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Kurzfassung

Nichtkohärente Empfängerstrukturen, zu denen der Energiedetektor zählt, haben
aufgrund ihrer geringen Komplexität große Bedeutung für Ultra-Wideband Kom-
munikationssysteme. Ein wichtiges informationstheoretisches Bewertungskriterium
stellt die Kanalkapazität, die maximal erreichbare Informationsrate eines Übertra-
gungskanals bei einem bestimmten Signal-zu-Rausch Verhältnis, dar. Um diese zu
erreichen, muss das Eingangsalphabet bestimmte statistische Eigenschaften erfüllen.
Für einen nichtlinearen Kanal wie den Energiedetektor weist ein derartiges Alphabet
eine diskrete Amplitudenverteilung auf und kann z.B. durch Amplitudenumtastung
dargestellt werden.

Die Herausforderung besteht darin, solch eine nichtlineare Optimierungsaufgabe
für einen kontinuierlichen Kanal (Energiedetektor) zu lösen. Die vorliegende Ar-
beit stellt ein numerisches Verfahren zur Lösung dieser Problemstellung vor, wel-
ches die Kanalkapazität und das dazugehörige optimale Eingangsalphabet bestimmt.
Darüber hinaus soll eine ausführliche Literaturrecherche Ansätze liefern, um schließ-
lich zu zeigen, dass die Wahrscheinlichkeitsverteilung des Alphabets diskret sein
muss und eine endliche Anzahl von Massenpunkten besitzt.
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Abstract

Non-coherent receiver structures, which include the energy detector, have great
importance for ultra-wideband systems due to their low complexity. The channel
capacity, i.e. the maximum amount of information that can be transmitted at a
particular signal-to-noise ratio (SNR), represents a fundamental concept in infor-
mation theory. In order to achieve the channel capacity, the input alphabet has to
satisfy certain statistical properties. For a non-linear channel like the energy detec-
tor, such an alphabet shows a discrete amplitude distribution and can be represented
by on-off keying for low SNR or amplitude-shift-keying for higher SNR.

The difficulty lies in providing a solution for the underlying non-linear opti-
mization problem for the continuous channel (energy detector). This master thesis
presents a numerical algorithm to compute the channel capacity and the correspond-
ing capacity-achieving input distribution over a wide range of SNR. Furthermore,
it will be demonstrated that the input distribution has to be discrete with a finite
number of mass points. A detailed literature research supports these conclusions.
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Chapter 1

Introduction

The increasing interest in ultra-wide bandwidth (UWB) systems in the recent past
arises from the benefits of large bandwidth — for UWB systems larger than 500
MHz — which offer the possibility of extremely high data rate or high-accuracy
ranging and positioning even in indoor environments. Additionally, such systems
should show lower power consumption and low complexity. Especially high accuracy-
positioning and tracking by using impulse radio (IR) UWB systems — where the
large bandwidth is produced by a train of short pulses — are growing fields of inter-
est. The fine time resolution, which leads to a large number of resolvable multipath
components (MPC), allows sub-meter ranging accuracy. Another substantial bene-
fit of UWB systems is the reduction of small-scale fading effects by using the rich
multipath diversity.

The 802.15.4a standard provides signalling schemes for such applications and
allows the usage of high-complexity coherent receivers and low-complexity energy
detectors. The very high sampling rate and the elaborate processing tasks, being a
consequence of the large signal bandwidth, render the implementation of coherent
receivers extremely complex. Tasks like synchronization, accurate phase tracking,
the estimation of the amplitude and the phase of each multipath component at
very low SNR are important issues in such architectures. Contrary to coherent
receivers, non-coherent receivers like the energy detector are low-complexity but
sub-optimum alternatives with reasonably lower power consumption, so that they
became an interesting topic of research in this domain. A reason for the reduction
of complexity is that the carrier phase of the signal does not have to be recovered.

The energy detector consists of a squaring device and an integrate-and-dump
(I&D) device ([WLJ+09], [Gei09]), that is, a moving average (MA) filter with inte-
gration time Ti followed by a sampling device. Such a receiver structure can only
observe the envelope, i.e. the instantaneous power, of the signal, but not the signal
phase that changes from MPC to MPC. The energy detector simply accumulates
the energy of all MPCs over the integration time Ti.

Due to the fact that any phase information is lost, modulation schemes like phase-
shift keying are useless. Instead, modulation schemes like on-off keying (OOK) and
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CHAPTER 1. INTRODUCTION 16

pulse-position modulation (PPM) are used. [WLJ+09] gives a very good overview
of non-coherent UWB systems and treats topics such as the performance analysis of
non-coherent structures like the energy detector, using binary PPM and OOK. Com-
plexity and implementation aspects of the hardware architecture, synchronization,
and time-of-arrival estimation are discussed as well.

At this point it is an interesting question to ask to what extent the deployed
modulation schemes are similar to the modulation alphabets, e.g. amplitude dis-
tributions, which achieve the channel capacity, i.e. maximum data rate, of the
energy detector. Out of this, an interest grows to analyse the energy detector from
an information-theoretical point-of-view in order to find the channel capacity and
the optimal amplitude distribution of the input alphabet. Therefore, a statistical
model of the energy detector has to be derived. Using the obtained statistic, the
energy detector can be treated as a transmission channel with an input and output
alphabet, whereas the multipath propagation of the input signal is not considered.
The main task of this master thesis was to compute the channel capacity and the
capacity-achieving input distribution, i.e. the optimal input amplitude distribution,
over a wide range of SNR of this continuous transmission channel. To solve this
non-linear optimization problem, the so-called Blahut-Arimoto algorithm has been
extended to continuous channels ([Dau05] and [Dau06]).

Another aspect will be to deliver a mathematical method to show that the achiev-
ing input distribution of the energy detector, which is a non-linear channel, is discrete
with a finite number of mass points. Such discrete amplitude distribution can be
represented by e.g. on-off keying for low SNR or amplitude-shift-keying for higher
SNR. Due to the fact that the optimization problem of finding the optimal input
distribution is very complex, I also will present a simpler method to approximate
the channel capacity over certain regions of SNR.

1.1 Outline

In chapter 2 the statistical model of the energy detector is discussed in detail. The
first section is dedicated to the signal model of the energy detector and how it
can be simplified so that a statistical model of the energy detector’s output can
be established. Afterwards, I will give an exact mathematical description of the
statistics of the output signal, i.e. the energy detector as information-theoretical
channel. Furthermore, I formulate an approximation of the channel model of the
energy detector.

The first part of chapter 3 discusses the concept of the channel capacity and
the Blahut-Arimoto algorithm will be introduced. The next part of this section
forms the main part of this work, due to the fact that the energy detector is seen
as a continuous channel with a continuous input distribution. I will present an
improved algorithm for solving the channel capacity for such continuous channels
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with constrained input alphabets. The basic ideas for this algorithm were inspired
by the paper [Dau05].

Chapter 4 treats discrete capacity-achieving input distributions of linear and
non-linear channels with constraints. On the basis of a detailed literature research,
I will briefly explain why the achieving input-distribution of such channels is discrete
and outline the approach for proving the discreteness for the input distribution of
the energy detector.

In chapter 5, the simulation results for the capacity of the energy detector and
the corresponding achieving input distribution are presented and analysed. A com-
parison between the exact and the approximated statistical models for different
integration times will be made. In addition, I will analyse the behaviour of the
achieving input distributions for different peak amplitude-to-average power ratios of
the input alphabet. After that, the results of the simulation will be evaluated using
simple models of the energy detector.

Finally, chapter 6 will introduce a method to obtain a capacity-approaching
input distribution over a range of SNR, at which the corresponding mutual infor-
mation has nearly the same value as the channel capacity. The impulse for this
idea comes from [FH09], where the input distribution, whose mutual information
closely approaches the channel capacity, can be evaluated based on source entropy
maximization.
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Chapter 2

Statistical Model of the Energy
Detector

The energy detector is a well-known receiver structure in wireless communications,
which simply captures the energy of the transmitted signal in a certain period of
time. The energy detector consists of a filter, a squaring unit and an energy in-
tegrator, as shown in Fig. 2.1. This relatively simple structure implicates a large
complexity advantage compared to coherent receiver structures. It is obvious that
such a non-coherent receiver can only observe the envelope of the received signal
and any information of the symbol phase is lost.

To find a statistical representation of the energy detector, we have to find a
proper analytical signal model. This means that, if we want to get the probability
density function (PDF) of the energy detector output, we have to take into account
the noise-bandwidth reduction because of filtering, the non-linear operation of the
squaring unit, and the integration over the time interval.

This is the purpose of the following sections. The first step is to find a signal
representation for the output of the energy detector, for which we can obtain a
closed-form expression for the PDF. In the following one can show that this PDF
can be approximated by Gaussian distribution with signal-dependent noise variance
for large integration times. In the final step I want to demonstrate with a set of
simulations that the theoretically correct PDF and the approximation match very
well for sufficiently large integration times Ti.
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BPF (·)2
∫

Ti
(·)

Ts = Ti

r(t) y[m]

Figure 2.1: Structure of the energy detector, where Ti is the integration time and
Ts is the symbol duration.

2.1 Energy Detector

For the following derivations it will be assumed that the input signal r(t) = x(t)+η(t)
of the energy detector does not depend on the transmission channel. Furthermore,
it is assumed that the input signal is given in the baseband representation. The
input signal x(t), for example, can be represented as a pulse amplitude modulation
(PAM) signal. For the noise signal η(t) a Gaussian noise process with zero-mean
and power spectral density (PSD) N0 was considered.

The output of the integrator after the sampling device can be written as follows

y[m] =

∫ mTi

(m−1)Ti

r(t)2dt. (2.1)

Out of this we get

y[m] =

∫ mTi

(m−1)Ti

(

x(t) + η(t)

)2

dt =

∫ mTi

(m−1)Ti

x(t)2 + 2x(t)η(t) + η(t)2dt (2.2)

where Ti represents the integration interval and Wrx the bandwidth of the receiver
bandpass-filter.

After the filtering, the input signal x(t) and the noise η(t) can be approximated
by a finite sum of TiWrx terms [Urk67]. For simplicity, a rectangular baseband-filter
is considered with the bandwidth Wrx. So the filtered noise and signal are expressed
by

η(t) =
∞∑

n=−∞

η[n]sinc(tWrx − n), (2.3)

where

η[n] = η

(
n

Wrx

)

. (2.4)

Under these considerations, it is obvious that the noise samples are independent
and identically distributed Gaussian random variables with zero-mean and variance
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σi
2 = σ2 = N0Wrx. For the signal we can write

x(t) =
∞∑

n=−∞

x[n]sinc(tWrx − n) (2.5)

where

x[n] = x

(
n

Wrx

)

. (2.6)

By plugging these results in Eq. 2.1 and using the fact that the sinc-functions at
different time steps are orthogonal, the equation can be rewritten as

y[m] =

∫ mTi

(m−1)Ti

( ∞∑

n=−∞

(η[n]sinc(tWrx − n) + x[n]sinc(tWrx − n)

)2

dt

=

∫ mTi

(m−1)Ti

∞∑

n=−∞

(

x[n]sinc(tWrx − n)dt+ η[n]sinc(tWrx − n)

)2

dt

y[m] ≈
TiWrx−1∑

n=0

(

x[mM − n] + η[mM − n]

)2

=

TiWrx−1∑

n=0

r[mM − n]2

(2.7)

The product TiWrx of the integration interval and the bandwidth of the baseband-
filter, which represents the length of the summation operator is called noise dimen-
sionality. After the summation and the sampling we get a discrete time description
of the input signal x[n] and the noise signal η[n]. Here we assume that noise samples
η[n] with a different time index do not depend on each other. This means that η[n]
can be described by an iid RV (independent identically distributed random variable).
Further we assume that the input signal x[n] is independent of the noise signal η[n].

To get a closer look at the pass-band representation of the signals, and at the
interpolation of the output signal for channel estimation I would like to refer to the
diploma thesis [Gei09] by Bernhard Geiger. Here the baseband filtered signal was
considered as complex and the noise-term before filtering as a complex Gaussian
process with zero-mean and a two-sided PSD N0.

As mentioned before, the noise variable η[n] is an iid RV with zero-mean and
variance σ2. So the input-signal r[n] which appears in Eq. 2.7 has the following
statistical distribution

r[n] ∼ N (x[n], σ2) (2.8)

By the reason that x[n] can be seen as the new input signal of the system, which rep-
resents the mean of the RV r[n], and η[n] as additive noise-term, the model for the
energy detector for the following statistical analysis can be reconsidered as shown
in Fig. 2.2.
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We will now treat the system from r(t) to y[m] as a channel, for which we will

(·)2
M=TiWrx∑

i=1

(·)+

N (0, σ2)

x[n] y[m]r[n]

Figure 2.2: New structure of the energy detector for statistical considerations

determine the capacity and the capacity-achieving input distribution later. Since
this channel is stationary and memoryless and the input-signal x[n] can also be seen
as memoryless, we simply can, with no loss of generality, suppress the time-index
n if we speak about statistical representations of the input x[n], the noise η[n], the
output y[n], or the channel (transition PDF). For the following assumptions and cal-
culations, the noise-dimensionality TiWrx, which represents the length of the sum,
is replaced by the term M .

2.2 Non-Central Chi-Square Model

2.2.1 Derivation

The next natural task is to find a statistical representation for the derived model
of the energy detector. As Fig. 2.2 shows, the input r of the squaring device has
a Gaussian distribution N

(
x, σ2

)
, where x represents the mean value and σ2 the

variance. Such a non-linear operation, and the summation afterwards, transforms
our RV with a Gaussian PDF into an RV with non-central χ2 PDF.

It is important for this representation, that the variance of the transformed RV
r is normalized to one, which is done by a division by the noise standard deviation
σ. So one can write the output y of the energy detector as

y[m] =
M−1∑

n=0

(
r[mM − n]

σ

)2

=
M−1∑

n=0

r̃[mM − n]2 (2.9)

where r̃ has the following distribution for x[n] = 0 or a constant value x[n] = a

r̃[n] ∼







N (0, 1), x[n] = 0

N
(

a
σ
, 1

)

, x[n] = a
. (2.10)

Out of this we can say that, if the samples r̃[n] are an independent, normally dis-
tributed RVs like in Eq. 2.10, then the output signal y[m] is distributed according
to the non-central χ2 distribution. Such a distribution is defined by two parameters,
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the degree of freedom, which is specified by the noise dimensionality M and the
so-called non-centrality parameter λ, which is calculated by the means µn of the RV
r̃[n], as the following shows

λ =

M∑

n=1

µ2
n =







∑M
n=1

(

x[n]
σ

)2

= 0, x[n] = 0

∑M
n=1

(

x[n]
σ

)2

= M a2

σ2 , x[n] = a

. (2.11)

λ can be interpreted as SNR, where Ma2 is the signal power and σ2 is the noise
power.

