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Abstract

The GPU-based ray casting algorithm is an image-based method and is appropriately

applied in real-time multiple volume rendering. In many real-time applications, the unim-

portant areas of the volume is cut away. The rendering technique, which combines with

volume clipping approach, can be used to remove the specific volumes or parts of volumes

in the current scene. In order to process the multiple volumes, the Constructive solid

Geometry (CSG) is used to construct more complex objects. The propose of this thesis is

to implement CSG rendering algorithm in the multiple volume rendering, which supports

complex translucent and concave polyhedral objects in any CSG combination. The CSG

algorithm allows all available volumes to be specified as a high-resolution polygon mesh,

which is independent on its appearance (transfer function). Therefore, the resolution and

orientation of all volumes can be modified independently from the transfer function during

rendering without any performance decrease. To achieve a higher performance, the CSG

rendering system is implemented in CUDA, which has full access to the high bandwidth

and low latency memory unit.

The CSG rendering algorithm is a combination of the ray casting rendering algorithm and

the volume clipping algorithm. Both algorithms are correlated with the depth structure

of the polygonal data. The CSG operations are converted into a suitable form in the ren-

dering pipeline and are evaluated in each depth-based polygonal segment interval in the

fragment process. The optimizations of CSG and the integration with the volume clipping

algorithm are discussed. Furthermore, the comparison between the CSG rendering and

the ray casting multiple volume rendering is given, by including and excluding with an

evaluation of the volume clipping technique.

Keywords. Volume Clipping, Constructive Solid Geometry, Ray-Casting, Multiple Vol-

ume Rendering
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Chapter 1

Introduction

CSG is a well-established way to represent complex three-dimensional object in Computer

Aided Design (CAD). Along with the increasing availability of 3D imaging modalities

like Computed Tomography (CT), Magnetic Resonance Image (MRI) and 3D ultrasound,

visualization of multiple datasets has became more important. However, creation of a

visualization from overlapping data regions is more than just classification by means of

a transfer function. Volume segmentation and/or clipping can be used to remove unnec-

essary detected regions by using the CSG-paradigm combined with both polyhedral and

volume dataset.

The CSG model is a tree structure, in which the interior nodes are associated with the

CSG operators and leafs are associated with the corresponding volume data sets derived

from different imaging modalities. The semantic of the CSG model is to evaluate the CSG

operations in the corresponding child nodes. The CSG representation allows users to de-

fine complex 3D solid objects by hierarchically combining simple geometric primitives with

Boolean operations and affine transformations [13]. More complex objects are currently

produced by this technique. The CSG operations allow to split or to merge different data

sets, which are located on the leaf nodes. Fig. 1.1(a) is a CSG volume clipping example

by using the Boolean subsection to cut the head bone from the original volume data and

the remaining part is the outer skin. Fig. 1.1(b) illustrates a CSG application in medical

field, the interested region (e.g. head bone) becomes visible by excluding the unwanted

data (e.g. head skin).

In chapter 2, an Overview is given to show the related studies that have been done in the

areas of CSG rendering algorithm. In the following chapter chapter 3, we introduce the

CSG model, including tree transformation and pruning algorithms. The volume clipping
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2 Chapter 1. Introduction

(a) Head - Head Bone = Head Skin

(b) View of Intersecting

Figure 1.1: Volume-Based CSG Application Examples

algorithm and the ray-casting rendering algorithm are described in chapter 4. The the

implementation of our volume clipping based CSG rendering algorithm and the relevant

evaluation are presented in Chap. 5 and 6, respectively.
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Chapter 2

Prior Works: CSG Rendering

Algorithms

Contents

2.1 Boundary Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Ray-Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Front/Back-face Culling . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Layered/depth-Peeling . . . . . . . . . . . . . . . . . . . . . . . . 9

The CSG rendering problem, which determines the visible parts of primitives from a

particular view situation, can be regarded as two sub-problems [21]: clipping and visibil-

ity determination. The clipping parts are invisible, which reset as the transparent in the

scene. The visible parts are the rendered parts in the scene, which is visible by evaluating

sum-of-product.

In this chapter we review some representative studies regarding the CSG rendering algo-

rithm. There are two main ways to render the CSG tree, namely Obejct-space approach

and Image-space approach. In terms of object-space approach, boundary evaluation [13]

[14] converts the CSG representation into the boundary representation (BRep), which is

typically polygonal and can be passed directly to the rendering pipeline. This approach

solves the clipping problem view-independently. Regarding image-space approach, the

clipping and visibility problems are solved on a per-pixel basis in the fragment data. The

visible segment of each pixel is dependent on the view position, object shapes and the

CSG model. The image-space approach includes ray-casting method (ray-casting) and

z-buffer algorithms (face-culling and depth/layered-peeling). The modern GPUs support

Draft Copy: September 19, 2011



4 Chapter 2. Prior Works: CSG Rendering Algorithms

most image-based algorithms and accelerate the rendering for the image-space approach.

Table 2.1 shows the representative techniques of these two approaches. Note that all algo-

CSG rendering algorithms concave volume on-line/off-line

Image Space
Ray-Casting

√ √
on-line

Face Culling ×1 √
on-line

Layer/Depth Peeling ×1 √
on-line

Object Space Boundary Evaluation
√ × off-line

Table 2.1: CSG Rendering Algorithms. All algorithms are classified with the supported of
concave and volume primitives; the calculations of the mechanism are on-line or off-line.
1. the concave primitive is split into several convex primitives.

rithms support standard convex and geometry primitives. In the following sections, several

algorithms based on these two approaches mentioned above are described in details.

2.1 Boundary Evaluation

Requicha et al. [14] investigated the boundary evaluation and the merging algorithms,

which are applied in the Boolean operations in solid modeling system. The solid is charac-

terized as BReps, such as faces, edges and vertices structures. Fig. 2.1 shows an example

of the CSG and BReps.

(a) Solid (b) A CSG Representation (c) A Boundary Representation

Figure 2.1: A simple Solid, an associated CSG Tree and BRep [14].

The key concept of this algorithm is the set membership classification and neighbour-

hood manipulation, which describe boundary evaluation and merging procedures. The
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2.1. Boundary Evaluation 5

set membership classification splits the given curve segment X related to a reference set

S into subsets XinS, XonS and XoutS, which mean the X is inside, on the boundary of ,

and outside S, respectively [14] (see Fig. 2.2(a)). The classifications of geometry can be

combined by using the Boolean operator (see Fig. 2.2(b)). The set membership classifica-

(a) Classification of a curve segment X (b) Combining Classifications

Figure 2.2: Set Membership Classification[14].

tion algorithms have two tasks: (1) subdivide X into cells of uniform classification against

primitives and (2) combine the binary result of classifying these cells against the primitives

according to corresponding Boolean expression. The neighborhood manipulation is used

to resolve the overlapping boundaries problem in the case of XonS. The CSG primitive is

split into the BReps; the boundary evaluation applies the Boolean operation to the face,

edge, vertex structure layers and classifies the segment into several sets related to the

reference set, and then combines the classifications by using the set operators.

The boundary evaluation is appropriate for the exact evaluation of the CSG operations

because the calculation of the CSG operation is divided into faces, edges and vertices. The

algorithms also supports the convex and the concave polyhedral geometry. However, this

algorithm needs a huge memory capacity to perform the evaluation, which exponentially

grows with the number of primitives. Hence, it is difficult to support larger CSG models.

Another disadvantage is that the BReps only supports geometry object.
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6 Chapter 2. Prior Works: CSG Rendering Algorithms

2.2 Ray-Casting

The ray casting approach solves the clipping and visibility problems in each pixel. The

clipping problem is solved in a depth-based clipping approach. For each pixel along the

view direction, a ray is generated and is further cast into primitives. This algorithm

splits the ray segment into different intervals to classify the interior or the exterior of the

primitives.

Figure 2.3: The intersection between the ray segment and primitives.

Fig. 2.3 shows that the ray casts from the view point to the primitives. Assuming that the

object is defined as a polygon mesh, for each ray, an intersection test is applied to the each

polygon mesh and the ray. The intersected depth values can be calculated according to

the intersection. All intersected polygons are collected along the ray direction, and sorted

by depth values in ascending order during the ray casting. Each pixel has its own sorting

polygon list. The evaluation of CSG operations determines which split intervals (between

two intersected polygons) are solid or vacant. For each ray, the exact visible segment is

defined. Therefore, the ray can be only traversed in the visible region. The whole ray

casting process requires multi-pass rendering, either the depth polygon list calculation or

the ray traversing.

The ray casting approach maps the pixels of the viewing plan to the triangles of the

objects. The advantage of the ray casting approach is its simplicity. But the performance

of the standard ray casting depends on the depth complexity of the intersected objects.

The ray-casting is a on-line method, supports the geometry and volume clipping, the

convex and concave primitives as well. This method is appropriately applied in the CSG

rendering algorithm, and is described in the later chapter in detail.

Draft Copy: September 19, 2011



2.3. Front/Back-face Culling 7

2.3 Front/Back-face Culling

The Goldfeather CSG rendering is a hardware-based z-buffer algorithm, which supports

convex [5] and concave objects [6]. The CSG tree is converted into a sum-of-product form

before rendering. This conversion uses the normalised rules and also ensures that the

CSG expression can be rendered effectively using z-Buffer supported graphics hardware.

In the standard Goldfeather CSG rendering algorithm, two z-buffers, which are responsible

for the temporary and the final results, are used to present the sum-of-product. In this

alogirhtm, each CSG primitive is split into the front and the back faces. According to the

CSG operations, one of these two faces is cut, the front and the back faces are visible by

intersection and subtraction, respectively. Then, the surface parity test is applied to check

whether a surface in the z-buffer is inside or outside the object. The parity test (Fig. 2.4)

(a) Parity test for X ∩ Y (b) Partiy test for X − Y

Figure 2.4: Parity Test

is performed by counting the number of surfaces in the z-buffer. Regions of odd parity,

where the parity flag is set to be one, are matched to z-buffer elements volumetrically

inside an object. In this algorithm, an intersection preserves the odd parity regions and

resets the even parity regions, whereas a subtraction resets the odd parity regions and

preserves the even parity regions.

Fig. 2.5 shows an example of the Goldfeather CSG rendering algorithm. In each primitive,

the face is clipped away from the faces of all other primitives in the local z-buffer. The

resulting primitives are merged into the z-buffer by the corresponding depth-test.

