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Abstract

Epilepsy is one of the most frequent neurological disorders of the brain. Patients often have
to deal with a number of unpleasant restrictions during daily activities. Epileptic seizures
can impair consciousness partly or completely. Once a person is ill with epilepsy the risk
of experiencing a sudden seizure is always present. Therefore, patients are excluded from
certain activities or they can only participate when special precautions are taken.

The reduction as well as the early detection of seizures is an important goal in order to allow
patients to lead a normal life. This thesis deals with the detection of temporal lobe seizures,
which constitute the most frequent subgroup of all seizure types. The detection is based on
EEG and ECG signals provided by long-term monitoring. Pattern recognition is performed
by an RBF-SVM.

This thesis is aiming to detect seizures close to the real onset. The detection should work
on-line and in further consequence be used in combination with warning or monitoring
devices.

The use of various features allows the detection of up to 88.9% of tested temporal lobe
seizures. A mean detection delay of 2.7 seconds after real seizure onset and a false alarm rate
of 0.02 per hour are achieved.

Keywords: Epilepsy, Seizure Detection, Temporal Lobe, Electrocardiogram (ECG), Elec-
troencephalogram (EEG), Support Vector Machine (SVM)



Kurzfassung

Epilepsie ist eine der häufigsten neurologischen Erkrankungen des Gehirns. Personen, die
daran leiden, müssen im täglichen Leben mit einer Reihe von Einschränkungen umgehen.
Durch epileptische Anfälle kann das Bewusstsein beeinträchtigt oder auch völlig verloren
werden. Da einmal erkrankte Personen praktisch zu jeder Zeit von einem Anfall überrascht
werden können, sind gewisse Tätigkeiten gar nicht, beziehungsweise nur unter gewissen
Vorsichtsmaßnahmen möglich.

Um Patienten ein normales Leben zu ermöglichen, ist einerseits eine Reduktion, andererseits
eine rechtzeitige Erkennung von Anfällen von großer Bedeutung. Diese Arbeit befasst sich
mit der Detektion von Temporallappenanfällen, welche die häufigste Untergruppe epilepti-
scher Anfälle ausmachen. Für die Detektion werden sowohl EEG als auch EKG Signale aus
Langzeitmessungen ausgewertet. Die Mustererkennung wird mittels ausgewählter Features
und einer RBF-SVM durchgeführt.

Ziel der Arbeit ist eine Detektion zeitlich nahe beim Einsetzen der Anfälle. Die Detektion
sollte on-line funktionieren und in weiterer Folge in Warn- oder Beobachtungsvorrichtungen
eingesetzt werden.

Unter Berücksichtigung unterschiedlicher Features können bis zu 88.9 % der getesteten Tem-
porallappenanfälle innerhalb einer mittleren Verzögerung von 2.7 Sekunden detektiert werden.
Dabei beträgt die Rate der falschen Alarme etwa 0.02 pro Stunde. Dies entspricht in etwa
einem falschen Alarm innerhalb von zwei Tagen.

Stichwörter: Epilepsie, Anfallsdetektion, Temporallappen, Elektrokardiogramm (EKG),
Elektroenzephalogramm (EEG), Support Vektor Maschine (SVM)
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1. Introduction

About 0.5–1% of the global population are diagnosed with epilepsy. Therefore, epilepsy is
one of the most common neurological disorders of the brain [5, 58]. The following sections
provide a short overview on the human brain and detailed information about epilepsy.

1.1. The Human Brain

The human brain consists of the telencephalon (cerebrum), diencephalon (thalamus, hy-
pothalamus), brainstem (mesencephalon or midbrain, pons, and medulla oblongata), meten-
cephalon (cerebellum), and medulla spinalis (spinal cord). A graphical overview is given in
Figure 1.1 [53].

Figure 1.1.: Cross section of the human brain. Adapted from [53].

The cerebrum represents the largest part of the brain. It is split into a left and a right
hemisphere and both hemispheres are further divided into four lobes: frontal, parietal,
temporal, and occipital lobe. Figure 1.2 illustrates this segmentation [53].

1



Chapter 1. Introduction 2

Figure 1.2.: The division of the cerebrum into four lobes: frontal lobe, parietal lobe, temporal
lobe, and occipital lobe. Adapted from [53].
(a) View from above, additionally showing the division into two hemispheres. (b)
Lateral view from the left side.

1.2. Epilepsy

1.2.1. Definition

The term Epilepsy originates from Greek “epilamvanein” which means “to be seized”, “to be
attacked” [23]. The International League Against Epilepsy (ILAE) provides the following
definition:

“Epilepsy is a chronic condition of the brain characterized by an enduring propensity to
generate epileptic seizures, and by the neurobiologic, cognitive, psychological, and social
consequences of this condition. The definition of epilepsy requires the occurrence of at least
one epileptic seizure.” [26]

Furthermore, epileptic seizures are described as “transient occurrence of signs and/or symp-
toms due to abnormal excessive or synchronous neuronal activity in the brain.” [26] A great
variety of different symptoms like changed motor and sensory functioning, altered level of
consciousness, and behavioral changes may accompany the seizure [54].
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1.2.1.1. Terms

Literature dealing with epilepsy makes use of certain medical vocabulary. Therefore, the
most important terms used in this thesis are shortly described here:

ictal: refers to the seizure state and to events during this state [28].

inter-ictal: everything that happens between two seizures is referred to as being inter-ictal.

pre-ictal/post-ictal: describes the period directly before/after a seizure.

subclinical events: suggest the presence of diseases although no symptoms are visible. They
may be the first indications of a developing disease. Subclinical seizures can only be
noticed by characteristic changes within the electroencephalography (EEG) [62].

clinical events: are always accompanied by noticeable symptoms in contrast to subclinical
events.

spasm: describes involuntary muscle contractions [21].

clonic (spasms): describes fast alternating muscular contractions and relaxations [21].

tonic (spasms): describes severe, longer lasting muscle contractions without relaxation [21].

paroxysmal activity: describes a brief activity that starts and ends suddenly [38].

1.2.2. Epidemiology

People of all ages can be affected by epilepsy, however, most new diseases occur during the first
year of life and at an age older than 65 years [58]. The World Health Organization (WHO)
provides a number of additional facts on epilepsy. They use a more restricted definition
for epilepsy as the one given previously. In their definition a person is only diagnosed to
have epilepsy after having experienced at least two unprovoked seizures. The WHO uses this
adaption because up to 10% of the world’s population is facing at least one seizure during
their lifetime. Of those persons about 50 million people worldwide suffer from consecutive
seizures and are therefore diagnosed with epilepsy according to the WHO definition. Nearly
90% of affected persons are living in developing countries. In [58] the rate of diseased persons
(prevalence) is given with 5 to 10 per 1000 and the probability to develope epilepsy during
one’s lifetime (cumulated incidence) is estimated between about 2 to 5% [5].

Epileptic disorders can be coarsely classified on behalf of their initial cause [5, 50, 58]:
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Symptomatic epilepsy: About 25% of the disease trace back to injuries of the central nervous
system. These may be the result of head injuries, tumors, strokes, central nervous
system infections, or perinatal complications.

Idiopathic epilepsy: Epilepsy resulting from genetic disorders is classified as idiopathic.

Cryptogenic epilepsy: All cases that cannot be classified as symptomatic or idiopathic are
said to be cryptogenic. No evidence for a specific cause has been found for these cases
so far.

Epilepsy is a chronic disorder, i.e., it accompanies patients for their whole lifetime. However,
state of the art drug treatment is said to succeed in eliminating seizure activity in about 70%
of all applications [5].

A major problem arising in combination with the disease is the increased risk of injuries
and even death as seizures might occur during critical situations, like participation in traffic,
sports, cooking, handling dangerous tools, etc. Most risks can be eliminated with special care,
however, the measures needed might negatively influence the quality of living. The mortality
of patients that do not become seizure-free after treatment is slightly increased. Compared to
healthy people, in the first nine years of the disease the mortality is about three times higher
for patients with symptomatic epilepsies and 1.6 times higher for patients with idiopathic
epilepsies. The higher risk for patients with symptomatic epilepsies is due to the often severe
physical damage that has lead to the disease in the first place [58].

1.2.3. Seizure Types

A complete list of classified seizure types can be found in [22]. The list has been issued by
the ILAE to deliver a standard guideline, however, in practice varying classifications are still
in use. Table 1.1 gives a short overview of the most common seizure types.

The different seizure types are classified coarsely concerning their temporal and spatial
properties.

Temporal properties: Seizure activity is either limited or unlimited in time. Self-limited
seizures terminate after a few minutes at the longest, whereas continuous seizures
have no specified time limit. This so-called Status Epilepticus is a life-threatening
manifestation of epilepsy. The patient is either experiencing prolonged seizures or a
number of consecutive seizures with no recovery period in between. If this condition lasts
for more than five minutes, the person is in severe danger, as the brain is running out of
oxygen and other metabolic products. This is due to the increased power consumption
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Table 1.1.: Short list of different seizure types.
I) Self-limited seizures

a) Generalized seizures
• Tonic-clonic seizures
• Absence seizures

b) Focal seizures
• Focal sensory seizures
◦ With elementary sensory symptoms

(e.g., occipital and parietal lobe seizures)
• Focal motor seizures
◦ With elementary clonic motor signs
◦ With asymmetric tonic motor seizures

(e.g., supplementary motor seizures)
◦ With typical (temporal lobe) automatisms

(e.g., mesial temporal lobe seizures)
• Secondarily generalized seizures

II) Continuous seizures
a) Focal status epilepticus
b) Generalized status epilepticus

Adapted from [22].

of the brain during the heavily excitatory state of seizures. Brain damage can be the
cause and eventually this condition may even lead to death [66].

Spatial properties: Both, self-limited and continuous seizures can either occur spatially
limited to a certain brain region or be spread over the whole brain. A more precise
description of these focal and generalized seizures is given next.

1.2.3.1. Generalized Seizures

Generalized or primarily generalized seizures are the result of synchronous neuronal discharges
all over the brain starting straight at the seizure onset.

Tonic-Clonic Seizures: A common subtype of generalized seizures are tonic-clonic seizures
also known as “Grand Mal”. Their characteristics are best known by the layperson and
therefore primarily associated with the term “seizure”. Seizures start with a tonic phase
that results in an epileptic cry as air is pushed out of the lungs [28]. Patients fall down
as they lose consciousness. After that, the clonic phase begins in which extremities start
to bend and relax interchangeably. The whole seizure may last for about 40 to 90 s.
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Straight after the seizure the persons return to consciousness or transcend into a deep
sleep (postictal sleep) that lasts for a few minutes or up to several hours [25, 48, 66].

Absence Seizures: Another kind of generalized seizures are absence seizures also known
as “Petit Mal”. Patients are unable to receive visual or acoustical inputs during the
seizure as consciousness is impaired. Nevertheless, these seizures usually do not result
in downfalls [48]. Absence seizures commonly last only about 5 to 10 s. Patients cannot
recall those episodes after regaining consciousness [39].

1.2.3.2. Focal Seizures

Focal seizures are caused by malfunctions of a spatially restricted group of neurons. However,
the seizure is not bound to start exactly at this defective focus. Depending on the malfunc-
tioning brain region, focal seizures can be divided further (cf. Table 1.1). Focal seizures are
often accompanied by distinct sensations or emotions. These experiences are called auras.
Together with a close observation of the patient’s behavior and reaction during a seizure as
well as intense studying of the patient’s EEG, experts are able to draw conclusions about the
epileptic focus [66].

Seizures with focal onset can propagate to a large percentage of brain areas. These seizures
are classified as secondarily generalized. Sometimes it is difficult to differentiate between
secondarily generalized and generalized seizures because the spreading can be very fast [66].

Temporal Lobe Seizures: Temporal lobe epilepsy (TLE) is a very common type of epilepsy.
Most TLEs (90–95%) originate from the mesial temporal lobe. They roughly account for
40% of all seizures and for 60–70% of the focal seizures [58]. They can produce auras like
rising epigastric sensations, dèjá-vus, abnormal gustatory or olfactory sensations, and
psychic or mystical experiences. Additional symptoms concern heart rate, respiration
and pupillary reflexes. Furthermore, motor reactions like smacking, hand automatisms
and involuntary head turning are common phenomena. The aggregate of the described
side effects allows professional staff to draw conclusions about the malfunctioning focus.
It is quite common for temporal lobe seizures to expand to secondarily generalized
tonic-clonic seizures [54, 66].

Frontal Lobe Seizures: The frontal lobe is the largest structure of the cerebrum (cf. Fig-
ure 1.2 in Section 1.1). A number of different seizure types are associated with this part
of the brain. Exemplary seizures with “elementary clonic motor signs” and “asymmetric
tonic motor seizures” are listed in Table 1.1. Forced movements of the head or limbs
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are common while consciousness is often preserved. The EEG quite often looks normal
during these seizures, therefore exact diagnosis is quite difficult in many cases [2, 54].

Occipital and Parietal Lobe Seizures: Both types are relatively rare. Occipital lobe seizures
often affect the visual perception, whereas parietal lobe seizures are mostly accompanied
by tingling or painful sensations [54].

1.2.4. Treatment

1.2.4.1. Anti-Epileptic Drugs (AEDs)

Two-thirds of epileptic patients benefit from anti-epileptic medicine. The success achieved by
AEDs ranges from seizure reduction to total seizure elimination. AEDs operate by influencing
the chemical processes in the brain that are active during epileptic seizures. Although many
people benefit from AEDs this treatment is accompanied by major drawbacks. Many side
effects come along with the used drugs, as they usually affect the entire brain. In some cases
those side effects can be even worse than the disease they are designated to cure. Furthermore,
the drugs have to be customized for each patient. The real problem causing the seizures is
seldom understood completely. Therefore, the type of drug as well as the administered dosage
has to be chosen in a trial and error fashion. There are about 15 different pharmaceuticals
available. If, after applying more than three different AEDs, the number of seizures does not
drop distinctly, other means of seizure prevention, like brain surgery or electrical stimulation,
need to be examined [58, 66].

