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Abstract

Numerical modeling in biomechanics and mechanobiology has grown in popularity over
the last few decades and provides a powerful method to calculate clinically relevant in
vivo parameters for physiological as well as pathopysiological conditions. In particular,
patient-specific finite element models may improve early detection and guide clinicians
in subsequent treatment. Moreover, numerical simulation can be applied to better predict
certain catastrophic events such as rupture of abdominal aortic aneurysms via assessment
of rupture potential. Hence, there is an increasing demand on numerical simulations from
clinicians and society.

Recent progress in medical imaging, image analysis, and finite element meshing tools
allows to extract detailed patient-specific geometries of anatomical structures, e.g., ab-
dominal aortic aneurysms, and thus facilitates solving clinical problems by using the finite
element method. Due to diagnostic in vivo imaging the reconstructed computer geometry
represents a configuration under specific boundary conditions such as physiological blood
pressure. Classical continuum mechanics including related material models and the corre-
sponding finite element implementation are based on an unloaded and stress-free reference
configuration. As a consequence, two problems arise from the application of such classical
approaches to patient-specific models of abdominal aortic aneurysms: (i) the imaged and
subsequently reconstructed ‘initial’ geometry is subjected to in vivo boundary conditions,
and (ii) residual stresses are known to exist in the unloaded human arterial tissue, which
significantly influence the overall stress distribution within the arterial wall.

Computational algorithms for prestressing the arterial reference configuration have been
presented to address the first problem. However, the second problem, that of in vivo resid-
ual stresses in patient-specific finite element simulations, has still not been satisfactorily
addressed in the literature. Therefore, a pragmatic approach to incorporate experimentally-
determined three-dimensional residual stresses (stretches) in patient-specific finite element
simulations of abdominal aortic aneurysms including the layered structure (intima, media,
adventitia) of the arterial wall is described. A novel approach to calculate the local direc-
tions of anisotropy related to constitutive material modeling applicable for structured and
unstructured finite element meshes is also presented.

Systematic numerical analysis indicates that the proposed method is, in general, appli-
cable to arterial tissues and abdominal aortic aneurysms. A decrease in circumferential
stress for the intima and an increase in the media and the adventitia are observed, which
tends to homogenize the stress distribution within the arterial wall. However, high varia-
tions of stresses are found in the circumferential direction in all layers, indicating that the
spatial variation of three-dimensional residual stresses as well as related passive material
parameters need to be investigated in more detail. This may lead to more uniformity of
circumferential stresses, which has been hypothesized and reported in the biomechanics
literature.
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Zusammenfassung

Die numerische Modellierung im Bereich der Biomechanik und Mechanobiologie hat in
den vergangenen Jahrzehnten stark an Popularität gewonnen und bietet eine Methode, um
medizinisch relevante in vivo Parameter im physiologischen, aber auch im pathophysio-
logischen Zustand zu berechnen. Patientenspezifische Finite-Elemente-Modelle haben das
Potential, eine Früherkennung zu erleichtern und Ärzten bei Entscheidungen über die Be-
handlung zu unterstützen. Numerische Simulationen können weiters für die Vorhersage
von lebensbedrohlichen Gegebenheiten, z.B. der Ruptur eines Aneurysmas der abdomi-
nalen Aorta durch Einschätzung des Rupturpotentials, angewandt werden. Daraus resul-
tiert eine steigende Nachfrage an numerischen Berechnungen von Ärzten und Gesellschaft.

Neueste Fortschritte in medizinischer Bildgebung, Bildanalyse und Finite-Elemente-Netz-
generierung erlauben eine detailierte Rekonstruktion von patientenspezifischen anatomi-
schen Strukturen, wie einem abdominalen Aortenaneurysma. Dadurch ergibt sich die Mög-
lichkeit, klinisch relevante Problemstellungen mit der Finite-Elemente-Methode zu lösen.
Aufgrund der diagnostischen in vivo Bildaufnahme repräsentiert die rekonstruierte Com-
putergeometrie eine Struktur unter Einfluss von physiologischen Randbedingungen wie
dem Blutdruck. Die klassische Kontinuumsmechanik, die damit verbundenen Materialmo-
delle sowie auch die Implementierung in Finite-Elemente-Programmen basieren auf der
Annahme einer spannungs- und belastungsfreien Referenzkonfiguration. Die Anwendung
dieser klassischen Ansätze auf Simulationen von abdominalen Aortenaneurysmen führt
zu zwei grundlegenden Problemen: (i) Die aufgenommene und rekonstruierte Geometrie
der anatomischen Struktur steht unter Einfluss von in vivo Randbedingungen und (ii) ar-
terielles Gewebe beinhaltet ohne jegliche Lastaufbringung Eigenspannungen, welche die
Spannungsverteilung in der Arterienwand signifikant beeinflussen.

Das Aufbringen von in vivo Randbedingungen bei gleichzeitigem Beibehalten der Refe-
renzkonfiguration wurde bereits mit verschiedenen Computeralgorithmen gelöst, wogegen
das Einbeziehen der Eigenspannungen in patientenspezifische Finite-Elemente-Simula-
tionen nur unzureichend behandelt wurde. Aus diesem Grund wird eine pragmatische
Herangehensweise vorgestellt, bei welcher die dreidimensionalen Eigenspannungen (Ei-
gendehnungen) in patientenspezifische Finite-Elemente-Simulationen von abdominalen
Aortenaneurysmen unter Berücksichtigung der Schichtstruktur (Intima, Media, Adven-
titia) inkludiert werden. Zusätzlich wird ein neuer Ansatz zur Berechnung von lokalen
Vorzugsrichtungen, welche für anisotrope Materialmodelle von großer Bedeutung sind,
präsentiert.

Die systematisch durchgeführte numerische Analyse zeigt, dass die Methode generell für
Arterien und abdominale Aortenaneurysmen angewendet werden kann. Eine Verminderung
der Umfangsspannung in der Intima bei gleichzeitiger Erhöhung in Media und Adventi-
tia tendieren zu einer homogeneren Verteilung. Hohe Spannungsschwankungen entlang
der Arterienwand in den individuellen Schichten weisen darauf hin, dass möglicherweise
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lokale Unterschiede in der dreidimensionalen Eigenspannungsverteilung und den passiven
Materialparametern vorliegen. Das Einbeziehen dieser Unterschiede in die numerischen
Simulationen könnte zu einer weiteren Homogenisierung der Spannungen beitragen, was
in der Biomechanikliteratur vermutet wird.
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1 INTRODUCTION AND MOTIVATION

1.1 Modeling in Biomechanics

The world health organization (WHO) has identified cardiovascular disease (CVD) as the
leading cause of death worldwide, affecting every third person of the global population.
This already frightening fact is accompanied with a continuous increase in total fatali-
ties per year in the near future. In the United States of America, for example, CVD ac-
counts for 32.8% of all deaths, while the percentage in Europe (approximately 47%) is
even higher [45, 55]. An abdominal aortic aneurysm (AAA) represents a specific type of
CVD with a prevalence of 4-8.9% in older men and 0.5-2.2% in older women [14, 42]. In
developed countries 1.3% of all deaths among older men are associated with AAA rup-
ture [56], a catastrophic event, leading to death if immediate surgical intervention is not
available. However, not all AAAs are suspected to instantly rupture since AAA forma-
tion may proceed over several years and might stabilize during evolution. Therefore, it is
important to identify the potential of an individual AAA to rupture, i.e., to characterize
its rupture risk. Societal expenses for medical diagnosis and conventional patient treat-
ment including associated open surgery as well as emergency intervention of AAAs add
up to a staggering amount due to the high prevalence of this particular disease. Improved
identification, especially improved early detection, and the evaluation of the risk of rupture
combined with adequate and adapted treatment procedures will lead to a decrease in health
care costs and also, even more important, to a significant increase in patient’s life quality.
Hence, there is a real need for improved patient-specific finite element (FE) simulations of
AAAs to gain additional insight into human physiology and pathophysiology, and obtain
more reliable stress estimates to better characterize rupture risk.

Patient-specific AAA geometries are reconstructed from computer tomography angiog-
raphy (CTA) or magnetic resonance imaging (MRI) scans, thus representing a deformed
configuration subjected to physiological in vivo boundary conditions. The framework of
classical continuum mechanics and related constitutive material models as well as the FE
method itself are based on the definition of an unloaded and stress-free reference state.
As a consequence, two problems arise from the application of such classical approaches to
patient-specific FE simulations of AAAs: (i) the in vivo image derived geometry is not load
free, and (ii) the unloaded arterial tissue is residually stressed. The first problem has been
addressed by numerous computational algorithms (e.g., [19, 68]), whereas the inclusion
of residual stresses in patient-specific FE simulations has not been satisfactorily solved
in the biomechanics literature. In this thesis a consistent framework for incorporation of
experimentally-determined residual stresses in patient-specific FE simulations of AAAs
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2 1 Introduction and Motivation

is presented to improve prediction of stress states and enhance characterization of AAA
rupture risk. The proposed method is, in general, applicable to any residually stressed soft
biological tissue (e.g., arteries) where data on residual deformation are available.

1.2 Arterial Wall Mechanics

Fundamental stress analysis via the FE method of human arterial tissue requires constitu-
tive material models representing the biological tissue in sufficient detail concerning the
macroscopic as well as the underlying microscopic structure. Therefore, it is essential to
investigate the morphology and the histology of individual arteries in healthy and diseased
states. The identification of the constituents and their mechanical contribution to the over-
all material behavior leads to conclusions of their individual role within the considered
artery. These medical and mechanical findings form the basis to develop adequate com-
puter models of human arteries such as, e.g., the thoracic aorta, the abdominal aorta, the
common iliac arteries, etc., and enable the prediction of stress up to a certain accuracy.

1.2.1 Healthy Human Arterial Wall

In general, human arteries can be divided into two types: (i) elastic arteries located close
to the heart, and (ii) muscular arteries present in the periphery [31]. These two types of
arteries accomplish different functions within the human body, nevertheless they share a
common macroscopic structure in healthy conditions and are composed of three distinct
layers, the intima, the media, and the adventitia (see Fig. 1.1). In the following, the con-
stituents of the arterial wall, in particular of every individual layer, are discussed from a
mechanical perspective describing their individual contribution in constitutive modeling
issues.

Intima (tunica intima). The intima (tunica intima) is the innermost layer of the artery
consisting of a single layer of squamous longitudinally aligned endothelial cells cover-
ing the vessel wall and resting on a very thin basal lamina. This lamina separates the en-
dothelial cells from the subendothelial layer, whose thickness and constituents change with
age [52]. The intima is bordered by the internal elastic lamina, generally not considered
as part of the intima and absent in geometrical transition zones such as, e.g., the bifurca-
tion [60]. The subendothelial layer might be almost absent in young healthy individuals,
resulting in a very thin intima having only minor contribution to the mechanical properties
of arteries. This justifies the assumption to neglect the intima in FE simulations for young
and healthy humans [24]. However, physiological adaption to mechanical stresses, known
as arteriosclerosis, stiffens and thickens (eccentric or diffuse intimal thickening [60]) the
intima in a significant manner, thus requiring to discard this assumption and introducing
the necessity of modeling the intima [27].

In contrast to arteriosclerosis, which is a physiological aging process, the term atheroscle-
rosis refers to a systemic, lipid-driven inflammatory disease associated with multi-focal
plaque development (atherosclerotic plaque) [71]. Beside hypertension, atherosclerosis
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Figure 1.1: Schematic model of a healthy human artery illustrating the macroscopic struc-
ture of the three distinct layers intima, media, and adventitia and their ma-
jor constituents adapted from [24] (left panel). Segment of a human abdom-
inal aorta after an optical clearing process illustrating its translucent appear-
ance [57] (right panel).

is known to be the most common CVD, which might also affect the media in more ad-
vanced stages, thereby significantly changing the overall mechanical behavior of the arte-
rial wall.

Media (tunica media). From the mechanical perspective, the media (tunica media),
representing the middle layer of an artery, is the most important and, in general, also the
thickest layer in healthy human arteries. It makes a significant contribution to the overall
strength of arterial tissue due to its highly structured and very complex three-dimensional
arrangement of smooth muscle cells, elastic sheets (elastic laminae), collagen, and elas-
tic fibrils. There are varying numbers (decreasing towards the periphery) of fenestrated
elastic laminae separating the media into individual concentrically aligned sublayers inter-
connected via elastic fibrils [52]. Furthermore, it is assumed that the closely interconnected
constituents of the media in connection with their orientation form a continuous fibrous he-
lix (Faserschraube) with a small pitch, leading to an almost circumferential alignment of
fibrils [24]. The internal elastic lamina and the external elastic lamina separate the media
towards the intima and the adventitia, respectively.

Adventitia (tunica adventitia). The adventitia (tunica adventitia) is the outermost
layer of the arterial wall mainly consisting of fibroblasts and fibrocytes (collagen and
elastin production), histological ground substance (extracellular matrix), and elastic and
thick interwoven collagen fibrils forming a fibrous tissue [24]. The adventitia itself grad-
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ually merges with the loose surrounding connective tissue, which serves as a delineation
towards other organs in the human body. In general, the thickness of the adventitia varies
with the location in the human body and might become virtually absent for different types
of arteries. The adventitia with constituting helically arranged and wavy (physiological di-
astolic load state) collagen fibrils seems to serve as a layer limiting the stretch, therefore
preventing arterial rupture in high pressure regimes [58]. This hypothesis is substantiated
by the observation of an exponential-like increase in stiffness due to collagen fiber recruit-
ment and fiber stretch.

1.2.2 Abdominal Aortic Aneurysm

A focal, in general, asymmetric dilatation of the infrarenal aorta exceeding a maximum
diameter of 3cm (clinical characterization) is diagnosed as a AAA. Nevertheless, because
of variations in aortic diameter depending on sex, age, bodyweight, and the position within
the abdomen (diameter decreases towards the common iliac arteries) a new criterion was
proposed so that a AAA is present if the current aortic diameter exceeds 150% of its initial
one [56]. Characterization of AAAs can be also performed on a histological basis since
AAA formation is associated with a loss of medial elastin and smooth muscle cells [12],
as well as structural changes in the orientation and alignment of collagen fibers in the
entire AAA wall (see Fig. 4.1). Risk factors for AAA formation can either be acquired
as a consequence of, e.g., atherosclerosis, hypertension, or smoking, or inherited, e.g.,
Marfan syndrome or Ehlers-Danlos syndrome [29]. The shape of a AAA, more general
its anatomy, can be described as being either fusiform or saccular. Saccular AAAs dilate
the vessel only on one side, whereas fusiform AAAs, which are more common, bulge
out at the hole circumference. The majority of AAA walls are covered by an intraluminal
thrombus (ILT), a three-dimensional fibrin structure incorporating blood proteins, blood
cells, platelets, and cellular debris [63]. In the ILT three individual layers can be identified
suggesting that it is also a highly heterogeneous material.

As a consequence of the high mortality rate due to AAA rupture, surgeons have to decide
in clinical practice if a particular patient needs AAA repair (see Fig. 1.2). This decision
is based on the balance of the risk of rupture against the risk of elective repair. A widely
accepted routine is to advocate clinical intervention if the maximum diameter of the lesion
reaches 5.0mm in women and 5.5mm in men or if the maximal diameter increases more
than 0.5-1.0mm in one year [30]. Physically, the maximum diameter criterion is based
on the Law of Laplace, a relationship assuming a cylindrical geometry with constant wall
thickness and linear elastic material properties [51]. It is not surprising that smaller AAAs
might rupture (e.g., 13% of AAAs smaller than 5cm), whereas larger ones (e.g., 54% of
AAAs larger than 7.1cm) remain stable and do never rupture [66].

