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Abstract

In this thesis a link between the concepts of entropy in statistical mechanics
and the concept of information loss from a system-theoretic point-of-view is
given. An inequality between the Kolmogorov-Sinai entropy, a measure of
information generation, and the information loss for autonomous dynamical
systems is discovered. Equality can be achieved, e.g., for absolutely con-
tinuous invariant measures. Based on this inequality, univariate dynamical
systems are analyzed. The information loss is upper semicontinuous in the
probability measure of the dynamical system; the latter converges weakly to
the invariant measure. This thesis thus utilizes the sequence of information
loss values obtained by iterating the systems to get an upper bound on the
Kolmogorov-Sinai entropy.

Zusammenfassung

In dieser Master-Arbeit wird eine Verbindung zwischen den Konzepten der
Entropie in der statistischen Mechanik und dem Informationsverlust im Sinne
der Systemtheorie hergestellt. Eine Ungleichung zwischen der Kolmogorov-
Sinai Entropie, einem Maß für die Informationgenerierung, und dem In-
formationsverlust für autonome dynamische System wurde gezeigt. Gle-
ichheit wird dabei für absolut stetige invariante Maße erreicht. Basierend
auf dieser Ungleichung werden eindimensionale dynamische Systeme betra-
chtet und analysiert. Der Informationsverlust ist halbstetig in Bezug auf das
Wahrscheinlichkeitsmaß des dynamischen Systems, welches schwach zum in-
varianten Maß konvergiert. Die Folge der Werte des Informationsverlusts
über mehrere Iterationen des Systems konvergiert daher zu einer oberen
Schranke fuer die Kolmogorov-Sinai Entropie.
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1 Introduction

In the pioneering work of Eckmann and Ruelle [1] the complexity of statistical
mechanical entropy, associated with different kinds of statistical mechanical
systems is investigated. Specifically, in systems which are characterized by
strange attractors. The statistical mechanical entropy is a concept which
measures the amount of uncertainty an observer has about an atom or par-
ticle. It is a measure of the disorder of a dynamical system and measures
the unpredictability of the observed value. Therefore, it is also related to the
degree of the chaotic behaviour of a dynamical system.
Ruelle [2] investigated the heating of an idealized thermostat, and it became
clear that entropy changes as the dynamical system evolves in time. One
is speaking of entropy production or of the entropy which gets pumped out
of the system in each iteration. This quantity is the difference between the
statistical mechanical entropy of the current state and the previous state.
The difference is always positive and will not exceed the sum of Lyapunov
exponents for autonomous dynamical diffeomorphisms. Chaotic behaviour
is characterized by the rate of exponential divergence of neighboring values,
quantified by the Lyapunov exponents of the dynamical system.
Another characterization of chaotic behaviour is given by the Kolmogorov-
Sinai entropy of a dynamical system, also known as metric entropy. It mea-
sures the amount of information generated in each iteration of the dynamical
system and is related to exponential stretching. The Margulis-Ruelle in-
equality states that the Kolmogorov-Sinai entropy cannot exceed the sum of
positive Lyapunov exponents.
Through the invention of the Axiom-A attractor and the Anosov diffeomor-
phism Ruelle [3], a certain invariant measure - the Sinai, Ruelle, and Bowen
(SRB) measure [4] is found. The SRB-measure assumes that the dynamical
system admits absolutely continuous conditional measures. For those sys-
tems admitting the SRB-measure property, the inequality mentioned above
becomes an equality. The entropy production does not exceed the sum of
the Lyapunov exponents and is always positive.

4



The Lyapunov exponents and the Kolmogorov-Sinai entropy are powerful
concepts for describing the chaotic behaviour of dynamical systems. Since
these quantities are tough to compute and since there is the need of an infi-
nite amount of measurements, just an estimation of these quantities can be
made.
For this reason, there is the need to find other quantities to gain knowledge
about the chaotic behaviour of such dynamical systems and to make proper
estimations of such quantities.
Changing the discipline from statistical mechanics to information theory [5],
a few more concepts of entropy can be found. Note, the principle concept
of entropy is equal in both disciplines. In information-theoretic terms, the
context of atoms or particles is replaced with a random event, denoted by a
random variable or random vector in multivariate cases, respectively.
Thinking about the concept of conditional entropy, the uncertainty about a
random variable given another random variable can be determined. Imagine
a dynamical system evolves in time and let the input be a random variable.
This introduces the concept of information loss: In the work of Geiger et al.
[6],[7] it is defined as the conditional entropy of the input given the output.
The main result of [7], where the information loss is induced by a piecewise
bijective function, shows an interesting relation. It became clear that this
result provides a link between the information loss and differential entropies
of the input and output. This result assumes the existence of the probability
density function of the input as well as the probability density function of
the output. An similar expression can be also found in Papoulis and Pillai
[8, pp. 660].
Of particular interest is the last term of the formula of the main result pre-
sented in [7]. To be precise, the expectation of the logarithm of magnitude of
the derivative of the given function, which is related to the Kolmogorov-Sinai
entropy. However, a very similar expression of this main result can be found
also in [2], denoted as folding entropy.
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This work tries to close the gap between the main result of [7] and the
entropy production mentioned in [2], as well as to show the interplay be-
tween information theory in system-theoretic terms and statistical mechan-
ics. For the univariate case, the main result can be shown and is explored for
some examples. The main result provides a general inequality between the
Kolmogorov-Sinai entropy and the information loss. Since the information
loss is upper semicontinuous, the information loss can be taken as a quanti-
tative measure for the chaotic behaviour of a autonomous dynamical system.

This work is organized as follows: In section 2 a general description of
related information-theoretic basics is given as well as a the basic concepts of
the information theory are described in the following subsections. Section 3
introduces the basic concepts of dynamical systems. This sections is followed
by the motivating example of the symmetric tent map in section 4. The main
result and its proof is provided in section 5. This work will be closed by the
examples (section 6) of the asymmetric tent map, Gaussian map, sine-circle
map, and the generalized 2x mod 1 map, providing analytical and numerical
results.
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2 Information-Theoretic Preliminaries

For the rest of this thesis the common basics are defined as follows:

The finite, countable, or uncountable set of all possible outcomes of a
random variable X will be denoted by X . For each element of a countable
set x ∈ X , a certain probability p(x) can be defined that satisfies

p(x) ∈ [0, 1] (1)∑
x∈X

p(x) = 1 (2)

Thus, the probability of an certain event A is given as

P (A) =
∑
x∈A

p(x). (3)

The function p(x) is called the probability mass function (PMF), which
is mapping a probability to each sample x out of the countable set X . Note,
it represents a collection of positive discrete masses.

If a continuous random variable with distribution FX(x) is considered,
the probability density function (PDF) can be defined as

fX(x) =
dFX(x)

dx
(4)

and satisfies ∫
X
fx(x)dx = 1 (5)

provided the PDF exists.
Finally the expectation value should be defined w.r.t. the random variable

X in the discrete case as

E{X} =
∑
x∈X

xp(x) (6)

and for the continuous case as

E{X} =

∫
X
xf(x)dx. (7)
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2.1 Entropy

In this section the concept of entropy (see [5, pp. 13]) will be introduced.
The entropy in information theory can be seen as the uncertainty of a random
variable and gives the upper limit of possible lossless data compression.

LetX be a discrete random variable with alphabet X and with probability
mass function p(x). The Shannon entropy is

H(X) = −
∑
x∈X

p(x) log p(x) (8)

where log p(x) is taken to base 2 (thus the entropy H(X) is measured in
bits). Note, unless otherwise specified, the logarithms of form log(x) will be
taken to base 2 for the whole thesis.

The entropy is a functional of the distribution of random variable X and
it is independent from the actual values x ∈ X taken by the random variable
X (see [5]).

Properties:

• H(X) ≥ 0, since the probability mass function 0 ≤ p(x) ≤ 1
thus log( 1

p(x)
) ≥ 0.

• Hb(x) = (logb a)Ha(X), since the base of the logarithm can
be changed by multiplying with a certain factor e.g logb p(x) =
logb a loga p(x). Thus, the measure of entropy can be changed
just by multiplying with the appropriate factor. Note, if the base
of logarithm is taken to 2, the entropy is measured in bits. The
entropy is measured in nats by taking the natural logarithm.

Example:

Consider an experiment with two outcomes x1, x2 and the prob-
abilities p(x1) = p and p(x2) = 1 − p. Let X be the discrete
random variable with X = [x1, x2]. Thus the entropy computes
to

H(X) = −p log p− (1− p) log(1− p). (9)

Let the experiment be a fair coin toss with probability p = 1/2,
the entropy calculates to H(X) = 1 bit. This is the maximum,
since above quantity is a concave function.
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2.2 Conditional Entropy

In general the conditional entropy H(Y |X) of a pair of discrete random
variables (X, Y ) ∼ p(x, y) is used to measure the information needed to
describe the outcome of Y given the outcome of X.

Let (X, Y ) be a pair of discrete random variables defined on x ∈ X ,
y ∈ Y and with joint probability mass function p(x, y). The conditional
entropy H(Y |X) is defined as follows (see [5, pp. 17])

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x).