1.2.4.2. Surgery

As mentioned earlier (in Section 1.2.3), focal epilepsies are caused by a spatially constrained
focus within the brain. Patients suffering from this kind of epilepsy can therefore become
seizure-free by surgically resecting the epileptic focus from the brain. Resection should only
include cerebral matter already damaged by numerous seizures and therefore leave the patients
without additional damage. However, also functional regions might be removed from the
brain which can result in post-surgical behavior changes or the decline of cognitive functions,
like partial memory loss. Furthermore, surgery always carries the risk of infections. Surgical
interventions range from partial or complete resection of a brain lobe to the resection of a
whole hemisphere. Even in the latter case it is shown that patients can regain motor control
because of the plasticity of the brain. Brain surgery is most prominently used with mesial
temporal lobe epilepsy as this type seems to be especially resistant to AEDs [44, 58, 66].
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1.2.4.3. Electrical Stimulation

Practically, electrical stimulation is a surgical intervention as well, but in literature it is
sometimes treated as a separate topic. Brain structures are usually less damaged by this
procedure. The goal of electrical stimulation is to stimulate certain brain areas in order
to abort or control epileptic activity. Two different stimulation methods exist: vagal nerve
stimulation (VNS) and deep-brain stimulation (DBS). Those two different electrical stimulation
approaches are illustrated in Figure 1.3.

Figure 1.3.: Different methods of electrical stimulation. Adapted from [4].
(a) Vagal nerve stimulation (VNS); (b) Deep-brain stimulation (DBS).

VNS: The vagal nerve is one of the main nerves connecting internal organs to the brain. A
large percentage of the vagal nerve is afferent, which enables the stimulation to almost
exclusively affect the brain without the need for brain surgery. The exact dynamics
behind VNS are not readily understood. Increased inhibition because of serotonin
release might be an explanation [8]. VNS usually has less side effects than AEDs and it
can even positively affect the patient’s mood [66]. Murphy et al. [47] have investigated
the long term benefits of VNS for 70 patients and have found that VNS succeeds in at
least halving the number of seizures of about 50% of these patients.

DBS: In DBS the stimuli generator is placed directly within the brain. Success rates of DBS
and VNS are similar [66]. In current applications all electrical stimulations are run
continuously (i.e., 7 s on, 12 s off). A new approach aims at activating the generator
only in case of a seizure. Therefore, it has to be investigated whether ongoing seizures
can be stopped. Furthermore, reliable seizure detection systems are needed [66].
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1.3. Common Signals Used for Seizure Detection

1.3.1. Electrophysiological Brain Signals

As epileptic seizures present neuronal discharges within the brain, electrophysiological brain
signals have proved useful for observing the disease. However, although great effort has been
put into deciphering epileptic patterns, it is still difficult to classify brain signals correctly.
Sometimes it is even impossible to separate ictal-clinical from ictal-subclinical or interictal
paroxysmal activity [48].

Different methods for obtaining brain signals are available. A distinction between non-invasive,
invasive, and semi-invasive signals can be made. Ictal and inter-ictal patterns look similar
for these different measuring methods. However, the magnitude of the signal as well as
the temporal resolution differs. Also, the influence of electromyographic (EMG) artifacts is
much weaker in invasive recordings compared to non-invasive recordings. Invasive signals
also provide a better signal-to-noise ratio. Furthermore, ictal patterns may be spotted
earlier by invasive methods than by non-invasive methods [49]. In a number of cases, seizure
activity, especially auras and subclinical seizures, can be observed exclusively by invasive
techniques [42].

Non-Invasive Signals: Electroencephalography (EEG), also referred to as scalp EEG, provides
a number of advantages compared to invasive methods. It is cheap and relatively easy to
apply. Therefore, usage is widespread. Furthermore, electrode placement is standardized,
which makes it easier to compare data from different patients. In epilepsy monitoring,
usually long-term EEG is used. Unlike short-term EEG, electrodes are glued to the
skin in order to maximize conductivity and to minimize artifacts.

Invasive Signals: Invasive methods for data mining are usually only used preceding brain
surgery and therefore available data is rare. Electrodes are either placed directly on the
cortex (electrocorticography (ECoG)) or even further inside the brain (depth electrodes).
Spatial resolution is superior to scalp recordings, but the brain area monitored is very
limited. Electrode positions are chosen individually and are therefore not comparable
between different subjects. Furthermore, due to ethical reasons there exists no data from
healthy subjects for comparison. Also, the electrode placement is not standardized [66].

Semi-Invasive Signals: In addition to the measurement methods discussed before, so-called
semi-invasive procedures are sometimes applied in combination with scalp EEG. In [20]
two different techniques are described: sphenoidal and nasopharyngeal electrodes. These
electrodes penetrate through the cheek or nose and are used in focal epilepsy monitoring
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in order to reach positions closer to epileptic foci. The authors do not think that those
techniques offer much additional information to scalp EEG recordings although they
state some benefits in focus localization accuracy.

1.3.1.1. Inter-ictal EEG Patterns

There are some typical inter-ictal EEG changes that indicate epileptic seizure disorders. Most
prominent are the so-called spikes and sharp waves. However, the occurrence of such patterns
in an EEG offers no strict evidence for epilepsy, as those patterns can be found within persons
not having experienced a single epileptic seizure. The presence of these paroxysmal EEG
changes may indicate a certain predisposition for future seizures or the presence of smaller
psychological dysfunctions, though [48]. Figure 1.4 shows different manifestations of inter-ictal
EEG phenomena.

Figure 1.4.: Different inter-ictal EEG manifestations. Adapted from [15].
(a) Single potentials and complexes; (b) Series.

Spikes: Spikes are localized EEG patterns with a major negative component. A peak of a
duration between 20 to 70ms and variable amplitude can be seen in the EEG. Spike
morphology can vary inter- as well as intra-individually. Evidence exists that at least
some spikes are more than pure EEG patterns. Shewmon and Erwin [59] showed
that spikes are capable of temporally impairing brain functionality at the region of
occurrence. Furthermore, spikes are discussed to be especially present as a post-ictal
phenomena [29, 48].

Sharp Waves: Sharp waves show similar morphologies as spikes. Their main component is
negative as well. However, their duration is longer (∼ 70–200 ms) [48].
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Polyspikes or Multiple Spikes: Two or more consecutive spikes with variable duration and
often large amplitudes are called polyspikes [48].

Runs of Rapid Spikes: A series of spikes may persist for 2 to 10 s and show a higher frequency
than usual spikes. They have a similar morphology to some epileptic seizures but they
exclusively appear during sleep [48].

Spike Wave Complex: Spike wave complexes are defined as a spike followed by a slow wave.
They appear in different velocities: 1–2.5 per second, 3 per second, 4–5 per second, 6 per
second. Different frequencies and foci allow to draw conclusions about the underlying
epileptic seizure type. A contradictory example are 6 per second spike wave complexes
with focus in the occipital lobe which do not suggest any epileptic disorder [48].

1.3.1.2. Ictal EEG Patterns

According to [31] cited in [56] most epileptic seizures show an increased EEG activity between
3 and 29Hz at seizure onset. In [48] additional indications for epileptic EEG activity are
pointed out:

Change of Frequency: Clinical seizures often cause a sudden change of frequency range.
Dominant frequencies at epileptic events are usually within the alpha frequency or
sometimes a bit faster or slower than that. This dominant frequency may change slowly
while the seizure progresses.

Loss of Voltage: A special seizure type (electrodecremental seizures) manifests in a sudden
strong decrease in amplitude resulting in almost a flat line. The frequency changes from
very fast to slower frequencies as the EEG recovers to normal amplitude.

Increase of Voltage: A sudden increase in amplitude is noted especially during petit mal
absences.

Ultraslow/Ultrafast Frequencies: Ultraslow frequencies (0–0.3Hz) as well as ultrafast fre-
quencies (90–1000 Hz) are carrying information about epileptic states. To capture these
frequencies special EEG measuring devices are needed.

Additionally to these indications ictal EEG might just look the same as the inter-ictal
patterns described in the previous subsection. The only visible difference to the inter-ictal
manifestation might be a prolonged appearance.

As different inter-ictal patterns indicate different types of epilepsy the same is true for ictal
patterns. In this study, the main interest lies on temporal lobe seizures. Therefore, only
additional ictal EEG changes related to this type are described here.
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Temporal lobe seizures show a great variety of ictal and inter-ictal patterns. Observed patterns
include serrated slow waves, flat-topped 4/s waves, and high voltage 6/s waves [48].

As mentioned earlier (cf. Section 1.2.3) temporal lobe seizures can develop to tonic-clonic
seizures. Therefore, typical patterns for this type would be interesting as well. The problem
with tonic-clonic seizures is, however, that the EEG is highly contaminated by muscular
artifacts. Special patterns can only be visualized by using muscle relaxants and artificial
respiration which is not practicable for this thesis [48].

1.3.1.3. Difficulties concerning EEG Interpretation

Subclinical Seizures: Subclinical seizures are only traceable through EEG recordings. There
is no other evidence, like auras or changed behavior signaling, that the person is
experiencing a seizure. According to Babb et al. [10] the difference of subclinical
to clinical seizures results from varying recruitment of synchronously firing neurons.
Increased firing of about 7% of neurons at the epileptic focus has been noticed during
subclinical seizures, whereas seizures that have been accompanied by auras have had
about 14% of neurons active. Estimated 36% firing neurons have been involved with
seizures that have shown loss of consciousness and other side effects. Depending on the
usage of a detection system those seizures have to be recognized as well or they can be
left aside.

Inter-/Intra-subject Variations: A problematic property of seizures is their diversity. Leave
alone the different seizure types, the same seizure type can produce varying EEG
patterns from seizure to seizure. This is true for different patients with the same seizure
type as well as for different seizures from the same person.

1.3.2. Electrocardiography (ECG)

Another signal type useful in seizure detection is the ECG. Still in literature, most research is
done concerning EEG and only a small selection of studies utilizes ECG signals in detection
systems. According to Leutmezer et al. [41] heart rate changes are a common phenomena
at seizure onset. They have investigated 145 seizures from 58 patients. Of those 86.9%
have shown tachycardia and 1.4% have shown bradycardia. Increased heart rate has been
measured on average already 13.7 s ahead of first seizure signs within the EEG for temporal
lobe seizures.
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1.3.3. Electromyography (EMG)

In seizure detection electromyographic events are mostly handled as spurious artifacts.
However, the EMG might carry useful information itself. A technique using EMG information
and accelerometer data to detect the onset of epileptic seizures is proposed by Lorincz et
al. [43]. In their study, they have used 8 sensors, one for each limb segment (upper and lower
arms and legs).

1.3.4. Other Signals

In addition to the signals described before, there might be other signals indicating seizure
activity, which could be exploited for detection. Some of the autonomic signals that accompany
seizures are listed next [12]:

Respiratory Manifestations: Examples are hyperventilation, choking, and apnea.

Gastrointestinal Manifestations: Most prominent are epigastric auras. Occasionally seizures
are accompanied by spitting or vomiting.

Cutaneous Manifestations: Examples are flushing, sweating, and piloerection.

Pupillary Manifestations: In many tonic-clonic seizures pupils are dilated.

1.4. Epileptic Seizure Detection

1.4.1. Overview

Automatic detection of epileptic seizures has been investigated by researchers for many years
now. One of the first attempts has been undertaken by Gotman [29]. His system has been
built to recognize seizure events during long-term EEG recordings in order to assist EEG
technicians in the examination of the large amount of data that is collected. The algorithm is
designed to work on-line and only seizures that show rhythmic activity within the 3 to 20 Hz
range are addressed.
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Gotman’s features are based on so-called half-waves which he described already earlier in [30].
To get these half-waves, the EEG signal is lowpass filtered and decomposed into segments
between local minima and maxima. After that, the following three features are calculated:

• Relative average amplitude: The average half-wave amplitude in a 2 s window is com-
puted. The result is then related to an average value computed from a larger data
segment of the recent past (sliding background window).

• Average duration: The average half-wave duration is calculated for each 2 s window.

• Coefficient of variation of duration: The ratio between standard deviation and the
mean of the half-wave durations within a 2 s window is computed. This feature is used
to measure the rhythmicity of the signal.

Artifact rejection is used for too large amplitudes or too short durations. For detection
predefined thresholds are used for all three features.

The algorithm has been used for EEG as well as for ECoG data. Results show, that 22% of
all EEG detections and 2.5% of ECoG detections have been correct. There is not sufficient
information about missed seizures as data has only been recorded after automatic detection
or after patients or staff have pressed a button. The designed detection system is intended
not to miss any seizures. Therefore, the relatively large amount of false detections does not
pose a big problem.