There is only one z-buffer in the rendering pipeline and two methods are used to realise the

second buffer. One uses half-precision of depth-value to split the z-buffer into two, while
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8 Chapter 2. Prior Works: CSG Rendering Algorithms

Figure 2.5: Goldfeather CSG Rendering Algorithm. (A ∩B)− (C ∪D). [21]

the other stors the z-buffer as texture, which has a lower speed during the copy. Both

methods have a significant performance bottleneck [24] [21], which indicates either the

precision or the speed decreasing. The Goldfeather CSG rendering is an on-line method,

which support the geometry and the volume objects. The algorithm does not support

the concave primitives, which are cut into serveral convex primitives and lead to increase

of the calculation complexity. The Goldfeather CSG algorithm only tests every primitive

against all others, and requires O
(
n2

)
times memory copy in the worst case.
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2.4. Layered/depth-Peeling 9

2.4 Layered/depth-Peeling

Stewart et al. reported the layered Goldfeather Algorithm [19], which tested the over-

lapping of the primitives based on the depth complexity of the scene (the maiximum

overdraw, see Fig. 2.6). The algorithm extracts a layer and tests it against all primitives

(a) collection of spheres (b) depth complexity

(c) 1st layer (d) 2nd layer (e) 3th layer

Figure 2.6: Layer Extraction of Sphere Front Faces, 1st layer is the objects which
does not overlap with another, 2nd layer is the overlapped parts of
two objects, 3th layer is the overlapped parts of three objects.

of the product. The resulting layer is stored in the temporary z-buffer and is merged into

the final result. The layered Goldfeather algorithm improves the memory copy in O (kn)

times, where k is the maximum depth complexity of the scene. Figs 2.7(a) and 2.7(b) are

the clipping examples for the standard and layered Goldfeather algorithm. The layered

algorithm is better in the case with bigger n and smaller k.

Erhart and Tobbler store the binary masks of the layer clipping result in the stencil buffer,

rather than the depth buffer [4]. Instead of one mask per primitive, one mask per layer is

stored. The stencil data can be copied more efficiently than z-buffer. Another advantage

is that the stencil buffer is an array of integer values, which can be easily copied without

conversion or any loss of precision.

Stewart et al. present another improved variant, the Sequenced Convex Subtraction (SCS)
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10 Chapter 2. Prior Works: CSG Rendering Algorithms

(a) Clipping on per-primitive basis (b) Clipping on per-layer basis

Figure 2.7: Clipping on Per-Primitive/Per-Layer Basis (adopted from [19])

algorithm for image-space CSG rendering [20], which only needs the linear time with re-

spect to the number of intersections (O(n2) times by the standard Goldfeather and O(kn)

times by the layered Goldfeather). Details of the SCS algorithm are described in the ref-

erence [20].

All improved Goldfeather algorithms have the same properties as the Goldfeather algo-

rithm and still uses the second z-buffer to store the temporary result. The performance

bottleneck still exists but is reduced. All Goldfeather algorithms are the rasterization al-

gorithm. Compared to the ray casting, the rasterization alogirthm computes which pixels

belong to an intersection, while the ray casting computes which intersection belong to a

pixel. The intersections are performed as a per-computation step of the rendering, which

does not work on a per-ray level. Hence, the multi-pass rendering is required.
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Chapter 3

Constructive Solid Geometry

Contents

3.1 CSG Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Scene Graph based CSG model . . . . . . . . . . . . . . . . . . . 14

3.3 Tree Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Tree Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 CSG Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

The CSG is a way to represent complex object of base primitives in a hierarchy struc-

ture. The CSG model contents the geometry primitives and/or the volume data sets, such

as CT volume, PET data set. These input data are combined by Boolean operations such

as union, subtraction and intersection to create a more complex surface or volume object.

The tree structure (hierarchical structure) keeps the solid geometries and Boolean opera-

tions. In order to efficiently render any CSG model, the corresponding tree is transformed

into useful forms which are suitable for hardware-based CSG rendering: sum-of-products,

positive form. In this chapter, we discuss the CSG transformation and simplification.

3.1 CSG Model

The CSG modelling constructs the CSG tree by user defined interactive application, which

is a combination of pre-defined CSG solid primitives by using Boolean operations. The

solid primitive is defined in the 3D space and is a elemental component in the CSG model.

The solid primitives has two-manifold property, which require the boundary surface, a

clear defined bounding between the inner and the outer region. In the CSG modelling
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12 Chapter 3. Constructive Solid Geometry

Figure 3.1: Primitives (cube, sphere) and Boolean operators (∪: intersection, ∩:
union, −: subtraction.): Given two primitives, A and B, their union
consists of all boundary surfaces and volume regions from either A
or B; the intersection consists of the boundary surface and volume
region in both primitives; and their difference, written as A− B (or
B−A in reverse), consists of the boundary surface and volume region
in A subtracting B (or in B subtracting A).

system, all CSG primitives use the transformations such as translation, rotation, scaling

(affine transformation) to be inserted into the scene.

Boolean operations combine two CSG (transformated) primitives into one to construct a

more complicated CSG shape. There are three Boolean operations: ([8],[21]):

• Union (A ∪ B): The resulting shape consists of all regions either in the A, in the

B or in both input shapes, as well as the boundary surface.

• Intersection (A ∩ B): The resulting shape is the overlapped region of both input

shapes, includes the intersected boundary surface.

• Subtraction (A−B): The resulting shape is the region by subtracting the A from

the region of the B, the surface of the A is outside of B and the surface of the B

Draft Copy: September 19, 2011



3.1. CSG Model 13

inside of A.

Fig. 3.1 illustrates examples of Boolean union, intersection and subtraction. The resulting

geometry is a solid geometry, which has the two-manifold surface area, and can be further

used as a CSG primitive. The hierarchical structure is usually a binary tree, in which

each parent node (Boolean operations) has only two child nodes and can be evaluated by

the CSG shapes or CSG primitives. The ambiguity of the CSG model can be removed

by using the binary tree. In fact, the CSG model has a corresponding CSG tree with

associated expression. Fig. 3.2 shows a CSG model by using a binary tree structure. The

associated expression is written as ((a ∩ b)− (c ∩ d)).

Figure 3.2: CSG objects can be represented with binary trees, where leaves rep-
resent primitives, and internal nodes represent Boolean operators.
(T is the corresponding transformation which converts the geometry
from object space into the world space)
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14 Chapter 3. Constructive Solid Geometry

3.2 Scene Graph based CSG model

Unlike the CSG model, only the solid primitives and Boolean operators are stored in the

tree. The scene graph renders a 3D scene, is a use-oriented tree structure that is augu-

mented with textures, transforms, level-of-detail, render states (such as material proper-

ties), light sources, etc. [1]. We focus on properties of the scene graph modelling in this

section, and extend scene graph to a suitable interpretation of the CSG model.

Node is the fundamental element of a scene graph. There are three different types of nodes

in scene graph [23], which are

• Shape nodes, representing 3D geometric objects.

• Property nodes, representing appearance and qualitative characteristics of the

scene, such as surface material, drawing, or geometric transformation.

• Group nodes, containing nodes in the graphs. Groups collect property, shape, and

other group nodes into graphs.

A shape node holds the actual geometry and the corresponding bounding volume (BV). A

BV is a volume which encloses a set of objects. Fig. 3.3 shows examples of BV: Bounding

(a) Bounding Sphere (b) Axis-aligned Bounding
Boxes

(c) Oriented Bounding Boxes

Figure 3.3: Examples of Bounding Volumes

Spheres, Axis-aligned Bounding Boxes (AABBs), Oriented Bounding Boxes (OBBs). An

internal group node is an implicit OR-Association and collects its BV on all child nodes in

the scene graph, which contains the bounding volume hierarchy (BVH). Each node in the

tree has a bounding volume that encloses the primitive in its entire subtree [1]. The BVH
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3.3. Tree Transform 15

is a type of spatial data structure, which can be used to identify the intersected region.

The scene graph can be used to represent the CSG model. The group nodes are im-

plemented as the Boolean operations, whereas property nodes keep the location and the

shape nodes are the primitives. The shape nodes and property nodes are leaf nodes. The

scene graph is a hierAll nodes can be inserted as the child nodes in a group node.

Each type of node has its own behaviour. The scene graph can apply several actions in

its tree structure, such as rendering the scene graph, computing a 3D bounding box or

cumulative transformation of objects. Each action requests a traversal state, which is a

collection of elements or parameters in the action at a given time [23]. Executing an action

involves traversing the graph in pre-order (visiting the parent node before its child nodes)

and post-order (visiting the child nodes before their parent). The traversal state can be

modified during the traversing. In the CSG rendering algorithm, the system should deter-

mine which volume is present in the current scene before the rendering. One possibility is

that we can use an action to evaluate the semantic of the CSG operations.

The scene graph is the real time interactive manipulation, which is able to modify the tree

in the real time and is realised by the recursive call in the tree structure. The scene graph

contains the data about transforms, bounding volumes, render state and animation state.

Each node in the scene graph corresponds to a drawable object. The scene graph updates

the data of each node in multiple ways. For example, when a new volume is inserted into

the scene, the scene graph has to be updated. All transformations are updated in pre-

order transversal from the root downward the leaves. Afterwards, the bounding volumes

are updated in post-order traversal from the leaves upward the root. The CSG rendering

can check the BV as a preprocess to detect the intersected region. This process can be

used in the BV pruning technique, which is explained in the following section.

3.3 Tree Transform

In the practice, the user-defined CSG tree can be very complex. The rendering system does

not provide aid for any possible CSG combination. In Boolean algebra, any associated

Boolean expression can be expressed in a canonical form using AND-Association and OR-

Association. Here, a general way is used to convert the CSG tree into useful form suitable

for rendering pipeline, namely the sum-of-products, which is an union of intersections or

subtractions. A CSG tree is normalized when this tree is converted into a sum-of-products

form. In this section we explain the Goldfeather algorithm [5] [6] for tree normalization.
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16 Chapter 3. Constructive Solid Geometry

A normalized CSG expression is denoted as:

P1 ∪ P2 ∪ · · · ∪ Pm (3.1)

where each Pi is a product of CSG primitives. A single product is an expression including

intersections and subtractions.