At this point I briefly want to talk about the energy detector input signal x[n].
I assume the input signal as constant over the entire integration time, so that we
obtain the non-centrality parameter λ as shown in Eq. 2.11. But what happens to
λ, if we send a single pulse with the same signal energy or if we assume a multipath
propagation scenario for a UWB signal?
The energy of the signal over an integration period is given as

M∑

i=1

x[n]2 = P = Ma2 (2.12)

whereas the same signal energy can be obtained with the following input signals:

1. With the constant signal x[n] = a

2. With a single pulse x[n] =
√
Pδ[n−m], m ∈ 1, . . . ,M

3. With series of pulses like a tapped-delay line model, as it is used for multipath
propagation channels,

x[n] =
√
P

L−1∑

i=0

αiδ[n− i], (2.13)

where L can be seen as the number of MPC, αi as the complex path gain and i
as the discrete path delay of the lth component. (The symbol duration Ts has
to be larger than the maximum excess delay τmax of the channel, otherwise ISI
(Inter-symbol Interference) occurs and we have to extend our channel model
to a channel with memory.) A precondition for the channel to get the same
signal power is that

∑L

i=1 α
2
i = 1. Such a multipath model can be assumed,

if a signal with sufficiently large bandwidth, e.g. a UWB signal is assumed,
at which every MPC can be considered as separable. (A closer look at the
statistics of the energy detector with a multipath propagation channel is given
in Appendix A.)
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Due to the fact that all cases are equal, the choice of a constant input signal can
be seen as correct and the SNR = P

σ2 .
With the knowledge of the non-centrality parameter, the PDF can be written as

p(y;λ,M) = χM(λ) =
1

2
e−

x+λ
2

(y

λ

)M
4
− 1

2
IM

2
(
√

λy) (2.14)

where Ik(z) is the modified Bessel function of the first kind. The mean and the
variance of y are given by

E {y} = M + λ =

{

M, x[n] = 0

M +M a2

σ2 , x[n] = a
(2.15)

and

var {y} = 2(M + 2λ) =

{

2M, x[n] = 0

2M + 4M a2

σ2 , x[n] = a
. (2.16)

These results show that the mean and the variance of the output signal y of the
energy detector increase both with the integration time, i.e. with the length of the
sum M , and with the energy of the input signal x. This behaviour is shown in Fig.
2.3, where the distribution of the output signal is shown for some input values x.

The corresponding channel transition PDF is therefore the conditional non-
central χ2-distribution, conditioned on the input x and with the channel output
y, so that we can write:

PY |X(y|x,M, λ) ∼ χM(λ) = χM

(
Mx2

σ2

)

(2.17)

2.2.2 Verification

In this section, the simulation results of the energy detector are shown to verify the
statistical parameters of the analysed model. Fig. 2.3 also shows the experimental
analysis of the output of the energy detector y for a specific input value x and the
analytically calculated channel transition PDF for the same input value x. As we
can see, the experimental results match with the analytical results.

The simulated mean and variance over a data-set shown as the dashed line in
Fig. 2.4 follows the analytical calculation as in Eq. 2.15 and 2.16 of the mean and
variance shown as the solid line. From this we can conclude that the derived model
of the energy detector holds. Table 2.1 shows the numerical values of the mean and
the variance for the input signal value x = 1.
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Figure 2.3: Non-central χ2-channel transition PDF for M = 50. The solid red lines
show the analytical PDF and the black dashed lines the simulated channel transition
PDF.

0 0.5 1 1.5
40

60

80

100

120

140

160

180

x

µ2 E
D

 

 

analytical
simulated

(a) Mean µED

0 0.5 1 1.5
0

100

200

300

400

500

600

x

σ2 E
D

 

 

analytical
simulated

(b) Variance σ2

ED

Figure 2.4: Analytical (red solid line) and simulated (blue dashed line) mean and
variance of the energy detector output y over certain input values x for M = 50.

M σ2 µ
analytical 50 300 100
simulated 50 301.4 99.6

Table 2.1: Mean and Variance for x = 1 (analytical and simulated)
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2.3 Gaussian Approximation

2.3.1 Derivation

To simplify the problem for the further tasks, the exact statistical model of the
energy detector can be modelled by another distribution. If the noise dimensionality
M = TiWrx is large enough, the non-central χ2-distribution can be approximated
by a Gaussian PDF with an input signal dependent variance σ(x) and mean µ.

This fact holds because of the central limit theorem, which says that a sufficiently
large number of independent identically distributed RV will be approximately nor-
mal distributed. For example a χ2-distributed RV with a degree of freedom greater
than 40 can be described by a Gaussian RV with a confidence better than 5% [SH06].

By taking over the variance and the mean derived for the non-central χ2-distribution,
the corresponding Gaussian approximation of the channel transition PDF can be
written as

PY |X(y|x,M, λ) ∼ N
(

M +M
x2

σ2
, 2M + 4M

x2

σ2

)

. (2.18)

Later in this section it will be shown with some qualitative simulations at which M
the two models significantly differ from each other.

For a closer look at this approximation, I present the mathematical derivation
for the mean and the variance. We take the derived signal model for the energy
detector where x[n] is normalized by σ:

y[m] =

TiWrx−1∑

n=0

r[mM − n]2 =

TiWrx−1∑

n=0

(

x[mM − n] + η[mM − n]

)2

=
M−1∑

n=0

x[mM − n]2

︸ ︷︷ ︸

I

+ 2
M−1∑

n=0

x[mM − n]η[mM − n]

︸ ︷︷ ︸

II

+
M−1∑

n=0

η[mM − n]2

︸ ︷︷ ︸

III

(2.19)

where

I =

{

0, x[n] = 0

M a2

σ2 , x[n] = a

II ∼
{

0, x[n] = 0

N (0, 4M a2

σ2 ), x[n] = a

III ∼ N (M, 2M)

(2.20)
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and the distribution of the output signal y[n] under the Gaussian approximation is

y[n] ∼
{

N (M, 2M), x[n] = 0

N (M +M a2

σ2 , 2M + 4M a2

σ2 ), x[n] = a
. (2.21)

With these results the channel transition PDF for the Gaussian approximation can
be written as

PY |X(y|x,M, λ) ∼ N
(

M +M
x2

σ2
, 2M + 4M

x2

σ2

)

. (2.22)

2.3.2 Verification

At first I want to show that for M = 50 (same value as for the evaluation of the non-
central χ2-distribution model) the simulation of the energy detector output y and
the Gaussian transition PDF for specific input values x are qualitatively the same,
although some differences can be seen (see Fig. 2.5). However, we can say that for
large M the Gaussian model with signal-dependent variance and mean models the
behaviour of the energy detector very well.
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Figure 2.5: Gaussian approximation transition PDF for M = 50. The solid red lines
show the analytical PDF and the black dashed lines the simulated transition PDF.

IfM is getting smaller, the differences between the exact model and the Gaussian
approximation are getting significant, as shown in Fig. 2.6. For M = 1 the energy
detector works like a squaring device without summing up the values. In this case,
we can see in Fig. 2.6(d) that the exact non-central χ2 representation of the output
signal still has zero probability for negative output values y, whereas the Gaussian
approximation does not show this behaviour.
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Figure 2.6: Non-central χ2 transition PDF and Gaussian approximation transition
PDF for M = 1, 5, 10, and 50.



Chapter 3

Channel Capacity of a Continuous
Channel

The channel capacity is a fundamental concept in information theory, introduced
by Claude Shannon [Sha48]. It gives an asymptotic bound on the maximum rate
at which information can be reliably transmitted over a channel by using a specific
input distribution, i.e. which information can be sent with arbitrarily low probability
of error [CT91].

In [Bla72] and [Ari72] the so-called Blahut-Arimoto algorithm is introduced for
computing the channel capacity of discrete channels and the probability mass func-
tion (PMF), which achieves this maximum mutual information. Blahut furthermore
introduces the same algorithm for channels with certain constraints, e.g. an average
power constraint, and also for continuous channels and sources, but gives no detailed
solutions for such continuous channels.

Given that for continuous channels the Blahut-Arimoto algorithm is not directly
applicable, one of the main tasks of this master thesis was to write an algorithm
which calculates the channel capacity and the capacity-achieving input distribution
for the energy detector, which can be represented as a continuous channel over a
wide range of SNR. The conceptual idea of the algorithm is based on the paper
[Dau05] and the PhD-thesis [Dau06] written by Justin Dauwels, where a numerical
solution is given for continuous channels with constraints. Basically, this method
works with two independent algorithms, which are iteratively executed. The first
part calculates the masses of the input PMF, using the Blahut-Arimoto algorithm.
The second part computes the positions of the mass points and is carried out by a
gradient method, such as steepest decent.

In this section I will first give a short overview of the concept of channel capacity.
Afterwards I introduce the extended version of the Blahut-Arimoto algorithm for
continuous channels based on the ideas of Dauwels, which were used to calculate the
channel capacity of the energy detector.

29
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Message
W Xn Y n

Ŵ

Estimate
Encoder Channel Decoderp(Y |X)

of
Message

Figure 3.1: Communication system [CT91]

3.1 The Channel Capacity

3.1.1 Basics

For communication channels the channel capacity is considered as the limiting in-
formation rate that can be achieved with arbitrarily small error probability. This
important concept of information theory states that the capacity is given by the
maximum of the mutual information between the input and the output signal of the
channel, where the maximization is done over the set of all input distributions. The
input distribution, which achieves this maximum, is called the capacity-achieving
input distribution. Any source that operates at a higher information rate than the
capacity, will cause a loss of data because of uncorrectable errors, so that the real
data rate can not be greater than the capacity.

Another way to describe this behaviour is to find the maximum number of dis-
tinguishable signals for a certain number n of uses of the communication channel.
The channel capacity is defined as the exponent that leads to an exponential growth
of the number of signals with n. So we can say that the channel capacity is the
logarithm of the number of distinguishable signals, which in a first thought can be
related to the entropy, i.e. the mutual information [CT91]. For the following the-
oretical derivations, the natural log is always chosen, but for practical results, the
log is taken to the base 2, so that the channel capacity is expressed in terms of bits
per channel use.

The mathematical block diagram of a communication system is shown in Fig.
3.1, where a message is mapped to the channel symbols, which are related to the
output symbols after the channel. The output symbols occur randomly but have a
distribution that depends on the distribution of the input symbols and the channel.
We can choose the subset of input sequences with a specific distribution, so that ev-
ery input sequence leads to a particular output sequence with negligible ambiguity.
Then every input sequence can be reconstructed from the output sequences with an
arbitrarily small error and the maximum information rate at which this can be done
is called channel capacity.

The channel shown in Fig. 3.1 is defined as the conditional distribution function
PY |X(x, y) = p(y|x) which describes the probability of observing the output y given
that the symbol x was sent. We implicitly assume that the channel is memoryless,
i.e. the output symbols are independent of previous and future input and output
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symbols. Let X and Y be discrete RVs with alphabets X and Y and probability
mass functions p(x) = Pr {X = x}, x ∈ X and p(y) = Pr {Y = y}, y ∈ Y . The
channel capacity for discrete channels is defined as

C = max
p(x)∈PX

I(X ; Y ) = max
p(x)∈Pχ

(h(y)− h(y|x))

= max
p(x)∈PX

∑

x,y

p(x)p(y|x) log p(y|x)
p(y)

(3.1)

where h(·) is the differential entropy and PX is the set of all probability mass func-
tions on the countable set X .

For continuous channels, i.e. continuous input and output alphabets, the RVs X
and Y are said to be continuous and described by PDFs. So the summations are
replaced by integrals and the channel capacity is defined as

C = max
p(x)∈PR

∫∫

x,y

p(x)p(y|x) log p(y|x)
p(y)

dxdy (3.2)

where PR is the set of all PDFs supported on the set R of real numbers.

If the input symbols are constrained with an averaging function e(x), the maxi-
mization has to be done over the input distributions which satisfy the constraints.
Thus, the new domain PR(E) is the set of PDFs satisfying E ≥

∫

x
e(x)p(x)dx.

3.1.2 Example: Gaussian Channel

The Gaussian channel as shown in Fig. 3.2 is the most important continuous com-
munication channel. The channel is assumed to be time-discrete and the output is
the sum of the input X and the noise N . The noise N is an iid Gaussian continuous
RV, which is independent of the input X . So that

Y = X +N, N ∼ N (0, σ2) (3.3)

Due to the fact that we assume an average power (AP) constraint, the signal X

input X output Y

noise N

Figure 3.2: Additive Gaussian noise channel [CT91]
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has to be restricted by

P ≥ E
{
X2

}
=

∫

x

x2p(x)dx. (3.4)

The channel capacity is defined as the maximum of the mutual information between
the input and output over all input distributions that satisfy the AP constraint.
The capital letters X , Y and N represent continuous RVs. So the channel capacity
can be calculated as follows

I(X ; Y ) = h(Y )− h(Y |X)

= h(Y )− h(X +N |X)

= h(Y )− h(N |X)

= h(Y )− h(N)

(3.5)

where h(·) is the differential entropy. As the noise N is Gaussian distributed, the
entropy can be calculated very easily by h(N) = 1

2
log(2πeσ2). The second moment

of Y is

E
{
Y 2

}
= E

{
X2

}
+ 2E {XN}

︸ ︷︷ ︸

=0

+ 2E
{
N2

}

︸ ︷︷ ︸

=σ2

≤ P + σ2. (3.6)

E {Y 2} = P +σ2 forms an upper bound for the entropy of Y by 1
2
log(2πe(P +σ2)).

Applying this in Eq. 3.5 we obtain an upper bound for the mutual information,
which represents the channel capacity

I(X ; Y ) = h(Y )− h(Y |X) ≤ 1

2
log

(

1 +
P

σ2

)

. (3.7)

This maximum is achieved if the input distribution X is also Gaussian distributed
with N (0, P ) [CT91].

