
Master’s Thesis

A generic approach towards smart
self-rendering mobile user interfaces

Peter Treitler

Institute for Information Systems and Computer Media,
Graz University of Technology

Supervisor: Assoc. Prof. Andreas Holzinger, PhD, MSc, MPh, BEng, CEng, DipEd,

MBCS

Graz, March 12, 2012

This page intentionally left blank

Masterarbeit

(Diese Arbeit ist in englischer Sprache verfasst)

Ein generischer Ansatz zur Erstellung
intelligenter mobiler Benutzeroberflächen

Peter Treitler

Institut für Informationssysteme und Computer Medien,
TU Graz

Betreuer: Univ.-Doz. Ing. Mag.rer.nat. Mag.phil. Dr. Andreas Holzinger

Graz, 12. März 2012

This page intentionally left blank

Abstract

Today, developers of mobile applications face a major challenge: Screen sizes of
different devices are varying to a large extent – along with different aspect ratios.
Since the Android platform becomes more and more available on the market, this
issue becomes more important.

Different screen sizes along with the increasing complexity of mobile tasks create a
serious obstacle to usability and justify research to overcome these obstacles (Chae
and Kim (2004)). One way to circumvent the obstacle is to organize an information
structure with efficient depth/breadth trade-offs.

The goal of this thesis is the experimental research on both platform-specific and
universal mobile user interfaces and their scalability and interoperability across plat-
forms and screen sizes. A possible approach is to adapt the Model View Controller
(MVC) design pattern, which has been developed more than 30 years ago, however,
has big potential for future web applications, especially in terms of usability issues
(Holzinger et al. (2010)).

On the basis of a systematic analysis of related work, this thesis will investigate
possibilities which the currently most common mobile platform application pro-
gramming interfaces (APIs) offer to the developers in order to ensure full scalability
of their user interfaces. It will systematically analyze existing mobile applications
and the solutions on how they deal with these problems and also perform research
in order to find new approaches. The interoperability of different systems, including
HTML5, Java and .NET will also be in the focus of this thesis.

5

Keywords
Mobile computing, usability engineering, user interfaces, methodologies

ÖSTAT classification
1108 Informatics
1138 Information Systems
1157 Usability Research
1161 Human-Computer Interaction (HCI)

ACM classification
D.2, H.5
H. Information Systems
H.5 INFORMATION INTERFACES AND PRESENTATION (I.7)
H.5.2 User Interfaces (D.2.2, H.1.2, I.3.6)
Subjects: Evaluation/methodology, Graphical user interfaces (GUI), Screen design

6

This page intentionally left blank

7

Kurzfassung

Entwickler von Software für mobile Geräte sehen sich heute mit vielen neuen Her-
ausforderungen konfrontiert. Eine davon besteht darin, dass aktuelle mobile Geräte
sehr unterschiedliche Bildschirmgrößen sowie Seitenverhältnisse haben. Durch den
zunehmenden Erfolg der Android Plattform gewinnt dieses Problem zusätzlich an
Bedeutung. Es ist keine einfache Aufgabe, Anwendungen zu entwickeln die auf einer
Vielzahl solcher Geräte lauffähig und benutzerfreundlich bedienbar sind.

Die verschiedenen Bildschirmgrößen stellen zusammen mit den immer komplexer
werdenden Aufgaben, die auf mobilen Geräten erledigt werden ein großes Hinder-
nis dar, welches die Notwendigkeit von Forschung in diesem Bereich deutlich macht
(Chae and Kim (2004)).
Eine Möglichkeit, diese Hindernisse zu umgehen ist die Verwaltung von Informati-
onsstrukturen mit effizienten Kompromissen zwischen Tiefe und Breite.

Das Ziel dieser Arbeit ist die experimentelle Erforschung von plattformspezifischen
und universellen mobilen Benutzeroberflächen sowie deren Skalierbarkeit und Inte-
roperabilität. Eine mögliche Herangehensweise ist eine Adaption des Model View
Controller (MVC) Entwurfsmusters, welches zwar schon vor über 30 Jahren erst-
mals entwickelt wurde, jedoch auch für zukünftige Applikationen großes Potenzial
hinsichtlich Usability-Problemen besitzt (Holzinger et al. (2010)).

Auf Basis systematischer Analyse themenbezogener Arbeiten wird diese Arbeit die
Möglichkeiten untersuchen, die die aktuell am weitesten verbreiteten mobilen Platt-
formen sowie deren Entwicklungsumgebungen (APIs) den Entwicklern bieten, um
die Skalierung von Benutzeroberflächen zu ermöglichen.
Die Arbeit analysiert systematisch exstierende mobile Anwendungen und wie diese
mit den genannten Problemen umgehen. Auch weitere Forschung nach neuen Her-
angehensweisen wird angestellt. Ein weiterer Schwerpunkt dieser Arbeit liegt auf
der Interoperabilität verschiedener Systeme, wie beispielsweise HTML5, .NET und
Java.

8

Schlüsselwörter
Usability engineering, mobile Geräte, Benutzeroberflächen, Methodologien

ÖSTAT Klassifikation
1108 Informatics
1138 Information Systems
1157 Usability Research
1161 Human-Computer Interaction (HCI)

ACM Klassifikation
D.2, H.5, J.1
H. Information Systems
H.5 INFORMATION INTERFACES AND PRESENTATION (I.7)
H.5.2 User Interfaces (D.2.2, H.1.2, I.3.6)
Subjects: Evaluation/methodology, Graphical user interfaces (GUI), Screen design

9

This page intentionally left blank

10

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Graz, March 12, 2012
Peter Treitler

11

This page intentionally left blank

12

Acknowledgements

I would like to thank Boom Software AG for the enjoyable and insightful cooperation
throughout the project and for giving students the chance to do projects in coop-
eration with the company. I especially want to thank Joachim Schnedlitz, CEO of
Boom Software AG, for making the project possible and Roman Bobik, our project
manager and spokesperson at Boom Software, for the excellent and supportive co-
operation. I would also like to thank Michael Geier for the good teamwork on the
project.
I would like to thank Wolfang Slany for giving me the chance to work on the Catroid
project1. The insights gained throughout this project have been an important mo-
tivation for writing this thesis.
Finally, I would like to thank my supervisor, Andreas Holzinger, for his support and
guidance during my work and for giving me the chance to work on the usability
project with Boom Software AG.

Peter Treitler, BSc.
Graz, March 12, 2012

1http://www.catroid.org

13

http://www.catroid.org

This page intentionally left blank

14

Table of Contents

1 Introduction and Motivation for Research 17

1.1 Mobile devices . 17

1.2 Mobile usability . 18

2 Theoretical Background 21

2.1 The relevance of mobile devices . 21

2.2 The Model-View-Controller (MVC) Pattern 22

2.3 Screen size as a limiting factor . 23

2.4 Usability . 26

2.5 Usability evaluation methods . 27

2.5.1 Usability inspection methods 28

2.5.2 Usability test methods . 29

3 Related Work 31

3.1 Definitions . 31

3.2 Mobile platforms . 32

3.3 Android . 32

3.3.1 Available devices . 32

3.3.2 Supporting different screen sizes and densities 36

3.3.3 Scaling images . 37

3.3.4 Nine-Patches . 37

3.3.5 The Back Stack . 38

15

3.3.6 Fragments . 39

3.3.7 Android Design . 40

3.4 Windows Phone . 42

3.4.1 Screen sizes . 42

3.4.2 Defining layouts . 43

3.4.3 Supporting different screen sizes 43

3.5 iOS . 44

3.5.1 Screen sizes . 45

3.5.2 Defining layouts . 46

3.5.3 Supporting different screen sizes 48

3.5.4 Apple’s Human Interface Guidelines 48

3.6 HTML and CSS . 49

3.6.1 Defining layouts . 50

3.6.2 Touch input . 50

3.7 Multiplatform development . 51

3.7.1 HTML5 versus native apps . 52

3.7.2 Multiplatform frameworks . 53

4 Materials and Methods 59

4.1 Introduction . 59

4.2 About Boom Software AG . 59

4.3 The Boom BORA framework . 60

4.4 The Boom Mobile app . 62

4.4.1 First prototype . 63

4.4.2 Criticism of the prototype . 65

4.4.3 Improved version . 67

4.4.4 Scalability . 68

4.4.5 Future development . 69

4.5 Usability evaluation of desktop applications 71

16

4.5.1 Heuristic Evaluation . 71

4.5.2 Thinking Aloud Tests . 71

4.6 Usability guidelines . 79

5 Results 81

5.1 Usability evaluation results . 81

5.1.1 Heuristic evaluation . 81

5.1.2 Thinking aloud test . 83

5.2 Usability guidelines . 86

5.2.1 General UI design guidelines 87

5.2.2 Framework-specific guidelines 89

6 Discussion and Lessons Learned 91

6.1 Mobile UI design . 91

6.1.1 Choosing a method for app development 92

6.2 Usability inspection and testing . 93

6.3 Usability guidelines . 95

6.4 The Boom Mobile app . 96

6.5 Scalability of Boom Software’s UIs 96

7 Conclusions 99

8 Future Work 101

List of Figures 103

List of Tables 105

References 107

17

18

1. Introduction and Motivation for Re-
search

1.1 Mobile devices

Today, mobile devices are gaining more and more importance. Smartphones - mo-
bile phones with greater computing power than ordinary mobile phones and internet
connectivity - are a common sight nowadays in developed countries. What started
as a concept product by IBM in 1992 was mostly a niche product for a long time
until the release of the Apple iPhone in 2007, which started bringing smartphones
to the mainstream. One year later Google and the Open Handset Alliance released
their Android platform, which gained a lot of popularity in the following years. As
of January 2012, there was a total of more than 300 million Android devices shipped
worldwide, with more than 800,000 new ones being activated every day1.

Tablet computers are another type of mobile device becoming increasingly popu-
lar. Tablet PCs with the Windows operating system have existed for a while. The
approach here was to create small-sized laptop PCs with touchscreens. Recently,
smartphone manufacturers have begun to expand into the tablet computer market
as well. The most common devices are Apple’s iPad and various Android tablet
computers.

Netbooks represent a third category of mobile devices. These are very small,
lightweight laptop computers, which are often significantly less expensive than reg-

1http://googlemobile.blogspot.com/2012/02/androidmobile-world-congress-its-all.
html, retrieved Feb. 27, 2012

17

http://googlemobile.blogspot.com/2012/02/androidmobile-world-congress-its-all.html
http://googlemobile.blogspot.com/2012/02/androidmobile-world-congress-its-all.html

ular laptop computers as well. A wide variety of netbooks exists today. Operating
systems commonly found on netbooks include Windows XP, Windows 7, Android
and various Linux distributions.
Regular laptop computers are not inside the main focus of this thesis. While they
are portable devices, they can be more easily compared to desktop computers than
to the other devices mentioned in this section and some of the problems discussed
don’t apply to them. As pointed out by Schmidt (2000), the context of use is also
different for laptops. Despite being called mobile devices, laptops are mostly used in
a stationary way, i.e. carried to work, placed on a desk and used there. Smartphones
and tablets in contrast are more commonly used in a truly mobile way - while riding
the bus or train, while taking a walk in the park or wherever the user chooses to
use them. These different scenarios of use imply different user tasks, which in turn
should be considered when designing user interfaces.

1.2 Mobile usability

With so many different types of mobile devices being available and becoming more
common, more and more complex applications become available for them. Keeping
such complex applications easily usable on small devices such as smartphones can
be a challenge. A small screen size, touchscreen interaction and the lack of a real
keyboard are some of the factors that require consideration.

In addition to that, mobile devices come in a variety of different screen sizes. Small
smartphones have a display diagonal of 2 inches while some tablet computers’ dis-
plays measure 10 inches or more. This especially holds true when designing for
multiple platforms, but the problem also arises with different devices of the same
platform. Android smartphones and tablet computers cover the whole range men-
tioned and the difference between Apple’s iOS devices is significant as well: The
iPhone (4th generation) has a 3.5 inch display while the iPad’s (2nd generation)
display measures 9.5 inches.
It is a major challenge for developers to deliver software that offers a good user ex-
perience on different screen sizes without having to create two completely separate
user interfaces.

18

The goal of this thesis is therefore the research on both native and cross-platform
universal user interfaces. The Model View Controller (MVC) design pattern, which
was first described more than 30 years ago by Reenskaug2, is a good approach to-
wards creating scalable user interfaces. The separation of concerns introduced by
the MVC pattern (see section 2.2) means that only the view must be changed while
the rest of the applications code base can remain untouched. The MVC pattern
therefore has big potential for future mobile apps and web applications especially in
terms of usability issues (Holzinger et al. (2010)).
On the basis of systematic analysis of related work, this thesis will investigate pos-
sibilities which the currently most common mobile platforms’ application program-
ming interfaces (APIs) offer to the developers in order to ensure full scalability of
their user interfaces. It will analyze platform standards and how existing mobile ap-
plications deal with the problems mentioned and attempt to find new approaches.
Also the interoperability of different systems and the design of cross-platform user
interfaces (for instance through HTML5) will be in the focus of this thesis.

2http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html, retrieved March 9, 2012

19

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

20

2. Theoretical Background

2.1 The relevance of mobile devices

In February 2012, IT market analysts Canalys released their estimated shipment
figures of desktop PCs and mobile devices for the year 20111. As shown in figure 2.1,
smartphones have overtaken PCs (which in this figure include tablets) significantly,
with 487.7 million smartphones sold in 2011 versus 414.6 million PCs. According
to Canalys’ figures, tablets (called Pads in the figure) have the highest growth rate
with 274.2%, which places them ahead of netbooks in total shipments (63.2 million
versus 29.4 million).

Figure 2.1: Smartphone and PC shipments for 2011, as estimated by
Canalys1.

When breaking the smartphone shipments down by platform (see figure 2.2),
Android has the largest share with 48.8%, with iOS (19.1%) and Symbian (16.4%)
on the second and third places.

1http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011, retrieved
Feb. 7, 2012)

21

http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011

Figure 2.2: Smartphone shipments for 2011 by platform, as estimated by
Canalys1.

The Android platform is growing very fast, with 850,000 new Android devices
(including smartphones and tablets) getting activated every day. The total number
of Android devices activated is greater than 300 million. More than 800 different
Android devices have been released overall. The Android market contains more than
450,000 apps and has recorded more than one billion app downloads per month2.
Apple’s iOS devices are also very successful. Including the first quarter 2012 (Oc-
tober to December 2011), more than 183 million iPhones and 55 million iPads have
been sold (source: Apple’s quarter result reports since 20073.

2.2 The Model-View-Controller (MVC) Pattern

The Model-View-Controller (MVC) Pattern is a software design pattern. The MVC
pattern was first introduced by Trygve Reenskaug4, while he was working on the
Smalltalk programming language at Xerox PARC. Although there are many differ-
ent variations to the model view controller pattern, the core concept is the same:
To separate the data model, event handling and user interface of software from one
another. The variations of the pattern differ in how the components communicate
with each other. The following description is based on the work by Freeman et al.
(2004).

