
Master thesis

varBPM: A product line for creating
business process model variants

Andreas Daniel Sinnhofer, BSc

————————————–

Institut für Technische Informatik
Technische Universität Graz

Graz University of Technology

Betreuer: Dipl.-Ing. Dr. techn. Christian Kreiner
Vorstand: Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Uwe Römer

26. Mai 2014, Graz

Kurzfassung

In der heutigen Industrie steigt ständig das Bedürfnis nach schnelleren Produktionszeiten
bei gleichzeitiger Reduktion der Kosten. Um diesen wachsenden Bedürfnissen gerecht zu
werden, werden üblicherweise Tools zur Modellierung von Geschäftsprozessen verwen-
det, mit denen die einzelnen Abläufe modelliert, dokumentiert und optimiert werden
können.

Da sich oftmals zwischen den unterschiedlichen Geschäftsprozessen nur wenig ändert,
werden neue Prozesse meistens durch kopieren bzw. klonen von bisherigen Lösungen
gebildet. Das bedeutet, dass bei einer Veränderung einer dieser Vorlagen alle betroffe-
nen Prozesse händisch verbessert werden müssen, was zu einem erheblichen Arbeitsauf-
wand führen kann. Dies führt in weiterer Folge auch dazu, dass eine Konfigurierung des
Enterprise-Resource-Planning-Systems (ERP) mit hohem Aufwand und meistens hohen
Kosten verbunden ist.

Ziel dieser Arbeit ist es, diesen Modellierungsprozess mit modernen Mitteln aus der
Domänenmodellierung zu unterstützen, um eine rasche und konsistente Art der Entwick-
lung und Optimierung basierend auf systematischer Wiederverwendung zu gewährleisten.
Das Erstellen eines kompletten Geschäftsprozesses soll nach dem ’Baukasten’ Prinzip
funktionieren, in dem Prozesse durch Auswahl bestimmter Features automatisch zusam-
mengesetzt werden. Darüber hinaus soll es möglich sein, diese Features automatisiert
erfassen zu können und aktuell zu halten um eine zeit- und kostenintensive Nachbear-
beitung der Modelle zu vermeiden.

Stichwörter: Software Product Lines, Geschäftsprozesse, Tool-Vernetzung,
Domänenmodellierung

Abstract

In the today’s industry the need for faster production cycles and simultaneously decrea-
sing production cost is steadily increasing. To solve this issue tools for modelling business
processes are typically used to model, document and optimize the process steps for a
specific workflow.

In most cases different business processes do only vary in some points which lead to
the situation that new business processes are formed through copy or clone of previous
solutions. This means that changes to a template affects many processes, where all of
them need to be manually updated, which can lead to a considerable amount of work
for a bigger company. Furthermore this can also result in higher costs to configure an
Enterprise-Resource-Planning-System (ERP).

The goal of this thesis is to optimize the modelling process of such processes with modern
techniques from domain modelling approaches - like feature oriented domain modelling
approaches - to ensure a quick and consistent way of developing and optimizing this
processes based on systematic reuse.
The creation of such a process should be based on a ’building block’ principle, which
means that business processes are automatically assembled by selecting a set of specific
features. Furthermore it should be possible that this set of features is automatically
updated if a domain expert designs a new feature or updates an old one. This should
ensure that maintaining business processes and the according models are neither time
nor cost intensive.

Keywords: Software product lines, business processes, tool integration, do-
main modelling

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

Graz,

Date Signature

Acknowledgements

This master thesis was kindly sponsored by Magna Cosma and was progressed at the
Institute for Technical Informatics at Graz University of Technology.
I would like to thank Roman Zernig (Magna Cosma) and Peter Pühringer for their
encouragement and their support. Further I want to thank my supervisor Christian
Kreiner, who always had an open ear for me and with whom I had many interesting
discussions on this topic. Special thanks goes to Christopher Schaffert from Intellior AG
and Danilo Beuche from pure::systems.
Last but not least I want to thank my parents who enabled my education and my studies,
my brother who has always supported me and Inge Siegl.

Graz, May 2014 Andreas Daniel Sinnhofer

X

Contents XI

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Disposition . 1

2 Related work 3
2.1 Software product lines . 3

2.1.1 Motivation . 3
2.1.2 Phases of development . 4

2.1.2.1 Domain Engineering . 5
2.1.2.2 Application Engineering 7

2.1.3 Software product lines in action . 8
2.2 Domain specific languages . 9

2.2.1 Motivation . 9
2.2.2 Phases of development . 9

2.3 Business processes management . 11
2.3.1 Process types . 12
2.3.2 Workflow . 12
2.3.3 Business process modelling . 12

2.4 Tool integration . 16
2.4.1 Integration based on Integrated Models 16
2.4.2 Integration based on Process Flows 17

2.5 Tool evaluation . 18
2.5.1 MADMAPS . 18
2.5.2 FODM: Tool candidates . 20

2.5.2.1 Tool 1: pure::variants . 20
2.5.2.2 Tool 2: Gears . 21
2.5.2.3 Tool 3: Clafer . 22
2.5.2.4 Tool 4: XFeature . 23

2.5.3 FODM: Criteria for the Evaluation 24
2.5.4 FODM: Results . 25
2.5.5 BPM Tool: candidates . 26

2.5.5.1 Tool 1: Aeneis . 26
2.5.5.2 Tool 2: Xpert.Ivy . 27
2.5.5.3 Tool 3: Modelio . 28
2.5.5.4 Tool 4: DHC Vision . 28

2.5.6 BPM: Criteria for the Evaluation 29
2.5.7 BPM: Results . 30

3 Variability modelling framework 31
3.1 Conceptual design . 31
3.2 Type model . 32

Contents XII

3.3 Construction rules . 33
3.4 Relations and Restrictions . 34

4 Implementation of the varBPM toolchain 35
4.1 The varBPM PluginHandler . 35
4.2 Tool integration . 35

4.2.1 Concrete implementation . 38
4.3 Variability . 39
4.4 Model validation . 42

4.4.1 Feature model validation . 44
4.4.2 VDM model validation . 45
4.4.3 Available automatic quick fixes . 45

4.5 Model transformation . 46
4.6 Model conversion . 46
4.7 User interface . 47

4.7.1 Wizards . 47
4.8 The command structure . 50

5 Using the varBPM tools in practice 53
5.1 Glossary . 53
5.2 Installing the plug-in . 53
5.3 Setting up Aeneis . 53
5.4 Using the varBPM pure::variants plug-in 58

5.4.1 Contributions to the user interface 58
5.4.2 Creating a new feature model . 59
5.4.3 Update an existing feature model 66
5.4.4 Model validation . 67
5.4.5 Model Transformation . 67

5.5 Design rules in Aeneis . 70
5.5.1 Structure . 70
5.5.2 Coupling factor . 70
5.5.3 Commonalities . 70

6 Future work 73

A Detailed FODM tool evaluation criteria 75

B Detailed BPM evaluation criteria 77

Bibliography 79

List of Figures XIII

List of Figures

2.1 The software product line engineering framework [PBL05] 5
2.2 Example feature model . 6
2.3 Integrated business process and workflow management (translated version

from [Gad08]) . 11
2.4 The principles for a methodical business process modelling (adapted form

[Koc11]) . 13
2.5 Concept of the integrated data model [Gab03] 16
2.6 Concept of the process flow based tool integration [Gab03] 17
2.7 Flowchart for the domain modelling paradigm selection using MADMAPS

[LWK12] . 18
2.8 Concept of pure::variants [pur12] . 20
2.9 Concept of Gears [Big12] . 21
2.10 Clafer feature model example [Uni13] . 22
2.11 XFeature modelling architecture [Ale05] 23
2.12 Overview of the key features of Aeneis . 26
2.13 Overview of the concept of Xpert.Ivy [Xpe13] 27
2.14 Four layer architecture of DHC Vision . 28
3.15 Conceptual design of the complete System 32
3.16 Construction rules for the feature model 33
4.17 The plugin activator class . 35
4.18 Tool Integration: Java base class of the common data model 36
4.19 Tool Integration Overview . 37
4.20 Tool Integration: Abstract java base class of the connector 38
4.21 Tool Integration: Concrete Java implementation of the data model and

connector . 39
4.22 Variability tree node types . 40
4.23 Variability tree abstract concept . 41
4.24 Overview of the VariabilityTree class . 42
4.25 The model check engine . 43
4.26 Implemented classes for node checks . 44
4.27 Class hierarchy for the transformation module 46
4.28 Class hierarchy for the wizard classes . 48
4.29 Overview of the implemented wizard pages 50
4.30 Overview of the command structure . 51
5.31 Setting up Aeneis: Step 1, adding an object format to the report editor . 54
5.32 Setting up Aeneis: Step 2, adding a new ”Component group” 54
5.33 Setting up Aeneis: Step 3, adding a component 55
5.34 Setting up Aeneis: Step 4, setting up the query 56
5.35 Setting up Aeneis: Step 5, final result of the object format 56
5.36 Setting up Aeneis: Step 6, final result of the sub element object format . 57
5.37 Menu contribution of the varBPM plug-in 58
5.38 Import wizard contribution of the varBPM Plugin 59

List of Figures XIV

5.39 Example: Import wizard first page . 60
5.40 Example: Import wizard second page . 61
5.41 Example: Connection protocol dialogue 62
5.42 Example: Import wizard third page . 62
5.43 Example: Import wizard third page with sample process structure 63
5.44 Example: Edit dialogues . 64
5.45 Example: Load object dialogues . 65
5.46 pure::variants synchronise button . 66
5.47 pure::variants model validation buttons 67
5.48 Setting up a configuration space: Step 1 68
5.49 Setting up a configuration space: Step 2 68
5.50 Adding a transformation configuration . 69
5.51 Adding a transformation configuration . 69

List of Tables XV

List of Tables

1 Criteria C1 - C4 of domain modeling alternatives 19
2 Criteria weighting factors for domain modeling 19
3 Resulting utility factors . 20
4 FODM: Tool evaluation results . 25
5 BPM: Tool evaluation results . 30
6 Overview of all automatic quick fixes . 45
7 Implemented Command types . 51
8 Criteria to rate FODM tools, based on [Len00], [DSF07], [DRGN07] and

[And09] . 76
9 Criteria to rate BPM tools, derived from the project 78

List of Tables XVI

1 Introduction 1

1 Introduction

1.1 Background and Motivation

Magna Cosma is an international company in the metal stamping and assembly industry
- specialised on class-A car body panels and closure parts (e.g. doors) - with several
plants all over the globe. The implemented business processes are mostly controlled by
an SAP infrastructure. Although some plants are specialised on the same production
parts, almost every plant develops and maintains their own business processes, which
makes it really difficult to compare processes, mark bottlenecks, optimise the processes
and publish the changes to other plants.

Another big issue is the documentation of the processes which is often out dated or
fragmentary which means that the interchange of processes between plants is almost
impossible without any guidance of domain experts, which is then a time and money
consuming task. Furthermore it is a big problem if the former developer of a process is
leaving the company, leaving a hole of knowledge behind which is costly to fill.

The attempt to integrate the modelling process of business processes into a software
product line (SPL) seems at first sight a little strange, since a SPL is intended to sys-
tematically reuse software artefacts to automatically build variants of a similar software
product, but at second glance the similarity is clear: In this particular situation, the SPL
is used to systematically reuse expert knowledge in form of business process artefacts to
automatically ensemble variants of a similar business process.
Through the integration of company specific extensions it is also possible to establish a
generic way to develop and publish business processes throughout the whole company
landscape, meaning that each partner benefits of the knowledge of all domain experts
around the globe, ensuring that all implemented business processes are effective and
gainful. I.e. a form of knowledge management is established throughout the whole
company landscape.

1.2 Disposition

This thesis is structured in the following way:

• Chapter 2: Gives an overview of the research activities, covering the topics of
software product lines, domain specific languages, business process management
and tool integration. This chapter also covers the topic of tool evaluation for a
feature oriented modelling tool and a business process modelling tool.

1 Introduction 2

• Chapter 3: Gives an overview over the structure of this project and addresses
the composition of the solution space concerning the developed type model and
construction rules.