(10)

Note thatH(Y |X) 6= H(X|Y ), sinceH(X)−H(X|Y ) = H(Y )−H(Y |X).
This relation is better known in the context of the mutual information
I(X;Y ) = H(X) − H(X|Y ) or I(X;Y ) = H(Y ) − H(Y |X), respectively
(see [5, pp. 21]).

2.3 Differential Entropy

The concept of the differential entropy describes the entropy of a continuous
random variable.

Definition 1. Let X be a continuous random variable with the probability
density function (PDF) fX(x) on the space X where fX(x) > 0. The differ-
ential entropy is defined as (see [5, pp. 243])

h(X) = −
∫
X
fX(x) log fX(x)dx (11)

It can be seen that the differential entropy is, as the Shannon entropy, a
functional of the distribution. Note, the differential entropy can be negative.

2.4 Information Loss

Consider a nonlinear input-output system Xn+1 = g(Xn) with g mapping
the output onto itself. According to [5, pp.38], the data processing inequality
states that information can only be lost by passing a random variable through
a nonlinear system. This information loss depends on the input density as
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well as on the nonlinearity of the system and is strongly related to the non-
injectivity of the system. By the work of [6] and [7] the information loss can
be defined as follows:

Definition 2. Let Xn be a random variable with alphabet X ⊆ R and let
a second random variable defined as Xn+1 = g(Xn). Then, the information
loss by passing Xn through the nonlinear system g is

L(Xn → Xn+1) = lim
X̂n→Xn

(I(X̂n;Xn)− I(X̂n;Xn+1)) (12)

where X̂n is the quantized version of the input Xn.

By refining the quantization such that X̂n → Xn, above quantity reduces
to the conditional entropy of the input given the output:

L(Xn → Xn+1) = lim
X̂n→Xn

(I(X̂n;Xn)− I(X̂n;Xn+1))

= H(Xn|Xn+1)
(13)

Above equality can be proved through the definitions of the entropy and
mutual information. Roughly speaking, the mutual information of a random
variable X with itself is equal to its entropy I(X;X) = H(X).

According to Theorem 2 and Corollary 1 of [7] for the univariate case
with a piecewise bijective map g : X → X , X ⊆ R, the information loss is
given as

H(Xn|Xn+1) = h(Xn)− h(Xn+1) + E{log |g′(Xn)|} (14)

where h(.) denotes the differential entropy, assuming the probability density
functions of corresponding random variables exist.

The quantity in (14) is of particular interest, since it provides a link
between the differential entropy and information loss, as well as to the
Kolmogorov-Sinai entropy (discussed later) through the last term of the for-
mula.
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2.5 Upper Semicontinuity of Information Loss

In section 2.4, the information loss H(Xn|Xn+1) was defined by equation
(14). A very similar expression can be found in [2, pp. 11], where is the
speaking of the folding entropy F (µ).

It turns out that the information loss is identical to the folding entropy,
thus,

H(Xn|Xn+1) = F (PXn) (15)

where PXn is the probability measure of Xn on the compact manifold X .
Note, the probability measure PXn tends vaguely to the invariant measure µ
(see [2, pp. 15])

PXn

vague−→ µ (16)

Proposition 1 (Proposition 2.1 [2, pp. 11]). Let I be the set of invariant
measures and let P be the set of probability measures on X with the vague
topology and

I = {µ ∈ P : µ is g-invariant} (17)

P\σ = {µ ∈ P : µ (σ) = 0} (18)

I\σ = I ∩ P\σ (19)

(a) The function F : P\σ → R is concave upper semicontinuous.
(b) The restriction of F to I\∑ is affine concave upper semicontinuous.

Since the probability measure PXn tend vaguely to µ it can be said that

F (µ) ≤ lim
n→∞

F (PXn) (20)

Thus,

lim
n→∞

H(Xn|Xn+1) ≥ Lg := “information loss in the invariant case” (21)
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3 Preliminaries for Dynamical Systems

A dynamical system describes the time dependence of a point by a fixed rule.
The motion of such point is usually given by differential equations. Accord-
ing to the order r of a dynamical system, r differential equations are given.

In the discrete-time case the dynamical system is called map and is usually
defined as,

xn+1 = Axn + b (22)

xn+1 = g(xn) (23)

where A is a matrix and b a vector in the multivariate case. For the uni-
variate case A and b are scalars. Equation (22) is the usual form for linear
discrete-time maps, whereas notation (23) can be used for nonlinear discrete-
time maps. Note, for the rest of this thesis, univariate maps will be denoted
as g, and G defines the multivariate case.

In general the motion of a point can be seen by the trajectory in the phase
space. The phase space is characterized by the eigenvalues of the map g(x)
and defines the space of all possible states which the map can apply. Note,
the phase space is also often called manifold and will be denoted as X . This
expression implies the same meaning as the uncountable set of outcomes in
section 2.

Finally the term chaos should be defined. The chaotic systems are highly
sensitive to initial conditions, which means that slight differences in the initial
conditions yield completely different outcomes. Even though these dynamical
systems are deterministic, their outcomes are not predictable. This behaviour
is called deterministic chaos or just simply chaos.
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3.1 Lyapunov Exponent

The Lyapunov exponent is a common quantity to characterize dynamical
systems. In particular, it describes the chaotic motion of a nonlinear dy-
namical systems. It measures the exponential stretching of adjacent points,
which become separated under the forward iteration of a map xn+1 = g(xn),
g : X → X , X ⊆ R.
The Lyapunov exponent is also often used to gain knowledge about the sta-
bility of the trajectory. Generally speaking, if the local Lyapunov exponent
λ(x0) < 0, the trajectory is stable and will reach the attractor. Otherwise,
if the local Lyapunov exponent λ(x0) > 0, the trajectory is not stable.

According to the lines of [9, pp. 21] and [10, pp. 64], the Lyapunov
exponent for a one-dimensional discrete-time map can be defined as follows.
Figure 1 illustrates the exponential stretching of an interval of adjacent points
[x0, x0 + ε0] in the symmetric tent map.
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Figure 1: Exponential separation of an interval of adjacent points through
the action of the symmetric tent map.
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In this simple example, the length of the interval after N iterations is

ε0 e
Nλ(x0) = |gN(x0 + ε0)− gN(x0)| (24)

Taking the limits ε0 → 0 and N →∞, the difference quotient can be obtained
and the local Lyapunov exponent λ(x0) can be formally expressed as (see [9,
pp. 22])

λ(x0) = lim
N→∞

lim
ε0→0

1

N
log

gN(x0 + ε0)− gN(x0)

ε0

= lim
N→∞

1

N
log

dgN(x0)

dx0

.

(25)

As it can be seen from equation (24), (25), the interval ε0 is stretched by
the factor eλ(x0) at each iteration. This can be interpreted as some informa-
tion generation about the position of some point x ∈ [x0, x0 + ε0]. Using the
chain rule for derivatives of compositions of functions, equation (25) can be
rewritten as

λ(x0) = lim
N→∞

1

N

N−1∑
i=0

log |g′(xi)| (26)

where xi = g(xi−1) and |g′(xi)| = dg(x)
dx
|x=xi . Note, above quantity needs

just the first derivative g
′
(xi) at point xi. If the map g is ergodic, then the

Lyapunov exponent is the average over all locations xi and will not change
in the basin of attracton and can be written as (see [11, pp. 56])

λ =

∫
X

log |g′(x0)|dµ(x0) (27)

In the multivariate case, the dynamical system G : X → X , X ⊆ Rr, has
r Lyapunov exponents λ1, λ2, ...λr. For calculating the Lyapunov exponents,
the exponential expansion approach can be used (see [9, pp. 98]):

(eλ1 , eλ2 , · · · , eλr) = lim
N→∞

(
magnitude of the eigenvalues of

{
N−1∏
k=0

JG(xk)

})1/N

(28)
where JG = ∂G/∂xj is the Jacobian matrix of the dynamical system G.

Thus, by taking the logarithm of above equation and with log
∏N−1

k=0 xk =∑N−1
k=0 log xk, the sum of the Lyapunov exponents can be expressed as

14



r∑
i=1

λi = lim
N→∞

1

N

N−1∑
k=0

log (|det (JG(xk))|) . (29)

Concerning the stability consideration, the sum of all Lyapunov expo-
nents

∑
i λi are taken into account. If the

∑
i λi < 0, then the trajectory is

stable and an existing attractor of the map will be reached. Otherwise, if∑
i λi > 0, the trajectory is unstable.

Note, unlike the continuous-time case of dynamical systems where chaotic
behavior can only appear at r ≥ 3 dimensions, chaotic behavior of discrete-
time systems can appear with just a single dimension. For a more detailed
definition of the Lyapunov exponent the interested reader is referred to [11,
pp. 129].

3.2 Kolmogorov-Sinai Entropy (Metric Entropy)

The metric entropy also known as the Kolmogorov-Sinai entropy (K-S en-
tropy), is one of the most important measures of chaotic motion of an arbi-
trary dimensional phase space (see [11, pp. 138] and [9, pp. 96]).