Mechanical perspective predicts lesion rupture if the peak wall stress exceeds the local wall
strength. Therefore, a more sophisticated approach to identify the rupture risk of a AAA
is the application of the nonlinear FE method, which enables modeling of complex three-
dimensional geometries with varying wall thickness, associated boundary conditions, and
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Figure 1.2: Surgical intervention of a representative AAA taken with permission from [51].

the nonlinear properties of the AAA wall. In addition to that, computational FE simulations
can also take the influence of the ILT and possibly integrated calcifications and lipid pools
into account [16, 28]. The reader is referred to [30] for an overview of continuously im-
proving FE simulations of AAAs accounting for additional complexity in analysis. How-
ever, several inappropriate assumptions are still made within the biomechanics community,
which might lead to subsequent incorrect findings (e.g., [53, 54]).

1.2.3 Residual Stresses/Stretches

In the 1960s it was reported that there exists ‘some degree of stress even when there is
no distending pressure’ in an artery [6]. To the authors knowledge, this was the first time
presuming that arterial tissue is not stress-free in the unloaded configuration. Subsequent
studies independently observed and confirmed the existence of residual stresses in arteries
[15, 64]. These residual stresses have the potential to homogenize the stress distribution
within the arterial wall in physiological load states. In fact, several studies have shown that
the inclusion of residual stresses, even if they are small compared to in vivo wall stresses,
in the analysis of arteries under physiological loading conditions substantially reduces the
variation in circumferential and axial stresses [46,50]. Since residual stresses significantly
affect the overall stress state in the tissue, they also have a large impact on the in vivo state,
the development, and the remodeling processes of arterial tissue.

Characterization of residual stresses was initially performed by the so-called ‘opening an-
gle’ determined from a classical residual stress experiment (cf., e.g., [15]). For this pur-
pose, an arterial segment is cut radially, resulting in the spring open and subsequent relax-
ation to an equilibrium configuration, which is assumed to be stress-free. Improvements
in experiments clearly demonstrate, that residual deformations are three-dimensional and
therefore cannot be described by a single two-dimensional parameter such as the ‘opening
angle’ [26]. The authors in [26] harvested 16 pairs of rings (cut in radial direction) and
axial strips of 11 abdominal aortas. After 16h of relaxation images of the resulting geome-
try were taken and specimens were separated into the three individual layers; after another
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Figure 1.3: Spontaneous buckling of the intima in an iliac artery indicating the existence of
compressive circumferential stress within the layer [26] (left panel). Separated
intima-media tube-like structure suggesting the transition of compressive to
tensile circumferential stresses and limp adventitia of an iliac artery [24] (right
panel).

6h images were recorded and analyzed, identifying axial and circumferential stretches and
curvatures for every individual arterial layer. In [25] authors used axial and circumferen-
tial stretches and curvatures to perform the first analysis of the three-dimensional residual
stress state in an aortic wall consisting of the three individual layers, modeled as circular
cylindrical tubes and a rectangular cuboid. They provide analytic relations for stretches
and stresses as a function of the radial position within every individual layer using the
theory of nonlinear elasticity.

1.3 Continuum Mechanical Framework

Mechanical modeling of the extraordinary complex structure of soft biological tissues re-
quires a framework, in which various physical phenomena can be described without de-
tailed knowledge about the structure and/or microstructure. Therefore, the method of con-
tinuum mechanics, in which a certain material is treated as a macroscopic system, is used
to approximate the individual constituents of soft biological tissue. This represents an av-
erage over certain dimensions, small enough to capture a particular behavior and reflect the
material to the desired degree. Basic formulations are presented in the following for com-
pleteness of this thesis. The reader is referred to the book by Holzapfel [22] and references
therein for a more detailed background on nonlinear continuum mechanics.

1.3.1 Kinematics

The continuum theory has developed independently of atomistic or molecular theory and
assumes that a body B consists of certain matter at least piecewise continuously distributed
in space and time. It is a composite of discrete particles Pk, where B = {Pk}, embedded in
the three-dimensional Euclidean space with fixed origin O and orthonormal basis vectors
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ei, i = 1,2,3, as indicated in Fig. 1.4. At time t0, the reference time, the continuum body B
occupies the region Ω0, which is referred to as the reference (or undeformed) configuration.
A particular particle P within the prescribed region Ω0 is defined by X(P, t0). Over any time
t > t0 the continuum body B might have transformed into a new region denoted by Ω called
current (or deformed) configuration. The position of the distinct particle P in the current
configuration is given by x = χχχ(X, t), where χχχ is the motion of the continuum body B.
Thus, the deformation gradient can be defined as

F(X, t) =
∂ χχχ(X, t)

∂X
, (1.1)

a crucial quantity in nonlinear continuum mechanics characterizing the behavior of motion
in the neighborhood of a particular point. Closer examination of (1.1) leads to the finding
that the deformation gradient is a two-point tensor mapping points from the reference
configuration to the current configuration. It serves as a linear transformation rule of a
vector (line element) dX in the reference configuration to the vector (line element) dx in
the current configuration, i.e.,

dx = F(X, t)dX. (1.2)

The deformation gradient F is a nonsingular and invertible (i.e., detF 6= 0) second-order
tensor. Its inverse F−1 represents the transformation of the vector dx in the current to the
vector dX in the reference configuration. In general, the deformation gradient F depends
on and varies with the reference coordinate X, leading to a so-called inhomogeneous de-
formation. For the special case of a homogeneous deformation F is independent of any
reference coordinate X and the associated motion is termed affine. The determinant of the
deformation gradient J(X, t) = detF > 0 is a measure of volume change due to applied
deformation, i.e.,

dv = JdV, (1.3)

where dv and dV represent infinitesimal volume elements in the current and the reference
configuration, respectively. In the limit of an isochoric (volume preserving) deformation,
the Jacobian determinant approaches J = 1 (e.g., during rigid-body motion). This quantity
is also important in the well-known relationship called Nanson’s formula, transforming
surface area elements according to

ds = JF−TdS, (1.4)

where dS = NdS and ds = nds denote the infinitesimal surface area elements, N and n
the outward normals and dS and ds the area of the surface elements in the reference and
current configuration, respectively.

The local motion defined by the deformation gradient F can be decomposed into pure
stretch and pure rotation via the polar decomposition theorem. Thus,

F = RU = vR, (1.5)
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χχχ

Figure 1.4: Schematic representation of reference Ω0 and current Ω configuration indicat-
ing the associated motion χχχ . Taken with permission from [11].

where U and v are unique, positive definite, and symmetric tensors denoted as right and left
stretch tensors, respectively. The second-order tensor R is a unique and proper orthogonal
rotation tensor having the properties detR= 1 and RTR= I, where I represents the second-
order identity tensor. It is worth to mention that the right stretch tensor U is related to the
reference, whereas the left stretch tensor v is connected to the current configuration. For
completeness, relationship (1.5)1 is referred as the right and relationship (1.5)2 as the left
polar decomposition.

Kinematic displacements are measurable quantities during the deformation of a body. In
order to simplify analysis, the concept of strain is introduced. Therefore, the squares of the
stretch tensors are given by

C = FTF = U2 and b = FFT = v2, (1.6)

where C and b are denoted as the symmetric and positive definite right and left Cauchy-
Green tensor, respectively. In both measures any resulting rigid body motion is eliminated,
leading to the second-order identity tensor I for this specific type of motion.

1.3.2 Concept of Stress

In order to quantify the effect of deformation on a body, the concept of stress is introduced
in the following. In contrast to force, which is a measurable physical quantity, stress is a
mathematical concept to identify interactions between material points inside a continuum
body B occupying the region Ω at time t with boundary surface ∂Ω. It is claimed that there
exists a surface traction, the so-called Cauchy traction vector t(x, t,n), so that df = tds
holds, where df is an infinintesimal force vector and ds is a infinitesimal surface area
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element in the current configuration. Deploying Cauchy’s stress theorem with n being the
unit outward normal in the current configuration given by

t = σσσn (1.7)

leads to the definition of the symmetric Cauchy stress tensor σσσ , i.e., σσσ = σσσT. In continuum
mechanics different stress tensors for various applications have been proposed. The most
important ones used in computational mechanics are discussed in the following. The first
Piola-Kirchhoff stress tensor can be computed by utilization of the Piola transformation (a
passage between σσσ and P), leading to

P = JσσσF−T, (1.8)

where P is in general a nonsymmetric two-point tensor, similar to the deformation gradient
F, referred to the reference as well as the current configuration. Its transpose is frequently
termed to as the nominal stress tensor. The Kirchhoff stress tensor τττ = Jσσσ is a stress
measure often used in nonlinear FE analysis and related to the Cauchy stress tensor σσσ via
the volume ratio J. Another important quantity in computational mechanics and especially
useful for the formulation of constitutive equations is the second Piola-Kirchhoff tensor

S = JF−1
σσσF−T = F−1P = F−1

τττF−T, (1.9)

a measure of stress associated with material coordinates having the property S = ST.

1.3.3 Classical Balance Principles

In the following, classical balance principles will be introduced for completeness of this
thesis. Details on the derivation will be omitted and only essential relations are presented
and discussed.

Reynold’s Transport Theorem. A fundamental theorem in classical continuum me-
chanics is Reynold’s transport theorem. A spatial scalar field Φ = Φ(x, t) is considered,
which describes some physical quantity of a continuum body having the volume v at time t
and occupying the region Ω with boundary ∂Ω. If the considered spatial scalar field Φ(x, t)
is continuously differentiable (i.e., it is smooth), the change of Φ(x, t) with respect to time
t can be given via Reynold’s transport theorem as

D
Dt

∫
Ω

Φ(x, t)dv =
∫

∂Ω

Φ(x, t)v(x, t) ·n(x, t)ds+
∫
Ω

∂Φ(x, t)
∂ t

dv, (1.10)

where the first term on the right-hand side of (1.10) represents the rate of outward normal
flux Φ(x, t)v across the surface ∂Ω and the second term corresponds to the change of
Φ(x, t) within the considered region of interest Ω. The quantities n(x, t) and v(x, t) denote
the outward unit normal field and the spatial velocity field, respectively.
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Balance of Mass. The fundamental physical property mass denoted by m is a measur-
able scalar quantity of a continuum body B distributed continuously over a certain region
Ω with boundary surface ∂Ω at time t. The mass of a body can be determined by

m =
∫
Ω

ρ(x, t)dv, (1.11)

where ρ(x, t) is the spatial mass density and dv represents an infinitesimal volume element
of the continuum body. In a closed system without any mass sources or mass sinks it is
found that

Dm
Dt

=
D
Dt

∫
Ω

ρ(x, t)dv = 0, (1.12)

a fundamental statement in mechanics known as the conservation of mass. In various spe-
cific fields of mechanics it is necessary to discard the aforementioned assumption and
investigate open systems, i.e., systems of a fixed amount of volume. In this case any mass
can cross the boundary surface ∂Ω, which can be expressed as

Dm
Dt

=
D
Dt

∫
Ω

ρ(x, t)dv =
∫
Ω

∂ρ(x, t)
∂ t

dv. (1.13)

Application of the divergence theorem and further rearrangement leads to the conservation
of mass for a given control volume. Thus,

Dm
Dt

=
D
Dt

∫
Ω

ρ(x, t)dv =−
∫

∂Ω

ρ(x, t)v(x, t) ·nds (1.14)

is obtained. This equation concludes that the overall material time derivative is equal to the
flux ρ(x, t)v(x, t) into the region Ω across its boundary surface ∂Ω.

Balance of Linear and Angular Momentum. Balance of linear and angular momen-
tum are fundamental mechanical axioms, essential in continuum mechanics, valid for ar-
bitrary regions Ω with boundary surface ∂Ω at time t as well as for the whole continuum
body B under consideration. They are the direct consequence of Newton’s second law of
motion. In the following, b(x, t) denotes a spatial vector field called body force, which
acts on the region Ω and represents, e.g., a gravity load or an electromagnetic load per unit
volume. In addition, t(x, t,n) describes the already introduced Cauchy traction vector, a
spatial vector field, acting on the surface boundary ∂Ω and let v(x, t) be a spatial velocity
field. Thus, the relation

D
Dt

∫
Ω

ρ(x, t)v(x, t)dv =
∫

∂Ω

t(x, t,n)ds+
∫
Ω

b(x, t)dv (1.15)
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is retrieved, which is denoted as the balance of linear momentum. Application of the di-
vergence theorem leads to the global form of Cauchy’s first equation of motion given as∫

Ω

(divσσσ(x, t)+b(x, t)−ρ(x, t)v̇(x, t))dv = 0. (1.16)

This relation holds for any current volume v and hence the local form under the assumption
of zero acceleration, i.e., a(x, t) = v̇(x, t) = 0, can be given by

divσσσ(x, t)+b(x, t) = 0, (1.17)

representing the Cauchy’s equation of equilibrium in elastostatics. Introduction of the po-
sition vector r(x) = x−x0 in conjunction with the aforementioned quantities leads to

D
Dt

∫
Ω

r(x)×ρ(x, t)v(x, t)dv =
∫

∂Ω

r(x)× t(x, t,n)ds+
∫
Ω

r(x)×b(x, t)dv, (1.18)

known to be the balance of angular momentum in spatial description and serving as the
starting point for the proof of symmetry of the Cauchy stress tensor, i.e., σσσ = σσσT, omitted
here.

Balance of Mechanical Energy. The last balance equation presented in this section
concerns the balance of mechanical energy. Therefore, all other forms of energy, e.g., ther-
mal, chemical, electrical, etc., are neglected in the following. Assuming a continuum body
occupying the region Ω with boundary surface ∂Ω, the balance of mechanical energy can
be given by

D
Dt

∫
Ω

1
2

ρv2dv+
∫
Ω

σσσ : ddv =
∫

∂Ω

t ·vds+
∫
Ω

b ·vdv. (1.19)

In relation (1.19) the rate of change in kinetic energy, represented by the first term on the
left-hand side, plus the work performed by internal stresses, represented by the second
term on the left-hand side, is equal to any external work, i.e., any work performed by body
force b(x, t) or surface traction t(x, t,n) acting on the considered continuum body. All
quantities in (1.19) have been introduced and discussed earlier despite the so-called rate of
deformation tensor d(x, t).