• Chapter 4: Deals with the implementation of the pure::variants plug-in and gives
a rough idea on how the functionality could be extended.

• Chapter 5: Deals with the usage of the developed plug-in in combination with
the BPM Tool to show the validity of this approach, highlighting some design rules
and steps to be taken to ensure that this approach works best.

• Chapter 6: Contains a short list of further projects that could be implemented
based on this work.

2 Related work 3

2 Related work

2.1 Software product lines

A SPL can be seen as a set of domain features, which are automatically assembled and
configured to a whole software project just by choosing the wanted features. Instead of
writing code for a whole system, the developer divides the project into small lightweight
features which are implemented in so called domain artefacts. These artefacts can then
be easily changed and assembled to a whole system. In classical software engineering,
there is also a kind of ’SPL-thinking’. For example: If one looks at the strategy pattern
(or policy pattern), where you can choose a specific behaviour of an object at runtime
or compile time, making a class more reusable than the classical approach.
I have used the term ’feature’, but what exactly is a feature? A definition of a fea-
ture depends strongly on the according domain and is sometimes really hard to define,
but crucial to define, because the success of a SPL depends strongly on a good de-
signed feature model (and according to this, a good designed variability model). I think
Danilo Beuche defined the term in an easy to understand way as a property of a sys-
tem/component/group of components which is relevant for a specific Stakeholder.
A simple example for features and their relationships is given in chapter 2.1.2.1.

2.1.1 Motivation

A well written discussion of product lines their motivation and their benefits can be
found in [PBL05]. The key points have been identified to:

• Development Costs: This benefit is somehow a mixed blessing, because the
initial costs of a software product line engineering (SPLE) are much higher than in
classical software engineering due to the fact, that the analysis and design phase are
much longer. But as stated out in [PBL05], adopting a SPL to another customer
costs way less effort and money, because only new features has to be modelled and
implemented instead of a whole system. According to the literature, the break-even
point lays by about three systems.

• Time to market: As pointed out in the above benefit, it costs way less time to
adopt an existing SPL to another customer, but there is also the same issue: The
initial development time and respectively the initial time to market is higher than
in classical software engineering.

• Quality and Maintenance: This is one of the main advantages of a SPLE. The
product quality is much higher due to the fact that the software is tested and

2 Related work 4

running on many different kind of systems. If one bug is detected, the according
feature has to be modified and the patch can be easily delivered to all customers.

• Customer Satisfaction: Another very big advantage is that the customer gets
a well suited product for his wishes, which is highly maintainable and expandable.
He gets exactly what he wants and he only pays for the features he wants. And
due to the fact that there are always enhancements to develop over the time, a
satisfied customer will always return to your company.

2.1.2 Phases of development

According to literature ([PBL05] and [WL99]), the software product line engineering
can be split up into two main parts, the Domain Engineering and the Application
Engineering .
The domain engineering is the procedure for defining the components, the variabilities
and the commonalities of the product line and the application engineering is the pro-
cedure where the application itself is build, using some domain artefacts which were
created in the domain engineering.

Each of these two processes can again be split up into four phases:

• Requirements engineering

• Design

• Realisation

• Testing

And for completing the SPLE framework some kind of project management has to
control the domain engineering procedure in an economic way, defining what is inside
the domain and what is outside of the domain. For illustration, the complete framework
can be seen in Figure 2.1.

2 Related work 5

Figure 2.1: The software product line engineering framework [PBL05]

It should also be mentioned, that creating and evolving such a system is an iterative
process, which is indicated in the picture with the loop back arrow.

2.1.2.1 Domain Engineering

Additional to the main goals - which where stated out before - there are some more: The
set of applications, for what the product line should work, is defined and the reusable
artefacts are created.

The Domain requirement phase is for defining the domain with all its components
(mainly features and variation points). The heart of this analysis is the so called
”Feature-oriented domain analysis” (FODA [KCH+90]). The purpose of such an analysis
is to define the set of possible features and to state the possible relationships between
them. There are five possible relationships between features. The ’mandatory’, the ’or’,
the ’alternative’, the ’optional’ and the ’excluding’ relation.

2 Related work 6

• mandatory: Adding a feature, adds also all its mandatory features

• or: These features are orthogonal to each other and at least one of it must be
chosen (1 to n possible selections)

• alternative: Exactly one feature of a list of features must be chosen (1 out of n)

• optional: Somehow like the or relation, but also no feature is possible (0 to n
possible selections)

• excluding: If one feature is included, some other features can’t be chosen because
their behaviour/influence on the system is incompatible

An example is shown in the Figure below.

car

Engine Type Gear Type Entertainment System ESP Navi

Electrical Gas Diesel Automatic Manual Radio CD-Player

Figure 2.2: Example feature model

In this example, a car is modelled with five features whereas the ”Engine Type”, the
”Gear Type” and the ”Entertainment System” are mandatory features and the ”ESP”
and the ”Navi” are optional features. The ”Engine Type” feature is than again modelled
as a set of alternative features. The same applies for the ”Gear Type” feature. The
”Entertainment System” feature is modelled with two additional features which are
”or” related.
The result of this whole phase is the so called Variability Model , which consists of
feature diagrams and textual and/or model-based requirements. This deals as input for
the next phase.

The domain design phase is for defining a generic reference architecture and to create a
refined variability model. The reference architecture states explicitly what components
are variable and which of these should be realised in the realisation phase. The archi-
tecture itself consists of different kind of views to get a more structured perspective for
all kind of stakeholders. According to [PBL05] there are four important views:

• Logical View

2 Related work 7

• Development View

• Process View

• Code View

The logical view contains the requirements model, the development view deals with the
software components and their interfaces, the process view states the activities during
the execution of the system and the code view states the project structure in forms of
source files and where they are located.

The domain realisation phase deals with the implementation of reusable artefacts (soft-
ware components). Beside this output, this phase also provides a updated design and a
detailed documentation on the developed components. Implementing these components
differs from a traditional software engineering, due to the fact that the result consists
of loosely coupled components, with an interface that should work in many contexts.
Exactly this interface is the hardest part when designing and implementing such a sys-
tem.

The domain testing phase is a very important phase, where all artefacts (design artefacts
and software components) are tested. It is important to know that these components
are only tested for their self without running in an application. Only the interface and
the behaviour of each component is tested and validated. Testing these components in
an running application is part of the application engineering.

2.1.2.2 Application Engineering

The main goal of the application engineering is to develop an application based on the
highly reusable domain artefacts from the domain engineering.

During the application requirements phase, a requirements specification based on the
domain requirements and the product feature roadmap of the according application is
defined. It is also necessary to detect and evaluate the differences between the require-
ments of the customer and the available capabilities of the SPL. This is a very important
phase of development, because the benefit (the degree of reuse) strongly depends on good
application requirements.

During the application design phase, the application architecture is defined by using and
configuring the reference architecture from the domain engineering and by considering
some application depending adaptations. For each of the adaptations a cost-benefit
analysis should be made and if the implementation effort (time and money) is too high,
these changes should be rejected (of course with the agreement of the customer).

2 Related work 8

During the application realisation phase, the whole application is created. This phase
differs a lot from the classical approach, due to the fact that many parts (the domain
artefacts and the interfaces between them) are already implemented. It takes less time
to build the whole application from them. Only new or modified features have to be
implemented from scratch.

During the test phase, the complete application is tested. It is important that really all
components are well tested (the reused components and the new ones) and the results
of these tests can also affect the domain artefacts if a bug is detected.

2.1.3 Software product lines in action

During the software product line conference - which is held once a year - a famous and
outstanding software product line is chosen and is put in the so called ”product line hall
of fame” which can be found here:

http://splc.net/fame.html

Some of the famous projects are for example the Bosch gasoline systems, Nokias Mobile
Phones or Philips product line of software for television sets.

http://splc.net/fame.html

2 Related work 9

2.2 Domain specific languages

DSLs are languages which are custom made for a specific application domain. One of
the most famous domain specific language is UML, where the application domain is
the specification of software components (components, constraints, activities, ...) in a
software project. A DSL can vary from a very small scope, which is locked to some
few applications, or a very general scope with thousands of applications. For example
a GUI for choosing and combining feature artefacts in a SPL has a rather small scope
compared to a hardware description language such as VHDL.

2.2.1 Motivation

The key benefits are:

• Ease of use: Due to the fact, that a DSL is designed to only fit into one spe-
cific domain, it is very easy to learn this kind of language and to develop a new
application out of it. In some cases it is even unnecessary to learn a new kind of
programming language, because the DSL is intuitive and straight forward to use.

• Time to market: Generally it costs less time to develop a new application from
a DSL, than using a general purpose language, because the language is well suited
for the specific application domain (the needed number of LOCs decreases).

• Quality and Maintenance: This benefit is very similar to the SPLE benefit.
Due to the fact that a DSL has less components to maintain (compared to a
general purpose language), it costs less effort to maintain it and also the quality is
in general higher.

2.2.2 Phases of development

According to [MHS05] there are four phases of development:

• Analysis

• Design

• Implementation and testing

• Deployment

2 Related work 10

Additionally to this, a ”decision” phase is mentioned, for deciding if an existing DSL
should be used, a complete new one should be developed, or if a general purpose language
should be used, a table of decision patterns and their description can also be found in
[MHS05].

During the analysis phase, the domain is analysed using one of the domain analyse
tools such as the previous mentioned ”feature oriented domain analysis” ([KCH+90])
or any other tool which can be found in the literature ([FPDF98], [TTC95] or [SA98]).
The output of this phase is a graphically diagram, which represents all connections and
relations in the specific domain.

During the design phase, the DSL is designed with the help of the diagram of the analysis
phase. Potentially a designer often tend to over-design a application, but for a DSL it
is crucial to define exactly (and only) the required parts, because the more overloaded
a DSL is, the less is the gained benefit. Also the way how the DSL should be created
should be considered in this phase. One possible solution is to use a GUI-Tool such as
MetaEdit+, or another possibility is to use an embedded approach, which means that an
existing general purpose language is extended with specific abstract types and generic
functions (e.g. by using template metaprogramming with C++). It is also possible to
use an existing DSL and to extend it with the additional wished features (in literature
it is often called the piggyback-approach).

The rest of the phases are straight forward: According to the specification, the DSL
must be implemented and should be well tested so that it is safe to use and finally it is
deployed so that real products and systems can be developed with it.

2 Related work 11

2.3 Business processes management

As found in the literature (e.g. [Kev01], [Mic93], [Pet07]) business process oriented
companies perform better than (classically) businesses with a hierarchical or pyramid
approach. The aim of such business processes is to be highly flexible to the demands
of the market, to deliver high quality for low costs and to be fast in the production.
To achieve these goals a form of management is needed, where processes are modelled,
analysed and optimized.
The most popular definition of the term business process is defined by [Mic93] as: ”a
collection of activities that takes one or more kinds of input and creates an output that
is of value to the customer”.

In other words spoken, a business process is a goal oriented structure, where a sequence
of tasks are executed and which produces an output that satisfies a customers need
([Gad08]). Optimizing a process is done by adjusting/reassembling the tasks in such a
way, that the production costs of the output is as low as possible while the quality is as
high as needed so that the customer is a satisfied one.

A business process management is often coupled with a workfow management to monitor
the correct execution of a process in each process step. This approach can be seen in
Figure 2.3.

Figure 2.3: Integrated business process and workflow management (translated version
from [Gad08])

2 Related work 12

Due to the supporting role of the workflow management, such systems are often called
”business process management systems” ([Gad08]).

2.3.1 Process types

As identified by [Gad08] there are three different kind of business processes:

Control process (management processes): These are processes which take
the responsibility of the interaction of all other processes. For example processes
which handle the business strategy development, the operational management or
the operative planing.

Core process (primary processes): These are processes with a high adding
value and are critical for the ability to compete. These processes covers the areas
from covering customer wishes, production, and delivery or service provision.

Support process (cross section processes): These are processes with a lit-
tle adding value and are typically not critical for the ability to compete. Typical
examples would be (cost) accounting, reporting system or human resource man-
agement.