2http://googlemobile.blogspot.com/2012/02/androidmobile-world-congress-its-all.
html, retrieved Feb. 27, 2012

3http://www.apple.com/pr/, retrieved February 3, 2012
4http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html, retrieved March 9, 2012

22

http://googlemobile.blogspot.com/2012/02/androidmobile-world-congress-its-all.html
http://googlemobile.blogspot.com/2012/02/androidmobile-world-congress-its-all.html
http://www.apple.com/pr/
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

Model: The model holds all data and the state of the application. Additionally, it
contains the core application logic. The model does not explicitly communicate with
the view or the controller, but it has an interface which makes it possible for the
view and the controller to read or modify the state of the model. Often, the model
and the view are arranged in an observer pattern (the view being the observer, the
model being observed), in which case the model sends notification of changes to the
observing view.

View: The view is a visual representation of the model (or parts thereof). The
data it displays is retrieved from the model’s state, which the view accesses through
the model’s interface. The view can observe the model and update the displayed
data for the user as soon as it receives a notification of a change in the model’s
state. As the view represents the UI, it also receives all user inputs, which are di-
rectly passed on to the controller.

Controller: The controller receives user input from the view. It then evaluates
the input and modifies the model’s state if it should be necessary. The controller
can also modify the view, if for instance certain buttons need to be enabled or
disabled as a result of the user’s actions.

The Model-View-Controller pattern is commonly used for the design of complex
software architectures. Many frameworks and SDKs, such as Java’s Swing or Apple’s
Cocoa use the MVC pattern as a central concept.

2.3 Screen size as a limiting factor

While the range of mobile devices available keeps increasing, there seems to be a
limit for their screen size. The smallest smartphones available today (for the plat-
forms investigated in this thesis) still have a display diagonal of at least 2.5 inches.
One factor that limits smaller devices is touch input.
Firstly, UI elements for touchscreens need a certain minimum size in order to be
easily touchable for the users without errors (see section 3.2 for size recommenda-
tions on various mobile platforms). This warrants special attention when switching
from designing desktop applications to mobile applications, as touchscreens have a

23

Figure 2.3: Control flow of the MVC pattern as described by Freeman et al.
(2004).
The view receives user input and passes it on to the controller,
which will initiate state updates on the model and / or view up-
dates. Additionally, the model and view are using the observer
pattern, so the model will notify the view of a state change. The
view may read the model’s status and update itself accordingly.

lower precision than mouse input. Sears and Shneiderman (1991) have found the
error rate for small targets on touchscreens to be higher than with mouse input.
Holz and Baudisch (2011) have developed a model which can reduce the error offset
from touch devices down to 1.6 millimeters (down from 4) by adjusting to the model
that users perceive the target on the top of their fingers while capacitive touchscreens
use the contact area of the fingers, which is located at the bottom. However, the
proposed models requires a camera above the target and most touchscreen devices
available on the market today can’t reach such a high precision yet. The findings
of Holz and Baudisch (2011) suggest that with current touch-area based models,
the minimum size of a touch target, to achieve an accuracy of at least 95%, is 7.9
millimeters.
Secondly, and more importantly, touching the screen - sometimes even with two or
more fingers - can obstruct a large part of the user interface. This problem has been
labeled the "fat finger problem" (Siek et al. (2005)). It can be mitigated by using a
stylus instead of the fingers. Devices using fingers instead of a stylus seem to be a
lot more popular at present, so offering the users a stylus is not always a suitable
workaround to this problem.

24

One approach to this problem taken by Baudisch and Chu (2009) is to move the
touch input to the back of the screen. This way, devices can be very small and
users can interact with the UI using their fingers while the screen remains unob-
structed. Because of the softness and the size of fingertips, users also need some
sort of feedback to where exactly they touched the screen (or in this case the back
of the device). For this reason, a pointer was added to the screen which shows the
exact position of the finger on the back of the device (see figure 2.4).

Figure 2.4: A very small device using back-of-device interaction. The user
interacts with the interface through a touch-sensitive area on the
back of the device. A pointer on the screen informs the user of
the exact position of his finger (pseudo-transparency). Source:
Baudisch and Chu (2009)

Baudisch and Chu (2009) have shown in a study that traditional touch input
fails for devices with a display diagonal smaller than one inch, while back-of-device
interaction still works fine for the same size. Baudisch et al. (2008) have submitted
a patent application for this technology.

A related patent application has been submitted by Zalewski and Nicholson (2009)
for Sony Computer Entertainment America. This patent is not focused on the input
method, but on the device in general. A touch pad on the back side of the device’s
case is, however, explicitly mentioned in the patent’s claims. This technology is
currently in use with Sony’s hand-held video game console PlayStation®Vita.

25

2.4 Usability

Different definitions exist for the term usability. Bevan (1995) offers two different
definitions: Usability can be seen as the ease of use of a user interface or as the
ability of a product to be used for its intended purposes. Nielsen5 defines usability
as a quality attribute which refers to the ease of use of user interfaces and also
to methods which can be used for improving said ease of use during the design
process. Nielsen also identifies five quality components which define and contribute
to usability:

• Learnability: The ease of use of a user interface for users who encounter it
for the first time

• Efficiency: How efficiently and quickly users can accomplish tasks once they
have learned how to use the UI

• Memorability: How long it takes users to become proficient at using the UI
after longer periods of not using it.

• Errors: The number and severity of errors that users make and how users
can recover from these errors.

• Satisfaction: How enjoyable users find it to use the UI.

Another attribute which can be viewed separately from usability rather than as a
component of it is utility. Utility is defined as the functionality of a user interface
and whether it can do what the users need. Bevan (1995) further states that us-
ability can contribute to the quality of software and that user-centered design needs
to be employed when designing user interfaces. This means that the needs and
requirements of the end users should be the key factor considered when designing
UIs, rather than technical factors or the underlying implementation. Both Nielsen
and Bevan stress that usability must be considered at all stages of the design and
development process. Only performing usability tests on a finished UI is most often
not enough, as major changes will be too hard or expensive to make at this stage of
the development process.

5http://www.useit.com/alertbox/20030825.html, retrieved March 7, 2012

26

http://www.useit.com/alertbox/20030825.html

Of course all of these things hold true in the context of mobile devices as well.
There are, however, different things to be considered specifically on mobile devices.
These include the touchscreen input and various limitations and possibilities that
depend on the platform and device, such as sensors, hardware buttons or common
ways of interaction on the platform. This thesis will further investigate the spe-
cial usability requirements of mobile devices and how to achieve the design and
development of well-usable mobile user interfaces.

2.5 Usability evaluation methods

Simply putting thought into the UI design and trying to adopt a user-centered design
is helpful, but by itself it may not be enough to ensure good usability of a product.
Usability must be evaluated, ideally many times across the design and development
process and starting even before prototyping.
The term usability evaluation refers to all methods that can be used to evaluate
and improve usability. In general, all these methods aim to identify problems and
flaws in user interfaces and to find possible improvements which make the software
more usable for the end users. There are two categories of evaluation methods:
Usability inspection methods and usability test methods. The difference is that
with the former, usability experts examine the UI and try to identify usability flaws
and issues while with the latter actual end users test the UI. An overview and a
comparison of some of the most important usability evaluation methods can be seen
in figure 2.5.

The following sections will briefly describe some usability inspection and test
methods. There are more methods than those listed here, but discussing all of them
would be beyond the scope of this thesis. The two methods that were used in the
practical work which accompanied this thesis are discussed in more detail in section
4.5.
The information in the following sections, unless otherwise noted, is based on the
research of Nielsen (1994) and Holzinger (2005).

27

Figure 2.5: A comparison of various usability inspection methods and usabil-
ity test methods, as outlined by Holzinger (2005)

2.5.1 Usability inspection methods

Usability inspection methods are performed by usability experts and aim to find
problems in user interfaces and try to find ways to improve the UI. In order to do
so, the interface is thoroughly inspected using established standards.

Heuristic evaluation

Heuristic evaluation is a usability inspection method which is relatively cheap and
quick to perform. A heuristic evaluation is performed by a small group of usability
experts (Nielsen recommends around five people). The evaluators closely inspect
and test both the user interface as a whole and individual UI elements against a set
of established usability standards, the so called heuristics.
These heuristics are usually formulated in a very general way, so that it is up to the
usability experts when and how to apply them to the actual UI.

In most cases, the usability experts examine the UI independently from one an-
other, documenting and rating them before all findings are aggregated and discussed
among all expersts.

28

Cognitive walkthrough

Cognitive walkthroughs are similar to heuristic evaluations. Again, a small number
of experts examine the UI. In contrast to the heuristic evaluation, the cognitive
walkthrough tries to simulate the tasks of actual end users. The usability experts
collect a number of tasks which end users have to perform and try to simulate the
users’ behavior step by step while also trying to consider limitations such as the
users’ knowledge and memory.

Pluralistic walkthrough

End users, developers, designers and usability experts meet for a pluralistic walk-
through, where they step through given tasks and analyze and discuss the user
interface and its elements.

Action analysis

Action analysis is concerned primarily with the time it takes users to perform tasks.
Within action analysis, as outlined by Card and Moran (1980), user interactions
are broken down to single actions, such as keystrokes, mouse movements and clicks.
The times needed for each action are calculated and examined.

2.5.2 Usability test methods

Usability test methods have the big advantage of working with actual end users,
thus producing direct and relevant feedback on the UI and problems users may have
with it. The disadvantage of test methods is that they typically require more time
and effort and can be more costly than inspection methods.
Three of the most common test methods are described here.

Thinking Aloud Test

Thinking aloud tests (TA tests) are carried out with a small number of test users.
The tests are carried out individually for each test user. A number of increasingly
complex and difficult tasks are given to the test users, who are then prompted to

29

complete them and speak all their thoughts out loud.
Thinking aloud tests can therefore give direct insights into the users’ thoughts and
their view of the system, but also on the reasoning behind their actions.

While thinking aloud tests can give a lot of feedback, they do have disadvantages.
TA tests take a lot of time and resources to plan, perform and evaluate. Despite
trying to simulate the actual use of the system, TA tests are still unnatural to a
certain degree. The users are given specific tasks, which might introduce a bias.
The test users are under observation and therefore perform better than they would
under normal circumstances.

Field Observation

During a field observation, actual end users of a system are observed on-site at their
workplace. The observers should be unobtrusive in order to enable the users to work
as they normally would. Any problems the users might encounter are documented
by the observers and subseuquently analyzed.
Video recording and logging of user data can be used to support this method.

Questionnaires

There is also the possibility to gather feedback from end users through question-
naires. Creating questionnaires which yield unbiased, meaningful data can be a
difficult task and requires expertise.
In contrast to the other test methods, questionnaires are not intrusive, meaning test
users don’t have to be observed directly. The users’ opinions and feedback can be
gathered with relatively little effort. However, they should be viewed as such and
can be no replacement for observations of the users’ actual behavior.
Questionnaires can be combined with other methods as well. For instance, thinking
aloud tests can be accompanied by a questionnaire or an interview conducted after
the end of the actual test.

30

3. Related Work

3.1 Definitions

Some definitions of basic terms used in the following sections will be briefly explained
here.

Screen size: The term screen size refers to the physical size of a screen, or more
specifically the physical screen space that is available to display content (which
sometimes slightly differs from the size advertised by the manufacturer). Following
the most common practice, screen size will refer to the diagonal of the viewable
screen and be given in inches.

Resolution: Refers to the number of distinct pixels that can be displayed in
both dimensions of a screen, e.g. 1280 x 800 pixels. While the term pixel dimen-
sions would be more accurate, resolution is the commonly used term.

Pixel density (Screen density): Describes the resolution (in pixels) within
a specified space. The units to be used are pixels per inch (PPI) or dots per inch
(DPI), which both refer to the number of distinct pixels that can be displayed on a
screen across a width, height or diagonal of one inch.

Display orientation: The orientation of the screen as seen by the user. The
display orientation is either landscape (wide) or portrait (tall). Different mobile
devices can have different default orientations and can often change between orien-
tations at runtime whenever the user rotates the display.

31

Aspect ratio: Defines the ratio between the width and the height of a dis-
play. The higher number is given first, regardless of display orientation. So a 480 x
800 pixel display with portrait orientation will still be referred to as 5:3 ratio. The
aspect ration can also be given as one decimal number. 5:3 in this case would equal
1.66.

3.2 Mobile platforms

In the following sections some of the most common mobile platforms available will be
discussed. For each platform, the general means of defining layouts will be presented.
The possibilities for scaling the UI will also be examined; including automatic scal-
ing by the platform and tools offered to the developer to support multiple screen
sizes (if available).
While most platforms offer a variety of different ways to define UIs, such as Open-
GLES for high performance 2d- and 3d-graphics, only the basic UIs, as used for
most apps, are discussed here.

3.3 Android

The Google Android platform is one of the most widely spread smartphone platforms
today with a spread of 48% and market leadership in 35 of the 56 countries where it
is available (Leske and Cowell (2011)). While releasing Android 3.0 "Honeycomb",
an Android version tailored to support tablets and other devices with larger screens
in early 2011, Android has offered ways to support different screen sizes from the
beginning.
Google has also released Google TV - a Smart TV platform based on Android - in
2010. Google TV will not be covered in detail, but with Android being available on
TV screens as well it stresses the importance of scalable user interfaces.

3.3.1 Available devices

A wide variety of Android devices from many different manufacturers are available
today. There is also a wide variety in different displays. The official minimum

32

requirements for Android devices have undergone changes over time, with updates
being made with every new release of the platform. The requirements for the devices’
screens have become more detailed and a bit more restrictive over time, but have
more or less stayed the same. For Android 4.0 (codenamed "Ice Cream Sandwich"),
the compatibility definition document1 (CDD) lists these requirements with regard
to the screen:

• The physical diagonal screen size of devices must be at least 2.5 inches.

• The screen size must be at least 426 x 320 density-independent pixels (see
section 3.3.2), which equals the current definition of "small" screens. When
combined with the minimum screen density of 120 dpi, this gives a minimum
display resolution of 320 x 240 physical pixels (QVGA).

• Devices must report one of the four standard screen sizes of the Android
UI framework: Small, normal, large or xlarge. The corresponding minimum
display diagonals (when assuming standard densities) can be found in table
3.2.

• The aspect ratio of the screen must be between 1.3333 (4:3) and 1.85 (16:9).

• Screen densities defined by the Android UI framework are 120 dpi (ldpi), 160
dpi (mdpi), 213 dpi (tvdpi), 240 dpi (hdpi) and 320 dpi (xhdpi). The actual
values of devices may vary, but they must report one of these densities to the
UI framework (usually the numerically closest). The tvdpi density is meant
for television screens and will therefore not be included in further discussions
on screen size.

• Screens must be capable of rendering 16-bit color graphics. The capability to
render 24-bit color graphics is recommended.

1http://source.android.com/compatibility/4.0/android-4.0-cdd.pdf, retrieved Feb.
10, 2012

33

http://source.android.com/compatibility/4.0/android-4.0-cdd.pdf

Screen size Minimum dimension (in dp)
small 426 x 320
normal 470 x 320
large 640 x 480
xlarge 960 x 720

Table 3.1: Screen size standards of the Android UI framework with the cor-
responding minimum density-independent pixels

Android screen size Minimum screen diagonal
small 3.33

medium 3.55
large 5.00
xlarge 7.50

Table 3.2: The minimum physical diagonal screen size in inches for all the
Android screen size definitions.

