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Abstract

In this work we study transport properties of systems, consisting of a central region, a

N-site tight-binding chain where each site is coupled to semi-infinite chains acting like

an energy reservoir, and two coupled leads on the right and left edge of the chain. Fur-

thermore we apply an electric field to the system and thus it gets tilted, as if there was

a bias voltage between the leads and a current starts to flow. For the investigation of

the transport problem in this system we apply the cluster perturbation theory (CPT)

with the Greens function method and Dyson’s equation to calculate the current. We

show that charge carriers act differently for low and for high fields. Where the scattering

picture (displaced Fermi seas) can be used in the low-field regime (linear current to field

relation), the current can be understood via Bloch Oscillations in the high field regime.

Afterwards we investigate the behaviour of the current if there was a potential on every

second place of the central chain applied. This simulates a semiconductor where the

current is carried through resonant tunneling. The transmission coefficient is calculated

via a transfer matrix method and a Greens function approach and is compared to the

current. We see steps in the current characteristics, that come from resonant tunneling

of the charge carriers at the resonance energies.
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Kurzfassung

In dieser Arbeit werden Transportphänomene in einem System behandelt, das aus einer

zentralen Region (tight-binding Kette, in der jeder Platz mit einer unendlichen Kette

verbunden ist, die als Energie Reservoir dient) und zwei gekoppelten Leitern (Source und

Drain) besteht. Des Weiteren wird ein elektrisches Feld angelegt, so dass es geneigt wird

und so das Anlegen einer Bias-Spannung zwischen den Leitern simuliert wird, damit

ein Strom fließen kann. Für die Behandlung dieses Transportproblems wurde die cluster

perturbation theory (CPT) mit der Methode der Greens Funktionen und der Dyson Gle-

ichung verwendet. Wie sich herausstellt, verhält sich der Strom unterschiedlich für hohe

und niedrige Felder. Im Bereich der niederen Felder genügt der Strom dem Ohm’schen

Gesetz und kann mit der Streutheorie der Elektronen beschrieben werden. Für hohe

Felder entsteht aber ein oszillierender Strom, der mit zunehmendem elektrischen Feld

langsam abnimmt und dessen Mechanismus im Bild der Bloch Oszillationen zu verstehen

ist.

Weiters wurde ein alternierendes Potential in diesem System eingebaut und damit ein

Halbleiter simuliert. Der Strom resultiert hier aus resonantem Tunneln. Der Trans-

missionskoeffizient wird mit der Transfermatrix Methode und der Methode der Greens

Funktionen berechnet und wird mit dem Strom verglichen. Hier erkennt man sprung-

haftes Zunehmen des Stromes, was aus dem resonantem Tunneln bei den Resonanz

Energien resultiert.
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1 Basis

In this section the tight-binding model, the Greens function technique and the cluster

perturbation theory (CPT) are discussed. Then they are applied to the calculation of

the Greens function of an infinite tight-binding chain under an uniform electric field.

1.1 Model

For the calculations in the following chapters the tight-binding model in second quanti-

zation was used:

Ĥ =
∑

ij

tij

(
â†i âj + â†j âi

)
− µ

∑
i

â†i âi +
∑

i

εiâ
†
i âi (1.1)

This model is used for different geometries and on-site energies. The indices i and j can

also contain spin σ. The first sum describes the hopping between neighbouring sites

with strength t, µ is the chemical potential and εi is the on-site energy. In our case µ

equals zero which means that the bands are half filled if εi = 0. â† and â are the creation

an annihilation operators. There is a defined commutation relation for them:[
âi, â

†
j

]
−η

= δij

[âi, âj]−η =
[
â†i , â

†
j

]
−η

= 0
(1.2)

η = 1 defines the commutator algebra for bosons and η=-1 stands for the anticommutator

algebra for fermions ([1]).

The tight-binding model describes the motion of tightly bound electrons in a periodic

crystal structure. Tightly bound means that the electrons should rarely interact with

surrouding atoms or potentials. Hence the wave functions can be approximated by the

atomic orbital functions ([11]). For a detailed derivation see [12], [3] and [11].

In the tight-binding model we assume that the crystal potential is strong. An electron

in the crystal structure is therefore tightly bound to one atom. We now want to have a

look at the effects of the presence of other atoms on the atomic orbital Φν(x). Hence we

1



1 BASIS

choose a Bloch function,

Ψk(x) =
1

N1/2

N∑
j=1

exp(ikXj)Φν(x− Xj)

and sum over all atoms. Xj = ja is the position of the jth atom and a is the lattice

constant. Φν(x − Xj) is the function of the orbital centered around j, which is sharply

peaked.

Figure 1.1: This figure stems from [3]. It shows (a) the crystal potential, (b) the localised

atomic functions and (c) the corresponding Bloch function.

This means that there is only little overlap between orbitals ([3]). The function Ψ can be

rewritten into a periodic form, which describes the motion of the propagating electron

waves and is proportional to the atomic orbital.

Ψk(x) ∝ exp(ikXj)Φν(x− Xj) (1.3)

In the neighbourhood of the jth site the crystal orbital behaves like an atomic one. This

agrees with the basic assumption of the tight-binding model.

2



1.1 Model

With it the energy of the electron can be calculated:

E(k) = 〈Ψk| Ĥ |Ψk〉

E(k) = 〈Φν(x)| Ĥ |Φν(x)〉+
N∑

j=1

exp(ikXj) 〈Φν(x)| Ĥ |Φν(x− Xj)〉
(1.4)

The first term is the localization energy and the second term includes effects of tunneling.

The sum (responsible for band structure) stands for nearest neighbours because from

this point on the overlap between the functions get negligible.

If we have a look at the Hamiltonian, we see that it consists of the kinetic and the

potential energy, while the potential can be written as a sum of atomic potentials:

Ĥ = T̂ +
∑

j

v(x− Xj)︸ ︷︷ ︸
V̂(x)

(1.5)

The potential is split into two terms V̂(x) = v(x) + Ṽ(x) where v(x) is the amotic

potential at the origin and Ṽ(x) is that of all other atoms.

Figure 1.2: This figure stems from [3]. Shows the splitting of the potential in the (a)

atomic potential v(x) and (b) the remainder V’(x).

3



1 BASIS

Plugging this into the upper equation gives us:

〈Φν(x)| Ĥ |Φν(x)〉 = 〈Ψν |
[
T̂ + v(x)

]
|Ψν〉+ 〈Φν(x)|V′(x) |Φν(x)〉︸ ︷︷ ︸

−α

= Eν − α
(1.6)

The interaction term turns to:

〈Φν(x)| Ĥ |Φν(x− a)〉 = 〈Φν(x)|
[
T̂ + v(x-a)

]
|Φν(x-a)〉+ 〈Φν(x)|V′(x-a) |Φν(x-a)〉︸ ︷︷ ︸

−γ

(1.7)

γ is the overlap integral and depends on the overlap of orbitals centered at neighbouring

atoms. Now we can write for the energy:

E(k) = Eν − α− γ
∑
j=±1

exp(ikXj)

= Eν − α− 2γ cos(ka)

(1.8)

Figure 1.3: This figure stems from [3]. It shows the dispersion curve in this model.

k = 0 corresponds to the bottom of the band (E0) and the width equals 4γ, which is

proportional to the overlap intergral (As the overlap rises, the interaction gets stronger

and the band gets wider). The bottom is lower than the atomic energy Eν because the

4



1.1 Model

presence of atoms suppresses the potential through the system. The second term in

eq.(1.8) is the kinetic energy because the electron can now move through the crystal. At

the bottom of the band, the electron has an effective mass:

m∗ =
~2

a

1

γ
(1.9)

which means, that the mass is indirect proportional to the overlap. As the overlap rises,

the mass decreases and it gets easier for the electron to tunnel to another atomic site.

At the maximum point the electron has a negative effective mass.

Each atomic level leads to a band and in the tight-binding model it broadens into a

band because of the interaction.

5



1 BASIS

1.2 Greens function

For the following introduction to the Greens function method [5] and [4] were used as a

support.

The Greens function is a possibility to solve an inhomogenous linear differential equa-

tion with specific initial conditions. In many-body theory, the Greens function is used

to refer to correlation functions.

If we want to know the response of a system to a perturbation we can use the lin-

ear response theory to calculate the resulting physical quantities of the system. This

response can be expressed by the Greens function:

GAB(t, t′) =


−iΘ (t− t′) 〈

[
Â(t), B̂(t′)

]
−η
〉 retarded

+iΘ (t− t′) 〈
[
Â(t), B̂(t′)

]
−η
〉 advanced

(1.10)

η = −1 forces the anticommutator relation for fermions and η = 1 forces the commutator

algebra for bosons. Â and B̂ are time dependent operators and Θ(t − t′) ensures the

causality.

• Retarded Greens function: Describes the reaction of the system to a pertur-

bation if t > t′. This means, that the perturbation has to be set in before the

system reacts.

• Advanced Green function: Is the reverse of the retarded Greens function. The

system reacts before the perturbation has set in. This means, that the function is

not zero for t′ > t.

The Greens function consists of two expectation values. It can be shown that it is only

dependent on the time difference with the property that the trace is invariant against

6



1.2 Greens function

cyclic permutations, if the hamiltonian isn’t time dependend ( ∂
∂t

Ĥ(t) = 0):

〈Â(t)B̂(t′)〉 = 〈exp(iĤt)Â exp(−iĤt) exp(iĤt′)B̂ exp(−iĤt′)〉

= 〈Â exp(−iĤ(t− t′))B̂ exp(−iĤ(t− t′))〉

= 〈ÂB̂(t−t′)〉 = 〈Â(t−t′)B̂〉

This means, that the Greens function only depends on the time difference:

GAB(t, t′) = GAB(t− t′) (1.11)

We also want to know the Greens function in frequency space. Therefore we execute a

Fourier transform:

GAB(t, t′) =
1

2π

∫
dωGAB(ω) exp(−iω(t− t′)) (1.12)

The equation of motion for the calculation of the Green function in time space and after

a Fourier transform in frequency space read:

i
∂

∂t
GAB(t, t′) = δ(t− t′) 〈

[
Â, B̂

]
−η
〉+ G〈[Â,Ĥ],B̂〉(t, t

′)

ωGAB(ω) = 〈[Â, B̂]−η〉+ G〈[Â,Ĥ],B̂〉(ω)

(1.13)

Where G〈[Â,Ĥ],B̂〉(t, t
′) and G〈[Â,Ĥ],B̂〉(ω) are Greens functions of higher order. To calculate

it, the series has to interrupt somewhere. We now try to calculate the Greens function

of a tight-binding chain with following Hamiltonian in frequency space:

Ĥ = t
∑
〈ij〉

a†i aj (1.14)

The operators A and B are now ai and a†j . The equation of motion reads:

ω 〈〈ai, a
†
j 〉〉 = 〈

[
ai, a

†
j

]
−η
〉+ 〈〈[ai, Ĥ], a†j 〉〉

7



1 BASIS

For the tight-binding model, we get:[
ai, a

†
j

]
−η

= δij[
ai, Ĥ

]
= t

∑
l

al

〈〈[ai, Ĥ], a†j 〉〉 = t
∑

l

〈〈al, a
†
j 〉〉

(1.15)

Plugging this into the equation of motion gives us:

ωḠ = 1 + T̄Ḡ

T̄ is the hopping matrix and Ḡ the Greens function matrix.

If there was an interaction in the system, there would be another factor called the

self-energy Σ, that describes the full interaction.

Ḡ =
1

ω − T̄− Σ

For the tight-binding model we can write the Greens function easily:

Gk =
1

ω − εk
(1.16)

Gk is now a function and no matrix anymore and ω can be rewritten with a complex

factor. The Greens function exhibits poles at the excitation energies εk. The position

of these poles get shifted by the self-energy, that consists of a real and an imaginary

part. Normally the peaks are delta-shaped, but with the imaginary part of Σ they get

Lorentzian style (the peaks get broadened). The real part of Σ shifts the position of the

poles.