2.3.2 Workflow

A workflow is defined by [Öst95] as a refined business process. Based on the process
design on the macroscopic level the process is split up into sub-processes until the mi-
croscopic level is reach. The microscopic level is reached when all tasks in these sub-
processes are detailed enough, so that the process employees can use it as work instruc-
tions. The sequence control can be either done by an executive manager or an automatic
electronic system.

2.3.3 Business process modelling

In this thesis the business process modelling is seen from an analytical point of few,
where business processes are modelled, analysed, optimized and eventually simulated
(depends on the fact if a workflow management is used or not). As stated by [Cur92] a
business process must provide information for four different categories:

• Functional: Describing what is going to be done

2 Related work 13

• Behavioural: Describing when and how the goal is achieved

• Organisational: Describing the where and by whom is the goal reached

• Informational: Describing the structure and the relationships among the data.

According to [Koc11] there exist six principles for a methodical modelling:

Figure 2.4: The principles for a methodical business process modelling (adapted form
[Koc11])

1. The principle of correctness: This principle claims that the representation of
the real process in a model contains all fundamental parts. This means that all
involved workers/persons can derive all activities they need to do, to execute the
process.

2. The principle of relevance: Due to the fact that a model of the ”real world” can
never be complete the principle of relevance was introduced to reduce the scope of
the model to the according purpose. This means that a model of a process should
always be concentrated on the according domain and should not try to satisfy all
point of views.

3. The principle of economic feasibility: It should be interpreted in such a way,
that the optimum level of detail is reach when all goals can be met. This means
that further effort in the process does only cost money and doesn’t really increase
the knowledge about the process. The principle also claims that not each model
needs to be developed from scratch.

4. The principle of clearness: This principle requires that a model is readable and
coherent. This means that a model is as easy as possible and only as complex as

2 Related work 14

required. The rule of thumb says that a process model should fit into one A4 page.
If the model is bigger, it should be split up into sub processes.

5. The principle of comparability: The aim of this principle is that models which
were created with different modelling techniques can be compared to each other.
This is important if different departments in a company design processes in a
different way. Although this situation should be avoided, it is found very often.

6. The principle of systematic composition: This principle aims for the con-
sistency of models which are developed for different views (e.g. an organisational
view, a data flow view, a functional view, etc.. This means for example that pro-
cesses only references data which is really present in the data model, or processes
only uses organisational units which are defined in the organisational model. The
principle of systematic composition ensures that each sub-model is integrated into
an overall management concept so that the consistency is guaranteed.

As found in the literature, there exists a various number of modelling techniques and
paradigms but since our project partner demanded a BPMN tool, only this method is
further discussed.

BPMN: Business Process Modelling Notation

Sometimes also called as Business Process Model Notation, is a modelling notation for the
representation of business processes and was developed by an IBM-employee (Stephan
A. White) back in 2001. It was released by the Business Process Management Initiative
(BPMI) in 2004 and is since June 2005 part of the Object Management Group (OMG).
Since Juli 2013 it is also an ISO/IEC standard.
The focus is based on the graphically representation of the business processes but the
standard also provides a direct mapping to some execution languages so that the process
model can be executed. It is designed to be understandable by all kind of business
stakeholders.
In version 2.0 there exists eight groups of elements1:

• Activities: Blocks which defines steps that must be executed before the control-
flow can continue.

• Conversation: Indicates the exchange of a set of logically related messages

• Gateways: Splits/merges the control-flow according to some rules (e.g. exclusive
gateway: according to a condition only one branch is executed. Similar to an

1for a complete overview see www.bpmb.de/images/BPMN2 0 Poster DE.pdf

2 Related work 15

if-statement in computer science)

• Choreographies: Represents an interaction (e.g. message exchange) between two
participants.

• Swimlanes: Represents responsibility for activities in a process

• Events: The standard defines a various number of events such as timer (cyclic
events, timeouts, ...), errors, cancel events, etc.

• Data: Additional artefacts that can be linked to any of the elements.

• Links: Symbolizing the control flow (the sequence of execution) or relations be-
tween elements.

2 Related work 16

2.4 Tool integration

Tool integration has been identified (as stated in [NIS93]) as a crucial matter for com-
puter based engineering processes especially for model-based development ([Gab03]).
A lot of these solutions are based on an architectural approach like the one presented
in [Kar99] and particularly two design patterns have been developed from [Gab03] for
systems, where a model transformation is one of the key requirements.

2.4.1 Integration based on Integrated Models

The first pattern is based on the idea that all tools which should cooperate together
shares a common data model for data exchange. The concept of it can be seen in
Figure 2.5. The communication between the integrated models is based on any kind of
middleware (e.g. CORBA is widely used). Between these tools a so called ’Integrated
Model Server’ is used to store the published data in a repository.

Figure 2.5: Concept of the integrated data model [Gab03]

For each tool a translator needs to be implemented, which translates the data model
of the tool into the common meta-model and vice versa. So if a tool wants to publish
its data, it first transforms the model into the common data model and sends it to the
model server. If a tool wants to read the data, the data from the server is read and
transformed into the tool specific data model. It is obvious that this approach works
best if all tools have a significant similarity in the used meta-models.

2 Related work 17

2.4.2 Integration based on Process Flows

The idea of the second pattern is to implement a point to point connection between
the tools, whereas the communication is message based via a backplane system. The
concept of it can be seen in Figure 2.6. The backplane must be initialised with all
needed meta-models, translators and workflows. A workflow contains the information
about which tool publishes what kind of data or model, which tools are subscribed to
this information and how these tools are sequenced.

Figure 2.6: Concept of the process flow based tool integration [Gab03]

Whenever a tool wants to publish a model or data, it sends it to the backplane. The
backplane then determines if a tool (or tools) is subscribed to this kind of information
and if so, the data or model is transformed and the destination tool is informed that new
information is available for it. The manager is used to configure the backplane and to
monitor the processes. In contrast to the first pattern, typically fewer translators need
to be implemented because the tools are pairwise integrated.

2 Related work 18

2.5 Tool evaluation

The most common modelling paradigms for domain modelling are feature oriented do-
main modelling (FODM) and domain specific modelling (DSM). It is very crucial to
choose the right paradigm for the according domain, but in many cases it is very difficult
to choose. For this work MADMAPS was used to determine the best suited modelling
paradigm.

2.5.1 MADMAPS

Figure 2.7: Flowchart for the domain modelling paradigm selection using MADMAPS
[LWK12]

MADMAPS [LWK12] (stands for multi-attribute domain modelling approach for para-
digm selection) is a tool for choosing a modelling paradigm for domain modelling. The
result of such an analysis is a recommendation for a specific paradigm or the recommen-
dation to split up the domain into some subdomains and to reapply the algorithm on
these sub-domains. The flowchart of the paradigm selection with MADMAPS is shown
in Figure 2.7.

For the paradigm selection, there are four different kinds of criteria and according to

2 Related work 19

these criteria four different kinds of questions has to be answered. These questions are
easily answerable during the early design phase of a project. The criteria are:

criterion DSM FODM

C1 Fixed relations > variable relations 4 17

C2 Several instances of elements 31 4

C3 Different binding times/views 8 15

C4 Domain model used by non-expert 8 15

Table 1: Criteria C1 - C4 of domain modeling alternatives

The according questions and the weighting factors are:

• Q1: Are there more fixed relations than variable relations?

• Q2: Should it be possible to use several instances of an element?

• Q3: Should there be more than one binding time or more than one view in the
domain representation?

• Q4: Should the domain model be used by a customer who is not a domain expert?

description weighting factor ω

strongly disagree -2

disagree -1

neither agree nor disagree 0

agree 1

strongly agree 2

Table 2: Criteria weighting factors for domain modeling

The result utility value can then be calculated using the following equation:

u =

4∑
i=1

ωi · Ci

For this project, the resulting utility values evaluates to:

2 Related work 20

Question DSM FODM

Q1 4 17

Q2 -31 -4

Q3 8 15

Q4 16 30

Result -3 58

Table 3: Resulting utility factors

As result, a FODM paradigm should be used for this project to model the domain. In
further only tools which support FODM are taken into account.

2.5.2 FODM: Tool candidates

2.5.2.1 Tool 1: pure::variants

pure::variants is a FODM tool which is developed from pure::systems2 and is based
on eclipse. It is either as a plug-in installation available or as a standalone eclipse
application. pure::systems calls the development process as a family based development
which is structured as follows:

Figure 2.8: Concept of pure::variants [pur12]

2http://www.pure-systems.com

2 Related work 21

The left side of the picture is stated as the problem space and the right side as the solu-
tion space. As denoted in [pur12] the feature model is used to model the commonalities
and the variability of the given domain. The family model describes the variable family
architecture and is linked with some defined rules to the feature models. The variant
description model is used to explore the problem domain and to express the problems
to be solved. During this process features are selected and additional configuration in-
formation is added so that a result model is created. This result model can than be
transformed to create a concrete solution.
pure::variants has an open SDK which provides ways to create any kind of model, syn-
chronisation mechanisms for these models, validation checks (not only for models but
also for the constraints and relations between them), model transformation clients, and
wizards for import/export purpose. On top of that any additional eclipse plug-in (con-
tributions to the UI, editors, ...) can be developed and used.

2.5.2.2 Tool 2: Gears

Gears3 which is developed from BigLever Software, Inc. is a tool for product line en-
gineering. The methodology is based on a three tiered approach and the according
framework can be seen in Figure 2.9.

Figure 2.9: Concept of Gears [Big12]

3http://www.biglever.com/overview/software product lines.html

2 Related work 22

As they state out in [Big12], they use a single feature model that can express the whole
feature diversity of the whole lifecycle of the product line. A single variation point
mechanism is used to apply tools to all stages of the product line from requirements
engineering over implementation and testing to change management and documentation.
And finally a single automated product configurator is used to assemble and configure
all parts from each stage of the development lifecycle just by pressing a button.
The Gears Framework is designed to extend the software engineering toolset which means
that it does not support any type of import/export functionality due to the fact that it
is integrated into the tools itself.

2.5.2.3 Tool 3: Clafer

Clafer4 is a modeling language for lightweight modelling and is developed from the
University of Waterloo. It is free to use and open source, but it is still under development.
Although it is a DSM tool, it can be adopted to deal as a feature modelling tool. An
example is shown in Figure 2.10.

Figure 2.10: Clafer feature model example [Uni13]

The tool provides also model verification and validation checks, to ensure that models
are consistent. Furthermore it enables the ability to derive an example from a model
and to check if this example was derived correctly. Clafer also helps to automatically
complete a model according to some user defined rules.
In the current version of Clafer no import/export mechanisms are implemented and since
this tool is a modelling tool, it is not natively supported to perform transformations on
feature models (as mentioned before it is only possible to derive an example, e.g. an
instance of the feature model where only all wished features are selected, but there is no

4http://gsd.uwaterloo.ca/clafer/

2 Related work 23

built in mechanism to transform this selection into a real application). But due to the
fact that it is an open source project, these points can be implemented by the user.

2.5.2.4 Tool 4: XFeature

XFeature5 is a FODM tool which is based on the product family approach and is cur-
rently developed from ETH-Zurich. Mainly it was developed for space applications, but
due to its adaptable meta-model and meta-meta-model it can be used for every other
domain as well. XFeature is available as a eclipse plug-in and is open source (GNU
general public licence). Its architecture is based on the following concept:

Figure 2.11: XFeature modelling architecture [Ale05]

As stated in [Ale05], the family meta-modelling level describes the available facilities of
a product family, whereas the family meta-model is fixed and family-independent. It
can be seen as a generic meta-model for all kind of product families. The family model
on the feature modelling level is an instance of the family meta-model and deals with
specific aspects of a certain product family. Finally the application meta model - which
is an instance of the family model - describes the application itself.
Out of the box XFeature does not support any kind of import export functionality or
any synchronisation mechanisms to synchronise a model with external sources, but due
to its open source characteristics these features could be added by the user.

5http://www.pnp-software.com/XFeature/

2 Related work 24

2.5.3 FODM: Criteria for the Evaluation

The evaluation criteria are split into two main groups. One group deals with the per-
formance of the FODM tool concerning the software product line capabilities and the
second group deals with technical aspects like flexibility and expandability.