Since this first encouraging attempt, a lot of different approaches have been made to generate
improved detection algorithms. In this section the different approaches and results are stated
and compared to each other. However, comparison is problematic as different studies pursue
different goals and therefore the experimental setup varies strongly. The following list shows
a number of possible differentiations between the studies:

• Measurement method: scalp EEG vs. ECoG

• Observed seizure types: all seizure types vs. selection of seizure types

• Detection mode: off-line vs. on-line

• Accuracy criterion: no missed seizures vs. no false positives

• Subject specificity: subject specific vs. subject independent

• Timing restrictions: detect seizure no matter when vs. detect seizure at onset

Furthermore, differing electrode settings are used and the amount of analyzed data can differ
to a great degree.
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1.4.2. Quality Measures

As mentioned earlier, requirements for seizure detection systems can vary strongly. Depending
on the designated application, classifiers need to behave differently. The quality of a classifier
can be calculated with a number of different measures. Most of these measures rely on values
of the so-called “confusion matrix” shown in Table 1.2. Formulas for the most important
measures are given next.

Table 1.2.: Confusion Matrix. Juxtaposition of assigned and actual classification
assigned positive assigned negative

actual positive true positive (TP) false negative (FN) P = TP + FN
actual negative false positive (FP) true negative (TN) N = FP + TN

P′ = TP + FP N′ = FN + TN PN = P + N
= P′ + N′

Adapted from [6].

Sensitivity [%]: Indicates how many of the presented seizures are detected.

Sensitivity = TP
TP + FN [%] (1.1)

Specificity [%]: Gives information about how many non-seizure events are falsely detected
as seizures.

Specificity = TN
TN + FP [%] (1.2)

Accuracy [%]: Shows the proportion of correctly classified events.

Accuracy = TP + TN
PN [%] (1.3)

Cohen’s Kappa (κ) [19]: The real classification accuracy p0 is compared with the accuracy
at random pe. For imbalanced classes this measure provides a better insight about the
quality. Values close to zero indicate poor accuracy. In case all samples are classified
correctly κ equals 1.

p0 = TP + TN
PN (1.4)

pe = P
PN ·

P′
PN + N

PN ·
N′
PN (1.5)

κ = p0 − pe
1− pe

(1.6)
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False Detection Rate (fdr) [1h ], [
1
d ]: False detections are often stated in relation to a time

interval (i.e., number of false detections per hour or per day).

fdr = FP
T

[1
h

]
(1.7)

Detection Delay: Time that elapses between seizure onset ts and detection td. This value
can also be negative, in case the seizure is detected ahead of the real onset.

Detection Delay = td − ts [s] (1.8)

The measures Specificity and Accuracy are sometimes used in context with seizure detection,
however, the commonly enormous imbalance between the number of seizure samples and
non-seizure samples limits their expressiveness. More significant values are provided by
Cohen’s Kappa or the fdr.

Classification precision is always assessed through the number of true and false detections.
The definition of those values can vary according to the underlying problem. The area for true
detections could be restricted to the marked seizure period, or be relaxed to a wider range
including an additional pre-ictal and/or post-ictal period. When counting false detections
either each wrong sample adds up or consecutive false detections are counted as one as long
as they lie within a certain time window.

1.4.3. State of the Art

For a seizure detection system design the following topics are of main interest:

• Artifact treatment

• Feature selection

• Classification method

The following sections will provide detailed information about how other studies have dealt
with those topics. Furthermore, the concept of a seizure prediction system is presented.

1.4.3.1. Artifact Treatment

The used signals are often contaminated with all sorts of artifacts including electrooculographic
(EOG) and electromyographic events. Various approaches are available to cope with these
signal disturbances [66].
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Ignoring: Artifacts with little influence can be ignored. This is often done with EOG artifacts,
although some studies state their possible similarity to seizure activity. In [56] false
detections have mainly been due to chewing, short rhythmic bursts and rapid eye
blinking.

Rejecting: Rejection should only be used in severe cases, when artifacts distort the signal
beyond repair and no valuable information can be extracted from the signal. Possible
situations are signal overflows or electrode flat lines caused by strong muscular artifacts
or electrode failures.

Removing: Several different removing techniques can be found in literature. Their goal
is to identify and eliminate artifact influence. Regression techniques or blind source
separation (cf. [67]) as well as adaptive filtering methods (cf. [33]) are used for EOG
artifacts. Power line interference is usually removed using a notch filter. EMG artifacts
can be reduced by lowpass filtering. A total elimination of the EMG through filtering
is not possible, however, as the spectra of EEG and EMG are overlapped.

Learning: Machine learning algorithms like Artificial Neural Networks (ANN) or Support
Vector Machines (SVM) are capable of learning the patterns of certain artifacts. Signals
contaminated by artifacts are presented during the training phase. If similar samples
occur during the testing phase, they are more likely to be classified correctly.

1.4.3.2. Features Selection

Many different feature combinations have been proposed for seizure detection in the last few
years. In this section some of the existing publications are presented. The studies are analyzed
separately depending whether invasive (ECoG), non-invasive (EEG), or a combination of
both signal types have been used for evaluation.

ECoG Signals
Line-length has been identified as a good feature to separate ictal events from inter-ictal
events by [24]. This feature is sensitive to changes in frequency as well as changes in amplitude
of the signal. Besides, computation is cheap and easy. Line-length is again used by Chua et
al. [18] in combination with standard Gotman features (cf. Section 1.4.1), and rectified zero
crossings. Rectified zero crossing is sensible to positive as well as negative changes in the
baseline frequency. Chua et al. observed 15 patients providing 529 h of data and 63 seizures.
Together with a quadratic discriminant analysis the described feature combination results in
a sensitivity of 78% and an fdr of 0.18/h.
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EEG Signals
Shoeb [60] used frequency features and an SVM for automatic on-line seizure detection. Shoeb
examined 844 h from 23 patients containing 163 seizures. His results show an early detection,
a high sensitivity (∼ 96%) and a median fdr of about 0.08/h. Because of these promising
results, a similar approach is chosen for this thesis. More information about the used features
will be provided in Chapter 2.

In [37] only left temporal lobe seizures were observed. Four electrodes near to the diagnosed
focus were used for each patient. The electrode positions were chosen individually for
all patients. Autoregressive (AR) parameters that describe frequency, spectral power and
rhythmicity were used as features. They were calculated with the Burg maximum entropy
AR method [14]. A single threshold was used for classification. 1624 h of data containing
83 seizures from 10 patients was evaluated. With this approach 91.6% of all seizures were
detected and an fdr of 0.27/h was reached.

An on-line attempt was performed by Webber et al. [68] who used information about amplitude,
slope, curvature, rhythmicity, and frequency of the signal. Together with an artificial neural
network (ANN) they reached a sensitivity of 76% and an fdr of 1/h.

Another on-line detection system was suggested by Meier et al. [46]. A number of different
features were used: continuous wavelet transform to capture rhythmical behavior in different
frequency bands, mean sliding variance to detect signal power changes, mean cross correlation
to find changes in synchrony, zero crossings to get information about the dominant frequency,
and Savitzky-Golay filter. The latter was used to get the mean signal power which is also a
sign for ictal activity. The features were ranked and related to data from a delayed background
window for normalization. A seven class SVM was used for classification, which allowed the
differentiation of some common ictal patterns. Data from 57 patients containing 91 seizures
within 1400 h of recording were analyzed. Sensitivity amounted to about 96%. A mean delay
of 1.6 s and an fdr of 0.5/h were reached.

Standard Gotman features (cf. Section 1.4.1) were used together with the dominant frequency,
the average power around the dominant frequency, and information of the seizure location
by Qu and Gotman [55]. Their system worked on-line and they reached a sensitivity of
100% with a modified nearest neighbor classifier. Mean detection delay was about 9 s and
an average fdr of 0.02/h was acchieved. The observed data amounted to about 300 h and
contained 47 seizures from 12 different patients.

Saab and Gotman [56] used wavelet transform and a Baysian classifier. Prior probabilities
were extracted from training data. For each testing sample the probability of being a seizure
sample was calculated. If the probability was high enough a seizure had been detected. The
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algorithm was designed for on-line use and worked patient unspecific. Therefore, a lower
sensitivity and fdr was reached. 360 h of data, including 69 seizures in 16 patients were
analyzed. The sensitivity amounted to 77.9% and a median delay of 9.8 s was reported. An
fdr of 0.86/h was achieved.

Van Putten et al. [65] considered temporal lobe seizures for their study only. For the
detection task they compared a number of different features: phase synchronization, mean
amplitude, minima and maxima, zero crossing, Omega complexity, and brain symmetry. Phase
synchronization was analyzed as epileptic seizures tend to behave in a synchronized manner
and therefore might show a fixed phase difference between various brain areas. Mean amplitude
relies on increased activity during seizures. The number of minima and maxima as well as the
number of zero crossings was used as they capture frequency behavior. Omega Complexity
was tested because seizure activity is thought to change the complexity of the observed
signal. The spectrum of brain activity usually appears quite synchronized between the two
hemispheres. During focal ictal events this synchronization level decreases. Therefore, the
brain symmetry index had been calculated. Van Putten et al. identified the brain symmetry
index as the best feature for detecting unilateral seizure activity. Bilateral activity was
identified best by the number of minima and maxima. Altogether sensitivities between 77%
and 97% and an fdr of about 1/h were achieved.

McSharry et al. [45] compared linear features with their own developed nonlinear technique.
Linear features included the signal variance, the power spectrum, and the autocorrelation
function of the signal. Results showed that variance delivers the same sensitivity as the
nonlinear approach while being easier to compute. On the other hand less false detections
and a reduced detection delay were stated using the nonlinear feature.

Combination of EEG and ECoG Signals
A small number of datasets containing EEG recordings of epileptic seizures is freely available
on-line. A list of these sources can be found in Appendix A. One of the datasets contains both
EEG data and ECoG data [9]. Due to the fact that a number of publications are based on
this combined dataset the similarity between EEG and ECoG features seems to be sufficient.
The described dataset had been used by [64] in combination with time-frequency features.
These features were computed using a smoothed pseudo-Wigner-Ville distribution [7]. The
used features basically extracted information of the signal’s spectrogram. Depending on the
used parameters an accuracy of up to 100% was reached in this study. The comparability of
this result to other studies is very limited, however. The dataset only provides segmented
data of a length of 23.6 s per segment. This segment is either classified as seizure or not.
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Furthermore, in some cases seizure free scalp EEG from healthy persons was compared to
ictal ECoG.

Kannathal et al. [36] used the same dataset. They applied different entropy measures in time
as well as frequency domain for seizure detection. The study concluded that ictal events show
less entropy compared to inter-ictal events.

ECG
For seizure detection a promising feature of the ECG signal seems to be the Heart Hate
Variability (HRV) as well as the R-R Interval (RRI) [41]. The RRI measures the distance of
two consecutive R waves of the ECG. Therefore, the R waves need to be detected first. This
is illustrated in Figure 1.5. Shoeb [60] used a combination of the mean heart rate and the
heart rate change within a certain time window together with EEG frequency features for a
small subset of his data. Results show that the additional usage of the ECG decreases the
number of false detections and partly also decreases the detection delay.

Figure 1.5.: Exemplary snippet of an ECG to illustrate the R-R Interval. Red triangles
point at detected R waves. The RRI denotes the temporal distance between to
consecutive R waves. The letters P to U describe structural landmarks of a single
ECG complex.
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1.4.3.3. Classification Methods

In the previous section a number of different classification methods have already been
mentioned. In this section the methods that are most often used in seizure detection are
shortly described. These methods utilize simple thresholding techniques which do not need
any training and the implementation of a classifier which has to be trained before use:

Association Rules: In [66] the approach of manually defining thresholds to distinguish be-
tween ictal and inter-ictal patterns is summed up under the term “association rules”.
This technique does not need a training phase. Class features are inspected and thresh-
olds are set where differences are visible. Therefore, only features with obvious inter-class
differences can be used. When using multiple features the definition of appropriate
thresholds might become very difficult.

Discriminant Functions: For this method the classes are assumed to be normally distributed
in feature space. The goal of the discriminant function is to maximize the distance
between the class means, while minimizing the intraclass (co)variances [13]. Several
different types of discriminant functions have been used for seizure detection. In [52]
Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and
Mahalanobis Discriminant Analysis (MDA) have been compared to each other. Best
results have been achieved by LDA in their study. Compared to SVMs, LDAs are more
sensitive to the number of used features. The use of too many features may therefore
result in overfitting.

Artificial Neural Networks (ANN): ANNs are based on the structure of the human brain.
A network usually consists of a number of input neurons, intermediate neurons (hidden
neurons) and output neurons. This architecture makes it relatively easy to deal
with multiple classes, because each existing class only needs to be assigned to a
distinct output neuron. Each neuron takes an input and calculates an output with its
“activation function”. Both, linear and nonlinear activation functions can be implemented.
Connections between neurons are weighted during a training phase to map the training
input to the correct output class.

Different neural network architectures, including feed-forward networks [64, 68] and
self-organizing maps (SOM) [27] have already been tried in seizure detection. The easy
application to multi-class problems enables a detector to learn and distinguish common
artifacts or special brain wave patterns like alpha activation from typical seizure activity.
On the other hand ANNs do not cope well with unbalanced data. Every training sample
influences the model’s weights and therefore equal amounts of training data for each
class are needed to guarantee balanced performance ([35] cited in [68]).
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Support Vector Machines (SVM): SVMs have originally been developed for two-class clas-
sification problems. They are trained with a number of feature vectors that represent
the two different classes. Their goal is then to find a separating hyperplane in an
n-dimensional feature space. This hyperplane is located in a way that a maximum
margin is obtained between the two competitive classes. It is called the “optimal
separating hyperplane”.

Feature vectors of each class located nearest to this hyperplane are called support
vectors. Figure 1.6 (a) shows an example for the optimal separating hyperplane in a
linearly separable two-dimensional feature space [6].

Unlike ANNs the SVMs always end up with the same solution when being trained with
the same data. It also does not get stuck in local minima.

