am Aufgabenstellung Interne Informatio Ziel Ai Analyse Ke 460001 Mi 469701 Au 469601 Ge 469902 IR	18.06.2012 14:41 Kennwerte on Projekt Vorentflammung NSQLZ: Model of All John Square State of	Norm Methode MK1-LBT	Von Deter Wert	18.0 gent	ien
Aufgabenstellung Interne Informatio Ziel Ai Analyse Ko 460001 Mi 469701 Au 469601 Go 469902 IR	Kennwerte On Projekt Vorentflammung NSQL2: Modelol All Componente Dischung Ussehen Dischung	Norm Methode MK1-LBT	Von Deter wert	gent	ien
Interne Informatio	on Projekt Vorentflammung NSatz: Modelo(Att componente dischung ussehen dieruch	Norm Methode MK1-LBT	Wert	0	i e N Grenzwerte
Ziel /Ai Analyse Ko 460001 Mi 469701 Au 469601 Go 469902 IR	NSatz: Modelol, Adamponente lischung ussehen ieruch	Norm Methode MK1-LBT	Wert	0	Grenzwerte
Analyse Ko 460001 Mi 469701 Au 469601 Go 469902 IR	lischung ussehen	Norm Methode MK1-LBT	Wert	0	Grenzwerte
469701 Au 469701 Au 469601 Gd 469902 IR	ussehen ieruch	Methode MK1-LBT		Einheit	Grenzwerte
469701 Au 469601 Ge 469902 IR	ussehen		erledigt		
469601 Ge 469902 IR	eruch				
469902 IR	-		klar		
		Methode MK1-LBT	frisch		
061004	R-Aufnahme	DIN 51451	in Datei		
001904 C	CR (Mikroverfahren)	DIN EN ISO 10370	1,00	%M	
060102 Vi	iskosität 40 Grad C	DIN 51562/T1	21,15	mm²/s	
060104 Vi	iskosität 100 Grad C	DIN 51562/T1	4,463	mm²/s	
060202 Vi	iskositätsindex	DIN ISO 2909	124		
060602 Di	ichte 20 Grad C (Schwingquarz)	DIN 51757	838,6	kg/m³	
064040 Ac	dditivelemente RFA	TQL-7929	x		
064004 Pr	hosphor	TQL-7929	<3	mg/kg	
064005 Sc	chwefel	TQL-7929	50	mg/kg	
064006 CH	hlor	TQL-7929	<2	mg/kg	
064008 Ca	alcium	TQL-7929	4214	mg/kg	
064017 Zir	ink	TQL-7929	<1	mg/kg	
064019 Mo	olybdän	TQL-7929	<1	mg/kg	
064026 Ba	arium	TQL-7929	<2	mg/kg	
460014 AE	BLAGEORDNER		Projekt Vorentflammun g		
Beschreil	bung: DET-7: oberbasi:	aschehaltic sches Kali gleich mi	ges deter	giere Jzil drsŏl	ndes Addi

Seite: 7 / 8

Versuchsöl I	ur. 1,5% ZnDTP-	1 in API	Gr. II	20	12/027037
Kunde	Competence Center Lubes		Auftragsnummer	S04	038 / 5T
Probenherkunft	LVSM 3660 G		Einsatzzeit	0	
Termin bis	23.06.2012 14:37		Gesamt Einsatzzeit	0	
Erstellt am	18.06.2012 14:41		Probenahme	18.0	6.2012 14:37
Aufgabenstellung	Kennwerte		•		
Interne Information	Projekt Vorentflammung	\		1/->0	
tiellans	atz: Modelol, M	tuswirkun	g von versc	nleißs	chutz-Holdit
Analyse Komp	oonente	Norm	Wert	Einheit	Grenzwerte
460001 Misch	ung		erledigt		
469701 Ausse	ehen	Methode MK1-LBT	klar		
469601 Gerud	ch	Methode MK1-LBT	frisch		
469902 IR-Au	fnahme	DIN 51451	in Datei		
061904 CCR	(Mikroverfahren)	DIN EN ISO 10370	0,50	%M	
060102 Visko	sität 40 Grad C	DIN 51562/T1	20,37	mm²/s	
060104 Visko:	sität 100 Grad C	DIN 51562/T1	4,317	mm²/s	
060202 Viskos	sitätsindex	DIN ISO 2909	120		
060602 Dichte	20 Grad C (Schwingquarz)	DIN 51757	835,3	kg/m³	
064040 Additi	velemente RFA	TQL-7929	x		
064004 Phosp	phor	TQL-7929	1320	mg/kg	
064005 Schwi	efel	TQL-7929	2626	mg/kg	
064006 Chlor		TQL-7929	3	mg/kg	
064008 Calciu	im	TQL-7929	<10	mg/kg	
064017 Zink		TQL-7929	1421	mg/kg	
064019 Molyb	dän	TQL-7929	<1	mg/kg	
064026 Bariur	n	TQL-7929	<16	mg/kg	
460014 ABLA	GEORDNER		Projekt Vorentflammun		
Beschreib	ung: ZnDTP-1 · Zinkdithi	i Verschle ophosphat itant in Z	PBSJUZ-F	iddit	iV

Seite: 8 / 8

Vorousk	söl Nr. 8/5% ZuDT	P-2 in A	PI Gr. III	2042/027020
			11012	2012/027038
Kunde	Competence Center Lub	es	Auftragsnummer	S04038 / 5T
Probenherku			Einsatzzeit	0
Termin bis	23.06.2012 14:37 18.06.2012 14:41		Gesamt Einsatzzeit	
Erstellt am			Probenahme	18.06.2012 14:37
Aufgabenstel Interne Inforn				
Ziel	Ansatz: Model?	ot, Auswirka	ing van lets	dleBahatz-Addit
Analyse	Komponente	Norm	Wert	Einheit Grenzwerte
460001	Mischung		erledigt	
469701	Aussehen	Methode MK1-LBT	klar	
469601	Geruch	Methode MK1-LBT	frisch	
469902	IR-Aufnahme	DIN 51451	in Datei	
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	0,44	%M
060102	Viskosität 40 Grad C	DIN 51562/T1	20,44	mm²/s
060104	Viskosität 100 Grad C	DIN 51562/T1	4,331	mm²/s
060202	Viskositätsindex	DIN ISO 2909	121	
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	834,7	kg/m³
064040	Additivelemente RFA	TQL-7929	x	
064004	Phosphor	TQL-7929	980	mg/kg
064005	Schwefel	TQL-7929	1990	mg/kg
064006	Chlor	TQL-7929	5	mg/kg
064008	Calcium	TQL-7929	<1	mg/kg
064017	Zink	TQL-7929	1138	mg/kg
064019	Molybdän	TQL-7929	<1	mg/kg
064026	Barium	TQL-7929	<16	mg/kg
460014	ABLAGEORDNER		Projekt Vorentflammun	
Beschr	eibung: ZnDTF Zinkdi Verglei	thiophosph	eißsdrutz- iat suchsol	Additiv Nº 7