In time-space the factor Θ ensures causality. In frequency space one has to add a

complex factor to the Greens function, which ensures poles in the lower/upper complex

plane.

Gk =
1

ω − εk ± io+
(1.17)

8



1.2 Greens function

For the retarded Greens function we choose −io+. This means, that their poles lay in

the negativ complex plane. For the advanced Greens function one chooses +io+ and

their poles lay in the upper complex plane.

To compute the Greens function in time space we have to execute a Fourier transform:

G(t) =
1

2π

∫ ∞
−∞

exp(−iωt)

ω − εk ± io+
dω

For the evaluation one has to use the Residue theorem and we get following character-

istics for the Greens function:

G(t) ∝ 1

2π
exp(−iεkt)

Gr(t) = 0 t < 0

Ga(t) = 0 t > 0

(1.18)

This means, while G(ω) has poles at the excitation energies, G(t) oscillates with εk.

If we treat a system in non-equilibrium, we have to change over to Keldysh space, where

the full Greens function can be notated as a matrix containing the retarded, advanced

and a Keldysh part:

Ḡ =

(
Ḡ

r
Ḡ

K

0 Ḡ
a

)
(1.19)

With following relation between retarded and advanced part:

Gr(ω) = (Ga(ω))∗

For more and detailed information in the Keldysh nonequilibrium Green function tech-

nique [6] serves as a supportive literature.
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1.3 Cluster Perturbation Theory (CPT)

For the considerations in this Chapter [7] and [8] were used as supportive literature. The

Cluster Perturbation Theory is a very good way to calculate properties of the following

considered systems very easily.

The CPT proceeds by tiling the lattice into clusters. These clusters can be solved

exactly and the hopping between them is treated in first order perturbation theory, as

for as the self energy is concerned. With it, the single-particle Greens function of a

strongly correlated system can be calculated. This approach takes short-range corre-

lations into account but those beyond the cluster size are neglected. After coupling

the Greens functions of the clusters within perturbation theory, the full function in the

thermodynamic limit can be recovered.

1D

2D

Figure 1.4: Shows the possible tiling of the lattice for one and two dimensions.

The upper Figure shows a possibility of cluster tiling. In 1D the tiling is straight forward,

but in 2D the number of sites and the shape of the cluster can be chosen arbitrarily.

Many tilings are possible. The Hamiltonian of the system after the division reads:

Ĥ =
∑

R

[
Ĥ

(c)

0 (R) + Ĥ1(R)
]

+
∑
R,R′

Ĥ
(i)

0 (R,R′) (1.20)
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1.3 Cluster Perturbation Theory (CPT)

Ĥ
(c)

0 (R) is the single particle term, that only acts inside a single cluster, and Ĥ1(R) the

corresponding interaction term. R denotes the individual clusters. Ĥ
(i)

0 (R,R′) stands for

the inter-cluster hopping and is given by:

Ĥ
(i)

0 (R,R′) =
∑
a,b

TR,R′

a,b c†R,acR′,b (1.21)

TR,R′

a,b is the hopping matrix, which is non-zero for hopping across the cluster boundaries.

The indices a and b stand for quantum numbers within the cluster.

The quantity we are interested in, is the single-particle Greens function. Therefore we

calculate the cluster Greens function G′R′,a,b(ω) first and treat the hopping between the

clusters perturbatively (using the Dyson equation). Then we get the Greens function

GR,a,R′,b of the full system.

G−1(ω) = G′−1(ω)−T (1.22)

These matrices, written bold, have indices (R,a) and (R’,b). The cluster Greens function

G’ is block-diagonal in R. T is the inter-cluster hopping and is off-diagonal.

CPT breaks translational invariance on the original lattice, but it is conserved on the

superlattice (originates from the tiling of the lattice into clusters). We label the states

by a wavevector k̃ in the Brillouin zone of the superlattice. Therefore we start to write

the second term in eq.(1.20) in a different way:

Ô =
∑
R,R′

Ĥ
(i)

0 (R,R′) =
∑
R,∆

Ĥ
(i)

0 (R,∆)

=
∑
R,∆

∑
a,b

Ta,b(∆)c†R+∆,acR,b

(1.23)

With the Fourier transformation:

c†R+∆,a =
1√
L

∑
k̃

exp(−ik̃(R + ∆))ck̃,a

cR,b =
1√
L

∑
k̃

exp(ik̃R)ck̃,b

11



1 BASIS

we get:

Ô =
∑
k̃

∑
a,b

[∑
∆

Ta,b(∆) exp(−ik̃∆)

]
︸ ︷︷ ︸

Ta,b(k̃)

c†
k̃,a

ck̃,b (1.24)

Ta,b(k̃) is the superlattice Fourier-transformed hopping. ∆ has to be given in units of

the lattice spacing (∆ = ±L). The CPT Greens function is then also diagonal in k̃ and

the Dyson equation for the evaluation of the full Greens function reads:

G−1(k̃, ω) = G′−1(ω)−T(k̃) (1.25)

We can also write the CPT expression in terms of the self-energy:

G−1(k̃, ω) = G−1
0 (k̃, ω)−Σ(ω) (1.26)

where G−1
0 (k̃, ω) is the non-interacting Greens function.

G−1
0 = ω − t′ −T (1.27)

t’ is the intra-cluster hopping. This gives us:

G′
−1

(ω) = G−1
0 (ω) + T−Σ′(ω) (1.28)

Σ′(ω) is the cluster self-energy. With these expressions we can can calculate the full

Greens function:

G−1(k̃, ω) = G′
−1

(ω)−T(k̃)− (Σ(ω)−Σ′(ω)) (1.29)

Since the form of the inter-cluster hopping T(k̃) is known, the Green function is com-

puted once the cluster function is known. The calculated CPT Green function has the

same properties as the exact function. It has poles on the real axis, which show the

quasiparticle excitations.
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1.3 Cluster Perturbation Theory (CPT)

Following holds for CPT for the equilibrium Greens function:

• It is exact in the non-interacting limit U=0, because the self-energy dissapears.

• It’s also exact in t→0 (strong coupling).

• CPT is obviously exact in the limit Nc →∞ (for large clusters).

• From the Greens function the spectral function can be evaluated, which is useful

to compare numerical calculations to ARPES-data.

• CPT can’t describe broken symmetry states. They can be described by VCA

(Variational Cluster Approach, [9]).

• We have to treat open boundary conditions in CPT. Calculations with periodic

boundary conditions are unsatisfactory.

13



1 BASIS

1.4 Greens function for electrons in an electric field

In this section we first want to calculate the Greens function of a semi-infinite chain

under an uniform electric field, where each site is coupled to a bath, which modeled

by another semi-infinite tight-binding chain. In the next step (Section 1.4.1) we can

combine two semi-infinite systems to an infinite chain.

We have a look at a model consisting of an infinite one-dimensional tight-binding chain

where each site is coupled to a bath. The Hamiltonian for this system reads:

Ĥ = Ĥc +
∑

n

(
Ĥbn + Ĥcbn

)
Ĥc =

∑
n

(
εnc†ncn − t

(
c†ncn+1 + h.c

)) (1.30)

where Ĥc describes a chain with nearest neighbour hopping and applied electric field

εn = n · E. Ĥbn is the Hamiltonian of non-interacting bath fermions and Ĥcbn is the

coupling between the chain and the baths.

Approach:

• couple system site to the baths

• couple the sites to each other to achieve a half-infinite chain

• calculate the infinite chain

As for as the bath sites are concerned, onne only has to know the bath Greens function

gbn0(ω) at site l=0. It is given by the function of a semi-infinite chain in the wide-band

limit, which means, that the hopping in the baths is very high:

retarded : gr
b0(ω) =

1

ω + iΓ

Keldysh : gK
b0(ω) = 2i=gr

bn0(ω) (1− 2fF(ω − µn))

(1.31)
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1.4 Greens function for electrons in an electric field

(µn = µ0 +n ·E). This definition of the retarded component only holds in the wide band

limit, where the hopping of the bands tbb is so high, that the bands are getting plane

in the middle and therefore the imaginary part iΓ is added to achieve this behaviour.

Normally the retarded Greens function of a semi-infinite tight-binding chain reads:

κ =
ω − ε
2tbb

gr
b =

1

tbb

[
κ−
√
κ2 − 1 (Θ(κ− 1)−Θ(−κ− 1))− i

√
1− κ2Θ(1− |κ|)

]
For the translational invariance the baths have to be shifted towards the same electrical

fields as the corresponding chain site:

gr
bn0(ω) = gr

b(ω − nE) (1.32)

For the calculation of the Greens function of the system one can make an iterative

approach. This means, that the Greens function in Keldysh space for site n is connected

to that other site n+1,via:

Ḡ
−1
n = g−1

n − t2Ḡn+1 − v2gbn0 (1.33)

t is the hopping between the sites on the chain and v is the hopping from the chain to

the baths. gn is the Green function of an isolated site. It reads:

gr
n =

1

ω − nE

(gK
n )−1 = 0

(1.34)

(The factor io+ is included in ω and doesn’t written explicitely). These calculations

have to be considered in Keldysh space (all Green functions are matrices containing the

retarded, Keldysh and avanced part). Dysons equation holds in Keldysh space. Besides

the relation (1.33) there is a second one between the function for site n and n+1:

Ḡn(ω) = Ḡn+1(ω + E) (1.35)

With eq.(1.33) and (1.35) one can calculate the retarded and the Keldysh component.
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1 BASIS

Retarded part:

Ḡ
−1
n = (ω − nE)− t2Ḡn(ω − E)− v2 1

ω − nE + iΓ
/ : t

1

t
Ḡ
−1
n =

1

t

[
(ω − nE)− v2

ω − nE + iΓ

]
− tḠn(ω − E) /F(ω) =

1

t

(
ω − v2

ω + iΓ

)
1

t
Ḡ
−1
n = F(ω − nE)− tḠn(ω − E) /Fn(ω) = F(ω − nE)

1

t
Ḡ
−1
n = Fn(ω)− tḠn(ω − E) /Ḡn(ω) = tḠ0(ω − nE)

Ḡ0(ω) =
1

F0 −
1

F1 −
1

F2 − . . . −
1

Fn −
t

ω − (n + 1)E

(1.36)

Keldysh part:

− Ḡ
K
n (ω)

|Gr
n(ω)|2

= (gKn )−1 − t2Ḡ
K
n (ω − E)− v2gK

bn0 /(gKn )−1 = 0

Ḡ
K
n (ω)

|Gr
n(ω)|2

= v2gK
bn0 + t2Ḡ

K
n (ω − E) /Fn(ω) = F(ω − nE) = v2gK

bn0

Ḡ
K
n (ω) = |Ḡr

n(ω)|2
[
Fn(ω) + t2Ḡ

K
n+1(ω)

]
(1.37)

In the n-th iteration step set Ḡ
K
n+1(ω) = 0.
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1.4 Greens function for electrons in an electric field

For the Greens function of the full system one has to calculate:

G−1
n = Ḡ

−1
n − t2Ḡn+1 (1.38)

Figure 1.5: Retarded Greens function for a half infinite chain. The left plot shows the

bath Greens function for the semi-infinite tight-binding chain, the middle one

shows the function of an isolated site in the system and the right plot shows

the Greens function of the isolated site connected to the corrresponding bath

as a function of frequency. In this case no electric field is switched on. The

solid (blue) line shows the real part and the dashed (red) line shows the

imaginary part.