Weighting factors

The weighting of the different categories reflects the needs of Magna Cosma and the
main topics are:

• Expandability/Flexibility of the FODM tool is highly demanded due to the fact
that import/export and model synchronisation functionality are demanded for dif-
ferent platforms (e.g. BPM Tool, SAP connection)

• The possibility to compare models with previously created models to highlight the
differences and later on analyse the impacts of changes. It is not an essential point
for the success of the project, but is demanded relatively high from the project
partner.

• Constraint and model checking is a very important criterion due to the fact that
complex business processes are modelled with a various number of constraints
between the different variations and a model transformation should only be per-
formed if all of these constraints are sufficiently fulfilled to avoid any failure in the
sequence of the process. This would lead to a disaster if later on an automatic
generation of the ERP system is done.

2 Related work 25

2.5.4 FODM: Results

T
o
o
ls

p
u

re
::

va
ri

an
ts

G
ea

rs

C
la

fe
r

X
F

ea
tu

re

Criterion weight rating rating rating rating

S
P

L
E

Feature/Variability modelling 9 10 9 6 8

Constraint checking 9 10 8 3 8

Model comparison 8 9 4 1 1

Feature meta-model maturity 4 3 1 1 7

T
ec

h
n

ic
al

ly Extensibility 9 10 5 9 5

Flexibility 7 10 6 10 6

Usability 5 5 6 6 5

Tool stability 7 9 9 3 8

Result 580 512 369 295 348

Table 4: FODM: Tool evaluation results

Conclusion

pure::variants is for this project the most suitable tool since it is easy expandable and
quite flexible and provides the best fitting build-in functionality.

2 Related work 26

2.5.5 BPM Tool: candidates

2.5.5.1 Tool 1: Aeneis

Aeneis6 is a tool for modelling businesses and their processes which is developed from
Intellior AG. It provides the ability to perform process optimisations, document man-
agement, automated generation of documentation and many things more. A overview
of the key features is given in Figure 2.12.

Figure 2.12: Overview of the key features of Aeneis7

As stated in [Int12] its meta-model is flexible adaptable which means that it is not only
a BPM modelling tool but can also be used as a modelling tool for any other kind of
models if the functionality is added to the meta model. It also provides a various number
of import/export interfaces to some named systems, like SAP or LDAP. Furthermore
the complete Aeneis database can be manipulated using a web service (XML based
message exchange) or a java based (plug-in development) API. It provides a workflow
engine to integrate the responsible employees into the process stages, and furthermore a
version management is integrated to better analyse the impacts of changes and to undo
unsuitable changes. It is also possible to link files from a file system to the processes and
to automatically include these files into the automatic documentation generation.

6http://www.intellior.ag
7taken from http://www.bpm-tool.de/loesungen/unternehmensmodellierung/

2 Related work 27

2.5.5.2 Tool 2: Xpert.Ivy

Xpert.Ivy8 is a tool to model business processes and is developed from the Swiss company
Xpert Line. The concept of it can be seen in Figure 2.13. It is based on three main
stages, whereas the first stage deals with the modelling and the design of the process.
The second stage deals with the automatic interpretation and execution of the process
with its own engine and finally the last stage deals with process controlling to monitor
all process parameters and to incorporate the gained knowledge into a new design phase
to model a new version to eliminate all identified bottlenecks.

Figure 2.13: Overview of the concept of Xpert.Ivy [Xpe13]

During all three stages the integration of systems and responsible persons is supported.
Like Aeneis it provides a workflow engine, a version control system, measures for process
optimisation and a various number of interfaces like a Java API, a LDAP connection
and connections to databases. Although Aeneis could be seen as a rival (and vice versa),
both tools provides interfaces to integrate the other system in the modelling process
(automatic model import and synchronisation).

8http://www.xpertline.ch/en/

2 Related work 28

2.5.5.3 Tool 3: Modelio

Modelio9 is a tool for modelling UML diagrams and BPM processes. The company
behind it is Modeliosoft which also provides some other products to extend the func-
tionality of the modelling tool to create a complete business solution. In contrast to the
other tools, Modelio is also available as a freeware version.
It provides a Java API to externally manipulate models and with some additional mod-
ules the possibility for automatic documentation generation, a version control system,
access to the meta-model and some points more. With the documentation module it is
also possible to reflect the changes in the generated documentation back to the drawn
process model.

2.5.5.4 Tool 4: DHC Vision

DHC Vision10 is a complete enterprise management system which provides solutions for
process management, risk management, audit management, revision management and
risk management.

Figure 2.14: Four layer architecture of DHC Vision

The architecture of it is based on a four layered architecture. In difference to the other
tools, there is no real standalone client with a GUI. The application logic runs in the
background while the presentation of the data is done over a html portal and can be

9http://www.modeliosoft.com
10http://www.dhc-gmbh.com/de/

2 Related work 29

viewed with every ordinary web browser (the official supported clients are Internet Ex-
plorer and Firefox, but every other browser should work as well).
Like Aeneis and Xpert Ivy, it provides a workflow engine, a version control system and
some interfaces to manipulate the database.

2.5.6 BPM: Criteria for the Evaluation

The evaluation criteria are split into two main groups. One group deals with the perfor-
mance of the BPM tool concerning the business process modelling capabilities and the
second group deals with technical aspects like flexibility and expandability.

Weighting factors

The weighting of the different categories reflects the needs of Magna Cosma and the
main topics are:

• Expandability/Flexibility of the BPM tool is highly demanded due to the fact
that it should cooperate with the chosen FODM tool and should provide freely
adoptable attribute lists and user defined objects

• The possibility to compare models with previously created models to highlight the
differences and later on analyse the impacts of changes. It is not an essential point
for the success of the project, but is demanded relatively high from the project
partner.

• A workflow engine or a similar facility

• Automatic document generation for a various number of documents (e.g. reports,
user guides, etc.

2 Related work 30

2.5.7 BPM: Results

T
o
o
ls

A
en

ei
s

X
p

er
t.

Iv
y

M
o
d

el
io

D
H

C
V

is
io

n

Criterion weight rating rating rating rating

B
P

M

BPMN 2.0 9 10 10 10 10

User defined attributes/objects 8 10 8 8 9

Workflow engine/approval process 8 9 10 4 9

Model comparison 8 9 8 6 9

T
ec

h
n

ic
al

ly

Extensibility 9 10 8 5 9

Flexibility 7 9 9 6 9

Usability 6 7 7 5 7

Tool stability 7 10 10 10 10

Document generation 8 9 8 9 10

Result 700 651 609 503 642

Table 5: BPM: Tool evaluation results

Conclusion

Expect Modelio, all analysed tools are fully-fledged and highly capable for being used
as a business process modelling tool. Especially the difference in functionality between
the DHC Vision Tool and Aeneis is more or less negligible. Due to this head-to-head
result, it was chosen to implement the coupling between the pure::variants application
and BPM Tool in an open and easy to expand way so that the modelling tool could be
easily replaced.

3 Variability modelling framework 31

3 Variability modelling framework

The main goal of this work is to reduce the complexity and time consumption of mod-
elling new process variants of an existing process, to easily switch between variants
whereupon the documentation of all variants keeps consistent and easy to maintain.

3.1 Conceptual design

An overview of the complete conceptual design can be seen in Figure 3.15. This con-
ceptual design includes some parts, which are not implemented in the current version of
this project, but will probably be included in some future projects which are based on
this work.

As seen in the Figure, the project can be split up into two main parts, the domain en-
gineering and the application engineering. In the domain engineering an expert (or ex-
perts) for business processes develops and maintains specific processes and sub-processes
with a BPM tool. With the guidance of this expert and based on the established arte-
facts, a feature model is created which can be updated automatically with new artefacts
if they are added to the BPM tool. In fact updating an existing feature model should
- symbolically spoken - be possible by just pressing a button and without the help of a
domain expert because he already did all necessary steps in his BPM tool by modelling
the process. Theoretically this update could be triggered from the SPL - tool (in this
case pure::variants) or from the BPM tool after something has changed. In the current
version of this project, the update mechanism is triggered from the SPL tool. The second
approach may be implemented in a future project.

In the application engineering the developed feature model is used to select the wished
artefacts and to transform these selections into a solution (a consistent business process).
Additional constraints and restrictions help to ensure that no invalid process can be
created, whereas these things are based on the knowledge of a domain expert. The
selection of the artefacts and the creation of the solution is done by an expert who
knows the current needs of the production.
After the transformation is done, it should be possible to add some additional input
into the BPM domain and to flow these additional inputs back to the feature model, or
the variant description model. Since this is not an essential part for the success of this
project, this part is currently not implemented.

3 Variability modelling framework 32

BPM
VM
FM

Fam.
Model

Applicationu
Engineering

Domainu
Expert New/

Update

BPM
Variant

(Aeneis)

Feature
Selection

(VDM)

Transformation
addu
input

u

Figure 3.15: Conceptual design of the complete System

3.2 Type model

When developing a feature model, each node can be assigned to a different type so that
the model is intuitive and quite easy understandable. Different types also enable the
ability to define additional construction rules, constraint checks, etc. As a result a new
type model was developed which contains the following types:

• varBPM:settings: Only one node of this type can be present in a varBPM
project. It deals as root node and contains all needed information for establishing
a connection to the external BPM tool.

• varBPM:root: A root node represents a business process, where the variability
should be modelled.

3 Variability modelling framework 33

• varBPM:variationpoint: A variationpoint can be seen as a sub-node in a pro-
cess, where different variations can be linked to (e.g. a node called ”logistical chain
control” where ”one card Kanban” or ”event triggered Kanban” can be chosen).

• varBPM:variation: A variation is a process which is linked to a specific variation
point. This process can contain variation points.

These types are also represented in the types of the nodes of the ”VariabilityTree” in
the implementation of the plug-in. For more information see chapter 4.3.

3.3 Construction rules

The construction of a feature model works as follows:

1. Start with a varBPM:settings node as root element

2. Add root processes where the variability should be modelled

3. For each root process do:

a) Define the variation points

b) Each variation point needs at least one variation which is linked to it

c) Look at each variation and consider if this process contains variability and if
so, go back to a)

The modelling is done, if each leaf has the type ”varBPM:variation”. A graphical inter-
pretation of these rules can be seen in the Figure below.

varBPM:settings varBPM:root varBPM:variationpoint

varBPM:variation

1 1...* 1 1...*
1

1...*

1

0...*

Figure 3.16: Construction rules for the feature model

3 Variability modelling framework 34

3.4 Relations and Restrictions

According to user definable model checks and additional constraints that can be defined
from the user, pure::variants provides a rich interface to help the modeller modelling a
consistent and easy to use model. By default the varBPM plug-in automatically defines
one additional restriction that is as follows:

When assembling a solution (choosing the wished features) it is not possible to
reference the same variation point with different variations.

Additional restriction can be defined by the modeller and are automatically integrated
into the varBPM plug-in, which means that defined rules won’t be lost after a model is
updated or changed, as long as the update mechanism of this plug-in is used to perform
these changes.

4 Implementation of the varBPM toolchain 35

4 Implementation of the varBPM toolchain

In the next few chapters an overview of the developed classes of the key features is given
and it is hinted where and how the functionality of these classes can be extended. First
the (abstract) base classes are described followed by the concrete implementation for the
varBPM plug-in using Aeneis as BPM Tool.

4.1 The varBPM PluginHandler

The ”PluginHandler” class deals as main entry point for all parts of the plug-in and gives
access to a default font (to ensure that every text uses the same font) and the ”Client”
object which deals as a connector between the tool integration parts and the variability
parts of this project (see chapter 4.2 for more details). The ”PluginHandler” class is
automatically loaded if one of the plug-in related classes is loaded (effectively when a
varBPM Model is opened, changed, checked, updated, created or transformed).