C =
1

2
log

(

1 +
P

σ2

)

(3.8)

3.2 Blahut-Arimoto Algorithm

Blahut [Bla72] and Arimoto [Ari72] independently developed algorithms to find
the channel capacity and the corresponding capacity-achieving input distribution
for discrete memoryless channels. Blahut also presented methods to calculate the
rate distortion function and to calculate the capacity for channels with multiple
constraints. Furthermore, he has shown that his newly developed mathematical
tool can also be adapted to continuous channels. It is very interesting that Blahut
has already mentioned that the achieving input distribution for continuous channels
does not have to be continuous in general, but also can be discrete. Due to the fact
that in most cases the capacity of continuous channels can not be solved analytically,
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but with numerical methods, the mentioned discreteness of the input distribution
can be a great benefit. The reason for that will be explained later. A fundamental
discussion about the discreteness and finiteness of achieving input distributions for
some channels will be given in Chapter 4.

To gain a better understanding of how the algorithm works, at first I will discuss
the Blahut-Arimoto for discrete, constrained transmission channels. Afterwards, I
will develop methods to solve these non-linear optimization problems for continuous
channels based on [Dau05].

3.2.1 The BA-Algorithm for Unconstrained Discrete Chan-
nels

The evaluation1 of the channel capacity C is carried out as the solution of a convex
optimization problem. In most cases an analytical solution cannot be found. For
this very reason an iterative algorithm was developed for discrete input- and output-
alphabets, based on the fact that the mutual information can be formulated in two
ways

I(X ; Y ) = min
q(y)

∑

x

∑

y

p(x)p(y|x) log p(y|x)
q(y)

I(X ; Y ) = max
p(y|x)

∑

x

∑

y

p(x)p(y|x) log φ(x|y)
p(x)

(3.9)

where X and Y are discrete RVs. p(y|x) is the channel transition probability (ma-
trix) from the channel input to the channel output, which represents the underlying
channel, p(x) is the input distribution (PMF), q(y) is called the arbitrary output
probability (PMF) and φ(x|y) is called the arbitrary channel transition probability
(matrix) from the channel output to the channel input. The channel capacity is
defined as

C = max
p(x)∈PX

∑

x

∑

y

p(x)p(y|x) log p(y|x)
∑

x p(x)p(y|x) (3.10)

where

PX =

{

p(x) : X → [0, 1] :
∑

x

p(x) = 1

}

(3.11)

is a set of all probability mass functions on the channel input alphabets. As Eqs.
3.9 and 3.10 show, φ(x|y) can be determined by the channel transition probability
p(y|x), the input distribution p(x) and the arbitrary output distribution q(y), which
also can be expressed by the input probability and the channel transition probability.
Due to the fact that the arbitrary transition probability depends only on the given

1The contents of sections 3.2.1 and 3.2.2 are based on [Bla72].



CHAPTER 3. CHANNEL CAPACITY OF A CONTINUOUS CHANNEL 34

channel transition probability and the input probability, we can reformulate the
optimization problem shown by Eq. 3.10 in an alternating double maximization
problem given by

C = max
p(x)

max
φ(x|y)

J(p, P, φ)

= max
p(x)

max
φ(x|y)

∑

x

∑

y

p(x)p(y|x) log φ(x|y)
p(x)

.
(3.12)

The alternating maximization works in the following way:

• For a fixed input distribution p(x), J(p, P, φ) is maximized by

φ(x|y) = p(y|x)
∑

x p(x)p(y|x)
(3.13)

• For a fixed arbitrary channel transition probability φ(x|y), J(p, P, φ) is maxi-
mized over p(x)

The maximization of J(p, P, φ) over p(x) can be obtained by using Lagrange multi-
plier to the constraint

∑

x

p(x) = 1. (3.14)

We obtain

∂

∂p(x)

{
∑

x

∑

y

p(x)p(y|x) log φ(x|y)
p(x)

+ λ(
∑

x

p(x)− 1)

}

= 0 (3.15)

which yields

− log p(x)− 1 +
∑

x

p(y|x) logφ(x|y) + λ = 0. (3.16)

By combining the result 3.16 and the constraint 3.14 we can formulate the unknown
parameter λ and can express the input distribution p(x) by

p(x) =
e
∑

y p(y|x) logφ(x|y)

∑

x′ e
∑

y p(y|x′) logφ(x′|y)
. (3.17)

If the optimal arbitrary channel transition probability φ(x|y) is inserted into Eq.
3.17, the input distribution is capacity-achieving and can be written as

p(x) =
p(x)e

∑
y p(y|x) log

p(y|x)∑
x p(x)p(y|x)

∑

x′ p(x′)e
∑

y p(y|x′) log p(y|x′)∑
x p(x)p(y|x)

(3.18)
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where
∑

x p(x)p(y|x) can be replaced by the output distribution p(y). The sum in
the exponent of Eq. 3.18 can be replaced by the Kullback-Leibler divergence or
relative entropy D(·||·) which is defined as

D(f(·)||g(·)) =
∑

x

f(x) log
f(x)

g(x)
. (3.19)

This way we get the following update rules for the iterative alternating maximiza-
tion algorithm:

1. Update the Kullback-Leibler divergence between the channel transition prob-
ability and the output distribution

D(p(y|x)||pk−1(y)) =
∑

y

p(y|x) log p(y|x)
pk−1(y)

=
∑

y

p(y|x)) log p(y|x)
∑

x p
k−1(x)p(y|x)

(3.20)

2. Update the input distribution

pk(x) =
pk−1(x)eD(p(y|x)||pk−1(y))

∑

x′ pk−1(x′)eD(p(y|x′)||pk−1(y))
(3.21)

These two optimization steps will be iterated until a stopping criterion is fulfilled.

3.2.2 Constrained Continuous Channels

If we turn attention to continuous channels and sources that are described by PDFs,
this means that every sum in the algorithm turns into an integral and X and Y
are continuous RVs. In this case, the Blahut-Arimoto algorithm is not directly
applicable. A solution for such channels is given in the next section.

It is a fact that the input symbols of the channels get only a specific amount
of power delivered by the source and can not exceed a certain amplitude. This
means that the input distribution, which maximizes the mutual information, has to
be constrained. Such a constrained channel is a channel which requires an average
expense less than or equal to some specific number E, and the amplitude of an
input symbol cannot exceed a specific number A. x ∈ X and y ∈ Y are realisations
of the RVs X and Y , which represent the values of the input and output symbols.
Therefore, the domains2 have to be restricted by the constraints given to the symbols.

2In the following equations I only indicate the domain of x and y if it is a final result of the
equation
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The channel capacity is then defined as

C = sup
p(x)∈PR(E,A)

I(X ; Y ) = sup
p(x)∈PR(E,A)

∫

x∈X

∫

y∈Y

p(x)p(y|x) log p(y|x)
∫

x
p(x)p(y|x)dxdy

(3.22)

where

PR(E,A) =

{

p : [0, A] → [0,∞] :

∫

x∈X

p(x)dx = 1; 0 ≤ x ≤ A;

∫

x∈X

e(x)p(x)dx ≤ E

}

(3.23)
is a convex set of probability density functions on the channel input which satisfy the
constraints. Due to the fact that the channel capacity of the energy detector will be
solved for a set of input distributions which satisfy an AP and a peak amplitude (PA)
constraint, the Blahut-Arimoto algorithm has to be formulated for these restrictions.
The average power of the input alphabet can be seen as the second moment and is
defined as ∫

x

x2p(x)dx ≤ P (3.24)

where ∫

x∈X

p(x)dx = 1. (3.25)

The PA constraint restricts the input symbols to 0 ≤ x ≤ A. If in the initial input
alphabet x ∈ X an amplitude appears which does not meet that constraint, the
probabilities of such symbols have to be set to zero. A constraint-function which
satisfies this condition and can be embedded in the algorithm, is

e(x) =

{

0, 0 ≤ x ≤ A

∞, x < 0 ∧ x > A
. (3.26)

This constraint-function is not directly embedded in the derivation of the algorithm,
but is included in the final result of the update steps. Another option is a direct
restriction of the initial input alphabet to values which satisfy the PA constraint
0 ≤ x ≤ A.

The algorithm starts with an initial guess for the input distribution p(x), so that
the arbitrary channel transition probability φ(x|y) is given by

φ(x|y) = p(x)p(y|x)
∫

x
p(x)p(y|x)dx (3.27)

Using the constraints 3.25 and 3.24, we can obtain the maximization 3.22 by using
Lagrange multipliers s and λ (like in the previous section)

I(X ; Y ) =

∫

x

∫

y

p(x)p(y|x) log φ(x|y)
p(x)

dy+λ

(∫

x

p(x)dx− 1

)

+s

(∫

x

x2p(x)dx− P

)

(3.28)
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The next step is to maximize I(X ; Y ) with respect to p(x), which is done by

∂I(X ; Y )

∂p(x)
=

∫

y

p(y|x) log φ(x|y)
p(x)

dy − 1 + λ+ sx2 = 0 (3.29)

Thus, we can obtain p(x)

e1−λ−sx2

= e
∫
y
p(y|x) log

φ(x|y)
p(x)

dy

= e− log p(x)
∫
y
p(y|x)dy+

∫
y
p(y|x) log φ(x|y)dy

= p(x)−1e
∫
y
p(y|x) log φ(x|y)dy

→ p(x) =
p(x)e

∫
y
p(y|x) log

p(y|x)∫
x p(x)p(y|x)

dy

e1−λ−sx2

(3.30)

By substituting p(x) in constraint 3.25, we obtain

e1−λ =

∫

x

p(x)
∫

y
p(y|x) log p(y|x)∫

x
p(x)p(y|x)

dy

e−sx2 dx. (3.31)

and by substituting p(x) in constraint 3.24, we obtain

1 ≥
∫

x

x2

P

p(x)
∫

y
p(y|x) log p(y|x)∫

x
p(x)p(y|x)

dy

e1−λ−sx2 dx. (3.32)

If we combine 3.31 and 3.32 we get

∫

x

[

1− x2

P

]

p(x)e
sx2+

∫
y
p(y|x) log p(y|x)∫

x p(x)p(y|x)
dy
dx ≥ 0

∫

x

[

1− x2

P

]

p(x)esx
2+D(p(y|x)||p(y))dx ≥ 0

(3.33)

This non-linear equation can be solved by using the Newton-Raphson method as it
is mentioned in [NO07b] and [NO07a]. Thus, we get an iterative solution for solving
s as follows

s(n) = s(n−1) −
∫

x∈X
es

(n−1)x2
[

1− x2

P

]

p(k−1)(x)eD(p(y|x)||p(k−1)(y))dx

∫

x∈X
x2es(n−1)x2

[

1− x2

P

]

p(x)(k−1)eD(p(y|x)||p(k−1)(y))dx
(3.34)

where n defines the iteration-index to get the parameter s (iteration-index k is con-

stant) and D(p(y|x)||p(k−1)(y)) =
∫

y∈Y
p(y|x) log p(y|x)∫

x
p(k−1)(x)p(y|x)

dy is the Kullback-

Leibler divergence computed with the input distribution p(k−1)(x) from the previous
iteration step k. The parameter s is always negative and defines the weight of the



CHAPTER 3. CHANNEL CAPACITY OF A CONTINUOUS CHANNEL 38

AP constraint. The smaller the weight of the AP constraint, the smaller is s. If the
iterative computation 3.34 produces positive values for s, this means that the AP
constraint is inactive and only the PA constraint works. In this case the parameter s
has to be set to zero. If we consider the solution for s in 3.30, the input distribution
can be calculated with

p(k)(x) =
e(s

(n)x2−e(x))p(k−1)(x)eD(p(y|x)||p(k−1)(y))

∫

x∈X
x2e(s(n)x2−e(x))p(k−1)(x)eD(p(y|x)||p(k−1)(y))dx

. (3.35)

The mutual information I(k) corresponding to the optimal input distribution p(k)(x)
represents a lower bound for the channel capacity and is given by

I(k) =

∫

x∈X

p(k)(x)D(p(y|x)||p(k)(y))dx. (3.36)

The upper bound of the channel capacity is given by

U (k) = max
x∈X

{
D(p(y|x)||p(k)(y)) + s(n)x2

}
− s(n)P (k) (3.37)

where

P (k) =

∫

x∈X

x2p(k)(x)dx (3.38)

which is the actual AP value. The function e(x) for the PA constraint does not
appear directly in the upper bound. It does not because the probability p(x) for x not
satisfying the PA constraint becomes zero. The probability p(x) for x, which lies in
the allowed region, does not get affected by this constraint. If after a certain number
of iterations the gap between the lower and the upper bound is sufficiently small,
one halts the algorithm and the mutual information I(k) can be seen as an estimate
for the channel capacity. The iterative approximation of s seen in 3.34 yields an s so
that the condition P (k) ≤ P is satisfied and the gap between lower and upper bound
is as small as possible. The Blahut-Arimoto algorithm for continuous channels with
AP and PA constraint input can be seen as pseudo-code in code-box 1. In this form
the algorithm can not be carried out directly, due to the fact that the continuous
input PDF p(x) leads to an infinite-dimensional optimization problem and to the
fact that the integral has to be calculated. To solve this problem, we have to present
a method to solve the integrals over the input and output distributions numerically.
Furthermore the input distribution p(x) has to be expressed in a numerical solvable
form.
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Algorithm 1: Constraint Blahut-Arimoto algorithm

Initialize:
(1) compute p(y|x)
(2) choose p(0)(x) so that 0 < p(0)(x) < 1 and

∫

x
p(0)(x)dx = 1

(3) choose I(0) and U (0)

(4) choose ǫc and ǫs
while U (k) − I(k) ≤ ǫc do

Step 1: compute:
(1) D(p(y|x)||p(k−1)(y)) =

∫

y∈Y
p(y|x) log p(y|x)∫

x
p(k−1)(x)p(y|x)

dy

Step 2: Initialize s(0,k), s(1,k)

while s(n,k) − s(n−1,k) ≤ ǫs do
Step 3: compute:
(1) s(n−1,k) = s(n,k)

(2) s(n,k) = s(n−1,k) −
∫
x∈X es

(n−1,k)x2

[

1−x2

P

]

p(k−1)(x)eD(p(y|x)||p(k−1)(y))dx

∫
x∈X

x2es
(n−1,k)x2

[

1−x2

P

]

p(x)(k−1)eD(p(y|x)||p(k−1)(y))dx

if s(n) > 0 then
s(n) = 0

end

end
Step 4: compute:
if x < 0 or x > A then

e(x) = inf
else

e(x) = 0
end

(1) p(k)(x) = e(s
(n)x2−e(x))p(k−1)(x)eD(p(y|x)||p(k−1)(y))

∫
x∈X x2e(s

(n)x2−e(x))p(k−1)(x)eD(p(y|x)||p(k−1)(y))dx

(2) I(k) =
∫

x∈X
p(k)(x)D(p(y|x)||p(k)(y))dx

(3) P (k) =
∫

x∈X
x2p(k)(x)dx

(4) U (k) = max
x∈X

{
D(p(y|x)||p(k)(y) + s(n)x2

}
− s(n)P (k)

end

3.2.3 The Particle Method

The presented method for solving such an optimization problem is developed by
Dauwels in [Dau05] and [Dau06]. He gives a very simple and effective way to skirt
the original infinite-dimensional problem and reduce it to a finite-dimensional opti-
mization problem.
His suggestion was to present the input distribution p(x) with a finite but long list
of particles

PX = {(x̂1, w1), (x̂2, w2), . . . , (x̂N , wN)} (3.39)
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where w = {w1, . . . , wN} are the weights, i.e. the probabilities, of the particles
and x̂ = {x̂1, . . . , x̂N} are the positions of the particles. This list can be seen as a
PMF, which approximates the original input PDF p(x). For some channels, as we
will discuss in Chapter 4, the capacity achieving input distribution is known to be
discrete and finite, so that a finite list of particles can represent this distribution
exactly. For continuous achieving input distributions like the Gaussian distribution,
this obviously does not work, but with a large list of particles the original input
distribution is approximated well enough.