SVMs can be divided into hard-margin and soft-margin SVMs. Hard-margin SVMs
do not allow any misclassification on the training data. The separating hyperplane is
placed in the middle of the outermost samples of the different classes (cf. Figure 1.6 (a)).
Soft-margin SVMs on the other hand allow a certain amount of misclassified samples.
Figure 1.6 (b) shows the separating hyperplane determined by a soft-margin SVM.

Figure 1.6.: Optimal separating hyperplane for a two class problem in a two dimensional
feature space. Support vectors are emphasized. Adapted from [6].
(a) Linearly separable classification problem. A non optimal hyperplane is
indicated as well. (b) A soft-margin SVM calculates a trade off between maximal
margin and minimal classification error.



Chapter 1. Introduction 23

The soft-margin SVM searches for the solution of the following optimization problem:

min
w,b,ξ

1
2w

Tw+ C
l∑

i=1
ξi (1.9)

subject to yi
(
wTφ (xi) + b

)
≥ 1− ξi, (1.10)

K (xi,xj) ≡ φ (xi)T φ (xj) (1.11)

where : xi . . . input training sample w . . .weight vector

yi . . . input class label b . . . bias term

K (xi,xj) . . . kernel function C . . .margin parameter

φ (xi) . . . nonlinear vector function ξi . . . slack variable (≥ 0)

l . . . number of training samples

Training samples xi together with their corresponding class labels yi serve as input
to the SVM. Parameter C > 0 is called the margin parameter which “determines
the trade-off between the maximization of the margin and the minimization of the
classification error.” [6]. Depending on the nature of the observed problem SVMs can
integrate different kernels in their kernel function K (xi,xj). For linearly separable data
a linear kernel is used. An application of a linear kernel can be seen in Figure 1.6. For
more complex input data other kernels, like polynomial kernels or radial basis function
(RBF) kernels can be applied [6, 17].

Equation 1.12 shows the mathematical description of a RBF-kernel (KRBF). Parameter
γ > 0 is responsible for the radius of the kernels that are centered at the support vectors
xi . xj are the sample input vectors.

KRBF (xi,xj) = exp−γ‖xi−xj‖2
(1.12)

SVMs have originally been developed for two class problems [13]. However, they are
also capable of solving multi-class problems. As mentioned earlier, Meier et al. [46]
have used a multi-class SVM to differentiate between several seizure morphologies.

Relevance Vector Machines (RVM): RVM is a concept that is quite similar to SVM. In
contrast, it is a probabilistic classification method. The resulting model is usually
sparser than in the SVM case and therefore faster testing is possible. The generalization
ability is comparable or even better and no hyper parameters need to be adjusted. On
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the downside training time is likely to take longer for RVM [13, 69]. RVM has also been
used in seizure detection already [32].

1.4.3.4. Concept of Seizure Prediction Systems

Seizure prediction is a related topic to seizure detection. Instead of detecting a seizure at
onset, the detection should occur at some point in time preceding the seizure onset. At Graz
University of Technology, Hieden [34] has used ECoG data for a seizure prediction system.
Features are derived from an autoregressive model and three different classifiers (Linear
Discriminant Analysis, Support Vector Machine, and Mahalanobis Distance Analysis) are
compared. Instead of class separation in ictal and inter-ictal class as usually done in detection
systems, pre-ictal events are discriminated from all other events. The only exceptions are
ictal events which are left out completely. The results of the study show a sensitivity slightly
better than random. However a lot of false alarms and a large prediction time window are
mentioned as problematic.

1.5. Motivation & Goal

1.5.1. Why Real-Time Seizure Detection?

As mentioned earlier epilepsy is a widespread chronic disease. Epileptic seizures often
occur without warning and therefore involve the risk of injury or death. Patients could
hurt themselves when falling to the ground or while twitching. But even if the posture is
retained during the seizure, dangers may arise in certain situations as responsiveness might
be impaired. Examples for such situations are car driving and a number of sporting activities
like swimming, mountaineering or biking. Patients with epilepsy might be excluded from
these activities completely or they need to take special precautions. Day trips to scarcely
visited places without company may be problematic as well, as nobody has information about
the whereabouts and physical condition of the person. All these restrictions cause a reduction
of the quality of life for the patients. In severe cases persons with frequent seizures might
withdraw from social life completely because of their handicap [40].

For people suffering from epilepsy it would be beneficial to reduce the uncertainty of when
epileptic events occur. Reliable seizure detection straight at onset would help to reduce the
risk of injury and allow the patients to take part in activities they usually cannot do.

The idea behind this thesis is to use the detection algorithm together with a specially designed
EEG-cap (smaXcap). This cap is being designed in the course of the “Product Innovation
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Program (PIP)” of Graz University of Technology. Some details about the development of the
cap can be found in [61]. Depending on the achieved accuracy and latency of the detection,
the user should be enabled to participate in activities that would otherwise be too risky. A
future goal will be to reduce detection delay even further and even try to predict seizures
before onset. This would enlarge the possible fields of application for the cap even more.

1.5.2. Possible Applications

1.5.2.1. Warning System

The detection can basically occur in three different situations:

1. The patients are still conscious at the time the seizure is detected.

2. The patients are not conscious any more, but their posture is still contained.

3. The patients have already fallen to the ground.

When patients are still conscious at the time, the seizure is detected safety precautions like
sitting or lying down, putting away harmful objects, etc. could be applied by themselves.

In the other cases, the patients have to rely on outside help. Surrounding people can be
alarmed acoustically to provide immediate help if needed. In addition relatives and/or friends
can be informed automatically (possibly including GPS data) to take appropriate actions.
Furthermore, harmful electrical objects could be switched off straight at detection.

1.5.2.2. Monitoring System

Another possible use of early detection involves epilepsy monitoring. Automatic detection of
seizures would be a great assistance for medical staff, as the process of filtering long-term
EEG records is very time consuming. Furthermore, for a better location of the epileptic focus
it is important that straight after seizure onset some tests are performed by the medical staff.
In practice this means nonstop monitoring of the patient. The risk of “missing” a seizure
especially at night, when the observer might be inadvertently could be reduced. If an alarm
is set out when a seizure is detected, the chances for accurate testing would be improved.

Another possibility to locate a focus more precisely is the use of perfusion tracers and Single
Photon Emission Computed Tomography (SPECT). Cerebral blood flow is captured at the
moment of injection. As blood flow is increased in brain regions with epileptic activity
conclusions about epileptic foci can be drawn. To get an accurate picture, however, the



Chapter 1. Introduction 26

injection needs to be applied straight at seizure onset. Otherwise false regions might be
detected as the seizure tends to spread to different brain areas [51]. Automatic detection
could be used to accelerate the injection process by either informing medical staff earlier or
even by automatically triggered injection [60].

At the moment epileptic patients need to undergo long-term EEG monitoring with drug
deprivation at hospitals in order to locate epileptic foci. The application of an EEG cap at
home could deliver additional information. A few minutes of EEG could be stored continuously
and, in case of an alarm, be read out and analyzed by professionals.

1.5.2.3. Relieve Symptoms

There might be the possibility to influence the course of a seizure. If so, treatment could be
started automatically at detection. The only quite common intervention after seizure onset
found in literature is the administration of anticonvulsant drugs during status epilepticus.
However, it is stated that this application is combined with great risks because depending on
different symptoms different medication might be needed [63].



2. Methods

2.1. Overview

The seizure detection system used in this thesis is based on the approach that Shoeb proposed
in his PhD thesis [60]. The automatic detection system relies on two different signals: EEG
and ECG. The frequent appearance of tachycardia during or even before ictal events especially
in temporal lobe epilepsy (cf. Section 1.3.2) is one pillar of the system. Therefore, the R-
R-Interval (RRI) of the ECG is analyzed. The other part of the system exploits rhythmic
behavior in the EEG often observed during seizures. The EEG signal is divided into 3-Hz
wide frequency bands in the interval of 0.5 to 24.5Hz. This range has been used by [60]
with reference to Gotman et al. [31] who state that most rhythmical ictal patterns have a
frequency lower than 25Hz while at the same time EMG artifacts are reasonably reduced
when using this range.

Figure 2.1 shows the basic concept of the proposed system. First, the most severe artifacts of
the input signal are rejected. After that the signal is sampled into 2-s segments with one
second overlap and the EEG and ECG features are computed. Therefore, preprocessing steps
like EEG channel selection, EEG signal derivation, and filtering are applied. The previously
defined features are then extracted from the preprocessed data and put together to a feature
vector. This feature vector is then fed to the SVM. During the training phase an additional
class vector is needed to tell the SVM how to classify certain inputs. After that a testing
phase follows where the classification output of the SVM is calculated and post processed.
Post processing allows to define an additional detection criterion in order to improve the
classification results. If this predefined detection criterion is satisfied an alarm is triggered.
A true alarm has been raised if a seizure is ongoing at that very moment or if seizure onset
occurs within the next 30 s. In all other cases the alarm has to be classified as false.

The evaluation of the alarms is performed differently, depending whether the exact seizure
period is known or unknown beforehand. For unknown data, as in real-time applications,
the correctness of a triggered alarm can only be validated after waiting for 30 s. Whenever
additional alarms occur during this period, the time window has to be reset to 30 s.

27
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For known data, it is possible to immediately classify an alarm as false or correct, because
the exact seizure period is already determined. This scenario is true for the results of this
thesis. Some simplifications and restraints are applied for evaluation:

• Each seizure can only be detected once.

• A detection delay is calculated using the first detection within the seizure period.

• If a seizure is first detected after more than 60 s from onset this detection is ignored.

• False detections are grouped together if they occur within 30 s of each other.

These restraints have been chosen because for the detection task it does not matter whether
a seizure is detected once or more often. Furthermore, a detection with small or negative
delay is requested, therefore detection delays of more than 60 s are handled as if the seizure
had been missed. The grouping of false detections is chosen because in real-time application,
the patient would have to wait for 30 s each time an alarm is triggered before being able to
validate this alarm.

Figure 2.1.: Schematic representation of the used detection algorithm.
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2.2. Data

The EEG and ECG data used in this thesis have been recorded and provided by the “University
Hospital for Neurology” in Graz [3]. The data have been collected during long-term EEG
monitoring preceding surgical interventions. Seizure onset and duration have been marked
by professional staff. Only patients suffering from temporal lobe epilepsy are used in this
thesis.

The dataset contains both seizures originating from the left and from the right hemisphere of
the brain, respectively. Differing seizure onset locations sometimes even occur within one and
the same patient. Despite having a focal onset, seizures taken for this study sometimes have
become secondarily generalized.

Altogether data from 21 patients, 8 male and 13 female, was observed. Their age ranged from
15 to 70 years with mean 37.9 (± 14.1) years. Pediatric data is rejected as the human EEG
changes during growing up (cf. [48]) and therefore joint observations are difficult. A total of
about 310 hours of recorded EEG containing 61 seizures were studied.

Seizure durations vary between 9 s and more than 5 min. The median duration is 75 s. Very
short seizures are sometimes the result of reintroduced anti epileptic drugs.

The length of recorded data and the number of seizures varies strongly among all patients.
In Table 2.1 all patient specific information is summarized.
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Table 2.1.: Information about the number of seizures a patient has experienced during moni-
toring. Also the cumulated recording time for each patient as well as gender and
age is stated.
* One seizure recording is rejected due to artifact contamination.

Patient No. of Recording
Sex

Age Patient No. of Recording
Sex

Age
No. Seizures Time [h] [a] No. Seizures Time [h] [a]
1 3 0.70 f 70 12 6 0.92 f 38
2 1 2.03 m 33 13 7* 1.43 m 44
3 3 2.68 f 23 14 3 20.45 f 40
4 1 0.65 f 40 15 2 17.15 f 42
5 3 0.68 f 35 16 4 46.55 m 21
6 3 1.58 f 25 17 2 22.47 f 70
7 1 0.22 m 15 18 2 43.07 f 46
8 1 0.20 m 45 19 3 21.05 f 47
9 1 0.15 f 32 20 3 67.17 m 40
10 1 0.12 m 19 21 10 62.72 m 35
11 1 1.37 f 36

2.2.1. Equipment

At the epilepsy monitoring center of the “University Hospital for Neurology” in Graz the
amplifier “alpha-trace digitalEEG TC-32” from “B.E.S.T. medical systems” [1] is used. A
high-pass filter with fg = 0.3 Hz and a low-pass filter with fg = 70 Hz is implemented. A notch
filter is activated to reduce power line interference. The amplifier provides 32 channels. The
analog measuring range is located between ±819.2µV for EEG data and between ±2048.0µV
for ECG data. A 12-bit analog-digital converter digitizes the signal and the data is sent to
the workstation via optical fiber at a sample rate of fs = 256Hz.

For the long-term measurement gold cup electrodes are used. They are adhered onto the skin
with collodion and gauze. Additionally a conductive gel is applied.

2.2.2. Electrode-Positions & Setup

Up to 31 EEG electrodes plus one ECG electrode are applied for long-term monitoring.
Figure 2.2 shows the principal setup for the measurement. The setup is based on the
international 10-20 system. In addition a so-called “basal ring” is used. This ring includes the
electrodes AF7/AF8, F11/F12, FT9/FT10 and TP9/TP10 marked red in the Figure. The 29



Chapter 2. Methods 31

EEG electrodes delineated in Figure 2.2 plus electrodes for ground, reference and ECG are
used for each patient. For some patients two sphenoidal electrodes or two electrodes for EOG
measurement are used in addition.