As we can see in Fig.1.5, the retarded part has it’s poles in the negative complex area

(this is the reason why we have to add the factor io+ in frequency space to fullfill

causality) and the real part diverges at an excitation energy. In Fig.1.6 we have a look

at the Greens function of a semi-infinite tight-binding chain for E=0.5.
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1 BASIS

Figure 1.6: Retarded Greens function for a semi-infinite tight-binding chain under an

uniform electric-field of strength E=0.5 as a function of frequency. Colors as

in Fig.1.5

1.4.1 Infinite Chain

Now we want to extend the calculation for an infinite chain (coupling of two semi-

infinite chains). This is very similar to the procedure in the previous chapter. First

one has to calculate the Greens function for the right and left semi-infinite chain. For

this one can introduce a reference system with on-site energies ε0n = 0,E, 2E . . . . But

we are really interested in εn = ε0n + E
2

which can be reached by a spectral energy shift

Gr(ω) = Gr(ω− E
2
). We only need to know the Greens function for the first isolated site

of the chain and the bath Greens function. With the Dyson equation one can couple

these to:

(g̃(ω))−1 = ω − io+ − v2gb(ω) (1.39)
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1.4 Greens function for electrons in an electric field

The point is, that this function can be shifted towards other energies. This means, that

the on-site energy for site 2 is shifted by +E from point 1. We have

g̃(ω) = g(ω − E) (1.40)

And finally we get:

g−1(ω) = (g̃(ω))−1 − t2g(ω − E) (1.41)

And for the right system one gets:

gr(ω) = g(ω − E

2
) (1.42)

For the left semi-infinite system we introduce a reference system with ε0n = 0,−E,−2E . . .

but we are really interested in εn = ε0n − E
2
. The other procedure is the same as for the

right system but now it means:

gl(ω) = g(ω +
E

2
) (1.43)

There is a symmetry relation between the right and left system:

gl(ω) = (−gr(−ω))∗ (1.44)

For the computation of the full Greens function of the infinite chain, we have to combine

the two functions via the Dyson equation.(
Gll Glr

Grl Grr

)
=

(
gll glr

grl grr

)
+

(
gll glr

grl grr

)(
0 t

t 0

)(
Gll Glr

Grl Grr

)
(1.45)

glr and grl are zero. So we get following system of equations:(
Gll Glr

Grl Grr

)
=

(
gll + tgllGrl tgllGrr

trrGll grr + tgrrGlr

)
(1.46)
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1 BASIS

After solving this system in consideration of the Keldysh space, we get:

G
r/a
lr =

(
(g

r/a
ll gr/a

rr )−1 − t21
)−1

GK
lr =

gK
ll gK

rr

(gr
llg

r
rr − t21)(ga

llg
a
rr − t21)

(1.47)

The other components Gll and Grr are calculated to:

G
r/a
ll =

(
(g

r/a
ll )−1 − t2gr/a

rr

)−1

GK
ll =

gK
ll

|1− ga
llg

a
rr|2

+ |Ga
ll|2gK

rr

(1.48)

(Grr similar)

In the linear electric field we have:

Ga
ll(ω) = −(Ga

rr(−ω))∗

GK
ll (ω) = (GK

rr(−ω))∗

Glr(ω) = Grl(ω)

Having calculated the Greens function one can compute the current, like it is described

in Section 2.3 for the system depicted in Fig.2.1.

The second possibility to calculate the Greens function of an infinite tight-binding chain

is to use the functions of an isolated site, couple this to the fermionic bath function and

with the Dyson equation one can calculate the full function of this system by adding

the sites up to N=∞. This is shown in Chapter 2.2. The problem with this method is,

that because of the finiteness of the system (behaves like the chain was cut somewhere)

boundary effects appear.
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1.4 Greens function for electrons in an electric field

Figure 1.7: Retarded Greens function of an infinite tight-binding chain without electrical

field in the middle. The left pannel shows the Greens function for the left

semi-infinite chain and the right pannel the Greens function for the right

chain. The solid line is the real and the dashed line the imaginary part of

the function. We see the Greens function for the left, the right and the

coupled system.

Figure 1.8: Same as before with E=0.5. We see the Greens function for the left, the

right and the coupled system. Compare this to the previous figure. The field

introduces new excitations.
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2 Tight-binding chain coupled to fermion reservoirs with

applied electric-field

2.1 Model

We have a look at a system that consists of a one-dimensional tight-binding model

with N sites, where each site is connected to fermionic reservoirs, which are modeled

as semi-infinite non interacting tight-binding chains. These reservoirs are responsible

for the energy dissipation in the system. At the ends of the central region, consisting

of the N-site chain coupled to the fermionic reservoirs, we connect leads (semi-infinite

tight-binding chains). Furthermore we apply an electric-field to the system, as shown in

Fig.2.1.

t t t

t

t

N-sites

left lead

right lead

V

ll lc cb

bb

cc

Bias

Figure 2.1: System of two leads coupled to a central region, consisting of N sites with

semi-infinite fermionic baths. Hopping parameters: tll . . . in lead; tlc . . . lead-

chain; tcb . . . chain-bath; tbb . . . in bath; tcc . . . in chain; VBias . . . bias voltage
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2 TRANSPORT UNDER AN UNIFORM ELECTRIC-FIELD

The Hamiltonian for this system reads:

Ĥ = Ĥcc +
∑
α=L,R

(
Ĥα

)
+ Ĥcl + Ĥbb + Ĥcb

Ĥcc = −tcc

N∑
i=1

(
c†ici+1 + c†i+1ci

)
+ E

N∑
i=1

ic†ici

(2.1)

Ĥcc is the Hamiltonian of the central N-site tight-binding chain. It describes the hopping

of the electrons between nearest neighbour sites and the energetic tilt of the chain due

to the electric-field E. Ĥα describes the infinite leads to the left and the right of the

central region. Ĥcl is the coupling between the first site of the central region and the

last site of the left lead (and between the last site of the chain and the first site of the

right lead). The two leads always have the same chemical potential as the first and the

last site of the central region. Ĥbb is the Hamiltonian of the non-interacting fermionic

baths with no chemical potential and Ĥcb is the coupling of the reservoir to the chain

site.

If we applied an electric-field to the central region, it get’s tilted. That is equal to

apply a bias voltage VBias to the system. One can calculate the bias voltage from the

electric-field:

VBias = (N− 1) · E

The left lead of the system has the same chemical potential as the first site of the chain

µl = EF. In our case, we set EF = 0. The right lead has then following potential

µr = EF − VB.
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2.2 CPT Approach

2.2 CPT Approach

We use the Cluster Perturbation Theory, because it is a good way to calculate the

Greens function for the considered system. First we connect the isolated site to the

corresponding bath. At the first and the last site of the central region we couple the

infinite leads. Then we treat the hopping between the sites and couple them by using

the Dyson’s equation. We then use the achieved Greens function for current calculations.

For the implementation of this problem CPT (Cluster Perturbation Theory) can be

used. It allows to deal efficiently with infinite systems. The Greens functions of an iso-

lated site g
r/a/K
0 (ω) and the semi-infinite fermionic reservoirs g

r/a/K
b (ω) are well known.

First of all, these two functions get connected via the Dyson-equation:

gr/acc (ω) =

((
g
r/a
0 (ω)

)−1

− t2
cb · g

r/a
b (ω)

)−1

gKcc(ω) = −t2
cb ·

gKb (ω)

|gr0(ω)|2

(2.2)

g
r/a/K
cc (ω) is now the Greens function of an isolated site connected to a reservoir-chain.

The next step is to form the Greens function of the other sites. Because of the electric-

field, which enters through the on-site energies, the function of the isolated site gets

shifted in energy space. This means:

gr/a/Kn (ω) = gr/a/Kcc (ω − n · E) (2.3)

with n = 0,1,2,...,(N-1).

Furthermore the Greens function g
r/a/K
ll (ω) of the lead gets connected to the first (n=0)

and last (n=N) site of the central region:

gr/acc (ω) =
((

gr/acc (ω)
)−1 − t2

cl · g
r/a
ll (ω)

)−1

gKcc(ω) =

(
gKcc(ω)
|grcc(ω)|2 + t2

clg
K
ll (ω)

)
((grcc(ω))−1 − t2

cl · grll(ω)) ((gacc(ω))−1 − t2
cl · gall(ω))

(2.4)
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2 TRANSPORT UNDER AN UNIFORM ELECTRIC-FIELD

The last step for the calculation of the Greens function of this system is to switch on

the hopping between the sites. The hopping matrix (N×N) for the system reads:

T = −tcc ·



0 1 0 0 . . . 0

1 0 1 0 . . . 0

0 1 0 1 . . . 0

0 0 1
. . . . . .

...
... 0 0

. . . 0 1

0 . . . . . . 0 1 0


(2.5)

Make use of the Dyson-equation and with g
r/a/K
cc (ω) (N×N), the Greens function of the

system isolated site connected to the bath, we get:

Gr/a(ω) =
((

gr/acc (ω)
)−1 − T

)−1

GK(ω) = Gr(ω) · gKcc(ω)

|grcc(ω)|2
·Ga(ω)

(2.6)

Gr/a/K(ω) is the Greens function of the system. Because of the translational invariance of

the considered system (tight-binding chain) the Greens function has several symmetries,

that can be used during the calculation.

G
r/a
ij (ω) =


−
(

G
r/a
-i-j (−ω)

)∗
i = ±j

G
r/a
ji (ω) i 6= j

(−1)|i−j|−1
(

G
r/a
-i-j (−ω)

)∗
else

(2.7)

For the retarded component and for the Keldysh:

GK
ij (ω) =


(
GK

-i-j(−ω)
)∗

i = ±j

(−1)|i−j| (GK
-i-j(−ω)

)∗
i 6= j

−
(
GK

ji (ω)
)∗

else

(2.8)

The indices i and j stand for the treated site on the chain. The origin of the system (site

with index 0) lies in the centre of the chain. From this point on the sites are numbered

consecutively: . . . ,−2,−1, 0, 1, 2, . . . .
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2.2 CPT Approach

This Greens function can be used to calculate the currents in the system. The other

possibility to calculate the Greens function of an infinite tight-binding chain is to couple

two semi-infinite chains like it is shown in Section 1.4.1.
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2 TRANSPORT UNDER AN UNIFORM ELECTRIC-FIELD

2.3 Current Calculation

This Section deals with the calculation method of the currents, we are interested in.

First there is the main current in this system, which can be calculated with the current

between two neighbouring sites. Secondly we are also interested in the current from the

chain sites into the coupled fermionic baths. It will turn out to be zero on average, but

at some points electrons flow into and at others out of the system. The next calculation

is the energy current. These results will be compared to the estimated current of Jong

E.Han [13].

2.3.1 Current between two neighbouring sites

For the derivation of the current in the chain we use:

j(n,n+1) = Re
(∑

GK
n,n+1(ω)

)
· ∆ω

2π
(2.9)

The current between two neighbouring sites should be the same everywhere along the

chain. To show the behaviour of the current through the system, we calculate it at the

middle of the central region. There are the smallest fluctuations because of the missing

boundary effects. The detailed description follows in Section 2.4 and Fig.2.3.

2.3.2 Current from chain to bath

The current between a central site and a coupled fermion reservoir reduces to:

j
(n)
cb = tcb · Re

(∑
GK
cb(ω)

)
· ∆ω

2π

GK
cb(ω) = (GK(ω))(n,n) · (gab (ω))(n,n) + (Gr(ω))(n,n) · (gKb (ω))(n,n)

(2.10)

With (GK(ω))(n,n) the Greens function of the system at position (n,n) and with (gKb (ω))(n,n)

the bath Greens function at position (n,n). This means that gb has to be shifted in energy

space to match the site on the chain. These parameters j
(n)
cb are the chain-bath-currents.
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2.3 Current Calculation

We will see, that sometimes electrons flow from the chain into the bath and sometimes

from the bath into chain. But the entire (averaged) chain-bath current jcb,

jcb =
1

N

N∑
n=1

j
(n)
cb

is always zero. (Section 2.4 and Fig.2.3)

2.3.3 Energy current

For the energy flux we can use:

j
(n,n+1)
E = t2

cb · tcc · Re
(∑

(GK
b,c(ω))(n,n+1)

) ∆ω

2π

(GK
b,c(ω))(n,n+1) =

(
(gKb (ω))n + (gKb (ω))n+1

)
(Ga(ω))(n,n+1)+

+ (grb(ω))n(GK(ω))(n,n+1) + (grb(ω))n+1(GK(ω))(n+1,n)

(2.11)

This is now the energy current between two neighbouring sites. For the whole energy

flux through the system, we calculate:

jE =
1

N− 1

N−1∑
n=1

j
(n,n+1)
E

This quantity is very important. It shows characteristics of Joule heating. Further

discussions are given in Section 2.4.