We get the following finite-dimensional optimization problem

CP = max
(x̂,w)

I(x̂, w) (3.40)

where

I(x̂, w) =
N∑

i=1

∫

y∈Y

wip(y|x̂i) log
p(y|x̂i)

p(y)
dy. (3.41)

The corresponding output distribution p(y) is given by the channel transition PDF
p(y|x), sampled on the particle positions x̂i and the appearing probability wi of the
particles

p(y) =
N∑

i=1

wip(y|x̂i). (3.42)

The remaining integral in the mutual information can not be solved analytically in
most cases. Therefore, it may be evaluated by numerical or Monte-Carlo integration.
So we can compute the mutual information in the following way

I(x̂, w) = h
N∑

i=1

H∑

l=1

wip(ŷl|x̂i) log
p(ŷl|x̂i)

p̂(ŷl)

= h

N∑

i=1

wiD(p(ŷ|x̂i)||p(ŷ))
(3.43)

where ŷ are the quantized levels and the output distribution p(ŷ) is then approx-
imated by a histogram with bins of width h (see Fig. 3.3). Due to the fact that
we have only a finite number of particles with a weight wi and a position x̂i, we
have to optimize the mutual information with respect to these weights and posi-
tions. The Blahut-Arimoto algorithm can be solved with this particle method and
numerical integration, but it can only find the optimal probability of the particles
which represent the input distribution. It will not find the optimal position.

The mutual information is concave w.r.t. the convex set of input distribution
p(x), whereas I(x̂, w) is non-convex w.r.t. the positions and weights. This can be
explained by the fact that the mutual information is a concave function of p(x)
for fixed p(y|x) and a convex function of p(y|x) for fixed p(x) [CT91]. If both



CHAPTER 3. CHANNEL CAPACITY OF A CONTINUOUS CHANNEL 41

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

ŷ
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Figure 3.3: Quantized output distribution p(ŷ)

distributions p(x) and p(y|x) are not fixed, then the mutual information is non-
convex. The list of particles, which achieve the capacity, can be written as

PX = {(x̂∗
1, w

∗
1), (x̂

∗
2, w

∗
2), . . . , (x̂

∗
N , w

∗
N)} = argmax

x̂,w

I(x̂, w) (3.44)

As it is suggested in [Dau06], one can solve 3.44 by an alternating maximization:

W − step : w(k) = argmax
w

I(x̂(k−1), w)

X − step : x̂(k) = argmax
x̂

I(x̂, w(k))
(3.45)

where k is the iteration-index for the main loop. This means that the weights w(k)

in the k-th step are computed with the positions of the previous step x̂(k−1) and the
positions x̂(k) are computed with the weight w(k) from the same step. In the W -step,
the weights are optimized to maximize the mutual information while the positions
are kept fixed. This is a concave optimization problem and can be carried out by
the Blahut-Arimoto algorithm, due to the fact that the input alphabet x̂(k−1) ∈ X
is discrete.

In the X-step, the weights are kept fixed while the positions are optimized to
maximize the mutual information. Given that this is, as mentioned before, a non-
convex optimization, the maximization in 3.45 is difficult to compute. Instead, one
can select the positions of the particles such as

D(p(ŷ|x̂(k)
i )||p(k)(ŷ)) + s(n)(x̂

(k)
i )2 ≥ D(p(ŷ|x̂(k−1)

i )||p(k−1)(ŷ)) + s(n)(x̂
(k−1)
i )2 (3.46)
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where

p(ŷ)(k−1) =

N∑

i=1

w
(k)
i p(ŷ|x̂(k−1)

i ). (3.47)

Eq. 3.46 shows the cost-function one has to maximize w.r.t. the positions. It is
composed of the Kullback-Leibler divergence and the AP constraint function. The
parameter s was adapted in the W -step for a fixed position. The selection of the
positions can be obtained by applying some sort of gradient method, e.g. gradient
ascent or steepest ascent.

3.2.4 Gradient Method

The general approach of a gradient method is to alternate between three steps
[BV04]:

1. Determine an ascent direction ∆x(j)

2. Select the step size λ so that the Armijo rule is satisfied

3. Update the position values

Here j is the iteration-index for the gradient method. If we choose a gradient ascent,
the alphabet x̂ is updated according to the following rule

x̂
(j)
i = x̂

(j−1)
i + λ∆x(j−1)

= x̂
(j−1)
i + λ

∂

∂x̂i

(
D(p(ŷ|x̂i)||p̂(k)(ŷ)) + s(n)(x̂i)

2
)






w(k),x̂
(j−1)
i

(3.48)

where the output PDF p(k)(ŷ) depends on p(ŷ|x̂) which is evaluated at x̂. So it
is important to keep p(ŷ|x̂) constant for every separate gradient search iteration
step. The adaptation of the step size λ can be done by the backtracking line search
algorithm, whereas the step size is reduced until the Armijo rule

D(p(ŷ|x̂(j)
i )||p(j)(ŷ)) + s(n)(x̂

(j)
i )2 >

D(p(ŷ|x̂(j−1)
i )||p(j−1)(ŷ)) + s(n)(x̂

(j−1)
i )2 + αλ

(
∆x(j−1)

)2 (3.49)

is satisfied for every step j . The partial derivation is given by:

∂

∂x̂i

(
D(p(ŷ|x̂i)||p(j)(ŷ)) + s(n)x̂i

)

=

H∑

l=1

∂

∂x̂i

p(ŷl|x̂i)
(

1 + log
p(ŷl|x̂i)

p(j)(ŷl)
− wi

p(ŷl|x̂i)

p(j)(ŷl)

)

+ 2s(n)x̂
(j)
i

(3.50)

As shown before, the AP constraint is directly integrated in the Blahut-Arimoto
algorithm and in the cost-function used in the gradient method. The PA constraint
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appears in the initial domain of the input alphabet x̂, 0 < x̂i < A. So before the
update of position x̂ in every gradient method step can be done, we have to verify
that every new position x̂

(j)
i is in this domain.

Algorithm 2: Gradient search algorithm with backtracking line search

Initialize:
(1) take x̂(k−1) from the previous X-step and w(k) from the W -step
(2) choose α and β for the backtracking line search algorithm
(3) λ = 1
(4) choose iteration number I
gradient iterations:
for j = 1 : I do

for every particle position:
for i = 1 : N do

Step 1: compute: ascent direction
∆xi

(j−1) = ∂
∂x̂i

f(w(k), x̂
(j−1)
i )

= ∂
∂x̂i

(
D(p(ŷ|x̂i)||p̂(j−1)(ŷ)) + s(n)(x̂i)

2
)






w(k),x̂
(j−1)
i

Step 2: check if feasible point
while 0 > (x̂

(j−1)
i + λ∆xi

(j−1)) and (x̂
(j−1)
i + λ∆xi

(j−1)) > A do
λ = βλ

end
Step 3: backtracking line search

while f(w(k), x̂
(j−1)
i + λ∆xi

(j−1)) < f(w(k), x̂
(j−1)
i ) + αλ

(
∆x(j−1)

)2
do

λ = βλ
end
Step 4: update:
(1) x̂

(j)
i = x̂

(j−1)
i + λ∆xi

(j−1)

(2) λ = 1

(3) compute: p(ŷ|x̂(j)
i ) and p̂(j)(ŷ)

end

end

The parameter α is typically chosen between 0.01 and 0.3. The parameter β is
often chosen between 0.1 and 0.8, where a higher value means that the searching is
more accurate [BV04].
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3.2.5 The Entire Algorithm

Given that we know that the input distribution is discrete with a finite number of
mass points, we can reduce the computation time by discarding particles, which
have very low probability w(k), and fuse particles, if their positions x̂(k) are close
enough to each other. To define the thresholds for these methods is not a trivial
task. One must have a prior knowledge of the capacity-achieving input distribution,
which is defined by x̂ and w after the upper bound U (n) and the lower bound I(n)

are converged, which means

I(n) ≤ C(P,A) ≤ U (n)

I(n) ≤ C(P,A) ≤ max
x∈X

[

D(p(ŷ|x̂(n))||p̂(ŷ)(n)) + s(x̂(n))2
]

− s
N∑

i=1

wix̂
(n)
i

→ U (n) − I(n) < ǫ.

(3.51)

Dependent on the SNR, the channel parameters M and σ2, and the input alphabet
constraints, there are more or less mass points necessary to achieve the channel
capacity. E.g., if the SNR is large, the capacity achieving input distribution consists
of many mass points. Due to this, the space between the mass points is small
and some of the mass points have a very low probability, so we have to choose the
thresholds very carefully. If the threshold for the probability is chosen too large,
we might discard particles which could be relevant. In almost the same manner we
would adulterate the achieving input-distribution, if we chose the threshold for the
fusing too large.

There is also a difference between the threshold for the probability and the one
for the fusion: On the one hand, if the threshold for the probability is selected small
enough, so that for the simulated SNR region no achieving distribution mass points
get rejected, we have no loss of accuracy. But on the other hand, no matter how
small we select the threshold for the fusion, for some special values of SNR we fuse
two points, which have to be separate, because by reducing the SNR, particular pairs
of mass points approach each other until one mass point appears instead. But if the
threshold is chosen small enough, this inaccuracy is of no consequence compared to
the accuracy of the upper and lower bound, if the algorithm has converged.

The two new methods to improve the convergence time of the algorithm are
called, “kick particles” and “fuse particles” method.
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Algorithm 3: Extended Blahut-Arimoto algorithm for continuous channels
Initialize:

(1) define x̂(0) and w(0) (uniformly distributed and spaced)
(2) define AP and PA constraint: P,A
(3) compute SNR and step h for numerical integration
(4) compute p(ŷ|x̂)
(5) choose Blahut-Arimoto algorithm and Gradient method iterations: BA-iter,
GM-iter
(6) define w-thresh, x-thresh
while U (k) − I(k) ≤ ǫc do

Step 1: Blahut-Arimoto algorithm(x̂(k−1), w(k−1), p(ŷ|x̂(k−1)), BA-iter, P)
Step 2: kick particles (only for discrete achieving input alphabets)
for i = 1 : N do

if wi < w-thresh then

xi = [empty]

p(ŷ|x̂(k−1)
i ) = [empty]

wi = [empty]
end

end

Step 3: fuse particles (only for discrete achieving input alphabets)
for i = 1 : N − 1 do

for j = 1 + i : N do

if |xi − xj | < x-thresh then

if wi > wj then
wi = wi + wj

wj = [empty]
xj = [empty]

p(ŷ|x̂(k−1)
j ) = [empty]

else
wj = wi + wj

wi = [empty]
xi = [empty]

p(ŷ|x̂(k−1)
i ) = [empty]

end

end

end

end

Step 4: compute p(k)(ŷ)
Step 5: gradient-search(x̂(k−1), w(k), p(y|x), GM-iter, A)
Step 6: update:
(1) p(ŷ|x̂(k))
(2) I(k) =

N∑

i=1
wiD(p(ŷ|x̂(k)i )||p̂(k)(ŷ))

(3) P (k) =
N∑

i=1
w

(k)
i (x̂

(k)
i )2

(4) U (k) = max
x∈X

{
D(p(ŷ|x̂(k))||p̂(k)(ŷ)) + s(n)(x̂(k))2

}
− s(n)P (k)

end



CHAPTER 3. CHANNEL CAPACITY OF A CONTINUOUS CHANNEL 46

3.2.6 Example: Gaussian Channel with AP and PA Con-
straint

To verify the algorithm, the channel capacity of a Gaussian Channel was computed
and compared to the result in [Dau05]. Fig. 3.4 shows the capacity and the achieving
input distribution with a peak power to average power ratio (PAPR) ρ = A2

P
= 2

(amplitude A = 1 and average power P = 0.5). Fig. 3.4(a) shows the channel
capacity over a wide range of SNR. As a matter of fact, the lower bound I(n) and
upper bound U (n) are shown, but the difference between the bounds is negligibly
small. The corresponding achieving input distribution is seen in Fig. 3.4(b). For
every SNR value we get a PMF, where the dots represent the positions of the mass
points. The probability of the mass points can be seen in Fig. 3.4(c).

This first example illustrate well that the algorithm computes the number and
the positions of the mass points with their probability. On whatever channel the
algorithm is applied, we always get the capacity and the input distribution with a
certain accuracy, which depends on the step size of the numerical integration and,
for continuous channels, on the initial number of mass points.

Another benchmark for the algorithm was a Gaussian channel with AP con-
straint, which is available in closed form. As we already know, the channel capacity
of that channel is given by Eq. 3.7. It turns out that the simulated upper and lower
bound and the analytical calculated channel capacity are practically the same.
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Figure 3.4: Channel capacity and capacity-achieving input distribution of the Gaus-
sian channel for ρ = 2
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Chapter 4

Discrete Capacity-Achieving Input
Distribution

Shannon [Sha48] already demonstrated in 1948 that, in case of an AP constraint, an
additive white Gaussian noise channel has a continuous Gaussian RV as capacity-
achieving input distribution. It is obvious that such distributions can not be realized
in practice, since the input symbols have an unbounded amplitude. Therefore, a
constraint on the PA has to be introduced, in addition to the constraint on the
AP. Such considerations lead us to a class of capacity-achieving input distributions
which is discrete and has in many cases a finite number of mass points. Especially
the latter have a great importance for practical communication systems.