1.3.4 Constitutive Equations

Fundamental relations presented in previous paragraphs such as the kinematics, stresses,
and balance principles are general equations, valid in any branch of continuum mechanics,
e.g., fluid as well as solid mechanics. The main difference between these specific areas
of continuum mechanics is the medium under consideration, which are liquids and gases
(e.g., water, air, etc.) and solids (e.g., rubber, wood, etc.), respectively. Quantification of a
certain stress state within a continuum medium through the presented kinematic relations
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requires so-called constitutive equations, which approximate the behavior and the structure
of the medium to a certain degree under specific conditions. In the following, fundamental
relations for phenomenological constitutive equations are presented. These constitutive
equations are mathematical models, which need to be fitted to experimental data in order
to describe the material up to an acceptable degree. In particular, constitutive models in
the regime of large, i.e., finite, strains are considered via nonlinear continuum mechanics.
This results in so-called hyperelastic materials, claiming the existence of a Helmholtz free-
energy function Ψ defined per unit reference volume. Further analysis assumes that the
considered material is distributed in homogeneous manner within the continuum, i.e., the
Helmholtz free-energy function Ψ does not depend on the material point as it is the case
for heterogeneous materials. It is assumed that the scalar-valued Helmholtz free-energy
function (also called strain-energy function (SEF)) depends on the deformation gradient F,
i.e., Ψ = Ψ(F), where the relation

P =
∂Ψ(F)

∂F
(1.20)

is postulated. This relation for the first Piola-Kirchhoff stress P can be rewritten in terms
of the Cauchy stress tensor σσσ using the Piola transformation as

σσσ = J−1 ∂Ψ(F)
∂F

FT. (1.21)

In order to ensure fundamental consistency in continuum mechanics, constitutive material
models need to fulfill several restrictions. In the absence of any deformation, e.g., where
F = I, the strain-energy must vanish according to Ψ = Ψ(I) = 0. Furthermore, physical
observations lead to the finding that the strain-energy increases with deformation, which
requires Ψ = Ψ(F) ≥ 0. Another restriction on Ψ is objectivity, meaning that the strain-
energy does not change under rigid body motion, i.e., neither translation nor rotation. This
requires the SEF to hold for

Ψ(F) = Ψ(U) = Ψ(C). (1.22)

An isotropic hyperelastic material may also be described in terms of the independent strain
invariants of the symmetric right Cauchy-Green tensor C, where its eigenvalues are the
squares of the principal stretches λ 2

i , i = 1,2,3. Hence, the SEF can be expressed as

Ψ = Ψ[I1(C), I2(C), I3(C)], (1.23)

where the invariants are given by

I1(C) = trC = λ
2
1 +λ

2
2 +λ

2
3 , (1.24)

I2(C) =
1
2
[(trC)2− tr(C2)] = λ

2
1 λ

2
2 +λ

2
1 λ

2
3 +λ

2
2 λ

2
3 , (1.25)

I3(C) = detC = λ
2
1 λ

2
2 λ

2
3 . (1.26)
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In the case of an anisotropic material, a material exhibiting directional dependency, e.g.,
two preferred directions denoted by a0 and g0 in the reference and a and g in the current
configuration, the so-called pseudo-invariants I4, . . . , I9 might be used to fully describe the
material. The invariant I9 is not considered since it represents a geometrical constant and
does not depend on the deformation. Furthermore, experimental insight is limited, leading
to usage of the convenient pseudo-invariants I4 and I6, which can be introduced to be

I4(C,a0) = a0 ·Ca0 = C : A0 = λ
2
a , (1.27)

I6(C,g0) = g0 ·Cg0 = C : G0 = λ
2
g , (1.28)

where λa and λg are the stretches in the preferential directions and A0 = a0⊗a0 and G0 =
g0⊗g0 are the structural tensors. By means of these two additional invariants a SEF does
not only depend on the deformation gradient F, but also on the preferred directions defined
in the reference configuration via unit vectors a0(X) and g0(X). Thus, the SEF can be
postulated as

Ψ = Ψ(C,A0,G0). (1.29)

Differentiation of the proposed SEF with respect to the right Cauchy-Green C will provide
an equation for the second Piola-Kirchoff stress tensor S. Application of the chain rule of
differentiation leads to

S = 2
∂Ψ(C,A0,G0)

∂C
= 2

8

∑
i=1

∂Ψ(I1, I2, . . . , I8)

∂ Ii

∂ Ii

∂C
. (1.30)

1.3.5 Modeling of Incompressibility

Various different materials (e.g., water, polymers, biological tissue, etc.) can sustain fi-
nite deformation without any noticeable change in volume. Such materials are denoted
to be incompressible and the associated motion is referred to be isochoric. Modeling in-
compressibility in FE analysis is often performed by the application of a compressible
formulation, where the (near) incompressibility is enforced by a penalization of a volu-
metric term. Therefore, the deformation gradient F is multiplicatively decomposed into
a volume-changing (volumetric) J1/3I and a volume-preserving (isochoric) F part given
by

F = (J1/3I)F = J1/3F, (1.31)

where F is denoted as the modified deformation gradient. Similarly, the isochoric or mod-
ified right and left Cauchy-Green tensor may be retrieved by

C = (J2/3I)C = J2/3C and b = (J2/3I)b = J2/3b, (1.32)

respectively. Thus, the decoupled representation of the SEF is specified as

Ψ(C) = Ψvol(J)+Ψiso(C), (1.33)
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where Ψvol(J) and Ψiso(C) describe the volumetric elastic and the isochoric elastic re-
sponse, respectively.

Furthermore, application of the standard Coleman-Noll procedure leads to an additive spit
of the stress response. In particular, the second Piola-Kirchhoff stress S can be additively
decomposed to

S = 2
∂Ψ(C)

∂C
= Svol +Siso, (1.34)

where the terms Svol and Siso denote the purely volumetric and the purely isochoric stress
contribution. In addition, the individual terms are given by

Svol = 2
∂Ψvol(J)

∂C
= JpC−1 and Siso = 2

∂Ψiso(C)

∂C
= J−2/3DevS, (1.35)

where the fictitious second Piola-Kirchhoff stress S and the hydrostatic pressure p are
defined by

p =
dΨvol(J)

dJ
and S = 2

∂Ψiso(C)

∂C
. (1.36)

The deviatoric operator is defined as Dev(•) = (•)− 1/3[(•) : C]C−1 in material coordi-
nates so that

DevS : C = 0. (1.37)

In the previous section the constitutive equation has been defined in terms of the indepen-
dent strain invariants of the symmetric right Cauchy-Green tensor (I1, I2, and I3) as well
as the so-called pseudo-invariants (I4, . . . , I9). Following the concept of isochoric and vol-
umetric splitting, also these invariants need to be modified according to (1.32)1. Thus, the
subsequently important modified invariants Ī1 = trC = J−2/3I1, Ī4 = C : A0 = J−2/3I4 and
Ī6 = C : G0 = J−2/3I6 are obtained.

1.3.6 Elasticity Tensor

Computational implementation of nonlinear problems in finite elasticity requires incre-
mental or iterative solution methods in connection with an adequate convergence criterion
to obtain results with reasonable accuracy. These results are obtained by solving a sequence
of linearized problems using the elasticity tensor C, which may be defined in terms of the
second Piola-Kirchhoff stress tensor S or the SEF of a particular material Ψ(C). Thus,

C= 2
∂S(C)

∂C
= 4

∂ 2Ψ(C)

∂C∂C
(1.38)

represents a relation for the elasticity tensor in material description. It characterizes the
change in stress as a result of a change in strain and relates work conjugate pairs of stress
and strain tensors. The elasticity tensor C possesses minor (holds for all elastic materials)
and major (necessary and sufficient for hyperelasticity) symmetries. To continue the con-
cept of (near) incompressibility, the decoupled representation of the elasticity tensor C in
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a purely volumetric contribution Cvol and a purely isochoric contribution Ciso is given by
C= Cvol +Ciso. Individual components are found to be

Cvol = 2
∂Svol

∂C
and Ciso = 2

∂Siso

∂C
. (1.39)

Consistent linearization is a prerequisite to preserve quadratic convergence of the solution
and crucial in computational mechanics.

1.4 Finite Element Implementation

In the context of biomechanics and mechanobiology investigations of the impact of me-
chanical boundary conditions on the formation and the evolution of various diseases of
biological tissues, e.g., such as AAA, are performed. The complex geometry as well as
the nonlinear material behavior requires application of sophisticated numerical algorithms
such as the FE method, in this thesis used to study stress states within a AAA wall and
the ILT. Hence, general FE equations are provided in the following (residual stresses are
neglected) including the strong and the weak form [11]. The static equilibrium mixed
boundary-value problem in reference coordinates on the domain Ω0 is given by

Div(FS) = 0 in Ω0, (1.40)

where Div(•) defines the divergence operator with respect to the reference configuration.
Systolic (maximum) and diastolic (minimum) pressure p acting on the AAA lumen surface
∂Ω0t1 introduces traction boundary conditions to the boundary-value problem (traction
due to blood flow is neglected), whereas the outer AAA wall ∂Ω0t2 is assumed to be
completely traction free (any connective tissue is assumed to have no influence on the
AAA). In addition to that, numerous zero-displacement boundary conditions at different
surfaces ∂Ω0u1 and in different coordinate directions are applied to mimic the in vivo
situation. This includes restrictions in vertical displacement at the transition zones of the
AAA geometry to the connected parts of the abdominal aorta (top) and the common iliac
arteries (bottom) as well as restrictions in circumferential movement at the intersection of
the lumen surface with these transition zones. Thus,

FSN =−pJ(F−1)TN on ∂Ω0t1, (1.41)
FSN = 0 on ∂Ω0t2, (1.42)
u(X) = 0 on ∂Ω0u1, (1.43)

in which N defines the unit surface normal. It is important to emphasize that the pressure p
denotes a so-called follower load, i.e., a deformation dependent load. Hence, the principal
of virtual work might, in general, not be used as the basic framework for the FE method.
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Without any further derivation, the weak equilibrium formulation∫
Ω0

Tr[S(FTGradφφφ)S]dv+
∫

∂Ω0t1

pJ(F−1)T N ·φφφdA = 0 in Ω0 (1.44)

u(X) = 0 on ∂Ω0u1 (1.45)

needs to be fulfilled, where Tr(•) and Grad(•) represent the trace and the gradient op-
erator in reference coordinates, respectively. Furthermore, φφφ is a suitable vector-valued
test function satisfying prescribed displacement boundary conditions. The multipurpose
FE software package FEAP (University of California, Berkeley, CA) with an implemented
iterative Newton-Raphson solver is used to calculate the unknown displacements u asso-
ciated with the given pressure p. Isoparametric hexahedral elements based on a three-field
Hu-Washizu variational formulation (mixed Q1/P0-elements) provide a proper framework
to model tissue components.



2 MATERIALS AND METHODS

2.1 Magnetic Resonance Imaging

Recent progress in medical imaging improved the support of clinicians in diagnosis and
subsequent treatment of various diseases in different stages. New technologies and meth-
ods in MRI, as well as CTA, enhance soft tissue contrast and enable to distinguish between
the structures of interest. In particular, different acquisition protocols in MRI opened up
the possibility to differentiate between the AAA wall and the ILT within the context of
AAA imaging (see Fig. 2.1(b)) and hence this was the imaging method of choice. Other
advantages of MRI over CTA include, e.g., the lack of ionizing radiation and nephrotoxic
contrast agents and increased sensitivity to endoleaks [20].

Patients suffering from a AAA with a diameter larger than 5cm were selected from the
outpatient clinic of the University Hospital of Leuven. If no contraindications were de-
tected, MRI studies have been performed using a 1.5T scanner (Aera; Siemens, Erlan-
gen, Germany) on every patient. Therefore, a sagittal and a transversal balanced steady-
state free precession (bSSFP) sequence served as localizers using 20/30 slices, 5/6mm
slice thickness, no intersection gap, a field of view (FOV) of 380mm, a matrix size of
320 × 260, the quantities time to repetition/time to echo (TR/TE) of 4.41ms/2.21ms and
one signal average. In addition, a pulse triggered, three slice T1 Turbo Spin Echo (TSE)
sequence with a thickness of 6mm, TR/TE = 800/62ms, FOV of 160mm and a matrix size
of 256 × 256 was conducted. Subsequent to intravenous administration of a standardized
dose of 0.1mmol/kg Gd-DOTA (Dotarem, Guerbet, France), a coronal breath-hold fast
low-angle shot (FLASH) 3D sequence of 96 slices in the arterial phase with a slab thick-
ness of 1.25mm, 384 × 336 matrix size, TR/TE = 3.04/1.09ms and a FOV of 400mm
was performed. The MRI study was registered at the clinical trial center of the University
Hospitals of Leuven (study number S52774) and ethical approval was obtained from the
ethical committee UZ Leuven.

Visual evaluation of image quality and tissue contrast between the AAA wall and the ILT
was performed with clinicians to decide on the images taken for reconstruction. It tran-
spired that the transversal bSSFP sequence (see Fig. 2.1) provided best results according
to the demands for image analysis. Hence, this particular image sequence was chosen to
perform image segmentation and reconstruction of the patient-specific AAA geometry.

17
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Figure 2.1: MRI slices obtained by application of the new acquisition protocol at different
vertical positions of (a) the abdominal aorta without an ILT, (b) the AAA wall
with corresponding ILT, and (c) the common iliac arteries.

2.2 Finite Element Mesh Generation

The generation of high-quality conforming meshes of the AAA wall and the ILT is of cru-
cial importance in FE simulations. Various open source as well as commercial software
packages are available to generate meshes of complex structures using tetrahedral ele-
ments for both computational fluid dynamics (CFD) and FE analysis applications, while
automated structured hexahedral mesh generation is limited to simple geometries [9]. In
general, the performance of hexahedral elements in FE simulations is superior to tetrahe-
drons or wedge elements, which may lead to severe locking problems and therefore appear
too stiff [48]. This fact could cause serious impact on stress and displacement predictions
and subsequent conclusions. Specific details on the mesh generation procedure, mainly
performed by collaborators at the Departamento de Tecnología Fotónica y Bioingeniería
at Universidad Politécnica de Madrid, are presented in [62].

2.2.1 Image Segmentation and Reconstruction

In order to obtain an accurate representation of the in vivo imaged AAA, transversal MRI
slices are segmented manually to identify the contours of interest and generate patient-
specific geometries. The manual segmentation is performed using the open source software
application ITK-SNAP [72], where also semi-automatic segmentation using active contour
methods and image navigation is provided. In the MRI images the outer arterial wall con-
tour, the lumen contour, as well as the inner arterial wall contour where an ILT is present
(all of them can be clearly recognized in Fig. 2.1(b)) are delineated, resulting in three bi-
nary images for every MRI slice (lumen contour and inner arterial wall contour coincide if
no ILT is present). In addition to that, careful smoothing is performed on the contours of
interest to eliminate possible inaccuracies in manual segmentation and preserve important
structural information. The three binary images of every transversal MRI slice are placed
at the vertical position of the slice being taken to reconstruct the patient-specific AAA wall
and the ILT geometry.
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2.2.2 Finite Element Meshing Protocol

In the literature, the standard procedure for meshing bifurcations is to divide them into in-
dependent vessel sections and generate meshes for each of them individually. In particular,
the method proposed in [39] is modified, where similar approaches have been published
in [4, 5]. Following this idea, a semi-automatic patient-specific algorithm is developed
within the commercial software package MATLAB (Mathworks Inc., Natick, MA), gener-
ating conforming hexahedral meshes of the AAA wall and the ILT. Therefore, the volume
of the AAA with the corresponding part of the ILT is subdivided into three individual
vessels using three planes defined by five manually chosen points:

• Anterior Point: anterior cranial to the bifurcation on the lumen surface,
• Posterior Point: posterior cranial to the bifurcation on the lumen surface,
• Caudal Point: centered and caudal to the bifurcation on the wall surface,
• Dexter Point: dexter cranial to the bifurcation on the lumen surface,
• Sinister Point: sinister cranial to the bifurcation on the lumen surface.

The three-dimensional location of every individual point is crucial for the process of mesh
generation since this dramatically affects element shape and hence also the mesh quality,
which has a direct impact on FE simulation results as discussed earlier. Subsequent division
of the three vessels into six sections (the vessel of the abdominal aorta is divided into a
left and a right section, whereas both common iliac arteries are divided into an interior
and an exterior section) is needed, where specific attention is required in order to achieve
adequate meshes at the transition zones between independent sections.