2.3.4 Approximative expression for the current

For the approximative derivation of the current we study an one-dimensional tight-

binding model connected to fermionic reservoirs under an uniform electric-field E. This

model is described by the Hamiltonian (eq.(2.1)).
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2 TRANSPORT UNDER AN UNIFORM ELECTRIC-FIELD

J.Han approximates the DC current in [13] in the wide band limit to:

japprox ≈
4tccΓE

π(E2 + 4Γ2)
(2.12)

Γ is the damping and Γ� tcc. We choose Γ to be 0.1. The dependency of the damping

on the fermionic reservoirs is given by Γ = πt2
cbN(0), where N(0) is the density of states

of the bath. As one will see, the choice of the hopping-parameters with respect to the

damping is very important.
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2.4 Results and Discussion of the numerical calculation

2.4 Results and Discussion of the numerical calculation

2.4.1 System with fermionic reservoirs

Figure 2.2: We show the behaviour of the current in a system of N=21 sites driven by an

electric field, with the following parameters: tcc = 1, tcb = 1, tbb = 10,Γ = 0.1

The blue line shows the current between neighbouring sites int the center of

the centred region, calculated with equation (2.9). Furthermore equation

(2.12), (2.10) and (2.11) were used to calculate the approximative current

by Han (red) for an infinite chain, the chain-bath-current (purple) and the

energy flux (green).

The current between chain and bath is always zero, as it was should be. For a detailed

consideration we have a look at the current j between two neighbouring sites and jcb for

each chain-bath-site for a system consisting of 101 sites. Fig.2.3 shows the behaviour of

the current jcb. As one can see, it is always zero except at the beginning and the end

of the chain (because of boundary effects). Particles can flow into the system at the

beginning and can flow out of the system at the end of the chain through the reservoir.
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2 TRANSPORT UNDER AN UNIFORM ELECTRIC-FIELD

This is one reason, why the current at the center of the system is used for further

calculations.

Figure 2.3: tcc = 1, tcb = 1, tbb = 10, N = 101. j and jcb with respect to the site-index at

E = 1

The current j between neighbouring sites shows a similar behaviour. There are boundary

effects at the chain-ends. Otherwise the current has always the same value. The plot

shows the right- (blue) and the left-going (red) current. These currents are the same

but point in different directions. The right-going current is a hole-like current (they

propagate with the electric field) and the left-going current corresponds to the electron

current (they propagate towards the field direction).

In Fig.2.2 one can also see the characteristics of the energy flux. It raises linearly until

the current has reached its maximum and then slowly decreases. The energy current in

the low-bias regime follows the rules of Joule heating. These are electrons which get

accelerated by an electric-field, collide with the ions of the material and give off their

kinetic energy in the form of thermal energy. In our considered system with the coupled

baths this referes to the dissipation into the infinite baths. Which means, that energy

gets transported away by these semi-infinite tight-binding chains. This refers to a two

regime system in the case of coupled fermionic reservoirs. As it will be discussed later,

the current has an ohmic like behaviour in the low field regime (the reservoirs have no

effect on the current) and for high fields other fundamental transport mechanism take

place.

The approximative formula for the current due to Jong E.Han [13] fits to the numerical
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result of j very well. The right choice of the hopping-parameter tbb (Han works in the

wide band limit, where tbb � tcc) is an important factor. As we can see in Fig.2.3 japprox

and j coincide very well with tbb = 10. Furthermore a smaller parameter tbb leads to

significant changes in the behaviour of the numerical calculated current as one can see

in Fig.2.4. This means that the hopping in the baths has to be very strong to let the

reservoirs act like fermionic baths to support the energy dissipation.

Figure 2.4: Same as Fig.2.2 but with tbb = 4

2.4.2 Low field Regime

As predicted before, the current has different behaviour in the high- and low-field regime.

To understand the low field-regime E� Γ one should have a look at the scattering state

formalism [14].

When the electric-field is applied to the one-dimensional tight-binding chain each site

and the coupled fermion reservoir are on a potential slope. The potential drop from site

to site is denoted with E. This means that the potential energy difference of the chain

is given by VBias = (N− 1) · E.

33



2 TRANSPORT UNDER AN UNIFORM ELECTRIC-FIELD

e-

Figure 2.5: Shows the overlap of valence and conduction band in the low field regime.

So that electrons can scatter in another state without absorbing energy.

In the scattering state the fermion reservoirs are open systems. If an electron scatters

into a reservoir it never comes back again. The moving electron on the slope leaves

electron-hole pairs in the reservoirs because of particle exchange. These pairs travel along

the infinite baths. The reservoirs are responsible for inelastic processes (compareable to

bosonic baths) and transport energy into the bath chains. The only flux to the reservoirs

is an energy flux (Joule heating), a net current isn’t present. The extent of the scattered

wave is shorter than the length of the reservoir chain. This means, that the wave in the

reservoir isn’t being backscattered from the edge. The fermionic baths act like energy

reservoirs and can be treated as bosonic baths without the resulting nonlinear effects of

Bose-Einstein statistics. [14]

These fermionic reservoirs connect the model with the Boltzmann transport theory for

small electric fields. In this theory the drift velocity of the electrons gets changed by

the electric-field. This leads to a shift of the Fermi surface in the Brillouin zone and the

electrons can scatter into the next empty state, which leads to a well-known relation.

Characteristic for the low field regime is a general DC current relation and valid Ohm’s

law with the Drude conductivity per electron [13].

j ∝ E

Γm∗
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2.4.3 High field regime

As E � Γ, there is no linear regime for the shift of the Fermi surface anymore. Ohm’s

law isn’t valid anymore.

e-

Figure 2.6: Shows the overlap of valence and conduction band in the high field regime.

Electrons can’t scatter and tunnel respectively.

The surfaces are shifted so far, that the electrons can’t scatter into the next state.

This means, that the scattering state formalism isn’t valid anymore. The current now

originates from a different transport mechanism. It gives raise to the so-called Bloch

Oscillations, which lead to an with rising field decreasing current. (Section 3)

2.4.4 System without baths

If the fermion reservoirs aren’t coupled to the central region the current behaves different

to the characteristics in Fig.2.2.
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2 TRANSPORT UNDER AN UNIFORM ELECTRIC-FIELD

Figure 2.7: Current in the system without fermion reservoirs. With following parame-

ters: tcc = 1, tcb = 0, tbb = 10,N = 21,Γ = 0.1

As one can see, there is only a current flowing if the bias voltage VBias is smaller than

the bandth width:

∆x =
4tcc
E

where ∆x is the length of the chain. This implies that the coupled fermionic reservoirs

are responsible for the energy dissipation in the high field regime. Due to the coupling

of the baths, a current can flow for higher fields. If the bias voltage is higher than the

band width bloch oscillations prevent the electrons from moving steadily through the

device, which leads to the decreasing current characteristic in the high field regime.

36



2.4 Results and Discussion of the numerical calculation

2.4.5 Dependency on the hopping parameters

The current has a specific dependency on the hopping parameters tlc and tcc. In the

previous sections we discussed the connection of the current with tbb and tcb. If we choose

tlc to be zero (in the case of disconnected reservoirs), there would be no current flowing

in the central region. This case doesn’t need to be discussed further.

Figure 2.8: Dependency of the current on the hopping parameters tlc and tcc for a cen-

tral region consisting of N=21 sites. The upper plot shows the character-

istics without coupled fermionic reservoirs (tcb = 0) and the lower plot the

behaviour with energy dissipation (tcb = 1).
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As one can see, the modification of the hopping in the chain tcc has more consequence

on the current characteristic than the variation of tlc when the fermionic reservoirs are

switched on. In this case the hopping from the lead to the chain could also be zero,

because the baths always put energy to the system so that a current can flow. If the

hopping in the chain tcc is decreased there isn’t as much current in the system flowing as

before. But the choice of these parameters have no consequence on the main behaviour

of the current. The splitting in the two regimes (low electric fields with linear DC

current and high fields with an oscillating current [nonlinear transport through Bloch

Oscillations]) hold up. The fermionic reservoirs take effect on the current for E� Γ.

For the case of tcb = 0 we find that if tcc is decreased there is less current flowing (than

before). If tlc is decreased the maximum of the current is shifted towards lower electric

fields and for tlc = 0 there is no current flowing anymore because there are no reservoirs

available for the energy supply.
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2.5 Conclusion

With the inculsion of a dissipation mechanism (fermionic reservoirs) in the studied sys-

tem to understand the transport properties, one can treat the flowing current in the

picture of displaced Fermi surfaces at small fields. For higher fields this isn’t right any-

more and we recover that the current originates from Bloch oscillations.

In the low field regime E � Γ (inside the bandwith E < 4tcc
N−1

) the current can be

described by the Boltzmann transport theory. The picture of the shifted Fermi seas is

valid, which means that the current follows the linear response theory and the displace-

ment of the wave number (in the scattering state formalism [13]) behaves like:

δk ∝ Eτ

τ ∼ Γ−1

The second transport mechanism in this regime is Zener tunneling. The displacement of

the occupied conduction band and the empty valence band is so low that the electrons

can tunnel from one to the other. Ohm’s law is valid and a DC current arises:

j = σE

σ =
e2τn

m

For higher fields E� Γ there is an oscillating current and a nonlinear transport mech-

anism sets in. This can be described in terms of the Bloch oscillations. They start

if:

τ � τB

τB ∼ 1
E

is the Bloch oscillation time. The scattering rate of the electrons has to be larger

than the oscillation time. The electrons can’t scatter into the next state and there is no

overlap of the displaced Fermi seas (valence and conduction band) anymore so that the

electrons can’t tunnel respectively.
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3.1 Introduction

For this chapter references [15], [16], [17] and [21] were used.

As we said in the previous chapter, there is the low field regime where tunneling and

scattering cause a current and there is a high field regime where the current can only

flow through a nonlinear transport mechanism, the so called Bloch Oscillations. The

oscillations set in for fields higher than the bandwidth and suppress the current flow. As

we will see in a later chapter, there is an expression for the amplitude of the oscillations

(eq.(3.12)). One can say, that this amplitude has to be larger than N that a current can

flow.

Bloch Oscillations are caused by an external electrical field. The electrons oscillate be-

cause of the relation between the effective mass and the dispersion relation in a periodic

potential.

m∗ = ~2

[
d2ε(k)

dk2

]
It can also get negativ for high momenta. An electric-field causes an acceleration of the

electrons.

ẋ =
e

m∗
· E

If the effective mass was negative, an additional force doesn’t accelerate the electrons

further. Instead they get decelerated and accelerated in the other direction. Oscillations

take place with an oscillation frequency:

ωB =
e

~
· E · a

with a the lattice spacing. These Bloch Oscillations can be observed if the oscillation

period τB is smaller than the scattering time of the electrons ([15]) . One cycle has to
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be finished before scattering takes place The electrons move with a period:

τB = ~/aeE

These oscillations are important because they are sources of an oscillating current. As

we saw in the previous chapter Bloch Oscillations describe the transport mechanism in

the high field regime. In the low field regime there is an ohmic-like current.

The Bloch Oscillations can’t be seen in natural solids because of the comparatively small

lattice constant. Hence the oscillation frequency ωB is very small even for very high fields

and the charge carriers can’t finish a full oscillation within the scattering time.
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3.2 Mathematical Approach

There are two possibilities for the visualization of the Bloch Oscillations. The first

one is a time evolution with a diagonalization of the Hamiltonian for the system on a

one-dimensional tight-binding chain (no baths and leads) and the other one is a Greens

function approach.