Seite: 1 / 2

Versuch	söl Nr. 9 Gasmotorei	10 EASAE L	10	2012/028591	
Kunde	Competence Center Lubes		Auftragsnummer	S04038 / 5T	
Probenherkur	oft ex FBS CH 36973		Einsatzzeit	0	
Termin bis	02.07.2012 10:51		Gesamt Einsatzzeit	0	
Erstellt am	27.06.2012 10:53		Probenahme	27.06.2012 10:51	
Aufgabenstell	ung Kennwerte				
Interne Inform	,	1-11140			ı
FIEL/	Ansatz: Volltormuli	ertes Mota	chel hels	gleich mit Us)
Analyse	Komponente	Norm	Wert	Einheit Grenzwerte	
069701	Aussehen	Methode MK1-LBT	klar		
069601	Geruch	Methode MK1-LBT	typ.		
469902	IR-Aufnahme	DIN 51451	in Datei		
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	0,61	%М	
060102	Viskosität 40 Grad C	DIN 51562/T1	126,01	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	13,625	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	104		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	883,2	kg/m³	
064040	Additivelemente RFA	TQL-7929	x		
064004	Phosphor	TQL-7929	239	mg/kg	
064005	Schwefel	TQL-7929	5414	mg/kg	
064006	Chlor	TQL-7929	37	mg/kg	
064008	Calcium	TQL-7929	2092	mg/kg	
064017	Zink	TQL-7929	278	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<2	mg/kg	
460014	ABLAGEORDNER		Projekt Vorentflammun g		
beschrei	ibung: · Standardöl	thalt AF	1 - 1 - 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	IINGCILL SOLL	nöhe
	Viskositat	slage, wer	ige, Krda	impfung en alt (< 0,5% -Bestundteil sen/Losicrungsr g zu C3(Acto	1/1/2
	· reautient	GL JULIAL	asche-G	andri / ola	0114
	· enthalt to	apisone M	oto chal	- Bestavate 11	ک ا
	iedoch"i	n'anderen	Verhältnis	sen/Lbsicrungsr	ate
	VKantractu	CROOKIN	profollun	a dr. (3/Alaska	P
	Moningsi	00,7190		1 m - 1/10/	ı VI
				`	

aktualisiert am: 02/07/2012 16:41:21

LIMS_Probenbericht_SM_LINK.rep (v3.0) [limsauto004]

Seite: 2 / 2

Versuch	söl Nr. 10 Gasmotore	enöl-2 S	AE 40	201	2/028592		
Kunde	Competence Center Lubes		Auftragsnummer	S0403	38 / 5T		
Probenherkunf	ft ex FBS CH 36976		Einsatzzeit	0			
Termin bis	02.07.2012 10:51		Gesamt Einsatzzeit	0			
Erstellt am	27.06.2012 10:54		Probenahme	27.06	2012 10:51		
Aufgabenstellu	ung Kennwerte						
Interne Informa		ch mitc:	3 (Referen	7 b2W	, Nº 9		
Analyse	Komponente	Norm	Wert	Einheit G	irenzwerte		
069701	Aussehen	Methode MK1-LBT	klar				
069601	Geruch	Methode MK1-LBT	typ.				
469902	IR-Aufnahme	DIN 51451	in Datei				
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	0,80	%M			
060102	Viskosität 40 Grad C	DIN 51562/T1	127,12	mm²/s			
060104	Viskosität 100 Grad C	DIN 51562/T1	13,676	mm²/s			
060202	Viskositätsindex	DIN ISO 2909	104				
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	885,5	kg/m³			
064040	Additivelemente RFA	TQL-7929	х				
064004	Phosphor	TQL-7929	250	mg/kg			
064005	Schwefel	TQL-7929	7470	mg/kg			
064006	Chlor	TQL-7929	<2	mg/kg			
064008	Calcium	TQL-7929	2791	mg/kg			
064017	Zink	TQL-7929	314	mg/kg			
064019	Molybdän	TQL-7929	<2	mg/kg			
064026	Barium	TQL-7929	<2	mg/kg			
460014	ABLAGEORDNER		Projekt Vorentflammun g				
Beschreibung: • Wie Varachsöl Nº 9, nur höhere Dosierun von Detergentien lehnlich wie Nº 6, DET-2 • Anfällig für Vorentflammung nach 1500 BStal in einem Gasmotor (Güssing mit Holzgas im Feld							
· Anfallig tur Vorenttlammung nach							
	1229 000	10 00000	IA GOCHA -	for 11	in min		
	1500 BS6	in einea	n Gasmo	tor(G	nipu		

Seite: 1 / 22

Versuch	söl Nr. 11 1% DET-	1 in API	Gr. III	2012/036825
Kunde	Compotonoo Contar Lubac			S04038 / 5T
Probenherkun	ift LVSM 3660 I	mentration-	Einsatzzeit	0
Termin bis	22.08.2012 12:00	intion	Gesamt Einsatzzeit	t 0
Erstellt am	17.08.2012 12:01 VCI	1401011	Probenahme	17.08.2012 12:00
Aufgabenstellu	ung Kennwerte			
Interne Informa				
Ziel	Ansatz: Modelöl	Auswirkun	g von Dete	rgentien
Analyse	Komponente	Norm	Wert	Einheit Grenzwerte
460001	Mischung		erledigt	
469701	Aussehen	Methode MK1-LBT	klar	
469601	Geruch	Methode MK1-LBT	frisch	
469902	IR-Aufnahme	DIN 51451	in Datei	
060102	Viskosität 40 Grad C	DIN 51562/T1	20,59	mm²/s
060104	Viskosität 100 Grad C	DIN 51562/T1	4,377	mm²/s
060202	Viskositätsindex	DIN ISO 2909	123	
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	834,4	kg/m³
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	0,35	%M
061201	TBN	ASTM D 2896	4,1	mg KOH/g
064040	Additivelemente RFA	TQL-7929	×	
064004	Phosphor	TQL-7929	<3	mg/kg
064005	Schwefel	TQL-7929	155	mg/kg
064006	Chlor	TQL-7929	17	mg/kg
064008	Calcium	TQL-7929	(1769)	mg/kg
064017	Zink	TQL-7929	<1	mg/kg
064019	Molybdän	TQL-7929	<1	mg/kg
064026	Barium	TQL-7929	<16	mg/kg
460014	ABLAGEORDNER		Projekt Vorentflammun	
Beschre	eibung: DET-1 • Vergleic • Konzentra	(1%) in (2	9%) Verso	uchsol Nº2
	Vergleic	4 mit Bi	lends 5,	12 und 13
	 Konzentra 	ition-Vari	ation in	1 API Gr. III

aktualisiert am: 30/08/2012 13:59:08

LIMS_Probenbericht_SM_LINK rep (v3.0) [limsauto005]

Probenbericht SM (KADE) Seite: 2 / 22

Versuch	söl Nr. 12 6% DET-	1 in API	Gr. III	201	2/036826
Kunde	Competence Senter Lubes	1 15	Auftragsnummer	S0403	38 / 5T
Probenherkun	Competence Senter Lubes ft LVSM 3660 J KON 7	entration—	Einsatzzeit	0	
Termin bis	22.08.2012 12:00 [/]	intian (Gesamt Einsatzzeit	t 0	
Erstellt am	17.08.2012 12:82	1001 F	robenahme	17.08	2012 12:00
Aufgabenstell	ung Kennwerte				
Interne Inform	ation Projekt Vorentflammung				,
Ziel/	Ansatz: Modelöl, A	uswirkung	von Ucto	ergeni	tien
Analyse /	Komponente	Norm	Wert	Einheit G	irenzwerte
460001	Mischung		erledigt		
469701	Aussehen	Methode MK1-LBT	klar		
469601	Geruch	Methode MK1-LBT	frisch		
469902	IR-Aufnahme	DIN 51451	in Datei		
060102	Viskosität 40 Grad C	DIN 51562/T1	21,97	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	4,619	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	129		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	847,2	kg/m³	-
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	2,36	%M	
061201	TBN	ASTM D 2896	24,7	mg KOH/g	
064040	Additivelemente RFA	TQL-7929	x		
064004	Phosphor	TQL-7929	<3	mg/kg	
064005	Schwefel	TQL-7929	742	mg/kg	
064006	Chlor	TQL-7929	18	mg/kg	
064008	Calcium	TQL-7929	(10130)	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	·
064026	Barium	TQL-7929	<2	mg/kg	
460014	ABLAGEORDNER		Projekt Vorentflammun		
Beschre	ibung: · DET-1/6 · Vergleich · Konzentrat	5% 14/9	14% Ver	sachsi	56 Nº2
	* Veraleid	1 of t RIP	nd 5 1	1 unc	1/2
	10.7.00	I MIL DICE	147 11	ΛO	
	· Konzentrat	ion-lariat	ni noi	441	or III