The procedure of mesh generation is continued by the definition of three quadrilateral
meshes, subsequently used to construct the FE mesh with conforming hexahedral elements.
The first quadrilateral mesh is defined by the outer contour of the AAA wall (Fig. 2.2(c)),
the second one is defined by the contour of the lumen (Fig. 2.2(a)), and for the third one
the inner contour of the AAA wall is taken (Fig. 2.2(b)). Following these definitions and
application of the developed semi-automatic algorithm, in which several parameters can
be adjusted to tune mesh density, leads to the needed nodes defining the quadrilateral el-
ements for these surface meshes. The final step includes the calculation of a center line
using the lumen surface and the definition of a reference mesh (in this case the quadri-
lateral mesh of the outer contour of the AAA wall). This mesh is arbitrarily chosen and
used as a reference to update the position of the nodes over the remaining meshes. Thus,
for every node in the reference mesh a vector to its corresponding point at the center line
is defined, intersecting with the mesh of the inner contour of the AAA wall at a partic-
ular position. At this intersection point a node for the updated mesh of the inner AAA
wall surface is defined, leading to corresponding quadrilaterals at the outer and the inner
boundaries of the AAA wall. These quadrilateral elements are joined to form the intended
hexahedral elements. The ILT mesh is established by definition of another vector from ev-
ery node of the updated mesh of the inner AAA wall surface to its corresponding point at
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Figure 2.2: Quadrilateral element meshes of (a) the lumen surface, (b) the internal surface
of the AAA wall, and (c) the outer surface of the AAA wall used for construc-
tion of conforming hexahedral FE meshes.

the center line. Again, at the intersection of every distinct vector with the lumen surface
mesh a partner point is generated, leading to quadrilaterals, which are subsequently joined
to form the hexahedral ILT mesh. In cases of the ILT not being present this method creates
hexahedral elements with zero volume and no physical interpretation. These elements are
removed in order to obtain the final conforming hexahedral FE mesh. Application of the
proposed meshing algorithm generates elements with collapsed nodes, i.e., degenerated
hexahedral elements (wedges, pyramids, etc.), located at the edge of the ILT. This is a ne-
cessity since the ILT is not present throughout the whole AAA. However, this concept has
been extensively used in the past in FE analysis [73].

The aortic wall (cf., [17]) as well as the ILT (cf., [63]) constitute three distinct layers hav-
ing different structures and different mechanical properties. To model these features, the
two-layer hexahedral mesh generated for the AAA wall and the ILT, which is an accurate
representation of the overall structure, is used. Every hexahedron for the AAA wall and
the ILT is divided radially into three using empirically-determined thickness ratios, which
represent the variability of the aortic wall and the ILT within the aneurysm. The ratios
for the aortic wall are found to be 0.19 for the intima, 0.44 for the media, and 0.37 for
the adventitia, and are in the range of values reported in [58]. Thickness ratios in the ILT
are given by 0.24 for the luminal, 0.38 for the medial, and 0.38 for the abluminal layer,
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representing possible measurements as they may have been determined in [63]. The de-
veloped semi-automatic FE meshing algorithm is capable to create meshes of any density
and size. For instance, meshes with higher element density can be generated without sig-
nificant increase in computation time. Once the five manually chosen points have been
selected, generating a 25000 element mesh takes around 30s using a 3GHz Pentium Core
Duo with 8GB RAM. It is important to emphasize that the algorithm is robust in generat-
ing high quality hexahedral elements tested and validated for several patient-specific AAA
geometries. However, speed optimization has not been performed.

2.2.3 Finite Element Mesh Quality Evaluation

In the process of FE mesh generation it is crucial to represent the original in vivo geometry
with sufficient accuracy as well as to generate finite elements with satisfying element qual-
ity. This affects solution of partial differential equations (PDE)s and thus can have a large
impact upon the accuracy as well as the efficiency of simulations [38]. The quality of a
mesh includes several issues one has to consider when applying it to engineering methods
such as the FE method. In particular, it depends on the type of calculation performed and
might change when evaluating different calculations. A large variety of different finite ele-
ment quality measurements for two- and three-dimensional structures have been presented
throughout the last years for applications in CFD and FE analysis, e.g., see [13, 35–37].
Among all the metrics available as a measure of initial mesh quality, the scaled Jacobian is
the most common one used in FE simulations for solid structures [9]. The open source pro-
gram ParaView [21], a multi-platform data analysis and visualization application, is used
to calculate and visualize scaled Jacobian values for FE mesh elements. This scientific soft-
ware package uses the ‘Verdict library’ to evaluate different quality measurements, where
mathematical specifications are given in [61]. Therefore, the ‘Jacobian’, the determinant
of the discrete Jacobian matrix Jk, evaluated at the hexahedron’s vertices k = 1,2, . . . ,8
and the center of the element k = 0, is the triple scalar product (also called mixed or box
product) of the edges connected to that node (ek1, ek2, ek3) and of the principal axes of the
element (e01, e02, e03), respectively, given by

Jk = ek1(ek2× ek3). (2.1)

The minimum after normalization of the Jacobian (division of the Jacobian by the length
of the three corresponding vectors of an element) leads to the scaled Jacobian value

Scaled Jacobian = min

[
Jk

‖ek1‖‖ek2‖‖ek3‖

]
, (2.2)

where the full range of a hexahedron’s scaled Jacobian value is between −1 (worst) and
+1 (best). Nevertheless, a positive value is the minimal quality permitted for analysis [9].
Negative scaled Jacobian values indicate the existence of inverted (invalid) elements in the
FE mesh. An acceptable range for scaled Jacobian values is stated to be between 0.5 and
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1 [61]. The scaled Jacobian mesh quality metric can only be applied to regular hexahedral
elements having eight vertices at different spatial locations in three-dimensional space.
Therefore, collapsed hexahedral elements are identified and excluded from the mesh qual-
ity analysis.

2.3 Constitutive Models

One of the fundamental issues in computational FE analysis of soft biological tissues is
to model the response of the material, i.e., the AAA wall as well as the ILT, with the
desired degree of accuracy. The representation of the material is crucial since simulation
results should estimate in vivo stresses used for further conclusions on the impact of various
physiological and pathophysiological conditions [54]. Nonlinear finite-strain constitutive
models based on convex SEF are used to represent experimentally-determined responses
of the different tissues considered. The SEF is split (see (1.33)) into an isochoric and a
volumetric contribution, where the latter one is particularized as

Ψvol(J) =
µK

2
(J−1)2. (2.3)

The variable µK represents a stress-like parameter, which degenerates to a non-physical,
positive penalty parameter in the case of isochoric deformation to enforce incompressibil-
ity. Increasing µK reduces the violation of the incompressibility constraint, where in the
limit of µK→ ∞ the constraint is exactly enforced and Ψ represents a functional for an in-
compressible material with J = 1. Thus, the penalty parameter is chosen to be µK = µ ·103

for FE simulations. The isochoric part of the SEF is further divided into an isotropic and
an anisotropic contribution as

Ψiso(Ī1, Ī4, Ī6) = Ψ
k
m(Ī1)+Ψ

k
f (Ī1, Ī4, Ī6), (2.4)

where k ∈ [a, t], for the AAA wall and the ILT, respectively. Explicit constitutive mod-
els representing the mechanical behavior of the AAA wall and the ILT are provided and
discussed in the following.

Constitutive Model of the Aortic Wall. The non-collagenous isotropic matrix material
of the AAA wall, i.e., the aortic wall, is represented by use of the standard neo-Hookean
material model given as

Ψ
a
m(Ī1) =

µ

2
(Ī1−3), (2.5)

where µ > 0 is a stress-like material parameter known as the shear modulus in the reference
configuration. The anisotropic and highly nonlinear response of the AAA wall due to the
collagen fiber network is captured by [17]

Ψ
a
f (Ī1, Ī4, Ī6) =

k1

2k2
∑

i=4,6

{
exp{k2[κ Ī1 +(1−3κ)Īi−1]2}−1

}
, (2.6)
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µ [kPa] k1 [kPa] k2 [-] φ [◦] κ [-]

intima 44.0 10.14 ·103 0.00 40.5 0.25
media 28.0 0.81 ·103 12.42 39.1 0.18
adventitia 10.0 0.38 ·103 3.35 40.59 0.11

Table 2.1: Median material and structural parameters for the intima, the media, and the
adventitia of the human abdominal aortic wall determined from 9 donors (mean
age 61.0±11yr) [69]. Damage parameters rf and mf are neglected since they do
not influence the primary loading curve.

where k1 > 0 is a stress-like material parameter, k2 > 0 is a dimensionless parameter con-
trolling the degree of non-linearity of the fiber fabric response, and κ ∈ [0,1/3] is a dimen-
sionless parameter representing the rotationally symmetric dispersion of the collagen fiber
orientations around the principal directions a0 and g0 in the reference configuration, with
‖a0‖= ‖g0‖= 1. In this particular constitutive equation the term

Ī?i = κ Ī1 +(1−3κ)Īi, i = 4,6, (2.7)

is used to distinguish between tension and compression of collagen fibers [68]. Therefore,
(2.6) only contributes to the SEF of the aortic wall if Ī?4 > 1 or Ī?6 > 1. In the limit of the
dispersion parameter κ = 0, the proposed material model degenerates to the constitutive
equation presented in [24], modeling a structure with perfectly aligned fibers, whereas in
the other limiting case, i.e., κ = 1/3, the expression corresponds to an isotropic distribution
similar to that of [10].

The principal directions of anisotropy, i.e., the collagen fiber directions a0 and g0, in the
reference configuration are symmetrically oriented with respect to the circumferential di-
rection of the aortic wall. Thus, both directions are uniquely defined by the structural
parameter φ , a parameter defining the in plane fiber angle with respect to the local cir-
cumferential direction. Table 2.1 provides model parameters µ,k1,k2,φ and κ for the in-
tima, the media, and the adventitia of the AAA wall determined from 9 donors (mean age
61.0±11yr) [69].

Constitutive Model of the Intraluminal Thrombus. Similar to the constitutive mate-
rial model for the AAA wall, the isotropic material composite of the ILT is represented by
a neo-Hookean model given as

Ψ
t
m(Ī1) = µ(Ī1−3), (2.8)

where µ > 0 is again a stress-like material parameter known as twice the shear modulus of
the underlying material in the reference configuration. Observations in [63] suggest that the
individual ILT layers, i.e., the luminal, the medial, and the abluminal layer, exhibit distinct
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µ [kPa] k1 [kPa] k2 [-] φ [◦] ρ [-]

luminal 9.7 15.9 2.7 84.1 0.33
medial 7.1 6.0 0.07 86.7 0.05
abluminal 5.1 2.9 0.03 89.1 0.05

Table 2.2: Mean material and structural parameters for the luminal (anisotropic), the me-
dial, and the abluminal layers of human ILT determined from 43 AAA samples
(mean age 67.0±6yr) [63].

nonlinear mechanical properties. Remarkable anisotropy can only be found in some of the
luminal layers. Thus, the tissue response is captured phenomenologically by [27]

Ψ
t
f(Ī1, Ī4, Ī6) =

k1

2k2
∑

i=4,6

{
exp{k2[(1−ρ)(Ī1−3)2 +ρ(Īi−1)2]}−1

}
, (2.9)

where again k1 > 0 is a stress-like material parameter, k2 > 0 is a dimensionless param-
eter controlling the degree of non-linearity, and ρ ∈ [0,1] is a dimensionless weighting
factor between isotropic and anisotropic response. The constitutive model in (2.9) needs
specification of preferred directions within the ILT defined by the vectors a0 and g0 in the
reference configuration, with ‖a0‖ = ‖g0‖ = 1. In contrast to the aortic wall, neither col-
lagenous nor elastic fibers are found in the ILT according to [63]. However, the differences
between the thick and thin bundles of the fibrin network and the deposit of small condensed
proteins might be possible explanations for anisotropy (cf., [63]). Since the behavior of the
ILT material in compression remains unknown, it is assumed that the anisotropic response
in (2.9) only contributes to the SEF if the material is in tension, i.e., Ī4 > 1 or Ī6 > 1. In
analogy to the SEF for the aortic wall, also this constitutive equation degenerates to the
material model presented in [24] for ρ = 1, whereas for ρ = 0 an isotropic model similar
to [10] is obtained.

The phenomenological principal directions of anisotropy a0 and g0 in the reference config-
uration are again assumed to be symmetrically oriented with respect to the circumferential
direction of the ILT and hence uniquely defined by the structural parameter φ , the in plane
angle with respect to the local circumferential direction. Table 2.2 provides model parame-
ters µ,k1,k2,φ and ρ for the luminal (anisotropic), the medial, and the abluminal layers of
the ILT determined from a total number of 43 AAA samples (mean age 67.0±6yr), where
33 luminal, 22 medial and 12 abluminal layers have been tested and analyzed [63].

2.4 Definition of Fiber/Anisotropy Directions

The anisotropic constitutive models given in (2.6) and (2.9) for the AAA wall and the ILT,
respectively, require the definition of the mean preferred directions a0 and g0 in the refer-
ence configuration as an input. Definition of these directions in patient-specific geometries,
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however, is not a trivial task and requires a robust numerical algorithm to identify the local
coordinate system at a specific location within the FE mesh. In the past, several methods
have been presented which are either based on a highly structured FE mesh [44] or spe-
cific (predefined) tangential planes [33]. Nevertheless, the definition of preferred directions
should be independent of any prerequisites and therefore a new algorithm is developed, ap-
plicable to both hexahedral and tetrahedral (with minor adjustments) FE meshes.

In order to obtain properly defined directions ak
0 and gk

0 for each element k in the FE mesh,
an adequate assignment of the local radial, circumferential, and longitudinal directions
needs to be performed (see Fig. 2.3). Thus, the AAA is divided into 3 different sections, the
abdominal aorta section ΩAA, the right common iliac ΩRI, and the left common iliac ΩLI
artery section according to the present anatomical structure of the AAA, where the planes
Γt (a transversal plane within the bifurcation) and Γs (a basically sagittal plane defined
by the anterior, posterior, and caudal point introduced previously) are used. Subsequently
unit direction vectors ni

avg, with i ∈ [AA,RI,LI], of all individual sections are calculated
using corresponding lumen centers at the top and the bottom of each section, defining
their average orientation in space. In hexahedral FE meshes the definition of the radial
direction for every element, independent of its individual size and shape, can be performed
by calculation of two tangential planes iΓk (inner element face) and oΓk (outer element
face), obtained via an orthogonal distance regression. These optimization problems are
solved by minimizing the orthogonal (perpendicular) distances of the corresponding nodes
at the element faces to the planes, leading to the unit normal vectors ink and onk of iΓk and
oΓk, respectively. Vector averaging retrieves

ek
r =

ink +o nk

‖ink +o nk‖
, (2.10)

leading to the definition of the local radial direction ek
r in the element coordinate system.

Application of the vector product ni
avg× ek

r , yields the local circumferential direction ek
θ

.
A second vector product ek

r × ek
θ

defines the local longitudinal direction ek
z in the element

coordinate system, representing a modified direction of ni
avg, with i ∈ [AA,RI,LI]. Thus,

the three orthogonal basis vectors ek
r ,ek

θ
, and ek

z represent the local element coordinate sys-
tem. The local orthogonal basis calculated for each finite element serves as the foundation
to define the mean preferred directions of anisotropy. In addition, the angles φ provided in
Tables 2.1 and 2.2 for the AAA wall and the ILT, respectively, are needed to fully charac-
terize these materials with preferred directions according to

ak
0 = cosφek

θ + sinφek
z and gk

0 =−cosφek
θ + sinφek

z. (2.11)

2.5 Simulation Boundary Conditions

In FE analysis the correct application of boundary conditions is of crucial importance.
Especially in simulations of biological structures such as AAAs their identification is not
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Figure 2.3: Method to define directions of anisotropy in (a) the structural discretization of
the adventitia in the AAA wall; (b) enlarged schematic view on the indicated
element with basis vectors ek

r ,ek
θ

, and ek
z of the local element coordinate system

and (c) the mean directions of anisotropy are calculated using the average unit
direction vector ni

avg.

trivial. Various boundary conditions on the patient-specific AAA geometry should reflect
the in vivo situation, however, the FE model needs to be constrained for stable simulation
conditions and convergence purposes. Boundary constraints should be chosen in a way
so that their influence on simulation results is negligible or minimized. For the mathe-
matical description of a boundary-value problem two specific types of boundary condi-
tions, Dirichlet and Neumann boundary conditions, can be applied. In fact, there are also
other types such as, e.g., Cauchy, Robin and mixed boundary conditions. In the following,
Dirichlet and Neumann boundary conditions are treated separately and the application in
the patient-specific FE model of the AAA is discussed.