The K-S entropy can be seen as a value measuring the creation of informa-
tion at each iteration under the action of a chaotic map. Generally speaking,
the K-S entropy is positive for chaotic systems and zero for nonchaotic sys-
tems. Before the K-S entropy can be defined, the Shannon definition of
entropy, which describes the uncertainty of predicting the outcome of an
probabilistic event, should be recalled (see section 2.1).

The following definition of the K-S entropy is along the lines of [11, pp.
140]. Assuming an invariant probability measure µ of some map g(x) on the
defined space X , the K-S entropy can be denoted as HKS(µ). Consider a
bounded region M ⊆ X such that µ(M) = 1 and be invariant under the
transformation of the map g(x). Let M consist of k disjoint partitions such
that

M = M1 ∪M2 ∪ · · · ∪Mk. (30)

Thus, the entropy of the partition {Mi} can be written as

H(µ, {Mi}) = −
k∑
i=1

µ(Mi) log (µ(Mi)). (31)

Since the map g(x) evolves in time, it produces a series of intersections

{M (n)
j } of the form Mj ∩ g−1(Mi), j, i = 1, 2, ..., k such that for n iterations
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the refined partitions {M (n)
j } are given as

Mj1 ∩ g−1(Mj2) ∩ g−2(Mj3) ∩ · · · ∩ g−(n−1)(Mjn) (32)

with j1, j2, ..., jn = 1, 2, ..., k.
Thus the entropy for the partitions {Mi} can be written as

H̄(µ, {Mi}) = lim
n→∞

1

n
H(µ, {M (n)

i }) (33)

From equation (33) can be seen, that the entropy depends on the original par-
tition {Mi}. Now, the K-S entropy can be formally defined as the supremum
of equation (33) over all initial partitions {Mi}.

HKS(µ) = sup
{Mi}

H̄(µ, {Mi}) (34)

In other words, the K-S entropy is the remaining uncertainty of the next
outcome xn+1, if all the past outcomes xn, xn−1, ..., x0 with a certain uncer-
tainty are known1.

3.3 Connection of K-S entropy and Lyapunov expo-
nent (Margulis-Ruelle inequality)

In this section the Margulis-Ruelle inequality will be introduced. This the-
orem was first proved by Margulis [12] for diffeomorphisms preserving a
smooth measure. A more general proof is given by Ruelle [13], which is
valid for C1 maps and non-invertible C1 maps (see [14]). Roughly speaking,
the Margulis-Ruelle inequality gives an upper bound on the metric entropy
(K-S entropy). It states that the K-S entropy does not exceed the sum of
positive Lyapunov exponents. By Ruelle [13], the definition of the Margulis-
Ruelle inequality is given as follows.

1Note that H(Xn+1|Xn) = 0 by definition, it maybe follows from the discontinuity of
entropy (see section 2.2)
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Theorem 1 (Margulis-Ruelle Inequality. [13]). Let X be a C∞ compact man-
ifold and g : X → X a C1 map. Let I be the set of g-invariant probability
measures on X . Assuming that there exists the Jacobian matrix Jg(X ) con-
sisting of a increasing succession of subspaces V i

x , i = 1, ..., s(x) such that the
Lyapunov exponents can be written as

λi(x) = lim
n→∞

1

n
log
∣∣det{Jng (u)}

∣∣ if u ∈ V i
x \ V i−1

x (35)

Therefore the positive Lyapunov exponent can be calculated as

λ+(x) =
∑

i:λi(x)>0

mi(x)λi(x) (36)

where mi(x) is the multiplicity of the Lyapunov exponent λi(x).

Then for every µ ∈ I the K-S entropy has upper bound

HKS(µ) ≤
∫
λ+(x)dµ(x). (37)

Proof. The following proof is along the lines of [13]. There it is said, that
a compact Riemannian manifold is partitioned into cubic pieces. Consider
now a local simplex that is subjacent of each partition, and consider a set of
points (given through the simplex plane) out of those partitions, which gets
transformed under the map. The number of intersections between the cubic
partition and this transformed set is bounded. Therefore an upper bound
on the metric entropy through the entropy of these partitions can be found,
since each point of the compact Riemannian manifold can be found in one
of these sets.

Let µ ∈ I be fixed and the positive Lyapunov exponent defined as by
equation (35), (36).

Obtain a partition δN of the compact manifold X decomposed by a m-
dimensional simplex. Let ∆m be a m-dimensional simplex of planes ti such
that

∆m =

{
ti = ki/N, ki = 1, ... , N, i = 1, ,... ,m |

m∑
i=1

ti ≤ 1 and ti ≥ 0, ∀i

}
(38)

where N > 0 is a given integer.
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Assume that µ(ti) = 0,∀N and X be a Riemannian manifold. There
exists a C > 0, such that the number of intersections of a partion δN and
gn(S), S ∈ δN is the set of points of the simplex ti

N(n) < N < C
∣∣det{Jgn(x)Λ}

∣∣ for any x ∈ S. (39)

where Λ is the spectrum of the Lyapunov exponents at point x: λ1
x < λ2

x <

, ... , < λ
s(x)
x with related multiplicities m1

x, ... ,m
s(x)
x .

In fact the number of intersections between δN and gn(S) is bounded,
since they are decomposed by the set of simplex planes ∆m.

The K-S entropy with respect to gn(S) and the partition δN satisfies

H(µ, δN) ≤ logN(n) < logC +

∫
log
(∣∣det{Jgn(x)Λ}

∣∣)dµ(x) (40)

The proof can be completed by dividing (40) by n and n → ∞, which
yields to

H̄(µ, δN) ≤ lim
n→∞

1

n
logC + lim

n→∞

∫
1

n
log
(∣∣det{Jgn(x)Λ}

∣∣) dµ(x) (41)

where 1
n

log
(∣∣det{Jgn(x)Λ}

∣∣) is positive and bounded. If N tends to N →∞,
it can be written for this case

HKS(µ) := sup
δN

H̄(µ, δN). (42)

Finally it can be concluded that

HKS(µ) ≤
∫
λ+(x)dµ(x). (43)

3.4 Sinai, Ruelle, and Bowen (SRB)-Measures

The SRB-measures play an important role in the ergodic theory of dissipa-
tive dynamical systems with chaotic behavior and have their origin in statis-
tical mechanics. They were originally introduced with the theory about the
Anosov-diffeomorphisms and Axiom A attractors [3],[1].
Roughly speaking, the SRB measure is an invariant measure under some map
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g which has absolutely continuous conditional measures on the unstable di-
rection and it is most compatible with volume when volume is not preserved
(see [4]).

The following definition of Axiom A attractors and Anosov-diffeomorphism
is taken from [4] and [1, pp. 636].

Definition 3. Let g : X → X be a diffeomorphism on the Riemannian
manifold X , i.e. a differentiable map with differentiable inverse g−1. The
map g is called an Anosov-diffeomorphism, if the tangent space Txg at every
x ∈ X is split into the linear unstable and stable eigenspaces Eu(x) and
Es(x). These subspaces are ∂g/∂x (usually written as Dg)-invariant where
the unstable part Dg|Eu is uniformly expanding and the stable part Dg|Es is
uniformly contracting.

Definition 4. A g-invariant set Λ is called an attractor, and has a basin of
attraction U in its vicinity, if every x ∈ U reaches the attractor as the map
evolves in time, gnx → Λ. The attractor Λ is called an Axiom-A attractor,
if the tangent bundle TxΛ is split into EuΛ and EsΛ as by definition above.

Theorem 1 of [4] states the original definition of the SRB-measure by
Sinai, Ruelle, and Bowen, and can be summarized as follows:

Theorem 2. Let g be a C2 diffeomorphism with an Axiom-A attractor Λ.
Then there is a unique g-invariant Borel probability measure µ on Λ that is
characterized by each of the following (equivalent) conditions:

(i) µ has absolutely continuous conditional measures on unsta-
ble manifolds, i.e. every Axiom-A attractor Λ has an invariant
measure with density ρ on the unstable manifold

(ii)

HKS(µ) =

∫
λ+(x)dµ(x) (44)

where λ+(x) =
∑

i:λi(x)>0mi(x)λi(x). Note this quantity is known

as Pesin identity (discussed in the next subsection).

(iii) there is a set V ⊂ U having full Lebesgue measure such that
for every continuous observable φ : U → R, ∀x ∈ V ,

1

n

n−1∑
i=0

φ(gix)→
∫
φdµ (45)
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This means that µ is observable, since it hast positive Lebesgue
measure and is therefore called a physical measure.

(iv) µ is the zero-noise limit of small random perturbations of g

.
Note that in general property (ii) is an inequality, if the continuity as-

sumption is not made (see section 3.3).

Remark: A stable manifold is the set of points x, such that the trajec-
tory starting from a point x0 approaches a stationary point or a closed curve
(limit cycles) as some arbitrary map evolves in time. Otherwise, the unsta-
ble manifold is said to be the set of points x, such that the trajectory going
backward in time starting from some xn approaches the stationary point or
the limit cycle. This assumes invertibility of the map.