Seite: 3 / 22

	- 0				
Versuch	söl Nr. 13 9% DET-	-1 in API	Gr. III	20	12/036827
Kunde	Competence Center Lubes			S04	038 / 5T
Probenherkui	nft LVSM 3660 K RON7	fentration-	– Einsatzzeit	0	
Termin bis	22.08.2012 12:00 Jar	iation	Gesamt Einsatzzeit	t 0	
Erstellt am	17.08.2012 12:03		Probenahme	17.0	8.2012 12:00
Aufgabenstel					
Interne Inform					
Ziel/	Ansatz: Modelől,	Auswirkung	y von Det	erge	entica
Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
460001	Mischung		erledigt		
469701	Aussehen	Methode MK1-LBT	klar		
469601	Geruch	Methode MK1-LBT	frisch		
469902	IR-Aufnahme	DIN 51451	in Datei		
060102	Viskosität 40 Grad C	DIN 51562/T1	22,97	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	4,724	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	127		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	855,1	kg/m³	
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	3,64	%М	
061201	TBN	ASTM D 2896	17,2	mg KOH/g	
064040	Additivelemente RFA	TQL-7929	x		
064004	Phosphor	TQL-7929	<3	mg/kg	
064005	Schwefel	TQL-7929	1131	mg/kg	
064006	Chlor	TQL-7929	23	mg/kg	
064008	Calcium	TQL-7929	(15530)	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<2	mg/kg	
460014	ABLAGEORDNER		Projekt Vorentflammun		
Beschr	eibung: DET-1 Vergleich	(9%) in (9	31% Ver	suchs	66 Nº2
	·Vergleic	A mit Bl	ends 5,	11 u	nd 12
	· Konzentr	ation-Va	riation		

aktualisiert am: 30/08/2012 13:59:08

LIMS_Probenbericht_SM_LINK.rep (v3.0) [limsauto005]

Seite: 4 / 22

	söl Nr. 14 3 % DE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 017		12/036828
Kunde	Competence Center Lubes		Auftragsnummer		038 / 5T
Probenherkun	•••		Einsatzzeit	0	
Termin bis	22.08.2012 12:00	C	Gesamt Einsatzzei	t 0	
Erstellt am	17.08.2012 12:03	F	Probenahme	17.0	08.2012 12:00
Aufgabenstellı					
Interne Inform	10 1 1 1 1	· · · //	N -14	T	1
Ziel	/Ansatz: Model & 1.	Tupen-Va	irication i	IL NOV	elargentici
Analyse	/ Komponente	Norm	Wert	Einheit	Grenzwerte
460001	Mischung		erledigt		
469701	Aussehen	Methode MK1-LBT	klar		
469601	Geruch	Methode MK1-LBT	frisch		
469902	IR-Aufnahme	DIN 51451	in Datei	- 3	
060102	Viskosität 40 Grad C	DIN 51562/T1	21,04	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	4,456	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	125		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	839,6	kg/m³	
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	1,21	%M	
061201	ТВИ	ASTM D 2896	12,1	mg KOH/g	
064040	Additivelemente RFA	TQL-7929	x		
064004	Phosphor	TQL-7929	<3	mg/kg	
064005	Schwefel	TQL-7929	436	mg/kg	
064006	Chlor	TQL-7929	<10	mg/kg	
064008	Calcium	TQL-7929	5266	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<2	mg/kg	
160014	ABLAGEORDNER		Projekt Vorentflammun g		
eschre	ibung: DET-3:	aschehaltic	ges, deter	giere	ender Addi
	0,001-001-01	1-01-100	0010113011	1 - 11	arca-su
	-211	e Dosieri	ungsro	ite	1 = 1
	VI -	1/ / 17:50	1116	1101	alpich
	· Typen-	Variatio	of Lergy	hool	gleich

Seite: 5 / 22

Kunde	Competence Center Lubes	•	Auftragsnummer	S04	038 / 5T
Probenherkur			Einsatzzeit	0	
Termin bis	22.08.2012 12:00		Gesamt Einsatzzeit	0	:
Erstellt am	17.08.2012 12:03		Probenahme	17.0	08-2012 12:00
Aufgabenstell	ung Kennwerte				
Interne Inform					
Ziel/	Ansatz: Model 51, 7	upen-Varia	tion von 1)eter	gentien
Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
460001	Mischung		erledigt		
469701	Aussehen	Methode MK1-LBT	klar		
469601	Geruch	Methode MK1-LBT	frisch		
469902	IR-Aufnahme	DIN 51451	in Datei		
060102	Viskosität 40 Grad C	DIN 51562/T1	21,17	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	4,480	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	126		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	839,5	kg/m³	
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	1,20	%M	
061201	TBN	ASTM D 2896	12,2	mg KOH/g	
064040	Additivelemente RFA	TQL-7929	x		
064004	Phosphor	TQL-7929	<3	mg/kg	
064005	Schwefel	TQL-7929	369	mg/kg	
064006	Chlor	TQL-7929	12	mg/kg	
064008	Calcium	TQL-7929	5147	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<2	mg/kg	
160014	ABLAGEORDNER		Projekt Vorentflammun g		
beschr	eibung: DET-4:	-aschehalt	ges, deter	giere	endes Addi
	· ubertas	isches Kal	Ziumsal	tona	IT Ca-Su
	TUDEN-	e Dosierum Variation	M Und	Vero	leich
	·Trager	3 (07%):	Versuchsi	51 N	22

Seite: 7 / 22

	- 20/ DET 1	C) DPI	C - 111	
	söl Nr. 17 3% DET-1	o IN ALL	01.11	2012/036831
Kunde	Competence Center Lubes		Auftragsnummer	S04038 / 5T
Probenherkun			Einsatzzeit	0
Termin bis	22.08.2012 12:00		Gesamt Einsatzzeit	
Erstellt am	17.08.2012 12:03		Probenahme	17.08.2012 12:00
Aufgabenstell	<u> </u>	·		
Ziel	1 11 112	L, DET	- Variat	ion
Analyse	Komponente	Norm	Wert	Einheit Grenzwerte
460001	Mischung		erledigt	
469701	Aussehen	Methode MK1-LBT	klar	
469601	Geruch	Methode MK1-LBT	frisch	
469902	IR-Aufnahme	DIN 51451	in Datei	
060102	Viskosität 40 Grad C	DIN 51562/T1	21,07	mm²/s
060104	Viskosität 100 Grad C	DIN 51562/T1	4,449	mm²/s
060202	Viskositätsindex	DIN ISO 2909	124	
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	839,6	kg/m³
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	1,17	%M
061201	TBN	ASTM D 2896	11,6	mg KOH/g
064040	Additivelemente RFA	TQL-7929	x	
064004	Phosphor	TQL-7929	<3	mg/kg
064005	Schwefel	TQL-7929	562	mg/kg
064006	Chlor	TQL-7929	<2	mg/kg
064008	Calcium	TQL-7929	5132	mg/kg
064017	Zink	TQL-7929	<1	mg/kg
064019	Molybdän	TQL-7929	<1	mg/kg
064026	Barium	TQL-7929	<2	mg/kg
460014	ABLAGEORDNER		Projekt Vorentflammun	
Besch	. 3% . DET	T-6-> - SUL (ŭ): - Variatio	n und Ve	ergleich

aktualisiert am: 30/08/2012 13:59:08

LIMS_Probenbericht_SM_LINK.rep (v3.0) [limsauto005]