Dirichlet Boundary Conditions. Imposing a Dirichlet (geometrical) boundary condi-
tion to a PDE (the basic type of equation in FE stress analysis) specifies a distinct solution
value at the boundary of the considered domain. In the context of FE analysis this means
that displacements are applied u(X) = u or restricted u(X) = 0 at certain locations X in
the reference configuration.

The AAA geometry reconstructed from MRI images represents the actual in vivo configu-
ration in a patient. The length/height of the tissue composite does not change significantly
during the cardiac cycle due to the pulse wave propagating through the aorta and the com-
mon iliac arteries. This fact justifies fixing all nodes in vertical direction at the cranial edge
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(transition zone of the AAA to the connected part of the abdominal aorta) and the caudal
edges (transition zones of the AAA to the common iliac arteries) of the AAA geometry.
As already mentioned in the introduction, the human abdominal aorta is an elastic artery
being quite distensible, necessary to take up the pulsatile nature of blood pressure. As the
pressure wave propagates through the aorta it expands in radial direction. Thus, displace-
ments of nodes at the three different transition zones intersecting with the lumen surface
are constrained in circumferential direction and can only move in local radial direction
(radially along the direction of the lumen center to the individual node).

Neumann Boundary Conditions. Mathematically, a Neumann (natural) boundary
condition provides a value for the derivative of the solution of a PDE on the boundary
of the considered domain. In the context of FE analysis this could be a traction vector t(X)
acting on a certain location X in the reference configuration.

The AAA of the patient undergoing MRI is subjected to physiological in vivo condi-
tions, i.e., to systolic (optimal < 120mmHg) or diastolic (optimal < 80mmHg) blood
pressure depending on the imaging procedure [67]. However, since AAA formation is
a pathological process the patient is assumed to have a diastolic blood pressure (DBP)
of p = 85mmHg and a systolic blood pressure (SBP) of p = 135mmHg (‘Prehyperten-
sion’ according to [7]). Increasing pressurization in the process of FE simulations leads to
changes in the geometry due to the finite elasticity of the biological tissue. Since pressure
acts perpendicular to the surface considered, the direction of the load associated with the
applied pressure changes during FE analysis, leading to a follower load applied on the lu-
men boundary surface. Depending on the direction of the luminal surface normal (inward
or outward), the adequate sign of the applied pressure needs to be selected.

2.6 Methodology for Residual Stretch/Stress

Numerous problems arise from the inclusion of residual stresses/stretches into patient-
specific simulations of arterial tissue since classical FE approaches assume an unloaded
and stress-free reference configuration. In the past several methods have been introduced to
account for residual stresses in a patient-specific FE model of a human iliac artery or a hu-
man thoracic aorta [1,3,70]. However, analyses are either based on a single experimentally-
determined (two-dimensional) so-called ‘opening angle’ (cf., e.g., [15]) or on layer-specific
uniform residual stretches, both not being able to represent the three-dimensional nature of
residual stresses in arteries. In the following, an approach is presented capable to include
layer-specific three-dimensional residual stretches (and hence residual stresses) based on
an analytical analysis into patient-specific FE simulations of AAAs. The general idea of
the method developed is applicable to any residually stressed tissue where adequate data on
residual deformations are available. The method is based on a recent analytical approach
to determine residual stresses [25], in which experimental data of human abdominal aortas
with non-atherosclerotic intimal thickening are used [26].
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2.6.1 Analytic Residual Stretch Calculation

In order to estimate residual stretches in patient-specific AAA geometries, deformation
gradients F(i)(r(i)), with i ∈ [I,M,A], for the intima, media, and adventitia, respectively,
are defined as a function of the radius r(i) in the residually stressed configuration. They
represent the kinematic transformation of the individual arterial layers from their (nearly)
stress-free reference configuration into a circular cylindrical tube, in which any external
load is absent (cf., [25]). Due to the discrete nature of the FE mesh every element in the
AAA geometry is assumed to undergo one of these deformations depending on the spatial
location within the arterial layer.

Deformation Gradient in the Intima. Measurements in [26] indicate that the intima
basically remains straight in axial direction, whereas an aortic ring (circumferential direc-
tion) opens up by a distinct amount. Under these assumptions the deformation gradient for
the intima can be specified as

F(I)(r(I)) =
L(I)

r(I)k(I)l
[A(I)2

+ k(I)
l

L(I)
(r(I)

2
−a(I)

2
)](1/2)er⊗ER

+
r(I)k(I)

[A(I)2
+ k(I) l

L(I) (r(I)
2−a(I)2

)](1/2)
eθ ⊗EΘ

+
l

L(I)
ez⊗EZ. (2.12)

Deformation Gradient in the Media. According to [26] the media exhibits pro-
nounced curvatures after layer separation in both longitudinal and circumferential direc-
tion. For simplicity and practicability of the analytical analysis it is assumed that the aortic
tissue is planar in the direction of the smaller curvature, i.e., in circumferential direction
(cf., [25]). Therefore, the kinematic transformation including a minor adjustment factor
c(M) is given by

F(M)(r(M)) =
L(M)π

c(M)r(M)β l(M)k(M)
[A(M)2

+
β l(M)k(M)

πL(M)
(b(M)2

− r(M)2
)](1/2)er⊗ER

+
r(M)β

c(M)L(M)
eθ ⊗EZ

+
c(M)2

l(M)k(M)

π[A(M)2
+ β l(M)k(M)

πL(M) (b(M)2− r(M)2
)](1/2)

ez⊗EΘ. (2.13)

Deformation Gradient in the Adventitia. Observations in [26] indicate that the axial
strips of the adventitia essentially do not undergo any deformation, they remain straight.
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intima media adventitia

A(I) = 7.504mm A(M) = 8.406mm L(A)
1 = 0.205mm

B(I) = 7.764mm B(M) = 8.986mm L(A)
2 = 18.3465mm

L(I) = 2.5805mm L(M) = 2.52mm L(A)
3 = 2.288mm

k(I) = 1.191 k(M) = 2.785
a(I) = 5.61mm a(M) = 5.911mm a(A) = 6.724mm
b(I) = 5.91mm b(M) = 6.724mm b(A) = 7.045mm
l = 2.48mm l = 2.48mm l = 2.48mm

µ(I) = 39.8kPa µ(M) = 31.4kPa µ(A) = 17.3kPa

Table 2.3: Geometrical parameters determined from experiments used for calculation of
the deformation gradients F(i)(ri), with i ∈ [I,M,A], for the individual arterial
tissue layers [26] and associated material parameters [23].

However, circumferential strips of aortic rings spring open and form a plane, leading to the
kinematic transformation

F(A)(r(A)) =
L(A)

2 L(A)
3

πr(A)l
er⊗EX1

+
πr(A)

L(A)
2

eθ ⊗EX2

+
l

L(A)
3

ez⊗EX3. (2.14)

The deformation gradients provided in (2.12)-(2.14) representing the underlying kinematic
transformation are functions of the radii r(i) ∈ [a(i),b(i)], with i∈ [I,M,A]. In addition, since
the cylindrical polar coordinate axes in the current configuration are principal axes, the
deformation gradients only have diagonal entries λ

(i)
r , λ

(i)
θ

, and λ
(i)
z , denoting the principal

stretches, again with i ∈ [I,M,A]. The deformation of each individual layer is assumed to
be isochoric, i.e., the material is treated as incompressible. Thus, the condition

λ
(i)
r λ

(i)
θ

λ
(i)
z = 1, with i ∈ [I,M,A], (2.15)

is fulfilled. It is important to emphasize that all parameters in (2.12)-(2.14), except l(M) and
β discussed in the following, are geometrical measures obtained directly from experiments
as specified in Table 2.3. In order to evaluate presented deformation gradients and thus
the principal stretches in every individual layer, traction continuity for stresses in radial
direction is enforced at the interfaces between the intima and the media as well as between
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the media and the adventitia [25]. Additionally, making use of the geometric relation

l(M) =
πL(M)

βk(M)

(B(M)2−A(M)2
)

(b(M)2−a(M)2
)

(2.16)

between the remaining unknown geometrical parameters l(M) and β , an analytical expres-
sion for β can be determined. Thus,

β =

[
µ(M)(b(M)2−a(M)2

)

L(M)2

]−1/2

×

[
µ(I)L(I)(b(I)

2−a(I)
2
)(A(I)2

L(I)− la(I)
2
k(I))

l2a(I)2b(I)2k(I)2

+

2µ(I)L(I)

(
log
[

b(I)

a(I)

]
− k(I)

2
log

[√
1+ lk(I)(b(I)2−a(I)2)

L(I)A(I)2

])
lk(I)

+
µ(M)(b(M)2−a(M)2

)2(b(M)2
B(M)2−a(M)2

A(M)2
)

a(M)2b(M)2
(B(M)2−A(M)2

)2

−
2µ(M)(b(M)2−a(M)2

) log
[

b(M)

a(M)

]
B(M)2−A(M)2

+µ
(A)(b(A)2

−a(A)2
)

(
L(A)2

2 L(A)2

3

π2l2a(A)2b(A)2 −
π2

L(A)2

2

)]1/2

, (2.17)

where µ(I), µ(M), and µ(A) denote the experimentally-determined shear moduli of the ar-
terial layers (intima, media, and adventitia, respectively) fitted to the low load regime (up
to the so-called ‘transition-point’) in [23].

2.6.2 Pragmatic Mapping of Residual Stretch

In order to incorporate the three-dimensional residual stresses/stretches in FE simulations
of AAAs, the analytically estimated residual stretches from (2.12)-(2.14) are mapped into
a predefined element-specific orthonormal coordinate basis (see Section 2.4) for every
Gauss quadrature point depending on the location within each tissue layer. The proposed
mapping procedure is applicable to both tetrahedral (with minor modifications) as well as
structured and unstructured hexahedral meshes.

For every Gauss integration point j ( j = 1,2, . . . , n; where n is the total number of Gauss
quadrature points in the FE model) in each element within each arterial tissue layer i (i ∈
[I,M,A]), the ‘regional’ radial direction of the AAA tissue layer is defined by a vector
n̄(i)

j , which in general differs from the radial direction ek
r of the local coordinate system in
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Figure 2.4: Representative schematic diagram of the vector in the ‘regional’ radial direc-
tion passing through Gauss integration point j, c n̄(i)

j : (a) patient-specific FE
mesh of the adventitia with selected elements, (b) perspective view of elements
comprising the adventitia as the representative tissue layer i indicating the per-
formed approach.

element k (see Fig. 2.4), though the difference might be small. To calculate the ‘regional’
radial direction for the Gauss quadrature point j in the arterial tissue layer i, the four nodes
defining the hexahedral element at the inner edge of the tissue layer, e.g., the intersection
surface of media and adventitia, are determined. Using orthogonal distance regression a
plane is fitted to these four nodal points, leading to the unit normal vector in(i)

j of this inner
plane. This process is repeated for the same Gauss integration point j, determining the four
nodes of the hexahedral element at the outer surface of the arterial tissue layer, e.g., the
outer edge of the AAA wall. Again, a plane is fitted using orthogonal distance regression
to determine the unit normal vector on(i)

j of this outer plane. Finally, the average of both is
calculated, representing the ‘regional’ radial direction of the AAA tissue layer given as

n̄(i)
j =

in(i)
j + on(i)

j

‖in(i)
j + on(i)

j ‖
, (2.18)

where Einstein summation convention is not employed. The subsequent step includes the
calculation of a vector c n̄(i)

j , where c ∈ R∗+ is sufficiently large, defined to pass through
Gauss quadrature point j (see Fig. 2.4 for a schematic representation). Along this ‘re-
gional’ radial direction vector c n̄(i)

j three associated distances (locations) are calculated

using an arbitrarily defined starting point towards the lumen center: a(i)j is the distance at
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the intersection of c n̄(i)
j with the inner plane having the unit normal in(i)

j , denoted by iΓ
(i)
j ;

q(i)j is the distance of Gauss quadrature point j along c n̄(i)
j within tissue layer i; and b(i)j is

the distance at the intersection of c n̄(i)
j with the outer plane having the unit normal on(i)

j ,

denoted by oΓ
(i)
j . Aforementioned definitions for the Gauss integration point j within the

arterial tissue layer i along the vector c n̄(i)
j lead to a(i)j ≤ q(i)j ≤ b(i)j .

Identification of the position of the Gauss quadrature point j with respect to the thickness
of the arterial tissue layer i requires the definition of a ‘normalized’ distance, given as

f (i)j =
q(i)j −a(i)j

b(i)j −a(i)j

, (2.19)

where f (i)j ∈ [0,1]. Finally, the three-dimensional residual stretches for Gauss quadrature
point j in arterial tissue layer i are determined using (2.12)-(2.14) evaluated with

r(i)j = a(i)+ f (i)j (b(i)−a(i)), (2.20)

where a(i) and b(i) (i ∈ [I,M,A]) are given in Table 2.3. This procedure is repeated for
all Gauss integration points j in all arterial tissue layers i of the FE mesh. Note that the
‘regional’ radial vector n̄(i)

j and thus also the modified version c n̄(i)
j is the same for every

Gauss point j within an element k. However, depending on the orientations of the fitted
inner iΓ

(i)
j and outer plane oΓ

(i)
j in space, the distances a(i)j , q(i)j and b(i)j differ, leading to a

variation of the ‘normalized’ distance f (i)j .

The procedure described above provides a pragmatic approach to map analytically deter-
mined residual stretches at each Gauss quadrature point j in arterial tissue layer i into an
element-specific orthonormal cylindrical coordinate basis defined by unit vectors ek

r ,ek
θ

,
and ek

z. However, FE simulations are based on a global Cartesian coordinate system (ex,ey,
and ez), thus, the deformation gradients calculated by (2.12)-(2.14) need to be transformed.
The three-dimensional transformation of any tensor quantity such as the deformation gra-
dients F(i)(r(i)) from a rotated orthonormal right-handed coordinate basis into the global
orthonormal right-handed FE coordinate basis is performed by

F(i)
RS = QTF(i)Q, (2.21)

where Q denotes the proper orthogonal rotation matrix, i.e., having the properties detQ =
+1, QTQ = I, and Q−1 = QT. The components of the rotation matrix Q are denoted as
the direction cosines retrieved by Qi j = ei ·e j, where i = r,θ ,z and j = x,y,z, representing
unit direction vectors in the rotated cylindrical element coordinate system and the global
Cartesian coordinate system, respectively.
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2.6.3 Computational Implementation of Residual Stretch

In previous sections analytical procedures for the definition of the directions of anisotropy
(fiber directions) in the reference configuration, the estimation of residual stretches in ar-
terial tissue layers based on experimental results, as well as a methodology to map these
residual stretches into patient-specific FE geometries have been provided and discussed.
These approaches serve as the mathematical basis for computational preprocessing to per-
form FE simulations of AAAs. Two problems arise when classical FE simulations of ar-
teries are performed: (i) the imaged in vivo geometry is not an unloaded reference con-
figuration, it is subjected to in vivo boundary conditions, e.g., DBP, and (ii) the influence
of residual stresses is modeled in an insufficient way or, even worse, totally neglected.
In the following, the computational implementation addressing both problems, the inclu-
sion of the three-dimensional residual stretches as well as to account for in vivo boundary
conditions, in the multipurpose FE code FEAP (University of California, Berkeley, CA) is
discussed. A representative schematic providing an overview of the individually performed
simulation steps is provided in Fig. 2.5. Note that residual stressing is performed prior to
prestressing, conversely to what is performed in experiments (the artery is extracted from
the patient (unloaded) and afterwards residual stress experiments are performed). This fact
is important since material non-linearity influences deformation and hence stress calcula-
tion.