Figure 2.2.: Electrode setup for long-term monitoring based on the international 10-20 system.
Adapted picture from University Hospital for Neurology, Graz.
(a) View from above: Ground electrode is situated on the forehead in front of Fz.
Reference electrode is placed in between Cz and Pz. (b) Lateral view: Illustration
of the 10-20 system. Basal ring electrodes are marked with red dots. Location
information: AF7/AF8 - above eyebrows, F11/F12 on cheekbone, FT9/FT10
anterior to ear, TP9/TP10 posterior to ear.

Impedance values for all electrodes are kept below 5 kΩ when preparing the patient for
measurement. The impedance is only measured once, when applying the electrodes.

The EEG signal is derived monopolarly. The reference electrode is positioned between Cz
and Pz. The ground electrode is placed on the forehead, in front of Fz. (cf. Figure 2.2)

Figure 2.3 shows a patient prepared for long-term monitoring with mounted gold electrodes.

2.3. Signal Processing

The monitoring data is available in two different file formats: Alpha-Trace (.alp) and European
Data Format (.edf). Files containing multiple hour recordings are split roughly into one
hour partitions. All analyzing and signal processing is done using Matlab® (Mathworks Inc.,
Natwick, USA, http://www.mathworks.com/) in combination with the BioSig-Toolbox [57]
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Figure 2.3.: Picture of a patient with applied gold electrodes for long-term monitoring.

which is available under the GNU General Public License (GPL). LIBSVM [17] for Matlab®

is employed for all SVM related calculations.

2.3.1. Preprocessing

As a first step the recording is inspected for artifacts that render the signal useless. These
include signal overflows and flat lines. Whenever signal overflows occur, the corresponding
sequence including half a second before and after the overflow are rejected. This additional
section is chosen because overflows are usually due to strong muscular artifacts that might
also render the signal useless shortly before and/or after the overflow detection. Flat lines due
to electrode failure do not contain applicable information as well. Therefore, these artifacts
are also detected and excluded. No filtering is applied to smoothen the edges before and after
rejected segments as this will not be done during on-line testing.

For on-line testing, the previously described artifacts need to be detected and classification
has to be paused when contaminated data is delivered. This means classification results
are only evaluated while the input data complies with certain quality criteria. Additionally
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in future applications a warning could be presented to prompt the patient to examine the
electrodes in case the signal does not recover autonomously after a short period.

As a next step a signal derivation is performed on the adjusted data. Both, bipolar deriva-
tion and monopolar derivation with common average reference (CAR) are used for further
calculations. The following equations show how to calculate these derivations. N denotes the
total number of electrodes used.

Bipolarĳ = Electrodei − Electrodej (2.1)

CARi = Electrodei −
1
N

N∑
j = 1

Electrodej (2.2)

In order to reduce the data amount only a selection of electrode positions is used for further
processing. Figure 2.4 illustrates the electrodes chosen for the different derivations.

Figure 2.4.: Used EEG electrodes for detection. Red circles identify electrodes used for bipolar
derivation. Red lines indicate which pairs of electrodes are related to each other.
Green lines show the electrodes used for CAR derivation. Adapted picture from
University Hospital for Neurology, Graz.

As a next preprocessing step the input data is digitally filtered. A notch filter is applied
to further suppress 50Hz power line interference. The ECG channel is additionally lowpass
filtered with fg = 30Hz. For both applications 4th order Butterworth filters are used.
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2.3.2. Feature Extraction

As stated in Section 2.1 both ECG and EEG features are extracted for classification.

2.3.2.1. ECG

Two second segments of the ECG are inspected. A new segment starts every second, therefore
the data shows a one second overlap. For each period the median R-R Interval (RRI) is
calculated. This median might have to be interchanged by the mean of the RRI for on-line
use, as median filtering is computationally far more expensive than mean filtering. For the
calculation of the RRI, the functions qrsdetect() and berger() from the BioSig-Toolbox [57]
have been used.

As basic heart rate may differ from day to day, depending on certain factors like stress
level or physical exhaustion the RRI related to its recent values rather than the absolute
RRI is examined. This RRIratio is calculated using the median value of a 10 s wide moving
background window which ends 25 s in front of the actually calculated segment. Figure 2.5
illustrates the calculation of the RRIratio.

Figure 2.5.: Calculation scheme for RRIratio. The median of the foreground window and the
background window is calculated and put into relation.

(
RRIratio = medianfg

medianbg

)
Both windows are shifted one second to the right in every step.

An example for seizure related tachycardia is presented in Figure 2.6. Both, RRIabsolute and
RRIratio are illustrated. The vertical red lines indicate the start and the end of the seizure.
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Figure 2.6.: RRIabsolute and RRIratio for a data sequence containing a seizure. Red lines
indicate the seizure period. RRIabsolute decreases during the seizure which indi-
cates an increased heart rate. RRIratio shows a similar behavior, however, the
comparison of the actual RRI with the RRI of past periods should make this
feature more robust as basic heart rate might be changing during the day.

2.3.2.2. EEG

For each considered EEG channel eight consecutive 3-Hz wide frequency bands between 0.5 Hz
and 24.5Hz are extracted. The frequency bands are obtained using 4th order Butterworth
filters. The filtered data is segmented in two second blocks analogous to the ECG feature
and the mean logarithmic band power logBP is calculated for each segment.

logBP (j) = log
(

1
N

N∑
i=1

x2
bp filtered (i)

)
(2.3)

where : xbpfiltered . . . bandpass filtered input signal

i, j . . . time index

N . . . size of calculation window (sample rate× seconds)

Figure 2.7 shows the spectrum of a data sequence containing a seizure. For this image the
signal is bandpass filtered between 0.5 and 24.5Hz. The redder the area, the higher the
power within a certain frequency band. The example represents a pattern repeatedly found
in the data: The power in the whole spectrum is increased during the seizure. Furthermore,
a narrow strongly increased band can be found between 5 and 10Hz. The increased band
power first starts at a frequency of about 10 Hz and gradually slows down to 5 Hz on seizure
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progression.

Figure 2.7.: Spectrum of a data sequence containing a seizure. Green and yellow areas in the
spectrum indicate little power. Regions with increased power appear red.

The logarithmic band power plots corresponding to the spectrum shown in Figure 2.7 are
illustrated in Figure 2.8. The bandwidth between 0.5 and 24.5 Hz is divided into eight 3-Hz
bands. The seizure interval is marked by vertical red lines. Increased logarithmic band power
during the seizure occurs mostly between 3.5 and 18.5 Hz.

Figure 2.8.: Logarithmic band power of a data sequence containing a seizure. The seizure
interval is marked by vertical red lines.

In addition to the EEG and ECG features chosen for this thesis a number of other features
have been tested on their capacity to differentiate between ictal and inter-ictal states. These
additional features can be viewed in Appendix B.
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2.3.2.3. Feature Vector & Class Vector

As a next step, the calculated EEG and ECG features are put together in a single feature
vector for each observed two second period. Additionally Shoeb [60] has used a special
technique to capture temporal developments of the data. Not only the features for a two
second segment are presented to the SVM at each step, but also the features of the two
preceding non-overlapping segments. This thesis implements the same approach. The number
of features at any point in time is computed as follows:

# Features = (Channels× Bands + RRI)× Consecutive Segments

In Figure 2.9 the exact design of the feature vector is illustrated.

Figure 2.9.: Structure of the feature vector. Altogether one column of the feature vector is
now using information from 6 s of the input signal.

For the training of the classifier a class vector is needed as well. This vector provides
information whether a feature sample belongs to the ictal class or to the inter-ictal class. For
training, only the first 20 samples after the seizure onset are classified as ictal class. More
precisely, the first ictal sample includes data starting already 4 s ahead of the seizure onset,
as this sample already includes first features from within the ictal period which might carry
useful information. If the seizure is not finished after these 20 samples, the remaining samples
are rejected. This means they are not assigned to either of the two classes. Also all samples
preceding onset 30 s and less are rejected. All remaining samples belong to the inter-ictal
class. For short seizures that do not provide 20 ictal samples only samples within the seizure
period are used.

The previous restrictions are made for the following reasons: Seizure morphology tends to
change in the course of an ictal event. The algorithm should detect seizures close to the
onset, therefore only morphologies occurring at onset are evaluated. The choice has fallen
on 20 ictal samples because on the one hand, the number should not be too large in order



Chapter 2. Methods 38

to capture seizure onset conditions only. On the other hand enough ictal samples should be
available for training and testing the SVM. Furthermore, Shoeb [60] has achieved best results
with this setting.

The unclassified area preceding the seizure onset is chosen, as there might be pre-ictal changes
similar to the changes at seizure onset which would allow an earlier detection. An example
of this would be seizure related tachycardia that sometimes starts ahead of the seizure
(cf. Section 1.3.2).

The whole structure of the class vector is illustrated in Figure 2.10. Green rectangles show
ictal samples, blue rectangles show inter-ictal samples. The red shaded regions show areas
that deliver no training input for classification.

Figure 2.10.: Structure of the class vector. Green rectangles show ictal samples, blue rectangles
show inter-ictal samples. The red shaded regions show areas that deliver no
training input for classification. t0 marks the seizure onset and t1 marks the
end of the seizure.

The previously defined feature and class vector are generated for each data partition containing
roughly one hour of data in the off-line approach. The partitions do not contain exactly one
hour of recording for the following reasons:

• splitting leaves a remainder

• parts of data need to be rejected due to artifacts after splitting

• seizures are near the splitting region, therefore, the region has to be relocated

• partitions are too small to be considered for splitting

Each partition either contains a single seizure or it provides seizure free recordings.
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2.3.3. Classification

So far, classification has only been performed and evaluated off-line. Two different classification
approaches have been examined:

• Patient independent classification (all patients are evaluated together)

• Patient dependent classification (each patient is evaluated individually)

The patient independent classification approach provides enough data (feature and class
vectors) to perform a cross validation. Therefore, the data are divided into training, validation
and test set. For cross validation, two different data pools are arranged: data from partitions
containing seizures and data from partitions containing inter-ictal recordings. 10% of both
pools are then randomly selected for each testing iteration. With the remaining data ten
different training and validation pairs are defined and evaluated. Again 10% of both pools
are randomly chosen for the validation set while the rest is used for training.

The classifier with the best results on the validation set is then applied to the test set. For
a 10-fold cross validation usually every data should be tested in 10 different combinations
meaning the 10-fold repetition of the previously described procedure. Computation amount
for classification has been too large, however, so each data has only been tested once. The
used validation scheme is illustrated in Figure 2.11.

Figure 2.11.: Cross validation scheme for patient independent classification. Ictal and inter-
ictal data is separated into training, validation and test sets. For each test set 10
different training and validation set combinations are calculated. The classifier
delivering the best results is then used on the test set.
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For the patient dependent classification approach less data is available. Especially the amount
of data from seizures is small with some patients as described in Table 2.1 in Section 2.2.
Patients that only experienced one seizure during recording are rejected completely from this
approach. The reduced data material only allows a leave-one-out cross validation. Data from
a partition either containing a seizure or inter-ictal data is used for testing. All other data of
the same person is applied for training. This process is performed for data from all partitions
of each person. The according validation scheme can be seen in Figure 2.12.

Figure 2.12.: Leave-one-out validation scheme for patient dependent classification. Data of
one patient is divided in more or less one hour partitions. All but one partitions
are used to train a classifier which is then applied to the left out partition. This
process is repeated for all partitions.

2.3.3.1. Setup of Support Vector Machine (SVM)

In a first step, the training data is normalized to zero mean and unit variance. This is done
separately for each patient, even in the patient independent approach. The normalized data is
then handed on to the SVM. The normalization parameters are stored, because testing data
needs to be normalized according to the training data. In the patient independent approach
it can happen, that some persons do not contribute data in the training process and therefore
no normalization parameters are available for them. In these cases, average values of the
parameters are applied to calculate appropriately normalized data during the testing phase.

Next, an appropriate kernel for the SVM needs to be chosen. As a nonlinear decision boundary
is suspected, an SVM with radial basis function (RBF) kernels is used for classification. This
choice is also made because Shoeb has obtained good results with a RBF-SVM [60]. As
mentioned earlier RBF-SVMs offer the two parameters C (margin parameter) and γ (kernel
radius) for adjusting. A grid search is applied to find the best values for these parameters.
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Both parameters C and γ are chosen to be exponentially growing. C = 2−5, 2−3, 2−1, ..., 215

and γ = 2−15, 2−13, 2−11, ..., 23. Cohen’s kappa is used as quality criteria.

2.3.4. Post Processing

The capability to detect seizures is measured by a specially adapted quality criteria. The
usually used measures defined in Section 1.4.2 are adapted, to better suit the underlying
problem. The most important property of the algorithm is to detect a seizure as early as
possible. Therefore, multiple detections within a single seizure period do not improve the
accuracy of the algorithm. Furthermore, if a seizure is first detected with a delay of more
than 60 s this detection is handled as too late and therefore ignored. Also false detections are
grouped together if they occur in a certain time window. All these requirements lead to the
following modifications:

True Positives: Only one true positive per seizure can be achieved.

False Positives: False detections that occur within 30 s to each other are counted as one.

Delay: The real time of the seizure onset is subtracted from the time of detection.

Figure 2.13 illustrates how the SVM output is handled. Figure 2.14 shows an exemplary
output of the SVM and information about the applied post-processing steps.

Figure 2.13.: A seizure is truly detected, whenever the SVM classifies a segment as ictal
within the seizure detection horizon. Detections are valid between 30 s ahead of
and 60 s past seizure onset. The calculation of the detection delay relies only on
the first valid detection.
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Figure 2.14.: Post-processing of SVM output. Red vertical lines indicate the seizure period.
The gray shaded region indicates the area where detections are counted as
true. The first detection within the gray shaded region is used to calculate the
detection delay. Detections outside the gray region, but within the red vertical
lines are neither counted as true nor as false. At the right hand of the plot some
false classifications are visible. As there are less than 30 s between each two
false classifications all of them are grouped together and counted as a single
false detection.