Seite: 13 / 22

Versuch	söl Nr. 23 Gasmotore	nol/Geb	raucht	2012/037289
Kunde	Competence Center Lubes	100/	Auftragsnummer	S04038 / 5T
Probenherkun			Einsatzzeit	0
Termin bis	26.08.2012 11:38		Gesamt Einsatzzeit	
Erstellt am	21.08.2012 11:40		Probenahme	21.08.2012 11:38
Aufgabenstell	ung Gebrauchtölanalyse		_	
Interne Inform	ation OMV gas LEG			1
Ziel	Ansatz: Verglei	ch mit	Trischöle	en Vº9/1040
Analyse	Komponente	Norm	Wert	Einheit Grenzwerte
469806	Oxidation	Methode Perkin-Elmer	20,15	A/cm
469805	Nitration	Methode Perkin-Elmer	21,63	A/cm
469801	Russ	Methode Perkin-Elmer	0,03	%Masse
469803	Glykol	Methode Perkin-Elmer	0,00	%Masse
469804	Wasser	Methode Perkin-Elmer	0,16	%Masse
064000	RFA-Elemente	TQL-7929	x	
064002	Aluminium	TQL-7929	<20	mg/kg
064003	Silizium	TQL-7929	<5	mg/kg
064004	Phosphor	TQL-7929	261	mg/kg
064005	Schwefel	TQL-7929	4783	mg/kg
064006	Chlor	TQL-7929	32	mg/kg
064007	Kalium	TQL-7929	21	mg/kg
064008	Calcium	TQL-7929	1578	mg/kg
064011	Chrom	TQL-7929	<1	mg/kg
064013	Eisen	TQL-7929	8	mg/kg
064015	Nickel	TQL-7929	5	mg/kg
064016	Kupfer	TQL-7929	2	mg/kg
064017	Zink	TQL-7929	344	mg/kg
064019	Molybdän	TQL-7929	<1	mg/kg
064022	Zinn	TQL-7929	<3	mg/kg
064026	Barium	TQL-7929	<2	mg/kg
064029	Blei	TQL-7929	<1	
060102		'		mg/kg
060104	Viskosität 40 Grad C	DIN 51562/T1	(152,80)	mm²/s
000 104	Viskosität 100 Grad C	DIN 51562/T1	(15,297)	mm²/s

aktualisiert am: 30/08/2012 13:59:08

LIMS_Probenbericht_SM_LINK rep (v3.0) [limsauto005]

Seite: 14 / 22

Versuchsöl Nr. 23

2012/037289

Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
060202	Viskositätsindex	DIN ISO 2909	101		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	891,6	kg/m³	
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	1,19	%М	
061201	TBN	ASTM D 2896	3,1	mg KOH/g	
460014	ABLAGEORDNER		Projekt Vorentflammun g		

Beschreibung: · SAE 40

· stark gealtertes Gasmotorenöl

· nach ölwech se l

· "Kontrast" zum frischöl

· Vergleich mit C3/Referenzöl/PKW)

Seite: 15 / 22

Versuch	söl Nr. 24 PKW-ÖL	/Gebrau	uchte5	2012/037290
Kunde	Competence Center Lubes		Auftragsnummer	S04038 / 5T
Probenherkun	ft PCMO gebraucht		Einsatzzeit	0
Termin bis	26.08.2012 11:38		Gesamt Einsatzzeit	0
Erstellt am	21.08.2012 11:42		Probenahme	21.08.2012 11:38
Aufgabenstell				
Interne Inform	ation OMV eco extra SAE 5W-30			
tiel	Msatz: Vergleic	h mit Fr	ischol	
Analyse	Komponente	Norm	Wert	Einheit Grenzwerte
469806	Oxidation	Methode Perkin-Elmer	13,45	A/cm
469805	Nitration	Methode Perkin-Elmer	36,62	A/cm
469801	Russ	Methode Perkin-Elmer	0,00	%Masse
469803	Glykol	Methode Perkin-Elmer	0,00	%Masse
469804	Wasser	Methode Perkin-Elmer	0,28	%Masse
064000	RFA-Elemente	TQL-7929	×	
064002	Aluminium	TQL-7929	<20	mg/kg
064003	Silizium	TQL-7929	3	mg/kg
064004	Phosphor	TQL-7929	719	mg/kg
064005	Schwefel	TQL-7929	2377	mg/kg
064006	Chlor	TQL-7929	12	mg/kg
064007	Kalium	TQL-7929	25	mg/kg
064008	Calcium	TQL-7929	3199	mg/kg
064011	Chrom	TQL-7929	<1	mg/kg
064013	Eisen	TQL-7929	(32)	mg/kg
064015	Nickel	TQL-7929	6	mg/kg
064016	Kupfer	TQL-7929	(31)	mg/kg
064017	Zink	TQL-7929	950	mg/kg
064019	Molybdän	TQL-7929	2	mg/kg
064022	Zinn	TQL-7929	6	mg/kg
064026	Barium	TQL-7929	<16	mg/kg
064029	Blei	TQL-7929	<1	mg/kg
060102	Viskosität 40 Grad C	DIN 51562/T1	59,98	mm²/s
060104	Viskosität 100 Grad C	DIN 51562/T1	10,085	mm²/s

aktualisiert am: 30/08/2012 13:59:08

LIMS_Probenbericht_SM_LINK.rep (v3.0) [limsauto005]

Seite: 16 / 22

Versuchsöl Nr. 24

2012/037290

Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
060202	Viskositätsindex	DIN ISO 2909	156		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	867,4	kg/m³	
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	2,52	%М	
061201	TBN	ASTM D 2896	6,3	mg KOH/g	
460014	ABLAGEORDNER		Projekt Vorentflammun g		

Beschreibung: Stark gealtertes PKW-öl nach ölwechsel vermutlich 1,6L Opel/Benziner SAF 5W-30?

Seite: 17 / 22

	0.1	110, /			
Versuc	hsöl Nr. 25	W-01/Gebrai	uchtes	2012/0372	291
Kunde	Competence (Auftragsnummer	S04038 / 5T	
Probenherk	unft PCMO gebrau	cht	Einsatzzeit	0	
Termin bis	26.08.2012 1	1:38	Gesamt Einsatzzeit	0	
Erstellt am	21.08.2012 1	1:43	Probenahme	21.08.2012 11:	38
Aufgabenste			- 151111 (8)		
Interne Infor	mation OMV eco extra	SAE 5W-30 ODEN SAE	= 10W-40		
tiel	/Ansatz: V	ergleich mit	Trischol	/	
Analyse	/ Komponente	Norm	Wert	Einheit Grenzwerte	,
469806	Oxidation	Methode Perkin-Elmer	41,58	A/cm	
469805	Nitration	Methode Perkin-Elmer	57,42	A/cm	
469801	Russ	Methode Perkin-Elmer	0,00	%Masse	
469803	Glykol	Methode Perkin-Elmer	0,00	%Masse	
469804	Wasser	Methode Perkin-Elmer	0,43	%Masse	
064000	RFA-Elemente	TQL-7929	х		
064002	Aluminium	TQL-7929	<20	mg/kg	
064003	Silizium	TQL-7929	<5	mg/kg	
064004	Phosphor	TQL-7929	655	mg/kg	_
064005	Schwefel	TQL-7929	3216	mg/kg	
064006	Chlor	TQL-7929	156	mg/kg	_
064007	Kalium	TQL-7929	29	mg/kg	_
064008	Calcium	TQL-7929	2916	mg/kg	
064011	Chrom	TQL-7929	5	mg/kg	_
064013	Eisen	TQL-7929	(51)	mg/kg	=
064015	Nickel	TQL-7929	6	mg/kg	_
064016	Kupfer	TQL-7929	(17)	mg/kg	_
064017	Zink	TQL-7929	851	mg/kg	
064019	Molybdän	TQL-7929	185		_
064022	Zinn	TQL-7929		mg/kg	
064026			7	mg/kg	=
064029	Barium	TQL-7929	<2	mg/kg	
	Blei	TQL-7929	12	mg/kg	
060102	Viskosität 40 Grad C	DIN 51562/T1	96,55	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	14,301	mm²/s	

aktualisiert am: 30/08/2012 13:59:08

LIMS_Probenbericht_SM_LINK.rep (v3.0) [limsauto005]

Seite: 18 / 22

Versuchsöl Nr. 25

2012/037291

Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
060202	Viskositätsindex	DIN ISO 2909	153		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	867,8	kg/m³	
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	3,23	%M	
061201	TBN	ASTM D 2896	3,3	mg KOH/g	
460014	ABLAGEORDNER		Projekt Vorentflammun g		

Beschreibung: stark gealtertes PKW-Öl nach Ölwechsel Vermutlich 1,6L Opel/Benziner SAE 10W-40?