Residual Stressing of Abdominal Aortic Aneurysms. In Sections 2.6.1 and 2.6.2
methods to calculate, to map and to transform the estimated residual stretches F(i)

RS, with
i ∈ [I,M,A], at each Gauss quadrature point j for every arterial tissue layer i in the patient-
specific FE model of the considered AAA have been provided. So far, residual stresses in
the ILT, which is present in the majority of AAAs [63], are not considered at all. However,
observations in the laboratory of the Institute of Biomechanics at Graz University of Tech-
nology suggest, that residual stresses in the individual layers of the ILT are small. Thus, it
is assumed that they are negligible and therefore not included in FE analysis, i.e., F(T)

RS = I,
where I is the second-order identity tensor.

The classical FE method assumes the reference configuration to be unloaded and stress-
free. Inclusion of residual stretches at every Gauss integration point j in every arterial
tissue layer i will result in stresses and perturbation of the global equilibrium in the FE
model. This fact might lead to a non-converged solution or to no solution at all, depending
on the magnitude of perturbation of the global equilibrium. In order to overcome this
problem, a so-called ‘tissue scaffold’ for the AAA geometry is introduced, essentially a
continuum body Ωscaf having an identical geometry and sharing the same nodes in the
FE mesh as the imaged in vivo configuration ΩIV. However, for the elements associated
with the ‘tissue scaffold’, denoted as ‘ghost’ elements, an isotropic material model is used
for simplicity. Again, the decomposition of the SEF (see (1.33)) into an isochoric and a
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Figure 2.5: Representative schematic of the computational implementation addressing the
two major problems in FE simulations of AAA, the inclusion of residual
stretches and the application of in vivo boundary conditions onto the imaged
patient-specific FE model.

volumetric contribution is performed, where the latter is particularized as

Ψ
scaf
vol (J) =

µscaf
K
2

(J−1)2, (2.22)

in which µscaf
K defines the arbitrarily chosen bulk modulus. The isochoric part of the con-

stitutive model describing the mechanical behavior of the ‘ghost’ elements and hence the
‘tissue scaffold’ is given by

Ψ
scaf
iso (Ī1) =

µscaf

2
(Ī1−3), (2.23)

where µscaf is a stress-like material parameter, the shear modulus in the reference configu-
ration, initially assumed to be very large (in the range of several MPa, i.e., µscaf >> µ). The
high stiffness of the ‘tissue scaffold’ supports the actual FE mesh of the AAA geometry
after inclusion of the residual stretches, keeping the nodes in place and allowing only for
small displacements. Thus, a converged FE solution in equilibrium with applied boundary
conditions can be obtained. Subsequently the initial shear modulus µscaf is gradually de-
creased in every time step, allowing for larger deformations in the AAA geometry until the
stiffness of the ‘tissue scaffold’ vanishes and residual stretches are in equilibrium with the
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boundary conditions. In order to obtain the in vivo configuration ΩIV with associated nodal
coordinates xt after residual stretches are included, a Generalized Prestressing Algorithm
(GPA) presented in [68] and based on the concept of [18, 19] denoted to as the Modified
Updated Lagrangian Formulation (MULF), is applied (see upper left section in Fig. 2.5).
For this purpose, an incremental deformation gradient

∆F(i)
RS = I+

∂∆u
∂xt

(2.24)

is calculated as a result of the incremental displacements ∆u (representing the associated
deformation) enforced by the residual stretches F(i)

RS due to the relaxation of the ‘tissue
scaffold’ for each iteration step. Subsequently the deformation gradient in the current time
step is computed as Ft+1 = ∆F(i)

RSFt , where Ft is a general history term. Global equilibrium
in the FE analysis is obtained in the current virtual configuration ΩRS

t+1, which differs from
the imaged configuration ΩIV (magnitude of mismatch is dependent on the number of
time steps used). Consecutively the deformation increment ∆u is deleted to retain the in
vivo geometry and the deformation history is updated during computation by Ft+1 = Ft ,
i.e., the current total deformation gradient, thus, building up a final deformation gradient
without changing the imaged in vivo geometry.

Generalized Prestressing of Abdominal Aortic Aneurysms. The proposed GPA [68]
is a multifunctional tool for including various types of boundary conditions in FE analyses
without changing the geometry, and is used in the following to include the blood pres-
sure during MRI, e.g., p = 85mmHg (see lower left section in Fig. 2.5). Blood pressure
measurement has not been performed during medical imaging and is therefore estimated
according to clinical advice. Similar to what is performed during inclusion of residual
stretches/stresses, an incremental deformation gradient is calculated for every time step
as

∆FPS = I+
∂∆u
∂xt

, (2.25)

where the incremental displacement ∆u results from the application of an internal pres-
sure increment ∆p. Again the deformation gradient in the current time step is calculated
by Ft+1 = ∆FPSFt , where Ft is a general history term stored during computation. Global
equilibrium in the FE analysis is achieved in the current virtual configuration ΩPS

t+1, differ-
ent from the aforementioned virtual configuration ΩRS

t+1. In order to obtain the imaged in
vivo geometry after application of the total blood pressure p, the deformation increment
∆u is deleted and the deformation history is updated as Ft+1 = Ft , thus, building up a final
deformation gradient maintaining the imaged in vivo geometry and including now both
residual stretches/stresses and blood pressure.

Stress Analysis on Physiological Conditions. Sequential performance of the residual
stretching/stressing (inclusion of residual stretches/stresses in the AAA) and the prestress-
ing (inclusion of blood pressure in the AAA) algorithms discussed so far, incorporates all
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essential in vivo boundary conditions by maintaining the imaged configuration ΩIV. These
procedures serve as the basis to investigate different physiological and pathophysiological
loading conditions within the patient-specific AAA geometry, which can be modeled by
subsequent application of various arbitrary loads, leading to FAL and different configura-
tions ΩF (see right section in Fig. 2.5). It is assumed that investigated patients have a DBP
of p = 85mmHg (blood pressure at which medical imaging is performed) and the SBP is
estimated to be p = 135mmHg. Thus, the convenient medical measure of the mean arte-
rial pressure (MAP), which approximates the average arterial blood pressure of a patient
during a single cardiac cycle, defined as

MAP = DBP+
1
3
(SBP−DBP) (2.26)

is calculated to be 101.67mmHg. The assumed blood pressures correspond to so-called
‘Prehypertension’, which might be consistent with the fact that AAA formation is a patho-
logical process [67]. It is important to emphasize that blood pressure is estimated under
normal resting conditions. It is reported, that peak pressures of a single subject measured
in the left brachial artery may exceeded 480mmHg and 350mmHg for SBP and DBP under
heavy resistance exercise (double-leg press) [41].

2.7 Validation of Residual Stretch/Stress

Assumptions as well as the proposed FE framework for including residual stretches/stresses
into patient-specific models of AAAs are validated by numerical reconstruction of a right
circular cylinder tube and compared to the analytical solution in [25]. Therefore, the three
individual layers (intima, media, and adventitia) of a human abdominal aorta are modeled
in their (nearly) stress-free reference configuration and numerically reconstructed via the
FE method to form a right circular cylinder tube, which represents an idealized geometry
of the type of artery under consideration. Because of symmetry conditions only an eighth
of the tube is modeled, similar to a longitudinal aortic strip in [26].

It is unlikely that residual deformations can be characterized appropriately by a single
two-dimensional parameter such as the ‘opening angle’ due to the inhomogeneous nature
of the arterial wall [26]. The novelty of the study presented in [26] concerns the fact that
they defined the three-dimensional residual deformations of every individual arterial layer
by stretches and curvatures in both axial and circumferential direction. Hence, the very
complex geometry of the (nearly) stress-free reference configurations of all individual lay-
ers is approximated and modeled by subareas of either a right circular cylinder or a torus
surface, superimposed to form a three-dimensional FE mesh. The general mathematical
description, i.e., the parametric equation, of a right circular cylinder in the global Carte-
sian coordinate system used in this validation is given by

Xcyl(θ) =

 h
Rcosθ

Rsinθ

 , (2.27)
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tref [mm] λaxial [-] λcirc [-] caxial [mm−1] ccirc [mm−1]

intima 0.260 0.961 0.899 −0.009 0.131
media 0.580 0.490 1.454 −0.115 −0.032
adventitia 0.410 1.084 1.179 0.000 −0.003

Table 2.4: Mean values of the thickness tref and analytically determined residual stretches
in axial λaxial and circumferential direction λcirc (evaluated at the center of ev-
ery individual layer) in the (nearly) stress-free reference configuration for the
aortic layers intima, media and adventitia taken from [25]. Mean axial caxial and
circumferential ccirc curvature of individual layers 6 h after layer separation and
relaxation in a Ca2+-free physiological saline solution to avoid muscle activa-
tion from [26].

where R denotes the radius of the right circular cylinder surface, θ is an angle in the range
of [0,2π) and h is a parameter defining the longitudinal position, i.e., the height of the right
circular cylinder surface. The parametric equation for the torus in the Cartesian coordinate
system used is given by

Xtor(θ ,φ) =

(R+ r cosθ)sinφ

r sinθ

(R+ r cosθ)cosφ

 , (2.28)

where r is the radius of a circle rotating around the torus axis at a circular orbit with ra-
dius R and θ and φ are parameters in the range of [0,2π). Depending on the relative size
of both radii R and r, different classes of standard tori are obtained. If R > r the surface
represents a ring torus, however, if R = r a horn torus is obtained. In the case of R < r a
self-intersecting spindle torus is parameterized, which degenerates into a sphere for R = 0.
Using the parametric descriptions given in (2.27) and (2.28) allows to mimic the curva-
tures as well as the stretches in longitudinal and circumferential direction with acceptable
accuracy. These parameters, as well as the individual layer thicknesses in the reference
configuration, for the intima, the media, and the adventitia are provided in Table 2.4. Mi-
nor adjustments of parameterizations given in (2.27) and (2.28) for individual layers are
necessary as discussed in the following.

Reference Geometry of the Intima. In this validation the intima is considered to have
a significant contribution to the overall mechanical behavior of the modeled abdominal
aorta since it has a considerable thickness in comparison to the other layers due to non-
atherosclerotic intimal thickening [60]. According to the data in Table 2.4, the intima is in
compression in axial and circumferential direction in the unloaded idealized state, leading
to an elongation after layer separation in the experiment. In addition to that, it has two
significant curvatures, a negative one in the axial and a positive one in the circumferential
direction, which can be modeled via sections of the inner surface of a torus. Since a closed
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mathematical description of an area on the torus surface having constant width and length
does not exist and axial dimensions are predominant in the example given, (2.28) needs to
be modified that the axial length of the intima strip is constant over the entire circumferen-
tial dimension. Therefore, a parameter transformation of φ = φ(φ̄ ,θ) is performed using
the scaling factor

f (I)(θ) =
R+ r cosθ

R− r
, (2.29)

where f (I)(θ) ≥ 1. The introduced scaling factor transforms the rotation angle according
to φ(φ̄ ,θ) = φ̄/ f (I)(θ) and hence (2.28) can be rewritten as

X(I)(θ ,φ) =

(R+ r cosθ)sin(φ̄/ f (I)(θ))
r sinθ

(R+ r cosθ)cos(φ̄/ f (I)(θ))

 . (2.30)

This parametric equation defines a surface used to approximate the intima in the (nearly)
stress-free configuration. Superposition of four surfaces leads to the definition of three
individual layers of linear hexahedral elements through the thickness. The (nearly) stress-
free reference configuration of the intima is shown in Fig. 2.6 and denoted by Ω

(I)
0 .

Reference Geometry of the Media. The media is generally considered to be the most
important layer in arterial wall mechanics having a large impact on the overall behavior
of the circulatory system. The analytically determined data in Table 2.4 suggest that the
media is in compression in the axial and in tension in circumferential direction in the
unloaded state of the abdominal aorta and has negative curvatures in both directions in
the (nearly) stress-free reference state. Negative curvatures are modeled by sections of the
outer surface of a torus. Similar to the intima, a closed mathematical description of the
subarea having both constant width and length on the torus surface is not possible, thus,
(2.28) needs to be modified again that the axial length of the media strip is constant over the
entire circumferential dimension. Therefore, the parameter transformation of φ = φ(φ̄ ,θ)
is repeated using the scaling factor

f (M)(θ) =
R+ r cosθ

R+ r
, (2.31)

where f (M)(θ) ≤ 1. This factor transforms the rotation angle according to φ(φ̄ ,θ) =
φ̄/ f (M)(θ) and hence (2.28) can be rewritten as

X(M)(θ ,φ) =

(R+ r cosθ)sin(φ̄/ f (M)(θ))
r sinθ

(R+ r cosθ)cos(φ̄/ f (M)(θ))

 . (2.32)

This parametric equation defines a surface used to approximate the media in the (nearly)
stress-free configuration. Superposition of seven surfaces leads to the definition of six indi-
vidual layers of linear hexahedral elements through the thickness. The (nearly) stress-free
reference configuration of the media is shown in Fig. 2.6 denoted by Ω

(M)
0 .
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Figure 2.6: Numerical reconstruction of a model of an abdominal aorta (longitudinal seg-
ment) from the individual (nearly) stress-free reference configuration of intima,
media, and adventitia (Ω(I)

0 , Ω
(M)
0 , and Ω

(A)
0 , respectively) to the unloaded state.

A necessary intermediate state to combine the arterial layers is not indicated,
however, needed to merge the three layers and form the tissue composite.

Reference Geometry of the Adventitia. The adventitia in the validation example is,
according to data provided in Table 2.4, in tension for both axial and circumferential direc-
tion in the unloaded ex situ configuration of the abdominal aorta. In addition, it is important
to emphasize that it remains flat in axial direction after layer separation and only a small
negative curvature in circumferential direction is observed. In contrast to the intima and
the media, where modified versions of a torus surface are used to model the (nearly) stress-
free reference configurations, the adventitia can be approximated without modification by
the parametric equation of a right circular cylinder surface. Thus,

X(A)(θ) =

 h
Rcosθ

Rsinθ

 , (2.33)

where superposition of five right circular cylinder surfaces represent four layers of linear
hexahedral elements through the thickness. The (nearly) stress-free reference configuration
of the adventitia is indicated in Fig. 2.6 denoted by Ω

(A)
0 .

Numerical Reconstruction of the Abdominal Aorta. In order to validate the assump-
tions made during analytic residual stretch/stress calculation as well as to verify the pro-
posed FE framework for including residual stretches/stresses into patient-specific models
of AAAs, the (nearly) stress-free reference configurations of the individual arterial layers
Ω

(i)
0 (i ∈ [I,M,A]) are numerically reconstructed to form the unloaded ex situ state of an

abdominal aorta Ωaorta (see Fig. 2.6). Necessary kinematic transformations are described
by the deformation gradients F(i)

aorta (i ∈ [I,M,A]). A total number of 5200 elements are
used to represent the reference geometry in appropriate detail, where 13 elements (3, 6,
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and 4 for the intima, media, and adventitia, respectively) are used through the thickness
to adequately model the bending dominant FE analysis. In order to compare the numer-
ical results to the analytical solution obtained in [25], the same constitutive equations (a
neo-Hookean material) with material parameters taken from Table 2.3 are used. The con-
forming unloaded state of the abdominal aorta Ωaorta is achieved by a split of the overall
deformation into two separate domains, not indicated in Fig. 2.6. Initially, the stress-free
reference configurations of the three layers are transformed into cuboids, where combi-
nation (merging process) is performed. Subsequent deformation into the unloaded state
Ωaorta completes the numerical tissue reconstruction process.