3.2.1 Diagonalization

The Hamiltonian of this system writes:

Ĥ = t
∑
〈ij〉

âiâ
†
j − E

∑
i

i · n̂i (3.1)

t is the hopping strenght of the electrons and â, â† are the fermionic annihilation and

generation operators. The expression 〈ij〉 says that the sum extends over the nearest

neighbours. E denotes the electrical field and the last sum says something about the

slope of the chain. For the time evolution of a state, one can write:

|ψ(t)〉 = exp(iĤt) |ψ0〉 (3.2)

After the diagonalization the Hamiltonian reads:

Ĥ = UDU−1 (3.3)

where D is a diagonal matrix with eigenvalues on the main diagonal and U is a matrix

with the accompanying eigenvectors. The state of the system can be written as a linear

combination of eigenstates of the Hamiltonian and for the evolution coefficients one can
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write:

~c(t) = exp(−iĤt)~c0

~c(t) = U exp(−iDt)U−1~c0 /U−1·

U−1~c(t) = exp(−iDt)U−1~c0 /~d(t) = U−1~c(t)

~d(t) = exp(−iDt)~d0 (3.4)

With eq.(3.4) one can now calculate the time evolution of a wave packet on a tight-

binding chain ([18]).

3.2.2 Greens function method

The time evolution of a state now reads ([19, pg. 9]):

ψ(~r, t) = i

∫ ∞
−∞

d~r′Gr(~r,~r′; t− t0)ψ(~r′, t)

Gr(~r,~r′; t−t0) denotes the retarded Greens function matrix which depends on the relativ

positions of the sites on the tight-binding chain and ψ(~r′, t) is the starting vector for the

time evolution of a wave packet.

The retarded Greens function can be evaluated by using the CPT approach. grcc(~r,~r
′;ω)

is the Greens function of the isolated sites of the system with coupled leads and coupled

fermionic reservoirs. With CPT one can calculate the full Greens function for the system

with a hopping matrix T, which denotes the hopping between the nearest neighbour

atoms.

Gr(~r,~r′;ω) =
(
grcc(~r,~r

′;ω)−1 − T
)−1

For the time evolution we need the Greens function in time. For the calculation one has

to carry out a Fourier transformation with τ =t-t0

Gr(~r,~r′; τ) =
1

2π

∫
dω exp(−iωτ)Gr(~r,~r′;ω)
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In the discrete space the time dependent Greens function and the time evolution of the

state reads:

Gr(~r,~r′; τ) =
1

2π

N∑
n=1

exp(−iωnτ)Gr(~r,~r′;ωn)∆ω

ψ(~r, t) =
∑
~r′

iGr(~r,~r′; τ)ψ(~r′, t)

(3.5)

The Greens function of an isolated site of the chain without the coupled fermionic baths

(tcb = 0) reads:

gr
cc(ω) =

1

ω − εk + io+

εk is the on-site energy and the factor io+ ensures the causality in frequency space. For

an expression in time space one has to carry out a Fourier transformation:

gr
cc(τ) =

1

2π

∫ ∞
−∞

dω exp(−iωτ)
1

ω − εk + io+

For the evaluation one has to make use of Cauchy principal value:∫ ∞
−∞

f(k)

k− k′ ± io+
dk = P

∫ ∞
−∞

f(k)

k− k′
dk∓ f(k′)

Now there is an expression for the time dependend retarded Greens function

gr
cc(τ) = − i

2π
Θ(τ) exp(−iεkτ) (3.6)

Θ(τ) ensures the causality in time space, which means that there has to be a disorder

of the system first and then the response follows.

gr
cc(τ) =

0 τ < 0

∼ exp(−iεkτ) τ > 0
(3.7)
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Figure 3.1: The retarded Greens function of an isolated site on a chain with ε0 = 0 in

dependency of time. There is no electric-field and the chosen parameters are:

o+ = 0.0004, Nω = 4000.

This figure shows the properties of the time dependent Greens function. As one can

see, the retarded function is zero for times smaller 0, which means that there is only a

response after the disorder. Then it jumps to the value of 1. At this point we can see

the Gibb’s phenomena, which is a numerical calculation result. Normally the Greens

function characteristic would oscillate there with the excitation energy of the system εk.

Because of the absence of hopping tcc the Greens function looks the same on every site

of the chain. (For programming, the choice of the parameters o+ and Nω to each other is

very important. If the number of frequency points was chosen too low, the step function

would shift. If the complex parameter o+ was chosen too high, the function slopes down;

but it should always stay approximately at a value of 1).

Because of the symmetries of the tight-binding chain, there are symmetries for the Greens

function of the full system (with hopping between the sites). The site 0 should lie in the

middle of the considered system (numbered as follows: . . . ,−2,−1, 0, 1, 2, . . . ).

Gr
i,j(τ) = (−1)|i-j|−1Gr

-i,-j(τ)

Gr
i,j(τ) = Gr

j,i(τ)
(3.8)
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3.2.3 Appraisal of the Bloch Oscillations

Following considerations are based on [20].

We have a look at the full system consisting of the central region (N-site tight-binding

chain), 2 coupled leads (infinite chains). The Hamiltonian of this system reads:

Ĥ = Ĥcc + Ĥll + Ĥlc

Ĥcc = −tcc

N−1∑
m=1

(|m〉 〈m + 1|+ h.c) + E
∑

m

m |m〉 〈m|

Ĥlc = −tlc (|M,L〉 〈1|+ |1,R〉 〈N|+ h.c)

Ĥll =
∑
α=L,R

Ĥα Ĥα = −tll

M∑
m=1

|m, α〉 〈m + 1, α|

Ĥcc is the Hamiltonian of the central region consisting of a one-dimensional tight-binding

chain (N-sites) with nearest neighbour hopping and a slope caused by an uniform electric

field E.

Ĥll is the Hamiltonian of the left and right leads (tight-binding chains with M-sites).

Ĥlc is the coupling of the central region and the leads. The M-th place of the left lead

has to be coupled to the first site of the central region and the first site of the right lead

to the N-th place of the central region.

From the dispersion relation one can calculate the position of the relativ maximum

as a function of time. For this we start out from the equation of motion for an electron

in an external field and this gives us ([15]):

k(t) = −eE

~
t

and the vector |k〉 can be written as:

|k〉 =
1√
N

∑
m

exp(−ikam) |m〉
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Leads:

ε(k) = −2tll cos(ka)

vL(k) =
1

~
∂ε(k)

∂k
=

2atll
~

sin(ka)

xL(t) =

∫
dtvL(k(t)) = −2atll

~

∫
dt sin(

eEa

~
t)

xL(t) =
2tll

eE
cos(

eEa

~
t) (3.9)

Coupling:

εlc(k) = −tlc

[
1

N

∑
n,m

exp(ika(m-n)) (〈m| |M〉 〈1| |N〉+ 〈m| |1〉 〈N| |n〉)

]

= −tlc
N

[(exp(ika(M-1)) + exp(ika(N-1))) + h.c]

= −2tlc
N

(cos(ka(M-1)) + cos(ka(M-1)))

vlc(k) =
2tlca

N~
[(M− 1) sin(ka(M-1)) + (1− N) sin(ka(1-N))]

xcl(t) =
2tlc
NeE

(
cos(

eEa(M-1)

~
t) + cos(

eEa(1-N)

~
t)

)
(3.10)
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Central:

εcc(k) = −tcc
∑

m

[
1√
N

∑
x,y

exp(ika(x-y)) (〈x| |m〉 〈m + 1| |y〉+ h.c) +
E

N

∑
x,y

exp(ika(x-y)) 〈x| |m〉 〈m| |y〉

]

= −tcc
N

∑
m

(2 cos(ka) + E ·m)

= −tcc

2 cos(ka)
1

N

∑
m

1︸ ︷︷ ︸
1

+E
1

N

∑
m

m︸ ︷︷ ︸
N+1
2


= −tcc

(
2 cos(ka) +

E

2
(N+1)

)
vcc(k) =

2tcca

~
sin(ka)

xcc(t) =
2tcc
eE

cos(
eEa

~
t) (3.11)

With eq.(3.9), (3.10) and (3.11) one can write the dependency of the position on time for

the full system and we have an expression for the appraisal of the Bloch Oscillations:

x(t) =
2

eE
cos(

eEa

~
t)(tll + tcc) +

2tlcN

eE

(
cos(

eEa(M-1)

~
t) + cos(

eEa(1-N)

~
t)

)
(3.12)

49



3 BLOCH OSCILLATIONS

3.3 Results

For the understand of the Bloch Oscillations one has a look at the time evolution of

an initial Gaussian wave packet prepared around the central site on a one-dimensional

tight-binding chain. For the start wave packet following distribution was taken:

ψ(~r, t) =
1

2πσ
exp

(
−1

2

(
~r− µ
σ

)2
)

(3.13)

With ρ(t) the relativ maximum of the density was denoted. We have a look at the

system, where the central region consists out of N=21 sites, each site coupled to fermionic

reservoirs with a strength tcb, and two leads.

Figure 3.2: The position of the relativ maximum of the distribution in dependency of

time. On the y-axis one can see the position of the maximum like the sites

were numbered.

Fig.3.2 shows the position of the distribution in dependency of the time. The y-axis de-

notes the index of the site, where the maximum belongs to a certain time t. In the prepa-

ration every site on the chain was given a certain index were the origin lies in the middle
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of the chain. This means the sites were numbered like . . . ,−3,−2,−1, 0, 1, 2, 3, . . . .

Hence one can see that the distribution moves to the left and back again. For small

fields there are no distinct Bloch Oscillations. As the field rises the Bloch Oscillation

take over and act like a nonlinear transport mechanism (compare to Fig.2.2). As the

field rises the deflection gets smaller but the oscillation frequency rises. This coincides

with the predictions of eq.(3.12), which says, that the amplitude is indirect proportional

to the electric field E and the oscillation frequency goes with it. Fig.3.2 shows that in

this case it doesn’t make a difference if the fermionic reservoirs are coupled or not. First

a higher deflection with coupled baths (tcb 6= 0) was expected because they are respon-

sible for the energy dissipation and should push the distribution further away from the

central preparation site. As one can see, with coupled baths the Bloch Oscillations start

a little bit earlier, but there are no other consequences because of them.

Figure 3.3: The same as Fig.3.2 but with more sites. Now we have N=41 sites.

As we compare Fig.3.2 to Fig.3.3 one can see the dependency on the system size as

eq.(3.12) predicts. As the system size rises, the amplitude decreases because it is pro-

portional to 1/N.

For a precise treatment of the dependency of the oscillation amplitude on the electric

field, one can look at ρ(VBias/E).
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Figure 3.4: Shows the dependency of the amplitude of the Bloch Oscillations on the

applied field for N=21.

As the field rises the amplitude (or the relativ position of the maximum of the distribu-

tion) decreases. Field and amplitude have a linear relation. The peaks in the low field

regime come from the fact, that the Bloch Oscillations aren’t distinct and those in the

high field regime come from the numerical evaluation.

Fig.3.5 shows the dependency of the the amplitude on the system size. Here it is plotted

versus the half system size (chain extending in one direction counted from the central

site of the chain). For small fields E ≤ 0.2 there is a linear behaviour of the amplitude as

predicted in eq.(3.12) up to high system sizes. The peak in the blue line (E=0.1) comes

from the numerical evaluation. For higher fields there is a ”saturation” of the extent of

the oscillations. The reason is, that the fields are so high, that they can’t extend any

further. As the field increases (N increases), the oscillations decrease (increase).

How does the amplitude depend on the hopping parameters? The dependency on the

lead-chain hopping is shown in Fig.3.6. A variation of tlc doesn’t have much influence

on the behaviour of the Bloch amplitude.