2.3.4.1. Adjustment of Detection Criterion

Additionally, it is evaluated whether detection results could be improved by demanding k ∈ N
consecutive segments to be classified as ictal by the SVM before a detection is declared.

2.4. Input Variations

2.4.1. Channel Selection

It is investigated whether the number of used electrodes can be restricted further while
retaining a high detection rate and a low number of false positives. This would be beneficial
in two ways:

• Computational cost reduces for less channels both in training and in testing.

• An EEG cap for detection is easier to construct and apply. Also the error-proneness of
the cap is reduced.
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The channel reduction attempt is based on the bipolar derivation method starting with 16
bipolar channels illustrated in Figure 2.4 (Section 2.3.1). To find the best channel combinations
an exhaustive search would have to be performed. However, a complete exhaustive search
allowing all possible sub-combinations of these 16 channels cannot be computed within
reasonable time. Therefore, a reduced search is performed, where the number of used bipolar
channels is fixed to six. Those six channels are further assigned to be symmetrically arranged
on either hemisphere which then results in only 56 possible combinations.

The electrodes that are involved in the best channel selection are subsequently used in the
reduced CAR approach as well.

2.4.2. Feature Adaptation

2.4.2.1. Feature Reduction

A first attempt to reduce the number of features is undertaken in combinations with the CAR
approach. Instead of the 8 equally broad frequency bands some of the bands are grouped
together. The reduction results in the following three bands: 0.5 to 3.5Hz, 3.5 to 18.5Hz,
and 18.5 to 24.5 Hz. For further information refer to Chapter 3.

For the reduced settings computation time decreases, therefore, additional calculations like
a new selection of parameters C and γ and the patient independent approach for the CAR
derived data can be performed.

2.4.2.2. RRI Adaptation

The time delay of the background window used for the RRIratio calculation (cf. Figure 2.5
in Section 2.3.2) is modified. The distance between foreground and background window is
varied between 5 and 105 s. Due to computational expense this adaptation is only performed
for the reduced feature set, given previously.
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2.5. Evaluation Table

Most evaluation is performed using the design shown in Table 2.2.

Table 2.2.: Default table design.

Patient No. of Recording Missed Mean Detect- False fdr
No. Seizures Time [h] Seizures ion Delay [s] Detections [1/h]
pati seizi timei missedi meanDDi fdi fdri
...

...
...

...
...

...
...∑ ∑ ∑

totalmeanDD
∑

total fdr

The Patient Number, the Number of Seizures and the Recording Time correspond to the data
given in Chapter 2. Column Missed Seizures shows how many seizures of a certain person
have not been detected. The Mean Detection Delay can range between −30 s and +60 s as
this time horizon has been specified for correct detections (cf. Chapter 2). If a seizure is
missed, it is excluded from the calculation of the Mean Detection Delay. If all seizures of
a patient are missed, there are no values to calculate a detection delay. Therefore, N/A is
filled into the table. The column False Detections shows how many false detections occurred
for the patient. The fdr relates the number of false detections to the recording time of the
patient which can be found in Table 2.1 in Chapter 2.

The last row of the table shows overall results. The Number of Seizures, the Missed Seizures,
and the False Detections are simply summed up. The totalmeanDD and the total fdr have to
be calculated separately. To calculate the totalmeanDD the mean of every single detection
delay rather than the already calculated mean delays of each patient are used. Again only
the number of detected seizures is taken into account. The total fdr relates the sum of the
false detections to the total recording time of all patients.



3. Results

3.1. General Settings

3.1.1. SVM Parameter Selection

As mentioned in Chapter 2, parameters C and γ are determined using a grid search. Only
patients number 1 to 13 (cf. Table 2.1 in Section 2.2) are considered for the parameter search
because no other data has been available at the time this choice has been made. Retesting
with more data has been postponed as computation is costly. Tests are conducted in a leave
one out fashion and all patients are considered together (⇒ patient independent). The grid
search is performed for the bipolar approach and all 16 bipolar channels marked in Figure 2.4
(Section 2.3.1) are used. Cohen’s Kappa is used as quality criteria. Figure 3.1 shows the
averaged results of this search on logarithmic scales. Red lines denote higher values, blue
lines denote lower values. The grid search showed best results for parameter values C = 23

and γ = 2−9. Therefore further calculations apply these values.

Figure 3.1.: Grid search results for parameters C = 2−5, 2−3, ..., 215 and γ = 2−15, 2−13, ..., 23

on logarithmic scales. Values for Cohen’s Kappa are illustrated. Red lines indicate
higher values, blue lines lower values.

45
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3.1.2. Best Channel Selection

The results of the exhaustive search for 6 symmetric bipolar channels are illustrated in
Figure 3.2. Again only patients number 1 to 13 have been used with leave one out testing.
Measured by the number of missed seizures and the number of false detections, channel
combination number 23 shows the best results. Figure 3.3 shows the channel setup of this
combination.

Figure 3.2.: Number of missed seizures and false detections for different channel combinations.
Combination number 23 delivers the best result.

Figure 3.3.: Channel combination number 23 using F7–T7, T7–P7 and FP1–F3 on the left
hemisphere and F8–T8, T8–P8 and FP2–F4 on the right hemisphere delivers the
best results. Therefore, it is used for further calculations. The chosen electrodes
are marked in red.
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3.1.3. Adjustment of Detection Criterion

The evaluation results have been optimized by varying the demanded duration of seizure
activity. Parameter k ∈ N indicates how many consecutive ictal classifications by the SVM
are needed to trigger an alarm. Figure 3.4 shows the influence of delayed detection with an
example data period.

Figure 3.4.: Delayed detection. Detections are only counted if the SVM classifies k consecutive
samples as ictal. Red vertical lines show the seizure period. The gray shaded box
shows the horizon for true detections. For larger k on the one hand the number
of false detections decreases, on the other hand the detection delay increases.

3.2. Instance of Temporal Lobe Seizure

Figure 3.5 shows the onset of a temporal lobe seizure. The seizure starts in the right
hemisphere.
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Figure 3.5.: Onset of a temporal lobe seizure that starts in the right hemisphere. The rhythmic
behavior with a frequency of about 8 Hz starts in the right hemisphere (electrode
positions with even numbers). In the time course the amplitude of the rhythmic
oscillations increases while the frequency decreases slightly. When examining
the ECG, a decrease of the RRI is visible. Picture generated using the software
alphaView (B.E.S.T. Medical Systems, Vienna, http://www.alpha-trace.at/)

3.3. Patient Dependent Evaluation

In the patient dependent evaluation only persons that experienced more than 1 seizure
are observed. Evaluation is performed individually for each patient by leave one out cross
validation on all its one hour data partitions.

3.3.1. Basic Setup

3.3.1.1. CAR Derivation (19 Channels)

As a first attempt all 19 channels marked in Figure 2.4 (Section 2.3.1) are used for detection.
Table 3.1 shows the results for the patient dependent approach using 19 CAR channels.
Detections are triggered at the first sample classified as ictal by the SVM (k=1). After a mean
detection delay of 2.7 s 48 of the 54 seizures (⇒ Sensitivity = 88.89%) are detected. The
missed seizures of patient number 15 are due to insufficient data. Both seizures only last for
7 and 14 s, respectively. Therefore, they provide too little training samples. When rejecting



Chapter 3. Results 49

patient number 15 the result increases to 48 of 52 seizures (⇒ Sensitivity = 92.31%). An fdr
of about 0.013/h is achieved in both cases.

Table 3.1.: Summarized results for the patient dependent evaluation using 19 CAR derived
channels.
* Insufficient data.

Patient No. of Recording Missed Mean Detect- False fdr
No. Seizures Time [h] Seizures ion Delay [s] Detections [1/h]
1 3 0.70 0 4.3 0 0
3 3 2.68 0 8.0 0 0
5 3 0.68 0 4.0 0 0
6 3 1.58 0 -1.7 0 0
12 6 0.92 0 -8.0 0 0
13 7 1.43 0 4.0 0 0
14 3 20.45 0 5.7 1 0.05
15* 2 17.15 2 N/A 0 0
16 4 46.55 0 7.8 0 0
17 2 22.47 0 2.0 0 0
18 2 43.07 0 8.5 0 0
19 3 21.05 0 11.0 0 0
20 3 67.17 3 N/A 0 0
21 10 62.72 1 0.4 3 0.048

54 308.62 6 2.7 ±9.9 4 0.013

3.3.1.2. Bipolar Derivation (6 Channels)

Table 3.2 shows the results for the patient dependent approach using the 6 bipolar channels
highlighted in Figure 3.3. Detections are only triggered if the SVM classifies three consecutive
samples as ictal (k=3). Altogether 46 of the 54 seizures (⇒ Sensitivity = 85.19%) are
detected within a mean delay of 6.6 s. 15 false detections are triggered leading to an average
fdr of 0.049/h. As stated earlier patient number 15 should be excluded from calculations.
This improves the result to 46 of 52 detected seizures (⇒ Sensitivity = 88.46%).



Chapter 3. Results 50

Table 3.2.: Summarized results for the patient dependent evaluation using six bipolar derived
channels.
* Insufficient data.

Patient No. of Recording Missed Mean Detect- False fdr
No. Seizures Time [h] Seizures ion Delay [s] Detections [1/h]
1 3 0.70 0 -1.7 1 1.43
3 3 2.68 0 9.3 9 3.35
5 3 0.68 0 7.7 0 0
6 3 1.58 0 2.7 0 0
12 6 0.92 0 -0.5 0 0
13 7 1.43 0 15.4 2 1.34
14 3 20.45 0 18.0 0 0
15* 2 17.15 2 N/A 0 0
16 4 46.55 0 11.0 0 0
17 2 22.47 0 4.0 0 0
18 2 43.07 0 10.0 0 0
19 3 21.05 3 N/A 0 0
20 3 67.17 3 N/A 0 0
21 10 62.72 0 1.8 3 0.048

54 308.62 8 6.6 ±12.3 15 0.049

3.3.1.3. CAR Derivation (10 Channels)

Table 3.3 shows the results for the patient dependent approach using 10 CAR channels.
These channels refer to the same electrode positions as being used in the bipolar approach
before. Detections are again triggered if the SVM classifies three consecutive samples as ictal
(k=3).

Altogether 48 of the 54 seizures are detected (⇒ Sensitivity = 88.89%). 14 false detections
are triggered leading to an average fdr of 0.045/h. When rejecting patient number 15, 48 of
the 52 seizures are detected (⇒ Sensitivity = 92.31%).
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Table 3.3.: Summarized results for the patient dependent evaluation using 10 CAR derived
channels.
* Insufficient data.

Patient No. of Recording Missed Mean Detect- False fdr
No. Seizures Time [h] Seizures ion Delay [s] Detections [1/h]
1 3 0.70 0 1.0 0 0
3 3 2.68 0 9.0 9 3.35
5 3 0.68 0 -2.7 0 0
6 3 1.58 0 0.3 0 0
12 6 0.92 0 -4.8 0 0
13 7 1.43 0 6.0 0 0
14 3 20.45 0 9.7 1 0.05
15* 2 17.15 2 N/A 0 0
16 4 46.55 1 10.0 2 0.12
17 2 22.47 0 4.0 0 0
18 2 43.07 0 9.0 0 0
19 3 21.05 1 13.5 0 0
20 3 67.17 2 28.0 1 0.015
21 10 62.72 0 4.5 1 0.016

54 308.62 6 4.7 ±10.7 14 0.045

3.3.2. Influence of ECG

In Table 3.4 the results for different RRI modes: no RRI, the absolute RRI (RRIabs), and
the RRI related to its recent values (RRIratio) are summarized. Results are posted for the
CAR evaluation with 19 channels (CAR19) and with 10 channels (CAR10) as well as for the
bipolar evaluation with 6 channels (Bipolar6).
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Table 3.4.: Summarized results for different RRI modes. Results for CAR derivation with 19
channels and with 10 channels as well as for bipolar derivation with 6 channels
are given.

Derivation
Mode

Sensitivity Mean Detection False False Detection
Method [%] Delay [s] Detections Rate (fdr) [1/h]

CAR19

no RRI 87.04 2.6 ±9.8 12 0.039
RRIabs 87.04 3.0 ±9.5 10 0.032
RRIratio 88.89 2.7 ±9.9 4 0.013

Bipolar6

no RRI 81.48 8.4 ±12.7 21 0.068
RRIabs 83.33 7.8 ±13.0 17 0.055
RRIratio 85.19 6.6 ±12.3 15 0.049

CAR10

no RRI 88.89 5.8 ±10.6 20 0.065
RRIabs 88.89 6.0 ±10.2 19 0.061
RRIratio 88.89 4.7 ±10.7 14 0.045

Classification using RRIabs or no RRI results in a higher number of false detections than
classification using RRIratio. Furthermore in CAR19 and Bipolar6 less seizures are missed
when using RRIratio. Detection delays are similar for the different RRI modes, however,
RRIratio is again delivering slightly better results than the other modes.

3.3.3. Detection Delay

Figure 3.6 shows the percentage of detected seizures in relation to the detection delay. Results
from the different derivation methods CAR19, Bipolar6, and CAR10 are plotted. Patient
number 15 is excluded from this observation for reasons described earlier. About 30% of
the tested seizures are detected before their real onset. Results after 5 s and after 10 s are
highlighted. The percentage of detected seizures after 30 s is marked in red.