3 SIMULATIONS AND ANALYTICAL RESULTS

3.1 Finite Element Mesh Quality Inspection

Mesh quality measures such as the scaled Jacobian should detect inverted (invalid) ele-
ments in the FE mesh in order to avoid the loss of fidelity or even cause a halt of the
simulation prematurely. In addition, they should provide an estimate about the expected
accuracy of the calculation, i.e., that requirements concerning the size of error are sat-
isfied. The scaled Jacobian mesh quality metric defined in (2.1) and (2.2) can only be
applied to regular hexahedral elements having eight vertices at different spatial locations
in three-dimensional space. Therefore, collapsed hexahedral elements (e.g., wedge-shaped
or pyramid-shaped elements) are identified and excluded from the mesh quality analysis.
The number of collapsed elements and the degree of collapse for the AAA wall and the
ILT are given for a representative example in Table 3.1. The obtained results indicate that

#nodes #nodes-1 #nodes-2 #nodes-3

AAA 19440 - - -
ILT 3966 252 324 276

Table 3.1: Number of hexahedral elements with their degree of collapse in the AAA wall
and the ILT for the representative example. In general, (linear) hexahedrons are
constituted by eight nodes at different spatial locations (#nodes = 8).

degenerated hexahedral elements are not present in the AAA wall due to the sophisticated
meshing algorithm used. However, a total number of 852 elements with different degrees
of collapse are found in the ILT (indicated by the black region at the boarder of the ILT in
Fig. 3.1(c)), a necessity since the ILT is not present throughout the whole AAA.

Application of the proposed quality metric to the used FE mesh and analyzation of results
obtained for the AAA wall given in Figs. 3.1(a) and (b) indicate that the initial element
quality is generally at a very high level. All elements exhibit a scaled Jacobian above 0.2
and only for 4.75% of the total number of hexahedral elements the value is less than 0.5.
Results for the ILT, the AAA thrombus, in Figs. 3.1(c) and (d) indicate again high quality
elements. Scaled Jacobians of 1.26% of all elements in the ILT exhibit a value smaller than
0.5 and only for 0.05% of the total number of elements values below 0.2 are observed.
Again, it is important to emphasize that collapsed elements are excluded from this analysis
since the quality metric is not applicable in this case. Detailed information concerning the

41
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Figure 3.1: Global distribution of the scaled Jacobian quality measurement for (a) the AAA
wall and (c) the AAA thrombus, respectively. Histograms of mesh quality dis-
tribution, again for (b) the AAA wall and (d) the AAA thrombus, in order to
indicate high quality of the used FE mesh with the number of actual quality
counts on top of histogram bars. Black region (at the boarder of the ILT) in
(c) corresponds to collapsed elements, i.e., the region in which element quality
evaluation is not performed.

mesh quality in the individual layers of the AAA wall and the ILT for different quality
ranges is provided in Table 3.2.

The conforming hexahedral FE mesh used for analysis is a compromise between expected
computation time and simulation accuracy. The semi-automatic meshing algorithm devel-
oped is capable to generate meshes with higher density, nevertheless an increase in the
number of elements does not markedly change the quality distribution (cf., [62]). It is
assumed that a higher mesh density does not affect stress and deformation prediction sig-
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Scaled Jacobian <0 0.0,0.2 0.2,0.4 0.4,0.6 0.6,0.8 0.8,1.0

adventitia - - 89 1054 2302 3035
media - - 30 986 2316 3148
intima - - 44 907 2380 3149

abluminal - - 3 187 442 690
medial - - - 71 339 912
luminal - 2 1 19 261 1039

Table 3.2: Distribution of scaled Jacobian values for individual layers in the AAA wall and
the AAA thrombus. Collapsed elements (284 degenerated hexahedral elements
are present in every layer of the AAA thrombus) are not included in the analysis
of the mesh quality inspection.

nificantly, where a mesh convergence study would be needed to support this assumption.

3.2 Validation of Residual Stretch/Stress

The methodology is validated by recreating analytically-determined three-dimensional
residual stress distributions from [25] using data indicated in Table 2.4 via numerical re-
construction of a model of an abdominal aorta. In contrast to the method presented in [25]
both axial and circumferential stretches and curvatures are approximated and a compari-
son is provided in Fig. 3.2. Figures 3.2(a), (c) and (e) indicate the three-dimensional stress
components versus the normalized radius for the three-layer arterial tissue composite in
the unloaded, residually stressed state for the circumferential, axial, and radial direction,
respectively. Simulated results are generated from FE element stresses in corresponding di-
rections located at the center of the model to minimize effects of boundary conditions. The
corresponding three-dimensional FE representations of stresses are shown in Figs. 3.2(b),
(d) and (f). Particularly, Fig. 3.2(c) shows an equilibrium stress distribution versus the nor-
malized radius to ensure that the axial load at both ends of the aortic tissue model is zero,
consistent with the definition in [25]. Therefore, the mean axial stress σ̄zz is substracted
from the stresses predicted in the FE simulation σ̃zz, i.e., σzz = σ̃zz− σ̄zz. Calculation of the
mean axial stress σ̄zz is performed in a slightly different manner compared to the analyt-
ical example in [25] because of the discrete nature and possible irregularities (numerical
rounding issues) in the FE mesh after simulation. Thus,

σ̄zz =
∑

n
i=1 σ̄ i

zzA
i

∑
n
i=1 Ai , (3.1)

where n is the number of elements located at the model center through the thickness of
all individual layers chosen to be 13 (stated in Section 2.7). Evaluation of (3.1) leads to a
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Figure 3.2: Three-dimensional stress components versus normalized radius for the three-
layer arterial tissue model (intima, media, and adventitia) in the unloaded,
residually stressed configuration ((a), (c), and (e)) and corresponding three-
dimensional FE representations ((b), (d), and (f)): (a),(b) circumferential stress
σθθ ; (c) modified axial stress for traction free ends σzz and (d) axial stress σ̃zz;
(e),(f) radial stress σrr.
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mean axial stress of σ̄zz =−32.80kPa in the FE model compared to −33.27kPa stated in
the analytical example of [25].

In general, the results obtained in this validation suggest that the assumption to neglect
minor and only model major curvatures in the (nearly) stress-free reference configuration
of the individual arterial tissue layers, as performed in [25], does not influence the residual
stress distribution significantly (cf., the analytical and numerical determined stress con-
tours in Figs. 3.2(c) and (e) for axial and radial stress, respectively). The circumferential
stresses in the intima as well as the adventitia (see Fig. 3.2(a)) can also be captured with
sufficient accuracy. However, in the media the FE simulations predicts a steeper gradient
for the circumferential stress in radial direction than the analytical example in [25]. This
finding can be explained by the additional curvature included in the FE analysis, which
introduces additional bending stresses in the problem.

3.3 Residual Stretch/Stress Inclusion

Numerous crucial steps towards the consistent incorporation of residual stretches/stresses
into patient-specific FE simulations of AAAs are performed, where information concern-
ing the fundamental procedure has been provided in Section 2.6. Essential benchmarks
with corresponding results obtained within the computational preprocessing phase are pre-
sented to illustrate the capabilities of the novel approach and the correctness of the im-
plementation. In particular, plots for principal residual stretches obtained by numerical
evaluation of analytic expressions (2.12)-(2.14) and frequency distributions for the ‘nor-
malized’ distance, crucial in the proposed mapping procedure of residual stretches onto
individual Gauss quadrature points, are presented.

3.3.1 Residual Stretch/Stress Modification

Verification of the geometrical assumptions made in [25] are essential for further analy-
sis and form the basis for the proposed methodology to include residual stretches/stresses
into patient-specific FE simulations of AAAs. Relations (2.12)-(2.14) characterize ana-
lytically the kinematic transformations performed in the validation for c(M)2

= c(M) = 1,
where the principal stretch distribution for the three-layer arterial tissue complex is shown
in Fig. 3.3(a). Reasonable principal stretch values are obtained in the intima as well as the
adventitia. However, the principal stretches in the media tend to be extremely high and
are therefore not considered as physiologically relevant, e.g., at the center of the media
principal stretches of 1.454, 1.404, and 0.49 are obtained for circumferential, radial, and
axial direction, respectively. A necessary minor adjustment factor c(M) is introduced in a
way it is not inverting the overall or affecting the tendency of the principal stretch distribu-
tion in the media. In addition, the incompressibility constraint presented in (2.15) needs to
be fulfilled, leading to (2.12)-(2.14) with c(M)2

= 1.5 (media stretch-modification param-
eter). Figure 3.3(b) shows the principal stretch distributions including the media stretch-
modification parameter, leading to more physiological residual stretch values of 1.187,
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Figure 3.3: Residual stretch distributions versus radial coordinate through the intima, me-
dia, and adventitia of the arterial wall model. The solid, dashed, and dashed-
dotted curves correspond to principal stretches in circumferential λθ , axial λz,
and radial direction λr, respectively. Principal residual stretches are calculated
using data from Table 2.3: (a) reproduced results of [25]; (b) modified principal
residual stretch distribution to obtain physiological residual stretch values.

1.146, and 0.735 for circumferential, radial, and axial direction, respectively (measured
at the center of the media). Subsequent results are obtained using the modified principal
stretch values obtained via (2.12)-(2.14) with c(M)2

= 1.5 and indicated in Fig. 3.3(b).

3.3.2 Identification of Gauss Point Location

An important step towards the correct inclusion of residual stretches into patient-specific
FE models of AAAs is the pragmatic mapping procedure described in Section 2.6.2. An
essential quantity within this process is the ‘normalized’ distance f (i)j calculated for ev-
ery Gauss quadrature point j in every arterial tissue layer i, where i ∈ [I,M,A]. This nu-
meric/geometric measure determines the amount of residual stretch included at a certain
Gauss integration point within the FE mesh via (2.20), where it is important to note that
f (i)j ∈ [0,1]. Figure 3.4 shows determined values for the ‘normalized’ distance in the three
arterial layers with corresponding histograms, providing information about the frequency
distribution of specific values. Numerical integration in FE simulations is conveniently
performed by Gauss quadrature, the most accurate quadrature formula for polynomial
expressions [73]. Multi-dimensional integration in so-called natural coordinates, e.g., in-
tegration over a three-dimensional domain with coordinates ξ ,η , and ζ in the range of
−1 < ξ ,η ,ζ < 1, is performed by

1∫
−1

1∫
−1

1∫
−1

f (ξ ,η ,ζ )dξ dηdζ = ∑
n
j=1 ∑

n
k=1 ∑

n
l=1 f (ξ j,ηk,ζl)w jwkwl, (3.2)
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Figure 3.4: ‘Normalized’ distance values f (i)j ((a), (c), and (e)) for every individual Gauss
quadrature point in the FE mesh of the AAA wall and corresponding his-
tograms, indicating the frequency distribution ((b), (d), and (f)) for the intima,
media, and adventitia, respectively.
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where ξ j,ηk, and ζl are the points at which the function is evaluated using corresponding
weights w j,wk, and wl . Thus, the Gauss quadrature with an n-point formula is capable
to integrate a polynomial of order 2n− 1 exact. The location of Gauss quadrature points
in three-dimensional linear (i.e., elements with linear interpolation function) hexahedral
elements in natural coordinate direction ξ is given by ξ1,2 = ±1/

√
3, having weights

of w1,2 = 1. Hence, the ‘normalized’ distances f (i)j in direction of n̄(i)
j for two perfectly

aligned ideal elements, i.e., cubes, having a total edge length of 1 correspond to the loca-
tion of the Gauss quadrature points within these elements. Explicit values for these ‘nor-
malized’ distances are determined to be (1±1/

√
3)/4 and (3±1/

√
3)/4, consistent with

regions of the largest frequency distribution magnitude found in Figs. 3.4(b), (d), and (f).

The overall distribution of ‘normalized’ distance values is shown in Figs. 3.4(a), (c), and
(e) for the intima, media, and adventitia, respectively. The corresponding frequency distri-
butions indicate that the proposed method is able to calculate these values in an adequate
manner. Excellent distributions for the media and the adventitia (see Figs. 3.4(d) and (f))
are obtained having maximum/minimum ‘normalized’ distance values of 0.939/0.017 and
0.955/0.033, respectively. Calculated values in the intima, which is significantly thinner
compared to the media and adventitia, indicate that the method still leads to an accept-
able result. However, the distribution of individual values is more diverse with a max-
imum/minimum of 1.000/0.000. This result suggests that the error introduced into the
proposed method by fitting the planes iΓ

(i)
j and oΓ

(i)
j via orthogonal distance regression

becomes larger with decreasing layer thickness, consistent with expectations.

3.4 Stresses in Abdominal Aortic Aneurysm

Results obtained using the novel methodology to include residual stretches/stresses into
patient-specific FE simulations of a AAA are provided in the following. The patient con-
sidered suffering from a AAA is assumed to have a DBP of 85mmHg and a SBP of
135mmHg, classified as ‘Prehypertension’ according to [7]. It is assumed that medical
imaging, i.e., MRI, is performed at DBP, important for pressurization using the proposed
GPA [68].

3.4.1 Comparison of Diastolic Stress Distributions

In order to investigate the effect of initial stresses, which includes both residual stresses
and prestresses, on the stress distribution within the ILT and the AAA wall different simu-
lations are performed: (i) a conventional computation neglecting both residual stresses and
prestresses in the following termed ‘historical’ calculation, (ii) a computation accounting
only for prestresses using the GPA proposed in [68] termed ‘prestressing’ calculation, and
(iii) a computation including the three-dimensional nature of residual stresses as well as
prestresses by performing the proposed algorithm termed as ‘novel’ calculation. Figure 3.5
shows circumferential stress distributions σθθ for all three types of computational models
at an internal pressure (DBP) of 85mmHg. Figures 3.5(a)-(c) correspond to results for the
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Figure 3.5: Circumferential stress σθθ in the ILT and the AAA wall at a DBP of 85mmHg
for the three different types of simulations performed: (a),(b), and (c) ‘histor-
ical’ calculation; (d),(e), and (f) ‘prestressing’ calculation and (g),(h), and (i)
‘novel’ calculation. ‘Healthy’ arterial tissue is assumed in the upper part of the
AAA where an ILT is absent ((b), (e), and (h)), while the ‘diseased’ aorta is
located in the center region of the AAA ((c), (f), and (i)).

‘historical’ calculation, Figs. 3.5(d)-(f) indicate stress distributions using the ‘prestressing’
calculation and Figs. 3.5(g)-(i) provide results obtained using the ‘novel’ approach. Slices
indicating the different stress distributions at two vertical positions are provided to evaluate
the difference between the algorithms for ‘healthy’ (the ILT-free upper part of the AAA is
assumed to represent healthy arterial tissue, see Figs. 3.5(b), (e), and (h)) and ‘diseased’
abdominal aortic tissue (region in the AAA covered by an ILT is assumed to be diseased,
see Figs. 3.5(c), (f), and (i)).
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3.4.2 Comparison of Systolic Stress Distributions

Calculations performed for DBP represent the distinct level of pressurization of the AAA
at which medical imaging, i.e., MRI, was performed. Thus, up to that particular phase of
the analysis the used algorithms differ as described earlier to account for various load-
ing situations. Due to material non-linearity the results of any subsequent simulation will
differ remarkably, even if the algorithm used is identical for all three cases. The nomen-
clature introduced in Section 3.4.1 is kept to distinguish between performed calculations.
The patient considered in this analysis is assumed to have a SBP of 135mmHg, which

Figure 3.6: Circumferential stress σθθ in the ILT and the AAA wall at a SBP of 135mmHg
for the three different types of simulations performed: (a),(b), and (c) ‘histor-
ical’ calculation; (d),(e), and (f) ‘prestressing’ calculation and (g),(h), and (i)
‘novel’ calculation. ‘Healthy’ arterial tissue is assumed in the upper part of the
AAA where an ILT is absent ((b), (e), and (h)), while the ‘diseased’ aorta is
located in the center region of the AAA ((c), (f), and (i)).
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also corresponds to a slightly elevated value compared to normal conditions. Figure 3.6
shows circumferential stress distributions σθθ for all three types of computational models
at an internal pressure (SBP) of 135mmHg. Figures 3.6(a)-(c) correspond to results for the
‘historical’ calculation, Figs. 3.6(d)-(f) indicate stress distributions using the ‘prestress-
ing’ calculation and Figs. 3.6(g)-(i) provide results obtained using the ‘novel’ approach.
For consistency reasons, again stress results are evaluated at two vertical positions (same
location as in Fig. 3.5) representing ‘healthy’ (see Figs. 3.6(b), (e), and (h)) and ‘diseased’
(see Figs. 3.6(c), (f), and (i)) aortic tissue on top of the overall stress distributions within
the ILT and the AAA wall for all different calculations (see Figs. 3.6(a), (d), and (g)).