Assume that an invariant measure µ has a probability density function
(PDF) fX w.r.t Lebesgue measure. By the Corollary 1.1.1 of [15] if follows
that µ is an SRB measure:

Corollary 1. Let g be a C2 endomorphism on X with a g-invariant Borel
probability measure µ. If µ is absolutely continuous with respect to the Lebesgue
measure on X , then µ has the SRB property.

3.5 Pesin Identity

The Pesin Identity is a special case of the Margulis-Ruelle inequality (see
subsection 3.3) which states that the K-S entropy is always bounded by the
sum of positive Lyapunov exponents. Through the properties of the Pesin
Identity, equality between the K-S entropy and the sum of positive Lyapunov
exponents is given.

Let X be a C∞ compact manifold and g : X → X a C1 map. Let I be the
set of g-invariant probability measures on X . Assume a tangent bundle TxX
of the compact manifold consisting of a increasing succession of subspaces
V i
x , i = 1, ..., s(x). Let µ ∈ I be fixed, the positive Lyapunov exponent is

λ+(x) =
∑

i:λi(x)>0

mi(x)λi(x) (46)

where mi(x) is the multiplicity of the corresponding Lyapunov exponent.
Therefore, the Margulis-Ruelle inequality is given as (see [13])
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HKS(µ) ≤
∫ ∑

i:λi(x)>0

mi(x)λi(x)dµ(x) . (47)

The standing hypotheses for the definition of the Pesin Identity are the fol-
lowing (see [16]):

(i) X is a C∞ compact Riemannian manifold without boundary,

(ii) g is a C2 diffeomorphism of X onto itself and is measure
preserving,

(iii) µ is a g-invariant Borel probability measure on X .

Through these hypotheses we are able to define the Pesin Identiy:

Theorem 3. Let g : X → X be a C2 diffeomorphism of a compact Rieman-
nian manifold X preserving the SRB measure µ. The K-S entropy is given
as

HKS(µ) =

∫ ∑
i:λi(x)>0

mi(x)λi(x)dµ(x) . (48)

Note, this result follows by property (ii) of the SRB measure in Definition 2.
Not only that an SRB measure µ implies equality between the K-S entropy
and the Lyapunov exponents, the reversed implication is also valid (see [16]
for a precise statement).

An extension to a greater class of maps is given by in [4]. There it is
said that equation (48) also holds for g being an abritrary diffeomorphism
and µ being an SRB measure. Due to Ruelle [13], this result also holds for
non-invertible maps.
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4 Motivating Example: Tent map

As a motivating example consider the symmetric tent map. The tent map
is piecewise linear on its corresponding subspaces as well as it is piecewise
bijective.

Let the tent map g(x) be defined on the interval X = [0, 1] as follows,

g(x) =

{
2x, if 0 ≤ x < 1/2

2(1− x), if 1/2 ≤ x ≤ 1
. (49)
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Figure 2: Piecewise bijective symmetric tent map.

Consider now a real-valued random variable Xn with PDF fXn = 1,
∀x ∈ X and define a second random variable as Xn+1 = g(Xn). It can be
shown that the PDF is invariant under the action of the map g(x). From
Corollary 1 follows that the absolute continuous conditional measure is given
(SRB measure property), which means that Pesin’s identity holds for this
map. Thus the K-S entropy is equal to the sum of Lyapunov exponents.
Since the map is univariate, there exists just one Lyapunov exponent. As it
can be seen from Figure 4 the map is non-injective on X , therefore the map
has some information loss.
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From the following can be obtained that, the K-S entropy evaluates to
HKS = 1 Bit and the information loss also evaluates to H(Xn|Xn+1) = 1 Bit.

By using the method of transformation [8, pp. 130], the marginal PDF
of the second random variable is given as

fXn+1(xn+1) =
∑

xi∈g−1(xn+1)

fXn(xi)

|g′(xi)|
=

1

2
+

1

2
= 1 (50)

where the derivative of the map is constant with |g′(x)| = 2.

Since the logarithm of the PDF computes to zero, the differential entropies
of the input and output compute also to zero. Thus, these results yield,

H(Xn|Xn+1) = h(Xn)− h(Xn+1) + Eµ{log |g′(Xn)|} =
= 0− 0 + 1 = 1 Bit

(51)

The Lyapunov exponent and the Kolmogorov-Sinai entropy computes to,

HKS = λ =

∫
χ

fX(x) log

(
dg(x)

dx

)
dx =

1

2
log 2 +

(
1− 1

2

)
log 2 = 1 Bit.

(52)
By (51), (52) can be seen, that the information loss is equal to the

Kolmogorov-Sinai entropy. The question what arises, does equality between
K-S entropy and information loss hold every time?

HKS
?
= H(Xn|Xn+1) (53)
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5 Main Result

The main result is connected to the formalism about the entropy production
eg(µ), and takes us to the mechanisms of statistical mechanics (see [2]). In
this work of Ruelle the entropy production of an idealized thermostat is
investigated. Generally speaking, the entropy production is the amount of
entropy pumped out under the action of some map g at each iteration.

Definition 5. Let X be a compact Riemannian manifold, and g : X → X
a C1 diffeomorphism. Consider a real valued random variable Xn with some
density fXn and define a second random variable by Xn+1 = g(Xn). Thus the
entropy production of the map g at each iteration is

eg = h(Xn)− h(Xn+1). (54)

Corollary 2. If fXn is invariant under the transformation of g, then the
entropy production is zero eg = 0.

In Corollary 2, the differential entropies get equal to each other, h(Xn) =
h(Xn+1).

Let µ be a vague limit of the density fXn(x) = (1/n)
∑n−1

k=0 g
k(fX(x))

which gets transformed under the action of some map g, and let g be as stated
above by Definition 5, it can be generally said that the entropy production
is always positive [2, pp. 16].

eg(µ) ≥ 0 (55)

Consider a dynamical system g : X \ Ψ → X , where Ψ ⊂ X is a closed
subset of X . Let µ be a positive measure on X \Ψ, such that µ(Ψ) = 0. The
entropy production eg(µ) for this non-invertible maps is originally given as
([2, pp. 12])

eg(µ) = F (µ)− µ(log J) (56)

where F (µ) denotes the folding entropy and J is the Jacobian matrix of g.

Let PXn be the probability measure of Xn on the compact manifold X .
If the probability measure PXn tends vaguely to µ, then the information loss
is upper semicontinuous,i.e., limn→∞H(Xn|Xn+1) ≥ F (µ) (see section 2.5).

Assume that µ is a g-ergodic probability measure, then quantity µ(log J)
satisfies (see (26), (27) in section 3.1),
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µ(log J) =
∑

pos. Lyapunov exp. +
∑

neg. Lyapunov exp.. (57)

Note, the Kolmogorov-Sinai entropy HKS ≤
∑

pos. Lyapunov exp (see sec-
tion 3.3).

Theorem 4 (Main Result). Let X be a compact Riemannian manifold, and
g : X → X a C1 map or a non-invertible map and PXn be a g-ergodic
probability measure. Let Xn be a real-valued random variable such that Xn ∼
PXn, and define a second random variable by Xn+1 = g(Xn). Then,

HKS ≤ lim
n→∞

H(Xn|Xn+1) +
∣∣∣∑ neg. Ljapunov exponents

∣∣∣ . (58)

This inequality is through the conjecture made by Ruelle [2, pp.16], and is
valid for C1 maps and non-invertible maps.

Corollary 3. If PXn invariant and has a PDF fXn, then one has equality in
(58).

One inequality behind equation (58) is due to the positivity of entropy
production eg(µ) ≥ 0. The other inequality is the Margulis-Ruelle inequality
(see section 3.3). The third inequality is due to the upper semicontinuity of
the information loss (see section 2.5) The following proof is along the lines
of [2, pp. 16].

Proof of positivity of entropy production:
The quantity eg(µ) ≥ 0 for a physically reasonable µ is close to the result

obtained when g is a diffeomorphism.

Theorem 5 (Theorem 2.4 [2, pp. 16] ). Let X be a random variable with
alphabet X and with the probability density function fX(x) such that the
obtained differential entropy h(X) is finite. If µ is a vague limit of the density
fXn(x) = (1/n)

∑n−1
k=0 g

k(fX(x)) which gets transformed under the action of
some map g and if time n tend towards ∞, then eg(µ) ≥ 0.

Through the proposition 2.2(c) and 2.2(b) of [2, pp. 13] can be obtained,

eg(µ) ≥ lim sup
n→∞

eg(f
n
X(x)) (59)

eg(µ) ≥ (1/n)
n−1∑
k=0

eg(g
k(fX(x))) (60)
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where
∑n−1

k=0 eg(g
k(fX(x))) = −h(Xn) +h(X). Therefore we can rewrite (60)

to,

eg(µ) ≥ lim sup
n→∞

1

n
[−h(Xn) + h(X)] (61)

Since h(X) ≤ log volX it can be obtained eg(µ) ≥ 0.