3.3.4. Feature Adaptation

The feature adaptations are only performed for the CAR derivation reduced to 10 channels.
CAR has been chosen as it has reached superior results to the bipolar derivation in previous
testing. The reduced 10 channel setup has been favored over the 19 channel setup although
mean detection delays are slightly higher and the number of false detections is also increased.
This approach is justified as the goal of the adaptation is a slimmer model that is easier to
implement.
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Figure 3.6.: Percentage of detected seizures in relation to the detection delay. (Patient
dependent approach.)

3.3.4.1. Feature Reduction

After visual inspection of the 8 frequency bands used in the basic setup logarithmic band
power appeared to be especially increased during seizures for the sub bands between 3.5 and
18.5Hz. Therefore, these sub bands have been grouped together to one feature. As a result
a reduction to three frequency bands (0.5–3.5Hz, 3.5–18.5Hz, and 18.5–24.5Hz) has been
performed. Parameters C and γ of the SVM have been re-evaluated and changed to C = 25

and γ = 2−7. Detections are triggered only if three consecutive samples are classified as ictal
by the SVM (k=3). The results for this approach can be seen in Table 3.5.

3.3.4.2. RRI Adaptation

When varying the time delay of the background reference window for RRIratio calculation the
results can even be improved further. Table 3.6 shows the results for time delays between
5 and 105 s. The best result is highlighted. Compared to the results in Table 3.5 where a
background window delay of 25 s has been used the results could be further improved by
choosing a background window delay of 35 s. An additional seizure of patient number 19 is
then detected. Therefore the sensitivity is increased to 90.74% or even 94.23% when excluding
patient number 15. Also false detections are reduced by one with this setting while the mean
detection delay is slightly increased to 4.7 s.
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Table 3.5.: Summarized results for the patient dependent evaluation using CAR10 with a
reduced feature set.
* Insufficient data.

Patient No. of Recording Missed Mean Detect- False fdr
No. Seizures Time [h] Seizures ion Delay [s] Detections [1/h]
1 3 0.70 0 -3.3 0 0
3 3 2.68 0 1.3 0 0
5 3 0.68 0 -1.7 0 0
6 3 1.58 0 0.7 0 0
12 6 0.92 0 -5.3 0 0
13 7 1.43 0 7.4 0 0
14 3 20.45 0 8.3 1 0.05
15* 2 17.15 2 N/A 1 0.06
16 4 46.55 1 8.3 1 0.02
17 2 22.47 0 4.0 0 0
18 2 43.07 0 5.0 0 0
19 3 21.05 1 27.5 0 0
20 3 67.17 2 28.0 1 0.01
21 10 62.72 0 5.2 4 0.06

54 308.62 6 4.5 ±12.1 8 0.026

Table 3.6.: Results for varied delay windows for the calculation of RRIratio. Delays range
from 5 to 105 s. The patient dependent approach using 10 CAR derived channels
and a reduced feature set is taken for evaluation.

Background window Detected False Mean detection
delay [s] seizures detections delay [s]

5 48 15 5.7 ±10.0
15 46 11 3.7 ±10.2
25 48 8 4.5 ±12.1
35 49 7 4.7 ±12.0
45 49 7 4.8 ±12.0
55 49 8 4.1 ±11.0
65 49 10 5.0 ±10.2
75 48 9 5.1 ±10.4
85 47 9 5.0 ±10.5
95 47 10 4.7 ±10.7
105 47 10 5.0 ±10.7
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3.4. Patient Independent Evaluation

For the patient independent approach an alteration of 10-fold cross validation has been used
to ensure statistical significance (cf. Section 2.3.3). Due to computational cost only the
bipolar derivation with 6 channels and the CAR derivation with 10 channels and a reduced
feature set have been evaluated. Also the influence of the ECG has not been evaluated for
the patient independent approach.

3.4.1. Basic Setup

3.4.1.1. Bipolar Derivation (6 Channels)

Table 3.7 shows the results of the patient independent evaluation. EEG features are taken from
six bipolar channels. Detections are triggered if two consecutive samples are classified as ictal
by the SVM (k=2). Altogether 41 of 61 seizures have been detected (⇒ Sensitivity = 67.21%)
within a mean delay of 14.0 s. 5 false positive detections result in an average fdr of 0.016/h.

3.4.1.2. CAR Derivation (10 Channels)

Table 3.8 shows the results of the patient independent evaluation using ten CAR derived
channels. Detections are again triggered if the SVM classifies two consecutive samples as
ictal (k=2). In total, 55 of 61 seizures have been detected (⇒ Sensitivity = 90.16%) within a
mean delay of 9.7 s. 6 false positive detections result in an average fdr of 0.019/h.

3.4.2. Detection Delay

Figure 3.7 shows the percentage of detected seizures in relation to the detection delay. Again,
patient number 15 is excluded from this observation. Results after 5 s and after 10 s are
highlighted. The percentage of detected seizures after 60 s is marked in red.

3.4.3. Feature Adaptation

Again, the feature adaptation is only performed for the CAR10 derived data. The changed
SVM parameters C = 25 and γ = 2−7 are used. RRI adaptation has not been calculated due
to computational cost.
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Table 3.7.: Summarized results for the patient independent evaluation using six bipolar derived
channels.
* Insufficient data.

Patient No. of Recording Missed Mean Detect- False fdr
No. Seizures Time [h] Seizures ion Delay [s] Detections [1/h]
1 3 0.70 1 9.5 0 0
2 1 2.03 1 N/A 0 0
3 3 2.68 0 9.3 3 1.12
4 1 0.65 1 N/A 0 0
5 3 0.68 0 22.3 0 0
6 3 1.58 0 8.3 0 0
7 1 0.22 1 N/A 0 0
8 1 0.20 1 N/A 0 0
9 1 0.15 0 9.0 0 0
10 1 0.12 1 N/A 0 0
11 1 1.37 0 20.0 0 0
12 6 0.92 1 5.2 0 0
13 7 1.43 0 19.7 0 0
14 3 20.45 3 N/A 0 0
15* 2 17.15 2 N/A 1 0.05
16 4 46.55 1 11.0 0 0
17 2 22.47 0 8.5 0 0
18 2 43.07 0 18.0 0 0
19 3 21.05 2 33 1 0.05
20 3 67.17 3 N/A 0 0
21 10 62.72 2 15.4 0 0

61 313.36 20 14.0 ±10.2 5 0.016

Figure 3.7.: Percentage of detected seizures in relation to the detection delay. (Patient
independent approach.)
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Table 3.8.: Summarized results for the patient independent evaluation using CAR10.
* Insufficient data.

Patient No. of Recording Missed Mean Detect- False fdr
No. Seizures Time [h] Seizures ion Delay [s] Detections [1/h]
1 3 0.70 0 12.3 0 0
2 1 2.03 0 41.0 0 0
3 3 2.68 0 12.3 0 0
4 1 0.65 0 5.0 0 0
5 3 0.68 0 -3.7 0 0
6 3 1.58 0 0.3 0 0
7 1 0.22 0 46.0 0 0
8 1 0.20 1 N/A 0 0
9 1 0.15 0 8.0 0 0
10 1 0.12 0 58.0 1 8.33
11 1 1.37 0 13.0 0 0
12 6 0.92 0 3.3 0 0
13 7 1.43 0 8.7 0 0
14 3 20.45 0 8.3 0 0
15* 2 17.15 2 N/A 0 0
16 4 46.55 1 9.0 0 0
17 2 22.47 0 4.0 3 0.13
18 2 43.07 0 8.0 0 0
19 3 21.05 0 10.0 0 0
20 3 67.17 2 24.0 2 0.03
21 10 62.72 0 8.8 0 0

61 313.36 6 9.7 ±13.8 6 0.019
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3.4.3.1. Feature Reduction

The same feature reduction as in the patient dependent approach has been used. The
eight frequency bands are merged to three bands (0.5–3.5Hz, 3.5–18.5Hz, and 18.5–24.5Hz).
Results for this approach are listed in Table 3.9. 53 of the 61 seizures (⇒ Sensitivity = 86.89%)
are detected within a mean detection delay of 7.1 s. 6 false positive detections occurred which
result in an fdr of about 0.019/h.

Table 3.9.: Summarized results for the patient independent evaluation using CAR10 and a
reduced feature set.
* Insufficient data.

Patient No. of Recording Missed Mean Detect- False fdr
No. Seizures Time [h] Seizures ion Delay [s] Detections [1/h]
1 3 0.70 0 8.3 0 0
2 1 2.03 0 16.0 0 0
3 3 2.68 0 9.7 0 0
4 1 0.65 0 8.0 0 0
5 3 0.68 0 -1.7 0 0
6 3 1.58 0 7.3 0 0
7 1 0.22 1 N/A 0 0
8 1 0.20 1 N/A 0 0
9 1 0.15 0 13.0 0 0
10 1 0.12 1 N/A 0 0
11 1 1.37 0 13.0 0 0
12 6 0.92 0 4.2 0 0
13 7 1.43 0 13.1 0 0
14 3 20.45 0 8.7 0 0
15* 2 17.15 2 N/A 0 0
16 4 46.55 1 8.3 0 0
17 2 22.47 0 14.0 2 0.09
18 2 43.07 0 7.5 0 0
19 3 21.05 0 15.7 1 0.05
20 3 67.17 2 27.0 3 0.04
21 10 62.72 0 7.4 0 0

61 313.36 8 9.1 ±10.7 6 0.019
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3.5. Summary of Results

Table 3.10 shows the total results for different derivation methods (CAR, Bipolar) as well as
different channel numbers (6, 10, 19) and feature settings (3bp, 8bp). Both patient dependent
(d) and independent (i) results are stated.

Table 3.10.: Summary of evaluation results. 3bp (8bp) .. 3 (8) logarithmic band power
features per channel; d (i) .. patient dependent (independent) evaluation.

Mode No. of Recording Missed Mean Detect- False fdr
Seizures Time [h] Seizures ion Delay [s] Detections [1/h]

CAR8bp,d
19 54 308.62 6 2.7 ±9.9 4 0.013

Bipolar8bp, d
6 54 308.62 8 6.6 ±12.3 15 0.049

CAR8bp,d
10 54 308.62 6 4.7 ±10.7 14 0.045

CAR3bp,d
10 54 308.62 6 4.5 ±12.1 8 0.026

Bipolar8bp, i
6 61 313.36 20 14.0 ±10.2 5 0.016

CAR8bp, i
10 61 313.36 6 9.7 ±13.8 6 0.019

CAR3bp, i
10 61 313.36 8 9.1 ±10.7 6 0.019



4. Discussion/Outlook

4.1. Discussion

In this thesis, it has been evaluated whether temporal lobe seizures can be detected from a
subset of EEG and ECG electrodes within a reasonable time. As a first step, some general
remarks on the data, results, and other selected topics will be made. The achieved results will
then be compared to state of the art results. Furthermore, considerations about classification
and general information for future on-line application will be stated.

4.1.1. General Remarks

4.1.1.1. Data

One of the eight seizures recorded for patient number 13 has been totally contaminated by
artifacts and, therefore, has been rejected.

The seizure provided by patient number 10 constitutes an exception to the restriction to
temporal lobe seizures. This patient experienced a generalized seizure onset. Classification of
this seizure is attempted regardlessly to see whether detection of generalized seizures might
be possible as well.

4.1.1.2. Influence of the Number of Electrodes

The numbers of used EEG electrodes have been varied for different evaluations (10 electrodes
for Bipolar6 as well as CAR10 and 19 electrodes for CAR19). When using more channels for
detection, the risk of losing seizure data due to artifact contamination increases, as overflows
or flat lines occurring in any channel lead to rejection of the values of all channels for the
respective period. For the CAR19 electrode selection only two seconds of a seizure of patient
number 21 remain for classification. Therefore, this seizure has been missed.

60
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On the other hand, a higher number of electrodes seems to provide a more robust classifier.
The number of false detections is far less than in all other approaches. Therefore, no additional
detection criterion is needed. A detection is already counted at the first sample classified as
ictal by the SVM. This again improves the detection delay.

4.1.1.3. Best Channel Combination

When searching for the best channel combination of bipolar channels center and “basal ring”
electrodes have been excluded beforehand. These restrictions have been chosen, for the
following reasons:

• Center electrodes have been rejected, because focal epileptic activity should be better
detectable in one or the other hemisphere.

• Electrodes near to the ears and eyes have been rejected, because these positions are
more vulnerable to EMG/EOG artifacts.

• Another reason for the chosen selection is the better comparability to Shoeb’s data [60]
who had no “basal ring” recordings.

4.1.1.4. Results

The results achieved by CAR10 with 3 frequency bands are superior to the ones using CAR10

with all 8 frequency bands. The number of false detections as well as the detection delay is
improved. This could be signaling overfitting for the approach using features from 8 frequency
bands.

The large number of false detections of patient number 3 in most patient dependent approaches
are due to insufficient data. False detections are caused by chewing artifacts. Patient number
3 provides less than three hours of recording. Within the data three seizures are stored. Only
one segment is contaminated by chewing artifacts. These false detections could possibly be
prevented by using more training data. It could be beneficial to demand data with chewing
artifacts in the training set.

4.1.1.5. Patient Dependent versus Patient Independent

The patient independent approach uses a lot more data than the patient dependent approach.
Therefore, the training of the SVM takes much longer, which makes calculations impracticable
to a certain extent. A complete 10-fold cross-validation has not been performed due to this
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problem. All data has only been evaluated once instead of 10 times as usually done in 10-fold
cross-validation. Therefore, the results of this section might lack statistical power.