3.5 Displacement Magnitude Evaluation

As a consequence of the distinct implementation of the three algorithms compared, i.e.,
‘historical’, ‘prestressing’, and ‘novel’ computation, individual displacement fields are ob-
tained. The magnitude of nodal displacements ‖u‖ provides another important quantity in
the comparison of the three algorithms and is indicated in Fig. 3.7 for DBP. The maximum
nodal displacement magnitude obtained using the ‘historical’ calculation (see Fig. 3.7(a))
is 3.24mm. Since both the ‘prestressing’ calculation as well as the ‘novel’ calculation are
programmed to maintain the imaged in vivo configuration after pressurization to DBP, no
displacement is observed (see Figs. 3.7(b) and (c)), indicating correctness of the imple-
mentation of these methods.

Figure 3.7: Distribution of nodal displacement magnitudes ‖u‖ obtained at DBP using the
three different algorithms: (a) ‘historical’ calculation, (b) ‘prestressing’ cal-
culation, and (c) proposed ‘novel’ algorithm including residual stresses and
prestresses.

A subsequent pressure increase to SBP leads to a maximum nodal displacement magni-
tude ‖u‖ of 3.61mm in the ‘historical’ calculation (see Fig. 3.8(a)). Significantly differ-
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Figure 3.8: Distribution of nodal displacement magnitudes ‖u‖ obtained at SBP using the
three different algorithms: (a) ‘historical’ calculation, (b) ‘prestressing’ cal-
culation, and (c) proposed ‘novel’ algorithm including residual stresses and
prestresses.

ent distributions are obtained for the ‘prestressing’ (see Fig. 3.8(b)) and the ‘novel’ (see
Fig. 3.8(c)) algorithm, being notably larger in the latter one. The maximum nodal displace-
ment magnitudes ‖u‖ for the ‘prestressing’ and the ‘novel’ calculation are determined to
be 1.18mm and 3.13mm, respectively.
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4.1 Discussion on Results in Abdominal Aortic Aneurysms

Obtained stress and displacement distributions for the three individual computations per-
formed at DBP and SBP are discussed in the following. Mechanical modeling of complex
three-dimensional biological structures such as AAAs includes several assumptions and
limitations influencing the outcome. Therefore, potential impacts on stress and displace-
ment predictions are discussed.

4.1.1 Comparison of Stress Distributions

A quantitative comparison of circumferential stress distributions σθθ obtained using the
three algorithms (‘historical’, ‘prestressing’, and ‘novel’ calculation) at DBP provided in
Figs. 3.5(a), (d), and (g) suggests that the predicted mean stress magnitude in the intima
using the ‘historical’ and the ‘prestressing’ calculation are non-physiological and unreal-
istically high. This is in contrast to observed mean stresses in the media and adventitia,
where stress estimates seem to be very small and basically non-existing. The ‘novel’ al-
gorithm to include residual stresses in patient-specific FE simulations of arterial tissue
provides reasonable mean stress magnitudes in circumferential direction for the media and
adventitia. However, stress estimates in the intima may be too small (compressive mean
circumferential stress is observed). Notable differences in stress distributions are found for
‘healthy’ and ‘diseased’ arterial tissue using the ‘novel’ approach, where stress peaks in
the adventitia vanish in the latter (cf., Figs. 3.5(h) and (i)).

A dramatic increase in mean circumferential stress values is obtained in the intima for the
‘historical’ and the ‘prestressing’ calculation due to exponential stiffening of the colla-
gen fiber fabric in the high load regime (see Figs. 3.6(a)-(f)). However, only minor stress
increase is observed in the media and adventitia as a consequence of the geometrical non-
linearity of the problem. It is assumed that the intima stress-shields the media and adventi-
tia, leading to this moderate increase in stress values at SBP. The ‘novel’ algorithm predicts
more reasonable mean stress values in the media and adventitia. Slightly increased, but still
negative circumferential stresses are observed in the intima (see Figs. 3.6(g)-(i)). Again,
notable differences between ‘healthy’ and ’diseased’ arterial tissue can be identified (cf.,
Figs. 3.6(h) and (i)), where the circumferential stress distribution σθθ seems to be more
uniform in the ‘novel’ simulation compared to the ‘historical’ and the ‘prestressing’ calcu-
lation.

53
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The ‘novel’ approach, in which prestresses and residual stresses are included, leads to
physiologically relevant mean stress values for the media and adventitia at DBP and SBP,
however, a small compressive stress in circumferential direction is observed in the intima.
The reason for this non-physiological stress estimate might be an overprediction of residual
stretches in the analytical calculation performed prior to FE simulation (discussed in detail
in Section 4.2.2). Therefore, a parameter study of the influence of the residual stretches on
variations in mean circumferential stress σθθ is performed, leading to expected positive
mean stress values in the intima at DBP if adequately chosen. In addition, large variations
in circumferential stress values σθθ are observed using the ‘prestressing’ and the ‘novel’
approach at both pressures (DBP and SBP), similar to findings in the literature [8, 59, 70].
A statistical significance between the local wall curvature and the predicted circumfer-
ential stress for the thoracic aorta was specified in [70], indicating that peak stresses are
associated with large local curvatures (small local radii). Remarkable differences in lumen
shape are observed when the ‘historical’ calculation is compared to the ‘prestressing’ and
the ‘novel’ approach (see Figs. 3.5(b), (e), and (h) for DBP and Figs. 3.6(b), (e), and (h)
for SBP). Smooth curvatures are obtained in the ‘historical’ simulations, in contrast to the
‘prestressing’ and the ‘novel’ (geometry conserving algorithms) calculation, where large
curvature differences are still present and possibly explaining the large stress variations.
Thus, there is a need for experimental investigations to determine variations in local mate-
rial parameters [32] and residual stress data [40], which will likely homogenize the overall
stress state.

The stress results obtained in the ILT for all simulations performed indicate a state of
hydrostatic compression. However, due to the lack of experimental data the mechanical
behavior of the individual ILT layers under compression remains unknown. Thus, the con-
stitutive model used may not be an adequate representation of the tissue composite in
compression and stress results should be treated with caution.

In general, the ‘novel’ approach has the potential to increase the reliability of stress pre-
dictions within AAA walls since the overall mean stresses of the individual arterial layers
become substantially more homogeneous at higher loads such as SBP. In addition, com-
pressive circumferential stresses (hoop stresses) at the inner boundary of the arterial wall
using prestressing algorithms in combination with residual stresses are reported in the lit-
erature, e.g., [1, 2, 70].

4.1.2 Comparison of Displacement Distributions

The influence of residual stretches/stresses is not only noticeable in the stress pattern as
discussed earlier, but also the overall deformation field changes significantly for the three
different simulations performed as depicted in Figs. 3.7 and 3.8. Large nodal displacement
magnitudes for the ‘historical’ calculation are predicted at DBP and only a small increase
is observed at SBP. This fact can be explained by exponential stiffening of the collagen
fiber fabric in the AAA wall, only enabling large displacements in the low load regime. No
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displacement is observed for the ‘prestressing’ and the ‘novel’ calculation at DBP, indi-
cating correctness of the implemented GPA (the imaged in vivo geometry is maintained).
However, a large difference in nodal displacement magnitudes for both algorithms is ob-
tained in the systolic phase of the cardiac cycle. While diastolic circumferential stresses in
the intima for the ‘prestressing’ calculation are already high, suggesting that a pronounced
stiffness is present, they are more moderate in the layers for the ‘novel’ calculation. For
this reason, additional pressure increase has a larger impact on nodal displacement mag-
nitudes. Nodal displacements for all individual algorithms investigated are largest in the
‘historical’ calculation, consistent with findings in [1].

Obtained results indicate that larger nodal displacement magnitudes in the AAA wall cov-
ered by the ILT are predicted by the ‘novel’ calculation compared to the ‘historical’ one
(see Figs. 3.8(a) and (c)). A possible explanation for this effect might be the distinct kink
of the overall AAA geometry in combination with axial residual stresses.

4.2 Limitations of Novel Approaches

The proposed method to include residual stresses in patient-specific FE models of arterial
tissue is applied to a AAA within this thesis. In general, this approach is applicable to any
residually stressed material where specific data on residual deformations are available. It
is intended to provide a method more accurately predicting the overall stress state within
biological structures. In the context of AAA simulations the accurate prediction of stress
may lead to an increase in reliability of rupture potential characterization. Novel challenges
arise from more sophisticated modeling approaches and thus assumptions and limitations
are discussed in detail to highlight the additional complexity.

4.2.1 Residual Stretch/Stress Validation

In the analysis performed to validate the novel approach of including residual stresses into
patient-specific FE simulations it is assumed that the reference configuration of the sep-
arated layers is totally stress-free. However, in [40] it was suggested that additional cuts
through the arterial tissue may be necessary to obtain a zero-stress state. In theory the arte-
rial wall would need to be separated into infinitesimally small parts to finally obtain a state
without any stresses present [34, 49]. Determination of curvatures in axial and circumfer-
ential direction in [26] was performed by approximating the actual geometry by circular
arcs. The influence of this circularity assumption was investigated in [50] and is confirmed
to be a reasonable approximation.

The (nearly) stress-free reference configuration of the adventitia remains fairly simple and
thus stretches and curvatures in both directions can be represented by subsections of right
circular cylinder surfaces. Nevertheless, it is more complex for the intima and the media,
where modeling introduces several approximations. Sliding surfaces and torus surfaces
provide feasible geometries to represent these reference configurations. Individual param-
eterizations using sliding surfaces would be necessary for intima and adventitia, in contrast
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to the torus surface capable to model both reference configurations. The representation of
curvatures and stretches in the reference configuration might be more accurate towards the
edges of the individual layers using sliding surfaces, however, element distortion could
be more pronounced. The main focus of this validation is to identify the influence of the
approximation made by neglecting the minor curvature in the stress-free configuration.
Since both geometries are able to model all quantities at their center perfectly, decision is
made for the torus surface and no specific error analysis on the feasible geometries is per-
formed. The torus surface parameterization is modified in order that the axial length of the
strips is constant over the entire circumferential direction since axial dimensions are the
predominant ones in the validation analysis. This introduces an increasing error (not fur-
ther quantified) in circumferential dimensions towards the axial edges. The circumferential
curvatures of the intima and the media are assumed to be more important in the present
analysis and thus, modeling of these curvatures is performed accurately. This assumption
introduces an increasing error in axial curvature towards the circumferential boundaries of
the tissue strips. However, it should be emphasized that stretches as well as curvatures are
accurately modeled in both directions at the origin of the coordinate system used. Because
of this reason, stress analysis subsequent to numerical tissue reconstruction is only per-
formed at the elements connected to the center of the unloaded configuration Ωaorta. This
leads to a minimization of the error introduced by the approximations on the numerical
reconstruction result and is assumed to be acceptable.

4.2.2 Simulations of Abdominal Aortic Aneurysm

The FE analysis performed in this thesis treats the AAA as a healthy abdominal aorta,
assuming that the layered structure and the perfect collagen fiber alignment of the tissue
are still present. However, research using second harmonic generation (SHG) imaging has
identified that the diseased AAA wall covered by an ILT is fundamentally different in
terms of macroscopic structure and fiber alignment to a healthy human abdominal aorta
(cf., Figs. 4.1(a), (b), and (c)). In addition, biaxial mechanical tests of AAA walls con-
firmed a change in material properties compared to healthy abdominal aortas [63, 65].
Lipid pools and calcifications might be present in a AAA as indicated in Figs. 4.1(b) and
(c) by the dense light green region and the small black holes, respectively. These structural
components are not segmented during image processing and therefore not considered in
FE simulations (analyses including lipid pools and/or calcifications have been performed
in [28, 33]).

Due to the lack of residual stress data for diseased arterial tissue it remains unknown to
what extent ILT formation and presence change residual wall stresses. It is assumed that
this influence is negligible and residual stress data for healthy abdominal aortas are used.
According to observations made in the laboratory of the Institute of Biomechanics at Graz
University of Technology, residual stresses in the individual ILT layers are small and there-
fore not included in the FE analysis. Analytically determined residual stretches calculated
in the preprocessing stage of the proposed method (cf., [25]) are based on modeling the
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Figure 4.1: SHG cross-section images of (a) a human non-atherosclerotic abdominal aorta
indicating nearly perfect fiber alignment; (b) and (c) a human AAA wall cov-
ered by an ILT where calcifications and lipid pools are observed. Pictures taken
by H Wolinski, PhD with permission of AJ Schriefl, PhD (unpublished).

aortic tissue as a neo-Hookean material for convenience of the analysis. Residual stretches
are likely small and the influence of exponential stiffening of collagen fibers is neglected.
Thus, the calculated residual deformations could be overestimated, justifying the assump-
tion to introduce a media stretch-modification parameter. However, due to this adjustment
factor traction continuity at the intima-media and the media-adventitia interface may be
lost. Performing a residual stress experiment includes the excision, i.e., unloading, of the
artery from the human cadaver and subsequently cutting of axial and circumferential tissue
strips. As a consequence, residual stresses are released, leading to an equilibrium configu-
ration after some time of relaxation. This process indicates that residual stresses should be
included in an unloaded arterial state. In the proposed approach MRI imaging is performed
at DBP remaining the unloaded configuration unknown. Hence, calculated residual stresses
are included in a loaded state of the artery within the proposed method (previous to pres-
sure application via the GPA). The impact of this particular assumption on the predicted
stress state cannot be quantified using the data available.

4.3 Concluding Remarks and Outlook

The novel approach to include residual stresses in patient-specific FE models of arteries
and the corresponding results presented in this thesis should serve as a basis for further
research in computational mechanics. The method developed is applied to a representative
AAA, where many more patient-specific simulations need to be performed to demonstrate
its general applicability. In order to fully characterize the stress state at a certain location
within a living tissue, more sophisticated modeling approaches are required. This suggests
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an additional need to account for active components such as smooth muscle contraction in
FE simulations in addition to the passive behavior modeled. Fluid-structure interaction be-
tween the blood flow and the arterial wall can further improve prediction of in vivo stresses,
however, introducing another level of complexity into existing FE simulations [43]. Novel
challenges arise from using more complex algorithms, indicating the need for intensive
research in the field of cardiovascular biomechanics. Sophisticated physical modeling im-
poses additional demands on improved experiments and measurements to better quantify
patient-specific tissue parameters, e.g., regional material and residual stress parameters.

In the context of growth and remodeling the ‘homogeneous stress hypothesis’ is of funda-
mental importance (e.g., [47]). To this end, residual stresses must be considered since they
generally lead to a more uniform stress field. Ultimately, it is the mechanical environment
of individual cells, which is the driving force for processes associated with growth and
remodeling. Hence, investigation in mechanobiology to better understand mechanotrans-
duction (a molecular mechanism of a cell responding to mechanical stimuli) is likely a key
to understand physiological adaption as well as the evolution of specific diseases.
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