52



3.3 Results

Figure 3.5: Position of the relativ maximum of the initial distribution in dependency of

the half system size for various electric fields. Parameters: tcb = 0, tll = tcc =

tlc = 1

Figure 3.6: The oscillation amplitude as a function of the half system size for various

choices of tlc and E=0.1.

tcb = 0, tll = tcc = 1
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The choice of the parameter tlc isn’t important for the electron transport. This can also

be compared to Fig.2.4.5, which shows, that the variation of this hopping parameters

doesn’t have any influence on the behaviour of the current (and so the Bloch Oscillations)

in the high field regime.

But as the hopping in the chain tcc is reduced, the current decreases and so does the

amplitude, because the transport gets supressed. Again, the variation of tlc has no

influence on the behaviour.

Figure 3.7: Same as Fig.3.6 but now for a lower value of tcc.

E=0.1, tcb = 0, tll = 1, tcc = 0.5

This discovery coincides with the behaviour of the current as one can see in Fig.2.4.5.

The reduction of tcc leads to a decrease of the oscillation amplitude and the current but

a reduction of tlc doesn’t reduce the current.
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3.4 Conclusion

The Bloch Oscillations cause a non linear transport mechanism. They set in for high

fields if τB � τ , which means that a circle has to be finished before the electron can

scatter into the next state. As we said before, for small fields the displacement of the

fermi seas is so small, that the electrons can tunnel and the current can be described

by an ohmic-like behaviour. For high fields, where the displacement of the fermi seas

is very high we get an oscillating current described by the Bloch Oscillations. If the

amplitude of the oscillations is bigger than the half system size a current can flow. For

small fields the central region has a low slope, which means that valence and conduction

band overlap and the electrons can scatter into the next state and cause a current flow.

For higher fields there is no overlap anymore and the Bloch Oscillations set in.

If we compare the behaviour of the current Fig.2.2 to the behaviour of the amplitude

as a function of field Fig.3.4 one can see the predicted characteristics. For fields higher

than the bandwidth an oscillating current takes over which slowly falls down, as the

field rises. This coincides with the Bloch amplitude, that is proportional to 1/E and

decreases as E increases (compare to eq.(3.12)).

This equation also shows the dependency on the system size. As N increases the oscil-

lations increase for small fields (there is a linear dependency; Fig.3.5), but for higher

fields there is a ”saturation”. This is because the field is so high, that the amplitude

can’t extent over the full system size because of the dependency on the field E.

As Fig.2.4.5, Fig.3.6 and Fig.3.7 show, the dependency on the hopping parameter tlc

doesn’t carry weight in comparison to the dependency of tcc. As tlc decreases the char-

acteristics of the current and the behaviour of the amplitude stays the same. But as tcc

decreases the current goes down and the Bloch amplitude decreases.

In summary one can say, that the current exhibits a linear behaviour for small fields

and for higher fields it can be described by the Bloch Oscillations. For high fields the

current follow a nonlinear transport mechanism.
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4 Alternating Potential

4.1 Model

In this section we want to study the influence of a periodic potential on the current. We

consider the following model:

left lead

right lead

V

VP

Bias

Figure 4.1: This system consists of two leads coupled to the central region with fermionic

reservoirs as before. The difference is that there is a potential VP on every

odd site of the central tight-binding chain.

The bias voltage VBias is linearly distributed over all sites of the centryl system, correp-

sonding to an uniform electric field. tll, tlc, tcc, tbb, tcb are the hopping parameters in the

system. As we will see, the current characteristics exhibit modulations (oscillations) in

the case of the alternating potential slope. They originate from resonant tunneling.
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4 ALTERNATING POTENTIAL

4.2 Resonant tunneling

4.2.1 Continuous calculation Double Barrier

For the following calculations references [22] and [23] were used.

VV1 V

a

3 5

2 4V V
H

I

D

C

b c d

A F J

G KB

L
1 WW 2

Figure 4.2: Sketch for the continous calculation of the transmission and reflection co-

efficient of a double barrier. One can see the amplitudes of the incoming

an reflected amplitudes in every region and the parameters used for the

calculation.

We want to find a possibility to calculate the transmission coefficient in continuous space.

In real space the Schrödinger equation reads:(
−~2

2m

d2

dx2 + V(x)

)
ψ(x) = Eψ(x) (4.1)

For the wave function following ansatz is made:

ψ(x) =

a1 exp(ikx) + a2 exp(−ikx) k =

√
2m(E−V)

~ ,V < E

a1 exp(kx) + a2 exp(−kx) k =

√
2m(V−E)

~ ,V > E
(4.2)
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4.2 Resonant tunneling

These waves have to fullfill the following conditions at the boundary of every region.

ψn(xn) = ψn+1(xn)

d

dx
ψn(x)|x=xn =

d

dx
ψn+1(x)|x=xn

(4.3)

For the case that the injection energy E is smaller than the potential barrier, we get:

ψ(x) =



A exp(ikx) + B exp(−ikx) x <≤ a

C exp(qx) + D exp(−qx) a < x ≤ b

F exp(ik′x) + G exp(−ik′x) b < x ≤ c

H exp(px) + I exp(−px) c < x ≤ d

J exp(ik′′x) + K exp(−ik′′x) d < x

(4.4)

k =

√
2m(E−V1)

~ , q =

√
2m(V2−E)

~ , k′ =

√
2m(E−V3)

~ , p =

√
2m(V4−E)

~ , k′′ =

√
2m(E−V5)

~

To solve this problem the transfer matrix formalism is used. This means, we express

eq.(4.4) in matrix form:

M1

(
A

B

)
= M2

(
C

D

)
,M3

(
C

D

)
= M4

(
F

G

)

M5

(
F

G

)
= M6

(
H

I

)
,M7

(
H

I

)
= M8

(
J

K

) (4.5)

(
A

B

)
= M−1

1 M2M−1
3 M4M−1

5 M6M−1
7 M8︸ ︷︷ ︸

MT

(
J

K

)
(4.6)

MT is the transfer matrix. Another possibility to write the transfer matrix is:

MT = M−1
1 M2,3M4,5M6,7M8 (4.7)

Mm = Mn,n+1 = MnM−1
n+1
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4 ALTERNATING POTENTIAL

In principle one can write for a section m, that is confined by xn and xn+1:

Mm =



 cosh(km(xn+1 − xn)) − 1
kn

sinh(km(xn+1 − xn))

−kn sinh(km(xn+1 − xn)) cosh(km(xn+1 − xn))

 E < Vn cos(km(xn+1 − xn)) − 1
kn

sin(km(xn+1 − xn))

kn sin(km(xn+1 − xn)) cos(km(xn+1 − xn))

 E > Vn 1 −(xn+1 − xn)

0 1

 E = Vn

(4.8)

And for the edge sections it holds:

Mn =



 exp(iknx) exp(−iknx)

ikn exp(iknx) −ikn exp(−iknx)

 E > Vn exp(knx) exp(−knx)

kn exp(knx) −kn exp(−knx)

 E < Vn

(4.9)

E < Vn : kn =

√
2m(Vn−E)

~ E > Vn : kn =

√
2m(E−Vn)

~
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4.2 Resonant tunneling

Now to calculate the Transmission coefficient we use that the backscattered wave in the

last section (denoted by K) is zero. We can define two matrices to get a relation for T:

M̃1 =

(
1 −MT,3

0 −MT,4

)
M̃2 =

(
0 MT,1

−1 −MT,2

)
(4.10)

With this matrices we can caluclate the scattering matrix S:

S = M̃
−1

2 M̃1 =
1

MT,1

(
MT,2 −MT,2MT,3 + MT,1MT,4

1 −MT,3

)
(

B

J

)
= S

(
A

K

) (4.11)

We can now give an expression for the transmission and the reflection coefficient:

T = | 1

MT
1,2

|2 = |S2|2

R = |
MT

1,2

MT
1,1

|2 = |S1|2

T + R = 1

(4.12)

Or to use a different representation: The transmission coefficient is the ratio between

the incoming in the outgoing wave and the reflection coefficient is the ratio between

reflected and incoming wave:

T = | J
A
|2 = | 1

MT,1

|2

R = |B
A
|2 = |MT,2

MT,1

|2
(4.13)

The transmission coefficient T exhibits it’s maximum value if resonant tunneling takes

place. In this case (at the resonant energies), the double barrier get’s transparent for the

electrons. Now we need to find a possibility to calculate the positions of these resonant

energies. Therefore we have a look at a single potential well, because it is a good way

to approximate the considered double potential well:
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4 ALTERNATING POTENTIAL

V

I II III

-a a
V

V

0

Figure 4.3: Sketch for the calculation of the resonance energies in the continous case for

VT = 0. There is the central region with the 2 potential barriers with height

V and the well of length L=2a with potential V0.

We restrict the calculation to the bound energies with E < V. The wave function in the

3 regions can be written according to:

I : ψ(x) = A exp(k′x)

II : ψ(x) = B exp(ikx) + C exp(−ikx)

III : ψ(x) = D exp(−k′x)

k =

√
2m(E−V0)

~ k′ =

√
2m(V−E)

~

With the boundary conditions it follows:
exp(−k′a) − exp(−ika) − exp(ika) 0

−k′ exp(−k′a) ik exp(−ika) −ik exp(ika) 0

0 exp(ika) exp(−ika) − exp(k′a)

0 ik exp(ika) −ik exp(−ika) k′ exp(−k′a)


︸ ︷︷ ︸

M


A

B

C

D

 =


0

0

0

0



For the solution det(M)
!

= 0 has to be fullfilled resulting in:

exp(4ika) =
(k′ − ik)2

(k′ + ik)2
(4.14)

We have to distinguish between two cases: asymmetric and symmetric case
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4.2 Resonant tunneling

1.) asymmetric case:

exp(2ika) =
k′ − ik
k′ + ik

=
1

k′2 + k2

(
k′2 − k2 − 2ik′k

)
cos(2ka) =

k′2 − k2

k′2 + k2

sin(2ka) = − 2k′k

k′2 + k2

With the identities cos(2x) = 1− 2 sin2(x), sin(2x) = 2 sin(x) cos(x) we get:

− cot(ka) =
k′k

k2 (4.15)

The asymmetric energies arise from the intersection point of the two sides of the tran-

scendent equation.

Figure 4.4: The black line shows the function fa1(E) = − cot(ka) and the colored ones of

fa2(E) =

√
ζ2−(ka)2

ka
for various choices of the potential height V. Here V0 has

been chosen to 0, a=6 and the width of the barrier is w=0.5. In this case

ζ =
√

2mVa/~ and k =
√

2mE/~. The red circles show the positions of the

resonance energies.
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4 ALTERNATING POTENTIAL

The number of asymmetric solutions is given by the intersection points and depends on

ζ. As V rises the number of energies increases. There is the following law for the number

of asymmetric solutions na:

π

2
(2na − 1) < ζ <

π

2
(2na + 1)

There only exists asymmetric solutions if the potential height exceeds the value

V =
π2~2

8ma2

The next figure shows the dependence on the well width L = 2a.

Figure 4.5: The blue line shows the characteristics of the function fa1(E) = − cot(ka) and

the black one of fa2(E) =

√
ζ2−(ka)2

ka
for various choices of the well width L.

Here V0 has been chosen to 0, V = 0.5 and the width of the barrier is w=0.5.

As L or rather a rises the number of intersection points increases because fa2(E) strongly

depends on the choice of a. This means the longer the well or the higher the potential

barrier the more bound state energies exist.
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4.2 Resonant tunneling

2.) symmetric case:

exp(2ika) = −k′ − ik
k′ + ik

= − 1

k′2 + k2

(
k′2 − k2 − 2ik′k

)
cos(2ka) =

k2 − k′2

k′2 + k2

sin(2ka) =
2k′k

k′2 + k2

tan(ka) =
k′k

k2 (4.16)

Figure 4.6: The black line shows the characteristics of the function fs1(E) = tan(ka) and

the colored ones of fs2(E) =

√
ζ2−(ka)2

ka
for various choices of the potential

height V. Here V0 has been chosen to 0, a=6 and the width of the barrier is

w=0.5.
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4 ALTERNATING POTENTIAL

In the symmetric case it always exists a solution for V > 0. This means the number of

symmetric solutions can be calculated by:

ns = d ζ
π
e

For a potential with a certain potential height V there are n solutions (ns + na) that are

given by:

n = b2ζ
π
c+ 1 (4.17)

The dependence of the symmetric solutions on the well length L is similar to the asym-

metric case. As L rises ns rises. But there is also a solution for very narrow barriers:

Figure 4.7: The blue line shows the characteristics of the function fs1(E) = tan(ka) and

the black one of fs2(E) =

√
ζ2−(ka)2

ka
for various choices of the well width L.