With this proof and the proof of the Margulis-Ruelle inequality (section
3.3) as well as taking the upper semicontinuity of the information loss into
account (see section 2.5), the main result can be proved as follows:

Proof of main result (58).
Let µ be a vague limit of the probability measure PXn of Xn on the compact
manifold X and let µ be a g-ergodic measure. Thus, the following can be
stated:

0 ≤ eg(µ)

= F (µ)− µ(log Jg)

≤ lim
n→∞

H(Xn|Xn+1)−

−
∑

pos. Lyapunov exp.+ |
∑

neg. Lyapunov exp.|

(62)

HKS ≤
∑

pos. Lyapunov exp. ≤

≤ lim
n→∞

H(Xn|Xn+1) + |
∑

neg. Lyapunov exp.|
(63)

The Kolmogorov Sinai entropy HKS is bounded by the sum of positive
Lyapunov exponents due to the Margulis-Ruelle inequality

HKS ≤
∑

pos. Lyapunov exp. (64)

which completes the proof of the main result

HKS ≤ lim
n→∞

H(Xn|Xn+1) + |
∑

neg. Lyapunov exp.|. (65)

The entropy production eg(µ) can fall into three cases, and further sub-
divided into bijective and non-injective maps. Note, bijectivity assumes sur-
jectivity and injectivity of the map. Figure 5 illustrates such distinction.

The table below gives a general overview of certain maps admitting such
required properties. For the following examples, only univariate maps will
be considered.
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H(Xn|Xn+1) = 0

bijective maps

h(Xn) > h(Xn+1)
eg > 0

h(Xn) < h(Xn+1)

non-injective maps

eg = 0
h(Xn) = h(Xn+1)

eg < 0

Figure 3: Classification of discrete-time maps, according to the entropy pro-
duction and the bijectivity of the maps. The inner circle encloses the bijective
maps, whereas the outer circle encloses the non-injective maps.

injectivity maps section

eg(µ) = 0: bijective: identity map
non-injective: asymmetric tent map sec. 6.1

...

eg(µ) > 0: bijective: e.g. Baker’s Map
(multivariate) ...maps that are measure preserving

and admitting a cantor set
non-injective: Gauss iterated map sec. 6.2

Sine-circle map sec. 6.3
...

eg(µ) < 0: bijective, Generalized 2x mod 1 map sec. 6.4
non-injective ...maps that are not measure

preserving, open systems

Since in the univariate case just one Lyapunov exponent exists, there
exists no negative Lyapunov exponent, otherwise map g would be not chaotic.
Note, chaotic behaviour of discrete type maps is possible with a single positive
Lyapunov exponent. In fact the main result reduces to following,
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HKS ≤ H(Xn|Xn+1) + |
∑

neg. Ljapunov exponents|︸ ︷︷ ︸
=0

(66)

HKS ≤ H(Xn|Xn+1) (67)

assuming that µ is a g-ergodic probability measure.

Equation (67) is of particular interest, implying that there exists no
chaotic univariate map which is bijective.2

2For bijective maps the information loss vanishes, while chaotic behaviour is character-
ized by a positve K-S entropy.

28



6 Examples

In this section some examples already mentioned in section 5 before, will be
presented in the following subsections. As it was said, only univariate maps
will be considered.

The presented numerical results for the information loss H(Xn|Xn+1),
were generated via MATLAB/Simulink 2010b. The starting distribution
was chosen to be the uniform distribution. To get representative results,
a starting vector of 106 values was generated and passed through the map
which evolves in time. In general the iteration time was chosen to be n = 20,
except it was necessary to iterate longer.

6.1 Asymmetric Tent Map

The asymmetric tent map is a non-injective map g : X → X and is defined
with symmetry parameter a by equation (68). This map admits eg(µ) = 0,
as can be seen later.

Let the map (shown in Figure 4) be given as:

g(x) =

{
x
a
, if 0 ≤ x < a

1−x
1−a , if a ≤ x ≤ 1

(68)

with a ∈ (0, 1).
Assume that at time n the state g(xn) is uniformly distributed, i.e.,

fXn(x) = 1, ∀ x ∈ [0, 1]. Now, think of a second RV Xn+1 = g(Xn). Using
the method of transformation [8, pp. 130], the marginal PDF is given as

fXn+1(xn+1) =
∑

xi∈g−1(xn+1)

fXn(xi)

|g′(xi)|
(69)

where g−1(xn+1) is the preimage of xn+1.
The derivative of g(xn) is given by equation (70), the elements of the

preimage by equation (71) and equation (72).

|g′(xn)| =

{
1
a
, if 0 ≤ xn < a
1

1−a , if a ≤ xn ≤ 1
(70)

x1,n = a · g(xn) =

{
xn, if 0 ≤ xn < a
a

1−a(1− xn), if a ≤ xn ≤ 1
(71)
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Figure 4: Asymmetric tent map defined via equation (68)

x2,n = 1− (1− a) · g(xn) =

{
1− (1− a)xn

a
, if 0 ≤ xn < a

xn, if a ≤ xn ≤ 1
(72)

Since fXn is constant and we always have an element of the preimage in
[0, a) and [a, 1], the marginal PDF of Xn+1 is equivalent to the one of Xn,
fXn+1 = fXn . In other words, Xn+1 is a uniformly distributed RV on [0, 1].
Therefore, the asymmetric tent map has an invariant PDF and the differential
entropy h(Xn) and h(Xn+1) must be equivalent.

6.1.1 Lyapunov exponent λ and K-S entropy HKS

The KS-entropy will be calculated along the lines of [9]. With p1(x) =
P (0 ≤ x < a), the KS-entropy is [9, pp. 116]

HKS = p1(x) log

(
1

p1(x)

)
+ (1− p1(x)) log

(
1

1− p1(x)

)
. (73)
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Finally we obtain from equation (73) and the probability p1(x) = a the
KS-entropy,

HKS = a · log

(
1

a

)
+ (1− a) · log

(
1

1− a

)
(74)

which is equal to the conditional entropy (77).
It is expected that the KS-Entropy is equal to the positive Lyapunov expo-
nent λp (see section 3.5) which can be easily proved.

Since the asymmetric tent map is a one dimensional problem, there is
just one Lyapunov exponent. Therefore, by assuming to be g-ergodic, the
Lyapunov exponent tends to the expectation value,

λ =

∫
X
fX(x) log |g′(x)|dx. (75)

Thus, the Lyapunov exponent calculates according to the symmetry pa-
rameter a to,

λ = a · log

(
1

a

)
+ (1− a) · log

(
1

1− a

)
. (76)

6.1.2 Information Loss (Analytic)

In this subsection equality between the conditional entropy H(Xn|Xn+1)
and E{log |g′(Xn)|} as well as the equality between the conditional entropy
H(Xn|Xn+1) and the Kolmogorov-Sinai entropy HKS will be shown.

Taking the equation of the information loss (14) from section 2.4 and the
knowledge about the differential entropy h(Xn) and h(Xn+1), the equality
H(Xn|Xn+1) = E{log |g′(Xn)|} will be obtained. The expression E{log |g′(Xn)|}
can be calculated as,

H(Xn|Xn+1) = E{log |g′(Xn)|} =

∫
X
fXn(x) log (|g′(x)|)dx

=

∫ a

0

log

(
1

a

)
dx+

∫ 1

a

log

(
1

1− a

)
dx

= a · log
1

a
+ (1− a) · log

1

1− a
=: HS(a, 1− a)

(77)

Finally, these results can be combined and we get

HKS = H(Xn|Xn+1). (78)
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This result means, the information gain denoted by the Kolmogorov-Sinai
entropy rate, which is a result of the exponential stretching, will be abol-
ished by the information lost due to the non-injectivity of the map.

6.1.3 Information Loss (Numeric Upper Bound)

This map is defined by (68) on X = [0, 1] and is controlled by parameter
a. The analytical results show, that HKS = H(Xn|Xn+1), and the uniform
distribution is invariant.

Let a = 1/3. The estimated information loss is plotted in Figure 5. It can
be seen, that the value is constant over the time and is in between 0.91 Bit
and 0.92 Bit. This is something what has been expected, since the analytical
result show for the information loss and K-S entropy H(Xn|Xn+1) = HKS =
0.918 Bit. By Figure 6 can be clearly seen, that Xn has a invariant PDF
under the action of the map.
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Figure 5: Information Loss over time n for parameter a = 1/3.
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Figure 6: Histogram of Xn under the action of the asymmetric tent map
(a = 1/3) as time evolves.

Consider now the symmetric case of the map with a = 1/2. As Figure 7
shows, the numerical result shows numbers close to the analytical value of
H(Xn|Xn+1) = HKS = 1 Bit. At time n = 12 a jump of the graph can be
seen. By looking at the histogram (Figure 8) there can be no remarkable
difference seen. So this jump will be due to nummerical issues. A third
experiment with a = 2/3 was computed. But as it is identical to the first
case with a = 1/3 the figures have been omitted.
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Figure 7: Information Loss over time n for parameter a = 1/2.
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Figure 8: Histogram of Xn for the symmetric case (a = 1/2).
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6.2 Gaussian Map

The Gaussian map is characterized by its exponential function and by two
control parameters. The map is defined as

g(x) = e−αx
2

+ β (79)

where α > 0 controls the width and −1 < β < 1 gives the offset. As it can
be seen from Figure 9, the map is non-injective on its domain X ∈ [−1, 1],
and is mapping the input onto itself.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

gHxL

Figure 9: Gaussian map plotted with α = 7.5 and β = −0.56.