Because of the use of the density-independent pixel unit, UI designers can ba-
sically work with four default screen sizes, as detailed in table 3.2. For instance,
medium size screens must be between (approximately) 3.55 and 4.99 inches in di-
agonal, which includes most smartphones available on the market today. It is note-
worthy that the diagonals were calculated using the default densities as defined by
the Android framework. Since device manufacturers may use displays with different
densities, these values are not precise (hence the difference between the 2.5 inches
minimum requirement and the 3.33 inches for small displays - higher densities than
the default yield smaller displays).

density \size small medium large xlarge
ldpi 320 x 240 353 x 240 480 x 360 720 x 540
mdpi 426 x 320 470 x 320 640 x 480 960 x 720
hdpi 640 x 480 705 x 480 960 x 720 1440 x 1080
xhdpi 832 x 640 940 x 640 1280 x 960 1920 x 1440

Table 3.3: The minimum screen resolution in physical pixels for various den-
sity / size combinations

34

density \size small medium large xlarge
ldpi 1.6% 0.7% 0.2%
mdpi 18.4% 2.9% 4.8%
hdpi 2.5% 67.1%
xhdpi 1.8%

Table 3.4: Detailed breakdown of screen size shares from figure 3.1

When looking at the display resolution, considering all possible combinations of
screen sizes and screen densities gives a total of 16 configurations (see table 3.3).
Since the resolutions may also be anything in between (or above) these normalized
values, UI designers must expect a wide range of resolutions. Since the main factor
for different UI layouts should be the screen size, not the resolution, this mostly
means that graphics must scale well across all resolutions (see section 3.3.3).

Google has also released statistics2 on what configurations are the most common
among Android devices (see figure 3.1 for a pie chart and table 3.4 for a detailed
breakdown). These figures show that 67.1% of all devices use the most common
configuration (medium and hdpi) and medium currently is the dominant screen size
(with a total of 88%).

Figure 3.1: Share of individual screen size / display density config-
urations of all Android devices. Data source: Google
Developer Docs, http://developer.android.com/resources/
dashboard/screens.html, retrieved Feb. 11, 2012. Data was
collected from all devices that accessed the Android Market within
a 7-day period ending Feb. 1, 2012

2http://developer.android.com/resources/dashboard/screens.html, retrieved Feb. 11,
2012

35

http://developer.android.com/resources/dashboard/screens.html
http://developer.android.com/resources/dashboard/screens.html
http://developer.android.com/resources/dashboard/screens.html

Even with these things considered, Android still leaves UI designers with the
problem of having to support a variety of different screen sizes. The following
sections will cover some of the tools Android offers to support different screen sizes.

3.3.2 Supporting different screen sizes and densities

Android provides an API that allows the developer to define UIs for specific screen
sizes and densities. The Android system then automatically adjusts the UI of the
application to the screen it is displayed on. Should the developer decide not to
provide different UIs for different screens, Android will scale and resize the UI au-
tomatically. This means that android applications will run on screens of any size
regardless of whether the developer has created specific UIs for different screens.
However, an automatically resized and scaled UI is not optimized for the user ex-
periences on different devices (such as smartphones and tablets) and the Android
documentation specifically recommends optimizing the UI for different screen sizes
and densities3.

Density-independent pixel (dp)

The Android API introduced the density-independent pixel unit as a virtual pixel
unit for defining layouts for different screen sizes in a density-independent way. As
specified in the Android documentation3, one density-independent pixel (dp) equals
one physical pixel on a screen with a density of 160 dpi, which corresponds to a
"medium" density screen by Android’s standards. The system uses the dp units in
the layout definitions and scales them based on the density of the actual screen at
runtime. Density-independent pixels are converted to actual screen pixels according
to the following equation:

px = dp ∗ (dpi/160) (3.1)

So for instance, on a screen with extra high density (xhdpi, 320dpi) one dp equals
two physical pixels.
Defining layouts and positions using density-indepent pixels therefore ensures that

3http://developer.android.com/guide/practices/screens_support.html, retrieved Jan-
uary 20, 2012

36

http://developer.android.com/guide/practices/screens_support.html

UI layouts are rendered the same way on devices with the same (or very similar)
screen sizes, but different screen densities.

3.3.3 Scaling images

Besides layouts themselves, images are important when it comes to scaling a user
interface. Applications typically use a variety of image files for their user interfaces,
such as icons or button backgrounds. These images need to be handled properly
when dealing with different screens; otherwise a small image might look pixelated
on a large screen or a large image might take up unnecessary space because it has
to be saved at full size but it gets scaled down significantly.

A very good way to deal with scaling images is to use scalable vector graphics
(SVGs). However, Android currently does not support SVGs. Android does, how-
ever, offer a way to create stretchable images called Nine-Patches.

3.3.4 Nine-Patches

Nine-Patches are PNG images which include additional information for Android on
how to scale the image. They have the file extension ".9.png". Nine-Patches are
used for images such as button backgrounds, for which the border should remain
the same size while the middle should be stretched. Other image resources, such
as icons are not suited for Nine-Patch definitions. A Nine-Patch Image is divided
into nine (three times three) sections, the outer ones representing the border of the
image and the middle one being the stretchable content. Android will stretch only
the middle part, leaving the borders untouched.
Android offers a graphical editing tool to define Nine-Patch images. The tool uses
lines on the top and left of the image to specify the stretchable area of the image
and optionally also lines on the bottom and the right of the image which specify a
padding box, which is the area where text should be placed in the image.

37

Figure 3.2: A sample Nine-Patch definition. The lines on the top and left
define the stretchable area. Only this area will be stretched to fit
on larger screens, while the border will remain the same (having
a one pixel thick border). The lines on the bottom and the right
define the padding box. If the image (and its correspondig view
in Android) contains text, the text will be fitted into the padding
box.

Figure 3.3: A button with a Nine-Patch background, scaled to two different
sizes.

3.3.5 The Back Stack

Android applications usually consist of multiple activities. An activity provides a
screen or windows and allows the user to perform a certain task, such as writing an
email, viewing images or dialing the phone.
Naturally, when an application is used, activities are switched many times. When a
new activity is started the previous activity is stopped and its state is being saved to
the "back stack" or "activity stack". The new activity is also pushed onto the back
stack and takes the focus. When the new activity is completed or when the user

38

presses the back key on the phone or tablet, the current activity is popped from the
stack and destroyed and the previous activity resumes where it left off45.
Whenever the user wants to go back to where he was before, he can simply push
the back button. In addition to the functionality itself, this feature is also relevant
from a UI design point of view. A designer can choose to split a large application
(e.g. an existing desktop application) into multiple smaller activities and allow easy
navigation between them using the back stack.

Figure 3.4: An illustration of Android’s back stack. Whenever a new activity
is started, it is pushed to the stack, taking the focus. When the
user presses the back button or the activity finishes or closes, the
current activity is popped from the stack and destroyed while the
previous activity is restored.

3.3.6 Fragments

In order to support scalability of applications, especially between smartphone and
tablet screens, Android introduced the concept of fragments. A fragment represents
a part or a behavior of the user interface. Multiple fragments can be included in
one activity to build a large, multi-pane UI. An activity can also consist of a single
fragment only and fragments can be used in multiple activities.
Typically, a smartphone screen will display most fragments individually, with each
one taking up the entire screen. On a larger tablet screen, these fragments might

4http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.
html, retrieved January 12, 2012

5http://developer.android.com/guide/topics/fundamentals/activities.html, re-
trieved January 12, 2012

39

http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/guide/topics/fundamentals/activities.html

be combined and displayed at the same time, in one activity. For instance, a news
application can show a fragment with a list of current news on the left side and the
currently selected news article in another fragment on the right side. On a smart-
phone, the news list and the news article would be displayed in separate activities6.

Figure 3.5: Android fragments in action. The figure on the left hand side
shows a smartphone screen where two fragments are displayed on
the whole screen, one after another. The figure on the right shows
a larger tablet screen, which combines the two fragments.

3.3.7 Android Design

In the past, various documents have been created on the subjects of Android UI
design and user experience (e.g. 7, but they were - despite being created by Google
employees - never made officially available on the Android Developer website.
In January 2012, following the release of Android 4.0 ("Ice Cream Sandwich"), an
official website containing design guidelines, named "Android Design"8 has been
launched.

The guidelines contain some recommended patterns, such as the action bar pattern
(figure 3.6), which are intended to establish a common look-and-feel for Android
applications. Some of the screen size related features mentioned above are also part
of the guidelines.
With regard to the size of components the guidelines recommend 48 density-independent
pixels as a minimum. 48 dp equal roughly 9 millimeters, which should be enough

6http://developer.android.com/guide/topics/fundamentals/fragments.html, retrieved
January 12, 2012

7http://tinyurl.com/2umdmkg, retrieved Feb. 12, 2012
8http://developer.android.com/design/, retrieved Feb. 12, 2012

40

http://developer.android.com/guide/topics/fundamentals/fragments.html
http://tinyurl.com/2umdmkg
http://developer.android.com/design/

for components to be touched easily and accurately. It is further recommended to
design the whole layout in "steps" of 48 dp with spacings of at least 8 dp between
controls.

Figure 3.6: A simple example which illustrates the action bar pattern. The
action bar (1) is on top and should contain the app logo and
important actions ans navigation consistently across the app. The
top bar (2) can contain navigation between views in one activity
and the bottom bar (3) can contain actions related to the current
view. Source: Android Design Guidelines9

9http://developer.android.com/design/patterns/actionbar.html, retrieved Feb. 12,
2012

41

http://developer.android.com/design/patterns/actionbar.html

Figure 3.7: The Windows Phone 7 home screen with some live tiles which
update in real time. Image source: Windows Phone 7 website10

3.4 Windows Phone

The Windows Mobile operating system has initially been released in 2000 for PDAs
and Smartphones. Many different devices were available, most of which offered
touchscreen input through a stylus.
In late 2010, the successor of Windows Mobile, Windows Phone 7, was launched.
While Windows Mobile has previously been successful in the business sector, Win-
dows Phone 7 was explicitly aimed at the consumer market in an attempt to have
a share of the great success of Android and iOS. All Windows Phone 7 devices offer
capacitive, multi-touch capable touchscreens. A new user interface, called Metro,
was introduced. One feature of Metro are the rectangular tiles which can be placed
on the home screen (see figure 3.7) and give the UI a distinctive look.
Several third-party manufacturers offer smartphones with Windows Phone 7, in-
cluding HTC and Nokia.

3.4.1 Screen sizes

The range of screen sizes available for current Windows Phone 7 devices is quite
small as Microsoft has specified that all devices must have a WVGA format display

10http://www.microsoft.com/windowsphone/en-us/default.aspx, retrieved Feb. 12, 2012

42

http://www.microsoft.com/windowsphone/en-us/default.aspx

with a resolution of 800 x 480 pixels (Microsoft). Screens with a resolution of 480 x
320 pixels (HVGA) are also expected for the future (Petzold (2010)).
However, the screen size can still be an issue when porting existing Windows (desk-
top) applications to Windows Phone. In the future this might be more of an issue
with Microsoft having announced an App Store for Windows 8 and an App Store al-
ready available for XBox360 videogame consoles. Applications running on all these
platforms will have to support screens from smartphone size over PC monitors up
to TV screens.

The two different resolutions on Windows Phone 7 devices also have different aspect
ratios: WVGA has an aspect ratio of 5:3 (1.66) while HVGA has an aspect ratio
of 3:2 (1.5). While this is not a huge difference it should still be considered when
designing user interfaces for both resolutions.

3.4.2 Defining layouts

The Windows Phone platform uses a specific version of the Silverlight applica-
tion framework in which user interfaces are declared using Extensible Application
Markup Language (XAML) files.
Sizes of UI elements, layouts and fonts are simply measured in pixels. Additionally,
elements can also be sized using the "Auto" property, which makes them take up all
available space horizontally and/or vertically. Windows Phone does not have any
other means of defining those values (such as percent), so the designer must tailor
the UI to the device’s resolution.

3.4.3 Supporting different screen sizes

TheWindows Phone platform offers no special ways or tools to deal with the different
screen sizes. The Programming Guide (Petzold (2010)) suggests that programs
adapt themselves to the screen size using conditional code branches and different
XAML layout files for size-dependent layouts.
Furthermore, it recommends dividing the screens into squares of 160 x 160 pixels,
which is the largest common denominator for the two screen sizes. The HVGA
screen has 2 x 3 of these squares while the WVGA screen has 3 x 5.

43

Figure 3.8: The two resolutions of Windows Phone 7 along with the sugges-
tion to divide the screen into 160 pixel squares for visualization
and UI design. Source: Petzold (2010)

3.5 iOS

iOS is a mobile operating system created by Apple. There are currently three series
of devices which use iOS: The iPhone, the iPod Touch and the iPad. Some key fea-
tures of iOS with regard to user interfaces include multi-touch capable touchscreen
support, touch gestures (such as pinch zoom) and high responsiveness.
The iPhone is a smartphone which was first introduced in 2007 and contributed
greatly to the development and propagation of smartphones. Apple has since re-
leased a total of four improved versions of the iPhone and had great commercial
success with the device series, selling more than 146 million iPhones until the end
of 2011. In 2010, Apple presented the iPad, a tablet computer which also runs iOS,
therefore having very similar user interfaces as the iPhone. Also running iOS and
released in 2007 was the iPod Touch, the newest series of Apple’s mobile digital
multimedia player.
The second generation of Apple TV, a set-top box for the playback of digital mul-
timedia content on television screens, also uses a modified version of iOS, thus
expanding the use of iOS beyond mobile devices. The focus in the following section
will be on the mobile iOS devices, i.e. the iPhone, iPad and iPod Touch.

44

Device Screen size Resolution Aspect ratio
iPhone (up to 3G) 89mm 480 x 320 pixels 3:2
iPhone (4 and 4S) 89mm 960 x 640 pixels 3:2

iPod Touch (up to 3rd gen.) 89mm 480 x 320 pixels 3:2
iPod Touch (4th generation) 89mm 960 x 640 pixels 3:2

iPad 250mm 1024 x 768 pixels 4:3

Table 3.5: Comparison of the screen sizes of iOS devices

3.5.1 Screen sizes

Since there are only three device series for iOS which are all designed and manu-
factured by Apple, the differences in screen sizes, resolutions and aspect ratios are
manageable. As can be seen in table 3.5, the iPhone and iPod Touch screens are
identical with 89mm screens. The earlier generations had 480 x 320 screens while
the resolution and the pixel density have been doubled for the current versions.
The iPad’s screen measures 250mm diagonally and has a resolution of 1024 x 768
pixels, giving it an aspect ratio of 4:3 in contrast to the 3:2 aspect ratio of iPhone
and iPod Touch. This means that UI designers have two different screen sizes to
consider when developing for all iOS devices: The iPhone / iPod Touch screens and
the iPad screen.

Figure 3.9 shows the iOS devices side by side, illustrating the difference in size
between the iPhone / iPod Touch and the iPad

45

Figure 3.9: Size comparison of the current iPod Touch, iPhone and iPad mod-
els. Source of individual images: Technical specifications as found
on www.apple.com, retrieved Jan. 30, 2012

3.5.2 Defining layouts

The iOS SDK, which only runs on MacOS computers, is required for creating native
iOS apps. The Xcode IDE is the default development environment used for creating
iOS apps.
User interfaces can be seen as hierarchies of views, as can be seen in figure 3.10.
Views can be built using the built-in editor of Xcode of programatically in the
sourcecode. If Xcode is used, a so called Nib file is created. The Nib file contains
the view hierarchy and layout.
Xcode allows the visual creation of individual views or storyboards. Storyboards
contain a number of view controllers with associated views which can be linked by
relationships or events. Using the storyboard view, designers can create a flow of
control based on the user’s actions. An example can be seen in figure 3.11.