Seite: 19 / 22

Versuchsöl N	ur. 26 PKW-Diesel	Gebrauchtes	2012/037292
Kunde	Competence Center Lubes	Auftragsnummer	S04038 / 5T
Probenherkunft	PCMO gebraucht	Einsatzzeit	0
Termin bis	26.08.2012 11:38	Gesamt Einsatzzeit	0
Erstellt am	21.08.2012 11:43	Probenahme	21.08.2012 11:38
Aufgabenstellung	Gebrauchtölanalyse		
Interne Information	OMV Bixxol special C3 alt	E 5 W-30	

Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
469806	Oxidation	Methode Perkin-Elmer	0,22	A/cm	
469805	Nitration	Methode Perkin-Elmer	14,28) A/cm	
469801	Russ	Methode Perkin-Elmer	0,28)%Masse	
469803	Glykol	Methode Perkin-Elmer	0,00	%Masse	
469804	Wasser	Methode Perkin-Elmer	0,16	%Masse	
064000	RFA-Elemente	TQL-7929	x		
064002	Aluminium	TQL-7929	<20	mg/kg	
064003	Silizium	TQL-7929	75	mg/kg	
064004	Phosphor	TQL-7929	758	mg/kg	
064005	Schwefel	TQL-7929	2742	mg/kg	
064006	Chlor	TQL-7929	41	mg/kg	
064007	Kalium	TQL-7929	27	mg/kg	
064008	Calcium	TQL-7929	1836	mg/kg	
064011	Chrom	TQL-7929	2	mg/kg	
064013	Eisen	TQL-7929	(145)	mg/kg	
064015	Nickel	TQL-7929	6	mg/kg	
064016	Kupfer	TQL-7929	20	mg/kg	
064017	Zink	TQL-7929	983	mg/kg	
064019	Molybdän	TQL-7929	4	mg/kg	
064022	Zinn	TQL-7929	12	mg/kg	
064026	Barium	TQL-7929	<2	mg/kg	
064029	Blei	TQL-7929	7	mg/kg	
060102	Viskosität 40 Grad C	DIN 51562/T1	70,38	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	(11,878)	mm²/s	

aktualisiert am: 30/08/2012 13:59:08

LIMS_Probenbericht_SM_LINK.rep (v3.0) [limsauto005]

Seite: 20 / 22

Versuchsöl Nr. 26

2012/037292

Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
060202	Viskositätsindex	DIN ISO 2909	166		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	860,7	kg/m³	
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	1,72	%M	
061201	TBN	ASTM D 2896	9,0	mg KOH/g	
460014	ABLAGEORDNER		Projekt Vorentflammun g		,

Beschreibung: stark gealtertes PKW-Ol/Diesel nach Olwechsel Vermutlich Opel/1,9L/Diesel

Seite: 21 / 22

Versuchsöl N	ur. 27 PKW-Diesel	Gebraucht	2012/037293
Kunde	Competence Center Lubes	Auftragsnummer	S04038 / 5T
Probenherkunft	PCMO-D gebraucht	Einsatzzeit	0
Termin bis	26.08.2012 11:38	Gesamt Einsatzzeit	0
Erstellt am	21.08.2012 11:44	Probenahme	21.08.2012 11:38
Aufgabenstellung	Gebrauchtölanalyse		-
Interne Information	Cherchinkphylopeciandamen 24	E5W-30	

Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
469806	Oxidation	Methode Perkin-Elmer	16,12	A/cm	
469805	Nitration	Methode Perkin-Elmer	27,57	A/cm	
469801	Russ	Methode Perkin-Elmer	0,52	%Masse	
469803	Glykol	Methode Perkin-Elmer	0,00	%Masse	
469804	Wasser	Methode Perkin-Elmer	0,25	%Masse	
064000	RFA-Elemente	TQL-7929	x		
064002	Aluminium	TQL-7929	<20	mg/kg	
064003	Silizium	TQL-7929	6	mg/kg	
064004	Phosphor	TQL-7929	720	mg/kg	
064005	Schwefel	TQL-7929	2353	mg/kg	
064006	Chlor	TQL-7929	16	mg/kg	
064007	Kalium	TQL-7929	28	mg/kg	
064008	Calcium	TQL-7929	3339	mg/kg	
064011	Chrom	TQL-7929	2	mg/kg	
064013	Eisen	TQL-7929	(92)	mg/kg	
064015	Nickel	TQL-7929	7	mg/kg	
064016	Kupfer	TQL-7929	(8)	mg/kg	
064017	Zink	TQL-7929	943	mg/kg	
064019	Molybdän	TQL-7929	1	mg/kg	
064022	Zinn	TQL-7929	10	mg/kg	
064026	Barium	TQL-7929	<2	mg/kg	
064029	Blei	TQL-7929	19	mg/kg	
060102	Viskosität 40 Grad C	DIN 51562/T1	(55,06)	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	9,587	mm²/s	

aktualisiert am: 30/08/2012 13:59:08

LIMS_Probenbericht_SM_LINK.rep (v3.0) [limsauto005]

Seite: 22 / 22

Versuchsöl Nr. 27

2012/037293

Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
060202	Viskositätsindex	DIN ISO 2909	159		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	864,1	kg/m³	
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	2,58	%М	
061201	TBN	ASTM D 2896	6,7	mg KOH/g	
460014	ABLAGEORDNER		Projekt Vorentflammun g		

Beschreibung: · stark gealfeites PKW-öl/Diesel · nach ölwechsel · vermutlich Opel/1,9L/Diesel · SAE 5W-30

aktualisiert am: 30/08/2012 13:59:08

Seite: 1 / 12

Versuch	isöl Nr. 28 Grundföl	API Gr. I		20	12/042329
Kunde	Competence Center Lubes		Auftragsnummer	S04	038 / 5T
Probenherku	nft ex Labor FBS		Einsatzzeit	0	
Termin bis	26.09.2012 12:45		Gesamt Einsatzzei	t 0	
Erstellt am	21.09.2012 12:46		Probenahme	21.0	9.2012 12:45
Aufgabenstel	lung Überprüfung Kennwerte				
Interne Inforn	, , ,				
Ziel	Ansatz: Diesding	'- Effekt(?)	durch Ol	verda	mptung?
Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
069701	Aussehen	Methode MK1-LBT	klar		
069601	Geruch	Methode MK1-LBT	typ.		
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	0,04	%М	
060102	Viskosität 40 Grad C	DIN 51562/T1	2,49	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	1,069	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	0		
	VI:		V[100°C]<2 cSt ->kein VI berechenbar		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	836,2	kg/m³	
064040	Additivelemente RFA	TQL-7929	x		
064004	Phosphor	TQL-7929	<1	mg/kg	
064005	Schwefel	TQL-7929	9	mg/kg	
064006	Chlor	TQL-7929	15	mg/kg	
064008	Calcium	TQL-7929	<1	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<2	mg/kg	
460014		7.	Projekt		
	ABLAGEORDNER		Vorentflammun		
Besch	reibung: . 150 U	627ex	trem di	inne.	Grundol
	· "Viese	el-Krafts	tott		
	· Abst	ecken"/Bo	estimmu	Ng	
	W .	(0 1	t = 1 ==	~ _	TILL
	· l/era	leich mi	c and ere	20 01	madriya
		- Variati	AJEN		VI
	una -	- varially			

aktualisiert am: 05/10/2012 07:45:15

LIMS_Probenbericht_SM_LINK.rep (v3.0) [limsauto006]