PluginHandler

final String : PLUGIN ID
PluginHandler : plugin
Client : client
GC : gc

PluginHandler()
start(BundleContext context) : void
stop(BundleContext context) : void
getDefaultFontMetrics() : FontMetrics
getDefaultGC() : GC
getDefault() : plugin handler
getImageDescriptor(String path) : ImageDescriptor

Figure 4.17: The plugin activator class

4.2 Tool integration

As stated in chapter 2.4, there are two ways to establish a working and expandable tool
integration and for this project the ”integration based on integrated models” attempt is
used. The common data model of the tools is shown in Figure 4.18.
This model was primarily derived from the representation of an object in the Aeneis
application, but due to its simplicity it can be used for any other tool as well and

4 Implementation of the varBPM toolchain 36

therefore it is a good to use data model. In the current version of the varBPM plugin,
the collection of values must consist of at least one value. A value stored with the key
’children’ which holds all elements that are children of the according object.

ExternalObject

String : display name
String : id
String : guid
String : group id
Map<String, ExternalObjectAttribute> : values

ExternalObject(String display name, String id, String guid, String group id)
getDisplayName() : String
getId() : String
getGuid() : String
getGroupId() : String
getValue(String name) : ExternalObjectAttribute
getValues() : ArrayList<ExternalObjectAttribute>
setValue(ExternalObjectValue value) : void

ExternalObjectAttribute

int : type
String : value
String : name

ExternalObjectAttribute(String name, String value, int type)
getName() : String
getValue() : String
getType() : int
getTypeAsString : String

Figure 4.18: Tool Integration: Java base class of the common data model

An overview of the integration mechanism can be seen in Figure 4.19. The complete
communication of the varBPM logic is handled by the ”Client” class. At first sight
this class seems like a little bit of overhead, since the ”Connector” class itself already
transformed the data model of the BPM application into the common data model. The
reason why this ”Client” is used is that this class also deals as a broker, which means
that the varBPM logic connects to an application by calling the client with an identifier
for the application and a list of parameters which are necessary to establish a connection.
The client then chooses the right connector class and forwards all requests to the wished
connector. This reduces the effort to implement new connections, since nothing in the
varBPM logic needs to be changed and furthermore the import and update wizards can
be reused, including the page where the settings for the specific application are set since
this page is written in a generic way, where its appearance is automatically adopted.

4 Implementation of the varBPM toolchain 37

The ”Client” class also deals as an abstraction layer, meaning that there exists only
one method for getting objects from the BPM Application and internally this class tries
several methods until one or more objects are found.

Figure 4.19: Tool Integration Overview

If a new BPM application should be connected to the plugin, a connector has to be
written which connects to the according tool and performs the transformation from the
particular model to the ExternalObject data type and vice versa. The base class for this
kind of connector can be seen in Figure 4.20. Note that it does not matter if the real
transformation between the client object and the common data model is done by the
connector or by a subclass of the ExternalObject class.
During the research activities and the evaluation phase of different BPM modelling
tools, I have noticed that not all tools differ between an id (user definable) and a guid
(generated unique identifier; not user definable). As a result if a tool should be integrated
which only supports an id (or only a guid) the according method in the Connector can
just do nothing (only returning null) or show the same behaviour as the other method.
The ExternalObject returns the id of the object if it does not have a guid and vice
versa.

4 Implementation of the varBPM toolchain 38

abstract Connector

+ static final int : UPDATE OK
+ static final int : UPDATE FAILED
+ static final int : NOT UPDATED

connect(ConnectionParameters parameters) : boolean
isConnected(ConnectionParameters parameters) : boolean
disconnect() : void
getObjectByGuid(String guid) : ExternalObject
getObjectById(String id) : ExternalObject
getObjectsByGroupId(String group id) : ArrayList<ExternalObject>
update(ExternalObject object) : int

ConnectionParameters

Map<String, String> parameters

ConnectionParameters(Map<String, String> parameters)
addParameter(String key, String value) : void
getParameter(String key) : String

Figure 4.20: Tool Integration: Abstract java base class of the connector

4.2.1 Concrete implementation

For the concrete case, the connection to the Aeneis application is done by a web-service
interface, which means that the communication between these tools is based on an xml
based message exchange. The transformation of the object reference to the ’Exter-
nalObject’ model is done by a subclass called ’AeneisObject’ and a ’AeneisObjectValue’
subclass which is derived from the ’ExternalObjectValue’ class.
The class diagram can be seen in Figure 4.21.

The transformation from the ExternalObject back to the native Aeneis type is partly
done by the AeneisConnector. First it gets the latest version of the native Aeneis object
(it is possible, that someone has added a specific attribute or has changed a value) then
it updates the varBPM related attributes from the ExternalObject and delivers these
changes to the Aeneis database.

4 Implementation of the varBPM toolchain 39

ExternalObject ExternalObjectAttribute

AeneisObject

AeneisObject(WebObject aeneis object)

AeneisObjectAttribute

AeneisObjectValue(WebValue value)

Connector

AeneisConnector

Figure 4.21: Tool Integration: Concrete Java implementation of the data model and
connector

4.3 Variability

The variability of a process (or processes) is modelled using a tree representation. For
simplicity the root node of this tree contains all needed information for the tool integra-
tion. It is also a little ’hack’ for the pure::variants restriction that only one root node
is allowed for one variability model (otherwise it would not be possible to manage more
business processes in one feature model). The class diagram of all node types can be
seen in Figure 4.22. Of course, there are a lot more members and methods defined, but
this Figure gives a good overview over all needed types to establish a tree.

Due to the fact that in some situations it is needed to get all children of a node of a
specific type, the ’getChildren’ method is overloaded to automatically return a list of
all elements of a specific type (an empty list is returned if there are no children of the
wished type).

4 Implementation of the varBPM toolchain 40

abstract TreeNode

ArrayList<TreeNode> : children

getChildren() : List<VariabilityTreeNode>
getChildren(Class<T> klass) : List<T>
removeChild(TreeNode child) : void
addChild(TreeNode child) : boolean
getParent() : TreeNode

Settings abstract VariabilityTreeNode

Root VariationPoint Variation

Figure 4.22: Variability tree node types

As one might expect, a composite pattern is used for the class hierarchy of the tree, but
there are some additional rules which have to be barred in mind when manipulating the
tree.

• The type of the root node is ’Settings’ and the children of this node are ’Root’
nodes.

• The children of ’Root’ nodes are ’VariationPoint’ objects

• The children of ’VariationPoint’ nodes are ’Variation’ objects

• The children of ’Variation’ nodes are ’VariationPoint’ objects

These rules are checked in the according ’addChild’ method which has to be imple-
mented by each node to ensure these restrictions (the ’TreeNode’ base class only pro-
vides a default implementation where each type is accepted). The ’addChild’ Method

4 Implementation of the varBPM toolchain 41

also automatically checks if the given child is already in the list of children. Graphically
these rules are:

Settings

Root 1 Root 2

VP 1 VP 2 VP 3

Var 1 Var 2 Var 3 Var 4

VP 4 VP 5

Var 5 Var 6

Layer1

Layer2

Figure 4.23: Variability tree abstract concept

The variability tree is accepted as valid if each branch of the tree ends with a node
of the type ’Variation’ and if all nodes have a correct reference to an ’ExternalObject’
instance. As indicated in the Figure, the tree is also grouped into layers where pairs of
the variation points and there according variations are grouped together. It is intended
that the first layer represents the abstract model of the process and with the increasing
layer number the level of detail is increasing.
In the application an additional class is used to easy add/delete nodes and access the
tree. An overview is given in Figure 4.24.

4 Implementation of the varBPM toolchain 42

VariabilityTree

ArrayList<VariabilityTreeLayer> : layers
Settings : settings

setSettings(Map<String, String> settings)
add(Root root) : boolean
add(Variation var) : boolean
add(VariationPoint vp) : boolean
removeUnresolvedNodes() : void
clearAll() : void
getLayers() : ArrayList<VariabilityTreeLayer>
getLayer(int index) : VariabilityTreeLayer
getSettings() : Settings
getRoots() : List<Root>

Figure 4.24: Overview of the VariabilityTree class

One might notice that there exists no direct functionality to remove a specific node from
the tree. This has one reason: When a node should be deleted, all sub-nodes of it should
also be deleted. When remodelling/updating a model it is possible that someone deletes
accidentally a node. To recover such a accidentally deleted object, quite a lot of steps
need to be done so it was decided that it is only possible to delete nodes indirectly. It
is only possible when the user first marks the node to be deleted (an according method
of the node is called) and then confirms the model as valid. After the model is marked
as valid, the ’removeUnresolvedNodes’ method is called and all nodes which are marked
to be deleted or which have unresolved object references to the external tool are deleted
completely out of the system.

4.4 Model validation

Creating a valid model is a vital task for a modeller and for this purpose some model
checks where implemented to support the modeller during the creation of a model. The
checks can be grouped into two severity categories, one with a high severity level (error)
and one with a low severity (warning). As long as there is at least one error in the model
it is not possible to transform the model into a solution. Warnings are hints for the
modeller to indicate that something is not as expected, but this does not mean that the
model is invalid and therefore a model transformation is possible. The following checks
where implemented:

• Check node type: Checks whether the node has the right type or not. Note
that the type is derived from the distance to the root node. As a result if the

4 Implementation of the varBPM toolchain 43

tree structure changes, this check needs to be updated as well. This check has an
error severity with an automatic quick fix which can also be used as a multi-fix.
The reason why this check has a error severity is due to the fact that some of the
following checks are type based.

• Check attributes: According to the type of the node some attributes must be
set to ensure that a model transformation is possible. This check has an error
severity and provides also an automatic quick fix which can be used as a multi-fix.

• Check double references: In the variant description model (VDM) it is not
allowed to double reference a specific variation from two different branches, except
in both branches all sub nodes of this variation are set equally. This check has also
an error severity and no automatic fix is provided.

• Check if a variation is added with a group id: If a node is added with a
group id, it means that the plugin automatically searches for new variations with
the same group id when the model is updated. This enables a very comfortable way
to keep the models up to date when processes are nicely grouped in the according
BPM tool. This check has a warning severity and an automatic quick fix which
can be used as a multi-fix.

To implement these check mechanisms, two classes were written and added to the
pure::variants check engine. These classes can be seen in Figure 4.25.

IModelCheck

abstract MyModelChecker

FeatureModelChecker VDMModelChecker

Figure 4.25: The model check engine

4 Implementation of the varBPM toolchain 44

The abstract base class ”MyModelChecker” just implements some common used methods
of the two subclasses which can also be seen in the Figure. The two subclasses were added
to the ”com.ps.consule.eclipse.ui.checks.Checks” extension point of the pure::variants
implementation and are automatically called if a feature model or a VDM model is
opened, changed, or checked manually. Both of these classes first performs a model type
check, to ensure, that these checks are only performed on varBPM models.

4.4.1 Feature model validation

The implemented classes for performing node checks in the feature model can be seen
in Figure 4.4.1. The scope of the constructor of these classes is locked to the package
to ensure that the creation of these checks is done using the ’NodeCheckerFactory’. If a
new check is implemented, it needs to be registered with its type to the factory. Nothing
else needs to be changed except some of the constants defined in the ”NodeConstants”
class if completely new types are implemented.

NodeChecker

FeatureModelChecker : feature model cheker

∼NodeChecker(FeatureModelChecker fm checker)
+abstract check(IPVModel model, IPVElement node) : Vector<IProblem>

TypeCheckerAttributeCheckerSettingsChecker

RootChecker

VariationPointChecker

VariationChecker

1

1

1

1

1 1

Figure 4.26: Implemented classes for node checks

4 Implementation of the varBPM toolchain 45

It would be possible to define a new eclipse extension point for node checks so that the
registration of new checks can also be done in other plug-ins making the project more
expandable, but this is currently not implemented.

4.4.2 VDM model validation

Currently there only exists one check which needs the information of the complete VDM
model. Due to this, no additional classes were implemented.

4.4.3 Available automatic quick fixes

In the eclipse application it is possible to add quick fixes to warnings or errors which
automatically try to solve the error, or to guide the user to a solution of the problem.
As previously mentioned some ”fixes” where developed and the following table gives a
short overview over all developed quick fixes and what they are doing:

Model type What Severity According quick fix Multi-fix

ps::fm Check node type Error Automatically set the
type

X

ps::fm Check attributes Error Opens a dialogue to
change the settings

-

ps::fm Check if a variation
was added with the

group id

Warning Change the according
attribute to true

X

ps::VDM Check double
references

Error none -

Table 6: Overview of all automatic quick fixes

’Multi fix’ means, that all occurring warnings/errors can be fixed using the same quick
fix. To provide an easy way to add new quick fixes a factory was developed, where
the quick fixes can be registered with the type of the warning or error. If one of the
”ModelChecker” classes determines a problem, they will try to obtain an according fix
from the QuickFixFactory.