10http://developer.apple.com/library/ios/, retrieved Jan. 30, 2012

46

www.apple.com
http://developer.apple.com/library/ios/

Figure 3.10: The view hierarchy of a very simple iOS application. The win-
dow contains a single view, which in turn contains an Image
View, a Text View and a Button. Source: Apple iOS developer
library10

Figure 3.11: An example of a storyboard created in Xcode. The view on
the very left shows the application’s UI after intialization. The
arrows correspond to user actions. Therefore, the storyboard
depicts a workflow within the app. Source: Apple iOS developer
library10

47

Device Screen size (in points)
iPhone and iPod Touch 480 x 320

iPad 1024 x 768

Table 3.6: Screen sizes (in points) of iOS devices in landscape orientation.
Data source: Apple View Programming Guide for iOS11

3.5.3 Supporting different screen sizes

Apple offers an abstraction of pixels for coordinates, measurements and distances in
UIs which is called points. A point is a floating-point value which can have different
actual sizes on different devices. One point on the iPhone 4(S) screen equals two
pixels while on earlier iPhone versions it equals one pixel, therefore allowing the
desingers to use the same point values for both devices. The minimum measurable
size of points varies accordingly. The iPhone 4(S) can handle half points while older
devices can only handle integer values. Future devices may have different resolutions,
but the point units ensure that UIs are scaled properly.
In order to support the higher resolutions of newer devices, iOS (version 4 and
above) uses different image resources (one low-resolution and one high-resolution
image). Developers should provide both images so that the appropriate one can be
chosen and displayed at runtime.

3.5.4 Apple’s Human Interface Guidelines

Apple has composed a set of UI design guidelines and principles called the iOS Hu-
man Interface Guidelines. It can be found on Apple’s website12. These guidelines
serve two purposes: Firstly, they teach designers how to create UIs with good us-
ability and how to avoid usability problems. Secondly, they establish a common look
and feel for the plaform, giving iOS applications a distinctive look when compared
to other platforms while at the same time making them look and feel familiar for
users.

11https://developer.apple.com/library/ios/documentation/WindowsViews/
Conceptual/ViewPG_iPhoneOS/ViewPG_iPhoneOS.pdf, retrieved Jan. 30, 2012

12http://developer.apple.com/library/ios/documentation/UserExperience/
Conceptual/MobileHIG, retrieved Jan. 30, 2012

48

https://developer.apple.com/library/ios/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/ViewPG_iPhoneOS.pdf
https://developer.apple.com/library/ios/documentation/WindowsViews/Conceptual/ViewPG_iPhoneOS/ViewPG_iPhoneOS.pdf
http://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG
http://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG

Among many other things, the guidelines recommend a minimum size of 44 x 44
points for all tappable UI elements. This equals roughly 7 x 7 millimeters, which is
very similar to Android’s guideline.
The guidelines contain an extensive amount of information and will not be discussed
further.

3.6 HTML and CSS

HTML5 is the latest version of HTML and is currently still under development. It
is being developed by the World Wide Web Consortium (W3C) and the Web Hy-
pertext Application Technology Working Group (WHATWG). The latest version of
the standard can be found on the website of the WHATWG13. All the information
in this section is based on this version of the standard.
It is noteworthy that while the term HTML5 officially only refers to the latest ver-
sion of the Hypertext Markup Language itself, it is commonly used to describe
a whole variety of current technologies and standards, including CSS (Cascading
Stylesheets), DOM (Document Object Model) and XML (Extensible Markup Lan-
guage).

HTML is used to define the structure and the contents of a web page while CSS is
used to define the appearance and layout of HTML documents. Thus, when design-
ing user interfaces one must consider both HTML and CSS.

The HTML5 standard defines a number of new tags which weren’t contained in
its predecessors. These tags include some new tags for multimedia content, such
as the <audio> and <video> tags or the <canvas> tag which creates a canvas that
can be drawn on on the fly. Other tags are strongly related to layout, such as the
<header> and <footer> tags, which define an introduction or navigation section and
a footer section respectively. With these tags, HTML5 has become more expressive
than its predecessors, which used the <div> tag for sections of a web page.

13http://www.whatwg.org/html, retrieved Feb. 17, 2012

49

http://www.whatwg.org/html

3.6.1 Defining layouts

HTML defines a web page’s structure and content using a tree of elements and text
content. Each element has a start tag and an end tag. Tags can be nested, but they
may not overlap (i.e. tags nested within other tags must be closed before the outer
tags). HTML is, however, intended to define only the structure of a document and
not its layout.
The style (i.e. font sizes, colors etc.) and layout of HTML pages should be defined us-
ing Cascading Stylesheets (CSS). CSS can assign attributes either to content placed
within specific tags or to elements with a specific ID. Among others, CSS can define
the position (relative or absolute), size and the alignment of elements.
CSS offers various units for measurement. Besides pixels and length units such as
millimeters, measurements can also be given in percent and in em. Em defines the
relative font size of an element. For instance, an element with a font size of 0.5em
has half of the normal font size. This is important for both accessibility and scalabil-
ity, as it also changes font size relative to the user settings. Relative measurements
can also help to make websites and web applications easier to scale.

3.6.2 Touch input

HTML5 also supports multi-touch input14. The touch events include events repre-
senting the start of a touch, movement of touch ("swiping") and the end of a touch.
A list of all current touches along with their page or screen coordinates can easily
be obtained, both for the entire document and for a given DOM element.
HTML5’s touch events rely on both the mobile platforms and the browsers’ sup-
port. They are widely implemented, but there are still a few browsers that don’t
fully support them.
There are a few APIs that abstract touch event handling, see section 3.7.2.

14http://dvcs.w3.org/hg/webevents/raw-file/tip/touchevents.html, retrieved Feb. 14,
2012

50

http://dvcs.w3.org/hg/webevents/raw-file/tip/touchevents.html

3.7 Multiplatform development

When developing for mobile devices, developers face choices and challenges. They
must choose which platform(s) to develop for and they must choose their distribu-
tion channels. While every platform has its default App store (e.g. the Android
Market for Android), a variety of unofficial stores exists. The Wireless Industry
Partnership (WIP) AppStore Catalog15 currently lists more than 120 different app
stores.
Developing apps for multiple platforms has the major advantage of reaching a much
larger audience. However, when developing native apps for multiple platforms, the
workload and consequently the development costs are also much higher. As the cov-
ered in the prevoius sections, every mobile platform has different base technologies
for native app and UI development, including different programming languages. An
overview of these programming languages can be found in table 3.7.

There is, however, also the possibility to create web apps or hybrid apps which
require less effort to develop for multiple platforms. Furthermore, there are multiple
frameworks for multi-platform development. Some of them enable the developers
to deploy one app to several platform as a native app while some help to make an
HTML web interface feel more like a native app. These two approaches - developing
a web app for multiple platforms and using a multi-platform framework - are subject
of the following sections.

15www.wipconnector.com/appstores, retrieved Feb. 14, 2012

Platform Programming language(s)
Android Java, C and C++ (through Native Development Kit)
iOS Objective-C

Windows Phone C#
Blackberry Java
Symbian C++

Table 3.7: Programming languagues used for app development on various mo-
bile platforms

51

www.wipconnector.com/appstores

Native app advantages Web app advantages

• Broad access to device hardware
and platform features

• Close integration with platform
and other apps

• Better performance

• Exponation through app store(s)

• On-device storage

• Large target audience (mobile
platforms + desktop)

• Easy multi-platform development

• Easy to update across all plat-
forms

• No certification required

Table 3.8: Advantages of native and HTML5 web apps. Sources: Meier and
Mahemoff (2011) and original research

3.7.1 HTML5 versus native apps

The question whether to develop a native app or a web-based HTML5 app is one
which every app developer will inevitably ask himself. The different platforms and
environments of mobile devices (see table 3.7) make porting an app from one plat-
form to another a difficult task.
HTML5 is a promising alternative - every one of these platforms has a browser and
the capability to run web apps.

While HTML5 apps can run on any mobile platform with little to no extra effort,
native apps also have advantages (see table 3.8). Access to the system’s hardware
or some hardware-related features such as the camera is often only possible in native
apps. Native apps can also integrate themselves seamlessly into the system: They
use the native look-and-feel, can offer widgets to be displayed on the home screen,
interaction with other apps and the use of system notifications. Native apps also
tend to have better performance than web apps, but current browsers are getting
more and more performance optimizations while at the same time newer devices
offer more computational power, making the difference diminish.

It is also possible to develop hybrid applications. These are native applications
which use views to display HTML5 content, which can be the same across all plat-
forms.

52

3.7.2 Multiplatform frameworks

Since the development of apps for mobile platforms is getting more important with
numerous platforms being available on the market, platforms have been developed
which should facilitate easy app development on multiple platforms. These multi-
platform frameworks come in many variations. Some of them only change the visual
appearance of web apps while others offer whole software development kits on their
own, which can build the developed apps to multiple target platforms as native
apps.
These frameworks typically use established standard technology such as HTML5
and JavaScript. This can be a big advantage for developers familiar with web de-
velopment as they don’t need to learn to use the languages and development tools
for native apps on one or more platforms.

One disadvantage of web UIs is that their controls usually look different from those
of native apps. While this does not harm functionality at all, it may cause the app
and UI elements to feel less familiar to the user. There are some frameworks and
libraries which simply apply a native "skin" to HTML5 apps, which should ideally
make them indistinguishable from native apps.

In the following sections, three multi-platform frameworks are examined. There
are, of course, many more frameworks available. Criteria for the selection of the
frameworks were that these were, at the time, some of the most feature-rich and
most popular available. The aim was also to have frameworks with different key
features in order to be able to compare and contrast them. Futhermore, the frame-
works are also available for free. There are several proprietary frameworks, but they
could not be tried out thoroughly and were therefore excluded from the selection.

53

jQuery Mobile

JQuery Mobile16 is a web app framework which was developed by the developers of
the popular JavaScript library jQuery.
The main focus of jQuery Mobile lies on the design and presentation of mobile apps.
The technologies used by jQuery mobile are HTML5, CSS3 and JavaScript, which
enables it to run on most current mobile devices. JQuery Mobile can be used to
both make web apps feel more like native apps and to apply a brand layout to them,
giving them a more polished look than a default web app. The layout is scaled
to the target device. Small adaptations can be made automatically. For instance,
labels can be placed beside input fields on larger devices while being placed above
them on smaller devices.
The jQuery mobile website offers a drag-and-drop tool for building simple UI layouts
called Codiqa. Components such as buttons, text, images and lists can be dragged
into the UI, allowing for rapid prototyping. The resulting source code can then be
downloaded and further modified. This makes it much easier for new or inexperi-
enced developers to get started, as the other platforms such as Android have a much
steeper learning curve.
The jQuery Mobile framework is free and open source. It can be used under the
terms of eithter the MIT License17 or the GNU General Public License18. The basic
version of the Codiqa, which allows the download of the source code created, is free.
Advanced versions which offer additional features cost 10$ per month for single users
and 30$ per month for teams.

JQuery Mobile offers some more features which are not strictly related to design,
most notably the handling of events such as various forms of touch input (e.g. tap,
swipe) and orientation change (i.e. the user turning the device from portrait to
landscape mode or vice versa).

16http://jquerymobile.com/
17https://github.com/jquery/jquery/blob/master/MIT-LICENSE.txt, March 10, 2012
18https://github.com/jquery/jquery/blob/master/GPL-LICENSE.txt, March 10, 2012
19http://jquerymobile.com/

54

http://jquerymobile.com/
https://github.com/jquery/jquery/blob/master/MIT-LICENSE.txt
https://github.com/jquery/jquery/blob/master/GPL-LICENSE.txt
http://jquerymobile.com/

Figure 3.12: The Codiqa rapid prototyping tool for jQuery Mobile19 enables
designers to create simple user interfaces for web apps very
quickly.

The platforms fully supported by jQuery Mobile include iOS (3.2 and above),
Android (from version 2.1), Windows Phone 7 and Blackberry (6.0 and above).
Some older versions of the platforms are partially supported. JQuery Mobile also
supports a number of browsers for both mobile and desktop devices, such as Firefox,
Chrome or Opera.

jQuery Mobile also offers a web application called ThemeRoller, which allows de-
signers to easily apply themes or brandings to HTML5 websites. ThemeRoller is
basically an interactive tool to create CSS3 stylesheets. It uses CSS3 properties to
modify colors and fonts. Designers can create multiple themes and color schemes
which can then be downloaded as CSS files.

The jQuery mobile framework offers a lot of utility to designers. Its rapid pro-
totyping tool can serve as a good entry point for developing mobile apps, providing

55

a skeleton UI and the possibility to customize the look-and-feel. In most cases,
however, the UI will still have to be refined. As for writing JavaScript code, it offers
some methods and utility functions.
With regards to the scalability of the apps produced jQuery Mobile does offer some
help by making it easy to create and modify layouts, but in the end it is up to the
designer to modify and test them in order to ensure they look good on screens of
different sizes.

PhoneGap

PhoneGap20 is an app platform which can build apps from a single code base for mul-
tiple target platforms as native apps. It is based on HTML5, CSS3 and JavaScript
and abstracts the hardware of mobile platforms into a JavaScript API.
The library provides interfaces for hardware access and certain native features.
Hardware access includes the device’s accelerometer, the camera and the compass.
Some of the platform features are access to the contact list or to the file system,
notifications and geolocation. All of these features are available for Android, iPhone
(3GS and above) and Windows Phone 7. Other platforms such as Blackberry or
Symbian have a subset of these features available. PhoneGap thus manages to com-
bine many of the advantages of native apps and web apps.
Technically, the resulting apps generated by PhoneGap are not truly native apps
but hybrid apps. The apps use web views which display the HTML5 content, but
they can be built to the platform’s native format and therefore also distributed over
several app stores.
Developers need to set up the SDKs for all platforms they want to develop for. This
implies some limitations: In order to deploy build PhoneGap apps for iOS the iOS
SDK is required, which in turn requires a Mac OS computer. PhoneGap supports
the default IDEs for various platform (e.g. Eclipse with the Android Development
Tools for Android) and only requires the libraries to be imported.

PhoneGap is an open source project and is available for free. It uses the Apache
License (version 2.0)21.

20http://phonegap.com
21http://www.apache.org/licenses/LICENSE-2.0.html, retrieved March 8, 2012

56

http://phonegap.com
http://www.apache.org/licenses/LICENSE-2.0.html

Titanium Mobile SDK

The Titanium Mobile SDK22 by Appcelerator Inc. also offers the possibility to
create native apps from a single codebase. It comes with a complete IDE called
Titanium Studio, which is based on the Aptana Studio web development UI23. The
app logic is written using JavaScript.
Much like PhoneGap, Titanium offers an extensive API with access to native hard-
ware and software features. It allows the use of additional JavaScript libraries such
as jQuery. It currently supports iOS, Android and BlackBerry and also allows the
creation of mobile web apps (the latter still being in beta status).
Appcelerator also offers a marketplace24 for templates, designs and modules for ap-
plications.
In contrast to PhoneGap, Titanium Mobile UIs are using real native UI components
rather then web views.

Like PhoneGap, Titanium Mobile requires the SDKs of the target platforms to
be installed and set up within the SDK.
It uses the Apache License (version 2.0)5, but the software is proprietary. The basic
version of Titanium Mobile is free. There are also a Professional Edition and an En-
terprise Edition available. These offer additional support, some additional modules
and early access to new features.