Seite: 2 / 12

Versuch	söl Nr. 29 Grundöl	API Gri	IL	2012/042330	
Kunde	Competence Center Lubes		Auftragsnummer	S04038 / 5T	
Probenherkun	ft ex Labor FBS		Einsatzzeit	0	
Termin bis	26.09.2012 12:45		Gesamt Einsatzzei	t 0	
Erstellt am	21.09.2012 12:47		Probenahme	21.09.2012 12:45	
Aufgabenstellu	ung Überprüfung Kennwerte				
Interne Informa	,	o			
Ziel	Ansatz: "Diese	eling ⁹² ,0	lverdamp	ofung?	
Analyse	Komponente	Norm	Wert	Einheit Grenzwerte	
069701	Aussehen	Methode MK1-LBT	klar		
069601	Geruch	Methode MK1-LBT	typ.		
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	<0,01	%M	
060102	Viskosität 40 Grad C	DIN 51562/T1	4,41	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	1,534	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	0		
	VI:		V[100°C]<2 cSt ->kein VI berechenbar		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	856,1	kg/m³	
064040	Additivelemente RFA	TQL-7929	x		
064004	Phosphor	TQL-7929	<2	mg/kg	
064005	Schwefel	TQL-7929	26	mg/kg	
064006	Chlor	TQL-7929	14	mg/kg	
064008	Calcium	TQL-7929	<10	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<2	mg/kg	
460014	ABLAGEORDNER		Projekt Vorentflammun g		
Beschreibung: 150 VG 5 = extrem dünnes ÖL					
· Vergleich der Grundöle					

Seite: 3 / 12

Versuchsöl N	ur. 30 Grundol API	Gr. II	2012/042331
Kunde	Competence Center Lubes	Auftragsnummer	S04038 / 5T
Probenherkunft	ex Labor FBS	Einsatzzeit	0
Termin bis	26.09.2012 12:45	Gesamt Einsatzzeit	0
Erstellt am	21.09.2012 12:47	Probenahme	21.09.2012 12:45
Aufgabenstellung	Überprüfung Kennwerte		
Interne Information	Projekt Vorentflammung		
20/10	15-ty " V=: +-cc/0"	10 (00° to to har	00012

Ziel/Ansatz: "Kritische"	viskositatsbereich:	
--------------------------	---------------------	--

Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
069701	Aussehen	Methode MK1-LBT	klar		
069601	Geruch	Methode MK1-LBT	typ		
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	<0,01	%M	
060102	Viskosität 40 Grad C	DIN 51562/T1	9,27	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	2,515	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	95		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	843,5	kg/m³	
064040	Additivelemente RFA	TQL-7929	x		
064004	Phosphor	TQL-7929	<3	mg/kg	
064005	Schwefel	TQL-7929	4	mg/kg	
064006	Chlor	TQL-7929	14	mg/kg	
064008	Calcium	TQL-7929	<10	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<16	mg/kg	
460014	ABLAGEORDNER		Projekt Vorentflammun g		

Beschreibung: · 150 VG 10 -> dünnes Spindelöl
· " DK"
· Vergleich

Seite: 4 / 12

Versuch	söl Nr	. 31 G	rundől	API G	۲.	V	20	12/042332
Kunde	-		ce Center Lubes		•	Auftragsnummer	S04	038 / 5T
Probenherkunt	ft	ex Labor F	BS			Einsatzzeit	0	
Termin bis		26.09.2012	2 12:45			Gesamt Einsatzzeit	0	
Erstellt am		21.09.201	2 12:47			Probenahme	21.0	9.2012 12:45
Aufgabenstellu	ing	Überprüfui	ng Kennwerte					
Interne Informa	ation	Projekt Vo	rentflammung				,	-
Ziel	An	satt:	Grunda	1- Type	M-	-Variatio	m k	argleich
Analyse	Kompor	nente		Norm		Wert	Einheit	Grenzwerte
069701	Aussehe	en		Methode MK1-L	вт	klar	O	
069601	Geruch			Methode MK1-L	BT	typ.		
061904	CCR (Mi	kroverfahren	1)	DIN EN ISO 103	370	<0,01	%М	
060102	Viskositä	at 40 Grad C		DIN 51562/T1		27,09	mm²/s	
060104	Viskositä	it 100 Grad (DIN 51562/T1		(5,344)	mm²/s	
060202	Viskositä	itsindex		DIN ISO 2909		(135))	
060602	Dichte 2	0 Grad C (So	chwingquarz)	DIN 51757		(911,3	kg/m³	
064040	Additivel	emente RFA		TQL-7929		x		
064004	Phospho	or .	***	TQL-7929		24	mg/kg	
064005	Schwefe	I		TQL-7929		3	mg/kg	
064006	Chlor			TQL-7929		14	mg/kg	
064008	Calcium			TQL-7929		<10	mg/kg	
064017	Zink			TQL-7929		<1	mg/kg	
064019	Molybdä	n		TQL-7929		<1	mg/kg	
064026	Barium			TQL-7929		<16	mg/kg	
460014	ABLAGE	ORDNER				Projekt Vorentflammun		
Beschre	eibu	ing:	· Ester	51 A	PI	Gr. V	-	
	. –	V	DIT	9 - (Di-	1:	so-Trich	ezilt	-Adipat
			·Verg	leich,	/T	so-Trida gpen-l	lieti	falt

Seite: 5 / 12

Versuchsöl I	ur. 32 Grundöl API Gr	<u>IV</u>	2012/042333
Kunde	Competence Center Lubes	Auftragsnummer	S04038 / 5T
Probenherkunft	ex Labor FBS	Einsatzzeit	0
Termin bis	26.09.2012 12:45	Gesamt Einsatzzeit	0
Erstellt am	21.09.2012 12:47	Probenahme	21.09.2012 12:45
Aufgabenstellung	Überprüfung Kennwerte		-
Interne Information	Projekt Vorentflammung		
Ziel/An	isatz: Vergleich	**************************************	

Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
069701	Aussehen	Methode MK1-LBT	klar		
069601	Geruch	Methode MK1-LBT	typ		
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	<0,01	%M	
060102	Viskosität 40 Grad C	DIN 51562/T1	18,11	mm²/s	L
060104	Viskosität 100 Grad C	DIN 51562/T1	(4,032)	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	122		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	816,2	kg/m³	
064040	Additivelemente RFA	TQL-7929	x		100
064004	Phosphor	TQL-7929	<3	mg/kg	
064005	Schwefel	TQL-7929	<2	mg/kg	
064006	Chlor	TQL-7929	15	mg/kg	
064008	Calcium	TQL-7929	<10	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<2	mg/kg	
460014	ABLAGEORDNER		Projekt Vorentflammun		
			g		

Beschreibung: PAO-4 Poly-Alpha-Olefin Synthetisches Grundöl für SAE OW-X und 5W-X Motorend-Formulierungen

Seite: 6 / 12

Versuchsöl N	Ir. 33 Grundól AP(Grill	2012/042334
Kunde	Competence Center Lubes	Auftragsnummer	S04038 / 5T
Probenherkunft	ex Labor FBS	Einsatzzeit	0
Termin bis	26.09.2012 12:45	Gesamt Einsatzzeit	0
Erstellt am	21.09.2012 12:47	Probenahme	21.09.2012 12:45
Aufgabenstellung	Überprüfung Kennwerte		
Interne Information	Projekt Vorentflammung		