Already in 1971 Joel G. Smith (as quoted in [AFTS01], [SBD95], [CHK05]) de-
livered the proof that the capacity of a scalar additive white Gaussian noise channel
with AP and PA constraints is achieved by a discrete input distribution with a finite
number of mass points.

Honary and Darnell propose a numerical solution for computing the capacity-
achieving input distribution in [HAD90] for such channels, if the output signal ad-
ditionally is quantized and can therefore be represented by a finite number of mass
points at the quantized output amplitude positions.

Shamai and Bar-David show in [SBD95] that a quadrature Gaussian channel
with PA (norm), i.e. peak power and AP constraint, has a capacity-achieving input
alphabet with a discrete amplitude (norm), a finite number of mass points, and an
independent uniformly distributed phase.

In [CHK05] the capacity-achieving input probability under a PA and an AP con-
straint is studied for conditionally Gaussian channels, with input signal-dependent
mean and, in general, input signal-dependent covariance. Examples for commu-
nication channels which fall into this category, are classical white Gaussian noise
channels, multiple-input multiple-output (MIMO) Rayleigh-fading channels, some
interference channels, and optical channels with signal-dependent noise (the latter
has a similar model compared to the Gaussian approximation model of the energy
detector, except that the noise depends linearly on the input x and not quadratic

49
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x2 like at the energy detector). This paper provides an extensive mathematical
framework to show that the channel capacity is achievable and to derive necessary
and sufficient conditions for a probability function to be capacity-achieving. Fur-
thermore, under certain conditions, the achieving input distribution is proved to be
discrete. Additionally, with this framework several practical channels are analysed,
especially the optical channel with signal-dependent noise, for which an algorithm
is proposed to find the discrete capacity-achieving input distribution. If one takes
a look at the observations from the computed achieving input alphabet of the am-
plitude, one will discover many similarities to the achieving input alphabet of the
energy detector (as we will see in Chapter 5), e.g.

1. there are always mass points at zero amplitude x = 0 and maximum amplitude
x = A

2. the significant variations in the distance between two neighbour mass points
by changing the SNR

3. the decreasing number of mass points by decreasing the SNR

4. the fact that with smaller SNR the probability of the mass point at x = 0,
but also the probability of the mass point at x = A increases, which can be
explained by the increase of the “average distance” between the codewords.

Abou-Faycal and Fahs [AFF10] have studied the optimal input distribution for
non-linear channels with additive white Gaussian noise, proved them to be discrete
and two of them to be discrete with a finite number of mass points. To achieve this,
they used mathematical tools based on standard decompositions in a Hilbert space
and developed a method to use Hermite polynomials to study the capacity-achieving
input distributions of such channels. Generally, it becomes evident that non-linear
channels with at least an AP-constrained input signal, have capacity-achieving input
distributions with discrete character. Under the additional PA constraint the dis-
crete character is also given. Due to the non-linear character of the energy detector,
one concludes that the achieving input distribution is also discrete.

The following provides further results of a literature research about capacity
and (discrete) capacity-achieving input distribution of channels with bounded and
average constraint input, in order to better understand the fact that the achieving
input distribution of the energy detector is also discrete. I will rudimentarily present
the mathematical approaches of two papers to prove that the capacity-achieving
input distribution for some channels is discrete with a finite number of mass points.

4.1 Kuhn-Tucker Condition

The Kuhn-Tucker conditions are a generalization of the Lagrange method for finding
the extrema of functions subject to a family of constraints. Where the Lagrange
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method considers only equality constraints, the Kuhn-Tucker conditions allow also
inequality constraints. The following section shows rudimentarily the derivation of
the Kuhn-Tucker condition of a general channel with AP-constrained input distri-
bution and is based on the appendix of [AFTS01]. Many other papers about this
topic refer to the results of [AFTS01] and use the Kuhn-Tucker condition to find
the properties of the input distribution.

To recall the maximization problem, the channel capacity is the supremum

C = sup
F∈F

I(X ; Y ) = sup
F∈F

∫ ∫

p(y|x) log p(y|x)
p(y;F )

dydF (x) (4.1)

of the mutual information between inputX and output Y over all input distributions
F ∈ F that meet the constraint, where

p(y;F ) =

∫

p(y|x)dF (x). (4.2)

The existence and uniqueness of the input which achieves the maximum, result from
the following theorem of optimization:

Theorem: If I is a real-valued, continuous function on a compact set Ω ⊆ X , then
I achieves its maximum on Ω. If furthermore Ω is convex, and I is strictly concave,
then the maximum

C = max
F∈Ω

I(F ) (4.3)

is achieved by a unique F0 in Ω. The complete proof of this theorem is given in the
appendix of [AFTS01] and leads

1. to the fact that the capacity is achieved by a unique input distribution and

2. to the Kuhn-Tucker condition, which applies to any average (or peak power)
constrained channel for which the mutual information is continuous and dif-
ferentiable.

The following listing shortly describes the steps of proof

• Show that the set of Ω ⊂ F distribution function of non-negative RVs (F (0−) =

0) with second moment constraint (
∞∫

0

x2dF (x) ≤ P ) is convex and compact.

• Show that the mutual information is a continuous and concave function.

• Use the Lagrangian theorem to integrate the AP constraint P into the opti-
mization problem

C = sup
F∈F

{I(F )− γg(F )} (4.4)
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where γ is a Lagrange multiplier and

g(F ) =

∞∫

0

x2dF (x)− P. (4.5)

F0 achieves the supremum 4.4, then γg(F0) = 0.

• Show the differentiability of the mutual information and the average power
constraint in a convex space.

• Show that
∫

p(y|x) log p(y|x)
p(y;F0)

dy ≤ C + γ(x2 − P ), ∀x (4.6)

and ∫

p(y|x) log p(y|x)
p(y;F0)

dy = C + γ(x2 − P ), ∀x ∈ E0 (4.7)

where E0 are mass points of F0.

So we have shown that a random variable X∗ with distribution F ∗ achieves the
capacity of the channel with average power constraint if, and only if, there exists a
γ ≥ 0 so that

γ(x2 − P ) + C −
∫

p(y|x) log p(y|x)
p(y;F ∗)

dy ≥ 0 (4.8)

for all x, with equality if x is in the support of X∗. Eq. 4.8 is called the Kuhn-Tucker
condition.

4.2 Examples: Channel Capacity and Optimal In-

put Distributions

4.2.1 The Rayleigh-Fading Channel [AFTS01]

The memoryless discrete-time Rayleigh-fading channel model can be written as

V = AU +N (4.9)

where U is the channel input, V is the channel output, and the fading parameter A
and the noise N are a complex Gaussian RV with zero mean and variance σ2

A and
σ2
N (phase is uniform distributed).
Subject to an AP constraint E {|U |2} ≤ PU , here the capacity-achieving input

distribution is studied and proved to be discrete with a finite number of mass points.
Before analysing the mathematical methods to find the optimal input distribution,
the first obvious step is to define the channel model, i.e. setting up the channel
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transition PDF, which is a conditional output distribution given the channel input.
The statistical model of the Rayleigh-Fading channel can be described by

p(v|u) = 1

π(σ2
A|u|2 + σ2

N)
exp

{ −|v|2
σ2
A|u|2 + σ2

N

}

(4.10)

By a transformation of the RVs to Y = |V 2|/σ2
N and X = |U |σA/σN and further to

S = 1/(1 +X2) we get

p(y|s) = se−ys, s ∈ (0, 1] (4.11)

where s = 1/(1+x2) with the corresponding AP constraint E {1/s− 1} ≤ P . If the
optimal input RV X∗ is discrete, also S∗ = 1/(1 +X∗) is discrete.

The general idea is to find a sufficient and necessary condition for the input
distribution to be optimal. With this knowledge one can verify whether the capacity
of the channel can be achieved at all and what properties the optimal input alphabet
must have. These properties can be shown by the Kuhn-Tucker condition 4.8, which
can be written for the Rayleigh channel 4.11 as

γ
(1

s
− 1− P

)
+ C − log s+ 1 +

∞∫

0

se−sy log p(y;F ∗)dy ≥ 0 (4.12)

where λ is the Lagrange multiplier and with equality, if s is in the support of S∗.

The discrete character of X∗

The optimal input RV X∗ can have the following properties:

1. Have an infinite number of points of increase (mass points) on a bounded
interval

2. Be discrete and have an infinite number of points of increase, but only finitely
on a bounded interval

3. Be discrete and have a finite number of points of increase

The basic idea of proving the discreteness of the input distribution is to rule out
cases 1. and 2., so that only the possibility of a discrete distribution with finite mass
points remains.

Case 1: Infinite number of points of increase on a bounded interval

This assumption is satisfied by a continuous distribution. It is suggested to extend
the Left-Hand-Side (LHS) term of 4.12 to the complex domain (p(y;F ∗) = p(y))

h(z) = γ
(1

z
− 1− P

)
+ C − log z + 1 +

∞∫

0

ze−zy log p(y)dy (4.13)
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where s = ℜ{z}. It is shown in [AFTS01] that h(z) is equal to zero if z is in the
support of S∗, not only on z ∈ (0, 1] but also in general for all complex domain
s ∈ D. For equality, 4.12 can be rewritten as

∞∫

0

se−sy log p(y)dy = −1

s

[
γ
(1

s
− 1− P

)
+ C − log s+ 1

]
(4.14)

where the LHS can be interpreted as the Laplace-transform of s log p(y). The inverse
transform can be easily done by a table of Laplace transform pairs, so that

log p(y) = −γy + γ(1 + P )− C − 1− EC − log y

→ p(y) = K
e−γy

y
, y ∈ (0,∞).

(4.15)

Due to the fact that the integral over y ∈ (0,∞) is infinite, 4.15 can not be a prob-
ability function. This rules out continuous input RV.

Case 2: Infinite number of points of increase but finitely many on a bounded interval

S∗ can be seen as a RV with a countable but infinite number of mass points, so
that Pr {S∗ = si} = pi 6= 0. The output density is given as

p(y) =

∞∑

i=0

pisie
−ysi (4.16)

which has the lower bound p(y) > pisie
−ysi and therefore

∞∫

0

se−ysdy > log(pisi)−
si
s
. (4.17)

With 4.17 the lower bound of the LHS of 4.12 can be written as

LHS > γ
(1

s
− 1− P

)
+ C − log s+ 1 + log(pisi)−

si
s
. (4.18)

For s → 0 the lower bound diverges to ∞, which means that the Lagrangian param-
eter γ has to be zero. This means that the constraint is inactive, which is impossible
for the fading channel. Consequently, the 2. case is also ruled out. So the input
distribution has to be discrete with a finite number of mass points.
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4.2.2 The non-coherent Rician-Fading Channel [GPV05] and
[GPV03]

Subject to an AP constraint (E{|x|2} ≤ P ) and fourth moment constraint (E {|x|4} ≤
κP 2) and, separately to a PA constraint1 A, in [GPV05] and [GPV03] the capacity-
achieving input distribution is proven to be discrete with a finite number of mass
points. An interesting fact is that the channel PDF can be described by

p(y|x) = 1

π(γ2|x|2 +N0)
exp

{ |y −mx|2
γ2|x|2 +N0

}

(4.19)

i.e., a circular complex Gaussian PDF with a signal dependent variance. Here x is the
complex channel input, y is the complex output, and ai the fading parameter and the
noise are independent complex circular Gaussian RV with zero mean and variances
γ2 and N0. If the phase is not considered, this channel model can be considered as
similar to the Gaussian approximation model of the energy detector. This leads us
to the conclusion that the energy detector also has a capacity-achieving (amplitude)
input distribution with finite mass points. If the phase of the input and output
is considered as uniformly distributed and independent, p(y|x) can be transformed
into a Rician distribution

gR|r(R|r) = 1

1 + r2
exp

{

−R +Kr2

1 + r2

}

I0

(
2
√
Kr

√
R

1 + r2

)

(4.20)

where R = (1/N0)|y|2 and r = (γ/
√
N0)|x| are the new RV and K = |m|2/γ2 is the

Rician factor. The output distribution of the channel can be described by

fR(R,Fr) =

∞∫

0

gR|r(R|r)dFr(r). (4.21)

Here, the basic idea is to find, in a first step, a lower bound in the case of an AP
and fourth moment constrained input alphabet and an upper bound in the case of a
PA i.e. peak power constraint for the Kuhn-Tucker condition. In a second step it is
shown that these bounds only are valid for a discrete input distribution with finite
mass points. Since the approaches for the AP and fourth moment constraint and
PA constraint are very similar, it suffices to describe one of the cases. The following
should give a brief idea of the concepts presented in [GPV05] and [GPV03].