A set of production rules, which use the associative and distributive rules of Boolean alge-

braic properties, are applied to the CSG tree recursively. The normalization process uses

the the local node information (Boolean operators of current node and its child node) to

decide a production rule applied in the current node. The corresponding production rules

are listed in the table 3.1. In the CSG tree, all normalized rules move the union operator

The Normalization Algorithm
E1 : x − (y ∪ z) = (x − y) − z
E2 : x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z)
E3 : x − (y ∩ z) = (x − y) ∪ (x − z)
E4 : x ∩ (y ∩ z) = (x ∩ y) ∩ z
E5 : x − (y − z) = (x − y) ∪ (x ∩ z)
E6 : x ∩ (y − z) = (x ∩ y) − z
E7 : (x ∪ y) − z = (x − y) ∪ (y − z)
E8 : (x ∪ y) ∩ z = (x ∩ y) ∪ (y ∩ z)

Table 3.1: Set Equivalences for Normalization[6]

procedure normalize(T : tree)
{reduce a CSG tree to sum− of − products form}
begin

if T is primitive then return;
repeat

while T matches left side of any set equivalence
replace with right side, apply first matching rule;

normalize(T.left);
until T.op is a union or (T.right is a primitive and T.left is not a union)
normalize(T.right);

end normalize;

Table 3.2: CSG Tree Normalisation[6][24]

upward and the intersection and subtraction downward. The rules E2, E3, E5, E8, E9 in

Table 3.1 duplicate the child nodes, which lead to an explosive increments of the number of
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3.3. Tree Transform 17

the nodes in the model. In the next section, we present the pruning techniques to simplify

the normalized Boolean expression. Table 3.2 shows the pseudo code of the normalized

algorithm. The normalization starting at the root node processes the CSG tree recursively

in a top-down order. Goldfeather et. al. [6] guarantee that this algorithm is terminated by

any given CSG tree as input and there is no redundant part or repeated primitive in the

resulting CSG tree. We use a example (see Fig. 3.4(a)) to present the tree normalization

algorithm as follows:

(a ∪ b ) − (c ∩ d) −→ ((a ∪ b) − c) ∪ ((a ∩ b) − d) (E3)

−→ ((a ∪ b) − c) ∪ ((a − d) ∪ (b − d)) (E7)

−→ ((a − b) ∪ (b − c)) ∪ ((a − d) ∪ (b − d)) (E7)

(a) CSG tree example (b) normalized CSG tree

Figure 3.4: CSG Tree Transformation. The CSG tree is transformed into its
normalized form.

The algorithm starts at the root and the root node is a subtraction. The rule E3 is found

and applied in the root node. The result is a permutation of the subtraction. The nor-

malised algorithm then moves to right part of the root node, and in this case, the rule E7

is applied. Likewise, the same rule can be used in the left part of the root node.

Rossignac and Voelcker [17] reported that the use of the positive form in the CSG repre-

sentation, could be clearly detect the redundancy part and the null-object. The positive

form uses the intersection, union and complement operators, which represent the negation

of given operator or primitive. Any CSG tree can be transformed into positive form by
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18 Chapter 3. Constructive Solid Geometry

PF1 : x − y −→ x ∩ y
PF2 : x ∪ y −→ x ∩ y
PF3 : x ∩ y −→ x ∪ y
PF4 : x −→ x

Table 3.3: Transformations of Positive Form[17]

a pre-order traversal of the tree applying, which is illustrated in table 3.3. The rule PF1

replaces the subtraction operators by using the intersection of the negated second part.

The rules PF2, PF3 are known as De Morgan’s Laws, which exchange the intersection and

union operators at negative internal nodes. This reformulation moves the negations down-

ward to the leaf nodes (CSG primitive) and the resulting CSG tree contains intersection

and union operators in the internal nodes. The negation operator represents the un-

bounded regular set, which makes sense when combined with other CSG parts. However,

the transformed positive form is equal to the original CSG tree representation. Fig. ??

shows a example of positive form, The transformation processes in the following steps:

(a) CSG tree example (b) CSG positive form

Figure 3.5: CSG Positive Reformation. The CSG tree is converted into its posi-
tive form.

(a ∪ b ) − (c ∩ d) −→ (a ∪ b) ∩ (c ∩ d) (PF1)

−→ (a ∪ b) ∩ (
c ∪ d

)
(PF3)

The positive reformulation of CSG trees has been used in the CSG transformation. This

reformulation can simplify the notation, keep structural similarity to the sum-of-products
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3.4. Tree Simplification 19

and avoide sum-of-products the potential exponential tree growth [16].

3.4 Tree Simplification

The tree pruning can reduce the size of the CSG tree and maximize the rendering perfor-

mance. In this section, several pruning techniques to simplify the normalized CSG tree

(sum-of-product) are introduced. One of these techniques is algebraic tree pruning, in

which the transformation processing does not include the redundant parts or repeated

primitives in the CSG tree. Because the user-defined CSG model usually contains the

redundant parts that can be eliminated by algebraic tree pruning. The BV of a node can

be used to detect the overlaps in its subtree. The section 3.4.2 describes the BV based

CSG tree pruning technique.

3.4.1 Algebraic Tree Pruning

Algebraic tree pruning, the simplest technique to simplify CSG trees. uses the CSG

tree structure and works without any additional information about the contained CSG

primitives. In this case, the laws of boolean algebra is used to simplify the redundant

parts. Table 3.4 is the pruning rules of the Laws of Boolean algebra essentially for the

simplification. The Boolean algebra prunes the CSG trees by a post-order traversal of the

T4 : Identity Law (a) X ∩ X −→ X
(b) X ∪ X −→ X

T7 : Redundance Law (a) X ∩ 0 −→ 0
(b) X ∪ 0 −→ X

T8 : Redundance Law (a) X ∩ 1 −→ X
(b) X ∪ 1 −→ 1

T9 : Redundance Law (a) X ∩ X −→ 0

(b) X ∪ X −→ 1

Table 3.4: Redundance Laws of Boolean Algebra. The symbol X denotes any primitive
or CSG tree parts, 1 is the whole objects, 0 is the empty set. [21]

tree applying, in which the pruning processing starts at the leaf nodes and moves upward

to the internal nodes. The algebraic pruning is used to check the duality inside each

product of normalised expression. The two CSG parts are structurally different, shown

in Fig. 3.6, therefore, the commutativity of the intersection or the union can be detected.

In the following section, a typical encoding method to accurately identify the duality is
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20 Chapter 3. Constructive Solid Geometry

described.

(a) Tree (a ∩ (b ∩ c))∪ ((a ∩ b) ∩ c) in
the form X ∪X from Table 3.4

(b) Equivalent CSG tree with the sub-
stitution X

⋃
X −→ X is applied.

Figure 3.6: Algebraic CSG Tree Pruning

3.4.2 Bounding Volume Tree Pruning

The BV can find out the relations between different parts in the scene graph. The CSG

primitive has the BV which is the outer boundary of the 3D geometry data. The internal

nodes are Boolean operators in the CSG tree. The BV of CSG operators are calculated

from their child nodes and depends on the Boolean evaluation of the rules. Table 3.5

shows the computed BV of the Boolean operator. For example, A and B are arbitrary

Bound (x ∩ y) = Bound (Bound (x) ∩Bound (y))
Bound (x− y) = Bound (Bound (x)−Bound (y))
Bound (x ∪ y) = Bound (Bound (x) ∪Bound (y))

Table 3.5: CSG Operator Bounding Volume. [21] [24]

child nodes. The BV is updated in a bottom-up order, and hence, the BV tree pruning is

applied in the post-order traversal of the tree. In the BV tree pruning, the empty bounding

volume is removed, which indicates that the Boolean intersection and subtraction operator

can be eliminated [24]:
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3.4. Tree Simplification 21

x ∩ y −→ ∅, if Bound(A) does not intersect Bound(B)

x− y −→ x, if Bound(A) does not intersect Bound(B)

(a) Volume a and b with their BV (b) Intersection BV

(c) Union BV (d) Subtraction BV

Figure 3.7: Bounding Volume CSG Tree Pruning

In most cases, however, the BV of internal node increases or reduces related region by

evaluating the Boolean operation. Because the Boolean operators result a non-empty BV

during the pruning [21]. For instance, the bounding volume (AABBs) of two primitives are

shown in Fig. 3.7(a). The BV for intersection, union and subtraction are shown in Figs.

3.7(b)-3.7(d), respectively. The volume is not intersected, but the BVs of the intersection

and the subtraction are not empty, whereas the resulting volume is a empty. In this case,

the BV is not fulfilled by correct evaluating the Boolean operations, a exact evaluation of

data set in the volume is required.

The tree pruning techniques remove the redundant parts of the CSG primitives and are a

generic pre-processing step for the CSG rendering algorithm.
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22 Chapter 3. Constructive Solid Geometry

3.5 CSG Rendering

The sum-of-product form can be used in the rendering pipeline to identify which primitives

are rendered or clipped in the current scene. Dependent on chosen rendering algorithm,

the CSG model can be completely represented. In the next chapter, we focus on the

volume based clipping methods and the ray casting multiple volume rendering to visualize

the necessary wanted parts of volume.
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Volume Clipping and Ray-Casting
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In this chapter we explain solutions of the clipping and visibility problems related

to the volume based rendering algorithms. The volume data set consists of voxels and

transfer function. The voxels are the points in 3D space, along with an interpolation

scheme that fills the in-between space. The voxels serve as grid points of a uniform grid,

which is connected by edges, forming hexahedral (i.e., cube-like) cells [9]. The 3D uniform

Figure 4.1: Example of Uniform Grids: 3D uniform grid with cuboid cells [9].

grid is shown in Fig. 4.1. The intensity and opacity values are assigned by evaluating

the transfer function. Compared to the geometry object which has the explicit defined

boundary, the volume can be only verified by the opacity inside the voxels. The CSG
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24 Chapter 4. Volume Clipping and Ray-Casting

rendering can be regarded as a way to modify the visibility of region in multi-volume

data sets. This consideration can be realised by the volume clipping concept, in which

the original volumes are visible in defined selection volume. Fig. 4.2 shows design of the

Figure 4.2: Conceptual Design of Volume Clipping. The volume data set is only
visible in the selected region. [11]

volume clipping. The selection volume controls the visibility by modifying the original

transfer function associated with the volume data set [11]. The selected volume parts are

visible, which can be drawn by the volume rendering techniques. The remained parts are

clipped during rendering.

Compared to another rendering algorithm, the ray-casting rendering algorithm is widely

used in the volume rendering techniques, because of its flexibility in producing high quality

images of volume data set. The algorithm is an image-space method and is supported by

the depth-value of ray intersection. In the following section 4.1, a short introduction of

the ray-casting rendering algorithm is given. The volume clipping technique is discribed

in the subsequent Section 4.2.

4.1 Ray-Casting Rendering

The ray-casting is a typical image-order algorithm and also supports the depth cueing

during the rendering. Therefore, using a ray casting technique to perform volume clipping

Draft Copy: September 19, 2011



4.1. Ray-Casting Rendering 25

is a common way, which the depth structure can be reused in both cases. Fig. 4.3 shows

the rendering pipeline for ray casting in a single volume. For each pixel in the screen

Figure 4.3: Rendering Pipeline of Ray Casting in a Single Volume.[18]

view, a ray is generated from the view point in the view direction. The ray intersects

the volume and starts traversing. The traversing along the ray in the volume is sampled

to points (Sampling & Interpolation) and each sampling point is assigned by a color and

opacity evaluated from the transfer functions (Classification). Depending on the illumi-

nation model, the illuminated color is calculated and accumulated. A new sampling point

is generated based on the given step size and this process goes iteratively forward until

the end of the volume that the ray reaches. The accumulated result assigns to the corre-

sponding display pixel (Screen Mapping). Fig. 4.4 illustrates the ray-casting example in a

single volume.