The feature of creating native UIs for different platforms is very promising. The
SDK was only briefly examined for this thesis and further investigation is necessary
in order to evaluate how well Titanium handles the rendering of complex native UIs.
While the building of native apps can be an advantage, it also means more overhead
as a number of different apps needs to be built and tested with every new update.

22http://www.appcelerator.com/products/titanium-mobile-application-development/
23http://aptana.com/
24https://marketplace.appcelerator.com/

57

http://www.appcelerator.com/products/titanium-mobile-application-development/
http://aptana.com/
https://marketplace.appcelerator.com/

58

4. Materials and Methods

4.1 Introduction

The practical work accompanying this thesis was done in cooperation with Boom
Software AG (hereafter simply referred to as Boom Software). It consisted of us-
ability tests for existing desktop and web-based software, usability consulting for
a tablet application in development and the creation of usability guidelines for the
developers.
The work was conducted by Michael Geier and Peter Treitler (hereafter referred to
as the usability team) and supervised by Roman Bobik, project manager at Boom
Software.

4.2 About Boom Software AG

Boom Software AG is a software developing company located in Leibnitz, Austria. It
was founded in 1995 an has 50 employees (as of January 2012). The company’s main
products are two software solutions for businesses: The Boom Maintenance Manager
and the Boom Production Manager. Boom Software advertises total customization
for its customers by individually designing and customizing the software to meet
specific needs and requirements. Boom Software’s products are used by a total of
more than 20,000 end users. ((Boom Software AG) (2012)).

59

4.3 The Boom BORA framework

The underlying technology that enables Boom Software to customize their software
is the Business Oriented Rapid Adaption (BORA) Framework. The information on
the BORA framework provided here is based on the BORA marketing documents,
as provided by Boom Software in January 2012.

BORA was initially intended to be an internal method or design- and programming-
tool. The goal was the unification of all technologies into a Microsoft .NET Frame-
work based platform. The benefits were that employees would only need to learn
to use one technology, which is the same across projects and departments, therefore
allowing them to switch projects more flexibly. It was also intended to establish
a base technology for projects, reducing the workload on technical problems and
allowing employees to focus on the creation of content and the solving of content-
related problems.

BORA firstly serves as a technological basis, implementing technical issues and
offering abstract standard solutions. Furthermore, it is an application framework,
providing solutions for common issues of software development, such as distributed
environments, modifiable UIs etc. Finally, BORA is also a standard, both using
existing standards (such as the XAML format) and offering a clearly defined proce-
dural model, allowing the implementation of UML business models.
All of Boom Software’s products tailored to customers’ needs are based on BORA,
including new applications as well as updates, modifications or addons to existing
applications.

The BORA framework uses a modular concept, allowing the creation of reusable
modules. Business logic and user interface are clearly separated from one another.
The development process with the BORA framework follows a model driven ar-
chitecture (MDA) concept. The UI definitions, along with other modules of the
programs is generated from the design models, which in turn is based directly on
the customer requirements (see figure 4.1).
The BORA framework also allows rapid prototyping, by generating a user interface

60

with basic functionality directly from the design model with very little effort for
the developers. The prototype can then be customized and improved upon. User
interfaces can be generated for Windows and for websites. An extension to mobile
devices (see section 4.4) is currently in development.

Figure 4.1: The (simplified) BORA process model. Source: BORA marketing
documents, as provided by Boom Software in January 2012

Figure 4.2 shows the core components of the BORA framework in more detail.
The object oriented model is designed based on the customer’s specifications. The
database and a basic UI are automatically generated. The object oriented model
is translated to abstract classes, which may not be modified by the developer. The
corresponding specific classes are loaded at runtime, which allows for an easier mod-
ifications of already shipped and running applications.

The usability team identified a number of usability issues. If these issues were
global (i.e. affecting all of Boom Software’s applications), the fixes would be made
directly in the BORA Framework, which creates a big leverage by applying the fix
to all future BORA applications and possibly updates of existing applications. In
cases where the issues only applied to one application, methods to avoid them were
included in the usability guidelines so that developers and designers will be aware
of them and improve future applications.

61

Figure 4.2: The core components of the BORA framework. The requirements
(on the right) are separated from the implementation. Source:
BORA marketing documents, as provided by Boom Software in
January 2012

4.4 The Boom Mobile app

In the past, Boom Software has been producing software for Microsoft Windows
systems. In summer 2011, Boom Software was approached by a customer which
asked for a tablet PC version of an application which would allow employees to eas-
ily track and update maintenance tasks while performing maintenance on location.
The target devices were 7 inch Samsung Galaxy Tabs running Android 2.2.
Since Boom Software had no prior experience with Android development, the task
was outsourced to an external company. The team was present at meetings to pro-
vide consulting with regard to usability and to discuss design decisions.

The app follows the Boom BORA framework and doesn’t define its own user in-
terface layout on the client. It receives XML data from the server, which is then
rendered on the client. Therefore, changes to the user interface can be made on the
server side without the need of an update on the client side.
While the app requires an internet connection in order to synchronize tasks with

62

the server, changes can be made offline and are automatically synchronized as soon
as a connection is available again, which enables users to work in remote areas with
no mobile reception.

4.4.1 First prototype

Figure 4.3: The login screen of the Boom Mobile app.

The app consists of three main screens. The first (figure 4.3) is a login screen,
which looks much like the login screen of Windows 7. A vertically arranged list of
users is presented, with a user image, the user name and the time of the last login.
Upon tapping an entry in the user list, the user is prompted for the password. After
successful authentication, the task list is displayed (figure 4.4).
The task list, per default, shows the incomplete tasks the employee has been as-
signed. For each task, the due date, a brief description and its status (done or not
done) are displayed.
Usually, the user will only see the tasks he or she has not finished yet. When he

63

marks a task as finished, it will disappear from the list. On the top of the screen
the user can also change the filter for the task list to finished tasks and to all tasks.
This way, the user could look at the details of completed tasks. Tapping any of the
tasks in the list will open the task detail view (figure 4.5).

Figure 4.4: A list of maintenance tasks in the first version of the Boom Mobile
app. Note that the height of a single entry is rather low, making
it hard to select.

The user interface also contains a footer which shows the synchronization status.
It shows a notification if the data is out of sync along with the time of the last
synchronization. It also displays when the synchronization is currently in progress.

64

Figure 4.5: The detail view of a task

4.4.2 Criticism of the prototype

On August 29 2011, a meeting of the developers from the external company, a
Boom Software representative and the usability team was held. The prototype
along with some design decisions leading up to the user interface was discussed.
The following list contains some of the more noteworthy points that were discussed
in detail (meeting and discussion at Boom Software’s office, August 29, 2011):

• Height of entries in the task list: One major point of criticism from the
usability team was the height of the entries in the task list (figure 4.4). On the
target device, each entry had a height of 7.5 millimeters, which makes it hard
to select a single entry. Consequently, the discussion moved to how many tasks

65

would typically be displayed in the list at once. According to Boom Software,
this would be a small number, typically between three and five. The prototype
however, has clearly been designed for larger lists. It was agreed upon that
the item height would be increased (to roughly twice the current height).
Furthermore, it was discussed if it would be feasible to have multiple lines
per list item in order to display additional details for each item. This would
however cause problems with regard to the sorting of the items and the simple
list layout, so the idea was dismissed.

• Responsiveness: There was a problem with the application being unrespon-
sive after the login (after the user enters the password and presses enter / OK).
The application would appear to be frozen and not respond to any input while
also showing no progress bar or loading icon at all. This was probably due to
the fact that the application needs to sync the UI with the server, which can
take a little time. It was decided that this issue will be looked into and fixed
until the next milestone.

• Displaying the Android status bar: The discussion moved on to the ques-
tion why the application was displayed in fullscreen mode, which makes the
Android status bar disappear. Displaying the status bar is the default setting
and generally considered best practice unless the designers want to make sure
that the users’ attention is not distracted at all, e.g. for games and video
playback. The status bar shows the time and notifications such as received
e-mails and text messages.
Everybody agreed that the status bar should be visible in the application and
the change was implemented with the next milestone.

• Bad error message: An inexpressive error ("error 101") message was dis-
played upon startup. The reason for this was that the user’s device has not
been registered with its International Mobile Equipment Identity (IMEI) num-
ber with the server. The user should receive an appropriate message telling
him to contact the administrator to fix the issue in this case.

66

4.4.3 Improved version

Many of the points that were criticised in the prototype application were fixed in
the next version of the application. The following figures show the improved version
and briefly describe some of the changes made:

Figure 4.6: The app now no longer hides the Android status bar (as can be
seen at top of the image).

Figure 4.7: The task list in the improved version. List entries are now about
twice as high.

67

4.4.4 Scalability

The application was intended to run on 7 inch Samsung Galaxy Tab devices, which
fall into the large specification of the Android framework. The app has also been
tried out on two other types of devices: An HTC Desire smartphone (a medium sized
device) and a Samsung Galaxy Tab 10.1 (an extra large device). The screenshots
below show the comparison of several screens of the app on these two devices.

The app runs very smoothly across all devices tested. Scaling down to the smart-
phone size works very well, having no negative impact on usability. Scaling up to
the larger tablet size works as well, but some screens seem a little bit empty. While
the app certainly doesn’t leave a bad impression on extra large devices, there is some
unused space which could be put to use in order to improve usability a bit more.

(a) The app on a smartphone (b) The app on a large tablet

Figure 4.8: A comparison of the task list on a smartphone and a large tablet.

68

Conclusively - based on the experience with the Boom Mobile app - it can be
said that Android apps scale quite well without any effort specifically put into defin-
ing multiple user interfaces for devices of different sizes. There are, however, some
caveats to this. Some factors have positively influenced the results with regard
to scalability: Firstly, the app was intially designed for a 7 inch tablet, which is
slightly above the middle of the range of device sizes. If it had been designed for
very small or extra large screens, more effort would have been needed in order to
achieve good results on the opposite end of the range. Secondly, the graphics used
had high enough resolutions for them to scale nicely to a slightly smaller and larger
size. Designing a user interface with small icons and then attempting to scale it to
a larger display can make the graphics look pixelated or blurred.

Finally, it must be pointed out that the app has been tested on devices that don’t
have a big size difference to the target device: The Galaxy Tab has a display diago-
nal of 7 inches while the Galaxy Tab 10.1 has a diagonal of 10.1 inches (44% larger).
The HTC desire has a diagonal of 3.7 inches (47% smaller), but the comparatively
high resolution (800 x 480 pixels compared to 1024 x 600 pixels) made the perceived
difference smaller than that. The app has not been tested on a very small device
because there was none available (and testing on the Android emulator was impos-
sible due to technical restrictions - devices need to provide a valid IMEI in order to
start the app).

4.4.5 Future development

The development of the Boom Mobile app has not been finished yet. However,
development of a Windows 7 version of the app (for Windows-based tablets) has
been started as well. The Windows 7 version of the app will be developed by Boom
Software. There were concerns regarding the acceptance of Android, which might
require additional training of employees not yet familiar with the platform. Since
there is a greater familiarity with Windows among the target audience, it has been
decided to offer a Windows version as well in the future. Another advantage of the
Windows 7 version that came up during the design phase is the fact that the login
screen will not be needed as the user account inside the app can be directly linked

69

to the Windows user account (thus moving the login procedure to the startup of the
device instead of the app).
The usability team might continue its role as advisors for the Windows 7 version,
but any further development will not be included in this thesis.

70

4.5 Usability evaluation of desktop applications

In order to improve the usability of Boom Software’s applications and to create UI
design guidelines for the developers, usability evaluations of three representative ex-
isting applications - along with a few new features - were performed.

4.5.1 Heuristic Evaluation

A usability inspection using Heuristic evaluation was performed on three applica-
tions: The first application to be tested was the "Leseratte", which is not an actual
application which was shipped to customers, but subject of the tutorial of the BORA
framework for new developers at Boom Software. It was considered important since
it contains many typical UI elements and it is the first time new developers get
in touch with the framework, so the tutorial application should display exemplary
usability. For the heuristic evaluation, it also served as a pilot test for refining the
test methods and getting feedback.
The other two application to be inspected were versions of the Boom Maintenance
Manager (BMM) and the Boom Target Manager (BTM) in configurations as they
were actually used by customers. The BTM is simply a rich-client desktop appli-
cation while the BMM consist of a desktop client as well as a web interface for
administrative tasks - both of which were tested.

4.5.2 Thinking Aloud Tests

For the Thinking Aloud Tests the usability team created an improved version of
the "Leseratte". The improvements include fixes of bugs and flaws in the original
version which were found in the heuristic evaluation (however, some were not fixed
on purpose in order to see their impact in the TA tests) and extensions of the
functionality. The functionality was aimed to be enough to be properly used in the
test and to be credible in the given scenario. It also contained some features that
Boom Software wanted to include in future versions of the BORA framework, but
had not tested yet. The features and contents to be used in the improved Leseratte
were discussed and agreed upon by the usability team and Boom Software.

71

The Leseratte application

The improved Leseratte application which was created specifically for the TA tests is
a simple library management software. It enables library employees to add, modify
or delete data on the books available. These data include book details, such as title,
charge for borrowing the book per day or ISBN number, information on authors and
publications. The application also allows the management of the library’s customers
as well as lending books to those customers.
The application is based on the developers’ tutorial for Boom’s BORA framework.
It was created using the BORA framework, but it included components that were -
at the point of creation - not fully integrated in the framework yet.

Figure 4.9: A mockup of the user interface for the improved Leseratte.

On startup the application presents the user with a start screen (see figure 4.10).
The start screen shows all the books that are in the database, laid out in a grid
view (similar to the "tile" setting in Microsoft’s Windows Explorer). Each book is
represented by a book icon (which is either blue or gray, depending on whether the
book is available), its title followed by its author (in parentheses) and its publisher.
The grid view was chosen on purpose in contrast to a table-like detailed list view in
order to see the users’ reactions to it.
The bottom right of the start screen contains the statistics / filter section, which

72

shows how many books there are by genre in the form of a pie chart as well as a
list. It allows the user to filter the book list by (Ctrl-) clicking one or more of the
genres. The selected genres are highlighted, as can be seen in figure 4.10 where the
"fantasy and fiction" genre has been selected, as indicated by the elevated segment
of the pie chart as well as the bold text.
The top right hand section of the start screen contains links to frequently needed
tasks: Adding books, authors and customers.

Figure 4.10: The start screen of the Leseratte application. The Book list is
currently open and books are filtered by the "fantasy and fiction"
genre, as can be seen on the filter in the bottom right. Above
the filter there are links to some of the most common tasks: Add
book, add author and add customer.

To provide the test users with a sizable amount of data, a small automated
helper program was written that queried the Google Books API 1 for books from a
set of predefined authors. This way the program’s database contained information
on 226 books along with their authors, genres and publishers. The helper program
also created a small number of predefined customers. While the amount of data is
still significantly smaller than it would be in a real library, this gave the test users
enough data to interact with through the course of the tests.

1http://code.google.com/apis/books/, retrieved March 11, 2012

73

http://code.google.com/apis/books/

Leseratte contains a number of other views, most importantly the list views for
authors, customers and publishers. These can be accessed through the menu bar or
through the toolbar below the menu bar (see figure 4.10). These views show tables
of the respective items along with their attributes. By double-clicking any item, the
detail view is opened. The detail view for a book can be seen in figure 4.11. Here
the employees can edit the book details, look at some details that aren’t shown in
the list views and lend the book to a customer (or mark it as available when it has
been returned). The detail views for authors, customers etc. look similar, albeit
with fewer attributes.