Before we start to show the results for the continous calculation, we have to mention that

all constants m, e and ~ are set equal 1. (Same for the following discrete calculation)
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4.2 Resonant tunneling

4.2.2 Continuous results for a Double Barrier

Figure 4.8: Parameters for this calculation: V = 1, w = 0.5, L = 6; On the left site one

can see the potential of the double barrier and the position of the resonant

energies. On the right site one can see the characteristic of the transmis-

sion coefficient T in dependence of the incoming energy E and the resonant

energies Er.

The transmission coefficient reaches its maximum value if the incoming energy is the

same as a resonant energy Er. In Figure 4.8 we can see, a small divergence between

the resonant energy position and the transmission coefficient maximum. This results

from the fact, that the positions were calculated using a double barrier potential. In

this case the barrier gets transparent for the electrons. This means that at these certain

energies a current can flow. The number of resonance energies, at which the electrons

can tunnel, depends on the height of the barrier and the width of the well. Fig.4.9 shows

the dependency of the transmission coefficient on the well width.
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4 ALTERNATING POTENTIAL

Figure 4.9: Parameters for this calculation: V = 1, w = 0.5; The transmission coefficient

for various well lengths.

As we can see the transmission coefficient exhibits more peaks as L rises. There are more

bound states. If the parameter L is chosen to be twice as long as before the number of

resonances Er doubles. In Chapter 4.2.1 we only discussed the bound states, but there

is also resonant behaviour above the barrier edge (for energies out of the bound state

regime). They come from the free states.

Conclusions for the double barrier calculations:

• The transmission coefficient exhibits its maximum value near the resonance ener-

gies. The electrons can tunnel through the barrier.

• As the length of the well goes up, the number of bound state energies rises.

• As the height of the potential barrier goes up, the number of resonance peaks in

the transmission coefficient rise and they get sharper.
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4.2 Resonant tunneling

4.2.3 Continuous calculation for a tilted Double Barrier

V

I II III

-a a
V

V

2

1 3

V

Figure 4.10: Sketch for the calculation of the resonance energies in the continous case

for VT 6= 0. There is the central region with the 2 potential barriers with

height V1 and V3 and the well of length L=2a with potential V2. The values

of Vn change due to a tilting of the system.

If there is a bias voltage on the system the double barrier gets tilted. We now call the

voltage to til the system VT and one can calculate:

VBias = (N − 1) · VT

With the voltage VT the potential heights Vn get modulated. Again, we only consider

the bound state energies (E < V3).

I : ψ(x) = A exp(qx)

II : ψ(x) = B exp(ikx) + C exp(−ikx)

III : ψ(x) = D exp(−px)

q =

√
2m(V1−E)

~ k =

√
2m(E−V2)

~ p =

√
2m(V3−E)

~

With the same procedure as in the case of a non tilted double barrier we get:

exp(4ika) =
(p− ik)(q− ik)

(p + ik)(q + ik)
(4.18)
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4 ALTERNATING POTENTIAL

1.) asymmetric case:

exp(2ika) =

√
(p− ik)(q− ik)

(p + ik)(q + ik)

With the definition V0 =
√

(V1 − V2)(V3 − V2) we get the position of the resonant

energies out of the following transcendent equation (the intersection points of the two

curves give the resonances):

− cot(ka) =

√
E(V0 − E)

E
(4.19)

1.) symmetric case:

exp(2ika) = −

√
(p− ik)(q− ik)

(p + ik)(q + ik)

tan(ka) =

√
E(V0 − E)

E
(4.20)

Without VT the potential heights Vn calculate like:

V1 = V2 + V

V3 = V2 + V

If VT 6= 0:

V1 = V2 + V

V2 = V2 − VT

V3 = V2 + V︸ ︷︷ ︸
V3

−2VT
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4.2 Resonant tunneling

If we plug this into the definition of V0 we get:

V0 =

√
V2 − V2

T (4.21)

In the case of a tilted double barrier the resonant energies shift with rising VT to lower

energies. This means, as VT goes up the slope of the system gets more steep.

4.2.4 Continous results for a tilted Double Barrier

Figure 4.11: Parameters of this calculation are V = 1, w = 0.5, L = 6 and VT = 0.05;

Transmission coefficient in the case of a tilted double barrier.

Fig.4.11 in comparison to Fig.4.8 shows that in the case VT 6= 0 the resonant energies

are shifted down and therefore there are less resonances. At the lowest resonant energy,

we can’t see a transmission peak, because the incoming wave can’t have energy 0. The

peaks are not as sharp and the maximum of the transmission coefficient is lower as in

the case of VT = 0. We have a look at the transmission coefficient in dependency of the

tilting VT at a certain energy E. This energy has to be chosen to be in the range of the

smallest resonant energy.
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4 ALTERNATING POTENTIAL

Figure 4.12: V=1, w=0.5, L=6 and the energy of the incoming wave E=0.05; Transmis-

sion coefficient in dependency of the tilting.

In the upper plot we can see T in dependency of the tilting or rather the bias voltage.

The lower plots show the tilting of the double barrier for various VT, the resonant en-

ergies (black) and the incoming energy (red). The resonances shift with rising tilt to

lower energies. As one can see, the transmission coefficient exhibits resonant behaviour

if E equals a resonant energy otherwise there is a minimum in T.

The most significant difference to the not tilted double potential is that T doesn’t reaches

it’s maximum at a value of 1. Normally this comes from the fact, that the waves inside

the barrier get reflected from one site to the other and somewhere there is interference.

T of the whole system can get higher than the Ti’s of the single barriers because of the

interference. When the barrier gets tilted there are less waves that can contribute to T

and therefore the transmission coefficient can’t reach a value of 1 anymore.

So far we have only considered a double barrier. The characteristic of the transmis-

sion coefficient changes when there are several wells (N rises and on every second place

there is a higher potential).
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4.2 Resonant tunneling

Figure 4.13: V=1, w=0.5, L=6; Transmission coefficient in dependency of N. The left

plots show the potentials and the right plots the characteristics of the trans-

mission coefficient.

Fig.4.13 shows the dependency of T on the potential. A single barrier doesn’t exhibit

resonances because there are no bound state energys. The double barrier shows the

known behaviour of the transmission coefficient. If the number of wells increases the

positions of the resonances stay the same but they get split. This means, that every

resonance peak splits into the number of wells. In the case of N=7 every peak is splitted

into two peaks because there are two wells in the system. If there would be 3 wells

(N=9) there would be a splitting into 3 peaks.

Fig.4.14 shows the characteristics of the transmission coefficient in dependency of the

tilting for N = 7 (double well). In comparison to Fig.4.12 we can see that the positions of

the main resonances stay the same for more wells but they split into two peaks because

of the number of wells (as seen before for the resonances without tilting).
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4 ALTERNATING POTENTIAL

Figure 4.14: V=1, w=0.5, L=6, E=0.05; Transmission coefficient in dependency of the

tilting for a double well (N=7).
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4.2 Resonant tunneling

4.2.5 Discrete calculation of the Double Barrier Problem on a one-dimensional

tight-binding chain

Reference [24] was used as a support for the following calculations and considerations.

The model used for the following considerations is extremely idealized. We only look

at a strictly one-dimensional transport problem. For this we introduce a double barrier

potential and use the Greens function method to calculate the transmission and reflec-

tion coefficients.

The Hamiltonian

Ĥ =
∑

n

(εn |n〉 〈n|+ t (|n〉 〈n+1|+ |n〉 〈n-1|)) (4.22)

describes a one-dimensional tight-binding chain of N sites with nearest neighbour hop-

ping u and on-site-energies εn. Translational invariance εn = ε0 is assumed. The eigen-

functions of the Hamiltonian are of the Bloch-type:

|k〉 =
∑

n

exp(ikna) |n〉

k stands for the momentum eigenstates and a for the spacing between the sites on

the chain (lattice spacing). With these Bloch states one can calculate the dispersion

relation:

E(k) = ε0 + 2t cos(ka) (4.23)

The energy band of the model extends from ε0 − 2|u| to ε0 + 2|u|. Therefore the first

Brillouin zone spans the k interval [−π/a, π/a]. ε0 is chosen to be−2u, which corresponds

to k=0 being the bottom of the band.

We look at following potential and want to calculate the transmission coefficient. The

system consists of the central region with the potential and coupled leads at the right

and the left of the central region with same on-site energies.
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4 ALTERNATING POTENTIAL

Figure 4.15: Random potential in the central region and coupled leads for the calculation

of the transmission and the reflection coefficient.

A potential can be modelled by changing the on-site energies ε0 by an additive term ∆.

This means: εn = ε0 + ∆n

The scattering problem can then be solved by finding the scattering eigenstates.

k > 0 : ψk(n) =

exp(ikna) + r(k) exp(−ikna) n ≤ 0

t(k) exp(ikna) n ≥ N + 1
(4.24)

k < 0 : ψ̃k(n) =

exp(ikna) + r̃(k) exp(−ikna) n ≥ N + 1

t̃(k) exp(ikna) n ≤ 0
(4.25)

t(k) and r(k) are the transmission and reflection amplitudes for k>0 and t̃(k) and r̃(k)

for k< 0. To derive an expression for the amplitudes the Greens function method was

used. As before, the retarded Greens function can be calculated with a CPT approach.

The sites on the chain couple with u with each other and the leads have to be included

in the calculation. Hence the transmission and reflection amplitudes are given by:

k > 0 :

t(k) = −2it sin(ka) exp(−i(N + 1)ka)GN+1,0(k)

r(k) = −2it sin(ka)G0,0(k)− 1
(4.26)

k < 0 :

t̃(k) = 2it sin(ka) exp(i(N + 1)ka)G0,N+1(k)

r̃(k) = (2it sin(ka)GN+1,N+1(k)− 1) exp(2i(N + 1)ka)
(4.27)
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4.2 Resonant tunneling

Gij(k) means that the Greens function has to be evaluated at a certain E(k). From the

dispersion relation (eq.(4.23)) one can calculate the corresponding k. The transmission

and reflection coefficient can then be calculated by T(k) = |t(k)|2 and R(k) = |r(k)|2.

For a detailed calculation see [24].

If there was a voltage drop across the structure the calculation for the transmission

and reflection amplitude could be made with the transfer matrix method. The on

site-energy of the low voltage contact has to be replaced by ε0 − VBias and there is no

translational invariance anymore because every εn gets changed by a ∆n. The eigenstates

of the Hamiltonian are now of following type:

|ψ〉 =
∑

n

cn |n〉

With this ansatz one gets an equation to determine the evolution coefficients.

(cn+1 + cn−1) =
E− εn

u
cn (4.28)

First a vector gets defined:

~cn =

(
cn

cn−1

)

The matrix equation for solving the system of equations for the coefficients is now given

by:

~cn+1 = Tn~cn

Tn =

(
(E− εn)/u −1

1 0

)
(4.29)

where Tn is the Transfer matrix of order n. For the incoming wave n≤0 we define:

cn = exp(ikan) + r(k) exp(−ikan)
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4 ALTERNATING POTENTIAL

and for the outgoing wave n≥(N+1):

cn = t(k) exp(ikan)

This gives following system of equations for the determination of t(k) and r(k):(
t(k) exp(ika(N+1))

t(k) exp(ikaN)

)
︸ ︷︷ ︸

~cn

= T

(
exp(ika) + r(k) exp(−ika)

1 + r(k)

)
︸ ︷︷ ︸

~c1

(4.30)

With T the transfer matrix of the full system:

T = TN . . .T1 =

(
T11 T12

T21 T22

)
(4.31)

This gives following expression for the transmission and the reflection amplitude:

r(k) =
T11 + T12 exp(−ika)− T21 exp(ika)− T22

T22 + T21 exp(−ika)− T12 exp(−ika)− T11 exp(−2ika)

t(k) = exp(−ika(N+1)) [T11 exp(ika) + T12 + r(k) (T11 exp(−ika) + T12)]

(4.32)
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4.2 Resonant tunneling

4.2.6 Results for a tight-binding chain

The studied systems always consist of a central region with a certain potential and two

coupled leads. A calculation of the characteristics of the transmission coefficient always

shows certain behaviour for a defined potential.