As mentioned earlier, another eclipse extension point could be implemented so that the
registration of new fixes can be done through different plug-ins without manipulating
the code.

4 Implementation of the varBPM toolchain 46

4.5 Model transformation

To transform a model, a new class was implemented and registered at the
”com.ps.consul.eclipse.core.ClientTransformModule” extension point. The implemented
transformation module can be chosen in the ”Transformation Config Dialog” and only
works if the model is a valid varBPM model. If not, this transformation module skips
all further computations. The class hierarchy can be seen in Figure 4.27.

<<interface>>
IClientTransformModule

init(...) : ClientTransformStatus
work() : ClientTransformStatus
done() : ClientTransformStatus

ClientTransformModule

ModelTransformation

Figure 4.27: Class hierarchy for the transformation module

During the model transformation a VariabilityTree is built with all selected nodes and
passed to the Client by calling the update - method. The abstract class ”ClientTransfor-
mModule” gives access to the input models during the transformation and implements
some standard implementation of some methods and is provided by pure::variants.

4.6 Model conversion

A feature model can be seen from two kind of perspectives: One is the internal fea-
ture model representation of pure::variants and the other one is the schema used by
the varBPM plug-in (the VariabilityTree). It is necessary to convert between these
two worlds, since the pure::variants feature model representation is used to model the
variability and to derive concrete product variants and the VariabilityTree represents
the concrete connection to the domain artefacts (business processes). Meaning that
changes to the business process structure (update mechanism) in the according BPM
modelling tool affects at first the VariabilityTree which must then reflect the changes to

4 Implementation of the varBPM toolchain 47

the pure::variants feature model. The reverse transformation occurs during the product
derivation or by manually editing the feature model.

To convert between these two worlds, two conversion classes where implemented. The
”ImportModel” class in combination with the ModelGenerator class from pure::variants
converts the VariabilityTree into a IPVModel and the ”IPVMToVariabilityTree” class
implements the reverse way.
Note that these two representations are fully equivalent with regard to the content, but
as mentioned before, both are optimized for specific use cases.

4.7 User interface

Various contributions to the user interface have been developed using the java.swt classes
so that each contribution looks and feels like the rest of pure::variants. The first contri-
bution that the user will notice is the menu entry ”varBPM” with two entries ”Import
Feature Model” and ”Update Feature Model”. If one of those entries is pressed, the
according wizard will open, which are introduced in the next sections.

4.7.1 Wizards

The class hierarchy of all wizard classes can be seen in Figure 4.28.
Due to the fact that all instances of a model needs to be closed before it can be updated
(or overwritten), the base class provides two methods to solve this problem. To check
if a wizard is able to be finished, a canFinish method is defined. If it returns true, the
eclipse application automatically unlocks the finish button (otherwise it will lock the
button). The getNextPage method should return the next page of the given one, so that
the eclipse application can determine if the next button should be unlocked or not. The
performFinish method is automatically called after the finish button is pressed. If this
method returns true, the wizard will be closed automatically and if it returns false the
wizard stays unchanged.

4 Implementation of the varBPM toolchain 48

ModelWizardBase

+ static final String: NATURE VARBPM

performFinished() : boolean
canFinish() : boolean
getNextPage(IWizardPage page) : IWizardPage
∼getSelection() : IStructuredSelection
getSelectedModel(IPath path) : IPVModel
closeModel(IPVModel model) : void
closeFile(String filename) : void
createModel(ImportModel model, IContainer res) : boolean
getFile(IContainer parent, String filename) : File

ImportWizard

TargetSelectionPage page one
SettingsPage page two
VariabilityTreePage page three

UpdateWizard

TargetSelectionPage page one
SettingsPage page two
VariabilityTreePage page three

Figure 4.28: Class hierarchy for the wizard classes

Import wizard

For the creation of varBPM feature models, a import wizard was created and registered
at the ”com.ps.consul.ui.pvimport.VariantImportWizards” extension point so that the
wizard is recognized by pure::variants and can be chosen like any other import wizard.
After pressing the finish button a new feature model is created. If the created model
was already present in the project (same file name) the user is asked if it should be
replaced or if the new model should be stored with a different name. Replacing the old
one will delete it completely out of the project (all constraints, restrictions and settings
are lost!).

Update wizard

The update mechanism of an existing feature model can be either started by using the
build in mechanism from pure::variants or by choosing the ”Update Feature Model” from
the varBPM menu. Of course it is also possible to manually add nodes to the model by
using the feature model editor. The implemented check engine will help the modeller by

4 Implementation of the varBPM toolchain 49

hinting what values are missing, or which of them are wrongly set, but this should only
be done if the modeller exactly knows what to do. Otherwise it will be a very annoying
task.
The difference between the built in update mechanism and the update wizard is, that
the built in one is not as mighty. It is only possible to automatically load new variations
if the previously created one where added using the group id, or to delete nodes where
the object reference is missing (e.g. if the according object was delete from the BPM
tool). It is not possible to set new variation points, add root elements or add variations
by own will. For this purposes the update wizard must be used.
In difference to the import wizard, all previously set constraints, relations or settings
won’t be deleted after pressing the finish button except one of the participants was
deleted so that it is obsolete.

Wizard pages

Due to the fact that the update wizard and the import wizard share a lot of commonal-
ities, they also share the same pages. The only difference is that on the first page of the
update wizard an old model must be chosen. An overview of all developed classes and the
important methods is given in Figure 4.29. All classes implements the UpdateListener
interface where the complete graphic is repainted and the status of the buttons (next,
back, finished) are recalculated. As a result, it is very easy to couple the repainting of
the page with a specific activity.
The SettingsPage class is a generic written page that can be reused for any other kind of
BPM tool. Its appearance is automatically adjusted according to the selected BPM tool
(via a drop down list). As a result, if a new BPM tool should be integrated all needed
settings needs to be registered and the complete import/update mechanism works with-
out any further changes. The check engine also automatically adapts its behaviour if
the new variables where registered correctly. The changes are:

• A new entry has to be added to the SETTINGS GUI constant in the WizardCon-
stants class

• A new entry has to be added to the SETTINGS PROPERTIES constant in the
WizardConstants class.

As I previously pointed out, adding a new BPM application means no changes in the
logic behind the models. With some adaptations it should be possible to add new
representations of the SettingsPage via an own eclipse extension point.

4 Implementation of the varBPM toolchain 50

<<interface>>
UpdateListener

update() : void

WizardPageBase

int : page number
∼Composite : parent

abstract isValid() : boolean
abstract canFlipToNextPage : boolean

TargetSelectionPage

getSelection() : IPath
getModelName() : String

SettingsPage

getSettings() : Map¡String, String¿

VariabilityTreePage

setVariabilityTree(VariabilityTree) : void

Figure 4.29: Overview of the implemented wizard pages

4.8 The command structure

Due to the fact that eclipse/pure::variants uses at least two different threads - one for the
graphic and one for the application logic - there needs to be a mechanism to ensure that
clicking a button executes an action in the application logic where maybe a new task for
the graphical representation is formed. For this purpose a kind of command pattern was
implemented, whereas all Commands implements the ActionListener, ModifyListener
and SelectionListener interface. This enables the ability to add each Command to each
graphic component. Packing those classes into a runnable implementation (a simple
generic version is available) and passing it to the scheduler also solves the problem of
invalid thread accesses.

4 Implementation of the varBPM toolchain 51

Command

execute() : int

<<interface>>
ActionListener

actionPerformed(ActionEvent e) : void

<<interface>>
SelectionListener

widgetDefaultSelected(SelectionEvent e) : void
widgetSelected(SelectionEvent e)

<<interface>>
ModifyListener

modifyText(ModifyEvent e) : void

Figure 4.30: Overview of the command structure

Implemented subclasses are:

CommandAddRoot CommandAddVariation

CommandAddVariationPoint CommandAdoptObjects

CommandChangeObjectReference CommandCloseDialog

CommandConnectTo CommandLoadObject

CommandRemoveSelectedObjectReference CommandUpdate

Table 7: Implemented Command types

4 Implementation of the varBPM toolchain 52

5 Using the varBPM tools in practice 53

5 Using the varBPM tools in practice

5.1 Glossary

• Root Process: A root process is a Aeneis Process with a BPM diagram and deals
as start point for the modelling process. It consists of at least one variation point
and per default it does not depend on any other processes.

• Variation point: A variation point is a sub node in a Aeneis process (e.g. a ’task’
block in the Aeneis BPM diagram) and deals as gate to the according variation
which means that the BPM diagram of the chosen variation is directly linked to
this object. A variation point consists of at least one variation.

• Variation: A variation is similar to a root process, but with the difference, that it
depends on a variation point and does not necessarily consists of variation points.

• Node: A node is a generic name for the above terms.

5.2 Installing the plug-in

If you have an existing pure::variants installation, you have to install this plug-in man-
ually by unzipping and copying the unzipped files into the ”plugins” directory in the
pure::variants installation or into the ”plugins” directory in the eclipse installation if
pure::variants was installed as a plug-in project and not as a standalone. The varBPM
plug-in is automatically loaded after starting pure::variants (if it was already started, it
has to be restarted to apply the changes).

5.3 Setting up Aeneis

Depending on the wished coupling factor (see chapter 5.5.2) a few things need to be
done in the Aeneis application to ensure that all linked references are evaluated if a
documentation is generated. If the coupling factor was selected as low, nothing has to
be done. Otherwise the following steps should be performed:

• First, one has to add an attribute called ”varBPM” to each process group which
should be used as a variation point. It is important that you copy this attribute
to all processes so that the id of it keeps the same for each process. This attribute
should be able to store references to all varBPM related process groups.

5 Using the varBPM tools in practice 54

• Secondly, one has to add a user defined rule for the generation of the documen-
tation, where the ”varBPM” attribute is evaluated. The specific definition of this
rule depends on the wished result, but to demonstrate the use, one very simple
way is shown.

Open the report editor and open the tab ”content”. A page with three input boxes will
appear, press the add button of the first one as can be seen in Figure 5.31 and add two
new entries. The workflow steps are as follows:

Figure 5.31: Setting up Aeneis: Step 1, adding an object format to the report editor

A new window will open with three input boxes. One can choose any name for the
format, but the ”Mode” field must be empty! In the first box (Categories), add all
varBPM related process groups (in Figure 5.35 you will notice three different processes).
In the second input box (Component groups), first copy the ”overview” entry from the
standard format into it and then add a new entry (you can choose the name and the
heading as you wish; see Figure 5.32).

Figure 5.32: Setting up Aeneis: Step 2, adding a new ”Component group”

5 Using the varBPM tools in practice 55

After this is done select the newly created entry and add two more entries in the last
input box (Components), whereas the second one (in Figure 5.35 called childs) can
be copied from the standard format. The type of the first entry (in the Figure called
varBPM child) must be ”Sub elements”. Enter any string for the ”Name” and the ”Mode
for selecting formats of sub elements” field, but remember the later one (in the example
varBPM Child). Next Choose ”Query” from the ”Sub element selection” drop down list
and click the add button. In the new Window select ”Attribute values” and click on the
OK button (see Figure 5.33).

Figure 5.33: Setting up Aeneis: Step 3, adding a component

Fill in the general settings (if needed) and switch to the ”Query” tab and click onto the
”Add reference(s)” button. A list with a lot of entries will appear where the varBPM
attribute needs to be chosen (Select as category one of the related processes so that the
list is much shorter). If you have copied the varBPM attribute to each process you only
need to add it once (if not, you need to add it for each process).
After this is done close the edit object format dialog and create the second format.
Now fill in the same string into the ”Mode” field as the one entered into the ”Mode for
selecting formats of sub elements” field. The entries of the ”Component Group” input
box are the same as in the standard format.