As it can be seen in Figure 9, the Gaussian map has a similar shape as the
logistic map, but it behaves completely different since it has two parameters.
By a closer look at the Gaussian map, someone may see that the map can
exhibit up to three fixed points, stable and unstable ones, respectively. Look-
ing at the bifurcation diagram [17, pp. 196] for the Gaussian map, chaotic
behaviour appears only at certain parameter constellations [18], where at
least one unstable fixed point exists.
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The derivative of the map (79) is given as,

|g′(xn)| = −2αxne
−αx2n (80)

and the preimage g−1(xn) of xn has the elements

g−1(xn)(1) = +

√
ln(g(xn))− β

−α
(81)

g−1(xn)(2) = −
√

ln(g(xn))− β
−α

. (82)

Since |g′(xn)| is not constant, the uniform distribution will be not in-
variant under the action of the map. Note, not necessarily every PDF is
noninvariant, there might be some certain PDF which is invariant under the
action of the map. Here, however, the invariant measure does not posses a
density. Thus, the differential entropy of the input and output are supposed
to be h(Xn) > h(Xn+1) and the entropy production eg(µ) > 0.

6.2.1 Lyapunov exponent λ and K-S entropy HKS

The Lyapunov exponent could not be theoretically determined, since it is
a tough job to find an analytical expression. Thus a numerical estimation
of the Lyapunov exponent as a function of β is plotted at Figure 10 for a
given α = 7.5 (figure taken from [18]). It can be clearly seen that chaotic
behaviour can only appear at a small region of β.

The invariant measure of the map is an SRB-measure that satisfies the
Pesin identity (see section 3.5). Thus, the Kolmogorov-Sinai entropy can be
estimated through the Lyapunov exponent and is given as,

HKS = lim
N→∞

1

N

N−1∑
n=0

log
∣∣∣2αxne−αx2n∣∣∣. (83)

According to the plot of the Lyapunov exponent, the K-S entropy will
not exceed 1/2 Bit for given α = 7.5.

6.2.2 Information Loss (Analytic)

Since, we do not have a good knowledge about the invariant measure µ, the
information loss can not be computed by the usual way given in section 2.4.
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Figure 10: Estimation of the Lyapunov exponent as a function of β for the
Gaussian map with α = 7.5. Figure taken from [18]

An estimation of the upper limit to the information loss can be given as
follows:

H(Xn|Xn+1) =

∫
X
H(Xn|Xn+1 = x)dPXn+1(x) (84)

≤
∫
X

log card(g−1(x))dPXn+1(x) (85)

where card(g−1(x)) is the cardinality of the preimage. But card(g−1(x)) =
2 for all x, thus,

H(Xn|Xn+1) ≤ log 2 = 1 Bit. (86)

To summarize, assuming µ being a g-ergodic SRB-measure and the en-
tropy production being strictly positive, it can be said for a given parameter
α = 7.5

HKS︸︷︷︸
≤1/2 Bit

≤ H(Xn|Xn+1)︸ ︷︷ ︸
≤1 Bit

(87)
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6.2.3 Information Loss (Numeric Upper Bound)

The Gaussian map or the so-called mouse map is defined by (79) on X =
[−1, 1]. This map will be controlled by two parameters α > 0 and −1 < β <
1. Since the map has two branches, the information loss will not exceed one
bit.

By the first experiment the parameters are defined as (α, β) = (7.5,−0.6).
For this configuration the information loss tends to be approximatelyH(Xn|Xn+1) ≈
0.6 Bit after the transient has gone. As the Lyapunov exponent tends to 1/2
for this setting, the K-S entropy can be computed as HKS ≈ 0.5 Bit. The
information loss is plotted in Figure 11. The histogram in Figure 12 shows
that the uniform distribution is not invariant.
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Figure 11: Information Loss over time n for parameter set (α, β) =
(7.5,−0.6). After the transient has gone, H(Xn|Xn+1) tends to 0.6 Bit.

The next two experiments with the setting (α, β) = (7.5,−0.55) and
(α, β) = (7.5,−0.3) show that the information loss still converges to a certain
value. Figure 13 and Figure 15 illustrate the information loss H(Xn|Xn+1) as
a function of time. It can be clearly seen by Figure 13 that the information
loss slightly greater than by the first experiment and by Figure 15 can be
obtained that the information loss is converging slower than by the other two
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Figure 12: Histogram for the Gaussian map with (α, β) = (7.5,−0.6). The
uniform distribution is not invariant under the action of the map.

experiments. It is not obvious, by the plot of the Lyapunov exponent shown
at Figure 10 at section 6.2 which value the Lyapunov exponent takes, it is
supposed that it is still λ ≈ 1/2. The histograms of the experiments with
the parameter sets (α, β) = (7.5,−0.55) and (α, β) = (7.5,−0.3) are plotted
by Figure 14 and Figure 16, respectively.
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Figure 13: Information Loss H(Xn|Xn+1) over time n for parameter set
(α, β) = (7.5,−0.55).
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Figure 14: Histogram for the Gaussian map with (α, β) = (7.5,−0.55).
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Figure 15: Information Loss H(Xn|Xn+1) over time n for parameter set
(α, β) = (7.5,−0.3). The information loss converges slower than in the other
experiments.
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Figure 16: Histogram for the Gaussian map with (α, β) = (7.5,−0.3).
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6.3 Sine-Circle Map

The sine-circle map takes here name from its nonlinearity, which has the
specific form of a sine-function. This map has become a standard model
to investigate the quasi-periodic route to chaos, since it exhibits frequency-
locking for certain choices of the parameter set (K,Ω).
The sine-circle map is defined by [17, pp. 221],

g(x) = x+ Ω− K

2π
sin 2πx mod 1. (88)

The parameter K > 0 is the damping factor of the nonlinearity which
gets normalized through the 2π in the denominator. The frequency-ratio at
which the trajectory is moved around the circle is given by parameter Ω.
Thus, Ω is a rational number and is restricted to be 0 < Ω < 1.

The behaviour of the sine-circle map changes completely at K = 1. As
the map is bijective for the range of 0 < K < 1, it gets non-injective for
K > 1. This change of behaviour is illustrated at Figure 17 and Figure 18.
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Figure 17: The sine-circle map is bijective for K = 0.5.
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Figure 18: The sine-circle map is non-injective for K = 5.

A look at the bifurcation diagram for the sine-circle map [17, pp. 237-
238] tells us that chaotic behaviour of the sine-circle map only appears, with
parameter K clearly above the critical limit K = 1.

Using the method of transformation [8, pp. 130], the marginal PDF of
RV Xn+1 is given as,

fXn+1(xn+1) =
∑

xiεg−1(xn+1)

fXn(xi)

|g′(xi)|
. (89)

The derivative of the sine-circle map (88) is

g
′
(x) =

dg(x)

dx
= 1−K cos(2πx). (90)

Since the sine-circle map hast the constellation y = x + sin x, it is quite
a tough job to find the inverse g−1(x) analytically, and can only be numeri-
cally estimated for 0 < K < 1. Unfortunately, not the case we are concerned
about.

6.3.1 Lyapunov exponent λ and K-S entropy HKS

Before distinguishing between the case 0 < K < 1 and K > 1, the Lyapunov
exponent λ should be defined as,
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λ = lim
N→∞

1

N

N−1∑
n=0

log |1−K cos(2πxn)|. (91)

(i) 0 < K < 1: By the convexity of the logarithm of quantity (91),
and by using the Jensen’s inequality [5, pp. 25], this quantity can
be rewritten as,

λ ≤ log

 lim
N→∞

1

N

N−1∑
n=0

|1−K cos(2πxn)|︸ ︷︷ ︸
=1, N→∞

. (92)

Since the average calculation inside the logarithm tends to be one,
the whole quantity goes to zero. An experiment with random
input values xn between zero and one, and different values of K
confirms this assumption.
As a consequence of that, the K-S entropy is to HKS = 0 due to
Pesin’s identity.

(ii) K > 1 : Again, the Lyapunov exponent can be written as,

λ ≤ log

(
lim
N→∞

1

N

N−1∑
n=0

|1−K cos(2πxn)|

)
. (93)

The Lyapunov exponent is now a function of parameter K.

Figure 19 shows a plot of the estimated Lyapunov exponent as a function
of K (figure taken from [17, pp. 239]). It can be clearly seen, the Lyapunov
exponent is zero for the case (i). As parameter K increases above the limit
K = 1, the Lyapunov exponent λ tends to be greater than zero and the map
show chaotic behaviour. As soon as a stable fixed point or a frequency-locked
state will be reached, λ drops below zero. Note, the Lyapunov exponent
plotted at Figure 19 has unit Nats. To get the Lyapunov exponent in Bits,
the value hast to be divided by ln 2.