The Kuhn-Tucker condition for this channel and a PA-constrained input xi ≤ A
can be written as

∞∫

0

gR|r(R|r) log fR(R,F0)dR + log(1 + r2) + C + 1 ≥ 0, ∀r ∈ [0, A] (4.22)

1As a third scenario the phase noise of the channel was also considered
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with equality, if r ∈ E0. F0 is a capacity-achieving amplitude distribution and E0 is
the set of points of increase (mass points). To show the finite discrete character of
F0, one has to prove that

• the assumption of a distribution with an infinite number of points of increase
on a bounded interval (continuous distribution)

contradict the Kuhn-Tucker condition, as it is done in section 4.2.1 for the Rayleigh-
Fading channel. (The second case of section 4.12, infinite number of points of
increase on an unbounded interval but finitely many on a bounded interval, is ruled
out by the fact that the input signal amplitude is bounded.) To obtain a upper
bound for the LHS of the Kuhn-Tucker condition, first a upper bound for fR(R,F0)
has to be found.

fR(R,F0) =

A∫

0

1

1 + r2
exp

{

−R +Kr2

1 + r2

}

I0

(
2
√
Kr

√
R

1 + r2

)

dF0(r)

≤ exp

{

− R

1 + A2
+
√
KR

} A∫

0

1

1 + r2
exp

{

− Kr2

1 + r2

}

dF0(r)

= DF0 exp

{

− R

1 + A2
+
√
KR

}

(4.23)

where 0 < DF0 < 1 is a constant depending on the optimal input distribution F0.
So one gets as upper bound for the LHS of the Kuhn-Tucker condition

LHS ≤ logDF0−
1 + (1 +K)r2

1 + A2
+
√
K
√

1 + (1 +K)r2+log(1+r2)+C+1, ∀r ≥ 0

(4.24)
The LHS of the Kuhn-Tucker condition is extended in the complex domain (as in
section 4.2.1)

h(z) =

∞∫

0

gR|z(R|z) log fR(R,F0)dR + log(1 + z2) + λ(z2 − P ) + C + 1 (4.25)

where z ∈ C. If an optimal distribution is given, one has to assume that the Kuhn-
Tucker condition should be satisfied with equality at the points of increase, and so
h(z) = 0. Furthermore, it is shown (in [GPV03]) that h(z) = 0 is given in the
whole region where it is analytic, and that h(z) is analytic on the positive real line.
Therefore, it is obvious that h(r) = 0, ∀r ≥ 0. This is not possible, because if
r → ∞, the upper bound of the Kuhn-Tucker condition diverges. This rules out the
case, infinite number of points of increase on a bounded interval. Consequently, the
capacity-achieving amplitude distribution has to be discrete with finite mass points.
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4.3 Application on The Energy Detector

With the mathematical approach of section 4.2.2, I want to give an idea of how a
mathematical proof can be done for the energy detector. I want to emphasize that
the following only reflects the ideas of [GPV03] and [GPV05] and should not be
mistaken for a complete proof.

First of all, I assume the existence of a capacity-achieving input distribution for
the energy detector. Furthermore, I take the Gaussian approximation as a channel
model for the energy detector and consider the input alphabet only as PA con-
strained. With no loss of generality, the noise dimensionality M and variance of the
noise σ can be considered as 1, so we get the following model

p(y|x) = 1
√

(4π(1 + 2x2))
exp

{

−1

2

(y − (1 + x2))2

2 + 4x2

}

(4.26)

The Kuhn-Tucker condition for this channel and the PA constraint 0 ≤ x ≤ A can
be written as

∞∫

−∞

p(y|x) log p(y;F0)dy +
1

2
log[4π(1 + 2x2)] + C + 1 ≥ 0 ∀x ∈ [0, A] (4.27)

where

p(y;F0) =

A∫

0

p(y|x)dF0(x). (4.28)

with equality, if x ∈ E0. F0 is a capacity-achieving amplitude distribution and E0 is
the set of points of increase (mass points). The next step is to find a upper bound
for p(y;F0) written as

p(y;F0) =

A∫

0

1
√

(4π(1 + 2x2))
exp

{

−1

2

(y − (1 + x2))2

2 + 4x2

}

dF0(x)

≤
A∫

0

1
√

(4π(1 + 2x2))
dF0(x)

= KF0

(4.29)

where KF0 is a constant which depends on the optimal input distribution F0. The
inequality can be obtained by

exp

{

−1

2

(y − (1 + x2))2

2 + 4x2

}

≤ 1 ∀x ≥ 0 (4.30)
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Using the upper bound 4.29, the integral in the Kuhn-Tucker condition can be upper
bounded as

∞∫

−∞

p(y|x) log p(y;F0)dy ≤ logKF0 (4.31)

where the second integral is the second moment and the third integral is the first
moment of a Gaussian distributed RV. With 4.31 a upper bound on the LHS of the
Kuhn-Tucker condition is derived by

LHS ≤ logKF0 +
1

2
log[4π(1 + 2x2)] + C + 1 ∀x ≥ 0. (4.32)

If we assume that we can proceed like in subsection 4.2.2 for the Rician-fading
channel, then we extend the Kuhn-Tucker condition in the complex domain and
assume an input distribution with infinite mass points on a bounded interval. That
way it can be shown that h(z) = 0 for all positive-real z, which means that h(x) = 0
∀x > 0. But for x → ∞ the upper bound of the LHS of the Kuhn-Tucker condition is
diverging (the second term 1

2
log[4π(1+2x2)] → ∞ diverge), which is a contradiction

and so we can rule out alphabets with infinite mass points on a bounded interval.
This leads to the conclusion that the capacity-achieving input distribution of the
Gaussian approximation model (of the energy detector) with PA-constrained input
distribution is discrete and has a finite number of mass points.



Chapter 5

Simulation Results and Evaluation

In this chapter it is time to pay attention to the simulation of the energy detector
for both established mathematical models. For all simulations a constant input
signal x[n] is assumed. The SNR on the input of the energy detector is given by
SNR = P

σ2 , where P = E {x[n]2} is the AP of the input signal and σ2 is the variance
of the additive Gaussian noise. The PA constraint is considered to be 0 ≤ x ≤ A.
An interesting fact for this input signal scenario is, that the performance of the
energy detector, i.e. the channel capacity, increases with increasing integration time
Ti, i.e. the noise dimensionality M . The simulations will show us how M and the
PAPR ρ influence the channel capacity C and of course the capacity-achieving input
distribution p(x) over a wide range of SNR. Furthermore, a comparison between
the exact statistic of the energy detector, the non-central χ2 distribution and the
approximated statistic, the Gaussian distribution with signal dependent variance,
will show us the quality of the approximation model.

Another important fact that will be discovered, is that the capacity achieving
input distribution is a PMF with finite mass points (discrete and finite) and that
mass points at zero and maximum amplitude are always expected, as it was discussed
in detail in the previous chapter.

Finally, the correctness of the two statistical models of the energy detector will
be verified by some simple evaluation models, which are fed with capacity achieving
input distributions. The performance parameter will be the mutual information
between the achieving distribution and the output of the evaluation model, which
has to be roughly the same value as the channel capacity.

The first step in this chapter will be to give a short analysis of the algorithm
itself and of the convergence behaviour of the algorithm. Especially the impact of
the “kick particles” and “fuse particles” method on the convergence time will be
analysed.

59
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5.1 The Algorithm

Fig. 5.1 shows the cost-function D(p(ŷ|x̂)||p(ŷ)) + sx̂ (blue curve) which is applied
in both optimization steps, the gradient of the cost-function (magenta curve) and
the positions and weights of the particles (red stem-plot), which represent the PMF
of the input alphabet. Particularly in the Blahut-Arimoto step the cost-function is
used to update the weights of the particles to reduce the gap between the maximum
of the cost-function, which is the upper bound U (n), and the lower bound I(n).
Furthermore, in the gradient step the cost-function is maximized by selecting the
correct position of the particles, whereas the direction is given by the derivative of
the cost-function.

Generally, we can say that the channel transition PDF with its parameters and
the constraints of the input alphabet define the maxima of the cost-function. The
Blahut-Arimoto algorithm shapes the weights of the particles in a way that the
maxima coincide with the maxima of the cost-function. This means that the maxima
of the cost-function are the positions of the mass points. The second step of the
algorithm, the gradient method, moves the positions of the particles to the positions
of the maxima of the cost-function. Since the algorithm uses a finite number of
particles, i.e. mass points, the cost-function displayed has not the right shape,
which means the maxima are not on the right positions. But with optimization of
the weights and the positions, the maxima of the cost-function move to the right
positions.
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Derivative of the Cost−Function
Input Alphabet

Figure 5.1: Cost-function for gradient method and the Blahut-Arimoto step, gradi-
ent of the cost-function, and positions and probabilities of the mass points after the
first Blahut-Arimoto step for M = 40, ρ = 2, and SNR = −0.2 dB
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The algorithm starts with an initial list of mass points

P(0) =
{

(x̂
(0)
1 , x̂

(0)
1 ), (x̂

(0)
2 , x̂

(0)
2 ), . . . , (x̂

(0)
N , x̂

(0)
N )

}

(5.1)

with uniformly distributed weights w
(0)
i = 1

N
and uniform spacing between the mass

points so that x̂
(0)
i = iA

N
, where N is sufficiently large. Fig. 5.2 shows the evolution

of the weights and the positions of the particles over the steps of the algorithm.
Fig. 5.2(a) shows the particles after the first Blahut-Arimoto step, Fig. 5.2(b)
the particles after a gradient step, Fig. 5.2(c) after the ”kick particles” and ”fuse
particles” methods and Fig. 5.2(d) the mass points after convergence of upper and
lower bound, which represent the capacity-achieving input distribution. (Normally,
the “kick particles” and “fuse particles” methods are executed before the gradient
method, see algorithm 3.)
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(a) Input alphabet after first Blahut-Arimoto
step
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(b) Input alphabet after first gradient method
step
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(c) Input alphabet after ”kick particles” and
”fuse particles” method
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(d) Capacity achieving input alphabet after
convergence in 6 iterations of main-loop

Figure 5.2: Evolution of the input alphabet over the algorithm steps for M = 40,
ρ = 2, and SNR = −0.2 dB
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Capacity Achieving Distribution
Distribution after the first Blahut−Arimoto step

(a) M = 50, ρ = 2 and SNR = −17.8 dB
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Capacity Achieving Distribution
Distribution after the first Blahut−Arimoto step

(b) M = 40, ρ = 3 and SNR = −5.2 dB
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Capacity Achieving Distribution
Distribution after the first Blahut−Arimoto step

(c) M = 40, ρ = 4 and SNR = 1.4 dB
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Capacity Achieving Distribution
Distribution after the first Blahut−Arimoto step

(d) M = 40, ρ = 2 and SNR = 0.2 dB

Figure 5.3: Examples of capacity-achieving input distributions after the first Blahut-
Arimoto step and after convergence of upper bound U (n) and lower bound I(n)for
several M values, PAPR ρ, and SNR values.

Fig. 5.3 shows some examples of capacity-achieving input distributions after
the first Blahut-Arimoto step and after convergence of upper and lower bounds for
different values of M , PAPR ρ, and SNR. The figure illustrates the discreteness of
the input alphabet, and also that the probabilities and positions of the mass points
depend on the noise dimensionality M , the PAPR ρ, and the SNR. Furthermore,
it points out that there are always mass points at zero and maximum amplitude.
Another interesting aspect is that, if ρ increases — and therefore the AP constraint
gets stricter compared to the PA constraint — the mass points with bigger amplitude
decrease in probability. If the SNR gets smaller, the probability of most separated
mass points is increasing. This means (not really surprisingly), that the probability
of the mass points at maximum amplitude also increases for a noisy environment,
so that the symbols with the biggest distance are the most probable.
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For ρ > 2 the AP is always active and the probabilities of the mass points with
higher amplitudes show decreasing weights. This behaviour is not strict, because for
SNR values for which new mass points appear, mass points with higher amplitude
could have a higher probability than some with a lower amplitude. Another fact is,
that the probability of the two remaining mass points does not change with changing
SNR. E.g., the distribution p(x) = 0.67δ(x) + 0.33δ(x − A) shown in Fig. 5.3(b)
for M = 40 and ρ = 3 does not change with a further decrease of the SNR.
If ρ ≤ 2, the AP constraint is not active, which means that

N∑

i=1

x̂2
iwi < P. (5.2)

In this case, the distribution of the mass points shows the tendency to be uniformly
distributed. (seen in Fig. 5.3(a) and 5.3(d)). If the AP constraint is not active,
the distribution for two mass points does change with changing SNR. As shown
in Fig. 5.3(a) the input alphabet almost reached a uniform distribution p(x) =
0.5δ(x) + 0.5δ(x − A) at SNR = −17.8 dB, but if one takes a closer look at the
probabilities, one will see that p(0) = 0.5077 and p(A) = 0.4923. With decreasing
SNR the probability of the two mass points approaches the value 0.5, until at a
certain SNR a uniform distribution is reached, dependent on the PAPR ρ (≤ 2)
andM (e.g. for ρ = 2 andM = 40 at SNR = −49.999 dB mass points are uniformly
distributed).

Table 5.1 demonstrates, that for ρ ≤ 2 the calculated average power over the
computed input alphabet is smaller than the AP constraint. If the AP constraint is
active (ρ > 2 and s < 0), the calculated average power shows the same value as the
AP constraint.

ρ parameter s SNR [dB] AP:P = 10
SNR
10 PA: A =

√
ρP calc. power

1.5 0 -0.2 0.955 1.38 0.645
2 0 -0.2 0.955 1.38 0.889
3 -0.358 -0.2 0.955 1.38 0.955
4 -0.529 -0.2 0.955 1.38 0.955

Table 5.1: Comparison between the chosen AP constraint value and the calculated
average power

∑N

i=1 x̂
2
iwi of the capacity-achieving input distribution for different

values of ρ and M = 40

Convergence behaviour In order to make the algorithm work, the initial list
of particles has to be sufficiently large. Even if the input alphabet is known to
be discrete, the Blahut-Arimoto step needs a large enough number of particles to
find all probability maxima. This chosen number of initial particles also affects the
convergence time, as does the step size of the numerical integration, which defines
the number of quantized output samples. The number of particles and of output
samples defines in particular the size of the sampled channel transition PDF and of
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course the length of the input and the output alphabet. This size significantly affects
the convergence time, i.e. the number of iterations until upper and lower bounds
converge. Not only the number of main-iterations increases, also the computation
times of the W -step and X-step increases.