5 Using the varBPM tools in practice 56

Figure 5.34: Setting up Aeneis: Step 4, setting up the query

Figure 5.35: Setting up Aeneis: Step 5, final result of the object format

5 Using the varBPM tools in practice 57

Figure 5.36: Setting up Aeneis: Step 6, final result of the sub element object format

After this is done Aeneis is set up for a high coupling factor and ready to use.

5 Using the varBPM tools in practice 58

5.4 Using the varBPM pure::variants plug-in

5.4.1 Contributions to the user interface

As stated in chapter 4.7, the varBPM plug-in provides a new menu entry which is
called ”varBPM” with two menu items ”Import Feature Model” and ”Update Feature
Model”:

Figure 5.37: Menu contribution of the varBPM plug-in

The import functionality can also be started over the import dialog which is opened over
”File→ Import”. In the new opened window select ”Variant Models or Projects” under
the ”Variant Management” folder. After clicking on the next button, choose ”Import
new Model from Aeneis”:

5 Using the varBPM tools in practice 59

Figure 5.38: Import wizard contribution of the varBPM Plugin

5.4.2 Creating a new feature model

First off all make sure that the Aeneis application is started, because the communication
of these two tools is performed online. According to the purchased licence of Aeneis
you may have to close the database you want to manipulate, otherwise this plug-in
will complain about a problem with the connection. Just try closing the database if
pure::variants complains about it.
As mentioned before, there are two ways to start the import model dialog. Just choose
one of it and proceed. On the first page, the user is asked about the destination of this
model, the name of it and the name of the file. You can choose a different name for
the model and the file, but the same name is recommended (if you first enter the model
name, the input is also added to the file name).

5 Using the varBPM tools in practice 60

Figure 5.39: Example: Import wizard first page

A small note: the model name has to be OCL valid (the first character must be a letter
or a underscore, no spaces are allowed, ...), but the Wizard will display a error message
at the top of it, if something is wrong.

On the next page, the user is asked to enter some general settings of the Aeneis applica-
tion. The drop down list does only contain one entry at the moment and can be ignored.
Due to the fact that the connection is based on a web service, the user has to specify
the namespace and the endpoint address of the server. There are already some default
values entered, but according to the documentation from Aeneis, the namespace setting
is subject to change in future releases. The name of the administrator of this database
must also be specified which is in almost every situation the name ”Administrator” (this
is the reason why it is entered as default value). At last the name of the database has

5 Using the varBPM tools in practice 61

to be set.

Figure 5.40: Example: Import wizard second page

After clicking on the ’Next’ button a dialogue will appear telling you something about
the connection process. If everything was fine, the next page is displayed and the di-
alogue can be closed. Otherwise an error message is displayed complaining about the
connection. This can have the following reasons:

• The Aeneis application is not started.

• The Aeneis application does not allow multiply logins to the same database and
someone is locked in.

• One or more of the settings were wrong.

5 Using the varBPM tools in practice 62

• A connection problem if Aeneis is running on a server/different machine.

Figure 5.41: Example: Connection protocol dialogue

The next page is the heart of the import process where the variability of the business
process is modelled.

Figure 5.42: Example: Import wizard third page

5 Using the varBPM tools in practice 63

The variability of the process is visualized as a tree as one can see in Figure 5.43. The
structure of this tree was discussed in chapter 4.3.

Figure 5.43: Example: Import wizard third page with sample process structure

Due to the fact that in big projects this tree can be very big, it is at every node possible
to right click on it and set this node to the root element of the view. As a result, only
this branch will be displayed (right click anywhere and choosing ”Restore view” will
reset the view).
To edit a node, or to add new children to a node, one has to double click onto it and a new
dialogue will appear (see Figure 5.44) where some values of the linked Aeneis object can
be seen and a list of all children nodes. Double clicking on the node ”Variation Process”
does only show a list of children, because there is no according Aeneis object. This node
deals only as a start point and as a little ”hack” for some pure::variants restrictions.

5 Using the varBPM tools in practice 64

(a) Edit variation process (b) Edit root process

(c) edit variation point (d) edit variation

Figure 5.44: Example: Edit dialogues

If the add button in the ”Edit Root” or ”Edit Variation” dialog is pressed, the user will
see a list of all possible nodes that can be set as a VariationPoint (multiple selections
are allowed; hold the strg button while clicking onto the according elements).
If the add button is pressed in the dialogs, a new window will open asking the user to
enter the ID or the GUID of the wished object to load it. It is also possible to choose the
wished element from a tree viewer representing the database of the Aeneis application,

5 Using the varBPM tools in practice 65

but since this is an online tool, choosing a process from the list may take a while if the
database is huge. When adding Variations it is also possible to enter the group ID of
the objects to load a bunch of objects at once. If not all of the displayed objects should
be adopted, just select the elements you need and press the adopt button.

(a) Dialog: Select variation points (b) Dialog: Load object reference

Figure 5.45: Example: Load object dialogues

As mentioned earlier deleting an already added object is only indirectly possible. If the
delete button is pressed, the node is coloured red, indicating that this node (and all sub
elements of it) will be deleted after the finish button is pressed. If the deletion of this
node should be undone double click onto it and reload the object reference by clicking
onto the ”Change Object reference” button.
The finish button can be pressed if the created tree is valid, which means that:

• There is at least one root process

• There is no root process without a child (except it is marked to be deleted)

• There is no variation point without a child (except it is marked to be deleted)

After finish was pressed, a new feature model is created with the following default
behaviour:

• The root node contains all Aeneis settings which were entered on page two.

• All root processes are added as mandatory features which means that all of these
have to be selected if you want to create a new result model in the configuration

5 Using the varBPM tools in practice 66

space.

• All variation points are also added as a mandatory feature.

• All variations are added as an alternative feature, which means that only one of
the variations can be selected.

• No additional restrictions or constraints

If this default behaviour is not the expected one, you can add any additional restrictions
or attributes of the feature by editing the feature model with the built in pure::variants
editor. There are only few things to bear in mind:

• Do not delete any of the automatically created attributes.

• Do not change the class/type fields.

5.4.3 Update an existing feature model

There are two ways to update a feature model. The first one is to use the built in model
compare editor from pure::variants by clicking on the following button:

Figure 5.46: pure::variants synchronise button

Note: This button is only visible if the model is opened using the editor in pure::variants
(double click on it). On the opened window you will then see two models. On the left
side, there is the old original model and on the other side, there is a new one, where
all elements with a missing Aeneis object reference are delete and where new variations
are loaded. New variations can only be found, if a variation was added using the group
id (The ”added with group id” member in the according feature is set to true). The
manipulation is done like in any ”diff” tool: For each difference one can decide to use
the left model (the original one) or to use the right model.
As already mentioned in chapter 4.7.1, this method is not very mighty because it is not
possible to add new nodes or delete old nodes, but it is a very comfortable way to load
new variations of a group or to remove unresolved references.
The second way - and the more powerful way - is to use the update wizard which can be

5 Using the varBPM tools in practice 67

started over the menu ”varBPM → Update Feature Model”. This wizard is very similar
to the import wizard. The only difference is that on the first page, the according feature
model has to be chosen. On the third page (the tree page) new nodes are coloured green,
old nodes are coloured blue and nodes which are marked to be deleted are coloured red
(if the Aeneis object is missing, or the user manually has marked it to be deleted).

5.4.4 Model validation

As I have discussed in chapter 4.4, there exists two types of model validation checks.
One check is applied to a feature model and one to the variant model. Per default these
checks are activated. To change this setting go to ”Window → Preferences → Variant
Management → Tab: Automatic Validation”. The varBPM check engine should not
cost much CPU usage if no varBPM model is opened, because the check classes always
checks, if the nature of the model is the varBPM nature or not. And if not, the checks
won’t do anything.

To start the check engine one can either use the automatic model validation feature or
press the validate model button manually:

Figure 5.47: pure::variants model validation buttons

5.4.5 Model Transformation

Before a model can be transformed, a configuration space needs to be created. For this
right click onto the project and choose ”New → Configuration Space”. A new window
will appear where the name of the configuration space needs to be entered and the
”create default transformation configuration” check box needs to be unchecked. Also
check if the right project is selected and if not, select the right one before clicking on the
next button. On the next page, check if the wished feature model is checked and press
the finish button to close the wizard. After this is done, a transformation configuration
needs to be added to the variant description model (.VDM file).

5 Using the varBPM tools in practice 68

Figure 5.48: Setting up a configuration space: Step 1

Figure 5.49: Setting up a configuration space: Step 2

5 Using the varBPM tools in practice 69

For this, open the transformation configuration dialog. In the new Window click the
”New” button on the left side and afterwards the ”add” Button on the right side.

Figure 5.50: Adding a transformation configuration

Figure 5.51: Adding a transformation configuration

A new window will appear where a name for the transformation needs to be specified
and ”varBPM Transformation” needs to be selected from the list of available transfor-
mations.

5 Using the varBPM tools in practice 70

5.5 Design rules in Aeneis

There are a few bunches of design rules which should be considered when designing and
modelling a process in Aeneis to ensure, that the automatic model update mechanism
in pure::variants works as expected.

5.5.1 Structure

The first and maybe the most important rule is, to define own process groups for classes
of variations and to add these variations in pure::variants with the guid of the group.
The advantage of this approach is that new variations are known to pure::variants after
creating a new process in this group and after starting one of the update processes of
the feature model.

5.5.2 Coupling factor

Depending on how tight you want to couple the objects (only link the according BPMN
diagram to the variation point or directly link the complete object to it) one has to add a
new schema attribute, named ”varBPM” to the template of the process category which
is designed to store links to this and other process categories.
If one can answer the following questions with ’no’ a loosely coupled approach can be
used, if one of the question is answered with ’yes’ the tight coupling should be used
(a mixed version is also possible if the tight coupling is only needed for some process
categories):

1. Must the parent knows all attributes of the according child/children?

2. Is it possible, that one of the children also has children?

The disadvantage of the low coupling factor is, that it is not possible to iterate through
the children of a child during the generation of the documentation (or maybe we were
not aware that this is indeed possible). In fact it only works if the VariabilityTree has a
depth of one.

5.5.3 Commonalities

This is more an advice to ensure that the model is more reusable and more flexible to
changes (refactoring can be a very long and frustrating task): Try defining the variation

5 Using the varBPM tools in practice 71

points in an abstract way (e.g group some blocks together to one variation point). For
example consider the following problem (it is not really a business process problem, or
a meaningful example, but the idea behind the advice should be clear):
You are doing some signal processing stuff using an analogue circuit in two different
ways:

Signal Low pass filter Amplifier ...

Signal Band pass filter Amplifier ...

At first sight, one probably think choosing the first block as a variation point calling it
filter would be a good idea, but if someday the manager comes around telling you that
there should be a third variation using a half analogue (an amplifier which also deals as
a band limiting circuit) and half digital approach:

Signal Amplifier ADC ...

Then you will have to change the feature model a lot. But if you use a top level approach
like this:

Signal Pre-processing ...

Only little things need to be changed.
Pre-processing is a variation point whereas the user can choose between an analogue
approach or a digital approach. If an analogue approach is used, one can also choose
which type of filter should be used. The feature model would probably look like this:

5 Using the varBPM tools in practice 72

Signal Processing

Preprocessing ...

Analogue/Digital Analogue

Amplifier ADC Filter Amplifier

Low pass Band pass

Even if the boss wishes to add a new pure digital variation for, only slightly changes
has to be performed: Just adding a new variation to the existing variation point ”Pre-
processing” which hopefully works automatically just by updating the varBPM model
after creating the according Aeneis object and adding some digital variations to it.
The trade-off of this approach is that the complexity of the system increases with each
abstraction layer and the higher the number of layers the harder it is to imagine the com-
plete system. For the above example, the feature model could probably be reorganised
in such a way:

Signal Processing

Pre-processing ...

Analogue and Digital Analogue: Low pass Analogue: Band pass

Meaning that you still have some of the advantages of the first approach but now us-
ing fewer layers. On the other hand adding some new variations possible takes longer
(e.g adding an analogue variation with a high pass filter, a mixed analogue and digital
approach, etc.).