The received results indicate that the used derivation method has substantial influence on the
overall performance. Bipolar derivation leads to worse results than the CAR method. Too
large distances between the different electrodes might be the reason for this. By applying
a patient independent approach, even seizures from persons that experienced only a single
seizure have been detected. The detection delays in some of those cases are high, however.
Nevertheless, this indicates that at least for some seizures the inter-patient variations are
negligible and that a few universally valid properties might exist. Another improvement
realized by the patient independent approach is the decrease of false positive detections in
patient number 3.

A possible conclusion might be to use a patient independent approach as long as not enough
data is available for a specific patient, while simultaneously collecting more data. As soon
as a certain amount of data is reached, a change to a patient dependent approach can be
performed. This transition could also happen gradually, constantly increasing the patient
dependent data proportion as new measurements arrive.

4.1.2. Comparison to State of the Art

As already stated earlier a comparison between different detection systems is not entirely
easy. Nevertheless, some conclusions can be drawn. Altogether it is a very challenging task to
match any of the proposed results in literature. First of all the results have to be compared
to Shoeb’s study [60] as the system is based on his approach. Shoeb reached a sensitivity of
96% with patient dependent classification. This high value has not been reached in this thesis.
Depending whether patient number 15 is excluded or not, sensitivities of up to 91% or 94%
are achieved. As far as the fdr is concerned, this study delivers better results than Shoeb’s.
A mean fdr of about 0.134/h is compared with false detection rates of 0.016/h to 0.049/h
in this thesis. 91% of the detected seizures which account for about 87% of all seizures are
detected within 10 s from onset in Shoeb’s work. The same amount of seizure detections is
only reached after about 18 s in this thesis (cf. Figure 3.6 in Section 3.3.3).

The better detection delay and sensitivity in Shoeb’s study might be due to the greater
amount of available training data both, inter-ictal and ictal. On the other hand no restriction
to temporal lobe seizures has been made in his research. There is no information about the
composition of seizure types within his data, therefore, no conclusions can be drawn whether
the task has been made more difficult or even easier. In principle allowing different seizure
types is more likely to negatively influence the classification accuracy. But also the opposite
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could be the case: other seizure types than temporal lobe seizures could produce a larger
inter-class difference between ictal and inter-ictal data and, therefore, could be easier to
detect (e.g. tonic-clonic seizures).

Compared with the studies [37, 65] which also specialized only on temporal lobe seizures,
similar sensitivity rates are reached while false detection rates are lower in this thesis. Khamis
et al. observed 1624 h of data containing 83 seizures from 10 patients. They detected
91.57% of all seizures while producing about 0.27 false detections per hour. Van Putten et al.
evaluated long-term EEG recordings from 16 patients. They extracted 2.5 h of each recording
and observed at least one seizure per person. They reached a sensitivity of about 77 - 97%
combined with a fdr of about 1/h.

A better fdr has been reached in this thesis. The adaptation of the number of consecutive ictal
detections that is needed to trigger an alarm has helped to improve this rate. Additionally,
the aggregation of consecutive false positives (within 30 s) has reduced the false detections
even further.

4.1.3. Why SVM?

Epileptic seizure detection seems to be a complex task. More accurate results might be
possible when using many different features. Therefore, the feature set suggested by [60] has
been chosen for this study together with ECG features. For this large number of features
some of the classification methods described in Section 1.4.3.3 are inapplicable. Discriminant
analysis tends to overfit when trained with too many features. This leads to bad generalization
and, therefore, bad testing results. Also the approach to choose thresholds is too difficult for
a large combination of features. RVM has been tried in contrast to SVM as sparser models
should be produced by RVM. Unfortunately the RVM did not finish the training of a single
classifier within several days when using the complete feature set. Therefore, this method
has been rejected. Furthermore, the data provided for this task is very unbalanced, meaning
that there is much more inter-ictal data than ictal one. ANNs are ruled out as well, as they
cannot handle this unbalanced data well. In contrast SVMs are capable to deal with these
conditions. Furthermore, SVM has been used in some seizure detection publications so far
and has proven to be able to achieve reasonable results [60, 46].

4.1.4. Hospital Data versus Home Data

All data used so far has been recorded during hospital stay. Patients have not even left their
bed during monitoring. Therefore, future investigations need to evaluate the influence of
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physical activity. All detection systems described in literature work with “hospital data”.
Therefore, the effect of many typical daily activities (e.g. walking up/walking down the stairs)
on false detections is unknown.

Especially the influence of a more varying RRI has to be tested. Also the size as well as the
delay of the background window for RRIratio calculation should be investigated further. Also
the approach to use multiple ECG features as proposed in [60] could lead to better results.

4.1.5. Testing Inconsistencies

The data material has steadily increased in the course of this thesis. At the beginning, when
some decisions have already been made the available data might not have been representative
enough for the whole data. The ratio between recorded ictal and inter-ictal data is varying
too much between all patients. For example, data of patient number 12 contains 6 seizures
in 55 minutes of recording whereas data of patient number 20 contains 3 seizures in more
than 67 h of recording. This ratio might, however, influence the choice of the RBF-SVM
parameters C and γ and also the optimal channel combination. Therefore, it might be useful
to re-evaluate the parameters and channel combinations with more homogeneous data.

A new evaluation of SVM parameters and channels might also be beneficial as in the course
of this project, the quality measures for the detection system have been changed. The rules
whether a sample counts as falsely detected or not have been adapted. For the parameter
grid search Cohen’s kappa is used to identify the best constellation. After that detection
rules have been softened allowing pre-ictal alarms. Also an attempt to reduce false positives
by triggering alarms only after a number of consecutive detections has been applied.

Testing modalities have also changed, as a result of the growing data supply during this thesis.
The first tests that have been needed to determine the SVM parameters as well as the choice
of a smaller channel combination have been conducted patient independent in a leave-one-out
fashion. After more data has arrived this method has been unpracticable, therefore, a change
to patient dependent leave-one-out testing has occurred.

4.1.6. Dataset Design

The needs the dataset has to fulfill only crystallized during the thesis and, therefore, supplied
data does not match the ideal criteria. For further investigations it would be helpful to build
a homogeneous dataset that complies with the following restrictions:
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• Only data recorded while the patient is awake should be used. The algorithm should
work in combination with the specially designed EEG-cap mentioned in Section 1.5.1.
As a primary step this cap is going to be used only when awake, therefore, good or bad
behavior on data recorded while sleeping only distorts the real quality of the detection
system.

• More detailed information about the epileptic focus and whether secondarily gener-
alization occurred (including the moment of generalization) would be helpful as well.
Especially information about the focus could be exploited to choose the best electrode
positions for detection dependent for each patient. On the other hand a better localiza-
tion of the focus could also be a task for the EEG cap. Still some prior knowledge would
be beneficial in this case, as the number of electrodes used with the cap is restricted.

• For every patient within the dataset at least 3 or 4 seizures have to be recorded.

• The duration of inter-ictal recording should be adjusted as well. Each patient should
provide roughly the same amount of data. Inter-ictal data should be provided in a to
some extent natural ratio to ictal data. In contrast, recordings of patient number 1 to
patient number 13 used in this thesis only include seizure periods with a few minutes of
inter-ictal data before and after the seizures.

• Maybe some typical artifacts known to produce false detections, like chewing, blinking
and certain movement artifacts, should be produced deliberately during inter-ictal
recording to provide better training data for the SVM.

4.1.7. Considerations for On-line Testing

The memory requirements for on-line detection are analyzed with regard to the bipolar
derivation approach restricted to 6 channels. The SVM has to be trained off-line first. The
trained SVM uses about 1000 support vectors on average. A single sample vector consists of
147 features in double precision:

→ (6 Channels× 8 Bands + 1 ECG Feature)× 3 Time Segments = 147 Features

Therefore, to store the support vectors about 1000 · 147 · 8 Bytes ≈ 1 MB of memory is needed.
For classification, the support vectors need to be multiplied with each observed sample vector.
This doubles the storage amount.

Every second 49 features - the logarithmic band power for 48 data segments and the RRIratio -
need to be computed. 6 ·49 feature values need to be stored in shifting registers. Furthermore,
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it would be useful to provide additional memory that can be used for the storage of the most
recent data. Every time a seizure occurs, this data could be kept for further analysis. Thus
better information about the seizure focus as well as additional data for retraining the SVM
can be achieved.

4.2. Future Work

A future goal is to lead the detection system to market maturity. Therefore, a number of
tasks need to be performed:

Excessive testing: More data has to be evaluated to check whether the generalization abilities
of the classifier are sufficient.

Feature alteration: The search for adequate features has to be repeated with a larger and
more balanced dataset as described in Section 4.1.6. Also the reduction of features as
proposed in Section 2.4.2 needs to be investigated further.

Other classifier: If the number of used features can be reduced massively, other classifiers,
possibly RVM, might lead to a sparser model and, therefore, to quicker and easier
on-line implementation.

On-line testing: The algorithm should be tested in an on-line scenario to see if estimated
detection delays and false detection rates are stable.

Patient specific electrode positions: The electrodes used for detection could be selected
patient specific with the help of medical staff. This might improve the detection
accuracy of the system. Also electrode positions divergent from the 10-20 system could
be used.

Reduction of detection delay: Further efforts have to be made to decrease the detection
delay. The goal has to be a detection preceding the real seizure onset.



A. Freely Available Epilepsy Data On-line

The following links contain epilepsy data freely available on the internet:

• http://www.cs.tut.fi/ gomezher/projects/eeg/databases.htm

– Signal: EEG →21 scalp electrodes, ECG

– Patients: 21 persons; focal epilepsy

– Number of seizures: one seizure each

– Recorded length: about 11 hours each

• https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/
eeg-database

– Signal: invasive EEG →6 electrodes

– Patients: Two persons; male; 35 years; suffering from mesial temporal lobe epilepsy

– Number of seizures: 2 to 5 seizures per person

– Recorded length: at least 24 hours each

• http://www.physionet.org/pn6/chbmit/

– Signal: EEG →23 or more scalp electrodes

– Patients: 22 persons; 5 males, ages 3-22; and 17 females, ages 1.5-19

– Number of seizures: 198 seizures altogether

– Recorded length: about 1000 hours altogether

• http://epileptologie-bonn.de/cms/
front_content.php?idcat=193&lang&lang=3&changelang=3

– 5 different sets with 100 single channel recordings each
2 sets from healthy persons; scalp EEG
3 sets from patients; intra-cranial EEG
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– Recorded length: 5 × 100 × 23.6 seconds

Another source is going to be on-line in the next view years:

• http://www.epilepsiae.eu/project_outputs/european_database_on_epilepsy

In total this database will contain continuous long-term recordings of 275 patients; 225 scalp
recordings and 50 intra-cranial recordings.

http://www.epilepsiae.eu/project_outputs/european_database_on_epilepsy


B. Additionally Investigated Features

The following features have already been used in seizure detection systems [24, 46, 52, 65]
as well as in epilepsy diagnosis [11, 16]. The following features appeared to be inferior to
those features used within this thesis. Consequent testing with additional data might however
lead to different conclusions. Therefore, equations for all additionally calculated but rejected
features are listed next.

Line Length (LL): Changes in frequency and amplitude can be observed by calculating the
line length proposed by [24].

LL (j) = 1
N

N∑
i=1
|x (i− 1)− x (i)| (B.1)

x . . .EEG input signal

i, j . . . time index

N . . . size of calculation window (sample rate× seconds)

Nonlinear Energy (η): To identify nonlinear signal alterations, a formula is described in [52].

η (j) = 1
N

N∑
i=1

[
x2 (i) − x (i + 1) · x (i− 1)

]
(B.2)

x . . .EEG input signal

i, j . . . time index

N . . . size of calculation window (sample rate× seconds)
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Variance (σ2): Changes in variance during seizures are described in a number of studies (cf.
[45]). The energy of the signal carries the same information as the variance. Therefore,
the following simplified equation can be used:

σ2 (j) = 1
N

N∑
i=1

x2 (i) (B.3)

x . . .EEG input signal

i, j . . . time index

N . . . size of calculation window (sample rate× seconds)

Mean Cross Correlation (CC): This feature determines the pairwise similarity of electrode
measurements. It is preferably used for the detection of generalized seizures, where
large brain areas are synchronized [46].

CC (j) = 2
N (N− 1)

N∑
i

N∑
j 6=i

x (i)x (j) (B.4)

x . . .EEG input signal

i, j . . . time index

N . . . size of calculation window (sample rate× seconds)

Number of Minima and Maxima (minmax): This feature indirectly analyzes the frequency
of the signal [65].

minmax (j) = 1
N

N∑
i=1

(|x(i)− x(i− 1)| < ε) −→ ε = 0.01 (B.5)

x . . .EEG input signal

i, j . . . time index

N . . . size of calculation window (sample rate× seconds)

ε . . .permitted tolerance for extreme value calculation
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Mean Amplitude (Amp): Amplitude is often increased during seizures [65]. This is mea-
sured by the following equation.

Amp (j) = 1
N ·

N∑
i=1

x (i) (B.6)

x . . .EEG input signal

i, j . . . time index

N . . . size of calculation window (sample rate× seconds)

Hjorth Parameters: Hjorth parameters have been used in a few studies for epilepsy diagnosis
already. Both initial diagnosis using inter-ictal EEG and seizure lateralization have
been examined [11, 16]. The three parameters describe the signals activity (h0), mobility
(h1), and complexity (h2).

h0 = m0 =̂σ2 h1 =
√
m2
m0

h2 =
√
m4
m2
− m2
m0

(B.7)

m0 . . . variance of the EEG signal

m2 . . . variance of the first derivative of the EEG signal

m4 . . . variance of the second derivative of the EEG signal
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