To reduce the convergence time, the number of particles can be decimated by
the “kick particles” and “fuse particles” methods. Figs. 5.4(a) and 5.4(b) show the
evolution of the positions of the particles x̂ over the main-iterations to the positions
f the mass points of the capacity-achieving input distribution. The figure illustrates
that with the “kick particles” and “fuse particles” methods the gap between upper
bound and lower bound is, after already 6 main-iterations, smaller than the one
defined by the convergence bound ǫ = 10−6. In contrast, without these methods,
the convergence bound is not reached until 143 main-iterations are executed. Figs.
5.4(c) and 5.4(d) show the convergence of the upper bound U and the lower bound
I over the first 20 main-iterations. An interesting fact is that the bounds with the
“kick particles” and “fuse particles” methods for the first two iteration steps diverge.
This always appears if many particles are discarded. E.g., at the first iterations all
particles which are not near an anticipated mass point, have a very low weight and
get potentially discarded.
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Figure 5.4: Convergence of the particle positions and of the upper bound U (n) and
lower bound I(n) over the main-iterations of the algorithm

5.2 Gaussian Approximation

The following results for the Gaussian approximation and the non-central χ2 model
are simulated with a convergence parameter ǫ = 10−5, i.e. U (n)−I(n) < ǫ, for higher
SNR and with ǫ = 10−8 for lower SNR values, where the channel capacity is small.
The reason for this is that the sensitivity of the mutual information for low SNR
appears to be small compared to the exact number and location of the mass points
as it also was mentioned in [AFTS01]. This generally means that neither a slightly
wrong position and/or probability of single mass points, nor a representation of the
mass points by more than one particle distributed around the real position of the
achieving mass points, will affect the value of the channel capacity that strongly. Due
to that fact, the convergence parameter ǫ = 10−5 does not lead to a good estimate of
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the capacity-achieving input distribution for low SNR. Fig. 5.5 shows the channel
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Figure 5.5: Capacity of the Gaussian approximation model for several values of M
and ρ = 2

capacity of the energy detector represented by the Gaussian approximation model
for ρ = 2 and several M values over a wide range of SNR. The input signal is
assumed to be constant x[n] = a, so that the average power for the constraint is
given by P = Ma2. For this scenario the channel capacity is getting higher with
increasing integration time Ti, i.e. noise dimensionality M , because more signal
energy is captured. Fig. 5.6 shows the channel capacity for M = 40 and several ρ
values over a wide range of SNR. The capacity is getting higher by increasing the
PAPR ρ. This can be explained by the fact that for a constant SNR = P

σ2 = A2

ρσ2 , i.e.
constant AP, an increasing PARP ρ leads to a higher maximum amplitude, so that
the distance between the symbols is getting larger. The positions of the capacity-
achieving input distribution mass points over the SNR are shown in Figs. 5.7(a)-(f),
where the PAPR ρ = 2 and M is varied. Figs. 5.8 and 5.9 show the probabilities
of the mass points for M = 100 and ρ = 2 and M = 40 and ρ = 5 respectively. A
fact that we already has discussed in the previous section is that for a given PAPR
(ρ = 2) the number of mass points of p(x) is monotonically non-decreasing with
the SNR and the noise dimensionality M , and there exists always a mass point at
zero amplitude x̂ = 0 and a mass point at maximum amplitude x̂ = A. Another
fact is that the distances between two neighbouring mass points vary significantly
with changes of the SNR and that with smaller SNR the probability of the mass
points at x̂ = 0 and x̂ = A increases. This can see in Figs. 5.8 and 5.9, which can
be explained by the increase of the “average distance” between the codewords (in a
similar way as for the optical channel in Chapter 4). There are two ways new mass
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Figure 5.6: Capacity of the Gaussian approximation model for several PAPR ρ and
M = 40

points can appear if the SNR increases:

1. a new mass point appears apart from the other mass points with a low prob-
ability,

2. or an existing mass point with relatively high probability splits up into two
new mass points with low probabilities.

The relations between appearing new mass points and their probabilities are well
illustrated in Fig. 5.8, which represents the 3-D plot of Fig. 5.7(f). For example,
between SNR = −5.4 dB and SNR = −5.2 dB a new mass point appears and
between SNR = −2.6 dB and SNR = −2.4 dB a mass point is split up into two
new mass points. The exact values of the probabilities of the mass points in this
SNR regions are listed in Table 5.1(a) and 5.1(b). As Figs. 5.7(a)-(f) show, the
capacity-achieving input alphabets seem to have roughly the same shape for different
M (ρ = 2) , but for increasing M alphabets with more mass points are shifted to
lower SNR values. Table 5.2(a) gives the capacity-achieving input distribution for
M = 40 and M = 100 for SNR values for which the first time three mass points
appear. The comparison points out that the mass points for both alphabets have
nearly the same probabilities, but the mass points (of course except p(0)) move
slightly towards the mass point at maximum amplitude x = A. The PMF listed in
Table 5.2(b) confirms the assumption by comparing two achieving PMF at another
SNR value. For ρ > 2 the input alphabet changes with M in the same way as
for ρ ≤ 2, with two differences: With increasing PAPR ρ the input alphabet gets
more and more distorted and the positions of the inner mass points (except p(0)
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(a) Probabilities of mass points, if a new mass point appears (2
mass points → 3 mass points)

SNR [dB] -5.4 -5.2 -5 -4.8 -4.6
p(x0) [ ] 0.512 0.482 0.465 0.45 0.436
p(x1) [ ] 0.488 0.034 0.064 0.091 0.116
p(x2) [ ] - 0.484 0.471 0.459 0.448

(b) Probabilities of mass points, if a mass point splits up into
two new mass points (3 mass points → 4 mass points)

SNR [dB] -2.6 -2.4 -2.2 -2 -1.8
p(x0) [ ] 0.35 0.345 0.334 0.324 0.314
p(x1) [ ] 0.262 0.097 0.134 0.146 0.154
p(x2) [ ] 0.388 0.174 0.156 0.162 0.17
p(x2) [ ] - 0.384 0.376 0.369 0.362

Table 5.2: Probabilities of new appearing mass points for M = 100 and ρ = 2

(a) 3 mass points

M SNR PMF
[ ] [dB]
40 -2.8 p(x) = 0.482δ(x) + 0.032δ(x− 0.652) + 0.487δ(x− 1)
100 -5.2 p(x) = 0.482δ(x) + 0.034δ(x− 0.671) + 0.485δ(x− 1)

(b) 4 mass points

M SNR PMF
[ ] [dB]
40 2 p(x) = 0.269δ(x) + 0.182δ(x− 0.493) + 0.203δ(x− 0.733) + 0.347δ(x− 1)
100 -0.6 p(x) = 0.269δ(x) + 0.193δ(x− 0.516) + 0.208δ(x− 0.753) + 0.33δ(x− 1)

Table 5.3: Comparison between capacity-achieving input distributions for M = 100
and M = 40 for ρ = 2 and specific SNR values

and p(A)) advance stronger towards maximum amplitude (Figs. 5.10(a)-(d)). The
second difference is that the larger ρ, the more mass points are at the same SNR
to achieve the channel capacity. That a new mass points appears apart from the
others is more likely than that an existing mass point splits up into two new ones,
which is well illustrated in Fig. 5.9. Figs. 5.11(a)-(d) show the output distribution
p(y) (black curve) of the energy detector. To recall the calculation of the output
distribution:

p(y) =

N∑

i=0

wip(y|xi) (5.3)

The coloured curves represent the channel transition PDFs p(y|x̂i) evaluated at the
positions of the capacity-achieving input mass points x̂i. These curves are weighted
with the probability of the mass points wi.
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(a) M = 16 and ρ = 2
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(b) M = 32 and ρ = 2
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(c) M = 40 and ρ = 2
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(d) M = 50 and ρ = 2
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(e) M = 64 and ρ = 2

−25 −20 −15 −10 −5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

In
pu

t A
lp

ha
be

t x

(f) M = 100 and ρ = 2

Figure 5.7: Positions of the mass points of the capacity-achieving input distribution
of the Gaussian model for different M
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Figure 5.8: Capacity-achieving input distribution of the Gaussian approximation
model for M = 100 and ρ = 2

0

0.2

0.4

0.6

0.8

1
−25 −20 −15 −10 −5 0 5

0

0.2

0.4

0.6

0.8

1

SNR [dB]

x

P
ro

ba
bi

lit
y

Figure 5.9: Capacity-achieving input distribution of the Gaussian approximation
model for M = 40 and ρ = 5
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(a) ρ = 2 and M = 40

−25 −20 −15 −10 −5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

In
pu

t A
lp

ha
be

t x

(b) ρ = 3 and M = 40
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(c) ρ = 4 and M = 40
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(d) ρ = 5 and M = 40

Figure 5.10: Positions of the mass points of the capacity-achieving input distribution
of the Gaussian model for different PAPR ρ and M = 40
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Figure 5.11: Output distribution p(y) for M = 50 and ρ = 2
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5.3 Non-Central Chi-Square Model

The simulation results for the non-central χ2 model, as we can see in the following
figures, are basically the same for a noise dimensionality M ≥ 16. The following
figures demonstrate this by showing the channel capacity (Fig. 5.12), the capacity-
achieving input distribution (Fig. 5.13) for M = 50 and ρ = 2 and the mass points
(Fig. 5.14) for several values of M and ρ = 2.
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Figure 5.12: Capacity of the non-central χ2 channel for different M and ρ = 2.
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Figure 5.13: Capacity-achieving input distribution of the Non-central χ2 model for
M = 100 and ρ = 2
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(a) M = 16 and ρ = 2
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(b) M = 32 and ρ = 2
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(c) M = 40 and ρ = 2
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(d) M = 50 and ρ = 2
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(e) M = 64 and ρ = 2
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(f) M = 100 and ρ = 2

Figure 5.14: Positions of the mass points of the capacity-achieving input distribution
of the non-central χ2 model for different M
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5.4 Comparison and Evaluation

Comparison

As Fig. 2.6 in Section 2.3 already has shown, the Gaussian approximation model
and the non-central χ2 model coincide relatively well for M ≥ 10. This is the reason
why the simulation results for these models are virtually the same for M ≥ 10. Fig.
5.15 shows the channel capacity over the noise dimensionality M . It stands out that
the channel capacity increases with M . But more importantly, the channel capac-
ities of both models matches very well. It is not until M < 5, that a recognizable
but nevertheless small difference between the channel capacities of both models is
seen. This has its reason in the reduced sensitivity of the mutual information in the
exact probabilities and positions of the mass points, especially for small SNR, if
there are only two mass points.

Fig. 5.16 shows that the capacity achieving input distributions of the two models
differ significantly for small values of M . For Fig. 5.16(a) the SNR region was
chosen for higher SNR values to show the difference between the input alphabets
for more than 2 mass points at zero and maximum amplitude, so that a distinction
becomes visible. The figure shows also that the input alphabets not only shift with
the SNR but also the mass points move slightly towards the mass point at x = 0.

Another recognizable difference between the models is the calculation time of the
channel transition PDF in MATLAB. The calculation of the non-central χ2 distri-
bution takes significantly more time, especially for long input vectors x̂ and output
vectors ŷ (quantized values for the quantized output PDF p̂(ŷ)). This leads to a
considerably longer simulation time for the non-central χ2 model.

Evaluation

To verify the simulation results, it was reasonable to design three different eval-
uation models. The first one is a model of the energy detector, i.e. it squares and
sums up the input signal over the noise dimensionality M as

si =





x̂i
. . .
x̂i





1×M

+ σ





k1 ∼ N (0, 1)
. . .

kM ∼ N (0, 1)





1×M

y1 =





∑M

j=1 s1(j)
2

. . .
∑M

j=1 sN(j)
2





(5.4)

The second model calculates the distribution of the output y according to the Gaus-
sian approximation model (MATLAB: normpdf ) and the third one according to the
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non-central χ2 distribution (MATLAB: ncx2rnd) as

y2 = µ(x) + σ(x)(k ∼ N (0, 1))

=
(
M +M

x
2

σ2

)
+
(
2M + 4M

x
2

σ2

)
(k ∼ N (0, 1))

(5.5)

and

y3 = χ2
L(λ) = χ2

M(
Mx

2

σ2
). (5.6)

The capacity-achieving input distributions from the simulations serve as input sym-
bols for the models. So the mutual information between input symbols x and output
symbols y of the models has to be approximately the channel capacity obtained from
the simulation. Table 5.4 shows (for some chosen SNR values) the numerical results
of the channel capacity and the mutual information calculated for the three models.
In all three models the mutual information has roughly the same value as the channel
capacity. On closer inspection, one notices that the mutual information for the mod-
elled energy detector (first model) and the non-central χ2 evaluation model (third
model) represent the capacity more accurately than the Gaussian model. Given that
the first model is the exact mathematical representation of the energy detector and
the third one uses the exact statistics of the energy detector, it becomes obvious
why the first and the third model coincide better.

The Figs. 5.17(a)-(d) illustrates that the output probability p(y) of the models
(coloured curves) coincides well with the exact output probability p(y) (black curve).
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Figure 5.15: Channel Capacity of the Gaussian approximation model and the non-
central χ2 model over M for SNR = 1.2dB and ρ = 2
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(b) M = 64 and ρ = 2

Figure 5.16: Comparison of Achieving input distributions between the non-central
χ2 model and the Gaussian approximation model
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SNR C (algorithm) IED IGM INCX2M

[dB] [bit/channel] [bit/channel] [bit/channel] [bit/channel]
2 1.5896 1.5844 1.582 1.586
1 1.44 1.4366 1.431 1.4367

-0.8 1.1807 1.1785 1.172 1.1781
-5.2 0.61882 0.61458 0.60951 0.61278

Table 5.4: Comparison of the channel capacity and the mutual information of the
models: IED energy detector, IGM Gaussian model, INCX2M non-central χ2 model
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(b) SNR = 1dB
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(c) SNR = −0.8dB
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Figure 5.17: Comparison between the output distributions p(y) ot the different
models for M = 50 and ρ = 2
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Chapter 6

Introducing a Lower Bound

After we have analysed the non-linear optimization problem and seen the simulation
results, it is obvious that for every parameter set — PAPR, SNR value and noise
dimensionality M — the optimization problem must be solved to an exact input
distribution p(x). The complexity of finding this optimal input distribution grows
with increasing SNR and number of appearing mass points.

For practical reasons it is often not necessary to solve this complex optimization
problem. Instead, it is possible to find a good estimate for the capacity-achieving
input distribution for a specific range of SNR. The basic concept was to find
an input distribution, for which the mutual information approaches the channel
capacity over a limited range of SNR. In [FH09] the authors proposed to find a
simpler family of capacity-approaching distributions by solving the source entropy
maximization problem. The mutual information calculated with this maxentropic
input distribution can be seen as a lower bound of the channel capacity for defined
intervals of SNR.

By keeping the number of mass points fixed over this range of SNR a realistic
evaluation for practical coding schemes can be done. We will see that a simple OOK
input alphabet almost achieves the capacity for small values of SNR.

My idea was to expand the concept introduced in the paper [FH09] of finding
equally spaced mass points with a defined probability, to mass points which are not
equally spaced. By analysing the capacity-achieving input distribution of the energy
detector, it turned out that computing the square-root of the equally spaced mass
point position leads to a very good approximation of the mass point spacing of the
energy detector for certain SNR values.
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6.1 Capacity-Approaching Input Distribution

The following derivations are based on [FH09]. At first we define a set of discrete
input distributions q(x) with K + 1 mass points, which are not equally spaced, i.e.