Figure 4.11: The detailed view on a book. In this form, the employees can
change any data on the book through the form elements or lend
it to a customer by clicking the button in the bottom left.

Another noteworthy view which was implemented for the test is a calendar view
which shows a list of all currently borrowed books, along with the corresponding
customer and the return date. The application also includes a search for books and
customers, which can be accessed through a flap on the right side of the screen.
All attributes of books (e.g. author, genre, publication date) and customers can be
searched.

74

Test setup

A total of nine test users were testing the software. The test with the first user was
intended to be a pilot test in order to check the difficulty of the individual tasks
and refine the testing procedure. However, only minimal adaptations were made, so
the results from the pilot test could be used and evaluated along with the other test
results.
Originally, the team intended to have five test users plus one pilot test user, following
the findings of Nielsen (1991), who argues that TA test results were very similar for
five test users and for ten test users and concludes that no more than five test
users are needed. Boom Software requested more test users in order to have more
extensive findings, so the team agreed on eight users.
The test users were between 22 and 54 years old. Three of them were male and
six were female. They had varying computer literacy, ranging from moderately
experienced to experts ("power users"). A "bottom-line" level of moderate computer
literacy was set in order to match the target audience of Boom Software’s actual
products - The test users had to use computer programs on a regular basis and have
a couple of years of experience with their usage.

The tests were conducted in different locations. Some were done in the apart-
ments of the usability team’s members while some tests were done at different loca-
tions, such as Boom Software’s office. The locations were chosen so that the testers
would not have to travel too far and so that a quiet room was available for the tests.

75

Figure 4.12: The setup of a thinking aloud test. The test person (pixelated
for privacy reasons) is sitting in front of a laptop and using the
Leseratte application. This recording comes from the backup
camera. The test person is also being recorded by the web cam
and the screen contents are being captured. One member of the
team assumes the role of the test leader, giving the tasks to the
test person. The other team member takes notes of noteworthy
events.

A laptop running Windows 7 was used for the tests. The detailed specifications
can be found in table 4.1.

The tests were recorded using a Logitech ®USB webcam, which was mounted on
the laptop screen. Audio was recorded from the laptop’s internal microphone. The
screen contents were captured using the software Morae by TechSmith. Additionally,
a camcorder and a tripod were used to provide a backup recording. The test users
were filmed from diagonally behind with the camera focused on the screen. A mirror
was placed next to the laptop screen so that the user’s facial expressions could be
analyzed (as can be seen in figure 4.12).

76

Display 15.6” widescreen (16:9)
Resolution 1366 x 768 pixels

CPU Intel®Core™i5-560M
RAM 8 GB

Operating System Windows 7 Service Pack 1
Tested software Leseratte 0.9.0.0 (build from Oct. 27th, 2011)

Table 4.1: Hardware and software specifications of the laptop used for the
thinking aloud tests

Figure 4.13: A screenshot of a TA test recording made with Morae. The
contents of the screen have been recorded and are shown in full
size. The video recording of the test user can be seen in the
bottom right.

Test procedure

The test procedure for every single test was as follows:

1. Greeting.

2. Short explanation of the test, its purpose and the testing procedure.

3. Request the test user to read the introduction document explaining the test.
Discuss any open questions with the test user.

4. Prompt the user to sign the NDA and the declaration of consent.

77

5. Hand the the user the background questionnaire and let him fill it out.

6. Check if computer settings (mouse speed, display brightness etc.) are com-
fortable for the user

7. Start video and audio recording (screen capturing and camcorder)

8. User attempts to complete the tasks of the actual TA test

9. Conduct interview

10. Prompt the user to fill out a feedback form

11. Stop recording.

Test tasks

The test users were given the following tasks (with approximate time limits in paren-
theses). The first task was an introductory task which served for the users to get
comfortable with speaking out their thoughts aloud. The tasks were meant to guide
the users through most of the main features of the application, in some cases leaving
them a choice on how to approach a problem.

1. Find out today’s cinema program at 8pm in a given cinema in town (2 minutes)

2. Gather impressions, get to know the application, get an overview of its features
(3 minutes)

3. Find a given book and give detailed information about it (3 minutes)

4. Create a new customer from given data. (2 minutes)

5. Filtering and searching

(a) Filtering books by genre and authors by first letter of last name (5 min-
utes)

(b) Search for books by given specific criteria (5 minutes)

6. Lend a book to a customer (3 minutes)

7. Find out return dates on the calendar (5 minutes)

78

8. Add a new book, including as many details as possible - actual book was given
to test users (10 minutes)

Completion criteria for every task were established. If the user failed to meet
these criteria within the time limit the task was skipped. However, the time limits
were not set in stone and the team used good judgment in borderline cases, granting
the test users a little extra time if they were about to finish the current task slightly
outside the time limit.

The post-test interview

An interview was conducted with every test user after they finished the test. The
interviews were started by asking the test users how they liked the test, which alone
often yielded extensive answers. The usability team then asked for positive and
negative impressions, attempting to get a clear picture of what the user liked and
disliked while avoiding leading questions of any kind. If any questions or events
worth discussing emerged during the test they were discussed as well. For instance,
if a user could not complete a task, he was shown how it could have been completed.
Then the team and the user discussed why the test user had not found the solution
and how the program could be improved to make it easier for users to solve the
problem in question.

4.6 Usability guidelines

There were two final products derived from the usability inspection and consult-
ing: Firstly, an improvement of the BORA framework in general in order to make
it easier for the developers to ensure good usability in applications. Secondly, a
set of usability guidelines was established in the company. These are aimed at the
developers and designers and should offer a simple guidance for UI design and for
usability decisions.
It is important to raise the awareness of usability and usability issues among devel-
opers and UI designers. According to Nielsen (1991), people are better at finding
usability problems in user interfaces when they know more about usability principles.

79

Severity rating Meaning
4 Catastrophic problem
3 Serious problem
2 Minor problem
1 Cosmetic problem
0 Not a problem

Table 4.2: Severity ratings used for problems identified in the Heuristic Eval-
uation and the Thinking Aloud Test.

The main source for these guidelines were, of course, the results from the usabil-
ity tests. Problems identified either by the test users (throughout the test or the
interview) or by the usability team were weighted by severity and by the count of oc-
currences. The severity ratings were adopted from Nielsen (1994) and are explained
in table 4.2.

The usability guidelines are - as of February 2012 - not finished yet. A subset of
the guidelines is currently undergoing internal revision before officially being made
available to the developers.

80

5. Results

5.1 Usability evaluation results

This section outlines the main findings of the heuristic evaluation and the thinking
aloud tests.

5.1.1 Heuristic evaluation

The findings of the two usability team members have been combined. Severity
ratings have been added to every issue identified. The issues have then been listed
sorted by severity, but separately for the three UIs under test. Although there
weren’t any issues that were exactly the same across all UIs, some definitely fall into
the same category, giving valuable information on parts of the framework or general
areas that need improvement. A report on positive and negative impressions on
all programs was composed as well. The most important findings will be presented
here.

Main findings

The programs tested were overall mostly well usable. The consistency, the flexible
window / tab system and the form layout overall were rated as strong points of the
UI (albeit with some exceptions). Some more detailed positive examples include
the auto-complete features of some form elements or the highlighting of the related
inputs when there were errors.
Common negative observations were (among others) problems with feedback (mostly
bad error messages and the lack of a progress indicator for unresponsive tasks), some
problems and inconsistencies with form elements and a few tasks that seemed un-

81

necessarily complicated.

Out of the three programs tested, Leseratte was by far the least complex. Con-
sequently, it was also the easiest to use and had a very clear UI. There were some
significant problems as well, but many were actually bugs which could be traced
back to errors in the tutorial. Other findings suggest that significant improvements
could be made with regard to simplicity and ease of use, but that is understandable
since the program tested was only meant to serve as a tutorial to developers.

With the Boom Maintenance Manager, there were different results for the web ap-
plication and the desktop client. The web application contained the most issues of
all the UIs that were tested, giving it a rather flawed overall impression. The main
points of criticism address the lack of overview and clarity of the UI. The overall
structure of the application seems to be unnecessarily complicated. Furthermore,
the user feedback was in need of improvement - error and information messages were
often unclear.
The BMM desktop client on the other hand had the fewest issues of all UIs. Despite
the complexity of the underlying business processes it was easy to use and had a
clear UI.

The Boom Target Manager seemed mature overall. The most significant negative
impressions were related to performance issues, with some waiting times without
any kind of feedback or status information. Many of the other issues were related to
individual controls or views of the UI, which were not clearly labeled or explained.
The limit of only 50 search results being displayed simultaneously was a hindrance
for some tasks. Furthermore, there were minor problems with feedback to the user
and the highlighting or emphasizing of controls.

Sample findings

A total of 105 issues were found in the heuristic evaluation of the four user inter-
faces. One example is illustrated in figure 5.1. The problem identified is "incon-
sistent alignment of labels (right- vs. left-aligned)". There is a description which
gives more details on the problem and the place where the issue occurs or the way

82

to reproduce it. The corresponding heuristic is also given - in this case Nielsen’s
heuristic number four: Consistency and standards. A screenshot was provided to
illustrate the problem at a glance where applicable. In the example the problem
quickly becomes evident.

Figure 5.1: A sample issue which was identified during the heuristic evalua-
tion of the Leseratte program.

The above example illustrates a very specific and a minor error. Another issue
found in the HE of the Leseratte - to also list a different example - was the start
screen, which gave few hints to the functions of the program. No window is open by
default and all the user sees is the menu bar along with the search window. While
the menu does lead to the core functionalities of the program, they could have been
made much easier accessible and more visible.

5.1.2 Thinking aloud test

The videos taken for the thinking aloud test were thoroughly analyzed. Every no-
table event was marked with a time stamp and a type (e.g. positive impression,
problem) and commented. The complete event log was then examined and similar
events were grouped together. The resulting positive impressions and negative im-
pressions / problems were described in detail (including references to the points in
the videos when they occurred and screenshots). The final report of the TA test was
52 pages long and shall not be discussed here in detail. Instead, the main findings
will be presented along with some selected problems and positive impressions.

83

Main findings

The Leseratte application was overall well-received by the test users. Among the
positive impressions mentioned were the simple and clear overall structure of the
user interface and the easy navigation. The book search was generally deemed well
usable and useful, with many users mentioning the detailed search options.
There were, however, also problems that were identified through the TA test. The
tasks for filtering and for using the calendar view seemed to be especially challeng-
ing for the test users, suggesting the need for improvement. These problems were
caused by the lack of visibility of the user interface elements used for filtering and
by the generally not easily understandable calendar view respectively.
Beside the problems observed during the tests, the users’ criticism included the lack
of filtering options in the calendar and book views. Also, the laborious adding of
other data (e.g. a new author) while adding a new book was a common problem.
Furthermore, some elements of the UI were not clearly labelled and had no help in-
formation whatsoever. Some features were not used by many users, either because
they simply did not see them or because they found another way to accomplish their
tasks. This might in part be due to the task formulations, which, while trying to be
general and leave the choice on the approach to the user, still necessarily emphasize
certain elements of the UI while at the same time putting others in the background.
Many of the flaws that were identified were estimated to be repairable with low
to moderate effort. The usability team is confident that with some updates to the
framework and the introduction of the usability guidelines, the usability of future
programs will improve.

When examining the number of users in retrospect and trying to measure the addi-
tional information gain with nine instead of the intended five to six test users, it can
be said that every new test user did bring some additional insights. However, the
amount of new information decreased with every new user. The first five test users
already brought up most of the more severe issues, with the following users mostly
adding details to the existing issues or adding minor issues. Although no empirical
scores on issues found per user count have been created, it can be estimated that
the progression roughly matches that of Nielsen (1994).

84

In the end, choosing the number of test users comes down to weighing the costs and
benefits of a higher test user count.

Figure 5.2: Usability problems found with number of test users, source:
Nielsen (1994)

Positive impressions

The positive impressions that the test users talked about were usually very general
in their nature. They commended the overall ease of use of the program or features
(such as the book search) as a whole. They indicate that the overall impressions of
most sections or features of the program were good. However, during the interviews
after the tests many times the comments were phrased in the fashion of "in general
I like that, but...", with the users criticising details despite the good general impres-
sion.
There were also exceptions to this observation, namely some users positively com-
menting on details such as the input fields for dates and the tooltips of individual
components.
All positive impressions have been documented. An example can be seen in figure
5.3.

Negative impressions / problems

The variety of problems that were found is great. Some were critical and definitely
warrant quick improvement while others were minor cosmetic issues or not actually

85

Figure 5.3: An excerpt of a positive impression which was shared by many
of the test users. The caption reads "Clearness and simplicity of
the program". The entry includes the references to the test videos
(including a timestamp), a description and quotes by the users.
In this instance, test user 1 stated that "The program is very clear
- everything can be seen at a glance".

usability problems, but rather feature requests. Figure 5.4 shows the description
of a problem which was rated a minor problem (2 out of 4 points) by the usability
team.
Out of the 41 problems identified, four were rated as critical (average score of 3.5
or greater) and eleven more were rated as serious (score of 2.5 or greater).

The users also offered some suggestions for improvements on some occasions.
These suggestions have also been documented. They mostly relate directly to the
problems mentioned. The quite numerous expression of explicit suggestions (17 in
total) for improvement implies that the users do not only identify usability flaws,
they also have clear expectations on how things should look instead. Most of the
suggestions were basis, straightforward improvements, but they are nevertheless
helpful, as they show where actual users - in contrast to UI designers - would expect
improvements.

5.2 Usability guidelines

After the usability team had categorized, rated and prioritized all the findings, us-
ability guidelines were developed by Boom Software. This section discusses the

86

Figure 5.4: An example of an identified problem with the program. As il-
lustrated in the screenshot, the "reset" button in the book search
form has a misleading icon. Most test users didn’t guess its mean-
ing from looking at it, with some mistaking it for a refresh button.
The button did offer a tooltip description when the user hovered
over it with the mouse cursor, but that might not be discovered.

initial version of the guidelines, which were internally published in late January
2012 and still undergoing revision. The guidelines are accessible through Boom
Software’s web portal, which allows access only to authenticated users. The major-
ity of framework- and design-related issues have been addressed in the guidelines
already.
The guidelines contain two sections: General UI design guidelines and framework-
related guidelines.

5.2.1 General UI design guidelines

The general guidelines section contains background material that the usability team
has used throughout the tests and general information that came up during the
research for the theses.
The first part of the section lists and explains some usability heuristics and rules.
The list includes the ten usability heuristics by Nielsen (1993), Shneiderman’s "8

87

Golden Rules of Interface Design" (Shneiderman et al. (2009)) and the Rules of Us-
ability by Raymond and Landley1.
Furthermore, the general guidelines include a set of users’ behavioral patterns. It is
based on the behavioral patterns described by Tidwell (2011), with a focus on those
patterns that are relevant to Boom Software’s target audience. Knowledge of the
patterns should help designers and developers to understand the users and employ
user-centered design. Also, since the user interfaces of Boom Softwares’ programs
often use a lot of forms, many guidelines and best practices on UI forms and controls
as described by Tidwell (2011) were also included.
When working with a platform such as Microsoft Windows, it is important to follow
established standards. For this reason, the guidelines also include a reference to
Microsoft’s Windows User Experience Interaction Guidelines2. Some of the conven-
tions mentioned there, such as dialog layout, button order and naming conventions,
should be known and used by designers.