When the ray intersects the volume, the intensity is calculated directly by the volume

rendering integral. The emission-absorption optical model illustrates the intensity by

integrating along the direction of ray flow from the entry point of the volume (the inter-

section point) s = s0 to the end point s = D. The relevant equation can be approximately

expressed [10]:

I(D) =
n∑

i=0

Ci

n∏
j=i+1

Tj with c0 = I(s0) (4.1)
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(a) Ray Casting (b) Sampling & In-
terpolation

(c) Classification &
Illumination

(d) Accumulation &
Screen Mapping

Figure 4.4: Ray Casting in a Single Volume (Δ is the sampling distance, and the
same as the step size in the volume).

Where Ci ≈ q (si)Δx is the color contribution to the i-th sampling point, Ti is the trans-

parency of the i-th sampling point, Δx = (D − s0) /n is the distance between the entry

point and sampling point, n is the maximal number of sampling points. Normally, the

sampling points do not match the voxels positions exactly; the corresponding interpolation

is used to calculate the correct value. This approximation will be more accurate if the

sampling rate is increased and the corresponding sampling distance is reduced.

In the rendering, the accumulation usually starts from the view point to the volume (front-

to-back compositing) during the ray traversing. The front-to-back iteration equations are

[10]:

Ĉi = Ĉi+1 + T̂i+1Ci (4.2)

T̂i = T̂i+1(1− αi) (4.3)

The iteration starts at the first sampling point i = n and ends at i = 0 in the volume.

The color Ĉi of the current iteration step increases by adding the previous color Ĉi+1,

and further by adding the multiplication of the source color Ci of the current iteration

step and the transparency degree T̂i+1. αi is the opacity of current iteration step and is

defined by the transfer function. Compared to the back-to-front compositing schema, the

advantage of front-to-back compositing is that the algorithm can be optimized by early

ray termination [10].

In the ray casting based multi-volume rendering, the volume data can be intersected with
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each other. There are many ways to visualize several volume data in the intersected re-

gions, it depends on different objects contribution. Cai et al. [3] classified the volume

intermixing into three levels (see Fig. 4.5), which are subsequently described in detail.

The Image level intermixing is the simplest way, which merges two rendering images inde-

(a) Illumination Level Inter-
mixing

(b) Accumulation Level In-
termixing

(c) Image Level Intermixing

Figure 4.5: Rendering pipelines for the three mixing strategies [3] [18].

pendently by using pixel’s intensity, opacity and the depth value. The Accumulation level

intermixing combines the volumes’ visual contributions step by step along the ray. The

sampling point has minimal and equal step size in all volume data sets, and is mapped by

the intensity and opacity from individual transfer functions. The resulting intensities and

opacities are merged to be a single intensity and opacity of the sampling point, which is

accumulated and assigned by the display pixel. The Illumination level intermixing calcu-

lates the color and opacity directly by using multi-volume illumination model.

The illumination level intermixing is only for the special application like X-ray image.

The mixing of different modalities, such as CT and MRI, is difficult because the ranges of

the sampling value are different from each other [18]. The accumulation level intermixing

allows the application of independent transfer functions and shading style to different vol-

umes, and supports depth cueing of the volumes compared to the image level intermixing

[15]. Fig. 4.6 illustrates the accumulation level intermixing example of the multi-volume

ray casting.
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Figure 4.6: Ray Casting in Multi Volumes Accumulation Level Intermixing in
Multi-Volume: (a) The ray traverses in two different volumes. (b)
The sampling points are generated in both volumes by minimal step
size. (c) The sampling points calculate the intensities and opacities
from the volume data by interpolation. (d) The sampling points mix
their intensity and opacity values, the illuminated color is calculated.
The sampling points accumulate the color distribution and then is
assigned to the pixel color.

4.2 Volume Clipping Algorithms

The selection volume (see Fig. 4.2) can be used to choose visible and invisible regions.

Therefore, the selection volume is applied as a binary decision [11]. A visible region

is rendered according to the original transfer functions, whereas an invisible region is

transparent. The selection volume is called the clipping volume. The boundary of the

clipping volume is defined as clipped geometry, which is the BRep of the clipping volume.

In general, the selection volume is mapped to binary decision, which is denoted as [11]:

φS : R3 → {true, false} (4.4)
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Based on the Boolean values, there are only two possible rendering states to apply the

volume data with a well-defined clipping volume [22]:

• volume probing : the outside of the clipped geometry is clipped and the volume inside

the clipped geometry remains unchanged.

• volume cutting : the inside of the clipped geometry is clipped and the volume outside

the clipped geometry remains unchanged.

(a) volumes: head with sphere (b) volume cutting: re-
main head

(c) volume probing: cut
head

Figure 4.7: Examples of volume cutting and volume probing.

Fig. 4.7 gives an example of these two concepts. The boundary of red sphere is the clipping

geometry and the head parts inside or outside the sphere are clipped, as shown in Figs.

4.7(b) and 4.7(c). There are many ways to render the volume data with the clipping

volume. Weiskopf et al. [22] divided this volume clipping technique into two classes:

the voxelized clipping approach and the depth-based clipping approach. In the following

sections, both approaches are explained in details.

4.2.1 Voxelized Clipping Approach

The voxelized representation of the selection volume stores the visibility information in

a second volume whose voxels provide the clipping information. During rendering, the

calculation of the visibility is applied to the selection volume and the original volume. The
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selection volume is stored in the binary values: an entry is set to 1 if the corresponding

voxel is visible and is set to 0 if the voxel is clipped. The voxelized clipping is based on a

surface representation of the selection volume. The voxelization of the surface and of the

interior of the clipping object is required.

The ray-casting is assumed to be set in the volume rendering. During the rendering in

the volumes, the original voxels are assigned by the intensity and opacity values evaluated

from the transfer function. These evaluated voxels are modified by multiplying the value of

the selection volume in the fragment process step. The voxels, which have been multiplied

by zero, are clipped. The corresponding fragments can be removed by the opacity test

[11].

One advantage is that this approach supports arbitrary clipping objects (i.e. convex and

concave) and both the surface-oriented and volumetric clipping. Another advantage is

that the volume clipping is feasible with older graphics hardware by using the stencil

buffer and stencil test to cut away clipped fragments. However, this approach needs large

memory for the voxelized selection volume and additional texture-access operations to

read selection volume during volume rendering. The re-voxelization of the clipping object

is very time-consuming [11].

4.2.2 Depth-Based Clipping Approach

To avoid an explicit voxelization of BRep, depth-based volume clipping only uses the

BRep of the clipping object. Thus, the polygon mesh of the BRep is required. Fig. 4.8

Figure 4.8: intersected Ray Segments; intervals on the depth axis that are inside
the volume [22].
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shows the concept of depth-based volume clipping related to depth-structure of the clip-

ping geometry [22]. A ray is traversed from the view point to the volume. All depth

values of intersection between ray and volume is stored in the depth structure. The ray

is split by intersected depth values into several ray segment intervals, which are bounded

by the intersection of the volume. Therefore, the ray segment intervals can be classified

as the interior and exterior parts of the volume. The two-manifold property which points

out that the boundary of the volume is closed and non-self intersected, ensuring correct

classification of the intervals. This classification is allowed to separately deal with the ray

traversing in the different volumes. Based on Equation (4.4), the volume clipping is con-

verted from 3D volume region to 1D decision along the ray direction. Then, all intersected

polygons are collected in the depth structure that is available for the corresponding pixel.

During volume rendering, the depth structure can determine whether the fragment should

be rendered or clipped.

In general, the depth-based clipping consists of two essential steps [11]:

1. the construction of the depth structure.

2. the depth-based clipping in volume rendering.

We explain the two possibilities of the depth structure construction. One is the ray

casting method and other one is the polygon rasterization technique. The depth structure

is stored on a per-pixel basis and dependent on the view point; this is a pixel-orientated

mechanism. The ray casting based volume rendering is suitable for computing the depth

structure immediately (see section 2.2). The construction of the depth structure needs

multi-pass rendering. The rendering cost rises with an increased depth complexity [11].

Polygon rasterization represents the clipping volume by the polygonal mesh. All polygons

are transformed into the screen space and projected onto the viewing plane. Kainz et al.

[7] implemented an efficient polygon rasterized method using the coverage mask on the

projected polygons of voxels in screen space, and encoded all intersected polygons on each

pixel as a list. We describe this technique in the next chapter in detail.

For a single depth layer (i.e. a depth plane), the z-buffer is used to represent the depth-

structure and the depth test is applied to remove the fragments. For the convex volume, the

2D texture with high-resolution texture format and three rendering passes are required.

For examples, the front/back-face culling is used in the first two rendering passes, the

remaining segment is rendered in the third pass. For multiple convex volume clipping
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or concave volume∗ clippings, a lager number of depth structure and multiple rendering

passes are required.

Compared to voxelized clipping approach, the depth based approach is an image-space

algorithm. The depth structure will be rebuilt if the view point changes. The advantage

of this approach is that its per-pixel accurate clipping leads to the high-quality result [11].

The rendering can update the depth-structure in each frame, the clipped objects can be

translated, rotated and scaled. This clipping algorithm is suitable for real-time interactive

manipulation.

The depth-based clipping is a modified volume rendering. The visible region is detected

by evaluating sum-of-product form of normalized CSG model. Each pixel has its own

depth sorted polygon list, which is used to construct the depth-structure by the volume

clipping. We explain the volume clipping based CSG implementation in the next chapter

elaborately.

∗The concave volume should have the two-manifold boundary, which is self-closed, and does not contain
any hole, the self-intersection is not allowed.
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The purpose of the CSG based rendering algorithm is to cut away the certain volume

or part of volume in the rendered scene. To achieve this goal, we explain the depth-based

volume clipping in ray-casting rendering, in which the rendered and clipped volumes are de-

tected by sum-of-product expression of CSG model. As described in the previous chapter,

this depth-based volume clipping requests two main steps in the rendering: i). Construct-

ing the depth structures of the volume data set; ii). Cliping away the decided volume

from the rendering system during the ray casting. The volume clipping algorithm and

the ray-casting algorithm are per pixel-based (image-based) operations, which means the

calculation of the depth structure is dependent on the view point. The voxels are orga-

nized in a regular 3D array to cover the volume data set. The outer boundary of voxels

is the polygon representation of the volume. Kainz et al. [7] reported a new approach

based on ray casting multi-volume data sets to calculate the depth structure. The applied

polygon rasterization algorithm in this approach speeded up the computation of the depth
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structure, which is sorted in a front-to-back order and is used in our clipping algorithm.