6.3.2 Information Loss (Analytic)

Since the PDF of Xn+1 denoted by (89) can not be properly calculated and is
unknown to us, the information loss can not be analytically determined. An
estimation of the upper limit to the information loss can be given as follows,
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Figure 19: Lyapunov exponent of the sine-circle map for Ω = 0.606661 over
parameter K. Note, the Lyapunov exponent has unit Nats. To get the
Lyapunov exponent in Bits, the value hast to be divided by ln 2. Figure
taken from [17, pp. 239].

H(Xn|Xn+1) =

∫
X
H(Xn|Xn+1 = x)dPXn+1(x) (94)

≤
∫
X

log card(g−1(x))dPXn+1(x) (95)

≤ max
x

card(g−1(x)) (96)

where card(g−1(x)) is the cardinality of the preimage. By Figure 18 can be
seen, that the sine-circle map can admit up to five preimages for K = 5.

According to the cases mentioned above at subsection 6.3.1, the following
can be said:

(i) 0 < K < 1: The sine-circle map is bijective, therefore the
information loss is H(Xn|Xn+1) = 0. Thus, these results for
the K-S entropy and the information loss coincide with the main
result (58),
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HKS︸︷︷︸
=0

= H(Xn|Xn+1)︸ ︷︷ ︸
=0

(97)

(ii) K > 1 : As numerical results (provided later) show, it can be
stated

HKS︸︷︷︸
≤1.44Bit

≤ H(Xn|Xn+1)︸ ︷︷ ︸
≤1.6Bit

. (98)

6.3.3 Information Loss (Numeric Upper Bound)

The Sine-Circle map is defined by (88) on X = [0, 1], where K is control-
ling the damping of the non-linearity and Ω the frequency-ratio. In the
following the outcome of the experiments from different parameter K and
constant Ω = 0.606661 will be presented. Generally can be stated, that
HKS ≤ H(Xn|Xn+1) and the uniform distribution is not invariant PDF.

Let (K,Ω) = (5, 0.606661), a case where the map is strongly chaotic
with λ ≈ 1.44 Bits (see section 6.3). By Figure 20 can be seen, that the
information loss tends to be a little bit less than 1.4 Bit. This matches with
the theoretical aspect. The sine-circle map has more than two branches of
possible preimages g−1(xn), therefore the information loss can be more than
1 Bit. The histogram taken at different time steps, shows the transformation
of the PDF fXn under the map starting by an uniformly distribution. This
is illustrated by Figure 21.

46



0 5 10 15 20 25 30 35 40
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

Info−loss H(X
n
|X

n+1
) for K= 5 Omega= 0.60666

time n

H
(X

n
|X

n
+

1
) 

/ 
b

it

Figure 20: Information Loss of the sine-circle map for K = 5 and Ω =
0.606661. The information loss is slightly lower than 1.4 Bit after the tran-
sient has gone.

Now, let the set of parameters be (K,Ω) = (2.3, 0.606661) at which the
sine-circle map shows not such strong chaotic behaviour with λ ≈ 0.72 Bits.
The only difference to the case above can be seen, that the information loss
is H(Xn|Xn+1) ≈ 0.85 Bit. The graph of the information loss is plotted at
Figure 22. Figure 23 shows the histogram.

47



0 

5

10

20

30

40

0 

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

x 10
4

time n

Histogram for K= 5 Omega= 0.60666

x
n

Figure 21: Histogram at certain time steps for the uniformly distributed RV
Xn, which gets transformed by the sine-circle map (K = 5, Ω = 0.606661).
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Figure 22: Information Loss of the sine-circle map for K = 2.3 and Ω =
0.606661. The information loss is approximately H(Xn|Xn+1) ≈ 0.85 Bit.
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Figure 23: Histogram of uniformly distributed RV Xn at different time steps
(K = 2.3, Ω = 0.606661).

Figure 24 takes us to the limit case where K = 1. At this case the
map can be quasi-periodic or chaotic, where λ ≈ 0. As it is supposed, the
map changes its behaviour. The map gets bijective and the information loss
tends to be zero. This can be clearly seen by Figure 24 with K = 1 and by
Figure 25 with K = 0.5. The information loss is dropping from the vicinity
of 0.012 Bit down to number of 10−4 Bit, which is due to nummerical errors.
The histogramm of K = 0.5 plotted at Figure 26 shows a quite interesting
transformation of the PDF. Starting with a uniform distribution of RV Xn,
the PDF gets shaped like the normal distribution through the transformation
of the sine-circle map.
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Figure 24: Information Loss of the sine-circle map for K = 1 and Ω =
0.606661.
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Figure 25: Information Loss of the sine-circle map for K = 0.5 and Ω =
0.606661. The information loss can be seen as to be zero, since the map is
bijective and therefore no information loss occurs.
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Figure 26: Histogram of uniformly distributed RV Xn, that gets transformed
under the action of the sine-circle map (K = 0.5, Ω = 0.606661).
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6.4 Generalized 2x mod 1 map

This map is an extended version of the 2x modulo 1 map (Bernoulli shift),
which can be treated as the tent map. The generalization of this map is made
through the additional parameter η. The Generalized 2x modulo 1 map is
defined as,

g(x) =

{
2ηx, if −∞ ≤ x < 1/2

2η(x− 1) + 1, if 1/2 ≤ x ≤ +∞
. (99)

Figure 27 shows a plot of the Generalized 2x mod 1 map. It can be seen,
that parameter η is acting like a valve in between the two branches of the
map. If η > 1, the valve is open and mass will be lost. At each iteration of the
map, the interval ∆ = 1− 1/η will be cut out of the remaining intervals [11,
pp. 73]. As the map iterates forward in time, the remaining set forever will
be a symmetric Cantor set with zero Lebesgue measure. It is said, that this
map is an open system and the Pesin’s identity can not be applied.
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Figure 27: Generalized 2x mod 1 map. If η = 1, the map has same behaviour
as the symmetric tent map. If η > 1, probability mass will be lost under the
action of the map.
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Construction of a symmetric Cantor Set: Consider the set X =
[0, 1] on which the map (99) is defined. Assume two intervals of length I0

and I1 such that I0 + I1 < 1. After one iteration of the map, the total length
li, i = 1, ..., n through time n are denoted as,

l1 = I0 + I1

l2 = (I0 + I1)2 = I2
0 + 2I0I1 + I2

1

...

ln = (I0 + I1)n

(100)

As a result of that, there are Z(n,m) = n!
n!(n−m)!

intervals of length Im0 I
n−m
1

with m = 0, ..., n. The overall length of the remaining set at time n decays
exponentially,

ln = en ln (I0+I1) (101)

If η is set to η = 2/3, then map g(x) exhibit the middle-third Cantor set.
Figure 28 illustrates the development of the cantor set as the map evolves in
time.

0 1

0 1/3 2/3 1

0 1/3 2/3 11/9 2/9 7/9 8/9

...
...

Figure 28: Middle third cantor set, exhibited by g(x) for η = 3/2.
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As we have seen above, we have to distinguish between two cases η = 1
and η > 1.

(i) η = 1: In this case the map (99) simplifies to the regular modulo 1
map, g(x) = 2x mod 1. This map is similar to the symmetric tent map,
which is treated in section 6.1.

(ii) η > 1: Let the length of two intervals be I0 and I1 such that I0 +I1 <
1.
Thus, we rewrite the map (99) as (see [19]),

g(x) =

{
x/I0, if 0 ≤ x < 1/2

(x− 1)/I1 + 1, if 1/2 ≤ x ≤ 1
(102)

where the derivative is,

|g′(x)| =

{
1/I0, if 0 ≤ x < 1/2

1/I1, if 1/2 ≤ x ≤ 1
. (103)

6.4.1 Lyapunov exponent λ and K-S entropy HKS

The following derivations are taken from [19, pp. 138].
Let n0/N and n1/N be the relative frequency of being in the correspond-

ing intervals of I0 or I1. Assume the map is ergodic, the Lyapunov exponent
can be written as,

λ = lim
N→∞

1

N

N−1∑
n=0

log
∣∣∣g′(xn)

∣∣∣
= lim

N→∞

(
n0

N
log

(
1

I0

)
+
n1

N
log

(
1

I1

)). (104)

By introducing the natural measure [11, pp. 81], the time dependency will
abolish:

lim
N→∞

n0

N
=

I0

I0 + I1

(105)

lim
N→∞

n1

N
=

I1

I0 + I1

(106)

Thus the Lyapunov exponent computes to
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λ =
1

I0 + I1

(
I0 log

(
1

I0

)
+ I1 log

(
1

I1

))
(107)

Again, using the context of the natural measure the entropy of the 2n

partitions at time n can be written as,

h(n, µi) = −
2n∑
i=1

µi log(µi) (108)

where the natural measure is,

µi =
In0

0 In−n0
1

(I0 + I1)n
, n = n0 + n1. (109)

After some assumptions made through Newton’s binomial expansion and
introducing the combinatorial factor Z(n,m) (see above) the K-S entropy is,

HKS = lim
n→∞

1

n
sup
µi

h(n, µi) (110)

= log(I0 + I1) +
I0

I0 + I1

log

(
1

I0

)
+

I1

I0 + I1

log

(
1

I1

)
. (111)

Combining (107) and (111), the K-S entropy is,

HKS = log(I0 + I1)︸ ︷︷ ︸
γ

+λ (112)

where γ is the escape rate, which closes the gap between the K-S entropy and
the sum of positive Lyapunov exponents. Note, this map is an open system
that looses probability mass. Thus Pesin’s identity nor HKS < λ necessarily
hold. Therefore our main result does not apply here.
The interested reader is referred to [19, pp. 136],[20],[21] about the formalism
for the escape rate.