1http://catb.org/~esr/writings/taouu/html/ch01s03.html, retrieved Feb. 7, 2012
2http://msdn.microsoft.com/en-us/library/windows/desktop/aa511440.aspx, retrieved

Feb. 8, 2012

88

http://catb.org/~esr/writings/taouu/html/ch01s03.html
http://msdn.microsoft.com/en-us/library/windows/desktop/aa511440.aspx

5.2.2 Framework-specific guidelines

The BORA framework specific section of the guidelines builds upon the results of
the heuristic evaluation and the thinking aloud tests, while also keeping in mind
the conventions established by existing Boom Software products. The framework-
specific guidelines contain multiple chapters, ranging from general rules to a detailed
checklist to be used on a completely designed user interface.
Again, a representative example of the numerous guidelines shall be given. On the
subject of the main window / start window, the guidelines say:

The main functions of the program should be evident at the first glance

A user’s first look at a program is crucial. Within the first few seconds after starting
the program, the user tries to find out what purpose the program should serve, what
kinds of information and which functions are relevant.
Therefore, the start screen or the initially visible windows and menus should be both
tidy (i.e. not overloaded) and filled exactly with those commands and informations
that are most important for the users to get started with their work smoothly. Pe-
ripheral or unimportant features and features aimed at powerusers can be placed in
submenus or extensible tool windows.

Example: If the application is used for task management, the menu items for cre-
ating and opening tasks should be placed most prominently. The most important
informations for the user might include the recently edited tasks, open tasks as-
signed to him or notifications from the system. It can be a good idea to provide a

89

dedicated start screen, i.e. a document window which is initially opened on startup
in order to allow the user to get started with the program. The start screen should
be clearly laid out and might include some of the following functions / areas:

• Personal notifications

• Recently used / modified object (e.g. tasks, persons etc.)

• A search function ("Google"-like)

• Upcoming appointments and open tasks

• Statistics / state of the system (e.g. number of open tasks, number of users
logged in, version number)

• An area with links to the main functions (e.g. create task, search / print bill)

All these informations need not be displayed in a complete fashion. It suffices if
they are hinted at (e.g. not all open tasks, only the next upcoming five) and serve
as an entry point or navigational method to more detailed views.
It is imperative that a good amount of core functions can be accessed through the
main window’s toolbar. This is described in detail in the guidelines’ section for rules
for menus.

The above guideline was adapted directly from the results of the usability tests,
which stated that the initially opened windows of the programs often left the users
confused as to what the core functions were and where to find them.
The guideline gives the designers some general hints as to how the start screen of
an application should look like, thus helping to create consistent user interfaces.

90

6. Discussion and Lessons Learned

This chapter attempts to summarize the key findings from both the scientific research
and the practical project and discuss some of the most important aspects.

6.1 Mobile UI design

A broad range of research was performed on the subject of UI design on various
mobile platforms. When looking at individual platforms, the results vary. Different
platforms have different ranges of screen sizes available. The Android platform is
the most segmented in this regard, but it also offers a wide array of tools for design-
ing UIs for multiple screens, such as density independent pixels and size standards.
One shortcoming of the Android platform is the lack of support for scalable vector
graphics. Therefore, designers must not only ensure that the layout looks good on
all target devices, but also that graphics are available in the correct resolutions.
Android allows the distinction and definition of UIs for different screen size purely
through XML layout definitions. Therefore, the UI definition is clearly separated
from the rest of the code base, thus encouraging proper use of the Model View Con-
troller (MVC) pattern.

The iOS platform handles the different resolutions of older and newer devices quite
well by measuring the resolution in the abstract unit of points rather than physical
pixels. The same UI layout can therefore be used for old and new iPhones and iPod
Touch devices with different screen resolutions.
The iPad, however, differs from the other iOS devices in size, resolution and aspect
ratio. It is therefore recommended to design separate UIs for iPad and iPhone /
iPod Touch.

91

With Windows Phone 7, the issue of scaling has been neglected so far, as only
devices with a resolution of 800 x 480 pixels are available on the market. It will be
interesting to see whether additional resolutions will be permitted in the future and,
if so, how the resulting problems will be handled.

Conclusively, following platform conventions is very important on mobile devices,
especially when developing native apps. This has been part of the heuristic "Con-
sistency and standards" by Nielsen (1994), but usability experts need to be aware of
the platform-specific guidelines for all target platform in order to successfully apply
this heuristic to mobile apps.

The MVC pattern can be put to use very efficiently on mobile platforms and with
HTML5. All platforms offer easy means to separate the MVC components. However,
they do not force adherence to the MVC pattern, which means that is ultimately
the responsibility of the developers and designers to properly use it.
Using the MVC pattern for multi-platform apps is definitely beneficial, because the
definition and layout of the UI are isolated from the rest of the code base and can
therefore easily be modified for multiple target devices.

6.1.1 Choosing a method for app development

When comparing native apps to web apps in general, there is no clear recommen-
dation to be given. The choice of whether to develop native apps, web apps, hybrid
apps or to use a multi-platform framework depends on a number of things. The
requirements of the app and the resources available as well as the target audience
should be considered. The skills of the developers are another important factor,
as learning how to develop apps for one or more mobile platforms can be very
time-consuming. On the other hand, getting to know the APIs of multi-platform
frameworks can also take some time, but it will most likely be less than what it
takes to learn multiple native APIs.
Having developers who are already skilled in one or more platforms’ native program-
ming languages and APIs or in HTML5, CSS and JavaScript can be a great asset

92

for app development which should be leveraged if possible.

It is also worth mentioning that multi-platform frameworks are growing very rapidly
and both updates to existing frameworks and the introduction of new frameworks
occur frequently. We recommend to compare the features of the most recent versions
of various frameworks before deciding on one.

Another very important thing is to be aware of the limitations of the frameworks.
First and foremost, these framework only offer tools for creating UIs for multiple
platforms and screen sizes. It is the responsibility of the designers and the devel-
opers to ensure that the apps run properly on all the target platforms and devices.
None of the frameworks can substitute thorough testing of the app.

6.2 Usability inspection and testing

Both the heuristic evaluation and the thinking aloud tests gave the team a lot of
results and feedback to work with. Some of the issues identified were easy to fix
and fixing them made the applications under test more usable with very little effort.
The tested applications left positive overall impressions on the team and the test
users, also pointing out some of the strengths of the applications and the framework
in general. The large number of findings (both positive and negative in nature) and
the resulting benefits clearly underline the usefulness and importance of performing
usability evaluations.

There have been some redundancies from performing both a heuristic evaluation
and a large number of thinking aloud tests on applications that are quite similar re-
garding their user interfaces. These redundancies were, however, quite small. Only
very few issues have surfaced in both the heuristic evaluations and the thinking
aloud tests while a number of positive impressions have been identified by both. It
can be argued that this is due to the fact that positive observations - whether they
come from usability experts or average test users - tend to be more general in na-
ture while negative impressions and problems are often related to specific elements
or parts of the interface, which can be pinpointed by the test users or evaluators.

93

Among others, the clearness and simplicity of the UIs and the consistency have been
observed in both the HE and the TA tests. While the issues identified are mostly
program-specific, some are related or can be put into the same categories, such as
UI elements which are unclear due to the lack of explanations (e.g. tooltips) or tasks
which could be simplified (reducing the number of clicks / actions required for the
users).
Conclusively, performing both heuristic evaluations and thinking aloud tests has
been beneficial for the project and the resulting usability guidelines.

The number of TA test users has been briefly discussed before. It is always hard
to recommend a number of test users for upcoming tests. While the three to five
users recommended by Nielsen (1994) can be confirmed to be a good general rule
of thumb, we encourage usability evaluators to carefully consider additional factors,
such as the complexity of the software, the number of tasks given to the test users
and the temporal and financial budget for the tests, and make a more sophisticated
choice for the number of test users.
Another approach we can recommend would be to perform additional tests as long
as enough new insights are gained with every new test (as similarly suggested by
Holzinger (2006)). This approach requires quite a bit of flexibility as the number
of test users can only be roughly estimated beforehand and finding additional test
users and scheduling tests takes some time. The tests and their analyses would also
have to be done back-to-back, because analysis is needed in order to decide whether
or not to run additional tests.

When looking at the differences between the two evaluation methods (see figure
2.5), Holzinger (2005) suggests that the two methods are aimed at different stages
of the development process: Heuristic evaluation can be used on any stage and
thinking aloud tests are best suited for the design stage. The usability team per-
formed the thinking aloud tests with software which was created specifically for
the tests. Conceptionally, the software was situated somewhere between the design
phase (testing new UI elements) and a running system (tried and tested elements),
while to the test users the software appeared to be a finished and running product.
While testing a (more or less) finished product has no negative impact on the knowl-

94

edge gained, it is most often harder to fix the issues, as large-scale modifications of
existing software can be expensive. In the case of Boom Software, changes to the
framework or to core modules are very hard to make, as a large number of end
products would be affected. Some of the issues will therefore not be retroactively
fixed in the existing applications, but rather implemented in future releases.
When evaluators are aware of these implications as well as the effort and time re-
quired, performing TA tests on already released software should prove no problem.

6.3 Usability guidelines

The guidelines developed by Boom Software and the usability team have only been
made available to developers recently (with an official presentation on Tuesday,
March 6th 2012), so no statements can be made concerning their effectiveness and
usefulness. The reception from the developers who attended the presentation was
positive overall and the usability team could convey the importance of following the
established usability guidelines.

One important aspect of the guidelines is that they contain both practical expe-
rience (from the usability evaluations) and scientific information (as researched by
the team members). While the findings have, in many cases, been specific, it is im-
portant not to force them upon the developers. The usability team has performed
the usability evaluations and done the background research for the guidelines, but
it was left to Boom Software to develop guidelines from these findings on their own.
This participation in creating the guidelines will hopefully underline the fact that
they come from a collaboration between Boom Software and the usability team,
rather than being solely based on external scientific research.
The usability team is, of course, aware that the guidelines in their current form are
by no means final. The team encourages internal evaluation and collaboration in
order to refine or adapt the guidelines however Boom Software may see fit. Future
input for the guidelines may come from experiences of the developers, feedback from
customers or possible future usability evaluations.

Conclusively, the work with Boom Software has been profitable for both sides. While

95

Boom Software could evaluate their products and establish usability guidelines, the
usability team could add real-life, industry experience and thus a bigger engineering
aspect to their scientific work.

6.4 The Boom Mobile app

While the development of the Boom Mobile app has unfortunately not been com-
pleted as of the writing of this thesis, the short period in which the usability team
has provided usability consulting for the app has yielded some interesting results.
A brief evaluation of an early prototype has uncovered a number of usability issues
which were, at this stage of development, still easy to fix. This clearly speaks in
favor of rapid prototyping and early usability evaluation.
One of the major issues was the height of list entries. The real problem behind this
issue was a misconception regarding the amount of tasks of actual users. Luckily
this issue was found early in the development process. Applying user-centered de-
sign from the very beginning of the design process could have made this issue clear
even earlier. In this case, the developers used randomly created test data, which
didn’t match the data actual end users would have used. Therefore we strongly
recommend to put effort into the construction of meaningful, relevant test data.

6.5 Scalability of Boom Software’s UIs

The scalability of the Boom Mobile app has already been discussed. There were also
some issues related to scalability in Boom Software’s desktop applications. Figure
6.1 shows an issue where shrinking the window created a vertical scrollbar, but
no horizontal scrollbar. In the situation depicted, the right part of the form is
inaccessible (by means other than enlarging the window).

While Boom Software has specified a display resolution of 1024 x 768 pixels as a
design guideline, scalability is still important. Firstly, the BORA Framework allows
users to rearrange windows in applications, which can effectively make them much
smaller than that. Secondly, with the planned advance into the mobile market,
smaller resolutions and screen sizes should be considered as early as possible.
The issue was acknowledged by Boom Software and a related guideline was created.

96

Figure 6.1: An issue found in the Boom Maintenance Manager which is re-
lated to scalability. There is no horizontal scrollbar, making the
right part of the form inaccessible is a small window. Personal
data has been censored.

97

98

7. Conclusions

Research has shown that the different mobile platforms offer different tools and
means to scale user interfaces. The Android platform is the most fragmented one
with regard to the range of screen sizes, but it also offers the most tools for design-
ers. Multi-platform frameworks can also offer some assistance with the scaling of
user interfaces. These are, however, only tools and it is up to the designers and the
developers to ensure that their user interfaces look good and are well usable on all
target devices. While the well thought-out definition of layouts is a good foundation
for this, it must be stressed that there is no way around testing the interface. This
can be done on actual devices or on various configurations of the emulators provided
by the platform IDEs.
The model-view-controller pattern was encountered on all platforms and also in
multi-platform development. Most frameworks build, in some way, upon this pat-
tern. Designers and developers should follow the conventions set by these frame-
works and be sure to properly separate the components of the MVC pattern. By
doing so, only the views need to be modified for different devices while the rest of
the code can remain unchanged.

The practical work in cooperation with Boom Software has shown that an An-
droid app, which was developed specifically for 7 inch tablets, scales well and is also
usable on smaller smartphones and larger tablets. On closer examination, however,
it becomes evident that there is still room for improvements and optimizations, es-
pecially on larger screens.
The usability evaluation performed has underlined the importance of usability in-
spection and testing. By evaluating actual large-scale software we could gain a great
amount of insights. Many positive impressions and many issues came up, along with

99

suggestions on how to fix them. We are looking forward to seeing the results of our
efforts in future products of Boom Software.
During a workshop held at Boom Software’s office we could observe the impact of
the awareness for usability guidelines and issues firsthand. After the workshop, de-
velopers and designers could single-handedly identify several usability issues in their
software. We therefore strongly recommend trainings on usability in order to raise
awareness among any software development team and encourage the emphasis on
usabilty across all stages of development.
When inspecting mobile user interfaces, all the established heuristics for desktop
applications still hold true. There are some additional issues which apply specifi-
cally for mobile devices or for touch input. The usability evaluators need to know
these issues and should also have some experience with the target platforms. Since
there is no definitive list of rules or checklist with regard to current mobile devices,
evaluators should be well aware of the target platforms’ guidelines.
Another important point, which surfaced in both theoretical research and the usabil-
ity evaluations, was user-centered design. Especially with mobile apps it is crucial to
be aware of the users’ needs and goals. When prototyping and testing, meaningful
test data should be used, as randomly generated test data can lead to misconcep-
tions.

With regard to multi-platform development and the choice between developing na-
tive apps or HTML5 web apps, no definitive recommendation can be given. The best
choice always depends on a number of factors, such as the app’s intended features,
the target audience or the skills of the development team.
Multi-platform frameworks offer some interesting features, especially for rapid pro-
totyping or the development of very simple apps. These frameworks are growing
rapidly and new features are being added frequently, so we recommend to inspect
several platforms’ features before starting multi-platform development and carefully
choosing a well-suited framework.

100

8. Future Work

This thesis has covered a broad range of topics and some of them clearly warrant
further research.
While this thesis has addressed many of the design guidelines of individual mobile
platforms it would be interesting to combine and summarize these guidelines into
one set of guidelines for multi-platform mobile UI design. These could include both
the specific recommendations from the platform guidelines and general established
usability standards. Of course, the guidelines would have to be evaluated, for in-
stance by using them in an actual heuristic evaluation.