The Kainz’s rendering system is implemented in CUDA, which provides the complete con-

trol over the rendering processing, indicating that all intermediate results of the rendering

pipeline are available. Our CSG rendering algorithm is based on the Kainz’s multi-volume

rendering system, in which the sorted polygon list is available in our algorithm. Fig. 5.1

Figure 5.1: Flow Chart of the System.

shows the flow chart of the whole rendering system. In the pre-processing step, the CSG

model is normalized in the sum-of-product form, which is encoded in the corresponding

clipping states and is stored as the lookup texture in the rendering. Tthe polygon mesh,

transfer function and corresponding location information of the input volume data sets

are used in the rendering system. The depth-structure is calculated by the given polygon

mesh using the special rasterization algorithm. The ray is cast into these depth-structure

and split into several ray segment intervals, where the volume can be in. The ray is only

traversed in these visible segment interval. Based on defined clipping map, the ray is ren-

dered in the visible volume segments and is cut by the clipped volume segments. In the

subsequent section, brief introduction of the polygon rasterization algorithm is provided

and in particular, volume clipping rendering algorithm and its map encoding are explained

in detail.

5.1 Polygon Rasterization Algorithm

Rendering system in a depth-based multi-volume ray casting was investigated by Kainz

et al. [7]. This system supports the multi-volume data set, and rasterizates all outer

boundary of the volumes into polygons. All polygons are sorted along the view direction in

a front-to-back sequence. The rasterized depth structures are shown in Fig. 5.2. The outer

boundary of voxels is used in the rasterization, whereby all polygons are transformed into
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Figure 5.2: Depth Structures in Polygon Rasterization Algorithm.

the image-space, and are classified into several pixel blocks by the coverage mask, which

also stores the polygon list in each pixel. A sort algorithm is used to arrange the polygons

in each pixel. The polygon rasterization algorithm can be more efficiently implemented

in modern GPGPUs. The depth structure in the volume clipping algorithm is exactly the

sorted polygon list, which is used in our algorithm per-pixel based.

5.2 Volume clipping based CSG Rendering System

The sorted polygon list is used in the depth-based clipping algorithm. In this section, we

focus on the corresponding volume clipping in the rendering. In multi-volume ray-casting

rendering system, the ray is generated in each pixel, and cast into the volume. All volumes

are rendered in the system, which calculates the color distribution of the corresponding

transfer function in each voxel. The ray is sampled in each volume and the sampling

points accumulate the illuminated color and opacity, which become a output color of final

pixel. The depth-based volume clipping rendering is similar to the multi-volume ray-

casting rendering. Yet, the difference is that the ray can be clipped completely in the

decided depth interval. The clipped volume interval is not only dependent on the location

of these two volumes, but also the used transfer function. This is primarily because the
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intensity and opacity of voxels are evaluated by transfer function. The opacity of the same

voxel would be completely different if using another transfer function. We introduce two

possible encoding methods for the volume state and the clipping state in the following two

sections. The volume state is used to represent each volume-segment based depth interval.

The clipping state is used to decide which volume is rendered or clipped in the current

scene. The volume clipping algorithm is described in the section 5.2.2. The relevant

functionality of the rendering pipeline is illustrated in the section 5.2.3.

5.2.1 Volume Entry/Exit States

The polygons of the sorted depth-list split the ray into several segments along the ray. The

depth interval between two neighboring entries in the sorted list defines a homogeneous

segment of the ray related to intersected volume. Each segment interval gets own encoding

to identify the volume state. The encoded volume provides an efficient way to describe the

current volume states during the ray casting. We introduce a schema to maintain a list

of bitflags. One flag, which has its own corresponding volume, is toggled each time when

the ray passes a volume boundary [2]. An integer (limit to 32 volumes) or a 1D lookup

texture can be used to record the entry or exit state of the volume along a ray traversal,

which is associated with sorted polygons.

The bit flag 1 denotes that the ray enters into the volume, and 0 represents the exit. Each

volume data set is registered in the system by an assigned volume-ID∗, which can retrieve

the corresponding bit flag†. The Fig. 5.3 illustrates an example of the encoding of volume

states:

• 00 : No volume is available.

• 01 : Only the volume A is available.

• 10 : Only the volume B is available.

• 11 : Both the volume A and B are available.

The volume states change when the ray enters or leaves the volume. A volume-check

occurs at the intersection point between the ray and volume. Hence, we can determine

each volume state along the ray, and further, we know whether the ray is inside or outside

the volume. In our case, the volume state changes when the ray comes across a new

polygon. Each depth interval has the clear volume state.

∗volume-ID: 1, 2, ...
†bit-1 for A, bit-2 for B, ...
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(a) Volume entry/exit bit flags of volumes during the ray casting.

(b) Volume States. The voxels are split into several polygonal intervals.

Figure 5.3: Volume Entry/Exit State.

5.2.2 Volume Clipping Algorithm

In this section, we focus on volume clipping algorithm that exploit the process of volume

segments in the depth interval. A schema similar to the volume states is used to capture

all clipping combinations of the appeared volume objects. The digits 1 and 0 denote that

the corresponding volume is rendered and clipped in the current scene, respectively. One

digit describes two possible rendering states, i.e. rendered or clipped of the volume. In

the multi-volume case, the number of the digits is equal to the number of all appeared

volumes, in which each digit is correlated with its volume-ID. Multiple digits can be

merged into a multi-digit clipping state by using an AND-association. The following part
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shows the encoding of the two volumes, and lists all possible combinations (The volume

A corresponds the lower digit of clipping state, B the higher):

• 00: The volume A and the volume B are clipped, i.e. a empty scene.

• 01: The volume B is clipped away from the boundary of the volume A. A without

B. (math. notation: A−B)

• 10: The volume A is clipped away from the boundary of the volume B. B without

A. (math. notation: B −A)

• 11: The intersection of the volume A and volume B is rendered, the remaining part

is clipped. (math. notation: A ∩B)

Based on four possible combinations of these two digits, we use an OR-association (+)

to merge the several combinations of the clipping states. The term A ∪ B, for example,

illustrates a collection of 10 + 01 + 11. Thus, the clipping state represents all possible

combinations of the volumes. Note that, compared to the volume state which is affected

by the voxels, the clipping state is based on the volume, whose intensity and opacity are

evaluated by the transfer function in the voxels. As we mentioned in the previous sec-

tion, the results of volume clipping could be completely different by using another transfer

functions. Therefore, the volume clipping is dependent on the relation of two volumes,

and also, theirs appearance. As shown in Fig. 5.4(a), the left and right volumes in yellow

are produced by using different transfer functions. The results of intersection, union, sub-

traction between these two cases are also different. The Figs 5.4(b) and 5.4(c) show the

same volume data set using different transfer functions.

Based on the polygonal depth interval, the volume clipping solution is that we add the ren-

dered volumes into the current scene, by clipping away the decided parts in all intersected

polygonal regions, which are defined as all intersected intervals between the rendered and

the clipped volumes. All polygonal regions are limited by the bounding of voxels. Thus,

the correlations between the clipping states and volume states can be established. As

shown in Fig. 5.5, the clipping state 01 indicates that the CSG subtraction (A−B) in

the current scene. The volume A is a union of the part with volume state 01 and the part

with 11. A and B intersect in the segment interval with the volume state 11. The clipping

state 01 stands for the volume part A with volume state 01 and the volume part A with

volume state 11 by substracting the volume B. The volume clipping algorithm is used in

this example, and is described explicitly in the table 5.1. All regions of the volume state

can be classified into three domains in our algorithm:
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(a) Voxels using different transfer functions

(b) skin (c) head bone

Figure 5.4: Voxels with Different Transfer Functions. Both volumes (b, c) are
the same data set, but use the different transfer functions.

Figure 5.5: The interpretation of clipping state by volume states. The volume A
subtracts volume B.
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Step for calculation each clipping state:

detect the rendered volume (the volume with the digit 1 in the
clipping state) in each polygonal segment interval (volume state).

*) if only one volume is found, the segment interval of the volume
is observed.

*) if several volumes are found, the intersected segments interval of
these volumes are observed.

in each polygonal segment interval, detect the intersected regions between
clipped volumes (the volume with the digit 0 in clipping state)
and the observed segments of the step 1. The observed segments are then
cut away by the clipped volume at each intersected region.

Table 5.1: Depth-based Polygonal Volume Clipping Algorithm

i. The regions, with only rendered volumes: all volume segments are rendered in these

regions (volume state 01 for clipping state 01 in the Fig. 5.5).

ii. The regions, without any volume: All volume segments are clipped in these regions

(volume state 10 for clipping state 01 in the Fig. 5.5).

iii. The regions, with both rendered and clipped volumes: The rendered volume seg-

ments are cut away from the clipped volumes (volume state 11 for clipping state 01

in the Fig. 5.5).

The Fig. 5.6 interprets the clipping states of two volumes, the Boolean intersection and

subtraction operations are only effected in the intersected polygonal interval. In this

example, a combination of 10, 01 and 11 stands for the whole volume, presented as

A∪B. In multi-volume case, we use the term 2n−1 to indicate the number of the clipping

states, where n means the number of volumes. The clipping state is the evaluation of the

volume clipping in our depth-based volume clipping algorithm. The clipping state can be

used to represent each CSG expression.

5.2.3 Volume Clipping based Ray Casting Rendering Pipeline

This section focuses on the implementation of the algorithm of the ray-casting rendering

pipeline. In the previous chapter, the Boolean intersection, subtraction and union can be
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Figure 5.6: Interpreting the Clipping States into Volume States.

described by the clipping states. The CSG model is converted into the sum-of-product

form, which is the collection of the intersection and the subtraction. It means that the clip-

ping states can represent the sum-of-product form in the rendering. The volume clipping

based ray-casting rendering pipeline is illustrated in Fig. 5.7. This rendering pipeline is

based on Kainz’s [7] multi-volume ray-casting rendering system, in which all yellow blocks

in the system provide the accumulation level multi-volume rendering. The ray is sampled

into sampling points during the access to the volume. Each sampling point is assigned a

intensity and opacity values, which are evaluated by the corresponding transfer function.

The evaluated color distributions are combined by the sample factor in the intersected

region. The equal step size in the intersected region is used for all volume segments. The

grey blocks represent the volume clipping algorithm.

Each volume is registered in the rendering system and corresponds a digit-bit in clipping

states, which are generated from the sum-of-product form. These clipping states controls

each volumes in the whole scene. During the ray-casting, the ray split the whole scene

into several segment interval by using the depth structure, which is per-pixel wise the
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Figure 5.7: The Flow Chart of the Volume Clipping Rendering Algorithm.
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sorted polygon list of all voxels in the current scene and is dependent of the view point. In

each segment interval, it can exist one or more volumes, or parts of volumes. The volume

clipping can be affected in each interval by using the corresponding clipping states, and

deactivate the decided volumes or parts of volumes in each polygonal segment interval.

The clipping map shown in Fig. 5.7 is stored as a texture in the rendering system. At

each polygonal segment interval during the ray-casting, the rendering checks the clipping

map, to detect the rendered volumes which is denoted as the 1 in the clipping states and

the clipped volumes which is denoted as the 0. The segment interval, which only con-

tains the clipped volumes, is rejected by the rendering system. Because these volumes or

parts of volumes are invisible in the current scene. The segment interval, which contains

at least one rendered volume and arbitrary clipped volumes are accepted by the system

and further enter into our rendering pipeline. The accepted/rejected check occurs in each

polygonal segment interval before the traversing.