Ansatz/Ziel: Vergleich

Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
069701	Aussehen	Methode MK1-LBT	klar		
069601	Geruch	Methode MK1-LBT	typ		
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	<0,01	%М	
060102	Viskosität 40 Grad C	DIN 51562/T1	50,59	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	8,070	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	130		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	843,0	kg/m³	
064040	Additivelemente RFA	TQL-7929	x		
064004	Phosphor	TQL-7929	<3	mg/kg	
064005	Schwefel	TQL-7929	<2	mg/kg	
064006	Chior	TQL-7929	14	mg/kg	
064008	Calcium	TQL-7929	<10	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<16	mg/kg	
460014	ABLAGEORDNER		Projekt Vorentflammun g		

Beschreibung: · Hydrocrack & l/hochwertiges
Grundöl
"Viskoses", dickeres" Grundöl

Seite: 7 / 12

Kunde	SÖI Nr. 34 WILLOU Competence Center Lubes	11.	Auftragsnummer		12/042335 038 / 5T	
Probenherkun	·		Einsatzzeit	0	7 31	
Termin bis	26.09.2012 12:45	70-8	Gesamt Einsatzzeit	•		
Erstellt am	21.09.2012 12:48	10 0	Probenahme		09.2012 12:45	
Aufgabenstellu	.H.					
Interne Informa	ation Projekt Vorentflammung					
Ziel	Ansatz: Verc	yleich				
Analyse /	Komponente	Norm	Wert	Einheit	Grenzwerte	
069701	Aussehen	Methode MK1-LBT	klar			
069601	Geruch	Methode MK1-LBT	typ.			
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	<0,01	%M		
060102	Viskosität 40 Grad C	DIN 51562/T1	46,25) mm²/s		
060104	Viskosität 100 Grad C	DIN 51562/T1	7,989	mm²/s		
060202	Viskositätsindex	DIN ISO 2909	145			
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	828,6	kg/m³		
064040	Additivelemente RFA	TQL-7929	x			
064004	Phosphor	TQL-7929	<3	mg/kg		
064005	Schwefel	TQL-7929	<2	mg/kg		
064006	Chlor	TQL-7929	14	mg/kg		
064008	Calcium	TQL-7929	<10	mg/kg		
064017	Zink	TQL-7929	<1	mg/kg		
064019	Molybdän	TQL-7929	<1	mg/kg		
064026	Barium	TQL-7929	<2	mg/kg		
460014	ABLAGEORDNER		Projekt Vorentflammun			
Beschreibung: PAO-8 / synthathisches Öl ", viskoses" dickeres" Grundol Vergleich, vor allem mit Nº.						
200			1	6 -		

Seite: 8 / 12

Versuchsöl N	vr. 35 Grundol API G	C IL	2012/042336
Kunde	Competence Center Lubes	Auftragsnummer	S04038 / 5T
Probenherkunft	ex Labor FBS	Einsatzzeit	0
Termin bis	26.09.2012 12:45 PTU ~ 40	Gesamt Einsatzzeit	0
Erstellt am	21.09.2012 12:48	Probenahme	21.09.2012 12:45
Aufgabenstellung	Überprüfung Kennwerte		
Interne Information	Projekt Vorentflammung		
Ziel/Ar	1satz: Vergleich		

Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
069701	Aussehen	Methode MK1-LBT	klar		
069601	Geruch	Methode MK1-LBT	typ		
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	<0,01	%M	
060102	Viskosität 40 Grad C	DIN 51562/T1	404,10	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	40,182) mm²/s	
060202	Viskositätsindex	DIN ISO 2909	149		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	846,2	kg/m³	
064040	Additivelemente RFA	TQL-7929	x		
064004	Phosphor	TQL-7929	<3	mg/kg	
064005	Schwefel	TQL-7929	<2	mg/kg	
064006	Chlor	TQL-7929	14	mg/kg	
064008	Calcium	TQL-7929	<10	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<16	mg/kg	
460014	ABLAGEORDNER		Projekt Vorentflammun g		

Beschreibung: PAO-40 / hochwartiges Öl

extrem homogen

extrem hoch viskos

nicht typisch für Matorenöl
Formulierungen

Grundöl-Variation-Studie"

Seite: 9 / 12

Versuch	söl Nr. 36 Grundöl	API GI	· II	20	12/042337
Kunde	Competence Center Lubes		Auftragsnummer	S04	038 / 5T
Probenherkun	ift ex Labor FBS	1	Einsatzzeit	0	
Termin bis	26.09.2012 12:45	(Gesamt Einsatzzeit	0	
Erstellt am	21.09.2012 12:48		Probenahme	21.0	09.2012 12:45
Aufgabenstell					
Interne Inform	Mag fra II at	eich, Gru	indő(-l	aria	tion
Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
069701	Aussehen	Methode MK1-LBT	klar		
069601	Geruch	Methode MK1-LBT	typ.		
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	<0,01	%М	
060102	Viskosität 40 Grad C	DIN 51562/T1	7,36	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	2,189) mm²/s	
060202	Viskositätsindex	DIN ISO 2909	99		
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	830,5	kg/m³	
064040	Additivelemente RFA	TQL-7929	x		
064004	Phosphor	TQL-7929	<3	mg/kg	
064005	Schwefel	TQL-7929	<2	mg/kg	
064006	Chlor	TQL-7929	15	mg/kg	
064008	Calcium	TQL-7929	<10	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
064019	Molybdän	TQL-7929	<1	mg/kg	
064026	Barium	TQL-7929	<2	mg/kg	
460014	ABLAGEORDNER		Projekt Vorentflammun g		
Besch	reibung: 150	VG 7"	- Hydri	ocra	eck (HC
	extr	an synth	nogen	ι	
	ext	em nodr ositat leich, vo	ige kink	em.a	.tische
	, Verg	ileid, vo	rallem	mit	NºNº 28,29

Seite: 10 / 12

	- Grandel	API Gr.	TIT		40/04000	
	söl Nr. 37 Drundal		111-		12/042338	
Kunde	Competence Center Lubes		Auftragsnummer		038 / 5T	
Probenherkun			Einsatzzeit	0		
Termin bis	26.09.2012 12:45		Gesamt Einsatzzeit			
Erstellt am	21.09.2012 12:48	<u> </u>	Probenahme	21.0	9.2012 12:45	
Aufgabenstellı		_				
Interne Inform		1. 1 11110	11/- 1	- 1-		
Ziel	Ansatz: ikritis	che, KA i	/ Vergla	eich		
Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte	
069701	Aussehen	Methode MK1-LBT	klar			
069601	Geruch	Methode MK1-LBT	typ			
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	<0,01	%M		
060102	Viskosität 40 Grad C	DIN 51562/T1	(11,53)	mm²/s		
060104	Viskosität 100 Grad C	DIN 51562/T1	2,954	mm²/s		
060202	Viskositätsindex	DIN ISO 2909	108			
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	830,4	kg/m³		
064040	Additivelemente RFA	TQL-7929	x			
064004	Phosphor	TQL-7929	<3	mg/kg		
064005	Schwefel	TQL-7929	<2	mg/kg		
064006	Chlor	TQL-7929	14	mg/kg		
064008	Calcium	TQL-7929	<10	mg/kg		
064017	Zink	TQL-7929	<1	mg/kg		
064019	Molybdän	TQL-7929	<1	mg/kg		
064026	Barium	TQL-7929	<2	mg/kg		
460014	ABLAGEORDNER		Projekt Vorentflammun			
Beschreibung: · schr niedrige KV (2.11,5 cSt) · Elverbrauch durch Verdampfung? (Simulat · KV-Bereich - Bestimmung						
	· ŏluerbro	auch durd	(Vardan	pfun	9 / Simu	
	· KV-Ber	eich-Be	stimmu	ng	· ·	
	· studie	+ Verg	leich	٧		