6 Future work 73

6 Future work

As discussed in the early stages of the project, an automatic SAP customisation could be
implemented, to not only optimize the design process of business processes but also the
implementation and usage of such. This could be done by integrating the project from
Andrea Leitner [And09] (respectively an adopted version) into this project or by using
the connection to the SAP-Solution-Manager over the Aeneis application (providing the
needed information over the varBPM pure::variants plug-in). Whereas the first approach
would be more reusable since it would be independent from the used BPM modelling
tool.

Another point which could be quite interesting is the implementation of an ’assembly’
mode, meaning that it is not only possible to link the chosen references to the objects
but also to create a new instance of the process meaning that the variation is directly
added as a child to the process. An advantage of such an approach would be, that
it would be more easy to use different variants of the same process at a time, but it
would be more difficult to stay up to date which process needs to be updated. Another
advantage is that plant dependant differences could be integrated in a smoother way,
since the structure of the business process is more flexible, because it is not bound to a
fixed structure.
A basic API was already implemented for the implementation of such a mode, but with
no real implementation behind it.

6 Future work 74

A Detailed FODM tool evaluation criteria 75

A Detailed FODM tool evaluation criteria

Nr. Criterion Definition

1
Feature and Variability
Modeling

• Support global constraints

• Support different abstraction levels

• Help to model FODA-like concepts (fea-
ture decomposition, feature type, cardi-
nalities, dependency links, ...)

2 Constraint checking

• Support validation checking for PL model
and meta-model

• Check consistency of product model and
PL model

• Rule checking

3 Model comparison
• Compare different products

• Compare different versions of a product

4
Feature meta - model
maturity

• Allow to define a PL meta-model

• The tool should be unambiguous

• Support product line evolution

5 Extensibility • To integrate existing platforms/products
into the PL

A Detailed FODM tool evaluation criteria 76

6 Flexibility • Changes should be possible in each devel-
opment phase

7 Usability

• Intuitive usage

• Easy installation and maintenance

• Offer high accessibility of functions, zoom,
views, ...

8 Tool stability
• Stability of API functions

• Compatibility between versions (migra-
tion from old models)

Table 8: Criteria to rate FODM tools, based on [Len00], [DSF07], [DRGN07] and [And09]

B Detailed BPM evaluation criteria 77

B Detailed BPM evaluation criteria

Nr. Criterion Definition

1 BPMN compliance
• The tool should use and support the

BPMN version 2.0 and all its features
(swimlanes, gateways, events, ...)

2
User defined attributes /
objects

• In addition to the BPMN standard,
various kinds of attributes (text, pic-
tures, files, ...) for each object or each
object category should be definable

• Ability to extend the existing objects
with user defined objects and symbols

3
Workflow engine and ap-
proval process

• The concept of a workflow and the link
of tasks to responsible persons should
be possible

• The approval of processes or new ver-
sions of processes is done by responsible
persons and not from everyone

• Right management for each user

4 Model comparison
• Compare different processes

• Compare different versions of a process

5 Extensibility

• To integrate existing platforms / prod-
ucts into the Tool

• Rich API to manipulate the database
and models

B Detailed BPM evaluation criteria 78

6 Flexibility • Changes should be possible in each de-
velopment phase

7 Usability

• Intuitive usage

• Easy installation and maintenance

• Offer high accessibility of functions,
zoom, views, ...

8 Tool stability
• Stability of API functions

• Compatibility between versions (migra-
tion from old models)

Table 9: Criteria to rate BPM tools, derived from the project

References 79

References

[Ale05] Alessandro Pasetti: Technical Note on a CONCEPT FOR THE XFEA-
TURE TOOL. (2005). – Online available: http://www.pnp-software.com/
XFeature/pdf/XFeatureToolConcept.pdf

[And09] Andrea Leitner: A software product line for a business process oriented
IT landscape. (2009)

[Big12] BigLever Software Inc.: Product Line Engineering Solutions for Sys-
tems and Software. (2012). – Online available: http://www.biglever.com/
extras/BigLever_Solution_Brochure.pdf

[Cur92] Curtis, Bill and Kellner, Marc I. and Over, Jim: Process Modeling.
In: Communications of the ACM (1992)

[DRGN07] Dhungana, Deepak ; Rabiser, Rick ; Grünbacher, Paul ; Neumayer,
Thomas: Integrated tool support for software product line engineering. In:
ASE, ACM, 2007. – ISBN 978–1–59593–882–4, 533-534

[DSF07] Djebbi, Olfa ; Salinesi, Camille ; Fanmuy, Gauthier: Industry Survey
of Product Lines Management Tools: Requirements, Qualities and Open
Issues. In: Requirements Engineering Conference, 2007. RE ’07. 15th IEEE
International, 2007, 301–306

[FPDF98] Frakes, William ; Prieto-Diaz, Ruben ; Fox, Christopher: DARE: Do-
main analysis and reuse environment. In: Ann. Softw. Eng. 5 (1998), Januar,
S. 125–141. – ISSN 1022–7091

[Gab03] Gabor Karsai, Andreas Lang, Sandeep Neema: Tool Integration
Patterns. (2003)

[Gad08] Gadatsch, Andreas: Grundkurs Geschäftsprozessmanagement: Methoden
und Werkzeuge für die IT Praxis: Eine Einführung für Studenten und Prak-
tiker. 5. Auflage. 2008

[Int12] Intellior AG: Think Big Start Small. (2012). – On-
line available: http://www.intellior.ag/fileadmin/Downloadcenter/

Processmanagement_Software_BPM-Tool_Aeneis_Broschuere_EN.pdf

[Kar99] Karlsen, Einar W.: The UniForM WorkBench A Higher Order Tool
Integration Framework. Version: 1999. http://dx.doi.org/10.1007/

3-540-48257-1_17. In: Applied Formal Methods — FM-Trends 98. Springer

http://www.pnp-software.com/XFeature/pdf/XFeatureToolConcept.pdf
http://www.pnp-software.com/XFeature/pdf/XFeatureToolConcept.pdf
http://www.biglever.com/extras/BigLever_Solution_Brochure.pdf
http://www.biglever.com/extras/BigLever_Solution_Brochure.pdf
http://www.intellior.ag/fileadmin/Downloadcenter/Processmanagement_Software_BPM-Tool_Aeneis_Broschuere_EN.pdf
http://www.intellior.ag/fileadmin/Downloadcenter/Processmanagement_Software_BPM-Tool_Aeneis_Broschuere_EN.pdf
http://dx.doi.org/10.1007/3-540-48257-1_17
http://dx.doi.org/10.1007/3-540-48257-1_17

References 80

Berlin Heidelberg, 1999 (Lecture Notes in Computer Science). – ISBN 978–
3–540–66462–8, 266-280

[KCH+90] Kang, Kyo C. ; Cohen, Sholom G. ; Hess, James A. ; Novak, William E.
; Peterson, A. S.: Feature-Oriented Domain Analysis (FODA) Feasibility
Study. 1990

[Kev01] Kevin P. McCormack, William C. Johnson: Business Process Orien-
tation - Gaining the E-Business Competitive Advantage. 2001

[Koc11] Koch, Susanne: Einführung in das Management von Geschäftsprozessen -
Six Sigma, Kaizen und TQM. Springer, 2011

[Len00] Len Bass, Paul Clements and Patrick Donohoe: Fourth Product
Line Practice Workshop Report. (2000). – Online available: http://www.

sei.cmu.edu/pub/documents/00.reports/pdf/00tr002.pdf

[LWK12] Leitner, Andrea ; Weiß, Reinhold ; Kreiner, Christian: MADMAPS -
Simple and systematic assessment of modeling concepts for software product
line engineering. (2012)

[MHS05] Mernik, Marjan ; Heering, Jan ; Sloane, Anthony M.: When and how
to develop domain-specific languages. In: ACM Comput. Surv. 37 (2005),
Dezember, Nr. 4, S. 316–344. – ISSN 0360–0300

[Mic93] Michael Hammer and James Champy: Reengineering the Corporation -
A Manifesto For Business Revolution. 1993

[NIS93] NIST ISEE Working Group and the ECMA TC33 Task Group: Ref-
erence Model for Frameworks of Software Engineering Environments. (1993)

[Öst95] Österle, Hubert: Business Engineering. Prozess- und Systementwicklung:
Band 1: Entwurfstechniken. Springer, 1995 (Business engineering : Prozess-
und Systementwicklung). – ISBN 9783540600480

[PBL05] Pohl, Klaus ; Böckl, Günther ; Linden, Frank van d.: Software Product
Line Engineering: Foundations, Principles and Techniques. Springer, 2005

[Pet07] Peter Willaert, Joachim Van den Bergh, Jurgen Willems, Dirk
Deschoolmeester: The Process-Oriented Organisation: A Holistic View
- Developing a Framework for Business Process Orientation Maturity. 2007

[pur12] pure::systems: pure::variants User’s Guide. (2012)

http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr002.pdf
http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr002.pdf

References 81

[SA98] Simos, M. ; Anthony, J.: Weaving the Model Web: A Multi-Modeling
Approach to Concepts and Features in Domain Engineering. In: Proceedings
of the 5th International Conference on Software Reuse. Washington, DC,
USA : IEEE Computer Society, 1998 (ICSR ’98). – ISBN 0–8186–8377–5, S.
94–

[TTC95] Taylor, Richard N. ; Tracz, Will ; Coglianese, Lou: Software develop-
ment using domain-specific software architectures: CDRl A011-a curriculum
module in the SEI style. In: SIGSOFT Softw. Eng. Notes 20 (1995), Dezem-
ber, Nr. 5, S. 27–38. – ISSN 0163–5948

[Uni13] University of Waterloo: Clafer Lightweight Modeling Language: Ex-
amples. (2013). – Online available: http://www.clafer.org/p/examples.

html

[WL99] Weiss, David M. ; Lai, Chi Tau R.: Software product-line engineering: a
family-based software development process. Boston, MA, USA : Addison-
Wesley Longman Publishing Co., Inc., 1999. – ISBN 0–201–69438–7

[Xpe13] Xpert Line: IVY Business Process Management for You. (2013). – On-
line available: http://www.xpertline.ch/pdf/en/prospekt_xpertivy_

xpertline%20en.pdf

http://www.clafer.org/p/examples.html
http://www.clafer.org/p/examples.html
http://www.xpertline.ch/pdf/en/prospekt_xpertivy_xpertline%20en.pdf
http://www.xpertline.ch/pdf/en/prospekt_xpertivy_xpertline%20en.pdf

	Introduction
	Background and Motivation
	Disposition

	Related work
	Software product lines
	Motivation
	Phases of development
	Domain Engineering
	Application Engineering

	Software product lines in action

	Domain specific languages
	Motivation
	Phases of development

	Business processes management
	Process types
	Workflow
	Business process modelling

	Tool integration
	Integration based on Integrated Models
	Integration based on Process Flows

	Tool evaluation
	MADMAPS
	FODM: Tool candidates
	Tool 1: pure::variants
	Tool 2: Gears
	Tool 3: Clafer
	Tool 4: XFeature

	FODM: Criteria for the Evaluation
	FODM: Results
	BPM Tool: candidates
	Tool 1: Aeneis
	Tool 2: Xpert.Ivy
	Tool 3: Modelio
	Tool 4: DHC Vision

	BPM: Criteria for the Evaluation
	BPM: Results

	Variability modelling framework
	Conceptual design
	Type model
	Construction rules
	Relations and Restrictions

	Implementation of the varBPM toolchain
	The varBPM PluginHandler
	Tool integration
	Concrete implementation

	Variability
	Model validation
	Feature model validation
	VDM model validation
	Available automatic quick fixes

	Model transformation
	Model conversion
	User interface
	Wizards

	The command structure

	Using the varBPM tools in practice
	Glossary
	Installing the plug-in
	Setting up Aeneis
	Using the varBPM pure::variants plug-in
	Contributions to the user interface
	Creating a new feature model
	Update an existing feature model
	Model validation
	Model Transformation

	Design rules in Aeneis
	Structure
	Coupling factor
	Commonalities

	Future work
	Detailed FODM tool evaluation criteria
	Detailed BPM evaluation criteria
	Bibliography