The current segment interval is skipped and remains transparent when the rendering sys-

tem is rejected. In our clipping algorithm, the rejected interval is exactly the second case

(the regions which no volumes are rendered) as shown in section 5.2.2. The accepted

volume segments, which have at least one rendered volume in the current segment interval

(For example, see the first and third cases in section of section 5.2.2). Fig. 5.8 illustrates

an example of the intermediate results of the rendering pipeline. The clipping state 10 in

Fig. 5.8(b) indicates the sub-association (head − brain). The part of head bone without

the brain is shown in the segment interval by the volume state 10, and both volume seg-

ments are rendered in the intersected region. The interval 01 only contains the clipped

brain and is rejected by the check of clipping map of the rendering. The segment interval

has the voxel form as the polygon in the depth structure is split by the voxels data. In

the intermediate result, we can also see the square volume, which is polygonal evaluated

voxel data. The clipping state 01 in Fig. 5.8(c) keeps all parts of brain volume and also

the clipped part of head bone in the intersected region. The clipping state 11 denotes

the and-Association in head ∩ brain, where the volume segments are only shown in the

intersected region (see Fig. 5.8(d)).

Subsequently, the rendering pipeline is to remove the false parts from the intermediate

result. The yellow blocks behind the accepted volumes are the classic ray-casting multi-

volume rendering, in which the illuminated colors are mixed in the accumulate level (see

section 4.1). All rendered and clipped volume segments are sampled in the equivalent step

size at the intersected region. Based on the illuminated color, additional test is performed
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(a) head bone and brain (b) Clipping State: 10

(c) Clipping State: 01 (d) Clipping State: 11

Figure 5.8: The Intermediate Result of Rendering Pipeline with Clipping Map.
The segment intervals, which only contains the clipped volumes, is
rejected in the rendering system. The segment intervals, which have
at least one rendered volume, is passed in the rendering pipeline. The
head bone gets the volume id 01 and the brain gets 10.

at each sampling point to remove the unwanted parts. Further, we extend the range of

the problem by assuming a segment interval, in which M volume segments are rendered,

and N volume segments are cut away from the rendered volumes. The solutions of the

problem can be described as follows:

(P1 ∩ ... ∩ PM )− C1 − ...− CN (5.1)
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where Pi is the rendered volume segment with i ∈ [1,M ] and Cj is the clipped volume

segment with j ∈ [1, N ]. The intersected segments of all rendered volume should be

calculated and each clipped segment is then cut from intersected segments.

Fig. 5.8(d) shows an incorrect example of the intersection between both volumes in the

intersected region. The segments, in which only one volume is rendered, is the wrong

result in the clipping state 11. The correct result should be that both parts are visible

in the intersected region of volumes. Based on above results, we classify each evaluated

sampling point into the following two types, which are mainly dependent on the evaluated

opacity values of the illumination model:

i. The sampling point, in which the opacity values of all rendered volume segments are

not zero.

ii. The sampling point, in which at least one opacity value of rendered volume segments

is zero.

The type (i) provides the correct result in the intersected region, the opacity value of

both volumes is non-zero. All remaining parts (i.e. type (ii)) of the rendered segments

are clipped, in which their intensity and opacity values are set to be zero. Based on

the opaque property of the intersected volume segments, the correct part of intersection

is found. The correct result of intersection indicates that each corresponding rendered

volume should be opaque in the intersected region. At each sampling point, we perform

an opacity test to obtain correct intersected region in the rendered volumes. The quality

of the result is dependent on the sampling rate. Fig. 5.9 shows an improved example in

Figure 5.9: An Example of the Intersected Volume Segment. The opaque prop-
erty of the intersected volume segments are correct, all remaining
segments of the volumes should be clipped.

the intersected segment interval. The two intersected parts on the right side are correct

results of intersection between head bone and brain volumes in Fig. 5.8(d).

In the subtraction operation, the clipped volume, which the corresponding digit in the
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clipping state is 0, is removed from the current scene in each polygonal segment interval.

It means that, all opaque parts of the clipped volume should be reset to be transparent by

a intersection with the rendered volume. Fig. 5.8(c) displays an example of the removal

of a clipped segment from a rendered segment (clipping state: 01). Each illuminated

sampling point in the intersected region, including the rendered and the clipped segments,

can be classified into following two types:

i. The sampling point, in which the opacity values of (intersected) rendered volume

segment is not zero and at least one opacity value of clipped volume segment is not

zero.

ii. The sampling point, in which the opacity values of (intersected) rendered volume

segment is not zero and the opacity values of all clipped volume segments are zero.

The type (i) gives the correct case of clipped volume segment; the corresponding sampling

points are cut away. The type (ii) is the rendered volume segment by excluding all clipped

segment; the rendered volume segments are visible after evaluation. At each sampling

point, a non-zero opacity of clipping segment should be cut away from the visible parts.

Fig. 5.10 shows the correct results for the clipped volume segments. The intersected

segments between clipped and rendered volume is cut away, and also the voxel formed

redundant part of the clipped volume. In the volume clipping operation, zero-opacity test

of the rendered volume segments and positive-opacity test of the clipped volume segments

are exactly the wrong parts in the immediate results. A removal of both segments yield

the correct results.

The opacity tests of volume occur at each sampling point in the polygonal segment interval

and detect the volume existence. These tests work together with the clipping states, which

can represent the CSG operations. The converted sum-of-product form can be completely

described by using these two tests, indicating that the CSG operations can be described

though the opacity tests and clipping state tests. In order to get the correct result, both

tests should be check in each sampling point. The clipping state is stored as texture in the

shared memory to get the shorter access time. Therefore, the intensity and opacity values

of the sampling points are accumulated. After reaching the end of the segment interval,

the rendering pipeline fetches the new polygon in the list and the pipeline starts again by

checking the clipping map (see Fig. 5.7), until the end of depth structure or the saturated

opacity of the sampling points.
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(a) Improve the clipped brain

(b) Improve the clipped head

Figure 5.10: An Example of the Clipped Volume Segment. The clipped parts of
the rendered segments are clipped.

5.2.4 Geometry Clipping

The volume clipping algorithm also supports the geometry clipping. In addition, there are

three different combinations of the input data applied in the rendering, which are volume-

volume, geometry-geometry and geometry-volume, respectively. The volume-volume com-

bination has been mentioned in the previous section. Here, we discuss the clipping in the

geometry-geometry and geometry-volume.

The geometry consists of outer boundary and inner volumetric region. The geometric

boundary can be a complex polyhedral or concave surfaces, and the two-manifold prop-

erty must be satisfied. The geometric boundary can be observed as the polygon data in

the rendering pipeline and be used to construct the depth-structure. The inner volumetric

region is represented as the volume segments in the ray casting rendering. Hence, our clip-

ping algorithm can be used in both the geometry and the volume clippings. Compared to

the volume clipping, the boundary of the geometry should also be calculated in the result
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by any geometry clipping. In the geometry-geometry case, the resulting geometric shape

is closed, indicating that the geometry boundary around the volume segments is always

rendered in all CSG operations. Fig. 5.11 shows examples of geometry-geometry clipping,

Figure 5.11: Example of the Geometry-Geometry Clipping. The geometry is
closed in all result CSG shapes

where the related boundary of the clipped geometry is always drawn in the intersection

and the subtraction. The intensity and opacity are also accumulated in the intersected

regions.

In the geometry-volume case, we focus on the geometry clipping of the volume data set.

The result of the clipping is neither a geometry nor a volume, but rather a mixture of the

volumetric segment and the geometric boundary. The two-manifold property is defected.

Usually the volume-geometry clippings are used in most medical image processing. For

instance, a geometry sphere is overlapped by two volume data sets (see Figs. 5.12(b) and

5.16), we want clip the outer skin of the volume to detail the inner structure. The geom-

etry clipping can be used to arriving this goal. The hidden data (The skin in examples)

is removed by the corresponding subtraction operation. The geometry-volume clipping is

widely used to manipulate and process the reconstructed volume data set.
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(a) A volume combination of skin and bone, a volume
of bone and a geometry sphere

(b) The merging of two vol-
ume data sets subtracting the
geometry

Figure 5.12: Example of the Geometry-Volume Clipping. clipping state:
220+011. sum-of-product: ((A ∩B)− C) ∪ ((B ∩ C)−A)

5.3 The Improved Clipping State

In the intersected region, the clipping state is checked in each rendered and clipped volume

segments at each sampling point. The run-time of fragment process grows with the in-

creasing number of the clipping states. Rendering the whole scene of the union operation

needs the permutation of digits in the the clipping state. There are three cases in two-digit

clipping state, which can be calculated by using 2n − 1 in n-digit clipping state. However,

such a clipping state encoding is not optimal in the rendering algorithm. Thereby an

additional digit 2 is inserted to improve the performance efficiency. Different digits at the

same location in both clipping states are replaced by the digit 2, which indicates that the

rendering system does not care the corresponding volume. The intensity and opacity of

the volume can be simply merged into the rendered scene (OR-Association). The digit 2

can be written as:

dd2dd = dd1dd+ dd0dd

where d is the same digit-bit in all three terms. Likewise, multiple digits of 2 can be

described as an OR-association of 2n possible combinations, where n denotes the number

of digit 2 in the clipping state.
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. . . 222 . . . ≡ . . . 122 . . . + . . . 022 . . .

≡ . . . 112 . . . + . . . 102 . . . + . . . 012 . . . + . . . 002 . . .

≡ . . . 111 . . . + . . . 110 . . . + . . . 101 . . . + . . . 100 . . .

. . . 011 . . . + . . . 010 . . . + . . . 001 . . . + . . . 000 . . .

The whole volume, which denotes the digit 2 in the clipping state, enters into the ren-

dering pipeline. Visible parts of the intersected volume segments are merged into the

corresponding rendered volume and are cut by the clipped volume. If the clipping state

has either the digit 2 or 0, the current scene is the combination of all visible parts of

digit 2 by cutting away clipped volumes of digit 0. Fig. 5.13 interprets the clipping states

Figure 5.13: Examples of the Digit 2.

about digit 2 of two volumes. The 02 is the same as the 01 in this example; the 12 is a

combination of 11 and 10; the 22 is the whole scene. The number of the clipping states

is reduced by using the digit 2, which also saves one lookup access in the clipping map
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at each sampling point. Hence, the performance is improved by using the digit 2 in the

clipping map. Fig. 5.8(a) shows the whole volume which is a combination of all parts of

the volumes. For example, it can be expressed as:

11 + 10 + 01 ≡ (11 + 10) + (01 + 00)

≡ 12+ 02 ≡ 22

where 11 is the intersection between head bone and brain in Fig. 5.9. The clipping state

10 is the head bone by excluding the brain (see Fig. 5.10(b)), while 01 is the brain by

excluding head bone (Fig. 5.10(a)). Another examples are shown in Figs. 5.14 and 5.15,

Figure 5.14: Examples of Merging Several Clipping States of Geometries: On the
left side of the dash line are original geometries, on the right side
are the clipped volumes with own clipping states using the above
interpreted merging rules.

in which the merging process is illustrated from the single part to the whole volume. In

this example, the whole scene (i.e. 22 and 222) saves three and six lookup accesses in the

clipping map at each sampling point, respectively, when compared to the original clipping

state.