Seite: 11 / 12

Versuch	söl Nr. 38 Grundal	API Gr.	II	2012/042339
Kunde	Competence Center Lubes		Auftragsnummer	S04038 / 5T
Probenherkun	ft ex Labor FBS		Einsatzzeit	0
Termin bis	26.09.2012 12:45		Gesamt Einsatzzeit	0
Erstellt am	21.09.2012 12:48		Probenahme	21.09.2012 12:45
Aufgabenstelli	ung Überprüfung Kennwerte			
Ziel	An Sqtz: Studi	e, KV-la	gleich mi	t Nº2
Analyse	Komponente	Norm	Wert	Einheit Grenzwerte
069701	Aussehen	Methode MK1-LBT	klar	
069601	Geruch	Methode MK1-LBT	typ.	
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	0,01	%M
060102	Viskosität 40 Grad C	DIN 51562/T1	(26,27)	mm²/s
060104	Viskosität 100 Grad C	DIN 51562/T1	(5,106)	mm²/s
060202	Viskositätsindex	DIN ISO 2909	125	
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	836,8	kg/m³
064040	Additivelemente RFA	TQL-7929	x	
064004	Phosphor	TQL-7929	<3	mg/kg
064005	Schwefel	TQL-7929	3	mg/kg
064006	Chlor	TQL-7929	17	mg/kg
064008	Calcium	TQL-7929	<10	mg/kg
064017	Zink	TQL-7929	<1	mg/kg
064019	Molybdän	TQL-7929	<1	mg/kg
064026	Barium	TQL-7929	<2	mg/kg
460014	ABLAGEORDNER		Projekt Vorentflammun g	

Beschreibung: HC-Öl Wichtig Für 5AE 5W-X bzw 10W-X Motorenölformulierungen (Critischer KV-Bereich??

Seite: 12 / 12

Versuchsöl N	Nr. 39 Grun(dol API Gr	M	2012/042340
Kunde	Competence Cente	-	Auftragsnummer	S04038 / 5T
Probenherkunft	ex Labor FBS	TUDOC 22	Einsatzzeit	0
Termin bis	26.09.2012 12:45	IMPCC - 22	Gesamt Einsatzzeit	0
Erstellt am	21.09.2012 12:48		Probenahme	21.09.2012 12:45
Aufgabenstellung	Überprüfung Kenny	verte		
Interne Information	Projekt Vorentflamr	mung		
Ziel/1	Ansatz:	Studie, KV.	- Vergleich	

Analyse	Komponente	Norm	Wert	Einheit	Grenzwerte
069701	Aussehen	Methode MK1-LBT	klar		
069601	Geruch	Methode MK1-LBT	typ		
061904	CCR (Mikroverfahren)	DIN EN ISO 10370	0,01	%М	
060102	Viskosität 40 Grad C	DIN 51562/T1	(19,47	mm²/s	
060104	Viskosität 100 Grad C	DIN 51562/T1	(4,373)	mm²/s	
060202	Viskositätsindex	DIN ISO 2909	(138))	
060602	Dichte 20 Grad C (Schwingquarz)	DIN 51757	942,7	kg/m³	
064040	Additivelemente RFA	TQL-7929	x		
064004	Phosphor	TQL-7929	<3	mg/kg	
64005	Schwefel	TQL-7929	2	mg/kg	
64006	Chlor	TQL-7929	14	mg/kg	
64008	Calcium	TQL-7929	<10	mg/kg	
064017	Zink	TQL-7929	<1	mg/kg	
64019	Molybdän	TQL-7929	<1	mg/kg	
64026	Barium	TQL-7929	<2	mg/kg	
60014	ABLAGEORDNER		Projekt Vorentflammun		

bung: API Gr. V 7 Sonder-Grund & C - Ester & TMPC (Komplex-Ester) "Typen-Variation · Vergleich, insbesondere mit

Literaturverzeichnis

- [1] Amann, Manfred; Alger, Terrence. Lubricant reactivity Effects on Gasoline Spark Ignition Engine Knock. Paper, SAE Int. J. Fuels Lubr., 2012.
- [2] Amann, Manfred; Alger, Terrence; Mehta, Darius. Engine Operating Condition and Gasoline Fuel Composition Effects on Low-Speed Pre-ignition in High-Performance Spark Ignited Gasoline Engines. Paper, SAE Int. J. Fuels Lubr., 2011.
- [3] Dahnz, Christoph; Han, Kyung-Man; Spicher, Ulrich; Magar, Max; Schießl, Robert, Maas, Ulrich. *Investigations on Pre-ignition in Highly Supercharged SI Engines*. Paper, SAE Int. J. Engines, 2010.
- [4] Eichlseder, Helmut; Klüting, Manfred; Piock, Walter. Grundlagen und Technologien des Ottomotors. Springer Verlag Wien New York, 2008.
- [5] Ernst, Roland; Münzinger, Stefan; Hanula, Barna; Schnitzler, Thomas; Geiser, Frank. Das Phänomen Glühzündung Ursachen, Enstehung und Vermeidung. Artikel, MTZ, 2002.
- [6] FAIRCHILD Semiconductor. Datenblatt Optokoppler 4N28.
- [7] Golloch, Rainer. Downsizing bei Verbrennungsmotoren. Springer, 2005.
- [8] Grabner, Peter. Potentiale eins Wasserstoffmotors mit innerer Gemischbildung hinsichtlich Wirkungsgrad, Emissionen und Leistung. Dissertation, Technische Universität Graz, 2009.
- [9] https://www.avl.com/avl-list-emission. 20.09.2012.
- [10] http://wirtschaftslexikon.gabler.de/Definition/normalverteilung.html. 30.08.2012.
- [11] http://www.avl.com. 20.09.2012.
- [12] http://www.bosch-lambdasonde.de/de/lambdasonde funktion.htm. 20.09.2012.
- [13] List, Hans; Pischinger, Anton; Affenzeller, Josef; Gläser, Heinz. Die Verbrennungskraftmaschine, Neue Folge: Lagerung und Schmierung von Verbrennungsmotoren: 8. Band. SpringerWienNewYork, 1996.

- [14] Merker, Günter; Schwarz, Christian; Teichmann, Rüdiger. Grundlagen Verbrennungsmotoren Funktionsweise, Simulation, Messtechnik. 5. Auflage, Vieweg+Teubner Verlag Wiesbaden, 2011.
- [15] o.V. https://de.wikipedia.org/.
- [16] Pischinger, Rudolf; Klell, Manfred; Sams, Theodor. *Thermodynamik der Verbrennungskraftmaschine*. 3. Auflage, Springer Verlag Wien New York, 2009.
- [17] Prochazka, Georg; Hofmann, Peter; Geringer, Bernhard; Willand, Jürgen; Jelitto, Christian; Schäffer, Otto. Selbstzündungsphänomene an einem hoch aufgeladenen Ottomotor und Abhilfemöglichkeiten. Paper, Internationales Wiener Motorensymposium, 2005.
- [18] Sasaki, Nozomi; Nakata, Koichi; Kawatake, Katsunori; Sagawa, Shunta; Watanabe, Manabu; Sone, Tadahide. The Effect of Fuel Compounds on Pre-ignition under High Temperature and Hipfh Pressure Condition. Paper, JSAE, Inc., 2011.
- [19] Sharp. Datenblatt Optokoppler PC817.
- [20] Wilfried J. Bartz. Additive für Schmierstoffe. Expert Verlag, 1994.
- [21] Willand, Jürgen; Daniel, Marc; Montefrancesco, Emanuela; Geringer, Bernhard; Hofmann, Peter; Kieberger, Markus. *Grenzen des Downsizing bei Ottomotoren durch Vorentflammung*. Artikel, MTZ, 2009.
- [22] Zaccardi, Jean-Marc; Duval, Laurent; Pagot Alexandre. Development of Specific Tools for Analysis and Quantification of Pre-ignition in a Boosted SI Engine. Paper, SAE Int. J. Engines, 2009.