One of the major points in the conclusion of this thesis was that mobile interfaces
need to be tested on all target devices. While tools for automated UI tests exist (e.g.
Robotium for Android1), these are mostly aimed at functional tests (i.e. whether a
certain user input yields the correct output). The research and development of a tool
which automatically inspects a mobile UI for one or more platforms and informs the
designers about potential issues would be an interesting continuation of this thought.

With regard to the usability project with Boom Software the initial usability evalu-
ation and the creation of the guidelines are finished. We recommend to monitor the
ongoing use and improvement of the usability guidelines. Furthermore, additional
evaluation of Boom Software’s products should be performed at regular intervals in
the future in order to measure the success of the improvements and the guidelines.
The Boom Mobile app is also still under development and usability consulting and
evaluation of the app could yield interesting insights for research, should Boom Soft-
ware be interested in further cooperation.

1http://code.google.com/p/robotium/, retrieved March 11, 2012

101

http://code.google.com/p/robotium/

Multi-platform development frameworks are also an area with room for further re-
search. In this thesis a few frameworks were briefly examined. A suggestion for
future work would be an extensive test of multiple frameworks. A multi-platform
app (which has its features clearly specified) could be implemented by different de-
velopers, each using a different framework. The results could then be thoroughly
compared on multiple devices.

102

List of Figures

2.1 Smartphone and PC shipments for 2011 21

2.2 Smartphone shipments for 2011 by platform 22

2.3 Control flow of the MVC pattern . 24

2.4 Back-of-device interaction on very small devices 25

2.5 Comparison of various usability evaluation methods 28

3.1 Share of various screen sizes across the Android platform 35

3.2 Definition of nine-patch graphics . 38

3.3 An example of nine-patch graphics 38

3.4 Illustration of Android’s back stack 39

3.5 Example of Android fragments on a smartphone and a tablet 40

3.6 A simple example of the action bar pattern 41

3.7 The Windows Phone 7 home screen 42

3.8 Windows Phone 7 display resolutions 44

3.9 Size comparison of iOS hardware . 46

3.10 The view hierarchy of a sample iOS application 47

3.11 The storyboard of an iOS app . 47

3.12 The Codiqa rapid prototyping tool for jQuery Mobile 55

4.1 The simplified BORA process model 61

4.2 The core components of the BORA framework 62

4.3 The login screen of the Boom Mobile app. 63

4.4 The task list in the Boom Mobile app 64

103

4.5 The detail view in the Boom Mobile app 65

4.6 Improved version of the Boom Mobile app’s login screen 67

4.7 Improved version of the Boom Mobile app’s task list 67

4.8 A comparison of the task list on a smartphone and a large tablet. . . 68

4.9 A mockup of the user interface for the improved Leseratte. 72

4.10 The start screen of the improved Leseratte application 73

4.11 The detailed view on a book in Leseratte 74

4.12 The setup of a thinking aloud test . 76

4.13 A screenshot of a TA test recording 77

5.1 A sample issue which was identified during the heuristic evaluation
of the Leseratte program. 83

5.2 Usability problems found with number of test users 85

5.3 An excerpt of a positive impression from the TA tests 86

5.4 An example of a problem identified in the TA tests 87

6.1 A scalability issue identified in the HE 97

104

List of Tables

3.1 Android screen size standards . 34

3.2 Android screen diagonals . 34

3.3 Android screen resolutions . 34

3.4 Share of various screen sizes across the Android platform 35

3.5 Comparison of the screen sizes of iOS devices 45

3.6 Screen sizes of iOS devices in points 48

3.7 Programming languagues used for app development on various mobile
platforms . 51

3.8 Advantages of native and HTML5 web apps 52

4.1 Hardware and software specifications of the laptop used for the think-
ing aloud tests . 77

4.2 Severity ratings used for problems identified in the Heuristic Evalua-
tion and the Thinking Aloud Test. 80

105

106

References

Baudisch, Patrick and Gerry Chu [2009]. Back-of-Device Interaction Allows Creating
Very Small Touch Devices. Interface.

Baudisch, Patrick M., G.F. Petschnigg, D.H. Wykes, A.Y.S. Shum, Avi Geiger,
K.P. Hinckley, M.J. Sinclair, J.B. Jacobs, J.D. Friedman, R.H. Ho, and Others
[2008]. TRACKING INPUT IN A SCREEN-REFLECTIVE INTERFACE EN-
VIRONMENT. http://www.google.com/patents?hl=en&lr=&vid=

USPATAPP12175695&id=9aHLAAAAEBAJ&oi=fnd&dq=Tracking+

input+in+a+screen-reflective+interface+environment&printsec=

abstract.

Bevan, Nigel [1995]. Measuring usability as quality of use. Software Qual-
ity Journal, 4(2), pages 115–130. http://www.springerlink.com/index/

G744753360415047.pdf.

(Boom Software AG) [2012]. About Boom. http://www.boomsoftware.com/en/

about-us.

Card, SK and TP Moran [1980]. The keystroke-level model for user performance
time with interactive systems. Communications of the ACM. http://dl.acm.

org/citation.cfm?id=358895.

Chae, Minhee and Jinwoo Kim [2004]. Do size and structure matter to mobile
users? An empirical study of the effects of screen size, information structure,
and task complexity on user activities with standard web phones. Behaviour
& Information Technology, 23(3), pages 165–181. ISSN 0144-929X. doi:
10.1080/01449290410001669923. http://www.informaworld.com/openurl?

107

http://www.google.com/patents?hl=en&lr=&vid=USPATAPP12175695&id=9aHLAAAAEBAJ&oi=fnd&dq=Tracking+input+in+a+screen-reflective+interface+environment&printsec=abstract
http://www.google.com/patents?hl=en&lr=&vid=USPATAPP12175695&id=9aHLAAAAEBAJ&oi=fnd&dq=Tracking+input+in+a+screen-reflective+interface+environment&printsec=abstract
http://www.google.com/patents?hl=en&lr=&vid=USPATAPP12175695&id=9aHLAAAAEBAJ&oi=fnd&dq=Tracking+input+in+a+screen-reflective+interface+environment&printsec=abstract
http://www.google.com/patents?hl=en&lr=&vid=USPATAPP12175695&id=9aHLAAAAEBAJ&oi=fnd&dq=Tracking+input+in+a+screen-reflective+interface+environment&printsec=abstract
http://www.springerlink.com/index/G744753360415047.pdf
http://www.springerlink.com/index/G744753360415047.pdf
http://www.boomsoftware.com/en/about-us
http://www.boomsoftware.com/en/about-us
http://dl.acm.org/citation.cfm?id=358895
http://dl.acm.org/citation.cfm?id=358895
http://www.informaworld.com/openurl?genre=article&doi=10.1080/01449290410001669923&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3
http://www.informaworld.com/openurl?genre=article&doi=10.1080/01449290410001669923&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3

genre=article&doi=10.1080/01449290410001669923&magic=crossref|

|D404A21C5BB053405B1A640AFFD44AE3.

Freeman, E., B. Bates, and K. Sierra [2004]. Head first design patterns, volume 1.
O’Reilly & Associates, Inc. http://onlinelibrary.wiley.com/doi/10.1002/

cbdv.200490137/abstracthttp://dl.acm.org/citation.cfm?id=1076324.

Holz, Christian and Patrick Baudisch [2011]. Understanding touch. Proceedings of
the 2011 annual conference on Human factors in computing systems - CHI ’11,
page 2501. doi:10.1145/1978942.1979308. http://portal.acm.org/citation.

cfm?doid=1978942.1979308.

Holzinger, A., K.H. Struggl, and M. Debevc [2010]. Applying Model-View-Controller
(MVC) in design and development of information systems: An example of smart
assistive script breakdown in an e-Business application. e-Business (ICE-B),
Proceedings of the 2010 International Conference on e-Business, pages 1–6.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5740449.

Holzinger, Andreas [2005]. Usability Engineering Methods for Software Developers.
Communications of the ACM, 48(1), pages 71–74.

Holzinger, Andreas [2006]. Thinking-aloud eine Königsmethode im Usabilty En-
gineering. Informatik Akademie der Österreichischen Computer Gesellschaft,
(1977), pages 4–5.

Leske, Nicola and David Cowell [2011]. Android conquers almost 50 per-
cent of smartphone market. http://www.reuters.com/article/2011/08/01/

us-smartphones-research-idUSTRE7704MS20110801.

Meier, Reto (Google) and Max (Google) Mahemoff [2011]. HTML5 versus Android
: Apps or Web for Mobile Development?

Microsoft []. Hardware Specifications for Windows Phone. http://msdn.

microsoft.com/en-us/library/ff637514(v=vs.92).aspx.

Nielsen, Jakob [1991]. Trip Report : Usability Metrics and Methodologies. SIGCHI
Bulletin, 23(2), pages 107–108.

108

http://www.informaworld.com/openurl?genre=article&doi=10.1080/01449290410001669923&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3
http://www.informaworld.com/openurl?genre=article&doi=10.1080/01449290410001669923&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3
http://www.informaworld.com/openurl?genre=article&doi=10.1080/01449290410001669923&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3
http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract http://dl.acm.org/citation.cfm?id=1076324
http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract http://dl.acm.org/citation.cfm?id=1076324
http://portal.acm.org/citation.cfm?doid=1978942.1979308
http://portal.acm.org/citation.cfm?doid=1978942.1979308
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5740449
http://www.reuters.com/article/2011/08/01/us-smartphones-research-idUSTRE7704MS20110801
http://www.reuters.com/article/2011/08/01/us-smartphones-research-idUSTRE7704MS20110801
http://msdn.microsoft.com/en-us/library/ff637514(v=vs.92).aspx
http://msdn.microsoft.com/en-us/library/ff637514(v=vs.92).aspx

Nielsen, Jakob [1993]. Usability Engineering. Morgan Kaufmann. ISBN 0125184069,
362 pages. http://www.amazon.com/Usability-Engineering-Jakob-Nielsen/

dp/0125184069.

Nielsen, Jakob [1994]. Estimating the number of subjects needed for a thinking aloud
test.

Petzold, Charles [2010]. Programming Windows Phone 7. Microsoft Press. ISBN
978-0-7356-4335-2, 1082 pages.

Schmidt, Albrecht [2000]. Implicit human computer interaction through context.
Personal Technologies, 4(2-3), pages 191–199. ISSN 0949-2054. doi:10.1007/
BF01324126. http://www.springerlink.com/index/10.1007/BF01324126.

Sears, Andrew and Ben Shneiderman [1991]. High Precision Touchscreens : Design
Strategies and Comparisons with a Mouse. International Journal of Man-Machine
Studies, 34(4), pages 593 – 613.

Shneiderman, Ben, Catherine Plaisant, Maxine Cohen, and Steven Jacobs [2009].
Designing the User Interface: Strategies for Effective Human-Computer Interac-
tion (5th Edition). Addison Wesley. ISBN 0321537351, 624 pages. http://www.

amazon.com/Designing-User-Interface-Human-Computer-Interaction/dp/

0321537351.

Siek, Katie A, Yvonne Rogers, and Kay H Connelly [2005]. Fat Finger Worries :
How Older and Younger Users Physically Interact with PDAs. Ifip International
Federation For Information Processing, pages 267–280.

Tidwell, Jenifer [2011]. Designing Interfaces. O’Reilly Media. ISBN 1449379702, 576
pages. http://www.amazon.com/Designing-Interfaces-Jenifer-Tidwell/

dp/1449379702.

Zalewski, G.M. and C. Nicholson [2009]. HAND-HELD DEVICE WITH TWO-
FINGER TOUCH TRIGGERED SELECTION AND TRANSFORMATION
OF ACTIVE ELEMENTS. http://www.google.com/patents?hl=en&

lr=&vid=USPATAPP12574860&id=B7PdAAAAEBAJ&oi=fnd&

dq=Hand-Held+device+with+two-finger+touch+triggered+selection+and+

transformation+of+active+elements&printsec=abstract.

109

http://www.amazon.com/Usability-Engineering-Jakob-Nielsen/dp/0125184069
http://www.amazon.com/Usability-Engineering-Jakob-Nielsen/dp/0125184069
http://www.springerlink.com/index/10.1007/BF01324126
http://www.amazon.com/Designing-User-Interface-Human-Computer-Interaction/dp/0321537351
http://www.amazon.com/Designing-User-Interface-Human-Computer-Interaction/dp/0321537351
http://www.amazon.com/Designing-User-Interface-Human-Computer-Interaction/dp/0321537351
http://www.amazon.com/Designing-Interfaces-Jenifer-Tidwell/dp/1449379702
http://www.amazon.com/Designing-Interfaces-Jenifer-Tidwell/dp/1449379702
http://www.google.com/patents?hl=en&lr=&vid=USPATAPP12574860&id=B7PdAAAAEBAJ&oi=fnd&dq=Hand-Held+device+with+two-finger+touch+triggered+selection+and+transformation+of+active+elements&printsec=abstract
http://www.google.com/patents?hl=en&lr=&vid=USPATAPP12574860&id=B7PdAAAAEBAJ&oi=fnd&dq=Hand-Held+device+with+two-finger+touch+triggered+selection+and+transformation+of+active+elements&printsec=abstract
http://www.google.com/patents?hl=en&lr=&vid=USPATAPP12574860&id=B7PdAAAAEBAJ&oi=fnd&dq=Hand-Held+device+with+two-finger+touch+triggered+selection+and+transformation+of+active+elements&printsec=abstract
http://www.google.com/patents?hl=en&lr=&vid=USPATAPP12574860&id=B7PdAAAAEBAJ&oi=fnd&dq=Hand-Held+device+with+two-finger+touch+triggered+selection+and+transformation+of+active+elements&printsec=abstract

	Introduction and Motivation for Research
	Mobile devices
	Mobile usability

	Theoretical Background
	The relevance of mobile devices
	The Model-View-Controller (MVC) Pattern
	Screen size as a limiting factor
	Usability
	Usability evaluation methods
	Usability inspection methods
	Usability test methods

	Related Work
	Definitions
	Mobile platforms
	Android
	Available devices
	Supporting different screen sizes and densities
	Scaling images
	Nine-Patches
	The Back Stack
	Fragments
	Android Design

	Windows Phone
	Screen sizes
	Defining layouts
	Supporting different screen sizes

	iOS
	Screen sizes
	Defining layouts
	Supporting different screen sizes
	Apple's Human Interface Guidelines

	HTML and CSS
	Defining layouts
	Touch input

	Multiplatform development
	HTML5 versus native apps
	Multiplatform frameworks

	Materials and Methods
	Introduction
	About Boom Software AG
	The Boom BORA framework
	The Boom Mobile app
	First prototype
	Criticism of the prototype
	Improved version
	Scalability
	Future development

	Usability evaluation of desktop applications
	Heuristic Evaluation
	Thinking Aloud Tests

	Usability guidelines

	Results
	Usability evaluation results
	Heuristic evaluation
	Thinking aloud test

	Usability guidelines
	General UI design guidelines
	Framework-specific guidelines

	Discussion and Lessons Learned
	Mobile UI design
	Choosing a method for app development

	Usability inspection and testing
	Usability guidelines
	The Boom Mobile app
	Scalability of Boom Software's UIs

	Conclusions
	Future Work
	List of Figures
	List of Tables
	References