5.4 Data Intermixing

The section 4.1 explains the ray-casting based multi-volume rendering, in which the pixel

output color combines the intensity and the opacity values of different individual volumes
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Figure 5.15: Examples of Merging Several Clipping States of volume data. On
the left side of the dash line are three original volumes, on the right
side are the clipped volumes with own clipping states. The merging
algorithm is X1X+X0X = X2X, in which the X has the same digit
value. (complete examples see Fig. A.4 Fig. A.5

at each sampling point in several intermixing methods. The accumulation level intermix-

ing supports the depth value of the volume and is appropriate for the ray-casting approach.

Thus, this intermixing method is usually applied in multi-volume rendering. In the in-

tersected region of two rendered volumes, the intensity and the opacity can be merged

by using the accumulation level intermixing. Note that there are three different ways to

intermix intensity and opacity from different volumes during the accumulation step [3],
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namely exclusive opacity, inclusive opacity, and a mix of exclusive and inclusive opacity.

The exclusive opacity calculates the intensity (I) and the opacity (α) from one of the

volumes in the intersected region. Details of the calculation can be expressed as [3]:

I =

⎧⎨
⎩
I1 if α1 
= 0

I2 else
, α =

⎧⎨
⎩
α1 if α1 
= 0

α2 else
(5.2)

The exclusive opacity is the priority selection, indicating that the preferred volume is

selected if it is visible, whereas the remaining volumes are removed from the intersected

region. Usually, the exclusive opacity is calculated by a threshold, over which the preferred

volume is selected.

The inclusive opacity is a mixture of two accumulative effects, i.e. the intensities and the

opacities of the two volumes, which can be weighted and normalized as[3]:

I =
α1

α1 + α2
I1 +

α2

α1 + α2
I2 (5.3)

α = 1.0− (1.0− α1) ∗ (1.0− α2) = α1 + α2 − α1 ∗ α2 (5.4)

The inclusive opacity calculates the ray traversing in each volume individually. The calcu-

lated intensity is further multiplied by the associated opacity average value. The intensity

will be taken more from the high evaluated opacity than from the low opacity by using

the normalized opacity in the intersected region. Likewise, Eqs. 5.3 and 5.4 can be used

to intermixi multiple volumes, and examples are shown in Fig. 5.16.

Furthermore, the inclusive opacity is not only appropriate for the volume segments inter-

mixing, but also can be used in the geometry and volume (geometry-volume) intermixing.

The intensity and opacity are evaluated by the semi-transparent surface, are also accumu-

lated in the pixel output color (see Fig. 5.17(b)). The inner volumetric segment color of

geometry can be also combined into the volume (Fig. 5.17(d)). The inclusive opacity, in

general, can be applied in most intermixing cases if the mapping form exists to transform

the voxel value (or any object) into intensity and opacity [3].

A mix of the exclusive and the inclusive opacity represents an interactive application of

both methods, in which the volumes can be included. For instance, two volumes are mixed

first by using the inclusive opacity, and then mixed with the third volume by using the

exclusive opacity.
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(a) Exclusive opacity (b) Inclusive Opactiy

(c) Exclusive Opactiy (d) Inclusive Opactiy

Figure 5.16: Exclusive Opacity and Inclusive Opacity. (a). A head with skin has
intransparent bone, which is replaced with a semi-transparent head
by using the exclusive opacity method. The semi-transparent head is
prior selected. (c). A body has brown inner organs, which is replaced
with a pink interior by using the exclusive opacity method. (b). (d).
The intensity and opacity of intersected region are mixed by using
the inclusive opacity method. (see Fig. A.6 and A.7)

5.5 CSG tree encoding

The sum-of-product form of the normalized CSG tree can be encoded into the clipping

state, the encoding schema has been introduced in the section 5.2.2. Also, the encoding

is appropriate for the algebraic tree pruning. The sum-of-product is an OR-Association

of the products, in which the operator (+) is used in encoding, each product is the AND-

Associations and consists of Boolean subtraction and intersection. The Goldfeather nor-

malised algorithm guarantees that each product can be converted into the positive form,
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(a) Semi-transparent ge-
ometry with volumes

(b) Intermix-
ing with sur-
face boundary

(c) Semi-transparent vol-
ume with geometry

(d) Volumet-
ric intermix-
ing

Figure 5.17: Examples of Geometry-Volume Intermixing.

which consists of the Boolean intersection in inter node, and the corresponding negation is

correlated the CSG primitive object [5][6]. The positive form of the product, which can be

easily encoded into the clipping state, has both positive and negative parts in a product

expression. The negative part is the subtrahend in the subtraction of product and the

remaining parts are all positive [17]. The positive part, denoted as 1 in the clipping state,

is the rendered volume in the current scene. The negative part, however, is clipped from

the current scene and is denoted as 0. The CSG expression encoding is described in the

following table:

Clipping State Encoding
S ∈ {A,B} sum of product positive form Clipping State

A has volume id 10 A−B AB 10
B has volume id 01 A ∩B AB 11

B −A AB 01
A A 12
B B 21

Table 5.2: Clipping State Encoding.

All possible combinations are listed in the table. The positive form can be simply mapped

into the clipping state. Remarkably, the volume A in the single volume rendering is a

part of the volume A in the CSG rendering system, which also includes the intersected

region between the single volume A and other rendered volumes. As shown in table 5.2,
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the volume object A is represented by the digit 1 in the volume state, while the remaining

parts are expressed by the digit 2.

The CSG objects are registered in the encoding system and assigned as a volume ID. The

encoding system has a single digit for each CSG object. It means that CSG object is

encoded in one bit of each product, in which the algebraic pruning method is used when

the same object appears twice in the product. For instance, the expression of A − A,

indicates that the product can be ignored, and the expression of A ∩ A denotes, that the

second A can be ignored. Such a simplification can be also used in the multi-objects case.

The sum operator (Boolean OR-association) collects all products, where the (+) is used

and multiple lines exist in the lookup map. By checking the clipping state, the duality

(X +X = X) can be quickly detected. Basically, the duality is not easy to find in the

sum-of-product form, since the sequence plays a key role, for example A ∩ (B − C) =

(B − C) ∩A.

Furthermore, each product may have redundant information to increase the rendering cost

(twice rendered), which, however, can be removed from the clipping state encoding. The

clipping state, which only contains the digits 1 and 0, is the smallest evaluated unit in the

rendering pipeline. A intersection of these two clipping states are empty, while subtraction

of them is exactly the first clipping state. The encoding example is illustrate as follows:

A−B −BC −→ 122 − 212 − 211

≡ { 102 ∪ 112 } − { 012 ∪ 112 } − 211

≡ { 100 ∪ 101 } − { 010 ∪ 011 } − { 011 ∪ 111 }
≡ { 100 ∪ 101 }
≡ 102 (AB)

ABC ∩A −→ 111 ∩ 122

≡ 111 ∩ { 100 ∪ 101 ∪ 110 ∪ 111 }
≡ { 111 ∩ 100 } ∪ { 111 ∩ 101 } ∪ { 111 ∩ 110 } ∪ { 111 ∩ 111 }
≡ 111 (ABC)

The sum-of-product form can be easily converted into the clipping states. The clipping

state is also appropriate to remove the redundant part of the form, and is also applied in

the volume clipping algorithm, which can represent all CSG models in the rendering.
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5.6 Summery

This chapter describes the complete volume/geometry clipping in the rendering pipeline

from the pre-defined sum-of-product form of the CSG model. The clipping rendering

algorithm is extended from the multi-volume ray-casting rendering algorithm, which split

the volumes in each polygonal segment interval during the ray-casting. The pre-defined

sum-of-product form is converted into the clipping states, which are used to evaluate

the volume clipping in each polygonal segment interval. Compared to the multi-volume

ray-casting rendering algorithm, the segment interval, which only contains the clipped

volumes, is rejected after checking in the clipping states. Another difference is the opaque

test of each volume at the sampling point during the ray-traversing. These tests work

together with the corresponding digit-bit of the clipping states and the volume/geometry

clipping can be accurately achieved in each sampling point. Thus, the CSG model can be

applied per sampling point accuracy in the rendering pipeline.
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6.1 Performance Measurement in the Rendering

Compared to the standard ray-casting approach, the volume clipping based CSG rendering

algorithm has two additional steps during rendering, which are:

i. the checking of all clipping states in each depth interval, which finds out the polyg-

onal segment intervals of the clipped volume.

ii. The opacity and the clipping state tests, which are to check each volume at the

sampling points during the traversing in remained polygonal segment intervals.

The ray is skipped by the segment intervals of type i), in order to save the unnecessary

traverse of the clipped volume. The volume clipping is realized by the opacity and the

clipping state tests of type ii). A sampling point with a non-zero opacity value, which

indicates 1 in the clipping state, is defined as rendered. In contrast, a sampling point with

a non-zero opacity value, which indicates 0 in the clipping state, is defined as clipped.

Two volumes in a clipping state, which are defined as rendered in same sampling point,

are implemented as intersection operation; which are defined as rendered and clipped

respectively, are implemented as subtraction operation. The digit 2 combines the digit 1
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and 0 in one, the corresponding volume segment is intersected by the rendered volume

and clipped by the clipped volume. The union operation represents the multiple clipping

states, which have the or-associate to each other. The clipping states are stored in the

texture, a check in the clipping state costs one texture access. This check is applied by

the corresponding opaque volume at each sampling point during ray traversing.

The performance of our depth-based volume clipping depends on both the number of the

CSG primitives and of the clipping states. The clipping states is converted by the defined

CSG model, the complexness is directly transfer by the model. The tests of the opacity

and the clipping states need more performance by increasing the number of the CSG

primitives and of the clipping states. This increasing will lead to a lower frame rate in the

CSG evaluation of each sampling point.

6.2 Time Measurement of Volume Clipping

The ray-casting volume rendering is specified on the NVIDIA Geforce 200-Serie, which sup-

ports the CUDA capability 1.3. For the performance evaluation, we compare ray-casting

volume rendering with and without volume clipping in the framework, also difference be-

tween the use of single and multiple clipping states during the volume clipping by using

minor and major CSG volumes. The comparison is done on the computer (intel i7-960

3.20 GHz) with GTX 280 (1024 DRAM, 512-bit Memory Interface, 240 CUDA-cores) in

Linux platform.