If the intervals have same length I0 = I1 = 1/2η , the K-S entropy is
1 Bit. Note, the parameter η cancels out due to the escape rate. For sake of
completeness, the Lyapunov exponent calculates to λ = log(2η). Taking the
middle third cantor set with η = 3/2 the Lyapunov exponent calculates to
1.58 Bit and the escape rate γ = log(1/η) = log(2/3) = −0.58 Bit.
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6.4.2 Information Loss (Analytic)

An estimation on the information loss can be made due to symmetry around
x = 1/2. Let PXn be the probability distribution Xn and let Xi be the set of
the remaining values. Thus the overall information loss can be estimated as,

H(Xn|Xn+1) =

∫
X
H(Xn|Xn+1 = x)dPXn+1(x) (113)

=

∫
X
H(Xn|Xn+1 = x)dPXn+1(x) (114)

=

∫
Xi

log 2dPXn+1 +

∫
X\Xi

0 dPXn+1(x) (115)

(116)

Let the time tend to infinity n→∞, the probability PXn(Xi)→ 0 tends
to zero. Thus, the information loss tends to zero H(Xn|Xn+1)→ 0. This is a
result of the fact, that the probability mass gets bijectively mapped outside
the defined region X ; see the two branches for η > 1 at Figure 27.

6.4.3 Information Loss (Numeric Upper Bound)

This open system is defined by (99) at section 6.4. Since the map looses
probability mass over the time for η > 1 the information loss decreases down
to zero in exponential manner. This can be clearly seen in the graphs of the
following experiments.

For η = 1.1 the graph in Figure 29 is decreasing towards zero, starting
from around H(Xn|Xn+1) ≈ 0.9 Bit. This higher number compared to other
known experiments is because the map is loosing not that much probability
mass at the beginning. The histogram in Figure 30 illustrates such behaviour.
Note, in general all the probability mass is merged to the margins of the
domain, given by ±η.
By Figure 31 and Figure 33 can be seen that for η = 1.5 and η = 2.5 the
information loss is decreasing faster down to zero. Note, the starting value
of the information decreases as well, since a lot more mass is put out of the
system at the first iterations. As the interval ∆ = 1 − 1/η, is going to be
greater as η increases, probability mass is is lost very fast. The graph in
Figure 32 and Figure 34 give a good picture of loosing the probability mass.
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Figure 29: Information Loss H(Xn|Xn+1) is slowly decreasing towards zero
with time n.
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Figure 30: Histogram at certain time steps for the Generalized 2x mod 1
map. Obtain that probability mass gets lost during the action of the map.
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Figure 31: Information Loss H(Xn|Xn+1) is faster decreasing towards zero
with time n, since parameter η is increased.
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Figure 32: Histogram at certain time steps for the Generalized 2x mod 1
map. Note that much more probability mass gets lost at the beginning.
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Figure 33: Information Loss H(Xn|Xn+1) is decreased towards zero within a
few time steps.

59



0 
1

2
3

5
10

15
20

−2.5 

−1.6

−0.8

0.8

1.6

2.5
0

1

2

3

4

5

6

x 10
5

time n

Histogram of X
n
 for eta= 2.5

x
n

Figure 34: Histogram of the Generalized 2x mod 1 map for a uniform distri-
bution, as starting distribution. All probability mass gets lost within a few
time steps.
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7 Conclusion and Outlook

In this work, a relationship between the information loss and the information
generation (Kolmogorov-Sinai entropy) is proposed from a system-theoretic
point of view for the class of measure-preserving maps. In particular, a gen-
eral inequality (58) is defined which holds for C1-maps and noninvertible
maps. Further can be shown, that the information loss is upper semicontin-
uous and therefore it is an upper bound for the Kolmogorov-Sinai entropy.
For univariate maps, this main result is analyzed and explored for the asym-
metric tent map, Gaussian Map (Gauss iterated map), Sine-Circle Map and
the Generalized 2x mod 1 map which is related to open systems. For open
systems the main result does not apply, since these class of systems is not
measure-preserving. For univariate maps can be said, that there exists no
bijective map which is chaotic. In this case, the information loss is zero and
since it is an upper bound for the Kolmogorov-Sinai entropy, which is an
interesting point.
As this work is restricted to univariate maps, the multivariate case is not
considered. The question arises at this point, whether multivariate maps
can be found, which are bijective and where strict inequality between the
information loss and the Kolmogorov-Sinai entropy can be obtained? For
example, the Baker’s map is a two dimensional map, which is measure pre-
serving and bijective as previous results showed. In addition to that, there
is the need of evaluating the formalism about the escape rate which can be
found in the context of open systems. This escape rate closes the gap between
the Kolmogorov-Sinai entropy and the sum of positive Lyapunov exponents.
The question is whether the main result can generalized to a larger class of
systems by including the escape rate.

61



References

[1] J.-P. Eckmann and D. Ruelle, “Ergodic theory of chaos and strange
attractors,” Rev. Mod. Phys, vol. 57, pp. 617–656, 1985.

[2] D. Ruelle, “Positivity of entropy production in nonequilibrium statistical
mechanics,” J. Stat.Phys., vol. 85, pp. 1–23, 1996.

[3] ——, “A measure associated with Axiom-A attractors.” Amer. J. Math,
vol. 98, pp. 619–654, 1976.

[4] L.-S. Young, “What are SRB measures, and which dynamical systems
have them?” J. Stat. Phys., vol. 108, pp. 733–754, Sept. 2002.

[5] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd
edition. Wiley- Interscience Publication, 2005.

[6] B. C. Geiger, C. Feldbauer, and G. Kubin, “Information loss in
static nonlinearities,” in Proc. IEEE Int. Sym. Wireless Communication
Systems (ISWSC), Aachen, Nov. 2011, pp. 799–803, extended version
available: arXiv:1102.4794 [cs.IT].

[7] B. C. Geiger and G. Kubin, “On the information loss in memo-
ryless systems: The multivariate case,” in Int. Zurich Seminar on
Communications, Zurich, Feb. 2012, pp. 32–35.

[8] A. Papoulis and U. S. Pillai, Probability, Random Variables and
Stochastic Processes, 4th ed. New York, NY: Mc Graw Hill, 2002.

[9] H. G. Schuster and W. Just, Deterministic Chaos, An Introduction.
Fourth, Revised and Enlarged Edition. Wiley VCH Verlag Gmbh&Co.
KGaA, Weinheim, 2005.

[10] R. W. Leven, B.-P. Koch, and B. Pompe, Chaos in dissipativen
Systemen, 2. berarbeitete und erweiterte Auflage. Akademie Verlag
Gmbh, 1994.

[11] E. Ott, Chaos in dynamical Systems. Press Syndicate of the University
of Cambridge, 1993.

[12] V. Millionshchikov, “On the theory of characteristic Lyapunov expo-
nents,” Mat. Zametki, vol. 7, pp. 503–513, 1970.

[13] D. Ruelle, “An inequality for the entropy of differential maps,” Bol. Soc.
Bras. Mat., vol. 9, pp. 83–87, 1978.

62



[14] Y. B. Pesin, “Characteristic Lapunov exponents and smooth ergodic
theory,” Rus. Math. Sur., vol. 32:4, pp. 55–144, 1977.

[15] M. Qian and S. Zhu, “SRB measures and Pesin’s entropy formula for
endomorphisms,” Transaction of American Mathematical Society, vol.
354:4, pp. 1453–1471, 2001.

[16] F. Ledrappier and L.-S. Young, “The metric entropy of diffeomorphisms
Part I: Characterization of measures satisfying Pesin’s entropy formula,”
Ann. Math., vol. 122, pp. 509–539, 1985.

[17] R. C. Hilborn, Chaos and Nonlinear Dynamics: An Introduction to
Scientists and Engineers 2nd Edition. Oxford University Press.

[18] V. Patidar and K. Sud, “A comparative study on the co-existing attrac-
tors in the Gaussian map and its q-deformed version,” Com Non.l.Sc.
and Num.Sim., vol. 14, pp. 827–838, 2007.

[19] J. R. Dorfmann, An Introduction to Chaos in Nonequilibrium Statistical
Mechanics. Cambridge University Press, 1999.

[20] L.-S. Young, P. Wright, and M. Demers, “Entropy, Lyapunov Exponents
and Escape Rates in Open Systems,” Ergodic Theory and Dynamical
Systems, vol. 32, pp. 1270 – 1301, July 2012.

[21] L.-S. Young and M. Demers, “Escape Rates and Conditionally Invariant
Measures,” Nonlinearity, vol. 19, pp. 377–397, October 2006.

63