PX =
{

q(x) : [0, A] → [0, 1] : bk =

√

k
A2

K
, q(x) =

K∑

k=0

akδ(x− kbk),

K∑

k=0

ak = 1
}

(6.1)
where bk are the positions, ak the probabilities of the mass points and A is the
maximum amplitude. The variable parameters of the distribution are the number
of mass points and their probability, but the spacing between the points is fixed.
For this class of distributions the maximum entropy and the corresponding input
distribution with K + 1 mass points can be defined as

q(x;K) = argmax
PX

H(X) (6.2)

where

H(X) =
K∑

k=0

ak log
1

ak
. (6.3)

Out of this set of distributions, the capacity approaching input distribution, which
maximizes mutual information, can be found in the same manner. The important
difference is that the number of mass pointsK(ρ, SNR)+1 is dependent on the chan-
nel parameters ρ = A2

P
and SNR = P

σ2 . So we can define the capacity approaching
input distribution as

q∗(x;K(SNR; ρ)) = argmax
q(x)∈P

I(X ; Y ) (6.4)

where
P =

{

q(x) : ∀K ∈ N; q(x) = q(x;K)
}

. (6.5)

To solve the optimization problem involving the channel parameter, we have to find
the probabilities of the mass points and the total number of mass points K. By
the reason that K varies with the channel parameters SNR and ρ, it is difficult to
define an analytical expression, but for a given number of mass points K + 1, an
entropy maximizing input q(x;K) can be found by solving

max
ak

H(X), (6.6)

under the following constraints:

K∑

k=0

ak = 1,

K∑

k=0

b2kak ≤ P, A = bK (6.7)
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By using Lagrange multipliers the optimization can be done by

J =

K∑

k=0

ak log
1

ak
− λ1

( K∑

k=0

ak − 1
)

− λ2

( K∑

k=0

(
√

k
A2

K

)2

ak − P
)

=

K∑

k=0

ak log
1

ak
− λ1

( K∑

k=0

ak − 1
)

− λ2

( K∑

k=0

k
A2

K
ak − P

)
. (6.8)

To find the input distribution that the achieves maximum of H(X), Eq. 6.8 has to
be differentiated w.r.t. ak and the constraints have to be inserted. So we get

K∑

k=0

(

1− k
A2

KP

)

e−kλ2
A2

K =
K∑

k=0

(

1− k
ρ

K

)

e−kλ2
Pρ
K (6.9)

which can be rewritten as

S(t) =

K∑

k=0

(

1− k
ρ

K

)

tk ≤ 0, (6.10)

where
t = e−λ2

Pρ
K . (6.11)

For a given number of mass points K, Eq. 6.10 can be solved to obtain the real
valued root t0 ∈ [0, 1]. The discrete maxentropic input distribution with spacing bk
is then defined as

q(x;K) =

K∑

k=0

akδ(x− kbk), bk =

√

k
A2

K
(6.12)

where

ak =

{
1

K+1
, A2 ≤ 2P
tk0

1+t0+t20+...+tK0
, A2 ≥ 2P

(6.13)

In the case A2 < 2P , the AP constraint is not active, which means that
K∑

k=0

kA2

K
< P

and hence λ2 = 0. If the optimization problem is solved without the AP constraint,
a uniform distribution is obtained. When A ≥ 2P , both constraints are active
and we have to compute t0 as shown before. A2 = 2P is a limit case, whether
the AP constraint is active or not, so that both equations in 6.13 lead to uniform
distribution.
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6.2 Evaluation

The Figs. 6.1(a)-(d) show the channel capacity and the mutual information of
the introduced maxentropic input distribution versus SNR for different PAPR ρ
and M = 40. Fig. 6.1(a) shows these curves for ρ = 2 and K = 1, 2 and 3.
As we proposed before, the maxentropic input distribution for ρ = 2 is uniformly
distributed with K+1 probability mass points. By comparing the channel capacity
with the mutual information, a very small gap between them can be noticed for
specific regions of SNR. This tells us, which coding scheme can be deduced from
the input distribution in a certain range of SNR. It is especially interesting that
for small SNR values the resulting capacity-achieving input distribution p(x) =
0.5δ(x) + 0.5δ(x − A) computed by the original non-linear optimization problem
coincides with the maxentropic input distribution obtained with Eq. 6.13. This
distribution can be implemented directly using binary codes as it is suggested in
[FH09].

In case that ρ > 2, the maxentropic input distribution has a non-uniform char-
acter, but at low SNR the distribution also coincides with the capacity-achieving
input distribution. As we see in Fig. 6.1(b), 6.1(c) and 6.1(d) the bigger ρ is,
the more weight is assigned to the mass point at zero, e.g. for ρ = 4, p(x) =
0.75δ(x) + 0.25δ(x − A). Another fact is that with increasing ρ the input distri-
bution gets more non-uniform. The probability of the mass points for this binary
OOK alphabet can easily be found by the value set

[q(0), q(A)] =

[
ρ− 1

ρ
,
1

ρ

]

. (6.14)

Figs. 6.2(a)-(d) show the capacity-achieving and the maxentropic distribution for
several SNR values and ρ = 4. For SNR = −6.4dB it can be seen in Fig. 6.2(a) that
for two mass points the maxentropic distribution is also capacity-achieving. If the
SNR increases the spacing between the mass points of the maxentropic distribution
begins to differ from the optimal positions and the probabilities differ from the
optimal probabilities, as shown in Fig. 6.2(b), 6.2(c) and 6.2(d).

In order to get the capacity-approaching input distribution, K(ρ, SNR) has to
be obtained, which is analytically not a trivial task. So I provide a simpler method to
compute the mutual information of the capacity-approaching input distribution over
a wide range of SNR. Since I have computed the mutual information for different
numbers of mass points, it was easy to find the SNR((K+1)+1) values, where the
mutual information for the maxentropy distribution with K + 1 mass points gets
smaller than the mutual information of the distribution with (K+1)+1 mass points.
Given that the number of mass points can be switched at the according SNR((K +
1) + 1) value, the optimal maxentropic input distribution over a wide range of
SNR and hence the capacity-approaching input distribution can be computed. The
mutual information computed with the capacity-approaching input distribution is
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Figure 6.1: Channel capacity and mutual information of the energy detector calcu-
lated with maxentropic input distribution for different PAPR and M = 40
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(a) M = 40, ρ = 4 and SNR = −6.4dB
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(b) M = 40, ρ = 4 and SNR = −5dB
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(c) M = 40, ρ = 4 and SNR = −2.6dB
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(d) M = 40, ρ = 4 and SNR = 0.6dB

Figure 6.2: Maxentropic input distribution of the energy detector for different SNR
values, ρ = 4 and M = 40

very close to the channel capacity as seen in Fig 6.3.
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Figure 6.3: Mutual information of the capacity-approaching input distribution and
channel capacity for ρ = 4 and M = 40
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Chapter 7

Conclusion

In this thesis a detailed analysis was performed of the energy detector in an information-
theoretical way. A numerical algorithm was provided to calculate the channel capac-
ity and achieving input distribution of the energy detector, which can be seen as a
continuous constrained channel. Therefore, the statistic of the output was analysed
to provide a statistical model for the energy detector seen as transmission channel.

At first, I used the results from Urkowitz [Urk67] to approximate the output
of the energy detector as the summation of the squared input signal, to obtain a
simpler signal representation for finding the statistics of the output signal. The
mathematical derivation has led to a non-central χ2 RV with a non-centrality pa-
rameter dependent on the input signal x and the noise dimensionality M , i.e. length
of the sum of the energy detector. Although the channel is non-linear, for a suf-
ficiently large integration time Ti, i.e. sufficiently large noise dimensionality M ,
it can be approximated by an additive white Gaussian noise channel with input-
signal-dependent noise variance. The evaluations have shown that the simulation
results for both models of the energy detector coincide already very well at M > 10.
Another fact was that the computation time of the algorithm shows significantly
smaller values for the Gaussian approximation model than for the non-central χ2

model.
In a second step, the numerical algorithm to solve such non-linear optimization

problems was developed based on [Dau05] and [Dau06]. For an extended version
of the Blahut-Arimoto algorithm, which is applicable to continuous channels, the
key-idea is to represent the probability density (mass) function by a list of particles
(mass points), where every particle has a weight and a position. To maximize the
mutual information, the algorithm alternates two separate steps, where in the first
step the weights (probabilities) are updated and in the second step the positions
of the particles are updated. If the gap between the mutual information as lower
bound of the channel capacity and the upper bound (maximum of the Kullback-
Leibler divergence D(p(y|x)||p(x))) is small enough, the algorithm has converged and
provides the particles as the mass points of the capacity-achieving input distribution
and the maximized mutual information as channel capacity. The main problem of
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the algorithm was long computation time until convergence. The reason for this
was that every computation step of the algorithm was executed with the number of
particles of the initial step, although the weights of many particles are insignificantly
small. To take this fact into account and reduce the computation time, I further
extended the algorithm by the “kick particles” and “fuse particles” methods.

The following step was the analysis of the resulting channel capacity and achiev-
ing input distribution of energy detector delivered by the algorithm. The simulations
with both statistical models of the energy detector (non-central χ2 and Gaussian
approximation) have shown, amongst others, the following results

• The channel capacity increases with increasing PAPR ρ and noise dimension-
ality M , i.e. increasing integration time

• The alphabets are discrete with a finite number of mass points

• The number of mass points is monotonically non-decreasing with the SNR

The positions and probabilities of the mass points have to vary significantly with
changing SNR to achieve the channel capacity. Therefore, a chosen alphabet (re-
sulting from a modulation scheme, e.g. ASK, and a channel coding scheme) is only
able to approach the optimal input distribution for a small region of SNR. Under a
certain SNR value (depending on M and ρ), the achieving input distribution only
consists of two mass points, where the probability of both is dependent of PAPR ρ.
In this region of low SNR values, OOK is always an optimal modulation alphabet.

The comparison of the non-central χ2 and the Gaussian model led to the con-
clusion that their simulation results begin to differ significantly from M < 10 down-
wards. To verify the numerical values of the channel capacity, I designed three
evaluation models, which were fed with the simulated achieving input distribution.
I then observed that the mutual information between the achieving input distribu-
tion and the output of the evaluation models practically coincided.

Finally, as such optimization problems are very complex, I developed a method
to find a lower bound for the channel capacity for defined intervals of SNR by solv-
ing the source entropy maximization problem. I noticed that the capacity-achieving
and capacity-approaching input distributions for low SNR match exactly, which led
again to the conclusion that OOK is an optimal modulation alphabet for low SNR.

In summary, this master thesis was successful in finding the channel capacity and the
corresponding achieving input distribution of the energy detector modelled with the
exact non-central χ2 model and the Gaussian approximation model. Additionally,
it gave an idea of how to prove that the input distribution is discrete with a finite
number of mass points. Finally, it delivered an approximation for the achieving
input distribution.

There are still many questions that remain unanswered and would provide inter-
esting areas of research. I briefly would like to propose two topics. Firstly, a detailed
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comparing analysis between actual modulation and coding schemes used in UWB
standards and the optimal input distribution alphabets calculated in this thesis,
would contribute to finding optimal modulation and coding schemes for the energy
detector used for UWB applications. Secondly, the algorithm could be extended to
channels with memory so that we can take inter-symbol interference account.
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Appendix A

Statistical Model of the Energy
Detector with a Multipath
Propagated Input Signal

The transmitted signal s(t) is obtained by a train of pulses as

s(t) =
√
P

K−1∑

k=0

ckp(t− kTs) (A.1)

where Ts is the symbol duration, K is the number of pulses and Tp is the length
of a pulse. The pulses are orthogonal if Tp ≪ Ts. A typical impulse response of a
multipath fading channel can be written as a weighted sum of delta-pulses [ACB06]:

h(t) =

L−1∑

l=0

αlδ(t− τl) (A.2)

where L is the number of multipath components, αl the complex path gain and τl the
path delay of the lth MPC. The received signal is the convolution of the transmitted
signal with the channel impulse response and is written as

x(t) = s(t) ∗ h(t) + n(t)

=
√
P

K−1∑

k=0

p(t− kTs) ∗ h(t) + n(t)

=
√
P

K−1∑

k=0

L−1∑

l=0

αlp(t− kTs − τl) + n(t).

(A.3)

The equation of the energy detector can be written as

y[m] =

∫ mTi

(m−1)Ti

x(t)2dt =

∫ mTi

(m−1)Ti

(√
P

K−1∑

k=0

L−1∑

l=0

αlp(t− kTs − τl) + n(t)

)2

dt.

(A.4)
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If no ISI occurs, this means that the symbol duration Ts is larger than the maximum
excess delay Ts ≫ τmax. This can be approximated by [Urk67]

y[m] =

M−1∑

n=0

(√
P

K−1∑

k=0

L−1∑

l=0

αlp

(
mM − n

Wrx

− kTs − τl

)

+ n[mM − n]

)2

(A.5)

where the noise dimensionality M = TiWrx = TsWrx. With n[n] ∼ N (0, σ2), x[n]
has the following statistic, if it is normalized with σ

x[n] ∼ N
(√

P

σ

K−1∑

k=0

L−1∑

l=0

αlp

(
n

Wrx

− kTs − τl

)

, 1

)

. (A.6)

So the non-centrality parameter of the non-central χ2 distribution can be written as

λ =
M∑

n=1

µ2
n = M

P

σ2

(K−1∑

k=0

L−1∑

l=0

αlp

(
n

Wrx

− kTs − τl

))2

. (A.7)

This can be rewritten, if the pulse duration is less than Tp < τlmin
(τlmin

= min
l,j

|τl − τj|),
as

λ =

M∑

i=1

µ2
i = M

P

σ2

K−1∑

k=0

L−1∑

l=0

α2
l p

2

(
n

Wrx

− kTs − τl

)

. (A.8)

A UWB system with transmitted-reference signalling in multipath propagation en-
vironment is analyzed in [QW05], which provides a more detailed statistical analysis
of multipath propagated signals, received with a non-coherent receiver structure.



List of Abbreviations

AP Average Power

ASK Amplitude-Shift Keying

I&D Integration and Dump

iid independent identically distributed

ISI Inter-symbol Interference

LHS Left Hand Side

MA Moving Average

MPC Multipath Components

OOK On-Off Keying

PA Peak Amplitude

PAM Pulse Amplitude Modulation

PAPR Peak to Average Power Ratio

PDF Probability Density Function

PMF Probability Mass Function

PPM Pulse Position Modulation

PSD Power Spectral Density

RV Random Variable

SNR Signal to Noise Ratio

UWB Ultra Wide Band
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