Figure 4.16: The right pannel shows the transmission coefficient for a single barrier with

one atom in the barrier. The left pannel shows the transmission coefficient

in dependency of the incoming energy.

The resonant behaviour normally manifests itself through a maximum value in the trans-

mission coefficient. Resonant tunneling occurs above the barrier edge in the case of a

single barrier. In this case, with a single barrier and one barrier atome only, there is no

resonant behaviour.
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4 ALTERNATING POTENTIAL

Figure 4.17: Shows the transmission of a double barrier with 3 atoms in the well and

one atom in each barrier.

Next we can see, there are three resonances in the continuum band (means the considered

energy window). The well with W atoms has W energy states in the energy band and

they give rise to W resonances through which the electrons can tunnel. Because of the

symmetric structure there is full transmission T=1 on resonance. The atoms in the

barrier (in this case 3) give rise to Nb bound states above the barrier edge.

Figure 4.18: Shows the transmission of a double barrier with 2 atoms in the well and

one atom in each barrier. This can be compared to Fig.4.17 (3 Atoms in

the well).
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4.2 Resonant tunneling

In Fig.4.18 there are only two atoms in the well. The transmission coefficient only

exhibits 2 resonances. This emphysizes that W well atoms give rise to W resonances in

the energy band.

Figure 4.19: Shows the transmission coefficient of a system consisting of 3 atoms in the

well and 2 in each barrier.

Fig.4.19 in comparison to Fig.4.17 shows that the well atoms give rise to 3 resonances.

Now the number of barrier atoms is higher and there are more truely bound states. The

position of the resonances stay the same but there appears a new resonance at the edge

of the energy band. This means, that one if the barrier states must be degenerate with

the continuum band (ε0 − |2u|, ε0 + 2|u|) and appears as a resonance.

The following system consists of 6 atoms in the well and one atom in each barrier.
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Figure 4.20: Shows the transmission of a double barrier with 6 atoms in the well and

one atom in each barrier.

As one can see, the 6 atoms in the well lead to 6 resonances. If we switch on a bias

voltage (or VT) the position of the resonances shift to lower energies E.

Figure 4.21: Transmission coefficient for a tilted chain (VT = 0.05,VBias = 0.4) with

Nw=6 and Nb=1.

The behaviour of the transmission coefficient in dependency of the tilting is similar to

the continous case.
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4.2 Resonant tunneling

Figure 4.22: Transmission coeffcient in dependency of the tilting for an energy E=0.05.

If the energy of the incoming wave conicides with a resonance the transmission coefficient

reaches a maximum value because the electrons can tunnel resonantly. With the bias

voltage (or rather the tilting) the Er get shifted towards smaller energys but the incoming

energy always stays the same. In the lower plots of Fig.4.22 one can see the actual

situation in case of resonant and non-resonant behaviour.
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4.3 Transport in an alternating potential

Here we want to study the characteristics of the current in a system consisting of a central

region and two coupled leads. It shows certain behaviour that can be compared to the

transmission coefficient. The central region is a one-dimensional tight-binding chain with

coupled fermion reservoirs (compare with Chapter 2) under an uniform electric field that

leads to a bias voltage across the system. A difference to previous considerations is an

alternating potential, which means that there is a potential barrier on every second site

of the central region (Fig.4.1). With this model a semiconductor can be treated.

Figure 4.23: Current characteristics for a central region with N=21 sites, hopping pa-

rameters tll = 1, tcc = 1, tcl = 1, without fermion baths tcb = 0 and applied

potential barriers of height VP = 2.

We start out with the current characteristics in the case with no baths. Because of the

missing fermion baths there is only a current flowing in the band-width (compare to

Chapter 2) but with a different behaviour because of the barriers. There is no linear

behaviour of the current to the field anymore. Instead there are steps in the current

characteristics. They appear because of the potential barriers. For a more detailed
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4.3 Transport in an alternating potential

interpretation we will take a look at the transmission coefficient for this system.

Fig.4.24 shows the transmission coefficient for certain values of the incoming energy. The

system is not tilted, so the bias voltage equals 0. The left plot shows the system with

the leads on the right and left site and the central region with an alternating potential.

On the right one can see the characteristics of the transmission coefficient. There are 10

resonances because of the 10 wells. If there was only one well with a single atom inside,

we would only see one resonance. Because of the number of the wells this resonance

is split into more because there are more bound states (details in a previous chapter).

There are also 11 exactly bound states (they come from the number of atoms in the

barrier) but only appear for energies above the continuum band.
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4 ALTERNATING POTENTIAL

Figure 4.24: Tranmission coefficient for an alternating potential with VP = 2.

Figure 4.25: Tranmission coefficient for an alternating potential with VP = 2 in depen-

dency of the tilting. The incoming energy E = 0.7 and the system size is N

= 21.
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4.3 Transport in an alternating potential

Fig.4.25 shows the transmission coefficient for an incoming energy E=0.7 versus the bias

voltage (or the tilting of the system). There are also resonance peaks in T if the incoming

energy strikes a resonance energy (as one can see in the lower subplots). The envelope

of the transmission coefficient shows a similar behaviour as the current in this case does.

For a detailed understanding one has to calculate the current from the transmission

coefficient with the help of the Landauer formula ([25]):

jT(VBias) =
2e

h

∫ ∞
−∞

dE T(E,VBias) (fs(E)− fd(E)) (4.33)

With the fermi function:

fn(E) =
1

1 + exp E−µn
kBT

µs = EF(= ε0) µd = EF − eVBias T = 0.0001K

(4.34)

µs is the chemical potential of the leaft lead (source) and µd of the right lead (drain).

T(E,VBias) means that the transmission coefficient hast to be evaluated for every in-

coming energy E. This has to be multiplied by the difference of the fermi functions and

then summed up. jT(VBias) denotes the current calculated by the Landauer formula out

of the transmission coefficient and j(VBias) is the current calculated by the method of

greens functions from Chapter 2.

Fig.4.26 shows the coincidence of the current from the Greens function calculation and

the current resulting from the calculations of the transmission coefficient. This under-

lines the beginning assumption that the current steps result from resonant tunneling of

the electrons in an alternating potential.
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4 ALTERNATING POTENTIAL

Figure 4.26: Comparison of the currents j and jT for a central region N=21 and VP = 2.

For the calculations the greens function method and the Landauer formula

were used.

Figure 4.27: Shows the current characteristics (for tcb = 0) for various potential heights

and the behaviour of the current maximum with increasing height.
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4.3 Transport in an alternating potential

Fig.4.27 shows the current characteristics in dependency of the potential height in the

central region. As the height increases, the current unfolds the behaviour of resonant

tunneling (steps) and the maximum decreases. If we have a look at the maximum of the

current as a function of potential height, one can see that there is a exponential decay

of it with increasing VP. At about a value of VP = 1 resonant tunneling insets, for

lower values the current shows no steplike behaviour. This depends on the interrelation

between the resonances and the potential height. As the height increases the number

of resonances increases and the transmission peaks get sharper. A reason, why there

are no steps in the current for low values of the potential, could be that the resonances

aren’t distinct.

Figure 4.28: Shows the current in dependency of the chain-bath parameter tcb without

a potential.

In Fig.4.28 one can see the dependence of the current on the chain-bath hopping pa-

rameter. Without coupled fermion baths there is only a current flowing inside the band

with. As the hopping increases, the baths get more and more important and the cur-

rent develops a ohm’s like behaviour in the low field regime and a exponential decaying

behaviour in the high field regime because of the bloch oscillations.
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4 ALTERNATING POTENTIAL

Figure 4.29: Shows the current characteristics (for tcb = 1) for various potential heights

and the behaviour of the current maximum with increasing height.

With the coupled fermion baths the current characteristics also show a decreasing current

maximum with increasing potential height. But now the dependency of the current

maximum on the height is not exponentially decaying but rather linearly decaying. It

also exhibits steps (or rather oscillations) because of the resonant tunneling, but the steps

are more seen in the high field regime. The electrons tunnel through nearly unbound

resonant states (they don’t depend on the atoms in the well but rather on the atoms in

the barrier because their eigenenergies lay above the continuum band). As one can see

the current decays for fields above 1.2. For higher fields the system is so strongly tilted

that no bound states can be excited and the current goes down, because the electrons

don’t tunnel anymore.
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4.4 Conclusion

4.4 Conclusion

In the case of a system with a central region consisting of an alternating potential (see

Fig.4.1) the current exhibits steps. They come from so called resonant tunneling. This

transport mechanism can be understand when one has a close look at the behaviour of

the transmission coefficient in case of a double barrier potential. T can be calculated on

a continous system (Chapter 4.2.2) or a discrete tight binding-chain (Chapter 4.2.5). In

both cases it shows the same behaviour. When the energy of the incoming wave equals

a resonance energy the transmission coefficient reaches its maximum value 1.

The current shows a steplike behaviour, that originates from the resonant tunneling. The

current through the system can be calculated using the transmission coefficient and the

Landauer formula (eq.(4.33)). In comparison the transmission current and the current

calculated with the method of greens functions shows the same behaviour (Fig.4.26).

All in all, electrons tunnel resonantly through a potential barrier if the energy of the

incoming wave equals the resonance energy and the main current increases.
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5 Conclusion

We have considered systems like the one shown in Fig.2.1 under an uniform electric-

field and analyze the transport mechanism. In the low field regime the current has an

Ohmic-like behaviour because the electrons can scatter from one state to another. The

fermionic reservoirs modelled as non interacting semi-infinite tight-binding chains trans-

port the scattered electron. Because of the lenght of the reservoir it isn’t scattered back

and that is the reason why we can apply the Boltzmann transport picture to understand

this transport regime. There is a linear relation between the field and the current.

The characteristics change as the field is increased. The current decreases with increas-

ing field and an oscillating AC current is generated. This can be understood by the

Bloch Oscillations which are responsible for the non linear transport mechanism. They

appear because of the tilting of the chain caused by the high fields. The valence and

conduction band don’t overlap anymore and the current doesn’t originate from scatter-

ing and tunneling anymore. For this transport mechanism the field has to be so high,

that an electron can finish a cycle before it scatters into the next state. This means that

the Bloch oscillation period has to be much smaller than the scattering rate. Relations

of the oscillation amplitude and the field and the system size (eq.(3.12)) underline the

found behaviour of the current. Furthermore the choice of the hopping parameter from

the lead into the central region doesn’t have much effect on the characteristics. Reducing

the parameter tcc (hopping in the chain) reduces the current and the amplitude of the

Bloch Oscillations.

As an alternating potential is applied to the central region, the current characteristics

change. They exhibit modulations (stepwise increase) because of another transport phe-

nomena, resonant tunneling. The electrons in a double potential can tunnel resonantly

and create a current because the potential barriers get transparent for certain energies,

called the resonant energies. There is a particular relation between the potential height

and well width and the number and strength of the resonances. As the height is increased

the number of peaks in the transmission coefficient rises (same for increasing well width).

This knowledge can be used to describe the current in such a system (Fig.4.1). The cal-

culated current and the current resulting from the transmission coefficient calculated by

the Landauer formula eq.(4.33) can be compared and it emerges that the steps in the

current result from resonant tunneling.
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