The first test data is medical scene with multiple volumes, which use multiple modalities

or scans from different body parts. This test data uses the same data set in the solution

of 2563 and the different transfer functions (see Fig. 6.1). Table 6.1 compares the frag-

Figure 6.1: Volume Clipping of medical Liver Data. Three volumes uses the same
volume data set and different transfer functions

ment process and frame times of Kainz et al. [7] ray-casting volume rendering achieved
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Volumes clipping states average time of average time of
fragment process [ms] complete frame [ms]

2 × 2563 – 130 175
1 PSI 22 164 224

01+11+10 252 290

3 × 2563 – 159 201
1 PSI 222 229 269

4 comb. of 222 332 377
7 comb. of 222 452 498

3 × 2563 – 195 284
7 PSI 222 239 319

4 comb. of 222 372 457
7 comb. of 222 519 607

Table 6.1: Result Comparing of Liver Data Set 2563. Comparing the ray-casting volume
rendering with/without depth-based volume clipping approach, the corresponding volume
clipping algorithm is applied in single/multiple clipping states; screen size: 1050 × 800.
(PSI: polygonal segment interval)

with and without volume clipping approach. The average time∗ of the fragment process

and complete frame (including the data initialization, polygon rasterization and fragment

process) of CSG rendering are listed. The standard ray-casting approach without volume

clipping needs the shortest time in both cases (clipping states with ’–’ in the table). The

clipping states 22 and 222 activate the volume clipping approach. The result of the orig-

inal rendering (from Kainz et al.) and of the clipping states 22 and 222† are exactly the

same (see the right image in Fig. 6.1). The run time of the fragment process increases by

activating the clipping state and will increase more with higher number of the clipping

states or higher number of the input volumes. Moreover, the performance is different when

the same data set splits in the several polygonal segment intervals. The first 4 entries of

3× 2563 (see the table 6.1) indicate that volumes are in the same location, therefore, only

one polygonal segment interval exists. The last 4 entries (int table 6.1) are calculated in 7

polygonal segment intervals, and the three volumes have different locations. The fragment

time increases with ascending polygonal segment intervals. The frame time will also in-

crease if there are multiple polygonal segment intervals, in this case, the data initialization

and polygon rasterization needs more time.

∗The average time calculates with the mean of last 100 run times, the rendering system is run in the
stable state, the first 100 run times go not into the calculation.

†The volume C is a part of the volume B, the union between A and C is exact the A, because the body
bone of A is not transparent.
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Figure 6.2: Sliced Apple: the volume apple is sliced by twenty boxes.

Volumes clipping states average time of average time of
fragment process [ms] complete frame [ms]

1 × 1283 2 73 132
35 PSI 11 113 191

Table 6.2: Result Comparing of Sliced Apple 2563. Volume data set intersects in several
polygonal segment interval. screen size: 1050× 800.

The apple (1283) in Fig. 6.2 is sliced by boxes into several intervals and Table 6.2 is the

resulting comparison between the original apple and the sliced apple, indicating that the

fragment time increases with ascending polygonal segment intervals.

Figure 6.3: Volume Clipping of Medical Head Data. Two Head uses the same
volume data set and different transfer functions

Fig. 6.3 is an example of the volume clipping in medical volume data sets and Table 6.3 is

the corresponding summarized time measurements. The time measurement in Table 6.1

takes similar effect in Table 6.3. However, the coverage rate of the ray and the used trans-

fer function of both examples are different.

Table 6.4 compares the run time of the volume clipping by major volumes in the single

and multiple clipping states. All volumes use the same data set and the same transfer
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Volumes clipping states average time of average time of
fragment process [ms] complete frame [ms]

3 × 2563 – 132 177
3 PSI 202 269 308

102 + 002 323 369
100+101+001+000 398 449

Table 6.3: Result Comparing of Head Data Set 2563. screen size: 1050× 800.

Volumes Number of Average time of Average time of
clipping states fragment process [ms] complete frame [ms]

12 × 2563 [Fig. 6.1] – 621 693
1 PSI 1/4/16 737/891/1809 817/974/1909

12 × 2563 [Fig. 6.1] – 886 963
11 PSI 1/4/16 1052/1340/2382 1139/1432/2493

12 × 2563 [Fig. 6.3] – 972 1065
1 PSI 1/4/16 1092/1465/2568 1207/1571/2681

12 × 2563 [Fig. 6.3] – 1326 1445
11 PSI 1/4/16 1433/2189/4115 1555/2329/ 4272

Table 6.4: Performance Measurement by multiple volumes (in single or multiple polygonal
segment intervals) and multiple clipping states. screen size: 1050× 800.

function. The results vary between single and multiple polygonal segment intervals by

using different location of the volumes. Our reference limits the number of volumes data

set in 12 (1GB Video RAM). Compared to the result of minor volumes (2 or 3 volumes),

the ray traverses more volumes in each segment interval. The corresponding access of

the opacity and the clipping states of major volumes is more required in each sampling

point during the ray traversing. The run time of fragment process grows linearly with the

increasing numbers of the volumes and of the clipping states (complex CSG model).

Another test data is the Christmas tree in the solution of 5123. Two same data sets are

located in the scene by moving 1 unit in the x-axis (see Fig. 6.4) and split the scene into

three polygonal segment intervals.

Table 6.5 is the corresponding time measurements of the data set 5123. The run time take

similar effect as the above examples. The opaque Christmas tree is caused by breaking

the ray in the intersection of the tree in the clipping state 22. Whereat the ray further

traverses in the intersected segment interval (transparent) in the clipping state 01, until

either the rendered tree segment or the end of the volume is reached. Thus, the run time
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(a) Two same volume data sets (b) The different of volumes (10)

Figure 6.4: Test Example of Volume Clipping. Two volumes use the same volume
data set and same transfer functions, and are located by moving 1
unit in the x-axis

Volumes clipping states average time of average time of
fragment process [ms] complete frame [ms]

2 × 5123 – 457 539
3 PSI 22 655 730

01+11+10 909 987
01 875 968

Table 6.5: Result Comparing for Data Set 5123. screen size: 1050× 800.

of fragment process needs more time in the clipping state 01 when compared with the

state 22.

6.3 Result of Interactive CSG

The first CSG example is a medical scene with multiple volumes (see Fig. A.8). The

complete body consists of the volume parts, which use multiple modalities or scans from

different modalities. The volume data ‡ and geometry data § are used as primitives in

‡all used volume data has the same data set in solution 2563 and the different transfer function, see
volumes in center bottom of Fig. A.8

§blood vessel, transparent lung, blue and green clip cylinders

Draft Copy: September 19, 2011



6.3. Result of Interactive CSG 65

the CSG model. If we just want to see the blood vessel, the heart and the kidney will

be hidden. A total of 11 CSG primitives are used in this example and the number of

clipping states is 6 lines after transform. Table 6.6 shows the time measurement by using

CSG primitives The number of Average time of Average time of
clipping states fragment process [ms] complete frame [ms]

3 × 2563 – 322 401
+ 8 Geometry 6 936 1012

Table 6.6: Result of CSG Liver Example. screen size: 1050× 800

enabled and disabled CSG approaches. As can be see in the table, the run time will be

approximately 3 times than if without using the CSG approach.

In Fig. A.9, the head volume is split step by step, whereby the inner details of the head is

clearly shown in example. The scene is split into several polygonal segment intervals and

CSG primitives The number of Average time of Average time of
clipping states fragment process [ms] complete frame [ms]

5 × 1283 – 244 313
+ 6 Geometry 6 918 1015

Table 6.7: Result of CSG Head Example. screen size: 1050× 800

the evaluated segment intervals is also 5 times than the original volume data, both needs

much more time in the fragment process (see Table 6.7).

Figs. A.1, A.2 and A.3 illustrate the CSG examples of geometry-geometry and geometry-

volume objects. The performance of the CSG rendering algorithm is directly dependent

on the number of the primitives and of the used clipping states (the complexity of the CSG

model). A important feature in this CSG rendering algorithm is that the fragment time

is not more different by using the varying transfer function. The CUDA based rendering

algorithm is based on the power of the GPU and the primitives are limited by the the

VRAM. The calculated speed limits by the available CUDA-Core Unit. The performance

can be improved with upgraded processing power. In conclusion, the rendering system is

able to construct the complete scene by using the CSG model.
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Image Gallery

Figure A.1: CSG Example of 19 simple geometries: Fish
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Figure A.2: CSG Example of simple geometries: Smile
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(a) CSG Example of 400 rectangles with Bunny: ’voxelized Bunny’ (Geometry-Geometry)

(b) CSG Example of 400 rectangles with 4 Volume Data: ’voxelized Body’ (Geometry-
Volume)

Figure A.3: CSG Examples by major simple geometries.
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Figure A.4: Clipping State Examples. The clipping state, which contents the digit
2, can be separable in two other clipping state (in the corresponding
digit stead 2 the 1 and 0).
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Figure A.5: The Merging of Clipping State Example. The clipping states 1 (col-
umn 3) and 0 (column 4) in same digit are inverse to each other.
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(a) input volumes of the Datamixing

(b) the Datamixing with Exclusive Opacity

(c) the Datamixing with Inclusive Opacity

Figure A.6: Data Mixing of Inclusive and Exclusive Opacity. (a) The input heads
and the geometric sphere. The volume data set head with skin has
intrasparent bone. (b) The intransparent bone is replaced with a
semi-transparent head by using the exclusive opacity method. The
semi-transparent head is prior selected. (c) The intensity and opacity
of the intersected region are mixed by using the inclusive method
(weighted and normalised).
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(a) input volumes of the Datamixing

(b) the Datamixing with Exclusive Opac-
ity

(c) the Datamixing with Inclusive Opac-
ity

(d) exclusive threshold

Figure A.7: Data Mixing of Inclusive and Exclusive Opacity. (a) The input livers
and the geometric sphere. The volume data set body has silver-color
inner organs. (b) The inner organs in brown is replaced with inner
organs in pink by using the exclusive opacity method. The inner
organs in pink is prior selected. (c) The intensity and opacity of the
intersected region are mixed by using the inclusive method (weighted
and normalised). (d). The exclusive opacity with different threshold
in the intersection region.
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Figure A.8: Interactive CSG example. The final result is combined from 11 prim-
itive objects, which contain the geometric objects (such as blood ves-
sel, liver-geometry, cylinders) and volume data sets (the body with
three different transfer functions).
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(a) split head volume with inclusive brain

(b) split head volume with exclusive brain

Figure A.9: Interactive CSG examples. The final result is combined from 11 vol-
ume objects, which contain the geometric objects (such as blood ves-
sel, liver-geometry, cylinders) and volume data sets (the body with
three different transfer functions).
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